
Faculty of Computer Science and

Information Technology

University of Malaya

e-Scientific Calculator

LIEW CHEE KIT

WEK990011

Under Supervision of

Assoc. Prof. Dr. Lee ai Peck

u mittcd y in 1 artial ulfillm nt

if th· R quir .ment f r the

D gr •of Bachelor of omputer cience

S' i n 2 1/2 2

Univ
ers

ity
 of

 M
ala

ya

Abstract

Abstract

This report is to specify the development of a software-based scientific calculator

named eSciCalc. It is a standalone application running on the Microsoft Windows

platform. There are nine chapters in this report.

The first chapter is the introduction to the project. Information of the project related to

its background, motivation, problem definition, objective to achieve, project scope,

expected outcome, and the proposed schedule is provided in this chapter.

The second chapter will present the result of literature review performed. The review

on existing calculator and development tools are included here.

The third chapter will describe the development approach taken for this project. The

strength of the approach is also included.

The fourth chapter states the result of requirements capture and analysis. The

requirements are captured as use cases and the flow of even for each use case is

included. ln analysis, use case realisation in form of analysis classes is provided for

each use case using collaboration diagrams and textual flow of event.

The fifth chapter wilt specify the software design. This chapter includes the use case

realisation in term of design classes for each use case with a sequence diagram and

textual flow of event.

Chapter six states the implementation approach employed in the project.

Chapter seven states the test model use in this project. This chapter include the te t

case and the test procedure that use to test the software.

Chapter eight states the evaluation of this project. This chapter include the strength,

limitation and future enhancements of the software.

Chapter nine states the conclusion. Which include the problems and solutions,

knowledge gained and projects conclusion.

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

Acknowledgement

I would like to express my deepest gratitude to my supervisor for this project,

Associate Professor Dr. Lee Sai Peck, for spending her precious time on supervising

me throughout the two semesters.

I would also like to express my special thanks to Mr Chiew Thiam Kian, my

moderator for this project, for spending time to read my late report.

II

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Table of Contents

Abstract 1

Acknowledgement 11

Table of Contents 111

List of Figures rx

List of Tables xii

Chapter 1 Introduction 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Project Overview 1

Motivations 2

Objectives of the project 2

Problem definition 3

Project Scope 4

.Expected Outcome 4

Project Schedule 5

Chapter Summary 5

Summary of Proposal 5

References 6

Chapter 2 Literature Review 7

2.1 Overview 7

2.2 A Review of Existing Scientific Calculators 7

2.2.1 CASIO S-V.P.A.M fx-570w Electronic Scientific Calculator 7

2.2.2 Microsoft® alculator version 5.0 12

2.3 A Review of Development Tools 15

2.2.3 AllerCalc 2.11 13

2.3. I Programming Languages 15

2.3.1.1 Microsoft Visual Basic 6.0 15

2.3.1.2 Java I 5

2.3.1.4 Microsoft Visual 1 6.0 17

111

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

2.3.1.5

2.3.2

2.3.2.1

2.3.3

2.3.3.l

2.3.3.2

2.3.3.3

2.3.4

2.3.4.1

2.3.4.2

SQL ·· 17
Componentisation 18

ActiveX 18

Relational Databases 20

MySQL 21

Microsoft Access 2000 22

SQL Server 2000 23

Database Connectivity 25

Open Database Connectivity (ODBC) 25

Java Database Connectivity (JDBC) 26

2.4 Proposed Tools 26

2.5 Chapter Summary 26

2.6 Reference 27

Chapter 3 Methodology 28

3.1 Software Development Approach 28

3.1.1 The Core Workflows I

3.1.1. l Requirements 31

3.1. l. l. I Requirements Captures .

3. I. l .1.2 Capturing Requirements as Use Cases 2

3. l.1.1.2.1 Activity: Find actors and use cases .

3.1.1.1.2.2 Activity: Prioritise use cases... 4

3.1.1.1.2.3 Activity: Detail a use case 35

3.1.1.1.2.4 Activity: Prototype user interface 36

3.1.1.1.2.5 Activity: Structure the use-case model. 37

3.1.1.2 Analysis 38

3.1.1.2.1 Activity: Architectural analysis 39

3.1. 1 .2. l Activity: Analyse a use case 40

3.1.1.2.1 Activity: Analyse a class 42

3.1.1.2. I Activity: Analyse a pa ·kag ' 43

.1.1.3 Design 44

3.1.1.2.1 Activity: Ar .hltectural design 45

3.1.1.2.1 Activity: I csiµ,11 a us· .ase 47

IV

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

3 .1.1.2.1 Activity: Design a class 48

3.1.1.2.1 Activity: Design a subsystem 50

3 .1.1. 4 Implementation 51

3.1.1.2.1 Activity: Architectural implementation 52

3. l.1.2.1 Activity: Integrate System 52

3.1.1.2.1 Activity: Implement a subsystem 53

3.1.1.2.1 Activity: Implement a Class 54

3.1.1.2.1 Activity: Perform unit test 55

3. 1. 1. 5 Test , 5 6

3.1.1.2.1 Activity: Plan test 57

3.1.1.2.1 Activity: Design test 57

3.1.1.2. l Activity: implement test 59

3. t.1.2.1 Activity: Perform integration test.. 60

3.1.1.2.1 Activity: Perform system test.. 61

3.1.1.2.1 Activity: Evaluate test 62

The Iteration Worktlows 2 3.1.2

3.1.2.1

3.l.2.2

3.1.2.3

3.1.2.4

l . . . ? nceptron 1teratton.......... _

Elaboration iteration .

Construction iteration 63

Transition iteration 64

3.2 Strength of the proposed a pp roach 64

3.3 Chapter Sum ma ry 66

3.4 References 66

Chapter 4 Requirements Capture and Analysis 67

4.1 Requirements Capture 67

4.1.1 Actor and Use Cases 67

Actor: User 67

Use Case: Perform eneral Calculation 67

Use ase: Perform Standard Deviation alculation 69

Use 'use: aves alculation to Memory List. 70

Use asc: Retrieve ulculation from Memory ist 71

Use asc: Retrieve value from the memory list.. 72

v

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

4.1.2

4.1.3

Use Case: Delete calculation from the memory list 73

Use Case: Retrieve Calculation from History List.. 73

Use Case: Retrieve Constant from Constant List 74

User Interface 74

Use-Case Model 77

4.2 Analysis 78

4.2.1 Use-Case Realisation - Analysis 78

Use Case: Perform General Calculation 78

Figure 4-8 and Figure 4-9 illustrates the use case realisation of use case Perform

General Calculation 78

Use Case: Perform Standard Deviation Calculation 80

Use Case: Save Calculation to Memory List.. 80

Use Case: Retrieve Calculation from Memory List 81

Use Case: Retrieve Value from Memory List 82

Use Case: Delete Calculation from Memory List 82

Use Case: Retrieve Calculation from History List 8

Use Case: Retrieve Constant from Constant List.. 8

4.2.2 Analysis Class 84

4.3 Chapter Summary 87

4.4 References 87

Chapter 5 Design 88

5.1 Use-Case Realisation - Design 88

Use Case: Perform General Calculation 88

Use Case: Perform Standard Deviation Calculation 91

Use Case: Save Calculation to Memory List. 92

Use Case: Retrieve Calculation from Memory List 94

Use Case: Retrieve Value from Memory List.. 95

Use Case: Delete Calculation from Memory List 96

Use a c: Retrieve alculation from History List.. 97

sc use: Retrieve onstant from onstant List. 98

5.2 Design "'l11ss ••.•.•••••.•.•••••••••••••••••.••••••..••••••••••••• 99

5.3 .hapter ummary 101

VI

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

5.4 References 101

Chapter 6 Implementation 102

6.1 Core components and development approach 102

6.1.1 Calculator screen 102

6.1.2 Expression classes 102

6.2 References 103

Chapter 7 Testing 104

7 .1 Test Case 104

Use Case: Perform General Calculation I 04

Use Case: Perform Standard Deviation Calculation 105

Use Case: Save Calculation to Memory List. I 06

Use Case: Retrieve Calculation from Memory List.. l 06

Use Case: Retrieve Value from Memory List 106

Use Case: Delete Calculation from Memory List I 07

Use Case: Retrieve Calculation from History List I 07

Use Case: Retrieve Constant from Constant List l 07

7.2 TestProcedure 108

Test case supported: calculation statement 1+(2+3)/ sin20 l 08

Test case supported: standard deviation calculation statement 3, 4, 5 108

7.3 Chapter Summary 109

7.4 References l 09

Chapter 8 Evaluation 110

8.1 Strength 110

8.2 Limitation 110

8.3 Future Enhancements 111

8.4 Chapter Summary 111

Chapter 9 Conclusion 112

9. ·1 Problems 1111tl Solutions ...•.•.... 112

9.2 Knowledge Gained 112

9.3 Conclusion•... 113

VII

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Appendix A User Manual•.......•.. A-1

A.1 Overview of eSciCalc••..•...•..•.....•...........••...........................•......................•... A-1

A.2

A.

A.4

Features .•...•.............•..................................•.. A-1

3 Keyboard equivalents of calculator keys •••••••..•...•.•..•.•••................•••....•.......... A--4

General calculation A-4

A.4.1

A.4.2

Calculation A-5

Answer display format A-9

A.5

A.6

Standard deviation calculation A-9

Conclusion A-10

VIII

Univ
ers

ity
 of

 M
ala

ya

List of Figures

List of Figures
Figure 1-1 Fishbone diagram analysing the deficiency of a typical scientific calculator 2

Figure 1-2 Gant chart showing the schedule of this project.. 5

Figure 2-1 The relationships between components of Java 16

Figure 3-1 Phases further divided into more iterations 29

Figure 3-2 Core workflows in iteration 29

Figure 3-3 Iterations in action 30

Figure 3-4 Emphasis shifts over the iterations, from requirements capture and analysis toward

design, implementation, and testing 30

Figure 3-5 The workflow of capturing requirements as use cases 33

Figure 3~6 The input and result of activiy finding actor and use cases 34

Figure 3-7 The input and result of activity prioritise use cases 35

Figure 3-8 The input and result of activity detail a use case 36

Figure 3-9 The input and result of activity prototype user interface 37

Figure 3-10 The input and result of activity structure the use-case model 38

Figure 3-11 The workflow in analysis <

Figure 3-12 The input and result of activity architectural analysis 40

Figure 3-13 The input and result of activity analyse a use case 42

Figure 3-14 The input and result of activity analyse a class 43

Figure 3-15 The input and result of activity analyse a package 43

Figure 3-16 The activities in design workflow 45

Figure 3-17 The input and result of activity architectural design 4 7

Figure 3-18 The input and result of activity design a use case 48

Figure 3-19 The input and result of activity design a class 50

Figure 3-20 The input and result of activity design a subsystem 51

Figure 3-21 The activities in the implementation workflow 51

Figure 3-22 The input and result of activity architectural implementation 52
Fi 1 3 23 Th . d ' I 1· . . . 1 gure - e input an resu to auvity integrate system 53

Figure 3-24 The input and result of activity implement a sub system 54

Figure 3-25 The input and re sult of activity implement a class 55

Figure 3-26 The input and result of activity perform unit test 56
Fi) ' 3 27 'fh , kO , gurc - c acuvuies in wor ow test 56

IX

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figure 3-28 The input and result of activity plan test 57

Figure 3-29 The input and result of activity design test.. 59

Figure 3-30 The input and result of activity implement test 60

Figure 3-31 The input and result of activity perform integration test.. 61

Figure 3-32 The input and result of activity perform system test 61

Figure 3-33 The input and result of activity evaluate test 62

Figure 3-34 Models of the Unified Process 65

Figure 4-1 Statechart diagram showing the states of use case Perform General Calculation .. 69

Figure 4-2 Statechart diagram of use case Perform Standard Deviation Calulation 70

Figure 4-3 Statechart diagram showing the states of use case Saves Calculation to Memory

List. 71

Figure 4-4 User interface design for use case Perform General Calculation 75

Figure 4-5 User interface design for use case Perform Standard Deviation Calculation 76

Figure 4-6 User interface design for the four lists 76

Figure 4-7 Use cse model of eSciCalc 77

Figure 4-8 Collaboration diagram describing key-in part of use case Pcrf rm encrnl

Calculation 78

Figure 4-9 Collaboration diagram describing the execute expre sion part of the use case

model 7

Figure 4-10 Collaboration diagram describing use case Perform Standard De iation

Calculation 80

Figure 4-11 Collaboration diagram describing use case Saves Calculation to Memory List .. 80

Figure 4-12 Collaboration diagram describing use case Retrieve Calculation from Memory

List 81

Figure 4-13 Collaboration diagram describing use case Retrieve Value from Memory List .. 82

Figure 4-14 Collaboration diagram describing use case Delete Calculation from Memory List

·· 82
Figure 4-15 Collaboration diagram describing use case Retrieve Calculation from History List

·· 83
Figure 4-16 ollaboration diagram describing use ca e Retrieve onstant from Constant List

.. 83

Figure 4-17 lass diagram showing the analysis classes of e 'ci ale 86

x

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figure 4-18 The generalisation relations among the analysis classes 87

Figure 5-1 Sequence diagram describing use case Perform General Calculation 90

Figure 5-2 Sequence diagram describing use case Perform Standard Deviation Calculation . 91

Figure 5-3 Sequence diagram describing use case Save Calculation to Memory List.. 93

Figure 5-4 Sequence diagram descirbing use case Retrieve Calculation from Memory List .. 94

Figure 5-5 Sequence diagram describing use case Retrieve Value from Memory List.. 95

Figure 5-6 Sequence diagram describing use case Delete Calculation from Memory List 96

Figure 5-7 Sequence diagram describing use case Retrieve Calculation from History List.. .. 97

Figure 5-8 Sequence diagram describing use case Retrieve Constant from Constant List.. 98

Figure 5-9 Class diagram showing the design classes IOO

Figure 5-10 Class diagram showing the generalisation relationship of design classes IO J

Figure A-1 eSciCalc calculator screen with standard notation and dual line display A-2

Figure A-2 Select Hide keypad from the menu to hide the keypad A-3

Figure A-3 General calculation window of eSciCalc A-5

Figure A-4 Standard deviation calculation window of eSciCalc A-1 O

XI

Univ
ers

ity
 of

 M
ala

ya

List of Tables

List of Tables
Table 3-1 The set of activities for the requirement capture and their equivalent output 32

Table 3-2 Comparison of the use-case model and the analysis model. 39

Table 3-3 Comparison of the analysis model and the design model.. 45

Table 4-1 Analysis classes and their responsibilities and attributes 85

Table A-1 The keyboard equivalent of the keys of eSciCalc A-4

XII

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

Chapter 1 Introduction

This chapter will form the introduction to the project. The chapter will start with an

overview of the project in Section 1.1. Then, the motivation will be presented in

Section 1.2 while the objectives of the project will be presented in Section 1.3. The

definition of the problem domain is stated in Section 1.4 "Problem Definition", while

the scope of the project is stated in Section 1.5. After defining the project scope, the

expected outcome of this project is presented in Section 1.6 "Expected Outcome", and

the schedule of the project is stated in Section 1.7. The summary of this chapter and a

summary of the following chapters are provided in Section 1.8 and Section 1.9

respectively. Finally, Section 1.10 will state the references for this chapter.

