Faculty of Computer Science and

G’ B Information Technology P
University of Malaya

e-Scientific Calculator

LIEW CHEE KIT
WEK 990011

Under Supervision of

Assoc. Prof. Dr. Lee Sai Peck

Thesis Submitted by in Partial Fulfillment
of the Requirement for the

Degree of Bachelor of Computer Science

Session 2001/2002



Abstract

Abstract

This report is to specify the development of a software-based scientific calculator
named eSciCalc. It is a standalone application running on the Microsoft Windows

platform. There are nine chapters in this report.

The first chapter is the introduction to the project. Information of the project related to
its background, motivation, problem definition, objective to achieve, project scope,

expected outcome, and the proposed schedule is provided in this chapter.

The second chapter will present the result of literature review performed. The review

on existing calculator and development tools are included here.

The third chapter will describe the development approach taken for this project. The

strength of the approach is also included.

The fourth chapter states the result of requirements capture and analysis. The
requirements are captured as use cases and the flow of even for each use case is
included. In analysis, use case realisation in form of analysis classes is provided for

each use case using collaboration diagrams and textual flow of event.

The fifth chapter will specify the software design. This chapter includes the use case
realisation in term of design classes for each use case with a sequence diagram and

textual flow of event.
Chapter six states the implementation approach employed in the project.

Chapter seven states the test model use in this project. This chapter include the test

case and the test procedure that use to test the software.

Chapter eight states the evaluation of this project. This chapter include the strength,

limitation and future enhancements of the software.

Chapter nine states the conclusion. Which include the problems and solutions,

knowledge gained and project’s conclusion.



Acknowledgement

Acknowledgement

I would like to express my deepest gratitude to my supervisor for this project,
Associate Professor Dr. Lee Sai Peck, for spending her precious time on supervising

me throughout the two semesters.

I would also like to express my special thanks to Mr Chiew Thiam Kian, my

moderator for this project, for spending time to read my late report.



Table of Contents

Table of Contents
Abstract i
Acknowledgement ii
Table of Contents iii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Project Overview 1
1.2 Motivations 2
1.3 Objectives of the project 2
1.4  Problem definition 3
1.5  Project Scope .4
1.6  Expected Outcome 4
1.7  Project Schedule s
1.8  Chapter Summary e
1.9  Summary of Proposal 5
1.10  References 6
Chapter 2 Literature Review 7
2.1 Overview 7
2.2 A Review of Existing Scientific Calculators 7
2231 CASIO S-V.P.AM fx-570w Electronic Scientific Calculator.......................... 7
2122 Microsoft® Calculator version 5.0...........cooooiioiiiiiiioeeeeeeee 12
2.2:3 B e | G L e R d  r Eorus dhes 1431 B bredonsanasamimsanstssa surassmsnss sams bes ss comeis’ 13
2.3 A Review of Development Tools 15
2311 Programming Languages...........coooiiiiiiiiiiiiiiiieoeeeeeeeeeeeee 15
213 L e N OO T R LR R B R O O ) O b iasso aiedusstissbiais smburtrniston ias e Voosntar ain 15
23 R AR S T e B TR Eo TS AR TN CH AT T xagviasnssnnsasessasasassissssqsssyisoserorsentanacssabusansens 15
2.3, 1:4 \MICTOBOIVIBURL O 0.0, 0 00 00s0s10s0sasessancnessarsessssssasssnsasnssnssssssasssbossnsonssnnnrs 17



Table of Contents

2.3. 175 I3 SO L. A P R I Ui e aisiisnesassint s sessstbibansiinsiospsessinpirsassnsssssasnes 17
232 COMPONENLISALION. .......voocerrarirersessesees s 18

2 3 DL T ACHVE XML . «.voshesstsbrestanshssabssiasasmassisinnsersashinsstsrnssssisasts oninstipsssiosisenvos 18
2813 Relational DatADASES ... iuieiisisaetissssasstissmssnsistssssssssansassasassnsassaanssnsasssssassisasssanss 20
2.3.3.1  MYSQL ..o 21
9.3:3 0% AMicrosoftACCesS 2000 Mt 1 osscisissmississsrsssssssmonsansesssrensossasnissian 22
2.3.38 5 1 SOOI BEryveri2 000 mi s e I s snsmssesssvemsissssiesstssssibssissasisssomsirssssasses 23
234 Database COMNECHVILY. ...t iituimtssissussasssssssrsasassisarssenssasasisssssnsasassssssesssnsnsasesse 25
2.3.4.1 Open Database Connectivity (ODBC) ..., 25
2.3.42 ' Java Database Connectivity (JDBC) ..c..visicnsnenssnsssssssssessasssze o sdloBperennasens 26

2.4  Proposed Tools 26
2.5  Chapter Summary 26
2.6  Reference 27
Chapter 3 Methodology 28
3.1  Software Development Approach 28
Su1e e 0T e W ORI OIS i it et ts teat s ssaiedat tinsirsinnssssntsssrsssrhussassssarananessnesnions <y
3:1.1.1  ReQUITCINENTE,.ooiibieasinortigasesRressessatatssreassssiprississirrssisisssivmtefaaesstiehisasssish 31
3.1.1,1.1  Requirements CaOmlNG g i iisesissivinsrssssessrssssnsnsasnsasstasnsasasasressssiarsssnss 31
3.1.1.1.2 Capturing Requiféments as Use Cases..........cuumsmnmssnnbisisssinsnsassssssises 32

3, 1e1.1. 2210 ActiTIy:Sind 4ctors And USE CASES ... immsessesismsemsissmasssssasnsssn 93
31101220 SARIVITY: PriOTItISO NS CASES i.ouusmenssnsasssssissreisassssssssasnsssniamssssssssasisss 34
3101 1 RN CHIVItY I DTG G USE AN . isiecscxscssirirsmimesspsasssprissisizionessasssrssssrsses 35
3.1.1.1.2.4  Activity: Prototype user interface...........ccccoovniinnninnn 36
3.1.1.1.2.5 Activity: Structure the use-case model..............cccccoooiiininnn. 37

3 10 2 R A DAL VSIS SR AAN oo fintesviasntiiriassssbismissbestsenciinississssisiiversiiinsssnsasares iiibesanrs sisss 38
31515251 SA CtivitystA rchiteCural ANALYSIS Lt sesesmsismestsrsssssssssasssmrivansiasss 39

SN M A CHVIEY AN VSE A COIC . Shssusotsssssinsssssvssssrbunsprsssosssrstarssssashensiss 40

3.1.1.2.1 Activity: Analyse a class .................ccoocveimeecniiicieicneecns 42

3. 112 1 ATtV S NGl E O DOCRAR O L i i s sunsssssssiossisssstisnsssssasnimasassonsan 43

3, 118 DD O] D) I et reoves IWekcss ChesaLTT N s wsh inqsansssssonsransanncnsnsssssensonssnsasaseseasabrises 44
3.1.1.2.1  Activity: Architectural design....................cccocoovvvvivviiviviviiiiiiinnan, 45

3.10152; IRVASHVItYR LSS ION A UBRICAROIE Aiisissrisnssrisarssesssssssssrsssssasssssresissooriniss 47

v



Table of Contents

3.1.1.2.1  Activity: Design @ Class ..............cccceevciiinininineniienininenineeeeseeens 48

315192 TR vty DS onia SUDSYSTEM E LA B i fo i vebnsbingssssassionssassssnssissts 50

3 R T g b R B R R S ey e O o 51
3.1.1.2.1 Activity: Architectural implementation...............cccoovveviiniicinnnnn. 52

3.1.1.2.1  Activity: [ntegrate SYSIem ...............cccccceviveieiiiiieeiiriee e 52

By RO LA CliVItVa Il ement QS UDSYSTRME . v istisns idisastisncharsvsansstssis beuids isances 53

3.1.1.2.1  Activity: Implement @ Class ................ccccooveeveeiieieieiiee e 54

BN LA ot VIT R et O AR it s s s ons bk onanadpabsassasshsnissehes thansoiains 35

3 10108 i T R e T I o A AT A0 LT ATt S P T ST i e BT s 56
SR1a1 b2 0 A CT VItV B QIIICSTL 2has bt tosenshsmssiasivinssainsinss ssverssssing Beadli PN e isnesin 57

S5 B L B Ny 1T 1D X o (L ST By P Smeiny. O, VSRR 57

3.1.1.2.1  Activity: Implement est ...............c.cceeeevuieeiieeeiieieieieeeee e eeeeenenns 59

3.1.1.2.1 Activity: Perform integration test...............ccccoeveiivviiieiieiiiiecenenns 60

3.1.1.2.1 Activity: Perform System test...........cc.ooiiiiiiiiiiiiiiiiiieieccececce e 61

3.1.1.2.1  Activity: Evaluate test ..o 62

3:1:2 The Iteration WOTKEIOWS ii.ciiiiie e e ciesinsessasassssnssssasassassasssasssassassassases 62
3.1.2:1  INCeption ItErAHONL. ... ciiiiiigersesss st seresssssisnsrssassssnsnasessenssnsnsassssssassansssns 62
3.1.2.2 * Blaboration IteTtION, . Mg st i-tsesssesesssssasssrssssssssatneserassnssssssssasssssressssenansas 63
3.1.2.3  Construction HETALION ............oiviviiieieeeiieitesteeeie e ee et es e e eeees 63

3, 1328 el ransitiOn LETAMOIY . MW sicitinirstio sraesisibianicitsssstnssesamvessasnersahbisossrassssrerastinss 64

3.2 Strength of the proposed approach 64
3.3  Chapter Summary 66
3.4  References 66
Chapter 4 Requirements Capture and Analysis 67
4.1 Requirements Capture 67
4.1.1 At OT AT LT A O e o NN, LAY, s cvnsensarsranssssssnsorsssnsvonsavassisssossnns 67
ACTOr A U SO T o A AT A MR sl hvsissiscisivensmaissessistoisassassaisesssssemmunsrorsns 67

Use Case: Perform General Calculation.................oooooovoiiiiii 67

Use Case: Perform Standard Deviation Calculation ... 69

Use Case: Saves Calculation to Memory LSt ... 70

Use Case: Retrieve Calculation from Memory List..........oooooooooviiiii 71

Use Case: Retrieve value from the memory LSt 72




Table of Contents

Use Case: Delete calculation from the memory list..............cc.ocooiiiiiiiiciii 73

Use Case: Retrieve Calculation from History List...............ccococoovivoiiiiieeeee, 73

Use Case: Retrieve Constant from Constant List.................ccoocooiiiiiiiiii, 74

4.1.2 SO I T LT & 11u a1 s02ns1s tanistantansayesnpentsstasinsss Shashasnebatonns sosnbasunsshiossinissnsssssbine 74
4.1.3 ] T (o L L T . ORI 77
4.2  Analysis 78
4.2.1 Use-Case Realisation — AnalysiS...........c.ooooviiiiiiiiiiiieiceeceeeeeeeee e, 78
Use Case: Perform General Calculation.................coocooiiiiiiiiiiciccceeeeee, 78

Figure 4-8 and Figure 4-9 illustrates the use case realisation of use case Perform

General CalCulation. ..........ccooiiiiiiiiii sttt ea et e e eaenas 78

Use Case: Perform Standard Deviation Calculation ......................ccooveeriooei 80

Use Case: Save Calculation to Memory List..............ocooooiioiiioeeeoeeeeeeeee 80

Use Case: Retrieve Calculation from Memory List ............ccoooooovioiiiii 81

Use Case: Retrieve Value from Memory List...........c.oooooioiiooioooo 82

Use Case: Delete Calculation from Memory List ............ocooooiviooiooeoeo) 82

Use Case: Retrieve Calculation from History List................oooooviiiiiie ) 83

Use Case: Retrieve Constant from Constant List..............o...ooooovviiioooo 83

4.2.2 ANALYSIS CIASS 1.1iirivirgge D ereT e cs15sersersssasasassssssnsssasssensasnsassssssnssessssrsesssssonsns 84
4.3  Chapter Summary : 87
4.4  References 87
Chapter 5 Design ...... 88
ail Use-Case Realisation — Design 88
Use Case: Perform General Calculation.....................ooooooioiio 88

Use Case: Perform Standard Deviation Calculation ... 91

Use Case: Save Calculation to Memory LiSt.........o..ocoooooooooo 92

Use Case: Retrieve Calculation from Memory List ..o 94

Use Case: Retrieve Value from Memory List..........ocooooovooiioooooo 95

Use Case: Delete Calculation from Memory List ..o 96

Use Case: Retrieve Calculation from History List...............oooooiiio 97

Use Case: Retrieve Constant from Constant List......................oooooo 98

B I ) [ 1G] 1T o s v e e e e e - e e PO 929
33 O D O S I TN Sereote eecttotesteerersmosesetetoce sarsstnstosesssessessosomsooms ooty bt s 101




Table of Contents

5.4 References

Chapter 6 Implementation

6.1 Core components and development approach
6.1.1 Calculator screen
6.1.2 Expression classes

6.2 References

............................................................................................

Chapter 7 Testing

7.1 Test Case

Use Case: Perform General Calculation

Use Case: Perform Standard Deviation Calculation

Use Case: Save Calculation to Memory List

Use Case: Retrieve Calculation from Memory List

Use Case: Retrieve Value from Memory List

Use Case: Delete Calculation from Memory List

Use Case: Retrieve Calculation from History List

Use Case: Retrieve Constant from Constant List

7.2 Test Procedure

Test case supported: calculation statement 1+ (2+3)/ sin20

Test case supported: standard deviation calculati

7.3 Chapter Summary

on statement 3, 4, 5

7.4 References

Chapter 8 Evaluation

8.1 Strength

8.2 Limitation

8.3 Future Enhancements

8.4  Chapter Summary

Chapter 9 Conclusion

9.1 Problems and Solutions

ooooooo

9.2 Knowledge Gained ......

9.3 Conclusion

101

102
102
102
102
103

.. 104

104
104
105
106
106
106
107
107
107

. 108

108
108
109
109

110
110
110
111
111

112

w112
e 112



Table of Contents

Appendix A User Manual A-1
A.l  Overview of eSciCalc A-1
A.2  Features A-1
A. 3 Keyboard equivalents of calculator keys A-4
A.4  General calculation A4

A4.1 U A L (o cty ekt aess crenisraen iatesns s tstasssassR e b ase essransinsbabbisssstassnin i ettt oS ors A-5
A42  Answer display format ... A-9
A.5  Standard deviation calculation A-9
A.6  Conclusion A-10

vill



List of Figures

List of Figures

Figure 1-1 Fishbone diagram analysing the deficiency of a typical scientific calculator-.......... 2
Figure 1-2 Gant chart showing the schedule of this project..................c...c.ocoooiiiii, 5
Figure 2-1 The relationships between components of Java ..., 16
Figure 3-1 Phases further divided into more iterations. ...............cccoeviiiiiiiiiiiiceeeece 29
Figure 3-2 Core workflows in fferation............ovuiiiiiiiiiiniiceceee e 29
R Ue 3o AT OTYS I) O L T Or e e R T b e coth ittt 4 ranthewtTes ekexeesetusassatssshearses sosd st onnssssaspencareinsobariy 30

Figure 3-4 Emphasis shifts over the iterations, from requirements capture and analysis toward

design, implementation, ANATESHNE. ...oiiivirrsrsrsisessssnenssorsnsasssassasnsossensaasessssaggiusessssssasasss 30
Figure 3-5 The workflow of capturing requirements as US€ CaSES..............cooovvvvveeoeovreosl 33
Figure 3-6 The input and result of activiy finding actor and use cases................................... 34
Figure 3-7 The input and result of activity prioritise use Cases................cocovovvoeeoove. 35
Figure 3-8 The input and result of activity detail @ uSe Case.................ccococovevooeeo 36
Figure 3-9 The input and result of activity prototype user interface...................................... 37
Figure 3-10 The input and result of activity structure the use-case model ............................ 38
Figure 3-11 The Workflow in @nalysis ...........cccccoiiiiiiiiiiiiiiieeee e, 39
Figure 3-12 The input and result of activity architectural analysis......................c...o............ 40
Figure 3-13 The input and result of activity analyse a use case...................ocococoooivoreeonnn., 42
Figure 3-14 The input and result of activity analyse @ Class ..................ccocovviriioeieiissns 43
Figure 3-15 The input and result of activity analyse a package ..................ococooooveovvve. 43
Figure 3-16 The activities in design WOrKflOW ... 45
Figure 3-17 The input and result of activity architectural design ....................o.cocooooovriinii... 47
Figure 3-18 The input and result of activity design a use case ................ccoooooveevoo . 48
Figure 3-19 The input and result of activity design a class.................ococooovvooooo 50
Figure 3-20 The input and result of activity design a subsystem ... 51
Figure 3-21 The activities in the implementation workflow.................co....... 51
Figure 3-22 The input and result of activity architectural implementation..................... . 52
Figure 3-23 The input and result of ativity integrate System ... 53
Figure 3-24 The input and result of activity implement a subsystem ... 54
Figure 3-25 The input and result of activity implementa class..................................._ 55
Figure 3-26 The input and result of activity perform unittest................................. 56
Figure 3-27 The activities in WOrkflOW (€St ..........ccooivvimiroriiieioioeoooeooo 56




List of Figures

Figure 3-28 The input and result of activity plan test ...............cococoooiiiiiiiii 57
Figure 3-29 The input and result of activity design test...............ocoooiiiiiiiiiiiicc 59
Figure 3-30 The input and result of activity implement test...............c.c..ccoooviiiiiiiiiiiinn, 60
Figure 3-31 The input and result of activity perform integration test..................................... 61
Figure 3-32 The input and result of activity perform system test..................cocoooeeiiiinnn. 61
Figure 3-33 The input and result of activity evaluate test..................cocooooiiiiiinici, 62
Figure 3-34 Models of the Unified ProCess............ccooiiiiiiiiiiiniieecececeee e, 65

Figure 4-1 Statechart diagram showing the states of use case Perform General Calculation.. 69
Figure 4-2 Statechart diagram of use case Perform Standard Deviation Calulation................ 70

Figure 4-3 Statechart diagram showing the states of use case Saves Calculation to Memory

LAt e T T e T T o e O o T T L T L T Wt seannsans 71
Figure 4-4 User interface design for use case Perform General Calculation.......................... 75
Figure 4-5 User interface design for use case Perform Standard Deviation Calculation......... 76
Figure 4-6 User interface design for the four IiSts............cooiiiiiiiiiiii e 76
Figure 4-7 Use cse model of €SCICAIC .........c.ooiiiiiiiiiiiiiici e 77

Figure 4-8 Collaboration diagram describing key-in part of use case Perform General

R Ol A O I o e e e e vs Tttty e tukssneess INIE ot isenstnssnnstsnerusassnsonessvassosea s tonee i 78

Figure 4-10 Collaboration diagram describing use case Perform Standard Deviation
CAICUIALION. v ivescennisrengee e e Bhesnesssussssnsestnesssassasassassansssnssnssnsansasanansasssssassnansantsnssanssasasse 80
Figure 4-11 Collaboration diagram describing use case Saves Calculation to Memory List .. 80

Figure 4-12 Collaboration diagram describing use case Retrieve Calculation from Memory

Figure 4-13 Collaboration diagram describing use case Retrieve Value from Memory List .. 82

Figure 4-14 Collaboration diagram describing use case Delete Calculation from Memory List

.......................................................................................................................................... 82
Figure 4-15 Collaboration diagram describing use case Retrieve Calculation from History List
.......................................................................................................................................... 83
Figure 4-16 Collaboration diagram describing use case Retrieve Constant from Constant List
.......................................................................................................................................... 83
Figure 4-17 Class diagram showing the analysis classes of eSciCale ... 86

>



List of Figures

Figure 5-1 Sequence diagram describing use case Perform General Calculation.... . 90
Figure 5-2 Sequence diagram describing use case Perform Standard Deviation Calculation .91
Figure 5-3 Sequence diagram describing use case Save Calculation to Memory List............. 93

Figure 5-4 Sequence diagram descirbing use case Retrieve Calculation from Memory List .. 94

Figure 5-5 Sequence diagram describing use case Retrieve Value from Memory List.......... 95
Figure 5-6 Sequence diagram describing use case Delete Calculation from Memory List ..... 96
Figure 5-7 Sequence diagram describing use case Retrieve Calculation from History List.... 97
Figure 5-8 Sequence diagram describing use case Retrieve Constant from Constant List...... 98
Figure 5-9 Class diagram showing the design classes ................... .. 100
Figure 5-10 Class diagram showing the generalisation relationship of design classes.. . 101
Figure A-1 eSciCalc calculator screen with standard notation and dual line display.........A-2
Figure A-2 Select Hide keypad from the menu to hide the keypad..................... A-3
Figure A-3 General calculation window of eSciCale.............. A-5
Figure A-4 Standard deviation calculation window of eSciCalc... ... . A-10

X1



List of Tables

List of Tables

Table 3-1 The set of activities for the requirement capture and their equivalent output ......... 32
Table 3-2 Comparison of the use-case model and the analysis model................................... 39
Table 3-3 Comparison of the analysis model and the design model..................................... 45
Table 4-1 Analysis classes and their responsibilities and attributes ........................................ 85
Table A-1 The keyboard equivalent of the keys of eSciCalc....................................A4

X1l



Chapter 1 Introduction

Chapter 1 Introduction

This chapter will form the introduction to the project. The chapter will start with an
overview of the project in Section 1.1. Then, the motivation will be presented in
Section 1.2 while the objectives of the project will be presented in Section 1.3. The
definition of the problem domain is stated in Section 1.4 “Problem Definition™, while
the scope of the project is stated in Section 1.5. After defining the project scope, the
expected outcome of this project is presented in Section 1.6 “Expected Outcome™, and
the schedule of the project is stated in Section 1.7. The summary of this chapter and a
summary of the following chapters are provided in Section 1.8 and Section 1.9

respectively. Finally, Section 1.10 will state the references for this chapter.

