POSTURAL STABILITY AND RISK OF FALL OF PERSON WITH TRILATERAL PROSTHESIS

FATIN ATHIRAH AZALI

RESEARCH REPORT SUBMITTED TO THE FACULTY OF ENGINEERING UNIVERSITY OF MALAYA, IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF BIOMEDICAL ENGINEERING

2019

UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Fatin Athirah Binti Azali

Matric No: **KQB160010**

Name of Degree: Master of Biomedical Engineering

Title of Project Paper/Research Report/Dissertation/Thesis:

Postural Stability and Risk of Fall of Person with Trilateral Prosthesis

Field of Study: Biomedical Engineering

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge, nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature

Date:

Name:

Designation

ABSTRACT

Postural stability is defined as the ability to maintain an upright position. It comes in two forms, static and dynamic. Static postural stability is when you are standing and not moving while dynamic stability is when you are moving or doing specific movements. Amputees impair the ability to balance especially when trilateral amputation involved. By losing 3 limbs of the body, postural stability may affect and required specific kind of training for the amputee to do daily activity. Risk of fall also may high than normal persons as the balance are off than usual. The parameter used to measure the postural stability and indicate the risk of fall is postural stability index. Postural stability index includes the total of anterior/posterior stability index (APSI) and medial-lateral stability index (MLSI). These parameters can be measured using Biodex Balance System SD (BSS). In procedure of this study, subjects were undergone two tests of postural stability and Fall Risk tests. Ten normal subjects and one trilateral amputee subject participate in this study. Normal subjects do the procedure with two conditions. First condition is normal (N) which subjects in standing-up position and both hands at the sides. Second condition, normal subjects can't use both (N/N) hand and dominant leg to impersonate trilateral amputee. Trilateral amputee also undergoes the procedure with 2 conditions which are with prosthetics (P) and without prosthetics (N/P). The postural stability index then compared between two conditions for normal subjects and trilateral amputee subject respectively. Also, subjects undergo the procedure on two levels of platform; less stable platform level 3 for normal subjects' perusal and level 5 for amputee subjects' perusal, more stable platform level 12 used on normal and amputee subjects. The study found that there's difference in stability index on normal subject between normal condition and condition where can't use both hands and dominant leg. The differences are identified for each platform. For platform 3 procedure on normal subject, the stability index with condition N/N is increase by 75% from stability index with condition N. Platform 12

procedure on normal subjects, stability index with condition N/N increase by 41% from condition N and on amputee subject, stability index for condition N/P increase by 33% than condition P. Procedure for platform 5 on amputee subject, condition N/P stability index increase by 50% than P condition. Fall Risk test also determined by stability index value which then compare between N condition and N/N condition for normal subject, P condition and N/P condition for amputee subject. Stability index in Fall risk test for normal subjects with N/N condition higher than N condition by increasing 71% while for amputee subject, N/P condition higher than P condition increase by 29%. The test claimed that a lower score is more desirable than a higher score means lower stability index more stable the person is and vice versa which concluded that normal person with normal condition have higher postural stability than trilateral amputee.

ABSTRAK

Kestabilan postur dimaksudkan sebagai keupayaan untuk mengekalkan posisi atau pergerakan. Ia datang dalam dua jenis iaitu statik dan dinamik. Kestabilan postur statik adalah apabila cuma posisi berdiri yang stabil dan tidak bergerak manakala kestabilan dinamik adalah apabila kestabilan badan dalam posisi yang lain selain berdiri atau melakukan pergerakan tertentu.Untuk Orang kurang upaya seperti kudung menjejaskan keupayaan untuk mengimbangi badan ketika berdiri dan bergerak terutamanya jika ia melibatkan kehilangan 3 anggota badan dalam satu masa. Keadaan itu akan memberi kesan kepada kestabilan postur. Kebiasaannya, beberapa jenis latihan akan disediakan kepada orang kudung untuk melakukan aktiviti harian terutamanya yang baru mempunyai keadaan tersebut. Risiko jatuh untuk orang kdudung yang hilang 3 anggota badan juga tinggi daripada orang biasa keranakeseimabnag badan mereka sudah tidak sama seperti biasa. Parameter yang digunakan untuk mengukur kestabilan postur dan risiko jatuh adalah indeks kestabilan postur. Indeks kestabilan postur termasuk jumlah indeks kestabilan anterior / posterior (APSI) dan indeks kestabilan medial / lateral (MLSI). Semua parameter ini boleh menjadi langkah menggunakan Biodex Balance System SD (BBS). Dalam prosedur kajian ini, 2 ujian telah dijalankan iaitu ujian kestabilan postur dan ujian trerhadap risiko jatuh. Sepuluh subjek normal dan satu subjek trilateral mengambil bahagian dalam kajian ini. Subjek normal melakukan prosedur dengan dua keadaan. Keadaan pertama adalah normal (N) dimana subjek dalam kedudukan berdiri dan kedua-dua tangan di sisi. Keadaan kedua, subjek normal tidak boleh menggunakan kedua-dua tangan (N / N) dan kaki dominan untuk menyamar sebagai trilateral. Subjek trilateral juga menjalani prosedur dengan 2 keadaan dimana keadan pertama, lengkap dengan prostetik (P) dan keadaan kedua tanpa menggunakan prostetik (N/P). Indeks kestabilan postur kemudiannya dibandingkan antara dua keadaan

tersebut untuk subjek normal dan subjek trilateral secara berasingan. Juga, semua subjek perlu menjalani prosedur pada dua tahap platform. Subjek normal menggunakan platform 3 dan platform 12 manakala untuk subjek trilateral akan menggunakan platform 3 dan juga sama seperti subjek normal, platform 12. Kajian mendapati bahawa terdapat perbezaan dalam indeks kestabilan dalam keadaan N dan keadaan N/N. Perbezaan dikenal pasti untuk setiap platform. Untuk platform 3 prosedur untuk subjek normal, indeks kestabilan dengan keadaan N / N meningkat sebanyak 75% daripada indeks kestabilan keadaan N. Dengan menggunakan platform 12 prosedur yang dilakukan normal subjek, indeks kestabilan dengan keadaan N / N mempunyai peningkatan sebanyak 41% dari keadaan N manakala untuk subjek trilateral, indeks kestabilan bagi keadaan N / P meningkat sebanyak 33% daripada keadaan P. Prosedur untuk platform 5 pada trilateral subjek, keadaan N / P indeks kestabilan meningkat sebanyak 50% daripada keadaan P. Ujian risiko jatuh juga ditentukan oleh nilai indeks kestabilan dimana dibandingkan antara keadaan N dan keadaan N / N untuk subjek normal, keadaan P dan keadaan N / P untuk subjek trilateral. Indeks kestabilan dalam ujian risiko jatuh untuk subjek normal dalam keadaan N / N lebih tinggi daripada keadaan N dengan peningkatan sebanyak 71% manakala bagi trilateral, keadaan N/P lebih tinggi daripada keadaan P dengan peningkatan sebanyak 29%. Syarikat pembuataan Biodex Balance System mengatakan bahawa untuk memastikan seseorang itu mempunyai kestabilan yang baik, nilain indek kestabilan mestilah kurang.

TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF GRAPHS	xii
LIST OF ABBREVIATIONS AND SYN	MBOLSxiii
LIST OF APPENDICES	xiiv
CHAPTER 1: INTRODUCTION	1
1.1 Overview	1
1.2 Problem Statement	5
1.3 Objectives	5
1.4 Report Structure	
1.5 Scope of study	
CHAPTER 2: LITERATURE REVIEW	
2.1 Stability test	
2.1.1 Sensory Organization Te	st (SOT)8
2.1.2 Force Plate	
2.1.3 Balance Master	
2.2 Stability Amongst Amputee	
2.3 Relationship Between Stability a	nd Amputee14
2.4 Biodex Stability Test Amongst A	Amputee
2.5 Risk of Fall Related to Amputee	
2.6 Summary	
CHAPTER 3: METHODOLOGY	
3.1 Participants	
3.1.1 Normal Subjects	
3.1.2 Amputee Subjects	

3.2	Instruments	46
3.3	Experiment Set-up	48
3.4	Parameter and Test Protocol	50
3	3.4.1 Postural Stability Test Protocol	50
3	3.4.2 Athlete Single Leg Stability Test Protocol	54
3	3.4.2 Fall Risk Test Protocol	56
CHAI	PTER 4: RESULTS AND DISCUSSION	59
4.1	Participants Data	59
4.2		
4.3		
CHAI	PTER 5: CONCLUSION	
5.1		
	ERENCE	
APPE	ENDICES	77

LIST OF FIGURES

Figure 1.1: The progression or sequential steps in a study7
Figure 2.1: Illustration of experimental paradigm and measurement set-up (Hans
Chaudhry et al. 2004)
Figure 2.2: Example of static balance test on a force plate (single leg stance, eyes closed,
arms free). An example of the COP sway of this test is on the right side (Andrej Panjan
& Nejc Sarabon. 2015)
Figure 2.3: The EquiTest system is ideal for the comprehensive balance program (Balance
& Mobility Academy)
Figure 2.4: The major categories of lower limb amputations (Adapted from Amputee
Rehabilitation, Musculoskeletal Program)
Figure 2.5: The major categories of upper-limb amputations (Adapted from Amputee
Rehabilitation, Musculoskeletal Program)
Figure 2.6: Activities when fall occurred among people with limb loss who experienced
falls and those who experienced fall-related injuries. Black; Experienced at least a single
fall. White; Experienced a fall-related injury. W/C: wheelchair; ADLs: activities of daily
life (Stanford Chihuri,2018)
Figure 3.1: Pin lock prosthesis on trilateral amputee's left leg
Figure 3.2: The Biodex Balance System SD47
Figure 3.2: The Biodex Balance System SD.47Figure 3.3: Biodex Testing option display in menu screen48
Figure 3.3: Biodex Testing option display in menu screen
Figure 3.3: Biodex Testing option display in menu screen
Figure 3.3: Biodex Testing option display in menu screen
Figure 3.3: Biodex Testing option display in menu screen
Figure 3.3: Biodex Testing option display in menu screen 48 Figure 3.4: Normal subject act like trilateral amputee to get results compare with normal results. (side view) 49 Figure 3.5: Back view to see clear that both hands and dominant leg not been used throughout the test. 49
Figure 3.3: Biodex Testing option display in menu screen.48Figure 3.4: Normal subject act like trilateral amputee to get results compare with normalresults. (side view)
Figure 3.3: Biodex Testing option display in menu screen 48 Figure 3.4: Normal subject act like trilateral amputee to get results compare with normal results. (side view) 49 Figure 3.5: Back view to see clear that both hands and dominant leg not been used throughout the test. 49 Figure 3.6: Amputee subject lift up the leg prostheses instead take it off. This consideration as precaution procedure 50
Figure 3.3: Biodex Testing option display in menu screen 48 Figure 3.4: Normal subject act like trilateral amputee to get results compare with normal results. (side view) 49 Figure 3.5: Back view to see clear that both hands and dominant leg not been used throughout the test. 49 Figure 3.6: Amputee subject lift up the leg prostheses instead take it off. This consideration as precaution procedure 50 Figure 3.7: Screen display to show the cursor position 51

Figure 3.10: Postural stability testing option display to key in the data of foot posit	tion,
and platform setting and test trial duration	53
Figure 3.11: The sheet of result display on screen	54
Figure 3.12: The protocol set up on testing option display	55
Figure 3.13: The results sheet display for athlete single leg stability tests	55
Figure 3.14: the protocol set up in the fall risk testing option display	57
Figure 3.15: Test result of fall risk test sheet	57

University of Malaya

LIST OF TABLES

Table 2.1: Related studies to the research 18
Table 4.1: Subject's demographic data
Table 4.2: Data of postural stability test with standard deviation during procedure by
normal subjects61
Table 4.3: Data of postural stability test with standard deviation during procedure by
trilateral amputee
Table 4.4: Average data value with standard deviation for postural stability test on normal
subjects
Table 4.5: The difference of data value of postural stability of normal subjects between
two procedure condition; N and N/N
Table 4.6: The difference of data value of postural stability of trilateral amputee subjects
between two procedure condition; P and N/P
Table 4.7: Risk of fall data with standard deviation recorded during the procedure
including normal subject and trilateral amputee subject
Table 4.8: Value of difference with standard deviation in stability index between two
conditions during the procedure for risk of fall test
Table 4.9: Average of Difference value for normal subjects and amputee subject 69

LIST OF GRAPHS

Graph 4.1: Postural Stability difference between normal and trilateral amputation
condition for platform level 3-normal subjects
Graph 4.2: Postural Stability difference between normal and trilateral amputation
condition for platform level 12-normal subjects
Graph 4.3: Postural Stability difference between prosthetics equipped and No prosthetics
equipped condition for platform level 5 and level 12-trilateral amputee subjects
Graph 4.4: The differences of Fall Risk Test result between N or P condition and N/N or
N/P conditions

LIST OF ABBREVIATIONS AND SYMBOLS

BSS	Biodex Stability System
APSI	Anterior / Posterior Stability Index
MLSI	Medial–Lateral Stability Index
OSI	Overall Stability Index
SOT	Sensory Organization Test
PSI	Postural Stability Index
COP	Center of Pressure
СОМ	Center of Mass
W/C	Wheelchair
ADLs	Activity Daily Life
BMI	Body Mass Index
NS	Normal Subject
TS	Trilateral Amputee Subject
N	Normal
0	Obese
OW	Overweight

LIST OF APPENDICES

APPENDIX A	77
APPENDIX B	78
APPENDIX C	79
APPENDIX D	80
APPENDIX E	81
APPENDIX F	82
APPENDIX G	83
APPENDIX H	84
APPENDIX I	85
APPENDIX J	86
APPENDIX K	87
APPENDIX L	88

CHAPTER 1: INTRODUCTION

1.1 Overview

There are many types of amputation and many factors that cause it. There are several different types of extremity amputations that can occur including fingers or partial hand (transphalangeal or transcarpal), wrist disarticulation (through the wrist joint), below-elbow (transradial), elbow disarticulation (through the elbow joint), above-elbow (transhumeral), bilateral (both sides of the body are affected), shoulder disarticulation (through the shoulder joint), interscapular thoracic (removal of entire shoulder girdle), and trilateral amputation (involving amputation of three limbs) (Steven A. Ovadia et al. 2015).

Most of the common causes of amputation are birth defect, terrible wounds and illness are regular reasons somebody may lose limbs. Predicaments that come from diabetes and vascular ailment represent most of amputation and some disease patients might be liable to amputation as well. Wounds that happen amid military battle, and vehicle, cruiser and sailing accidents additionally are regular causes. Leg removal, both above and underneath the knee, is commonly more typical than arm and hand removal.

