FACULTY OF
COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

Implementation Of Differentiated Services
In UMJaNetSim

TANG GECK HIANG (WEK010281)

Under the Supervision of
Mr. Phang Keat Keong

Moderator
Mr. Ang Tan Fong

SESSION 2003/2004

Perpustakaan SKTM

This project is submitted to the Faculty of Science and Information Technology,
University of Malaya,
in partial fulfillment of the requirement of the Bachelor of Computer Science

ABSTRACT

ABSTRACT

Deployment of a large number of Internet applications built around the Internet Protocol
(IP), require a wide range of Quality of Service (QoS) in terms of throughput, delay and
reliability (guarantee to reach the destination without any packet loss). Consequently,
there is growing demand for replacing the current best-effort service paradigm with a
model in which network traffic will be classified into different traffic classes based on

their service needs and the classes will be treated differently.

In this thesis, an existing object oriented and discrete event network simulator,
UMJaNetSim is developed to enable the creation of a simulation environment for
DiffServ framework. The goal of DiffServ is to define configurable types of packet
forwarding that can provide service differentiation for large aggregates of network
traffic. The DiffServ being implemented classifies packets into different PHBs and
proposes that packets with higher priority will receive relatively better service in any
load condition in the network. This simulator intends to show that the proposed scheme

improves the performance of existing schemes in terms of packet loss ratio, link

utilization, end-to-end delay and throughput.

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

First of all, I would like to express my utmost gratitude to my supervisor Mr. Phang
Keat Keong for his invaluable guidance and support throughout my thesis work. His
encouragement to do innovative work inspired me. His able supervision prevented me
from digressing from the main area of focus for my thesis and thus helping me in timely

completion of the thesis. I also appreciate his patience, support and understanding when

things went wrong.

I will always cherish the time I spend with my project members in the Network Research
Laboratory especially Chia Kai Yan, Lim Lee Wen, Andrew Chiam, Au Yee Boon,
Chee Wai Hong, Chan Chin We and Malini. They are willing to share their knowledge
throughout the duration of project. My discussion with them on various topics of

networking helped me to enhance my knowledge and understanding in this area.

The members of the academic staffs in FSKTM have been very influential in laying a
strong foundation in my knowledge in Computer Science. I am especially very grateful

to Mr. Ling Teck Chaw. He is the source of inspiration to me. He also has provided

much guidance in this research.

Last but not the least, I also would like to express my deepest appreciation to all my dear
family members and friends for their moral and mental support during the period of my

thesis work. Life would not have been easy without them.

iii

TABLE OF CONTENT

TABLE OF CONTENT
N N O v T T T A T L T T Ty O LY T T S T L LT T T X T L TSI ii
A CKIN O W D) G E N N e esessevessserssssssesssrsteassesssssresessstensceessseestssasesssesadsesaranioecs iii
A B L O G O N T N L e e et e cs e se e e asare Lot Le et et erses e eees soetetsEeeetetersesestsessstetesssstss iv
LS T O DA B S et seactearasasssneveressvrssspsssnsssasassrsssensasasesssssnstsssssafragihassnsessssssases X
LIS T O R LG U R E S e s tiitetttetesstsssrsssasvesssnssosssssrsssnsssnsossihsesdfosshoBiaessaflossessstasoronsssss xi
CHAPTER 1' ' INTRODUCTION &tetiicissarsssssssossssthotiasstittassacassssssssssssssssansasasssssases 1
bl O OREIRI Y rin i kst e, SO o T e T s 1
thed VRO N T oyt o, G T R G T T O O T T T e A 2
1 3 PIOECE S COPE it tiviresses isanest MU e s ¥ isrtri Iverssibossvarssehisbsttivassassatsrilobenssstaitessitisis) 2
LGl SO s oy F, i O L X T A T KL T T e 3
1S R 0T LY O e e ettt asne v sntessasenstashinsbassansotsinsnesssaissnenssisbasbiidsthsssts 4
CHAPTER 2. LITERATURE REVIEW........cccocecvnninnnnnnninnnnnnnniiiiisiiii, 6
Lt INCTIN v ce o b5 (o0 FETte cco i 1 L ST T L L I O T LT T F L T T T 6
kil TERRGRREHORIL oottt s e s T T T O T Ly T T 7
Al N N B Gt T O T T T T R T LT T T 1 T e 8
N B T A 1) ST O LT Lo Y & LRt e e rs et i ststaestesess tastastisstesstonsactteisreatsitatisschiststiabet atisrisinis 10
ARLCES AT IE Ry ottt e G T R e e T L L 13
) O () O S T s N Y T T (T Ta L s rt sttt i nte st e e ies e eieTiassbeteatssstassesisresrsretsitsrsseliiesrit 14

TABLE OF CONTENT

DA B B e St R O S E TV CE IV Ol] T T e e e e e TTLE S 15
R IS TV AN U R Y B et T et e L T LT UL L e ey o S SR N N 16
S T | P (D)0 C T A L I UG RO Ry C R S BRI CR 18
PYGYECIY, D O o vomses sucmes ybidcn - ettt berrmenasalite i viasel - dovieet it st gt g s e e 20
2171 0 VRN GRS TEOTT 11 vy re vo oo o 0 L E e L L e St E e 22
2%/4l OPNE TN O K S ITIULATOT st tssasssesssssssarerssstsetsstesstret 22,
2 2 INS ANE N e T 01K S 1T A 0T sssteesersssssssssssesssosssstareress s tassssctiatii) 24
T N QN T O T RS 11T 11 L QT ers s vae e aan ettt an s n e et e e e 25
2.7.4 REATSINEIWOTK SIIMUIATOT fevecssvesseatsesnsossssots ias FETessssasaastonssossrssssassietrssse 26
2.7.5 NIST ATM/HFC NetWork SimUIAtOr.ciieereerssssensssssssssssssssssssssssssssssesees 26
260 UMIaNetS1mIIN etWOT K S ITTIT LA T Tt dfeescaststassnnstasssnssssnnssssasstssshasseassarnranin: 27
2.7.7 Comparison of Existing Network Simulators.........cccoeeviviiiniiinnininnnn, 28
CHAPTER 3 THE DIFESERY.MODEL iciiciiicseissccssssssssessessanssssnsssssssasssssnassanases 29
3.1 DiffSery ATCHIE CIUIT AT VO] 1 s seeestocsssrsssssasssnresssnsosssssssnsssssnsasssassssssassssssstassss 29
B LI LS T O T B T e o esartssnissensssornenns tesnrronssis Mrsasseibeisi et or b itiEs 30
bl e TSy Ty b R T o N O Tl ol ot v Sl 0 IR b o o e T 33
R N a1 C (1 A8 81T CAtI 0N 0 COT O It O TIIII T ostaterasastessssrersastissststsetrtatitt it T 35
2 AR L O L I3 T S S e e e e e P T r T T T T T T T TH T T I T L T e P T T 515

3) R T A 111 O (T O T L O T S Lyt ts s rs st sens soe et s TTo ot e e o 36

3 A PO T H O B e N V1 OTE et te e IIas s rses st msatTasistesstestnssssseassstesaessanes Eiaieetstess I irieiss 38
Sehal 1) C L 5 ¢ b o s cr T C T T T T L e ST Ty T TP TS o LY PPN s R or s 38
B R (T AR S S | B OO P I i cteleratereisshescsssisseactsiintesiessohsstestotororersierr iy s o 39

TABLE OF CONTENT

ksl IR IS RIS o v e e e e s 39
R A SSTITE 0 O AT 11 O B e e e T L L i 40

S A D1 S C VAR Gl e T L et taeinseshoessiagarttss i Tt rere T et T Ty 42
a1 (oD AT YR Y T T s e e e L e L T E b T T E TR e 45
CHAPTER IS Y STEMIAN ALY SIS rteetreetstereeressstsrssscersssssescracsasesesssctosssesssasssostes 48
S T T At 0N A DT 0 A T I T T Tt T T T 48
ababal " AR BN s e e i, At 48
4180 R A D s Cre e BV e N QU I iy ersersterasassssinssonsess s st frosseistatsessiahreseise) 48
413 R S MU A O A I DT08 Cll (S Ol C e ettt s 43312 3asreets et ianetassittente] 49
A G b N e e, L L T U O 49
40N e ProcedliraliB 0 T AT I A I O a O e et st rtasar e taetiatstasssa ittt titatt i ettt 49
422 Structured Programming ApProach......ccocoeiviiiiiieriieieneissssnereessesesesens 50
4.2.3 Object Oriented Programming Approach..........cocvsinnininiinininisiininne, 50
40 S ProgTamm I N D PIOACH 0] Ce e e e tetesteas st st tRERa s EeR RN LRSIV 2
4.3 Programming LANGUAZEcvivirissssssussusisnssnrssnsinssnssssisssssssssmsstnssnessssnssssnsssostssnss 52
I P e T T T LT LT F Y L H T T L T T F L L L P L T T I 53
Y I e e A Tt ros T T T YL L R O b Ty T A T A T T L e 54
PG e b LR O O T e S L T S R e 57
L e g A [T T o £ P e e e T T Tt s K r By CT PO P PR O S C T R PR 57
A R 111] T e se it et Ve ol a1 N Tsikbosslehenrsatanaasresatisessornsnsiovisbor o I 57
O B T (T A O e s Tei it aieiieiebeetadssrtyetsose atstrsratiliarissirilsesisnelssinsassosstonits i ifols 58
A A I O Ay T T T e 2 e T e LT L A s e AP Ly 60

Vi

TABLE OF CONTENT

4.5 Hardware Consideration

.. 60
SO ANV UG REN R ITN cr- v prossnin s ot b s e e oy e (L TR L 61
ol o NGB EGE SR et oty reem s e T T S T g s e 63
G GO R T g rrers v e ST T T R P T T L L T 65
(el NIRRT T e N ey e s e e e 66
EMOEY S AW IRV b et o e e i S e e 67
4.6.4.1 AEVERITE st e G e R P GO R LU, Tt (0 i 67
4.6.4.2 I ()T & vttt YT £ 0 L R XBRT ey 17 “Tindy Exrdfrsvertised 67
4.6.4.3 YT 3 e e e e O T R I 11 O g i 68
4.6.4.4 Y TG0 oI IR gy ror OO LT AT, s . TP Y (LT (LY LR LT 68
4.6.4.5 Y O T I LTy S, U £ T LT X T P p e et 69

AR R R N NI R sty e, O T S L UL L (T T TR 69
AT L H U Ol 018 R Ty LT O T A et ense R ssahseetsnatenresesennsastesenseattnsstasetssssasentsssness 69
LI L N R R Y I U O T ey s o T O T A L T T 71
CHABTERISEEES YN RE NI E S LGN i etesectstestsrtrscrossssssrsssersorssssrssscrersessrsssortssasseres 73
STLE ROMe A TRhItE CLUTELL) ES1 0TI . st rissssitserearterstreststestitesinsss e titTietie I I e ITsbeaLIRRL RS 73
Sl ORI B b e st o T T e T 7&!
kY S O IS vty crrrrn s vt o (O T R R 15 LY T T T 75
12 RN A R DTS I oo trten e T L O T G R ek 75
S2At o LSBT S e e T T R T T T 75
T N L) B 81 O] O T (U] L] L LR s 0e s T o e tsehe s P e eaeetaeeLsaseseistiestatqiestitesesesetiziet iiins 76
SiZ:a D e 81 o O TR a1 L D O D B U STV AT A XY C Iy e asettesnesbeqaseqstnsetsctscessrssteetosie 76

Vil

TABLE OF CONTENT

il IDESTI NI oo S R s AL S B LA T F R, 76

Sy Ay RIS Fean 3 COT O R OGN YV ooy pvr ot v L e G5 LT E L S SR LR S EE TR 77
SAPHO ST W Vs s e e e T e R T SO T S P R TS 77
SYEY VIV PIITIA0N (rrzs s 10 Lt LR T L T T T T 1T EE T T LT SR S TR TR TR .
Shabal (Ol e I EAT 0T 1ty et UL L LR L L FECCT TR L0 X L2 78
b I (O e e v T T T T LT S L T S LKL T AL T 80
SHCE VTS (0 DI 0%y s v o LSO L E R T SR R EL LIS, T (e 81
CHAPTERI 65 IMPLEMEN DA T O N st secttecsessscsantnss (aos Weessssnsessasassassasens 82
6.1° SystemiImplementation it i N i st L 82
612 ClaS S M D] eI E N A T s ee eI e et re e rsess o st s evestestRNEeteeess Csatseiasaaabsitiiansissstes 83
TR IE I o N N e s 1 e AT CPeTT T OO LT T (3T T { AT T PO T T e e ey e ey s 83
6:2:28 U D P CBRIJAVA (i iveetagse Nasr I s tuiseeribinsnsnsrersrsssasihiserirsssstrtsibasasersssstsss 84
6123 I I PR O O A A e ree TR e aTTrerset(neosrtresraretiriatisessasesssstnsencarestorssettarastableltsthisss 87
012 R E e F T ATTIC JAY S o risresrentrsrreresessateriatietnsensssssssessetsetistttistt LALsEreSteEIeisbst 92
Spdss (T 0 S ER s T T T T O L T T R L r e 13 g 93
CHAPTER 7. TESTING i.ietiitesescassssassssssssssesssasosssssssssessssssssassassnsssassssssssssssssansssanses 94
7hab | (Ol o It TR T rytyry e G T LTS C T S E T LT TR FAER R S 94
T R U D) PGB R T €S i g et e ette e taseetiascbeate et tas ersesesrsststintsssnses ass asetosatriienssisine 94
7hk 2 10p0) e SN G TN vy ot e s et R T L UL 94
TRLEY O e NS e ot e vt e T T T LS T P L LT T A T LT 96
i1 S DR O e T St T R C S UL (S e rsesettasrstre fressed rert ettt rassanasitaiorssssstsiisssiierisists iy 98

viii

TABLE OF CONTENT

T 1 RO T Y ey s T T T L Ty L P P T T SO T P T T T KIS 101
T2l OhTvyaeYitT i Ol ATV T IR e e ron e £ A T S ST T T T L 102

Fhodd - S B T AT R ryrve vt rh o (o 0 e R O T B L Y S T LT L T 111

(e AT RIS (C{OINLC LY BEY CON by o ooy G G e O T TP T T T LT 114
Il R A Y ST T Y et ro oy re O L CLE R KT L (R (RO £ EL T O £ LA 114
ol KT BT 00 et e T G T S L TR T L L LTI E10Y o, YEXETEE 115
R U U R AT CEIl C IS i rsertisstostteastataeteastantussthssssobssntstsss tisestagiiuss IR 10 Tatoert 115
REEE REN GE S e reeretreetaseasctseatsstessstetecssesrteseesstsiteessececs I Tredrs AR etseetsseritsstetersssts 116
7N 3 D) BN g T T O T O RN (LT L I X T L (YLD 120
APPENDIX B it ittretestssecsesssessrosscsssapensessssssssssliasressssesssssssssssesssesssosstsessbosssssssesssssrssosssss 121
A PP EN D LXK st ratetvetecsersesttsssessseerastiaathPARtersersssssiassterstssssotsssoresssssestsbsbasesseiessssasersersssst 122

X

LIST OF TABLES

LIST OF TABLES

Table 2.1: Comparison among several network SImulators.occeveveeeereresenesesesenennens 28
Table 3.1: AF recommended code point with different drop precedence..........c.cccceueeeee. 42
Tableta KB en el {0 TSI o () B D DO et st re e es (T sanec Tt T re et e stseRTateIetarTaLs 52
Tabled 2 A Eeaturesiot avanrogrammin g Lar SU AT G aR et csersssstatsteasssrssaestssetssecatsttanstessssetts 54
BN (2 BV N T ST P IR v ot s R T S T T R AL T L TR 61
Table 5.1: Function of each control element in the control bar.cccooviiiiiiiiniiniinnnne. 77
Tables LT eSting e SUl {8 Or U D) B G R s testestasstisttsnsnstadste @ esMIst e Westotstsdtspes 95
I S 78 NS SR S T e BRI v s 1oy e oo it 6076 PO O AT R L)
Table 7.3: Component configurations when congestion is not happened..........ccevnee. 102
Table 7.4: Component configurations when congestion is happened.........cccoiviiiiinns 105

LIST OF FIGURES

LIST OF FIGURES

Figure 1.1: WXES 3181 and WXES 3182 project schedule...........ccocoouniiiiniiiiniiiennnen. 3

Figure 2.1: Relationship of the TCP/IP and OSI model..........ccooiiiiniiininiiiiiiine 8

Figure 2.2: The structure of each IP addresses Class.......ccouviiuinnicnisiisnisnisnisnisnisnisnisnennns 10

Figure 3.1: Overview of DS region and DS domain.cccceevviiininiiniiineniiiiiecnene 32
Figure 3.2: Graphical view of DS region and DS domain.c.ccoooeviiiiiiiiniiiiiiiiiinnnns 32
Higureia N By A d il By O A € T et ettt et teate e kaatatstetisseasattetittenaastrestistadit o ecarananss 33
B UL e R A D) S e L N et T s ta 1Lt Littiitliate st seattobrasnsseristarsirscstiatslt MR A el e shiet ents 34
Figure 3.5 DiffServ trafficicondition e BloCK s s i tefh i NNe svestassatanasronsastasshss 38
Figure 3.6: The break down of AF PHBs with different drop precedence.cc... 42
Figire 3.7 Routersan e DiitS ey Omaim e e e I eetotiesssesesssttssnassanttnsssassotsssnssnse 43
Figure 3.8: Packet forwarding path inside a DS domain. ... 44
Figure 3.9: Packet scheduler with four logical QUEUES........coeiiviniiiiiiiiiiniiniiine e 46
Figure 4.1: Overall architecture of UMJaNetSIm.ccoovviviiiiiiiiiiiinine, 62
Figure 4.2: Event management arChiteCtuIe.......ccoviiiniseinsnsinineniiiinninsnnsnsinsnssssssssssssns 64
Figure 4.3: GUI management SEIUCIUTIE. cieusssssssssasstssssnsnsassnssssssnsssssssssnsasstssssnsnssnsnssasnssnsss 65
Figure 5.1: Output port queuing MOdEL. ...ceiieeiiisisresssniniinsssnssnsnsssessstesssssnssssssssnsnsnssssnes 74
Figure 5.2: A set of network components in SImulator. ..., 78
Figure 5.3: Flow chart for network COMpPONENt.cccooiieiiiiiniininiinie s 79
Ei e 14 R oW C ATt O T 8 | S I T O I ettt st et R st eeatanaeasetssassaatssanerasseviititsnsititistite 80
S T L O VSR ot vy et o T e e (O G Ly S LT TR AT O 101

X1

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Today the Internet hosts a wide range of applications and users with differing
requirements. Therefore, this project is developed using existing network simulator to

offer proper quality of service (QoS) for all needs.

