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FLUID DYNAMICS STUDY ON THE EFFECT OF THE MAXIMUM VALVE 

LIFT TO THE FLOW VELOCITY AT THE INTAKE VALVE OF GASOLINE 

ENGINE 

ABSTRACT 

 Intake valve lift height value plays a very important role in ensuring the power and 

performance of the ICE. Low lift valve will restrict the airflow into the engine cylinder. 

Less amount of air-fuel mixture will cause low energy combustion of ICE. Using high 

profile cam can increase airflow into the combustion chamber. However, increasing the 

valve lift beyond the maximum valve lift value will not give any additional flow of fluid 

into the combustion chamber. Higher lift often requires longer camshaft duration and 

increase valve train work, which can affect the performance and durability of the engine. 

Determining the optimum valve lift value is important to maintain the effectiveness and 

performance of the gasoline engine. Fluid flow studies around an intake valve in ICE are 

difficult to experiment with due to the position and size of small components moving at 

high speeds in the engine. Therefore, the use of CFD is the best method for this project. 

The analysis was conducted to determine the highest valve lift value that gives the highest 

air velocity into the combustion chamber at different intake valve diameter. Two (2) 

different engine`s cylinder head with 23 mm diameter intake valve size and 27 mm 

diameter intake valve size are used in the simulation. Each valve size profile is tested with 

nine (9) different valve lift height profile from one (1) millimeter (mm) valve lift to nine 

(9) millimeter (mm) valve lift. For 23 mm intake valve size, at the openings of 1 mm to 

5 mm intake valve height, non-uniform airflow is detected around the opening of the 

valve. The more uniform flow fluid is detected at the valve openings starting at 6 mm to 

9 mm. Fluid pressure in combustion chamber increase significantly between 1mm to 5mm 

valve opening. But no significant change of the combustion chamber pressure is seen 

Univ
ers

ity
 of

 M
ala

ya



iv 

when the valve lift is between 6mm and 9mm valve opening. For 27 mm intake valve 

size, at the openings of 1 mm to 3 mm intake valve height, non-uniform airflow is detected 

around the opening of the valve. The more uniform flow fluid is detected at the valve 

openings starting at 4mm to 9mm valve opening. Fluid pressure in combustion chamber 

increase significantly between 1mm to 3mm valve opening. But no significant change of 

the combustion chamber pressure is seen when the valve lift is between 4mm and 9mm. 

From the computational fluid dynamic simulations, result and analysis carried out, it was 

found that, for a 23 mm diameter valve size, the optimum valve lift required was 6 mm. 

Increasing the valve lift exceeds the 6mm value does not significantly increase the fluid 

volume entering into the engine cylinder during the intake cycle. For a 27 mm diameter 

valve size, the optimum valve lift required was 4 mm. Increasing the valve lift exceeds 

the 4mm value does not significantly increase the amount of fluid entering into the engine 

cylinder. 
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KAJIAN DINAMIK BENDALIR KEATAS KESAN BUKAAN INJAP 

TERHADAP HALAJU BENDALIR KE DALAM INJAP MASUKAN ENJIN 

PETROL 

ABSTRAK 

Tinggi bukaan injap masukan memainkan peranan yang amat penting dalam 

memastikan kuasa dan prestasi enjin pembakaran dalaman. Bukaan injap masukan yang 

terlalu rendah akan menyebabkan aliran udara ke dalam kebuk pembakaran menjadi tidak 

lancar dan mengurangkan jumlah udara yang memasuki kebuk pembakaran, seterusnya 

menyebabkan pembakaran dengan tenaga yang rendah. Walau bagaimanapun, 

meningkatkan nilai bukaan injap masukan melebihi nilai maksimum tidak akan 

memberikan apa-apa aliran bendalir tambahan ke dalam ruang pembakaran. Penggunaan 

bukaan injap yang lebih tinggi sering memerlukan tempoh camshaft yang lebih panjang 

dan meningkatkan beban enjin, yang boleh menjejaskan prestasi dan ketahanan enjin. 

Oleh itu, menentukan nilai angkat injap optimum adalah penting untuk mengekalkan 

keberkesanan dan prestasi enjin petrol. Kajian aliran bendalir di sekitar injap masukan 

dalam enjin pembakaran dalaman sukar dilakukan secara eksperimen disebabkan oleh 

kedudukan serta saiz komponen - komponen yang kecil yang bergerak pada kelajuan 

tinggi di dalam enjin. Oleh itu, penggunaan CFD merupakan kaedah terbaik bagi projek 

yang dijalankan ini. Analisis ini dijalankan untuk menentukan nilai bukaan injap optimum 

yang memberikan halaju udara tertinggi ke dalam ruang pembakaran pada diameter injap 

masukan yang berbeza. Dua (2) kepala silinder enjin dengan saiz injap pengambilan 

diameter 23 mm dan saiz injap pengambilan diameter 27 mm digunakan dalam simulasi. 

Setiap profil saiz injap diuji dengan sembilan (9) profil ketinggian bukaan injap yang 

berbeza dari satu (1) milimeter (mm) hingga sembilan (9) milimeter (mm). Untuk saiz 

injap masukan bersaiz 23 mm, pada bukaan injap masukan antara 1 mm hingga 5 mm, 

aliran udara yang tidak seragam dikesan sekitar injap. Aliran yang lebih seragam dikesan 
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pada bukaan injap bermula pada 6 mm hingga 9 mm. Tekanan kebuk pembakaran 

meningkat dengan ketara pada pembukaan injap antara 1mm hingga 5mm. Tetapi tiada 

perubahan ketara dalam tekanan ruang pembakaran boleh dilihat apabila bukaan injap 

antara 6mm hingga 9mm. Untuk saiz injap masukan bersaiz 27 mm, pada bukaan 

ketinggian injap masukan anara 1 mm hingga 3 mm, aliran udara yang tidak seragam 

dikesan sekitar pembukaan injap. Aliran yang lebih seragam dikesan pada bukaan injap 

bermula pada pembukaan injap antara 4mm hingga 9mm. Tekanan kebuk pembakaran 

meningkat dengan ketara antara pembukaan injap 1mm hingga 3mm. Tetapi tiada 

perubahan ketara dalam tekanan ruang pembakaran boleh dilihat apabila bukaan injap 

antara 4mm dan 9mm. Dari simulasi dinamik yang dijalankan, didapati bahawa, untuk 

injap masukan bersaiz 23 mm diameter, bukaan injap optimum yang diperlukan ialah 

sebanyak 6 mm. Peningkatan bukaan injap melebihi nilai 6mm tidak akan meningkatkan 

jumlah cecair masuk ke dalam ruang pembakaran dengan ketara. Untuk ukuran injap 

bersaiz 27 mm diameter, bukaan injap optimum yang diperlukan adalah 4 mm. 

