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ABSTRACT

The studies of fuzzy relations by Bandler and Kohout, which are also known as

the BK products, are well known in the literature as tools to study the composition of

relations. In the past, BK products, particularly the BK subproduct, gained remarkable

success in developing inference engines for numerous applications.

Though successful, there are still some limitations. First of all, this research starts

with a survey on a set of inference structures formed by the BK subproduct in previous

researches. The survey finds shortcomings in some inference structures. With excluding

these candidates, a set of robust inference structures are obtained from the analysis.

Secondly, with the understanding that the ordinary type-1 fuzzy sets have limited

ability in modeling uncertainty, a more general fuzzy set framework is proposed to im-

prove the performance of BK products. Thus, extending BK products to interval-valued

fuzzy sets is another contribution of this thesis. Since the subsethood measure is fun-

damental to the BK products, two interval-valued fuzzy subsethood measures are also

developed in this research.

Moreover, this research suggests that, among all the features involved in inferences,

certain features should have higher influence compared to the others. Therefore, to dis-

tinguish the influence of features towards inference results, a weight parameter is added.

The computation of this weighted inference engine is also discussed.

In order to test the proposed inference engine, this research also proposes a new

method to define membership degrees from statistical data. With this method, the BK

subproduct is tested with 3 publicly available data sets. The results are compared. Ex-

perimental results show that the extension to interval-valued fuzzy sets and the additional

weight parameter improve the quality of inferences.
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ABSTRAK

Kajian perhubungan kabur oleh Bandler dan Kohout, ataupun yang dikenali sebagai BK

products merupakan peralatan yang terkenal dalam literasi untuk mengkaji komposisi

hubungan. Pada masa lalu, BK products, terutamanya BK subproduct mendapat ke-

jayaaan yang cemerlang dalam pembangunan enjin inferens kepada banyak aplikasi.

Walaupun mendapat kejayaan, beberapa batasan masih wujud. Pertama sekali, pe-

meriksaan terhadap satu set struktur inferens berasal dari BK subproduct pada penye-

lidikan yang dahulu. Beberapa kelemahan telah dijumpai dalam sebilangan struktur in-

ferens. Dengan tidak memasukan calon-calon ini, satu set struktur inferens yang mantap

diperolehi dari analisis ini.

Seterusnya, dengan pengetahuan bahawa set kabur jenis pertama mempunyai keu-

payaan yang terhad dalam mewakili ketidakpastian, satu rangkaian set kabur yang lebih

umum dicadangkan untuk meningkatkan prestasi BK products. Maka, melanjutkan BK

products ke set kabur bernilai selang merupakan satu lagi sumbangan tesis ini. Oleh ker-

ana pengukuran keahlian set merupakan asas BK products, dua pengukuran keahlian set

untuk set kabur bernilai selang juga dibangunkan dalam penyelidikan ini.

Sebagai tambahan, penyelidikan ini mencadangkan, dalam semua ciri-ciri yang ter-

libat dalam inferens, sesetengah ciri-ciri seharusnya mempunyai pengaruhan yang lebih

tinggi baerbanding dengan yang lain. Oleh itu, untuk membezakan pengaruhan ciri-ciri

terhadap keputusan inferencs, satu parameter berat telah ditambah. Penyelesaian kepada

enjin inferens berberat ini juga dibincangkan.

Untuk menguji enjin inferens ini, satu cara baru menentukan darjah keahlian dari

data statistik untuk BK subproduct dicadangan. Dengan cara ini, BK subproduct telah

diuji dengan 3 set data awam. Keputusan eksperimen menunjukan pelanjutan ke set kabur

bernilai selang dan penambahan parameter berat telah meningkatkan kualiti inferens.
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CHAPTER 1

INTRODUCTION

1.1 Background

The modus ponens has been used in reasoning by many researches since antiquity.

This rule of inference can be expressed as “P implies Q. P, therefore, Q”, or:

(
P∧ (P→ Q)

)
→ Q. (1.1)

The foundation of the modus ponens is classical two-valued logic. When fuzzy set

theory was proposed, the modus ponens was extended to the generalized modus ponens

(GMP) (Zadeh, 1973): (
P′∧ (P→ Q)

)
→ Q′ (1.2)

where P, P′, Q and Q′ are fuzzy concepts.

Based on the GMP, the Compositional Rule of Inference (CRI) (Zadeh, 1973) is

one of the most popular fuzzy inference schemes, where both the Mamdani (Mamdani &

Assilian, 1975) and Sugeno (Takagi & Sugeno, 1985) inference engines are among the

most well-known applications.

Then, in some later studies on deductive reasoning, such as De Baets and Kerre

(1993b), Bodenhofer, Dankova, Stepnicka, and Novak (2007), Stepnicka and De Baets

(2013), investigations on the CRI found that the Mamdani inference engine does not re-

ally make use of the concept of implication as suggested in Eq. (1.2). In another study,

Stepnicka and Jayaram (2010) explicitly pointed out that another established fuzzy rela-

tional inference mechanism, the Bandler-Kohout relational products (Kohout & Bandler,
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1980a, 1980b), particularly the Bandler-Kohout subproduct can form excellent inference

schemes that model Eq. (1.2), which make use of implication operators. The Bandler-

Kohout products, which are commonly abbreviated as the BK products in the literature

(Kohout & Kim, 2002; Běhounek & Daňková, 2009; Kohout, 2009a; Mandal & Jayaram,

2012, 2013), is a study of composition of relations, or relations between two sets that

are not directly related. In a review on fuzzy relational calculus (Kerre, 2007), the Ban-

dler and Kohout’s (BK) products were honoured as the the most important operation on

relations.

Instead of investigating BK products as tool of rule-based reasoning, they can be

studied as schemes of case-based reasoning. Case-based reasoning finds its advantages

over rule-based reasoning in many ways. For example, case-based reasoning works suc-

cessfully in domains that are not completely understood, where defining rules are not

easy. Moreover, adding new cases to output is easy as it will not interfere with the existing

cases. Kolodner (1992, pp. 28-30) holds a comprehensive discussion on the advantages of

case-based reasoning. In the context of case-based reasoning, BK products have been im-

plemented as inference schemes of medical expert systems (Yew & Kohout, 1996a, 1997;

Lim, Yew, Ng, & Abdullah, 2002), information retrieval (Kohout & Bandler, 1985), path

finding of autonomous underwater vehicles (Bui & Kim, 2006; Y.-i. Lee & Kim, 2008),

land evaluation (Groenemans, Ranst, & Kerre, 1997) and etc.

1.2 Problem Formulation

Despite the success of the BK products in the past, there are still some limitations.

For instance, De Baets and Kerre pointed out a lack of non-emptiness condition in the

original definition of BK products (De Baets & Kerre, 1993a, 1994). An improvement

was proposed in their paper in order to make BK products more robust. With this im-
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provement, more logical connectives need to be instantiated to develop the fuzzy infer-

ence structures. Yew and Kohout (Yew & Kohout, 1996a, 1996b, 1997) showed a typical

example of this work where a set of 23 inference structures based on the BK subproduct

and its variants were developed. However, this research found that there are limitations in

the formulation of these inference structures, which are not addressed. These limitations

lead to the initialization of inappropriate logical connectives for the inference structures.

Secondly, similar to other fuzzy logic systems, a defuzzification module is used to

prepare the results in the form that meets the output requirements (Figure 1.1). Mean-

while, one of the interesting features of the BK products is that it performs inferences

using the fuzzy implication operators, which can be defined based on the needs of ap-

plications. Based on this special property, interval-valued inferencing was proposed in

(Kohout & Bandler, 1992) to obtain more reliable results in inferences. However, de-

spite of its great idea, this research found that the interval-valued inferencing is not only

associates with low efficiency because of unnecessary computations, but also falls into

the realm of dichotomy, i.e. an inference can only be ‘accepted’ or ‘not accepted’ (or,

‘rejected’ or ‘not rejected’ in the other way round). Certainly, an improvement of this de-

fuzzification method is needed so that attention is given to both reliability and efficiency.

Defuzzification
Module

Fuzzification
Module

Inference
Engine

Knowledge
base

input output

Fuzzy Logic Systems

Figure 1.1: Typical Structure of a Fuzzy Logic Systems
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More importantly, the implementations of the BK products in the literature are based

on classical T1FS theory, which address uncertainty with single-point-values. Studies

such as (Mendel, 2000, 2003) claimed that T1FSs have their limitation in addressing

uncertainty with its crisp membership functions. While more complicated fuzzy set the-

ories, such as the IVFSs and Type-2 Fuzzy Sets (T2FSs) (Zadeh, 1975b; Gorzalczany,

1987; Bustince, 2000; Mendel, John, & Liu, 2006) are being developed, extending the

BK products to these fuzzy frameworks became a challenge that has not been attended so

far.

Moreover, the BK products perform inferences by utilizing a set of common features

that relate the inputs and outputs. In most cases, the BK products treat all the features

equally, i.e. the importance of all features is similar. However, in practice, not all these

features have the same influences towards expected inference results. This thesis argues

that some features may have higher reliability or distinguishability than the others, and

vice versa. In the literature of fuzzy logic researches, implementation of weight parame-

ters is also not rare (Hoffmann, 2004; Ishibuchi & Yamamoto, 2005; Seki & Mizumoto,

2011; Xing & Ha, 2014). Therefore, adding a weight parameter to the BK products based

inference engines is another challenge of this study.

Lastly, in previous implementations of the BK products, predefine rules (Bui & Kim,

2006) or experts knowledge (Groenemans et al., 1997) are required so that the knowledge

based can be formed. In some cases, even the fuzzification modules are also predefined.

However, an approach to train the BK products so that it can learn from examples cannot

be found in the literature. The lack of this learning feature limits the application of the

BK products in many fields as long as a predefined knowledge base is not available.

4
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1.3 Thesis Objectives and Main Contributions

In Section 1.2, some research opportunities on the BK products have been pointed

out. Generally, the aim of the research is to improve the reasoning performance of the BK

products, particularly the most popular BK subproduct based inference engines. This aim

is achieved by building the theoretical framework of a weighted inference engine which

based on IVFS-based BK subproduct. More specifically, the objectives and contributions

of this research are as follow:

(a) To improve the implementations of the BK products that can be found in the litera-

ture, particularly the implementations of BK subproduct.

This research discovers limitations presented in the list of inference structures that

proposed by Yew and Kohout (1996a, 1996b, 1997). With an analysis on the proper-

ties of the logical connectives used in these inference structures, some of the inference

structures with shortcomings are rejected. This bring the number of robust inference

structures reduced from 19 to 8.

Besides, a defuzzification method was proposed as an improvement to interval-valued

inferencing technique. For a given threshold, this improved defuzzification method

not only proposes acceptable inferences, but also the reliabilities of these inferences.

(b) To improve the performance of the BK products with an extension to IVFSs, as well

as additional weight parameter.

T2FS theory started to get attention in the late 1990s (John & Coupland, 2007) with

the claim that they have a better capability in modeling uncertainties (Fazel Zarandi,

Rezaee, Turksen, & Neshat, 2009; Choi & Rhee, 2009; Hwang, Yang, & Hung,

2011). However, due to high computational complexity and other reasons (Coupland,

2007; Mendel, 2004), T1FS theory is still dominant. In this research, the BK prod-

ucts are extended to be based on IVFSs, a special form of T2FSs.

5
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Besides, researches reported that incorporating a weight parameter may improve the

fuzzy systems by paying more attention to certain factors in reasoning (Hayashi, Ot-

subo, Murakami, & Maeda, 1999; Ishibuchi & Yamamoto, 2005; Y. Wang & Fan,

2007; Seki & Mizumoto, 2011). Thus, an IVFS-modeled weight parameter is added

to the inference engines based on the BK products.

(c) To develop a learning mechanism for the BK subproduct based inference systems so

that a system can be built without predefined data.

In the past, expert knowledge was needed in most of the implementations of the BK

subproduct. In these cases, experts are expected to provide information that is neces-

sary to construct the knowledge base, as well as in the fuzzification process. In this

research, a method is proposed so that the knowledge base and fuzzification module

(Figure 1.1) can be built from the learning process. With this mechanism, member-

ship functions can be formed from a set of training data. Next, the distributions of

data help to define the membership degrees for the knowledge base. This set of mem-

bership functions also serve to fuzzify the input data so that can be processed by the

inference engines.

(d) To demonstrate the implementation of the BK subproduct based inference systems as

a classifier.

Empirical study is not an objective of this research. However, to demonstrate the

usefulness of the extension of BK subproduct, an experiment with limited data sets

is conducted. In this experiment, three publicly available data sets are adopted so

that inference engines derived from BK subproduct work as classifiers. Classification

accuracies are compared among these BK subproduct based inference engines, as

well as with other works in the literature.

6
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1.4 Organization of the Thesis

This thesis is organized into 8 chapters.

Chapter 2 provides background knowledge required for this research. This chapter

starts with a revision on the fundamental knowledge about fuzzy sets and fuzzy relations.

A detailed review on the theory of BK products and improvement is provided in the

subsequent section, followed by examples of applications in the literature. This chapter

also discuss the concepts of IVFSs and T2FSs.

Chapter 3 discusses two shortcomings of the implementations of the BK subproduct

in the past, namely the adoption of inappropriate logical connectives and the low per-

formance of defuzzification modules. Improvements for both shortcomings are proposed

here.

Chapter 4 starts with the introduction of two subsethood measures of IVFSs, fol-

lowed by extending the BK products into the framework of IVFSs. Some interesting

properties of the BK products in the IVFSs are also studied here. Lastly, the weight

parameter is added to the BK products based inference templates.

Chapter 5 proposes a learning mechanism so that the BK subproduct based inference

systems can be built from numerical data. Detailed algorithms are provided, followed by

an example.

Chapter 6 demonstrates the application of the BK subproduct as a classifier. Three

implementations of the BK subproduct are shown here, i.e. the original T1FSs based,

improved IVFSs based and weighted.

Chapter 7 shows the results of the applications in Chapter 6, followed by a discussion

and comparisons with other works in the literature.

Chapter 8 concludes the research. Last but not least, further research topics related

to the work are proposed.

7
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CHAPTER 2

BACKGROUND RESEARCH

2.1 Introduction

BK products concern the composition of relations between sets. To make the discus-

sion on BK products efficient, this chapter starts with a brief discussion of the concepts

of fuzzy sets, fuzzy relations and their characteristics. The BK products are discussed in

detail in the second section of this chapter, followed by two extensions of the ordinary

T1FS theory, namely IVFS theory and T2FS theory.

2.2 Fuzzy Sets and Fuzzy Relations

An element can be discriminated as member or non-member of a set in classical

(crisp) set theory. However, due to some reasons, the boundary of a set may ambiguous,

imprecise or uncertain. The reasons for this problem may come from:

• imperfect, or incomplete definitions;

• systemic or random errors in measurements;

• vagueness in natural languages, and etc.

Since crisp set theory is not capable of handling the aforementioned problems, fuzzy

set theory was developed. If X is the universe of discourse and x ∈ X , a mapping A : X →

[0,1] is a fuzzy set on X . Furthermore, A(x) is the membership degree of x in A.

The same concept of membership degrees can be applied to the study of relations

(Zadeh, 1965). Assume R is a relation between 2 universes X and Y , where x ∈ X and

y ∈ Y , then R(x,y) ∈ [0,1] is the degree of relationship between x and y. There are at

8
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least 3 different characteristics of fuzzy relations that can be studied, namely, reflexivity,

symmetry, and transitivity.

A relation R is called reflexive if R(x,x) = 1 for all x ∈ A. If R is not reflexive, it

is called irreflexive. If the relation does not hold for all x ∈ A, then R is an antireflexive

relation.

A relation R is called symmetric if and only if for x,y ∈ A, R(x,y) = R(y,x). If

R is not symmetric, it is called irreflexive. asymmetric. Subsequently, the relation is

antisymmetric if R(x,y) 6= 0 and R(y,x) 6= 0 only when x = y.

For x,y,z ∈ A, a relation R is transitive if and only if:

R(x,z)≥ max
y∈A

min
(

R(x,y),R(y,z)
)

(2.1)

for all (x,z) ∈ A×A. This relation is non-transitive if Eq. (2.1) does not hold for some

(x,z) ∈ A×A. Lastly, for all (x,z) ∈ A×A, if:

R(x,z)< max
y∈A

min
(

R(x,y),R(y,z)
)

(2.2)

then R is antitransitive.

In some real-world applications, the fuzzy relation R may not satisfy the property of

transitivity. Therefore, finding a modified fuzzy relation that is close to R, and contains

R is a solution to this problem. This modified fuzzy relation R⊗ is called the transitive

closure of R, and satisfy the following properties:

1. R⊗ is transitive;

2. R is a subset of R⊗;

3. the elements of the transitive closure have the smallest possible membership grades.
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This transitive closure is given by:

R⊗ =
∞⋃

k=1

Rk (2.3)

2.3 BK Products

2.3.1 BK Products in Crisp Sets

The discussion of this section starts with a brief revisit of the fundamental definitions

of BK (crisp) relational products. To make the discussion more concise, the following

notations and definitions are used for the remaining of this thesis.

Let set A = {ai | i = 1, · · · , I} and set B = {b j | j = 1, · · · ,J}. R is defined as a

relation from A to B such that R⊆ A×B. The abbreviation aRb shows that a is in relation

R with b.

Definition 1 (Domain). The domain of a relation R is the set of elements of A such that:

dom(R) = {a | a ∈ A and (∃b ∈ B)(aRb)} (2.4)

Definition 2 (Range). The range of a relation R is the set of elements in B such that:

rng(R) = {b | b ∈ B and (∃a ∈ A)(aRb)} (2.5)

Definition 3 (Converse Relation). The converse relation RT is the reverse of relation R

from B to A:

RT = {(b,a) | (b,a) ∈ B×A and aRb} (2.6)
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Definition 4 (Afterset). The afterset aR is the image of a in B under relation R in B:

aR = {b | b ∈ B and aRb} (2.7)

Definition 5 (Foreset). The foreset Rb is the image of b in A under relation RT :

Rb = {a | a ∈ A and aRb} (2.8)

Assume that there is another set C = {ck | k = 1, · · · ,K}, and S is a crisp relation

from set B to set C. The classical relational product, namely the circle product is defined

as follows:

Definition 6 (Circle product). The circle product gives all (a,c) couples for which there

exist at least one b that is in relation RT with a ∈ A and relation S with c ∈C.

R◦S = {(a,c) | (a,c) ∈ A×C and aR∩Sc 6=∅} (2.9)

Bandler and Kohout revised Definition (6) and proposed the crisp BK products

(Kohout & Bandler, 1980b):

Definition 7 (BK Subproduct). The BK subproduct gives all (a,c) couples for which the

afterset aR is a subset of foreset Sc.

R/BK S = {(a,c) | (a,c) ∈ A×C and aR⊆ Sc} (2.10)

With this composition of relations, one can find the relation between an object, a∈A

and target, c ∈ C if a set with common features, B′ ⊆ B appears in the middle (Figure

2.1).
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a     c

A CB

R S

aR
Sc

Figure 2.1: With BK subproduct, the relation between 2 sets which are not related directly
can be retrieved if a set with common features exist.