A wide range of amputees may figure out how to adjust their live by doing every day exercises, for example, eating, put on garments and strolling in various manner. They likewise should experience physiotherapy and their standard post-treatment is phantom pain. phantom pain is a term that portrays continuous, physical sensation in the limbs that has been lose. Most patients experience some level of phantom pain following a removal. They can feel shooting agony, consuming or notwithstanding tingling in the limbs that is no longer there. Sometimes, phantom pain can be stayed away from if the nerve closes are stifled inside 12 hours of the damage, which counteracts the development of pain memory pathways. There likewise are prescriptions and treatments that can help. Amputees have a lengthy, difficult experience to recuperation. Most patients should get settled with a prosthetic and will experience non-intrusive treatment for quite a long time or years following the removal. This procedure is close to home and can change enormously from patient to patient. Recuperation additionally can be influenced by the reason for removal, the particular limb lost and whether the removal happened above or beneath the joint. Removals that happen over the joint will in general be progressively hard to recuperate from and can influence the patient's capacity to utilize a prosthesis (Ovadia et al. 2015).

After somebody has experienced a removal, the fundamental quest for everyday living will turn out to be substantially more troublesome, or maybe even inconceivable. Beforehand clear errands, for example, sustenance readiness or housework may turn into a huge test, and the amputee might be restricted in the exercises they can perform unaided. A significant number of these are assignments that we regularly underestimate, for example, getting dressed, washing, or conveying shopping. Upper-appendage amputees who have lost their predominant hand or arm are all around prone to experience issues finishing assignments that require manual handiness, and to adjust for this should figure out how to utilize their beforehand non-overwhelming appendage. For example, one particularly taxing transfer of skill would figure out how to compose with their more fragile hand. Envision losing three limbs immediately, it must be difficult to try and remain without prosthetic. Achieving perfect postural steadiness may be unusual.

Postural stability is the ability to maintain balance using the muscles in your ankles, knees, and hips in response to movement. Postural stability also defined as the ability to maintain an upright position. It comes in two forms, static and dynamic. Static postural solidness is standing and not moving while dynamic strength is while moving or doing explicit developments. Effective postural control requires the commitment from a complex tactile framework including visual, somatosensory, and vestibular modalities just as engine control frameworks. For amputees to come back to their day by day life exercises, the capacity to keep up postural equalization is basic while adjusting the development or simply standing position. The support and control of stability, regardless of whether under static or dynamic conditions, is considered as a basic prerequisite for physical and every day activities. Accordingly postural control factors have frequently been utilized to assess patients with different musculoskeletal or neuromuscular clutters (Rogers et al. 2013).

Balance is a complex function involving numerous neuromuscular processes. Balance is constrained by tactile information, focal handling, and neuromuscular reactions. The tactile parts incorporate the vestibular, visual and proprioceptive frameworks. A suitable motor reaction requires a flawless neuromuscular framework and adequate muscle solidarity to restore the focal point of mass inside the base of help when balance is aggravated. Proprioceptive weakness has additionally been associated as one with the potential reasons for equalization impedances in amputee. Amputee has been related with diminished muscle quality and proprioception. This may influence the nature of tactile data and upset the connection between postural reactions and tangible data (Luana Colloca et al. 2017).

The Biodex Balance System (BSS) by Biodex Mecial System Inc. has been used to evaluate postural balance in recent years. The BBS is a multiaxial device that objectively measures and records an individual's ability to stabilize the involved joint under dynamic stress. It uses a circular platform that is free to move in the anterior– posterior and medial–lateral axes simultaneously. The BBS allows up to 20° of foot platform tilt, which permits the ankle joint mechanoreceptors to be stimulated maximally. The BBS measures, in degrees, the tilt about each axis during dynamic conditions and calculates a medial–lateral stability index (MLSI), anterior–posterior stability index (APSI), and an overall stability index (OSI). These indexes represent fluctuations around

3

a zero-point established prior to testing when the platform is stable. For example, an OSI of 5° would be interpreted to mean that on average, the displacement from center is 5° . Previous studies have shown that BBS is reliable for evaluating dynamic postural balance in healthy subjects.

As mentioned in World Health Organization, a fall is characterized as an inadvertent loss of balance bringing about the individual fall on the ground. Individuals with limb loss has an expanded danger of falling when contrasted with the overall public and falls are related with diminished certainty with equalization, parity, and social interest. Falls in patients with limb loss could be decimating, considerably more so in the old and fragile populace. It is significant for an amputee to have the option to fall securely and to have the option to drop themselves down to the floor, to diminish dread and so as to do exercises on the ground. When all is said in done, amputee have high danger of falling. Falling is a wellbeing hazard that has gotten significant consideration in the writing. Falls may result in death or genuine damage or significant utilitarian impediment and inability. Most examinations that have researched falling danger been directed with old populaces however thinking by relationship recommends that amputee face comparable dangers that make them as inclined to falling as the old; indeed, most amputee are beyond 55 years old years. Danger of falling among the amputee may be marginally unique as every appendage choose the adjusting of the body.

Amputation may make the individual with limb loss feel off guard. There are investigation of falls in individuals with limb loss are related to less stability capacity. Also the expectation that individuals with limb loss will be double to 3.6 million by 2050, which also means will increase risk of falling contrasted with physically fit people. While an investigation found that roughly 26% of inviduals with limb loss extending in age from 20–92 years had fallen, the yearly frequency of falls in amputee community (Wong et al. 2016).

1.2 Problem Statement

As for normal subjects, balance and postural adjustments during standing are generally achieved using "ankle strategy" that the ankle joint will be first line defense against falls as it is designed to move in all directions, while amputee use different strategies to maintain balance. Furthermore, some attributed changes in postural control in amputee disability. This interference is likely to contribute to different adaptive changes in postural control and balance in amputee. The purpose of this study was to evaluate the reliability of dynamic standing balance in individuals between trilateral amputee and normal person using Biodex balance system and to compare the balance indices between the two groups.

As many types of amputation, trilateral amputation may become highlight in this research. Losing one limb may not as hard losing three at once. Trilateral amputee needs to go through physiotheraphy to reduce the risk of fall and learn how to balance their body while standing or walking.

1.3 Objectives

The purpose of this study

 To evaluate the reliability of dynamic standing balance or called dynamic postural stability and risk of fall in individuals whether trilateral amputee and normal person using Biodex balance system and to compare the balance indices between two groups.

1.4 Report Structure

This project contains five chapters that consists of an introduction, literature review, methodology, results and discussion and conclusion. The introduction part gives an overview about amputation, Postural stability, fall of risk and Biodex Balance System. Problem statement and objectives of the research are related to trilateral amputation postural stability and fall risk were elaborated in this chapter.

Second chapter is literature review, related information and input are compiled to support the objective based on the previous research work. All this compilation with make this study more understandable. Methodology come as third chapter covers the detailed explanation of experimental procedure, the instrumentation used, the subject's information, the requirement that subjects need to pass to make sure the accuracy of the results. Results are tabulated and analysed briefly. Lastly, conclusion suggests the improvement from the current work and future work.

1.5 Scope of study

This study focusses on the trilateral amputation type. The postural stability test and fall risk assessment on amputee that lost three limbs at once and compare it to normal person. However, there's kind of limit to invite trilateral amputee to go through the procedure as only one trilateral amputee was found to live in Petaling Jaya area. Therefore, to proceed with the procedures, normal person will test the postural stability and assess their fall risk by making their three limbs non-function at same time. The tests done at Human Performance and Motion Analysis laboratory under Biomedical Engineering Department, University of Malaya. The study provides the background of amputation, postural stability and fall of risk amongst amputee at introduction to make this study more understandable. Also, the input to answer the objective on analysed result provided to prove this study is reasonable. Study procedure been summarized in flowchart in Figure 1.1. Somehow, acknowledged that the study has limitation on procedure and result analysis which can be improved in future work.

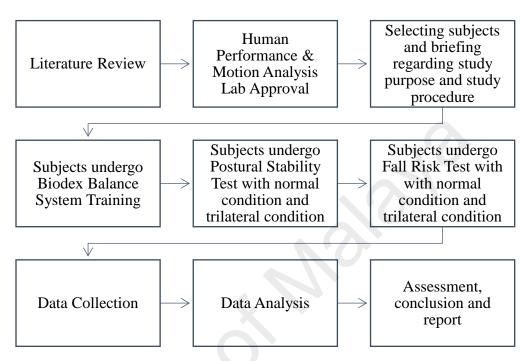


Figure 1.1: The progression or sequential steps in a study

CHAPTER 2: LITERATURE REVIEW

This chapter represent both a summary and explanation of the complete and current state of knowledge study in Postural Stability and Risk of Fall amongst community including normal persons and amputees.

2.1 Stability Tests

Postural control is the ability to maintain equilibrium in a gravitational field by keeping or returning the center of body mass over its base of support. Unsupported, standing humans are in unstable equilibrium, or balance, because the force of gravity must be counteracted continually by muscular energy. Measurement of postural control is difficult because the location of the center of body mass (center of gravity) is not determined easily (Thierry Paillard et al. 2015). As improvement made by time, there are some completed researched by different methodology and all their objective is one – Postural stability measurement.

2.1.1 Sensory Organization Test (SOT)

Currently, doctors, specialists, and scientists regularly utilize the Equilibrium Score (ES) from the Sensory Organization Test (SOT) to survey the postural strength of a patient or subject. SOT gives data about the joining of the visual, proprioceptive, and vestibular segments of parity, which prompts a result which is ES. Since the SOT based ES does not think of some as key biomechanical parts of postural solidness, another proportion of postural soundness proposed, which called the "Postural Stability Index" (PSI). Another list of postural security that represents extra biomechanical properties of standing that ought to be reflected in a clinically important score. No development of the subject outcomes in an ideal score of 100 additionally portrayed. In the event that the subject falls or the estimation of the ES is negative, the subject gets a score of 0. In this manner, the ES goes somewhere in the range of 0 and 100. The presumptions about the general greatness of the breaking points of solidness just as the extent of foremost and back influence can bring blunders into the ES figuring for people whose cut off points of strength fluctuate fundamentally from the age-and stature coordinated standards. The assumptions about the overall magnitude of the limits of stability as well as the magnitude of anterior and posterior sway can introduce errors into the ES calculation for individuals whose limits of stability vary significantly from the age- and height-matched norms. Some studies believe that in a clinical setting, a single number or a small set of numbers representing postural stability is desirable so that clinicians can quickly determine whether a patient requires a balance intervention or whether an intervention has been effective in improving postural stability. There are study that proposed a solitary measure characterizing postural stability that depends on the material science of standing and that makes less presumptions than Equilibrium Score (Hans Chaudhry et al. 2004).

Figure 2.1: Illustration of experimental paradigm and measurement set-up (Hans Chaudhry et al. 2004).

2.1.2 Force Plate

As the name implies, force plate is a device that measures ground reaction forces as the person stands quietly in conditions "eyes open, surround and platform stable" and "eyes closed, surround and platform stable" only, as described above and is used to determine the COP (center of pressure) displacement. It is then used to obtain sway of the COM (center of mass) which can be used to determine the ES (equilibrium score) (Hans Chaudhry et al. 2011). A Brief Review Force Plate uses a strain gauge and features excellent linearity and temperature characteristics, allowing calibration with a static load. Minimal zero-drifting enables stable measurement. Key features of force plate are the design and combinations of the internal sensors and top plates.

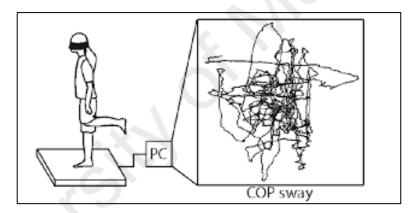


Figure 2.2: Example of static balance test on a force plate (single leg stance, eyes closed, arms free). An example of the COP sway of this test is on the right side (Andrej Panjan & Nejc Sarabon. 2015).

Obtaining and signal processing of the COP sway is a requirement of a test. More often than not, makes of a force plate framework offers software for procurement of the COP, however the examining recurrence of the obtaining should be focus on. In the event that it is excessively low, at that point probably won't most likely procure little and high recurrence changes of the COP. The suggested examining recurrence is somewhere in the range of 100 and 1000 Hz. Higher frequency of sampling are redundant, and they will just expand the measure of information obtained. Handling of obtained information comprise of pre-preparing and real preparing where last outcomes are figured (Andrej Panjan & Nejc Sarabon. 2015).

2.1.3 Balance Master

This device consists of a movable support surface (force plate) and a visual surround with a harness to prevent fall during testing. It can determine the COP displacement as well as the sway of COM in conditions eyes open, surround and platform stable; eyes closed, surround and platform stable; eyes open, sway-referenced platform; eyes closed, sway-referenced platform. It can be used to determine the ES and PSI. This device also consists of a movable support surface (force plate) and a visual surround, which can move in a sway-referenced manner, along with a harness to prevent fall during testing. It can determine the COP displacement as well as the sway of COM (Hans Chaudhry et al. 2011).

Figure 2.3: The EquiTest system is ideal for the comprehensive balance program (Adpted from Balance & Mobility Academy)

The EquiTest system utilizes a dynamic force plate with rotation and translation capabilities to quantify the vertical forces exerted through the patient's feet to measure center of gravity position and postural control; and a dynamic visual surround to measure the patient's use of visual information to maintain balance. It provides assessment and retraining capabilities with visual biofeedback on either a stable or unstable support surface and in a stable or dynamic visual environment.

2.2 Stability Amongst Amputee

Amputees had more lesser static and dynamic stability than physically fit controls. Amputees had a more prominent issue controlling unique parity in the anteroposterior direction than the mediolateral direction (Ahmed ha et al. 2010).

Most research studies, which focus on stability in subjects with lower limb amputation, are concentrated on stability control in quiet standing positions. Lower-limb amputation is mainly a result of trauma, vascular disease, diabetes, or congenital disorders. Researcher state an increase in postural sways in subjects with lower limb amputation (short- and long-term prosthesis users) compared to healthy subjects. The standing stability in patients with amputations is altered in the way of postural sway increases and the stability control strategy changes as results (Viton et al., 2000). In most of the studies, a one force plate is used to measure postural stability parameters. There are studies that separate analyse procedure between the prosthetic and non-amputated leg, show a lowering of the load and decrease of the COP (centre of pressure) sway on the prosthetic limb (Quai, Brauer, & Nitz, 2005). Research confirms that good intact limb stability for the functional integration of an amputated subject into life is conditional (Schoppen et al., 2003).