1.1 Project Overview

The outcome of this project is a standalone software-based scientific calculator named

eSciCalc, which stands for eSciCalc.

This software-based calculator is implemented standalone rather than web ba ed

because we see scientific calculators as personal assistant. A scientific alculator

should be highly available, provide fast response, and the data stored in the memory

space should be personal and could be preserved for as long as the user needs it. A

web-based application will only be available if the computer has access to the World

Wide Web and when the server that hosts the application i up. A for last t\ o

reasons, which are to provide fast response and personal memory space, it would be

difficult to achieve with a web-based application.

The mechanical calculating machine that is capable of performing addition,

subtraction, multiplication and division operations has been introduced since the

1600s. However, the first hand-held scientific calculator was only introduced by

Hewlett-Packard in 1972 [I].

After evolving for about thirty years, the scientific calculator available currently

provides 1:1 very wide range of functions. Hence, adding more functions to the already

wide collection is not the purpose of this project.

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.2 Motivations

This project is motivated by the discovery of a certain weaknesses of some existing

scientific calculators. The main weakness identified is with the user interface.

In order to obtain a clearer view, problem analysis has been performed to find the

deficiencies of a typical scientific calculator. The result is illustrated in Figure 1-1.

The fishbone diagram in Figure 1-1 has outlined six problems of a typical scientific

calculator. These problems will be further discussed in Section 1.4 "Problem

Definition".

keys not well accelerated
(software-based

scientific calculator)

keys too small
and overly
multifunction

small
screen

Deficiency

-----~-----'-----..-----,---~---"'---a..l of a typical
scientific
calculator

single screen for
all calculation

types

flow of keying in
problem not well

designed

non­
standard
notation

Figure 1-1 Fishbone diagram analysing the deficiency of a typical scientific calculator

1.3 Objectives of the project

The objective of this project is to:

• Provide a better user interface that would promote the use of standard

notation, easy to redo, and reduce error rate and easy rechecking.

• Design with an easy to expand architecture. This would enable the product to

support a more complete set of calculations.

• Provide a product that could reduce the use of papers and pen in calculations.

2

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.4 Problem definition

Out of the five problems stated in Figure 1-1, the problem tagged small screen is the

biggest contributor to the user interface problem. This is due to the fact that the screen

plays a lot of important roles. It is primarily used to display the result of calculations

and to display the figures as the user key in the calculation. Besides, it is also used to
indicate the current mode of the calculator.

As a result of this small screen playing such important roles, other problems such as

flow of keying in problem not wel1 designed, and the use of non-standard notation has
arisen. This is due to the fact that key-in flow and the use of notation is very much
affected by the display screen.

Another common problem of a scientific calculator is the use of one user interface for

all calculation modes. The user interface of a conventional scientific calculator

consists of one screen for output and a keypad for input. However, there are functions

supported by these calculators that require a different user interface. One example is

the standard deviation calculation, where a list of data has to be kept in order to obtain

the value of mean, sample, population, and so on. The list for this calculation is not

visible to the user and the list would not be kept by the calculator as well, since

keeping the exact figure of the entire list would take up lots of memory space. The

calculator will keep only values for sum of data, sum of square, and number of data as

these data would be adequate for them to calculate the results user wanted. As a

result, the user will never be able to confirm that the data keyed-in is totally the same
with the list of data the user wants to calculate.

The final two problems identified are the keys being too small and overly

multifunction and the keys for software-based calculators are not well accelerated.

The former is due to the wide col1ection of functions that have to be supported while

preserving the size of the calculator. As for the latter problem, keys for software­

based scientific calculator should be well accelerated to enable the user to work faster.

The user should not be made to press the numerous keys on the keypad of the
calculator with the mouse.

3

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.5 Project Scope

The product of this project will be developed using the object-oriented method. The

main purpose of using the object-oriented method is to realise the objective of

designing with an easy to expand architecture. Besides, the product, which is a

scientific calculator, would be made up of many classes to support the wide variety of

calculation types and these classes have a high possibility of reuse.

This calculator will support two calculation modes. The first mode is named general

calculation. This mode employs an expression-based calculation 1 method. All

supported calculations that have an expression form including scientific calculations

will be performed here. The second mode is the standard deviation mode. As the

name suggests, calculations concerned with standard deviation will be performed in

this mode.

Besides the three calculation modes, this calculator will provide three types of list to

assists calculations. They are memory list, history list, and constant list. The memory

list will provide fifty slots for calculations storage while the history list will

automatically store the latest ten calculations.

1.6 Expected Outcome

The outcome of this project is expected to consist of the following.

• A standalone software-based scientific calculator running on the Microsoft

Windows platform.

• An online help system and user's manual in compiled HTML (.chm) format.

• A printed user's manual.'

1 Expression-based calculation is a calculation method where the calculator does not calculate when the user is

keying in the calculation. The calculator only performs calculation when the user presses the equal sign after the

whole statement is keyed in. The calculator will first evaluate the expression for error. Error message will be

shown if there is error in the expression, while the answer will be provided if there is no error.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

1.7 Project Schedule

2001 2002
ID Task Name Start End

Jun I Jul I Aug I Sep I Oct I Nov j Dec Jan I
1 Inception phase 0410612001 23106/2001-
2 Elaboration phase 24/06/2001 23/08/2001

3 Construction phase 24/08/2001 21/01/2002

4 Transition phase 22/01/2002 10/02/2002 •
Figure 1-2 Gant chart showing the schedule of this project

Figure 1-2 illustrates the schedule of the project with a Gant chart. The tasks

identified for this project follows the development approach in used. The approach is

described in Section 3. I "Software Development Tools".

1.8 Chapter Summary

The output of this project is a software-based standalone scientific calculator. The

objectives that the project wants to achieve is to provide a better user interface, design

with an easy to expand architecture and to reduce the use of papers and pen in

calculations. The six problems identified with a conventional scientific calculator are

the small display screen, the use of non-standard notation, key-in flow not well design,

the use of one user interface for all calculations, having small and overly multifunction

keys, and the keys of software-based calculator being not well accelerated. The

product of this project will support two calculation modes: general calculation and

standard deviation calculation, and three lists: memory list, history list and constant

list. Besides the scientific calculator, a help system and users manual will be provided

as the outcome of this project.

1.9 Summary of Proposal

Chapter 1 This chapter introduces the project.

Chapter 2 This chapter present the result of literature review performed on two

areas: related product and options of development tools.

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 1 Introduction

Chapter 3 This chapter provide a description on the methodology employed for

this project.

Chapter 4 This chapter present the results of the requirement capture and

analysis for the project.

Chapter 5 This chapter present the design of the project

Chapter 6 This chapter present the implementation part of the project.

Chapter 7 This chapter describes the software testing for this project.

Chapter 8 This chapter will form the evaluation of the software product.

Chapter 9 This chapter covers the conclusion of the project.

Appendix A The user manual of eSciCalc.

1.10 References

[1] McGrath, K.A. (Ed). (1999).World of Invention. United States: Gale

Research.

6

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Chapter 2 Literature Review

This chapter documents the result of literature review for this project. The chapter

starts with a brief overview in Section 2.1. After the overview, the reviews of existing

calculators are descried in Section 2.2. Section 2.3 will present the result of

development tool reviews. The proposed tool is included in Section 2.4 after the

review. Then, the summary of this chapter will be stated in Section 2.5, while Section
2.6 concludes the chapter with references.

2.1 Overview

Literature review is an analysis that is used to gather information about the system we

intend to develop. This approach is used to evaluate existing system on the same topic

so that a better product can be developed. It also includes the comparison of a few

software, tools and approach to get the best outcome. Without this analysis, we would
not be able to identity the strengths and weaknesses.

The literature review for this project will starts with reviewing existing scientific

calculators and followed by reviewing the various development tools in order to

decide the best set of tools for this project.

2.2 A Review of Existing Scientific Calculators

Six scientific calculators have been reviewed but only three are specified in this

section. This is because the other three does not impose any interesting features. One

of the reviewed calculators is an electronic scientific calculator while the others are all

software-based scientific calculator.

2.2.1 CASIO S-V.P.A.M fx-570w Electronic Scientific Calculator

The review of this calculator is carried out together with its user manual.

Modes

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Basically there are five calculation modes (COMP, CMPLX, SD, REG and BASE),

three angle unit modes (DEG, RAD and GRA), and three display modes (FIX, SCI

and NORM with an additional ENG attribute).

The calculation modes are used to specify the main type of calculations to be

performed. The five calculations modes and their description are as followed: -

• COMP: used to perform all the general calculations.

• CMPLX: the acronym refers to the word complex. This mode is used when

performing complex number calculations.

• SD: the acronym stands for standard deviation. It is used to carry out standard

deviation calculation.

• REG: the acronym refers regression. There are six types of regression

provided in this calculator. The six types of regression calculation supported

are Lin for linear, Log for logarithmic, Exp for exponential, Pwr for power,

Inv for inverse, and Quad for quadratic.

• BASE: this mode is meant for calculation related to conversion between

number systems and to perform logical operator calculations on them.

As for the angle units, all three arc offered in ihis calculator. They arc degree, which

is labelled DEG, radiant labelled RAD and gradient being labelled GRA. Functions

that perform calculation based on angles (e.g. trigonometry and hyperbolic) will

produce different result with different angular modes being employed.

There are three modes offered for specifying the way answer is displayed. One of

them is NORM, which reflects the word normal. It cancels the display effect that is

provided when SCI or FIX is set and causes the answer display back to normal. The

second mode is SCI, which refers to scientific. It enables the user to choose the

number of significant digits to be displayed. Finally, it has FIX, which enables the

user to set a fixed number of decimal points to be displayed. Only one of these three

modes can be used at a time. Besides these three, there is one mode named ENG,

which indicates the word engineering that can be used together with all the three

previously revealed modes. It causes the answer displayed with terms such as Mega,

kilo, micro, etc rather than the exponential way. In other words, 5000 will be

displayed as 5 K rather than 5x103.

8

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Functionality

The general calculations that can be performed in the COMP modes are as follows:

• Basic calculations available on a standard calculator: addition (+), minus (-),

multiplication (x), division (+), percentage (%) and negation (-)

• Memory: provides nine slots to store figures. They are labelled A, B, C, D, E,

F, X, Y, and M. However, the addition and subtraction operations are offered

for memory slot M only.

• Index: square (x\ square root ('1), cube (x'), cube root (3--./), power (x"), root
ex--./) and reciprocal (x').

• Trigonometry and hyperbolic: sine (sin), cosines (cos), 1angent (tan), arcsine

(sin"), arccosines (cos"), arctangent (tan"), and the button hyp to transform

each trigonometric function into their equivalent hyperbolic function.

• Logarithms: common logarithm (log), common antilogarithm (10x), natural

logarithm (In) and natural antilogarithm (ex).

• Probability: factorial (x!), permutation tPr) and combination (nCr).

• Integration: (ldx).

• Coordinate: polar to rectangular and rectangular to polar.

• Constants: the more commonly used pie (n) shown as button. Forty more

accessed through the button labelled CONST.

• Large number input: exponential (EXP), prefixex (Tera - T, Giga - G, Mega -

M, kilo - k, mili - m, micro - µ,nano - n, pico - p, femto- t).

• Others: fraction (a b/c and d/c), sexagesimal I decimal conversion (0 ' " and

+-), random number generator (Ran#), angular unit change (DRC?>), forty

units conversion (CONV)

As for the CMPLX mode which supports complex number calculations, most of the

functions above are still offered since the real part as well as the figure part of the

imaginary part can be made up of index, logarithms, trigonometric, hyperbolic, etc.

functions. The functions specific to this mode are argument display (arg) and absolute

display (Abs or lzl).

9

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

In the SD mode, the mode that supports standard deviation calculation, it provides

data entry and data delete functions to enable the management of data in the list. The

calculation of mean (x), population (xa n) and sample (xa,,_1) are automated too.

User Interface

Display screen: The display screen encompasses of two lines, the upper line is to

enable the user to keep track of the calculation statement keying-in process while the

bottom line is to display the answer to the calculation statement. The bottom part of

the screen has indicators to specify the current modes and conditions the calculator is
m.

The calculator works differently compared to the traditional calculator in the sense

that it has a specific line for calculation statement input. The whole line of calculation

statement is keyed in first and the calculator will execute the input to produce the

answer when the equal sign is pressed. Implementing the calculation this way has

reduced the error rate. This is due to the fact that the calculation statement will not be

erased and is shown together with the answer. This will facilitate the user to make

sure that the calculation statement is the one he/she wanted and the answer will be the

correct one. This is different from the traditional method where the user will never

know what had been keyed in.

Besides, having a different line for calculation statement key-in has also promoted

easy undo and redo. Since the statement will not be erased after the answer is

displayed, the user can easily edit the statement to the one he/she wanted. This has

eliminated the need to re-key in the statement, which is almost the same when an error

has been made as well as having to calculate a similar calculation with different set of

figures.

In spite of all these advantages, the dual line display is still a single line input and
single line output display. Hence, calculations that require a bigger display for input

and output such as matrix are still very difficult to be implemented if not impossible.

Even if they are being implemented, the notation would be rather confusing since it

would have to be modified to suit this single line input and output. For example, the

10

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

fraction, which is being implemented in this calculator, the value for 2f is shown as

2J 3J 4, while 2J 3 would be equivalent tof.

Moreover, the indicator at the bottom of the screen is a setback to its interface design.
The indicator is small and is using acronym to a very extreme level. This is especially

true with the angular measurement indicator, which is considered a vital information

as the answer produced by the functions that uses angular units might not be the one
user wanted if this mode is set wrongly. This calculator has uses the letter D for
degree, R for radiant and G for gradient.