Definition 8 (BK Superproduct). The BK Superproduct gives all (a,c) couples for which

the foreset Sc is a subset of afterset aR:

R.BK S = {(a,c) | (a,c) ∈ A×C and Sc⊆ aR} (2.11)

Definition 9 (BK Square Product). The BK square product gives all (a,c) couples for

which the afterset aR is exactly equal to the foreset Sc:

R�BK S = {(a,c) | (a,c) ∈ A×C and aR = Sc} (2.12)

It is easy to see that R�BK S≡ (R/BK S)
⋂
(R.BK S).

De Baets and Kerre (1993c, 1993a, 1994) found that there is a shortcoming in Defi-

nition (7), namely the lack of non-emptiness condition. They found that for an element a

which finds no relation R with any elements in B, the image of aR is an empty set. Due

to the empty set is a subset of all sets, this particular element a can have relation R/BK S

with all the elements in C even if there is no image of a in B under relation R. For the

BK superproduct and the square product, a similar imperfection holds. Thus, De Baets
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and Kerre concluded that a lot of unwanted couples are generated by the traditional BK

relational products.

To resolve this shortcoming, De Baets and Kerre (1993c, 1993a, 1994) proposed that

an additional term should be added to Definitions (7) - (9), so that the empty set is not

counted:

R/K S = {(a,c) | (a,c) ∈ A×C and ∅⊂ aR⊆ Sc} (2.13)

R.K S = {(a,c) | (a,c) ∈ A×C and ∅⊂ Sc⊆ aR} (2.14)

R�K S = {(a,c) | (a,c) ∈ A×C and ∅⊂ aR = Sc} (2.15)

2.3.2 BK Products in Fuzzy Sets

As one can observe in Definitions (7) and (8), aR ⊆ Sc and Sc ⊆ aR are the keys in

retrieving the relationship between a and c. Therefore, these crisp BK products can be

extended to a fuzzy BK products easily by introducing a fuzzy subsethood measure - i.e.

the possibility of a set is the subset of another given set. As proposed by Kohout and

Bandler (1980b), for two fuzzy subsets P and Q, where both subsets are in the universe X

and x is a general notation of elements in this universe, the possibility that P is a subset

of Q is given as:

π(P⊆ Q) =
∧
x∈X

(P(x)→ Q(x)) (2.16)

where
∧

is the infimum operator,→ denotes a fuzzy implication operator, and P(x) and

Q(x) represent the membership degrees of x in P and Q perspectively. The infimum oper-

ator is an aggregator that can be defined as min function in harsh criterion, or arithmetic

mean in mean criterion. The fuzzy implication operator (Kohout & Bandler, 1980a; Will-

mott, 1980; Ruan, 1993) is a function such that: i) [0,1]2→ [0,1]; ii) decreasing in the first

variable but increasing in the second variable; and iii) satisfying the following boundary
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conditions, namely 0→ 0 = 1, 0→ 1 = 1, 1→ 1 = 1 and 1→ 0 = 0.

There are a number of candidates of fuzzy implication operators in the literature

(Table 2.1).

With the definition of fuzzy subsethood measure in Eq. (2.16), the original fuzzy BK

products can be defined as follow:

Fuzzy BK subproduct: R/BK S(a,c) =
∧
b∈B

(R(a,b)→ S(b,c)) (2.17)

Fuzzy BK superproduct: R.BK S(a,c) =
∧
b∈B

(S(b,c)→ R(a,b)) (2.18)

Fuzzy BK square product: R�BK S(a,c) =
∧
b∈B

(R(a,b)↔ S(b,c)) (2.19)

where a↔ b = min(a→ b,b→ a).

On the other hand, the fuzzy circle product is defined as follow:

Fuzzy circle product: R◦S(a,c) =
∨
b∈B

τ(R(a,b),S(b,c)) (2.20)

where
∨

is the supremum operator and τ is the t-norm.

With the consideration of non-emptiness condition, De Baets and Kerre (De Baets

& Kerre, 1993a) proposed 2 sets of improvement. Each of the improvement requires an

additional term to rectify the problem.

The first set of improvement is based on:

R ./B S = (R ./BK S)∩ (dom(R)× rng(S))

where ./= {/,.,�}. This expression leads to the first set of improved fuzzy BK products,
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Table 2.1: Examples of the Fuzzy Implication Operators and Their Respective Defini-
tions.

Name Symbol Definition

S# - Standard Sharp
r→S# s

 1 iff r 6= 1 or s = 1

0 otherwise(Mizumoto & Zimmermann, 1982)

S - Standard Strict
r→S s

 1 iff r ≤ 1

0 otherwise(Mizumoto & Zimmermann, 1982)

S* - Standard Star
r→S* s

 1 iff r ≤ s

s otherwise(Mizumoto & Zimmermann, 1982)

G43 - Gaines 43
r→G43 s min(1,

r
s
)

(Mizumoto & Zimmermann, 1982)

G43’ - Modified Gaines 43
r→G43’ s min(1,

r
s
,
1− r
1− s

)
(Mizumoto & Zimmermann, 1982)

KD - Kleene-Dienes
r→KD s max(s,1− r)

(Kohout & Bandler, 1980a)

R - Reichenbach
r→R s 1− r+ rs

(Kohout & Bandler, 1980a)

L - Łukasiewicz
r→Ł s min(1,1− r+ s)

(Zadeh, 1975a)

W - Willmott
r→W s

min
(

max(1− r,s),max(r,1− r),

(Willmott, 1980) max(s,1− s)
)

Y - Yager (Yager, 1980) r→Y s s r

EZ - Early Zadeh
r→EZ s (r∧ s)∨ (1− r)

(Zadeh, 1975a)

namely the fuzzy BK products (set B):

R/B S(a,c) = min
(∧

b∈B

(R(a,b)→ S(b,c)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)

(2.21)

15

Univ
ers

ity
 of

 M
ala

ya



R.B S(a,c) = min
(∧

b∈B

(S(b,c)→ R(a,b)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)

(2.22)

R�B S(a,c) = min
(∧

b∈B

(R(a,b)↔ S(b,c)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)

(2.23)

The second set of improvements is based on:

R ./K S = (R ./BK S)∩ (R◦S)

Thus, the second set of improved fuzzy BK products are fuzzy BK products (set K):

R/K S(a,c) = min
(∧

b∈B

(
(R(a,b)→ S(b,c)

)
,
∨
b∈B

τ
(
R(a,b),S(b,c)

))
(2.24)

R.K S(a,c) = min
(∧

b∈B

(
(S(b,c)→ R(a,b)

)
,
∨
b∈B

τ
(
R(a,b),S(b,c)

))
(2.25)

R�K S(a,c) = min
(∧

b∈B

(
(R(a,b)↔ S(b,c)

)
,
∨
b∈B

τ
(
R(a,b),S(b,c)

))
(2.26)

The initial term that originates from Bandler and Kohout is referred to as the impli-

cation term, whereas the term added by De Baets and Kerre is referred as the additional

term.
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2.3.3 Advantages and Disadvantages of the BK Products

The inference law of modus ponens and its generalization, the GMP are the fun-

damental mechanisms in developing inference schemes. The popular CRI scheme is

claimed to be a model of inference scheme based on the modus ponens (Zadeh, 1973).

However, studies (Dubois & Prade, 1996; Daňková, 2007; Novák & Lehmke, 2006; Step-

nicka & De Baets, 2013) show that the CRI does not really forms fuzzy rules with im-

plications as required by modus ponens. In contrast, the inference scheme formed by BK

products do really make use of residual implication. This make BK products mathemati-

cally more appealing compare to the CRI. Therefore, the strong mathematical fundamen-

tal is one of the advantages of BK products.

Although BK products follow the inference law of modus ponens, the implementa-

tions of BK products do not require to define rules explicitly. This brings an advantage to

BK products to fill the void where developing rule based systems is problematic. Defin-

ing rules may be insufficient in some cases where one has no enough domain knowledge.

In some other cases, the increasing of antecedents may cause the rule sets lengthy and

difficult to handle. On the other hand, construction of inference systems based on BK

products is easier as long as the fuzzy relations between objects-features and features-

targets can be defined. Also, the increasing of attributes in BK products does not increase

the complexity of the system because each attribute works independently from another.

Even though BK products work well with numerical data, but they find limitation

in dealing with categorical data, especially when order or rank does not exist in the data.

For example, categorical attribute “shape” with data “square”, “triangle”, “octagon” and

etc is hard to quantify so that membership degrees can be retrieve for BK products to

compute.
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2.3.4 Applications of BK Products

The BK products have been widely applied in various field of soft computing (Kohout

& Kim, 2002; Kohout, 2009b). Among all, the BK subproduct is the most popular and we

can find its application in medical expert systems (Yew & Kohout, 1996a, 1996b, 1997),

information retrieval (Kohout & Bandler, 1985), path finding of autonomous underwater

vehicles (Bui & Kim, 2006; Y.-i. Lee & Kim, 2008), land evaluation (Groenemans et al.,

1997), scene classification (Vats, Lim, & Chan, 2012) and etc, whereas the BK square

product is also used in applications such as medical diagnosis (Davis IV & Kohout, 2006)

and pattern recognition (Davis IV, 2006).

However, one shortcoming is that all the above applications did not consider the

influential difference of each individual feature, except the study of lands evaluation

(Groenemans et al., 1997). In this lands evaluation study, lands are evaluated so that

the most suitable land unit is selected for specific utilization. The selection of lands is

based on a list of land qualities and each land quality carries its own weight (influence).

Yet, the implementation of the weight in this work required to fulfill a condition:

∑
N
n=1 wn = 1 where N is the number of features (land qualities) and w is the weight of

feature n. This condition is too restrictive for a good implementation of weights be-

cause: (i) adding or decreasing features into consideration list will cause recalculation

of all the weights. For instance, adding a new feature with weight wN+1 6= 0 to the ex-

isting feature list will cause the total weight become ∑
N+1
n=1 wn. It is easy to verify that

∑
N+1
n=1 wn = 1+wN+1 > 1 and the condition of total weight equal to 1 is no longer valid.

Thus, a normalization is required so that the ∑
N+1
n=1 wn = 1 is fulfilled. (ii) importance or

influence of a feature is not intuitive - i.e. comparing a system with such condition to an

implementation of weights where wn ∈ [0,1] for all n, the weights of the later are much

more intuitive as the weights close to 0 means less influence, while close to 1 means high
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influence. In (Groenemans et al., 1997), the weights can be small numbers close to 0

even if they have high influence in case the number of features N is large. Furthermore,

this problem becomes much more complicated if new features are going to be added into

consideration as one may not know what are the appropriate values that represent high

(or low) influence.

On the other hand, Yew and Kohout (1996a, 1996b, 1997) built a medical applica-

tion based on the BK products, where both the original and improved BK subproducts

were developed into medical inference engines. In this application, the composition of

relations between the patients and illnesses were studied through a set of features, namely

signs and symptoms. Based on the the original fuzzy BK subproduct, the improved fuzzy

BK subproduct (set B) and the improved fuzzy BK subproduct (set K), three fuzzy in-

ference templates were built. These inference templates are named as Sub-BK inference

template, Sub-B inference template and Sub-K inference template, respectively:

Sub-BK inference template

R CBK S(a,c) =f2
(
R(a,b)→ S(b,c)

)
(2.27)

Sub-B inference template

R CB S(a,c) =f1

(
f2 (R(a,b)→ S(b,c)),g3 R(a,b),g4 S(b,c)

)
(2.28)

Sub-K inference template

R CK S(a,c) =f1

(
f2 (R(a,b)→ S(b,c)),g3

(
f4 (R(a,b),S(b,c))

))
(2.29)

In these inference templates, the fi (i = {1,2,4}) and g j ( j = {2,3}) are logical con-
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nectives instantiated with the checklist paradigm (Kohout & Bandler, 1980b, 1992) as

follow:

f1 = {min,max}

f2 = {Arithmetic mean,AndTop,AndBot}

g3 = {Arithmetic mean,OrTop,OrBot}

g4 = {OrTop}

f4 = {AndTop,AndBot} (2.30)

and AndTop, AndBot, OrTop and OrBot are defined as follow:

AndTop(p,q) = min(p,q) (2.31)

AndBot(p,q) = max(0, p+q−1) (2.32)

OrTop(p,q) = max(p,q) (2.33)

OrBot(p,q) = min(1, p+q) (2.34)

With these inference templates, a set of 23 inference structures were formed and

tested in a medical expert system. Among all, 3 Sub-BK inference structures were instan-

tiated from Eq. (2.27), and they are referred as the BK1, BK2 and BK3 respectively:

BK1 :
1
|B| ∑b∈B

(R(a,b)→ S(b,c))

BK2 : AndTop(R(a,b)→ S(b,c))

BK3 : AndBot(R(a,b)→ S(b,c))
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There is only 1 instantiation for the Sub-B inference structure:

B1 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),max R(a,b),max S(b,c)
)

For the Sub-K inference template, a list of 19 inference structures were instantiated,

namely K1 - K19:

K1 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),
1
|B| ∑b∈B

(
AndTop(R(a,b),S(b,c))

))

K2 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),
1
|B| ∑b∈B

(
AndBot(R(a,b),S(b,c))

))

K3 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),
1
|B| ∑b∈B

(
AndTop(R(a,b),S(b,c))

))

K4 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),
1
|B| ∑b∈B

(
AndBot(R(a,b),S(b,c))

))

K5 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndTop(R(a,b),S(b,c))

))

K6 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndBot(R(a,b),S(b,c))

))

K7 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndBot(R(a,b),S(b,c))

))

K8 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrTop
(
AndTop(R(a,b),S(b,c))

))

K9 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndTop(R(a,b),S(b,c))

))

K10 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrTop
(
AndBot(R(a,b),S(b,c))

))

K11 : max
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndBot(R(a,b),S(b,c))

))
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K12 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrTop
(
AndTop(R(a,b),S(b,c))

))
K13 : min

(
AndTop(R(a,b)→ S(b,c)),OrTop

(
AndTop(R(a,b),S(b,c))

))
K14 : min

(
AndTop(R(a,b)→ S(b,c)),OrTop

(
AndBot(R(a,b),S(b,c))

))
K15 : min

(
AndBot(R(a,b)→ S(b,c)),OrBot

(
AndBot(R(a,b),S(b,c))

))
K16 : min

(
AndBot(R(a,b)→ S(b,c)),OrBot

(
AndTop(R(a,b),S(b,c))

))
K17 : max

(
AndTop(R(a,b)→ S(b,c)),OrBot

(
AndTop(R(a,b),S(b,c))

))
K18 : min

(
AndTop(R(a,b)→ S(b,c)),OrBot

(
AndTop(R(a,b),S(b,c))

))
K19 : min

(
AndTop(R(a,b)→ S(b,c)),OrBot

(
AndBot(R(a,b),S(b,c))

))

In this application, the feature set is a set of signs and symptoms. R(a,b) denotes

the membership degree of the fuzzy relation R between a patient a and a sign or symptom

b, whereas S(b,c) is the membership degree of the fuzzy relation S between a sign or

symptom b and a disease c. By studying the fuzzy relations R and S, the inference engine

of this medical expert system is able to infer the relation between patients a and diseases

c. The higher the membership degree of composition of relation between a patient and a

disease, the higher the possibility the patient is suffering from that disease.

2.4 Interval-Valued Fuzzy Sets

An interval-valued fuzzy set (IVFS) is a general form of T1FSs. According to

Bustince (2000), it was developed by Sambuc (1975). In the past, it has been applied

in various researches such as image processing (Bustince, Barrenechea, Pagola, & Fer-
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nandez, 2009; Fisher, 2007), forecasting (M & Mendez, 2007; Fazel Zarandi et al., 2009),

reasoning (Xu, Kerre, Ruan, & Song, 2001; Turksen, 2002) and etc. In some literature, it

is known as “interval type-2 fuzzy sets” (Aisbett, Rickard, & Morgenthaler, 2010). Over

the years, T1FSs have been critisized for its limitation in representing uncertainty because

T1FSs model uncertainties with point values. In many cases, it is too restrictive because

point values do not able to capture uncertainties from multiple sources. Thus, the emerge

of IVFSs relaxed the restriction by allowing uncertainty to be represented with an interval.

The difference of IVFSs and T1FSs is discussed in the following.

Let A be a T1FS and Ã be an IVFS, both in the universe X . It is common to define A as

(x,A(x)) where x ∈ X and A(x) ∈ [0,1] is a point-valued membership function. Whereas

for the IVFS, Ã = {(x, Ã(x))} and Ã(x) = [A(x),A(x)], where both A(x), A(x) ∈ [0,1]

and A(x) ≤ A(x). Compared to T1FSs, whose membership functions are point-valued,

the membership functions of Ã are interval-values (IV) [A(x),A(x)]. A(x) is the Lower

Membership Function (LMF) and A(x) is the Upper Membership Function (UMF). An

area surrounded by a LMF and a UMF is defined as the Footprint Of Uncertainty (FOU)

(Figure 2.2).

According to the Representation Theorem (Mendel & John, 2002), an IVFS can be

considered as a collection of T1FSs:

Ã→ ({A1,A2, . . . ,Aη}) (2.35)

where η is the total number of T1FSs “embedded” in the IVFS. In this sense, the com-

puting of an IVFS can be reduced to the computing of multiple T1FSs. Assume that

Ã = {xi|i = {1,2, · · · , I}} where I ∈ N. If the membership degree corresponding to an xi,

[A(xi),A(xi)] can be discretized into Ji ∈ N points, the total number of T1FSs that form
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Figure 2.2: Comparison of membership functions of a T1FS and an IVFS.

the IVFS is given by η :

η =
I

∏
i=1

Ji (2.36)

2.5 Type-2 Fuzzy Sets

The theory of T2FSs first emerged in 1975 (Zadeh, 1975b, 1975d, 1975c). However,

it was not widely adopted during the first few decades, due to the computational com-

plexity (John & Coupland, 2007). With the development of tools and theories associated

with T2FSs in recent years (N. N. Karnik, Mendel, & Liang, 1999; N. Karnik & Mendel,

2001; N. N. Karnik & Mendel, 2001; C.-H. Wang, Cheng, & Lee, 2004; Mitchell, 2006;
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A(x)

A(x)

A
~

UMF

FOU
LMF

x

A(x) A(x)A'(x)

ψ(x,A'(x))

third dimension

Figure 2.3: A T2FS and its membership function. The small box on the right is a vertical
slice of element x.

Castro, Castillo, & Melin, 2007; Greenfield, Chiclana, Coupland, & John, 2009), the

T2FSs have become more popular. However, a special type of T2FSs, i.e. the IVFSs is

the main focus in this development (N. N. Karnik & Mendel, 2001). In general, T2FSs

were claimed to have advantages in modeling problems where membership functions are

ill-defined (Mizumoto & Tanaka, 1976). Thus, Computing With Words (CWW) (Zadeh,

1996, 1999, 2011) is one of the areas where T2FSs have found its applications (Mendel,

2007b, 2007a; D. Wu & Mendel, 2010).

