
FACULTY OF
COMPUTER SCIENCE

AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

Implementation Of Differentiated Services
In UMJaNetSim

TANG GECK HIANG (WEK010281)

Under the Supervision of
Mr. Phang Keat Keong

Moderator
Mr. Ang Tan Fong

SESSION 2003/2004

Perpustakaan SKTM

Thi project i submitted to the Faculty of Science and Information Technology,
University of Malaya,

in partial fulfillment of the requirement of the Bachelor of Computer Science

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

ABSTRACT

Deployment of a large number of Internet applications built around the Internet Protocol

(IP), require a wide range of Quality of Service (QoS) in terms of throughput, delay and

reliability (guarantee to reach the destination without any packet loss). Consequently,

there is growing demand for replacing the current best-effort service paradigm with a

model in which network traffic will be classified into different traffic classes based on

their service needs and the classes will be treated differently.

In this thesis, an existing object oriented and discrete event network simulator,

UMJaNetSim is developed to enable the creation of a simulation environment for

DiffServ framework. The goal of DiffServ is to define configurable types of packet

forwarding that can provide service differentiation for large aggregates of network

traffic. The DiffServ being implemented cla sifie packets into different PHB and

proposes that packets with higher priority will receive relatively better service in any

load condition in the network. This simulator intends to show that the propo ed scheme

improves the performance of existing schemes in terms of pa ket lo ratio, link

utilization, end-to-end delay and throughput.

11

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

First of all, I would like to express my utmost gratitude to my supervisor Mr. Phang

Keat Keong for his invaluable guidance and s pport throughout my thesis work. His

encouragement to do innovative work inspired me. His able supervision prevented me

from digressing from the main area of focus for my thesis and thus helping me in timely

completion of the thesis. I also appreciate his patience, support and understanding when

things went wrong.

I will always cherish the time I spend with my project members in the Network Research

Laboratory especially Chia Kai Yan, Lim Lee Wen, Andrew Chiam, Au Yee Boon,

Chee Wai Hong, Chan Chin We and Malini. They are willing to share their knowledge

throughout the duration of project. My discussion with them on various topic of

networking helped me to enhance my knowledge and under tanding in this area.

The members of the academic staffs in FSKTM have been very influential in laying a

strong foundation in my knowledge in Computer Science. I am e pecially very grateful

to Mr. Ling Teck Chaw. He is the source of inspiration to me. He al o has provid d

much guidance in this research.

Last but not the least, I also would like to express my deepest appreciation to all my dear

family members and friends for their moral and mental support during the period of my

thesis work. Life would not have been easy without them.

Ill

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

TABLE OF CONTENT

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENT .iv

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION !

1.1 Project Overview 1

1.2 Project Objectives 2

1.3 Project Scope 2

1.4 Project Schedule 3

1.5 Report Layout 4

CHAP'fER 2 LITERATURE REVIEW 6

2.1 TCP/IP 6

2.1.l TCP/IP and OSI ?

2.1.2 Network Layer 8

2.1.3 Transport Layer 10

2.J .4 Application Layer 13

2.2 QoS 14

JV

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

2.3 Best Effort Service Model. 15

2.4 IntServ and RSVP 16

2.5 IP Over ATM 18

2.6 MPLS 20

2.7 Existing Network Simulator 27.

2.7.l OPNET Network Simulator 22

2.7.2 INSANE Network Simulator 24

2.7.3 NS Network Simulator 25

2.7.4 REAL Network Simulator 26

2.7.5 NIST ATM/HFC Network Simulator. 26

2.7.6 UMJaNetSim Network Simulator 27

2.7.7 Comparison of Existing Network Simulators 28

CHAPTER 3 THE DIFFSERV MODEL 29

3.1 DiffServ Architectural Model 29

3.1.l DS Domain 30

3.1.2 DS Field 33

3.2 Traffic Classification and Conditioning 35

3.2.l Traffic Classifiers 35

3.2.2 Traffic Conditioner 36

3.3 Per-Hop Behaviors 38

3.3.1 Default PHB 38

3.3.2 CJi:I , - elector PHB 39

v

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

3.3.3 Expedited Forwarding PHB 39

3.3.4 Assured Forwarding PHB .40

3.4 DiffServ Router 42

3.5 Queuing and Scheduling 45

CHAPTER 4 SYSTEM ANALYSIS 48

4.1 Simulation Approach 48

4.1.1 Analytical Modeling .48

4.1.2 Discrete Event Modeling .48

4.1.3 Simulation Approach Choice .49

4.2 Programming Approach .49

4.2.1 Procedural Programming Approach 49

4.2.2 Structured Programming Approach 50

4.2.3 Object Oriented Programming Approach 50

4.2.4 Programming Approach Choice 52

4.3 Programming Language 52

4.3.l C++ 53

4.3.2 Java 54

4.3.3 Programming Language Choice 57

4.4 Software Selection 57

4.4.l JBuilder 57

4.4.2 JCreator 58

4.4.3 ftware hoice 60

Vl

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

4.5 Hardware Consideration 60

4.6 Architecture of UMJaNetSim 61

4.6.1 Event Management 63

4.6.2 GUI Management 65

4.6.3 Simulation Components 66

4.6.4 UMJaNetSim API 67

4.6.4.1 JavaSim 67

4.6.4.2

4.6.4.3

4.6.4.4

4.6.4.5

Simf.lock 67

Simlivent 68

SimComponent. 68

Siml'arameter 69

4.7 Requirement Analysis 69

4.7.l Functional Requirements 69

4.7.2 Non-functional Requirements 71

CHAPTER 5 SYSTEM DESIGN 73

5.1 Router Architecture Design 7

5.1.1 Queuing Model 7

5.1.2 Scheduling Output Cells 75

5.2 System Functionality Design 75

5.2.1 Design of Demultiplex 75

5.2.2 Design of Queue 76

5.2.3 De ign f Tail Drop Buffer Management 76

VJ1

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

5.2.4 Design of Scheduler 76

5 .2.5 Design of Control Function 77

5 .2.6 Design of Log File 77

5 .3 Process Design 77

5.3.l Component Creation 78

5.3.2 Flow of Cells 80

5.4 Interface Design 81

CHAPTER 6 IMPLEMENTATION 82

6.1 System Implementation 82

6.2 Class Implementation 83

6.2.1 IPPacket.java 83

6.2.2 UDP_ CBR.java ,. 4

6.2.3 IPRouter.java 87

6.2.4 Etherf'rame.java 92

6.2.5 GenericLink.java 93

CHAPTER 7 TESTING 94

7.1 Component Testing 94

7.1.l UDP_ CBR Testing 94

7.1 .2 UDP_ CBR Testing Results 94

7.1.3 IPRouter Testing 96

7.l.4 IPRouter Testing Results 98

Vlll

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENT

7.2 System Testing 101

7.2.1 Component Configurations 102

7 .2.2 Simulation Results 111

CHAPTER 8 CONCLUSION 114

8.1 System Strengths 114

8.2 System Limitation 115

8.3 Future Enhancements 115

REFERENCES 116

APPENDIX A 120

APPENDIX B 121

APPENDIX C 122

IX

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

LIST OF TABLES

Table 2.1: Comparison among several network simulators 28

Table 3.1: AF recommended code point with different drop precedence .42

Table 4.1: Benefits of using OOP approach 52

Table 4.2: Features of Java programming language 54

Table 4.3: Hardware requirements 61

Table 5.1: Function of each control element in the control bar. 77

Table 7.1: Testing results for UDP_ CBR. 95

Table 7.2: Testing results for IPRouter. 99

Table 7 .3: Component configurations when congestion is not happened 102

Table 7.4: Component configurations when congestion is happened 105

x

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

LIST OF FIGURES

Figure 1.1: WXES 3181 and WXES 3182 project schedule 3

Figure 2.1: Relationship of the TCP/IP and OSI model.. 8

Figure 2.2: The structure of each IP addresses class 10

Figure 3.1: Overview of DS region and DS domain 32

Figure 3.2: Graphical view of DS region and DS domain 32

Figure 3.3: 1Pv4 and 1Pv6 header. 33

Figure 3.4: DS field 34

Figure 3.5: DiffServ traffic conditioner block 38

Figure 3.6: The break down of AF PHBs with different drop precedence .42

Figure 3.7: Routers in a DiffServ domain .43

Figure 3.8: Packet forwarding path inside a DS domain .44

Figure 3.9: Packet scheduler with four logical queues .46

Figure 4.1: Overall architecture of UMJaNetSim 62

Figure 4.2: Event management architecture 64

Figure 4.3: GUI management structure 65

Figure 5.1: Output port queuing model.. 74

Figure 5.2: A set of network components in simulator. 7

Figure 5.3: Flow chart for network component. 79

Figure 5.4: Flow chart for cells in router. 80

Figure 7.1: Testing Topology 101

Xl

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

CHAPTER I INTRODUCTION

Today the Internet hosts a wide range of applications and users with differing

requirements. Therefore, this project is developed using existing network simulator to

offer proper quality of service (QoS) for all needs.

1.1 Project Overview

IP networks are destined to become the ubiquitous global communication infrastructure.

An increasing number of different applications are continually conveyed by them

causing a fragmentation of performance and service requirements. Continuous efforts

have been made to develop a number of new technologies for enhancing Quality of

Service capabilities.

In early 90's, the Integrated Service Model (IntServ) was propo ed which provide an

integrated infrastructure to handle conventional Internet application and those QoS­

sensitive applications together. IntServ uses resource ReSerVation Protocol (RSVP) a

its signaling protocol. Although IntServ/RSVP can provide QoS guarantees to

applications, it has a scalability problem since each router in the model has to keep track

of individual flows. To addre s the calability issue, a new core stateless model, called

Differentiated Service Model (DiffServ) was proposed and has become a popular

research topic as a low-cost method to bring QoS to today's Internet. The DiffServ

architecture is the traffic management scheme defined by IETF to provide scalable

services differentiation on the Internet. That's why DiffServ is chosen as main topic of

development for thi thesis.

1

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

1.2 Project Objectives

The main objective of this project is to develop UM Java Network Simulator

(UMJaNetSim) with the implementation of DiffServ. By doing so, it is possible to

provide differentiated cJasses of service to the traffic of network simulator and produce a

small, well defined set of building blocks from which a variety of services may be

constructed. The mechanism is that a small bit-pattern in each packet, in the IPv4 TOS

octet or the IPv6 Traffic Class octet, is used to mark a packet to receive a particular

forwarding treatment, or per-hop behavior, at each network node.

From other point of view, reduces the burden on network devices and easily scales as the

network grows are other objectives to develop this project. It is aim to alleviate

bottlenecks through efficient management of network resources

1.3 Project Scope

The thesis undertakes a detailed study of IP QoS with an empha i in creating a

simulation environment for the testing and evaluation of various IP QoS architecture .

Using this simulation environment, a traffic engineering enhancement to the

differentiation of services is proposed and evaluated. The objectives of this r sear h ar

summarized as the following:

• Develop Differentiated Services (DiffServ) network simulator.

• Allow the user to classify the incoming packets to different PHBs and drop

precedence.

• Scheduling packets using Weighted Round Robin (WRR) mechanism.

2

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

• Show the simulation result and the traffic parameters .

• A GUI interface for user to perform action .

1.4 Project Schedule

The project schedule is the operating timetable of the project. It serves as the

fundamental basic of monitoring and controlling project activity. By using Gantt chart, a

schedule of earliest possible start and finish times for the activities is given that will

meet the earliest possible project completion date.

Below is a Gantt chart on the development phase scheduled along the intended time

frame for each phase of the system.

(Project Schedule l
2003 200<

ID Task Name Start Finish Duration
Jun I Jul I AUQ I Sop I OCI I Nov I Doc Jnn IP.eb

1 Project Definition 16/06/2003 03/07/2003 16d •
2 Literature Review 04/07/2003 24/07/2003 18d •
3 Diffserv Research 25/07/2003 07/08/2003 12d •
4 System Analysis 08/08/2003 23/08/2003 14d •
5 System Design 25/08/2003 10/09/2003 15d •
6 Implementation 11/09/2003 19/12/2003 86d

7 System Testing 22/12/2003 04/02/2004 39d - 8 Documentation 24/06/2003 13/02/2004 202d

Figure 1.1: WXES 3181 and WXES 3182 project schedule.

3

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

1.5 Report Layout

This project proposal report consists of five chapters. The purpose of this layout is to

give overview of the major phases involved during development of the project. Below is

the report layout:

Chapter 1 presents an introduction to the objectives, scope, schedule and organization of

report which associate with this project. It is quite important as what the system is going to

do and the boundary of project will be clearly stated. Besides that, it is helpful to monitor the

progress of project in terms of deliverable in time.

To start doing this project, the step of review the current technologies can't be missed out.

That's why Chapter 2 comes out with literature review. Jn chapter intend to review current

technologies which related to this project as well as the existing simulators.

To implement this project, there is a must to fully understand the concept of DiffServ.

Therefore, chapter 3 is arranged to describe the theory of DiffServ for design and

implementation phases. This is an essential part since the main objective of this project is to

simulate the real world using DiffServ.

Chapter 4 is used to depict the analysis done over this project. It mu t be carried out in order

to produce a successful project. The analyzed topics include software and hardware selection,

simulation approach, architecture of UMJaNetSim, system requirement and so on.

4

Univ
ers

ity
 of

 M
ala

ya

CHAPTER I INTRODUCTION

After analyze relevant topic, the design phase can be started which is defined in Chapter 5.

Appropriate and carefully design is needed to ensure the system operate in the desired

manner. Each important function that designed for the system will be characterized here also.

Now it is time to implement the DiffServ into UMJaNetSim. Chapter 6 intends to discuss

about how the project is going to be implemented. All related class files will also discussed

in this chapter.

In order to make sure the simulator is running properly, component testing and system

testing are done in Chapter 7. The way and topology used to test the simulation is explained

through out this chapter. Even the simulation results are explained and presented here.

The last chapter for this project document, which is Chapter 8, is conclusion. The system

strengths, system limitations and future enhancement have been noted down in this chapter.

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

CHAPTER2 LITERATURE REVIEW

Internet traffic has increased at an exponential rate recently and shows no signs of

slowing down. In the mean while, some applications raise requirements for underlying

network infrastructure to provide Quality of Service (QoS) guarantees. It is big

challenges to current Internet, since the current Internet provides only one simple service

class to all uses with respect to QoS, which is best-effort datagram delivery. Best-effort

datagram delivery cannot provide any service quality guarantees. The gap between QoS

provisioning and demanding is even enlarged.

2.1 TCP/IP

Transmission Control Protocol (TCP) and Internet Protocol (IP) were developed by a

Department of Defense (DOD) research project to connect a number of different

networks designed by different vendor into a network of netw rk (the "Internet").

Transmission Control Protocol/Internet Protocol (TCP/IP) is a protocol uite that define

how all transmissions are exchanged across the Internet. It has b n a rive u e for many

years and has demonstrated its effectivenes on a worldwide cale. It is the ba ic

communication language or protocol of the Internet. It can al o be u ed as a

communications protocol in a private network (for examples an intranet or an e tranet).

As with all other communications protocol, TCP/IP i composed of layers:

• IP is responsible for moving packet of data from node to node. IP forwards each

packet ba cd on a four byte destination address (the IP number). The Internet

authorities a ign ranges of numbers to different organizations. The

6

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

•

organizations assign groups of their numbers to departments. IP operates on

gateway machines that move data from department to organization to region and

then around the world.

TCP is responsible for verifying the correct delivery of data from client to server.

Data can be lost in the intermediate network. TCP adds support to detect errors

or lost data and to trigger retransmission until the data is correctly and

completely received.

Socket is a name given to the package of subroutines that provide access to

TCP/IP on most systems.

•

2.1.1 TCP/IP and OSI

TCP was developed before the Open Systems Interconnection (OSI) model. Therefore,

the layers in the TCP/IP protocol do not match exactly with those in the OSI model. The

TCP/IP protocol is made of five layers: physical, data link, network, tran port, and

application. The application layer in TCP/IP can be equated with the combination of

session, presentation, and application layers of the OSI model. Figure 2.1 how TCP/IP

in relation to the OSI model.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

OSI Model
~ • 'k\\~'%,'"1'C'®i' :;

Application

h:
Presentation

I~

Session

le•

Transport

Network
,,

Data Link

Physical
I/

TCP/IP Protocol

r : r., 'X /

\

SMTP FTP TELNET DNS SNMP

I TCP I I UDP I

I ICMP 11 IGMP I
IP

I ARP 11 RARP I
LLC

I Many Physical Implementations I I/

Figure 2.1: Relationship of the TCP/IP and OSI model.