1.1 Project Overview

IP networks are destined to become the ubiquitous global communication infrastructure.
An increasing number of different applications are continually conveyed by them
causing a fragmentation of performance and service requirements. Continuous efforts

have been made to develop a number of new technologies for enhancing Quality of

Service capabilities.

In early 90’s, the Integrated Service Model (IntServ) was proposed which provides an
integrated infrastructure to handle conventional Internet applications and those QoS-
sensitive applications together. IntServ uses resource ReSerVation Protocol (RSVP) as
its signaling protocol. Although IntServ/RSVP can provide QoS guarantees to
applications, it has a scalability problem since each router in the model has to keep track
of individual flows. To address the scalability issue, a new core stateless model, called
Differentiated Service Model (DiffServ) was proposed and has become a popular
research topic as a low-cost method to bring QoS to today’s Internet. The DiffServ
architecture is the traffic management scheme defined by IETF to provide scalable

services differentiation on the Internet. That’s why DiffServ is chosen as main topic of

development for this thesis.

CHAPTER 1 INTRODUCTION

1.2 Project Objectives

The main objective of this project is to develop UM Java Network Simulator
(UMJaNetSim) with the implementation of DiffServ. By doing so, it is possible to
provide differentiated classes of service to the traffic of network simulator and produce a
small, well defined set of building blocks from which a variety of services may be
constructed. The mechanism is that a small bit-pattern in each packet, in the IPv4 TOS
octet or the IPv6 Traffic Class octet, is used to mark a packet to receive a particular

forwarding treatment, or per-hop behavior, at each network node.

From other point of view, reduces the burden on network devices and easily scales as the
network grows are other objectives to develop this project. It is aim to alleviate

bottlenecks through efficient management of network resources

1.3 Project Scope
The thesis undertakes a detailed study of IP QoS with an emphasis in creating a
simulation environment for the testing and evaluation of various IP QoS architectures.
Using this simulation environment, a traffic engineering enhancement to the
differentiation of services is proposed and evaluated. The objectives of this research are
summarized as the following:

 Develop Differentiated Services (DiffServ) network simulator.

« Allow the user to classify the incoming packets to different PHBs and drop

precedence.

¢ Scheduling packets using Weighted Round Robin (WRR) mechanism.

CHAPTER 1 INTRODUCTION

* Show the simulation result and the traffic parameters.

* A GUl interface for user to perform action.

1.4 Project Schedule

The project schedule is the operating timetable of the project. It serves as the
fundamental basic of monitoring and controlling project activity. By using Gantt chart, a
schedule of earliest possible start and finish times for the activities is given that will

meet the earliest possible project completion date.

Below is a Gantt chart on the development phase scheduled along the intended time

frame for each phase of the system.

! Project Schedule]

ID Task Name Start Finish Duration =
st [s [s o0 [ot
1 | Project Definition 16/06/2003 03/07/2003 16d []
2 | Literature Review 04/07/2003 24/07/2003 18d e |
3 | Diffserv Research 25/07/2003 07/08/2003 12d M
4 | System Analysis 08/08/2003 23/08/2003 14d m
5 | System Design 25/08/2003 10/09/2003 15d [] l
6 | Implementation 11/09/2003 19/12/2003 86d | aasnasamenstesni e |
7 | System Testing 22/12/2003 04/02/2004 39d [wotiaes
8 | Documentation 24/06/2003 13/02/2004 202d

Figure 1.1: WXES 3181 and WXES 3182 project schedule.

CHAPTER 1 INTRODUCTION

1.5 Report Layout
This project proposal report consists of five chapters. The purpose of this layout is to

give overview of the major phases involved during development of the project. Below is

the report layout:

Chapter 1 presents an introduction to the objectives, scope, schedule and organization of
report which associate with this project. It is quite important as what the system is going to

do and the boundary of project will be clearly stated. Besides that, it is helpful to monitor the

progress of project in terms of deliverable in time.

To start doing this project, the step of review the current technologies can’t be missed out.
That’s why Chapter 2 comes out with literature review. In chapter intend to review current

technologies which related to this project as well as the existing simulators.

To implement this project, there is a must 1o fully understand the concept of DiffServ.
Therefore, chapter 3 is arranged to describe the theory of DiffServ for design and

implementation phases. This is an essential part since the main objective of this project is to

simulate the real world using DiffServ.

Chapter 4 is used to depict the analysis done over this project. It must be carried out in order

to produce a successful project. The analyzed topics include software and hardware selection,

simulation approach, architecture of UMJaNetSim, system requirement and so on.

CHAPTER 1 INTRODUCTION

After analyze relevant topic, the design phase can be started which is defined in Chapter 5.
Appropriate and carefully design is needed to ensure the system operate in the desired

manner. Each important function that designed for the system will be characterized here also.

Now it is time to implement the DiffServ into UMJaNetSim. Chapter 6 intends to discuss

about how the project is going to be implemented. All related class files will also discussed

in this chapter.

In order to make sure the simulator is running properly, component testing and system
testing are done in Chapter 7. The way and topology used to test the simulation is explained

through out this chapter. Even the simulation results are explained and presented here.

The last chapter for this project document, which is Chapter 8, is conclusion. The system

strengths, system limitations and future enhancements have been noted down in this chapter.

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW

Internet traffic has increased at an exponential rate recently and shows no signs of
slowing down. In the mean while, some applications raise requirements for underlying
network infrastructure to provide Quality of Service (QoS) guarantees. It is big
challenges to current Internet, since the current Internet provides only one simple service
class to all uses with respect to QoS, which is best-effort datagram delivery. Best-effort

datagram delivery cannot provide any service quality guarantees. The gap between QoS

provisioning and demanding is even enlarged.

2 TG I

Transmission Control Protocol (TCP) and Internet Protocol (IP) were developed by a
Department of Defense (DOD) research project to connect a number of different
networks designed by different vendors into a network of networks (the "Internet").
Transmission Control Protocol/Internet Protocol (TCP/IP) is a protocol suite that defines
how all transmissions are exchanged across the Internet. It has been active use for many
years and has demonstrated its effectiveness on a worldwide scale. It is the basic
communication language or protocol of the Internet. It can also be used as a

communications protocol in a private network (for examples an intranet or an extranet).

As with all other communications protocol, TCP/IP is composed of layers:
* IP is responsible for moving packet of data from node to node. IP forwards each

packet based on a four byte destination address (the IP number). The Internet

authorities assign ranges of numbers to different organizations. The

6

CHAPTER 2 LITERATURE REVIEW

organizations assign groups of their numbers to departments. IP operates on
gateway machines that move data from department to organization to region and
then around the world.

* TCP is responsible for verifying the correct delivery of data from client to server.
Data can be lost in the intermediate network. TCP adds support to detect errors
or lost data and to trigger retransmission until the data is correctly and
completely received.

* Socket is a name given to the package of subroutines that provide access to

TCP/IP on most systems.

2.1.1 TCP/IP and OSI

TCP was developed before the Open Systems Interconnection (OSI) model. Therefore,
the layers in the TCP/IP protocol do not match exactly with those in the OSI model. The
TCP/IP protocol is made of five layers: physical, data link, network, transport, and
application. The application layer in TCP/IP can be equated with the combination of

session, presentation, and application layers of the OSI model. Figure 2.1 shows TCP/IP

in relation to the OSI model.

CHAPTER 2 LITERATURE REVIEW

0S| Model TCP/IP Protocol

A A ey

Application 1
Presentation | | SMTP | | FTP | |TELNET| | DNS
Session
Transport | TCP UDP
E t':
Network | [rcmp | [1omp
i | ARP | [RARP | fy
Data Link | .
| LLC | ®
i
Physical ? Many Physical Implementations

Figure 2.1: Relationship of the TCP/IP and OSI model.

2.1.2 Network Layer
At the network layer, TCP/IP supports the IP. IP in turn, contains four supporting

protocols, which are ARP, RARP, ICMP and IGMP.

IP is the transmission mechanism used by TCP/IP protocols. It is an unreliable, best-
effort and connectionless packet delivery protocol. Here best-effort means that the
packets sent by IP may be lost, out of order, or even duplicated, but IP will not handle

these situations. It is up to the higher-layer protocols to deal with these situations.

CHAPTER 2 LITERATURE REVIEW

One of the reasons for developing a connectionless network protocol was to minimize
the dependency on specific computing centers that used hierarchical connection-oriented
networks. The U.S. Department of Defense (DoD) intended to deploy a network that

would still be operational if parts of the country were destroyed.

IP addresses are globally unique. This feature permits IP networks in the world to
communicate with each other. An IP address consists of 32 bits (4 bytes), which is
usually represented in the form of four decimal numbers, one decimal number for each

byte.

An IP address is divided into three parts. The first part designates the class type, the
second part designates the network address (or netid), and the third part designates the
host address (or hostid). An IP address belongs to one of five classes depending on the
value of its first four bits (A fifth class, class E, is not commonly used.). The different
classes are designed to meet the needs of different types of organizations. Figure 2.2

gives a clear picture of the structure of each IP addresses class.

CHAPTER 2 LITERATURE REVIEW
- 9+——Byte 1——> «——Byte 2—>é<—Byte 3——>é<—Byte 4—>
ClassA |0 Netid Hostid
ClassB |10 Netid Hostid
ClassC |[110 Netid Hostid
ClassD |1110 Multicast address
ClassD [1111 Reserved for future use

Figure 2.2: The structure of each IP addresses class.

2.1.3 Transport Layer

The transport layer is represented in TCP/IP by two protocols: TCP and UDP.

TCP

The TCP provides full transport layer services to applications. TCP is a reliable

connection-oriented transport port-to-port protocol that sends data as an unstructured

stream of bytes. As a connection-oriented service, TCP is responsible for the reliable

delivery of the entire stream of bits contained in the message originally generated by the

sending application. Provided error detection and retransmission of damaged frames

ensures reliability (all segments must be received and acknowledged before the

transmission is considered complete).

10

CHAPTER 2 LITERATURE REVIEW

By using sequence numbers and acknowledgment messages, TCP can provide a sending
node with delivery information about packets transmitted to a destination node. Where
data has been lost in transit from source to destination, TCP can retransmit the data until
either a timeout condition is reached or until successful delivery has been achieved. TCP
can also recognize duplicate messages and will discard them appropriately. If the
sending computer is transmitting too fast for the receiving computer, TCP can employ
flow control mechanisms to slow data transfer. TCP can also communicate delivery

information to the upper-layer protocols and applications it supports.

UDP

User Datagram Protocol (UDP) is the simpler protocol among the two standard transport
protocol of TCP/IP. It is a connectionless datagram delivery service that does not
guarantee delivery. UDP provides only the basic functions needed for end-to-end
delivery of a transmission. It contains only a checksum and does not provide any
sequencing or reordering functions. Therefore, it cannot specify the damaged packet

when reporting an error.

If the application developer chooses UDP instead of TCP, then the application is talking
almost directly with IP. UDP takes messages from application process, attaches source
and destination port number fields for the multiplexing/demultiplexing service, adds two
other fields of minor importance, and passes the resulting "segment" to the network layer.
The network layer encapsulates the segment into an IP datagram and then makes a best-

effort attempt to deliver the segment to the receiving host. If the segment arrives at the

11

CHAPTER 2 LITERATURE REVIEW

receiving host, UDP uses the port numbers and the IP source and destination addresses

to deliver the data in the segment to the correct application process.

UDP is no handshaking between sending and receiving transport-layer entities before
sending a segment. Therefore, UDP is said to be connectionless and unreliable. DNS is

an example of an application layer protocol that uses UDP.

Even though TCP provides a reliable data transfer service and UDP does not, an
application developer would ever choose to build an application over UDP rather than

over TCP as many applications are better suited for UDP for the following reasons:

* No connection establishment. TCP uses a three-way handshake before it starts to
transfer data but UDP just blasts away without any formal preliminaries. Thus
UDP does not introduce any delay to establish a connection. This is probably the
principle reason why DNS runs over UDP rather than TCP -- DNS would be
much slower if it ran over TCP. HTTP uses TCP rather than UDP, since
reliability is critical for Web pages with text.

 No connection state. Connection state includes receive and send buffers,
congestion control parameters, and sequence and acknowledgment number
parameters. This state information is needed to implement TCP's reliable data
transfer service and to provide congestion control. UDP does not maintain
connection state and does not track any of these parameters. For this reason, a
server devoted to a particular application can typically support many more active

clients when the application runs over UDP rather than TCP.

12

CHAPTER 2 LITERATURE REVIEW

Small segment header overhead. The TCP segment has 20 bytes of header

overhead in every segment, whereas UDP only has 8 bytes of overhead.

Unregulated send rate. TCP has a congestion control mechanism that throttles the
sender when one or more links between sender and receiver becomes excessively
congested. This throttling can have a severe impact on real-time applications,
which can tolerate some packet loss but require a minimum send rate. On the
other hand, the speed at which UDP sends data is only constrained by the rate at
which the application generates data, the capabilities of the source (CPU, clock
rate, etc.) and the access bandwidth fo the Internet. We should keep in mind,
however, that the receiving host does not necessarily receive all the data - when
the network is congested, a significant fraction of the UDP transmitted data could
be lost due to router buffer overflow. Thus, the receive rate is limited by network

congestion even if the sending rate is not constrained.

2.1.4 Application Layer

The TCP/IP application layer is equivalent to the combined session, presentation and

application layer of the OSI model. This means that all of the functionalities associated

with those three layers are handled in one single layer, the application layer.

The most widely known and implemented TCP/IP application layer protocols are listed

below:

13

CHAPTER 2 LITERATURE REVIEW

2.2

File Transfer Protocol (FTP). Performs basic interactive file transfers between
hosts.

Telnet. Enables users to execute terminal sessions with remote hosts.

Simple Mail Transfer Protocol (SMTP). Supports basic message delivery
services.

HyperText Transfer Protocol (HTTP). Supports the low-overhead transport of
files consisting of a mixture of text and graphics. It uses a stateless, connection-
and object-oriented protocol with simple commands that support selection and
transport of objects between the client and the server.

Domain Name Service (DNS). Also called name service; this application maps
IP addresses to the names assigned to network devices.

Routing Information Protocol (RIP). Routing is central to the way TCP/IP works.
RIP is used to exchange routing information by network devices.

Simple Network Management Protocol (SNMP). A protocol that is used to

collect management information from network devices.

QoS

Quality of Services (QoS) refers to the capability of a network to provide better service

to selected network traffic over various technologies, including Frame Relay,

Asynchronous Transfer Mode (ATM), Ethernet and 802.1 networks, SONET, and IP-

routed networks that may use any or all of these underlying technologies. The primary

goal of QoS is to provide priority including dedicated bandwidth, controlled jitter and

latency (required by some real-time and interactive traffic), and improved loss

14

CHAPTER 2 LITERATURE REVIEW

characteristics. Also important is making sure that providing priority for one or more

flows does not make other flows fail (Cisco Systems, 2003).

Many different approaches for providing QOS have been proposed and implemented.
Unfortunately it is often difficult or even impossible for IP to utilize the QoS capabilities

of the underlying technology unless a QoS framework is built into IP itself. This is why

IP QoS is needed.

2.3 Best Effort Service Model

The basic QoS model of the Internet is called Best Effort because the network tries to
transmit as many packets as possible and as rapidly as possible. The network doesn’t
care who wrote the packets or what information the packets contain and that how urgent
the data in packets are. Best effort does not give any guarantees because it offers
uniform treatments to every packet. That means that the packets are subject to data loss,

data duplication or out-of-order delivery. The TCP protocol solves these problems by

assigning a sequence number to all data transmitted in the network and requiring a

positive acknowledgment from the receiver.

Traditionally, networks use FIFO (first in first out) queuing to forward traffic, which

means that an incoming order on a Web commerce site might be left waiting behind an

employee’s download of the latest game on the net. The network makes a best effort

attempt to retain all traffic in order, but will drop whatever it needs to, including million

15

CHAPTER 2 LITERATURE REVIEW

dollar transactions as it can’t differentiate which of the data is of urgent nature, when it

becomes overloaded.

To fix the best effort service model, the technique used is to add more bandwidth the
network. Adding more bandwidth is a good solution if it can be economically justified.
Unfortunately adding bandwidth is costly and you can never really add enough. The

limitation of best effort services model raised the need for a new QoS model.