Besides, the standard deviation function support uses the same screen as all other
functions. It faces the problem similar to the one stated in Section 1.4 "Problem

Definition". The user could not check the list to verify the answer.

Keypad: This model has promoted the grouping of key type. Key type grouping will

accelerate key finding and will also endorse a user interface that is more

understandable. This calculator has grouped the keys into three groups, one with the

control keys such as arrows and shift, another with keys for scientific calculations, and
the third group for arithmetic and statistical calculations.

Besides key grouping, the functions that require the press of the shift key for access

are mostly the inverse of the original functions for that button. This designation of

shift functions has also accelerated the finding of functions.

The designer has used colour to differentiate between functions that will be available

in certain mode only. Colours have been a very good choice in this context since the

area available is too small for any icon or similar things.

Notation: There are calculations in this calculator not following the standard

mathematical notation. Among the contributor in to this problem is the

implementation of functions that require a bigger display. Using non-standard

notation would disrupt the work of its user besides being difficult to learn. One of the

major objectives of user interface design is to enable users to fully concentrate on their

work and not on how to use certain product to do their work. This non-standard

notation will affect the user's concentration and will increase error rate of one's work

as well.

11

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Others: This calculator has a quick reference card as a companion. This card is placed

in its cover to enable quick reference to functions that are impossible to be memorized.

Among the information placed, here are the forty constants and their respected

numbers for retrieval as well as the forty unit conversions with their retrieval numbers

too. This is a very good way to compliment its inability to show the whole list for the

user to choose from.

One of the major setbacks to interface design in this calculator is the extreme use of

acronyms. This might be caused by the limited size for display, but the use of

acronym has gone to an unacceptable level. Acronyms have been used in almost

every part of the calculator. The names of the various types of modes are all in

acronyms, the labels of buttons are using acronyms, and the error messages have

acronyms as well.

2.2.2 Microsoft® Calculator version 5.0

Modes

There are three calculation modes in this calculator, the general calculation mode,

standard deviation mode, and base-n calculation mode.

This calculator also supports the three angular measurement units, radians, gradients,

and degrees.

Functionalities

As for functionalities, this calculator supports only the very basic ones. The scientific

calculations supported are the trigonometric and hyperbolic common and natural

logarithms, and the indexes. In base-n, it provides the logical operations Mod

(modulus), And (bitwise And), Or (bitwise Or), Xor (bitwise exclusive Or), Lsh (shift

left), shift right and Not (bitwise inverse). The standard deviation mode provides only

the average, sum, and standard deviation.

User Interface

Display screen: This calculator uses the single line displays. The mode indicators are

not placed in the display screen. Instead, it uses radio buttons for mode change as well

as mode indicator.

12

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

The standard deviation mode for this calculator has a separate window to store the list

of data. Hence, the data of the list is visible to the user. However, data input and

answers output still use the main screen of the calculator.

Keypad: There are not many keys on the keypad since the functions supported are

very minimal. Keys grouping are utilised too but the grouping is rather confusing.

One example is the keys for arithmetic calculation and the logical calculations being

placed in one group. Another example is the placement of constant pie together with

the memory group.

Besides grouping, colours are used to further differentiate the keys too. However,

there are labels of keys that have become hard to read due to the use of colour. This is

especially true for the keys in scientific calculation group. The labels of those keys

are light magenta in colour.

In spite of all the problems stated above, the keys of this calculator are all accelerated.

This has enabled the user to perform calculations faster. However, mapping the

functions of a scientific calculator keypad is a very subjective work. Different users

might see the mapping of keys differently.

This calculator uses checkboxes in place of the hyperbolic and inverse keys use in

most calculators. The tick in the checkbox will act as the indicator that the key has

been pressed as opposed to the convention used by many calculators where the

indicator is in the display screen.

2.2.3 AllerCalc 2.11

Modes

This calculator has only one mode, the scientific calculation mode. However, it

supports all types of functions in one user interface and one key-in method.

Functions

The collection of functions supported by this calculator is quite large. It supports the

scientific calculation, statistical calculation, and even financial calculation.

User Interface

13

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Display screen: This calculator uses the expression-based calculation. It provides a

big text area for calculation and all the calculations performed will stay in the text area

until the user clears them. The content of the text area is named worksheet. The user

could save the worksheet for future use. All the calculations performed could be
saved as a file. However, due to the small font employed for this calculation text area,

the screen would look very messy when the number of calculations appended
increases.

Keypad: The keypad has a very minimum set of keys, while the other functions can be

selected from the menu. As for keying-in, using the keyboard alone is enough since

the expression is made up of characters and not a token. The user could just type in

the functions one character at a time. Even though this may be a very flexible way,

the user would have to memorise the functions and the number of parameters. If the

wrong number of parameter is keyed in, the application will only tell you that the

number of argwnent is wrong and does not tell the user how many arguments should

there be. The application should at least give a brief description of the functions and

provide the number of arguments as well as what those arguments stands for. Even in

the help system, only a very small set of functions is described with the number of

arguments. For most of the functions, only a one-line description of what the function
returns is provided.

It follows Microsoft Calculators 5.0's way of dealing with inverse and hyperbolic

functions, which uses the checkbox. As for the indicator for angular unit mode and

number base mode, this calculator uses a place other than the screen for this purpose.

Furthermore, the use of acronym is acceptable and the font size for these indicators is

quite big. However, the user would again have to access the menu to change them.

Others: The menu system has been overly exploited in this calculator. The menu is

used to change the angular unit, number base, answer display format, functions

selection, and so on. Beside this, the arrangement is a bit messy as well. This is

pointed to the menu "option". There are eighteen menu items in this menu alone and

out of this eighteen, five menu items is a further drop down menu. The functions

placed inside this menu include setting the display option, saving and loading of

worksheets, setting the calculation options (angular unit, number base, number of

14

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

significant digit and display format), to show the unit conversion window and finance

box, and to exit the application. Many of the functions in this menu should not be

placed here. Examples are the save and load worksheet, the show unit conversion and

finance box, and exit. They have nothing to do with options.

2.3 A Review of Development Tools

2.3.1 Programming Languages

2.3.1.1 Microsoft Visual Basic 6.0

Microsoft Visual Basic is a good tool for developing Windows applications with
Graphic User Interface (GUI). There is a wide variety of components available to
shape the user interface.

Microsoft Visual Basic is event-driven [l]; meaning code remains idle until called

upon to respond to some event (button pressing, menu selection and so forth). An

event processor governs Visual Basic. Nothing happens until an event is detected.

Once an event is detected, the code corresponding to that event (event procedure) is
executed. Program control is then returned to the event processor.

Microsoft Visual Basic 6.0 also supports the use of ActiveX components. In fact, it

supports the development of ActiveX components as well. Besides it has a set of
powerful database access tools as well.

As for the case of this project, Microsoft Visual Basic 6.0 has insufficient support for

scientific calculation.

2.3.1.2 Java

Java is a product of Sun Microsystems Inc. It is a programming language, a runtime

system, a set of development tools and an application-programming interface (API)

[2]. The relationships between these elements are depicted in Figure 2-1.

As illustrated in Figure 2-1, Java programs are written using predefined software

packages of the Java API. The source code is compiled using the Java compiler into a

form called compiled byte code, a form that can be executed on the Java virtual

machine. The Java byte code is then interpreted as it is executed. The use of .lava

15

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

virtual machine has enabled the compiled files to be executed on many platforms as

long as the Java virtual machine for that platform is available and is installed on the

computer. However, the Java virtual machine will take up some space. This is due to

the additional software, such as dynamic link libraries, that are needed to implement

the Java API on the operating system and hardware. For example, Java 2 Runtime

Environment Standard Edition vl.3 will take up 20.8 MB for installation. Besides, the

application developed will need a higher hardware requirement for runtime since it is

not executed directly with the operating system and the computer hardware.

Java

Vir1u 1 mact · e

Javn
A Pl

......... ··r--..i....-"""-------------..,
Hast

pla!form
Compul r hardware

(Spore, Po >166, Power PC, Ad so on)

Operating system

Figure 2-1 The relationships between components of Java

Java classes and objects directly support the object-oriented concepts of encapsulation,

inheritance, messages and methods, and data hiding. Java interfaces provide support

for multiple inheritance and polymorphism. The Java language retains all the benefits

of object-oriented programming without the performance impacts associated with pure

object languages, such as Smalltalk.

16

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Java's object-oriented nature combined with numerous, compile-time and runtime

integrity checks eliminate many difficult-to-find programming errors. The Java

language has removed many of the dangerous programming capabilities, such as

modifiable pointers, unchecked type conversion, and relaxed bounds checking.

The Java API provides extensive support of windowing and graphical user interface

development without the complexities associated with maintaining multiple window

class libraries. There are visual programming tools developed for Java.

As for this project, the class java.math is provided for mathematical calculations.

2.3.1.4 Microsoft Visual C++ 6.0

C++ is the object-oriented extension from the language C. Microsoft Visual C++ 6.0

is the visual programming language for C++. It is an object-oriented programming in

the Windows environment. It supports writing windows application with Microsoft

Foundation Classes (MFC) [3] as well as the Windows API [2]. This language has

long been widely used and hence has a very large variety of classes. With the advent

of multi tier architectures, C++ takes on a major role as an excellent language for

building server and middle-tier software components.

It also supports the use and development of ActiveX components.

When it comes to performing scientific calculation, it has a very wide range of built-in

functions for this purpose.

2.3.1.5 SQL

SQL is the de facto standard language used to manipulate and retrieve data from these

relational databases. SQL enables a programmer or database administrator to do the

following:

• Modify a database's structure

• Change system security settings

• Add user permissions on databases or tables

• Query a database for information

• Update the contents of a database

17

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

The most commonly used statement in SQL is the SELECT statement. Which retrieves

data from the database and returns the data to the user. In addition to the SELECT

statement, SQL provides statements for creating new databases, tables, fields, and

indexes, as well as statements for inserting and deleting records.

Users will be able to program with SQL only on RDBMS databases that support SQL,

such as MS-Access, Oracle, Sybase, and Informix. Although each vendor's

implementation will differ slightly from the others, users should be able to use SQL

with very few adjustments.

2.3.2 Componentisation

2.3.2.1 ActiveX

ActiveX referred to the conference slogan "Activate the Internet" and was more a call­

to-arms than a technology or architecture for developing applications. ActiveX has

become the all-encompassing term used to define everything from Web pages to OLE

(Object Linking and Embedding) Controls. It has come to signify, on one hand, small,

fast, reusable components that can get you hooked into all the latest technologies

coming out of Microsoft, the Internet, and the industry. On the other hand, ActiveX

represents Internet and applications integration strategies. ActiveX is not a technology

or even architecture. 1t is a concept and a direction. The ActiveX components can be

classified and broken into the six categories. Which are Automation Servers,

Automation Controllers, Controls, COM objects, Documents and Containers.

Automation Servers are components that can be prograrnmatically driven by other

applications. An Automation Server contains at least one, and possibly more,

I Dispatch-based interfaces that other applications can create or connect to. An

Automation Server may or may not contain User Interface (UI), depending on the

nature and function of the Server. Automation Servers can be in-process (executing in

the process space of the Controller), local (executing in its own process space), or

remote (executing in a process space on another machine). The specific

implementation of the server will, in some cases, define how and where the server will

execute, but that is not guaranteed. A DLL can execute as in process, local or remote;

un · X can execute only locally or remotely.

18

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Automation Controllers are those applications that can use and manipulate

Automation Servers. A good example of an Automation Controller is VB. With the

VB programming language, users are able to create, use, and destroy Automation

Servers as though they are an integral part of the language. An Automation Controller

can be any type of application, DLL or EXE, and can access the Automation Server

either in-process, locally, or remotely. Typically, the registry entries and the

implementation of the Automation Server indicate which process space the server will

execute in relation to the Controller.

ActiveX Controls are equivalent to what is referred to as OLE Controls or OCXs. A

typical Control consists of a U1 representation both at design-time and runtime, a

single I Dispatch interface defining all of the methods and properties of the Control,

and a single IConnectionPoint interface for the events that the Control can fire. In

addition, the Control may have support for persistence across its execution lifetimes

and support for various Ul features, such as cut-and-paste and drag-and-drop features.

Architecturally, a Control has a large number of COM interfaces that must be

supported in order to take advantage of these features. With the release of the new

OLE Control and ActiveX guidelines for Control development, a Control is no longer

limited to the feature set defined in the preceding text. Rather, the developer can now

choose to implement only those features that are most useful and interesting to users

of the applications. ActiveX Controls always execute in process to the ontainer in

which they reside. The extension of a Control is typically OCX, but in terms of

execution models, it is nothing more than a standard window DLL.

COM Objects are similar in architecture to Automation Servers and ontrollers. They

contain one or more COM interfaces and probably little or no Ul. These Objects,

however, cannot be used by the typical Controller application the way Automation

Servers can. The Controller must have specific knowledge of the COM interface that

it "talks" to in order to use the interface, which is not the case for Automation

interfaces. The Windows 95 and NT operating systems contain hundreds of COM

Object and Custom interfaces as extensions to the operating systems for controlling

everything from the appearance of the desktop to the rendering of 3-D images on the

screen. C M Objects are a good way to organize a related set of functions and data,

while still maintaining the needed high-speed performance of a DLL.

19

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

ActiveX Documents, or DocObjects as they were originally called, represent Objects

that are more than a simple Control or Automation Server. A document can be

anything from a spread- sheet to a complete invoice in an accounting application.

Documents, like Controls, have UI and are hosted by a Container application.

Microsoft Word and Excel are examples of ActiveX Document Servers, and the

Microsoft Office Binder and Microsoft Internet Explorer are examples of ActiveX

Document Containers. The ActiveX Document architecture is an extension of the

OLE Linking and Embedding model and allows the document more control over the

container in which it is being hosted. The most obvious change is how the menus are

presented. A standard OLE Document's menu will merge with the Container,

providing a combined feature set; whereas an ActiveX Document will take over the

entire menu system, thus presenting the feature set of only the document and not that

of both the Document and the Container. The fact that the feature set of the Document

is exposed is the premise for all the differences between ActiveX Documents and OLE

Documents. The Container is just a hosting mechanism, and the Document has all of

the control.

ActiveX Containers are applications that can host Automation Servers, Controls, and

Documents. VB and the ActiveX Control Pad are examples of Containers that can

host Automation Servers and Controls. The Microsoft Office Binder and the

Microsoft Internet Explorer can host Automation Servers, Controls, and Documents.