1.1 Project Overview

The outcome of this project is a standalone software-based scientific calculator named

eSciCalc, which stands for eSciCalc.

This software-based calculator is implemented standalone rather than web based
because we see scientific calculators as personal assistant. A scientific calculator
should be highly available, provide fast response, and the data stored in the memory
space should be personal and could be preserved for as long as the user needs it. A
web-based application will only be available if the computer has access to the World
Wide Web and when the server that hosts the application is up. As for last two
reasons, which are to provide fast response and personal memory space, it would be

difficult to achieve with a web-based application.

The mechanical calculating machine that is capable of performing addition,
subtraction, multiplication and division operations has been introduced since the
1600s. However, the first hand-held scientific calculator was only introduced by
Hewlett-Packard in 1972 [1].

After evolving for about thirty years, the scientific calculator available currently
provides a very wide range of functions. Hence, adding more functions to the already

wide collection is not the purpose of this project.




Chapter 1 Introduction

1.2 Motivations

This project is motivated by the discovery of a certain weaknesses of some existing

scientific calculators. The main weakness identified is with the user interface.

In order to obtain a clearer view, problem analysis has been performed to find the
deficiencies of a typical scientific calculator. The result is illustrated in Figure 1-1.
The fishbone diagram in Figure 1-1 has outlined six problems of a typical scientific
calculator, These problems will be further discussed in Section 1.4 “Problem

Definition”.

keys not well accelerated  keys too small

( software-based and overly small
scientific calculator) multifunction screen
\ Deficiency
L I T 4 ofatypical
A /* scientific
/ / calculator

single screen for flow of keying in non-
all calculation problem not well standard
types designed notation

Figure 1-1 Fishbone diagram analysing the deficiency of a typical scientific calculator

1.3 Objectives of the project

The objective of this project is to:
e Provide a better user interface that would promote the use of standard
notation, easy to redo, and reduce error rate and easy rechecking.
e Design with an easy to expand architecture. This would enable the product to
support a more complete set of calculations.

e Provide a product that could reduce the use of papers and pen in calculations,



Chapter 1 Introduction

1.4 Problem definition

Out of the five problems stated in Figure 1-1, the problem tagged small screen is the
biggest contributor to the user interface problem. This is due to the fact that the screen
plays a lot of important roles. It is primarily used to display the result of calculations
and to display the figures as the user key in the calculation. Besides, it is also used to

indicate the current mode of the calculator.

As a result of this small screen playing such important roles, other problems such as
flow of keying in problem not well designed, and the use of non-standard notation has
arisen. This is due to the fact that key-in flow and the use of notation is very much

affected by the display screen.

Another common problem of a scientific calculator is the use of one user interface for
all calculation modes. The user interface of a conventional scientific calculator
consists of one screen for output and a keypad for input. However, there are functions
supported by these calculators that require a different user interface. One example is
the standard deviation calculation, where a list of data has to be kept in order to obtain
the value of mean, sample, population, and so on. The list for this calculation is not
visible to the user and the list would not be kept by the calculator as well, since
keeping the exact figure of the entire list would take up lots of memory space. The
calculator will keep only values for sum of data, sum of square, and number of data as
these data would be adequate for them to calculate the results user wanted. As a
result, the user will never be able to confirm that the data keyed-in is totally the same

with the list of data the user wants to calculate.

The final two problems identified are the keys being too small and overly
multifunction and the keys for software-based calculators are not well accelerated.
The former is due to the wide collection of functions that have to be supported while
preserving the size of the calculator. As for the latter problem, keys for software-
based scientific calculator should be well accelerated to enable the user to work faster.

The user should not be made to press the numerous keys on the keypad of the

calculator with the mouse.



Chapter 1 Introduction

1.5 Project Scope

The product of this project will be developed using the object-oriented method. The
main purpose of using the object-oriented method is to realise the objective of
designing with an easy to expand architecture. Besides, the product, which is a
scientific calculator, would be made up of many classes to support the wide variety of

calculation types and these classes have a high possibility of reuse.

This calculator will support two calculation modes. The first mode is named general
calculation. This mode employs an expression-based calculation’ method. All
supported calculations that have an expression form including scientific calculations
will be performed here. The second mode is the standard deviation mode. As the
name suggests, calculations concerned with standard deviation will be performed in

this mode.

Besides the three calculation modes, this calculator will provide three types of list to
assists calculations. They are memory list, history list, and constant list. The memory
list will provide fifty slots for calculations storage while the history list will

automatically store the latest ten calculations.

1.6 Expected Outcome

The outcome of this project is expected to consist of the following,
e A standalone software-based scientific calculator running on the Microsoft
Windows platform.
e An online help system and user’s manual in compiled HTML (.chm) format.

e A printed user’s manual.’

! Expression-based calculation is a calculation method where the calculator does not calculate when the user is
keying in the calculation. The calculator only performs calculation when the user presses the equal sign after the
whole statement is keyed in. The calculator will first evaluate the expression for error. Error message will be

shown if there is error in the expression, while the answer will be provided if there is no error.



Chapter 1 Introduction

1.7 Project Schedule

2001 2002
D Task Name Start End
Jun | Jul | Aug | sep | oct | Nov | Dec | Jan |
1 | Inception phase 04/06/2001| 23/06/2001 |
2 |Elaboration phase | 24/06/2001| 23/08/2001| NN
3 | Construction phase | 24/08/2001{ 21/01/2002 R I R T ) S |
4 | Transition phase 22/01/2002| 10/02/2002 -

Figure 1-2 Gant chart showing the schedule of this project

Figure 1-2 illustrates the schedule of the project with a Gant chart. The tasks
identified for this project follows the development approach in used. The approach is

described in Section 3.1”Software Development Tools”,

1.8 Chapter Summary

The output of this project is a software-based standalone scientific calculator. The
objectives that the project wants to achieve is to provide a better user interface, design
with an easy to expand architecture and to reduce the use of papers and pen in
calculations. The six problems identified with a conventional scientific calculator are
the small display screen, the use of non-standard notation, key-in flow not well design,
the use of one user interface for all calculations, having small and overly multifunction
keys, and the keys of software-based calculator being not well accelerated. The
product of this project will support two calculation modes: general calculation and
standard deviation calculation, and three lists: memory list, history list and constant
list. Besides the scientific calculator, a help system and users manual will be provided

as the outcome of this project.

1.9 Summary of Proposal

Chapter 1 This chapter introduces the project.

Chapter 2 This chapter present the result of literature review performed on two

areas: related product and options of development tools.




Chapter 1 Introduction

Chapter 3 This chapter provide a description on the methodology employed for

this project.
Chapter 4 This chapter present the results of the requirement capture and

analysis for the project.

Chapter 5 This chapter present the design of the project

Chapter 6 This chapter present the implementation part of the project.
Chapter 7 This chapter describes the software testing for this project.
Chapter 8 This chapter will form the evaluation of the software product.
Chapter 9 This chapter covers the conclusion of the project.

Appendix A The user manual of eSciCalc
1.10References

[1]  McGrath, K.A. (Ed). (1999).World of Invention. United States: Gale
Research.




Chapter 2 Literature Review

Chapter 2 Literature Review

This chapter documents the result of literature review for this project. The chapter
starts with a brief overview in Section 2.1. After the overview, the reviews of existing
calculators are descried in Section 2.2. Section 2.3 will present the result of
development tool reviews. The proposed tool is included in Section 2.4 after the
review. Then, the summary of this chapter will be stated in Section 2.5, while Section

2.6 concludes the chapter with references.

2.1 Overview

Literature review is an analysis that is used to gather information about the system we
intend to develop. This approach is used to evaluate existing system on the same topic
so that a better product can be developed. It also includes the comparison of a few
software, tools and approach to get the best outcome. Without this analysis, we would

not be able to identity the strengths and weaknesses.

The literature review for this project will starts with reviewing existing scientific
calculators and followed by reviewing the various development tools in order to

decide the best set of tools for this project.

2.2 A Review of Existing Scientific Calculators

2.21

Six scientific calculators have been reviewed but only three are specified in this
section. This is because the other three does not impose any interesting features. One

of the reviewed calculators is an electronic scientific calculator while the others are all

software-based scientific calculator.
CASIO S-V.P.A.M fx-570w Electronic Scientific Calculator
The review of this calculator is carried out together with its user manual.

Modes



Chapter 2 Literature Review

Basically there are five calculation modes (COMP, CMPLX, SD, REG and BASE),

three angle unit modes (DEG, RAD and GRA), and three display modes (FIX, SCI
and NORM with an additional ENG attribute).

The calculation modes are used to specify the main type of calculations to be

performed. The five calculations modes and their description are as followed: -

e COMP: used to perform all the general calculations.

e CMPLX: the acronym refers to the word complex. This mode is used when

performing complex number calculatiors.
SD: the acronym stands for standard deviation. It is used to carry out standard

deviation calculation.

e REG: the acronym refers regression. There are six types of regression

provided in this calculator. The six types of regression calculation supported
are Lin for linear, Log for logarithmic, Exp for exponential, Pwr for power,
Inv for inverse, and Quad for quadratic.

BASE: this mode is meant for calculation related to conversion between

number systems and to perform logical operator calculations on them.

As for the angle units, all three are offered in this calculator. They are degree, which
is labelled DEG, radiant labelled RAD and gradient being labelled GRA. Functions
that perform calculation based on angles (eg. trigonometry and hyperbolic) will

produce different result with different angular modes being employed.

There are three modes offered for specifying the way answer is displayed. One of
them is NORM, which reflects the word normal. It cancels the display effect that is
provided when SCI or FIX is set and causes the answer display back to normal. The
second mode is SCI, which refers to scientific. It enables the user to choose the
number of significant digits to be displayed. Finally, it has FIX, which enables the
user to set a fixed number of decimal points to be displayed. Only one of these three
modes can be used at a time. Besides these three, there is one mode named ENG,
which indicates the word engineering that can be used together with all the three
previously revealed modes. It causes the answer displayed with terms such as Mega,

kilo, micro, etc rather than the exponential way. In other words, 5000 will be

displayed as 5 K rather than 5x10°,



Chapter 2 Literature Review

Functionality

The general calculations that can be performed in the COMP modes are as follows:

Basic calculations available on a standard calculator: addition (+), minus (=),
multiplication (x), division (+), percentage (%) and negation (-)

Memory: provides nine slots to store figures. They are labelled A, B, C, D, E,
F, X, Y, and M. However, the addition and subtraction operations are offered
for memory slot M only.

Index: square (XZ), square root (\/), cube (x3 ), cube root V), power (x), root
() and reciprocal (x).

Trigonometry and hyperbolic: sine (sin), cosines (Cos), fangent (tan), arcsine
(sin™), arccosines (cos™), arctangent (tan™), and the button hyp to transform
each trigonometric function into their equivalent hyperbolic function.
Logarithms: common logarithm (log), common antilogarithm (10%), natural
logarithm (In) and natural antilogarithm (€").

Probability: factorial (x!), permutation ("Pr) and combination ("Cy).

Integration: (Jdx).

Coordinate: polar to rectangular and rectangular to polar.

Constants: the more commonly used pie (n) shown as button. Forty more
accessed through the button labelled CONST.

Large number input: exponential (EXP), prefixex (Tera - T, Giga — G, Mega —
M, kilo — k, mili — m, micro — z, nano — n, pico - p, femto—t).

Others: fraction (a b and d/c), sexagesimal / decimal conversion (° ' " and
«), random number generator (Ran#), angular unit change (DRGP ), forty

units conversion (CONV)

As for the CMPLX mode which supports complex number calculations, most of the

functions above are still offered since the real part as well as the figure part of the

imaginary part can be made up of index, logarithms, trigonometric, hyperbolic, etc.

functions. The functions specific to this mode are argument display (arg) and absolute

display (Abs or |z]).



Chapter 2 Literature Review

In the SD mode, the mode that supports standard deviation calculation, it provides

data entry and data delete functions to enable the management of data in the list. The

calculation of mean (} ), population (xo, ) and sample ( xo,_, ) are automated too.

User Interface

Display screen: The display screen encompasses of two lines, the upper line is to
enable the user to keep track of the calculation statement keying-in process while the
bottom line is to display the answer to the calculation statement. The bottom part of
the screen has indicators to specify the current modes and conditions the calculator is
in.

The calculator works differently compared to the traditional calculator in the sense
that it has a specific line for calculation statement input. The whole line of calculation
statement is keyed in first and the calculator will execute the input to produce the
answer when the equal sign is pressed. Implementing the calculation this way has
reduced the error rate. This is due to the fact that the calculation statement will not be
erased and is shown together with the answer. This will facilitate the user to make
sure that the calculation statement is the one he/she wanted and the answer will be the
correct one. This is different from the traditional method where the user will never

know what had been keyed in.

Besides, having a different line for calculation statement key-in has also promoted
easy undo and redo. Since the statement will not be erased after the answer is
displayed, the user can easily edit the statement to the one he/she wanted. This has
eliminated the need to re-key in the statement, which is almost the same when an error

has been made as well as having to calculate a similar calculation with different set of

figures.

In spite of all these advantages, the dual line display is still a single line input and
single line output display. Hence, calculations that require a bigger display for input
and output such as matrix are still very difficult to be implemented if not impossible.
Even if they are being implemented, the notation would be rather confusing since it

would have to be modified to suit this single line input and output. For example, the

10



Chapter 2 Literature Review

fraction, which is being implemented in this calculator, the value for 23 is shown as

21314, while 2.3 would be equivalent to 2.

Moreover, the indicator at the bottom of the screen is a setback to its interface design.
The indicator is small and is using acronym to a very extreme level. This is especially
true with the angular measurement indicator, which is considered a vital information
as the answer produced by the functions that uses angular units might not be the one
user wanted if this mode is set wrongly. This calculator has uses the letter D for

degree, R for radiant and G for gradient.

Besides, the standard deviation function support uses the same screen as all other
functions. It faces the problem similar to the one stated in Section 1.4 “Problem

Definition”. The user could not check the list to verify the answer.

Keypad: This model has promoted the grouping of key type. Key type grouping will
accelerate key finding and will also endorse a user interface that is more
understandable. This calculator has grouped the keys into three groups, one with the
control keys such as arrows and shift, another with keys for scientific calculations, and

the third group for arithmetic and statistical calculations.

Besides key grouping, the functions that require the press of the shift key for access
are mostly the inverse of the original functions for that button. This designation of

shift functions has also accelerated the finding of functions.

The designer has used colour to differentiate between functions that will be available
in certain mode only. Colours have been a very good choice in this context since the

area available is too small for any icon or similar things.

Notation: There are calculations in this calculator not following the standard
mathematical notation. ~ Among the contributor in to this problem is the
implementation of functions that require a bigger display. Using non-standard
notation would disrupt the work of its user besides being difficult to learn. One of the
major objectives of user interface design is to enable users to fully concentrate on their
work and not on how to use certain product to do their work. This non-standard
notation will affect the user’s concentration and will increase error rate of one’s work

as well.



Chapter 2 Literature Review

rdy iy

Others: This calculator has a quick reference card as a companion. This card is placed
in its cover to enable quick reference to functions that are impossible to be memorized.
Among the information placed, here are the forty constants and their respected
numbers for retrieval as well as the forty unit conversions with their retrieval numbers
too. This is a very good way to compliment its inability to show the whole list for the

user to choose from.

One of the major setbacks to interface design in this calculator is the extreme use of
acronyms. This might be caused by the limited size for display, but the use of
acronym has gone to an unacceptable level. Acronyms have been used in almost
every part of the calculator. The names of the various types of modes are all in

acronyms, the labels of buttons are using acronyms, and the error messages have

acronyms as well.

Microsoft® Calculator version 5.0

Modes

There are three calculation modes in this calculator, the general calculation mode,

standard deviation mode, and base-n calculation mode.

This calculator also supports the three angular measurement units, radians, gradients

and degrees.

Functionalities

As for functionalities, this calculator supports only the very basic ones. The scientific
calculations supported are the trigonometric and hyperbolic, common and natural
logarithms, and the indexes. In base-n, it provides the logical operations Mod
(modulus), And (bitwise And), Or (bitwise Or), Xor (bitwise exclusive Or), Lsh (shift
left), shift right and Not (bitwise inverse). The standard deviation mode provides only

the average, sum, and standard deviation.

User Interface

Display screen: This calculator uses the single line displays. The mode indicators are
not placed in the display screen. Instead, it uses radio buttons for mode change as well

as mode indicator.



Chapter 2 Literature Review

2.2.3

The standard deviation mode for this calculator has a separate window to store the list
of data. Hence, the data of the list is visible to the user. However, data input and

answers output still use the main screen of the calculator.

Keypad: There are not many keys on the keypad since the functions supported are
very minimal. Keys grouping are utilised too but the grouping is rather confusing.
One example is the keys for arithmetic calculation and the logical calculations being

placed in one group. Another example is the placement of constant pie together with
the memory group.
Besides grouping, colours are used to further differentiate the keys too. However,

there are labels of keys that have become hard to read due to the use of colour. This is

especially true for the keys in scientific calculation group. The labels of those keys
are light magenta in colour.
In spite of all the problems stated above, the keys of this calculator are all accelerated.

This has enabled the user to perform calculations faster. However, mapping the

functions of a scientific calculator keypad is a very subjective work. Different users

might see the mapping of keys differently.

This calculator uses checkboxes in place of the hyperbolic and inverse keys use in
most calculators. The tick in the checkbox will act as the indicator that the key has

been pressed as opposed to the convention used by many calculators where the

indicator is in the display screen.