2.4 IntServ and RSVP
Although the TOS field in the IP header has been defined for quite a long time, it is
practically ignored in most of the router implementations (Tanenbaum, 1996). The
IntServ model (Braden et. al., 1994.) was the first step in altering the best-effort service
model in IP. The IntServ model is based on a fundamental philosophy that routers must
be able to reserve resources in order to provide special QoS for specific user packet
streams, or flow. This in turn requires flow-specific state in the routers. In order to
provide different QoS for each flow, the IntServ framework requires that a router should
implement three traffic control components:

 Packet scheduler to forward packets in different flows differently.

e (lassifier to identify the different flows.

» Admission control to determine whether the requested QoS by a new flow can be

granted.

16

CHAPTER 2 LITERATURE REVIEW

The desired QoS is provided by resource reservation along the path, therefore signaling
and state maintaining at each hop is needed. The RSVP (Braden et al, 1997) is protocol
used for signaling. Its major features include the use of “soft state” in the routers,

receiver-controlled reservation requests and the use of IP multicast for data distribution.

The signaling and reservation of the desired QoS are needed for each flow in the
network. A flow is defined as an individual, unidirectional data stream between two
applications, and is uniquely identified by the 5-tuple (Source IP address, Source Port,

Destination IP Address, Destination Port and the Transport Protocol).

Currently, there are two types of services (other than the default best-effort service) have

been implemented:
i) The guaranteed service (Shenker et al, 1997) is intended for applications that
require real-time service delivery, with a fixed delay bound.
ii) The controlled-load service (Wroclawski, 1997) is intended for applications that

can tolerate some delay but are sensitive to traffic overload conditions.

The drawbacks of this model are:

i) The reservations in each device along the path are “soft”, which means that they

need to be refreshed periodically; if refresh packets are lost there is a risk of

reservation time out.

ii) The need for signaling and maintaining the state of each flow in each router is a

strong limitation to scalability

17

CHAPTER 2 LITERATURE REVIEW

These problems make the IS model less practical in the global Internet, but may be

suitable in edge networks.

2.5 IPOverATM
The success of Asynchronous Transfer Mode (ATM) lies largely in its ability to
transport legacy data traffic, mostly IP, over its network infrastructure. The complexity

of interoperating IP with ATM originates from the following two major differences:

i) Connection oriented versus connectionless
ATM is connection oriented, which means a connection is needed to establish
between two parties before they can send data to each other. Once the connection
is set up, all data between them is sent along the connection path. On the other
hand, IP is connectionless which means that no connection is needed and each IP
packet is forwarded on a hop-by-hop basis by routers independently. When 1P
traffic is needed to transport over an ATM network, it either establishes a new
connection on demand between two parties or forwards the data through
preconfigured connection or connections. With the first approach, when the
amount of data to be transferred is small, the expensive cost of setting up and
tearing down a connection is not justified. On the other hand, with the second
approach the preconfigured path(s) may not be an optimal path and may become

overwhelmed by the amount of data being transferred.

18

CHAPTER 2 LITERATURE REVIEW

ii) QoS aware versus Best Effort
Quality of Service 1s an important concept in ATM networks. It includes the
parameters like the bandwidth and delay requirements of a connection. Such
requirements are included in the signaling messages used to establish a
connection. Current IP (IPv4) has no such concepts and each packet is forwarded
on a best effort basis by the routers. To take advantage of the QoS guarantees of

the ATM networks, the IP protocol need to be modified to include that

information.

To run IP on top of ATM networks, we first need to figure out how to relate ATM
protocol layers 10 TCP/IP protocol layers. Two models are proposed which are peer
model and the overlay model. Peer model considers the ATM layer a peer networking
layer as IP and propose the use of the same addressing scheme as IP for ATM-attached

end systems. ATM signaling requests will contain IP addresses and the intermediate

switches will route the requests using existing routing protocols like Open Shortest Path

First (OSPF). This scheme was rejected because although it simplifies the addressing
scheme for end systems, it complicates the design of ATM switches by requiring them to
have all the functions of an IP router. Moreover, if the ATM network will also support

other networking layer protocols like IPX or Appletalk, the switch has to understand all

their routing protocols.

The overlay model, which is finally, adopted views ATM as a data link layer protocol on

top of which IP runs. In overlay model, ATM networks will have its own addressing

scheme and routing protocols. The ATM address space is not logically coupled with the

19

CHAPTER 2 LITERATURE REVIEW

IP addressing space and there will be no arithmetic mapping between them. Each end
system will typically have an ATM address and an unrelated IP address as well. Since
there is no nature mapping between the two addresses, the only way to figure out one

from the other is through some addressing resolution protocol.

With overlay model, there are essentially two ways to run IP over ATM. One treats
ATM as a LAN and partitions an ATM network into several logical subnets consisting
of end systems with the same IP prefix. This is known as Classical IP over ATM. In
Classical IP over ATM, end systems in the same Jogical subnet communicate with each
other through end-to-end ATM connections, and like in LAN, Address Resolution

Protocol (ARP) servers are used in logical subnets to resolve the IP addresses into ATM

addresses. However, traffic between end systems in different logical subnets has to go

through a router even though they are attached to the same ATM network. This is not

desirable since routers introduce a high latency and become the bandwidth bottleneck.

2.6 MPLS

There is a recent protocol deployment that offers some QoS functionality, based around

the idea of label switching. Multiprotocol Label Switching (MPLS) (Rosen et al, 2001)

was mainly the result of efforts to effectively match IP over ATM networks. It tries to

integrate layer 2 switching and layer 3 datagram forwarding. Within an MPLS network,

a label and a Forwarding Equivalence Class (FEC) are assigned to each packet when

entering the network, and then all forwarding decisions are based on these values. Packet

forwarding is performed on a hop-by-hop basis and Label Switched Routers (LSRs)

20

CHAPTER 2 LITERATURE REVIEW

simply perform label swapping and take local decisions about the next hop that the

packet should be addressed to.

The motivation for MPLS is that it provides for simplified forwarding based on the
match of a short label and for efficient explicit routing carried only at the time a label
switched path is set up rather than within each packet. MPLS provides traffic
engineering by selecting paths chosen by data traffic in order to balance the traffic load
within the network. It also provides QoS routing where a route for a particular stream is

chosen in response to the QoS required for that stream (Callon, 1999).

MPLS can support QoS on a per-user basis by assigning per-user labels to packets, or on
a per-flow basis by detecting and assigning appropriate labels to individual flows. Labels

can make use of a Class of Service (CoS) field, which offers the flexibility of choosing

between coarse or fine-grained QoS support.

On the other hand, MPLS raises some scalability concerns when it is to support label
assignment for short flows and its normal operation can be assured only for well-
managed environments due to its complex mechanisms. MPLS is favored by
telecommunication operators who were traditionally basing their services on top of

ATM but it is doubtful whether it can provide end-to-end QoS solutions across large

networks and consequently in the Internet.

21

CHAPTER 2 LITERATURE REVIEW

2.7 Existing Network Simulator

Simulation Modeling is becoming an increasingly popular method for network
performance analysis. Software simulator is a valuable tool especially for today’s
network with complex architectures and topologies. It can be either a general-purpose
simulator that enables a wide range of possible simulations or a special purpose
simulator that targeting a particular area of research. Designers can test their new ideas
and carry out performance related studies, therefore freed from the burden of the "trial
and error" hardware implementations. This section intends to review a number of major

network simulators by describing their features. The following are some examples of the

current network simulator:

* OPNET
* INSANE
e NS

* REAL

e NIST ATM/HEC

e [UMJaNetSim

2.7.1 OPNET Network Simulator

Optimized Network Engineering Tool (OPNET) is a commercial network simulator
marketed by OPNET, Inc. OPNET was originally developed at MIT and introduced as a
commercial network simulator in 1987. OPNET provides a comprehensive development

environment for the specification, simulation and performance analysis of

communication networks. It can support a large range of communication systems from a

22

CHAPTER 2 LITERATURE REVIEW

single LAN to global satellite networks. Discrete event simulations are used as the

means of analyzing system performance and their behavior. OPNET has full GUI

support and consists of three hierarchically related editors, which is network editor, node

editor and process editor. The key features of OPNET are summarized here as:

Modeling and Simulation Cycle

OPNET provides powerful tools to assist user to go through three out of the five

phases in a design circle.

Hierarchical Modeling

OPNET employs a hierarchical structure to modeling. Each level of the hierarchy

describes different aspects of the complete model being simulated.

Specialized in communication networks
Detailed library models provide support for existing protocols and allow

researchers and developers to either modify these existing models or develop

new models of their own.

Automatic simulation generation

OPNET models can be compiled into executable code. An executable discrete-

event simulation can be debugged or simply executed, resulting in output data.

S

CHAPTER 2 LITERATURE REVIEW

However, OPNET is not a fully platform independent simulator as it only supports the
Solaris, Window NT and 2000, and the HP-Ux operating systems. It is also costly to use

from a financial point of view.

2.7.2 INSANE Network Simulator

Internet Simulated ATM Networking Environment (INSANE) is a network simulator
designed to test various IP-over-ATM algorithms with realistic traffic loads derived
from empirical traffic measurements. Its ATM protocol stack provides real-time
guarantees to ATM virtual circuits by using Rate Controlled Static Priority (RCSP)
queuing. The ATM signaling is implemented by using a protocol similar to the Real-

Time Channel Administration Protocol (RCAP).

A Tk-based graphical simulation monitor can provide an easy way to check the progress
of multiple running simulation processes. Besides that, it is able to support the
simulation on a large network, which the result is processed off-line. It is written in
C++ object oriented programming approach. Internet protocols supported include
large subsets of IP, TCP, and UDP. It works quite well on distributed computing clusters

as a large number of sequential processes can easily be run in parallel.

However, this simulator can only works on a few platforms and hardware and this
restricted the portability of the simulator. Furthermore, there are a few software

requirements to run the simulator and this will be troublesome for the user to use the

software.

24

CHAPTER 2 LITERATURE REVIEW

2.7.3 NS Network Simulator

NS has been developed at the Lawrence Berkeley National Laboratory (LBNL) of the
University of California, Berkeley (UCB). It has an extensible background engine
implemented in C++ that uses OTcl (an object oriented version of Tcl) as the command
and configuration interface. Thus, the entire software hierarchy is written in C++, with

OTel used as a front end. The extensibility of NS makes the tool very dynamic. NS is an

event-driven network simulator.

NS is a free network simulation program that can be downloaded from the web and is
compatible with a number of operating systems. The tool has substantial functionality
for simulating different network topologies and traffic models. NS also has an open

architecture that allows users to add new functionality.

NS allows simulation with levels of abstraction, where higher abstraction level (with the
use of analytical models) trade off accuracy for performance. Moreover, NS includes a
network emulation interface that permits network traffic to pass between real world
network nodes and the simulator. This feature, while still under development, may prove
useful for diagnostics of protocol implementation errors. Although NS does provide a

network animation tool that provides network visualization features but NS does not

consists of a GUI for general simulation manipulation and scenario setup.

25

CHAPTER 2 LITERATURE REVIEW

2.7.4 REAL Network Simulator

REAL is a network simulator originally intended for studying the dynamic behavior of
flow and congestion control schemes in packet switched data networks. It is design for
testing flow and congestion control mechanisms. It provides users with a way of
specifying such networks and to simulate their behavior. It emulates the actions of
several well-known flow control protocols (such as TCP) and scheduling disciplines

(such as Fair Queuing and Hierarchical Round Robin). Only little effort needed to add

new modules to the system due to the modular design of the system.

The simulator takes as input a scenario, which is a description of network topology,

protocols, workload, and control parameters. It produces as output statistics such as the

number of packets sent by each source of data, the queuing delay at each queuing point,

and the number of dropped and retransmitted packets.

REAL is written in C language and will run on Digital Unix/ SunOS/ Solaris/ IRIX/

BSD4.3/Ultrix /UMIPS systems 0On VAX, SUN, SPARC, MIPS, Alpha, SGI or

DECstation hardware.

2.7.5 NIST ATM/HFC Network Simulator
The NIST Asynchronous Transfer Mode (ATM) / Hybrid Fiber Coax (HFC) Network

Simulator is a simulator that provides a flexible test bed for studying and evaluating the

performance of ATM and HEC networks without the expense of building a real network.

26

CHAPTER 2 LITERATURE REVIEW

The simulator is based on the discrete event approach and uses the C programming

language.

NIST ATM/HEC has a well-defined message passing mechanism based on the sending
of events among simulation components, handled by an event manager. Although this
basic architecture enables a wide range of simulation possibilities, the use of the

procedural approach makes the component development process difficult.

The simulator gives user an interactive modeling environment with a graphical user
interface which provides the user with a means to display the topology of the network,
define the parameters and connectivity of the network, log data from simulation run and
to save and load the network configuration. Its GUI uses the X window System running
on UNIX based platforms. Since the simulator relies on the X window System for its

GUI and UNIX in general, it lacks portability between different platforms.

2.7.6 UMJaNetSim Network Simulator

UM Java Network Simulator is a flexible test bed for studying and evaluating the
performance of ATM network without the expenses of building a real network. This
simulator is written in Java programming language, which applies object oriented
programming approach. It is a tool that give user an interactive modeling environment
with a graphical user interface which provides the user with a means to display the

topology of the network, define the parameters and connectivity of the network, log data

27

CHAPTER 2

LITERATURE REVIEW

from simulation run, and to save and load the network configuration. Moreover, it is a

cross platform simulator.

2.7.7 Comparison of Existing Network Simulators

After studying a few network simulators, comparison done based on a few features such

as discrete-event simulator, object-oriented, GUI, multithreaded, web enabled and

platform independent are show in Table 2.1.

Table 2.1: Comparison among several network simulators.

Simulator Discrete Object GUI | Multithread | Web Platform
Event | Oriented Enable | Independent
Simulation
OPNET v V. | Normal X X X
INSANE v / Poor X X X
NS v v Poor X X! s
REAL v X Poor " X X
NIST v X Normal X X X
ATM/HFC
UMJaNetSim v 4 Good vV X V

28

CHAPTER 3 THE DIFFSERV MODEL

CHAPTER 3 THE DIFFSERV MODEL

Service differentiation is desired to accommodate heterogeneous application
requirements and user expectations, and to permit differentiated pricing of Internet
service. A "Service" defines some significant characteristics of packet transmission in
one direction across a set of one or more paths within a network. These characteristics
may be specified in quantitative or statistical terms of throughput, delay, jitter, and/or
loss, or may otherwise be specified in terms of some relative priority of access to

network resources.

The main purpose of the DiffServ model is to provision end-to-end QoS guarantees by
using the service differentiations in the Internet. Unlike the IntServ model, it does not
keep soft states for individual flows; instead, it achieves QoS guarantees by a low-cost
method, which is aggregating individual flows into several service classes. Therefore,
the DiffServ model has a good scalability. In order to achieve scalability, there are two
basic characteristics of the DiffServ model:

* It does not rely on per-microflow states in the network. Instead, it utilizes

aggregated classification states.
* Complex processing (traffic classification and conditioning) is moved from the

core of the network to the edge of the network.

3.1 DiffServ Architectural Model

The architecture model of DiffServ is based on the concept, where traffic entering the

network is allocated a classification and possibly conditioned. These actions take place

29

CHAPTER 3 THE DIFFSERV MODEL

in the network boundaries and the outcome of this is that the packets entering the
network are collected into same behavior aggregates (a collection of packets with the

same DS code point crossing a link in a particular direction) that are to be treated in

similar manner.

Inside the network the packets are forwarded to their destination on per-hop behavior,
which is indicated by DS code point. Basically, each of the packets gets treated only per-

hop basis during the forwarding path within the network region.

3.1.1 DS Domain

A DS (DiffServ) domain is a contiguous set of DS nodes, which operate with a common
service provisioning policy and set of PHB groups implemented on each node (Black,
1998). The DS domain is the entity that provides a coherent set of PHBs in the network

domain. Usually the nodes belonging to a DS domain are under same network

administration.

A DS domain has a defined boundary that consists of boundary nodes and interior nodes.

DS boundary nodes interconnect the DS domain to other DS or non-DS-capable

domains, whilst DS interior nodes only connect to other DS interior or boundary nodes
within the same DS domain (Black, 1998). Both of them classify incoming packets and

possibly apply configured conditions to their forwarding. Nodes within the DS domain

select the forwarding behavior for packets based on their DS code point.

30

CHAPTER 3 THE DIFFSERV MODEL

However, the boundary nodes and interior nodes are not totally same. The DS boundary
nodes may be required to perform traffic conditioning functions as defined by a Traffic
Conditioning Agreement (TCA) between their DS domain and the peering domain,

which they connect to but the interior nodes may only perform limited traffic

conditioning functions such as DS code point re-marking.

The boundary nodes are further divided into ingress and egress nodes. The ingress nodes
are being responsible of packet stream’s incoming traffic while the egress nodes are

being responsible of outgoing traffic. They are differing from the directions of traffic.

From the administrative point of view, a DiffServ network could consist of multiple DS
domains. A set of one or more contiguous DS domains forms a DS region. DS regions
support differentiated services along paths, which span the domains within the region.
The DS domains may support different DS code point and PHB mappings. To achieve
end-to-end QoS guarantees, the negotiation and agreement between these DS domains
are needed. In this case, the peering DS domains need to establish a peering Service
Level Agreement (SLA) that specifies how the transits between domains are mapped.