2.1.2 Network Layer

At the network layer, TCP/IP supports the IP. IP m turn, contain four upporting

protocols, which are ARP, RARP, ICMP and IGMP.

IP is the transmission mechanism used by TCP/IP protocol . It is an unr liable b t-

effort and connectionless packet delivery protocol. Here be t-effort means that the

packets sent by IP may be lost, out of order, or even duplicated, but IP will not handle

these situations. It is up to the higher-layer protocols to deaJ with these situations.

8

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

One of the reasons for developing a connectionless network protocol was to minimize

the dependency on specific computing centers that used hierarchical connection-oriented

networks. The U.S. Department of Defense (DoD) intended to deploy a network that

would still be operational if parts of the country were destroyed.

IP addresses are globally unique. This feature permits IP networks in the world to

communicate with each other. An IP address consists of 32 bits (4 bytes), which is

usually represented in the form of four decimal numbers, one decimal number for each

byte.

An IP address is divided into three parts. The first part designates the class type, the

second part designates the network address (or netid), and the third part designate the

host address (or hostid). An IP address belongs to one of five clas e depending on the

value of its first four bits (A fifth class, cla s E, is not commonly u ed.). The different

classes are designed to meet the needs of different type of organization . Figure 2.2

gives a clear picture of the structure of each IP addresses cla .

9

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

! i

<1--Byte 1-- <1--Byte 2-- <1--Byte 3-- <1--Byte 4--!

Class A lo Netid Hostid

Class B i 10 Netid Hostid

Class C / 110 Netid Hostid

Class D i 1110 Multicast address

Class D i 1111 Reserved for future use

Figure 2.2: The structure of each IP addresses class.

2.1.3 Transport Layer

The transport layer is represented in TCP/IP by two protocols: TCP and UDP.

TCP

The TCP provides foll transport layer services to application . T P is a reliabl

connection-oriented transport port-to-port protocol that sends data as an un tructured

stream of bytes. As a connection-oriented service, TCP is respon ible for the reliable

delivery of the entire tream of bits contained in the me sage originally generated by the

sending application. Provided error detection and retran mi ion of damaged frame

ensures reliability (all segment must be received and acknowledged before the

transmission is considered complete).

10

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

By using sequence numbers and acknowledgment messages, TCP can provide a sending

node with delivery information about packets transmitted to a destination node. Where

data has been lost in transit from source to destination, TCP can retransmit the data until

either a timeout condition is reached or until successful delivery has been achieved. TCP

can also recognize duplicate messages and will discard them appropriately. If the

sending computer is transmitting too fast for the receiving computer, TCP can employ

flow control mechanisms to slow data transfer. TCP can also communicate delivery

information to the upper-layer protocols and applications it supports.

UDP

User Datagram Protocol (UDP) is the simpler protocol among the two standard transport

protocol of TCP /IP. It is a connectionle s datagram delivery ervice that does not

guarantee delivery. UDP provides only the basic functions needed for end-to-end

delivery of a transmission. It contains only a check um and does n t provide any

sequencing or reordering functions. Therefore, it cannot specify the damaged packet

when reporting an error.

If the application developer chooses UDP instead of TCP then the applicati n i talking

almost directly with IP. UDP takes messages from application proce attaches ource

and de tination port number fields for the multiplexing/demultiplexing service, adds two

other fields of minor importance, and passes the resulting ''segment" to the network layer.

The network layer encapsulates the segment into an IP datagram and then makes a best­

effort attempt to deliver the egment to the receiving host. If the segment arrives at the

11

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

receiving host, UDP uses the port numbers and the IP source and destination addresses

to deliver the data in the segment to the correct application process.

UDP is no handshaking between sending and receiving transport-layer entities before

sending a segment. Therefore, UDP is said to be connectionless and unreliable. DNS is

an example of an application layer protocol that uses UDP.

Even though TCP provides a reliable data transfer service and UDP does not, an

application developer would ever choose to build an application over UDP rather than

over TCP as many applications are better suited for UDP for the following reasons:

• No connection establishment. TCP uses a three-way hand hake before it start to

transfer data but UDP just blasts away without any formal preliminarie . Thus

UDP does not introduce any delay to establi h a connection. Thi is probably the

principle reason why DNS runs over UDP rather than TCP -- DNS would be

much slower if it ran over TCP. HTIP uses TCP rather than UDP since

reliability is critical for Web pages with text.

• No connection state. Connection state includes receive and end burn r ,

congestion control parameters, and sequence and acknowl dgment number

parameters. This state information is needed to implement TCP's reliable data

transfer service and to provide congestion control. UDP does not maintain

connection state and does not track any of these parameters. For this reason, a

server devoted to a particular application can typically support many more active

client. when th application runs over UDP rather than TCP.

12

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

• Small segment header overhead. The TCP segment has 20 bytes of header

overhead in every segment, whereas UDP only has 8 bytes of overhead.

• Unregulated send rate. TCP has a congestion control mechanism that throttles the

sender when one or more links between sender and receiver becomes excessively

congested. This throttling can have a severe impact on real-time applications,

which can tolerate some packet loss but require a minimum send rate. On the

other hand, the speed at which UDP sends data is only constrained by the rate at

which the application generates data, the capabilities of the source (CPU, clock

rate, etc.) and the access bandwidth 1o the Internet. We should keep in mind,

however, that the receiving host does not nece sarily receive all the data - when

the network is congested, a significant fraction of the UDP tran mitted data could

be lost due to router buffer overflow. Thu , the receive rate i limited by network

congestion even if the sending rate is not constrained.

2.1.4 Application Layer

The TCP/JP application layer is equivalent to the combined e ion, pr entation and

application layer of the OSI model. This means that all of the functionalities associated

with those three layers are handled in one single layer the application layer.

The most widely known and implemented TCP/IP application layer protocols are listed

below:

13

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

• File Transfer Protocol (FTP). Performs basic interactive file transfers between

hosts.

Telnet. Enables users to execute terminal sessions with remote hosts .

Simple Mail Transfer Protocol (SMTP). Supports basic message delivery

services.

•

•

• HyperText Transfer Protocol (HTTP). Supports the low-overhead transport of

files consisting of a mixture of text and graphics. It uses a stateless, connection­

and object-oriented protocol with simple commands that support selection and

transport of objects between the client and the server.

Domain Name Service (DNS). Also called name service; this application maps

IP addresses to the names assigned to network devices.

Routing Information Protocol (RIP). Routing is central to the way TCP/IP work .

RIP is used to exchange routing information by network devices.

Simple Network Management Protocol (SNMP). A protocol that is u ed to

collect management information from network device .

•

•

•

2.2 QoS

Quality of Services (QoS) refers to the capability of a network to provide better 1v1 e

to selected network traffic over various technologies including Frame Relay,

Asynchronous Transfer Mode (ATM), Ethernet and 802.1 networks, SONET, and IP­

routed networks that may use any or all of these underlying technologies. The primary

goal of QoS is t. pr vide priority including dedicated bandwidth, controlled jitter and

latency (required by some real-time and interactive traffic), and improved loss

14

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

characteristics. Also important is making sure that providing priority for one or more

flows does not make other flows fail (Cisco Systems, 2003).

Many different approaches for providing QOS have been proposed and implemented.

Unfortunately it is often difficult or even impossible for IP to utilize the QoS capabilities

of the underlying technology unless a QoS framework is built into IP itself. This is why

IP QoS is needed.

2.3 Best Effort Service Model

The basic QoS model of the Internet is called Best Effort because the network tries to

transmit as many packets as possible and as rapidly as possible. The network doesn't

care who wrote the packets or what information the packets contain and that how urgent

the data in packets are. Best effort does not give any guarantees because it offer

uniform treatments to every packet. That means that the packets are subject to data lo s,

data duplication or out-of-order delivery. The TCP protocol solves the e problems by

assigning a sequence number to all data transmitted in the network and requiring a

positive acknowledgment from the receiver.

Traditiona1Iy, networks use FIFO (first in first out) queuing to forward traffic, which

means that an incoming order on a Web commerce site might be left waiting behind an

employee's download of the latest game on the net. The network makes a best effort

attempt to retain all traffic in order, but will drop whatever it needs to, including million

15

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

dollar transactions as it can't differentiate which of the data is of urgent nature, when it

becomes overloaded.

To fix the best effort service model, the technique used is to add more bandwidth the

network. Adding more bandwidth is a good solution if it can be economically justified.

Unfortunately adding bandwidth is costly and you can never really add enough. The

limitation of best effort services model raised the need for a new QoS model.

2.4 IntServ and RSVP

Although the TOS field in the IP header has been defined for quite a long time, it is

practically ignored in most of the router implementations (Tanenbaum, 1996). The

IntServ model (Braden et. al., 1994.) was the first step in altering the best-effort service

model in IP. The IntServ model is based on a fundamental philosophy that router must

be able to reserve resources in order to provide special QoS for specific u er packet

streams, or flow. This in turn requires flow-specific state in the router . In order to

provide different QoS for each flow, the IntServ framework requires that a router hould

implement three traffic control components:

• Packet scheduler to forward packets in different flows differently .

Classifier to identify the different flows .

Admission control to determine whether the requested QoS by a new flow can be

granted.

•

•

16

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

The desired QoS is provided by resource reservation along the path, therefore signaling

and state maintaining at each hop is needed. The RSVP (Braden et al, 1997) is protocol

used for signaling. Its major features include the use of "soft state" in the routers,

receiver-controlled reservation requests and the use of IP multicast for data distribution.

The signaling and reservation of the desired QoS are needed for each flow in the

network. A flow is defined as an individual, unidirectional data stream between two

applications, and is uniquely identified by the 5-tuple (Source IP address, Source Port,

Destination IP Address, Destination Port and the Transport Protocol).

Currently, there are two types of services (other than the default best-effort service) have

been implemented:

i) The guaranteed service (Shenker et al, 1997) is intended for application that

require real-time service delivery, with a fixed delay bound.

ii) The controlled-load service (Wroclawski, 1997) is intended for applications that

can tolerate some delay but are sensitive to traffic overload conditions.

The drawbacks of this model are:

i) The reservations in each device along the path are "soft" which means that they

need to be refreshed periodically; if refresh packets are lost there is a risk of

reservation time out.

ii) The need for signaling and maintaining the state of each flow in each router is a

strong limitation to scalability

17

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

These problems make the IS model less practical in the global Internet, but may be

suitable in edge networks.

2.5 IP Over ATM

The success of Asynchronous Transfer Mode (ATM) lies largely in its ability to

transport legacy data traffic, mostly IP, over its network infrastructure. The complexity

of interoperating IP with ATM originates from the following two major differences:

i) Connection oriented versus connectionless

ATM is connection oriented, which means a connection is needed to establish

between two parties before they can send data to each other. Once the connection

is set up, all data between them is sent along the connection path. On the other

hand, IP is connectionless which means that no connection is needed and each IP

packet is forwarded on a hop-by-hop basis by router independently. When IP

traffic is needed to transport over an ATM network, it either establi h s a new

connection on demand between two parties or forwards the data through

preconfigured connection or connections. With the first approach when the

amount of data to be transferred is small, the expen ive cost of etting up and

tearing down a connection is not justified. On the other hand, with the second

approach the preconfigured path(s) may not be an optimal path and may become

overwhelmed by the amount of data being transferred.

18

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

ii) QoS aware versus Best Effort

Quality of Service is an important concept in A TM networks. It includes the

parameters like the bandwidth and delay requirements of a connection. Such

requirements are included in the signaling messages used to establish a

connection. Current IP (IPv4) has no such concepts and each packet is forwarded

on a best effort basis by the routers. To take advantage of the QoS guarantees of

the A TM networks, the IP protocol need to be modified to include that

information.

To run IP on top of ATM networks, we first need to figure out how to relate ATM

protocol layers to TCP/IP protocol layers. Two models are proposed which are peer

model and the overlay model. Peer model considers the ATM layer a peer networking

layer as IP and propose the use of the same addressing scheme as IP for ATM-attached

end systems. ATM signaling requests will contain IP addres es and th intermediate

switches will route the requests using existing routing protocol like Open Shortest Path

First (OSPF). This scheme was rejected because although it simplifies the addre sing

scheme for end systems, it complicates the design of A TM switches by requiring them to

have all the functions of an IP router. Moreover, if the ATM network will also upport

other networking layer protocols like IPX or Appletalk, the switch ha to understand all

their routing protocols.

The overlay model, which is finally, adopted views ATM as a data link layer protocol on

top of which IP runs. In overlay model, A TM networks will have its own addressing

scheme and routing protocol . The ATM address space is not logically coupled with the

19

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

IP addressing space and there will be no arithmetic mapping between them. Each end

system will typically have an A TM address and an unrelated IP address as well. Since

there is no nature mapping between the two addresses, the only way to figure out one

from the other is through some addressing resolution protocol.

With overlay model, there are essentially two ways to run IP over ATM. One treats

ATM as a LAN and partitions an ATM network into several logical subnets consisting

of end systems with the same IP prefix. This is known as Classical IP over ATM. In

Classical IP over ATM, end systems in the same logical subnet communicate with each

other through end-to-end ATM connections, and like in LAN, Address Resolution

Protocol (ARP) servers are used in logical subnets to resolve the IP addresses into ATM

addresses. However, traffic between end systems in different logical subnets has to go

through a router even though they are attached to the same ATM network. This i not

desirable since routers introduce a high latency and become the bandwidth bottleneck.

2.6 MPLS

There is a recent protocol deployment that offers some QoS functionality based around

the idea of label switching. Multiprotocol Label Switching (MPLS) (Ro en t al, 2001)

was mainly the result of efforts to effectively match IP over ATM networks. It tries to

integrate layer 2 switching and layer 3 datagram forwarding. Within an MPLS network,

a label and a Forwarding Equivalence Class (FEC) are assigned to each packet when

entering the netw rk, and then all forwarding decisions are based on these values. Packet

forwarding is perf rrned on a hop-by-hop basis and Label Switched Routers (LSRs)

20

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

simply perform label swapping and take local decisions about the next hop that the

packet should be addressed to.

The motivation for MPLS is that it provides for simplified forwarding based on the

match of a short label and for efficient explicit routing carried only at the time a label

switched path is set up rather than within each packet. MPLS provides traffic

engineering by selecting paths chosen by data traffic in order to balance the traffic load

within the network. It also provides QoS routing where a route for a particular stream is

chosen in response to the QoS required for that stream (Callon, 1999).

MPLS can support QoS on a per-user basis by assigning per-user labels to packets, or on

a per-flow basis by detecting and assigning appropriate labels to individual flows. Label

can make use of a Class of Service (CoS) field, which offers the flexibility of choo ing

between coarse or fine-grained QoS support.

On the other hand, MPLS raises some scalability concerns when it is to support label

assignment for short flows and its normal operation can be assured only for well­

managed environments due to its complex mechanisms. MPLS is favored by

telecommunication operators who were traditionally basing their ervices on top of

ATM but it is doubtful whether it can provide end-to-end QoS solutions across large

networks and consequently in the Internet.

21

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

2.7 Existing Network Simulator

Simulation Modeling is becoming an increasingly popular method for network

performance analysis. Software simulator is a valuable tool especially for today's

network with complex architectures and topologies. It can be either a general-purpose

simulator that enables a wide range of possible simulations or a special purpose

simulator that targeting a particular area of research. Designers can test their new ideas

and carry out performance related studies, therefore freed from the burden of the "trial

and error" hardware implementations. This section intends to review a number of major

network simulators by describing their features. The following are some examples of the

current network simulator:

• OPNET

• INSANE

• NS

• REAL

• NIST ATM/HFC

• UMJaNetSim

2.7.1 OPNET Network Simulator

Optimized Network Engineering Tool (OPNET) is a commercial network simulator

marketed by OPNET, Inc. OPNET was originally developed at MIT and introduced as a

commercial network simulator in 1987. OPNET provides a comprehensive development

environment for the specification, simulation and performance analysis of

communication networks. It can support a large range of communication systems from a

22

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

single LAN to global satellite networks. Discrete event simulations are used as the

means of analyzing system performance and their behavior. OPNET has full GUI

support and consists of three hierarchically related editors, which is network editor, node

editor and process editor. The key features of OPNET are summarized here as:

• Modeling and Simulation Cycle

OPNET provides powerful tools to assist user to go through three out of the five

phases in a design circle.

• Hierarchical Modeling

OPNET employs a hierarchical structure to modeling. Each level of the hierarchy

describes different aspects of the complete model being simulated.