Peningkatan bukaan injap melebihi nilai 4mm tidak akan meningkatkan jumlah bendalir 

masuk ke dalam ruang pembakaran dengan ketara. 
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CHAPTER 1: INTRODUCTION 

Valve Lift is the amount of the valve is lifted off from its seat. High valve lift enables 

more air-fuel ratio to enter the combustion chamber, improving the performance of 

gasoline engine. Maximum intake valve lift plays great importance on performance of 

gasoline engines.  Maximum valve lift is the highest intake valve opening that provide 

highest fluid flow to combustion chamber.  

However, increasing the valve lift beyond the maximum valve lift value will not give 

any additional flow of fluid into the combustion chamber. Higher lift often requires longer 

camshaft duration and increase valve train work, which can affect the performance and 

durability of the engine. Determining the optimum valve lift value is crucial to maintain 

the effectiveness and performance of the gasoline engine. 

1.1 Objective of the research project 

This project was conducted to investigate the characteristics of the fluid movement 

within the intake valve during the intake duration of the internal combustion engine. 

Computational fluid dynamics analysis and simulation will be used to study the 

characteristics of air flow around intake valve at different camshaft lift and engine 

rotational speed. 

The objectives of the project are: 

i. To determine the highest valve lift value that gives the highest air velocity into 

the combustion chamber. 

ii. To investigate the characteristics of the fluid movement within the intake valve 

during the intake duration. 

iii. To investigate fluid movement around the intake valve opening during high 

engine rpm. 
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1.2 Scope of the research project 

Computational fluid dynamics will be used in analysis and simulation of the project. 

The analysis will be conducted using single cylinder, single camshaft gasoline engine. 

Engine with 110cc capacity will be used as modelling. The analysis only to study the air 

flow through intake valve during engine intake stoke at different valve lift values. Two 

different valve face diameters will be used in the simulation which is 23mm and 27mm. 

 

Univ
ers

ity
 of

 M
ala

ya



3 

CHAPTER 2: LITERATURE REVIEW 

2.1 Internal Combustion Engine 

ICE is an engine that uses fossil fuel to convert chemical energy into mechanical 

energy. This energy conversion process requires a mixture of fire, air and heat. The air-

fuel mixture at a specific ratio will be compressed by a mechanical system, so heat will 

be supplied through the spark plug. Expansion of mixture at high temperature and high 

pressure will transfer pressure, causing the mechanical movement into the engine by 

rotating shaft.  

Most internal combustion engines are reciprocating engines. (W. Pulkrabek, 2004). 

This type of engine uses reciprocating pistons that move back and forth inside the engine 

cylinder. Reciprocating engines can consist of several pistons arranged in various 

configurations. The number and arrangement of the piston made based on the power and 

size of the engine required by the designer and the use of the engine. However, there are 

also engines that do not use a reciprocating piston system. For example, Wankel engine 

using rotating pistons and jet engines that use continuous combustion through engine 

blades. 

Typically, spark-ignition internal combustion engines use fossil fuels to operate. This 

engine requires a specific air-fuel mixture to produce optimum energy. In addition, spark 

timing is also important to ensure that combustion can be carried out completely in the 

internal combustion engine. There are two (2) types of reciprocating engine; four-stroke 

and also two-stroke internal combustion engines.  
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2.2 Four (4) Cycle Gasoline Engine 

Four-stroke engine uses four (4) cycles to complete the engine cycle; intake, 

compression, power and exhaust stroke. Each cycle has different roles and functions on 

the engine process. 

Intake stroke refers to the process of admission of air and fuel into the engine cylinder. 

This stroke starts at piston T.D.C. and ends at piston B.D.C. At this point, the input valve 

will be opened while the exhaust valve will be closed. The piston will move downwards 

which will produce low pressure in the cylinder compared to the air pressure in the intake 

manifold. This pressure difference will result in the movement of the fluid into the 

cylinder. 

Compression stroke refers to the air-fuel compression process inside the cylinder. The 

process starts as soon as the stroke intake ends at piston B.D.C and ends at piston T.D.C. 

At this point, both the intake valve and the exhaust valve are closed. 

Power stroke refers to the ignition and combustion process of air-fuel in the cylinder. 

This process starts in the second round of the engine. At this point, combustion of fluid 

mixture will cause thermal expansion, thereby forcing the piston to move from T.D.C to 

B.D.C and rotating the crankshaft at the same time. At this point, both the intake valve 

and the exhaust valve are closed. 

Exhaust stroke refers to the process of removing combustion results from engine 

cylinders. The exhaust valve is open and the piston moves from B.D.C to T.D.C, forcing 

combustion excess out from the engine. 

The valves play a very important role in determining the speed of fluid flow in and out 

of the engine. ICE performance is much influenced by the timing, duration and lift of 

these valves. 
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2.2.1 Valve Timing 

Four-stroke engines use valves to open and close at certain timing depending on engine 

cycle. The cams push the valves for a certain amount of time during each intake and 

exhaust cycle. Valve opening timing throughout the piston movement is very important 

in determining ICE performance. Research also shows valve closing timing have 

significant effect on emission level of an internal combustion engine (Jia, Xie, Wang, & 

Peng, 2011). 

 

Figure 2.1: Valve Timing Chart (Dovat, 2018) 

At high speed, large amounts of air-fuel are needed for combustion. Closing intake 

valve too soon will reduce the amount of air-fuel mixture entering combustion chamber, 

resulting decreasing performance (W. Pulkrabek, 2004). But, opening valves too long will 

affect engine performance at low speed.  

To overcome this problem, the variable valve timing (VVT) system was introduced to 

improve engine performance during low and high rpm. Valves opening and closing timing 

will be adjusted according to engine speed without changing the valve duration. The VVT 

system was able to optimize the power and fuel consumption of the gasoline engine 

(Fontana & Galloni, 2009). 
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2.2.2 Valve Lift 

Valve lift refers to maximum valve lifted off its seat at the cam lobe’s tip. It is 

measured with a dial gauge at the end of the valve stem (Figure 2.2). Meanwhile, Lobe 

Lift (Figure 2.3) is the amount that the highest point of cam lobe from the cam base circle. 