Generally, a T2FS is a fuzzy set whose membership functions are T1FSs. If Ã is a

T2FS in universe X :

Ã =
{(

x,A(x),ψ(x,A(x))
)}

(2.37)

where x ∈ X , A(x) = [A(x),A(x)] ⊆ [0,1] and ψ(x,A(x)) is the vertical slice (Figure 2.3)

that representing the membership degree of A(x). For an A′(x) where A(x)≤A′(x)≤A(x),

the secondary membership of A′(x) is given by ψ(x,A′(x)) ∈ (0,1]. For A′(x)< A(x) and

A′(x)> A(x), ψ(x,A′(x)) = 0.
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An IVFS is a special case of T2FSs. In an IVFS, as long as A(x) ≤ A′(x) ≤ A(x),

the secondary memberships ψ(x,A(x)) = 1, otherwise ψ(x,A(x)) = 0. Representation

Theorem (Mendel & John, 2002) is still applicable for T2FSs. In this case, a T2FS Ã is a

collection of T1FSs which associated with secondary membership degrees ψ(x,A(x)) ∈

[0,1].

2.6 Chapter Conclusion

In this chapter, the fundamentals of fuzzy relations were introduced. The BK prod-

ucts, which actually are the composition of relations are discussed in the subsequent sec-

tion. Among all the three BK products, the BK subproduct is highlighted due to its

popularity in the past. Then, two of its applications are examined in detail to facilitate the

discussion in the following chapters. Some recent advances of fuzzy set theory are also

discussed in this chapter, namely the IVFSs and T2FSs. Both of these T1FS extensions

are getting more and more popular in the last decade.

26

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3

THE BK SUBPRODUCT IN FUZZY INFERENCE
SYSTEMS

3.1 Introduction

In order to improve the implementation of the BK subproduct, a typical application

as described in Section 2.3.4 is analysed in this chapter. Weaknesses in the inference

engines are pointed out and suggestions are given in Section 3.2. Besides, an improve-

ment of interval-valued inferencing (Yew & Kohout, 1996a), a defuzzification method for

inference engines utilizing implication operators, is also discussed in Section 3.3.

3.2 Justification of Logical Connectives in Inference Struc-
tures

As discussed in Section 2.3.4, a list of 19 inference structures based on the Sub-K

inference template were proposed by Yew and Kohout (1996a, 1996b, 1997). This section

is dedicated to study the justification of adopting the logical connectives proposed in the

research and highlights the improvements.

3.2.1 Shortcomings of Inference Structures

3.2.1 (a) Using max as Outer Logical Connective

Among these 19 inference structures (Yew & Kohout, 1996a, 1996b, 1997), 7 of

them employed max as the outer logical connective, f1. These inference structures are

K3, K4, K5, K6, K8, K11 and K17.

Please note that the purpose of f1 in the Sub-K inference template is to choose a
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candidate from two to be the result of a particular inference - the first candidate is the

implication term that proposed by the original BK subproduct f2(R(a,b) → S(b,c)),

whereas the second candidate is the additional term g3(f4(R(a,b),S(b,c)), which was

proposed by De Baets and Kerre (De Baets & Kerre, 1993a) to avoid the emptiness as

discussed in Section 2.3.1 (i.e. object a that has no relations with any feature in set B

eventually shows strong relations with all the elements in C). In case of the presence of

emptiness, operations on the implication term yield 1.0 due to the nature of implication

operators r→ s = 1 if r = 0, ∀s ∈ [0,1].

Obviously, replacing f1 as min can cause the results of the particular inference come

from the additional term. Though the problem of emptiness could be solved with the

solution proposed by De Baets and Kerre (De Baets & Kerre, 1993a), max as f1 will yield

the implication term as inference output, which implies that the non-emptiness condition

is ignored again.

So, it is clear that max is not a valid outer connective in solving the Sub-K inference

template due to the non-emptiness condition. The same conclusion holds if the Sub-B

Inference Template is studied and the reason is trivial.

3.2.1 (b) Using AndBot to Aggregate the Results of Implications

In K15 and K16, AndBot was used as f2, the aggregation operator for implica-

tion results in the implication term. However, this logical connective may not work as

expected in practice. We explain this in the following paragraphs.

In a J-variable environment, AndBot in Eq. (2.32) can be generalized as follow:

AndBot(ϕ) = max
(

0,
J

∑
j=1

ϕ j− (J−1)
)

(3.1)

where j ∈ {1, · · · ,J}. In K15 and K16, the result of each implication is aggregated with
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Eq. (3.1), where ϕ j should be substituted with R(a,b j)→ S(b j,c).

The problem associated with AndBot as the aggregation operator is not prominent

when J is small and results of most R(a,b j) → S(b j,c) are big. However, it is easy

to verify that when J increases, the result of the aggregation decreases as long as the

outcome of an implication is not 1.0. Some numerical examples that may happen in

real applications are as follows: 1) If all the 10 implications yield 0.9, the result of the

aggregation is 0.0; 2) Out of J implications, if an implication yields 0.0, the result of the

whole aggregation is also 0.0, even though all the other implications yield 1.0.

In this sense, the demand for high R(a,b j) and S(b j,c) values simultaneously of this

logical connective is not a desirable property of an aggregation operator. So, we conclude

that K15 and K16, as well as any inference structures that adopt AndBot to aggregate the

results of implications are not good inference structures practically.

3.2.1 (c) The Influence of De Baets and Kerre’s Improvement on BK Sub-triangle
Product

The validity of the BK subproduct comes from the subsethood measurement of one

set in another, which is provided by the implication term. Apparently, the additional

term added by De Baets and Kerre (1993a) to rectify the problem of emptiness has some

degrees of influence in the K-series of inference structures, despite it is the solution to the

non-emptiness condition.

Also, we learned in Section 3.2.1 (a) that choosing min as f1 is to avoid the empti-

ness in R(a,b) and affects the inference result. However, the additional term that was

proposed by De Baets and Kerre (1993a) generates smaller values in most cases, not

only when the R(a,b) is an empty set. And so, with the min outer connective, the real

subsethood measurements are ignored occasionally.

To study this influence in more detail, let us consider the simplest instance where
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only one pair of fuzzy relations (r,s) is involved. Two possible candidates of implication

operators,→Ł and→KD are listed in Table 3.1a and Table 3.1b respectively. AndTop and

AndBot, logical connectives that correspond to the additional term, are listed in Table

3.2a and Table 3.2b respectively. Table 3.3 shows the difference between these two terms

when the values of implications were override by additional term. Those cells without

any values represent the combinations of r and s for which the values of implications are

smaller than or equal to the additional terms.

Table 3.1: Values Generated By Implication Operators

(a) r→L s
HH

HHHHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.4 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0
0.6 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0
0.7 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0
0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0
0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) r→KD s
H

HHH
HHr

s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 1.0
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.0
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0
0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.8 0.9 1.0
0.6 0.4 0.4 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.7 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.8 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

From Table 3.3, it is clear that the solution proposed by De Baets and Kerre (1993a)

has a certain influence on the inference structures in the case that f1 = min and there is

only one pair of (r,s) relations. This causes a dilemma in choosing an appropriate outer
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Table 3.2: Values Generated By AndTop And AndBot

(a) AndTop(r,s)
HH

HHHHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.3 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0.1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.5 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7
0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.8
0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) AndBot(r,s)
H

HHH
HHr

s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4
0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5
0.6 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.7 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

connective since max is not a good connective either.

3.2.2 Candidates of Logical Connectives

With the argument that the influence of the additional term will be minor and tol-

erable once the total number of features, J increases, it is fair to solve the problems by

reconstructing the set of influence structures with reasonable logical connectives.

Firstly, there is no reason that AndBot must be kept as a candidate of f2. Subse-

quently, max should also be removed from the list of f1 due to the shortcomings high-

lighted in Section 3.2.1 (a).

Moreover, in order to minimize the influence of the additional term, the set of logical
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Table 3.3: Comparing Values Generated By Implication Operators and AND Operators

(a) r→Ł s−AndTop(r,s) if r→Ł s > AndTop(r,s)
HH

HHHHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1.0

(b) r→Ł s−AndBot(r,s) if r→Ł s > AndBot(r,s)
HHH

HHHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8
0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7
0.4 0.7 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.7 0.6
0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5
0.6 0.5 0.6 0.7 0.8 0.8 0.8 0.7 0.6 0.5 0.4
0.7 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0.3
0.8 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2
0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
1.0

(c) r→KD r−AndTop(r,s) if s→KD s > AndTop(r,s)
HHH

HHHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9
0.2 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8
0.3 0.6 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
0.4 0.5 0.4 0.3 0.2 0.2 0.2 0.3 0.4 0.5 0.6
0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5
0.6 0.3 0.2 0.1 0.1 0.2 0.3 0.4
0.7 0.2 0.1 0.1 0.2 0.3
0.8 0.1 0.1 0.2
0.9 0.1
1.0

(d) r→KD s−AndBot(r,s) if r→KD s > AndBot(r,s)
HHHH

HHr
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1.0
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connectives can be further reduced, especially g3, which is the main determiner of the

additional term. To reduce the influence of the additional term, a larger possible value

should be generated by g3. Since both OrTop and OrBot are greater than the arithmetic

mean, the list of logical connectives can be further reduced to :

f1 = {min}

f2 = {Arithmetic mean, AndTop}

g3 = {OrTop, OrBot}

f4 = {AndTop, AndBot} (3.2)

These logical connectives generate a list of 8 sub-K inference structures, namely K7,

K9, K18, K19, K10, K12, K13 and K14. One can compare to the experiment results

conducted by Yew and Kohout (1997) and find out that these are the top ranked (high

Mean True Acceptance rate) inference structures in performance, especially K7, K9, K18

and K19, along with BK2 and BK3. On the other hand, Sub-K inference structures that

use max as outer connective, such as K3, K4, K5, K6, K8, K11 and K17 have the highest

Mean False Acceptance rate. All these inference structures have Mean False Acceptance

rate from 0.56 to 0.96, due to the influence of the additional term and ignorance of the non-

emptiness condition. The consistency of the experiment results (Yew & Kohout, 1997)

shows that the theoretical discussion in this section is supported by empirical work.

3.3 Reliability Measure in Defuzzification with Interval-
Valued Reasoning

Although the mechanism of inference engines developed by the BK subproduct work

is different compared to CRI-based inference engine, the flow of information processing

in both models is somewhat similar (Figure 1.1). For both models, the process of an infer-
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ence starts with interpreting fuzzified input signals based on the predefined information

stored in a knowledge base by an inference engine. Once all the input signals are inter-

preted, an aggregator is used to aggregate the results. To produce meaningful results in a

system, a defuzzification module is used to prepare the results in the forms that meet the

output requirements.

Some popular defuzzification methods for CRI-based inference engines include Cen-

ter of Gravity (COG), Center of Maxima (COM), Mean of Maxima (MOM) and etc (Filev

& Yager, 1991; Klir & Yuan, 1995; Fortemps & Roubens, 1996; Patel & Mohan, 2002).

In these methods, a value is computed to represent an output set.

For the BK products-based inference engines, one of the interesting properties is that

it performs inferences relying on fuzzy implication operators, which can be tailored based

on the needs of applications. Based on this special property, interval-valued inferencing

was proposed by Kohout and Bandler (1992) as a defuzzification method to obtain more

reliable results in inferences. Instead of providing point-values as outputs, intervals are

given. The intervals can be obtained with the implementation of the Kleene-Dienes and

Łukasiewicz implementation operators in the inferencing. For example, for the original

fuzzy BK subproduct (Eq. (2.17)):

R.BK S(a,c) =
[∧

b∈B

(
R(a,b)→KD S(b,c)

)
,
∧
b∈B

(
R(a,b)→L S(b,c)

)]
(3.3)

An inference is considered as accepted if and only if the whole result interval is in

the acceptance band [β ,1], where β is the predefined acceptance threshold value. On the

other hand, an inference is rejected if the whole result interval is in the rejection band

[0,α], where α is the predefined rejection threshold value. The intervals that are partly in

the acceptance band or rejection band are considered as falling into grey area.

However, despite its great idea, this interval-valued inferencing technique suffers
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from low efficiency because of unnecessary computation, as well as falling into the realm

of dichotomy, i.e. an inference can only be ‘accepted’ or ‘not accepted’ (or ‘rejected’ or

‘not rejected’ in the other way round). In this section, an improvement to the interval-

valued inferencing technique is explained. For a given threshold, this improved defuzzi-

fication method not only proposes acceptable inferences, but also the reliabilities of these

inferences.

3.3.1 Limitations of Interval-Valued Inferencing

From the definition of Kleene-Dienes and Łukasiewicz fuzzy implication operators

in Table 2.1, one can easily prove that:

∀r,s ∈ [0,1] r→KD s ≤ r→Ł s (3.4)

One can also refer to Table 3.1 for examples of calculations of→KD and→Ł.

With Eq. (3.4), it is clear that for an inference to obtain an interval in the acceptance

band, computation using→KD is sufficient. This is because whenever a computation with

→KD is in the acceptance band, the computation with→Ł which yields a result greater or

equal to→KD is always in the acceptance band too:

∀r,s ∈ [0,1] r→KD s ≥ β ⇒ r→Ł s ≥ β (3.5)

On the other hand, if the computation using→KD is not in the acceptance band, the result

of computation using→Ł is not relevant any more because the interval is not entirely in

the acceptance band and the inference is not going to be accepted. To check whether an

inference is rejected, a similar argument holds,→Ł is the only needed fuzzy implication

for this purpose.
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Furthermore, this defuzzification method may suffer from the same problem as in

crisp systems - i.e. details are oversimplified by applying threshold values. For example,

if β = 0.80, then the interval I1 = [0.80,0.90] will be accepted but I2 = [0.79,0.90] and

I3 = [0.79,1.00] will be rejected, although the differences between I1 and I2 are very

small, and I3 has a higher upper bound compared to I1.

As a summary from our findings, we can conclude that (Kohout, Stabile, Kalantar,

& San-Andres, 1995; Kohout & Bandler, 1992; Yew & Kohout, 1996a) which perform

interval-valued inferencing do not gain any significant advantages though (Yew & Ko-

hout, 1996a) claimed that the intervals have better accuracy over point values.

3.3.2 Improving Interval-Valued Inferencing

Bandler and Kohout (Kohout & Bandler, 1980a) revised the fuzzy subset theory

proposed by Zadeh (Zadeh, 1965) stating that a fuzzy set A is a subset of another fuzzy

set B if and only if:

∀x ∈ X A(x)≤ B(x) (3.6)

Apparently, Zadeh’s fuzzy subset theory is “an unconscious step backward to the realm

of dichotomy” (Kohout & Bandler, 1980a). With this theory, a fuzzy set is either utterly a

subset or not a subset of the other fuzzy set. To rectify this problem, a subsethood theory

that based on implication operator was proposed (discussed in Section 2.3).

Based on the same justification, this research proposes a new interval-valued infer-

encing scheme that can rectify the limitations as discussed in Section 3.3.1. This new

scheme not only provides information about whether an inference result is in the prede-

fined band (either acceptant or rejection), but also measures the reliability of an inference

based on a threshold value.

Basically, this improved method measures the reliability of an inference result. It
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1.0β

acceptance
band

Figure 3.1: Interval I which is partially covered in acceptance band [β ,1.0]. The reliabil-
ity of this interval being accepted is given by Eq. (3.7).

evaluates the ratio of the output interval in the acceptance or rejection band. If the whole

output interval is in the acceptance or rejection band, it is reasonable to assume that the

inference is completely accepted or rejected and the reliability is 1.0. Otherwise, the

coverage of the interval in the corresponding evaluation band gives the reliability of this

inference.

Assume that the result of an inference is an interval I = [I,I], where I and I cor-

respond to the results of Kleene-Dienes and Łukasiewicz fuzzy implication operators

respectively, and I< I. If I> β , it implies that at least a portion of [I,I] is in the accep-

tance band (Figure 3.1). Therefore, we can measure the reliability of this inference with

result I being accepted at threshold value β , Θ
β

I :

Θ
β

I =



1 if I≥ β

I−β

I−I
if I< β < I

0 otherwise

(3.7)

and Θ ∈ [0,1].

Similarly, the measurement of the reliability of an inference with interval I in rejec-
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tion band at threshold value α is given by ϒ:

ϒ
α
I =



1 if I≤ α

α−I

I−I
if I< α < I

0 otherwise

(3.8)

and ϒ ∈ [0,1].

The magnitude of Θ and ϒ shows the reliability of an inference in the acceptance

band or rejection band, respectively. Instead of utterly accepting or rejecting an inference,

this new scheme provides a better tolerance towards uncertainty in inputs and the choice

of acceptance and rejection threshold values.

In case of I= I, the result is a point value and the reliability measure is not applica-

ble.

3.3.3 Consistency of Reliability Measure

Consistency, which means absence of contradiction in interpreting inference results,

is an important property of a defuzzification module. A high consistency defuzzification

module always shows better performance compared to the others.

One maybe concerned about the consistency of this improvement on the interval-

valued inferencing, i.e. whether the reliabilities of 2 different intervals increase/decrease

consistently when the threshold values (α and β ) vary. More precisely, in acceptance

bands, when β increases, will the reliability of an interval decrease to zero faster than

the other intervals which previously have lower reliability? Similarly, in rejection bands,

when α decreases, will the reliability of an interval decrease to zero faster than the other

intervals which previously have lower reliability?
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Consistency in acceptance band:

Θ
β1
I1
≤Θ

β1
I2
⇒Θ

β2
I1
≤Θ

β2
I2

where β1 ≤ β2 (3.9)

Consistency in rejection band:

ϒ
α1
I1
≥ ϒ

α1
I2
⇒ ϒ

α2
I1
≥ ϒ

α2
I2

where α1 ≤ α2 (3.10)

2 intervals may form 4 possible combinations of arrangement, in the following, we

examine these 4 cases when the threshold values of acceptance bands varies. A similar

discussion applies to the study of consistency in the rejection band.

(a) Case 1 (Same I)

Assume that the 2 intervals are I1 and I2. Both of them have the same lower bounds

I, and the upper bounds are I1 and I2 respectively and I1 < I2 (Figure 3.2).

1

2

12

Figure 3.2: Case 1: Both intervals have the same lower bound but different upper bounds.

Both the reliabilities ΘI1 and ΘI2 are 1 when the acceptance threshold value, β ≤ I.

When I < β < I2, both ΘI2 and ΘI1 are decreasing. Decrease rate of ΘI2 is higher

compared to ΘI1 until it reaches 0 at β = I2. This situation is considered as consistent

because ΘI2 ≤ΘI1 for any value of β .
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(b) Case 2 (Same I)

Both intervals I1 and I2 have the same upper bound I, but the lower bounds are I1

and I2 respectively and I1 > I2 (Figure 3.3).

1

2

2 1

Figure 3.3: Case 2: Both intervals have the same upper bound but different lower bounds.

Both the reliabilities ΘI1 and ΘI2 are 1 when the acceptance threshold value β ≤ I2.

When β increases until I2 < β ≤ I1, ΘI1 = 1 but ΘI2 ∈ (0,1). This is because the whole

I1 is in the acceptance band but only a portion of I2 is accepted. When I1 < β ≤ I, both

ΘI1 and ΘI2 decrease with consistent rates to 0 until β = I. Although ΘI1 has higher

decreasing rate compared to ΘI2 , but this does not affect the consistency because the

condition ΘI2 ≤ΘI1 always true until both reach 0 at the same time.

(c) Case 3 (Sequence)

In this case, both the lower and upper bounds of interval I1 are higher than their

counterparts of interval I2 (Figure 3.4). Compared to case 2, the only major difference

is I2 < I1 and this caused ΘI1 > 0 when ΘI2 reach 0 at β = I2. Hence, the proposed

defuzzification method is still showing its consistency in this case.