With the decreasing requirements defined by the ActiveX Control and Document

specifications, a Container must be robust enough to handle the cases where a Control

or Document lacks certain interfaces. Container applications may allow little or no

interaction with the Document or Control they host or they may provide significant

interaction capabilities in both manipulation and presentation of the hosted

component. This capability, however, is dependent upon the Container hosting the

component and is not defined by any of the Container guidelines as being required.

2.3.3 Relational Databases

The concept behind the database is simple. A database is like a file cabinet that cans

stores information. A database is a set of information related specific application.

20

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Relational database management system and pronounced as separate letters, a type of

database management system (DBMS) that stores data in the form of related tables.

Relational databases are powerful because they require few assumptions about how

data is related or how it will be extracted from the database. As a result, the same

database can be viewed in many different ways.

An important feature of relational systems is that a single database can be spread

across several tables. This differs from flat-file databases, in which each database is

self-contained in a single table.

2.3.3.1 MySQL

MySQL, the most popular Open Source SQL database, is provided by MySQL AB.
MySQL AB is a commercial company that builds its business providing services

around the MySQL database.

MySQL is a database management system. A database is a structured collection of
data. It may be anything from a simple shopping list to a picture gallery or the vast
amounts of information in a corporate network. To add, access, and process data

stored in a computer database, you need a database management system such as
MySQL. Since computers are very good at handling large amounts of data, database

management plays a central role in computing, as stand-alone utilities, or as parts of

other applications.

MySQL is a relational database management system. A relational database stores data

in separate tables rather than putting all the data in one big storeroom. This adds

speed and flexibility. The tables are linked by defined relations making it possible to

combine data from several tables on request. The SQL part of MySQL stands for

"Structured Query Language" - the most common standardized language used to

access databases.

MySQL is Open Source Software. Open Source means that it is possible for anyone

to use and modify. Anybody can download MySQL from the Internet and use it

without paying anything. Anybody so inclined can study the source code and change

it to fit their needs. MySQL uses the GPL (GNU General Public License)

http://www.gnu.org/, to define what you may and may not do with the software in

21

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

different situations. If you feel uncomfortable with the GPL or need to embed
MySQL into a commercial application you can buy a commercially licensed version

from the company.

MySQL is very fast, reliable, and easy to use. MySQL was originally developed to

handle very large databases much faster than existing solutions and has been

successfully used in highly demanding production environments for several years.

Though under constant development, MySQL today offers a rich and very useful set

of functions. The connectivity, speed, and security make MySQL highly suited for

accessing databases on the Internet.

2.3.3.2 Microsoft Access 2000

Access has existed in five main versions and one minor upgrade version. In the

context of Access, a database can be view as a large repository in which table, report,

form and other objects are stored.

The Microsoft access package is one of the best selling relational database packages

for Windows on the market. Microsoft has estimated that currently 10 millions people

use this database package. Access provides two different modes. The first is an easy

to use menu driven interface that let you issue commands without an in depth

understanding of Access. Program mode lets the user to stored instruction in a Visual

Basic file and executes them with one command.

Access allow user to indicate how tables should be related to each other. A table can

have one-to-one, one-to-many or many-to-many relationship. A table that has

referential integrity allows only one parent record for each child record. User can add,

delete, and rearrange fields in the table structure. User can also control how the data

will be entered in a table using the properties sheet of a field.

It is important to clarify the 'class' that Access fall into. Access is a desktop database

package. It is not design to compete with system such as Oracle or SQL Server - full

database servers - whose engines are superior in terms of speed and multi-user

capabilities. This is usually the first perceived bad point. It does not provide a good
performance when run across the network and more than a handful person using it at

once. But it performance capability is good with limited multi-user capabilities. In

22

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

addition, it can and does make a good front-end package larger engine such as Oracle

and SQL Server.

The other advantages are it is likely that you are running Windows as your operating

system and using Microsoft Office as your application base. Access integrated well

with these packages and data transfer between Access and the other Office

components that are relatively easy.

2.3.3.3 SQL Server 2000

Business today demands a different kind of database solution. Performance,

scalability, and reliability are essential, and time to market is critical. Beyond these

core enterprise qualities, SQL Server 2000 provides agility to data management and

analysis, allowing organization to adapt quickly and gracefully to derive competitive

advantage in a fast-changing environment. From a data management and analysis

perspective, it is critical to tum raw data into business intelligence and take full

advantage of the opportunities presented by the Web. A complete database and data

analysis package, SQL Server 2000 opens the door to the rapid development of a new

generation of enterprise-class business applications that can give company a critical
competitive advantage. The record-holder of important benchmark awards for

scalability and speed, SQL Server 2000 is a fully Web-enabled database product,

providing core support for Extensible Markup Language (XML) and the ability to

query across the Internet and beyond the firewall.

SQL Server 2000 provides extensive database programming capabilities built on Web

standards. Rich XML and Internet standard support give the ability to store and

retrieve data in XML format easily with built-in stored procedures. User can also use

XML update programs to insert, update and delete data easily.

• Easy access to data through the Web. With SQL Server 2000, you can use

HTTP to send queries to the database, perform full-text search on documents

stored in database, and run queries over the Web with natural language.

• Powerful, flexible Web-based analysis. SQL Server 2000 Analysis Services

capabilities are extended to the Internet. User can access and manipulate cube

data by means of a Web browser.

23

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

Achieve unparalleled scalability and reliability with SQL Server 2000. With scale up

and scale out capabilities, SQL Server meets the needs of demanding commerce and

enterprise applications.

• Scale up. SQL Server 2000 takes advantage of symmetrical multiprocessor

(SMP) systems. SQL Server Enterprise Edition can use up to 32 processors

and 64 GB of RAM.

• Scale out. Scale out distributes the database and data load across servers.

• Availability. SQL Server 2000 achieves maximum availability through

enhanced fail over clustering, log shipping, and new backup strategies.

SQL Server 2000 is the data management and analysis backbone of the Microsoft

.NET Enterprise Servers. SQL Server 2000 includes tools to speed development from

concept to final delivery.

• Integrated and extensible analysis services. With SQL Server 2000, user can

build end-to-end analysis solutions with integrated tools to create value from

data. Additionally, user can automatically drive business processe based on

analysis results and flexibly retrieve custom result sets from the most complex

calculations.

• Quick development, debugging, and data transformation. QL erver 2000

features the ability to interactively tune and debug querie , quick) m c and

transform data from any source, and define and use function as if the v ere

built in to Transact-SQL. Users can visually design and code database

applications from any Visual Studio tool.

• Simplified management and tuning. With SQL Server 2000 it is ea to

manage databases centrally alongside all enterprise resources. Sta online

while easily moving and copying databases across computers or between

instances.

• Ms SQL Server 7.0 is outperformed than MS Access and lnformix SQL. This

is because it includes a superset the ASNI standard SQL language elements

that could not be find in MS Access and Informix [4].

24

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.4 Database Connectivity

2.3.4.1 Open Database Connectivity (ODBC)

ODBC allows a single uniform language to access different databases, instead of using

the propriety language of each database by designing a standard set of APis. Each

database has its own API and it will interpret any request by the programmer so that

the database can return the information. This open connectivity to a database allows

an application to get data from any kind of database by using the appropriate ODBC

driver.

A driver usually contains the callable API functions for a single database. The drivers

are dynamic link libraries (DLLs) and the Driver Manager (ODBC DSN

Administrator) is an executable program. A Data Source Name (DSN) must be

created in order the driver could locate where is the database. In ODBC version 4.0 of

the Administrator, there are three choices of DSN that can be created there are:

• System DSN allows every user of the computer and every sy tern-level

resource access to that database.

• File DSN allows all users to access to the same drivers.

• User DSN allows only the specific user to access the databa e.

And the ODBC drivers are available in ODBC version 4.0 are,

• Microsoft Access

• Microsoft dBase

• Microsoft Excel

• Microsoft FoxPro

• Microsoft ODBC for Oracle

• Microsoft Paradox

• Microsoft Text

• SQL server

25

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

2.3.4.2 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) technology is an API (Application Program

Interface) that let user access virtually any tabular data source from the Java

programming language. It provides cross-DBMS connectivity to a wide range of SQL

databases, and now, with the new JDBC API, it provides access to other tabular data

sources, such as spreadsheets or flat files.

JDBC is modelled on ODBC (Object Database connectivity) but in addition provides

an object-oriented model for accessing databases, permitting use of Java methods as

well as SQL for querying and updating data. The JDBC standard means that

applications can be written without considering what driver will be used in the final

deployment, and gives system managers the freedom to change database engines

without requiring a change in program logic.

The JDBC API allows developers to take advantage of the Java platform's "Write

Once, Run Anywhere capabilities for industrial strength, cross-platform applications

that require access to enterprise data. With a JDBC technology-enabled driver, a

developer can easily connect all corporate data even in a hetcrogcnc u environment

[5].

2.4 Proposed Tools

The tools that will be used for this project includes:

• Microsoft Visual Basic 6.0 as the core language especially u ed for the

creation of user interface.

• Microsoft Visual C++ 6.0 for the development of Acti eX component .

These ActiveX components will be use in Microsoft Visual Basic 6.0 to

compute scientific calculation.

• Microsoft Access 2000 database for storing data.

2.5 Chapter Summary

This chapter has reviewed three scientific calculators and numerous software

development tools. The review of scientific calculators has provided an input to the

subsequent steps. A for software development tools, Microsoft Visual asic 6.0 has

26

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 Literature Review

been chosen to produce the user interface while Microsoft Visual C++ will be used to

develop ActiveX components. Microsoft Access 2000 has been chosen as the

database for this project.

2.6 Reference

[l] Balena, F.(1999).Programming Microsoft Visual Basic

6.0.Washington:Microsoft Press.

[2] Petzold, C. (1998).Programming Windows,(51h ed.).Washington: Microsoft

Press

[3] Prosise, J. (1999).Programming Windows with MFC. (2nd ed.).Washington:

Microsoft Press

[4] Microsoft SQL Server - Product Overview. 22 Aug.2001 <http://microsoft sql

server - product overview. html>.

[5] JDBC Driver\JDBC(TM) Technology. 22 Aug.2001 <http://jdbc

driver/JDBC(TM) Technology.htm>

27

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Chapter 3 Methodology

This chapter provide a description of the development approach used for this project.

The main section for this chapter is Section 3.1, which describes the approach.

Section 3.2 will provide an outline of the strength of this approach. Then, Section 3.3

will summarise the chapter while Section 3.4 provides the references for this chapter.

3.1 Software Development Approach

The software development approach that has been employed for this project is named

the Unified Software Development Process or in shorts the Unified Process. The

Unified Process is component-based, which means that the software being built is

made up of software components interconnected via well-defined interfaces. Besides,

the Unified Process uses Unified Modelling Language (UML) when preparing all

blueprints of the software.

The Unified Process is an iterative and incremental life cycle model. The cycle i

made up of two distinct types of workflows. They are named the core w rkflow and

the iteration workflows. There are five tasks classified as core workflox :

requirements, analysis, design, implementation, and test. A for the iteration

workflows, there are four phases: inception, elaboration, construction, and tran iti n.

In the Unified Process, the development process is performed as iterations. Th

phases in the iteration workflows can be carried out in one iteration or di ided into

more iteration depending on the project. Figure 3-1 shows the whole c le v hich

consists of four phases being divided into more iterations. Within every iteration the

five core workflows will be performed as shown in Figure 3-2. Hence, all the nine

iterations in Figure 3-1 will sweep through the five core workflows sequentially as

shown in Figure 3-3.

28

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Transition

Iteration 9

Figure 3-1 Phases further divided into more iterations.

Analysis

The generic
iteration

Includes:-
• Iteration Planning
• Iteration Assessment

Figure 3-2 Core workflows in iteration

29

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Iteration 3

Test

I
I
I
I
I
I
I
I

"
) Req.s)Analysi~ Design} Imp\.) Test :

Figure 3-3 Iterations in action

The iteration has different emphases in different phases, as illustrated by Figure 3-4.

During the inception and elaboration phases, most of the effort is directed toward

capturing the requirements, and preliminary analysis and design. During construction

emphasis shifts to detailed design, implementation, and testing. The five core

workflows will be carried as far as required in each iteration. For example, the later

workflows, such as implementation and test, might not be used in early inception

phase.

Phases

Requirements

Inception

I
1 Elaboration Construction
I

Transition Core Work.flows

Analysis

r

Desi~

Implementation

Tefrt.

Figure 3-4 Emphnsls shifts over the lternuon , from requirement capture and analy i toward

design, Implementation, and testing.

3

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

3.1.1 The Core Workflows

This section will describe the five core workflows from requirements to test stating the

activities and the input and results of each activity.

3.1.1.1 Requirements

The purpose of the requirements workflow is to aim development toward the right

system. This workflow has been shaped into to two parts namely requirements

capture, and capturing requirement as use cases.

3.1.1.1.1 Requirements Captures

This part consists of four tasks. This part of the requirements is only emphasised in

the inception phase. The four tasks are listed below and their description follows.

• List candidate requirements

• Understand system context

• Capture functional requirements

• Capture non-functional requirements

List candidate requirement This occurs when stakeholders come up with good idea

that might turn into requirements. These candidate requirements are kept in a Ii t

called feature list. This list grows as new items are added, and shrinks as features

become requirements. It is used for planning only.

Understand system context Jn order to capture the right requirement a firm gra p of

the context in which the system is set is needed. There are several approache to

expressing the system context. Examples are the domain modelling, business

modelling and system engineering. Domain model describes the important concepts

of the context as domain object and their links. These objects can act as input to

developing glossary of terms, and helps to identify some of the classes as analysis and

design is performed. As for business modelling, it describes the processes in order to

understand them. A business model can be described as the superset of a domain

model because it also establishes the c mpetcncy, which is crucial when identifying

use cases, apart fr m identifying objects f r the oftwarc system. As for system

31

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

engineering, the system is divided into subsystems.... However, its result is not

useable in development, unlike the previous two approaches.

Capture/ unctional requirements The primary way of identifying requirements is
based on use cases. Each use case represents one way of using the software system.

This step will be carried out with interviewing users, discussing proposal, and so on.

Hence, in conjunction with acquiring use cases, the user interface for each use case
should also be specified with the users.

Capture non-functional requirements Non-functional requirements that are specific

to an individual use case will be capture in the use case model. As for those that are

more generic and can.not be connected to a particular use case or a particular real­

world class will be managed separately in a list of supplementary requirements.