Figure 3.1 and Figure 3.2 illustrate the hierarchical and graphical view of DS region and

DS domain respectively.

The SLA is a service contract between a customer and a service provider that specifies
the forwarding services a customer should receive. It may specify the traffic

conditioning rules that constitute a Traffic Conditioning Agreement (TCA). The TCA is

31

CHAPTER 3 THE DIFFSERV MODEL

an agreement that specifies classifier rules and any corresponding traffic profiles and

rules, which will be applied to the traffic streams selected by the classifier.

=

Boundary

A

Ingress

Figure 3.1: Overview of DS region and DS domain.

Diffserv Region

Y

A

| Diffserv Domain B

[FS Interior Nodes

DS Interior Nodes]

Diffserv Domain A .

DS Boundary Nodes
(Ingress / Egress Node)

Diffserv Domain c 2

Figure 3.2: Graphical view of DS region and DS domain.

32

CHAPTER 3 THE DIFFSERV MODEL

3.1.2 DS Field

The architecture of DiffServ relies on the DS code point to identify the appropriate
behavior aggregates. RFC2474 (Nichols et al. 1998a) defines the DS field s the
replacement of the TOS (Type of Services) field and Traffic Class field of the IPv4

header and IPv6 header respectively. Figure 3.3 shows IPv4 and IPv6 header.

|Pv4 Header IPv6 Header
Types of Ver6 | Traffic Class
Verd | IHL G Ao Total Length Flow Label
Identification Flags floga Payload Length Next Hdr
onLh Offset
Time To Protocol Header Checksum
Live
Source Address Source Address

Destination Address

IP Options

Destination Address

Figure 3.3: IPv4 and IPv6 header.

The DS field consists of eight bits. Currently, the first six bits of the DS field are used as
a DiffServ code point (DSCP) to select the PHB for packets at each node. This code
point is the key input for mapping the packet into a PHB. This mapping is done at each
of the nodes along the packet’s path. The last two bits designate currently unused (CU)
bits, which are ignored by differentiated services-compliant nodes when determining the

per-hop behavior to apply to a received packet. CU bits are reserved for future use.

33

CHAPTER 3 THE DIFFSERV MODEL

Bits 0L il i ‘ W e

DS Field

\ 2

Y
| Class S;le_cttor Code Currently
| oin Unused
L J (CL)

Y
Differentiated Service Code Point (DSCP)

Figure 3.4: DS field.

In the DSCP value notation, which is showed by Figure 3.4, the six-bit wide DSCP is

unstructured. When mapping the DSCP, the whole six-bit DSCP pattern must be used in

the comparison. There are some requirements that the DSCP to PHB mapping must

fulfill (Nichols et al, 1998a):

The DSCP mapping must be configurable, i.e. the logical connection must be

such that it can be configured later on to adapt other mappings.

« There must be a configurable mapping table or similar to support multiple DSCP

to PHB mappings.
« Recommended and unique DSCP to PHB mappings should be supported.

When there is an unrecognized DSCP, it must be treated according to a default

PHB.

If DSCP to PHB mappings are not as recommended, there must be a re-marking

procedure at the DS domain’s boundary ingress nodes. This re-marking procedure

34

CHAPTER 3 THE DIFFSERV MODEL

basically allows the use of a DSCP code for other purposes in the DS domain, but

requires that the re-marking be done also in the boundary egress node.

3.2 Traffic Classification and Conditioning
Traffic classification and conditioning is usually done at the ingress router of a network.
The Traffic Conditioning Agreement (TCA) specifies the classification and conditioning

rules, which are derived from the Service Level Agreement (SLA).

The packet classification policy identifies the subset of traffic, which may receive a
differentiated service by being conditioned and/or mapped to one or more behavior
aggregates within the DS domain. In the meanwhile, Traffic conditioning performs
metering, shaping, policing and/or re-marking to ensure that the traffic entering the DS
domain conforms to the rules specified in the TCA, in accordance with the domain's
service provisioning policy. The extent of traffic conditioning required is dependent on

the specifics of the service offering, and may range from simple code point re-marking

to complex policing and shaping operations.

3.2.1 Traffic Classifiers

Packet classifiers select packets in a traffic stream based on the content of some portion
of the packet header. Classifiers are used to steer packets that matching some specified
rule to an element of a traffic conditioner for further processing. They must be
configured by some management procedure in accordance with the appropriate TCA and

authenticate the information which it uses to classify the packet. Every packet is

35

CHAPTER 3 THE DIFFSERV MODEL

classified to belong to one of the several classes. Generally there are two types of

classifiers (Black, 1998):

i) Behavior Aggregate (BA) Classifier
This is the simplest DiffServ classifier. It uses only the DiffServ Code Point

(DSCP) in a packet’s [P header to determine the logical output stream to which

the packet should be directed.

ii) Multi-Field (MF) Classifier

It classifies packets based on one Or more fields in the packet. A common type of

MF classifier classifies based on six fields from the IP and TCP or UDP headers.

The six fields designate destination address, source address, IP protocol, source

port, destination port and DSCP. However, it can also classify based on other

fields such as MAC address or other higher layer protocol fields.

3.2.2 Traffic Conditioners

Traffic conditioners perform various functions on the incoming packets based on the

associated traffic profiles. A traffic profile specifies the temporal properties (for example

transmission rate, burst size etc) of a traffic stream by using the notion of token bucket

hism. A traffic conditioner block which showed by Figure 3.5 may

or other mechar

contain the following four elements (Black, 1998):

36

CHAPTER 3 THE DIFFSERV MODEL

i) Meters

Traffic meters measure the temporal properties of the stream of packets selected
by a classifier against a traffic profile specified in a TCA. A meter passes state
information to marker and shaper/dropper to trigger a particular action for each

packet which is either in- or out-of-profile (to some extent).

ii) Markers

Packet markers set the DS field of a packet to a particular code point, adding the
marked packet to a particular DS behavior aggregate. A packet is said to have

“re-marked” when the marker changes its code point.

iii) Shapers
Shapers delay some or all of the packets in a traffic stream in order to bring the
stream into compliance with a traffic profile. Since a shaper usually has a finite-

size buffer, packets may be discarded if there is not sufficient buffer space to

hold the delayed packets.

iv) Droppers

Droppers discard some or all of the packets in a traffic stream in order to bring
the stream into compliance with a traffic profile. This process is known as
"policing" the stream.

Note that each traffic flow that go through the boundary node, only either

policing or shaping is performed as they are excluding each other (Nichols et al,

1998b).

37

CHAPTER 3 THE DIFFSERV MODEL

Trusted Marking P1
Meter
P1/P2 trusted
Packets Shaped
[:[: W]
Classifier Marker Shaper/Dropper e
APRRRAE DI e A VD A T 1

P2/P3 Dropped

Figure 3.5: DiffServ traffic conditioner block.

3.3 Per-Hop Behaviors

A per-hop behavior (PHB) is a description of the externally observable forwarding
behavior of a DS node applied to a particular DS behavior aggregate (Black, 1998). In
more concrete terms, a PHB refers to the packet scheduling, queuing, policing, or
shaping behavior of a node on any given packet belonging to a BA, and as configured by
an SLA or policy. There are four standard PHBs are available to construct a DiffServ-

enabled network.

3.3.1 Default PHB

A "default" PHB must be available in a DS-compliant node. This is the common, best-
effort forwarding behavior available in existing routers. When no other agreements are
in place, it is assumed that packets belong to this aggregate (Nichols et al, 1998a). A
reasonable implementation of this PHB would be a queuing discipline that sends packets
of this aggregate whenever the output link is not required to satisfy another PHB. A

mechanism in each node could be enforced to reserve some minimal resources (e.g,

38

CHAPTER 3 THE DIFFSERV MODEL

buffers and bandwidth) for Default behavior aggregates. This permits senders that are
not differentiated services-aware to continue to use the network in the same manner as

today.

The recommended code point for the Default PHB is the bit pattern “000000” (Nichols
et al, 1998a). Where a code point is not mapped to a standardized PHB, it should be
mapped to the Default PHB.A packet initially marked for the Default behavior may be
re-marked with another code point as it passes a boundary into a DS domain so that it

will be forwarded using a different PHB within that domain.

3.3.2 Class-Selector PHB

Class-Selector (CS) PHB’s objective is to preserve backward compatibility with the IP-
Precedence scheme (Cisco System, 2001). It is up to 8 class selectors as the DSCP
values of the form ‘xxx000°, where x is either 0 or 1 are defined (Nichols et al, 1998a).
These code points are called Class-Selector Code Points. Use of class selector should
yield at to least 2 independently forwarding classes. For example, if x>y, the router
should give a higher probability of timely forwarding to CS, packets than CSy packets.
In this case, packets with CSy and CS5 should receive a better treatment than best-effort

traffic.

3.3.3 Expedited Forwarding PHB
The objectives of Expedited Forwarding (EF) PHB (Jacobson et al, 1999) are to build a

low loss, low latency, low jitter, assured bandwidth, end-to-end service through DS

39

CHAPTER 3 THE DIFFSERV MODEL

domains. Since loss, latency and jitter are all due to the queues traffic experiences while
transiting the network, therefore providing low loss, latency and jitter for some traffic
aggregate means ensuring that the aggregate sees no or very small queues. The EF PHB

provides the first part of the service. The network boundary traffic conditioners

described in section before provide the second part.

The EF PHB is defined as a forwarding treatment for a particular DiffServ aggregate
where the departure rate of the aggregate's packets from any DiffServ node must equal
or exceed a configurable rate (Jacobson et al, 1999). The EF traffic should serve at
departure rate independent of the intensity of any other traffic through the node. The
network administrator should be able to configure the minimum rate. The recommended

code point for EF PHB is 101110 (Jacobson et al, 1999).

A few scheduling and queuing mechanisms can be employed to deliver and implement
the EF PHB forwarding behavior. A simple priority queue will give the appropriate
behavior as long as there is no higher priority queue that could preempt the EF for more
than a packet time at the configured rate. It's also possible to use a single queue in a
group of queues serviced by a weighted round robin scheduler where the share of the

output bandwidth assigned to the EF queue is equal to the configured rate.

3.3.4 Assured Forwarding PHB
The objective of Assured Forwarding (AF) PHB (Heinanen et al, 1999) is to offer

different levels of forwarding assurances for IP packets received from a customer DS

40

CHAPTER 3 THE DIFFSERV MODEL

domain. There are 4 defined AF classes where each AF class is in each DS node

allocated a certain amount of forwarding resources (buffer space and bandwidth).

Each of the AF class IP packets will be marked with one of three possible drop
precedence values. An IP packet that belongs to an AF class x and has drop precedence
y is marked with the AF code point AFxy, where 1 <= x <=4 and 1 <= y <= 3. The
format of AF code point is “xxxyy0” (Heinanen et al, 1999). The recommended code

points for AF PHBs are depicted in Table 3.1.

Figure 3.6 gives a clearer picture about each AF class and their different drop
precedence. When congestion occurred, the drop precedence of a packet will be used to
determine the relative importance of the packet within the AF class. Always, a congested
DS node will try to protect packets with a lower drop precedence value from being lost

by preferably discarding packets with a higher drop precedence value.

4]

CHAPTER 3 THE DIFFSERV MODEL

AF PHB
l
AF Class 1 AF Class 2 AF Class 3 AF Class 4
Drop | Drop | Drop Drop | Drop | Drop Drop | Drop | Drop Drop | Drop | Drop
Level | Level | Level Level | Level | Level Level | Level | Level Level | Level | Level
1 2 3 1 2 3 1 2 3 1 2 3

Figure 3.6: The break down of AF PHBs with different drop precedence.

Table 3.1: AF recommended code point with different drop precedence.

Drop Class 1 Class 2 Class 3 Class 4
Precedence

Low Drop 001010 010010 011010 100010
Precedence (AF11) (AF21) (AF31) (AF41)
Medium Drop 001100 010100 011100 100100
Precedence (AF12) (AF22) (AF32) (AF42)
High Drop 001110 010110 011110 100110
Precedence (AF13) (AF23) (AF33) (AF43)

3.4 DiffServ Router

There are several ways for a router to implement differing service, but the most

important mechanisms are scheduling and queue management. Both become significant,

when the routers are subject to transient congestion, as they often are in the current

Internet. During congestion, the router has more packets destined to a particular output

port than it is able to forward. This means that the router has to buffer some of the

42

CHAPTER 3 THE DIFFSERV MODEL

packets. If the congestion period is long enough, the buffers may become full and some

of the packets have to be discarded.

There are two types of routers to be implemented: core router and edge router. Some of
the articles will refer the core router as boundary or interior router. An edge router
connects the local domain to neighboring domains. The task of a core router is simpler
than an edge router. It is edge routers’ task to check and enforce that traffic crossing
domain boundaries conforms to the existing SLAs. The notions of core and edge router

are illustrated in figure below.

Diffserv Domain

Edge Router Core Router

Figure 3.7: Routers in a DiffServ domain.

Core router is responsible to (Pieda et al, 2000):
* Examine incoming packets for the code point marking done on the packet by the

edge routers.

43

CHAPTER 3 THE DIFFSERV MODEL

+ Forward incoming packets according to their markings (core routers provide a

reaction to the marking done by edge routers.)

Edge router responsible to (Pieda et al, 2000):
* Examine incoming packets and classify them according to policy specified by the
network administrator.
* Mark packets with a code point that reflects the desired level of service.
* Ensure that user traffic adheres to its policy specifications, by shaping and

policing traffic.

Diffserv Domain

bl-.

Edge Core Edge
Router Router Router

Figure 3.8: Packet forwarding path inside a DS domain.

Figure 3.8 illustrates the process that packets go through inside a router. Packets arrive
from an incoming interface are processed and eventually forwarded through an outgoing
interface. In this architecture, policing is implemented in the incoming interface while

shaping is implemented in the outgoing interface. Once packets arrive at the kernel, they

44

CHAPTER 3 THE DIFFSERV MODEL

go through a classifier that categorizes them according to the value of the DS field in the
IP header. For example, if the packet is an EF packet, it is passed to the policing module.
Otherwise, it is immediately given to the forwarding module. The specification of the EF
behavior dictates that EF packets should be given priority at the outgoing interface over
best-effort (BE) packets. Moreover, the amount of EF traffic must be shaped according
to the existing SLA at the domain boundaries. The difference between edge routers and
core routers is that for edge routers policing and shaping parameters are configured by
the domain's Bandwidth Broker, while for core routers these parameters are statically

configured.

3.5 Queuing and Scheduling

The most important mechanisms for a router to implement differing service are queuing
and scheduling management. During congestion, the router has more packets destined to
a particular output port than it is able to forward. This means that the router has to buffer
some of the packets. If the congestion period is long enough, the buffers may become
full 'and some of the packets have to be discarded. The task of the queuing and
scheduling is to determine which packet will be transmitted to the next output link and

decide which packet/packets will be dropped when the buffer overflows.

The routers implement scheduling in a FIFO basis. This means the packets are always
transmitted in the same order they are received. Queue management is very simple.

When a packet arrives, it is placed into the tail of the queue based on the PHB values if

45

CHAPTER 3 THE DIFFSERV MODEL

there is enough space in the buffer. Otherwise, the packet is dropped. The algorithm is

called "drop-tail".

Figure 3.9 illustrates a simplified model of the output buffer of a DiffServ capable router.
Each output has a number of logical queues, and the router maps (classifies) each
incoming packet into one of the queues based on the PHB value. The queues are then
served according to a particular scheduling algorithm. The main idea is that some of the
queues get better service than others, thus packets with a PHB corresponding to a high-

priority queue usually experience less delay than the other packets.

FIFO Queues

Class A
WRR
Scheduler

Class B

Class C

Class D

Figure 3.9: Packet scheduler with four logical queues.

Weighted Round Robin (WRR) is used as the scheduling algorithms. WRR is a method
used to guarantee a certain amount of bandwidth for each queue. WRR serves each
queue in a round-robin fashion, and for each turn, a number of bits corresponding to the
queue's weight are "pulled out" from the queue. The queues with higher weights are

served more frequently by the scheduler. Thus the link capacity is divided according to

46

CHAPTER 3 THE DIFFSERV MODEL

the weights as in WFQ. In a worst-case situation, a packet arrives to a queue just after
the queues turn. In that case, the maximum queuing delay will be the sum of the weights
of all other queues. It is simple to implement (one loop in software). This may become a

deciding factor, if the link speeds increase faster than the pure processing power does.

When the buffer space in a router runs out, some packets necessarily have to be dropped.
It does not matter, whether the router is input or output buffered, or whether the ports

have shared or individual buffer spaces.

In DiffServ the idea is that the dropping decisions take the PHB values into account.
Different PHBs can be treated as different drop preferences. The usual mechanism is
that the router constantly measures the length of its queues (buffer occupancy level) and

sets dropping thresholds based on the measurements.

For example, if the queue length is below /, all packets are allowed into the queue. If the
queue length is above /, only packets with PHB values A, B, C and D are allowed to the
queue. Other packets are dropped. If the length exceeds 2/, PHB A is the only one which
can get in. If the router offers several logical queues on the interface (as explained in the
previous section), the queue length means the total length of all queues on that interface.
This means that delay and drop preferences are independent from each other

(orthogonal): high delay priority PHB can have either low or high drop preference.

47

CHAPTER 4 SYSTEM ANALYSIS

CHAPTER 4 SYSTEM ANALYSIS

System analysis is carried out to determine what the best for the system to be developed
is. To ensure the system is built in the most efficient way, a set of steps is followed to

help to understand the system and its specifications before develop the system.