AllerCalc 2.11

Modes

This calculator has only one mode, the scientific calculation mode. However, it

supports all types of functions in one user interface and one key-in method.

Functions

The collection of functions supported by this calculator is quite large. It supports the

scientific calculation, statistical calculation, and even financial calculation.

User Interface



Chapter 2 Literature Review

Display screen: This calculator uses the expression-based calculation. It provides a
big text area for calculation and all the calculations performed will stay in the text area
until the user clears them. The content of the text area is named worksheet. The user
could save the worksheet for future use. All the calculations performed could be
saved as a file. However, due to the small font employed for this calculation text area,
the screen would look very messy when the number of calculations appended

increases.

Keypad: The keypad has a very minimum set of keys, while the other functions can be
selected from the menu. As for keying-in, using the keyboard alone is enough since
the expression is made up of characters and not a token. The user could just type in
the functions one character at a time. Even though this may be a very flexible way,
the user would have to memorise the functions and the number of parameters. If the
wrong number of parameter is keyed in, the application will only tell you that the
number of argument is wrong and does not tell the user how many arguments should
there be. The application should at least give a brief description of the functions and
provide the number of arguments as well as what those arguments stands for. Even in
the help system, only a very small set of functions is described with the number of
arguments. For most of the functions, only a one-line description of what the function

returns is provided.

It follows Microsoft Calculators 5.0°s way of dealing with inverse and hyperbolic
functions, which uses the checkbox. As for the indicator for angular unit mode and
number base mode, this calculator uses a place other than the screen for this purpose.
Furthermore, the use of acronym is acceptable and the font size for these indicators is

quite big. However, the user would again have to access the menu to change them.

Others: The menu system has been overly exploited in this calculator. The menu is
used to change the angular unit, number base, answer display format, functions
selection, and so on. Beside this, the arrangement is a bit messy as well. This is
pointed to the menu “option”. There are eighteen menu items in this menu alone and
out of this eighteen, five menu items is a further drop down menu. The functions
placed inside this menu include setting the display option, saving and loading of

worksheets, setting the calculation options (angular unit, number base, number of




Chapter 2 Literature Review

significant digit and display format), to show the unit conversion window and finance
box, and to exit the application. Many of the functions in this menu should not be
placed here. Examples are the save and load worksheet, the show unit conversion and

finance box, and exit. They have nothing to do with options.
2.3 A Review of Development Tools
2.3.1 Programming Languages

2.3.1.1 Microsoft Visual Basic 6.0

Microsoft Visual Basic is a good tool for developing Windows applications with
Graphic User Interface (GUI). There is a wide variety of components available to

shape the user interface.

Microsoft Visual Basic is event-driven [1]; meaning code remains idle until called
upon to respond to some event (button pressing, menu selection and so forth). An
event processor governs Visual Basic. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event procedure) is

executed. Program control is then returned to the event processor.

Microsoft Visual Basic 6.0 also supports the use of ActiveX components. In fact, it
supports the development of ActiveX components as well. Besides, it has a set of

powerful database access tools as well.

As for the case of this project, Microsoft Visual Basic 6.0 has insufficient support for

scientific calculation.

2.3.1.2 Java

Java is a product of Sun Microsystems Inc. It is a programming language, a runtime
system, a set of development tools and an application-programming interface (API)

[2]. The relationships between these elements are depicted in Figure 2-1.

As illustrated in Figure 2-1, Java programs are written using predefined software
packages of the Java APL. The source code is compiled using the Java compiler into a
form called compiled byte code, a form that can be executed on the Java virtual

machine. The Java byte code is then interpreted as it is executed. The use of Java



Chapter 2 Literature Review

virtual machine has enabled the compiled files to be executed on many platforms as
long as the Java virtual machine for that platform is available and is installed on the
computer. However, the Java virtual machine will take up some space. This is due to
the additional software, such as dynamic link libraries, that are needed to implement
the Java API on the operating system and hardware. For example, Java 2 Runtime
Environment Standard Edition v1.3 will take up 20.8 MB for installation. Besides, the
application developed will need a higher hardware requirement for runtime since it is

not executed directly with the operating system and the computer hardware.

Java source
programs

v

Java programming language

Java compiler and othet
tools

e [ compied bytecode

A4

Java runtime system

Virtual machine

Java
AP|

-----------

Haost

Operating system
(Solaris, Linux, Windows 08/NT, MacOS8, 08/2)

platform

Computer hardware
(Spare, Pentium, x88, Power PC, and $0 on)

Figure 2-1 The relationships between components of Java

Java classes and objects directly support the object-oriented concepts of encapsulation,
inheritance, messages and methods, and data hiding. Java interfaces provide support
for multiple inheritance and polymorphism. The Java language retains all the benefits

of object-oriented programming without the performance impacts associated with pure

object languages, such as Smalltalk.



Chapter 2 Literature Review

Java's object-oriented nature combined with numerous, compile-time and runtime
integrity checks eliminate many difficult-to-find programming errors. The Java
language has removed many of the dangerous programming capabilities, such as

modifiable pointers, unchecked type conversion, and relaxed bounds checking.

The Java API provides extensive support of windowing and graphical user interface
development without the complexities associated with maintaining multiple window

class libraries. There are visual programming tools developed for Java.

As for this project, the class java.math is provided for mathematical calculations.
2.3.1.4 Microsoft Visual C++ 6.0

C++ is the object-oriented extension from the language C. Microsoft Visual C++ 6.0
is the visual programming language for C++. It is an object-oriented programming in
the Windows environment. It supports writing windows application with Microsoft
Foundation Classes (MFC) [3] as well as the Windows API [2]. This language has
long been widely used and hence has a very large variety of classes. With the advent
of multi tier architectures, C++ takes on a major role as an excellent language for

building server and middle-tier software components.
It also supports the use and development of ActiveX components.

When it comes to performing scientific calculation, it has a very wide range of built-in

functions for this purpose.

2.3.1.5 SQL

SQL is the de facto standard language used to manipulate and retrieve data from these

relational databases. SQL enables a programmer or database administrator to do the
following:

e Modify a database's structure

e Change system security settings

e Add user permissions on databases or tables
e Query a database for information

e Update the contents of a database



Chapter 2 Literature Review

The most commonly used statement in SQL is the seLECT statement. Which retrieves
data from the database and returns the data to the user. In addition to the SELECT
statement, SQL provides statements for creating new databases, tables, fields, and

indexes, as well as statements for inserting and deleting records.

Users will be able to program with SQL only on RDBMS databases that support SQL,
such as MS-Access, Oracle, Sybase, and Informix. Although each vendor's

implementation will differ slightly from the others, users should be able to use SQL

with very few adjustments.

2.3.2 Componentisation

2.3.2.1 ActiveX

ActiveX referred to the conference slogan "Activate the Internet" and was more a call-
to-arms than a technology or architecture for developing applications. ActiveX has
become the all-encompassing term used to define everything from Web pages to OLE
(Object Linking and Embedding) Controls. It has come to signify, on one hand, small,
fast, reusable components that can get you hooked into all the latest technologies
coming out of Microsoft, the Internet, and the industry. On the other hand, ActiveX
represents Internet and applications integration strategies. ActiveX is not a technology
or even architecture. It is a concept and a direction. The ActiveX components can be
classified and broken into the six categories. Which are Automation Servers,

Automation Controllers, Controls, COM objects, Documents and Containers.

Automation Servers are components that can be programmatically driven by other
applications.  An Automation Server contains at least one, and possibly more,
1pispatch-based interfaces that other applications can create or connect to. An
Automation Server may or may not contain User Interface (Ul), depending on the
nature and function of the Server. Automation Servers can be in-process (executing in
the process space of the Controller), /ocal (executing in its own process space), or
remote (executing in a process space on another machine). The specific
implementation of the server will, in some cases, define how and where the server will

execute, but that is not guaranteed. A DLL can execute as in process, local or remote;

an EXE can execute only locally or remotely.



Chapter 2 Literature Review

Automation Controllers are those applications that can use and manipulate
Automation Servers. A good example of an Automation Controller is VB. With the
VB programming language, users are able to create, use, and destroy Automation
Servers as though they are an integral part of the language. An Automation Controller
can be any type of application, DLL or EXE, and can access the Automation Server
either in-process, locally, or remotely. Typically, the registry entries and the
implementation of the Automation Server indicate which process space the server will

execute in relation to the Controller.

ActiveX Controls are equivalent to what is referred to as OLE Controls or OCXs. A
typical Control consists of a Ul representation both at design-time and runtime, a
single 1pispatch interface defining all of the methods and properties of the Control,
and a single TConnectionPoint interface for the events that the Control can fire. In
addition, the Control may have support for persistence across its execution lifetimes
and support for various Ul features, such as cut-and-paste and drag-and-drop features.
Architecturally, a Control has a large number of COM interfaces that must be
supported in order to take advantage of these features. With the release of the new
OLE Control and ActiveX guidelines for Control development, a Control is no longer
limited to the feature set defined in the preceding text. Rather, the developer can now
choose to implement only those features that are most useful and interesting to users
of the applications. ActiveX Controls always execute in process to the Container in
which they reside. The extension of a Control is typically OCX, but in terms of

execution models, it is nothing more than a standard window DLL.

COM Objects are similar in architecture to Automation Servers and Controllers. They
contain one or more COM interfaces and probably little or no UL These Objects,
however, cannot be used by the typical Controller application the way Automation
Servers can. The Controller must have specific knowledge of the COM interface that
it "talks" to in order to use the interface, which is not the case for Automation
interfaces. The Windows 95 and NT operating systems contain hundreds of COM
Objects and Custom interfaces as extensions to the operating systems for controlling
everything from the appearance of the desktop to the rendering of 3-D images on the
screen. COM Objects are a good way to organize a related set of functions and data,

while still maintaining the needed high-speed performance of a DLL.

19



Chapter 2 Literature Review

2.3.3

ActiveX Documents, or DocObjects as they were originally called, represent Objects
that are more than a simple Control or Automation Server. A document can be
anything from a spread- sheet to a complete invoice in an accounting application.
Documents, like Controls, have Ul and are hosted by a Container application.
Microsoft Word and Excel are examples of ActiveX Document Servers, and the
Microsoft Office Binder and Microsoft Internet Explorer are examples of ActiveX
Document Containers. The ActiveX Document architecture is an extension of the
OLE Linking and Embedding model and allows the document more control over the
container in which it is being hosted. The most obvious change is how the menus are
presented. A standard OLE Document's menu will merge with the Container,
providing a combined feature set, whereas an ActiveX Document will take over the
entire menu system, thus presenting the feature set of only the document and not that
of both the Document and the Container. The fact that the feature set of the Document
is exposed is the premise for all the differences between ActiveX Documents and OLE
Documents. The Container is just a hosting mechanism, and the Document has all of

the control.

ActiveX Containers are applications that can host Automation Servers, Controls, and
Documents. VB and the ActiveX Control Pad are examples of Containers that can
host Automation Servers and Controls. The Microsoft Office Binder and the
Microsoft Internet Explorer can host Automation Servers, Controls, and Documents.
With the decreasing requirements defined by the ActiveX Control and Document
specifications, a Container must be robust enough to handle the cases where a Control
or Document lacks certain interfaces. Container applications may allow little or no
interaction with the Document or Control they host, or they may provide significant
interaction capabilities in both manipulation and presentation of the hosted
component. This capability, however, is dependent upon the Container hosting the

component and is not defined by any of the Container guidelines as being required.

Relational Databases

The concept behind the database is simple. A database is like a file cabinet that cans

stores information. A database is a set of information related specific application,



Chapter 2 Literature Review

Relational database management system and pronounced as separate letters, a type of
database management system (DBMS) that stores data in the form of related tables.
Relational databases are powerful because they require few assumptions about how
data is related or how it will be extracted from the database. As a result, the same

database can be viewed in many different ways.

An important feature of relational systems is that a single database can be spread
across several tables. This differs from flat-file databases, in which each database is

self-contained in a single table.

2.3.3.1 MySQL

MySQL, the most popular Open Source SQL database, is provided by MySQL AB.
MySQL AB is a commercial company that builds its business providing services
around the MySQL database.

MySQL is a database management system. A database is a structured collection of
data. It may be anything from a simple shopping list to a picture gallery or the vast
amounts of information in a corporate network. To add, access, and process data
stored in a computer database, you need a database management system such as
MySQL. Since computers are very good at handling large amounts of data, database

management plays a central role in computing, as stand-alone utilities, or as parts of

other applications.

MySQL is a relational database management system. A relational database stores data
in separate tables rather than putting all the data in one big storeroom. This adds
speed and flexibility. The tables are linked by defined relations making it possible to
combine data from several tables on request. The SQL part of MySQL stands for

"Structured Query Language" - the most common standardized language used to

access databases.

MySQL is Open Source Software. Open Source means that it is possible for anyone
to use and modify. Anybody can download MySQL from the Internet and use it
without paying anything. Anybody so inclined can study the source code and change
it to fit their needs. MySQL uses the GPL (GNU General Public License)

http://www.gnu.org/, to define what you may and may not do with the software in



Chapter 2 Literature Review

different situations. If you feel uncomfortable with the GPL or need to embed

MySQL into a commercial application you can buy a commercially licensed version
from the company.

MySQL is very fast, reliable, and easy to use. MySQL was originally developed to
handle very large databases much faster than existing solutions and has been

successfully used in highly demanding production environments for several years.

Though under constant
The connectivity, speed, and security make MySQL highly suited for

development, MySQL today offers a rich and very useful set

of functions.

accessing databases on the Internet.

2.3.3.2 Microsoft Access 2000

Access has existed in five main versions and one minor upgrade version. In the

context of Access, a database can be view as a large repository in which table, report
form and other objects are stored.

The Microsoft access package is one of the best selling relational database packages

for Windows on the market.

use this database package. Access pro
to use menu driven interface that let you issue commands without an in depth

Microsoft has estimated that currently 10 millions people

vides two different modes. The first is an easy

understanding of Access. Program mode lets the user to stored instruction in a Visual

Basic file and executes them with one command.

Access allow user to indicate how tables should be related to each other. A table can

have one-to-one, one-to-many or many-to-many relationship. A table that has

referential integrity allows only one parent record for each child record. User can add,
delete, and rearrange fields i

will be entered in a table using the pro

n the table structure. User can also control how the data

perties sheet of a field.

It is important t0 clarify the ‘class’ that Access fall into. Access is a desktop database

package. It is not design to compete with system such as Oracle or SQL Server — full

e servers — whose engines are superio
This is usually the first perceived bad point. It does not provide a good

databas r in terms of speed and multi-user

capabilities.
performance when run across the network and more than a handful person using it at
once. But it performance capability is good with limited multi-user capabilities. In



Chapter 2 Literature Review

addition, it can and does make a good front-end package larger engine such as Oracle
and SQL Server.

The other advantages are it is likely that you are running Windows as your operating
system and using Microsoft Office as your application base. Access integrated well
with these packages and data transfer between Access and the other Office

components that are relatively easy.

2.3.3.3 SQL Server 2000

Business today demands a different kind of database solution. Performance,
scalability, and reliability are essential, and time to market is critical. Beyond these
core enterprise qualities, SQL Server 2000 provides agility to data management and
analysis, allowing organization to adapt quickly and gracefully to derive competitive
advantage in a fast-changing environment. From a data management and analysis
perspective, it is critical to turn raw data into business intelligence and take full
advantage of the opportunities presented by the Web. A complete database and data
analysis package, SQL Server 2000 opens the door to the rapid development of a new
generation of enterprise-class business applications that can give company a critical
competitive advantage. The record-holder of important benchmark awards for
scalability and speed, SQL Server 2000 is a fully Web-enabled database product,
providing core support for Extensible Markup Language (XML) and the ability to

query across the Internet and beyond the firewall.

SQL Server 2000 provides extensive database programming capabilities built on Web
standards. Rich XML and Internet standard support give the ability to store and
retrieve data in XML format easily with built-in stored procedures. User can also use
XML update programs to insert, update and delete data easily.

e Easy access to data through the Web. With SQL Server 2000, you can use
HTTP to send queries to the database, perform full-text search on documents
stored in database, and run queries over the Web with natural language.

e Powerful, flexible Web-based analysis. SQL Server 2000 Analysis Services
capabilities are extended to the Internet. User can access and manipulate cube

data by means of a Web browser.




Chapter 2 Literature Review

Achieve unparalleled scalability and reliability with SQL Server 2000. With scale up

and scale out capabilities, SQL Server meets the needs of demanding commerce and

enterprise applications.

Scale up. SQL Server 2000 takes advantage of symmetrical multiprocessor
(SMP) systems. SQL Server Enterprise Edition can use up to 32 processors
and 64 GB of RAM.

Scale out. Scale out distributes the database and data load across servers.
Availability. SQL Server 2000 achieves maximum availability through

enhanced fail over clustering, log shipping, and new backup strategies.

SQL Server 2000 is the data management and analysis backbone of the Microsoft

NET Enterprise Servers. SQL Server 2000 includes tools to speed development from

concept to final delivery.

Integrated and extensible analysis services. With SQL Server 2000, user can
build end-to-end analysis solutions with integrated tools to create value from
data. Additionally, user can automatically drive business processes based on
analysis results and flexibly retrieve custom result sets from the most complex
calculations.

Quick development, debugging, and data transformation. SQL Server 2000
features the ability to interactively tune and debug queries, quickly move and
transform data from any source, and define and use functions as if they were
built in to Transact-SQL. Users can visually design and code database
applications from any Visual Studio tool.

Simplified management and tuning. With SQL Server 2000, it is easy to
manage databases centrally alongside all enterprise resources. Stay online
while easily moving and copying databases across computers or between
instances.

Ms SQL Server 7.0 is outperformed than MS Access and Informix SQL. This
is because it includes a superset the ASNI standard SQL language elements
that could not be find in MS Access and Informix [4].




Chapter 2 Literature Review

2.3.4 Database Connectivity

2.3.4.1 Open Database Connectivity (ODBC)

ODBC allows a single unifbrm language to access different databases, instead of using
the propriety language of each database by designing a standard set of APIs. Each
database has its own API and it will interpret any request by the programmer so that
the database can return the information. This open connectivity to a database allows

an application to get data from any kind of database by using the appropriate ODBC

driver.

A driver usually contains the callable API functions for a single database. The drivers
are dynamic link libraries (DLLs) and the Driver Manager (ODBC DSN
Administrator) is an executable program. A Data Source Name (DSN) must be
created in order the driver could locate where is the database. In ODBC version 4.0 of
the Administrator, there are three choices of DSN that can be created there are:

e System DSN allows every user of the computer and every system-level

resource access to that database.
e File DSN allows all users to access to the same drivers.

e User DSN allows only the specific user to access the database.

And the ODBC drivers are available in ODBC version 4.0 are,
e Microsoft Access
e Microsoft dBase
e Microsoft Excel
e Microsoft FoxPro
e Microsoft ODBC for Oracle
e Microsoft Paradox
e Microsoft Text

e SQL server




Chapter 2 Literature Review

2.3.4.2 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) technology is an API (Application Program
Interface) that let user access virtually any tabular data source from the Java
programming language. It provides cross-DBMS connectivity to a wide range of SQL
databases, and now, with the new JDBC API, it provides access to other tabular data

sources, such as spreadsheets or flat files.

JDBC is modelled on ODBC (Object Database connectivity) but in addition provides
an object-oriented model for accessing databases, permitting use of Java methods as
well as SQL for querying and updating data. The JDBC standard means that
applications can be written without considering what driver will be used in the final
deployment, and gives system managers the freedom to change database engines

without requiring a change in program logic.