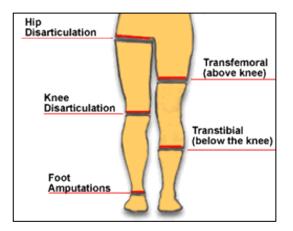


Figure 2.4: The major categories of lower limb amputations (Adapted from Amputee Rehabilitation, Musculoskeletal Program)

The upper limbs are the most significant piece of the body that have practical capacity to perform day by day exercises, self-care obligations, side interests and sports. Static stability very little impact on upper limbs loss as they clearly can stand appropriately, yet powerful parity may influence as the center of mass changed by losing any limbs or utilizing prosthetic.

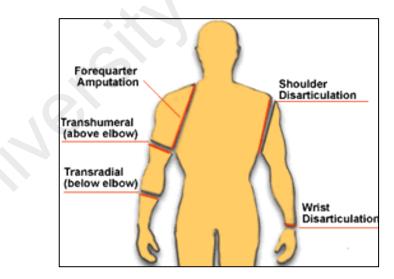


Figure 2.5: The major categories of upper-limb amputations (Adapted from Amputee Rehabilitation, Musculoskeletal Program).

2.3 Relationship Between Stability and Amputee

People with amputation lose their capacity to stand and walk in view of the amputation level. Commitment of amputation level, type of amputation, or reason for amputation to adjust balancing impairment may the factor to influence the stability of amputee. Besides, it is disputable how much the referenced parameters impact standing stability (Kamali M et al. 2013). Body execution require legitimate and dynamic connection between stability (postural control) and portability. Truth be told, movement execution, emphatically related with motor cortex yield depends, for soundness purposes which fundamental objective is postural modification expected to help the body development additionally static position (Claudia Isabel, 2013)

The other parameter that may meddle with balance and stability is dominant limb that can be characterized based on strength of muscle, practical use and individual preference. Dominance of limb ought to be resolved by which leg the individual picks and depends on to do an assortment of utilitarian exercises, including maintain stability and balance. (Angelica Castilho, 2011)

Disturbs motor and proprioceptive function likewise have impact in stability of amputee. Biomechanical parts of the stride of amputee is important to improving their step work and their personal satisfaction. Notwithstanding biomechanical debilitations, people with amputation likewise experience disturbed somatosensory that is the arrangement of the piece of the tactile framework worried about the cognizant impression of vibration, touch, pain, weight, postion, temperature and movement, which emerge from the fascia, joints, skin and muscles. (Rainer Beurskens, 2014) Either the measure of postural sway or the measure of time a stable position can be kept up is estimated under six sensory conditions. The sensory conditions efficiently join two distinct surfaces (typical and orientationally erroneous) and three diverse visual conditions (ordinary, missing vision, and orientationally off base vision). An orientationally incorrect surface is given by having subjects remain on thick, consistent froth to such an extent that somatosensory contributions from the feet never again are furnishing precise data about postural influence with reference to the vertical plane. (Fay B. Horak, 1987)

Stability amid standing, which is defined as the ability to keep up the body focus of gravity inside its base of support, is accomplished by a complex synchronized performance of different system (musculoskeletal and neurologic frameworks). imbalance may be the after effect of diminished proprioception in-arrangement brought about by loss of feedback from foot position. It is notable that stability amid calm standing and keeping in mind that endeavor different errands (strolling and hand undertakings) is constrained by the hip and lower leg. In stable standing position, no external perturbation is applied on the body. In lower-limbs amputees, the lower leg joint system is lost with the goal that steadiness is predominantly constrained by hip joint components. Lower leg joint stability is defined as repositioning of the focal point of gravity by movement of the lower leg joint with little movement of the hip and knee joints, which is finished by getting the muscles encompassing the lower leg joint. Interestingly, hip technique is finished by dynamic trunk turn around the hip joint to settle the focal point of gravity inside the base of support. (Kamali M et al. 2013)

2.4 Biodex Stability Test amongst Amputee

Postural stability test was directed utilizing a Biodex stability system for its known unwavering quality in target evaluation of postural stability. There is a conceivable job for postural training with Biodex Balance System in improving the balance and steadiness in human lives particularly the person who required it the most. The helpfulness of offset preparing with BBS in improving postural balance and stability are all around shown in past examinations in older individuals, particularly those with neuropathy, diabetes and amputation. (Akbari. 2012; Salsabili. 2011). This device consists of a circular platform with series of strain gauges which can be used to assess subject's control of balance on either static or unstable surface condition. For that, there's study of prosthetic foot that prescribed to help amputees regulate the body's center of mass within the base of support to achieve postural equilibrium during quiet standing, as opposed to the plantar flexors-dorsiflexors mechanism in able-bodied person. From the center of Mass excursion about the anterior- posterior and medial- lateral axes from the center point, the BSS measures the overall stability index (OSI), anterior-posterior stability index (APSI) and medial-lateral stability index (MLSI). oreover, OSI was recommended as the best parity pointer. The stage was incorporated with PC programming (Version 3.1 Biodex Medical Systems) that empowers the gadget to compute the stability indexes. (N Ariffin et al. 2014)

2.5 Risk of Fall Related to Amputee

Every year, a huge number of more established individuals—those 65 and older fall. Truth be told, more than one out of four older individuals falls every year, except not exactly half tell their doctor. Falling once double your odds of falling once more. Danger of fall-related damage requiring therapeutic consideration in individuals with lower limbs amputation gives off an impression of being higher than in more established grown-up inpatients. Mediation projects to anticipate fall-related damage in individuals with lower limbs amputation should target ladies and racial minorities. Individuals with lower limbs amputation that live in the network fall at a rate that surpasses that of other defenceless populaces, for example, hospitalized older individuals. Past research in a little single state think about has recognized components related with fall-related damage. Past investigations with fewer than 50 subjects suggest a heightened risk of falls and fallrelated injuries among people with lower limb amputation (Wong et al. 2015; Wong et al. 2016). Falls have been associated with a fear of falling and lower levels of balance confidence among people with limb loss (Miller et al. 2011) with decreased balance

16

confidence associated with lower levels of prosthetic function (Wong et al. 2014). Falls, decreased confidence, and lower prosthetic function (Barnett et al. 2013). The personal, indirect, and non-medical costs incurred after fall-related injury may extend far beyond the \$25,000 average estimated direct medical costs in the 6 months following a fall for 16 people with transfemoral amputations seen between 1987 and 2014 (Mundell et al. 2017).

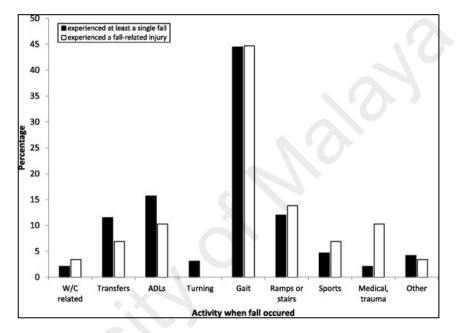


Figure 2.6: Activities when fall occurred among people with limb loss who experienced falls and those who experienced fall-related injuries. Black; Experienced at least a single fall. White; Experienced a fall-related injury. W/C: wheelchair; ADLs: activities of daily life (Stanford Chihuri,2018)

There are a lot of consequence after falls on amputee such as fractures to the femur, trauma to the stump, increasing in fear of falling, lengthy hospital stays, and patient is discharged to a long-term facility or Mobility and social activity restriction. By knowing the consequence and researcher come up with solution to reduce the effect by knowing how to minimize injury during a fall and knowing what to do immediately after falling. These kinds of education are important to amputee as their risk of fall are higher than normal people.

2.5 Summary

There are 31 previous studies that related to this research and the data can be useful to support the conclusion by this research. Table 2.1 listed the previous studies that been evaluated prior the research.

No	Authors	Title	Experiment setup	Pros	Cons	Remarks
1	Jagoda	The influence of Pilates	Eighty students (aged 13-24)	The Pilate	The study didn't use	Despite the
	Walowska;	exercises on body	were enrolled and randomly	movement use	any hearing impairment	pros and
	Bartosz	balance in the standing	allocated into two groups: test	in this study	people as subject while	cons, authors
	Bolach;	position of hearing-	group $(n = 41)$ which attended	modified to be	the objective of study to	still
	Eugeniusz	impaired people	an original program based on	as useful and	relate the Pilates	mentioned at
	Bolach		modified Pilates exercises and	suitable for	exercise with impaired	the end of the
			control group $(n = 39)$ which	study's	hearing people body	study papers
			attended standard physical	objective.	balance in stand	that further
			education classes.		position.	research is
			Stabilographic tests were			required.
			conducted at baseline and after			
			6-week training program.			
2	Yilmaz,	Evaluation of	The study examined 50	- The subjects	- In this study, balance	As the study
	R; Inanir,	Dynamic Postural Bala	paediatric patients with FMF	and controls	is measured during	used out
	A; Kazanci,	nce in Pediatric Familial	and 130 healthy age-and sex-	group use are in	-	dated disease
	NO ; Cakan,	Mediterranean Fever	matched children as control	big quantity	1	severity
	N; Gul, A	Patients	subjects.	allowing the	balance between attack	index,
			Dynamic postural stability was	study to be	and attack-free periods	authors
			measured using	more accurate.	and assess the effects of	suggested
			the Biodex Stability System	- The study	pain.	that in future
			(BSS).	results were	- Lack of an evaluation	study (same
				calculated as	of the effects of sensory	prospect) can
				the mean of	inputs on balance	used
				three	- The study referred to	Autoinflam

Table 2.1: Related studies to the research

				measurements made at 20- second intervals, also provide more accurate results.	out dated disease severity index	matory Disease Activity index.
3	Jacek Wilczyński	Postural Stability in Goalkeepers of the Polish National Junior Handball Team	Eleven players of the Polish junior national handball team (age 16.82 ± 1.6 years, body height 191.27 ± 3.1 cm, body mass 88.41 ± 12.26 kg, BMI 24.18 ± 3.22 kg/m2, training experience 6.54 ± 1.86 year) took part in the study. The Biodex Balance System and AccuGait AMTI platforms were used to assess postural stability. The Postural Stability Test was conducted on the Biodex Balance System platform, with double support in a stable position with open eyes. The Postural Stability Test consisted of three 20-s trials, separated by a 10-s rest interval. The subject's eyes were focused on a screen where a dot appeared.	Subjects used need to undergo same training and pressure which will provide accurate results to study.	As 2 systems are used in this study but both of them test different parameters. This take long time for study to finish. Also, Data distribution used Shapiro-Wilk test, t- test, Pearson's linear correlation coefficients which required a lot of time.	Despites the cons that study is taking a lot of times, actually the study is very good as the method is very fair and accurate.
4	Jacek Wilczyński; Paweł Półrola	Body posture and postural stability of people practicing qigong	The study involved 32 people. The mean age of those tested was 54 years. Posture study used optoelectronic method Diers formetric III 4D. Postural	The study used most advance non-invasive system for evaluating	- The study comparing results between sexes but men subjects quantity is very low compare to women	-

			stability was tested on the	posture which	quantity. This will
			platform Biodex Balance	also quick, free	provide unfair
			System. The studies were	of harmful	comparison and
			performed at the Posture	radiation, and	inaccurate results.
			Laboratory of the Institute of	large optical	
			Physiotherapy at Jan	measurement of	
			Kochanowski University in	posture and	
			Kielce.	spine	
5	Jacek Wilczy	Body Posture, Postural	32 people were evaluated. The	- The study was	Subjects size and -
	Nski;	Stability, and Metabolic	study was conducted in the	non-invasive	grouping male and
	Agnieszka	Age in Patients with	Laboratory of Posturology at	and free of	female are not
	Pedrycz;	Parkinson's Disease	Jan Kochanowski University in	charge. Other	convincing. There's no
	Dariusz		Kielce (Poland). Body posture	than that, the	control group.
	Mucha;		was examined using the	system used	
	Tadeusz		optoelectronic body posture	also quick and	
	Ambrohy;		Formetric Diers Method III 4D.	touchless	
	Dawid Mucha		Postural stability was evaluated	photometric 4D	
			using the Biodex Balance	measurement.	
			System platform. Body	-All the	
			composition was assessed with	parameters	
			the method of bioelectrical	registered by	
			impedance analysis using the	the	
			Tanita MC 780 MA analyser.	posturological	
				platform were	
			×	collected	
				completely	
				noninvasively,	
				and the device	
				was deemed	
				safe for the	
				patients	
				recruited to the	
				study	

6	Bina	Effect of balance	In this randomized clinical	- This study	The results should be	
	Eftekhar-	training with Biodex	trial, 34 elderly DN patients	included only	interpreted cautiously	
	Sadat,	Stability System on	were divided into intervention	those patients	as the patients had	
	Roghayyeh	balance in diabetic	(n = 17) and control $(n = 17)$	with moderate-	severe scores and the	
	Azizi; Akbar	neuropathy	groups. The experimental	to severe	sample size was small	
	Aliasgharzade		group underwent a balance	Toronto score	for a randomized	
	h; Vahideh		training program using the	and confirmed	clinical trial.	
	Toopchizadeh		Biodex Balance System (BBS)	neuropathy		
	and Morteza		for 10 sessions. All subjects in	with		
	Ghojazade		both groups were assessed	electrodiagnosti		
			using timed 'up and go' (TUG)	c studies, which		
			test, the Berg balance scale, and	allowed a better		
			the fall risk and postural	evaluation of		
			stability tests, at baseline and at	the effects on		
			the end of the study.	DN patients		
				with lower bias		
				on the results.		
7	Elbadawi	Effect of dual-task	Thirty patients participated in	To ensure the	Motion of the study	
	ibrahim	training on postural	this study; patients were	safety of every	quite difficult for	
	mohammad	stability in children with	classified randomly into two	patient, the	subjects to do it.	
	Elhinidi;	infantile hemiparesis	equal groups: study and control	session started		
	marwa		groups. Both groups received	with the		
	mostafa		conventional physical therapy	balance		
	ibrahim		treatment including mobility	platform in the		
	ismaEEl;		exercises, balance exercises,	"locked" or		
	tamEr		gait training exercises, and	static position.		
	mohamEd El-		exercises to improve physical			
	saEEd;		conditioning. In addition, the			
			study group received a selected			
			dual-task training program			
			including balance and			
			cognitive activities. The			
			treatment program was			

			conducted thrice per week for six successive weeks. The patients were assessed with the Biodex Balance System. These measures were recorded two times: before the application of the treatment program (pre) and after the end of the treatment program (post).	03	5	
8	Fatih Celebi, Feyza Hologlu; Sibel Akbulut; Ali Altug Bicakci	Effects of Rapid Maxillary Expansion on Head Posture, Postural Stability, and Fall Risk	A sample of 51 adolescent patients was randomly divided into two groups. In the first group, which consisted of 28 patients (15 females and 13 males), RME was performed as a part of routine orthodontic treatment. The remaining 23 individuals (12 females and 11 males) served as the control group. Lateral cephalometric radiographs taken in natural head position, postural stability, and fall risk scores were obtained during the first visit. They were repeated on average 3.8 months and 3.5 months later for the study and control groups, respectively. The changes were analyzed using the Wilcoxon signed-rank test, paired samples t-test, Mann–Whitney	- This study interpret many parameters in one time. - This study journal written very clear and can be understand easily to the reader despite complicated words or term that been used, the study then explained clearly.	- The literacture and objective of the study may require a longer time to detect significant difference. - total sample size in this study was only 51 individuals (28 in study group and 23 in control group). Larger sample size can present the more definitive conclusions to the literature. Therefore, results in the present study must be interpreted with caution.	