Opening the valves faster and higher will increase engine power. This condition can be 

achieved by changing the shape of the lobe cam to be higher and steep. However, such 

cam lobe will increase the cam duration, which will change the power curve shape of the 

engine. 

 

Figure 2.2: Valve Lift Measurement (Detroit, 2018) 

 

Figure 2.3: Cam Lobe Lift (Lubken, 2016) 
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2.2.3 Valve Duration 

Valve duration is the amount of valve opening time, measured in crankshaft rotation 

angle. Valve duration is measured with a dial indicator and a degree wheel. Increasing 

duration keeps the valve open longer, and can increase engine power at high rpm. 

However, increasing valve duration will increase valve overlap. 

2.2.4 Lobe Separation 

Lobe separation is the angle of overlap between intake cam and exhaust cam (Figure 

2.4). Lobe separation affects valve overlap, effecting the shape of engine’s power curve. 

 

Figure 2.4 Lobe Separation Angle (Lunati, 2008) 

 

2.2.5 Valve Overlap 

Valve overlap is the condition of both intake and exhaust valves are open. Valve 

overlap happens just after the exhaust cycle and before the intake stroke takes place, and 

piston at T.D.C (Figure 2.5). Valve overlap is closely related to the lobe separation angle 

and cam duration. At high engine rotation speed, overlap enables the rush of exhaust 

gasses out the exhaust valve to help pull the fresh air/fuel mixture into the cylinder 

through the intake valve. Increasing overlap increases engines top-end power. However 

it will decrease engine’s low-speed power and idle quality (W. Pulkrabek, 2004). 
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Figure 2.5: Valve Opening Curve (Young, 2007) 

 

2.3 Cylinder pressure 

Cylinder pressure is the pressure in the four-stroke engine cylinder during operation. 

The pressure during intake, compression, combustion and exhaust is important for the 

evaluation of engine performance.  

2.3.1 Cylinder Pressure of Intake Stroke 

During intake stroke, the piston movement creates an increase in volume in the engine 

cylinder. The sudden increase in the volume of engine cylinder will dramatically decrease 

air pressure inside the cylinder relative to atmospheric pressure. This pressure difference 

causes airflow into the cylinder. 

At this point, the amount of fluid entering the engine cylinder depends on the intake 

path including intake manifold, throttle body and valve openings. Low-resistance intake 

pathways will increase fluid flow into the cylinder, thereby increasing the amount of air-

fuel mixture to improve engine performance during combustion. Research shows that 

intake pathways giving a significant influence to tumble motion and turbulent intensity 
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distribution in internal combustion engines (Falfari, Brusiani, & Pelloni, 2014). In 

addition, low fluid resistance will reduce work required during intake stroke. 

2.3.2 Cylinder Pressure of Compression Stroke 

During compression stroke, both the input and exhaust valves are closed when the 

piston moves from B.D.C to T.D.C, increasing the pressure in the decreased engine 

volume. Increased pressure inside the cylinder helps fuel evaporation in the air mixture. 

Until this process, the engine has not yet produced energy from fuel and only uses energy 

to operate 

2.3.3 Cylinder Pressure of Combustion / Expansion Stroke 

During the Combustion Stroke, burning air-fuel mixture instantly increase cylinder 

pressure in the combustion chamber. The pressure expansion will force the piston from 

T.D.C to B.D.C and create work to the engine. As the piston moving from T.D.C to 

B.D.C, the cylinder volume increases and cause the pressure to decrease. 

2.3.4 Cylinder Pressure of Exhaust Stroke 

During Exhaust Stroke, piston moving from B.D.C to T.D.C and exhaust valve is open. 

As the piston moving from B.D.C to T.D.C, the excess fluid in cylinder is forced out from 

cylinder through exhaust port. Less-restriction exhaust port will facilitate combustion 

excess from engine cylinder, reducing power usage during exhaust stroke. 
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2.4 Computational Fluid Dynamic of Internal Combustion Engine 

ICE is a complex process involving thermochemistry reactions and the movement of 

fluid in internal geometry that is involved in engine components. This process occurs at 

a very fast and instantaneous rate. Fluid pathways, jet fuel formation, fluid mixing and 

fuel combustion are critical processes that are taken into account in the design stage to 

ensure that the engine is designed to have high efficiency and meet the standard emission 

standards. 

There are several methods used in designing and analyzing engine performance. the 

use of CAD software is a common method at design stage. for analyzing engine 

performance, experimental methods using engine test bench and engine dynamometer can 

be used to obtain engine performance data. In addition, Computational fluid dynamics is 

a popular method for solving the fluid problem involved in the engine. the use of CFD 

allows engineers to identify the fluid characteristic throughout the process inside the 

engine. 

However, the CFD method is a complex process, time consuming, and vulnerable to 

computation errors (Roberpj, 2018). The CFD method involving the use of very small 

mesh in large quantities in geometry causes a high computation load to the computer 

system. Normally, simplified 3D modeling is needed to ensure the simulation process can 

run perfectly. 

Several simplified methods can be used to reduce the computational loads of the 

computer and also reduce the calculation time of CFD approach; depending on the 

objectives and the data needed from the CFD results. 
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2.4.1 Port Flow Analysis 

In the port flow analysis, engine components are frozen in the desired position during 

the engine cycle. Simulation and analysis of fluid movement in engine cavity is done on 

3d model produced in this condition. Since the analysis is only done on a particular 

position of the engine, port flow analysis reduces the computational load to the computer 

and reduces the time required to obtain the simulation results. To study the turbulence 

effect in the engine, the RANS analysis is sufficient to be used during the simulation. 

2.4.2 Cold Flow Analysis 

In cold flow simulation, an analysis is performed to study the movement of the fluid 

during engine operations. At this point, fluid movement, fuel injection and air-fuel mixing 

process can be analyzed without involving any chemical and combustion processes. The 

purpose of this simulation is to investigate the movement of the fluid inside the engine 

during engine’s operation. Through this analysis, flow characteristics around intake and 

exhaust valve during opening and closing can be observed. In addition, the turbulence 

effect in the engine volume can also be seen during the movement of the piston. 