The JDBC API allows developers to take advantage of the Java platform's "Write
Once, Run Anywhere capabilities for industrial strength, cross-platform applications
that require access to enterprise data. With a JDBC technology-enabled driver, a

developer can easily connect all corporate data even in a heterogeneous environment

[5].
2.4 Proposed Tools

The tools that will be used for this project includes:
e Microsoft Visual Basic 6.0 as the core language especially used for the
creation of user interface.
e Microsoft Visual C++ 6.0 for the development of ActiveX components.

These ActiveX components will be use in Microsoft Visual Basic 6.0 to

compute scientific calculation.

e Microsoft Access 2000 database for storing data.

2.5 Chapter Summary

This chapter has reviewed three scientific calculators and numerous software
development tools. The review of scientific calculators has provided an input to the

subsequent steps. As for software development tools, Microsoft Visual Basic 6.0 has




Chapter 2 Literature Review

been chosen to produce the user interface while Microsoft Visual C++ will be used to
develop ActiveX components. Microsoft Access 2000 has been chosen as the

database for this project.

2.6 Reference

(1] Balena, F.(1999).Programming Microsoft Visual Basic

6.0.Washington:Microsoft Press.

[2]  Petzold, C. (1998).Programming Windows.(5" ed.).Washington: Microsoft

Press

[3]  Prosise, J. (1999).Programming Windows with MFC. (2™ ed.). Washington:

Microsoft Press

[4]  Microsoft SQL Server - Product Overview. 22 Aug.2001 <http:/microsoft sql

server - product overview.htm/>,

[S]  JDBC DriverJDBC(TM) Technology. 22 Aug.2001 <http:/jdbe
driver/JDBC(TM) Technology.htm>

s



Chapter 3 Methodology

Chapter 3 Methodology

3.1

This chapter provide a descﬁption of the development approach used for this project.
The main section for this chapter is Section 3.1, which describes the approach.
Section 3.2 will provide an outline of the strength of this approach. Then, Section 3.3

will summarise the chapter while Section 3.4 provides the references for this chapter.

Software Development Approach

The software development approach that has been employed for this project is named
the Unified Software Development Process or in shoﬁs the Unified Process. The
Unified Process is component-based, which means that the software being built is
made up of software components interconnected via well-defined interfaces. Besides,
the Unified Process uses Unified Modelling Language (UML) when preparing all

blueprints of the software.

The Unified Process is an iterative and incremental life cycle model. The cycle is
made up of two distinct types of workflows. They are named the core workflows and
the iteration workflows. There are five tasks classified as core workflows:
requirements, analysis, design, implementation, and test. As for the iteration

workflows, there are four phases: inception, elaboration, construction, and transition.

In the Unified Process, the development process is performed as iterations. The
phases in the iteration workflows can be carried out in one iteration or divided into
more iteration depending on the project. Figure 3-1 shows the whole cycle, which
consists of four phases being divided into more iterations. Within every iteration, the
five core workflows will be performed as shown in Figure 3-2. Hence, all the nine
iterations in Figure 3-1 will sweep through the five core workflows sequentially as

shown in Figure 3-3.

S



Chapter 3 Methodology

Inceptlon Elaboration
iteration iteration

Transition
iteration

11
I
11;

it

Iteration ] Iteratlon Iteration 3 lteratlon 4

lteration> Iteration 9

Figure 3-1 Phases further divided into more iterations.

> Requ1reme:nts>> Analysis >> Design >>lmplemenlallo>? >

I
~ N : Ve //
|
|
|

/7
N v e

7 -
s Sl ang®

The generic
iteration

R

Includes: -
« Iteration Planning
* [teration Assessment

Figure 3-2 Core workflows in iteration




Chapter 3 Methodology

> Iteration> Iteration> Iteration>
7ot /

#3 /

Z /

/

/

. //
//
> Req.s >Analysis> Design> Impl. > Test > //

/
| 4

> Req.s >Analysis> Design> lmpl.> Test )

|
|
:
i
:
i
:

Figure 3-3 Iterations in action

The iteration has different emphases in different phases, as illustrated by Figure 3-4.
During the inception and elaboration phases, most of the effort is directed toward
capturing the requirements, and preliminary analysis and design. During construction,
emphasis shifts to detailed design, implementation, and testing,
workflows will be carried as far as required in each iteration. For example, the later

workflows, such as implementation and test, might not be used in early inception

> Req.s )Analysi) Design> Impl. ) Test

\

/

phase.
Phases

Core Workflows | [nception } Elabomﬁmj, Construction : Transition
i izl slpgions Jos ettt v el
Requirements | : |
| i
Analysis I :
| |
H | H
Design | I [
| } ! |

Implementation i A_

i i | | i
Test : fars ! IR ‘ :
! Wi | ' : | :
i | i | | I

iter iter ' I I iterx itex

L2 , (¥ l } l -1 m

Figure 3-4 Emphasis shifts over the iterations, from requirements capture and analysis toward

design, implementation, and testing.

The five core



Chapter 3 Methodology

3.1.1 The Core Workflows

This section will describe the five core workflows from requirements to test stating the

activities and the input and results of each activity.

3.1.1.1 Requirements

The purpose of the requirements workflow is to aim development toward the right
system. This workflow has been shaped into to two parts namely requirements

capture, and capturing requirement as use cases.

3.1.1.1.1 Requirements Captures

This part consists of four tasks. This part of the requirements is only emphasised in
the inception phase. The four tasks are listed below and their description follows.

¢ List candidate requirements

e Understand system context

e (Capture functional requirements

e Capture non-functional requirements

List candidate requirement This occurs when stakeholders come up with good ideas
that might turn into requirements. These candidate requirements are kept in a list
called feature list. This list grows as new items are added, and shrinks as features

become requirements. It is used for planning only.

Understand system context In order to capture the right requirement, a firm grasp of
the context in which the system is set is needed. There are several approaches to
expressing the system context. Examples are the domain modelling, business
modelling and system engineering. Domain model describes the important concepts
of the context as domain object and their links. These objects can act as input to
developing glossary of terms, and helps to identify some of the classes as analysis and
design is performed. As for business modelling, it describes the processes in order to
understand them. A business model can be described as the superset of a domain
model because it also establishes the competency, which is crucial when identifying

use cases, apart from identifying objects for the software system. As for system




Chapter 3 Methodology

engineering, the system is divided into subsystems.... However, its result is not

useable in development, unlike the previous two approaches.

Capture functional requirements The primary way of identifying requirements is
based on use cases. Each use case represents one way of using the software system.
This step will be carried out with interviewing users, discussing proposal, and so on.
Hence, in conjunction with acquiring use cases, the user interface for each use case

should also be specified with the users.

Capture non-functional requirements Non-functional requirements that are specific
to an individual use case will be capture in the use case model. As for those that are
more generic and cannot be connected to a particular use case or a particular real-

world class will be managed separately in a list of supplementary requirements.

Use cases can be used to capture functional requirements as well as non-functional

requirements that are specific to their respective use cases.

The output of these four steps are summarize in Table 3-1.

Workflows Resulting artifacts
List candidate requirements Feature list P
Understand system context Business model or domain model
Capture functional requirements Use-case model |

Supplementary requirements or
Capture non-functional requirements | Individual use cases (for use-case

specific requirements)

Table 1 The set of activities for the requirement capture and their equivalent output

3.1.1.1.2  Capturing Requirements as Use Cases

The workflow capturing requirements as use cases consist of five activities: finding
actors and use cases, prioritise use cases, detail a use case, prototype user interface,
and structure the use-case model. These five activities and the logical flows are
illustrated in Figure 3-5. The path in Figure 3-5 shows the logical sequence of

activities using results from the previously performed activity as input.

32



Chapter 3 Methodology

Structure the
Use-Case Model
— —>
Finding Actors Prioritise Detail a
and Use Cases Use Cases Use Case

Prototype
User Interface

Figure 3-5 The workflow of capturing requirements as use cases

3.1.1.1.2.1 Activity: Find actors and use cases

This is the most essential activity for getting the requirements right. This activity has
a business model or domain model, a supplementary requirements list, and a feature
lists as input as illustrated in Figure 3-6. Besides, input from customer and users are
needed too. The product of this activity is a use-case model that is described and
diagrammed superficially to the extend where each use case can be described in detail,
and a glossary of terms. There are four steps to be taken for this activity:
 Finding the actors. During this step, all types of user of the system and all
external systems with which the system interacts with are identified. For each
of the identified actor, a name, a brief description of its role and what it uses
the system for is appended.
* Finding the use cases. The actors identified in the previous steps are used to
identify candidate use cases for each actor. Besides, candidate use cases may
also come from customers and users. The candidate use cases are then rcviscLi
to produce a set of use cases that has an appropriate scope. The use cases
often need to be restructured a few times before the use-case model stabilizes.
e Briefly describing each use case. During this step, each use case is briefly
described. The description consists of a few sentences that summarise the
actions, and a step-by-step description of what the system need to do when

interacting with its actors.

* Describing the use-case model as a whole. For this step diagrams and

description to explain the use-case model as a whole is prepared with

emphases on how the use cases relate to each other and to the actors, A



Chapter 3 Methodology

glossary of terms is also created at this point to ensure consistency in
describing use cases. Another putput of this step is a survey description of the
use-case model, which describe how actors and use cases interact and how use

cases are related to one another,

These steps can be performed in any order and concurrently.

Business Model \\\ j:.l
. ~
or Domain Model ~ e //V Use-Case
A T Model
==y -~
T [outlined)
—t L St o e -— Finding S
Supplgmentary Actors and ) £
Requirements b N UseCases g —
Va =
_ // =
L Glossary
Feature List

Figure 3-6 The input and result of activiy finding actor and use cases

3.1.1.1.2.2  Activity: Prioritise use cases

The purpose of this activity is to determine which use cases need to be developed in
early iterations, and which can be developed in later iterations. As illustrated in
Figure 3-7, this activity has the supplementary requirements, the use-case model
[outlined] and the glossary as input. The results of this activity are captured in an
architectural view of the use case model. This view has to depict the architecturally

significant use cases.

34



Chapter 3 Methodology

.
Supplementary™~~_
Requirements SR
‘ »
TR
Use-C Prioritise Architecture
se-Case ect
Model //’ Use Cases [‘i:::vﬂgft‘l‘(})‘r;
Hie // use case model]
4
==} /
Glossary

Figure 3-7 The input and result of activity prioritise use cases

3.1.1.1.2.3  Activity: Detail a use case

The purpose of this activity is to describe the use case’s flow of events in detail,
including how it starts, ends, and interacts with actors. This step is performed with
users of the use cases. These users will be the source of description and to review the
use-case description to verify them. As illustrated by Figure 3-8, this activity will
have the supplementary requirements, use-case model [outlined], and a glossary as a
starting point. The result of this activity is a detailed description of a particular use
case in text and diagrams. This activity ...

e Structuring the use-case description. In this step, the states that the use-case
instances and the possible transition between those states are described. Out
of the many possible transitions, one complete basic path is first described
The rest of the paths will be described in a different section as alternatives or
deviations from the basic path. If however that a particular alternative or
deviation path is small enough to be described in one line, it can be included
in the basic path description. Besides these paths, the pre-condition and post-
condition of the use case should be defined as well.

e Formalising the use-case description. For use cases that have a very large
number of states and alternative transitions it would become too complex to
describe consistently with text, a more structured description technique can be
used. There are three types of diagrams in UML that can be used for this

purpose: statechart diagram, activity diagram, and interaction diagram

35



Chapter 3 Methodology

==[\
==

RS

Supplementary >~

Requirements SR

|, 88t O

Use-C Detail a Use Case
se-Case :
Use C detailed

N //1 se Case [ |
[outlined] //

/

/

==l 4

Glossary

Figure 3-8 The input and result of activity detail a use case

3.1.1.1.2.4  Activity: Prototype user interface

The purpose of this activity is to build the user interface prototype. This activity has
the use-case model, supplementary requirements, use case description, and the
glossary as the starting point as illustrated in Figure 3-9. This activity will produce a
set of user interface sketches and prototypes for the most important actors. This
activity is carried out in two steps stated as followed.

e Creating logical user interface design. This step identified the user interface
elements that are needed for users to interact with a use case. The use cases
will be going through one by one to identify the proper user interface elements
for each use case.

* Creating physical user interface design and prototype. During this step,
sketches of user interface elements combined to form the physical user
interface.  Then, executable prototypes are built for the important user
interface elements. These sketches and prototypes will be validated through
user interface review and will work as a specification of the user interface

when the real user interface is being constructed.




Chapter 3 Methodology

]

Use-Case \
Model N\

N
AN

=D A

== AN

= _ \‘

Supplememary\‘\\\

Requirements T —_——— Q
v

- UPro;oty;;e User Inteface

O _-="[ sqUser Interface S

Use Case 4 a
[detailed] A
/

Glossary

/]

Figure 3-9 The input and result of activity prototype user interface

3.1.1.1.2.5 Activity: Structure the use-case model

This activity is taken to extract general and shared use-case description of
functionality that can be used by more specific use-case descriptions, and to extract
additional or optional use-case description of functionality that can extend more
specific use-case description. As illustrated in Figure 3-10, the use-case model, the
supplementary requirements, the detailed use cases, and the glossary will be used to
accomplish this activity. .... There are three steps to be taken in this activity.

* Identifying shared description and functionality. The actions or part of
actions that are common to or shared by several use cases will be identified.
This sharing is then extracted and described in a separate use case that can
then be reused by the original use cases through the uses relationship (uses
relationship is the name given for generalisation relationship in use case
model).

e Identifying additional and optional description of functionality. In this
step, additional and optional description of functionality are identified to
model them using the extend relationship.

e Identifying other relationships between use cases. In this step, the include

relationship is used to further structure the use-case model.




Chapter 3 Methodology

B

Use-Case\\
Model S
N
=] \\
- \\
=l __ -
Supplementary ~~< _
Requirements : e
-
T Structure the
O -~ /' Use-Case
Use Case A Model
[detailed] //
7
Glossary

-

e

Use-Case
Model

[structured]

Figure 3-10 The input and result of activity structure the use-case model

3.1.1.2 Analysis

The purpose of the analysis workflow is to analyse the requirements in order to

acquire a more precise understanding of the requirements and to acquire a description

of the requirements that is easy to maintain and that helps us give structure to the

whole system. Table 3-2 shows the comparison between the use-case model and the

analysis model.

In the software life cycle (see Figure 3-4), analysis is the focus during the initial

elaboration iterations. It contributes to a sound and stable architecture and facilitates

an in-depth understanding of the requirements,

Figure 3-11 illustrates the workflow in analysis with the four participating activities.

Each activity will be described in a subsection.

Use-Case Model (Requirements)

Analysis Model

Described using the language of the

customer

External view of the system

Described using the language of the

developer

Internal view of the system




Chapter 3 Methodology

Structured by use cases

Structured by stereotypical classes and

packages

Used primarily as a contract between the

customer and the developers on what the

Used primarily by developers to

understand how the system should be

system should and should not do. shaped.

May contain redundancies, | Should not contain  redundancies,
inconsistencies, and so on, between | inconsistencies, and so on, among
requirements. requirements.

Captures the functionality of the system,

including  architecturally  significant

functionality

Outlines how to realise the functionality

within the system, including

architecturally significant functionality.

Defines use cases that are further analysed

in the analysis model.

Defines use case-realisations, each one

representing the analysis of a use case

from the use-case model.

Table 2 Comparison of the use-case model and the analysis model

[©0)—» ©0)— @0 —» @0

Architectural Analyse a Analyse a
Analysis Use Case Class

Analyse a
Package

Figure 3-11 The workflow in analysis

3.1.1.2.1 Activity: Architectural analysis

The purpose of architectural analysis is to outline the analysis model and the
architectural. As illustrated in Figure 3-12, this activity have as input the use-case
model, the supplementary requirements, business model or domain model, and
architecture description. The goal of this activity is achieved by identifying analysis
packages, obvious analysis class, and common special requirements with each taking
one step.
e Identifying analysis packages. This step is carried out based on based on
functionality and problem domain.  Analysis packages are obtained by

allocating use cases into specific packages and then realise the corresponding




Chapter 3 Methodology

functionality within that package. These packages will localise changes to a

business process, an actor’s behaviour, and a set of closely related use cases.

These packages are then analysed for common functionality among packages

and a different package with those common functionality will be created to let

other packages share the common functionality from this package. Then, the

dependencies among analysis packages are defined.

Identifying obvious entity classes. In this step, a preliminary proposal of the

most important (architecturally significant) entity classes is prepared. These

important entity classes are those that participate in use-case realisation.

Identifying common special requirements. A special requirement in this

context is a requirement that occurs during analysis and is important to capture

so that it can be handled appropriately in the coming workflows. Then, the

key characteristics of each common special requirement are identified.

Use-Case \
Model \ fj
\
\
n \ Analysis
=l > -~ Package
Supplgmentary T \‘ 1~ [outlined]
Requirements S o b7
7
e — s O
D - Architectural™ Analysis Class
Business Model 7 Analysis \\\ [outlined]
or Domain Model /// N
/ N =
/ \‘ e
Architecture
Architecture Description
Description [view of the
[view of the analysis model]
use case model|

Figure 3-12 The input and result of activity architectural analysis

3.1.1.2.1 Activity: Analyse a use case

The purpose of this activity is to identify the analysis classes whose objects are needed

to perform the use case’s flow of events, distribute the behaviour of the use case to




Chapter 3 Methodology

interacting analysis objects, and capture special requirements on the realisation of the
use case. This activity is also called use case refinement as we refine each use case as
a collaboration of analysis classes. As illustrated in Figure 3-13, this activity has the
use-case model, supplemenfary requirements, business or domain model, and
architectural description of analysis model as input and produces the use case
realisation of analysis and an outline of the analysis class.

e Identifying analysis classes. In this step, the control, entity, and boundary
classes needed to realise the use case are identified and their names,
responsibilities, attributes, and relationships are outlined.

e Describing analysis object interactions. The ways analysis objects interact
are described by using collaboration diagrams that contain the participating
actor instances, analysis objects, and their links.

e Capturing special requirements. In this step, special requirements on a use-

case realisation are captured.

41



Chapter 3 Methodology

i

Use-Case \
Model

~

Supplementary ™~

Requirements

Business Model

or Domain Model

/
7

=)

=
Architecture
Description
[view of the
analysis model|

7

J
=
j /’

1

N
\
N
N\

\\A -1
@e) -

~ 7 Analysea
N Use Case
o~

v

//
-

\\\
(R

7~
(

N
Use Case
Realisation
- Analysis

\
/

@

Analysis Class
[outlined]

Figure 3-13 The input and result of activity analyse a use case

3.1.1.2.1 Activity: Analyse a class

The purposes of activity analyse a class are to identify and maintain the
responsibilities of an analysis object, identify and maintain the attributes and
relationships of the analysis class, and capture special requirements on the realisation
of the analysis class. Hence, it will produce the complete analysis class as output as

illustrated in Figure 3-14, while taking the use-case realisation of analysis and the

outline of analysis class as input.

analysis classes are identified in this step. The responsibilities of a class is be

collected by examining all the roles that it plays in different use-case

realisations,

in this step. Since attributes are often related to realising the responsibilities

Identifying responsibilities. As the name suggests, responsibilities of the

Identifying attributes. The attributes of the analysis classes will be identified

of its class, the result of the preceding step helps.

aggregations between classes are identified to structure them.

Identifying associations and aggregations.

42

In this step, associations and



Chapter 3 Methodology

o Identifying generalisations. In this step, generalisations are used to extract
shared and common behaviour among several analysis classes. This further
structures the analysis classes.

e Capturing special reduirements. In this step, we capture all requirements of
an analysis class that are identified in analysis but should be handled in design

and implementation.