			U-test, and independent samples t-test.			
9	Karimi, N ; Ebrahimi, I ; Kahrizi, S ; Torkaman, G	Evaluation of postural balance using the biodex balance system in subjects with and without low back pain	with LBP (mean age: 30.4 +/- 6.5 years) and twenty age-	- Parameter of study are complete and a lot. Enough to prove the objectives.	- The subject size needs to be bigger in order to get significant data or difference.	

10	Melissa	Postural Stability in	This study comprised 889	- The subjects	No control group to	No full
	Paniccia;	Healthy Child and	healthy/uninjured child and	size are	make comparison. If	journal
	Katherine E.	Youth Athletes: The	youth athletes (54% female,	convincing.	there's any, the results	provided,
	Wilson; Anne	Effect of Age, Sex, and	,	- All subjects	will be more reliable	only review
	Hunt	Concussion-Related	9 and 18 years old. Participants	are completed		
		Factors on Performance	completed preseason baseline	preseason		
			testing, which included	baseline testing,		
			demographic information (age,	so the result		
			sex, concussion history), self-	will be fair.		
			report version of the PCSI were			
			used (PCSI-C, 9 to 12-year-old;			
			PCSI-Y, 13 to 18 year olds).			
			Postural stability was assessed			
			via sway index under 4 sway			
			conditions of increasing			
			difficulty by removing visual			
			and proprioceptive cues.			
11	Nerrolyn	A Comparison of Foot		- Control group	- Subjects size is small.	No full
	Ramstrand;	Placement Strategies of	analysis was used to determine	is used to	- Control group and	journal
	Kjell-Åke	Transtibial Amputees	foot positioning and to	compare the	amputees age are too	provided,
	Nilsson	and Able-Bodied	calculate temporospectral	results. This is	much differences as it	only review
		Subjects During Stair	parameters during stair ascent	correct	may affect the results.	
		Ambulation	and descent of 10 transtibial	procedure.		
		0	amputees (mean age $=$ 56) and			
			a control group consisting of 10			
		*	healthy able-bodied individuals			
			(mean age = 26.7).			

12	Schafer, ZA;	A personalised exercise	Fieen LLAs, recruited from	- Parameter of	- Small subjects' size	Subjects size
	Perry, JL;	programme for	their local prosthetic services	study are		may be small
	Vanicek, N	individuals with lower	centre, were block randomised,	complete and a		as
		limb amputation	by age and level of amputation,	lot. Enough to		transfemoral/
		reduces falls and	into two groups: exercise group	prove the		transtibial
		improves gait	(transfemoral, $n = 5$; transtibial,	objectives.		type of
		biomechanics: A block	n = 2) and control group			amputation
		randomised controlled	(transfemoral, $n = 5$; transtibial,			are hard to
		trial	n = 3). The exercise group			find.
			completed a 12-week			
			programme, focusing on			
			strength, balance, flexibility			
			and walking endurance,			
			delivered in group sessions at			
			the University, and combined			
			with a personalised home			
			exercise programme.			
			Temporal-spatial, 3D			
			kinematic and kinetic gait			
			parameters were collected at			
			baseline and postintervention.			
			Falls incidence was also			
			followed up at 12 months			
13	Halsne	Assessment of low- and	Participants with transtibial	- Paired t tests	- No significant result	
	EG1; McDon	high-level task	amputation completed a battery	were used to	and future research	
	ald	performance in people		evaluate	needs.	
	CL1; Morgan	with transtibial	measures, including the Five	differences	- Small subjects' size	
	SJ1; Cheever	amputation using	Times Sit-to-Stand, Timed-Up-	between feet		
	SM1; Hafner	crossover and energy-	and-Go, Four Square Step Test,	and order of		
	BJ1	storing prosthetic feet:	and the Comprehensive High-	testing, giving		
		A pilot study.	level Activity Mobility	more reliable		
			Predictor. Participants wore	results.		
			duplicate prostheses fit with			

			crossover feet and energy- storing feet to perform the tests; the order of foot conditions was randomized. Paired t tests were used to evaluate differences between feet and order of testing.			
14	Nafiseh Khalaj1; Noor Azuan Abu Osman1; Abdul Halim Mokhtar2; Mahboobeh Mehdikhani1; Wan Abu Bakar Wan Abas1	Balance and Risk of Fall in Individuals with Bilateral Mild and Moderate Knee Osteoarthritis	Sixty subjects aged between 50 and 70 years volunteered in this study. They were categorized into three groups which were healthy ($n = 20$), mild ($n = 20$) and moderate ($n = 20$) bilateral knee osteoarthritis groups. Dynamic and static balance and risk of fall were assessed using Biodex Stability System. In addition, Timed Up and Go test was used as a clinical test for balance.	- This study was approved by Medical Ethic Committee in University Malaya Medical Centre (UMMC) -All participants read and signed a written consent form - showing participants are aware with the procedure and any effect.	- Subjects size is small	
L	1	J	1			1

15	Helen J.	Clinical Identification	All geogle with a weileteral	Dhavaiaal	The commute size is	
15			All people with a unilateral		- The sample size is	
	Connor;	of Multiple Fall Risk	transtibial amputation who	measurement	small and it is a sample	
	Heather C.	Early After Unilateral	were wearing a prosthesis at	was done and	of convenience	
	Curtis; Wayne	Transtibial Amputation	discharge, over 18 years of age,	each person	(although from 2	
	Dite		willing to participate, and gave	tested	independent centres)	
			informed consent were	differently	- fall recall was done	
			recruited into the study. All	which make the	retrospectively by	
			participants were tested at	result fair.	participants (which is	
			discharge and at 6 months post		likely to underestimate	
			discharge. Personnel used to		fall rates)	
			score and administer the		- daily activity and LCI	
			balance tests at 6 months were		rating were all based on	
			blinded to pre-test scores and		participant self-report	
			participant background, as well		and were all done at 1	
			as mobility and 6-month fall		point in time only (on	
			history. At the 6-month test,		the 6-month retest day)	
			participants repeated balance			
			and mobility tests and the LCI			
			advanced score and were also			
			interviewed to determine fall			
			history since discharge.			
16	Segal, AD;	Comparison of	Comparison of the	- Many	- No subjects size	No full
	Orendurff,	transtibial amputee and	biomechanics of unilateral		mentioned	journal
	MS;	non-amputee	transtibial amputees and non-	covered in the		provided,
	Czerniecki,	biomechanics during a	amputees completing a			only review
	JM ; Schoen,	common turning task	common turning task. Full	result more		
	J; Klute, GK	common turning tusk	body gait analysis was	reliable		
	s, mate, on		completed for subjects walking	Tentable		
			at comparable self-selected			
			speeds around a 1 m radius			
			circular path. Peak internal and			
			external rotation moments of			
			the hip, knee and ankle,			

			mediolateral ground reaction impulse (ML GRI), peak effective limb length, and stride length were compared across conditions (non-amputee, amputee prosthetic limb, amputee sound limb).		8	
17	Rainer Beurskens;	Dynamic Stability of Individuals with	9 persons with unilateral transtibial amputation and 13	All subjects signed	As visual perturbations involve, the motion	
	jason M.	Transtibial Amputation	L	informed	may be hard for the	
	Wilken; and	Walking in	a large treadmill in a Computer	consent	amputee to do it	
	Jonathan B.	Destabilizing	Assisted Rehabilitation	statements		
	Dingwell	Environments	Environment (CAREN). While	approved by		
			walking, subjects were either	both Brooke		
			not perturbed, or were	Army Medical		
			perturbed either by continuous	Center and The		
			mediolateral platform	University of		
			movements or by continuous mediolateral movements of the	Texas		
			visual scene. Participants	preferring subjects aware		
			walked in a Computer Assisted	the procedure.		
			Rehabilitation Environment	the procedure.		
			(CAREN) (Motek, Amsterdam,			
			Netherlands). Subjects walked			
			on a 2 \times 3m instrumented			
			treadmill embedded in a 4m-			
			diameter six degree-of-freedom			
			motion platform inside a 7m-			
			diameter dome that created an			
			immersive virtual environment.			

18	Sturk, JA;	Gait differences	Four K3 and six K4	Parameter of	High performing and	
	Lemaire, ED;	between K3 and K4	transfemoral amputation and	study are	community ambulatory	
	Sinitski, E;	persons with	10 matched able-bodied	enough to prove	transfemoral amputees	
	Dudek, NL;	transfemoral	individuals walked in a virtual	the objectives	cannot match the	
	Besemann, M;	amputation across level	environment with simulated		ambulatory abilities of	
	Hebert, JS;	and non-level walking	level and non-level surfaces on		able-bodied	
	Baddour, N	conditions	a self-paced treadmill. Stability		individuals. This may	
			measures included medial-		affect the reliability of	
			lateral margin of stability, step		results.	
			parameters, and gait variability			
			(standard deviations for speed,			
			temporal spatial parameters,			
			root-mean-square of medial-			
			lateral trunk acceleration)			
19		Gait stability in	Nine young (25.13.4 years) and	Parameter	Subject size is small	
	Rowe, PJ;	response to platform,	nine older (70.17.6years) adults	studied in this		
	Bruijn, SM;	belt, and sensory	walked on the CAREN	experiment may		
	Childs, CR ;	perturbations in young	Extended (Motek BV, The	giving reliable		
	Tarfali, GD;	and older adults	Netherlands). The perturbation	results even		
	Steenbrink, F;		effect was quantified by	though there's		
	Pijnappels, M		deviation in MoS over six post-	many of them		
			perturbation steps compared to			
			baseline walking. Contra-			
			lateral sway and deceleration			
			perturbations resulted in the			
		+	largest ML (1.9-4 times larger			
			than other types) and AP (1.6-			
			5.6 times larger than other			
			types) perturbation effects,			
			respectively. Aer both			
			perturbation types, participants			
			increased MoS by taking wider,			
			shorter, and faster steps			

20	Hakim, RM; Frey, CM; Spadoni, KE; Meyer, K	Identifying Fallers Using Clinical Balance Measures in Community-Dwelling Adults with Lower Extremity Amputation: A Cross-Sectional Study	conducted on a convenience sample of 40 independently ambulatory participants with unilateral LE amputations and a prosthetic device (20 falters and 20 no fallers) who were tested during a single session using: The Amputee Mobility	The study content is specific which may save time to get the results.	and self-report of fall	No full journal provided, only review
			Predictor with Prosthesis (AMP PRO). Functional Reach (FR), Single Limb Stance (SLS) and the Timed-Up-and GO (TUG).	3.		
21	Dr Natalie Vanicek; Siobhan Catherine Strike; Lars McNaughton	Lower Limb Kinematic and Kinetic Differences between Transtibial Amputee Fallers and Non-Fallers	Artificial Limb Unit over a	Both kinetic and kinematic parameters are taken, make the result more reliable.	'Light' handrail use affects kinetic data to some level by redistributing the joint moments across the ankle and knee joints. Therefore, some caution should be used when interpreting the kinetic results as handrail use varied across subjects	

the two groups on these	
characteristics. A three-step	
wooden staircase was built for	
this study. The steps were 80	
cm wide, with a rise of 20 cm,	
a tread of 25 cm, and a final	
tread of 80 cm. One Kistler	
force plate (model 9286AA	
Kistler GmbH, Winterthur,	
Switzerland) with built-in	
charge amplifiers not to the	
bottom step which housed the	
force plate. Three-dimensional	
kinematic and kinetic values	
were obtained using Qualisys	
Track Manager software	
(Qualisys, Gothenburg,	
Sweden) while the participants	
walked along a level walkway	
and proceeded to climb the staircase. Ten ProReflex	
MCU1000 cameras (Qualisys,	
Gothenburg, Sweden) captured	
3D marker coordinate data at	
100 Hz and were synchronized	
with the force plate that	
sampled at 500 Hz. The motion	
capture system was calibrated	
using a 300 mm calibration	
wand and L-frame reference	
object identifying the lab	
origin.	

22	Eduardo J.	Margins of stability in	Participants included nine	Subjects were	- Relative functional	
	Beltran;	young adults with	young, healthy individuals with	tethered to a	importance of any	
	Jonathan B.	traumatic transtibial	traumatic unilateral transtibial	safety harness	specific sub-component	
	Dingwell2;	amputation walking in	amputation and thirteen young,	mounted on the	measure to MOS is	
	and Jason M.	destabilizing	healthy able-bodied adults	platform behind	difficult to determine.	
	Wilken	environment	(Table 1). All TTA were	the treadmill	It should be noted that	
			screened to ensure they were	and out of the	no subjects fell,	
			free of orthopedic and	subject's field	therefore all subjects	
			neurological disorders to the	of view. This	recovered from any	
			intact side. All participants	will ensure the	steps with small or	
			provided written informed	safety of	negative MOS.	
			consent prior to participation.	subjects.	- The results may not	
			All subjects walked in a		extrapolate to other	
			Computer Assisted		sub-groups of	
			Rehabilitation Environment		individuals with lower-	
			(CAREN; Motek, Amsterdam,		limb amputation such	
			Netherlands) which consisted		as older individuals	
			of a 7-diameter dome allowing		with amputation of	
			projection of a 300° field-of-		vascular etiology.	
			view virtual environment and a			
			6 degrees-of-freedom platform			
			with embedded treadmill. The			
			virtual reality scene depicted a			
			dirt path through a forest with			
			mountains in the background.			
		*	White poles, 2.4 m in height			
			and spaced every 3 m, lined the			
			path to enhance the visual			
			parallax (Bardy et al., 1996;			
			McAndrew et al., 2010).			
			Subjects were tethered to a			
			safety harness mounted on the			
			platform behind the treadmill			

and out of the subject's field of	
view. Following a 6-minute	
warm-up period, each	
participant completed five 3-	
minute walking trials in the	
CAREN with each of the	
following conditions: no	
perturbation (NOP), platform	
perturbations (PLAT), and	
visual perturbations (VIS). Net	
visual progression through the	
virtual scene was matched to	
the treadmill speed for all	
conditions. During NOP, the	
platform was stationary and	
visual progression remained	
matched to the treadmill speed.	
During PLAT, the platform	
translated continuously while	
visual progression was	
unperturbed. During VIS, the	
platform was stationary, and	
the virtual scene translated	
continuously. Platform and	
visual perturbations were	
designed to represent irregular	
environments such as uneven	
terrain and crowded spaces,	
respectively, that cause	
disturbances in walking	
stability.	
state integra	

2	23	Cleveland	Т	Predictive	Participants (N=24) included a	Postural control	Subjects size are small.	No full
-		Barnett;	1.	Relationships Exist		variables	Parameters studied may	journal
		Natalie		Between Postural	transtibial prosthesis users of	derived from	take longer time.	provided,
		Vanicek;		Control and Falls	primarily traumatic etiology	centre of	tune longer time.	only review
		David	F.	Efficacy in Unilateral	(n=12) with at least 1 year of	pressure data		
		Rusaw	1.	Transtibial Prosthesis	prosthetic experience and age-	obtained during		
		Rusaw		Users	and sex-matched control	the LOS test,		
				03013	participants (n=12). Twelve-	which was		
					month within- and between-	performed on		
						-		
					participants repeated measures	and reported by the Neurocom		
					design. Participants performed			
					the limits of stability (LOS) test			
					protocol at study baseline and	Master, namely		
					at 6-month follow-up.	reaction time,		
					Participants also completed the	movement		
					Falls Efficacy Scale-	velocity		
					International (FES-I)	(MVL),		
					questionnaire, reflecting the	endpoint		
					fear of falling, and reported the	excursion		
					number of falls monthly	(EPE),		
					between study baseline and 6-	maximum		
					month follow-up, and	excursion		
					additionally at 9- and 12-month	(MXE), and		
					follow-up.	directional		
						control (DCL).		
						Number of falls		
						and total FES-I		
						scores. By all		
						this parameter,		
						the study may		
						receive reliable		
						results.		