Use cases can be used to capture functional requirements as well as non-functional
requirements that are specific to their respective use cases.

The output of these four steps are summarize in Table 3-1.

Workflows Resulting artifacts

List candidate requirements Feature list

Understand system context Business model or domain model

Capture functional requirements Use-case model

Supplementary requirements or

Capture non-functional requirements Individual use cases (for use-case

specific requirements)

Table l The set of activities for the requirement capture and their equivalent output

3.1.1.1.2 Capturing Requirements as Use Cases

The worktlow capturing requirements as use cases consist of five acti ities: finding

actors and use cases, prioritise use cases, detail a use case, prototype user interface,

and structure the use-case model. These five activities and the logical flows are

illustrated in Figure 3-5. The path in igure 3-5 hows the logical sequence of

activities using results from the previously performed activity as input.

32

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Structure the
fA'AI ~ / Use-Case Model H--.~~~~

Finding Actors Prioritise Detail a fAAl
and Use Cases Use Cases Use Case ~

Prototype
User Interface

Figure 3-5 The workflow of capturing requirements as use cases

3.1.1.1.2.1 Activity: Find actors and use cases

This is the most essential activity for getting the requirements right. This activity has

a business model or domain model, a supplementary requirements list and a feature

lists as input as illustrated in Figure 3-6. Besides, input from customer and user are

needed too. The product of this activity is a use-case model that is described and

diagrammed superficially to the extend where each use ca e can be described in detail

and a glossary of terms. There are four steps to be taken for this activity:

• Finding the actors. During this step, all types of u er or the stem and ull

external systems with which the system interact with are identified. -or each

of the identified actor, a name, a brief description of its role and what it use
the system for is appended.

• Finding the use cases. The actors identified in the previous steps are used to

identify candidate use cases for each actor. Besides candidate use case ma

also come from customers and users. The candidate use ca e are then re i ed

to produce a set of use cases that has an appropriate scope. The u e ca e

often need to be restructured a few times before th us -case model stabilizes.

• Briefly describing each use case. During this step each use ca e is briefly

described. The description consists of a few sentences that summarise the

actions, and a step-by-step description of what the system need to do when
interacting with its actors.

• Describing the use-case model as a whole. -or this step, diagrams and

description to explain the use-case model as a whole is prepared with

cm phase on how the use cases relate to each other and to the actors, /\

33

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

glossary of terms is also created at this point to ensure consistency m

describing use cases. Another output of this step is a survey description of the

use-case model, which describe how actors and use cases interact and how use

cases are related to one another.

These steps can be performed in any order and concurrently.

I
/

/
/

/
/

'-..~
-· Finding

Actors and
Jf Use Cases

_,,,.,..- Use-Case
Model

[outlined]

Business Model ',,
or Domain Model ',

Supplementary
Requirements

Glossary

Feature List

Figure 3-6 The input and result of activiy finding actor and use cases

3.1.l.l.2.2 Activity: Prioritise use cases

The purpose of this activity is to determine which use cases need to be develop d in

early iterations, and which can be developed in later iterations. A illu trated in

Figure 3-7, this activity has the supplementary requirements the use-en e model

[outlined] and the glossary as input. The results of this activity are captured in an

architectural view of the use case model. This view has to depict the architecturall

significant use cases.

34

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Use-Case
Model

[outlined]

Prioritise
Ji(Use Cases

-II-- [i)
Architecture
Description
[view of the

use case model] /
/

/
/

/

[I '
<, Supplementary '-...

Requirements '

I
Glossary

Figure 3-7 The input and result of activity prioritise use cases

3.1.1.1.2.3 Activity: Detail a use case

The purpose of this activity is to describe the use case's flow of events in detail,

including how it starts, ends, and interacts with actors. This step is performed with

users of the use cases. These users will be the source of description and to review the

use-case description to verify them. As illustrated by Figure 3-8, this activity will

have the supplementary requirements, use-case model [outlined], and a glossar as a

starting point. The result of this activity is a detailed description of a particular use

case in text and diagrams. This activity ...

• Structuring the use-case description. In this step, the state that the u c- ia c

instances and the possible transition between those states are de cribed. ut

of the many possible transitions, one complete basic path is first described.

The rest of the paths will be described in a different section a altemati es or

deviations from the basic path. If however that a particular alternati e or

deviation path is small enough to be described in one line, it can be included

in the basic path description. Besides these paths, the pre-condition and post­

condition of the use case should be deft ned as wet I.

• Formalising the use-case description. For use cases that have a very large

number of states and alternative transitions it would become too complex to

describe consistently with text, a more structured description technique can be

used. There are three types or diagrams in UML that can be used for this

purpose: statcchart diagram, activity diagram, and interaction diagram.

35

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

/
/

/
/

/

fHJ--- 0

I ,
Supplementary',,
Requirements '

Use-Case
Model

[outlined)

Detail a
Jf UseCase

Use Case
[detailed]

I
Glossary

Figure 3-8 The input and result of activity detail a use case

3.1.1.1.2.4 Activity: Prototype user interface

The purpose of this activity is to build the user interface prototype. This activity has

the use-case model, supplementary requirements, use case description and the

glossary as the starting point as illustrated in Figure 3-9. This activity will produce a

set of user interface sketches and prototypes for the most important actors. Thi

activity is carried out in two steps stated as followed.

• Creating logical user interface design. This step identified the user interface

elements that are needed for users to interact with a use case. The u e ca es

will be going through one by one to identify the proper user interface element

for each use case.

• Creating physical user interface design and prototype. During thi t "P

sketches of user interface elements combined to form the ph sical u er

interface. Then, executable prototypes are built for the important user

interface elements. These sketches and prototypes will be validated through

user interface review and will work a a specification of the user interface

when the real user interface is being constructed.

36

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Use-Case' -,
Model ',

-,

' I) -.
-- '4 Supplementary -.._ ~

Requirements -.. ~ --+ Q
,......, Prototype

0 ,..... User Intefoce
.................. /f User Interface Prototype

/
Use Case
[detailed] /

/
/

/

I
Glossary

Figure 3-9 The input and result of activity prototype user interface

3.1.1.1.2.5 Activity: Structure the use-case model

This activity is taken to extract general and shared use-case description of

functionality that can be used by more specific use-case descriptions and to extract

additional or optional use-case description of functionality that can extend more

specific use-case description. As illustrated in Figure 3-10, the use-ca e model the

supplementary requirements, the detailed use cases, and the glossary will be u ed to

accomplish this activity. There are three steps to be taken in thi activit .

• Identifying shared description and functionality. The actions or part of

actions that are common to or shared by several use cases v ill be identif ed.

This sharing is then extracted and described in a separate use ca e that can

then be reused by the original use cases through the uses relationship (uses

relationship is the name given for generalisation relationship in use case

model).

• ldentifying additional and optional description of functionality. In this

step, additional and optional description of functionality are identified to

model them using the extend relationship.

• Identifying other relationships between use cases. Jn this step, the include

relationship is used to further tructurc the use-case model.

37

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

0 /
/

/
/

' -, '4
---.. ~ --- _ __. LJ
,,., ..
Jt Structure the Use-Case

/ Use-Case Model
Model [structured]

Use-Case' <,
Model ',

-,

I
Supplementa;;:.--
Requirements

Use Case
[detailed]

/
/

/
/

/

Glossary

Figure 3-10 The input and result of activity structure the use-case model

3.1.1.2 Analysis

The purpose of the analysis workflow is to analyse the requirement 111 order to

acquire a more precise understanding of the requirements and to acquire a de cription

of the requirements that is easy to maintain and that helps us give tructure to the

whole system. Table 3-2 shows the comparison between the use-case model and the

analysis model.

In the software life cycle (see Figure 3-4), analysis is the focus during the initial

elaboration iterations. It contributes to a sound and stable architecture and facilitat

an in-depth understanding of the requirements.

Figure 3-11 illustrates the workflow in analysis with the four participating acti itie .

Each activity will be described in a subsection.

developer

Use-Case Model (Requirements) Analysis Model

Described using the language of the Described using the language of the
customer

xtcrnal view of the system Internal view of the sy tern

38

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Structured by use cases Structured by stereotypical classes and

packages

Used primarily as a contract between the Used primarily by developers to

customer and the developers on what the understand how the system should be

system should and should not do. shaped.

May contain redundancies, Should not contain redundancies,

inconsistencies, and so on, between inconsistencies, and so on, among

requirements. requirements.

Captures the functionality of the system, Outlines how to realise the functionality

including architecturally significant within the system, including

functionality architecturally significant functionality.

Defines use cases that are further analysed Defines use case-realisations, each one

in the analysis model. representing the analysis of a u e ca e

from the use-case model.

Table 2 Comparison of the use-case model and the analysis model

Architectural
Analysis

Analyse a
Use Case

Analyse a
Class

Analyse a
Package

Figure 3-11 The workflow in analysis

3.1.1.2.1 Activity: Architectural analysis

The purpose of architectural analysis ts to outline the analysis model and the

architectural. As illustrated in Figure 3-12, this activity have as input the use-case

model, the supplementary requirements, business model or domain model, and

architecture description. The goal of this activity is achieved by identifying analysis

packages, obvious analysis class, and common special requirements with each taking

one step.

• Identifying analysis packages. This step is carried out based on based on

functionality and problem domain. Analysis package are obtained by

allocating use cases into specific packages and then realise the corre sponding

39

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

functionality within that package. These packages will localise changes to a

business process, an actor's behaviour, and a set of closely related use cases.

These packages are then analysed for common functionality among packages

and a different package with those common functionality will be created to let

other packages share the common functionality from this package. Then, the

dependencies among analysis packages are defined.

• Identifying obvious entity classes. In this step, a preliminary proposal of the

most important (architecturally significant) entity classes is prepared. These

important entity classes are those that participate in use-case realisation.

• Identifying common special requirements. A. special requirement in this

context is a requirement that occurs during analysis and is important to capture

so that it can be handled appropriately in the coming worktlows. Then, the

key characteristics of each common special requirement are identified.

LJ ---

'\ -,
-,
~ /

/
/

- Analysis ,,,,,,.
,,, Package

/ ,,, [outlined]

Use-Case x -,
Model -, -,

-, -,

[iJ
......

Supplementary't-c;
Requirements

Business Model
Architecturar-.,

/Jf Analysis -,
--· 0 Analysis lass

[outlined]

-~

Architecture
Description
[view of the

use case model)

' ' -,
<, fi1

Architecture
Description
[vie' ofthe

analysis model)

or Domain Model /
/

/

Figure 3-12 The input and result of activity architectural analysis

3.J .1.2.1 Activity: Analyse a use case

The purpose of this activity is to identify the analysis classe whose objects are needed

to perform the use case's flow of events, distribute the behaviour of the use case to

40

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

interacting analysis objects, and capture special requirements on the realisation of the

use case. This activity is also called use case refinement as we refine each use case as

a collaboration of analysis classes. As illustrated in Figure 3-13, this activity has the

use-case model, supplementary requirements, business or domain model, and

architectural description of analysis model as input and produces the use case

realisation of analysis and an outline of the analysis class.

• Identifying analysis classes. In this step, the control, entity, and boundary

classes needed to realise the use case are identified and their names,

responsibilities, attributes, and relationships are outlined.

• Describing analysis object interactions. The '":'ays analysis objects interact

are described by using collaboration diagrams that contain the participating

actor instances, analysis objects, and their links.

• Capturing special requirements. In this step, special requirements on a use­

case realisation are captured .

•
•
•
•
•

41

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Use-Case x -,
Model "-,

-,
'\ I \,,

Supplementary <, '-4
Requirements '-...._ [HJ
p--, _ _..
L_J --- Analyse a

Jf Use Case
Business Model /

,,.-
{ '\ <:>
Use Case
Realisation
-Analysis

........... 0 or Domain Model /
/

/ Analysis Class
[outlined I

Architecture
Description
[view of the

analysis model J

Figure 3-13 The input and result of activity analyse a use case

3.1.1.2.l Activity: Analyse a class

The purposes of activity analyse a class are to identify and maintain lht:

responsibilities of an analysis object, identify and maintain the attribute and

relationships of the analysis class, and capture special requirements on the reali ati n

of the analysis class. Hence, it will produce the complete analysis cla as output as

illustrated in Figure 3-14, while taking the use-case realisation of analysis and the

outline of analysis class as input.

• Identifying responsibilities. As the name suggests, responsibilitie of the

analysis classes are identified in this step. The responsibilities of a c\a s i be

collected by examining all the roles that it plays in different use-case

realisations.

• Identifying attributes. The attributes of the analysis classes will be identified

in this step. Since attributes are often related to realising the responsibilities

of its class, the result of the preceding step helps.

• Identifying associations and aggregations. In this step, associations and

aggregations between classes arc identified to structure them.

42

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Identifying generalisations. In this step, generalisations are used to extract

shared and common behaviour among several analysis classes. This further

structures the analysis classes.

• Capturing special requirements. In this step, we capture all requirements of

an analysis class that are identified in analysis but should be handled in design

and implementation.

', 0 .. u-- ---·
.,.,._. al Analysis Class _.,. An yse .

C l
[complete I

a ass

,,..-
I 'I
<; _ _./

Use Case
Realisation
-Analysis

Analysis Class
[outlined]

Figure 3-14 The input and result of activity analyse a class

3.1.1.2.1 Activity: Analyse a package

The purpose of this activity is to ensure that the analysi package i a indcpcnd nt or
other packages as possible and fulfils its purpose of realising some domain cla 1; or

use cases, and to describe dependencies. This activity will produce the complete

analysis package with the outline of analysis package and the architectural de ription

as input (see Figure 3-15).

Analysis
Package

[complete]

Architecture t -c..

Description '
[view of the

analysis model I _... 1" Analyse a
Package

Analysis
Package
I outlined I

Figure 3-15 The Input nnd result of activlty nnaly: n p11ck11ge

43~-----------------------

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

3.1.1.3 Design

The purposes of the design workflow are to: -

• Acquire an in-depth understanding of issues regarding non-functional
requirements and constraints.

• Create an appropriate input to and point of departure for subsequent

implementation activities.

• Be able to decompose implementation work into more manageable pieces.

• Capture major interfaces between subsystems.

• Be able to visualise and reason about the design.

• Create a seamless abstraction of the system's implementation.

In the software life cycle (see Figure 3-4), design is in focus during the end of

elaboration and the beginning of construction phase. It contributes to a sound and
stable architecture and creates a blueprint for the implementation model. Table 3-3

distinguish the design model from the analysis model. Figure 3-16 illustrates the

workflow in design with the four participating activities.