4.1 Simulation Approach

In the context of a network simulator, there are two approaches to modeling. There two

approaches are analytical modeling and discrete event modeling.

4.1.1 Analytical Modeling

Analytical modeling is a powerful tool that can offer accurate performance analysis at a
fraction of the cost of a benchmark. Analytical models are mathematical representations
of a particular computer system. Queuing theory is used (o define the relationships
between various resources and their queues. These algorithms are populated
(parameterized) using measurements taken from a running system. Once the model is
built, parameters can be changed to represent possible changes to the running system.

The model can accurately project the impact of these changes. The main disadvantage of

analytical models is over simplistic view of the network and their inability to simulate

the dynamic nature of a computer network (Lim, 2001).

4.1.2 Discrete Event Modeling

A discrete event system is a process characterized by sequence of events. In particular, a

change in a system state of a process is precipitated by the occurrence of an action or

48

CHAPTER 4 SYSTEM ANALYSIS

event, not merely by the passage of time. This approach is more accurate but it requires
more modeling time in developing the system (Lim, 2001). Besides that, it need more

time in processing the real world objects.

4.1.3 Simulation Approach Choice
For simulation approach, discrete event modeling will be choosing as it replicates the
real world objects. Moreover, the analytical modeling does not able to simulate the

dynamic nature of a computer network.

4.2 Programming Approach
There are several widely used programming approaches to develop a network simulator.
These programming approaches include procedural approach, structured approach and

object oriented approach which will be discussed in this section.

4.2.1 Procedural Programming Approach

In procedural approach, the program codes are placed into blocks that are referred as
procedures or functions. A function or procedure is a relatively simple program that is
called by other programs and returns a value to the program that called it. With the use
of procedural approach, the task was broken down into separate blocks, in which
separate blocks would perform separate tasks. Computer languages like Pascal, C and

FORTRAN are examples of procedural programming languages.

49

CHAPTER 4 SYSTEM ANALYSIS

4.2.2 Structured Programming Approach

Structured programming approach adopted the idea of divide and conquers. A computer
program can be thought of as a set of tasks. Any task that is too complex to be described
simply would be broken down into a set of smaller component tasks, until the tasks were

sufficiently small and self-contained enough that they were easily understood.

Structured programming is a disciplined approach to writing programs that are clearer
than unstructured programs, easier to test, debug and modify. However, by the late

1980s, some of the deficiencies of structured programming had become all too clear.

4.2.3 Object Oriented Programming Approach

The programming challenge was seen as how to write the logic, not how to define the
data. Objects are essentially reusable software components that model items n the real
world. Software developers are discovering that using a modular, object-oriented design
and implementation approach can make software developments group much more
productive than is possible with previous popular programming techniques such as

structured programming. Object oriented programs are easier to understand.

Object Oriented Programming (OPP) approach groups everything as object. It gives
more natural and intuitive way to view the programming process by modeling real world
objects, their attributes and behaviors. OPP models communications between objects via

messages.

50

CHAPTER 4 SYSTEM ANALYSIS

One of the importance features of OPP is data encapsulation. OPP performs
encapsulation data and method into packages called objects. This could hide
unimportant implementation details from other objects, which provides modularity as
the source code for an object can be written and maintained independently of the source

code for those objects.

Another important feature of OPP is the concept of inheritance where newly created
classes of objects inherit the characteristic of the existing classes, yet contain unique

characteristics of their own.

Besides that, OPP’s polymorphism enable programmer to write programs in a general
fashion to handle a wide variety of existing yet-to-be-specified related classes. It makes
developers easy to add new capability to a system. There are a few benefits of OPP

which are listed in Table 4.1.

51

CHAPTER 4 SYSTEM ANALYSIS

Table 4.1: Benefits of using OOP approach.

Benefits Description

Extensibility New features can be added to the system where changes on new

objects can be done by modification of existing objects.

Maintainability | Maintenance and modification of objects can be done individually

Reusability Objects that are used in a system can also be used in another newly

built system with little or no changes.

Simplicity It is simple and less complex using the OOP approach while building
programs, which attempts to model the objects interactions of the real
world. Any changes are easy to modify with no much affect within the

entire system.

Modularity Objects within the program are individual separate entities, the internal
workings of which are isolated and de-coupled from other objects in
the system. This solves the problem of coupling in procedural

programming approach.

4.2.4 Programming Approach Choice
After making the analysis on several approaches, the object oriented programming

approach will be used for this project due to its benefits mentioned before.

4.3 Programming Language
It is very important to use an appropriate type of programming language in building any
application programs and simulators. Thus, it is a need to consider the advantages and

disadvantages of several programming languages here.

-

CHAPTER 4 SYSTEM ANALYSIS

43.1 C++
C++ evolved from C, which evolved from two precious programming languages, BCPL

and B. BCPL, was developed in 1967 by Martin Richards as a language for writing

operating system software and compilers.

C++ provides a collection of predefined classes along with the possibility of user
defined classes. The classes of C++ are data types, which can be instantiated any number

of times. Such an instantiation in C++ are merely object or data declarations. Classes can

name one or more parent classes, providing inheritance and multiple inheritances,

respectively. Classes inherit the data members and member functions of the parent class

that are specified to be inherited.

Dynamic binding in C++ is provided by virtual class functions. A pointer to an object of

class A can also point to an overloaded virtual function, the function of the current type

is chosen dynamically. Both function and classes can be template which means that they

can be parameterized.

One of the factors make C++ became a popular language is the availability of good and

inexpensive compilers. Another factor in favor of the popularity of C++ is that it is

almost completely downward compatible with C and in most implementations 1t 1S

possible to link C++ code with C code. Besides that, programming is now intensely

interested in object oriented programming approach.

53

CHAPTER 4 SYSTEM ANALYSIS

However, C++ is a large and complex language. It latterly suffer drawbacks similar

some other complex language. It inherited most of the insecurities which make it less

safe than other languages such as Java. To write large program in C++ was difficult and

the results of trying are described as “spaghetti code”. Many of the object oriented

features of C++ have been introduced to address this problem.

4.3.2 Java

Java was developed by Sun Microsystems. Sun formally announced Java at a major
conference in May 1995. Now Java is used to create Web Pages with dynamic and
interactive content, to develop large scale enterprise applications, to enhance the
functionality of World Wide Web servers, to provide applications for consumer devices
and for many other purposes. The important Java features that make it an attractive

programming language are listed in Table 4.2.

Table 4.2: Features of Java programming language.

Features Description
Object Oriented Even though Java has the look and feel of C++, it is a wholly

independent language which has been designed to be object-
oriented from the ground up. In object-oriented programming
(OOP), data is treated as objects to which methods are applied.
Java's basic execution unit is the class. Advantages of OOP
include: reusability of code, extensibility and dynamic

applications.

Familiarity And Java was developed by taking the best points from other

54

CHAPTER 4

SYSTEM ANALYSIS

@mple

programming languages, primarily C and C++. Therefore, it
utilizes algorithms and methodologies that are already proven.
Error prone tasks such as pointers and memory management
have either been eliminated or are handled by the Java
environment automatically rather than by the programmer.
Since Java is primarily a derivative of C++ which most

programmers are conversant with, it implies that Java has a

familiar feel rendering it easy to use.

Secure

The Java language has built-in capabilities to ensure that
violations of security do not occur. Because Java does not use
pointers to directly reference memory locations, as is
prevalent in C and C++, Java has a great deal of control
over the code that exists within the Java environment. Sun
Microsystems will soon be adding another dimension 10 the
security of Java. They are currently working on a public-key

encryption system to allow Java applications to be stored and

transmitted over the Internet in a secure encrypted form.

Interpreted

When Java code is compiled, the compiler outputs the Java

Byte code which is an executable for the Java Virtual Machine.

The Java Virtual Machine does not exist physically but is the

specification for a hypothetical processor that can run Java

code. The byte code is then run through a Java interpreter on

any given platform that has the interpreter ported to it. The

interpreter converts the code to the target hardware and

executes it.

Robust

The Java objects can contain no references to data external to

themselves or other known objects. This ensures that an

instruction cannot contain the address of data storage in

another application or in the operating system itself, either of

55

CHAPTER 4

SYSTEM ANALYSIS

which would cause the program and perhaps the operating

system itself to terminate or "crash". The Java virtual machine

makes a number of checks on each object to ensure integrity.

Distributed

Commonly used Internet protocols such as HTTP and FTP as
well as calls for network access are built into Java. Internet
programmers can call on the functions through the supplied
libraries and be able to access files on the Internet as easily as

writing to a local file system.

Architecturally
Neutral

The Java compiler compiles source code to a stage which is
intermediate between source and native machine code. This
intermediate stage is known as the byte code, which is neutral.
The byte code conforms to the specification of a hypothetical
machine called the Java Virtual Machine and can be efficiently

converted into native code for a particular processor.

Portable and platform-

independent

By porting an interpreter for the Java Virtual Machine to any
computer hardware/operating system, one is assured that all
code compiled for it will run on that system. This forms the
basis for Java's portability. Another feature which Java
employs in order to guarantee portability is by creating a single
standard for data sizes irrespective of processor or operating

system platforms.

Multithreading

Multithreading is the ability of an application to execute more
than one task (thread) at the same time. Java is able to use the
idle time to perform the necessary garbage cleanup and general

system maintenance that renders traditional interpreters slow in

executing applications.

Dynamic

During the execution of a program, Java can dynamically load

classes that it requires either from the local hard drive, from

56

CHAPTER 4 SYSTEM ANALYSIS

another computer on the local area network or from a computer

somewhere on the Internet.

4.3.3 Programming Language Choice

The programming language used to develop this simulator is Java. The main reason to
choose Java for the development of simulator is that it support multithreading. This
feature enables the simulator to perform a few tasks at the same time. It does not contain

any additional features added like Visual J++ that only can be supported by Microsoft

software.

4.4 Software Selection

Using the right software tools will help in developing a perfect system. The following

sections consider the features of using JBuilder and JCreator in order to choose a right

tool.

4.4.1 JBuilder

JBuilder is a group of highly productive tools for creating high performance and
platform independent application for Java. It is designed for all levels of development of
project, ranging from applets and applications that require networked database

connectivity to client/server and enterprise wide, distributed, multi-tier computing

solution.

The JBuilder IDE supports a variety of technologies including 100% Pure Java,

JavaBeans, Java2, Java SDK 1.2.2 and JFC/Swing. The additional technologies

57

CHAPTER 4 SYSTEM ANALYSIS

supported by JBuilder Professional edition are Servlets, Remote Method Invocation
(RMI), Java Database Connectivity (JDBC), Open Database Connectivity (ODBC) and
all major corporate database servers. The additional technologies supported by JBuilder
Enterprise are Enterprise JavaBeans, JavaServer Pages (JSP) and Common Object

Request Broker Architecture (CORBA).

JBuilder also provides developers with a flexible, open architecture that makes it easy to

incorporate new SDKSs, third party tools, add-ins, and JavaBeans components.

4.4.2 JCreator

JCreator is a powerful IDE for Java. JCreator provides the user with a wide range of
functionality such as project management, project templates, code-completion, debugger
interface, editor with syntax highlighting, wizards and a fully customizable user
interface. The features of JCreator are listed at the following:
* Manage projects with ease in the interface that is much like Microsoft® Visual
Studio®.
* Define your own color schemes for unlimited ways to organize your code.
¢ Unlike most IDEs, JCreator wraps around your existing projects and allows you
to use different JDK profiles.
« Get down to writing code quickly with our project templates.
« Our class browser makes viewing your project a breeze.

* Debug with an easy, intuitive interface. No need for silly DOS prompts!

58

CHAPTER 4 SYSTEM ANALYSIS

* Walk through our wizards and cut to the chase of writing your project, quickly
and easily.

* You don't have to spend valuable time on Class path configuration—JCreator
does it all for you.

* Customize our user interface the way that you like it.

* Set up your own run-time environments to run your application as an applet, in a
JUnit environment or in a DOS window.

* JCreator has lower system requirements, yet faster speed, than all those other

IDEs.

Unlike most IDEs, JCreator has two types of tools that can be configured. The first type
is the Java Development Kit (JDK) tools. IDK tools can be used to compile, debug, and
run the project. Users can attach these tools to their project using the Project Properties
dialog box. If no project is available, JCreator runs the default projects. Users can easily
create their own tools for calling the JDK applications, such as the following:

* Compiler

* Interpreter

* Applet viewer

* JDK Help files

The second type of tool is more general and allows users to extend the capabilities of
JCreator to fit their needs—by allowing users to call external functions and utilities.

Users can assign these general tools to the Wrench buttons located on the Tools toolbar

59

CHAPTER 4 SYSTEM ANALYSIS

in the workspace. These buttons display tool tips, such as User Tool 1, User Tool 2, and
5o forth. These tools can have many uses, such as the following:

* XML validator
* RMI compiler

* JAVA indent formatters

* Batch files

JCreator is written entirely in C-++, which makes it fast and efficient compared to the
Java based editors/IDEs. Professionally designed to meet windows interface guidelines,

ICreator users can expect a familiar and intuitive user interface.

4.4.3 Software Choice
JCreator will be chosen as the software tool for developing this project. It is because it

provides a wide range of functionalities. Moreover, the features compared to JBuilder

are also taking into consideration.

4.5 Hardware Consideration

As the networks technology grow the aspects of openness and transparency of the
software and hardware layer has reached a point that generally agreed upon. Thus, even
though the system evolves both hardware and software, the architecture of the hardware

is not that critical, Table 4.3 lists the minimum requirements of hardware.

60

CHAPTER 4 SYSTEM ANALYSIS

Table 4.3: Hardware requirements.

Main Machine/PC Requirement

Hard Disk Space 500 MB hard disk space recommended minimum

(includes space required during installation)

Memory 256 MB RAM recommended minimum

Processor Intel Pentium 11/233 MHz or higher (or compatible)

Operating System Microsoft Windows 2000 (SP2), XP, or NT 4.0 (SP6a)

Note: hardware above must be well installed and working properly in order to run the

system.

4.6 Architecture of UMJaNetSim

UMJaNetSim (Lim, 2001) is a flexible test bed for studying and evaluating the
performance of DiffServ without the expenses of building a real network. It uses Java
(OOP) programming approach and is a discrete event model simulator. It consists of a
central simulation engine with a centralized event manager. The simulation scenario
consists of a finite number of interconnected components (simulation objects), each with
a set of parameters (component properties). Simulation execution involves components
sending messages among each other. A message is sent by scheduling an event (to
happen some time later) for the target component. With these basic features, the
simulator can simulate virtually “anything” that can be modeled by a network of

components that send messages 10 one another. These concepts are adopted from the

NIST ATM/HFC Network Simulator.

61

CHAPTER 4

SYSTEM ANALYSIS

Simulation Engine

Event GUI 1/0
Management Management Tools
A A A
Y Y Y
Simulation Topology
Simulation Simulation
Component |~~~ Component

Figure 4.1: Overall architecture of UMJaNetSim.

As showed in Figure 4.1, simulation engine and simulation topology are the mainly 2

part of UMJaNetSim architecture. The simulation engine is the main controller of the

entire simulation that will handle event management task and GUI management task.

Besides that, it also handles the input/output process and provides many tools that help

the simulation process. The simulation topology consists of all the simulation objects

which are also referred to as simulation components. These simulation components are

the main subject of a simulation scenario and these simulation components typically

consists of a group of interconnected network components such as router, switch,

physical link and different types of source applications.

62

CHAPTER 4 SYSTEM ANALYSIS

4.6.1 Event Management

The major object of the entire application is JavaSim (Lim, 2001) object, which itself

represents the simulation engine. The JavaSim object manages an event queue, an event

scheduler, and a simulation clock. Typically, the simulation engine interacts with the

simulation topology (consists of all the simulation components) through two operations:

> A simulation component schedules an event for a target component (can be the
source component itself) to be happen at a specific time using the enqueue
operation.

: The simulation engine invokes the event handler of the target component when

that specific time is reached. The target component will react to the event

according to its behavior.

Figure 4.2 shows the event management architecture of UMJaNetSim. The event queue
is actual a java.util.List object consists of all the scheduled events in the form of
SimEvent objects. The events are sorted by the event-firing time. The event scheduler
always fetches and removes the first event in the event queue, and fires the event by

invoking the event handler of the target component.

63

CHAPTER 4

SYSTEM ANALYSIS

Manage

Simulation Engine
(JavaSim)

Manage

A

Y

Simulation Component
(SimComponent)

Event Queue (A |« ~
list of SimEvent) |-

-
Rl

4

(SimComponent)

A

Simulation Clock
(SimClock)

Invoke
\ Y
-

I~
- -
-

/ A
Invoke

Event Scheduler

A

Figure 4.2: Event management architecture.

In a discrete event type of simulation, the simulation time is an important concept. The

UMJaNetSim uses an asynchronous approach of the discrete event model, where any

event can happen at any time, up to the precision allowed by the granularity of the

simulation clock. The simulation time in the UMJaNetSim is based on "ticks". The

duration of a tick is configurable in the simulator. By default, a tick is equivalent to 10

nanoseconds. The SimClock object is the global time reference used by every

component in the simulation and managed by the simulation engine. The SimClock

object also provides helper methods for the conversion between real time and the tick.

64

CHAPTER 4 SYSTEM ANALYSIS

4.6.2 GUI Management

GUI management (Lim, 2001) involves drawing the viewing area, managing various on-
screen windows (or dialog boxes), and handling user inputs (e.g. menu commands). The
JavaSim object is the overall controller for GUI management. The detail task of drawing
out the topology view of the simulation components is handled by a helper object called
SimPanel. The SimPanel keeps track of the latest set of simulation components and the
interconnection among the components in order to present the simulation topology
visually to the user. It also handles direct component manipulation by users such as

positioning of the components. Figure 4.3 illustrates GUI management structure of

UMJaNetSim.