24	Scott R.	Profiling Single-Leg	Thirty healthy male academy	- Subjects used	- Unreported and/or	
	Brown ; Matt	Balance by Leg	(development-level) rugby	need to undergo	misdiagnosed injuries	
	Brughelli;	Preference and Position	union athletes ($M \pm SD$: age	same training	(musculoskeletal [ankle	
	Seth Lenetsky	in Rugby Union	22.2 ± 3.5 years, body height	and pressure	sprain] and/or	
		Athletes	185.3 ± 7.0 cm, body mass	which will	neurological [mild	
			96.8 ± 11.3 kg, body mass	provide	traumatic brain injury;	
			index 28.2 ± 3.2 kg/m2, and	accurate results	concussion]) have the	
			rugby experience 8.6 ± 4.2	to study.		
			years), grouped into forwards	- Subjects used	the results and	
			(n = 15) and backs $(n = 15)$,	have not much	interpretations of our	
			volunteered as participants for	differences, this	findings	
			this research. All athletes were	point will give	- Lack of normative	
			free from injury within the	reliable results.	data unique to sex,	
			previous 6 months, either		sport, position, and leg	
			chronic or acute, that may have		at which to make	
			inhibited them from		meaningful	
			performing the required		comparisons at this	
			balance tasks. This cross-		time.	
			sectional analysis comprised			
			single-leg balance assessments			
			at two stability difficulties. The			
			assessment took place during			
			the athletes' respective off-			
			seasons after a rest day (~24			
			hr) and before training that day.			
		+ -	All athletes performed a			
			general self-selected lower-			
			extremity dynamic warm-up			
			similar to the team's weight			
			training, practice, and match			
			warm-up procedures. The leg			
			that the athlete preferred to kick			
			the ball with or which they			

			could kick the ball the furthest			
			distance was noted as the			
			preferred leg. Dynamic balance			
			was assessed on the Biodex			
			Balance SD System (Biodex			
			Medical Systems, Inc., Shirley,			
			NY). This system measures the			
			degree of tilt about each axis			
			via eight springs located at the			
			perimeter of the balance			
			platform. When uncompressed,			
			the length, thickness, and			
			outside diameter of each spring			
			are 13.97, 0.24, and 3.11 cm,			
			respectively. When			
			compressed to 7.52 cm in			
			length, each spring produces a			
			spring rate of 13.81 N/cm and			
			88.9 N of force (Arnold &			
			Schmitz, 1998). The Biodex			
			Balance SD System collects			
			data at 20 Hz and calculates			
			three index scores (APSI,			
			MLSI, and OSI), which			
			represent fluctuations around a			
			zero point of the plate.			
25	Asghar	The Effect of Ankle	Thirty healthy female students	Before the	This study does not	
	Akbari;	Taping and Balance	were randomly assigned into	study, subjects	have control study to be	
	Alireza	Exercises on Postural	two equal groups: ankle taping	are allowed to	compared with.	
	sarmadi;	Stability Indices in	and balance exercise. The	get used to		
	Parisa	Healthy Women	balance exercise group	system which		
	zafardanesh		performed balance exercises	can lead to fair		
			for 6 weeks, with 3 sessions per	results.		

			1 1 1 1 1 1			
			week and each session lasting			
			40 minutes. Ankle joint taping			
			was performed for 6 weeks and			
			was renewed three times a			
			week. Before and after the			
			interventions, overall,			
			anteroposterior, and			
			mediolateral stability indices			
			were measured with a Biodex			
			Balance System in bilateral and			
			unilateral stance positions with			
			the eyes open and closed.			
26	Nooranida	The effects of prosthetic	Ten male below-knee amputees	- The study got	The study did not	
	Arifin; Noor	foot type and visual	were instructed to stand quietly	apporved by	quantify the	
	Azuan Abu	alteration on postural	on the Biodex [®] balance	the Institutional	contribution form the	
	Osman;	steadiness in below-	platform while wearing solid	Review Board	intcat limb or muscular	
	Sadeeq Ali;	knee amputees	ankle cushion heel (SACH),	in accordance	of the residual limb	
	Wan Abu	-	single axis (SA) and energy	with the	which may influence	
	Bakar Wan		storage and release (ESAR)	Helsinki	the control of postural	
	Abas		prosthetic foot under different	Declaration	steadiness	
			visual input conditions (eyes-	which mean all		
			opened and eyes-closed). The	the procedure		
			overall stability index (OSI),	may not harmed		
			anterior- posterior stability	any subjects.		
			index (APSI), and medial-	- Subjects are		
			lateral stability index (MLSI)	all first		
			were computed. Perceived	recruited via the		
			balance assessment of each foot	Universiy of		
			was evaluated using Activities-	Malaya		
			specific Balance Confidence	Medical Centre		
			(ABC) score.	that undergone		
				the same		
				rehabilitation		
			<u> </u>	rendomation	<u> </u>	

				programs which then lead to reliable result	
27	Angélica Castilho AlonsoI; Guilherme Carlos BrechI; Andréia Moraes BourquinII; Julia Maria D'Andréa GreveIII	The influence of lower- limb dominance on postural balance	Forty healthy sedentary males aged 20 to 40 years, without any injuries, were evaluated. A singlefoot balance test was carried out using the Biodex Balance System equipment, comparing the dominant leg with the nondominant leg of the same individual. The instability protocols used were level 8 (more stable) and level 2 (less stable), and three instability indices were calculated: anteroposterior, mediolateral and general.	There are calculation for sample size to make sure the size is enough.	In this study, they claimed thats no knowledge about the effect of dominance on athletes who used their legs in repetitive asymmetrical activities that would have the potential to generate distinct balance patterns in single-foot evaluations and therefore to interfere with the training and rehabilitation of these athletes. This may effect the reliability of results.
		Sul			

28	Rafael Sierra-	Whole-Body–Vibration	ifty recreational athletes with	- Participants	- All participants had	
	Guzma;	Training and Balance in	self-reported CAI volunteered	followed a 6-	homogeneous	
	Fernando Jim´	Recreational Athletes	for the study. They were	week balance-	characteristics, the	
	enez-Diaz;	With Chronic Ankle	assigned by concealed random	training	intervention might not	
	Carlos Ram´	Instability	allocation using random	protocol for an	have challenged their	
	ırez; Paula		numbers generated by online	unstable ankle	sensorimotor systems	
	Esteban;		software	based on	equally	
	Javier Abia		(http://www.randomization.co	previous	- The vibration load	
	´n-Vic´ en		m) to 1 of 3 groups: vibration	research which	was the same for all	
			(VIB; 11 men, 6 women; age $\frac{1}{4}$	lead to reliable	participants rather than	
			22.4 6 2.6 years, height ¹ /4172.0	result as	being determined	
			6 8.3 cm, mass ¹ /470.2 6 8.2 kg),	participants	individually to create	
			nonvibration (NVIB; 10 men, 6	used to the	fair results	
			women; age ¹ / ₄ 21.8 6 2.1 years,	system already		
			height ¹ / ₄ 171.3 6 9.0 cm,	- All		
			mass ¹ /466.2 6 10.1 kg), or	participants		
			control (CON; 12 men, 5	data are		
			women; age ¹ /423.6 6 3.4 years,	recorded		
			height ¹ / ₄ 172.7 6 10.8 cm,	including body		
			mass ¹ / ₄ 70.6 6 11.7 kg; Table 1).	composition		
			Sample size was calculated	and then		
			based on the work of Sefton et	compared.		
			al,18 who measured			
			posteromedial reach in			
			participants with CAI. The			
		+	minimal number of participants			
			required to attain a power of 0.8			
			and a bilateral a level of .05 was			
			calculated to be 16 per group. A			
			clinical trial was performed			
			using a randomized, between-			
			groups design. Participants			
			were assessed at 3 times:			

	pretraining (Pre), posttraining 1 (Post1; 48 hours after the last training session), and posttraining 2 (Post2; 6 weeks after the last training session). Measurements were performed in the following order: body- composition analysis, Biodex Balance System test (BBS; Biodex Medical Systems, Shirley, NY), and Star Excursion Balance Test (SEBT). Assessors (R.S.G., F.J.D., C.R., P.E.) and the researcher (J.A.V.) who performed the statistical analysis were blinded to group allocation.		
	5		

29	Magdalena	Postural Stability and	For evaluation of postural	Despite	- Precise assessment of	
29			1	_ *		
	Cyma;	Physical Activity of	stability, the one-leg standing		the level of physical	
	Katarzyna	Workers Working at	test with eyes open (OLST-EO)	particular	activity in daily life of	
	Marciniak;	Height	and closed (OLST-EC) was	aspects, the	U	
	Maciej		used. The test assesses balance	overall level of	· · · · · · · · · · · · · · · · · · ·	
	Tomczak;		in a static position and it is	physical	example, Actigraph	
	Rafal		conducted to evaluate balance	activity was	(especially in the	
	Stemplewski		with and without vision	similar. This		
			control. The subject stands	may indicate	1 2	
			straight, arms lowered	that postural	during day), could help	
			alongside the hips, first on one	stability is	enhance the analysis of	
			leg with eyes open, and then	rather affected	obtained results.	
			performs the same test with	by exposure to	- The experimental	
			eyes closed. The countdown	distress	group is relatively	
			should be stopped when the	conditions,	small. The study	
			lifted leg touches the floor or	such as work at	conducted on a larger	
			when the subject moves his	heights.	sample could have	
			arms away from his body to		generated a stronger	
			stabilize his position. T-test for		overall evidence base.	
			independent data was used to		- there was no analysis	
			evaluate differences between		of physical activity	
			groups with regard to		level in leisure time in	
			quantitative variables (standing		the context of	
			on one leg with open and closed		socioeconomic status	
			eyes tests, physical activity			
			indexes, BMI, age). To			
			determine the correlation			
			between the variables,			
			Pearson's r coefficients were			
			calculated, whereas in order to			
			compare the groups with regard			
			to the test concerning standing			
			on one leg with closed eyes,			
			on one leg with closed eyes,			

			under control of physical activity, Analysis of Covariance (ANCOVA) was used	203		
30	Fuzhong Li; Peter Harmer; M.P.H., Kathleen Fitzgerald; Elizabeth Eckstrom	Tai Chi and Postural Stability in Patients with Parkinson's Disease	This study conducted a randomized, controlled trial to determine whether a tailored tai chi program could improve postural control in patients with idiopathic Parkinson's disease. We randomly assigned 195 patients with stage 1 to 4 disease on the Hoehn and Yahr staging scale (which ranges from 1 to 5, with higher stages indicating more severe disease) to one of three groups: tai chi, resistance training, or stretching. The patients participated in 60-minute exercise sessions twice weekly for 24 weeks. The primary outcomes were changes from	 Subjects used are enough to get reliable reults Good awareness of study the study get as referrals from neurologists or physical therapists, and information distributed to local support groups for persons with Parkinson's disease. 	participants were aware of their intervention assignments. This awareness may have introduced biases in the results, since persons interested in participating may have had positive expectations about the benefits of exercise - The study did not	

			baseline in the limits-of- stability test (maximum excursion and directional control; range, 0 to 100%). Secondary outcomes included measures of gait and strength,	
31	P. Lenka; D.N.Tiberwal a	Effect of Stump Length on Postural Steadiness During Quiet Stance in Unilateral Trans-Tibial Amputee	Twenty unilateral Trans Tibial Amputees (TTAs) amputee patient of active groups of both sexes (34.25±9.57 years) were selected, having a minimum one year experience of using BK prosthesis (PTB socket and SACH foot) and , among them 10 patient having stump length getter than 15 cm (19.33±2.04 cm) and 10 patient having stump length less than 15 cm (9.2±0.91 cm).The subjects were selected through proper clinical assessment (to exclude other clinical conditions affecting stability before testing the stability. A two load cell (strain gauge, Gauge factor-2, length-10mm, and resistanc-350 ohm) based unidirectional (vertical component of COP) force plate (top plate, 52X 52 X 17 cm,	The subjects Small subjects size that may effect results. study were selected through proper clinical assessment to exclude other clinical conditions affecting stability before testing the stability

measured unloaded vertical		
natural frequency fnat ≤ 260		
HZ) was used for stabilometric		
analysis [21]. The testing of the		
subjects was carried out in a		
fixed visual and acoustic		
environment and the base of		
support was symmetric to		
central line or at 0, 0		
coordinate. The toe out angle		
was fixed to 30 degree to		
central line. The distance		
between bases of feet was 6cm.		
	natural frequency fnat ≤ 260 HZ) was used for stabilometric analysis [21]. The testing of the subjects was carried out in a fixed visual and acoustic environment and the base of support was symmetric to central line or at 0, 0 coordinate. The toe out angle was fixed to 30 degree to central line. The distance	natural frequency fnat ≤ 260 HZ) was used for stabilometric analysis [21]. The testing of the subjects was carried out in a fixed visual and acoustic environment and the base of support was symmetric to central line or at 0, 0 coordinate. The toe out angle was fixed to 30 degree to central line. The distance

University

CHAPTER 3 – METHODOLOGY

This chapter brief the procedure applied, ethics, participants involve, theorical analysis explained included formula used by the system and instrument equipped in order to get the expected data which then been analysis to verify the objective of study.