• Specialized in communication networks

Detailed library models provide support for existing protocols and allow

researchers and developers to either modify these existing models or develop

new models of their own.

• Automatic simulation generation

OPNET models can be compiled into executable code. An executable discrete­

event simulation can be debugged or simply executed, resulting in output data.

23

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

However, OPNET is not a fully platform independent simulator as it only supports the

Solaris, Window NT and 2000, and the HP-Ux operating systems. It is also costly to use

from a financial point of view.

2.7.2 INSANE Network Simulator

Internet Simulated ATM Networking Environment (INSANE) is a network simulator

designed to test various IP-over-ATM algorithms with realistic traffic loads derived

from empirical traffic measurements. Its ATM protocol stack provides real-time

guarantees to ATM virtual circuits by using Rate Controlled Static Priority (RCSP)

queuing. The ATM signaling is implemented by using a protocol similar to the Real­

Time Channel Administration Protocol (RCAP).

A Tk-based graphical simulation monitor can provide an ea y way to check the progre

of multiple running simulation processes. Beside that, it i able to supp rt the

simulation on a large network, which the result is proce sed off-line. It is writt n in

c+ + object oriented programming approach. Internet protocols upported incJude

large subsets of IP, TCP, and UDP. It works quite well on distributed computing du ter

as a large number of sequential processes can ea ily be run in parallel.

However, this simulator can only works on a few platforms and hardware and this

restricted the portability of the simulator. Furthermore, there are a few software

requirements to run the simulator and this will be troublesome for the user to use the

software.

24

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

2. 7.3 NS Network Simulator

NS has been developed at the Lawrence Berkeley National Laboratory (LBNL) of the

University of California, Berkeley (UCB). It has an extensible background engine

implemented in C++ that uses OTcl (an object oriented version of Tel) as the command

and configuration interface. Thus, the entire software hierarchy is written in C++, with

OTcl used as a front end. The extensibility of NS makes the tool very dynamic. NS is an

event-driven network simulator.

NS is a free network simulation program that can be downloaded from the web and is

compatible with a number of operating systems. The tool has substantial functionality

for simulating different network topologies and traffic models. NS also has an open

architecture that allows users to add new functionality.

NS allows simulation with levels of abstraction, where high r ab traction level (with the

use of analytical models) trade off accuracy for performance. Moreover, NS includes a

network emulation interface that permits network traffic to pass between real world

network nodes and the simulator. This feature, while still under development, may prove

useful for diagnostics of protocol implementation error . Although NS doe provid a

network animation tool that provides network visualization feature but NS does not

consists of a GUI for general simulation manipulation and scenario setup.

25

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

2. 7.4 REAL Network Simulator

REAL is a network simulator originally intended for studying the dynamic behavior of

flow and congestion control schemes in packet switched data networks. It is design for

testing flow and congestion control mechanisms. It provides users with a way of

specifying such networks and to simulate their behavior. It emulates the actions of

several well-known flow control protocols (such as TCP) and scheduling disciplines

(such as Fair Queuing and Hierarchical Round Robin). Only little effort needed to add

new modules to the system due to the modular design of the system.

The simulator takes as input a scenario, which is a description of network topology,

protocols, workload, and control parameters. It produces as output statistics such as the

number of packets sent by each source of data, the queuing delay at each queuing point,

and the number of dropped and retransmitted packets.

REAL is written in C language and will run on Digital Unix/ SunOS/ Solaris/ lRlX/

BSD4.3/Ultrix /UMIPS systems on VAX, SUN, SPARC, MIPS, Alpha, SOI or

DECstation hardware.

2.7.5 NIST ATM/HFC Network Simulator

The NIST Asynchronous Transfer Mode (ATM) I Hybrid Fiber Coax (HFC) Network

Simulator i a imulator that provides a flexible test bed for studying and evaluating the

performance of ATM and HFC network without the expense of building a real network.

26

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

The simulator is based on the discrete event approach and uses the C programming

language.

NIST ATM/HFC has a well-defined message passing mechanism based on the sending

of events among simulation components, handled by an event manager. Although this

basic architecture enables a wide range of simulation possibilities, the use of the

procedural approach makes the component development process difficult.

The simulator gives user an interactive modeling environment with a graphical user

interface which provides the user with a means to display the topology of the network,

define the parameters and connectivity of the network, log data from simulation run and

to save and load the network configuration. Its GUI uses the X window System running

on UNIX based platforms. Since the simulator relies on the X window Sy tern for it

GUI and UNIX in general, it lacks portability between different platform .

2.7.6 UMJaNetSim Network Simulator

UM Java Network Simulator is a flexible test bed for studying and evaluating the

performance of ATM network without the expen e of building a real network. Thi

simulator is written in Java programming language, which applies object oriented

programming approach. It is a tool that give user an interactive modeling environment

with a graphical user interface which provides the user with a means to display the

topology of the network, define the parameters and connectivity of the network, log data

27

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2 LITERATURE REVIEW

from simulation run, and to save and load the network configuration. Moreover, it is a

cross platform simulator.

2.7.7 Comparison of Existing Network Simulators

After studying a few network simulators, comparison done based on a few features such

as discrete-event simulator, object-oriented, GUI, multithreaded, web enabled and

platform independent are show in Table 2.1.

Table 2.1: Comparison among several network simulators.

Simulator Discrete Object GUI Multi thread Web Platform

Event Oriented Enable Independent

Simulation

OPNET v v Normal x x x

INSANE v v Poor x x x

NS v v Poor x x x

REAL v x Poor x x x

NIST v x Normal x x x
ATM/HFC

UMJaNetSim v v Good v x v

28

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

CHAPTER3 THE DIFFSERV MODEL

Service differentiation is desired to accommodate heterogeneous application

requirements and user expectations, and to permit differentiated pricing of Internet

service. A "Service" defines some significant characteristics of packet transmission in

one direction across a set of one or more paths within a network. These characteristics

may be specified in quantitative or statistical terms of throughput, delay, jitter, and/or

loss, or may otherwise be specified in terms of some relative priority of access to

network resources.

The main purpose of the DiffServ model is to provision end-to-end QoS guarantees by

using the service differentiations in the Internet. Unlike the IntServ model, it does not

keep soft states for individual flows; instead, it achieves QoS guarantees by a low-cost

method, which i aggregating individual flow into several service cla e . Therefore,

the DiffServ model has a good scalability. In order to achieve cal ability, there are two

basic characteristics of the DiffServ model:

• It does not rely on per-microflow states 111 the network. Instead, it utilizes

aggregated classification states.

• Complex processing (traffic classification and conditioning) i moved from th

core of the network to the edge of the network.

3.1 DifjServ Architectural Model

The architecture m de! of DiffServ i based on the concept, where traffic entering the

network is allocated a cla sifi ation and po sibly conditioned. These actions take place

29

Univ
ers

ity
 of

 M
ala

ya

CHAPTER] THE DIFFSERV MODEL

in the network boundaries and the outcome of this is that the packets entering the

network are collected into same behavior aggregates (a collection of packets with the

same DS code point crossing a link in a particular direction) that are to be treated in

similar manner.

Inside the network the packets are forwarded to their destination on per-hop behavior,

which is indicated by DS code point. Ba~ically, each of the packets gets treated only per­

hop basis during the forwarding path within the network region.

3.1.1 DS Domain

ADS (DiffServ) domain is a contiguous set of DS nodes, which operate with a common

service provisioning policy and set of PHB groups implemented on each node (Black,

1998). The DS domain is the entity that provides a coherent set of PHBs in the network

domain. Usually the nodes belonging to a DS domain are under same network

administration.

A DS domain has a defined boundary that consists of boundary nodes and interior nodes.

DS boundary nodes interconnect the DS domain to other DS or non-DS- apable

domains, whilst DS interior nodes only connect to other DS interior or boundary nodes

within the same DS domain (Black, 1998). Both of them classify incoming packets and

po sibly apply configured conditions to their forwarding. Nodes within the DS domain

select the forwarding behavior for packets based on their DS code point.

30

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

However, the boundary nodes and interior nodes are not totally same. The DS boundary

nodes may be required to perform traffic conditioning functions as defined by a Traffic

Conditioning Agreement (TCA) between their DS domain and the peering domain,

which they connect to but the interior nodes may only perform limited traffic

conditioning functions such as DS code point re-marking.

The boundary nodes are further divided into ingress and egress nodes. The ingress nodes

are being responsible of packet stream's incoming traffic while the egress nodes are

being responsible of outgoing traffic. They are differing from the directions of traffic.

From the administrative point of view, a DiffServ network could consist of multiple DS

domains. A set of one or more contiguous DS domains forms a DS region. DS regions

support differentiated services along paths, which span the domains within the region.

The DS domains may support different DS code point and PHB mapping . To achieve

end-to-end QoS guarantees, the negotiation and agreement between the e DS domain

are needed. In this case, the peering DS domains need to establish a peering Service

Level Agreement (SLA) that specifies how the transits between domains are mapped.

Figure 3.1 and Figure 3.2 illustrate the hierarchical and graphical view of DS regi n and

DS domain respectively.

The SLA is a service contract between a customer and a service provider that specifies

the forwarding services a customer should receive. It may specify the traffic

conditioning rules that constitute a Traffic Conditioning Agreement (TCA). The TCA is

31

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

an agreement that specifies classifier rules and any corresponding traffic profiles and

rules, which will be applied to the traffic streams selected by the classifier.

OS Domain OS Domain

OS Region

............... i..--------Z

Interior Nodes Boundary
Nodes

Ingress
Nodes

Egress Nodes

Figure 3.1: Overview of DS region and DS domain.

OS Interior Nodes

Diffserv Region

Diffserv Domain B

OS Interior Nodes

Diffserv Domain A
...

Diffserv Domain C

OS Boundary Nodes
(Ingress I Egress Node)

Figure 3.2: Graphical view of DS region and DS domain.

32

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

3.1.2 DS Field

The architecture of DiffServ relies on the DS code point to identify the appropriate

behavior aggregates. RFC2474 (Nichols et al. 1998a) defines the DS field as the

replacement of the TOS (Type of Services) field and Traffic Class field of the IPv4

header and IPv6 header respectively. Figure 3.3 shows IPv4 and IPv6 header.

1Pv4 Header 1Pv6 Header

V r4 I IHL j Types of Total Length
e Service

Identification Flags I Flags
Offset

Time To I Protocol Header Checksum
Live

Source Address

Destination Address

IP Options

Ver6 j Traffic Class I Flow Label

Payload Length I Next Hdr I

Source Address

Destination Address

Figure 3.3: IPv4 and IPv6 header.

The DS field consists of eight bits. Currently, the fir t six bit of the DS field are u ed a

a DiffServ code point (DSCP) to select the PHB for packets at each node. Thi code

point i the key input for mapping the packet into a PHB. This mapping is done at each

of the nodes along the packet' path. The la t two bits designate currently unused (CU)

bits, which are ignored by differentiated services-compliant nodes when determining the

per-hop behavior to apply to a received packet. CU bits are reserved for future use.

33

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

2 3 4 6 : 7 :

l...___
y

Bits 0

DS Field D cu

Class Selector Code Currently
Unused
(CU)

Point

Differentiated Service Code Point (DSCP)

Figure 3.4: DS field.

In the DSCP value notation, which is showed by Figure 3.4, the six-bit wide DSCP is

unstructured. When mapping the DSCP, the whole six-bit DSCP pattern must be used in

the comparison. There are some requirements that the DSCP to PHB mapping must

fulfill (Nichols et al, 1998a):

• The DSCP mapping must be configurable, i.e. the logical connection must be

such that it can be configured later on to adapt other mapping .

• There must be a configurable mapping table or similar to support multiple DSCP

to PHB mappings.

• Recommended and unique DSCP to PHB mappings should be supported.

When there is an unrecognized DSCP, it must be treated according to a default

PHB.

If DSCP to PHB mappings are not as recommended, there must be a re-marking

procedure at the DS domain's boundary ingress nodes. This re-marking procedure

34

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

basically allows the use of a DSCP code for other purposes in the DS domain, but

requires that the re-marking be done also in the boundary egress node.

3.2 Traffic Classification and Conditioning

Traffic classification and conditioning is usually done at the ingress router of a network.

The Traffic Conditioning Agreement (TCA) specifies the classification and conditioning

rules, which are derived from the Service Level Agreement (SLA).

The packet classification policy identifies the subset of traffic, which may receive a

differentiated service by being conditioned and/or mapped to one or more behavior

aggregates within the DS domain. In the meanwhile, Traffic conditioning performs

metering, shaping, policing and/or re-marking to ensure that the traffic entering the DS

domain conforms to the rules specified in the TCA, in accordance with the domain's

service provisioning policy. The extent of traffic conditioning required is dependent on

the specifics of the service offering, and may range from simple code point re-marking

to complex policing and shaping operations.

3.2.1 Traffic Classifiers

Packet classifiers select packets in a traffic stream based on the content of some portion

of the packet header. Classifiers are used to steer packets that matching some specified

rule to an element of a traffic conditioner for further processing. They must be

configured by some management procedure in accordance with the appropriate TCA and

authenticate the information which it uses to classify the packet. Every packet is

35

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

classified to belong to one of the several classes. Generally there are two types of

classifiers (Black, 1998):

i) Behavior Aggregate (BA) Classifier

This is the simplest DiffServ classifier. It uses only the DiffServ Code Point

(DSCP) in a packet's IP header to determine the logical output stream to which

the packet should be directed.

ii) Multi-Field (MF) Classifier

It classifies packets based on one or more fields in the packet. A common type of

MF classifier classifies based on six fields from the IP and TCP or UDP headers.

The six fields designate destination address, source address, IP protocol, source

port, destination port and DSCP. However, it can also classify based on other

fields such as MAC address or other higher layer protocol fields.

3.2.2 Traffic Conditioners

Traffic conditioners perform various functions on the incoming packets based on the

associated traffic profiles. A traffic profile specifies the temporal propertie (for example

transmission rate, burst size etc) of a traffic stream by using the notion of token bucket

or other mechanism. A traffic conditioner block which showed by Figure 3.5 may

contain the following four elements (Black, 1998):

36

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

i) Meters

Traffic meters measure the temporal properties of the stream of packets selected

by a classifier against a traffic profile specified in a TCA. A meter passes state

information to marker and shaper/dropper to trigger a particular action for each

packet which is either in- or out-of-profile (to some extent).

ii) Markers

Packet markers set the DS field of a packet to a particular code point, adding the

marked packet to a particular DS behavior aggregate. A packet is said to have

"re-marked" when the marker changes its code point.

iii) Shapers

Shapers delay some or all of the packets in a traffic stream in order to bring the

stream into compliance with a traffic profile. Since a shaper u ually ha a finite­

size buffer, packets may be discarded if there i not sufficient buffer pace to

hold the delayed packets.

iv) Droppers

Droppers discard some or all of the packets in a traffic stream in order to bring

the stream into compliance with a traffic profile. This process is known as

"policing" the stream.

Note that each traffic flow that go through the boundary node, only either

policing or shaping is performed a they are excluding each other (Nichols et al,

1998b).

37

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

P1

Packets

cr:J
~ Classifier

Shaped E ~ Shaper/Dropper o:::::J •
- J :)

P21P3 Dropped) P3

•
•

Figure 3.5: DiffServ traffic conditioner block.

3.3 Per-Hop Behaviors

A per-hop behavior (PHB) i a description of the externally ob ervable forwarding

behavior of a DS node applied to a particular DS behavior aggregate (Black I 9). In

more concrete terms, a PHB refers to the packet schedulin qu um p Ii in , r

shaping behavior of a node on any given packet belonging to a BA and a nfigurcd b

an SLA or policy. There are four tandard PHB are available to n tru t ·1 Dif irv-

enabled network.

3.3.1 Default PHB

A "default" PHB must be available in a D - mpliant n de. Thi i th mm n bet-

effort f rwardin chavior available in e 'i, ting r uter . Wh n no ther agr ment are

in place, it i as urned that packets belong to this aggregate (Nichol et al 1998a). A

rea nablc implementali n f this I JlB w uld be a qu uing di iplinc that end packets

of this a' r rat · when 'V ·r th 3 ul] ut link i n t r .quir d t • ati. fy another PHB. A

m hani: m in a h no I uld t c nfor · ·d t reserve m minimal re ources (e.g,

38

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

buffers and bandwidth) for Default behavior aggregates. This permits senders that are

not differentiated services-aware to continue to use the network in the same manner as

today.

The recommended code point for the Default PHB is the bit pattern "000000" (Nichols

et al, 1998a). Where a code point is not mapped to a standardized PHB, it should be

mapped to the Default PHB.A packet initially marked for the Default behavior may be

re-marked with another code point as it pas es a boundary into a DS domain so that it

will be forwarded using a different PHB within that domain.