Simulation
> Engine

(JavaSim)
A
Y

8 GUI Helper
User Commands b (SimPanel)

Y Y Y
Simulation s, Parameter .
Topology View [™ Dialogs P Meter Dialogs
Y \J
Visible Area Custom Dialogs Custom Dialogs

Figure 4.3: GUI management structure.

65

CHAPTER 4 SYSTEM ANALYSIS

4.6.3 Simulation Components

The primary simulation objects in the UMJaNetSim are called simulation components
(Lim, 2001), where each is represented by the object SimComponent. The
SimComponent is a well defined base object with all the necessary interfaces that enable
the interaction between the simulation engine and the component. Actual simulation
components all inherent the properties and methods of this base object. The default
interaction with the simulation engine (e.g. the component graphical image) can be
easily modified by overriding the proper methods in the SimComponent object. With
this, the component designer needs not concerned with the issues of "talking" to the
simulation engine, instead, the focus is on the design of the proper behaviors of the

components to archive the simulation objectives (Lim, 2001).

In order to allow configuration of component properties and display of simulation
outputs, a SimComponent must expose a set of external parameters. Each of these
parameters is an object derived from a base object called SimParameter. The
SimParameter object has well defined interfaces which the simulation engine can

interact with it.

An event handler in every simulation component which is invoked by the event
scheduler in order to fire an event is in fact simply a well defined method (action()) in
the SimComponent that accepts a SimEvent object as its parameter. The SimEvent
object has complete description of an event including the event ID, the source

component, and the optional parameters that come with the event. All components

66

CHAPTER 4 SYSTEM ANALYSIS

should override the action() method in order to react to events. All interactions between

simulation components are achieved through the sending of messages in the form of a

SimEvent.

4.6.4 UMJaNetSim API

The JavaSim object is the main object of the simulator. It keeps a list of all the
network components, which are the descendents of SimComponent, and a list (a queue)
of all events that in the form of SimEvent. Every component contains a set of
parameters, which inherit SimParameter. All other classes are mostly helpers that

provide certain services such as time service, logging and meter display.

4.6.4.1 JavaSim
JavaSim object is the main object of the simulator. It keeps a list of all the network

components and a list of all events. Each component contains a set of parameters.

4.6.4.2 SimClock

Components send each other events in order to communicate and send cells through the
network. The software contains an event manager, which provides a general facility to
schedule and send, or fire an event. An event queue is maintained in which events are
kept sorted by time. To fire an event, the first event in the queue is removed, the global

time is set to the time of that event and action scheduled to take place is undertaken.

67

CHAPTER 4 SYSTEM ANALYSIS

Events can be scheduled at the current time or at any time in the future. Scheduling
events for the past is considered illogical. Events scheduled at the same time are not
guaranteed to fire in any particular order. Simulator time is maintained by the event
manager in units of ticks. The time is maintained as an unsigned 32 bits value. The
simulator time represented by one tick can be changed by software modification, but nor

by the simulator user. It provides a set of time translation functions for normal

translation between tick and actual time.

4.6.4.3 SimEvent

Each SimComponent communicates with each other by enqueuing SimEvent for the
target component. For example, when component A wants tp send a packet to
component B, component A creates a SimEvent that specifies B as its destination, and
enqueue the event. The SimEvent object also contains a time so that this event is fired at

exactly the specified time. Component B will then be able to react to the event

accordingly.

4.6.44 SimComponent

This is a very important class to understand in order to develop new components in the
simulator. Each network component in the simulator must inherit SimComponent. The
SimComponent class itself should not be instantiated because it only provides the
skeleton for an actual component. A new component should extends SimComponent and

override its various methods in order to provide meaningful operations for the

component.

68

CHAPTER 4 SYSTEM ANALYSIS

4.6.4.5 SimParameter

Every SimComponent can have internal parameters or external parameters. All external
parameters must inherit SimParameter. By extending SumParameter, one obtains
parameter logging and meter display features automatically. Obviously, SimParamInt,
SimParamDouble, SimParamBool, and SimParamString objects provide support for
integer, double, boolean and string parameters. Other types of parameters can be created

by extending SimParameter accordingly.

4.7 Requirement Analysis

Requirement analysis is an important method to enable the system engineer to specify
software elements and establishes design constraints that software must meet.
Requirement analysis can be divided into functional requirements and non-functional
requirements. The following will discuss in detail about the functional and non-

functional requirement.

4.7.1 Functional Requirements
Functional Requirements describe functions and features that the system should provide
for the users. The system is considered incomplete if any of the necessary functions are

not included. The functional requirements for this project are listed below.

69

CHAPTER 4 SYSTEM ANALYSIS

Graphical User Interface (GUI)
It is a device for user, operating system and network simulator to communicate
to each other. To make this network simulator more attractive, the GUI must be

more users friendly.

Input System
Before the simulation runs, the system must be able to let user enter or select
values for certain fields. This is important in order to make sure the simulation

run under the desired configuration.

DiffServ Router

The router must be able to classify packets to in different PHBs which are being
implemented. After classifying, the packet should be scheduled according to the
WRR mechanism. The WRR should forward packets according to the weight of

each queue and the drop precedence of PHB.

Output System
The system will generate the output traffics by using the scheduling mechanism.
A GUI will be used to show how the simulation process is going on and the

performance of the particular network.

70

CHAPTER 4 SYSTEM ANALYSIS

4.7.2 Non-functional Requirements
In order to ensure the quality of the system produced, certain quality factors must be
conformed. Non-functional requirements are those constraints on the service or

functions offered by the system. The following non-functional requirements have been

considered for this project.

* Reliability
Systems will not produce any dangerous when it is used in a reasonable manner,
which mean in a manner that a typical user expects is normal. In other words,

reliability is referred to the expectation of a system to perform its intended

function accurately. Whenever a button is clicked, the system should be able to

execute that particular function or generate some messages to inform the user

about what is happening,.

* User friendly
This network simulator is designed based on the concept of user friendly which
means that user has the ability to use the program at the lowest possible of
getting confuse with the interface of this network simulator. The interface should

be design to suit need and not to the developer point of view.

* Efficiency
Efficiency is understood as the ability of a process procedure to be called or

accessed unlimitedly to produce similar performance outcomes at an acceptable

71

CHAPTER 4 SYSTEM ANALYSIS

or credible speed (Sommerwille, 2001). Even so, the efficiencies are referred to
the consumption of the local and remote machine memory and the bandwidth of

network usage during the run time. The lesser it uses, the higher effiencicy.

* Maintainability
System maintenance would require more effort if the system is not designed
according to good programming practices. Maintainability is the ease with which
a program can be corrected if an error is encountered, adapted if its environment
changes, or enhanced if the customer desires a change in requirements. As the to-
be-developed network simulator will be built by using object oriented concept, it
is strongly believed that bugs or system faults can be detected and fixed in the

shortest time. This is because object oriented design makes sure that each class

or object will only strictly handle one particular task or functionality.

72

CHAPTER 5 SYSTEM DESIGN

CHAPTER 5 SYSTEM DESIGN

The information collected during research phase and analysis phase is used to design the
system of network simulator. The simulation of the system is designed to allow various
network topologies being simulated including DiffServ network. The user interface is
designed to allow user to create the network topology while the output is designed to

allow the integration of DiffServ into the existing network simulator.

5.1 Router Architecture Design

The queue architecture designated the queuing model used in this simulation and WRR

algorithm used for scheduling cell at output port.

5.1.1 Queuing Model

Router is the component that routes cells over several virtual channel links. A local
routing table is provided for each router. This table contains a route number (that is read
from incoming cell structure and equivalent to the cell’s virtual channel identifier), a

next link entry, a next BTE entry, and so on.

73

CHAPTER 5

SYSTEM DESIGN

Receive cells

5 db
Put cell into link

Output Port

A

-

|

Schedule output
Demultiplex cells by WRR

A

L

Router

Looks in routing table
to determine where
the cell going to

Output [AFQ |
Queue
BEQ

Put cell into link

EFQ

AFQ

Output
Queue

Looks in routing table
to determine where
the cell going to

>
Link
................... ‘/
<..
Receive cells

Schedule output Demultiplex
cells by WRR

L

T

Output Port

Figure 5.1: Output port queuing model.

From Figure 5.1, the output port is one of the components of the router. Since router is

model as a thread, the processes of an output ports are controlled under a router. At first,

a cell arrives at the router from a physical link. After that, the router will look in its local

routing table to determine which outgoing link it should redirect the cell to. If the link

has an empty slot available, the router puts the cell on the link. Otherwise, the cell will

be demultiplex (for awaits transmission) into one of the different forwarding priority

queues such as EF queue or AF queue, depending on the type of service configured by

users. Cells in EF queue have priority over AF queue. That means it is only when the EF

queue is empty, then the cells in AF queue are sent to the link at schedule output port.

74

CHAPTER 5 SYSTEM DESIGN

The output queue size determines the available buffer space for each type of queue. If
any queue exceeds the set limit, cells are dropped and this is recorded as a percentage of

the total number of cells received by the router. Also, there is a per port cell drop

parameter recorded for each queue.

5.1.2 Scheduling Output Cells
Cells in queues will be scheduled from output port of router into physical links. For the
scope of this project, the WRR algorithm is used to decide cell from which queue will be

transmitted. However, real time traffics always have the priority over non real time

traffics for scheduling output cells.

For the implementation of DiffServ, the cells are classified into different PHBs which in
turn are demultiplex into different queues. In order to guarantee the services, each queue
is assigned different weight according to their priority of transmission. Scheduling is

worked in a round robin fashion whilst the cells with higher weight are transmitted first.

5.2 System Functionality Design

The system is designed to meet a set of functions to simulate the real network. These

functionalities are described in the following section.

5.2.1 Design of Demultiplex
Demultiplex is designed to accept a stream of cells destined to specific ports. It first

process the cells by identifies their cell types, then it forwards them to the respective

75

CHAPTER 5 SYSTEM DESIGN

signal queue according to their cell type, and lastly follow from this point of processing,

the Tail Drop Buffer Management function is executed.

5.2.2 Design of Queue

All of the queues in the DiffServ router will be simple FIFO discipline.

5.2.3 Design of Tail Drop Buffer Management

The Tail Drop function is implanted with the demultiplex code. This scheme is designed
5o that every queue at every port will be serviced by its own buffer management. Its
process begins as soon as demultiplex has identified the cell type. After that, the buffer
management scheme will take over. It determines whether this cell will be either
dropped or enqueued by comparing the current queue length with the queue capacity. If
the comparison is lesser, the cell is inserted to the location of queue at the pointer and
the queue pointer is incremented. Statistic of router such as the time of the cell’s entry,
and the total numbers of cells enqueued is recorded. However, if the comparison is to be

equal, the cell will be dropped and the statistic of router will be updated.

5.2.4 Design of Scheduler

The content if every queue is retrieved by a scheduler which is work based on WRR

algorithm. The scheduler will extract cells from the output queue to the available link.

76

CHAPTER 5 SYSTEM DESIGN

——

3.2.5 Design of Control Function
A control bar on the UMJaNetSim simulator consists of several buttons that is useful to
the processing of simulator. The buttons includes Start, Pause, Resume and Reset. The

digital Global Clock is also included in the control bar area. The function of each control

element is described in Table 5.1.

Table 5.1: Function of each control element in the control bar.

Button Function
Start Start the new simulation on the topology.
Pause Halt the simulation.

Resume | Resume the simulation after the simulation process is halted.

5.2.6 Design of Log File
The log file is to be developed to record the values of a parameter while the simulation is
running. All statements outputting variable data must be preceded with appropriate

literals, When a parameter is to be logged during the simulation, every new value of the

parameter with a corresponding time stamp will be saved in a log file.

5.3 Process Design
In order to run the simulator successfully, appropriate design of process flow is needed.

Therefore, relevant structure chart and flow chart will be presented in the following

Section,

77

CHAPTER 5 SYSTEM DESIGN

5.3.1 Component Creation

To create a network topology for simulation, the simulator must design to have a set of

network components. Figure 5.2 shows the designed components of UMJaNetSim.

—LTest Component 1 J
——LTest Component 2 j

‘—'[IP Router)
Router J——(RIP Router)
—{ Diffserv Router j
——L Ethernet Switch j
—L Switch }——(ATM Generic j
—(AmisR)
)

=
)

——(Testing J—

I

[Component Creation)—

—{ BTE Generic
——L IP BTE

BTE J——

— Link H Generic Link
——-[TCP Application
—L UDP Application
—{ Application }———{ UDP CBR

el A8 8 0 i 8 i 0 0 M

Figure 5.2: A set of network components in simulator.

78

CHAPTER 5 SYSTEM DESIGN

After getting the overview of network components, the process associated to those
components such as create new component, modify existing component and delete

existing component will be described using a flow chart as in Figure 5.3.

1 elect Process 3

2

‘ o ;
odify Delete
greate Nevz Existing Existing
omponen Component Component
Y 4
Enter New Change
Parameter Parameter
Verify
Cancel Cancel Cancel
New
OK Component o8 No changes oK Component
l Not Created l l not deleted
N
Com;;,'uent Chang:s Component
A save deleted

@)

Figure 5.3: Flow chart for network component.

79

CHAPTER 5 SYSTEM DESIGN

53.2 Flow of Cells
The flow of cells in router from the beginning (arrive at the router from a physical link)

until the end (cells are put on the link) is described using a flow chart as showed in

Figure 5.4.

Cell arriving at the roJter from a physical link

Cell

Puts the cell into SpeedUpQ (for enforcing speed up factor)

Cell in SpeedUpQ with
FIFO order

If link does nol have empty slot

If an empty slot
available on link

Remove cell from
SpeedUpQ

Check PHB

PHB=1o0r2 PHB=3or4
Demultiplex into BEQ & Demultiplex into AFQ &
csQ EFQ
1 2 3 4
BE CS AF EF
(Schedule (Schedule (Schedule (Schedule
output cell) output cell) output cell) output cell)
l I I]

Puts the cell on the link

Figure 5.4: Flow chart for cells in router.

80

CHAPTER 5 SYSTEM DESIGN

5.4 Interface Design
The user interfaces are designed based on the concept of easy for user to understand and
used to create the network topology. The design of GUI is divided into 3 major parts:

i.) A network window used to display network topology. This window is used to
create the components, set parameters as well as show network activity while the
simulation is running.

ii.) A text window for messages which will prompt the user and provide a place for
the user to input text or parameter values.

iii.)A control panel which consists of a clock and a few control buttons (for example

Start, Pause, Resume and etc.).

81

CHAPTER 6 IMPLEMENTATION

CHAPTER 6 IMPLEMENTATION

This chapter will cover the implementation aspect that need to be done for the simulator.
It will provide a look into how the component is designed and implemented. During the
implementation phase, all the classes with important attributes will be shown together

with the explanation of these attributes as well as methods contained within the classes.

6.1 System Implementation

The routing process is start when a packet arriving at the router from a physical link. At
the next processing slot time, after some delay, the router looks in its routing table to
determine which outgoing link it should redirect the packet to and add the packet into

spq (a queue or buffer for incoming packets).

At the same time, a function will remove each packet from the spq in a FIFO basis
check that particular packet for which PHB the packet belongs to, and add it to the
particular PHB’s queue. Then, the packet will go through a schedule output process

depend on the user selects priority scheduling algorithm.

EF packets have priority over other PHBs; AF packets have priority over CS and BE
packets. Thus, before the simulation start, user needs to choose the priority scheduling
algorithm and initial suitable threshold values or the simulator will treat it as BE packets

(default setting).

82

CHAPTER 6 IMPLEMENTATION

6.2 Class Implementation

The implementation of the UMJaNetSim is the phase that transforms the theoretical into
the practical. This section will look in turn at the implementation of each of the object
classes that make up the DiffServ’s four PHBs, as well as some of the other object

classes that DiffServ’s PHBs makes use of.