3.1 Participants

There are 11 subjects take part in this study including one amputee. They have undergone same procedure and their result are compared to get the difference in order to achieve the goals of study.

3.1.1 Normal subjects

A group of 10 subjects have been selected in this study, 5 male and 5 females. The age of the subject is among 22 - 33 years old. Their height and weight are taken for record to calculate their Body Mass Index. In term of experience in using Biodex Balance System, all of them never heard, see or try this system before. Consider getting accurate data, they are advised to start the test with training in normal standing up position to get used with the system.

3.1.2 Amputee subject

One 33 years-old trilateral amputee also took part in the study as the reference subject. 8 years being the amputee from the electric shock accident. His trilateral amputation involves both of his upper limb and his left leg. Both of upper limbs amputation type are transradial which includes below elbow to the rest of arm and hand. For upper limb amputation, Ottobock Myoeletric hand protheses are equipped to both of his arms. Type of lower limb amputation he has is transtibial amputation which affect below knee to the rest of foot. For his lower limb amputation, he got assist from pin lock prosthesis type as shown in Figure 3.1. By assistance from these 3 protheses, he can walk, stand, drive and work independently.

Figure 3.1: Pin lock prosthesis on trilateral amputee's left leg

He has experience in using Biodex Balance System as he used to be subjects for previous study which related to other parameters. He is also normal in Body Mass Index by weighting 70kg with height 173cm.

3.2 Instruments

In this study, the only instrument use is Biodex Balance System SD by Biodex Medical System Inc. as figure 3.2. The size of device is 76x112x20cm. It is featuring four test protocols, six training modes and intuitive "touch-screen" operation, the Balance System SD allows testing and training in both static and dynamic formats. Other than amputee, it is also suitable for older adults plus closed-chain, weight-bearing assessment and training for lower extremity patients. Using this device, neuro muscular control can be assessed by quantifying the ability to maintain dynamic bilateral and unilateral postural stability on a static or unstable surface. There are four test protocols including fall risk, athletic single leg stability, limits of stability and postural stability are used in this study. The Balance System SD also serves as a valuable training device to enhance kinesthetics abilities that may provide some degree of compensation for impaired proprioceptive reflex mechanisms following injury. An easy to follow touch-screen format makes the system simple to learn and operate, leading the user step-by-step through testing protocols and training modes. All test results and training sessions are documented on easy to read reports which can be placed into the patient's file. Comparisons to normative data can be made for population-specific tests using the Fall Screening and Athlete Single Leg Stability protocols.

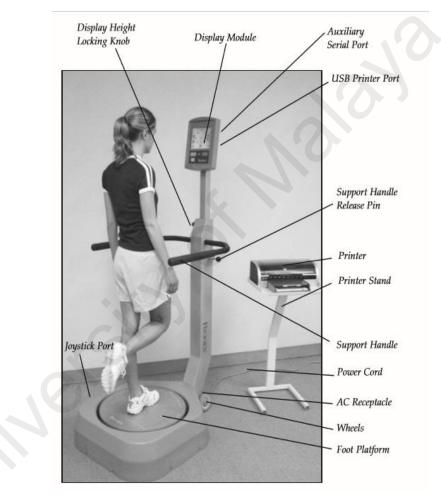


Figure 3.2: The Biodex Balance System SD.

Biodex Balance System test formats include Postural Stability, Limits of Stability, Athlete Single Leg, and Fall Risk as shown in Figure 3.3. Both the Athlete Single Leg and Fall Risk results can be compared to normative data. Postural Stability and Limits of Stability testing are available at variable levels of difficulty. Bilateral reports (comparison of postural stability performance of standing on one leg versus standing on the other) are available in More Options of Postural stability testing.

Figure 3.3: Biodex Testing option display in menu screen

3.3 Experimental setup

10 normal subjects are first informed with the procedure and purpose of the study so that they are fully aware of the consequences during the procedure. As all normal subjects did not have experience with Biodex Balance System SD, they undergo test with training mode for one time prior to the experiment. All subjects will undergo 3 parameters of tests; postural stability test, athlete single leg test and fall risk test.

During the tests, normal subjects were asked to be in stand-up position with both hand at the sides and their foot position recorded by coordinate on foot platform. The details including the risk of falling during the test was informed prior to the experiment to ensure fully understand the exepriment.

After normal subjects completed 3 tests with normal stand-up position, and the results were saved and recorded, they will proceed with trilateral amputation act where they can't use their both hand and their dominant leg at the same time while undergo the tests as shown in Figure 3.4 and Figure 3.5. The results then also saved and recorded.

Figure 3.4: Normal subject act like trilateral amputee to get results compare with normal results. (side view)

Figure 3.5: Back view to see clear that both hands and dominant leg not been used throughout the test.

Amputee subject has undergo different procedure, where the subject does all 3 tests will all protheses equipped to their body. The results then saved and extracted. After that, subjects undergo the second tests without prostheses except for the leg protheses.

The leg prosthesis remained because the subject has difficulty in balancing. The subject is only required to lift up his prosthesis as much as he is abled to as shown in Figure 3.6.

Figure 3.6: Amputee subject lift up the leg prostheses instead take it off. This consideration as precaution procedure.

3.4 Parameter and Test Protocol

In this study, two main parameters are highlighted. There are the postural stability test and fall risk. Both parameter has different protocol. For postural stability, subjects undergo test that need to stand up on only one foot. Therefore, Athlete Single Leg testing option on Balance System SD (BSS) also been selected and used.

3.4.1 Postural Stability Test Protocol

The Postural Stability Test emphasizes a subject's ability to maintain center of balance. The subject's score on this test assesses deviations from center, thus a lower

score is more desirable than a higher score. Platform stability varied during this test such as trial time, number of trials, starting and ending platform stability, rest countdowns or bilateral test also can be set.

The test started by subjects need to balance themselves first on foot platform and make sure the cursor that display on the screen is at centre on target display as shown in Figure 3.7. Instead of moving the angle of body, the subjects required to move the position of foot to make it relevant data capture for later option. The display module set to be in the same level as the subject's eye level throughout the experiment to ensure the their postural condition is normal.

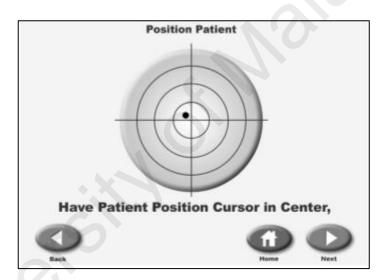


Figure 3.7: Screen display to show the cursor position.

After the cursor is at center of target, the data like heel position and foot angle coordinate are then captured and recorded in patient's menu shown in Figure 3.9. The coordinate can be found on surface of foot platform as Figure 3.8.

Figure 3.8: The surface of foot platform coordinate

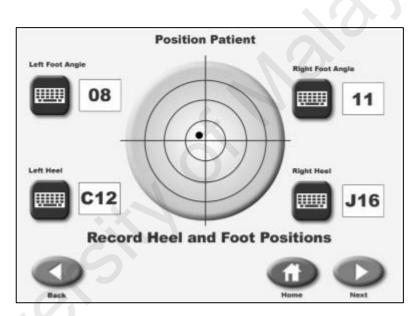


Figure 3.9: The position patient display to record the coordinate of heel position and foot angle.

After the coordinate was determined, the protocol of test are then key in into the option display as Figure 3.10. The protocol data include test trial time, foot platform setting, number of trial and rest countdown. This protocol is important to be as same for every tests of subjects as this will decide the difference and accurate data of results recorded.

The protocol for postural stability testing is 20 seconds of test trial time, two initial platform setting chosen which are level 12 (most stable) and level 5, three times test trials

with 10 seconds rest countdown in the middle of trials. The protocol allowed six tests in total; three tests for level 12 platform setting and three tests for level 5 platform setting.

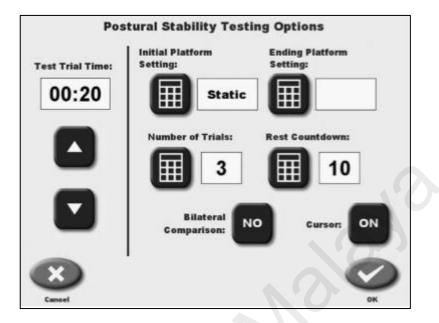


Figure 3.10: Postural stability testing option display to key in the data of foot position, and platform setting and test trial duration

The tests was followed by the protocol that set up in the system and the subjects were asked to relax the body and try to balance themselves throughout the tests. In rest countdown, the subjects can hold the support handle to get their balance back. The tests will be ended after 3 trials and the results were displayed on screen as shown in Figure 3.11 which transferred to computer for analyse purpose. The results include anterior/posterior index, medial lateral index, percentage time in zone, percentage time in quadrant for both legs, right and left separately.

Left Leg Results			Right Leg Results		
	Actual Score	STD Dev.		Actual Score	STD Dev.
Overall Stability Index:	_	_	Overall Stability Index:	_	
Anterior/Posterior index:	_	_	Anterior/Posterior index:	_	_
Medial Lateral Index:			Medial Lateral Index:	_	_
% Time in Zone:	A	B	% Time in Zone:	A	в
	c	D		c	D 0
% Time in Quadrant:	۰ <u> </u>	n	% Time in Quadrant:	·	""
	···	IV		···	IV
			A		-

Figure 3.11: The sheet of result display on screen

3.4.2 Athlete Single Leg Stability Test Protocol

As in study required the single leg position, this test was chosen to set the exact data and protocol that suitable to get the expected results. Subjects stand on dominant leg for this test. They are required to balance themselves in 20 seconds to get used with single leg stand position first. The protocol of this test is same as postural stability test shown in Figure 3.12; 20 seconds of test trial time, two initial platform setting chosen which are level 12 (most stable) and level 5, three times test trials with 10 seconds rest countdown in the middle of trials. During the rest countdown, subjects rested their leg, but the dominant leg can't be move from position to make sure the data keyed in the data as accurate as possible.

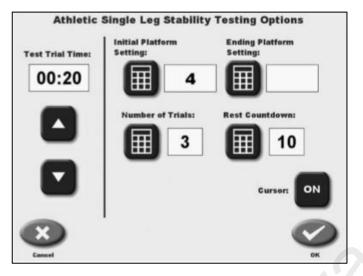


Figure 3.12: The protocol set up on testing option display.

The results of this tests are different from postural stability tests, but anterior/posterior index and medial lateral index still included which the most important data to analyse the results as shown in Figure 3.13. The added data for this test is comparison with normal score, also, important data for results.

	Actual Score	STD Dev.	Normal Score	STD Dev.
Overall Stability Index:				
Anterior/Posterior index:				
Medial Lateral Index:				

Figure 3.13: The results sheet display for athlete single leg stability tests

3.4.3 Fall Risk Test Protocol

The Fall Risk test allows identification of potential fall subjects. The test also overall stability index and comparative results with normative value as shown in Figure 3.15. Scores higher than normative values suggest further assessment for lower extremity strength, proprioception, and vestibular or visual deficiencies but in this study the higher score is expected. But in this study, only overall stability index used to be evaluated and compared as the difference can be observed clearly.

The tests have two versions; first version as normal subject stand on platform with both legs on foot platform, second version required normal subject to act as trilateral amputee and stand on platform with one leg only (dominant). For amputee; first version should be with all prosthetics attached and the second one, prosthetics left aside.

The test protocol incorporated in this system was included to give normative data to assess the subject's risk for falling. During testing, the subjects undergo three trials of 20 seconds each beginning with an initial platform setting of 12 and ending at a platform setting of 5, with ten-second rest periods in between each trial. The protocol as shown in Figure 3.14 applied to both version of tests; first version and second one. At the completion of the test a Fall Risk Assessment Report can be printed with a score compared to normative data.

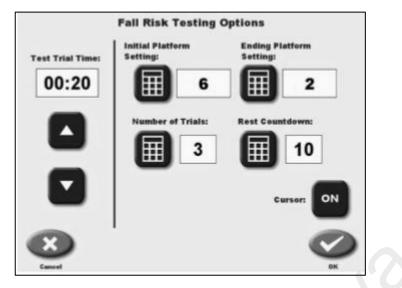


Figure 3.14: The protocol set up in the fall risk testing option display

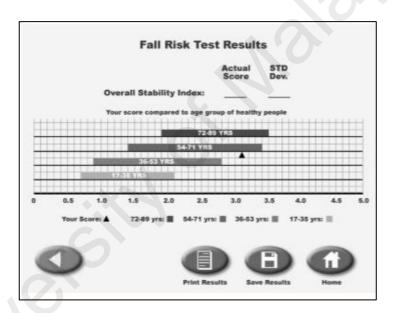


Figure 3.15: Test result of fall risk test sheet

BSS measures the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/lateral stability index (MLSI), which represented the standard deviation of platform fluctuation from a horizontal position (zero point). Furthermore, OSI is considered as an efficient balance indicator of the ability to control balance. The platform was integrated with computer software that enables the device to calculate the stability indexes. An increased stability index during the assessment was interpreted as decreased postural stability. OSI, MLSI, and APSI scores were expressed as follows:

$$OSI = \sqrt{\sum (0 - Y)^{2} + \sum (0 - X)^{2}} / number of samples,$$
$$APSI = \sqrt{\sum (0 - Y)^{2}} / number of samples,$$
$$MLSI = \sqrt{\sum (0 - X)^{2}} / number of samples,$$

Where *Y* is the total anterior-posterior deviation in the sagittal plane and *X* is the total medial-lateral deviation in the frontal plane. (Nooranida Arifin et al. 2014)

CHAPTER 4 – RESULTS AND DISCUSSION

This chapter evaluate and summarises the findings of this study based upon the information gathered as a result from the methodology also presented any contributions made. The findings then analysed to conclude the objectives of the study. This chapter also compare the finding with prior study's finding to prove the reliability of data.

4.1 Participants Data

Body Mass Index of participants are calculated as their height and weight are recorded as shown in Table 4.1. 11 subjects included 10 normal subjects and 1 trilateral amputee subjects. 2 out of 11 subjects are obese, 1 of them is overweight and the rest are normal. All 10 normal subjects do not have postural stability problem, also their occupation and daily life activity did not risk them any postural problem.