3.3.2 Class-Selector PHB

Class-Selector (CS) PHB's objective i to pre erve backward compatibility with the IP-

Precedence scheme (Cisco y tern, 2001). It i up t la le tor a th P

values of the form 'xxxOOO', where xis either O or 1 are defined (Ni h t al l a).

These code points are called la - elector ode Point . U e of la ele t r h uld

yield at to lea t 2 independently forwarding cla e . For xample if '>Y the rout r

should give a higher probability of timely forwarding to S, pack t than

In thi case, packet with C 6 and C 7 sh uld r iv a b tter tr atment than b t-eff rt

traffic.

3.3.3 Expedited Forwarding PHB

The objectiv s of xpedited rwarding () PH (Ja b n et al 1999) are to build a

I w .1 ss, J w lal '11 y, low jilt ·r <1 •• ur cl bandwidth cnd-t -cnd ervice through DS

39

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

domains. Since loss, latency and jitter are all due to the queues traffic experiences while

transiting the network, therefore providing low loss, latency and jitter for some traffic

aggregate means ensuring that the aggregate sees no or very small queues. The EF PHB

provides the first part of the service. The network boundary traffic conditioners

described in section before provide the second part.

The EF PHB is defined as a forwarding treatment for a particular DiffServ aggregate

where the departure rate of the aggregate' packets from any DiffServ node must equal

or exceed a configurable rate (Jacobson et al, 1999). The EF traffic should serve at

departure rate independent of the inten ity of any other traffic through the node. The

network administrator should be able to configure the minimum rate. The recommended

code point for EF PHB is 101110 (Jacob on et al 1999).

A few scheduling and queuing mechanism can be employed to d liver and imp! ment

the EF PHB forwarding behavi r. A imple priority queue will give the appr priat

behavior as long as there is no higher priority queue that uld pr mpt th f rm r

than a packet time at the configured rate. It' al o po sible to u e a ingl qu ue in a

group f queues ervi ed by a weight d r und r bin h dul r ' her the hare f th

output bandwidth as igned to the queue i equal to the onfigured rat .

3.3.4 Assured Forwarding PHB

The objective of A urcd orwarding (A) PHB (Heinanen et al 1999) is to offer

different I vcls ff rwardinn <J. suran ·' f r 1 P pa ket re eived fr m a cu tomer DS

40

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

domain. There are 4 defined AF classes where each AF class is in each DS node

allocated a certain amount of forwarding resources (buffer space and bandwidth).

Each of the AF class IP packets will be marked with one of three possible drop

precedence values. An IP packet that belongs to an AF class x and has drop precedence

y is marked with the AF code point AFxy, where 1 <= x <= 4 and 1 <= y <= 3. The

format of AF code point is "xxxyyO" (Heinanen et al, 1999). The recommended code

points for AF PHBs are depicted in Table 3.1.

Figure 3.6 gives a clearer picture about each AF cla and their different drop

precedence. When congestion occurred, the drop precedence of a packet will be u ed to

determine the relative importance of the packet within the AF cla . Alway a conge ted

DS node will try l pr tect packet with a lower drop pr den valu fr m b in I . t

by. preferably discarding packet with a higher drop preceden e value.

41

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

AF PHB

I

l l i l
AF Class 1 AF Class 2 AF Class 3 AF Class 4

Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop

Level Level Level Level Level Level Level Level Level Level Level Level

1 2 3 1 2 3 1 2 3 1 2 3

Figure 3.6: The break down of AF PHBs with different drop precedence.

Table 3.1: AF recommended code point with different drop precedence.

Drop Class 1 Cla s 2 Cla 3 Class 4

Precedence

Low Drop 001010 OlOOJ.0 011010 100010

Precedence (AFl 1) (A 2J) (AF J.) (A 41)

Medium Drop 001100 010100 011100 lOOJOO

Precedence (AF12) (A 22) (AF32) (AF42)

High Drop 001110 010110 011110 J.00110

Precedence (AF13) (AF23) (AF33) (AF43)

3.4 DifjServ Router

There are several ways for a router to implement differing ervice but the most

important mechanisms are scheduling and queue management. Both become significant,

when 1'11e r uter are subject t transient ongc tion a they often are in the current

Internet. Durin r on .stion, the r ut r has m re pa kcts de tined to a particular output

port than it is able to forward. his mean that the r uter ha t buffer some of the

42

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

packets. If the congestion period is long enough, the buffers may become full and some

of the packets have to be discarded.

There are two types of routers to be implemented: core router and edge router. Some of

the articles will refer the core router as boundary or interior router. An edge router

connects the local domain to neighboring domains. The task of a core router is simpler

than an edge router. It is edge routers' task to check and enforce that traffic eras ing

domain boundaries conforms to the existing SLAs. The notions of core and edge router

are illustrated in figure below.

D Edge Router D Core Router
Figure 3.7: Routers in a DiffServ domain.

• xarnine in ornin de p int marking d ne on the packet by the

Cd) r uicrs.

43

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

Forward incoming packets according to their markings (core routers provide a

reaction to the marking done by edge routers.)

Edge router responsible to (Pieda et al, 2000):

• Examine incoming packets and classify them according to policy specified by the

network administrator.

• Mark packets with a code point that reflects the desired level of service .

Ensure that u er traffic adheres to its policy pecifications, by haping and

policing traffic.

Diffserv Domain

Edge
Router

Core
Router

Edge
Router

Fi ure 3.8: Packet forwarding path inside a DS domain.

Figure 3. illustrates the pr ess that pa ket thr ugh in ide a router. Packet arrive

from an in omin interface are proces ed and eventually forwarded through an outgoing

interface. Jn thi ar hite tur , poli in i implemented in the incoming interface while

shapin is irnpl m mled in the out oin int rfa c. nee pack t arrive at the kernel, they

44

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

go through a classifier that categorizes them according to the value of the DS field in the

IP header. For example, if the packet is an EF packet, it is passed to the policing module.

Otherwise, it is immediately given to the forwarding module. The specification of the EF

behavior dictates that EF packets should be given priority at the outgoing interface over

best-effort (BE) packets. Moreover, the amount of EF traffic must be shaped according

to the existing SLA at the domain boundaries. The difference between edge routers and

core routers is that for edge routers policing and shaping parameters are configured by

the domain's Bandwidth Broker, while for core routers these parameters are tatically

configured.

3.5 Queuing and Scheduling

The most important mechanism for a router to implement differing ervice are queuing

and cheduling management. During onge tion, the r utcr ha m re pa k t de tin 'd t

a particular output port than it is able to forward. This mean that the router ha t buffer

some of the packets. If the conge tion period i long enough the buffer may be me

full and some of the packets have to be di carded. The ta k f th qu uing and

scheduling is to determine which packet will be tran milted t the ne rt output link and

decide which pack t/packet will be dr pped when the buff r v rflow .

The routers implem nt , cheduling in a Fl

tran milted in the same order they are received. Queue management is very simple.

When a packet arrives, it i placed int the tail f th queue ba ed on the PHB values if

45

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

there is enough space in the buffer. Otherwise, the packet is dropped. The algorithm is

called "drop-tail".

Figure 3.9 illustrates a simplified model of the output buffer of a DiffServ capable router.

Each output has a number of logical queues, and the router maps (classifies) each

incoming packet into one of the queues based on the PHB value. The queues are then

served according to a particular scheduling algorithm. The main idea is that some of the

queues get better service than others, thu packet with a PHB corre ponding to a high-

priority queue usua1ly experience less delay than the other packets.

Class C To
output
port

FIFO Queues

Class B

WRR
Scheduler

Class A

Class D

Figure 3.9: Packet scheduler with four logical queues.

Weighted Round Robin (WRR) is used as the cheduling algorithm . WRR i a method

u ed to guarantc a ertain am unt of bandwidth for each queue. WRR serve each

queue in a round-r bin fa hion, and f r a h turn a number of bit corre ponding to the

queu ·'s w 'i ht arc "pull 'd ul" fr m the queu . The queues with higher weights are

served m r fr qu 'nlly I y th' 1'l h edul r. hut the link capa ity i divided according to

46

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3 THE DIFFSERV MODEL

the weights as in WFQ. In a worst-case situation, a packet arrives to a queue just after

the queues turn. In that case, the maximum queuing delay will be the sum of the weights

of all other queues. It is simple to implement (one loop in software). This may become a

deciding factor, if the link speeds increase faster than the pure processing power does.

When the buffer space in a router runs out, some packets necessarily have to be dropped.

It does not matter, whether the router is input or output buffered, or whether the ports

have shared or individual buffer spaces.

In DiffServ the idea is that the dropping deci ions take the PHB values into account.

Different PHBs can be treated as different drop preference . The u ual m chani rn i

that the router con tantly mea ures the length of it queue (buffer occupancy level) and

ets dropping thre hold ba cd n the rnca urement .

For example, if the queue length i below I, all pa k t are allowed int th qu ue. If th

queue length is above l, only packets with PHB value A B and D are all cd t th

queue. Other packets are dropped. 1f the length ex eed 2/ PHB A i th nl one hi h

can get in. If the router offer everal I gical queue on th intcrfa e (a 'plain din th

previous section), the queue length mean the total length fall queue on that int rfa .

This mean that delay and dr p prefer n e are independ nt from ach other

(orthogonal): high delay priority PHB can have either low or high drop preference.

47

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

CHAPTER4 SYSTEM ANALYSIS

System analysis is carried out to determine what the best for the system to be developed

is. To ensure the system is built in the most efficient way, a set of steps is followed to

help to understand the system and its specifications before develop the system.

4.1 Simulation Approach

In the context of a network simulator, there are two approaches to modeling. There two

approaches are analytical modeling and di crete event modeling.

4.1.1 Analytical Modeling

Analytical modeling is a powerful tool that can offer a curat performance analy i at a

fraction of the cost of a benchmark. Analytical model are mathematical r pre entation

of a particular computer system. Queuing theory is u ed to defin th r lati n hip

between variou resources and their queues. These alg rithrn are p pulated

(parameterized) using measurements taken from a running ystern. On e the m del i

built, parameters can be changed to represent possible change to the running ystem.

The model can accurately project the impact of the e hange . The main di advanta f

analytical model is over simplistic view of the network and their inability t. irnulate

the dynamic nature of a computer network (Lim, 2001).

4.1.2 Discrete •vent Modeling

A dis ret event sy, t rn i: a pr ss .hara t rized by , equen e f event . Jn particular, a

change in a syst 111 slat, of a pr .ss i, I recipitated by the Currence fan action or

48

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

event, not merely by the passage of time. This approach is more accurate but it requires

more modeling time in developing the system (Lim, 2001). Besides that, it need more

time in processing the real world objects.

4.1.3 Simulation Approach Choice

For simulation approach, discrete event modeling will be choosing as it replicates the

real world objects. Moreover, the analytical modeling does not able to simulate the

dynamic nature of a computer network.

4.2 Programming Approach

There are several widely u ed programming approache to devel p a network imulator.

These programming approaches include procedural approach, tructured approach and

object oriented approach which will be discu cd in thi c ti n.

4.2.1 Procedural Programming Approach

In procedural approach, the program codes are placed into block that are referr d a

procedures or functions. A function or procedure i a relati el imple pr zram that i

called by other programs and return a value to the program that all d it. With th u e

of procedural approach, the ta k wa broken down int eparat blo k in whi h

separate bl k, w uld perf rm . cparatc task . mputer language like Pa cal C and

FORTRAN are example, f procedural programming language .

49

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.2.2 Structured Programming Approach

Structured programming approach adopted the idea of divide and conquers. A computer

program can be thought of as a set of tasks. Any task that is too complex to be described

simply would be broken down into a set of smaller component tasks, until the tasks were

sufficiently small and self-contained enough that they were easily understood.

Structured programming is a disciplined approach to writing programs that are clearer

than unstructured programs, easier to test, debug and modify. However by the late

1980s, some of the deficiencies of structured programming had become all too clear.

4.2.3 Object Oriented Programming Approach

The programming challenge wa seen as how to write the logic, not how to define the

data. Object are e sentially reusable s ft ware mpon nt that m dcl it cm n the r al

world. Software developers are di overing that u ing a modular obje t- riented de ign

and implementation approach can make oftware dev lopm nt group mu h m re

productive than is possible with previous popular programming techniqu uch a

structured programming. Object oriented program are a ier to und r tand.

Object Oriented Pr grarnming (PP) approa h group everything a bj t. It . ive

more natural and intuitive way t view the pr ramming pr . by m deling r al world

objects, their auribut s and behavior . OPP model

mes ages.

mmunications between objects via

50

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

One of the importance features of OPP is data encapsulation. OPP performs

encapsulation data and method into packages called objects. This could hide

unimportant implementation details from other objects, which provides modularity as

the source code for an object can be written and maintained independently of the source

code for those objects.

Another important feature of OPP is the concept of inheritance where newly created

classes of objects inherit the characteristic of the existing cla ses, yet contain unique

characteristics of their own.

Besides that, OPP's polymorphism enable programmer to write program in a general

fashion to handle a wide variety of existing yet-to-be- pecified related cla e . It make

developers ea y to add new apability t a y t m. Ther are a few bcn fits f PP

which are listed in Table 4.1.

51

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Table 4.1: Benefits of using OOP approach.

Benefits Description

Extensibility New features can be added to the system where changes on new

objects can be done by modification of existing objects.

Maintainability Maintenance and modification of objects can be done individually

Reusability Objects that are used in a system can also be used in another newly

built ystem with little or no changes.

Simplicity It is simple and less complex using the OOP approach while building

programs, which attempts to model the object interaction of the real

world. Any changes are ea y to modify with n much affect within the

entire system.

Modularity Objects within the program are individual eparat en ti tie the internal

working of whi h are is lat d and de- up! d fr 111 thcr bjc ts in

the sy tern. This solves the problem of upling m pr edural

programming approach.

4.2.4 Programming Approach Choice

After making the analy i on everal approache the bj ct rient d pro ramrmna

approach will be u ed for thi project due to it benefit mentioned b for .

4.3 Programming Language

It is v ry important to use an appropriate typ f pr ramming language in building any

appli ation pro ram. and simulat rs. Thus, it i. a n d t n ider the advantages and

di advanta s f s v ral pr irarnmin 1 Ian ua e here.

52

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.3.1 C++

C++ evolved from C, which evolved from two precious programming languages, BCPL

and B. BCPL, was developed in 1967 by Martin Richards as a language for writing

operating system software and compilers.

C++ provides a collection of predefined classes along with the possibility of user

defined classes. The classes of C++ are data types, which can be instantiated any number

of times. Such an instantiation in C++ are merely object or data declarations. Classes can

name one or more parent classes, providing inheritance and multiple inheritances,

respectively. Classes inherit the data members and member functions of the parent cla

that are specified to be inherited.

Dynamic binding in C++ i provided by virtual cla s fun ti n . A p int rt an bj t f

class A can al o point to an overloaded virtual function, the fun tion of the urrent type

is chosen dynamicalJy. Both function and cla es can be template which mean that they

can be parameterized.

One of the factors make C++ became a popular language i the a ailability f 0 d and

rnexpensive compilers. An ther factor in Iav r f th popularity f C++ i that it i

almost complet ly d wnward mpatible with and in m t implementation it i

possible to link ++ code with C code. Be ide that programming is now intensely

intere ted in object ri nted pr gramming appr ach.

53

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

However, C++ is a large and complex language. It latterly suffer drawbacks similar

some other complex language. It inherited most of the insecurities which make it less

safe than other languages such as Java. To write large program in C++ was difficult and

the results of trying are described as "spaghetti code". Many of the object oriented

features of C++ have been introduced to address this problem.

4.3.2 Java

Java was developed by Sun Microsystems. Sun formally announced Java at a major

conference in May 1995. Now Java is used to create Web Pages with dynamic and

interactive content, to devel p large scale enterpri e applications, to enhance the

functionality of World Wide Web ervers, to provide appli ation for on umer devi e

and for many other purpo es. The important Java feature that make it an attractive

programming language are Ji led in Table 4.2.

Table 4.2: Features of Java programming language.

Features Description

Object Oriented ven th u h Java ha, th I k and f el f ++ it i a wh

independent language which ha been de ign d t be bj

rientcd fr m the gr und up. In obj t-ori nt d pr zrammin

(P) data is tr at d a, bj t t whi h m th d ar appli d.

Java' ba ic execution unit i the class. Advantage of OOP

in Jude: reusability f ode, exten ibility and dynamic

appli ati n .