AT

{ \

\‘_-’/ \\

~
Use Case ey

\\
Realisation A b Q
saliaysis o & Analysis Class
-1~ Analyse [complete]

Q P a Class

Analysis Class
[outlined]

Figure 3-14 The input and result of activity analyse a class

3.1.1.2.1 Activity: Analyse a package

The purpose of this activity is to ensure that the analysis package is as independent of
other packages as possible and fulfils its purpose of realising some domain classes or
use cases, and to describe dependencies. This activity will produce the complete
analysis package with the outline of analysis package and the architectural description

as input (see Figure 3-15).

==y
=
=

Architecture ~~ _
Description "y

[view of the \\\‘ -— ____.;‘i]

analysis model | _-¥ Analysea Analysis

- Package Package
I - [complete]

Analysis
Package
[outlined]

Figure 3-15 The input and result of activity analyse a package



Chapter 3 Methodology

3.1.1.3 Design

The purposes of the design workflow are to: -

® Acquire an in-depth understanding of issues regarding non-functional
requirements and constraints.

e Create an appropriate input to and point of departure for subsequent
implementation activities.

e Be able to decompose implementation work into more manageable pieces.

¢ Capture major interfaces between subsystems.

e Be able to visualise and reason about the design.

¢ Create a seamless abstraction of the system’s implementation.

In the software life cycle (see Figure 3-4), design is in focus during the end of
elaboration and the beginning of construction phase. It contributes to a sound and
stable architecture and creates a blueprint for the implementation model. Table 3-3
distinguish the design model from the analysis model. Figure 3-16 illustrates the

workflow in design with the four participating activities.

Analysis Model Design Model

Conceptual model, because it is an | Physical model, because it is a blueprint
abstraction of the system and avoids | of the implementation.

implementation issues

Design-generic  (applicable to several | Not generic, but specific for an

designs) implementation

Three (conceptual) stereotypes on classes: | Any number of (physical) stereotypes on

control, entity, and boundary. classes, depending on implementation
language.

Less formal More formal

Less expensive to develop More expensive to develop

Fowleyers | Manylayers )




Chapter 3 Methodology

Dynamic, but not much focuses on

sequence.

Dynamic with much focus on sequence.

Outlines the design of the system,

including its architecture.

Manifests the design of the system,

including its architecture.

Primarily created by “leg work,” in

workshop and the like.

Primarily created by “visual

programming”

May not be maintained throughout the

complete software life cycle.

Should be maintained throughout the

complete software life cycle.

Defines a structure that is an essential
input to shaping the system — including

creating the design model

Shapes the ‘system while trying to

preserve the structure defined by the

analysis model as much as possible.

Table 3 Comparison of the analysis model and the design model

Design a
Class

l

o

Architectural Design a
Design m / Subsystem
Design a

Use Case

Figure 3-16 The activities in design workflow

3.1.1.2.1 Activity: Architectural design

The purpose of activity architectural design is to outline the design and development

. models and their architecture. The resulting sub-system interfaces, or other design
elements, are then incorporated into the design model. This activity will have the use-
case model, supplementary requirements, analysis model, and architecture description
as input to produce an outline of subsystem, an outline of interface, an outline of
design class, an outline of deployment model, and the architecture description (see
Figure 3-14).




Chapter 3 Methodology

Identifying nodes and network configurations. In this step, the physical
network configuration will be defined. Nodes and network configuration is
essential to the software’s architecture.

Identifying subsystems and their interfaces. In this step, subsystems are
used to organise the design model into manageable pieces. Firstly, the
subsystems in the application-specific and application-general layers are
identified.  Then, the middleware and system-software subsystems are
identified. After the subsystems in all four layers are identified, dependencies
among them are defined. Finally, interface for each subsystem is identified.
Identifying architecturally significant design class.  Architecturally
significant design classes are identified at this stage to initiate the design work.
These architecturally significant design classes could be identified from the
architecturally significant analysis classes. Active classes that are required by
the system in order to consider the concurrency requirements should be
identified too.

Identifying generic design mechanisms. In this step, common requirements
and special requirements are studied to decide how to handle them with the

available design and implementation technologies.



Chapter 3 Methodology

B

Use-Case
Model

==_Y
=

Supplementary
Requirements

Analysis
Model

==\

Architecture

Description

[view of the
analysis model]

N

-~

\

N\

o

/
/

N\

b S

-~
///
-

y

S
AN
N

\x\‘
>

v

/
2

s
/

e

A

>

. AN
/7" Architectural \ ">

Design \
\

\
\

]

oA Subsystem
/" loutlined]

// //V O

” Interface
[outlined]

| 7~

el iy =
Design Class
[outlined]

=
Deployment

Model
[outlined]

=)

\\
Ny

N\
N
\
\
\
\
\

|

=
Architecture
Description
[view of the design
And deployment model|

Figure 3-17 The input and result of activity architectural design

3.1.1.2.1 Activity: Design a use case

The purposes of this activity are to identify the design classes and/or subsystems
whose instances are needed to perform the use case’s flow of events, to distribute the
behaviour of the use case to interacting design objects and/or to participating
subsystems, to define requirements on the operations of design classes and/or
subsystems and their interfaces, and to capture implementation requirements for the
use case. This step has the use-case model, supplementary requirements; analysis
model, design model, and deployment model as input to produce the use case

. realisation of design, an outline of design classes, an outline of subsystems, and an

outline of interfaces (see Figure 3-18).

Identifying the participating design classes. In this step, the design classes

needed to realise the use case are identified.

Describing design object interactions. At this stage, an outline of the design

classes needed to realise the use case 1s obtained.

containing the actor instances and design objects are used to describe how

these corresponding design objects interact.

47

Sequence diagrams



Chapter 3 Methodology

¢ Identifying the participating subsystems and interfaces. This step and the
following step are carried out if designing of use case in term of participating
subsystems are more appropriate. The subsystems needed to realise the use
case is identified in this-step.

e Describing subsystem interaction. This step would be carried out if an
outline of the subsystems needed to realise the use case has been identified.
Again, sequence diagrams containing the actor instances and subsystems
would be used to describe how these corresponding design objects interact.

e Capturing implementation requirements. In this step, all requirements are

captured on the use-case realisation.

AT

A\
Use-Case s ‘\-//
Model \ Use Case
\\ ;" Realisation
==X \ .
\\\ \ // - Design
Supplementary N e
Requirements _-v

Design Class

AL //
\\} /’///
j A s :\ [outlined]
N =~

Analysis //; Design a A s T ij
Model 1~/ UseCase \\
bt |y Y Subsystem
I 4 // \\\ [outlined]
Design // q O
Model /
y4 Interface
'—"—l / [outlined]
Deployment
Model

Figure 3-18 The input and result of activity design a use case
3.1.1.2.1 Activity: Design a class

The purpose of this activity is to create a design class that fulfils its role in use-case
realisation and the non-functional requirements that apply to it. As illustrated in
Figure 3-19, this activity will have as input the use-case realisation, an outline of
design classes, an outline of interface, and the analysis class to produce the design

class. The following are eight steps to be taken to perform this activity.



Chapter 3 Methodology

Outlining the design class. The first step would be outlining the design class
based on the analysis class and/or interface as input. The design classes
identified here should be assigned trace dependencies to the corresponding
analysis classes. |

Identifying operations. In this step, operations that need to be provided by
the design class are identified and described using syntax of the programming
language. The operations need to support all the roles the class plays in all
use-case realisations it participates.

Identifying attributes. As for this step, the attributes required by the design
class are identified and described using syntax of the programming language.
Attributes often implied and required by the operations of the class.
Identifying associations and aggregations. Associations and aggregations
among design classes are identified in this step.

Identifying generalisations. Generalisations are identified in this step. At
this stage, generalisations should be used with the same semantics as defined
by the programming language.

Describing methods. In this step, methods are used to specify how
operations are realised.

Describing states. In this step, statechart diagrams are used to describe the
states of those design objects that are state controlled, which means that the
state determines its behaviour.

Handling special requirements. Any requirements that have not been

considered in the preceding steps are dealt with in this step.

49



Chapter 3 Methodology

G
(

N s

\
Use Case \
Realisation
- Design

\
/

\
\

~

Design Class -
[outlined]

.
—
-
-

\
hy
\
N\

-3
-

I~

Design a

/ Class

i

———p
Design Class
[complete]

Interface
[outlined)

&)
Analysis Class
[complete]

Figure 3-19 The input and result of activity design a class
3.1.1.2.1 Activity: Design a subsystem

The purposes of designing a subsystem are to ensure that the subsystem is as
independent as possible, to ensure that the subsystem provides the right interfaces, and

to ensure that toe subsystem fulfils its purpose in that it offers a correct realisation of

operations as defined by the interfaces. This activity would have as input the

architecture description, an outline of subsystems, and an outline of interfaces.

e  Maintaining the subsystem dependencies. In this step, dependencies among

subsystems are defined and maintained.

Maintaining the interfaces provided by the subsystem. In this step,
interfaces provided by the subsystems are refined to ensure that it support all

the roles that it plays in different use-case realisations.

Maintaining the subsystem contents. Subsystem contents are maintained in
this step to ensure that it fulfils its purpose by offering the correct realisation

of the operations as defined by the interfaces it provides.



Chapter 3 Methodology

\
Architecture \
Description \
[view of the p :
Design model| D v l
P _47 Subsystem
=T Q| [complete]
] ¥ @0 ~l_
Subsystem ,/ Designa 3 O
[outlined] A Subsystem
/ Interface
/
O / [complete]
Interface
[outlined]

Figure 3-20 The input and result of activity design a subsystem

3.1.1.4 Implementation

The purposes of the implementation workflow are to: -
e Plan the system integrations required in each iteration.
e Distribute the system by mapping executable components onto nodes in the
deployment model.
e Implement the design classes and subsystems found during design.

e Unit test the components, and then integrate them.

In the software life cycle (see Figure 3-4), implementation is the focus during the
construction iterations. It is also done during elaboration phase to create executable
architectural baseline and during transition phase to handle late defects. Figure 3-21

illustrates the workflow in implementation with the five participating activities.

plemcma
SubS\stem
Q0] 00 ©0)
Architectural Integrate Perform
Implementation System Unil Test
Implcmem a
Class

Figure 3-21 The activities in the implementation workflow



Chapter 3 Methodology

3.1.1.2.1 Activity: Architectural implementation

The purpose of activity architectural implementation is to outline the implementation
model and its architecture by identifying architecturally significant components such
as executable components, and mapping them to nodes in the relevant network
configurations. As illustrated by Figure 3-22, this activity will have the design model,
deployment model, and the architecture description as input to produce an outline of

components and the architectural description of implementation and deployment

model.
N
Design Dy g
Model M v J
\\\ //’ Component
:I__—I 4 o [outlined and possibly
o
_____ L — - mapped onto nodes]
Deployment bal e it
Model ,/  Architectural SSo) —
[outlined] 1 Implementation
/ =
/// Architecture Description
/ [view of the implementation
= and deployment model|
Architecture
Description
[view of the design
and deployment model|

Figure 3-22 The input and result of activity architectural implementation
3.1.1.2.1 Activity: Integrate System

The purposes of this activity are to create an integration build plan describing the
builds required in iteration and the requirements on each build, and to integrate each
build before it is subject to integration tests. As illustrated in Figure 3-23, the input
for this activity would be the supplementary requirements, use-case model, design
model, and implementation model in order to produce the integration build plan and
the implementation model.
e Planning a subsequent build. The activity will start with planning the
following build. The build may be the first or continuing of the previous

build. Every build should add functionality.

52



Chapter 3 Methodology

e Integrating a build. In this step, builds are integrated. It is done by
collecting the implementation subsystems and components, compiling them,

and linking them into a build.

Ly

Supplementary \
Requirements '\
\

\
N =
N \ Integration
3 +~7 " Build Plan
weid [N @0
£| [ e 4
et 0y "~ |
A Integrate S 3——|

)% System

Model 7 Implementation
/ Model

I 4 [subsequent builds]

Implementation
Model
[previous builds]

Figure 3-23 The input and result of ativity integrate system

3.1.1.2.1 Activity: Implement a subsystem

The purpose of activity implement a subsystem is to ensure that a subsystem fulfils its
role in each build. In other words, to ensure that the requirements are implemented in
the build and those that affect the subsystem are correctly implemented by
components or other subsystem within the subsystem. The input for this activity is the
integration builds plan, architectural description, design subsystem, and interface to

produce the implementation subsystem, and the interface (see Figure 3-24),

53



Chapter 3 Methodology

\
Integration \
Build Plan \\
| B
\
N \
Architecture ~\_ |\ oAl
Description ‘\\‘ (A < Implementation
[view of the A - - Subsystem
Implementation - =, [implemented
model] - Implementa “N_ fora build]
1 Subsystem N\
o 7 —e
d Interf
Subsystem /A Lkt
[complete]  / lnmplemgmcd
// for a build]
@4
/
Interface
[complete]

Figure 3-24 The input and result of activity implement a subsystem

3.11.2.1 Activity: Implement a Class

The purpose of this activity 1s to implement a design class in a file component, which
includes outlining a file component that will contain the source code, generating
source code from the design class, implementing the operations of the design class,
and ensuring that the components provide the same interface as the design class. As
illustrated in Figure 3-25, design class, and interface provided by the design class will
form the input and the activity produce the implemented component as the result. The
activity will be carried out in four steps.

e Outlining the file components. In this step, the file components where the
source code that implements the design class resides are outlined.
Generating code from a design class. The source code is generated
according to the design class in this step. If the design class has been
described using the syntax of the programming language during design, this
step will be straightforward.
Implementing operations. In this step, operations of the class will be
produced. This step involves choosing a suitable algorithm and specified data

structure, and then coding the actions required but eh algorithm.



Chapter 3 Methodology

e Making the component provide the right interface. In this step, interfaces
are verified to ensure that the component provide the same interface as the

design classes it implements.

~
~
Design Class \\\
[complete] S~ %
200 - 5]
//’/ Implement a
al Class ‘Component
Interface |[implemented|
[provided by the
design class]

Figure 3-25 The input and result of activity implement a class
3.1.1.2.1 Activity: Perform unit test

The purpose of this activity is to test the implemented components as individual units.
The component and interface will form the input of this activity to produce the unit-
tested component (see Figure 3-26). The following are two types of unit test
performed.

e Specification tests Specification test is also known as “black-box test”. It is
done to verify the component’s behaviour without considering how that
behaviour is implemented within the component. The test is conducted by
observing the output the component will return when given certain input and
when starting in a particular state.

e Structure tests Structure test is also know as “white-box test”™. It is done to
verify that a component works internally as intended. During structure testing,
all code should be test. In other words, every statement has to be executed at

least once,

55



Chapter 3 Methodology

=N

\\
Component N3
[implemented] \\‘
@0 | -, =]
A Perform ‘
o e C
> . omponent
O < Unitilest [unit tested]
Interface

Figure 3-26 The input and result of activity perform unit test

3.1.1.5 Test

In the test workflow, the result from implementation are verified by testing each build
including both internal and intermediate builds, as well as the final versions of the
system to be released to external parties. As illustrated in Figure 3-27, this workflow

will be performed with six activities.

The purposes of this workflow are to plan the tests required in each iteration, design
and implement the tests by creating test cases that specify what to test, and perform

the various tests an handle the results of each test.

In the software life cycle (see Figure 3-4), test is in focus during the elaboration phase,
when the executable architectural baseline is tested, and during construction, when the
bulk of the system is implemented. However, some initial test plan may occur during

the inception phase when the system is scoped.

Perform
Integration
00— @0 OO T
Plan Test Design Implement Evaluate
Test Test Test
Perform
System
Test

Figure 3-27 The activities in workflow test

. T



Chapter 3 Methodology

3.1.1.2.1 Activity: Plan test

The purpose of activity plan test is to plan the testing efforts in iteration by describing
a testing strategy, estimating the requirements for the testing effort, and scheduling the
testing effort. The supplementary reciuirements, use-case model, analysis model,
design model, implementation model, and architectural description will form the input

of this activity. The activity will produce the test plan as the result (see Figure 3-28).

= \

Supplementary \\
Requirements

b A
i___l \\ \
~ N

; = Ay
Analysis >\ R
Model o \\

A

e e T W

Design //; Plan Test Test Plan
/

“ /

e
/

y

Implementation 4
Model /

= /

Architecture
Description

Figure 3-28 The input and result of activity plan test

3.1.1.2.1 Activity: Design test
The purpose of activity design test is to identify and describe test cases for each build,
and to identify and structure test procedures specifying how to perform the test case.
As illustrated in Figure 3-29, the input for this activity is the supplementary
requirements, use-case model, analysis model, design model, implementation model,

architectural description, and test plan to produce the test case and test procedure.

=



Chapter 3 Methodology

e Designing integration test cases. In this step, integration test case is
designed. Integration test cases are used to verify that the components interact
properly with each other after they have been integrated into a build.

o Designing system test cases. System test cases will be designed in this step.
System test cases are used to verify that the system functions properly as a
whole.

e Designing Regression test cases. Regression test cases would be designed in
this step. Regression test case must be flexible enough to be resilient to
changes of the software that is tested.

e Identifying and structuring test procedures. In this step, test procedures are
identified and structured. This is be done by working through the test cases to

suggest the testing procedures for each one.

58



Chapter 3 Methodology

\
Supplementary \
Requirements Y\

\
] .
\

Use-Case’\ \
Model N}
\\ \\
ERR
N \ \
f b \\ \
Analysis SO N
\
Model NN
:l:_| \\\\\‘ -
o s \1 b~ TestCase
~———l -
Model ///; Design Py I}j
t' 1A T Test
-~
¥, e / Procedures

Implementation /// //
Model  , /

= /

/
Architecture /
Description /

[view of the model] /

=D /

Test Plan
|testing strategy
and schedule]

Figure 3-29 The input and result of activity design test

3.1.1.2.1 Activity: Implement test

The purpose of this activity is to automate test procedures by creating test
components. However, not all test procedures can be automated. This activity will
use test case, test procedures, and implementation model as input and produces the

test component (see Figure 3-30).

59



Chapter 3 Methodology

QO

N\
Test Case N
N

» \\
™ |
Test ™~ o
Procedures S Pl g
Test

//V Implement

=k L
Component

Implementation
Model
[build to be tested|

Figure 3-30 The input and result of activity implement test
3.1.1.2.1 Activity: Perform integration test

In this activity, the integration tests required for each build are performed and the test
results are captured. As illustrated in Figure 3-31, the test case, test procedure, test

component, and implementation model as input.

Firstly, the integration tests relevant to the build are performed by executing any test
components automating the test procedures or by manually performing the test
procedures for each test case. Then, the test results are compared with the expected
results, and investigate test results that deviate form the expected. After that, the
defects are reported to the person responsible for the components. Finally, the defects

are reported for the purpose of evaluating the overall results of the testing effort.

60



Chapter 3 Methodology

QO

Test Case\
\
Xl
\
\\
Test > \
.
Procedure \\\ﬁ
o
g Pt 4 Perform
‘ / Integration
Test / Test
Component /

/
/
e
Implementation

Model
[build to be tested]

¢

Defect

Figure 3-31 The input and result of activity perform integration test

3.1.1.2.1 Activity: Perform system test

The purpose of this activity is to perform the system tests required in each iteration

and to capture the test results. This activity has the test case, test procedure, test

component, and implementation model as input.

QO

Test Case

\
\
\
\
N

Test >~ \\
Procedure k%
.
e &
g % Perform
/  System
Test / Test
Component /]
/

j //

Implementation
Model

[build to be tested]

> %

Defect

Figure 3-32 The input and result of activity perform system test

61



Chapter 3 Methodology

3.1.1.2.1 Activity: Evaluate test

The purpose of this activity is to evaluate the testing efforts within iteration. The
result of the testing effort is evaluated by comparing the results with the goals outlined

in the test plan. This activity uses the test pian, the test model, and the defect reported

as input to produce the test evaluation (see Figure 3-33).