Providing CFD models for cold flow analysis results in additional work in determining 

the information required for analysis. In this simulation, the movement of each 

component of the engine needs to be specified. The valve and piston movement must be 

set up as a real engine operation. The use of UDF parameters requires analysts to prepare 

a complete model before the analysis can be done. Since component movement is 

involved during the simulation, dynamic mesh must be used in simulation. The use of 

dynamic mesh causes simulation to be time consuming. This is because the computer is 

forced to break every mesh movement into a separate calculation, causing the 

computation load to increase. 
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2.4.3 Combustion Simulation 

The combustion simulation involves analysis of the combustion process in the engine. 

at this point, only the piston movements occur in the cylinder while the valves are closed. 

Dynamic meshing in combustion simulation only involves piston movement. This 

analysis is less complicated compared to port flow and cold flow analysis. 

To carry out combustion simulations, detailed chemical reactions must be used during 

analysis. The use of the correct chemical reaction model during the simulation is 

important to produce good simulation results. However, the use of this complex analysis 

will increase the calculation time and computation load. 

2.4.4 Full Cycle Simulations 

Full cycle simulation involves engine analysis at all stages of the engine cycle. This 

simulation involves the movement of engine components, flow movements in and out of 

the engine cavity and all the chemical reaction processes and combustion involved. The 

use of full cycle analysis allows the overall performance evaluation of the engine during 

operation can be performed. Valve movement, piston, fluid movement, fuel injection 

pattern, fuel mix pattern, flame propagation, power estimation, pollutant and exhaust gas 

movement can be analyzed comprehensively. However, geometry preparation for full 

cycle are very complex. High level of expertise is required to make sure the simulation 

can be carried out successfully. 

Preparation of model geometry will include all engine components from intake 

manifold, ports, valves, combustion chamber, pistons, cylinder and exhaust port. Meshing 

all the components will be challenging and difficult to perform especially with dynamic 

meshing involved in the simulation. Preparing the solver set up will require huge amount 
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of efforts to specify UDF parameter of each moving components, combustion propagation 

settings, chemical reaction equation, turbulence approach and pollutant parameter setting.
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

Port flow analysis will be used in simulation. Through this method fluid studies will 

be conducted during the maximum intake stroke of the gasoline engine. At this point, the 

piston is located at B.D.C while the intake valve is at maximum lift. Cold flow analysis 

method will also be used in the simulation. Through this method, air properties will be 

used as a fluid without the involvement of air - fuel mixture properties. 

 Figure 3.1 shows the project methodology used during this project study. This work 

step is used as a guide to ensure a systematic and organized study is implemented. 

 

Figure 3.1: Project Methodology 
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3.2 Simulation Model 

Engine models are taken from real engine specifications and developed in Solidworks 

software to produce 3D models for the simulation. A 100-centimeter cubic (cc) capacity 

of four (4) stroke, single cylinder, single overhead cam engine with 50mm bore and 49mm 

stoke is used as the engine model. Only the air cavity from intake manifold, inlet valve 

and cylinder are developed. To reduce computational burden, simulation will be carried 

out with only half of the model (Figure 3.2). The simulation will be done with the section 

face as symmetry plane during simulation. 

Figure 3.2: Air Cavity of Model Engine 

 

Two (2) different engine`s cylinder head with 23 mm intake diameter valve size 

(Figure 3.3) and 27 mm diameter valve size (Figure 3.4) will be tested in the simulation. 

Each valve size profile will be tested with nine (9) different valve lift height profile from 

one (1) millimeter (mm) valve lift to nine (9) millimeter (mm) valve lift (Figure 3.5). 

Fluid flow velocity at the intake valve opening of each valve height configuration will be 

evaluated in each simulation. The fluid velocity changes in each valve configuration will 

be analyzed. The velocity profile of the fluid flow will be analyzed. 

 

Univ
ers

ity
 of

 M
ala

ya



16 

 

Figure 3.3: Engine Model of 23mm Intake Valve Diameter 

 

Figure 3.4: Engine Model of 27mm Intake Valve Diameter 

 

   

1mm Valve Lift 2mm Valve Lift 3mm Valve Lift 

Figure 3.5: Valve Lift Height Configurations 
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4mm Valve Lift 5mm Valve Lift 6mm Valve Lift 

   

7mm Valve Lift 8mm Valve Lift 9mm Valve Lift 

Figure 3.5: Valve Lift Height Configurations (continued) 

3.3 Simulation Preparation 

The developed model is imported into Ansys Fluent software. Before the simulation, 

some preparation must be done to ensure the simulation can be done smoothly. Boundary 

conditions is applied on the model surface as Figure 3.6. 
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Figure 3.6: Geometry Conditions 

 

The intake manifold surface (i) is defined as pressure inlet. The piston surface (ii) is 

set as outlet velocity. The sectioned plane (iii) is defined as symmetrical wall. The surface 

of the outer cylinder (iv) and valve surface (v) is set as a wall. 

(i) (ii) 

(iii) (iv) 
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The intake pressure entered through the intake manifold is set as atmospheric pressure 

of 1 atm. The simulation is done at the engine rotation at around 10,000 rpm. Since the 

simulations by port flow and cold flow analysis are performed, the piston and valves are 

considered to be in static position at B.D.C. At this position, the intake stroke is at 

maximum state. Through the piston and bore size of the model, the mass flow rate through 

cylinder cross section is estimated through the calculation as shown below. 

𝐵𝑜𝑟𝑒, 𝑑 = 50 𝑚𝑚         [3.1] 

𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝐴 =  𝜋𝑗2 = 𝜋(25𝑥10−3𝑚)2 = 1.964𝑥10−3𝑚2  [3.2] 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑, 𝑤 = 10,000 𝑟𝑝𝑚 = 1047 𝑟𝑎𝑑 𝑠⁄     [3.3] 

𝐴𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌 =  1.225 𝑘𝑔 𝑚3⁄        [3.4] 

𝑆𝑡𝑟𝑜𝑘𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣 = 𝑟𝑤 = 25.918 𝑚 𝑠⁄       [3.5] 

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, 𝑚 = 𝜌𝑣𝐴 = 0.0623 𝑘𝑔 𝑠⁄      [3.6] 

 

Model meshing is carried out to the entire model. Selection of mesh size is done so 

that simulation result obtained is accepted. The use of large mesh size causes less precise 

simulation results. However, the too small mesh sizes may cause an increase in 

computational time by the software. The size of the mesh for each simulation model is 

set to be equal to ensure uniform simulation results. Figure 3.7 shows model mesh 

generated for the simulations.  
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Figure 3.7: Model Mesh 

 

Simulation calculation is carried out to achieve iteration by 3%. In most engineering 

applications, a 3% error is applicable for acceptance as a test result (Bong, 2011). Figure 

3.8 below shows the stopping criteria for iteration cycle in the simulation. 