Familiarity And Java wa: d iv I p d by takin the be t points from other

54

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Simple

Secure

Interpreted

Robu t

programming languages, primarily C and C++. Therefore, it

utilizes algorithms and methodologies that are already proven.

Error prone tasks such as pointers and memory management

have either been eliminated or are handled by the Java

environment automatically rather than by the programmer.

Since Java is primarily a derivative of C++ which most

programmers are conversant with, it implies that Java has a

familiar feel rendering it easy to use.

The Java language has built-in capabilities to ensure that

violations of security do not occur. Because Java does not use

pointer to directly reference memory locations, as is

prevalent in C and C+ +, Java has a great deal of control

over the code that exist within the Java environment. Sun

Micro y. tern will oon be adding an ther dimensi n to th

security of Java. Th y are currently working on a public-key

encryption ystem to all w Java appli ati n t b , t r d and

tran mitted over the Internet in a secure n rypted f rm.

When Java code is compiled the mpil r utput the Ja a

Byte code which i an executable f r the Java Virtual Machine.

The Java Virtual Machine does not exi t phy icall but i the

pecification for a hypothetical pr or that an run Ja a

code. The byte c de i then run thr u h a Ja a int rpr t r n

any given platform that ha the interpreter port d to it. Th

interpreter converts the code t the target hardware and

ex ute: it.

The Java object can contain n reference to data external to

them elves or ther kn wn bje t . Thi en ure that an

instru ti n ·ann ntain th' adore f data storage in

anoth r aJ pit ati n r in the perating y tern it elf, either of

55

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

which would cause the program and perhaps the operating

system itself to terminate or "crash". The Java virtual machine

makes a number of checks on each object to ensure integrity.

Distributed

Portable and platform- By porting an interpreter for the Java Virtual Ma hine t any

Ar chi tecturall y

Neutral

independent

Multi threading

Dynamic

Commonly used Internet protocols such as HTIP and FfP as

well as calls for network access are built into Java. Internet

programmers can call on the functions through the supplied

libraries and be able to access files on the Internet as easily as

writing to a local file system.

The Java compiler compiles source code to a stage which is

intermediate between source and native machine code. This

intermediate stage i known as the byte code, which is neutral.

The byte code conforms to the pecification of a hypothetical

machine called the Java Virtual Machine and can be efficiently

converted into native code for a particular pr ce or.

computer hardware/operating ystem n i a ur d .that all

code compiled for it will run on that y tern. Thi form the

basi for Java's portability. Another featur whi h Java

employs in order to guarantee portability i by reatin a inzle

standard for data sizes irrespective of proc sor or operating

system platforms.

Multithreading is the ability of an application to x ut mor

than one task (thread) at the ame time. Java i able t u the

idle time to perform the nece ary garbage cleanup and general

ystem maintenance that renders traditional interpreters slow in

executing applicati n .

uring the ex uti n fa program, Java can dynamically load

cla: scs that ii requires either from the local hard drive, from

56

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

another computer on the local area network or from a computer

somewhere on the Internet.

4.3.3 Programming Language Choice

The programming language used to develop this simulator is Java. The main reason to

choose Java for the development of simulator is that it support multithreading. This

feature enables the simulator to perform a few tasks at the same time. It does not contain

any additional features added like Visual 1++ that only can be supported by Microsoft

software.

4.4 Software Selection

Using the right software tools will help in developing a perfect y tern. The following

sections consider the features of u ing]Builder and JCreat r in rder t

tool.

e a ri ht

4.4.1 JBuilder

JBuilder is a group of highly productive tools for er ating high p rforman e and

platform independent application for Java. It i de igned f r all l f de lopment f

project, ranging from applets and application that require network d databa e

connectivity to client/server and enterprise wide, distributed multi-tier computing

solution.

The J uilder I upports a variety f t hn l re including 100% Pure Java,

JavaBcan , Javaz, Java K 1.2.2 and J I win . The additional technologies

57

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

supported by]Builder Professional edition are Servlets, Remote Method Invocation

(RMI), Java Database Connectivity (JDBC), Open Database Connectivity (ODBC) and

all major corporate database servers. The additional technologies su ported by]Builder

Enterprise are Enterprise JavaBeans, JavaServer Pages (JSP) and Common Object

Request Broker Architecture (CORBA).

]Builder also provides developers with a flexible, open architecture that makes it easy to

incorporate new SDKs, third party tools, add-ins, and JavaBeans components.

4.4.2 JCreator

JCreator is a powerful IDE for Java.]Creator provides the user with a wide range of

functionality such as project management, project template , code-completion, debugger

interface, editor with syntax highlighting, wizards and a fully ustomizabl u er

interface. The features of]Creator are listed at the following:

Manage projects with ease in the interface that i much like Mi ro ft® Vi ual

Studio®.

• Define your own color schemes for unlimited way to organize your code.

•

• Unlike most IDEs,]Creator wraps around your exi ting project and allow ou

to use different JDK profiles.

• Get down to writing code quickly with our project template .

• Our class browser makes viewing your project a breeze.

• Debug with an easy, intuitive interfa e. N need for illy DOS prompts!

58

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

• Walk through our wizards and cut to the chase of writing your project, quickly

and easily.

• You don't have to spend valuable time on Class path configuration-JCreator

does it all for you.

• Customize our user interface the way that you like it.

• Set up your own run-time environments to run your application as an applet, in a

JUnit environment or in a DOS window.

• JCreator has lower system requirements, yet faster peed, than all those other

ID Es.

Unlike most JDEs,]Creator has two types of tool that can be configured. The first type

is the Java Development Kit (JDK) tools. JDK tool can be u ed to compile, debug, and

run the project. User can attach the e tools to their project u in the Pr jc t Pr perti

dialog box. If no project is available,]Creator runs the default proj ct . U er an a ily

create their own tools for calling the JDK applications, uch a the foll wing:

• Compiler

• Interpreter

Applet viewer

JDK Help files

•

•

The second type of tool i more general and allows u ers to extend the capabilities of

J reator to fit their ne d -by all wing u er t all external functions and utilities.

Users can ass: n these encral to L to the Wr n h butt n located on the Tools toolbar

59

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

in the workspace. These buttons display tool tips, such as User Tool 1, User Tool 2, and

so forth. These tools can have many uses, such as the following:

• XML validator

RMI compiler

JAVA indent formatters

Batch files

•

•

•

JCreator is written entirely in C++, which makes it fast and efficient compared to the

Java based editors/IDEs. Professionally designed to meet windows interface guidelines,

JCreator users can expect a familiar and intuitive user interface.

4.4.3 Software Choice

]Creator will be cho en a the software t ol for developing this project. H i b au e it

provides a wide range of fonctionalities. Moreover, the feature compared to JBuilder

are also taking into consideration.

4.5 Hardware Consideration

As the networks technology grow the a pect of openne and tran parency of th

software and hardware layer has reached a point that generally agreed upon. Thu e n

though the system evolves both hardware and oftware the architecture of the hardware

is not that critical. Table 4.3 lists the minimum requirements of hardware.

60

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Table 4.3: Hardware requirements.

Main Machine/PC Requirement

Hard Disk Space 500 MB hard disk space recommended minimum

(includes space required during installation)

Memory 256 MB RAM recommended minimum

Processor Intel Pentium II/233 MHz or higher (or compatible)

Operating System Microsoft Windows 2000 (SP2), XP, or NT 4.0 (SP6a)

Note: hardware above must be well installed and working properly in order to run the

system.

4.6 Architecture of UM]aNetSim

UMJaNetSim (Lim, 2001) i a flexibl le t bed for tudying and cvaluatin th

performance of DiffServ without the e,xpen es of building a real network. It u e Java

(OOP) programming approach and is a discrete event model simulator. It c n i t of a

central simulation engine with a centralized event manager. The simulation enano

consists of a finite number of interconnected component (imulation objects) ea h with

a et of parameters (component properties). Simulation execution in olves component

sending message among each other. A me age i ent by cheduling an nt (to

happen some tim later) for the target amp nent. With the basi f atures the

simulator can simulate virtually "anything" that can be modeled by a network of

component that end me sage to one another. The e concepts are adopted from the

NJ T ATM/H ~ N twork imulator.

61

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Simulation Engine

Event GUI QJ Management Management s

a a Al

11r •Ir •Ir

Simulation Topology

Simulation Simulation
Component Component

Figure 4.1: Overall architecture of UMJaNetSim.

As showed in Figure 4.1, simulation engine and simulation topology are th mainly 2

part of UMJaNetSim architecture. The simulation engine i the main ntr Iler f the

entire simulation that will handle event management ta k and GUI management ta k.

Besides that, it also handles the input/output proce s and provide many to 1 that help

the simulation process. The simulation topology consi t of all the imulation obje t

which are also referred to as imulation components. The e imulation ompon nt ar

the main subject of a simulation scenario and the e imulati n omp n nt typi all

consists of a group of interconnected network component uch a rout r witch

physical link and different types of source applications.

62

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.6.1 Event Management

The major object of the entire application is JavaSim (Lim, 2001) object, which itself

represents the simulation engine. The JavaSim object manages an event queue, an event

scheduler, and a simulation clock. Typically, the simulation engine interacts with the

simulation topology (consists of all the simulation components) through two operations:

• A simulation component schedules an event for a target component (can be the

source component itself) to be happen at a specific time using the enqueue

operation.

The simulation engine invokes the event handler of the target component when

that specific time is reached. The target component will react to the event

according to its behavior.

•

Figure 4.2 shows the event management architecture of UMJaNetSim. Th event queue

is actual a java.util.List object consi ts of all the scheduled event in the form f

SimEvent objects. The events are orted by the event-firing time. The event cheduler

always fetches and removes the first event in the event queu , and fir nt by

invoking the event handler of the target component.

63

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Manage Simulation Engine
(JavaSim)

Manage

Event Queue (A
list of SimEvent)

Simulation Component
(SimComponent)

Enqueue

--

Simulation Component
(SimComponent)

~-­ --
Event Scheduler .. --

Simulation Clock
(SimClock)

Figure 4.2: Event management architecture.

UMJaNetSim uses an asynchronous appr a h

Jn a discrete event type of simulation, the imulati n time i an imp riant

nano econds. The SimCI ck object is the gl bal time r f ren u d

event can happen at any time, up to the precision allowed by th granularit f th

simulation clock. The imulation time in the UMJaNetSim i ba d n "ti k ". Th

component in the sirnulati n and rnana ed by th irnulati n n in . Th 1111 k

obj ct also pr vide helper meth d f r the conver i n between r al time and the tick.

4

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.6.2 GUI Management

GUI management (Lim, 2001) involves drawing the viewing area, managing various on-

screen windows (or dialog boxes), and handling user inputs (e.g. menu commands). The

JavaSim object is the overall controller for GUI management. The detail ta k of drawing

out the topology view of the simulation components i handled by a helper object called

SimPanel. The SimPanel keeps track of the latest et of simulation components and the

interconnection among the components in order to pre ent the imulation topology

visually to the user. It also handles direct component manipulation by u er uch a

positioning of the components. Figure 4.3 iJJustrate GUI management tructure f

UMJaNetSim.

Simulation
~ Engine r

(JavaSim)

+
User Commands !--+-

GUI Helper
(Sim Panel)

I • 1 1

Simulation ~ Parameter
Topology View Dialogs ~ Meter Dialogs

Visible Area Custom Dialogs Custom Dialogs

Figure 4.3: Ul mana zement structure.

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.6.3 Simulation Components

The primary simulation objects in the UMJaNetSim are called simulation components

(Lim, 2001), where each is represented by the object SimComponent. The

SimComponent is a well defined base object with all the necessary interface that enable

the interaction between the simulation engine and the component. Actual simulation

components all inherent the properties and methods of this base object. The default

interaction with the simulation engine (e.g. the component graphical image) can be

easily modified by overriding the proper methods in the SimComponent obj ct. With

this, the component designer needs not concerned with th i ue of "talking" to the

simulation engine, instead, the focu is on the de ign f the pr per behavi r of the

components to archive the imulation objective (Lim 2001).

In order to allow configuration of component properties and di play f imulaii n

outputs, a SimComponent mu t expose a et of external param ter . a h f th

parameters is an object derived from a ba e object called imParamet r. Th

SimParameter object has well defined interfaces which the imulation en in an

interact with it.

An vent handler in every imulation component whi h inv k d b th DI

scheduler in order t fire an ev nt is in fa l imply a well cl incd meth d a tion) in

the rm ornp nent that a epts a

object has mpl t d ~s ripti n

im vent bje l a it parameter. Th imE nt

f an ev nt in ludin the ev nt I the urce

c mp n nt, and th pti nut pararn ter: that m with the event. AJI mp nent

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

should override the action() method in order to react to events. All interactions between

simulation components are achieved through the sending of messages in the form of a

SimEvent.

4.6.4 UMJaNetSim API

The JavaSim object is the main object of the simulator. It keep a list of all the

network components, which are the descendent of SimComponent and a Ii t (a queue)

of all events that in the form of SimEvent. Every component contain a et of

parameters, which inherit SimParameter. All other clas e are mo tly help r that

provide certain services such a time ervic , logging and meter di play.

4.6.4.1 JavaSim

JavaSim object is the main object of the imulator. It keep a Ii t I all the n tv rk

components and a list of all event . Each omponent contain a et f pararn t r .

4.6.4.2 Sim Clock

Components send each other event in order t communi at and nd 11 thr u h th

network. The oftware ontain an event manager whi h pr vid a ilit

schedule and s nd, or fire an event. An event queue i maintained in whi h nt ar

kept oned by time. T fire an event, th first event in the queue i remo ed the slobal

time i et t th time f that vent and a ti n s h du) d t tak pla i und rtak n.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

Events can be scheduled at the current time or at any time in the future. Scheduling

events for the past is considered illogical. Events scheduled at the same time are not

guaranteed to fire in any particular order. Simulator time is maintained by the event

manager in units of ticks. The time is maintained as an un igned 32 bit value. The

simulator time represented by one tick can be changed by software modification, but nor

by the simulator user. It provides a set of time translation function for normal

translation between tick and actual time.

4.6.4.3 SimEvent

Each SimComponent communicates with each oth r by enqu uing im v nt f r the

target component. For example, when comp nent A want tp nd a pa ket t

component B, component A create a SimEvent that p ifie

enqueue the event. The SimEvent object al o contain a time

exactly the pecified time. Component B will then be able t r a

a. it d tinati n and

nt i fir d at

th nt

accordingly.

4.6.4.4 SimComponent

This i a very important cla under land in order to devel p new

sirnulat r. a h network ornponent in the

mp n nt in th

mp n nt. Th

Sim ornponent lass itself hould n t b in, tantiated be au it nly pr id th

sk l ton f ran a tual mp nent. An w mp nent sh uld ·t nd: irn mp nent and

override its van u: m th ds 111 order t provid meanin ful p rail n f r the

component.

Univ
ers

ity
 of

 M
ala

ya

CHAPIBR4 S~IBMANAL~~

4.6.4.5 SimParameter

Every SimComponent can have internal parameters or external parameters. All external

parameters must inherit SimParameter. By extending SumParameter one obtains

parameter logging and meter display features automatically. Obviously, SimParamlnt,

SimParamDouble, SimParamBool, and SimParamString objects provide upport for

integer, double, boolean and string parameters. Other types of parameter can be created

by extending Simf'arameter accordingly.

4.7 Requirement Analysis

Requirement analysis is an important method to enable the y tern engineer t pe ify

software elements and establi he design con traint that oftware mu t rn t.

Requirement analysis can be divided int fun tional r quirernent and n n-Iun ti nal

requirements. The following will di cus in d tail about the fun ti nal and n n­

functional requirement.

4.7.1 Functional Requirements

Functional Requirement de cribe function and feature that th , t m h uld pr id

for the u ers. The y tern i c nsidered incomplete if any f th n . ar fun ti n ar

not included. The fun tional requirements for thi pr j tare Ii t d el \ .

6

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

• Graphical User Interface (GUI)

It is a device for user, operating system and network simulator to communicate

to each other. To make this network simulator more attractive the GUI must be

more users friendly.

• Input System

Before the simulation runs, the system must be able to Jet u er enter or el ct

values for certain fields. This is important in order to make ure the imulation

ru.n under the desired configuration.

• DiffServ Router

The router must be able to cla sify packet to in diff r nt PHB whi h ar in

implemented. After clas ifying, the pack t rdin th

WRR mechanism. The WRR should forward packet according t

each queue and the drop precedence of PHB.

• Output System

The sy tern will generate the output traffic by u ing the chedulin m h ni m.