(d) Case 4 (Bounded)

In this case, interval I1 is bounded in interval I2 (Figure 3.5) so that I2 < I1 < I1 <

I2.

40

Univ
ers

ity
 of

 M
ala

ya



1

2

2 1 12

Figure 3.4: Case 3: Both upper and lower bounds of interval I1 are greater than their
counterparts of interval I2

1

2

2 1 1 2

Figure 3.5: Case 4: Interval I1 is bounded in interval I2

It is obvious that this is the only case where the consistency of this defuzzification

method does not hold. ΘI1 = ΘI2 = 1 when β ≤ I2 at the initial. If β increases to

I2 < β < I1, ΘI2 < ΘI1 = 1. In the range of I1 < β < I1, ΘI1 will decrease at a higher

rate compared to ΘI2 if β increases, until ΘI1 = 0 when β = I1. But in the range of

I1 ≤ β < I2, ΘI2 > 0.

Anyway, the inconsistency of this defuzzification method does not totally denied its

usefulness. In fact, the inconsistency only occurs in the case I2 < I1 and I1 < I2. i.e. if

R1→S2 = [I1,I1] and R2→S2 = [I2,I2], the following set of 4 constraints must be

fulfilled to cause inconsistency among 2 sets of inputs:

Constraint 1:

R1 6= 1; S1 6= 0; R2 6= 0; S2 6= 1 (3.11)

41

Univ
ers

ity
 of

 M
ala

ya



Constraint 2:

S1 < R1 (3.12)

Constraint 3:

R1−S1 > R2−S2 (3.13)

Constraint 4:

either

S1 > S2 and S1 > 1−R2 (3.14)

or

R1 < R2 and R1 < 1−S2 (3.15)

Proof : Case 4 representing a scenario where the following two conditions fulfilled

simultaneously:

I2 < I1 and I1 < I2

This can be illustrated as:

max(S1,1−R1)> max(S2,1−S2) (3.16)

and

min(1,1−R1 +S1)< min(1,1−R2 +S2) (3.17)

From Eq. (3.16), by finding the limits of each variables, we get Constraint 1:

S2 6= 1; R2 6= 0; S1 6= 0; R1 6= 1
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Also from Eq. (3.16), in case of S1 > (1−R1), we get:

S1 > S2; S1 > (1−R2) (3.18)

or, alternatively, if S1 ≤ (1−R1):

R1 < R2; R1 < (1−S2) (3.19)

Combining Eq. (3.18) and Eq. (3.19) form Constraint 4.

On the other hand, from Eq. (3.17), we can find 2 inequalities:

1−R1 +S1 < 1 (3.20)

and

1−R1 +S1 < 1−R2 +S2 (3.21)

From Eq. (3.20), we can get Constraint 2:

S1 < R1

and from Eq. (3.21), we can get Constraint 3:

R1−S1 > R2−S2

This set of constraints highly limits the chance of getting pairs of (R1,S1) and

(R2,S2) that will cause inconsistency. Thus, it is rather safe to conclude that this de-

fuzzification method is consistent most of the time.
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3.4 Chapter Conclusion

In this chapter, the implementations of the BK products, particularly the BK subprod-

uct was reviewed. Two improvements were suggested so that better inference systems can

be formed from the BK products.

The first revision is on the inference structures developed from the improved BK

subproduct. Through the theoretical analysis, limitations were found on previous pro-

posed inference structures. This result is also supported by the empirical studies in the

past. Therefore, if an improved version of the BK subproduct is going to be considered

in inference engines, only K7, K9, K18, K19, K10, K12, K13 and K14 are suggested.

The defuzzification method for the BK subproduct, i.e. interval-valued inferencing

proposed by Kohout and Bandler (1992) has also been revised. Although the idea behind

the interval-valued inferencing is great, it suffers from low efficiency and dichotomy.

With the introduction of the reliability measure in Section 3.3, the shortcoming was re-

solved. Anyway, the proposed solution may suffer from inconsistency in specific cases.

However, this inconsistency is not an issue if fixed thresholds are applied during the de-

fuzzifications.
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CHAPTER 4

DEVELOPING WEIGHTED IVFSS BASED BK
PRODUCTS

4.1 Introduction

In this chapter, the extensions of BK products, particularly the BK subproduct will

be discussed. Due to the fuzzy subsethood measure is the foundation of BK products,

this chapter starts with a discussion on subsethood measures for IVFSs. With a proposed

subsethood measure, the BK products are extended to IVFS-based. The incorporation of

the weight parameter with BK products, as well as its computations are detailed in the

later part of this chapter.

4.2 Subsethood Measure of Interval Valued Fuzzy Sets

BK products are based on the fuzzy subsethood measure with the fuzzy implication

operators. However, all the fuzzy implication operators are only defined for point-valued

membership degrees, but the membership degrees of IVFSs are intervals. To solve this

problem, two IVFS subsethood measures based on the fuzzy implication operators are

proposed in this research, namely the Complete Derivation Method and Border Evaluation

Method.

4.2.1 Complete Derivation Method

Let P̃ and Q̃ be two IVFSs in universe X as shown in Figure 4.1. For an element

xi, the interval membership degrees for xi in P̃ and Q̃ are [P(xi),P(xi)] and [Q(xi),Q(xi)]

respectively.
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-P(x)

-
Q(x)

-
Q(x)

Figure 4.1: Two IVFSs P̃ and Q̃ in the same universe X .

Assume that both axes of element and membership degree are discrete or can be

discretized. Representation Theorem (Mendel & John, 2002) suggests that, if the total

number of T1FSs for P̃ is given by Eq. (2.36), then the number of T1FSs that pass

through a discrete point P(xi) j is given by ηP̃
Ji

. For Q̃, if Ki is the number of discrete

membership degrees in [Q(xi),Q(xi)] and k = {1,2, · · · ,Ki}, the number of T1FSs that

pass through a discrete point Q(xi)k is given by
ηQ̃
Ki

.

To formulate the fuzzy subsethood measure for IVFSs, we start with evaluating an

arbitrary pair of point membership degrees P(xi) j and Q(xi)k in P̃ and Q̃ respectively, on

a same element xi. If these are the only points on xi for P̃ and Q̃, following Eq. (2.16), the

subsethood measure on this element can be written as π(P̃⊆ Q̃)(xi) = P(xi) j→ Q(xi)k.

However, since there are ηP̃
Ji

and
ηQ̃
Ki

of T1FSs on P(xi) j and Q(xi)k respectively, this

implication involves a number of ηP̃
Ji
× ηQ̃

Ki
pairs of T1FSs. Therefore, this implication

should be represented as:

ηP̃ηQ̃

JiKi

(
P(xi) j→ Q(xi)k

)
(4.1)

If P(xi) j is the only discrete point for P̃(xi), the subsethood measure can be evaluate

by summing up all the implications of this point membership degree to all the Q(xi)k (Fig
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P(x )

P(x )

P(x )

Q(x )
Q(x )

Q(x )

Q(x )

Figure 4.2: Implication of a single membership degree in P̃(xi) to all the discretized
membership degrees of Q̃(xi)

.

4.2):

ηP̃ηQ̃

JiKi

Ki

∑
k=1

(
P(xi) j→ Q(xi)k

)
(4.2)

Generally, [P(xi),P(xi)] are intervals with more than one discrete points. Therefore,

if we generalized Eq. (4.2) to all the P(xi) j in the element xi and normalized it with the

total number of T1FSs , we get the fuzzy subsethood measure for this element:

π(P̃⊆ Q̃)(xi) =
1

JiKi

Ji

∑
j=1

Ki

∑
k=1

(
P(xi) j→ Q(xi)k

)
(4.3)

If we substitute Eq. (4.3) to Eq. (2.16), the IVFS subsethood measure extended from

the original BK subproduct is:

π(P̃⊆ Q̃) =
∧
i∈I

1
JiKi

Ji

∑
j=1

Ki

∑
k=1

(
P(xi) j→ Q(xi)k

)
(4.4)

Employing a fuzzy implication operator, Eq. (4.4) will produce a subsethood mea-

surement of P̃ ⊆ Q̃ in the interval [0,1]. However, this research noticed that the subset-
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hood measurements for crisp sets are Boolean (yes / no) and for the T1FSs are point-

values. Therefore, it is reasonable to deduce that the subsethood measurements for IVFSs

should be intervals instead of point-values as proposed by other subsethood measures,

such as Nguyen and Kreinovich (2008), Yang and Lin (2009), Zheng, Xiao, Zhang, and

Shi (2010), Rickard, Aisbett, and Greb (2009). Studies of Kohout and Bandler (1980b),

Kohout and Bandler (1992), Lim and Chan (2012) suggested that Kleene-Dienes and

Łukasiewicz implication operators are among the two most suitable candidates for lower

and upper bounds BK subsethood measurements. Thus, the subsethood measure using

this Complete Derivation Method is given by:

π(P̃⊆ Q̃) =
[∧

i∈I

1
JiKi

Ji

∑
j=1

Ki

∑
k=1

(
P(xi) j→BK Q(xi)k

)
,
∧
i∈I

1
JiKi

Ji

∑
j=1

Ki

∑
k=1

(
P(xi) j→Ł Q(xi)k

)]
(4.5)

This method needs 2
I

∑
i

JiKi computations with implication operators to measure sub-

sethood.

4.2.2 Border Evaluation Method

Analysis of intervals (Sengupta & Pal, 2000; Moore & Lodwick, 2003) shows that,

with basic arithmetic operations, the bounds of an interval can be computed with the

bounds of operands. For the case of implication operators, similar property holds for

some implication operators that satisfy the hybrid monotonicity property (Ruan, 1993;

Baczyński & Jayaram, 2008), i.e., for r1,r2,s1,s2 ∈ [0,1]:

r1 ≤ r2 implies r1→ s1 ≥ r2→ s1

s1 ≤ s2 implies r1→ s1 ≤ r1→ s2

In Table 2.1, implication operators that pose this hybrid monotonicity property in-
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clude →S#, →S, →S*, →G43, →G43’, →KD, →R, →Ł and →Y. With this property, one

can easily deduce that with lower bound of the first operand and upper bound of the sec-

ond operand, we can obtain the upper bound of the implication. Instead, upper bound

of the first operand and lower bound of the second operand give the lower bound of the

implication.

Therefore, with these implication operators, intervals that represent subsethood mea-

sure can be obtained. Instead of Eq. (4.5), this border evaluation method gives:

π(P̃⊆ Q̃) =
[ ∧

i∈I

(
P(x)→ Q(x)

)
,
∧
i∈I

(
P(x)→ Q(x)

) ]
(4.6)

This method needs 2I computations using an implication operator to measure sub-

sethood.

4.3 BK Products With Interval Valued Fuzzy Sets

4.3.1 Derivation

With the results in Section 4.2, IVFS-based BK products can be derived. Comparing

the 2 sets of subsethood measures that have been derived in this chapter, a subsethood

measure using Complete Derivation Method needs 2∑
I
i JiKi computations using the im-

plication operators (Eq. (4.5)), whereas the Border Evaluation Method needs only 2I (Eq.

4.6). Therefore, the Border Evaluation Method has advantage of lower computational

cost. Moreover, if the implication operators that satisfy the hybrid monotonicity property

are selected, this measure offers results that are more mathematically reliable because

the whole intervals are used in computations, instead of the mean values of discretized

intervals. Hence, the following discussion is only focus on the subsethood measure with

Border Evaluation Method.

Assume that ⇒ represents implication operators that possess hybrid monotonicity
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property. With subsethood measure proposed in Eq. 4.6, the original BK products that

based on IVFSs, can be defined as follow:

Interval-valued fuzzy BK subproduct:

R̃/BK S̃(a,c) =
[∧

b∈B

(R(a,b)⇒ S(b,c)),
∧
b∈B

(R(a,b)⇒ S(b,c))
]

(4.7)

Interval-valued fuzzy BK superproduct:

R̃.BK S̃(a,c) =
[∧

b∈B

(S(b,c)⇒ R(a,b)),
∧
b∈B

(S(b,c)⇒ R(a,b))
]

(4.8)

Interval-valued fuzzy BK square product:

R̃�BK S̃(a,c) =
[

min
(∧

b∈B

(R(a,b)⇒ S(b,c)) ,
∧
b∈B

(S(b,c)⇒ R(a,b))
)
,

min
(∧

b∈B

(R(a,b)⇒ S(b,c)) ,
∧
b∈B

(S(b,c)⇒ R(a,b))
)]

(4.9)

Due to the monotonicity property of supremum operator and t-norm, the extension

of fuzzy circle product to IVFSs is straightforward:

Fuzzy circle product: R̃◦ S̃(a,c) = [
∨
b∈B

τ(R(a,b),S(b,c)) ,
∨
b∈B

τ(R(a,b),S(b,c))]

(4.10)

Two sets of improved BK products (De Baets & Kerre, 1993a, 1993c) based on the

IVFSs can be obtained with adding additional terms. The set B of the improved BK

products are as follow:
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Interval-valued fuzzy BK subproduct (set B):

R̃/B S̃(a,c) =
[

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)]

(4.11)

Interval-valued fuzzy BK superproduct (set B):

R̃.B S̃(a,c) =
[

min
(∧

b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)

min
(∧

b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)]

(4.12)

Interval-valued fuzzy BK square product (set B):

R̃�B S̃(a,c) =
[

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∧
b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)
,

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∧
b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

R(a,b),
∨
b∈B

S(b,c)
)]

(4.13)

Whereas the set K of improved BK products are:

Interval-valued fuzzy BK subproduct (set K):

R̃/K S̃(a,c) =
[

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∨
b∈B

τ(R(a,b),S(b,c))
)

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∨
b∈B

τ(R(a,b),S(b,c))
)]

(4.14)
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Interval-valued fuzzy BK superproduct (set K):

R̃.K S̃(a,c) =
[

min
(∧

b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

τ(R(a,b),S(b,c))
)

min
(∧

b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

τ(R(a,b),S(b,c))
)]

(4.15)

Interval-valued fuzzy BK square product (set K):

R̃�K S̃(a,c) =
[

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∧
b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

τ(R(a,b),S(b,c))
)
,

min
(∧

b∈B

(R(a,b)⇒ S(b,c)),
∧
b∈B

(S(b,c)⇒ R(a,b)),
∨
b∈B

τ(R(a,b),S(b,c))
)]

(4.16)

In term of computation complexity, number of computations needed by all the Eq.

(4.7) - (4.16) are directly proportional to the number of element in B. In another word,

the computational time of these equations increase linearly with the increment of number

of element in B. For instance, the number of implications that require by computing Eq.

(4.7) is 2|B|, where |B| is the number of elements in B.

4.3.2 Properties

This research also studies and proves some properties possess by these IVFS-based

relational compositions. These properties include: containment property, convertibility

property, monotonicity property, property of interaction with union, property of interac-

tion with intersection and property of non-propagation of error.

Containment Property

Set K of BK subproduct and superproduct show the following properties:

R̃/K S̃ ⊆ R̃◦ S̃ (4.17)
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R̃.K S̃ ⊆ R̃◦ S̃ (4.18)

Assume that R̃i is a family of I interval-valued fuzzy relations from A to B, i =

{1,2, · · · , I}, both the original and improved interval-valued fuzzy BK products possess

the following properties. Thus, in the following equations, / = {/BK,/B,/K} and vice-

versa for super and square products.

Convertibility Property

(R̃◦ S̃)T = S̃T ◦ R̃T (4.19)

(R̃/ S̃)T = S̃T . R̃T (4.20)

(R̃. S̃)T = S̃T / R̃T (4.21)

(R̃� S̃)T = S̃T � R̃T (4.22)

Eq. (4.21) is proved in Appendix A.

Monotonicity Property

R̃1 ⊆ R̃2 implies R̃1 ◦ S̃ ⊆ R̃2 ◦ S̃ (4.23)

R̃1 ⊆ R̃2 implies R̃1 . S̃ ⊆ R̃2 . S̃ (4.24)

Interaction With Union

( n⋃
i=1

R̃i

)
◦ S̃ =

n⋃
i=1

(
R̃i ◦ S̃

)
(4.25)
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n⋂
i=1

(
R̃i / S̃

)
⊆
( n⋃

i=1

R̃i

)
/ S̃ ⊆

n⋃
i=1

(
R̃i / S̃

)
(4.26)

( n⋃
i=1

R̃i

)
. S̃ ⊇

n⋃
i=1

(
R̃i . S̃

)
(4.27)

Interaction With Intersection

( n⋂
i=1

R̃i

)
◦ S̃ ⊆

n⋂
i=1

(
R̃i ◦ S̃

)
(4.28)

Non-Propagation of Error

Compare to the T1FSs, the IVFSs are bipolar representations of uncertain infor-

mation (Dubois & Prade, 2008). In another word, an IVFS is a T1FS that associates

with certain degree of error. Thus, instead of representing membership functions of

R̃ as [R(a,b),R(a,b)], we can assume that a T1FS R is bounded with an error ε , so

that R̃(a,b) = [R(a,b)− ε(a,b),R(a,b)+ ε(a,b)], where R(a,b)− ε(a,b) = R(a,b) and

R(a,b)+ ε(a,b) = R(a,b).

In such case, the error that associates does not propagate with the transitive closure

of R. The proof of this property is presented in Appendix B.

4.4 Inference With Weighted BK Product

4.4.1 Weight and BK Products

Most of the time, we can group criteria that we need to consider into a few criteria

sets during the reasoning processes. Among these criteria sets, some of them might have
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higher influence over the others in a decision making process. For instance, let us look at

an example of medical diagnosis. A physician may consider the following 4 criteria sets

during a medical diagnosis, namely symptoms, patient personal history, family history

and environmental issue. However, not all the criteria sets have the same influence in

the medical diagnosis. In the diagnosis of diseases such as breast cancer, physicians

may take more consideration on symptoms (higher influence) found on patients compare

to environmental issues (low influence). Hence, weights are useful in representing the

influence of the criteria sets.

However, one should note that the weights should not be confused with the strength

of criteria in the criteria sets. Similar case is applied to inference engines based on the

BK products. Instead of criteria, features are considered here. Membership degrees of

the object-feature relations (R̃) and feature-target relations (S̃) are the “strength of criteria”

that determine the results of inferences. While features form the feature sets, influence of

each feature sets are represented as weights. That is, weights are applied to each feature

set and are modeled with the IVFSs in this research.

As mentioned earlier, the subsethood measure is the foundation of fuzzy BK prod-

ucts. Thus, one might argue that it is inappropriate to implement weights in the BK

products-based inference engines because there is no well defined weighted subsethood

measure in the literature. In fact, the weights are applied to the feature sets rather than the

subsethood measurements. This argument can be explained with a multiple feature sets

model as below.

Assume that the features in set B can be grouped into multiple feature sets Bm, m =

{1,2, · · · ,M}. Each feature set has a number of features. The relation between A and Bm

is R̃m, whereas S̃m is the relation between Bm and C. In this case, the images of aR̃m and

S̃mc are P̃m and Q̃m respectively. Studying the subsethood measure of P̃m ⊆ Q̃m, one can

get the BK products R̃mFS̃m(a,c), where F= {/,.,�}(Figure 4.3).

55

Univ
ers

ity
 of

 M
ala

ya



A C

B1

B2

BM

.

.