6.2.1 IPPacket.java

IPPacket can be considering as one of the fundamental objects in the network simulator.
The TOS constants are used as DSCP information for each packet. It is very important
for routing process as the router needs to get the correct DSCP information for each
packet to schedule out it based on the different priorities of different PHBs. The default
value of TOS is set to Default PHB. This value will be changed if the user classified the

packet as a different PHB. The TOS coding is as follow:

//befault TOS value for packet
public static int TO0S=0;

//TOS constants for packet
public static final int TOS_EF
public static final int TOS_AF1
public static final int TOS_AF2
public static final int TOS_AF3
public static final int TOS_AF4
public static final int TOS_CS
public static final int TOS_BE

OxB8; //Expedited Forwarding
0x28; //Assured Forwarding
0x48; //Assured Forwarding
0x68; //Assured Forwarding
0x88; //Assured Forwarding
0x38; //Class selector
//befault (Best-Effort)

1
o

83

CHAPTER 6 IMPLEMENTATION

6.2.2 UDP_CBR.java

UDP_CBR has been chosen to be the application that will implement DiffServ in the

network simulator. UDP_CBR class generates UDP packets at a constant bit rate for the

duration of the simulation. The header of the file is as below:

public class UDP_CBR extends SimComponent implements

java.jo.serializable {
//User initial value

private
private
private
private
private
private
private
private
private
private
private
private
private

simparambouble cn_bit_rate;
simparamInt cn_start_time;
simparamInt cn_packet_size;
simparambouble cn_trans_size;
simparamInt cn_repeat;
simparamInt cn_delay;
simparamBool cn_random_size;
simparamBool cn_random_delay;
simparamBool cn_start_delay;
simparamBool cn_random_target;
simparamBool cn_name_seed;
simparamIP cn_destip;
simparamInt cn_destport;

//Display purposes

private
private

simparamInt cn_thisport = null;
simparamInt cn_conattempt;

//Diffserv PHB which can be selected by user

private

private
private
private
private
private

simparamIntTag cn_ds_class;

int cn_status;
long cn_cur_trans_size;
int cn_con_done;

long cn_num_sent;

int cn_this_ip = 0;

/*Display total packets sent out from this particular UDP_CBR

application */

private

simparamLong cn_total_sent;

84

CHAPTER 6 IMPLEMENTATION

private java.util.Random randgen;

//connection status constants
private static final int CON_NULL = 0;
private static final int CON_ACTIVE = 2;

//Declare the protocol used
private static final int MY_PROTOCOL

IPPacket.PRO_UDP;

//private events
private static final int MY_SENDCELL = SimProvider.EV_PRIVATE + 1;
private static final int MY_START = SimProvider.EV_PRIVATE + 2;

Some attributes used in the UDP_CBR application are user input parameters. These
attributes are used to specify the type of traffic that will be generated for the simulation.
There are also some attributes used for display purpose. These attributes can not be

modified or initial value by users at all.

When UDP_CBR is connected, the method performed in this class will setup
connections when the connection status is null. Then, the method will assign appropriate
TOS value to the packet based on the type of DiffServ PHB selected by user. After each
packet has been assigned to correct value, which indicates the PHB assigned by user, the
method in this class will send the packet out with its information including the TOS
value. To send all the information to the destination, an Object must be declared to carry
all the information. Then, the appropriate method will enqueue that particular Object
when the packet is being sent out. The total packet sends out will be updated each time
the packet being send out. The way to assign the TOS value to the particular TOS

constants declared in /PPacket.java is as follow:

85

CHAPTER 6 IMPLEMENTATION

switch(cn_ds_class.getvalue()) { //Get the type of PHB
//If the packet has been assigned to Best Effort
case 0: packet.TOS=IPPacket.TOS_BE;
break;

//1f the packet has been assigned to Class Selector
case 1: packet.TOS=IPPacket.TOS_CS;
break;

//1f the packet has been assigned to Assured Forwarding 1
case 2: packet.TOS=IPPacket.TOS_AF1;
break;

//1If the packet has been assigned to Assured Forwarding 2
case 3: packet.TOoS=IPPacket.TOS_AF2;
break;

//1If the packet has been assigned to Assured Forwarding 3
case 4: packet.TOS=IPPacket.TOS_AF3;
break;

//1f the packet has been assigned to Assured Forwarding 4
case 5: packet.TOoS=IPPacket.TOS_AF4;

break;
//1f the packet has been assigned to Expected Forwarding
case 6: packet.TOS=IPPacket.TOS_EF;

break;

The way to send out the packet information is as follow:

//Declare a new Object with 2 elements
object [] paramlist = new Object[2];
//assigned value to the first element
paramlist[0] = packet;

//assigned value to the second element
paramlist[1] = new Integer(packet.TOS);

//sending the packet out with packet identification and T0S value
theSim.enqueue(new Simgevent (SimProvider.EV_RECEIVE,this,

neighbor(0),thesim.now(),paramlist));

86

CHAPTER 6 IMPLEMENTATION

6.2.3 IPRouter.java

In order to implement DiffServ to the network simulator, /PRouter needed to be added
some attributes and methods. Some of the existing methods in the IPRouter also have
been modified to meet the need of DiffServ. Some attributes added to the IPRouter are
user input parameters while some are used for display purpose. The attributes that have

been added to IPRouter’s header file are as follow:

//User initial buffer size for each PHB queue
private SimParamInt sw_efqsize;

private SimParamInt [] sw_afqgsize;

private SimParamInt sw_csqsize;

private SimParamInt sw_beqsize;

//Display total frames sent out from source router for each PHB
protected SimParamInt COUuntEkEF;

protected SimParamInt CoOuntAFl;

protected SimParamInt COUntAF2;

protected SimParamInt COuntAF3;

protected SimParamInt COuntAF4;

protected SimParamInt countcCsS;

protected SimParamInt countBE;

//Display total frames received at destination router for each PHB
protected SimParamInt received_countgF;

protected SimParamInt received_countAFl;

protected SimParamInt received_countAF2;

protected SimParamInt received_countAF3;

protected SimParamInt received_countAF4;

protected SimParamInt received_countcCs;

protected SimParamInt received_countBE;

In order to send and receive packets, router must maintain buffer (queue) to keep every
packet that will be sent out or received. The number of buffer will depend on how the

router is going to be implemented. For this network simulator, the router will create one

87

CHAPTER 6 IMPLEMENTATION

in-queue and seven out-queues and maintains the queues during simulation. All the

buffer queues are created as follow:

protected class Port implements Serializable {

//Creates in-queue now
java.util.List spq = null; //Create a queue for all packets
int spg_size;

//Creates out-queue now

java.util.List efq = null; //Create a queue for EF packets
int efg_size;

AFQ [] afq = null; //Create a queue for AF packets
int afgindex = 0;

java.util.List csq = null; //Create a queue for CS packets
int csq_size;

java.util.List beq = null; //Create a queue for BE packets

int beqg_size;

There are two major parts in this class. The first part is to handle the overall send
functionality and the second part is to handle the receive functionality. Besides that,

router needs to keep track of source IP address for the packet forwarding usage.

To handle the send functionality, means send the packets received from application to
the link, the router need to perform a few methods in this class. Firstly, the action
method brings it to the sw_receive method when the router starts to receive packets.
Secondly, the packet goes to sw_my_receive method when the router checked out that it
was come from application. At this point, the method will fill in necessary information

for this packet. The sw_my_receive method is as follow:

88

CHAPTER 6 IMPLEMENTATION

protected void sw_my_receive(Simevent e) {

if(src.getcompclass().equals("Link™)) {
//perform necessary function here

}
else { //1p pPacket from applications

//Get the necessary parameters for packet
object [] params = (Object [])e.getParams();
IpPacket packet = (IPPacket)params[0];
packet.T0S = ((Integer)params[1]).intvalue();

packet.sourceIP=getMyIP();

//Then send for processing as usual
sw_receive_IP(packet,null);

Thirdly, the packet goes to sw_receive_IP method. Fourthly, the sw_receive_IP method
will forward the packet to send_etherframe method. The function of send_etherframe
method is to convert the packet to Ethernet frame. That means a new frame is being
created here and the new frame will be filled with necessary information including TOS
value of the packet. It is important for the frame to keep the TOS value along the way
because the value will be used for scheduling algorithm and the destination router will

need to use TOS value to check out which PHB’s frame it received.

Fifthly, sw_send_spq method adds the Ethernet frame to the in-queue, spg. This method
schedules a processing slot if spq is not empty. Also, it is important that the frame is sent
out with its TOS value. When the sw_proc_slot_time method is called, that particular
frame will be removed from spg. Here, the demultiplexing operations and buffer

management will be performed. The important functions of this method are as follow:

89

CHAPTER 6 IMPLEMENTATION

protected void sw_proc_slot_time(SimEvent e) {

//In order to implement DiffServ, user must disable RED

if(sw_red.getvalue() == true) { //whether using RED
}
else { //RED is disabled

//pPerform demultiplex operations here
if(frame.ds_type == IPPacket.TOS_EF) 4
//1f the EF queue is not full, add the frame else drop it

else if(frame.ds_type == IPPacket.TOS_AFl) {
//1f the AF1l queue is not full, add the frame else drop it

else if(frame.ds_type == IPPacket.TOS_AF2) {
//1f the AF2 queue is not full, add the frame else drop it

else if(frame.ds_type == IPPacket.TOS_AF3) {
//1f the AF3 queue is not full, add the frame else drop it

else if(frame.ds_type == IPPacket.TOS_AF4) {
//If the AF4 queue is not full, add the frame else drop it

else if(frame.ds_type == IPPacket.TOS_CS) {
//1f the ¢S queue is not full, add the frame else drop it

}
else { //if(frame.ds_type == IPPacket.TOS_BE)

//1f the BE queue is not full, add the frame else drop it
}

}

//Schedule next processing slot if needed

//output frame to Tink if possible

Lastly, the frame will be scheduled out to the link according the priority of different

IﬂlBsuﬁngVVRR1ncdunﬁmn.Thcnuﬂhodissduxhhngihnncasfonow:

90

CHAPTER 6 IMPLEMENTATION

protected void sw_schedule_output(Port voport) {

if(!voport.efq.isEmpty()) {
//Remove frame from this queue
//Updated total frames sent out

}
else if(!voport.afq[0].ptr.isEmpty()

|| !voport.afq[l].ptr.isEmpty()

|| !voport.afq[2].ptr.iseEmpty()

|| !voport.afq[3].ptr.isempty()) {
//Remove frame from this queue
//Updated total frames sent out

}
else if(!voport.csq.iseEmpty()) {

//Remove frame from this queue
//Updated total frames sent out

}
else { //Schedule BE frame
//Remove frame from this queue
//Updated total frames sent out
}

//Enqueue the frame to Tink with frame ID and Tos value

In order to handle the receive functionality, means receive the frames from the link, the
action method brings it to the sw_receive method when the router start to receive frames

from link. The method does the function as follow:

91

CHAPTER 6 IMPLEMENTATION

protected void sw_receive(SimEvent e) {
if(src.getCompClass().equals("Link")) {
//Updated total frames received (all PHBs' frames)
//Check out the type of PHB for the frame received
//Then updated the total frames received for that PHB
}

else {

//Process the frame received from application

6.2.4 EtherFrame.java

EtherFrame can also be considering as one of the fundamental objects in the network
simulator. The TOS constants are declared as DSCP information for each frame. It is
used to provide information about the type of PHB that particular frame belongs to when

a packet is being converted to a frame. The TOS coding is as follow:

//Default TOS value for frame
public static int ds_type=0;

//TO0S constants for frame

public static final int EF = OxBS; //Expedited Forwarding
public static final int AF1l = Ox28; //Assured Forwarding
public static final int AF2 = 0x48; //Assured Forwarding
public static final int AF3 = 0x68; //Assured Forwarding
public static final int AF4 = 0x88; //Assured Forwarding
public static final int €S = 0x38; //Class Selector

public static final int BE = 0; //befault (Best-effort)

92

CHAPTER 6 IMPLEMENTATION

6.2.5 GenericLink.java

GenericLink plays an important role in the simulator as it forwards frames from source
router to the destination router. From another point of view, this class is going to send
the bits along its way. As mentioned earlier, the TOS value needed by the destination
router to count the total frames received for each PHB. That means this class also
declares Object to get the necessary information when it received frames from source
router. After that, it will send the bits down to the destination router with TOS value so
that the destination router can updated the total frames received for each PHB. The

functions performed by this class’s receive method is as follow:

private void Tn_receive(SimEvent e) {

//Get all the object parameters

//For each GenericLink

//Create a new Object with 2 elements
//Assigned the first element as bits ID
//Assigned the second element as TOS value

//send it to the destination router with these information

93

CHAPTER 7 TESTING

CHAPTER 7 TESTING

Testing is done step by step to compare the simulation result by running the simulator
with different priority scheduling algorithm. The simulator could be tested by various

conditions in two parts which are component testing and system testing.

7.1 Component Testing
The purpose of the component testing is to ensure that parameters, attributes and

methods perform in every class is running without error during simulation. Most of the

testing is done by observing the output parameters generated during simulation.

7.1.1 UDP_CBR Testing

The test is performed to check whether this component is able to get the correct value of
the DiffServ class entered by user. Besides, it also check the correct TOS value assigned
when the packet is being sent to router. The System.out.println statement is used for

testing purpose as stated follow:

System.out.printin(“DiffServ Class: " + cn_ds_class.getValue());

System.out.printin(“TOS value: ” + param[1]);

7.1.2 UDP_CBR Testing Results
The tests are executed using all different DiffServ class. The correct values are expected
for the output from the additional debugging codes. Table 7.1 below shows the

consistent results of the testing,

94

CHAPTER 7 TESTING
Table 7.1: Testing results for UDP_CBR.
Test Condition Value Entered By User | Expected Output Output
1 | DiffServ Class | Best Effort 0 0
TOS value Best Effort 0 0
2 | DiffServ Class | Class Selector 1 1
TOS value Class Selector 56 56
3 | DiffServ Class | Assured Forwarding 1 2) 2
TOS value Assured Forwarding 1 136 136
4 | DiffServ Class | Assured Forwarding 2 3 3
TOS value Assured Forwarding 2 104 104
5 | DiffServ Class | Assured Forwarding 3 4 4
TOS value Assured Forwarding 3 72 7
6 | DiffServ Class | Assured Forwarding 4 5 5
TOS value Assured Forwarding 4 40 40
7 | DiffServ Class | Expected Forwarding 6 6
TOS value Expected Forwarding 184 184

95

CHAPTER 7 TESTING

7.1.3 IPRouter Testing

The test is performed to check whether this component is able to get the correct TOS
value entered by user when the received function is called. The total counts for frames
sent out and frames received also have been tested to ensure that the appropriate counter

is updated based on the TOS value. The System.out.printin statement is used for testing

purpose as stated follow:

*Check with this statement when received frames from links */

System.out.println(“TOS value: ” + frame.ds_type),

[*Check with this statement for all methods that may receive frames from application or
methods that may receive frames which is still in the process of scheduling out the router

kL
System.out.println(“TOS value: ” + IPPacket.TOS);

/*For the method sw_schedule_output, for each PHB, if the frame is scheduled out, the
statement will be printed and the total frames sent out should be updated once ¢/
J[For scheduling EF frame
System.out.println(“One EF frame has been scheduled out”);

System.out.printin(“Total EF frames sent out: " + countEF.getValue());
4]

//For scheduling AF1 frame
System.out.printin(“One AF1 frame has been scheduled out”);

System.out.printin(“Total AF1 frames sent out: ” + countAF1.getValue());

96

CHAPTER 7 TESTING

/[For scheduling AF2 frame
System.out.printin(“One AF2 frame has been scheduled out”);

System.out.printin(“Total AF2 frames sent out: ” + countAF2.getValue());

/[For scheduling AF3 frame
System.out.printin(“One AF3 frame has been scheduled out™);

System.out.printin(“Total AF3 frames sent out: " + countAF3.getValue());

//[For scheduling AF4 frame
System.out.printin(“One AF4 frame has been scheduled out”);

System.out.printin(“Total AF4 frames sent out: * + countAF4.getValue());

)

//[For scheduling CS frame
System.out.printin(“One CS frame has been scheduled out”);

System.out.printin(“Total CS frames sent out: ” + countCS.getValue());

/[For scheduling BE frame
System.out.printin(“One BE frame has been scheduled out”);

System.out.printin(“Total BE frames sent out: " + countBE.getValue());

97

CHAPTER 7 TESTING

/*Check the total frames received from link and total frames received for each PHB by

comparing the total frames scheduled out. The respective total should be the same value

g/
System.out.printin(“Total frames received: ”+sw_frames_received.getValue());
System.out.printin(“Total EF frames received: " +received_countEF.getValue());
System.out.printin(“Total AF1 frames received: " +received_countAF1.getValue());
System.out.printin(“Total AF2 frames received: " +received_countAF2.getValue());
System.out.printin(“Total AF3 frames received: " +received_countAF3.getValue());
System.out.printin(“Total AF4 frames received: " +received_countAF4.getValue());
System.out.printin(“Total CS frames received: " +received_countCS.getValue());

System.out.printin(“Total BE frames received: "+received _countBE.getValue());

7.1.4 IPRouter Testing Results
The tests are executed for a number of times. The correct values are expected for the
output from the additional debugging codes. Table 7.2 below shows the consistent

results of the testing.

98

BE frames sent

out is updated.

CHAPTER 7 TESTING
Table 7.2: Testing results for IPRouter.
Test Condition Value Entered Expected Output
By User Output

TOS value (frame received | Best Effort 0 0

from link)

TOS value for the relevant | Best Effort 0 0

methods (frame received from

application)

Total frames sent out Best Effort The statement | The statement
printed. ~ Total | printed. Total

BE frames sent

out is updated.

Compare total frames sent out | Best Effort The comparison | The comparison

with total frames received result is same. result is same.

TOS value (frame received | Assured 0 0

from link) Forwarding 1

TOS value for the relevant | Assured 0 0

methods (frame received from | Forwarding 1

application)

Total frames sent out Assured The statement | The statement

Forwarding 1 printed. Total | printed. Total

AF1 frames | AF1 frames
sent out is|sent out is
updated. updated.

Compare total frames sent out

with total frames received

Assured

Forwarding 1

The comparison

result is same.

The comparison

result is same.

99

with total frames received

Forwarding

result is same.

CHAPTER 7 TESTING
TOS value (frame received | Assured 0 0
from link) Forwarding 3
TOS value for the relevant | Assured 0 0
methods (frame received from | Forwarding 3
application)
Total frames sent out Assured The statement | The statement
Forwarding 3 printed. Total | printed. Total
AF3 frames | AF3 frames
sent out is|sent out is
updated. updated.
Compare total frames sent out | Assured The comparison | The comparison
with total frames received Forwarding 3 result is same. result is same.
TOS value (frame received | Expected 0 0
from link) Forwarding
TOS value for the relevant | Expected 0 0
methods (frame received from | Forwarding
application)
Total frames sent out Expected The statement | The statement
Forwarding printed. Total | printed. Total
EF frames sent | EF frames sent
out is updated. | out is updated.
Compare total frames sent out | Expected The comparison | The comparison

result is same.