 

Figure 3.8: Stopping Criteria 

 

3.4 Result Preparation 

To analyze simulation results, the calculated data is graphically evaluated. The two 

main data to be analyzed are velocity magnitude (Figure 3.9) and pressure contour (Figure 

3.10) inside the cylinder. velocity and pressure differences in all models will be analyzed 

and the results of the study will be investigated. 
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Figure 3.9 Velocity Magnitude 

 

Figure 3.10 Pressure Contour 
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CHAPTER 4: RESULTS 

4.1 Result for 23 mm Intake Valve Diameter 

In this chapter, the results of the simulation of valve lifts opening from 1 mm to 9 mm 

for valve 23 mm diameter intake valve size will be presented. 

4.1.1 1 mm Valve Lift Height 

Figure 4.1 shows the velocity results of the simulation for the 1mm valve lift. The 

focus will be on the fluid velocity around the intake valve located in the combustion 

chamber section as the Figure 4.2. 

 

Figure 4.1: Velocity Profile of 1mm Intake Valve Lift 
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Figure 4.2: Fluid Velocity Around the 23 mm Intake Valve at 1 mm Lift 

Figure 4.2 shows fluid velocity entering the combustion chamber through the intake 

valve. At 1mm valve opening, the fluid velocity around the valve opening is at a large 

range between 1.5 x 102 m/s to 1x 103 m/s. 

 

Figure 4.3: Pressure Contour of 23 mm Intake Valve Lift at 1 mm Lift 

Figure 4.3 shows the pressure contour of the cylinder during the 1mm valve opening. 

At this point, it is found that the cylinder pressure is between -1.38 x 106 Pa to -1.17 x 

106 Pa. 
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4.1.2 2 mm Valve Lift Height 

The Figure 4.4 shows the velocity results of the simulation for the 2mm valve lift. The 

focus will be on the fluid velocity around the intake valve located in the combustion 

chamber section as the Figure 4.5. 

 

Figure 4.4 :Velocity Profile of 2mm Intake Valve Lift 
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Figure 4.5: Fluid Velocity Around the 23 mm Intake Valve at 2 mm Lift 

Figure 4.5 shows fluid velocity entering the combustion chamber through the intake 

valve. At 2mm valve opening, the fluid velocity around the valve opening is varies 

between 4.0 x 102 m/s to 1x 103 m/s. 

 

 

Figure 4.6: Pressure Contour of 23 mm Intake Valve Lift at 2 mm Lift 

 

Figure 4.6 shows the pressure contour of the cylinder during the 2mm valve opening. 

At this point, it is found that the cylinder pressure is between -4.71 x 105 Pa to -4.27 x 

105 Pa.  
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4.1.3 3 mm Valve Lift Height 

Figure 4.7 shows the velocity results of the simulation for the 23 mm intake valve at 3 

mm valve lift.  

 

Figure 4.7: Velocity Profile of 23 mm Intake Valve at 3 mm Lift 

 

 

Figure 4.8: Fluid Velocity Around the 23 mm Intake Valve at 3 mm Lift 

Figure 4.8 shows fluid velocity entering the combustion chamber through the intake 

valve. At 3 mm valve opening, the fluid velocity around the valve opening is varies 
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between 2.0 x 102 m/s to 6.0 x 102 m/s. However, there is a small area with high velocity 

profile that can be seen on the nearby valve seat. 

 

 

Figure 4.9: Pressure Contour of 23 mm Intake Valve Lift at 3 mm Lift 

 

Figure 4.9 shows the pressure contour of the cylinder during the 3 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -1.75 x 105 Pa to -

1.25 x 105 Pa. 
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4.1.4 4 mm Valve Lift Height 

Figure 4.10 shows the velocity results of the simulation for the 23 mm intake valve at 

4 mm valve lift. 

 

Figure 4.10: Velocity Profile of 23 mm Intake Valve at 4 mm Lift 

 

 

Figure 4.11: Fluid Velocity Around the 23 mm Intake Valve at 4 mm Lift 

Figure 4.11 shows fluid velocity entering the combustion chamber through the intake 

valve. At 4 mm valve opening, the fluid velocity around the valve opening is varies 

Univ
ers

ity
 of

 M
ala

ya



29 

between 1.5 x 102 m/s to 3.5 x 102 m/s. However, there is a small area with high velocity 

profile that still can be seen on the nearby valve seat. 

 

 

Figure 4.12: Pressure Contour of 23 mm Intake Valve Lift at 4 mm Lift 

 

Figure 4.12 shows the pressure contour of the cylinder during the 4 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -1.06 x 105 Pa to -

7.97 x 104 Pa. 
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4.1.5 5 mm Valve Lift Height 

Figure 4.7 shows the velocity results of the simulation for the 23 mm intake valve at 5 

mm valve lift. 

 

Figure 4.13: Velocity Profile of 23 mm Intake Valve at 5 mm Lift 

 

 

Figure 4.14: Fluid Velocity Around the 23 mm Intake Valve at 5 mm Lift 

Figure 4.14 shows fluid velocity entering the combustion chamber through the intake 

valve. At 5 mm valve opening, the fluid velocity around the valve opening is varies 
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between 1.5 x 102 m/s to 5.5 x 102 m/s. However, there is a small area with high velocity 

profile that still can be seen on the nearby valve seat. 

 

 

Figure 4.15: Pressure Contour of 23 mm Intake Valve Lift at 5 mm Lift 

 

Figure 4.15 shows the pressure contour of the cylinder during the 5 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -5.72 x 105 Pa to -

3.03 x 104 Pa. 
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4.1.6 6 mm Valve Lift Height 

Figure 4.16 shows the velocity results of the simulation for the 23 mm intake valve at 

6 mm valve lift. 

 

Figure 4.16: Velocity Profile of 23 mm Intake Valve at 6 mm Lift 

 

 

Figure 4.17: Fluid Velocity Around the 23 mm Intake Valve at 6 mm Lift 

Figure 4.17 shows fluid velocity entering the combustion chamber through the intake 

valve. At 6 mm valve opening, the fluid velocity around the valve opening is varies 
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between 1.5 x 102 m/s to 3.0 x 102 m/s. However, at this lift value, the small area with 

high velocity profile nearby valve seat is completely vanished. 