A GUJ will be used t how h w the irnulati n pr i g ing n and th

perf rrnance f the part i ular netw rk.

70

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

4.7.2 Non-functional Requirements

In order to ensure the quality of the system produced, certain quality factors must be

conformed. Non-functional requirements are those constraints on the service or

functions offered by the system. The following non-functional requirements have been

considered for this project.

• Reliability

Systems will not produce any dangerous when it is u ed in a rea onable manner

which mean in a manner that a typical u er expect i normal. In other w rd

reliability is referred to the expectation of a y tern to p rf rm it intended

function accurately. Whenever a button i

execute that particular function or gen rate

about what is happening.

h uld b ab! t

inf rm th u r

• User friendly

This network simulator is designed ba ed on the concept of u er fri ndl , hi h

means that u er ha the ability to use the pr gram at th I w t p f

getting confu e with the interface of this network imulat r. The int rfa uld

be design t suit need and n t t the developer point of i w.

• ffi iency

"'ffi i n y is und rst od a. th ability f a pr dure t e called or

a ss 'd unlirnit dly l , irnilar I .rf rrnun e ut me al an a c pta le

71

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4 SYSTEM ANALYSIS

or credible speed (Sommerwille, 2001). Even so, the efficiencies are referred to

the consumption of the local and remote machine memory and the bandwidth of

network usage during the run time. The lesser it uses, the higher effiencicy.

• Maintainability

System maintenance would require more effort if the sy t m is not de igned

according to good programming practices. Maintainability i the ea e with which

a program can be corrected if an error i encountered, adapted if it environment

changes, or enhanced if the customer desire a chang in requir merit . A the lo­

be-developed network imulator will be built by u ing bj ct oriented

is strongly believed that bug or y tern fault an be dete t d and fi ' d in th

shortest time. This i becau e object oriented de ign mak ure that ea h las:

or object will only trictly handle one particular ta k r fun ti nality.

72

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

CHAPTERS SYSTEM DESIGN

The information collected during research phase and analysis phase is used to design the

system of network simulator. The simulation of the system is designed to allow various

network topologies being simulated including DiffServ network. The u er interface is

designed to allow user to create the network topology while the output i de igned to

allow the integration of DiffServ into the existing network imulator.

5 .1 Router Architecture Design

The queue architecture designated the queuing model u ed in thi irnulati n and WRR

algorithm used for scheduling cell at output port.

5.1.1 Queuing Model

Router is the component that routes cell over everal virtual channel link . l al

routing table is provided for each router. Thi table c ntain a rout numb r (that i r ad

from incoming cell structure and equivalent to the cell' virtual hannel id ntifi r) a

next link entry, a next BTE entry, and o on.

73

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

Output Port

Schedule output
Demultiplex cells by WRR

Rec nto link
Router

eive cells Put cell i Looks In routing table ffiQJ
to determine where

I
Output

I
~

the cell going to Queue ~
~

···-·--···-· ··-·
______ [E§J

Looks in routing table
............ ------~

I
Output

I
to determine where

[£§Q] Queue the cell going to ~---· ····-
~

~
into link Receive

Link Link

Put cell cells

Schedule output Demultiplex
cells by WRR

Output Port

Figure 5.1: Output port queuing model.

From Figure 5.1, the output port i one of the component f the router. in r ut r 1

model as a thread, the proces e of an output ports are controlled und r a r ut r. At fir t

a cell arrives at the router from a physical link. After that, the router will lo kin it 1 al

routing table to determine which outgoing link it hould redire t th 11 t . If th link

has an empty lot available, the router put the cell on the link. Otherwi th 11 \: ill

be demultiplex (f r await tran mi. i n) into one f the differ nt f rwardin pri rit

queues such as ~F qu ue r A queue, d pendin n th type f er n: igur db

user . ell in queue have pri rity over AF queue. hat m ans it i when the EF

queue is empty, then th ell in A queue ar ent to the link at, h dul utput p rt.

74

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

The output queue size determines the available buffer space for each type of queue. If

any queue exceeds the set limit, cells are dropped and this is recorded as a percentage of

the total number of cells received by the router. AJso, there is a per port cell drop

parameter recorded for each queue.

5.1.2 Scheduling Output Cells

Cells in queues will be scheduled from output port of r uter into phy ical link . F r the

scope of this project, the WRR algorithm is u ed to decide cell from which queue will be

transmitted. However, real time traffics alway have the priority over non r al time

traffics for scheduling output cells.

For the implementation of DiffServ, the cells are la sified into different PH whi h in

turn are demultiplex into different queues. In order to guarantee the crvi

is assigned different weight according to their priority f tran mi 1 n.

worked in a round robin fashion whil t the cell with higher w i ht are tran mitt fir t.

5 .2 System Functionality Design

The system is de igned t meet a et of function to imulate th r al n t rk. Th

functionalitie are de cribed in the following ection.

5.2.1 Design of Demultiplex

Demultiplex is d . i n cl t a · pt a , tr 'am f Jls de. tin d t p rt . It fir t

pr ss th eIL by idcntifi 'S th 'ir 11 types, th n it f rward: th .rn t the r pective

75

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

signal queue according to their cell type, and lastly follow from this point of processing,

the Tail Drop Buffer Management function is executed.

5.2.2 Design of Queue

All of the queues in the DiffServ router will be simple FIFO discipline.

5.2.3 Design of Tail Drop Buffer Management

The Tail Drop function is implanted with the demultiplex code. This scheme i designed

so that every queue at every port wi11 be serviced by its own buffer manag m nt. It

process begins as soon as demultiplex has identified th cell typ . After that the buff r

management scheme will take over. It determine whether this ell will b ither

dropped or enqueued by comparing the current qu ue length with the queu apa it . If

the comparison is lesser, the cell is inserted to th location of qu ue at th p inter and

the queue pointer is incremented. Statistic of router uch as the tim f the ntr

and the total numbers of cells enqueued is recorded. However, if the mpari n 1 t b

equal, the cell wil1 be dropped and the statistic of router will be updated.

5.2.4 Design of Scheduler

The content if every queue i retrieved by a cheduler whi h i w rk a ed n WRR

algorithm. The scheduler wilJ extra t ells fr rn the output queue to the availabl link.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

5.2.S Design of Control Function

A control bar on the UMJaNetSim simulator consists of several buttons that is useful to

the processing of simulator. The buttons includes Start, Pause, Resume and Reset. The

digital Global Clock is also included in the control bar area. The function of each control

element is described in Table 5.1.

Table 5.1: Function of each control element in the control bar.

Button Function
..

Start Start the new imulation on the top I gy.

Pause Halt the simulation.

Resume Re ume the imulation after the imulation pr e I halt d.

5.2.6 Design of Log File

The log file is to be developed to record the values of a paramet r while th imulati n 1

running. All statements outputting variable data mu t b preceded with appr priat

literals. When a parameter i to be logged during the irnulati n very n w alu f th

parameter with a corresponding time tamp will be aved in a log file.

5.3 Process Design

ln order t run the irnulat r . u essfully, appropriat d ~ i n · pr fl w i n ed d.

r I 'Vant . tru t ur hart and fl w hart will b ~ pr ':S nt ,d in the f II wing

se ti n.

77

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

5.3.1 Component Creation

To create a network topology for simulation, the simulator must design to have a set of

network components. Figure 5.2 shows the designed components of UMJaNetSim.

Test Component 1
Testing

Test Component 2

IP Router

Router RIP Router

Diffserv Router

Ethernet Switch

Switch ATM Generic

ATM LSR
Component Creation

STE Generic
STE

IP STE

Link

Application

Generic Link

TCP Application

UDP Application

UDP CSR

CSR Application

VSR Application

Figure 5.2: A set of network component m imulator.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

After getting the overview of network components, the process associated to those

components such as create new component, modify existing component and delete

existing component will be described using a flow chart as in Figure 5.3.

Modify
Existing

Component

2

Create New
Component

Delete
Existing

Component

Enter New
Parameter

Change
Parameter

+ +
" e

+ New
OK Component OK No changes OK Component

Not Created not deleted

' ' •
New Changes

Component Component

Created
saved deleted

'
(

Cancel Cancel C nc I

Figure 5. : How chart for network component.

79

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

5.3.2 Flow of Cells

The flow of cells in router from the beginning (arrive at the router from a physical link)

until the end (cells are put on the link) is described using a flow chart as howed in

Figure 5.4.

If an empty slot
available on link

Cell arriving at the rorter from a physical link

Cell

Puts the cell Into SpeedUpQ (for enforcing sp ed up factor)

Cell in SpeedUpQ with
FIFO order

If link does no1 have empty slot

Remove cell from
SpeedUpQ

Demultiplex into BEQ &
CSQ

Demultiplex into AFQ &
EFQ

2 3 4

cs
(Schedule
output cell)

BE
(Schedule
output cell)

AF
(Schedule
output cell}

EF
(Schedule
output cell)

Puts the tell on th link

6
Figure 5.4: Flow chart for cells in router.

0

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS SYSTEM DESIGN

5.4 Interface Design

The user interfaces are designed based on the concept of easy for user to understand and

used to create the network topology. The design of GUI is divided into 3 major parts:

i.) A network window used to display network topology. Thi window is u ed to

create the components, set parameters as well as show network activity while the

simulation is running.

ii.) A text window for messages which will prompt the user and provide a place for

the user to input text or parameter values.

iii.jAcontrol panel which consists of a clock and a few control button (f r ampl

Start, Pause, Resume and etc.).

8]

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

CHAPTER6 IMPLEME~TATION

This chapter will cover the implementation aspect that need to be done for the simulator.

It will provide a look into how the component is designed and implemented. During the

implementation phase, all the classes with important attributes will be shown together

with the explanation of these attributes as well as methods contained within the cla es.

6.1 System Implementation

The routing process is start when a packet arriving at the router from a phy ical link. At

the next processing slot time, after some delay, the router look in it r utin table t

determine which outgoing link it should redirect the packet to and add the pa k t int

spq (a queue or buffer for incoming packets).

At the same time, a function will remove each packet from the I q in a ba i

check that particular packet for which PHB the pa k t be! ng t and add it t th

particular PHB's queue. Then, the packet will go through a chedule utput pr

depend on the user selects priority cheduling algorithm.

EF packets have priority over other PHB ; AF packet have pri rity r and

packets. Thus, before the imulati n start, us r n ed t e th pri rit

algorithm and initial uitable thresh Id value or the irnulat r will treat it a B pack t

(default setting).

82

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

6.2 Class Implementation

The implementation of the UMJaNetSim is the phase that transforms the theoretical into

the practical. This section will look in turn at the implementation of each of the object

classes that make up the DiffServ's four PHBs, as well a orne of the other object

classes that DiffServ's PHBs makes use of.

6.2.1 IPPacket.java

IPPacket can be considering as one of the fundamental objects in the network imulator.

The TOS·constants are used as DSCP information for each packet. It i very imp rtant

for routing process as the router needs to get the corr t D

packet to schedule out it bas d on the different priorities of different PHB . Th d fault

value of TOS i et to Default PHB. This value wi11 be chan d if the u r la , ifi d th'

packet as a different PHB. The TOS coding i a follow:

//Default TOS value for packet
public static int TOS=O;

//TOS constants for packet
public static final int TOS_EF = OxB8; //Expedited Forwarding
public static final int TOS_AFl = Ox28; //Assured Forwarding
public static final int TOS_AF2 = Ox48; //Assured Forwarding
public static final int TOS_AF3 = Ox68; //Assured Forwarding
public static final int TOS_AF4 = Ox88; //Assured Forwarding
public Stai final in TOS_ S = Ox38; //Clas selector
public static final int TOS_BE = O; //Default (Best-Effort)

83

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

6.2.2 UDP_ CBR.java

UDP_ CBR has been chosen to be the application that will implement DiffServ in the

network simulator. UDP_ CBR class generates UDP packets at a constant bit rate for the

duration of the simulation. The header of the file is as below:

public class UDP_CBR extends simcomponent implements
java.io.serializable {

//user initial value
private simParamoouble cn_bit_rate;
private simParamint cn_start_time;
private simParamint cn_packet_size;
private simParamoouble cn_trans_size;
private simParamint cn_repeat;
private simParamint cn_delay;
private simParamsool cn_random_size;
private simParamBool cn_random_delay;
private simParamBool cn_start_delay;
private simParamBool cn_random_target;
private simParamBool cn_name_seed;
private simParamIP cn_destip;
private simParamint cn_destport;

//Display purposes
private simParamint cn_thisport =null;
private simParamint cn_conattempt;

//Diffserv PHB which can be selected by user
private simParamintTag cn_ds_class;

private int cn_status;
private long cn_cur_trans_size;
private int cn_con_don ;
private long cn_num_sent;
private int en_ his_ip = O;

/*Displ y o al p
applic ion "'/

Sn OU rom th·s pr i ular UDP_CBR

priva simP ram ong n_ _s n

84

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

private java.util .Random randgen;

//connection status constants
private static final int CON_NULL = O;
private static final int CON_ACTIVE = 2;

//Declare the protocol used
private static final int MY_PROTOCOL = IPPacket.PRO_UDP;

//private events
private static final int MY_SENDCELL = SimProvider.EV_PRIVATE + 1;
private static final int MY_START = SimProvider.EV_PRIVATE + 2;

Some attributes used in the UDP_ CBR application are user input parameter . The e
..

attributes are used to specify the type of traffic that will be generated for the imulati n.

There are also some attribute u ed for di play purpo e. The e attribute can n t be

modified or initial value by users at all.

When UDP_ CBR is connected, the method performed in t hi la ill etup

connections when the connection status is null. Then, the method will a ign appr priate

TOS value to the packet based on the type of DiffServ PHB selected by u r. Aft r a h

packet has been assigned to correct value, which indicate the PHB a i u er th

method in this la s will end the pa ket out with its inf rmati n in ludin

value. To end all the information to the de tinati n, an bje ·t mu t be de Jar d t

all the information. Then, the appropriate method will nqu ue that parti ular bj t

when the packet is being sent out. The total packet . end out will e updated ea h time

the packet being end out. The way to a i n th T' value t the parti ular TO

c n. tanL de Jar din II J act. u.java i. i:IS follow:

85

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6 IMPLEMENTATION

switch(cn_ds_class.getvalue()) { //Get the type of PHB
//If the packet has been assigned to Best Effort
case 0: packet.TOS=IPPacket.TOS_BE;

break;

//If the packet has been assigned to class selector
case 1: packet.TOS=IPPacket.Tos_cs;

break;

//If the packet has been assigned to Assured Forwarding 1
case 2: packet.TOS=IPPacket.TOS_AFl;

break;

//If the packet has been assigned to Assured Forwarding 2
case 3: packet.TOS=IPPacket.TOS_AF2;

break;

//If the packet has been assigned to Assured Forwarding 3
case 4: packet.TOS=IPPacket.TOS_AF3;

break;

//If the packet has been assigned to Assured Forwarding 4
case 5: packet.TOS=IPPacket.TOS_AF4;

break;
//If the packet has been assigned to Expected Forwarding
case 6: packet.TOS=IPPacket.TOS_EF;

break;
}

The way to send out the packet information i a follow:

//Declare a new object with 2 elements
object [] paramlist =new object[2];
//assigned value to he firs el ment
paraml i [OJ = pack t;
//assigned value o he second 1 m n
paramlist[l] = n w In eger(packe .TOS);

//sending h p ou wi hp ck id n i ic .t on and TOS value
thesim. nqu u (n w Sim v n· (simProv'd r. v_R c v , his,

n ighbor(O), hesim.now(),paramlis));

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

6.2.3 IPRouter.java

In order to implement DiffServ to the network simulator, IPRouter needed to be added

some attributes and methods. Some of the existing methods in the IPRouter also have

been modified to meet the need of DiffServ. Some attribute added to the IP Router are

user input parameters while some are used for display purpose. The attributes that have

been added to JPRouter's header file are as follow:

//User initial buffer size for each PHB queue
private simParamint sw_efqsize;
private simParamint [] sw_afqsize;
private simParamint sw_csqsize;
private simParamint sw_beqsize;

//Display total frames sent out from source router for each PHB
protected SimParamint countEF;
protected SimParamint countAFl;
protected SimParamint countAF2;
protected simParamint countAF3;
protected simParamint countAF4;
protected simParamint countcs;
protected SimParamint countBE;

//Display total frames received at destination
protected simParamint received_countEF;
protected simParamint received_countAFl;
protected simParamint received_countAF2;
protected simParamint received_countAF3;
protected SimParamint received_countAF4;
protected simParamint received_countcs;
prot cted simParamint re eived_countBE;

router for each PHB

In order t end and receive packet , router mu t maintain uffer (qu ue t keep every

pack t that will be . ·nt out r re iv .d. Th nurn r ft u f 'r will d pend n h w the

rout r is in t be implement .d. ~ r this n tw rk irnula: r, the router ill reate one

87

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

m-queue and seven out-queues and maintains the queues during simulation. All the

buffer queues are created as follow:

protected class Port implements serializable {
//Creates in-queue now

java.util .List spq =null;
int spq_size;

//creates out-queue now
java.util .List efq =null;
int efq_size;
AFQ [] afq =null;
int afqindex = O;
java.util.List csq = null;
int "csq_si ze;
java.util.List beq = nul 1;
int beq_size;

}

//Create a queue for all packets

//Create a queue for EF packets

//Create a queue for AF packets

//create a queue for cs packets

//Create a queue for BE packets

There are two major parts in this class. The first part i to handle th rail nd

functionality and the second part i to handle the receive functionality. B id that

router needs to keep track of source IP addres for the packet f rwardin u a

To handle the send functionality, means end the packet r ceived fr m appli ati n t

the link, the router need to perform a few methods in thi cla . Fir t1 th a tion

method brings it to the sw _re · ive method when the router tart re

Sec ndly, the pa kct goe to sw _my _r ~ · ,h mcth d when the r ut r he ked out that it

wa c me fr rn appli ati n. At this P int, the meth d will fill in n , ary inf rmation

f r this pa k t. The sw _my .J iv meth d i, as foll w:

8

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

protected void sw_my_receive(SimEvent e) {

if(src.getcompclass().equals("Link")) {
//Perform necessary function here

}
else { //IP Packet from applications

//Get the necessary parameters for packet
object [] params = (object [])e.getParams();
IPPacket packet= C IPPacket)params[O];
packet.TOS = ((Integer)params[l]).intvalue();
packet.sourceIP=getMyIP();

//Then send for processing as usual
sw_receive_IP(packet,null);

}

Thirdly, the packet goes to sw_receiveJP method. Fourthly, the sw_r eile_JP m th d

will forward the packet to send_ethe1'.frame method. The function f s?nd_ th rfran:

method is to convert the packet to Ethernet frame. That mean a n w fram i 111

created here and the new frame will be filled with neces ary information in ludin T

value of the packet. It is important for the frame to keep the TO valu al ng th , a

because the value will be used for scheduling algorithm and the de tinati n r ut r \ ill

need to use TOS value to check out which PHB's frame it received.