.

a c

R1

S1

R2
S2

RM SM

~

~

~ ~

~

~

Figure 4.3: Dividing set B into multiple feature sets to form weighted BK products.

Each feature set carries different weights. Assume that the weight of R̃mFS̃m(a,c)

is W̃m, the normalized aggregation of all the composition of relations is given as:

R̃FS̃(a,c) =

M

∑
m=1

W̃m

(
R̃mFS̃m(a,c)

)
M

∑
m=1

W̃m

(4.29)

Eq. (4.29) gives the weighted measure of the BK products. Here, since all R̃mFS̃m(a,c)

are intervals that only exist as numerators, whereas W̃m are IVFSs, the results of compu-

tations based on Eq. (4.29) are always IVFSs. The details of computing Eq. (4.29) are

shown in the following subsection.
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4.4.2 Computing the Weighted Average

Computing Eq. (4.29) is easy if all the parameters are crisp numbers. However, these

parameters are fuzzy, and so the computation become slightly complicated, especially

with a term 1/∑
M
m=1W̃m. One of the closest problem to us that solved in the literature is

Fuzzy Weighted Average (FWA) (Dong & Wong, 1987; Liou & Wang, 1992; D. H. Lee

& Park, 1997). FWA computed the problems in the form of:

f =
M

∑
m=1

(
ωmχm

)/ M

∑
m=1

ωm (4.30)

where all χm and ωm are T1FS. Wu and Mendel (D. Wu & Mendel, 2007, 2008a) extended

FWA to form Linguistic Weighted Average (LWA), which compute the problem where all

χm and ωm are IVFSs. Both FWA and LWA use α-cut decomposition theorem (Klir &

Yuan, 1995) in computing the problems. With α-cut decomposition theorem, instead of

performing computations directly on the sets (χm and ωm) as whole, a number of (δ −1)

α-cuts are taken to break the sets into δ intervals. For each interval Iι , 1≤ ι ≤ δ , perform

computation on the intervals obtained after the α-cut, i.e. χ ι
m and ω ι

m to yield an interval

Iι . The composition of all the Iι with corresponding α-cuts form the corresponding set

I.

With the method discussed above, Eq. (4.29) can be computed easily. This research

adopted the computation of LWA by D. Wu and Mendel(2007, 2008a) by assuming that

the intervals R̃mFS̃m(a,c) in Eq. (4.29) are special cases of IVFSs, where these fuzzy sets

have rectangle membership functions and the UMF(R̃mFS̃m(a,c)) = LMF(R̃mFS̃m(a,c)).

From here onwards, we denote R̃mFS̃m(a,c) as Zm and the lower and upper bounds of Zm

are denoted as Zm and Zm respectively. Thus, follow this notation scheme, R̃FS̃(a,c) is

denoted as Z̃.

Since the FOU of Z̃ is determined by UMF(Z̃) and LMF(Z̃), we can find Z̃ by calcu-

57

Univ
ers

ity
 of

 M
ala

ya



W Z Zmm
~ ~

1 1 1

Z Zm m

wm1 wm2

wm3

wm4
z
1 z

2

z3

z
4

0 0 0 zzw
(i) (ii) (iii)

αι αιαι

m

Figure 4.4: Notations used in finding weighted results of IVFS-based BK products.

lating these two boundaries only. In D. Wu and Mendel (2008a), the authors proved that

the height of the output sets from LWA are equal to the minimum height of all Zm and Wm.

In the case of this research, since all UMF(W̃m) are normal and Zm are intervals, the height

of an UMF(Z̃) is unity. On the other hand, the height of a LMF(Z̃) is totally depends on

LMF(W̃m). Assume that all the W̃m have trapezoidal (or triangular) shape FOU, the shape

of Z̃ should be trapezoidal (or triangular) as well (Figure 4.4).

As described earlier in this section, a computation with Eq. (4.29) starts with taking

δ −1 α-cuts to yield δ interval sets. For each interval set, find the interval that represent

the FOU of Z̃ corresponding to each α-cut. For this purpose, notations that described in

Figure 4.4 are used:

i) W̃m : for an α-cut αι , wιm1 and wιm4 should be the leftmost and rightmost values of

UMF(W̃m) respectively at αι . However, the variable ι is intentionally left out as an

subscript of all variables here because it is independent from the calculation of each

iteration, and to make the equations look more concise. Therefore, these variables

become wm1 and wm4. Similarly, wm2 and wm3 are the leftmost and rightmost values

of LMF(W̃m) respectively.

ii) Zm : Zm is the lower bound of interval Zm, whereas Zm is the upper bound of this
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interval.

iii) Z̃ : for an α-cut αι , z1 and z4 are the leftmost and rightmost values of UMF(Z̃)

respectively. Similarly, z2 and z3 are the leftmost and rightmost values of LMF(Z̃)

respectively.

By referring to the results of LWA (D. Wu & Mendel, 2007, 2008a), for each α-cut,

the corresponding boundaries of UMF(Z̃) and LMF(Z̃) can be obtained by sorting Zm and

Zm in ascending order first, then substituting the corresponding values into the following

equations:

z1 =
∑

β1
m=1 wm4Zm +∑

M
m=β1+1 wm1Zm

∑
β1
m=1 wm4 +∑

M
m=β1+1 wm1

(4.31)

z2 =
∑

β2
m=1 wm3Zm +∑

M
m=β2+1 wm2Zm

∑
β2
m=1 wm3 +∑

M
m=β2+1 wm2

(4.32)

z3 =
∑

β3
m=1 wm2Zm +∑

M
m=β3+1 wm3Zm

∑
β3
m=1 wm2 +∑

M
m=β3+1 wm3

(4.33)

z4 =
∑

β4
m=1 wm1Zm +∑

M
m=β4+1 wm4Zm

∑
β4
m=1 wm1 +∑

M
m=β4+1 wm4

(4.34)

In these equations, β1, β2, β3 and β4 are the switching points in the range [1,M]

calculated with Karnik-Mendel algorithm (F. Liu & Mendel, 2008a; Mendel, 2009) such

that:

Zβ1
≤ z1 ≤ Zβ1+1 (4.35)

Zβ2
≤ z2 ≤ Zβ2+1 (4.36)

Zβ3 ≤ z3 ≤ Zβ3+1 (4.37)
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Zβ4 ≤ z4 ≤ Zβ4+1 (4.38)

4.4.3 Results Interpretation

The results obtained from Eq. (4.31)-(4.34) form a set of IVFSs. The meaning

carried by this set of IVFSs is application dependent. In some applications, ranking al-

gorithms suggested in Mitchell (2006) and D. Wu and Mendel (2009) are useful if com-

parisons between these IVFSs are needed to find their order, where control engineering

applications may fall to this category. In some other cases, the results can be compared

with a set of predefined IVFSs using the similarity measure (Nguyen & Kreinovich, 2008;

D. Wu & Mendel, 2009).

4.5 Chapter Conclusion

In this chapter, two subsethood measures for IVFSs, namely the Complete Deriva-

tion Method and the Border Evaluation Method are proposed. The Complete Derivation

Method, which requires much more computations, evaluates the whole interval member-

ship degrees as discrete points. Taking the mean of implications of these discrete points,

the subsethood of two sets are measured. The disadvantages of this method include the

distortion during the discretization process, as well as higher computational cost. On the

other hand, the Border Evaluation Method only considers the borders of interval mem-

bership degrees and evaluate the intervals as a whole to obtain the implication results.

The second method has its advantage in computational efficiency but only applicable for

implication operators that possess the hybrid monotonicity property.

Due to most of the common implication operators hold the hybrid monotonicity

property, the subsethood measure with the Border Evaluation Method is used in devel-

oping the IVFSs-based BK products. 3 sets of the BK products were developed, namely
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original, improved set B and improved set K. Computation with these BK products return

intervals.

Some of the important properties of IVFSs-based BK products are also examined

in this chapter. Among all, one of the interesting property is related to the propagation

of error associated with membership functions. If the interval membership functions of

interval-valued fuzzy relations are assumed to be error carried by type-1 fuzzy relations,

these errors do not propagate with the transitive closures of the relations.

Lastly, a weight parameter is added to the BK products, and the rational of it is

discussed. While the weight parameter, W̃ is modeled with IVFSs, the computation of this

fuzzy weighted equations is also discussed. With LWA algorithm, IVFSs are expected to

be the output of the weighted BK products.

61

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 5

LEARNING MECHANISM FOR BK PRODUCTS
BASED INFERENCE ENGINES

5.1 Introduction

As like many other fuzzy logic systems, the BK products developed in Chapter 4

work only if one can determine the required membership degrees from the membership

functions. In the case of the BK products, they are R̃(a,b) (or R(a,b) for the case of

T1FS) - the membership degrees of relation between objects A and features B, and S̃(b,c)

(or S(b,c) for the case of T1FS) - the membership degrees of relation between features

B and targets C. In term of fuzzy logic systems (Figure 1.1), R̃(a,b) is the result of the

fuzzification module that gives the relation between set A and set B, whereas S(b,c) forms

the knowledge base that specify the relations between set B and set C.

In the past, many systems that based on BK products require expert knowledge to

define the membership degrees, especially S(b,c). The research on forming member-

ship functions from numerical data set for BK products are hardly found in the literature.

Therefore, the main contribution of this chapter is the development of a learning mecha-

nism so that the BK products based inference systems can be formed if training examples

are provided. This learning mechanism should be able to form membership functions for

fuzzification purpose, as well as define membership degrees for the knowledge base.

5.2 Review Of Previous Works

Develop a learning fuzzy system requires the construction of membership functions

for the involved parameters. This is a topic that has been studied extensively in the lit-
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erature of the fuzzy rule based systems (Takagi & Sugeno, 1985; Nomura, Hayashi, &

Wakami, 1992; T.-P. Hong & Lee, 1996; T. Hong & Chen, 1999). Some of these methods

focus on constructing membership functions from numerical data. Among all, one of the

widely used method is proposed by L. Wang and Mendel (1992). This method divides

a data range into multiple areas, then a set of predefined membership functions are as-

signed to the data range. Thus, the membership degrees of an element can be obtained

by mapping the data into the predefined membership functions. Instead of assigning a

set of predefined membership functions into the range of data, T. P. Wu and Chen (1999)

suggested that fuzzy compatible relations are required. With the transitive closures, fuzzy

compatible relations are converted to fuzzy equivalence relations. Lastly, dividing the

fuzzy equivalence relations with α-cuts brings a triangular membership function to each

partition of the data range. There are also some methods which are based on probability

density functions, such as the method proposed by Civanlar and Trussell (1986). How-

ever, all these methods focus only on type-1 fuzzy rule based systems. Hence, effort is

needed so that these methods can be ported to work with inference engines that based on

IVFS-based BK products.

Though there are few researches on constructing membership functions for the IVFSs

or even T2FSs, these methods either require construction and analysis of questionaires

(Mendel, 2007a; F. Liu & Mendel, 2008b), or focus only on image processing domain

(Bustince et al., 2009; Choi & Rhee, 2009).

To make the numerical data interpretable by the BK products based inferences en-

gines, a new method is needed. In the following, a method is proposed to construct the

membership functions for the BK products. This method, which inspired by L. Wang

and Mendel (1992) and Civanlar and Trussell (1986), not only serves for mapping the

numerical data to membership degrees, but also helps in the training of inference engines

to form knowledge bases.
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5.3 Membership Functions For BK Subproduct Based
Inference Structures

A typical fuzzy rule based system (C. C. Lee, 1990a; Lam & Seneviratne, 2008;

Fazel Zarandi et al., 2009) has rules in the form:

if X1 is U1 and X2 is U2 then Y is V

Here, X1 and X2 are antecedents limited by linguistic terms U1 and U2 respectively,

whereas Y is the consequent that related to another linguistic terms V . U1 and U2 can

be in different universe, as well as the V .

In contrast, for the BK products based inference engines, there are no rules exist and

inferences are only based on the relations of R̃(a,b) and S̃(b,c), which both come from

the same domain for a feature b. Therefore, finding the values of R̃(a,b) and S̃(b,c) are

interrelated and are in accordance with the domain of b. Moreover, the construction of

membership is independence for each feature b.

Since R̃(a,b) are mappings from a to b and S̃(b,c) are reverse mappings from c to b,

the domain of b should be studied. Assume that the number of features in set B is J ∈ N

and j = {1, · · · ,J}. Each ai ∈ A, where i ∈ {1, · · · , I}, I ∈ N, can be mapped to a feature

b j with a value L ji. With all the L ji, the domain of the feature b j can be defined as an

interval LI
j :

LI
j = {L j1, · · · ,L jI}= [L j,L j] (5.1)

Divide this domain into multiple sections that each represent a linguistic term/concept.

Overlapping between sections are allowed to reflect the nature of overlapping between

linguistic terms. The number of section is application and feature dependent and subject

to the number of linguistic terms one wants to define for this feature. At least two sections

(e.g. “Low” and “High”) need to be defined but there is no rules on the maximum number
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of sections. However, the increment of sections will increase the computational cost of

the inference systems.

For each section, form a interval-valued membership function. There is no rules on

the shape of the membership functions, but for the sake of simplicity, the membership

functions with trapezoidal UMF and triangular LMF are used in the following. Assume

that all the UMFs are normal and the heights of LMFs are ν .

Let H j ∈N be the number of membership functions defined in the domain of feature

b j, and h j = {1, · · · ,H j}. A membership function defined in this domain can be named

as F̃jh j . Figure 5.1 shows an example where domain of b j is divided into H j membership

functions that represent linguistic terms “very low”, “low”, “high”, “medium low”, “very

high” and etc.

Lj Lj

1

. . .

Fj1
~

Fj2
~

Fj(H -1)
~

j
FjH
~

j

(very low) (very high)(low) (high)

. . .

ν

Figure 5.1: Define a number of H j membership functions in the interval LI
j.

For a membership function F̃jh j that defined for a section, if the shape of this normal

membership function is trapezoidal UMF and triangular LMF, one can define the parame-

ters of this membership function as shown in Figure 5.2. Parameters 1-4 define the UMF,
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parameters 5-7 and ν define the LMF.

1

ν

jh 1D
j jh 5D

j jh 2D
j jh 6D

j jh 3D
j jh 7D

j jh 4D
j

jiL

jh     i    j R   (a ,b )
j

jh     i    j R   (a ,b )
j

Figure 5.2: The 8 points definition of a membership function of IVFS and the mapping
of membership degrees.

Assume that there are K ∈ N targets in C and k = {1, · · · ,K}. The composition of

relations R̃/ S̃(ai,ck) is meaningful only if ai implies ck. Therefore, to find S̃(b,ck), A is

partitioned into K subsets according to ck:

A = {A1, · · · ,Ak, · · · ,AK}, (5.2)

ai ∈ Ak ⇐⇒ ai→ ck. (5.3)

If ai maps to b j with a value L ji, as proposed by Zadeh (1978) and Civanlar and

Trussell (1986), the probability density function of L ji in [L j,L j] can be studied to find the

membership degrees of S̃(b,ck). Therefore, let |Ak| be the number of elements in Ak, and

|A(5,7)
k jh j
| be the number of elements of ai map to b j with a value Li j such that Dh jh5 ≤ Li j ≤

Dh jh7. With the information on the distribution of ai in the lower membership functions
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range, the probability density functions can be plotted. Consequently, S jh j
(b j,ck) can be

find:

S jh j
(b j,ck) =

|A(5,7)
k jh j
|

|Ak|
(5.4)

Similarly, if |A(1,4)
k jh j
| is the number of elements of ai map into the range [Dh jh1,Dh jh4],

or of UMF of b j. The mapping values are denoted as Li j. With the above information,

the upper bound of S̃ jh j(b j,ck) can be find:

S jh j(b j,ck) =
|A(1,4)

k jh j
|

|Ak|
(5.5)

The Eq. (5.4) and Eq. (5.5) find the relations between elements in set B and set

C, which are required during the training process of a classifier. However, to prepare

the inference engines for prediction, the test data should be fuzzified in the fuzzification

module (Figure 1.1) to form R̃(a,b).

With the membership functions defined, the finding of R̃(a,b) are straight forward.

Firstly, F̃jh j , the set of membership functions developed to find S̃(b,c) must be adopted so

that both S̃(b,c) and R̃(a,b) refer to the same set of membership functions. Subsequently,

mapping of values described below gives the membership degrees of R̃(a,b).

With relation R̃(ai,b j), an ai may maps to b j with a value L ji in the interval LI
j . If

this L ji falls into the section where F̃jh j defines (i.e. in [D jh j1,D jh j4]), we can retrieve a

membership degree for this membership function, R̃ jh j(ai,b j), otherwise R̃ jh j(ai,b j) = 0

for this membership function (Figure 5.2). The upper and lower bounds of this interval
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membership degree, [R jh j
(ai,b j),R jh j(ai,b j)] are given by:

R jh j
(ai,b j) =



(ν)(L ji−D jh j5)

D jh j6−D jh j5
if D jh j5 < L ji ≤ D jh j6,

(ν)(D jh j7−L ji)

D jh j7−D jh j6
if D jh j6 < L ji < D jh j7,

0 otherwise.

(5.6)

R jh j(ai,b j) =



L ji−D jh j1

D jh j2−D jh j1
if D jh j1 < L ji < D jh j2,

1 if D jh j2 ≤ L ji ≤ D jh j3,

D jh j4−L ji

D jh j4−D jh j3
if D jh j3 < L ji < D jh j4,

0 otherwise.

(5.7)

It is possible that in the testing data set, there are some cases that ai maps to L′ji

where L′ji < L j. In such cases, it is wiser to reconsider both the membership degrees

of R jh j
(ai,b j) and R jh j(ai,b j) if F̃jh j is a left-shoulder membership function. For the

cases where D jh j1 = D jh j2 = D jh j5 = D jh j6, one should set R jh j
(ai,b j) and R jh j(ai,b j)

to the heights of the corresponding membership functions, i.e. ν and 1 respectively.

It is similar for the case when L′ji > L j. For right-shoulder membership functions F̃jh j

such that D jh j3 = D jh j4 = D jh j6 = D jh j7, one should also set the membership degrees of

both R jh j
(ai,b j) and R jh j(ai,b j) to ν and 1 respectively, if they are the heights of the

corresponding membership functions.

As a summary of the section, this learning method forms H j membership functions

for a feature b j, thus, for a ck, it finds ∑
J
j=1H j membership degrees for both S(b,ck)

and S(b,ck). The total number of membership degrees of both S(b,c) and S(b,c) is

K(∑ J
j=1H j). On the other hand, mapping of an object ai also finds ∑

J
j=1H j member-

ship degree for both R(ai,b) and R(ai,b). Therefore, with a data set with I objects, the

total number of membership degrees of both R(a,b) and R(a,b) is I ∑
J
j=1H j.
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5.4 Algorithm

Based on the method described in Section 5.3, the algorithm to find the membership

degrees of S̃(b,c) is stated as follow:

Finding S̃(b,c)

For a feature b j:

Step 1: With all the objects ai, list all L ji, the values that ai map to the b j;

Step 2: Find the interval that represents the domain of L ji, LI
j = [L j,L j];

Step 3: Divide the interval into H j sections. Each section represents a linguistic term

such as “high”,“low” and etc. The number of section/linguistic term is subject to

the feature and application;

Step 4: For each section, construct a membership function. Name the constructed mem-

bership function in section h j as F̃jh j ;

Step 5: Divide the objects ai into K subsets, each subset Ak consists only all the ai j that

bring the inference result ck;

Step 6: For k = 1, count the number of elements in Ak, i.e. |Ak|;

Step 7: For h = 1, find |A(1,4)
k jh j
|, the number of elements in Ak that map their values to the

interval [Dh jh1,Dh jh4];

Step 8: For h = 1, find |A(5,7)
k jh j
|, the number of elements in Ak that map their values to the

interval [Dh jh5,Dh jh7];

Step 9: Compute the interval membership degrees S jh j
(b j,ck) and S jh j(b j,ck) for j = 1

and k = 1 using Eq. (5.4) and Eq. (5.5);

69

Univ
ers

ity
 of

 M
ala

ya



Step 10: Repeat steps 7 - 9 for h = {2, · · · ,H j};

Step 11: Repeat steps 6 - 10 for k = {2, · · · ,K}.