 

 

Figure 4.18: Pressure Contour of 23 mm Intake Valve Lift at 6 mm Lift 

 

Figure 4.18 shows the pressure contour of the cylinder during the 6 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -8.39 x 104 Pa to -

6.71 x 104 Pa. 
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4.1.7 7 mm Valve Lift Height 

Figure 4.19 shows the velocity results of the simulation for the 23 mm intake valve at 

7 mm valve lift.  

 

Figure 4.19: Velocity Profile of 23 mm Intake Valve at 7 mm Lift 

 

 

Figure 4.20: Fluid Velocity Around the 23 mm Intake Valve at 7 mm Lift 

Figure 4.20 shows fluid velocity entering the combustion chamber through the intake 

valve. At 7 mm valve opening, the fluid velocity around the valve opening is varies 
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between 1.5 x 102 m/s to 3.0 x 102 m/s. However, at this lift value, the small area with 

high velocity profile nearby valve seat is completely vanished. 

 

 

Figure 4.21: Pressure Contour of 23 mm Intake Valve Lift at 7 mm Lift 

 

Figure 4.21 shows the pressure contour of the cylinder during the 7 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -8.85x 104 Pa to -

6.48 x 104 Pa. 
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4.1.8 8 mm Valve Lift Height 

Figure 4.22 shows the velocity results of the simulation for the 23 mm intake valve at 

8 mm valve lift. 

 

Figure 4.22: Velocity Profile of 23 mm Intake Valve at 8 mm Lift 

 

Figure 4.23: Fluid Velocity Around the 23 mm Intake Valve at 8 mm Lift 

Figure 4.23 shows fluid velocity entering the combustion chamber through the intake 

valve. At 8 mm valve opening, the fluid velocity around the valve opening is varies 
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between 1.5 x 102 m/s to 3.0 x 102 m/s. However, at this lift value, the small area with 

high velocity profile nearby valve seat is completely vanished. 

 

 

Figure 4.24: Pressure Contour of 23 mm Intake Valve Lift at 8 mm Lift 

 

Figure 4.24 shows the pressure contour of the cylinder during the 8 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -8.03x 104 Pa to -

4.40 x 104 Pa. 
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4.1.9 9 mm Valve Lift Height 

Figure 4.25 shows the velocity results of the simulation for the 23 mm intake valve at 

9 mm valve lift. 

 

Figure 4.25: Velocity Profile of 23 mm Intake Valve at 9 mm Lift 

 

 

Figure 4.26: Fluid Velocity Around the 23 mm Intake Valve at 9 mm Lift 

Figure 4.26 shows fluid velocity entering the combustion chamber through the intake 

valve. At 9 mm valve opening, the fluid velocity around the valve opening is varies 
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between 2.02 x 102 m/s to 3.0 x 102 m/s. However, at this lift value, the small area with 

high velocity profile nearby valve seat is completely vanished. 

 

 

Figure 4.27:Pressure Contour of 23 mm Intake Valve Lift at 9 mm Lift 

 

Figure 4.27 shows the pressure contour of the cylinder during the 9 mm valve opening. 

At this point, it is found that most of the cylinder pressure is between -7.17x 104 Pa to -

5.25 x 104 Pa. 
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4.2 Result for 27 mm Intake Valve Diameter 

In this chapter, the results of the simulation of valve lifts opening from 1 mm to 9 mm 

for valve 27 mm diameter intake valve size will be presented. 

4.2.1 1 mm Valve Lift Height 

Figure 4.28 shows the velocity results of the simulation for the 1mm valve lift. The 

focus will be on the fluid velocity around the intake valve located in the combustion 

chamber section as the Figure 4.29. 

 

Figure 4.28: Velocity Profile of 27 mm Intake Valve at 1 mm Lift 
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Figure 4.29: Fluid Velocity Around the 27 mm Intake Valve at 1 mm Lift 

Figure 4.29 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 1mm valve lift, the fluid velocity around the valve opening is at 

a large range between 5 x 101 m/s to 1x 103 m/s. 

 

 

Figure 4.30: Pressure Contour of 27 mm Intake Valve Lift at 1 mm Lift 

 

Figure 4.30 shows the pressure contour of the cylinder during the 1 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -2.09x 106 Pa to -1.92 

x 106 Pa. 
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4.2.2 2 mm Valve Lift Height 

Figure 4.31 shows the velocity results of the simulation for the 27 mm intake valve at 

2 mm valve lift. 

 

Figure 4.31: Velocity Profile of 27 mm Intake Valve at 2 mm Lift 
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Figure 4.32: Fluid Velocity Around the 27 mm Intake Valve at 2 mm Lift 

Figure 4.32 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 2 mm valve lift, the fluid velocity around the valve opening is 

at a large range between 5 x 101 m/s to 1x 103 m/s. 

 

 

Figure 4.33: Pressure Contour of 27 mm Intake Valve Lift at 2 mm Lift 

 

Figure 4.33 shows the pressure contour of the cylinder during the 1 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -6.68x 105 Pa to -5.61 

x 105 Pa. 
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4.2.3 3 mm Valve Lift Height 

Figure 4.34 shows the velocity results of the simulation for the 27 mm intake valve at 

3 mm valve lift. 

 

 

Figure 4.34: Velocity Profile of 27 mm Intake Valve at 3 mm Lift 

 

 

Figure 4.35: Fluid Velocity Around the 27 mm Intake Valve at 3 mm Lift 

 

Figure 4.35 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 3 mm valve lift, the fluid velocity around the valve opening is 

at a large range between 5 x 101 m/s to 9x 102 m/s.  
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Figure 4.36: Pressure Contour of 27 mm Intake Valve Lift at 3 mm Lift 

 

Figure 4.36 shows the pressure contour of the cylinder during the 3 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -2.92x 105 Pa to -2.56 

x 105 Pa. 
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4.2.4 4 mm Valve Lift Height 

Figure 4.37 shows the velocity results of the simulation for the 27 mm intake valve at 

4 mm valve lift. 