Analysis Model Design Model

Conceptual model, because it IS an Physical model, because it is a blueprint

abstraction of the system and avoids of the implementation.

implementation issues

Design-generic (applicable to several Not genenc, but specific for an

designs) implementation

Three (conceptual) stereotypes on classes: Any number of (physical) stereotypes on

control, entity, and boundary. classes, depending on implementation

language.

Less formal More formal

Less expensive to develop M re expen ive to develop

Few layers Many layer'

44

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

including its architecture. including its architecture.

Dynamic, but not much focuses on Dynamic with much focus on sequence.

sequence.

Outlines the design of the system, Manifests the design of the system,

Primarily created by "leg work," in Primarily created

workshop and the like. programming"
by "visual

May not be maintained throughout the Should be maintained throughout the

complete software life cycle. complete software life cycle.

Defines a structure that is an essential Shapes the 'system while trying to

input to shaping the system - including preserve the structure defined by the

creating the design model analysis model as much as possible.

Table 3 Comparison of the analysis model and the design model

[HJ

[HJ <D~;!:': -. ~
Architectural i / Design a

Design H Subsystem

Design a
Use Case

Figure 3-16 The activities in design workflow

3.1.1.2.1 Activity: Architectural design

The purpose of activity architectural design is to outline the design and de elopment

models and their architecture. The resulting sub-system interfaces, or other design

elements, are then incorporated into the design model. This activity will have the use­

case model, supplementary requirements, analysis model, and architecture description

as input to produce an outline of subsy tern, an outline of interface, an outline of

design class, an outline of deployment model, and the architecture description (see

Figure 3-14).

45

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Identifying nodes and network configurations. In this step, the physical

network configuration will be defined. Nodes and network configuration is

essential to the software's architecture.

• Identifying subsystems and their interfaces. In this step, subsystems are

used to organise the design model into manageable pieces. Firstly, the

subsystems in the application-specific and application-general layers are

identified. Then, the middleware and system-software subsystems are

identified. After the subsystems in all four layers are identified, dependencies

among them are defined. Finally, interface for each subsystem is identified.

• Identifying architecturally significant design class. Architecturally

significant design classes are identified at this stage to initiate the design work.

These architecturally significant design classes could be identified from the

architecturally significant analysis classes. Active classes that are required by

the system in order to consider the concurrency requirements should be

identified too.

• Identifying generic design mechanisms. In this step, common requirements

and special requirements are studied to decide how to handle them with the

available design and implementation technologies.

46

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

Analysis
Model

/
/

/
/

/
/

1f Subsystem
/ [outlined]

/I ,,~ 0
/ ,.,,., Interface

I /
-, I ,., [outlined]
' I / - ~ i,,,, r:=:l :! ~ c.: ..,_ o

,,,... /1' Architectural'°"<'-... Design Class \
/ Design \ '-... [outlmed]

\ <, \ LJ

-,
Use-Case ',
Model ',

-,
-,

[i - = - -
Supplementary
Requirements LJ ,,,.....,_,,,...,,,...

Architecture
Description
[view of the

analysis model]

\
\
\
\
\ [outlined]
~

Deployment
Model

Architecture
Description

l view of the design
And deployment model]

Figure 3-17 The input and result of activity architectural design

3.1.1.2.1 Activity: Design a use case

The purposes of this activity are to identify the design classes and/or ubsystcms

whose instances are needed to perform the use case's flow of events, to di tribute the

behaviour of the use case to interacting design objects and/or to parti ipatin 'r

subsystems, to define requirements on the operations of design classe an or

subsystems and their interfaces, and to capture implementation requirements for the

use case. This step has the use-case model, supplementary requirement ; anal sis

model, design model, and deployment model as input to produce the u ca e

realisation of design, an outline of design classes, an outline of sub ystems and an

outline of interfaces (see Figure 3-18).

• Identifying the participating design classes. In this step, the design classes

needed to realise the use case are identified.

• Describing design object interactions. At this stage, an outline of the design

classes needed to realise the use case is obtained. Sequence diagrams

containing the actor instances and design objects arc used to describe how

these corresponding design object interact.

47

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Identifying the participating subsystems and interfaces. This step and the

following step are carried out if designing of use case in term of participating

subsystems are more appropriate. The subsystems needed to realise the use

case is identified in this step.

• Describing subsystem interaction. This step would be carried out if an

outline of the subsystems needed to realise the use case has been identified.

Again, sequence diagrams containing the actor instances and subsystems

would be used to describe how these corresponding design objects interact.

• Capturing implementation requirements. In this step, all requirements are

captured on the use-case realisation.

Use-Case \
Model \

\
\

~ ', \
L§J <, \

Supplementary ', \ I r=J
Requirements '\ / ,..... 11" t=l '1 ~(,................. DesignClass LJ --- --• ~- [outlined]

/''Design a\~- -_ p-,
/ 1 Use Case \ L__J

/ I \ p-, / 1 \ Subsystem
L__J // 1 ', [outlined]

\~ 0

/-- (\ _ _..,;
Use Case

/'Realisation
1 - Design

Analysis
Model

Design
Model

I
I
I
I
I
I

Interface
[outlined]

Deployment
Model

Figure 3-18 The input and result of activity design a use case

3.l.1.2.1 Activity: Design a class

The purpose of this activity is to create a design class that fulfils its role in use-case

realisation and the non-functional requirements that apply to it. As illustrated in

Figure 3-19, this activity will have as input the use-case realisation, an outline of

design classes, an outline of interface, and the analy i class to produce the design

class. The following ore eight steps to be taken to perform this activity.

48

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Outlining the design class. The first step would be outlining the design class

based on the analysis class and/or interface as input. The design classes

identified here should be assigned trace dependencies to the corresponding

analysis classes.

• Identifying operations. In this step, operations that need to be provided by

the design class are identified and described using syntax of the programming

language. The operations need to support all the roles the class plays in all

use-case realisations it participates.

• Identifying attributes. As for this step, the attributes required by the design

class are identified and described using syntax of t~e programming language.

Attributes often implied and required by the operations of the class.

• Identifying associations and aggregations. Associations and aggregations

among design classes are identified in this step.

• Identifying generalisations. Generalisations are identified in this step. At

this stage, generalisations should be used with the same semantics as defined

by the programming language.

• Describing methods. In this step, methods are u sed to pccif how

operations are realised.

• Describing states. In this step, statechart diagrams are used to de cribc the

states of those design objects that are state controlled, which means that the

state determines its behaviour.

• Handling special requirements. Any requirements that ha e not be n

considered in the preceding steps are dealt with in this step.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

,,..-
l) \

Use Case \
Realisation \
- Design \

Design Class
[complete]

§ ~ ',,
Design Class ~ '
[outlined] _"'!. ~--- -~ §
Q ---- /JI Design a

/ Class Interface
[outlined]

0
/

/
/

/
/

Analysis Class
[complete]

Figure 3-19 The input and result of activity design a class

3.1.1.2.1 Activity: Design a subsystem

The purposes of designing a subsystem are to ensure that the ubsystem i a

independent as possible, to ensure that the subsystem provides the right interfaces, and

to ensure that toe subsystem fulfils its purpose in that it offers a correct rcali ation of

operations as defined by the interfaces. This activity would have as input the

architecture description, an outline of subsystems, and an outline of interfaces.

• Maintaining the subsystem dependencies. In this step dependencic among

subsystems are defined and maintained.

• Maintaining the interfaces provided by the subsystem. ln this step

interfaces provided by the subsystems are refined to ensure that it supp rt all

the roles that it plays in different use-case reali ations.

• Maintaining the subsystem contents. Subsystem contents are maintained in

this step to ensure that it fulfils its purpose by offering the correct realisation

of the operations as defined by the interface it provides.

50

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

0
/

/
/

/

/T LJ
/

/ Subsystem
/

/ [complete]

--. 0
Interface
[complete]

[i]
\

Architecture \
Description \
[view of the

Design model] \
\

~ LJ --- -; ~
/ Design a

Subsystem
Subsystem
[outlined]

Interface
[outlined]

Figure 3-20 The input and result of activity design a subsystem

3.1.1.4 Implementation

The purposes of the implementation workflow are to: -

• Plan the system integrations required in each iteration.

• Distribute the system by mapping executable components onto node in the

deployment model.

• Implement the design classes and subsystems found during design.

• Unit test the components, and then integrate them.

In the software life cycle (see Figure 3-4), implementation is the focus during the

construction iterations. It is also done during elaboration phase to create executable

architectural baseline and during transition phase to handle late defects. Figure --1

illustrates the worktlow in implementation with the five participating acti ities.

(HJ

~---lllo- ~ <~~~:~~~r~a~ ~
Architectural Integrate I / Perform

Implementation System • / Unit Test

(QQ]
Implement a

I s

Figure 3-21 The 11ct.lvitlcr-1 in the Imptementutiou workflow

51

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

3.1.1.2.1 Activity: Architectural implementation

The purpose of activity architectural implementation is to outline the implementation

model and its architecture by identifying architecturally significant components such
as executable components, and mapping them to nodes in the relevant network

configurations. As illustrated by Figure 3-22, this activity will have the design model,

deployment model, and the architecture description as input to produce an outline of

components and the architectural description of implementation and deployment
model.

/
/

/
/

/

<, "4 ,,.,,,.,,,.,
-· (A"A),,.-/

~ ~--
/ -- // Architectural
Implementation

Component
[outlined and possibly
mapped onto nodes l

Design
Model

Deployment
Model

[outlined]
--- -·

Architecture Description
l view of the implementation

and deployment model I
Archi lecture
Description

[view of the design
and deployment model]

Figure 3-22 The input and result of activity architectural implementation

3.1.1.2.l Activity: Integrate System

The purposes of this activity are to create an integration build plan de cribing the

builds required in iteration and the requirements on each build, and to integrate ea h

build before it is subject to integration tests. As illustrated in Figure 3-23 the input

for this activity would be the supplementary requirements, use-case model, design

model, and implementation model in order to produce the integration build plan and

the implementation model.

• Planning a subsequent build. The activity will start with planning the

following build. The build may be the first or continuing of the previous

build. Every build should add functionality.

52

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Integrating a build. In this step, builds are integrated. It is done by

collecting the implementation subsystems and components, compiling them,

and linking them into a build.

Supplementary \
Requirements \

\ ~
~

Use-Case
Model

LJ
• Integration

»> Build Pinn

--- Integrate
System Design

Model /
/

/

LJ/
Implementation

Model
[subsequent builds l

Implementation
Model

[previous builds]

Figure 3-23 The input and result of ativity integrate system

3.1.1.2.l Activity: Implement a subsystem

The purpose of activity implement a subsystem is to ensure that a sub y tern fulfil it

role in each build. In other words, to ensure that the requirements are implemented in

the build and those that affect the subsystem are correct! implemented b

components or other subsystem within the subsystem. The input for thi activity is the

integration builds plan, architectural description, design subsystem, and int rface to

produce the implementation subsystem, and the interface (see Figure -24). Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

/
/

/

\
\
\

'~
'4 ~ :/
/>"Implement a -,

1' Subsystem
I

I
I

/~ LJ
// Implementation

Subsystem
[implemented
for a build]

I \
Integration \
BuildPlan \

\
\ I,

Architecture ', <,

Description
[view of the

Implementation
model]

0
Subsystem I I
[complete] 1

I
I

Q/
Interface
[complete]

Interface
[implemented
for a build]

Figure 3-24 The input and result of activity implement a subsystem

3.1.1.2.t Activity: implement a lass

The purpose of this activity is to implement a design class in a file component which

includes outlining a file component that will contain the source code generating

source code from the design class, implementing the operations of the design clu ,

and ensuring that the components provide the same interface a the design class. As

illustrated in Figure 3-25, design class, and interface provided by the design cla s will

form the input and the activity produce the implemented component as the result. The

activity will be carried out in four steps.
• Outlining the file components. Jn this step the file component where the

source code that implements the design class resides are outlined.

- • Generating code from a design class. The source cod is generated

according to the design class in this step. If the design cla has been

described using the syntax of the programming language during design, this

step will be straightforward.
• Implementing operations. In this step, operations of the class will be

produced. This step involves choosing a suitable algorithm and pecified data

structure, and then coding the actions required but eh algorithm.

54

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Making the component provide the right interface. In this step, interfaces

are verified to ensure that the component provide the same interface as the

design classes it implements.

0

§ <,
' Design Class ',

[complete]

Implement a
Class Component

I implemented I Interface
[provided by the
design class]

Figure 3-25 The input and result of activity implement n class

3.1.1.2.1 Activity: Per.form unit test

The purpose of this activity is to test the implemented components as individual unit .

The component and interface will form the input of this activity to produce the unit­

tested component (see Figure 3-26). The following arc two types of unit test

performed.

• Specification tests Specification test is also known a black-box test' . It is

done to verify the component's behaviour without considering how that

behaviour is implemented within the component. The te t is conducted b

observing the output the component will return when given certain input and

when starting in a particular state.

• Structure tests Structure test is also know as white-box te t . It i done t

verify that a component works internally a intend d. During tru ture tc ting

all code should be test. ln other words, every statement has to b executed at

least once.

55

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

0

'-..
/ .. ~

Perform
Unit Test

a]'
Component ',,,

[imp! emented]

Component
[unit tested]

Interface

Figure 3-26 The input and result of activity perform unit test

3.1.1.5 Test

In the test workflow, the result from implementation are verified by testing each build

including both internal and intermediate builds, as well as the final versions of the

system to be released to external parties. As illustrated in Figure 3-27, this workflow

will be performed with six activities.

The purposes of this workflow are to plan the tests required in each iteration, design

and implement the tests by creating test cases that specify what to te t, and perform

the various tests an handle the results of each test.

In the software life cycle (see Figure 3-4), test is in focus during the elaboration phase

when the executable architectural baseline is tested, and during construction, when the

bulk of the system is implemented. However, some initial te t plan ma occur during

the inception phase when the system is scoped.

~

fAAl ~<:i~~~~:~~
~--llll>-~---llll>~ Test ~
Plan Test Design lmplemen / valuate

Test Test ~ Test

Perform
System
Test

Figure 3-27 The nctivities in workOow test

6

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

3.1.1.2.1 Activity: Plan test

The purpose of activity plan test is to plan the testing efforts in iteration by describing

a testing strategy, estimating the requirements for the testing effort, and scheduling the

testing effort. The supplementary requirements, use-case model, analysis model,

design model, implementation model, and architectural description will form the input

of this activity. The activity will produce the test plan as the result (see Figure 3-28).