.
\\
Test Plan N
N
A
I i e
=
Test Model 4 AT Test Evaluation
el Test ; .
e | for an iteration|
Defect

Figure 3-33 The input and result of activity evaluate test

3.1.2 The Iteration Workflows

This section will describe the four iteration workflows with emphases of each iteration

workflow on the activities in the five core workflows.

3.1.2.1 Inception iteration

The overall intent of the inception phase is to launch the project. Hence, the goal in
the inception phase is to make the business case to the extent necessary to justify
launching the project. In order to achieve these goals, there are four steps to be taken
for this phase.

1. The scope of the proposed software has to be delimited. The system boundary
is defined and the interfaces to related systems outside the boundary are
identified. The scope is needed to understand what the architecture has to
cover, the define where to look for critical risks, and to provide the boundaries

for cost, schedule, and return-on-investment estimates.

o

The candidate architecture of the system has to be described or outlined. The
emphases are on those parts that are new, risky, or difficult. This step ends

with an architecture description and no executable prototype is built since the



Chapter 3 Methodology

goal of this phase is to assure that a stable architecture could be created to

support the system scope.

3. Critical risks have to be identified. In this phase, the stress in on risks that
affect feasibility, meaning risks that threaten the successful development of
the system. Other risks are recorded for consideration in later phases. Risks
management have been proposed at this early stage to avoid project failure.
This is due to the fact that risks discovered at late stages such as system
integration and testing could not be mitigated within budget and scheduled

time. Prototype can also be used to manage and mitigate risk by prototyping
the key parts where high risk is identified.

4. Finally, if the product is a new type of software, a demonstration may be

performed with a proof-of-concept prototype.

3.1.2.2 Elaboration iteration

The primary product of the elaboration phase is a stable architecture.

1. An architectural baseline that covers the architecturally significant
functionality of the system is created. This architectural baseline will consist
of the model artefacts, architecture description, and executable
implementation. Hence, it takes the architecture a step from the inception
phase by creating the executable architecture.

2. Significant risks, that is, risks that could upset the plans and schedule of later
phase, are identified.

3. The levels to be attained by quality attributes are specified.

4. Use cases to about eighty percent of functional requirements are captured.
This would be sufficient to plan for the construction phase.

5. A proposal covering all the resources is prepared.

3.1.2.3 Construction iteration

The general objective of this phase is a product with initial operational capability.
This phase ends with a product ready for beta testing. The general activities of this

phase include:

63



Chapter 3 Methodology

Extending the use-case identification, description, and realisation to the entire
body of the use cases.

Finishing analysis, design, implementation, and test

Maintaining the integrity of the architecture.

Monitoring critical and significant risks carried over from the first two phases.

3.1.2.4 Transition iteration

This phase typically begins with the beta release. This signifies that the software

product is capable of initial operations and is distributed to a representative sample of

the community of actual user. The activities of this phase include:

Preparation activities.

Advising the customer on updating the environment in which the software is
to operate.

Preparation of manuals and other documentation for product release.

Adjusting the software to operate under the actual parameters of the user

environment.
Correcting defects found after feedback from the beta tests.

Modifying the software in the light of unforeseen problems.

3.2 Strength of the proposed approach

The Unified Software Development Process is the outcome of more than thirty years

of experience [1]. The methodology is shaped in a way that has solves the many

problems that many software development methods possess.

Use case model for requirements capture: The two main concerns of requirements

capture are to find the true requirements and to represent them in a suitable way. Use

case model has been the choice of the Unified Process. In a use-case model, there are

use cases, which represent a piece of functionality in the system, and actors, which

represent the users and any external system that the system interacts with,

According to Karl Wieger, “the perspective provided by use cases reinforces the

ultimate goal of software engineering: to create products that let customers do useful



Chapter 3 Methodology

work.” This is due to the fact that use-case model states the requirements with focus

on value added to the user. In other words, requirement capture is according to the

perspective of each type of user, considering what the system should provides in order
for them to do their work. '

Use cases have been adopted almost universally for capturing the requirements of

software systems in general but of component-based system in particular.

Use-case driven: To be use-case driven means that a development process proceeds

through a series of workflows that are initiated from the use cases. In other words,
they drive the whole development process. Figure 3-34 illustrates the models of the
Unified Process where all the models have dependencies with the use-case model. In

other words, use cases are traceable through all the models.

et "7 A3
O /§Qec1ﬁed by~ //7

«

0/ b Realisedby /
/

/’ Dlstnbuled by

Implemcnled by \ ) \
i
= j v Vcriﬁedby
\\
aﬁ g\
S — P2 <

o
6N

Figure 3-34 Models of the Unified Process

Iterative and incremental: Iterative and incremental development enables developing
software in small steps with major and minor milestones with which the developer

could control the development better.

It can be shaped to deal with the development of any kinds of software product due to
the flexibility of the iteration workflow. For larger projects, the construction phase

could be carried out in more iteration while for complex and green field projects, the

65



Chapter 3 Methodology

inception and elaboration phase could be extended to more iteration to better

understand the project before making further steps.

3.3 Chapter Summary

This chapter has provides a description of the Unified Software Development Process,
the methodology in for this project. The chapter also specified the strength of the
Unified Process. Among the strength is the use of use case model for requirement

capture, the process being use case driven, and the development using the iteration and

incremental model.

3.4 References

[1] Jacobson, 1., Booch, G., Rumbaugh, J.(1999).The Unified Software
Development Process. United States: Addison-Wesley.

: 66



Chapter 4 Requirements Capture and Analysis

Chapter 4 Requirements Capture and Analysis

This chapter presents the result of requirements capture and analysis on the
requirements. The chapter consist of four sections. Section 4.1 presents the result of
requirements capture presented as use cases and their flow of events. As for the result
of analysis, it is presented in Section 4.2 with use-case realisation of the analysis
model and the analysis classes. The final two sections, Section 4.3 and Section 4.4

would summarise the chapter and states the references respectively.
4.1 Requirements Capture

This section presents the outcome of requirements capture in three subsections. The
first subsection provides a description of actors and use cases identified and the flow
of events of these use cases. Statechart diagrams will also be included for use cases
that have a more complex flow of events. The second subsection provides the user
interface design for this application. Finally, the third subsection will state the whole

use case diagram, which forms the requirements of the product.

4.1.1 Actor and Use Cases

Actor: User
A User represents a person who uses this application to perform calculation.

Use Case: Perform General Calculation

This use case is used by the User to perform all supported expression-based
calculation.

Precondition: The calculation mode is in General Calculation window is opened.
Flow of events
Basic Path
1. The User invokes the use case by opening the General Calculation window.
2. The User keys in the calculation expression with the keys on the keypad or

with their equivalent accelerators. The applications append the token referred

67



Chapter 4 Requirements Capture and Analysis

by the key pressed to the calculation expression and refresh the calculation
expression line on the screen.

3. The User decided to acquire the answer and press the equal key on the keypad.
The application evaluates the calculation expression and provides the answer

if there is no error. After the answer is displayed, the application will go back

to step two.

Alternative Paths

In step two, if the General Calculation window closed or the application is terminated,

the use-case instance terminates.

In step three, if there is error in the calculation expression, the equivalent error
message will be provided on the answer line of the display. After the error message is

displayed, the application will go back to step two.

Postcondition: The use-case instance ends when the application is terminated or the

calculation mode has changed.

Figure 4-1 illustrates a statechart diagram describing the use case Perform General
Calculation.

- 68



Chapter 4 Requirements Capture and Analysis

Keying in
Expression
I

Acquire answer

Evaluating
Expression
)

Error found No error

Ermor Messag Answer .
Displayed Displayed

Figure 4-1 Statechart diagram showing the states of use case Perform General Calculation

Use Case: Perform Standard Deviation Calculation

This use case is used by the User to perform standard deviation calculation.
Precondition: The standard deviation window is opened.

Flow of events

Basic Path

4. The User invokes the use case by bringing out the standard deviation window.

5. The User keys in the data for standard deviation calculation into a list. The
application will evaluate the list and provide the values of number of data,
mean, population standard deviation, sample standard deviation, sum of

values, and sum of squares as new data is entered.

Alternative Paths

In step two, if the standard deviation window is closed, the use-case instance

terminates.




Chapter 4 Requirements Capture and Analysis

Postcondition: The use-case instance ends when the application is terminated or the

standard deviation calculation window is closed.

Figure 4-2 illustrates a statechart diagram describing the use case Perform Standard

Deviation Calculation.

Close
Valies Window
Updated

I
Add new data

Provide answers

Evaluating
New List

Figure 4-2 Statechart diagram of use case Perform Standard Deviation Calulation

Use Case: Saves Calculation to Memory List.

This use case is used by the User to preserve calculations performed for later use by

saving them into the memory list.

Precondition: The calculator is in General Calculation mode and a calculation has

been performed.
Flow of events

Basic Path
1. The User invokes the use case by pressing the save button on the memory list
window. The application evaluates the expression and produces the answer if
there is no error. The application saves the calculation and its answer to the

list.

2. The use-case instance terminates,

70



Chapter 4 Requirements Capture and Analysis

Alternative Paths

In step one, if there is error in the expression, the equivalent error message will be

produced. The application will not save it in the memory list.

Postcondition: The use-case instance ends when the calculation is saved into the

memory list or there is error with the expression.

Figure 4-3 illustrates a statechart diagram describing the use case Saves Calculation to

Memory List.

Evaluating
Expression
RS

No Error Error Found

[ Saving lSaved I@

Figure 4-3 Statechart diagram showing the states of use case Saves Calculation to Memory List

Use Case: Retrieve Calculation from Memory List

This use case is used by the User to retrieve the calculations that has been saved into

the memory list.

Precondition: The calculator is in General Calculation mode and one saved

calculation is selected.
Flow of events

Basic Path
1. The User invokes the use case by pressing the retrieve calculation button on
the memory list window. The application retrieved the calculation from the
memory list and overrides the current calculation expression with this
calculation.

2. The use-case instance terminates.

71



Chapter 4 Requirements Capture and Analysis

Postcondition: The use-case instance ends when the calculation is retrieved from the

memory list to the current calculation expression.

Use Case: Retrieve value from the memory list

This use case is used by the User to retrieve the value of the saved calculation from the

memory list and appended into the calculation expression.

Precondition: The calculator is in General Calculation mode and one saved

calculation is selected.
Flow of events

Basic Path
1. The User invokes the use case by pressing the retrieve value button on the
memory list window. The application retrieved the slot name of the selected
saved calculation from the memory list and appended the slot name to the
current calculation expression.,

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the slot name of the selected saved

calculations appended to the current calculation expression.



Chapter 4 Requirements Capture and Analysis

Use Case: Delete calculation from the memory list
This use case is used by the User to delete the saved calculation from the memory list.

Precondition: The calculator is in General Calculation mode and one saved

calculation is selected.
Flow of events

Basic Path
1. The User invokes the use case by pressing the delete value button on the
memory list window. The application deletes the selected stored calculation
form the memory list.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the selected saved calculation is

deleted from memory list.

Use Case: Retrieve Calculation from History List
This use case is used by the User to retrieve the calculations from the history list.

Precondition: The calculator is in General Calculation mode and one calculation in

the history list is selected.
Flow of events
Basic Path
1. The User invokes the use case by pressing the retrieve calculation button on
the-history list window. The application retrieved the calculation from the

history list and overrides the current expression with this calculation.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the calculation is retrieved from the

history list to the current calculation expression.

T



Chapter 4 Requirements Capture and Analysis

Use Case: Retrieve Constant from Constant List

41.2

This use case is used by the User to retrieve the constant to be used in calculation.

Precondition: The calculator is in General Calculation mode and one constant is

selected.
Flow of events

Basic Path
1. The User invokes the use case by pressing the retrieve button on the constant
list window. The application retrieved the constant symbol from the constant
list and appends it to the current expression.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the constant symbol is retrieved from

the constant list and appended to the current calculation expression.

User Interface
This subsection specifies the user interface design of the use cases.

Figure 4-4 illustrates the user interface design of use case Perform General
Calculation. The screen for this window will use a custom-made component for
expression-based calculation. There is a toolbar above the screen for activating the
Standard Deviation Calculation window, the memory list window, the history list

window, and the constant list window.

74



Chapter 4 Requirements Capture and Analysis

l eSciCalc

e

| 3+-§-—3{/§x‘{/8_1+94—:-38+30x10'1 — 6sin30°

ik
2!

Figure 4-4 User interface design for use case Perform General Calculation

The user interface design of use case Perform Standard Deviation Calculation is
illustrated in Figure 4-5. A list will be used for add and delete of data. As the content
of the list change, the values of the six variables at the right side will be recalculated

with the new list.

-

75



Chapter 4 Requirements Capture and Analysis

Standard Deviation Calculation !m

|__Data |a|
Bl oon

(og

Sz

i

v

Figure 4-5 User interface design for use case Perform Standard Deviation Calculation

Figure 4-6 illustrates the user interface design of the three lists, memory list, history
list, and constant list. These lists use the grid to show data inside the list. A tool bar

will be appended to the lists to support their operations.

Name [ Calculation | Resut | o [ Name | Symbol lv-lu.I_A_l

Z|3|52|8|8|2

v v
History List nm
_Calculation | Result | -_A_l

NS WIN -

v|

Figure 4-6 User interface design for the four lists




Chapter 4 Requirements Capture and Analysis

41.3 Use-Case Model

This subsection specifies the use case model, which expresses the requirements of the

product of this project.

eSciCalc

Perform General
Calculation

Perform
Standard Deviation
Calculation

Save Calculation
to Memory List

Retrieve
Calculation from
Memory List

Retrieve Value

/

\

List Manipulation

User

Retrieve
Calculation from
History List

uses>>

Retrieve Constant
from Constant List

Figure 4-7 Use cse model of eSciCalc

Figure 4-7 illustrates the structured use-case model of application eSciCalc. The user
interacts with eight use cases: Perform General Calculation, Perform Standard

Deviation Calculation, Save Calculation to Memory List, Retrieve Calculation from



Chapter 4 Requirements Capture and Analysis

Memory List, Retrieve Value from Memory List, Delete Calculation from Memory
List, Retrieve Calculation from History List, and Retrieve Constant from Constant
List. The flow of events of all these use cases has been specified in Section 4.1.1. As
illustrated in Figure 4-7, the bottom six use cases have a uses (equivalent to

generalisation) relationship with use case List Manipulation.

4.2 Analysis

4.2.1

This section describes the result of analysis. It is divided into two subsections. The
first subsection describes the use-case realisation of analysis model while the second

subsection specifies the analysis classes.

Use-Case Realisation — Analysis

This section shows each use case realisation of analysis. Collaboration diagrams are
used to describe the collaboration between analysis objects. Every collaboration

diagram will have a flow of event to further describe the diagram.

@ Boundary

@ Control

Q Entity

Use Case: Perform General Calculation

Figure 4-8 and Figure 4-9 illustrates the use case realisation of use case Perform

General Calculation,

2: Update expression
‘.__

—

.General Calculation
Interface

1. Key in expression
e

User

Figure 4-8 Collaboration diagram describing key-in part of use case Perform General Calculation

o



Chapter 4 Requirements Capture and Analysis

Flow of event: The user keys in the calculation expression (see Figure 4-8 step 1) and

the application updates the expression displayed (see Figure 4-8 step 2).

1: Acquire answer 2 Evaluateexpressioné
L

e Iculati :General
Interface Calculation
:User
3: Add calculation
Q ~_ 4: Add calculation '_Q
‘History List :History List

Entity Interface

Figure 4-9 Collaboration diagram describing the execute expression part of the use case model

Flow of event: The User acquires answer (see Figure 4-9 step 1) to the expression
keyed in through the General Calculation Interface. The General Calculation Interface
uses the General Calculation object to evaluate expression (see Figure 4-9 step 2).
With the result at hand, the General Calculation Interface updates the display and adds
calculation to the history list through the History List Interface (see Figure 4-9 step 3).
The History List Interface updates the displayed list and adds this calculation to the

database using the History List Entity.




Chapter 4 Requirements Capture and Analysis

Use Case: Perform Standard Deviation Calculation

Figure 4-10 illustrates the use case realisation of use case Perform Standard Deviation

Calculation.

2: Update values
K )—

:Standard Deviation
Calculation Interface

Q 1: Key in data
L

:User

Figure 4-10 Collaboration diagram describing use case Perform Standard Deviation Calculation

Flow of event: The User key data into the list (see Figure 4-10 step 1) through the
Standard Deviation Calculation Interface. The Standard Deviation Calculation
Interface object then updates all the values with the new data as input (see Figure 4-10

step 2). Every time a modification to the data list is performed the values will be

updated.

Use Case: Save Calculation to Memory List

Figure 4-11 illustrates the use case realisation of use case Save Calculation to Memory

List.
1. Press save button 2: Get expression and answer
S o @ @)
:Memory List :General Calculation
Interface Interface
:user
4. Save calculation l

3. Evaluate

expression
Entity Calculation

Figure 4-11 Collaboration diagram describing use case Saves Calculation to Memory List

80



Chapter 4 Requirements Capture and Analysis

Flow of event: The User presses the save button on the Memory List Interface (see
Figure 4-11 step 1) to save the current calculation into the memory list. The Memory
List Interface then uses the General Calculation Interface to get the expression and
answer to be saved (see Figure 4-11 step 2). The General Calculation Interface uses
the General Calculation to evaluate the expression in order to get the answer (see
Figure 4-11 step 3). With the expression and answer returned to the Memory List
Interface, it updates the displayed list and uses the Memory List Entity to update the
database (see Figure 4-11 step 4).

Use Case: Retrieve Calculation from Memory List

Figure 4-12 illustrates the use case realisation of use case Retrieve Calculation from

Memory List.
1: Press retrieve
calculation button 2: Overwrite expression
=EO=ES0
‘Memory List :General Calculation
Interface Interface
:User

Figure 4-12 Collaboration diagram describing use case Retrieve Calculation from Memory List

Flow of event: The user presses the retrieve calculation button on the Memory List
Interface to retrieve saved calculation (see Figure 4-12 step 1). The Memory List
Interface then determines the selected row in the memory list and updates the

expression displayed using the General Calculation Interface (see Figure 4-12 step 2).

81



Chapter 4 Requirements Capture and Analysis

Use Case: Retrieve Value from Memory List

Figure 4-13 illustrates the use case realisation of use case Retrieve Value from

Memory List.
1: Press retrieve 2: Append slot name
value button to expression
e et
Interface Interface
:User

Figure 4-13 Collaboration diagram describing use case Retrieve Value from Memory List

Flow of event: The User press retrieve value button on the Memory List Interface to
retrieve saved value (see Figure 4-13 step 1). The Memory List Interface then
determines the selected row in the memory list and appends the slot name to the

expression using the Get Calculation Interface (see Figure 4-13 step 2).

Use Case: Delete Calculation from Memory List

Figure 4-14 illustrates the use case realisation of use case Delete Calculation from

Memory List.
1: Press delete
calculation button 2. Delete record
R ) ()
:Memory List :Memory List
Interface Entity
User

Figure 4-14 Collaboration diagram describing use case Delete Calculation from Memory List

Flow of event: The User presses the delete calculation button on the Memory List
Interface to delete a stored calculation (see Figure 4-14 step 1). The Memory List

Interface then determines the selected row in the memory list and deletes the




Chapter 4 Requirements Capture and Analysis

equivalent record from the database using the Memory List Entity (see Figure 4-14
step 2) and updates the displayed list.

Use Case: Retrieve Calculation from History List

Figure 4-15 illustrates the use case realisation of use case Retrieve Calculation from

History List.