 

Figure 4.37: Velocity Profile of 27 mm Intake Valve at 4 mm Lift 

 

 

Figure 4.38: Fluid Velocity Around the 27 mm Intake Valve at 4 mm Lift 

 

Figure 4.38 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 4 mm valve lift, the fluid velocity around the valve opening is 

at a range between 5 x 101 m/s to 6x 102 m/s. 
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Figure 4.39: Pressure Contour of 27 mm Intake Valve Lift at 4 mm Lift 

 

Figure 4.39 shows the pressure contour of the cylinder during the 4 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -9.99x 104 Pa to -7.76 

x 104 Pa. 
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4.2.5 5 mm Valve Lift Height 

Figure 4.40 shows the velocity results of the simulation for the 27 mm intake valve at 

5 mm valve lift. 

 

Figure 4.40: Velocity Profile of 27 mm Intake Valve at 5 mm Lift 

 

 

Figure 4.41: Fluid Velocity Around the 27 mm Intake Valve at 5 mm Lift 

 

Figure 4.41 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 5 mm valve lift, the fluid velocity around the valve opening is 

at a range between 5 x 101 m/s to 4.5x 102 m/s. 
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Figure 4.42: Pressure Contour of 27 mm Intake Valve Lift at 5 mm Lift 

Figure 4.42 shows the pressure contour of the cylinder during the 5 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -1.53x 105 Pa to -9.68 

x 104 Pa. 
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4.2.6 6 mm Valve Lift Height 

Figure 4.43 shows the velocity results of the simulation for the 27 mm intake valve at 

6 mm valve lift. 

 

Figure 4.43: Velocity Profile of 27 mm Intake Valve at 6 mm Lift 

 

 

Figure 4.44: Fluid Velocity Around the 27 mm Intake Valve at 6 mm Lift 

 

Figure 4.44 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 6 mm valve lift, the fluid velocity around the valve opening is 

at a range between 1 x 102 m/s to 5.0x 102 m/s. 
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Figure 4.45: Pressure Contour of 27 mm Intake Valve Lift at 6 mm Lift 

 

Figure 4.45 shows the pressure contour of the cylinder during the 6 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -7.90x 104 Pa to -5.32 

x 104 Pa. 
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4.2.7 7 mm Valve Lift Height 

Figure 4.46 shows the velocity results of the simulation for the 27 mm intake valve at 

7 mm valve lift. 

 

Figure 4.46: Velocity Profile of 27 mm Intake Valve at 7 mm Lift 
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Figure 4.47: Fluid Velocity Around the 27 mm Intake Valve at 7 mm Lift 

 

Figure 4.47 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 7 mm valve lift, the fluid velocity around the valve opening is 

at a range between 1.5 x 102 m/s to 5.0x 102 m/s. 

 

 

Figure 4.48: Pressure Contour of 27 mm Intake Valve Lift at 7 mm Lift 

 

Figure 4.48 shows the pressure contour of the cylinder during the 7 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -9.46x 105 Pa to -7.01 

x 104 Pa. 
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4.2.8 8 mm Valve Lift Height 

Figure 4.49 shows the velocity results of the simulation for the 27 mm intake valve at 

8 mm valve lift. 

 

Figure 4.49: Velocity Profile of 27 mm Intake Valve at 8 mm Lift 

 

 

Figure 4.50: Fluid Velocity Around the 27 mm Intake Valve at 8 mm Lift 

 

Figure 4.50 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 8 mm valve lift, the fluid velocity around the valve opening is 

at a range between 1.5 x 102 m/s to 3.5x 102 m/s. 
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Figure 4.51: Pressure Contour of 27 mm Intake Valve Lift at 8 mm Lift 

 

Figure 4.51 shows the pressure contour of the cylinder during the 8 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -1.82 x 104 Pa to 1.70 

x 103 Pa 
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4.2.9 9 mm Valve Lift Height 

Figure 4.52 shows the velocity results of the simulation for the 27 mm intake valve at 

9 mm valve lift. 

 

Figure 4.52: Velocity Profile of 27 mm Intake Valve at 9 mm Lift 

 

 

Figure 4.53: Fluid Velocity Around the 27 mm Intake Valve at 9 mm Lift 

 

Figure 4.53 shows fluid velocity entering the combustion chamber through the 27 mm 

intake valve opening. At 9 mm valve lift, the fluid velocity around the valve opening is 

at a range between 1.5 x 102 m/s to 3.0x 102 m/s. 
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Figure 4.54: Pressure Contour of 27 mm Intake Valve Lift at 9 mm Lift 

 

Figure 4.54 shows the pressure contour of the cylinder during the 8 mm valve lift. At 

this point, it is found that most of the cylinder pressure is between -6.03 x 104 Pa to -3.72 

x 104 Pa 
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CHAPTER 5: DISCUSSION 

Simulation results obtained have been analyzed to study the velocity and pressure 

pattern for each valve height profile. In this chapter, the comparison of velocity changes 

that occurs when the valve lift changes from 1 mm to 9 mm will be made. The comparison 

of pressure changes in the cylinder will also be presented during the valve lift change. 

5.1 23 mm Intake Valve Diameter 

5.1.1 Velocity Vector of 23 mm Intake Valve Diameter 

Figure 5.1 shows the simulation results for the 23 mm intake valve diameter. The 

velocity profile for each valve lift height profile will be analyzed further in the next 

paragraph. 

   

1 mm Valve Lift 

   

2mm Valve Lift 

Figure 5.1: Velocity Vector of 23 mm Intake Valve Diameter 

 

Univ
ers

ity
 of

 M
ala

ya



59 

   

3mm Valve Lift 

   

4mm Valve Lift 

   

5mm Valve Lift 

   

6mm Valve Lift 

Figure 5.1: Velocity Vector of 23 mm Intake Valve Diameter (continued) 
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7mm Valve Lift 

   

8mm Valve Lift 

   

9mm Valve Lift 

Figure 5.1: Velocity Profile of 23 mm Intake Valve Diameter (continued) 

 

The simulation results for 1mm up to 5mm valve height indicate the fluid around the 

intake valve opening has a velocity mixed from low velocity to high velocity. This 

condition can be seen in a variety of mixed colors that represent the fluid velocity in the 

valve openings. At 1mm valve opening, there are many red high velocities particles. 

When the openings increase, the presence of this high velocity particle is decreasing. 

Fluid velocity is also seen increasingly evenly between one another. When the valve 
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opening reaches 6mm, the presence of red high velocity particles aroung intake valve 

opening has completely disappeared. Fluid velocity at valve openings is seen more 

uniformly from one another. This condition is constant and unchanged for higher valve 

openings for 6 mm, 7 mm, 8mm and 9mm. 