The algorithm should be repeated J times for j = {1, · · · ,J} to find all the membership

degrees of relations between B and C.

The following algorithm finds R̃(a,b). This algorithm can work independently from

the finding S̃(b,c) algorithm, but if both algorithms run on the same system, the same set

of membership functions (developed in step 1 - 4 of finding S̃(b,c) algorithm) must be use.

Finding R̃(a,b)

For a feature b j:

Step 1: Adopt the membership functions developed in steps 1 - 4 of finding S̃(b,c) algo-

rithm;

Step 2: For i= 1, identify L ji, the image of an ai in b j. Map this L ji to all the membership

functions F̃jh j to find the R jh j
(ai,b j) and R jh j(ai,b j) using Eq. (5.6) and Eq. (5.7)

respectively;

However, If F̃jh j is a left-shoulder membership function such that D jh j1 =D jh j2 =

D jh j5 = D jh j6, set R jh j
(ai,b j) = ν and R jh j(ai,b j) = 1. If F̃jh j is a right-shoulder

membership function such that D jh j3 = D jh j4 = D jh j6 = D jh j7, set R jh j
(ai,b j) =

ν and R jh j(ai,b j) = 1;

Step 3: Repeat step 2 for i = {2, · · · , I}.

The algorithm should be repeated J times for j = {1, · · · ,J} to find all the membership

degrees of relations between A and B.
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5.5 Example

Assume that there are I = 12 books arranged into K = 2 shelves, S1 and S2, depends

on their features. These features are weight (b1), thickness (b2) and height (b3). Table 5.1

shows the details of these books, namely a1 to a12.

Table 5.1: Data for example

book a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
b1 (g) 150 450 750 250 150 250 550 600 400 350 550 450
b2 (cm) 0.5 2.5 4.5 2.0 1.5 1.0 3.5 4.0 3.0 2.5 3.5 3.0
b3 (cm) 20.5 22.0 27.0 27.0 17.0 23.0 23.0 18.0 21.0 22.5 22.0 23.0
Shelf S1 S2 S2 S2 S1 S1 S2 S2 S1 S1 S2 S2

Finding S̃(b,c)

Firstly, the following steps compute S̃(b1,c):

Step 1: List L1i:

L1i = { 150 , 450 , 750 , 250 , 150 , 250 , 550 , 600 , 400 , 350 , 550 , 450 } .

Step 2: Find the domain of the feature b1, i.e. LI
1:

LI
1 = [ 150 , 750 ].

Step 3: Divide the domain LI
1 into sections:

Assume that dividing LI
1 into 3 sections is reasonable, which represent “Light”([150,350]),

“Medium”([250,650]) and “Heavy”([550,750]).

Step 4: Construct a membership function F̃1h in each section.

Assume that 1) all the UMFs are trapezoidal and LMFs are triangular, as shown in

Figure 5.2; 2) the heights of all the LMFs are 0.7; 3) the supports of the LMFs of

F̃1h are 2cm lesser then their UMF counterparts on each side; 4) D113−D112 = 50,

D123−D122 = 100 and D133−D132 = 50 . Therefore, for feature b1:
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UMF(F̃11) =


1 if 150≤ L1i ≤ 200,

350−L1i

350−200
if 200 < L1i < 350,

0 otherwise.

(5.8)

LMF(F̃11) =


0.7(300−L1i)

300−150
if 150≤ L1i < 300,

0 otherwise.
(5.9)

UMF(F̃12) =



L1i−250
400−250

if 250 < L1i < 400,

1 if 400≤ L1i ≤ 500,

650−L1i

650−500
if 500 < L1i < 650,

0 otherwise.

(5.10)

LMF(F̃12) =



0.7(L1i−300)
450−300

if 300 < L1i ≤ 450,

0.7(600−L1i)

600−450
if 450 < L1i < 600,

0 otherwise.

(5.11)

UMF(F̃13) =



L1i−550
700−550

if 550 < L1i < 700,

1 if 700≤ L1i ≤ 750,

0 otherwise.

(5.12)

LMF(F̃13) =


0.7(L1i−600)

750−600
if 600 < L1i ≤ 750,

0 otherwise.
(5.13)

Step 5: Divide ai into K = 2 subsets:

For shelf S1, A1 = {a1,a5,a6,a9,a10};

For shelf S2, A2 = {a2,a3,a4,a7,a8,a11,a12}.

Step 6: Count the number of elements in A1:

From the results of the previous step, |A1|= 5.
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Step 7: Find the number of elements in the interval [D111,D114]:

[D111,D114] = [150,350]. The books from A1 with weight in this range are a1, a5, a6

and a10. Therefore, |A(1,4)
111 |= 4.

Step 8: Find the number of elements in the interval [D115,D117]:

[D115,D117] = [150,300]. The books from A1 with weight in this range are a1, a5 and

a6. Therefore, |A(5,7)
111 |= 3.

Step 9: Compute the membership degrees S11(b1,c1) and S11(b1,c1):

With Eq. 5.5, S11(b1,c1) =
4
5 = 0.8;

With Eq. 5.4, S11(b1,c1) =
3
5 = 0.6.

Step 10: Repeat steps 7-9 for h = {2,3}:

[D211,D214] = [250,650]. |A(1,4)
112 |= 3

[D215,D217] = [300,600]. |A(5,7)
112 |= 2

Therefore, S12(b1,c1) =
3
5 = 0.6 and S12(b1,c1) =

2
5 = 0.4.

[D211,D314] = [550,750]. |A(1,4)
113 |= 0

[D215,D317] = [600,750]. |A(5,7)
113 |= 0

Therefore, S13(b1,c1) =
0
5 = 0 and S13(b1,c1) =

0
5 = 0.

Step 11: Repeat steps 6-10 for h = {2,3}:

From step 5, |A2|= 7;

|A(1,4)
211 |= 1 and |A(5,7)

211 |= 1, therefore S11(b1,c2) = 0.14 and S11(b1,c2) = 0.14;

|A(1,4)
212 |= 6 and |A(5,7)

212 |= 5, therefore S12(b1,c2) = 0.86 and S12(b1,c2) = 0.71;

|A(1,4)
213 |= 4 and |A(5,7)

213 |= 2, therefore S13(b1,c2) = 0.57 and S13(b1,c2) = 0.29.

Repeat the same procedure for features b2 and b3. Assume that only two membership

functions are assigned to both b2 and b3, which are defined as:
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UMF(F̃21) =


1 if 0.5≤ L2i ≤ 1.0,

3.0−L2i

3.0−1.0
if 1.0 < L2i < 3.0,

0 otherwise.

(5.14)

LMF(F̃21) =


0.7(2.5−L2i)

2.5−0.5
if 0.5≤ L2i < 2.5,

0 otherwise.
(5.15)

UMF(F̃22) =



L2i−2.0
4.0−2.0

if 2.0 < L2i < 4.0,

1 if 4.0≤ L2i ≤ 4.5,

0 otherwise.

(5.16)

LMF(F̃22) =


0.7(L2i−2.5)

4.5−2.5
if 2.5 < L2i ≤ 4.5,

0 otherwise.
(5.17)

UMF(F̃31) =


1 if 17≤ L3i ≤ 19,

23−L3i

23−19
if 19 < L3i < 23,

0 otherwise.

(5.18)

LMF(F̃31) =


0.7(21−L3i)

21−17
if 17≤ L3i < 21,

0 otherwise.
(5.19)

UMF(F̃32) =



L3i−21
25−21

if 21 < L3i < 25,

1 if 25≤ L3i ≤ 27,

0 otherwise.

(5.20)

LMF(F̃32) =


0.7(L3i−23)

27−23
if 23 < L3i ≤ 27,

0 otherwise.
(5.21)

With these membership functions, one should get the following results:
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S21(b2,c1) = 1.0 and S21(b2,c1) = 0.8;

S22(b2,c1) = 0.4 and S22(b2,c1) = 0.4;

S21(b2,c2) = 0.29 and S21(b2,c2) = 0.14;

S22(b2,c2) = 1.0 and S22(b2,c2) = 0.86;

S31(b3,c1) = 1.0 and S31(b3,c1) = 0.6;

S32(b3,c1) = 0.6 and S32(b3,c1) = 0.2;

S31(b3,c2) = 0.71 and S31(b3,c2) = 0.14;

S32(b3,c2) = 0.86 and S32(b3,c2) = 0.57.

Finding R̃(a,b)

Assume that a20 and a21 are two books with the features shown in Table 5.2. The

following steps fuzzify these inputs to find R̃(a,b).

Table 5.2: Example data for testing

book a20 a21
b1 (g) 500 280
b2 (cm) 3.5 2.3
b3 (cm) 28.0 22.0

Step 1: Membership functions adoption:

To find the membership degrees of R̃1h1(a20,b1), Equations (5.8) - (5.13) are em-

ployed.

Step 2: Mapping to functions to find membership degrees:

With mapping L1,20 = 500 to Equations (5.8) - (5.13), which are special cases of

Equations (5.6) and Eq. (5.7), one should able to get:

R11(a20,b1) = 0 and R11(a20,b1) = 0

R12(a20,b1) = 0.47 and R12(a20,b1) = 1.0

R13(a20,b1) = 0 and R13(a20,b1) = 0

Step 3: Repeat the process for the other objects:
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One should find the following results for a21 with L1,21 = 280:

R11(a21,b1) = 0.09 and R11(a21,b1) = 0.47

R12(a21,b1) = 0 and R12(a21,b1) = 0.2

R13(a21,b1) = 0 and R13(a21,b1) = 0

For b2 and b3, repeat the process with Equations (5.14) - (5.21), the results are:

R21(a20,b2) = 0 and R21(a20,b2) = 0

R21(a21,b2) = 0.07 and R21(a21,b2) = 0.35

R22(a20,b2) = 0.35 and R22(a20,b2) = 0.75

R22(a21,b2) = 0 and R22(a21,b2) = 0.15

R31(a20,b3) = 0 and R31(a20,b3) = 0

R31(a21,b3) = 0 and R31(a21,b3) = 0.25

R32(a20,b3) = 1 and R32(a20,b3) = 1

R32(a21,b3) = 0 and R32(a21,b3) = 0.25

5.6 Chapter Conclusion

The performance of a fuzzy logic system is highly dependent on the quality of the

fuzzification module and the knowledge base. Practically, both of these modules pro-

vide membership degrees to process by the inference engines. An outstanding learning

mechanism should be able to generate expected membership degrees for both modules.

In this chapter, a learning mechanism for BK products is proposed. From a set of

training data, this mechanism constructs a set of membership functions. With this set

of membership functions, it eventually defines membership degrees for the knowledge

base and fuzzification module. In the following chapter, this method will be implemented

together with the BK subproduct to prove its usefulness.
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CHAPTER 6

CLASSIFICATIONS WITH THE BK SUBPRODUCT

6.1 Introduction

In Chapter 4, the theoretical framework of weighted IVFS-based BK products are

developed. In this chapter, an experiment is proposed to demonstrate the application of

this framework, as well as to verify its advantages.

Among all, the BK subproduct has shown many good performance in the past (Yew

& Kohout, 1997; Groenemans et al., 1997; Y.-i. Lee & Kim, 2008). Therefore, in this

chapter, the discussion focuses on this relation composition. Three sets of BK subprod-

uct based inference structures are going to test as classifiers. These inference structures

are derived from the improved fuzzy (type-1) BK subproduct, IVFS-based improved BK

subproduct and weighted IVFS-based improved BK subproduct respectively. Publicly

available data sets are used for testing so that the comparison not only can be made be-

tween the inference structures, but also with other methods in the literature.

The details of the experiment settings are discussed in the following sections, includ-

ing the data used in the tests, the inference structures, the training procedure, definition

of weights, defuzzification process and etc.

6.2 Data Sets

Three publicly available data sets (Bache & Lichman, 2013) are used in the ex-

periment, namely Statlog Heart (Statlog) (Michie, Spiegelhalter, & Taylor, 1994), Pima

Indians Diabetes (Pima) (Smith, Everhart, Dickson, Knowler, & Johannes, 1988) and

Wisconsin Diagnostic Breast Cancer (WDBC) (Street, Wolberg, & Mangasarian, 1993).
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Table 6.1: A summary of data sets used in the experiment.

Name Abbreviation Instances Attributes Classes
Statlog Heart Statlog 270 13 2
Pima Indians Diabetes∗ Pima 768 8 2
Wisconsin Diagnostic Breast Cancer WDBC 569 30 2

∗ This data set comes with some missing values.

A summary of these data sets are shown in Table 6.1.

For each data set, all the instances are divided into 2 groups: training group for

learning and testing group for prediction. To minimize the bias in random sampling of

training data (Delen, Walker, & Kadam, 2005), k-fold cross validation (Kohavi, 1995) is

used in the experiment. With the k-fold cross validation, each data set is randomly divided

into k mutually exclusive groups. The number of instances in each group is approximately

equal. While some of these groups are used for training, the remaining groups are used

to examine the classification accuracy of the BK subproduct. To learn the characteristics

of the BK subproduct in different training environment, four training-testing data ratios

are adopted, namely 1:4, 1:1 (2-fold cross validation), 4:1 (5-fold cross validation) and

9:1 (10-fold cross validation). For each train-test ratio, 30 tests are conducted. In each

of these 30 train-test iteration, an independent set of random training and testing data are

generated. The average accuracy of classification for each data set is computed at the end

of the experiment to learn the classification ability of the BK subproduct.

average accuracy =
1
N

N

∑
n=1

(Total number of instances that predicted correctly)n
(Total number of instances)n

(6.1)

where n = {1, · · · ,N} and N is the total tests run for each training-testing data ratio and

equals to 30 in this case.
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6.2.1 Statlog Heart Data Set

The Statlog data set consists of 270 records that can be classified into 2 classes,

namely presence and absence (150 instances) of heart-disease (120 instances). This data

set is originated from the Cleveland Clinic Foundation to classify those instances based

on 13 attributes, including (1) age, (2) sex, (3) chest pain, (4) resting blood pressure, (5)

serum cholesterol, (6) fasting blood sugar, (7) resting electrocardiographic results, (8)

maximum heart rate achieved, (9) exercise induced angina, (10) oldpeak, (11) the slope

of the peak exercise ST segment, (12) number of major vessels colored by flourosopy and

(13) thal. No missing value is found in this data set.

6.2.2 Pima Indians Diabetes Data Set

Pima is a data set originated from the National Institute of Diabetes and Digestive

and Kidney Diseases. This 768 instances data set concern with the presence (268 in-

stances) or absence (500 instances) of diabetes among Pima-Indian heritage females with

age is at least 21 years old. A total of 8 attributes can be found on these patients, i.e. (1)

number of times pregnant, (2) plasma glucose concentration a 2 hours in an oral glucose

tolerance test, (3) diastolic blood pressure, (4) triceps skin fold thickness, (5) 2 hours

serum insulin, (6) body mass index, (7) diabetes pedigree function and (8) age.

Some missing values are reported in the data set. This can be verified easily as in

some attributes such as the diastolic blood pressure and body mass index, the values of

some instances are zero, which is biologically impossible. However, in this experiment,

no special treatment is taken to this problem due to the lack of information. Therefore,

these values are treated as it.
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6.2.3 Wisconsin Diagnostic Breast Cancer Data Set

This data set is donated by the University of Wisconsin. With fine needle aspirate

(FNA) of a breast mass, digitized image is taken. For each, 30 attributes that describe

characteristics of the cell nuclei are recorded. These attributes are derived from: (1) ra-

dius, (2) texture, (3) perimeter , (4) area, (5) smoothness, (6) compactness, (7) concavity,

(8) concave points, (9) symmetry and (10) fractal dimension. A total of 569 instances can

be found in this data set, classified into 2 classes, namely malignant (212 instances) and

benign (357 instances). No missing value is found.

6.3 Design Of The Inference Engines

In the discussion on the improved fuzzy (type-1) BK subproduct in Section 3.2, a

few outstanding inference structures have been discussed and evaluated. Among all, K9

is one of the top ranked inference structures (Yew & Kohout, 1997) :

K9 : min
( 1
|B| ∑b∈B

(R(a,b)→ S(b,c)),OrBot
(
AndTop(R(a,b),S(b,c))

))
(6.2)

where |B| ∈N is the number of elements in B, AndTop(p,q)=min(p,q) and OrBot(p,q)=

min(1, p+q) respectively, ∀p,q ∈ [0,1].

To implement this inference structure, the R(a,b) and S(b,c) have to be defined. This

research design the inference engine as follow: A is a set of all the instances (Table 6.1),

whereas B is a set includes all the features and C is the classes. Therefore, for a defined

membership function, R(a,b) is the membership degree of relation between instance a

and feature b, whereas S(b,c) is the membership degree of relation between feature b and

class c. With this design, K9 computes the membership degree of the relation between

instances and classes. Comparison between these output membership degrees give results

about which class an instance belongs to.
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For the inferences with IVFS-based BK subproduct, Eq. (4.14) is initialized with

logical connectives. Comparisons are only meaningful if the logical connectives that

used in K9 are adopted. With this, V9, an inference structure based on IVFSs is obtained.

The intervals that this inference structure computes are:

[
min

( 1
|B| ∑b∈B

(R(a,b)⇒ S(b,c)),OrBot
(
AndTop(R(a,b),S(b,c))

))
,

min
( 1
|B| ∑b∈B

(R(a,b)⇒ S(b,c)),OrBot
(
AndTop(R(a,b),S(b,c))

))
,
]

(6.3)

where R and R are the lower bound and upper bound of membership degrees of relations

between instance a and feature b respectively, and the lower bound and upper bound of

membership degrees of relation between b and class c are given by S and S.

The last inference structure, W9, is a weighted inference structure based on V9. With

features in set B be divided into M feature subsets according to their weight in inferences,

an interval can be computed for each feature subset with Eq. (6.3). Define W̃m, weight of

feature subset m = {1, · · · ,M} and inference structure W9 can be formed with replacing

R̃mFS̃m(a,c) in Eq. (4.29) with intervals compute from Eq. (6.3). Because of W̃m are

IVFSs, the outputs of this inference structure are IVFSs as well.

6.4 Construction of Membership Functions

In Section 6.3, all the three constructed inference structures require membership

degrees R̃(a,b) and S̃(b,c) (or R(a,b) and S(b,c)) for computations. In term of fuzzy

logic systems (Figure 1.1), R̃(a,b) are the results of the fuzzification module that give the

relations between set A and set B, whereas S(b,c) form the knowledge base that specifies

the relations between set B and set C. Therefore, retrieving these membership degrees

enable inference engines operate according to expectation.
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Figure 6.1: Definition of 3 standard membership functions, F̃∗1 , F̃∗2 and F̃∗3 .