Fifthly, sw _send _spq method add the Ethern t frame to the in-queue pq. Thi meth d

schedules a proces ing lot if spq i not empty· Al o, it i important that the frarn i nt

out with its TO value. When the sw pro ·_sl t_time method i ailed, that particular

frame wiJI be removed from spq. Here, the d multiplexin p rati n and buffer

mana ernent will be p rforrn d. Th imp rlanl fun ti ns f lhi. m eth d ar a f 11 w:

8

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

protected void sw_proc_slot_time(SimEvent e) {

//In order to implement Diffserv, user must disable RED
if(sw_red.getvalue() ==true) { //whether using RED

}
else { //RED is disabled

//Perform demultiplex operations here
if(frame.ds_type == IPPacket.TOS_EF) {

//If the EF queue is not full, add the frame else drop it
}
else if(frame.ds_type == IPPacket.TOS_AFl) {

//If the AFl queue is not full, add the frame else drop it
}
else if(frame.ds_type == IPPacket.TOS_AF2) {

//If the AF2 queue is not full, add the frame else drop it
}
else if(frame.ds_type == IPPacket.TOS_AF3) {

//If the AF3 queue is not full, add the frame else drop it
}
else if(frame.ds_type == IPPacket.TOS_AF4) {

//If the AF4 queue is not full, add the frame else drop it
}
else if(frame.ds_type == IPPacket.Tos_cs) {

//If the cs queue is not full, add the frame else drop it
}
else { //if(frame.ds_type == IPPacket.TOS_BE)

//If the BE queue is not full, add the frame else drop it
}

}

//Schedule next processing slot if needed

//Output frame to link if possible

}

Lastly, the frame will be scheduled ut t the link a c rding the pri rity f different

PH s usin WRR rn hanism. Th rn th I i, s h dulin) frame a f ll w:

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

protected void sw_schedule_output(Port voport) {

if(!voport.efq.isEmpty()) {
//Remove frame from this queue
//updated total frames sent out

}
else if(!voport.afq[O].ptr.isEmpty()

I I !voport.afq[l] .ptr.isEmpty()
11 ! voport. afq [2]. pt r , i sEmpty()
I I !voport.afq[3].ptr.isEmpty()) {

//Remove frame from this queue
//updated total frames sent out

}
else if(!voport.csq.isEmpty()) {

//Remove frame from this queue
//updated total frames sent out

}
else { //schedule BE frame

//Remove frame from this queue
//updated total frames sent out

}

//Enqueue the frame to link with frame ID and TOS value
}

In order to handle the receive functionality, means receive the frame fr m th link th

action method brings it to the sw _receive method when the router tart to r cei fram

from link. The method does the function as follow:

- 1

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

protected void sw_receive(SimEvent e) {

if(src.getcompclass() .equals("L ink")) {

//Updated total frames received (all PHBs' frames)

//check out the type of PHB for the frame received

//Then updated the total frames received for that PHB

}

else {

//Process the frame received from application

}

}

6.2.4 EtherFrame.java

Etherlirame can also be con idering as one of the fundarn ntal object in the netw rk

simulator. The TOS constants are declared as DSCP information for each fram . It i

used to provide information about the type of PHB that parti ular frame bcl n wh n

a packet is being converted to a frame. The TOS coding i a follow:

//Default TOS value for frame
public static int ds_type=O;

//TOS constants for frame
public static final int EF = OxB8; //Expedi ed Forwarding
public static final int A Fl = Ox28; //Assured Forwarding
public static final int AF2 = Ox48; //Assured Forwarding
public static final int AF3 = Ox68; //Assured Forwarding
public static final int AF4 = Ox88; //Assured Forwarding
public static final int cs = Ox38; //Class selector
public static final int BE = O; //Default (Best-Effort)

2

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6 IMPLEMENTATION

6.2.5 GenericLink.java

GenericLink plays an important role in the simulator as it forwards frames from source

router to the destination router. From another point of view, this class is going to send

the bits along its way. As mentioned earlier, the TOS value needed by the destination

router to count the total frames received for each PHB. That means this class also

declares Object to get the necessary information when it received frames from source

router. After that, it wilJ send the bits down to the destination router with TOS value o

that the destination router can updated the total frames received for each PHB. The

functions performed by this class's receive method is as follow:

private void ln_receive(SimEvent e) {

//Get all the object parameters

//For each GenericLink

//create a new Object with 2 elements

//Assigned the first element as bits ID

//Assigned the second element as TOS value

//Send it to the destination router with these information

}

3

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

CHAPTER 7 TESTING

Testing is done step by step to compare the simulation result by running the simulator

with different priority scheduling algorithm. The simulator could be tested by various

conditions in two parts which are component testing and system testing.

7.1 Component Testing

The purpose of the component testing is to ensure that parameters attribute and

methods perform in every class is running without error during simulation. Mo t of the

testing is done by observing the output parameters generated during imulation.

7.1.1 UDP_ CBR Testing

The test is performed to check whether this component i abl t get the rr t alu f

the DiffServ class entered by user. Besides, it al o check the correct TO value a i ned

when the packet is being sent to router. The 'ystem.oui.println tatement i u ed f r

testing purpose as stated follow:

System.out.printlni "Dif!Serv Cla s: n + cn_ds_class. stv alu ',I())·

System.out.printlni "TOS value: " + param] 1)) ·

7.1.2 UDP_ CBR Testing Results

The te ts are executed u ing all different Diff erv cla . The rr ct value are pe ted

for the utput from th· additional dcbu in des. Table 7.1 el w h w the

n: i tent r ults f the te. tin .

94

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Table 7.1: Testing results for UDP_ CBR.

Test Condition Value Entered By User Expected Output Output

1 DiffServ Class Best Effort 0 0

TOS value Best Effort 0 0

2 DiffServ Class Class Selector 1 1

TOS value Class Selector 56 56

3 DiffServ Class Assured Forwarding 1 2 2
..

TOS value Assured Forwarding 1 136 13

4 DiffServ Class Assured Forwarding 2 3 3

TOS value Assured Forwarding 2]04 I

5 DiffServ Class Assured Forwarding 3 4 4

TOS value Assured Forwarding 3 72 72

6 DiffServ Class Assured Forwarding 4 5 5

TOS value Assured Forwarding 4 40 40

7 DiffServ Class Expected Forwarding 6

TOS value Expected · •orwarding 1 4 184

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

7.1.3 IPRouter Testing

The test is performed to check whether this component is able to get the correct TOS

value entered by user when the received function is called. The total counts for frames

sent out and frames received also have been tested to ensure that the appropriate counter

is updated based on the TOS value. The System.out.println statement is used for testing

purpose as stated follow:

/*Check with this statement when received frames from. links * /

Syst,em.out.println("TOS value: " + [rame.ds fype);

/*Check with this statement for all methods that may receive [ram ?S from appli at ion or

methods that may receive frames which is still in the proc ss of sch duling out the r ut er

*/

System.out.println("TOS value: " + IPPacket.TOS);

/*For the method sw _schedule_ output, for each PHB, if the frame i chedul d out th

statement will be printed and the total frame ent out hould be updated on * /

//For scheduling EF frame

System..out.println("One EF.frame has been chedul d out ') ·

Syst m.out.printlni "Total F [ram s s nt 0111: " + ountEF.g tVa/11 ()) ·

//Fors h du/in AFJ [rame

'ystem.out.ptitulni " 11 AFJ.fi'am,hasb in sch duled out')·

st im.out.printlni 'Total AF! [ram s s nt out: 11 + ountA]. , 'JfVa/u '0);

9

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

//For scheduling AF2 frame

System. out.printlni "One AF2 frame has been scheduled out");

System.out.printlni "Total AF2 frames sent out: " + countAF2.getValue());

//For scheduling AF3 frame

System.out.printlnt "One AF3 frame has been scheduled out");

System.out.printlnt "Total AF3 frames sent out: " + countAF3. etValue()) ·

//For scheduling AF4 frame

System.out.printlni "OneAF4 frame ha been scheduled out');

System.out.printlni "Total AF4 frames sent out: " + countAF4. tValu ()) ·

//For scheduling CS frame

System.out.printlni "One CS frame has been scheduled out ') ·

System.out.printlni "Total CS frames sent out: " + count . 1Vnl11 "0) ·

//For scheduling BE frame

System.out.printlni "One BE fram ha been sch duled out) ·

System.out.printlni 'Total BE frames ent out: ' + ountBE. tv alu ()) ·

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

/*Check the total frames received from link and total frames received for each PHB by

comparing the total frames scheduled out. The respective total should be the same value

*/

System.out.println("Total frames received: "+sw Jrames_received.getValue());

System. out.println("Total EF frames received: "+received_ coun.tEF.getValue());

System.out.println("Total AFI frames received: "+receil ed _countAFl.getValue());

System.out.println("Total AF2 frames received: "+r ceiv ed_co11ntAF2.getValue());

System. out.println("Total AF3 frames received: "+received_ countAF3.getValue()) ·

System.out.println("Total AF4 frames received: "<receis ed_ countAF4.g zts/alu "0) ·

System.out.printlnt/'Total CS frames received: "<rec h ed_count .g "!Va/11 ()) ·

System.out.printlni tTotal BE frames received: +r ceived countBE. tValu ()) ·

7.1.4 IPRouter Testing Results

The tests are executed for a number of times. The correct value are e p red f r the

output from the additional debugging codes. Table 7.2 bel w h w th

results of the testing.

9

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Table 7.2: Testing results for IPRouter.

Test Condition Value Entered Expected Output

By User Output

1 TOS value (frame received Best Effort 0 0

from link)

TOS value for the relevant Best Effort 0 0

methods (frame received from

application)

Total frames sent out Best Effort The statement The tatement

printed. Total printed. Total

BE frame ent B frame ent

outi updated. ut i updated.

Compare total frames sent out Best Effort The mpari n The mpan n

with total frame received re ult i sam . r .sult i anr.

2 TOS value (frame received A ured 0 0

from link) Forwarding 1

TOS value for the relevant Assured 0 0

methods (frame received from Forwarding 1

application)

Total frames sent out A ured The tat m nt tat m nt

Forwarding l printed. T tal

A J fram fram

ent ut out

u dated.

ornparc t tal Jram s s nt out Assured rnpan n

with t tat frames re civ d ~orwardin r suit i sam . r . ult i. .ame.

c

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

3 TOS value (frame received Assured 0 0

from link) Forwarding 3

TOS value for the relevant Assured 0 0

methods (frame received from Forwarding 3

application)

Total frames sent out Assured The statement The statement

Forwarding 3 printed. Total printed. Total

AF3 frame AF3 frame

sent out 1 ent out I

updated. updated.

Compare total frames sent out Assured The c mpari n The ompari n
with total frames received Forwarding 3 re ult i arne. re ult i same.

4 TOS value (frame received Expected 0

from link) Forwarding

TOS value for the relevant Expected 0 0
methods (frame received from Forwarding

application)

Total frames sent out Expected The tatement The tat m nt

Forwarding printed. T ta! printed. ta!

• frame nt EF fram nt

ut i updat d. ll t i updat d.

Compare total frames sent out Expected The rnpari n Th mpari n

with total frames receiv d •orwarding re. ult i ame. re ult i ame.

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

7.2 System Testing

System testing is done by building a new testing topology to test the whole simulator to

ensure that it runs on the actual DiffServ environment. The topology showed in Figure

7.1 has been used for this testing session. In this topology, there are 2 IP routers, one

generic link and eight UDP CBR applications.

File Ecfit View Tools Window tlelp

MU~i•

start JI Reset I j Connect Mode II Fit All

Figure 7.1: Testing Topology.

Two different type of system te ting are d ne, they are:

• ornpare the pri rity , heduling for different PH , wh n the ng ti n i not

happened.

• ornpare the pri rity . cheduling for differ nt PH wh 11 th nge lion

happened.

J OJ

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

7.2.1 Component Configurations

In order to thoroughly test the simulation regarding the priority scheduling for different

PHBs when the congestion is not happened during simulation, the necessary

configuration of components can be done as stated in Table 7.3. Those parameters that

are not showed in Table 7.3 have been set to get the default value. For the clearer

understanding, please refer to Appendix for the GUI (property dialog) for each type of

components in the simulation topology.

Table 7.3: Component configurations when congestion is not happened.

Test Case Component Parameter on figuration

Name

1 Rl IP addre s to Link]] .0.0.J

R2 IP address to Linkl 1.0.0.2

Appl Bit rate 10.0

Start time 10000 0

Number of bits to be ent J.O

Repeat count 1 1.

DiffServ Cla s Be. t ff rt

Random destination Di a I d

Destination JP 1.0.0.2

App2 Bit rat JO.

tart time l 00

Numb r of bit. to b · , .nt LO

]02

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Repeat count 1

DiffServ Class Class Selector

Random destination Disabled

Destination IP 1.0.0.2

App3 Bit rate 10.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

.. DiffServ Class A ured Forwarding 1

Random destination Di abl d

Destination JP 1.0.0.2

App4 Bit rate 10.0

Start time 1000000

Number of bit to be ent 1.0

I Repeat count]

DiffServ Clas Expected F rwarding

Random de tination Di abl d

Destination IP] .o . . 2

App5 Bit rate 1

tart tim 1 0 0

Number of bits t bes nt 1.

Repeat unt 1

Diff rv las: '. l ff rt

] 3

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Random destination Disabled

Destination IP 1.0.0.1

App6 Bit rate 10.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Cla Sel ctor

Random destination Di abled

.. Destination IP 1.0.0.1

App7 Bit rate 10.0

Start time 100000

Number of bit to be ent l.O

Repeat count 1

DiffServ Cla A ured F rwarding J

Random destination Di abl d

Destination IP 1.0.0.l

App8 Bit rate 10.

Start time 1 000

Number of bits to be ent 1.0

Repeat count 1

Diff erv la . ,, pe ted rwardin

Random d . tinati n i abl d

csiination IP 1.0.0.1

) 4

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

In order to thoroughly test the priority scheduling for different PHBs when the

congestion is happened during simulation, the necessary configuration of components

can be done as stated in Table 7.4. Those parameters that are not showed in Table 7.4

have been set to get the default value.