Subjects		Gender	Age (years)	Height (cm)	Weight (kg)	BMI	Condition
	S 1	М	27	175	75	24.49	Ν
	S2	М	25	172	60	20.28	Ν
	S 3	М	26	167	89	31.91	0
	S 4	F	22	167	64	22.95	Ν
Normal	S5	М	31	169	75	26.26	OW
Subject	S 6	F	30	161	81	31.25	Ο
	S 7	F	26	161	59	22.76	Ν
	S 8	F	26	161	50	19.29	Ν
	S 9	Μ	25	168	53	18.78	Ν
	S10	F	26	159	52	20.57	Ν
Trilateral Amputee subject	S 11	М	32	173	70	23.39	Ν

Table 4.1: Demographics data of participants

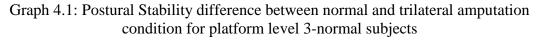
S: Subject; F: Female; M: Male; BMI: Body Mass Index; N: Normal; O: Obese; OW: Overweight

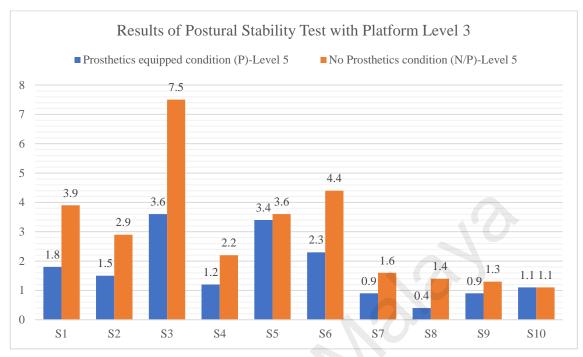
4.2 Postural Stability Data

During postural stability test, the data that collected and recorded are overall stability index (OSI), anterior/posterior stability index (APSI), and medial/lateral stability index (MLSI). OSI is considered as an efficient balance indicator of the ability to control balance by subjects. The Postural Stability Test emphasizes a patient's ability to maintain center of balance. The subjects' score on this test assesses deviations from center, thus a lower score is more desirable than a higher score. The subject's performance is noted as a stability index. The stability index represents the variance of platform displacement in degrees from level. A high number is indicative of a lot of motion, which is indicative of the subject having trouble balancing (Nooranida Arifin et al. 2014). This means expected result are normal condition postural stability should be lower than condition where both hands and dominant leg can't be used.

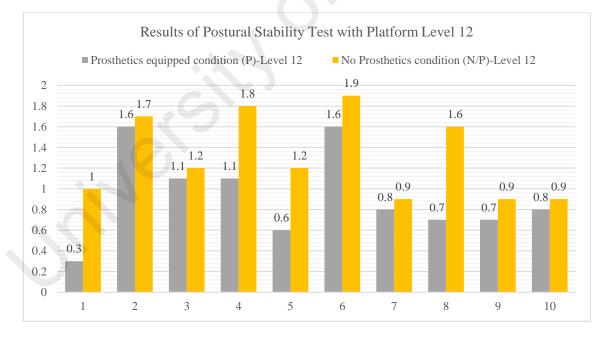
The data from postural stability test for normal subjects recorded in Table 4.1 which then summarize in Graph 4.1 and Graph 4.2 to see the significant difference. The data included APSI, MLSI and OSI for both conditions; normal condition and trilateral amputation condition but only OSI highlighted and become the main parameter in this study. The platform setting are set to level 3 and level 12. Platform change by level, the lesser the level, the platform will be more flexible and smooth which hard to stand on it. Level 12 is the most stable platform and easy to balance ourslef on this level. The data for each level also recorded as well as difference condition as plan to achieve the study goals. The conditions are normal where subject just stand with both feet on platform and trilateral condition where subjects can't use 3 limbs during the procedure. To make it fair and accurate, all subjects can't use both hands and their dominant leg to obtain more accurate data without biased.

Data for postural stability for trilateral amputee subjects are recorded in Table 4.2. This data will be reference to all results as amputee results are the most accurate one since they experienced of postural balancing in their daily life. By using data taken from procedure, average values are calculated to find the differences between two conditions procedure either on normal subjects and trilateral amputee subject.


	~		Ν			N/N	
Platform	Subject	OSI	APSI	MLSI	OSI	APSI	MLSI
	S 1	1.8 (0.96)	1.1 (0.98)	1.1 (0.77)	3.9 (4.13)	2.6 (3.64)	2.2 (2.66)
	S2	1.5 (1)	1 (0.95)	0.8 (0.7)	2.9 (2.62)	2.1 (2.39)	1.6 (1.6)
	S 3	3.6 (2.44)	2.8 (2.26)	1.8 (1.71)	7.5 (5.22)	5.5 (4.96)	3.9 (3.68)
	S4	1.2(0.63)	0.9 (0.69)	0.6 (0.39)	2.2 (1.68)	1.6 (1.68)	1.2 (0.92)
3	S5	3.4(2.97)	2.3 (2.36)	2 (2.38)	3.6 (3.79)	2.7 (3.25)	1.8 (2.51)
3	S 6	2.3 (2.38)	1.8 (2.25)	1.1 (1.21)	4.4 (4.05)	3.8 (4.14)	1.6 (1.45)
	S 7	0.9 (0.4)	0.5 (0.41)	0.7 (0.38)	1.6 (0.88)	0.8 (0.74)	1.2 (0.79)
	S 8	0.4 (0.12)	0.4 (0.13)	0.2 (0.14)	1.4 (1.09)	1.2 (1.11)	0.6 (0.53)
	S 9	0.9 (0.39)	0.6 (0.42)	0.5 (0.39)	1.3 (0.7)	0.9 (0.68)	0.8 (0.63)
	S10	1.1 (0.53)	0.9 (0.56)	0.4 (0.32)	1.1 (0.63)	0.8 (0.67)	0.5 (0.37)
	S 1	0.3 (0.36)	0.2 (0.28)	0.2 (0.27)	1 (0.26)	0.6 (0.35)	0.7 (0.37)
	S 2	1.6 (0.31)	1.4 (0.42)	0.5 (0.25)	1.7 (0.46)	1 (0.68)	1.2 (0.35)
	S 3	1.1 (0.33)	0.9 (0.4)	0.3 (0.35)	1.2 (0.47)	0.8 (0.44)	0.7 (0.51)
	S 4	1.1 (0.33)	0.9 (0.33)	0.5 (0.3)	1.8 (0.32)	1.7 (0.41)	0.5 (0.26)
12	S5	0.6 (0.4)	0.5 (0.42)	0.2 (0.2)	1.2 (0.36)	0.8 (0.44)	0.7 (0.58)
12	S6	1.6 (0.25)	0.5 (0.35)	1.4 (0.39)	1.9 (0.88)	1.3 (1.12)	1 (0.59)
	S 7	0.8 (0.36)	0.7 (0.35)	0.3 (0.22)	0.9 (0.31)	0.4 (0.26)	0.8 (0.38)
	S 8	0.7 (0.41)	0.6 (0.41)	0.1 (0.13)	1.6 (0.6)	1.5 (0.59)	0.6 (0.38)
	S 9	0.7 (0.28)	0.4 (0.29)	0.4 (0.27)	0.9 (0.4)	0.6 (0.35)	0.6 (0.37)
	S10	0.8 (0.26)	0.7 (0.3)	0.3 (0.25)	0.9 (0.49)	0.8 (0.55)	0.6 (0.27)


Table 4.2: Data of postural stability test with standard deviation during procedure by normal subjects (Refer to appendix A – Appendix F)

N=Normal condition; N/N=Both hand and dominant leg can't be used condition; OSI=Overall Stability Index; APSI=


anterior/posterior stability index; MLSI=medial/lateral stability index; ()=standard deviation.

Postural Stability Test for Platform level 3 and level 12 for normal subjects data from Table 4.1 then summarized into Graph 4.1 and Graph 4.2 to see the difference of postural stability between two condition with only OSI parameter .

Graph 4.2: Postural Stability difference between normal and trilateral amputation condition for platform level 12-normal subjects

Graph 4.1 and Graph 4.2 show that condition trilateral amputation have higher value of postural stability than normal condition which mean trilateral amputation have lesser stability then normal condition. The difference then calculated as shown in Table 4.4 and discussed after the calculation.

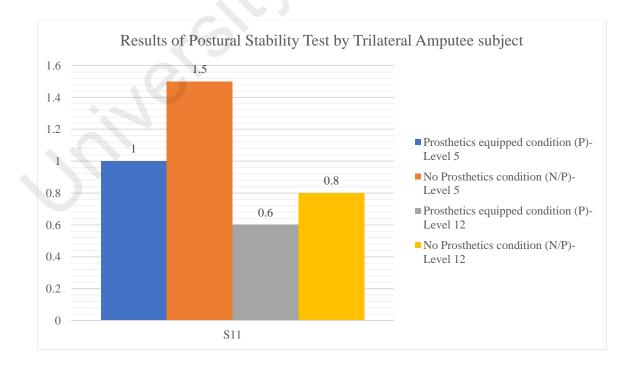

		Р			N/P	
Platform	OSI	APSI	MLSI	OSI	APSI	MLSI
5	1 (0.41)	0.7 (0.44)	0.5 (0.4)	1.5 (0.64)	1 (0.68)	0.9 (0.57)
12	0.6 (0.3)	0.4 (0.32)	0.4 (0.34)	0.8 (0.26)	0.5 (0.27)	0.5 (0.34)

Table 4.3: Data of postural stability test with standard deviation during procedure by trilateral amputee. (Refer to Appendix G to Appendix L)

P=With prosthetics equipped; N/P=No prosthetics used.

Data from Table 4.2 summarize to the Graph 4.3 to see the significant difference of postural stability that amputee subject made thorughout the experiment with platform level 5 and level 12. it is obvious that no prosthetics condition obtained higher value means the condition contribute less stability than other condition.

Graph 4.3: Postural Stability difference between prosthetics equipped and No prosthetics equipped condition for platform level 5 and level 12-trilateral amputee subjects

		N	5		N/N	
Platform	OSI	APSI	MLSI	OSI	APSI	MLSI
3	1.71 (1.18)	1.23 (1.1)	0.92 (0.84)	2.99 (2.48)	2.20 (2.33)	1.54 (1.51)
12	0.93 (0.33)	0.68 (0.36)	0.42 (0.26)	1.31 (0.46)	0.95 (0.52)	0.72 (0.41)

Table 4.4: Average data value with standard deviation for postural stability test on normal subjects.

Refer to Table 4.3, result comparing between N and N/N. First comparison is platform setting 3. OSI for N is 1.71 which lower than OSI for N/N that is 2.99. Same goes APSI and MLSI for N which are 1.23 and 0.92 respectively, obviously lower than APSI and MLSI for N/N 2.20 and 1.54 respectively.

For platform setting level 12, OSI, APSI and MLSI for N are 0.93, 0.68 and 0.42 respectively, lower than value for N/N which are 1.31, 0.95 and 0.72 respectively. This numbers prove the postural stability in normal condition is lower than condition where 3 limbs not functioning during the procedure. This study results demonstrated as claimed by Biodex manufacturer, the lower the value of stability index, the better the balancing. This result ties well with previous studies wherein Balance Control in lower extremity amputees during quiet standing: systematic review state that transfemoral group exhibits greater postural sway, follow by transtibial and a healthy group (Pei Xuan Ku, 2013). In order to get difference of Actual Score of OSI, APSI and MLSI are follow the equation;

Difference of total score = Actual Score NN or NP - Actual Score N or P

The way to obtain difference of standard deviation, other calculation follows;

Total differences of standard deviation

 $= \sqrt{(standard \ deviation \ NN \ or \ NP)^2 + (standard \ deviation \ N \ or \ P)^2}$

Platform	OSI	APSI	MLSI
3	1.28 (2.75)	0.97 (2.57)	0.62 (1.73)
12	0.38 (0.57)	0.27 (0.64)	0.30 (0.49)

Table 4.5: The difference of data value of postural stability of normal subjects between two procedure condition; N and N/N.

In table 4.4, all differences value is positive which means the stability during normal condition better than condition where both hands and dominant leg can't be used or the condition where trilateral amputee without prosthetics. To provide postural support in maintaining standing posture, lower limb plays important role. The upper limb not involved much in supporting body weight. In a general sense, the upper and lower limbs are anatomically symmetrical across the sagittal plane of the body, but one of the bilateral limbs is preferentially used. In humans, this characteristic is called lateral dominance. Approximately 90% of adults exhibit right-side dominance in manipulative functions of the upper limb and in mobilizing functions of the lower limb. However, when the lower limb is used as a postural support during single-leg stance, there is no clear lateral dominance in postural stability, even though the dominant side in maintaining stability is often shown at the individual level. These findings regarding the postural support function have been assessed primarily by the measure of fluctuation of center of pressure (CoP) during stance on a stable surface (Takeo Kiyota et al. 2014).

The control strategy for maintaining single-leg standing posture on vibrating (swaying) surfaces is sometimes needed in particular cases. The lateral dominance of postural stability in dynamic conditions has been investigated using a movable platform, but no significant lateral difference was found. For maintaining a stable standing posture against gravity force, the body alignment should be controlled appropriately, and CoP position should be kept within the base of support. On this movable platform, especially,

CoP position must remain on the supporting point. However, this point does not move by external force; rather, it moves by the person's involuntary and irregular body sway on the movable platform. Therefore, it would be difficult to anticipate its movement and set CoP on the supporting point. This would lead to large intraindividual variability in postural stability during single-leg stance on movable platform, resulting in no significant lateral dominance. (Takeo Kiyota et al. 2014).

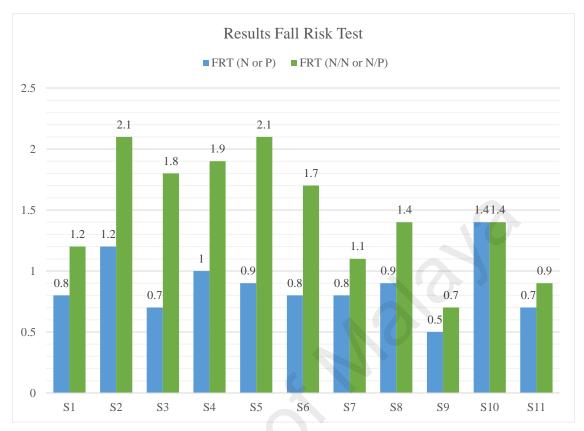
Table 4.6: The difference of data value of postural stability of trilateral amputee subjects between two procedure condition; P and N/P

Platform	OSI	APSI	MLSI
5	0.5 (0.76)	0.3 (0.81)	0.4 (0.7)
12	0.2 (0.40)	0.1 (0.42)	0.1 (0.48)

The results from normal subjects then been compared to results from trilateral amputee. The results of amputee shown in table 4.5. Normal subject average difference in OSI for platform setting level 3 for normal subjects is 1.28 and trilateral amputee with platform setting level 5 is 0.5. This may cause by the difference of stability platform setting. During the procedure for amputee, the amputee claims that the lowest level he can do is level 5 as level 3 is hard for him to proceed with procedure. The study only required comparison results between 2 conditions on normal subjects and 2 condition on trilateral amputee. As long as the amputee done all the procedure with same level platform setting on both conditions, it will obtain fair and unbiased results. For Platform setting level 12, the average difference for normal subjects is 0.38 while for trilateral amputee is 0.2. Trilateral amputee has less difference as the amputee have more experienced in using Biodex Balance System SD and gain consistency in all procedure whether with prosthetics and without prosthetics. This point also affected the Risk of Fall tests result.