This section adopts the learning mechanism that defined in Chapter 5 to form the set

of membership functions, follow by training of the knowledge base and convert test data

to membership degrees.

Instead of define H j membership functions for each bi, this experiment fix H = 3 for

all the features. A set of three standard membership functions (Figure 6.1) are defined,

namely “Low”(F̃∗1 ), “Medium” (F̃∗2 ) and “High” (F̃∗3 ). For each b j, find the corresponding

limits of train data, L j and L j. Next, scale the standard membership functions to this

interval [L j,L j]. Let L# = L j−L j, Table 6.2 shows the scaling equations for feature b j,

which follow the 8 points definition of interval valued membership functions in Figure

5.2.

With this, the Statlog, Pima and WDBC data sets form 13×3, 8×3 and 30×3 mem-

bership functions respectively, for each of the inference system. Follow the algorithm of

building knowledge base in Section 5.4, all the S̃(b,c) can be computed.

Since T1FSs are special cases of IVFSs, for the experiment with T1FS-based BK

inference structure, the similar approach can be used if the interval membership functions

F̃jγ that used to generate membership degrees are replaced with type-1 membership func-
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Table 6.2: Scaling from standard membership functions F̃∗1 , F̃∗2 and F̃∗3 to membership
functions for b j, namely F̃j1, F̃j2 and F̃j3.

F̃jγ

γ = 1 γ = 2 γ = 3

D jγ1 L j L j +0.15L# L j +0.30L#

D jγ2 L j L j +0.45L# L j +0.90L#

D jγ3 L j +0.10L# L j +0.55L# L j

D jγ4 L j +0.70L# L j +0.85L# L j

D jγ5 L j L j +0.25L# L j +0.50L#

D jγ6 L j L j +0.50L# L j

D jγ7 L j +0.70L# L j +0.75L# L j

ν 0.55 0.55 0.55

tions, Fjγ . To make the comparisons between T1FS- and IVFS-based BK subproduct fair,

the following three criteria should be considered for the replacement type-1 membership

functions:

1. The membership functions should be normal;

2. Each membership function that replace an interval-valued membership function

should be in the FOU of the original IVFS;

3. A membership function set for a feature should form symmetry pattern.

Five sets of T1FSs that meet the above criteria are formed, they are: 1) trapezoids

that equal to the UMF of the IVFSs, denoted as Tra-out; 2) Trapezoids that the points

where membership degrees 0 are the LMF of the IVFSs, but the points where membership

degrees 1 are the UMF of IVFSs, denoted Tra-in; 3) Equilateral triangles that the points

where membership degrees 0 are the UMF of the IVFSs, denoted as Tri-out; 4) Equilateral
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Table 6.3: Coordinates of standard membership functions for T1FS.

Tra-out
F∗1 {(0.00,0.00),(0.00,1.00),(0.10,1.00),(0.70,0.00)}
F∗2 {(0.15,0.00),(0.45,1.00),(0.55,1.00),(0.85,0.00)}
F∗3 {(0.30,0.00),(0.90,1.00),(1.00,1.00),(1.00,0.00)}

Tra-in
F∗1 {(0.00,0.00),(0.00,1.00),(0.10,1.00),(0.50,0.00)}
F∗2 {(0.25,0.00),(0.45,1.00),(0.55,1.00),(0.75,0.00)}
F∗3 {(0.50,0.00),(0.90,1.00),(1.00,1.00),(1.00,0.00)}

Tri-out
F∗1 {(0.00,0.00),(0.00,1.00),(0.70,0.00)}
F∗2 {(0.15,0.00),(0.50,1.00),(0.85,0.00)}
F∗3 {(0.30,0.00),(1.00,1.00),(1.00,0.00)}

Tri-mid
F∗1 {(0.00,0.00),(0.00,1.00),(0.60,0.00)}
F∗2 {(0.20,0.00),(0.50,1.00),(0.80,0.00)}
F∗3 {(0.40,0.00),(1.00,1.00),(1.00,0.00)}

Tri-in
F∗1 {(0.00,0.00),(0.00,1.00),(0.50,0.00)}
F∗2 {(0.25,0.00),(0.50,1.00),(0.75,0.00)}
F∗3 {(0.50,0.00),(1.00,1.00),(1.00,0.00)}

triangles that the points where membership degrees 0 are the middle points between UMF

and LMF of the IVFSs, denoted as Tri-mid; 5) Equilateral triangles that the points where

membership degrees 0 are the LMF of the IVFSs, denoted as Tri-in. Table 6.3 shows the

coordinates of their standard membership functions F∗1 , F∗2 and F∗3 . With these standard

membership functions, S(b,c) can be found.

For the fuzzification module, the similar membership function sets, F̃j1, F̃j2 and

F̃j3 (or Fj1, Fj2 and Fj3 for the case of T1FSs) are used again. Map the test data to

the corresponding membership functions as described in the fuzzification algorithm in

Section 5.4, all the R̃(a,b) (or R(a,b)) can be computed.

6.5 Inference and Defuzzification

Using the settings described in the previous sections, the classifications can be done

with each of the defined inference structure. The Kleene-Dienes implication operator is
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adopted for the experiment.

An instance in a data set is assume to be an object to infer, with the attributes are the

features used for inferences. The classes of the instances are the objects that an inference

targeted for. A complete inference for an instance ai involves computing the relationships

R̃/ S̃(ai,c) (or R/S(ai,c)) of the instance with all the c in the object set C. Therefore, with

the definition of 3 standard membership functions for each feature (refer to Section 6.4),

the total number of computations R(a,b)→ S(b,c) involve in a complete inference for

an instance is 3JK if inference structure K9 (based on T1FS) is used, where J is the total

number of features and K is the total number of objects. For the case where inference

structure V9 or W9, which is based on IVFS is used, the number will be 2×3JK, if the

weight computation is not considered. The weights computation is discussed in the next

section.

After the inferences, the results from the inference engines are defuzzified to produce

meaningful information. One should able to find a lot of discussions in the literature on

the defuzzification of inference results of rule-based systems based on T1FSs (C. C. Lee,

1990b; Filev & Yager, 1991; Patel & Mohan, 2002; Dubois, 2011). For the case of IVFSs

and T2FSs, an extra procedure of type reduction (N. Karnik & Mendel, 1998; Greenfield,

Chiclana, & John, 2009) involve, which reduces the IVFSs or T2FSs to T1FSs.

Despite there is a broad range of defuzzification methods in the literature, to interpret

the results of a classifier based on the BK subproduct, a ranking method is sufficient.

Generally, ranking methods compare the results of R̃ / S̃(ai,ck) for all k ∈ K. Find ck′

where R̃ / S̃(ai,ck′) is greater than R̃ / S̃(ai,ck) for k′ ∈ K but k 6= k′. The ranking shows

that ai has strongest relation to ck′ . Therefore, ai belongs to this class.

For the results of the K9 inference structure, the ranking process is easy because the

outputs of this inference structure are point values in the range [0,1] and can be compared

directly. For V9 inference structure, the outputs are intervals. To compare these intervals,
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the method described in Section 3.3 is applied. If Iik = [Iik,Iik] is the interval generated

for target ck by object ai, the procedure to compare Iik across all intervals where k ∈

{1, · · · ,K} is as follow: Firstly, a dynamic threshold βi is generated with the mean of

the alternate sequence of boundary values of Iik (for example, if K is an even number,

βi = (Ii1+Ii2+ · · ·+IiK)/K). Secondly, find Θ
β

ik, the reliability of each interval Iik using

Eq. (3.7). Compare these reliability measures, which are point-valued. The target k′ that

with highest reliability interval is the one that have the strongest relation to the instance

ai.

For the case of the W9 inference structures, since the weights are modelled with

IVFSs, the outputs are also IVFSs. There are some ranking algorithms for IVFSs in the

literature (Mitchell, 2006; D. Wu & Mendel, 2009; Zhang, Joshua, & Lim, 2011). In

this experiment, the study of D. Wu and Mendel (2009) is adopted to reduce the IVFS

outputs to intervals. Lastly, method that use for rank the output of the V9 (described in

the previous paragraph) is used to rank the results.

6.6 Determination Of Weight

In the process of weight determination, features/attributes are grouped according to

their influence towards the classification results. In this experiment, features are divided

into two groups, namely “low” and “high”, according to the influence. The membership

functions of these groups are shown in Figure 6.2.

An algorithm is needed to distinguish whether a feature should belongs to high or

low weight group. This weighing algorithm examines each attribute iteratively, using the

training data.

Firstly, the data used during the training stage are employed again. Fuzzify the

training data by mapping it to the membership function sets F̃j1, F̃j2 and F̃j3. This form
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Figure 6.2: Definition of the low and high weight functions.

fuzzy relation R̃(a∗,b) where a∗ ∈ A∗ is the training data.

For each feature b j ∈ B, find separately R̃ / S̃(a∗,c) with V9 inference structure, as

what described in Section 6.5, but on training data. Assume I∗ is the total number of

instances in training data. With this step, for a feature b j, we find I∗K intervals that

measuring the relations of objects and targets through this feature.

Convert these interval results to point-values by finding their arithmetic mean. For an

a∗i∗ , i∗ ∈ I∗, we get K point results. If the point value related to c′k is the highest compare to

the other, we can conclude that, for this particular a∗i∗ , b j leads to infer for c′k. Please note

that for the computation on single feature b j, it is common that multiple objects find the

same highest value, or even all objects find the same value. Anyway, the same conclusion

still can be made.

Compare the defuzzified inference results with the ground truth and count G j, the

number of instances that lead to correct inferences by b j. The higher the G j, the higher

the influence feature b j lead to correct inference. Therefore, the weight of b j is given by

w j:

w j =
G j

I∗
(6.4)
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Find the median of the weight across all features, namely wM. If the weight of a feature

is smaller than wM and a define value, 0.5, the feature falls to the group with low weight,

otherwise it is in the high weight group. With this, all the features are divided into 2

weight groups.

6.7 Chapter Conclusion

This chapter discusses the settings of experiment so that the IVFS-based BK sub-

product can be examined. The aim of this experiment is to demonstrate the implemention

BK subproduct based inference structure as classifier for three publicly available data

sets.

K9, the inference structure with outstanding performance is adopted in the exper-

iment, and going to compare with another two newly developed inference structures,

namely V9 and W9. Method described in Chapter 5 plays a main role in preparing data

for the inferences. However, instead of defining membership functions for each feature

separately, three standard membership functions are defined and scaled to the domain of

each feature. With the train data, the weight group of each feature is determined. Lastly,

the inference results are compared to find the accuracy of classifications.
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

In previous chapter, an experiment is set up to demonstrate the application of BK

subproduct as classifier, as well as to examine the two improvements over the classical

fuzzy BK products, namely extension to IVFSs and the additional weight parameter. The

experiment involves 3 publicly available data sets, each data set is tested with 4 different

train-test ratios.

In this chapter, a common measuring model that based on accuracy, sensitivity and

specificity is adopted. Through the experiment results, the improvements from the ex-

tension to IVFSs and the weight parameter are examine separately. Apart from this, the

classification results are also compared with a few state-of-the-art classifiers in the liter-

ature. The training mechanism that introduced in the Chapter 5 are also discussed at the

end of this chapter.

7.2 Measuring Model

Firstly, the measuring model is described briefly. The inference results and the

ground truth can be compared with a matrix similar to Figure 7.1. In term of medical

diagnosis, true positive (TP) is the case where a patient (instance) is classified as sick;

true negative (TN) is the case where a healthy person is inferred as healthy; false positive

(FP), or false alarm is the case where a healthy person is wrongly classified as sick and

false negative (FN) is the case where a patient is wrongly inferred as healthy. A good

classifier should aim for high TP and TN, but low FP and FN.
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Figure 7.1: The confusion matrix that provides the fundamental of evaluation.

Among all, the most popular measurement in evaluating the performance of a clas-

sifier is accuracy. If T+ denotes TP, T− denotes TN, F+ denotes FP and F− denotes FN,

the accuracy of a classifier is defined as:

accuracy =
T++T−

T++T−+F++F−
(7.1)

Besides the accuracy, the sensitivity and specificity are another two popular indexes

that measure the capability of a classifier. With the knowledge of TP and FN, sensitivity

is given by:

sensitivity =
T+

T++F−
(7.2)

It is also equal to the number of T+ divides by the population of patients. Therefore, one

can explain the sensitivity as the probability of a patient to be inferred correctly in the

patients population.
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Specificity is the defined as:

specificity =
T−

T−+F+
(7.3)

It is also equal to the number of T− divides by the population of healthy people. There-

fore, one can explain the specificity as the probability of a healthy people to be inferred

correctly in the healthy people population.

A good classification algorithm should aim for high scores in accuracy, sensitivity

and specificity.

7.3 Improvement With Interval Valued Fuzzy Sets

IVFSs have been adopted in many researches in the past decade (Mitchell, 2005;

Melgarejo & Pena-Reyes, 2007; Poornaselvan, Kumar, & Vijayan, 2008; Zaher & Ha-

gras, 2010). Although most of the researches claim that IVFSs help in the design of

their applications, but not really all of them compared the results of their IVFS-based

systems with T1FS-based systems. In this section, the discussion focuses on the results

and comparisons of inference structures based on T1FSs and IVFSs. Firstly, the results

of the experiment for WDBC, Statlog and Pima are presented in Table 7.1, 7.2 and 7.3

respectively.

7.3.1 Accuracy

In term of accuracy, it is clear that V9, the IVFS-based inference structure shows

its advantages compare to all the implementations of K9s in most cases. Compare to the

worst performing K9 implementations, V9 shows improvements from the range 0.571%

to 32.690%, with the mean of improvement 9.758%. Compare to the best performing

K9 implementations, V9 still performing well in most cases with maximum advantage of
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Table 7.1: Averages (30 runs) of accuracy, sensitivity and specificity of classifications
with BK subproduct for Wisconsin Diagnostic Breast Cancer.

Inference Structures
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Accuracy
1:4 78.750 92.449 81.564 92.683 91.601 92.763 95.526
1:1 71.942 93.146 75.579 92.164 92.199 93.181 94.210
4:1 62.738 93.828 66.775 92.483 93.272 94.150 95.730
9:1 61.579 94.328 65.029 92.749 93.684 94.269 94.561

Sensitivity
1:4 67.422 98.988 72.166 94.876 99.302 84.019 86.011
1:1 56.154 99.116 61.992 92.849 99.518 86.081 89.733
4:1 40.974 98.838 47.498 90.992 99.406 89.770 93.725
9:1 37.355 99.511 42.937 90.438 99.712 90.432 91.314

Specificity
1:4 98.167 81.368 100.000 96.395 83.943 97.932 98.364
1:1 99.434 82.758 99.239 90.919 79.422 97.263 98.530
4:1 99.773 85.407 99.601 94.946 82.959 96.720 97.746
9:1 100.000 85.845 100.000 96.395 83.943 96.500 96.592

2.469%. The mean of improvements by V9 across all the best performing K9 implemen-

tations is 0.453%. In this class, only a few exceptions found in: i) WDBC test: it lost

0.059% to K9 (Tra-in) in train-test ratio 9:1; ii) Pima: it lost 0.163% and 0.243% respec-

tively, to K9 (Tra-in) with train-test ratio 1:4 and 1:1. However, for the experiment with

the Statlog heart disease, K9 with Tra-in as membership functions is not giving very good

accuracy, even if compares to other K9 implementations. This represents that a T1FS

membership functions adopted by the K9 is able to capture uncertainty in some cases but

not some other. On the other hand, the maximum improvement brings by the adoption of

IVFSs in this experiment is 2.469%.

Although K9s, the implementations of BK subproduct with T1FSs show higher ac-

curacies in some cases, it is not enough to justify that T1FSs implementations are better

then IVFSs in general. One can observe that the accuracy of K9s varies according to the
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Table 7.2: Averages (30 runs) of accuracy, sensitivity and specificity of classifications
with BK subproduct for Statlog Heart Disease.

Inference Structures
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Accuracy
1:4 80.463 80.617 80.278 80.803 80.448 80.849 84.259
1:1 80.123 79.630 80.123 80.593 79.951 80.914 84.395
4:1 80.864 79.951 80.173 80.593 79.630 83.333 85.926
9:1 80.247 79.753 80.000 81.111 79.506 82.099 84.444

Sensitivity
1:4 82.589 78.268 81.725 78.324 78.123 77.858 79.814
1:1 80.662 77.544 81.910 78.562 77.631 77.420 80.961
4:1 81.910 77.631 80.662 78.562 77.544 80.582 83.897
9:1 84.297 76.418 83.152 82.533 77.261 79.833 86.125

Specificity
1:4 78.748 82.457 77.731 80.147 81.385 83.231 87.838
1:1 79.934 81.468 78.793 82.379 81.958 83.976 88.496
4:1 78.793 81.958 79.934 82.379 81.468 85.253 84.590
9:1 77.059 82.498 77.731 80.147 81.385 84.089 83.459

membership functions adopted, especially for experiment on WDBC (Table 7.1). In this

experiment, the accuracy of K9s varies a lot. For example, in the test with train-test ratio

9:1, the accuracy results with K9 (Tra-in) and K9 (Tra-out) are 94.328% and 61.579%

respectively. The standard deviation of these accuracy results is 14.9. One may argue that

Tra-in is a better membership function compare to Tra-out. But, as pointed out earlier,

Tra-out shows better results then Tra-in in the experiment with Statlog.

It is trivial that the changes in accuracy is because of the selection of membership

functions. Once the membership functions adopted are not able to model the uncertainty

as expected, the accuracy results drop. The uncertainty, which is ill-defined most of the

time, may not be sufficient to represent with crisp, point-valued membership functions

effectively. To capture uncertainty, a range of membership functions, or the interval-

valued membership functions show their advantages (Turksen, 1986). Therefore, V9, the
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Table 7.3: Averages (30 runs) of accuracy, sensitivity and specificity of classifications
with BK subproduct for Pima Indians Diabetes.

Inference Structures
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Accuracy
1:4 71.523 72.136 71.236 71.111 71.772 71.973 72.835
1:1 71.076 73.325 71.068 71.910 72.804 73.082 74.002
4:1 71.082 73.853 71.364 72.597 72.662 74.632 75.693
9:1 73.463 75.065 72.770 74.589 74.069 75.931 77.229

Sensitivity
1:4 45.262 45.432 41.648 36.342 40.506 36.992 38.177
1:1 41.318 49.096 37.565 43.364 43.138 41.191 42.900
4:1 41.624 54.319 38.519 46.184 48.069 45.210 46.320
9:1 40.588 56.827 36.629 47.461 50.687 47.212 50.150

Specificity
1:4 85.422 86.364 90.958 88.369 85.984 90.542 90.225
1:1 87.382 86.627 89.418 87.581 89.076 90.593 91.102
4:1 86.840 84.289 88.883 86.762 85.775 90.211 91.203
9:1 89.954 84.312 90.958 88.369 85.984 90.591 90.989

BK subproduct inference structure that based on IVFSs capable to show better accuracy

in most of the cases.