Supplementary
Requirements

\
\
\

' \ \
\
\
\

Use-Case \
Model \ \ \ \

\ \

E::J' \,\
Anal . ', \ \ ysis ,, \ ~
Model <, \~

E::J ----- --'! lHl---
)'f

Design ,/' ~ Plan Test
Model ,/ 1

E::J
-: I

,, I ,, I
I

Test Plan

Implementation
Model I

I
I
I
I
I
I

Architecture
Description

Figure 3-28 The input and result of activity plan test

3.J.l.2.1 Activity: J esign test

The purpose of activity design test is to identify and describe tc t

and to identify and structure test procedures pecifying how to perform the test case.

As illustrated in Figure 3-2c, the input for thi activity i the supplementary

requirements, use-case model, analysis model, design m del implementation model,

architccturul description, und test plan to produce the te 'l ca e and te t pr cedure.

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

• Designing integration test cases. In this step, integration test case is

designed. Integration test cases are used to verify that the components interact

properly with each other after they have been integrated into a build.

• Designing system test cases. System test cases will be designed in this step.

System test cases are used to verify that the system functions properly as a

whole.

• Designing Regression test cases. Regression test cases would be designed in

this step. Regression test case must be flexible enough to be resilient to

changes of the software that is tested.

• Identifying and structuring test procedures. In this step, test procedures are

identified and structured. This is be done by working through the test cases to

suggest the testing procedures for each one.

58

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

~
@fil \

Supplementary \
Requirements \

\
\
\
\
\
\ Use-Case\

Model \
\ \
\ \
\ \
\ \
\ \

\ \
\ \
\ \ ,,~
''1 --

,,.,.,,.,.;
.>: /// ~
~ / I

I
I
I
I
I

Analysis
Model

t] __
Design ----
Model

... CD /
,,.,.. Test Case

Design
Test

/ Implementation /
Model /

/
/ IJ / I

I
I
I

Description I
I view of the model]/

I
I

Archi lecture

Test Plan
I testing strategy
and schedule]

Test
Procedures

Figure 3-29 The input and result of activity design test

3.1.1.2.1 Activity: Implement test

The purpose of this activity rs to automate test procedure b reating te t
components. However, not all test procedures can be automated. Thi activity will

use test case, test procedures, and implementation model a input and produce the

test component (see Figure 3-30).

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

® -,
Test Case ',

-,

~--- /..,
Implement

Test

[KJ ,_ '• -,
Test ..._

Procedures

Test
Component

Implementation
Model

[build to be tested]

Figure 3-30 The input and result of activity implement test

3.1.1.2.1 Activity: Perform integration test

In this activity, the integration tests required for each build are performed and the test

results are captured. As illustrated in Figure 3-31, the test case, test procedure, test

component, and implementation model as input.

Firstly, the integration tests relevant to the build are performed by executing any te t

components automating the test procedures or by manually performing the test

procedures for each test case. Then, the test result are compared with the expected

results, and investigate test results that deviate form the expected. After that the

defects are reported to the person responsible for the components. Finall , the defect

are reported for the purpose of evaluating the overall results of the testing effort.

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

0
Test Case,

\ [XJ \
Test <,

Procedure <,

Test
Component

Implementation
Model

[build to be tested]

' ! ~ -- __ .,. x
~ Perform
/ Integration

1 Test
I
I
I
I

Defect

Figure 3-31 The input and result of activity perform integration test

3.1.1.2.1 Activity: Perform system test

The purpose of this activity is to perform the system tests required in each iteration

and to capture the test results. This activity has the test ca e, test procedure tc t

component, and implementation model as input.

0
Test Case,

\ rxJ \
Test

Procedure

Test
Component

Implementation
Model

[build to be tested]

I
I
I
I

\

~ [HJ __ ..,. x
~ Perform
I System Defect
I Test I

Figure 3-32 The input and result of net ivity perform ystem test

I

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

3.1.1.2.1 Activity: Evaluate test

The purpose of this activity is to evaluate the testing efforts within iteration. The

result of the testing effort is evaluated by comparing the results with the goals outlined
in the test plan. This activity uses the test plan, the test model, and the defect reported

as input to produce the test evaluation (see Figure 3-33).

'• L:J--- .~ -- -· [i
"Evaluate .

Test Model / Test Test Evaluation
,,/ [for an iteration I

/ x
Defect

Figure 3-33 The input and result of activity evaluate test

3.1.2 The Iteration Workflows

This section will describe the four iteration workflows with empha es of each iteration

workflow on the activities in the five core workflows.

3.1.2.1 Inception iteration

The overall intent of the inception phase is to launch the project. Hence the goal in

the inception phase is to make the business case to the extent neces ary t justif

launching the project. In order to achieve these goals, there are four steps to be taken

for this phase.

1. The scope of the proposed software has to be delimited. The system boundary

is defined and the interfaces to related systems outside the boundary are

identified. The scope is needed to understand what the architectur ha to

cover, the define where to look for critical risk , and to provide th boundaries

for cost, schedule, and return-on-investment estimates.

2. The candidate architecture of the ystem has to be describ d or outlined. The

emphases urc on those parts that arc new, risky, r difficult. This step ends

with an urchitccture description and no executable pr t type i built since the

62

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

goal of this phase is to assure that a stable architecture could be created to

support the system scope.

3. Critical risks have to be identified. In this phase, the stress in on risks that

affect feasibility, meaning risks that threaten the successful development of

the system. Other risks are recorded for consideration in later phases. Risks

management have been proposed at this early stage to avoid project failure.

This is due to the fact that risks discovered at late stages such as system

integration and testing could not be mitigated within budget and scheduled

time. Prototype can also be used to manage and mitigate risk by prototyping

the key parts where high risk is identified.

4. Finally, if the product is a new type of software, a demonstration may be

performed with a proof-of-concept prototype.

3.1.2.2 Elaboration iteration

The primary product of the elaboration phase is a stable architecture.

1. An architectural baseline that covers the architecturally significant

functionality of the y tem is created. This architectural baseline will con i t

of the model artefacts, architecture description, and c rccutablc

implementation. Hence, it takes the architecture a step from the inception

phase by creating the executable architecture.

2. Significant risks, that is, risks that could upset the plans and schedule of later

phase, are identified.

3. The levels to be attained by quality attributes are specified.

4. Use cases to about eighty percent of functional requirement are apturcd.

This would be sufficient to plan for the construction pha e.

5. A proposal covering all the resources is prepared.

3.1.2.3 Construction iteration

The general objective of this phase is a product with initial operational capability.

This phase ends with a product ready for beta tc ting. The general activities of this

phase include:

6

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

1. Extending the use-case identification, description, and realisation to the entire

body of the use cases.

2. Finishing analysis, design, implementation, and test

3. Maintaining the integrity of the architecture.

4. Monitoring critical and significant risks carried over from the first two phases.

3.1.2.4 Transition iteration

This phase typically begins with the beta release. This signifies that the software

product is capable of initial operations and is distributed to a representative sample of

the community of actual user. The activities of this phase include:

• Preparation activities.

• Advising the customer on updating the environment in which the software is

to operate.

• Preparation of manuals and other documentation for product rel ea e.

• Adjusting the software to operate under the actual parameters of the u er

environment.

• Correcting defects found after feedback from the beta te ts.

• Modifying the software in the light of unforeseen problems.

3.2 Strength of the proposed approach

The Unified Software Development Process is the outcome of more than thirty year

of experience [l]. The methodology is shaped in a way that has sol e the man

problems that many software development methods possess.

Use case model for requirements capture: The two main concerns of requirement

capture are to find the true requirements and t represent them in a uitable wa . U e

case model has been the choice of the Unified Process. In a use-case model, there are

use cases, which represent a piece of functionality in the sy tern, and actor , which

represent the users and any external system that the sy tern interact \ ith.

According to Karl Wieger, "the perspective provided by use ca s reinforce the

ultimate goal of software engineering: to create products that let cust rners do useful

64

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

work." This is due to the fact that use-case model states the requirements with focus

on value added to the user. In other words, requirement capture is according to the

perspective of each type of user, considering what the system should provides in order

for them to do their work.

Use cases have been adopted almost universally for capturing the requirements of

software systems in general but of component-based system in particular.

Use-case driven: To be use-case driven means that a development process proceeds

through a series of workflows that are initiated from the use cases. In other words,

they drive the whole development process. Figure 3-34 illustrates the models of the

Unified Process where all the models have dependencies with the use-case model. ln

other words, use cases are traceable through all the models.

Figure 3-34 Models of the Unified Process

Iterative and incremental: lterative and incremental development enables developing

software in small step with major and minor mile tone v ith ' hich the d el per

could control the development better.

It can be shaped to deal with the development of any kind of oftware pr duct due to

the flexibility of the iteration workllow. For larger I rojects, the con truction phase

could be curried out in more iteration while for complex and green field project , the

65

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 Methodology

inception and elaboration phase could be extended to more iteration to better

understand the project before making further steps.

3.3 Chapter Summary

This chapter has provides a description of the Unified Software Development Process,

the methodology in for this project. The chapter also specified the strength of the

Unified Process. Among the strength is the use of use case model for requirement

capture, the process being use case driven, and the development using the iteration and

incremental model.

3.4 References

[I] Jacobson, I., Booch, G., Rumbaugh, J.(1999).The Unified Software

Development Process. United States: Addison-Wesley.

66

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Chapter 4 Requirements Capture and Analysis

This chapter presents the result of requirements capture and analysis on the

requirements. The chapter consist of four sections. Section 4.1 presents the result of

requirements capture presented as use cases and their flow of events. As for the result

of analysis, it is presented in Section 4.2 with use-case realisation of the analysis

model and the analysis classes. The final two sections, Section 4.3 and Section 4.4

would summarise the chapter and states the references respectively.

4.1 Requirements Capture

This section presents the outcome of requirements capture in three subsections. The

first subsection provides a description of actors and use cases identified and the flow

of events of these use cases. Statechart diagrams will also be included for use cases

that have a more complex flow of events. The second subsection provide the user

interface design for this application. Finally, the third subsection will state the whole

use case diagram, which forms the requirements of the product.

4.1.1 Actor and Use Cases

Actor: User

A User represents a person who uses this application to perform calculation.

Use Case: Perform General Calculation

This use case is used by the User to perform all supported expre ion-ba ed

calculation.

Precondition: The calculation mode is in General alculation windov is pened.

Flow of events

Basic Path

1. The ser invokes the use case by opening the eneral alculation window.

2. The User keys in the alculation expre sion with the keys on the keypad or

with their equivalent accelerators. The application append the t ken referred

7

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

by the key pressed to the calculation expression and refresh the calculation

expression line on the screen.

3. The User decided to acquire the answer and press the equal key on the keypad.

The application evaluates the calculation expression and provides the answer

if there is no error. After the answer is displayed, the application will go back

to step two.

Alternative Paths

In step two, if the General Calculation window closed or the application is terminated,

the use-case instance terminates.

In step three, if there is error in the calculation expression, the equivalent error

message will be provided on the answer line of the display. After the error message is

displayed, the application will go back to step two.

Postcondition: The use-case instance ends when the application i terminated or the

calculation mode has changed.

Figure 4-1 illustrates a statechart diagram describing the u e ca c Pcrf rm cneral

Calculation.

8

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Keying in
Expression

Acquire answer

Evaluating
Expression

Error found No error

Answer
Displayed

Error Message
Displayed

Figure 4-l Statechart diagram showing the states of use case Perform General Calculation

Use Case: Perform Standard Deviation Calculation

This use case is used by the User to perform standard deviation calculation.

Precondition: The standard deviation window is opened.

Flow of events

Basic Path

4. The User invokes the use case by bringing out the standard deviation window.

5. The User keys in the data for standard deviation calculation into a list. The

application will evaluate the list and provide the values of number of data,

mean, population standard deviation, sample standard deviation sum of

values, and sum of squares as new data is entered.

Alternative Paths

In step two, if the standard deviation window ts closed, the use-case instance

terminates.

69

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Postcondition: The use-case instance ends when the application is terminated or the

standard deviation calculation window is closed.

Figure 4-2 i11ustrates a statechart diagram describing the use case Perform Standard

Deviation Calculation.

Values
Updated

Close
Window

Add new data
Provide answers

Evaluating
New List

Figure 4-2 Statechart diagram of use case Perform Standard Deviation nlulation

Use Case: Saves Calculation to Memory List.

This use case is used by the User to preserve calculations performed for later u e b

saving them into the memory list.

Precondition: The calculator is in General Calculation mode and a calculation has

been performed.

Flow of events

Basic Path

1. The User invokes the use case by pressing the save button on the memory Ii t

window. The application evaluates the expression and produces the answer if

there is no error. The application saves the calculation and it answer to the

list.

2. The use-case instance terminates.

70

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

AJternati ve Paths

In step one, if there is error in the expression, the equivalent error message will be

produced. The application will not save it in the memory list.

Postcondition: The use-case instance ends when the calculation is saved into the

memory list or there is error with the expression.

Figure 4-3 illustrates a statechart diagram describing the use case Saves Calculation to

Memory List.

Evaluating
Expression

No Error

Saved Saving

Figure 4-3 Statechart diagram showing the states of use case Saves Calculation to Memory List

Use Case: Retrieve Calculation from Memory List

This use case is used by the User to retrieve the calculations that has been aved into

the memory list.

Precondition: The calculator ts m General Calculation mode and one a ed

calculation is selected.

Flow of events

Basic Path

I. The User invokes the use ca e by pressing the retrieve calculation button on

the memory list window. The application retrieved the calculation from the

memory list and overrides the current calculation exprc sion with this

calculation.

2. The use-case instance terminates.

71

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Postcondition: The use-case instance ends when the calculation is retrieved from the

memory list to the current calculation expression,

Use Case: Retrieve value from the memory list

This use case is used by the User to retrieve the value of the saved calculation from the

memory list and appended into the calculation expression.

Precondition: The calculator is in General Calculation mode and one saved

calculation is selected.

Flow of events

Basic Path

l. The User invokes the use case by pressing the retrieve value button on the

memory list window. The application retrieved the lot name of the selected

saved calculation from the memory list and app nded the slot name to the

current calculation expression.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the slot name of the selected sa ed

calculations appended to the current calculation expression.