1: Press retrieve

calculation button 2: Overwrite expression
——{(———h)
|

:History List :General Calculation
Interface Interface

:Use

—

Figure 4-15 Collaboration diagram describing use case Retrieve Calculation from History List

Flow of event: The User press retrieve calculation button on the History List Interface
to retrieve any of the ten latest calculations (see Figure 4-15 step 1). The History List
Interface then determines the selected row in the history list and overwrites the current

expression using the General Calculation Interface (see Figure 4-15 step 2).

Use Case: Retrieve Constant from Constant List

Figure 4-16 illustrates the use case realisation of use case Retrieve Constant from

Constant List.

1: Press retrieve 2: Append constant symbol
constant button @ to expression
=t =
Constant List :General Calculation
Interface Interface

User

Figure 4-16 Collaboration diagram describing use case Retrieve Constant from Constant List




Chapter 4 Requirements Capture and Analysis

4.2.2

Flow of event: The User press retrieve value button on the Constant List Interface to
retrieve constant for calculation (see Figure 4-16 step 1). The Constant List Interface
then determines the selected row in the constant list and appends the constant symbol
to the current expression with the General Calculation Interface (see Figure 4-16 step
2).

Analysis Class

This subsection specifies the analysis classes identified. The results presented in this
subsection are extracted from the previous subsection, which has provided a clear
picture of the analysis model by describing each use case realisation as collaboration

of analysis objects.

The responsibilities and attributes of each analysis classes are described in Table 4-1.
These responsibilities are needed by the analysis classes to perform use case

realisation.

Analysis Class Responsibilities Attributes

General Calculation Update display Calculation expression
[nterface Append token Answer

Overwrite expression

Provide expression and answer

Get answer
General Calculation Evaluate calculation expression Calculation expression
Standard Deviation Data input Data list
Interface Delete data Mean

Calculate answers Population

Sample

Number of data

o



Chapter 4 Requirements Capture and Analysis

Sum of values

Sum of Squares

Memory List Interface

Refresh list

Save calculation

Provide calculation retrieval
Provide value retrieval
Delete calculation

Get the whole list

Memory list

Memory List Entity

Add record
Provide whole list retrieval

Delete record

Slot number
Name
Calculation

Value

History List Interface

Refresh list
Retrieve calculation
Add calculation

Get the whole list

History list

History List Entity

~

Add record
Provide whole list retrieval

Delete record

Slot number

Calculation expression

Constant List Interface

Refresh list
Get the whole list

Provide constant retrieval

Constant List Entity

Provide whole list retrieval

Table 4 Analysis classes with their responsibilities and attributes

Constant list

Constant symbol

Constant value



Chapter 4 Requirements Capture and Analysis

OO

Memory List Memory List
Interface Entity

O—0 O —0

General Calculation General History List History List
Interface Calculation Interface Entity

Standard Deviation |_O BRI - 8 Q
Calculation Interface

Constant List Constant List
Interface Entity

Figure 4-17 Class diagram showing the analysis classes of eSciCalc

Figure 4-17 illustrates the analysis classes of this project using class diagram. The
classes are mainly divided into two groups, one for each calculation modes. The
standard deviation mode are realised with just one boundary class. The second group
consists of analysis classes that realises the general calculation mode including the

three lists to assist calculation.

Figure 4-18 illustrates the generalisation relationships that involved the analysis
classes. The generalisation relationships are excluded from Figure 4-17 to reduce

complexity and crowdedness.




Chapter 4 Requirements Capture and Analysis

O O

List Interface List Entity

@/(T)% Q/ gg\Q

Memory List  History List ~ Constant List Memory List History List Constant List
Interface Interface Interface Entity Entity Entity

(a) (b)

Figure 4-18 The generalisation relations among the analysis classes

4.3 Chapter Summary

The use case model, which defines the requirements of the product, and the analysis
model which describes the requirements with more detail, have been presented in this
chapter. Nine analysis classes have been identified to realise the eight use cases

identified earlier.

4.4 References

[1] Jacobson, 1., Booch, G., Rumbaugh, J. (1999).The Unified Software

Development Process. United States: Addison-Wesley.

[2] Jacobson, 1., Booch, G., Rumbaugh, J. (1999).The Unified Modelling
Language User Guide. United States: Addison-Wesley.

o



Chapter 5 Design

Chapter S Design

This chapter present the result of design for this project. There are four sections in this
chapter. The first section, Section 5.1 will specify the result of use-case realisation of
the design model. Section 5.2 describes the design classes as a whole. The third
section, Section 5.3 provides a summary of the chapter while, Section 5.4 states the

references.

5.1 Use-Case Realisation - Design

The use case realisation of the design model is described using sequence diagrams
showing the collaboration of design objects. Every use case realisation will be

described with one sequence diagram and the flow of event.

Use Case: Perform General Calculation

Figure 5-1 illustrates the use-case realisation for use case Perform General Calculation

with a sequence diagram.

Flow of event: The user keys in the calculation statement by repetitively pressing the
keys on the GenKeypad panel. When a key is pressed, GenKeypad uses the
keyPressed() function to inform GenCalcUIMan of the key being pressed. The
GenCalcUIMan will append the token of the equivalent key pressed to the calculation

statement and refreshes the GenScreen control with refreshScreen() function.

When the user has decided to acquire the answer for the expression keyed in, the equal
key on the GenKeypad panel is pressed. The GenKeypad then send the key pressed
information to GenCalcUIMan with the keyPressed() function. The GenCalcUIMan
uses the function getAnswer() to acquire answer from GenCalc. GenCalc will
evaluate the expression and return the answer to GenCalcUIMan. After that, the
GenCalcUIMan  refreshes the screen with the answer using the function
refreshScreen(). Next, the GenCalcUIMan add the calculation to the history list using
the addCalculation(). The HistListUIMan then update the record in the database using
function updateRecord() in the HistGridEntity and update the displayed list with

function updateList() in HistGrid.

88



Chapter 5 Design

89



Chapter 5 Design

) (rsnprepdn
~(Jpscosyeiepdn
i (Juchejoeoppe
(Jusasogysaysl
P (ems|1v1a6
~ ()passaidfey
 Jamsue aisnboy
uoissaidxa pajepdn moys
()usalogysayal § 10
(pessaidhey L uoissaldxa
uonenoed Ul Aoy
PUOISIH: RQU3ISIMSIH: UBNIMSTTISIH: J[eduao: VERISISVELR UBWINOIBOUSD: || pedAayusd:

o—}

Figure 5-1 Sequence diagram describing use case Perform (

eneral Calculation

~
y

90



Chapter 5 Design

Use Case: Perform Standard Deviation Calculation

Figure 5-2 illustrates the use-case realisation for use case Perform Standard Deviation

Calculation with a sequence diagram.

:SDList :SDCalcUIMan :SDAnswerPanel
:User
Add data e
add()
updateAnswer()
Remove dat/
Clear list dekete)
updateAnswer()

Figure 5-2 Sequence diagram describing use case Perform Standard Deviation Calculation

Flow of event: The user performs standard deviation calculation by through the
SDCalcUIMan form. The user adds data to the data list through the SDList object.
The SDList will inform the SDCalcUIMan using the add() function. Finally, the
SDCalcUIMan updates the answers on SDAnswerPanel using the updateAnswer()

function.

The data delete data from the data list through the SDList object as well. The SDList
will inform the SDCalcUIMan using the add() function. Finally, the SDCalcUIMan

updates the answers on SDAnswerPanel using the updateAnswer() function.




Chapter 5 Design

Use Case: Save Calculation to Memory List

Figure 5-3 illustrates the use-case realisation for use case Save Calculation to Memory

List with a sequence diagram.

Flow of event: The user presses the save calculation button on the MemToolbar to
save the recent calculation into memory.  The MemToolbar will request
MemListUIMan to add calculation using the addCalc() function. The MemListUIMan
form then get the current expression and answer from GenCalcUIMan with
getExpAnswer() function. GenCalcUIMan will then execute the expression with
GenCalc object using the getAnswer() function. As GenCalc returns the answer to
GenCalcUIMan, it refreshes the display of GenScreen using function refreshScreen().
Then, GenCalcUIMan will add the executed calculation to the history list using the
addCalculation() function in HistListUIMan form. The HistListUIMan uses the
updateRecord() function in HistListEntity to update the record. The update record
operation might involve deleting the tenth calculation before adding the new one or
just add the calculation in if the list is not yet full. Before updating it also need to
check for redundancy. Then, HistListUIMan will update the list being displayed using
the function updateList() in the HistGrid. After updating the history list, the
expression and answer that MemListUIMan wanted would have been received and it
will update the memory list record using the MemListEntity through the
updateRecord() function. Finally, MemListUIMan will update the list being displayed
in MemGrid with function updateList().




Chapter 5 Design

E (isrpiepdn
¥ ()ipicoaysiepdn
= (1srpiepdn
)pJooayaepdn
¥ (Jonenojeopge
B (Jusarogusasal
[ Jamsuy)eb
(Jiamsuydx a8
- (0o1E0pPE fiowsw
; Jonexnoyes
0} 3ABS
USWoN| ANUTISTTWoNE | PUDISIH: | FIUSISIIsiH| [TENINISIISIH;| p33158Ua5] Pleousd] FeNInNoeouas] FEWINTSTWan| [EQooIWamn]

350

Figure 5-3 Sequence diagram describing use case Save Calculation to Memory List




Chapter 5 Design

Use Case: Retrieve Calculation from Memory List

Figure 5-4 illustrates the use-case realisation for use case Retrieve Calculation to

Memory List with a sequence diagram.

:MemToolbar| {MemListUIMany |:MemGrid enCalcUIMar] |:GenScreen

User
Retrieve
Calculafion
retrieveCalc()
getSelectedCalc()
5 .
verwriteExp () 4
)

refrestScreen

\ o

Figure 5-4 Sequence diagram descirbing use case Retrieve Calculation from Memory List

Flow of event: The user retrieve the saved calculation from the memory list by
pressing the retrieve calculation button on the MemToolbar. The MemToolbar will
request MemListUIMan to perform the operation using the retrieveCale() function.
The MemListUIMan then get the selected calculation for retrieval using the
getSelectedCalc() function from MemGrid. As the requested calculation is received,
MemListUIMan overwrite the existing calculation expression using the
overwriteExp() function in GenCalcUIMan. Finally, the GenCalcUIMan refreshes the

calculation screen using the refreshScreen() function in GenScreen.

—



Chapter 5 Design

Use Case: Retrieve Value from Memory List

Figure 5-5 illustrates the use-case realisation for use case Retrieve Value to Memory

List with a sequence diagram.

:MemToolbar emListUIMan| |:MemGrid| |GenCalcUIMar] :GenScreen

:User

Retrieve
Value

retrieveValue()

getSelectedName()

apperldToken()

refrestScreen

~—

Figure 5-5 Sequence diagram describing use case Retrieve Value from Memory List

Flow of event: The user retrieve the value of a saved calculation from the memory
list by pressing the retrieve value button on the MemToolbar. The MemToolbar will
request MemListUIMan to perform the operation using the retrieveValue() function.
The MemListUIMan then get the slot name for retrieval using the
getSelectedSlotName() function from MemGrid. The slot name will be placed in the
calculation expression instead of the value. As the requested calculation is received,
MemListUIMan appends the retrieved slot name to the existing calculation expression
using the éppendToken() function in GenCalcUIMan. Finally, the GenCalcUIMan

refreshes the calculation screen using the refreshScreen() function in GenScreen.




Chapter 5 Design

Use Case: Delete Calculation from Memory List

Figure 5-6 illustrates the use-case realisation for use case Delete Calculation to

Memory List with a sequence diagram.

‘MemToolbar| [MemListUIMar{iMemListEntity| |:MemGrid

User
Delete >
calculation
deleteCalc()
deleteRecord()
removeRow()

A

Figure 5-6 Sequence diagram describing use case Delete Calculation from Memory List

Flow of event: The user deletes a saved calculation from the memory list by pressing
the delete calculation button on MemToolbar. The MemToolbar then request
MemListUIMan to perform the operation using deleteCalc() function. Firstly, the
MemListUIMan deletes the record in the database using deleteRecord() function with
MemListEntity. Then, MemListUIMan remove the calculation from the list displayed

in MemGrid using removeRow() function.

9



Chapter 5 Design

Use Case: Retrieve Calculation from History List

Figure 5-7 illustrates the use-case realisation for use case Retrieve Calculation to

History List with a sequence diagram.

HistToolbar || :HistListUIMan || :HistGrid ||.GenCalcUIMan ||:GenScreen
ZUSg[
Retrieve
calculation

retrieveCalc()

~

getSelectedCalc

overwirteExp()

refreshScreen()

Figure 5-7 Sequence diagram describing use case Retrieve Calculation from History List

Flow of event: The user retrieve a calculation from the history list by pressing the
retrieve calculation button on the HistToolbar. The HistToolbar will request
HistListUIMan to perform the operation using the retrieveCalc() function. The
MemListUIMan then get the selected calculation for retrieval using the
getSelectedCalc() function from HistGrid. As the requested calculation is received,
HistListUIMan overwrite the existing calculation expression using the overwriteExp()
function in GenCalcUIMan. Finally, the GenCalcUIMan refreshes the calculation

screen using the refreshScreen() function in GenScreen.

97



Chapter 5 Design

Use Case: Retrieve Constant from Constant List

Figure 5-8 illustrates the use-case realisation for use case Retrieve Constant to

Constant List with a sequence diagram.

:ConstToolbar| |:ConstListUIMan| | :ConstGri :GenCalcUIMan | |:GenScreen

:User
Retrieve
congiant retrieveConst()
petSelectedConsty)

appendTjoken()

\ i

refreshScreen()

Figure 5-8 Sequence diagram describing use case Retrieve Constant from Constant List

Flow of event: The user retrieve a constant from the constant list by pressing the
retrieve constant button on the ConstToolbar, The ConstToolbar will request
ConstListUIMan to perform the operation using the retrieveConst() function. The
ConstListUIMan then get the symbol for retrieval using the getSelectedSymbol()
function from ConstGrid. The symbol will be placed in the calculation expression
instead of the value. As the requested calculation is received, ConstListUIMan
appends the retrieved symbol to the existing calculation expression using the
appendToken() function in GenCalcUIMan. Finally, the GenCalcUIMan refreshes the

calculation screen using the refreshScreen() function in GenScreen.

98



Chapter 5 Design

5.2 Design Class

This subsection specifies the design classes of this project. The results presented in
this subsection are extracted from the previous subsection, which has provided a clear
picture of the design classes through describing each use case realisation as

collaboration of design objects using sequence diagram.

Figure 5-9 illustrates the design classes of the project with the association
relationships using class diagram. Again, there are two unrelated groups in the class
diagram. The standard deviation calculation has been realised using one active class
named SDCalcUIMan and two other controls. As for the general calculation, there
five classes for evaluating the supported functions. They are named Arithmetic,

Trigonometry and Hyperbolic, Logarithm, Indexes, and Statistic.

e R

99



Chapter 5 Design

SDList \
SDCalcUIMan
= Arithmetic
SDAnswerPanel
Trigonometry
and
GenScreen \ / Hyperbolic
y
GenCalcUIMan GenCalc Logarithm
Indexes
MemList \
MemListUIMan MemListEntity  Statistic
MemToolbar /
HistList \
HistListUIMan HistListEntity
HistToolbar /
ConstList ot |
ConstListUIMan ConstListEntity
ConstToolbar /

Figure 5-9 Class diagram showing the design classes

100



Chapter 5 Design

ListUIMan

A

MemListUIMan HistListUIMan ConstListUIMan

(@)

ListEntity

A

MemListEntity [ | HistListEntity | | ConstListEntity

(b)
Figure 5-10 Class diagram showing the generalisation relationship of design classes

5.3 Chapter Summary

The design model for this project has been presented and described in this chapter.
There are twenty-four design classes participated in the realisation of the eight use

cases specified in the previous chapter.

5.4 References

[1] Jacobson, 1., Booch, G., Rumbaugh, J.(1999).The Unified Software

Development Process. United States: Addison-Wesley.

[2] Jacobson, 1., Booch, G., Rumbaugh, J.(1999).The Unified Modelling Language
User Guide. United States: Addison-Wesley,

101



Chapter 5 Design

Chapter 6 Implementation

This chapter will describe the major components of eSciCalc and their respective

development approach.

6.1 Core components and development approach

6.1.1 Calculator screen

6.1.2

The most important part of eSciCalc is the calculator screen. This screen has been
implemented as an ActiveX control. The services provided by this control includes
expression key in, expression drawing, as well as calculating the expression and
providing the answer. Since there is another component in the design that could
utilise the expression service, most of the functionality of this control has been
embedded into a hierarchy of class called Expression. This would enable more than
one control to utilise this important service. Moreover, this would enable the services
to be developed and tested with a console application or a Window application that the
Visual C++ IDE provides debug services which the ActiveX control development

does not.

In order to achieve the vision of having standard notation on the display, the font used
would have to include numerous symbols that are used in mathematical calculations.
Although all the symbols are included with the Unicode version of most Windows
font, many of them are not included in the ASCII. Since one of the aim of this product
is to run on Windows 9x and Windows 9x does not support Unicode, a custom font

has been created. It is loaded when the calculator runs.

Expression classes

The expression class provides the fundamental form of any kind of expression. This
class is an abstract class and is inherited by the GenCalc class in eSciCalc. The use of
this hierarchy of classes for expression has also enable the support of complex number

and base-n calculation casily.

102



Chapter 5 Design

The components of this class are mostly developed in a simple console mode
application (wherever no graphical user interface is needed) or a simple MFC window
application to make sure the way work and the working code has been developed

before being integrated into the class being built since it is larger.

An expression object saves the expression it is handling as a string. String has been
chosen as an expression might have to be stored into a database which does not
support any user defined type directly. In addition, user defined type would not be

possible to be passed in between an ActiveX control and its user.

This string representation of the expression will be transformed into a binary tree to
perform expression drawing as well as expression calculation. A binary tree is used in
this case as the expression could be easily tokenised according to its precedence.
Moreover, the binary tree also automatically grouped the whole expression. For
example, if a particular node is a fraction, we could easily identify its width, height,
and so on since the left and right side of the node would be the fraction’s numerator

and denominator.. This would ease the expression drawing.

Besides that, the Expression class also store a list of variables and constant values as a
linked list. This is where the values of variables could be assigned for calculation.

This is implemented to support the use of memory list.

6.2 References

[1] Deitel, H.M., Deitel, P.J.(1994).C: How to Program. United States: Prentice
Hall.

[2] Kruse, R.I., Tondo, C.L., Leung, B.P.(1997).Data Structure & Program Design

in C. United States: Prentice Hall.

[3] Sebesta, R.W.(1999).Concepts of Programming Languages,(4™ ed). United

States: Addison-Wesley.

103



Chapter 5 Design

Chapter 7 Testing

The purpose of testing is to
e Plan the tests required in each iteration, including integration tests and system
tests. Integration tests are required for every build within the iteration,
whereas system tests are required only at the end of the iteration.
e Design and implement the test by creating test cases that specify what to test,

creating test procedures that specify how to perform the test, and creating

executable test components to automate the test if possible.

e Perform the various tests and systematically handle the results of each test.
Builds found to have defects are tested and possibly sent back to other core
workflows, such as design and implementation, so that the significant defects
can be fixed.[1]

This chapter present the result of testing for this project. There are four sections in
this chapter. The first section, Section 7.1 will specify the input, result and conditions
of use-case realisation of the design model. Section 7.2 describes the test procedure.
The third section, Section 7.3 provides a summary of the chapter while, Section 7.4

states the references.