Table 7.4: Component configurations when congestion is happened.

Test Case Component Parameter Configuration

Name

1 Rl Switching Speed 100

IP address to Link) 1.0.0.l

R2 Switching Speed 100

IP addre s to Link) 1.0.0.2

Linkl Link Speed 50.0

Appl Bit rate 100.0

Start time 1000000

Number of bits to be ent 1.0

Repeat count 1

DiffServ Cla s e t "'ffort

Random destination Di abled

Destina ti nlP 1.0 .. 2

App2 Bit rate 100.

tart time JOOOOOO

Number or bits I b . ,nt 1.0

105

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

..

Repeat count 1

DiffServ Class Class Selector

Random destination Disabled

Destination IP 1.0.0.2

App3 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Assured Forwarding 1

Random destination Di abled

Destination lP 1.0.0.2

App4 Bit rate JOO.O

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Expected Forwarding

Random destination Di abled

Destination IP].0.0.2

App5 Bit rate 100.0

tart time JOO 0

Number f bit t be sent 1.0

R pat unt 1

iff rv la.s , t "ff rt
--

10

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Random destination Disabled

Destination IP 1.0.0.1

App6 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Cla s Cla Sele tor

Random destination Disabled

.. Destination IP 1.0.0.l

App7 Bit rate 100.0

Start time 10000

Number of bits to be ent 1.0

Repeat count 1

DiffServ Cla s As ured F rwardin l

Random destination Di abled

Destination IP 1.0.0.1

App8 Bit rate 10 .

Start time 1000000

Number of bit to be ent J.0

Repeat uni l

Diff erv la cpe ted rwardin

Rand rn de, tinati n i, abl d

·stinati n JP I. .0.1

J07

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

2 Rl Switching Speed 100

EF Q size, AFl Q size, AF2 100

Q size, AF3 Q size, AF4 Q

size, CS Q size, BE Q size

IP address to Linkl 1.0.0.l

R2 Switching Speed 100

EF Q size, AFl Q size, AF2 100

Q size, AF3 Q size, AF4 Q

size, CS Q size, BE Q size

IP address to Linkl 1.0.0.2

Linkl Link Speed 50.0

Appl Bit rate 1 0.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Be t .. ff rt

Random destination Di abled

Destination lP 1.0.0.2

App2 Bit rate 100.0

Start time 1 0000

Number of bit. t be ent J.

Repeat count l

iff rv lass la le t r

Rand m dcsiinati n i ablcd
--

108

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Destination IP 1.0.0.2

App3 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Assured Forwarding 1

Random destination Di abled

Destination IP 1.0.0.2

App4 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class xpected rwarding

Random destination Di abled

Destination IP 1.0.0.2

App5 Bit rate 100.0

Start time 1 000 0

Number of bits to be sent 1.0

Repeat ount 1

Diff erv la .. t ff rt

Rand m destination I, a l id

e tination JP 1.0.0.1

App it rate I 0.0

109

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Class Selector

Random destination Disabled

Destination IP 1.0.0.1

App7 Bit rate 100.0

Start time 1000000

" Number of bits to be sent 1.0

Repeat count 1

DiffServ Class A ur d ~ rwarding 1

Random destination Di abled

Destination IP J .0.0.l

App8 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Cla s Expected Forwardin

Random de tination Di abled

De tinati n lP J .o . .l

] j 0

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

7.2.2 Simulation Results

The simulation results are divided into two major phases. Phase 1 is simulating the

network without any congestion while phase 2 is simulating the network with congestion.

The relation between the bit rates, switching speed and link speed play very important

role. It may decide whether the network is congested or not. In order to ensure the

simulator runs properly, the application's bit rate should not be greater than the

switching speed.

• To set the network traffic to be very smooth for the simulation, u er ju t need t let the

switching speed to be very large a compare to link peed. In more concret w rd the

switching speed should be at least 2 time of link peed.

When the congestion is not happened, all the PHBs' frame will eem t be hcduled

out and received at the same times. It is hard for us to n ti e th r i a pri rit

scheduling algorithm. This is becau e when the link is able t aff rd the traffi I ad th

buffer queues, which are used to keep frame , alway empty. When the m thod in th

class wishes to schedule a low priority PHB' frame, it will all w th fram · t

scheduled out as it found that all higher priority PHB's queue ar empty.

To et the simulation to be nge: ted, nfigurc the appli ati n bit rate qual to

switching peed and th link speed should be lcs: than . wit hin

hat means when swit .hinc sp ed i. set t JOOMbits/s th, link .J .ed h uld e

SOM bit. I r J wer.

J1 l

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7
TESTING

When the congestion is happened, the priority to schedule the frames becomes very clear.

It has proved that DiffServ can work well in the simulator. When the traffic is too heavy

while the buffer size is set until it is not able to keep incoming frames anymore, the

frames is dropped and the total frames dropped are updated.

The following discussed about the simulation results which have been done during

system testing:

i. Congestion not happened: Test case 1

• . EF, AFl, CS and BE frames seems to be schedul d out with the same

priority.

• EF, AFl, CS and BE frames seem to be received at the de tinati n r ut.er

with the same priority.

• The total frames scheduled out and total frame received f r ea h I

can be consider same nearly all the time.

n. Congestion happened: Test case 1

• Firstly, EF frames scheduled out. Aft r fini h ch dul d ut fram

the AF] frame take turns. Then the CS frame and la tly B fram tak

turns to schedule out.

• Fir tly, · F frame r eiv d. /\fter Iini h re iving ~ frarn th AFl

frames take turns. Then the fram and lastly "' Irarn , take turn to

be r ived by d stinati n rout r.

• Th priority s h dulin is I .ar at all and n ram , ar ein dr pped.

m. ngcstion happened: Test as 2

J J 2

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 TESTING

• Firstly, EF frames scheduled out. After finish scheduled out EF frames,

the AFl frames take turns. Then the CS frame and lastly BE frames take

turns to schedule out.

• Firstly, EF frames received. After finish receiving EF frames the AFl

frames take turns. Then the CS frame and la tly BE frames take turns to

be received by destination router.

• The priority scheduling is clear at all.

• Frames which can not be scheduled out in time make the buff r queu

.full. Incoming frames with the ame PHB are being dr pped until thi

particular PHB frames are being cheduled out.

J 13

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS CONCLUSION

CHAPTERS CONCLUSION

A lot of knowledge and experiences were gained throughout the development of the

simulator. The most valuable experience is to study and understand more detail into

DiffServ and WRR scheduling algorithm. All the problems encountered and experience

gained during the development of this simulator should be very useful in my future

endeavors.

This thesis managed to achieve the overall project objectives and goals, i.e. development

of object oriented and multithreading network simulator. This the i i al o abl to

classify packets using 4 different PHB and cheduling th packet with different

priority using WRR mechanism. Lastly, the following highlight y t m tr ngth

system limitations, as well a the propo ed future enhan cm nts.

8.1 System Strengths

The system strengths are described a follow:

• The design of network simulator is user friendly and a y t u . The u r an

easily add a component to the topol gy and simulate the netw rk.

The simulator is fuJJy object-oriented whereby all the fun ti n and m dul ar

built in cla s.

• The simulator is able to treat the traffic with diff r nt pri rity cheduling

algorithm. Jt i able t re ognize different cla: sificati n f pa k t .

J J4

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS CONCLUSION

8.2 System Limitation

The system limitations are described as follow:

Functions of this simulator are not as many as the existing NS2 network

simulator.

• This simulator is not able to send packets across more than one router as the

•

dynamic routing protocol is not completed.

• Help File is very important in any application . It i definitely a good trategy if

the help file is implementing in this simulator. Due to time con traint , thi

simulator does not include a complete help file.

• The GUI may not as attractive as the other program .

8 .3 Future Enhancements

Due to the]imitation of this simulator, there are a few uggc tion that may b u cful (r

future enhancement of this simulator listed as following:

• It is hoped that this simulator can be added in mor function t imulat m r

complex network traffics.

Jt is hoped that thi simulator i extended t • upp rt dynarni r utin I.

• It is hoped that a complete and useful help fil an be includ d in thi irnulat r

•

to provide necessary information for th e who may n d it.

It is hope that the GUI can be enhanced o that it i m re attracti e. For exampl

the GUJ for graph could be pre. entcd lo user a. an intcrc ting interface.

JJ5

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

REFERENCES

[1] Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z. and W. Weiss.

(December 1998). Architecture for Differentiated Services, RFC 2475.

[2] Braden R., Clark D., Shenker S., (June 1994). Integrated Services in the Internet

Architecture: An Overview, RFC1633.

[3] Braden R., Zhang L., Berson S., Herzog S. and Jamin S., (September 1997).

Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Sp cifi ation

RFC2205.

[4] Callon, R., Doolan, P., eldrnan, N., red tie ., wall w . and Vi wanathan

A., (September 1999). A Framework for Multiproto ol Label witchin lnt rn t

Draft.

[5] Cisco System, Inc., (2001). DiffServ - The calabl nd-t - nd Q M d I.

White Paper.

July 2003]

J J

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

[7] Davie, B., Charny A., Bennett J.C.R., Benson K., Boudec J.Y. Le, Courtney W.,

Davari S., Firoiu V., Stiliadis D., (March 2002). An Expedited Forwarding PHB

(Per-Hop Behavior), RFC3246.

[8] Differentiated Services Working Group Charter, (3 February 2003).

Differentiated Services (DiffServ). Available from:

http:Uwww.ietf.org/html.charters/OLD/DiffServ-charter.html [Ace ed 3 July

2003].

[9] Grossman, D., (April 2002). New Terminology and larification f r Diff erv

RFC3260.

[10] Heinanen, J., Baker, F., Weiss, W., Wroclaw ki, J., (June 199). A ur d

Forwarding PHB Group, RFC2597.

[11] IP over ATM: Classical IP, NHRP, LANE, MPOA, PAR and 1-PNNI. vailabl

from: http:ijwww.cis.ohio- tate.edu/-jain/ci. 7

[Acee sed 8 July 2003]

.htm

[12] Jacobson, V., Nich I , K., Poduri, K., (June J 99). An xpedited orwarding

PHB, R 25 .

[13] Lim, .H., (2 OJ).

Diff crv and Ml

.rin ... nhan irn .nt t P ~ f r IP with

niver ity f Malaya.

] 17

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

(14] Nicolas, C., (October 2000). Current Directions in the DiffServ World.

Department of Computer Science, University of Virginia.

(15] Nichols, K., Blake, S., Baker, F. and D. Black. (December 1998). Definition of

the Differentiated Services Field (DS Field) in the IPv4 and 1Pv6 Headers, RFC

2474.

..
Nichols, K., Blake, S., (February, 1998). Differentiated Service Operational

Model . and Definitions. Internet Draft. Available from:

http://ds.internic.net/internet-drafts/draft-nicho1s-d. ogdf-00.txt [Ace ed 2 July

2003].

[16]

[17] Nichols, K., Jacobson, V., Zhang, L., (November 1997). A 2- it Diff r ntiated

Services Architecture for the Internet. internet Draft. Availabl fr m:

http://ds.internic.net/internet-drafts/draft-nichols-diff- v -ar h-00.t 't (A d 2

July 2003].

[18] Pieda, P., Ethridge, J., Baine , M., and F. hallwani. (July 2 0). A Net rk

Simulator Differentiated Services Implementation. N rtel Netw rk .

(19] Rosen E., Viswanarhan, A. and alien, R. (January 2001 . Multipr t 1 Label

wit hin Ar .hit lure, RF 30 1.

J 1

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

[20] Shenker S., Partridge C., Guerin R., (September 1997). Specification of

Guaranteed Quality of Service, RFC2212.

[21] Tanenbaum, A.S., (1996). Computer Networks, 3rd Edition. Prentice-Hall

International Inc.

[22] The Network Simulator - ns-2. Available from: http:ljwww.isi.edu/n nam/n I

[Accessed 3 July 2003]

[23] Wroclawski, J., (September 1997). The U e of R VP with Integrated ervice

RFC2210.

[24] Wroclawski J., (September 1997). Specification of the ontr lled-L ad N tw rk

Element Service, RFC221 l.

11

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

APPENDIX A

r r~ Switching Speed (Mbit/s) L1 t '

D EF Q size (cells, -1=inf) 1000

[! AF1 Q size (cells, -1=inf) 1000

AF2 Q size (cells, -1=inf) 1000

AF3 Q size (cells, -1=inf)

[J LJ AF4 Q size (cells, -1=inf)

~c CS Q size (cells, -1 =inf) L~ .;

tJ LJ BE Q size (cells, -1=inf)

ot Enable RED
f'" ,- RED ciueue weight (>=0.001) 0.0020 l-J L...•

[' I I RED min q threshold (kbytes) 10

C1 LI RED max q threshold (kllytes) 30

[L i RED max p (<0.1) 0.02

[[l RED s (packet trans. time) (uSec) 400.0 J
l I I SJ>eedup 11_ size (kbytes, -1 =inf) 100

[r I Averaging Interval (usec) I 100000.0

Jl..1 Use ARP queue for IP packets ~
r l 1 Use name as seed

[""1L1 Logging every(ticks) (e.g.1, 100) 0 I.

l · . Use name as seed !id ~
r I 1 1 Logging every (ticks) (e.g. 1, 100) '- O ___ J
DD EF Frames Received 0
DD AF1 Frames Received 0
00 AF2 Frames Received 0
DD AF3 Frames Received 0
00 AF4 Frames Received 0
DD CS Frames Received 0
DO BE Frames Received 0
DD Total Frames Received 0
DD EF Frames Sent 0

I DD AF1 Frames Sent 0
DD AF2 Frames Sent 0
DD AF3 Frames Sent 0 :

':
DD AF4 Frames Sent 0 r. '·,
DD CS Frames Sent 0 .: , ..
DD BE Frames Sent 0

I?. DD Frames Dropped (Queue) 0
DO Frames Dropped (Classifier) 0

[f:· DD CPU Slow Triggered

TCP Details ... J 1~.: ,,
11i1 - - ,~J Route Table Manage ... j

n, I.•·

MAC address to Link 1 0:0:0:0:0:2 i

[IP address to Link 1 1.0.0.1 JI o
-

DD Current Q size (bytes) to Link1 0 :-
DD RED avg Q size (bytes) to Link1 0.0 •

These are screen shots from the ame r uter property dial g. Th fir t r en h t

.indicates the upper half of the property dialog while the ec nd er n h t indi ate th

lower half of the property dialog.

)20

Univ
ers

ity
 of

 M
ala

ya

APPEND/XE

APPENDIXB

rrr : Distance (km) '-·_

on Propagation Speed (kmls) 200000.0 l.,J

DU Averaging Interval (usec) 100000.0

0[1 Enable Link Fail D
DCJ Fail start time (s) I 0.0 I
rin Fail duration (s) (O=inf) rr3 DO Fail repeat times (-1 =inf) I
0[] Delay between fails (s) I 0.0 I
[J[J Random fail duration 0
[JU Random delay bet. fails D
[lf l Fail start delay D
[l r 1 Fail Notification ~
r J t 1 Enable Animation D
[][J Animation Detail (>0) c:J l l f J Animation Delay (msecikm)

0 [J Use name as seed 0
[1 Logging every (ticks) (e.g. 1, 100)

,_
0

00 Current Link rate (Mbps) to R1 0.0
00 Session Link rate (Mbps) to R1 0.0
OD Packets dropped to R1 0
OD Bits dropped to R1 0
OD Current Link rate (MbJlS) to R2 0.0
DO Session Link rate (Mbps) to R2 0.0
OD Packets dropped to R2 0
DO Bits dropped to R2 0

This is the screen shot for the whole generic link property dialog.

12]

Univ
ers

ity
 of

 M
ala

ya

APPENDIXC

APPENDIXC

[] [J

DD
DO
DD
DD
DD
:JD
[] []
D r··1
0(I

or 1

D [J
D []
OL1
nr1
OD
DD

Bit Rate (MBitsls)

Start time (usecs)

Packet size (bytes, 46-1500)

Number of MBits to be sent

Repeat count (-1 =inf)

Delay between calls (usecs)

Diff serv Class

Random data size
Random delay bet. calls
Enable starting delay
Random destination
Use name as seed
Port number

Destination IP

Destination port number

Calls attempted
Total frames sent

I
I 1000000

I 576

I 1.0

I 1

I 1000000

I Best Effort
D
0
0
0
~

165:~:.2 . I
I

I 0 I
I~ 1.

This i the screen hot for the whole UDP BR appli ati n pr p rty dial g.

122

Univ
ers

ity
 of

 M
ala

ya