5.1.2 Pressure Contours of 23 mm Intake Valve Diameter 

Figure 5.2 shows pressure contours results for 23 mm intake valve simulation. Further 

analysis was conducted to study the changes in pressure that occurred from the intake 

chamber and the combustion chamber. 

 
  

1 mm Valve Lift 2 mm Valve Lift 3 mm Valve Lift 

   

4 mm Valve Lift 5 mm Valve Lift 6 mm Valve Lift 

   

7 mm Valve Lift 8 mm Valve Lift 9 mm Valve Lift 

Figure 5.2: Pressure Contour of 23 mm Intake Valve Diameter 
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Table 5.1 shows the value of the pressure within the combustion chamber. From the 

data, it is found that the pressure value is negative on all valve lift values. 1mm valve lift 

shows the lowest pressure value. When the valve opening increases between 1mm to 

5mm, the pressure in the combustion increases significantly. But the intangible change 

pattern can be observed when the valve opening is between 6mm and 9mm. In this range, 

it is found that the increase in valve lift does not significantly increase the combustion 

chamber pressure. 

Table 5.1: Combustion Chamber Pressure of 23 mm Intake Valve Diameter 

Valve Lift 

(mm) 

Combustion Chamber 

Pressure (kPa) 

1 -1380 

2 -471 

3 -175 

4 -106 

5 -205 

6 -67.1 

7 -64.8 

8 -62.1 

9 -52.5 
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From the Figure 5.3, at the openings of 1mm valve up to 5mm, the pressure change in 

engine cylinder is very significant. It is found that at the valve lift range of 6mm to 9mm, 

it is found that the pressure change pattern is horizontal and has no significant difference. 

 

Figure 5.3: Combustion Chamber Pressure Pattern of 23mm Intake Valve Diameter 
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5.2 27 mm Intake Valve Diameter 

5.2.1 Velocity Vector for 27 mm Intake Valve Diameter 

Figure 5.4 shows the simulation results for the 27mm intake valve diameter. The 

velocity profile for each valve lift height profile will be analyzed further in the next 

paragraph. 

   

1 mm Valve Lift 

   

2 mm Valve Lift 

   

3 mm Valve Lift 

Figure 5.4: Velocity Vector of 27 mm Intake Valve Diameter 
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4 mm Valve Lift 

   

5 mm Valve Lift 

   

6 mm Valve Lift 

   

7 mm Valve Lift 

Figure 5.4: Velocity Profile of 27 mm Intake Valve Diameter (continued) 
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8 mm Valve Lift 

   

9 mm Valve Lift 

Figure 5.4: Velocity Vector of 27 mm Intake Valve Diameter (continued) 

 

The simulation results for 1mm up to 3mm valve height indicate the fluid around the 

intake valve opening has a velocity mixed from low velocity to high velocity. This 

condition can be seen in a variety of mixed colors that represent the fluid velocity in the 

valve openings. At 1mm valve opening, there are many red high velocities particles. 

When the openings increase, the presence of this high velocity particle is decreasing. 

Fluid velocity is also seen increasingly evenly between one another. When the valve 

opening reaches 4mm, the presence of red high velocity particles has completely 

disappeared. Fluid velocity at valve openings is seen more uniformly from one another. 

This condition is constant and unchanged for higher valve openings for 4 mm, 5 mm, 6 

mm, 7 mm, 8 mm and 9 mm. 
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5.2.2 Pressure Contours for 27 mm Intake Valve Diameter 

 

Figure 5.5 shows pressure contours results for 27 mm intake valve simulation. Further 

analysis was conducted to study the changes in pressure that occurred from the intake 

chamber and the combustion chamber. 

   

1 mm Valve Lift 2 mm Valve Lift 3 mm Valve Lift 

   

4 mm Valve Lift 5 mm Valve Lift 6 mm Valve Lift 

   

7 mm Valve Lift 8 mm Valve Lift 9 mm Valve Lift 

Figure 5.5: Pressure Contour of 27 mm Intake Valve Diameter 
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Table 5.2 shows the value of the pressure within the combustion chamber. From the 

data, it is found that the pressure value is negative on all valve lift values. 1mm valve lift 

shows the lowest pressure value. When the valve opening increases between 1mm to 

3mm, the pressure in the combustion increases significantly. But the intangible change 

pattern can be observed when the valve opening is between 4mm and 9mm. In this range, 

it is found that the increase in valve lift does not significantly increase the combustion 

chamber pressure. 

Table 5.2: Combustion Chamber Pressure of 27 mm Intake Valve Diameter 

Valve Lift 

(mm) 

Combustion Chamber Pressure 

(kPa) 

1 -1420 

2 -615 

3 -292 

4 -99.9 

5 -96.8 

6 -79 

7 -70.1 

8 -64.1 

9 -60.3 
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From the Figure 5.6, at the openings of 1mm valve up to 3mm, the pressure change in 

engine cylinder is very significant. It is found that at the valve lift range of 4mm to 9mm, 

the pressure change pattern is horizontal and has no significant difference. 

 

Figure 5.6: Combustion Chamber Pressure Pattern of 27mm Intake Valve 

Diameter 
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CHAPTER 6: CONCLUSION 

The research project that has been carried out has met the desired objectives. Through 

the results obtained, it is found that the valve lift affects the velocity of the fluid into the 

engine combustion chamber. Through an air pressure analysis, it is found that the valve 

lift value also affects the pressure inside the engine cylinder. However, the study also 

found that cylinder pressure was also heavily influenced by the valve lift value. When 

exceeding the optimum valve lift height, it is found that the pressure in the cylinder has 

no significant change even though the height of the valve lift is increased 

From the computational fluid dynamic simulations, result and analysis carried out, it 

was found that, for a 23 mm diameter valve size, the optimum valve lift required was 6 

mm. Valve lifts lower than 6 mm will restrict fluid entrance into the combustion chamber. 

However, increasing the valve lift exceeds the 6mm value does not significantly increase 

the amount of fluid entering into the engine cylinder during the intake stroke of four (4) 

cycle gasoline engine. 

For a 27 mm diameter valve size, the optimum valve lift required was 4 mm. Valve 

lifts lower than 4 mm will restrict fluid entrance into the combustion chamber. However, 

increasing the valve lift exceeds the 4mm value does not significantly increase the amount 

of fluid entering into the engine cylinder during the intake stroke of four (4) cycle gasoline 

engine. Univ
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