100

CHAPTER 7 TESTING

7.2 System Testing

System testing is done by building a new testing topology to test the whole simulator to
ensure that it runs on the actual DiffServ environment. The topology showed in Figure

7.1 has been used for this testing session. In this topology, there are 2 IP routers, one

generic link and eight UDP CBR applications.

e —— OO AR P Ty Py PP S T pT—— -

& JaNetSim - Topology with 2Router
File Edit View Tools Window Help

connect Mode 00:00:00.000

Figure 7.1: Testing Topology.

Two different types of system testing are done, they are:

« Compare the priority scheduling for different PHBs when the congestion is not

happened.

e Compare the priority scheduling for different PHBs when the congestion is

happened.

101

CHAPTER 7

TESTING

7.2.1 Component Configurations

In order to thoroughly test the simulation regarding the priority scheduling for different

PHBs when the congestion is not happened during simulation, the necessary

configuration of components can be done as stated in Table 7.3. Those parameters that

are not showed in Table 7.3 have been set to get the default value. For the clearer

understanding, please refer 1o Appendix for the GUI (property dialogs) for each type of

components in the simulation topology.

Table 7.3: Component configurations when congestion is not happened.

Test Case | Component Parameter Configuration
Name
1 R1 [P address to Link1 1.0.0.1
R2 IP address to Link1 1.0.0.2
Appl Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Best Effort
Random destination Disabled
Destination 1P 1.0.0.2
?ppZ Bit rate 10.0

Start time

1000000

Number of bits to be sent

1.0

102

CHAPTER 7 YR

Repeat count 1
DiffServ Class Class Selector
Random destination Disabled
Destination IP 1.0.0.2

App3 Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.2

App4 Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Expected Forwarding
Random destination Disabled
Destination IP 1.0.0.2

App5 Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Best Effort

103

CHAPTER 7

TESTING

Random destination Disabled
Destination IP 1.0.0.1

Appb Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Class Selector
Random destination Disabled
Destination IP 1.0.0.1

App7 Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.1

App8 Bit rate 10.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1

DiffServ Class Expected Forwarding
Random destination Disabled
Destination IP 1.0.0.1

104

CHAPTER 7 TESTING

In order to thoroughly test the priority scheduling for different PHBs when the
congestion is happened during simulation, the necessary configuration of components

can be done as stated in Table 7.4. Those parameters that are not showed in Table 7.4

have been set to get the default value.

Table 7.4: Component configurations when congestion is happened.

Test Case | Component Parameter Configuration
Name
1 R1 Switching Speed 100

IP address to Link1 1.0.0.1

R2 Switching Speed 100
IP address to Link1 1.0.0.2

Link1 Link Speed 50.0

Appl Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0

Repeat count

1

DiffServ Class Best Effort
Random destination Disabled
Destination IP 1.0.0.2
App2 Bit rate 100.0
Start time 1000000

Number of bits to be sent

1.0

105

CHAPTER 7

TESTING

Repeat count

1

DiffServ Class Class Selector
Random destination Disabled
Destination IP 1.0.0.2

App3 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.2

App4 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Expected Forwarding
Random destination Disabled
Destination IP 1.0.0.2

AppS Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1

DiffServ Class

Best Effort

106

CHAPTER 7

TESTING

Random destination Disabled
Destination IP 1.0.0.1

Appb Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Class Selector
Random destination Disabled
Destination IP 1.0.0.1

App7 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.1

App8 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1

DiffServ Class

Expected Forwarding

Random destination

Disabled

Destination 1P

1.0.0.1

107

CHAPTER 7

TESTING

R1 Switching Speed 100

EF Q size, AF1 Q size, AF2 | 100

Q size, AF3 Q size, AF4 Q

size, CS Q size, BE Q size

IP address to Link1 1.0.0.1
R2 Switching Speed 100

EF Q size, AF1 Q size, AF2 | 100

Q size, AF3 Q size, AF4 Q

size, CS Q size, BE Q size

IP address to Link1 1.0.0.2
Link1 Link Speed 50.0
Appl Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class Best Effort

Random destination Disabled

Destination 1P 1.0.0.2
App2 Bit rate 100.0

Start time 1000000

Number of bits to be sent 1.0

Repeat count 1

DiffServ Class

Class Selector

Random destination

Disabled

108

CHAPTER 7

TESTING
Destination IP 1.0.0.2
App3 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.2
App4 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Expected Forwarding
Random destination Disabled
Destination IP 1.0.0.2
App5 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Best Effort
Random destination Disabled
Destination IP 1.0.0.1
Appb Bit rate 100.0

109

CHAPTER 7

TESTING
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1

DiffServ Class Class Selector
Random destination Disabled
Destination IP 1.0.0.1

App7 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1
DiffServ Class Assured Forwarding 1
Random destination Disabled
Destination IP 1.0.0.1

App8 Bit rate 100.0
Start time 1000000
Number of bits to be sent 1.0
Repeat count 1

DiffServ Class

Expected Forwarding

Random destination

Disabled

Destination IP

1.0.0.1

110

CHAPTER 7 TESTING

7.2.2 Simulation Results

The simulation results are divided into two major phases. Phase 1 is simulating the
network without any congestion while phase 2 is simulating the network with congestion.
The relation between the bit rates, switching speed and link speed plays very important
role. It may decide whether the network is congested or not. In order to ensure the

simulator runs properly, the application’s bit rate should not be greater than the

switching speed.

- To set the network traffic to be very smooth for the simulation, users just need to let the

switching speed to be very large as compare to link speed. In more concrete words, the

switching speed should be at least 2 times of link speed.

When the congestion is not happened, all the PHBs’ frames will seem to be scheduled
out and received at the same times. It is hard for us to notice there is a priority
scheduling algorithm. This is because when the link is able to afford the traffic load, the
buffer queues, which are used to keep frames, always empty. When the method in the
class wishes to schedule a low priority PHB’s frame, it will allow the frame to be

scheduled out as it found that all higher priority PHB’s queues are empty.

To set the simulation to be congested, configure the applications’ bit rates equals to
switching speed and the link speed should be less than switching speed at least 50%.

That means when switching speed is set to 100Mbits/s, the link speed should be

50Mbits/s or lower.

111

CHAPTER 7 TESTING

When the congestion i8 happened, the priority to schedule the frames becomes very clear.
It has proved that DiffServ can work well in the simulator. When the traffic is too heavy
while the buffer size is set until it is not able to keep incoming frames anymore, the

frames is dropped and the total frames dropped are updated.

The following discussed about the simulation results which have been done during
system testing:
i. Congestion not happened: Test case 1
« EF, AF1, CS and BE frames seems to be scheduled out with the same
priority.
« EF, AF1, CS and BE frames seems to be received at the destination router
with the same priority.
« The total frames scheduled out and total frames received for each PHB

can be consider same nearly all the time.

ii. Congestion happened: Test case 1

« Firstly, EF frames scheduled out. After finish scheduled out EF frames,
the AF1 frames take turns. Then the CS frame and lastly BE frames take
turns to schedule out.

« Firstly, EF frames received. After finish receiving EF frames, the AF1
frames take turns. Then the CS frame and lastly BE frames take turns to
be received by destination router,

« The priority scheduling is clear at all and no frames are being dropped.

iii. Congestion happened: Test case 2

112

CHAPTER 7 TESTING

e Firstly, EF frames scheduled out. After finish scheduled out EF frames,
the AF1 frames take turns. Then the CS frame and lastly BE frames take
turns to schedule out.

* Firstly, EF frames received. After finish receiving EF frames, the AF1
frames take turns. Then the CS frame and lastly BE frames take turns to
be received by destination router.

e The priority scheduling is clear at all.

« Frames which can not be scheduled out in time make the buffer queue
full. Incoming frames with the same PHB are being dropped until this

particular PHB frames are being scheduled out.

113

CHAPTER 8 CONCLUSION

CHAPTER 8 CONCLUSION

A lot of knowledge and experiences were gained throughout the development of the
simulator. The most valuable experience is to study and understand more detail into
DiffServ and WRR scheduling algorithm. All the problems encountered and experiences

gained during the development of this simulator should be very useful in my future

endeavors.

This thesis managed to achieve the overall project objectives and goals, i.e. development
| of object oriented and multithreading network simulator. This thesis is also able to
classify packets using 4 different PHBs and scheduling the packets with different
priority using WRR mechanism. Lastly, the following highlights system strengths,

system limitations, as well as the proposed future enhancements.

8.1 System Strengths
The system strengths are described as follow:
* The design of network simulator is user friendly and easy to use. The user can
easily add a component to the topology and simulate the network.
« The simulator is fully object-oriented whereby all the functions and modules are
built in class.
« The simulator is able to treat the traffic with different priority scheduling

algorithm. It is able to recognize different classification of packets.

114

CHAPTER 8 CONCLUSION

8.2

System Limitation

The system limitations are described as follow:

8.3

Functions of this simulator are not as many as the existing NS2 network
simulator,

This simulator is not able to send packets across more than one router as the
dynamic routing protocol is not completed.

Help File is very important in any applications. It is definitely a good strategy if
the help file is implementing in this simulatcr. Due to time constraints, this
simulator does not include a complete help file.

The GUI may not as attractive as the other programs.

Future Enhancements

Due to the limitation of this simulator, there are a few suggestions that may be useful for

future enhancement of this simulator listed as following:

It is hoped that this simulator can be added in more functions to simulate more
complex network traffics.

It is hoped that this simulator is extended to support dynamic routing protocol.

It is hoped that a complete and useful help file can be included in this simulator
to providc necessary information for those who may need it.

It is hope that the GUI can be enhanced so that it is more attractive. For example,

the GUI for graph could be presented to user as an interesting interface.

115

REFERENCES

REFERENCES

[1]

(2]

3]

[4]

[5]

[6]

Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z. and W. Weiss.

(December 1998). Architecture for Differentiated Services, RFC 2475.

Braden R., Clark D., Shenker S., (June 1994). Integrated Services in the Internet

Architecture: An Overview, RFC1633.

Braden R., Zhang L., Berson S., Herzog S. and Jamin S., (September 1997).

Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification,

RFC2205.

Callon, R., Doolan, P., Feldman, N., Fredette, G., Swallow, G. and Viswanathan,

A., (September 1999). A Framework for Multiprotocol Label Switching, Internet

Draft.

Cisco System, Inc., (2001). DiffServ — The Scalable End-to-End QoS Model.

White Paper.

Cisco Systems, Inc., (2003). Quality of Services Networking. Available from:

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/qos.pdf [Accessed 10

July 2003]

116

REFERENCES

[7)

8]

[°]

[10]

[11]

[12]

[13]

Davie, B., Charny A., Bennett J.C.R., Benson K., Boudec J.Y. Le, Courtney W.,
Davari S., Firoiu V., Stiliadis D., (March 2002). An Expedited Forwarding PHB

(Per-Hop Behavior), RFC3246.

Differentiated Services Working Group Charter, (3 February 2003).

Differentiated Services (DiffServ). Available from:

http://www.ietf.org/html.charters/OLD/DiffServ-charter.html [Accessed 3 July

2003].

Grossman, D., (April 2002). New Terminology and Clarifications for DiffServ,

RFC3260.

Heinanen, J., Baker, F., Weiss, W., Wroclawski, J., (June 1999). Assured

Forwarding PHB Group, RFC2597.

IP over ATM: Classical IP, NHRP, LANE, MPOA, PAR and I-PNNI. Available

from: http://www.cis.ohio-state.edu/~jain/cis788-97/ftp/ip over atm/index.htm

[Accessed 8 July 2003]

Jacobson, V., Nichols, K., Poduri, K., (June 1999). An Expedited Forwarding

PHB, RFC2598.

Lim, S.H., (2001). Traffic Engineering Enhancement to OSPF for IP QoS with

DiffServ and MPLS. Thesis (Degree). University of Malaya.

117

REFERENCES

[14]

[15]

[16]

[17]

[18]

[19]

Nicolas, C., (October 2000). Current Directions in the DiffServ World.

Department of Computer Science, University of Virginia.

Nichols, K., Blake, S., Baker, F. and D. Black. (December 1998). Definition of
the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, RFC

2474.

Nichols, K., Blake, S., (February, 1998). Differentiated Services Operational
Model and Definitions. Internet Draft. Available from:

http://ds.internic.net/internet-drafts/draft-nichols-dsopdf-00.txt [Accessed 2 July

2003].

Nichols, K., Jacobson, V., Zhang, L., (November 1997). A 2-Bit Differentiated
Services Architecture for the Internet. Internet Draft. Available from:

http://ds.internic.net/internet-drafts/draft-nichols-diff-svc-arch-00.txt [Accessed 2

July 2003].

Pieda, P., Ethridge, J., Baines, M., and F. Shallwani., (July 2000). A Network

Simulator Differentiated Services Implementation. Nortel Networks.

Rosen E., Viswanathan, A. and Callon, R., (January 2001). Multiprotocol Label

Switching Architecture, RFC3031.,

118

REFERENCES

[20]

[21]

[22]

[23]

[24]

Shenker S., Partridge C., Guerin R., (September 1997). Specification of

Guaranteed Quality of Service, RFC2212.

Tanenbaum, A.S., (1996). Computer Networks, 3rd Edition. Prentice-Hall

International Inc.

The Network Simulator - ns-2. Available from: http://www.isi.edu/nsnam/ns/

[Accessed 3 July 2003]

Wroclawski, J., (September 1997). The Use of RSVP with Integrated Services,

RFC2210.

Wroclawski J., (September 1997). Specification of the Controlled-Load Network

Element Service, RFC2211.

119

APPENDIX A

APPENDIX A

& R1 Propemes
o Delay to process a byte (uSec)

R I A

0.0

| Switching Speed (Mbit/s) 1000
| EFQsize (cells, -1=inf) 1000
| AF1 Q size {cells, -1=inf) 1000
| Ar2Q size {cells, -1=inf) 1000
| AF3 Q size {cells, -1=inf) 1000
| AF4 Q size (cells, -1=inf) 1000
| cS Qsize (cells, -1=inf) 1000
| BEQsize (cells, -1=inf) 1000
_ [| Enable RED [
| RED queue weight (>=0.001) 0.0020
|| RED min g threshold (kbytes) 10
| | RED max threshold (kbytes) 30
|| RED max p (<0.1) 0.02
RED s (packet trans. time) (uSec) (| 400.0
|| Speedup q_size (kbytes, -1=inf) || 100
Averaging Interval {usec) 100000.0
Use ARP gqueue for IP packets v
' | Use name as seed %

|| Logging every (ticks) (e.n. 1, 100)

R

‘| Use name as seed

__ | Logging every (ticks) (e.o. 1, 100)

_|| EF Frames Received

AF1 Frames Received

AF2 Frames Received

AF3 Frames Received

AF4 Frames Received

CS Frames Received

BE Frames Received

Total Frames Received

EF Frames Sent

AF1 Frames Sent

AF2 Frames Sent

AF3 Frames Sent

AF4 Frames Sent

CS Frames Sent

BE Frames Sent

Frames Dropped (Queue)

Frames Dropped (Classifier)

CPU Slow Triggered

L|Tep

Details...

| Route Table

Manage...

||| MAC address to Link1

0:0:0:0:02

IP address to Link1

1.0.0.1

Current Q size (iytes) to Link1

RED avy Q size (bytes) to Link1

These are screen shots from the same router property dialog. The first screen shot

indicates the upper half of the property dialog while the second screen shot indicates the

lower half of the property dialog.

120

APPENDIX B

APPENDIX B

R

&Linlﬂ - Properties

| || Link Speed {MBits/sec)

|| | Distance (km) 0.1

| | Propagation Speed (km/s) 200000.0

|| Averaging Interval (usec) 100000.0
| | Enable Link Fail [
|| Fail start time (s) 0.0

' | Fail duration (s) (D=inf) 0.0

L[| | Fail repeat times (-1=inf)

Delay betwgen fails ()

' ||| Random fail duration 7

||| Random delay bet. fails]
. ||| Fail start delay [
__ ||| Fail Notification %

.| | Enable Animation
' | Animation Detail (>0)

||| Animation Delay (msec/km)

Use name as seed
|| Logging every (ticks) (e.g. 1, 100)

[7]117] | Current Link rate {(Mbps) to R1 0.0
{1 [] | Session Link rate (Mbps) to R1 0.0
[117] | Packets dropped to R1 0
[]17]| Bits dropped to R1 0
(][] | Current Link rate {(Mbps) to R2 0.0
(1] | Session Link rate (Mbps) to R2 0.0
[7117] | Packets dropped to R2 0
Bits dropped to R2 0

s b e s SRR

This is the screen shot for the whole generic link property dialog.

121

APPENDIX C

APPENDIX C

" | ||| Bit Rate {(MBits/s) 10.0

' ||| Start time {usecs) 1000000

| | | Packet size (bytes, 46-1500) H76

| | Number of MBits to be sent 1.0

Repeat count {-1=inf) 1

[[| Delay between calls (usecs) || 1000000

| | Diffserv Class Best Effort

||| | Random data size]
||| Random delay bet. calls]
||| || |Enable starting delay]
| | | | Random destination]
Use name as seed (v
Port number

| | Destination IP

Destination port number

Calls attempted
Total frames sent

This is the screen shot for the whole UDP CBR application property dialog.

122