7.1 Test Case

A test case specify one way of testing the system, including what to test with which
input or result, and under which conditions to test.

Use Case: Perform General Calculation
This test case will verify the key-in part of use case Perform General Calculation.

Input
e Key in the calculation statement 1+ (2+3)/ sin20 by pressing the keys on the

GenKeypad panel.
Result

e The application should update the expression displayed.

104



Chapter 5 Design

Conditions
e No other use cases (instances) are allowed to access the General Calculation

Interface during this test case.

This test case will verify the execute expression part of use case Perform General

Calculation.

Input
e The equal key on the GenKeypad panel is pressed.

Result
e The General Calculation Interface should display 6.476780¢ as the answer.
e The history list should have the calculation.

e The database should update the record.

Condition
e No other use cases (instances) are allowed to access the General Calculation

Interface during this test case.

Use Case: Perform Standard Deviation Calculation
This test case will verify the use case Perform Standard Deviation Calculation.

Input
e From the General Calculation Interface pressed the Standard Deviation
Calculation button.

e Keyin3, 4, and 5 into the data list.
Result
e The number of data (n) should show a value of 3.

e The mean (x) should show a value of 4.

e The population ( xo, ) should show a value of 0.8165.
e The sample (xo,_, ) should show a value of 1.

e The Sum of value (3 x) should show a value of 12,

o The Sum of Squares (3 x*) should show a value of 50,

105



Chapter 5 Design

Use Case: Save Calculation to Memory List
This test case will verify the use case Save Calculation to Memory List.

[nput
e Key in the calculation statement 1+ (2+3)/ sin20 by pressing the keys on the
GenKeypad panel.
e Press the memory list button on the toolbar above the screen.

e Pressed the save button on the Memory List Interface.

Result
e The memory list record will be update, which the Calculation column should
show calculation statement (1+ (2+3)/ sin20) and the result of the calculation

(6.476780¢) should show in the result column.

Condition
e No redundancy is allowed.

e The memory list is not full.
Use Case: Retrieve Calculation from Memory List

This test case will verify the use case Retrieve Calculation from Memory List.

Input

e Press the retrieve calculation button on the MemToolbar.

Result
e The General Calculation Interface should show the selected calculation.
o If there is existing calculation expression on the General Calculation Interface,

it should be overwriting.
Use Case: Retrieve Value from Memory List

This test case will verify the use case Retrieve Value from Memory List.

Input

e Press the retrieve value button on the MemToolbar,

106



Chapter 5 Design

Result
e The General Calculation Interface should show the selected calculation’s
value.

e [Ifthere is existing calculation expression or value, it should be overwriting.

Use Case: Delete Calculation from Memory List
This test case will verify the use case Delete Calculation from Memory List.

Input

e Press the delete calculation button on MemToolbar.

Result
e The record in the database should be deleting.

e The calculation displayed in the memory list should be deleting,

Use Case: Retrieve Calculation from History List
This test case will verify the use case Retrieve Calculation from History List.

Input

e Press the retrieve calculation button on the HistToolbar.

Result
e The General Calculation Interface should show the selected calculation.

e Ifthere is existing calculation expression, it should be overwriting.

Use Case: Retrieve Constant from Constant List
This test case will verify the use case Retrieve Constant from Constant List.

Input

e Press the retrieve constant button on the ConsToolbar,

Result
e The General Calculation Interface should show the selected symbol.

e Ifthere is existing calculation expression or value, it should be overwriting.

107



Chapter 5 Design

7.2 Test Procedure

A test procedure specifies how to perform one or several test cases or parts of them. A

test procedure in this project will be an instruction for an individual on how to perform

a test case manually.

Test case supported: calculation statement 1+ (2+3)/ sin20

I;

From the General Calculation Interface, pressed the key on the GenKeypad panel

follow the calculation statement 1+ (2+3)/sin20.

Verify the display in the General Calculation Interface, it should display
1+ (2+3)/5in20.

Press the equal key on the GenKeypad panel.

Verify the display in the General Calculation Interface; it should display
6.476780¢ as the answer.

Press the history list button on the toolbar above the screen.

Verify the following fields:
e Calculation is 1+ (2+3)/sin20.
e Resultis 6.476780e.

Test case supported: standard deviation calculation statement 3, 4, 5

1.

From the General Calculation Interface pressed the Standard Deviation

Calculation button.

Key in 3, 4, 5 into the data list.

Verify the following fields:

e Number of data (n) is 3.

e Mean(x)is 4.

e Variance (%) is 0.66666667.

e Standard deviation (o) 15 0.81649658,
e  Sum of value () x) is 12,

e Sum of Squares (Y'x*) is 50.

108



Chapter 5 Design

7.3 Chapter Summary

The test model for this project has been presented and described in this chapter. There
are nine test cases and two test procedures in this chapter. The test cases specify what

to test in the system and the test procedures specify how to perform the test cases.

7.4 References

[1] Jacobson, 1., Booch, G., Rumbaugh, J. (1999).The Unified Software
Development Process. United States: Addison-Wesley.

109



Chapter 5 Design

Chapter 8 Evaluation

System evaluation is the process of identifying the strengths and weaknesses of the
system and suggestions for possible future enhancements. This chapter present the
project evaluation for this project. There are four sections in this chapter. The first
section, Section 8.1 will specify the strength of the project. Section 8.2 describes the
limitation of the project. The third section, Section 8.3 states the project’s

enhancements while Section 8.4 provides a summary of the chapter.

8.1 Strength

Among the strength of eSciCalc is:

e Runs on all 32-bit Windows Platform — Since Windows is currently the most
popular and widely used operating system eSciCalc is designed to run on
Windows platform.

e User-friendly Interface — eSciCalc provide a better user interface that would
promote the use of standard notation, easy to redo, and reduce error rate and
easy rechecking. Moreover, eSciCalc has a common Windows interface that
the users have been used to.

e Ease of Control and Manipulation — eSciCalc can be used with the keyboard
only, mouse only as well as a combination of both. This would provides all
kinds of users with the method they prefer.

e FEasy to Expand Architecture - eSciCalc design with an easy to expand
architecture. This would enable the product to support a more complete set of

caleulations.

8.2 Limitation

There are limitations and weakness that could be improved in the future. Among the
limitations are;
e Insufficient functionality — eSciCale does not support adequate functions to be

considered useful.

Pufifg e



Chapter 5 Design

e Calculation value not large enough — although the range of the calculation
value supported by eSciCalc is considerably large, it would be good if it could
support a near infinite range to support the fast growing need of scientific
calculation. '

e The use of self-referenced structure instead of self-referenced class for
the binary tree has make the code rather messy and difficult to expand.

The future version could be overhauled to used self-referenced class.

8.3 Future Enhancements

Referring to eSciCalc’s limitation given above, there is still high potential for future
enhancements. These include: :

e The most needed improvement would be the use of self-referenced class for
the binary tree. The current method has been limiting the application’s
expansion capability. Moreover, it encapsulates the code better and less
messy.

e Secondly, create or find a data type that would support higher value and
precision like the one used in Microsoft® Calculator version 5.1 which seems
infinite.

e Having a good framework already, more functions would be added to the
general calculation mode of eSciCalc. Besides that, more calculation modes

such as the complex number calculation would be added.

8.4 Chapter Summary

The evaluation and maintenance for this project has been presented and described in
this chapter. The strength includes running on Windows platform, having user-
friendly interface, ease of control and manipulation, and having an easy to expand
architecture. As for the limitations, eSciCalc has limited functions, having a large but
could be larger calculation value, and the construction of binary tree with structure

instead of class.



Chapter 5 Design

Chapter 9 Conclusion

This chapter present the conclusion for this project. There are two sections in this

chapter. The first section, Section 9.1 will specify the problems and solutions of this

project. Section 9.2 describes knowledge gained and Section 9.3 state the conclusion.

9.1 Problems and Solutions

Various problems were occurred during the period in development eSciCalc. The

previously mentioned problems and the solutions are undertaken to resolve them are

described in the following sections.

Difficulty in Choosing a Suitable System Development Tools - There are too
many system development tools available to develop a stand-alone system
currently. Therefore, choosing tools is very important in developing a system.
The suitable tools can speed up System Development Life Cycle and to
minimal the unexpected bug and error. To determine which suitable to use
seeking advises and view from project supervisor and course mates engaging
in similar project are carried out. Besides, surfing through the Internet and
visiting the library help clarify some doubts.

How wide of the System Scope to be Build - This is impossible to build a full-
scale system because of time constraints. Also, inexperience and strange of
the new programming language are contributed to this program (time consume
in learning new programming language). Therefore, many discussions were
help with the project supervisor and user to outline the scope of the project to
be build. After the project scope has been defined, analysis of the system was

done and the project started to develop.

9.2 Knowledge Gained

Learned additional programming language, such as Visual C++.
LLearned how to model and develop software using Unified Modelling
Language.

Enriched experience in problem solving, especially on debugging errors.




Chapter 5 Design

e Improved on skills in writing documentation and reports.

e Learnt to work independently.

e Learnt the consequence of bad time management.

9.3 Conclusion

eSciCalc has achieved little objectives defined during the analysis phase but has
provided the functions to be named a scientific calculator. In this project, eSciCalc

focuses mainly on its user interface and calculation capabilities.

Building a scientific calculator is not at all easy although it seems easy. A lot of
research, time and effort have been involved in making this project successful and in
fulfilling the task’s requirement. There was a lot of nudge and experience gained
thought the development process of eSciCalc. One of the most essential knowledge
gained from this project is the techniques on problem solving and knowledge on
software development besides putting most of the programming method learnt these
few years in to action. In additional, by developing this program, I have gained
invaluable knowledge and experience. Besides that, I have enriched my knowledge
and gained a lot of experience in system analysis, planning, design, implementation
and testing. The development of this project by using the Software Engineering

techniques will ease the tasks of future enhancements and experience.

113



Appendix A: User Manual

Appendix A User Manual

Table of Content
Overview Of @S CiCal 0, it i T i T e T L (L T IO L LTI Lot s 54 0nsasssasssesnasnsaosens 1
FeatUTCS i sty iirecsivisniy Grelrim s s T L IO LT L e T T T I OB I o vonccvussanssnasrnssasens 1
Keyboard equivalents Of CalCt Ao Koy S e i i it i it sheh 46 s Faaihssisntessassssssssisisasessiseonnsnsnsss 4
General CalCul At Ony, e e s tsnes vty s et Ue s sen b 1 he LT et L eE T e es rs LAt saetapisssnarssbbhnssasuessesnsspssnss 4
1 [T (0 e et 8 oy e T Ty B Y TV LR 11 T TR TP T e el )
ANSWer dISpIaY Loyt s (T e T rar st iv e e PR T T r L e T et Tesarcsrestontl it b oo s s enserssneses 9
Standard deviation calculation..............coeviiiiiiiiiiiic e R, 9
(/371611114 10 1 Rl e vethorve e bt o P AT TR T EE T T e PO, Wyt () (T ATriusey & lowet 10

A.1 Overview of eSciCalc

eSciCalc is a software-based scientific calculator. As the name suggest, it performs
basic arithmetic calculations, such as addition, subtraction and multiplication, as well

as scientific calculations, such as logarithm, trigonometric and hyperbolic.

This is the first version and does not have a very wide array of functions. However,

all the basic scientific functions have been included.

A.2 Features
The features that eSciCalc provides are as follows:-

1. Calculation expression that user keys in is using mathematical standard notation.
This makes the calculation to be performed clearly visible to the user. This
eliminates key-in errors that are common in conventional calculator. Figure A-1

shows the standard notation display on the calculator screen.

2. eSciCalc has a dual line display to show the calculation expression and its answer
at once. This enables the user to check the calculation expression with the answer

they are provided. Figure A-1 shows eSciCalc’s screen with dual line display




Appendix A: User Manual

Figure A-1 eSciCalc calculator screen with standard notation and dual line display

3. All the available functions in eSciCalc could be keyed in using the keyboard or
the mouse. Some might prefer the keyboard while some might prefer the mouse.
Generally, keyboard input is faster than the mouse. However, switching between
the mouse and keyboard is daunting too. Hence, eSciCalc provide full support for
both.

4. The keypad of eSciCalé could be hidden and calculation being performed using
the keyboard only. This feature is useful when the user is using eSciCalc with
other application as hiding the keypad would provide a bigger visible area of the

bottom application that the user wants to see. Figure A-2 shows keypad hiding.




Appendix A: User Manual

¥ oSciCalc
WINPT Preferences
Standard deviation

Hicde bypad

Always on top

L ][> (™
Ltg ][ n] [sin|[cos|[tan] | 7 ][ 8 ][ 9 |[ + |[ac
[10°|[ e | [sin'][cos!|{tan’'| [ 4 || & || 6 | x |[el
(3] [sion] cosn] [sann] [1 ][ 2 ][3 ][ - ][«
["P,]["O,J [:Inﬁ'] cosh'| |tanh’ [01 ’ [M?I + [.

¥ eSciCale

Figure A-2 Select Hide keypad from the menu to hide the keypad

5. eSciCalc can also be set always on top. This feature facilitate the calculate to be
used together with other application as well. It will enable the user to read the

value provided by the calculator while working with other application.

6. eSciCale provides a separate window to perform standard deviation. It enable the
user to view the whole list of values together with their respective mean, variance,

and so on. The list could also be manipulated easily.

7. eSciCalc provides answer formatting as well. The user can chose to have the
answer shown in the normal from or the scientific form with the selected number

of significance digit.




Appendix A: User Manual

308
0

8. The value that eSciCalc calculates has a range of +1.7x1 . This range should

be adequate for most of the calculation. In fact, most scientific calculator
provides a range of £9x10*”.
A.3 Keyboard equivalents of calculator keys

The keyboard equivalents of the keys on eSciCalc are shown in Table A-1. The

keyboard equivalents for each key will be shown when the mouse is pointing at it.

Button | Key Button | Key Button | Key
ol [+ i | |Home y Ctrl + A
s - P End
X ¥ 4 Left x¥ | | Ctrl + Shift + »
+ / >3 Right ¥ Ctrl+ F
0-9 0-9 pel| | Delete P, Ctrl + P
AC Esc - Backspace e, Ctrl + C .

Table A-1 The keyboard equivalent of the keys of eSciCalc.

A.4 General calculation

Figure A-3 shows the window for general calculation. This is where the expression-

based calculations are performed. Expression-based calculation includes calculations

that could be written or keyed in as an expression.




Appendix A: User Manual

¥ oSciCalc

Calculator  Preferences

i [ | > M
g In sin ||cos || tan 7 8 9 + ||Aac
10°|| e | |sin'||cos'||tari'| | 4 || & || 6 || x ||Del
x¥ || ¥ | |sinh||cosh||tanh 1 2 3 - || =
P, [|"C, | |sinh||cosh||tank'| | O x10°|| + || =

Figure A-3 General calculation window of eSciCalc.

The expression for this calculation mode is generally divided into linear and non-
linear type. Linear expressions are calculations that could be written in a single line.
This includes arithmetic, logarithm, trigonometric and hyperbolic.  Non-linear
expressions are expressions that could not be written in a single line if standard
notation is employed. This category includes fraction, power, combination and

permutation.

A.4.1 Calculation
Arithmetic (+, —, %, +)
Expression: 3+4-5%x6+7

Keyboard: (3] [+] [4] [-] (5] [*] (6] [/] [7] [Enter]

Keypad: [ 3 |+ | 4|~ | 6| x|6]|+]|T7]|-=




Appendix A: User Manual

Screen:

Logarithm (g — logarithm base ten, In — natural logarithm, antilogarithm)

Expression: e +10'%

Keyboard: [e] [Ctrl + Shift + 4] [1] [n] [3] [+] [1] [0] [Ctrl + Shift + A] [1] (0] [3] [Enter]

X

Keypad: || 3|+ ]|10]|1g|3]|=

Screen:

Trigonometric (sine, cosine, tangent, and their arcs)
Expression: sin30+c0s30+ tan30

Keyboard:  [s] [i] [n] [3] [0] [+] [¢] [o] [s] [3] [0] [+] [t] [a] [n] [3] [O] [Enter]

Keypad: sin|] 3| 0|+ |cos| 3|0 |+ |tam| 3|0 =

Screen;

Expression: sin”'14cos ™' 1+ tan”'1

Keyboard: (] [i] [n] [Ctrl + A] (1] [+] [c] [o] [s] [Ctrl + A] [1] [+] [t) (a] [n] [Ctrl + A] [1] [Enter]

A-6



Appendix A: User Manual

Keypad: sin’

Screen:

Hyperbolic (hyperbolic sine, cosine, tangent, and their arcs)

Expression: sinh3+ cosh 3+ tanh3
Keyboard:  [s] [il [n] (1] (3] [+] [c] [0] [s] [N] [3] [+] [t] [a] [n] [N] [3] [Enter] ¢

Keypad: sinh| 3 +. lcos!l 3| + |tanh] 3| =

Screen:

Expression: sinh™ 1+cosh™ 1+tanh™ 0.5

Keyboard: ~ [sJiImin)Ctrl + AIL1) (-] [elolisInICt + AI(1] (+] talinJnliCtr + AJLJS] Enter]

Keypad:  [sinfl] 1 | + leosh| 1 | + Jaani| . [ 5 [ =

Screen:

Fraction




Appendix A: User Manual

1+§

Expression: —76—

Keyboard: [Ctrl + F][1][+] [Ctrl + F] [5] [Right] [6] [Right] [7] [Enter]

Keypad: ¥ |1 |+ | F|S5|P|6|P]|7]|-=

Screen:

Power

1
i
Expression: 2% +8°

Keyboard:  [2] [Ctrl + Shift + A] [2] [Ctrl + Shift + A] [2] [End] [+] [8] [Ctrl + Shift + A] [Ctrl + F]
(1] [Right] [3] [Enter]

Keypad: |2 | x| 2| x| 2P|+ |8|x|F|1]|P]|3

Screen:

Combination and Permutation
Expression: * P, +° C,

Keyboard:  [Ctrl + P] [5] [Right] [2] + [Ctrl + C] [5] [Right] [2] [Enter]

Keypad: Pls5|p|l2]|+]|c|65|p|2]=




Appendix A: User Manual

5 5
Rat Gy
Screen: = 30

A.4.2 Answer display format

The answer display filed could be set according to the user’s preference. There are

two format provided by eSciCalc. The answer display format is specified using the

menu under Preference — Answer style.
Normal

The answer would be display without specific format and depending on the figure. If

the value is too large and the exponent part exists, it will be shown.

Scientific

The answer would be displayed according to the number of significance digits
specified. If the answer does not have that many significance digits, it zero would be
placed and if there are more digits than the specified significance digits, it would be

rounded to the number of significance digits wanted.

A.5 Standard deviation calculation

eSciCalc provides standard deviation calculation support through a separate window
(see Figure A-4). This separate window shows the whole list of values in the sample
to be calculated. This has also let the user to be sure that the answer they get is the
one they wanted. Another advantage is the ability to edit the list easily in case of error

or similar list that they need to calculate.

L



Appendix A: User Manual

~Values —
n .13
¥ 80
o? 1400
fes 37.4165738677394
Sx 1040
Sx2 101400

Delete Selected | Delete Al

Value i1 40 [Ed&“]

rreaneniaien

Figure A-4 Standard deviation calculation window of eSciCalc.

The bottom right comer of the window sited the controls that is used to manipulate the
list. The button labelled “Delete All” is used to clear the list. As for deleting only a

particular value, select the value with the mouse and press the button labelled “Delete
Selected”

In order to add values to the list, fill the text box next to the label value with the

number wanted to add and press the button to its right labelled “Add”.

Every time the content of the list changes, the six values will be recalculated
automatically.

A.6 Conclusion

Thank you for using eSciCalc,

A0