4.2 Risk of Fall Data

Risk of fall procedure include in this study to prove that trilateral amputee has higher risk to fall than normal person. The relationship between risk of fall and stability index is when the stability index is low, risk of fall also low and vice versa. Biodex balance system have Risk Fall Test where it will show actual score of overall stability index with standard deviation and age group to be compared with subject's score. All data during the procedure are recorded in Table 4.6.


Table 4.7: Risk of fall data with standard deviation recorded during the procedure including normal subject and trilateral amputee subject. (Refer Appendices for Fall Risk

				Т	Cest resul	lts)		\mathbf{O}			
Condition					NS						TS
Condition	S 1	S2	S 3	S 4	S5	S 6	S 7	S 8	S 9	S 10	S 11
N or P	0.8	1.2	0.7	1	0.9	0.8	0.8	0.9	0.5	1.4	0.7
IN OF F	(1.32)	(0.48)	(1.1)	(0.54)	(1.24)	(0.47)	(0.31)	(0.72)	(0.36)	(0.52)	(0.3)
N/N or	1.2	2.1	1.8	1.9	2.1	1.7	1.1	1.4	0.7	1.4	0.9
N/P	(0.42)	(0.94)	(0.93)	(2.78)	(2.51)	(1.03)	(0.57)	(0.58)	(0.34)	(0.54)	(0.32)
NS=	Normal Subject	t TS=Trilater	al Amnutee.	Subject							

NS=Normal Subject; TS=Trilateral Amputee Subject.

Data from Table 4.6 summarize to Graph 4.4 to see the differences obviously. The graph shown that N/N or N/P condition comtibute higher value of stability means it has lesser stability than N or P condition.

Graph 4.4: The differences of Fall Risk Test result between N or P condition and N/N or N/P conditions.

From the data taken, average values are obtained to calculate the value of differences between 'N/N or P/N' and 'N or P' to show the comparison risk of fall that trilateral amputee has with normal person. Differences value recorded in Table 4.7.

Table 4.8: Value of difference with standard deviation in stability index between two
conditions during the procedure for risk of fall test.

				N	S					TS
S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10	S11
0.4	0.9	1.1	0.9	1.2	0.9	0.3	0.5	0.2	0	0.2
(1.39)	(1.06)	(1.44)	(2.83)	(2.80)	(1.13)	(0.65)	(0.92)	(0.50)	(0.75)	(0.44)

Obviously, all differences value is positive means data value during procedure with condition N or P are lower than value in condition N/N or P/N. This show that condition N and P is the most stable position and less risk of fall while condition N/N and N/P have low stability but high risk of fall.

 Table 4.9: Average of Difference value for normal subjects and trilateral amputee

 subject

NS	TS
0.6 (1.35)	0.2 (0.44)

The average of normal subjects and trilateral amputee subject as Table 4.8 compared by calculation of data obtained during experiment. Trilateral Amputee subject have lower average than normal subject. The stability index data in postural stability tests also show that trilateral amputee subject have lower value than normal subjects. This is because trilateral amputees learn to balance themselves since amputation take place. They already used to imbalance condition and learn how to weight shifting at any condition with prosthetics and without prosthetic. The weight shifting also play important role in this study and become most reason that there are differences in results between condition N or P with N/N or N/P. During condition N and P, both feet on platform for normal subject or prosthetic equipped for amputee subject, make the weight shifting balance for each foot. To maintain the balance, muscles are constantly used to make tiny adjustments to posture. When only one leg can be used, the body weight shifts in a way that practically stabilizes the joints of standing limb (Sung Hwun Kang et al. 2013). This muscle can learn and adapt with the pressure when it used to it means amputee can train their muscle to shift their weight to maintain the postural balance as much as they can. The findings are directly in line with previous findings by Ágnes Mayer in her study Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis which conclude amputation patients with vascular insufficiency gradually shifted their body weight over the non-affected leg while standing or walking and learned a compensatory balance strategy which manifested in less postural sway while standing on the non-affected leg. The study considers this shift in weight distribution as an early adaptation. There are several other studies that support this analysis are effect of Tai Chi exercise on postural stability study by Tsung-Jung Ho that

found that regular training resulted in significant decrease in postural sway standing on single leg, but no significant change was found standing on double leg (Tsung-Jung Ho et al. 2012). Study by Pérennou D. also concluded from their results that hemiparetic patients should learn a new balance strategy to improve postural stability accepting the remaining weight-bearing asymmetry (Pérennou D. 2005).

The procedure of study been analysed with prior study and almost similar pattern found with Postural Stability Characteristics of Transtibial Amputees Wearing Different Prosthetic Foot Types When Standing on Various Support Surfaces by Nooranida Arifin. The differences in procedure is prior study evaluate different prosthetic foot type while this study analysed certain amputation. In prior study, they concluded that for normal subjects, postural instability during quiet standing is resisted by muscle contraction to control ankle joint stiffness and counterbalance of the destabilizing gravitational torque in anterior-posterior and mediolateral directions while for amputee they suggested that postural stability requires more control in the mediolateral direction when standing on a compliant surface by utilizing the hip strategy (Nooranida Arifin et al. 2014).

CHAPTER 5: CONCLUSION

The project was set out to investigate the differences of postural stability between normal persons and trilateral amputee. Other than that, the project also compare the Fall Risk between two groups of subjects. The procedure done by using Biodex Balance System SD that provide postural stability test and risk of fall test. The reliability of the system is studied and compared with other way to measure the stability which lead that this system is most reliable and user friendly as operating the system is not complicated and just straightforward. After the procedure, the results recorded and analysed. The study found that trilateral amputees have less postural stability than normal persons. Knowing the results and conclusion of the study, it may help the rehabilitation procedure for new trilateral amputees to get the training protocol right.

Risk of fall data also recorded which conclude that trilateral amputees have higher risk than normal persons with normal condition because the data from experiemnt shown that trilateral amputation condition gave higher overall stability index than normal condition. This conclusion may give idea to normal person how hard it is for trilateral amputees to do their daily life with such condition. However, during the study procedure, trilateral amputee with 8 years experienced with amputation have better stability and less risk of falling than normal persons with trilateral condition. This may conclude that after training, long time experienced and get used to prosthetics assistant, amputees might adapt to stable themselves. The muscles of trilateral amputee can stand the pressure and weight shifting are balance during the test. By this conclusion, the postural stability is lesser, and risk of fall are higher for trilateral amputees, before they get used to assistance of prosthetics and manage to shift their weight to the point of body that make themselves stable.

5.1 Study Limitation and Future Work

Limitations of this study are acknowledged. As having 10 normal subjects and only on trilateral amputee indicates that the size of sample is small as preferred to be as many as normal subjects which can be influence the generalization of the study. Another unfortunate limitation is the repetitions of procedure by the same subject with different time to get more precise average data and results.

Further research is required to increase the number of amputee subjects by 10 subjects to be conducted the study and the repetition procedure. This may increase the accuracy by more than 80% of data and results as the subjects will be more familiar with Biodex Balance System and the average of results will be more precise.

- Alonso, A. C., Brech, G. C., Bourquin, A. M., & Greve, J. M. (2011). The influence of lower-limb dominance on postural balance. *Sao Paulo Medical Journal*, *129*(6), 410-413. doi:10.1590/s1516-31802011000600007
- Arifin, N., Osman, N. A., Ali, S., & Abas, W. W. (2014). The effects of prosthetic foot type and visual alteration on postural steadiness in below-knee amputees. *BioMedical Engineering OnLine*, *13*(1), 23. doi:10.1186/1475-925x-13-23
- Beurskens, R., Wilken, J. M., & Dingwell, J. B. (2014). Dynamic stability of individuals with transtibial amputation walking in destabilizing environments. *Journal of Biomechanics*, 47(7), 1675-1681. doi:10.1016/j.jbiomech.2014.02.033
- Brown, S. R., Brughelli, M., & Lenetsky, S. (2018). Profiling Single-Leg Balance by Leg Preference and Position in Rugby Union Athletes. *Motor Control*,22(2), 183-198. doi:10.1123/mc.2016-0062
- Celebi, F., Hologlu, F., Akbulut, S., & Bicakci, A. (2017). Effects of rapid maxillary expansion on head posture, postural stability, and fall risk. *APOS Trends in Orthodontics*, 7(4), 175. doi:10.4103/apos.apos_64_17
- Chaudhry, H., Findley, T., Quigley, K. S., Bukiet, B., Ji, Z., Sims, T., & Maney, M. (2004).
 Measures of postural stability. *The Journal of Rehabilitation Research and Development*, *41*(5), 713. doi:10.1682/jrrd.2003.09.0140
- Chaudhry, H., Bukiet, B., Ji, Z., & Findley, T. (2011). Measurement of balance in computer posturography: Comparison of methods—A brief review. *Journal of Bodywork and Movement Therapies*, 15(1), 82-91. doi:10.1016/j.jbmt.2008.03.003

- Eftekhar-Sadat, B., Azizi, R., Aliasgharzadeh, A., Toopchizadeh, V., & Ghojazadeh, M.
 (2015). Effect of balance training with Biodex Stability System on balance in diabetic neuropathy. *Therapeutic Advances in Endocrinology and Metabolism*,6(5), 233-240. doi:10.1177/2042018815595566
- Elhinidi, E. I., Ismaeel, M. M., & El-Saeed, T. M. (2016). Effect of dual-task training on postural stability in children with infantile hemiparesis. *Journal of Physical Therapy Science*,28(3), 875-880. doi:10.1589/jpts.28.875
- Ho, T., Chen, S., Hong, S., Lu, T., & Lin, J. (2012). Influence Of Long-Term Tai-Chi Chuan Training On Standing Balance In The Elderly. *Biomedical Engineering: Applications, Basis and Communications*,24(01), 17-25. doi:10.4015/s1016237212002913
- Jbabdi, M., Boissy, P., & Hamel, M. (2008). Assessing control of postural stability in community-living older adults using performance-based limits of stability. *BMC Geriatrics*,8(1). doi:10.1186/1471-2318-8-8
- Kamali, M., Karimi, M. T., Eshraghi, A., & Omar, H. (2013). Influential Factors in Stability of Lower-Limb Amputees. *American Journal of Physical Medicine & Rehabilitation*,92(12), 1110-1118. doi:10.1097/phm.0b013e31829b4b7a
- Mayer, Á, Tihanyi, J., Bretz, K., Csende, Z., Bretz, É, & Horváth, M. (2011). Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: A randomized controlled study. *BMC Musculoskeletal Disorders*, *12*(1). doi:10.1186/1471-2474-12-118
- Perennou, D. (2005). Weight bearing asymmetry in standing hemiparetic patients. *Journal of Neurology, Neurosurgery & Psychiatry*, 76(5), 621-621. doi:10.1136/jnnp.2004.050468

- Ramstrand, N., & Nilsson, K. (2009). A Comparison of Foot Placement Strategies of Transtibial Amputees and Able-Bodied Subjects During Stair Ambulation. *Prosthetics* and Orthotics International, 33(4), 348-355. doi:10.3109/03093640903074891
- Schafer, Z. A., Perry, J. L., & Vanicek, N. (2018). A personalised exercise programme for individuals with lower limb amputation reduces falls and improves gait biomechanics:
 A block randomised controlled trial. *Gait & Posture*,63, 282-289.
 doi:10.1016/j.gaitpost.2018.04.030
- Sherafat, S., Salavati, M., Takamjani, I. E., Akhbari, B., Mohammadirad, S., Mazaheri, M., & Negahban, H. (2013). Intrasession and Intersession Reliability of Postural Control in Participants With and Without Nonspecific Low Back Pain Using the Biodex Balance System. *Journal of Manipulative and Physiological Therapeutics*, *36*(2), 111-118. doi:10.1016/j.jmpt.2012.12.005
- Sturk, J. A., Lemaire, E. D., Sinitski, E., Dudek, N. L., Besemann, M., Hebert, J. S., & Baddour, N. (2018). Gait differences between K3 and K4 persons with transfemoral amputation across level and non-level walking conditions. *Prosthetics and Orthotics International*,42(6), 626-635. doi:10.1177/0309364618785724
- Swiontkowski, M. (2008). Clinical Identification of Multiple Fall Risk Early After Unilateral Transtibial Amputation. *Yearbook of Orthopedics*,2008, 71-72. doi:10.1016/s0276-1092(08)79399-4
- Vanicek, N., Strike, S. C., Mcnaughton, L., & Polman, R. (2010). Lower Limb Kinematic and Kinetic Differences between Transtibial Amputee Fallers and Non-Fallers. *Prosthetics and Orthotics International*, *34*(4), 399-410. doi:10.3109/03093646.2010.480964

- Wilczyński, J., & Półrola, P. (2015). Body posture and postural stability of people practicing qigong. *Medical Studies*, 2, 115-121. doi:10.5114/ms.2015.52909
- Wilczyński, J., Pedrycz, A., Mucha, D., Ambroży, T., & Mucha, D. (2017). Body Posture, Postural Stability, and Metabolic Age in Patients with Parkinson's Disease. *BioMed Research International*,2017, 1-9. doi:10.1155/2017/3975417
- Wong, C., Chihuri, S., & Li, G. (2016). Risk of fall-related injury in people with lower limb amputations: A prospective cohort study. *Journal of Rehabilitation Medicine*,48(1), 80-85. doi:10.2340/16501977-2042
- Yu, J. C., Lam, K., Nettel-Aguirre, A., Donald, M., & Dukelow, S. (2010). Incidence and Risk Factors of Falling in the Postoperative Lower Limb Amputee While on the Surgical Ward. *Pm&r*,2(10), 926-934. doi:10.1016/j.pmrj.2010.06.005
- Yılmaz, R., Inanır, A., Kazancı, N. Ö, Çakan, N., & Gül, A. (2018). Evaluation of Dynamic Postural Balance in Pediatric Familial Mediterranean Fever Patients. *The Journal of Pediatric Research*,5(3), 134-137. doi:10.4274/jpr.09821