One may also argue that, rather than representing uncertainty with intervals, we

should clarify the uncertainty involved and model it carefully with T1FSs. This recall

us about the doubts on fuzzy logic theory in early days (McCloskey & Glucksberg, 1978;

Osherson & Smith, 1981; Zadeh, 1999), where some held strong believe that clear bound-

aries exist in object classifications and fuzzy sets theory was negated. Researches includ-

ing Zadeh (1982), Kosko (1990) and Belohlavek, Klir, Harold W, and Way (2009) have

clear and complete response to those questions. In the same vein, for the questions on

the need of IVFSs instead of T1FSs, one might have to accept that most classical T1FSs-

based fuzzy systems, with the assumption that uncertainty are crisp and well defined are

special cases. The fact is, this crisp criteria may not always fit to all cases. Forcing point-
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Table 7.4: Standard Deviations of Accuracies of K9 and V9

Inference Structures
Data sets Train-Test Ratio K9 V9

WDBC
1:4 1.532 1.525
1:1 0.9 1.816
4:1 2.215 1.968
9:1 3.225 3.103

Statlog
1:4 2.182 1.98
1:1 2.45 2.432
4:1 4.391 4.33
9:1 7.178 6.562

Pima
1:4 1.889 2.145
1:1 1.735 2.14
4:1 3.521 4.02
9:1 4.921 5.159

valued membership functions in a system is just neglecting the fact that uncertainty is

ill-defined in some cases. Therefore, high accuracy results in some T1FS-based inference

structures are not guaranteed, they are just some special cases. Furthermore, if member-

ship functions of T1FSs can be optimized to achieve the best accuracy, then the same

strategy also can be applied to membership functions of IVFSs as well (Castillo, Huesca,

& Valdez, 2005).

Table 7.4 compares the standard deviations of accuracy between V9 and the best

performing K9 (Tra-In for both WDBC and Pima, Tra-Out for Statlog).

The standard deviation is a measure used to quantify the amount of dispersion from

the mean values. In the measurement of accuracy, the lower the standard deviations, the

closer the accuracy of runs to the mean accuracy. From the Table 7.4, one can observe

that the standard deviations of tests on V9 are close to K9.

7.3.2 Sensitivity and Specificity

The measurement of sensitivity shows the probability of a patient to be inferred

correctly in the patients population, whereas specificity is the probability of a healthy

people to be inferred correctly in the healthy people population.
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If the sensitivity and specificity results are compare across all the implementations of

K9s, one can get an interesting finding: if a K9 implementation is having relatively high

sensitivity in an experiment, the specificity is low; on the contrary, if a K9 implementation

is having relatively low sensitivity in an experiment, the specificity is high. For example,

K9 (Tra-out) and K9 (Tri-out) have gain high sensitivity in experiment with Statlog, but

the specificity is low relative to K9 (Tra-in) and K9 (Tri-in). In contrast, for the exper-

iment with Pima and WDBC data sets, K9 (Tra-in) and K9 (Tri-in) have relatively high

sensitivity, but the K9 (Tra-out) and K9 (Tri-out) implementations are the ones with high

specificity. In other words, K9 (Tra-in) and K9 (Tri-in) have relatively low specificity in

the experiment with both WDBC and Pima, and K9 (Tra-out) and K9 (Tri-out) are having

low sensitivity in the same experiment.

This results show that both K9 (Tra-in) and K9 (Tri-in) have stronger tendency to

classify an instance as patient in the experiment for Pima and WDBC, but in the ex-

periment with Statlog, they incline to label an instance as healthy. The features of K9

(Tra-out) and K9 (Tri-out) are the other way round. On the other hand, V9 that based on

IVFSs is more consistent compare to these K9 implementations.

7.4 Improvement With Weight Parameter

From Table 7.1, 7.2 and 7.3, it is obvious that the additional weight parameter im-

proves all the accuracy and sensitivity results, with only minor declination on the speci-

ficity in a few cases. The improvement to accuracy is ranged from 0.292% to 3.481%.

However, it should be stressed that the algorithm that discussed in Section 6.6 is just

a simple implementation for the purpose to prove the ability of the weight parameter.

For application that aim for higher accuracy, some feature selection algorithms (Jain &

Zongker, 1997; Guyon & Elisseeff, 2003; Peng, Long, & Ding, 2005) can be acquired.
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Table 7.5: Improvement of accuracy by tuning of control parameter.

Dataset Train-test ratio Control Parameter Accuracy

Statlog 1:4 0.5 84.182%
1:4 0.6 85.818%
1:1 0.5 84.395%
1:1 0.6 84.938%
4:1 0.5 85.926%
4:1 0.6 86.667%
9:1 0.5 84.444%
9:1 0.6 86.420%

WDBC 1:4 0.5 93.772%
1:4 0.7 95.526%
1:1 0.5 95.298%
1:1 0.7 95.298%
4:1 0.5 95.730%
4:1 0.7 96.226%
9:1 0.5 94.561%
9:1 0.7 94.620%

Pima 1:4 0.5 72.835%
1:4 0.6 72.271%
1:1 0.5 74.002%
1:1 0.6 74.019%
4:1 0.5 74.784%
4:1 0.6 75.714%
9:1 0.5 77.229%
9:1 0.6 77.316%

With these feature selection algorithms, important features can be selected and assigned

with high weights.

Although the scope of the thesis limits to the demonstration of the advantage of

weight parameter, but not the optimization of the weights, it is worth to discuss the pos-

sibility of further improving results with this parameter. Besides the incorporation of

feature selection algorithms that discussed on the above, other methods of improving the

accuracy results include: i) optimization of the weight functions (Figure 6.2), and ii) fine

tune the weight group control parameter. The optimization of weight functions involve
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Table 7.6: Standard Deviations of Accuracies of V9 and W9

Inference Structures
Data sets Train-Test Ratio V9 W9

WDBC
1:4 1.525 2.125
1:1 1.816 1.816
4:1 1.968 1.971
9:1 3.103 2.913

Statlog
1:4 1.98 2.768
1:1 2.432 4.374
4:1 4.33 4.046
9:1 6.562 8.521

Pima
1:4 2.145 3.096
1:1 2.14 2.887
4:1 4.02 3.67
9:1 5.159 4.751

the study of the shape of functions and numbers of weight functions/groups. Notice that

a set of standard weight functions are used across all the three data sets in the experiment.

It is not surprising that the results can be improved with the implementation of dedicated

weight function sets that specially designed for each data set.

The fine tuning of weight group control parameter involve the control of number of

features in each weight group. Recall that in Section 6.6, weight of each feature w j is

computed. A feature b j falls to the group with low weight if w j smaller then wM and

a control parameter 0.5. With the adjustment of this control parameter, the number of

features in a weight group increases or decreases and this directly affect the accuracy

of classification. Table 7.5 shows the accuracy results of the experiment if this control

parameter is changed.

Lastly, the standard deviations of the accuracies of W9 and V9 are presented in Table

7.6.

One can see that the standard deviations of accuracy by W9 do not show major

differences compare to the V9’s, except in 2 tests with Statlog. From this observation,

one can conclude that the improvement brings by the additional weight parameter is rather
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uniform.

7.5 Compare To Other Classifiers

In this section, the accuracy of the proposed V9 and W9 inference structures are

compared to some classifiers in the literature. Due to many of the state-of-the-art re-

searches only report the results with 10 runs instead of 30, a set of 10-run-result from

each data set is extracted for the comparisons in this section.

Tables 7.7, 7.8 and 7.9 compare the results of experiment with Statlog, WDBC and

Pima respectively, with some state-of-the-art works. Among all, Mantas and Abellán

(2014) work on all the three data sets that this thesis works on; Hu (2013) and Jiang and

Li (2013) work on both Statlog and Pima; Pacheco et al. (2012) work on both Statlog and

WDBC; Li and Liu (2010) work on both WDBC and Pima. From the comparisons, it is

clear that the weighted IVFS-based BK subproduct has its advantages compare to other

classifiers.

7.6 The Mechanism Of Generating Membership Func-
tions

Chapter 5 proposed a membership function definition mechanism for BK products-

based inference engines. This mechanism not only helps in training the inference engines,

but also serve to fuzzify test data. In this section, some features of this mechanism are

discussed.

Basically, this method trains a system that provides information on the distribution

of data in specific ranges. Therefore, as to many other training methods, the prediction

accuracy increases when the number of training data increases. Meanwhile, this method

shows an advantage: it manage to train a system with limited data, as long as the pattern of

data distribution is obtained. This conclusion can be further affirmed with the experiment
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Table 7.7: Comparison between classifier on the accuracy of Statlog data set

Author Method Train- Runs Accuracy
Test Ratio

Mantas and Abellán(2014) Credal-C4.5 (no pruning) 9:1 10 80.04%
Mantas and Abellán(2014) Credal-C4.5 (pruning) 9:1 10 80.33%

Chen et al.(2014) ACO-S1 9:1 10 81.85%
Chen et al.(2014) ACO-S2 9:1 10 75.93%
Chen et al.(2014) ACO-S3 9:1 10 82.96%

Yeh, Su, and Lee(2013) SPDI 9:1 10 83.333%
Hu(2013) RSRC-P 4:1 5 84.0%

Jiang and Li(2013) AVDM 4:1 5 83.33%
Pacheco et al.(2012) GRASP 9:1 10 78.1%

This study V9 1:4 10 80.787%
This study V9 1:1 10 81.556%
This study V9 4:1 10 82.407%
This study V9 9:1 10 84.074%
This study W9 1:4 10 84.182%
This study W9 1:1 10 85.556%
This study W9 4:1 10 86.296%
This study W9 9:1 10 84.815%
This study V9 1:4 30 80.849%
This study V9 1:1 30 80.914%
This study V9 4:1 30 83.333%
This study V9 9:1 30 82.099%
This study W9 1:4 30 84.182%
This study W9 1:1 30 84.395%
This study W9 4:1 30 85.926%
This study W9 9:1 30 84.444%

results of V9. For example, in Table 7.7, V9 that trained with only 20% of the total data

manage to achieve accuracy of 80.849%, which is higher than some other methods trained

with 90% of data.

In term of training efficiency, this method also shows its advantage. Since data distri-

bution can be compute easily, the training process for V9 is fast. This can be observed in

Table 7.10, where the training time for an experiment with train-test ratio 9:1 is presented.

The hardware platform that running this experiment is a laptop computer with Intel Core
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Table 7.8: Comparison between classifier on the accuracy of WDBC data set

Author Method Train- Runs Accuracy
Test Ratio

Mantas and Abellán(2014) Credal-C4.5 (no pruning) 9:1 10 95.08%
Mantas and Abellán(2014) Credal-C4.5 (pruning) 9:1 10 95.12%

Koloseni et al.(2013) Generalize DE 1:1 30 93.64%
Pacheco et al.(2012) GRASP 9:1 10 94.8%

Li and Liu(2010) SVM Gaussian 1:4 30 83.14%
Li and Liu(2010) SVM Polynoimal 1:4 30 58.58%
Li and Liu(2010) SVM CPBK 1:4 30 93.26%

This study V9 1:4 10 92.983%
This study V9 1:1 10 93.825%
This study V9 4:1 10 94.730%
This study V9 9:1 10 94.737%
This study W9 1:4 10 94.518%
This study W9 1:1 10 93.825%
This study W9 4:1 10 96.136%
This study W9 9:1 10 95.263%
This study V9 1:4 30 92.763%
This study V9 1:1 30 94.210%
This study V9 4:1 30 94.150%
This study V9 9:1 30 94.269%
This study W9 1:4 30 93.772%
This study W9 1:1 30 95.298%
This study W9 4:1 30 95.730%
This study W9 9:1 30 94.561%

i7-2670QM CPU @ 2.20GHz and 8GB RAM, whereas the software platform is Octave

3.6.4 running on Linux with kernel 3.11.0 (32 bits) with Physical Address Extension en-

abled (so that able to utilize 8GB of RAM). From the Table 7.10 and 6.1, one should able

to see the training time increases with the number of features.
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Table 7.9: Comparison between classifier on the accuracy of Pima data set

Author Method Train- Runs Accuracy
Test Ratio

Mantas and Abellán(2014) Credal-C4.5 (no pruning) 9:1 10 73.19%
Mantas and Abellán(2014) Credal-C4.5 (pruning) 9:1 10 74.15%

Hu(2013) RSRC-P 4:1 5 74.6%
Jiang and Li(2013) AVDM 4:1 5 76.23%
Li and Liu(2010) SVM Gaussian 1:2 30 64.00%
Li and Liu(2010) SVM Polynoimal 1:2 30 62.52%
Li and Liu(2010) SVM CPBK 1:2 30 71.15%

This study V9 1:4 10 72.520%
This study V9 1:1 10 72.370%
This study V9 4:1 10 75.390%
This study V9 9:1 10 76.493%
This study W9 1:4 10 74.553%
This study W9 1:1 10 74.036%
This study W9 4:1 10 74.675%
This study W9 9:1 10 76.753%
This study V9 1:4 30 71.973%
This study V9 1:1 30 73.082%
This study V9 4:1 30 74.632%
This study V9 9:1 30 75.931%
This study W9 1:4 30 72.271%
This study W9 1:1 30 74.002%
This study W9 4:1 30 74.784%
This study W9 9:1 30 77.229%

Table 7.10: Training time for V9 with train-test ratio 9:1

Data Sets Time for 30 sets data (s) Average time for a set of data
WDBC 2.49214 0.08307
Statlog 0.84584 0.02819
Pima 0.71643 0.02388
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Human reasoning is a mysterious phenomenon that scientists are trying to simulate

with machines in the past few decades. With the knowledge that “soft” boundaries exist

in concepts formation of human beings (Zadeh, 1997), fuzzy set theory has emerged to

become one of the most important methodology in capturing notions. Among all reason-

ing methods, the fuzzy BK products, which make use of the concept of implications as

suggested by the modus ponens (Eq. 1.1) and GMP (Eq. 1.2) are proved to be excellent

(Stepnicka & Jayaram, 2010).

The classical fuzzy BK products are based on T1FSs. With the understanding that

IVFSs have the advantage in capturing uncertainty, fuzzy BK products are extended to

IVFS-based BK products in this research. This is done by firstly define the subsethood

measures of IVFSs. Two subsethood measures are developed in the research, namely

Complete Derivation Method and Border Evaluation Method. With Border Evaluation

Method, which is mathematically more reliable and lower computational cost, IVFS-

based BK subproduct, superproduct and square product are developed. The properties of

these IVFS-based composition of relations are also discussed.

Furthermore, with the consideration that each feature involves in reasoning may have

different level of influence towards the results (S.-M. Chen, 1994; Xing & Ha, 2014), a

weight parameter is added to form weighted IVFS-based BK products. The computation

of this weighted relational products is also provided by adopting the algorithm of LWA

(D. Wu & Mendel, 2007, 2008a).
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Putting the BK subproduct into the context of fuzzy logic systems, this research

studies the implementation of this composition of relations as an inference engine. A list

of inference structures developed from the BK subproduct are examined. With theoret-

ical analysis and evaluation, a few good performing inference structures are identified,

including K9, K7 and etc. Based on K9, the IVFSs version of K9 is formed, namely V9.

Furthermore, weight parameter is added to form a weighted inference structure, W9.

A novel method of training is also developed to construct the knowledge based for

the BK subproduct based inference engines. This method, which based on the probability

density functions serves as a fast but effective method to retrieve the membership degrees

of relations between features and targets. Apart from this, the membership functions

developed in this process also serve in fuzzification of the input data.

For the defuzzification module, a reliability measure is proposed so that the inter-

val results from V9 can be compared. The outputs of W9, which are IVFSs, are also

compared with this method after a type reduction procedure.

The developed inference systems are implemented as classifiers so that the perfor-

mance can be compared. An experiment on three publicly available data sets is carried

out, each with four train-test ratios. These data sets are Statlog Heart, Pima Indians Di-

abetes and Wisconsin Diagnostic Breast Cancer. The classification accuracies of K9, V9

and W9 are examined and compared. In comparing K9 and V9, the results show that V9

recorded higher accuracy in most of the cases, with highest improvement up to 32.690%.

Another advantage shown by V9 is its ability in capturing uncertainty: with an interval-

valued membership function, V9 able to produce best results most of the time compared

to type-1 membership functions in the range of the interval, which the performance are

not stable.

For the comparison between W9 and V9, one can find that the weight parameter im-

proves the accuracy in all settings of the experiment. The range of the improvements is
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from 0.206% to 4.024%. This result is based on a simple algorithm that assign weights

to features with multiple independent trainings. Although better algorithms can be adopt

here, but the result is enough to demonstrate that the advantage of adding weight param-

eter to inference structures, which is also the aim of the research.

8.2 Future Work

As mentioned in Section 8.1, a good weight assignment mechanism is a key to boost

the performance of the weighted BK subproduct based inference engines, in term of ef-

ficiency and accuracy. The advancement of feature selection algorithms (Dash & Liu,

1997; H. Liu & Yu, 2005) may provide clues in developing this mechanism. Feature

selection is a process that selecting a subset of features that are useful in system construc-

tion (Guyon & Elisseeff, 2003). In this case, feature selection algorithms can be used to

find out the features with high level of influence and assign them to high weight groups,

and the others in medium or low weight groups. Besides, with the assumption that sim-

ilar pattern may exist in a feature for a inference target, measure of statistical dispersion

may also gives hints to weight assignment. However, in order to compare the dispersion

across features, a dimensionless measures such as Coefficient Of Variation and Quartile

Coefficient Of Dispersion (Bonett, 2006) is required.

This research developed an efficient learning algorithm. However, one can see that

once a membership function is defined, the corresponding membership degrees S(b,c)

and S(b,c) are only related to the supports of the membership functions, but not the shapes

in overall, including the value of ν . Currently, the shape of the membership functions only

serve for the fuzzification of input data. It is reasonable to believe that the shape of the

membership functions may provide useful information in the calibration of S(b,c) and

S(b,c), but their relations are still unclear. This is one of the topic that provides research
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opportunity for the future. Besides, three standard membership functions are used across

all the features in all the data sets. Is the distribution of data related to the optimal number

and shape of membership functions? How can one calibrate the standard membership

functions to reach better classification accuracy? Yet, these are the questions that have to

be answered in the future.

Last but not least, the BK products are studies on the composition of relations be-

tween sets that are not directly related. Classifier is only one of the possible applications

of BK products. Since relations provides important notions in human reasoning, it is pos-

sible to apply BK products in other problems such as control engineering and computing

with words. In control engineering, sensors are used to measure the outputs of a system.

The measurements are used as feedback to calibrate the input levels so that the system

can achieve desire performance. In the past, fuzzy rule-based systems are widely stud-

ied as the core of controllers (C. C. Lee, 1990b, 1990a; Zaher & Hagras, 2010). With

the advantages of the BK products, it is possible to replace the rule-based systems in

the controllers with the weighted IVFS-based BK products to achieve similar, or even

higher performance and efficiency. In the study of computing with words, researchers

are aiming to replace numerical information in the input/output processes of information

systems, with words that modeled by fuzzy sets (Zadeh, 1996, 1999). In this kind of

information systems, fuzzy logic systems are the core of mapping these input fuzzy sets

to the outputs. In the literature, two main research directions in computing with words

are the modeling of words with fuzzy sets (Herrera & Martinez, 2000; F. Liu & Mendel,

2008b) and the core processing systems (D. Wu & Mendel, 2008b, 2010). In the later,

BK products that extended in this thesis may show their advantages.
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