72

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Use Case: Delete calculation from the memory list

This use case is used by the User to delete the saved calculation from the memory list.

Precondition: The calculator is in General Calculation mode and one saved

calculation is selected.

Flow of events

Basic Path

1. The User invokes the use case by pressing the delete value button on the

memory list window. The application deletes the selected stored calculation

form the memory list.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the selected saved calculation is

deleted from memory list.

Use Case: Retrieve Calculation from History List

This use case is used by the User to retrieve the calculations from the history list.

Precondition: The calculator is in General Calculation mode and one calculation in

the history list is selected.

Flow of events

Basic Path

1. The User invokes the use case by pressing the retrieve calculation button on
- the history list window. The application retrieved the calculation from the

history Ii 't and overrides the current expression with thi calculation.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the calculation i retrie ed from the

history list to the current calculation expression.

73

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Use Case: Retrieve Constant from Constant List

This use case is used by the User to retrieve the constant to be used in calculation.

Precondition: The calculator is in General Calculation mode and one constant is

selected.

Flow of events

Basic Path

1. The User invokes the use case by pressing the retrieve button on the constant

list window. The application retrieved the constant symbol from the constant

list and appends it to the current expression.

2. The use-case instance terminates.

Postcondition: The use-case instance ends when the constant symbol is retrieved from

the constant list and appended to the current calculation expre sion.

4.1.2 User Interface

This subsection specifies the user interface design of the use cases.

Figure 4-4 illustrates the user interface design of use case Perform eneral

Calculation. The screen for this window will use a custom-made component for

expression-based calculation. There is a toolbar above the screen for activating the

Standard Deviation Calculation window, the memory list window, the hi tory ti t

window, and the constant list window.

74

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

cSciCalc ~£j

1 -1-
3

3+ 2 -3J8 xVSi + 94 7 38 + 30x10-1 -6sin30°
3

'" ~
7 8 9 I

.... - -· - 4 5 6 x
- ·- - - 1 2 3 - r. I = - 0 +

Figure 4-4 User interface design for use case Perform General Calculation

The user interface design of use case Perform Standard Deviation Calculation is

illustrated in Figure 4-5. A list will be used for add and delete of data. A the content

of the list change, the values of the six variables at the right side will be recalculated

with the new list.

75

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Standard Deviation Calculation ~~

Data

n

x
(l'n

(1' n-1

LX
Lx21

Figure 4-5 User interface design for use case Perform Standard Deviation Calculation

Figure 4-6 illustrates the user interface design of the three lists, memory list, history

list, and constant list. These lists use the grid to show data inside the Ii t. A tool bar

will be appended to the lists to support their operations.

Memory list ~ ~

Name Calculation Result A Name Value ~1 A1
A2.
A3
A4

T

. History List ~~ - .. Cafoulatlon 1J Result A
1

, __
2 . I

11 - 3
4
5
6 :~1 7

-

Constant list ~ £i

Figure 4-6 User lutcrfuce d ·slfen for th four II ts

76

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

4.1.3 Use-Case Model

This subsection specifies the use case model, which expresses the requirements of the

product of this project.

User

eSciCalc

Figure 4_ 7 Use cse model of eSciCnlc

Figure 4-7 illustrates the structured use-case model of application c ci ale. The user

interacts with eight use cases: Perform cncrul alculati n, Pcrf rm t.andard

1 cviation alculation, Save 'al ulation to Mem ry .sr, Retrieve alculation from

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Memory List, Retrieve Value from Memory List, Delete Calculation from Memory

List, Retrieve Calculation from History List, and Retrieve Constant from Constant

List. The flow of events of all these use cases has been specified in Section 4.1.1. As

illustrated in Figure 4-7, the bottom six use cases have a uses (equivalent to

generalisation) relationship with use case List Manipulation.

4.2 Analysis

This section describes the result of analysis. It is divided into two subsections. The

first subsection describes the use-case realisation of analysis model while the second

subsection specifies the analysis classes.

4.2.1 Use-Case Realisation - Analysis

This section shows each use case realisation of analysis. Collaboration diagrams are

used to describe the collaboration between analysis objects. very collaboration

diagram will have a flow of event to further describe the diagram.

Boundary

Control

0 Entity

Use Case: Perform General Calculation

Figure 4-8 and Figure 4-9 illustrates the use case reali ation of u e ca e Perf rm

General alculation.

1: Key In expression 2: Update expression __ __ O=:J ~
:General Calcylatloo

lotedac

Figure 4-8 ollnhorntlon din~rnm describln • key-in part of 11 e ens Perform encrnl alculatlon

78

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Flow of event: The user keys in the calculation expression (see Figure 4-8 step 1) and

the application updates the expression displayed (see Figure 4-8 step 2).

1: A_cq_u_ire_!n_SN_e_r 0 2: Evalu~ression o
:General Calculatjon :General

Interface Calculation

3: Add calculation j
4: Add calculation o 0

:History List
Entity

:History List
Interface

Figure 4-9 Collaboration diagram describing the execute expression part of the use case model

Flow of event: The User acquires answer (see Figure 4-9 step I) to the expres: ion

keyed in through the General Calculation Interface. The General Calculation Interface

uses the General Calculation object to evaluate expression (see Figure 4- tep -).

With the result at hand, the General Calculation Interface updates the display and add

calculation to the history list through the History List Interface (see Figure 4- step

The History List Interface updates the displayed list and adds this calculation to the

database using the History List Entity. Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Use Case: Perform Standard Deviation Calculation

Figure 4-10 illustrates the use case realisation of use case Perform Standard Deviation

Calculation.

1: Key in data 2: Update values __ ... __ o~ ~
:Standard Deviation
Calculation Interface

Figure 4-10 Collaboration diagram describing use case Perform Standard Deviation Calculation

Flow of event: The User key data into the list (see Figure 4-10 step 1) through the

Standard Deviation Calculation Interface. The Standard Deviation Calculation

Interface object then updates all the values with the new data as input (see Figure 4-10

step 2). Every time a modification to the data list is performed the values will be

updated.

Use Case: Save Calculation to Memory List

Figure 4-11 illustrates the use case realisation of use case Save Calculation to Memory

List.

1: Press save button __ ... () 2: Get expression and answer ... 0
:Memory List
Interface

4: Save calculation !
:General Calculation

Interface

3: Evaluate i
expression

0
:Memory List

f01l1Y
:General

Calculation

Figure 4-1 l 'oll11bon11ion dhtgnun descdblng use en e 'nvc alculatlon to Memory Li t

80

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Flow of event: The User presses the save button on the Memory List Interface (see

Figure 4-11 step 1) to save the current calculation into the memory list. The Memory

List Interface then uses the General Calculation Interface to get the expression and

answer to be saved (see Figure 4-11 step 2). The General Calculation Interface uses

the General Calculation to evaluate the expression in order to get the answer (see

Figure 4-11 step 3). With the expression and answer returned to the Memory List

Interface, it updates the displayed list and uses the Memory List ntity to update the

database (see Figure 4-11 step 4).

Use Case: Retrieve Calculation from Memory List

Figure 4-12 illustrates the use case realisation of use case Retrieve Calculation from

Memory List.

1: Press retrieve
calculation ~utton

0
2: Overwrite expression'°

;Memorv List :General CalculCJtlon
Interface Interface

Figure 4-12 Collaboration diagram describing use case Retrieve Calculation from Memory List

Flow of event: The user presses the retrieve calculation button on the Memory Li t

Interface to retrieve saved calculation (see Figure 4-12 step I). The Memory Li t

Interface then determines the selected row in the memory list and update the

expression displayed using the General Calculation Interface (see Figure 4-12 tep -).

81

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Use Case: Retrieve Value from Memory List

Figure 4-13 illustrates the use case realisation of use case Retrieve Value from

Memory List.

1: Press retrieve 2: Append slot name
value button to expression --'-----~ 0--~ -0

:Memory List
Interface

:General Calculation
Interface

Figure 4-13 Collaboration diagram describing use case Retrieve Value from Memory List

Flow of event: The User press retrieve value button on the Memory List Interface to

retrieve saved value (see Figure 4-13 step l). The Memory List Interface then

determines the selected row in the memory list and appends the slot name to the

expression using the Get Calculation Interface (see Figure 4-13 tep 2).

Use Case: Delete Calculation from Memory List

Figure 4-14 illustrates the use case realisation of use case Delete alculation from

Memory List.

1: Press delete
calculation button Lt\ 2: Delete record
~~·~ I\.__) ~

:Memory List
Interface

0
:Memory List

f.n!i!y

Figure 4-14 ollaborariou dingrnm describing use case Delete alculntion from Memory List

Flow of event: The User presses the delete calculation button on the Memory List

Interface to delete u stored cal ulation cc Figure 4-14 step 1 . The Memory List

Interface then determines the elected row in the memory list and delete the

82

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

equivalent record from the database using the Memory List Entity (see Figure 4-14

step 2) and updates the displayed list.

Use Case: Retrieve Calculation from History List

Figure 4-15 illustrates the use case realisation of use case Retrieve Calculation from

History List.

1 : Press retrieve
calculation buttoni_/\ 2: Overwrite expressioni_/\ ----i·~ I_) .. I_)

:History List :General Calculation
Interface Interface

Figure 4-15 Collaboration diagram describing use case Retrieve Calculation from History List

Flow of event: The User press retrieve calculation button on the Hi tory Li t Interface

to retrieve any of the ten latest calculations (see Figure 4-15 step I). The History i t

Interface then determines the selected row in the history list and overwrite the current

expression using the General Calculation Interface (see Figure 4-15 step 2).

Use Case: Retrieve Constant from Constant List

Figure 4-16 illustrates the use case realisation of use ca e Retrieve on tant from

Constant List.

1: Press retrieve
constant button

2: Append constant symbol o to expressio~ o
Constant List :General Calculation

Interface Interface

Figure 4-16 ~ollnhorntlon dln~n1111 describing u c cnse Retri we 'onstant from on tant Li t

83

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Flow of event: The User press retrieve value button on the Constant List Interface to

retrieve constant for calculation (see Figure 4-16 step 1). The Constant List Interface

then determines the selected row in the constant list and appends the constant symbol

to the current expression with the General Calculation Interface (see Figure 4-16 step

2).

4.2.2 Analysis Class

This subsection specifies the analysis classes identified. The results presented in this

subsection are extracted from the previous subsection, which has provided a clear

picture of the analysis model by describing each use case realisation as collaboration

of analysis objects.

The responsibilities and attributes of each analysis classes are described in Table 4-1.

These responsibilities are needed by the analysis classes to perform use ca e

realisation.

Analysis Class Responsibilities Attributes

General Calculation Update display Calculation expression

Interface Append token Answer

Overwrite expression

Provide expression and answer

Get answer

General Calculation Evaluate calculation expression Calculation expression

Standard Deviation Data input ata list

Interface Delete data Mean

alculate answers Population

ample

Number f data

84

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

Sum of values

Sum of Squares

Memory List Interface Refresh list Memory list

Save calculation

Provide calculation retrieval

Provide value retrieval

Delete calculation

Get the whole list ..

Memory List Entity Add record Slot number

Provide whole list retrieval Name

Delete record Calculation

Value

History List Interface Refresh list History list

Retrieve calculation

Add calculation

Get the whole list

History List Entity Add record Slot number

Provide whole list retrieval alculation expre ion

Delete record

Constant List Interface Refresh list Constant Ii t

ct the whole list

Provide constant retrieval

onstant List I •'ntity Provide whole list retrieval n tant s mbol

nstant value
- - ----- - ----
Table 4 Annlysis cli1sscs with their re pousihllltle and 11ttributcs

85

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

o-0

-0
Memory List
Interface

Memory List
Entity

-0
General Calculation General

Interface Calculation
History List
Interface

History List
Entity

0-0 Standard Deviation
Calculation Interface

Constant List
Interface

Constant List
Entity

Figure 4-17 Class diagram showing the analysis classes of eSciCnlc

Figure 4-17 illustrates the analysis classes of this project using class diagram. The

classes are mainly divided into two groups, one for each calculation modes. The

standard deviation mode are realised with just one boundary class. The second group

consists of analysis classes that realises the general calculation mode including the

three lists to assist calculation.

Figure 4-18 illustrates the generalisation relationships that involved the anal i

classes. The generalisation relationships are excluded from Figure 4-17 to reduce

complexity and crowdedness.

86

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 Requirements Capture and Analysis

0
List Interface

/t~
0 0 0

0
List Entity

~~~o 
Memory List History List Constant List Memory List 
Interface Interface Interface Entity 

(a) 

History List 
Entity 

(b) 

Constant List 
Entity 

Figure 4-18 The generalisation relations among the analysis classes 

4.3 Chapter Summary 

The use case model, which defines the requirements of the product, and the analysis 

model which describes the requirements with more detail, have been presented in this 

chapter. Nine analysis classes have been identified to realise the eight u e ca es 

identified earlier. 

4.4 References 

(1] Jacobson, I., Booch, G., Rumbaugh, J. (1999).The Unified Software 

Development Process. United States: Addison-Wesley. 

[2] Jacobson, I., Booch, G., Rumbaugh, J. (1999).The Unified Modelling 

Language User Guide. United States: Addison-Wesley. 

87 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Chapter 5 Design 

This chapter present the result of design for this project. There are four sections in this 

chapter. The first section, Section 5.1 will specify the result of use-case realisation of 

the design model. Section 5.2 describes the design classes as a whole. The third 

section, Section 5.3 provides a summary of the chapter while, Section 5.4 states the 

references. 

5.1 Use-Case Realisation - Design 

The use case realisation of the design model is described using sequence diagrams 

showing the collaboration of design objects. Every use case realisation will be 

described with one sequence diagram and the flow of event. 

Use Case: Perform General Calculation 

Figure 5-1 illustrates the use-case realisation for use case Perform eneral alculation 

with a sequence diagram. 

Flow of event: The user keys in the calculation statement by repetitively pre ing the 

keys on the GenKeypad panel. When a key is pressed, GenKeypad uses the 

keyPressed() function to inform GenCalcUlMan of the key being pres ed. The 

GenCalcUIMan will append the token of the equivalent key pressed to the calculation 

statement and refreshes the GenScreen control with refreshScreen() function. 

When the user has decided to acquire the answer for the expression ke ed in th qua! 

key on the GenKeypad panel is pressed. The GenKeypad then send the key pre sed 

information to GenCalcUIMan with the keyPressed() function. Th 

uses the function getAnswer() to acquire an wer from enCalc. Gen ale will 

evaluate the expression and return the answer to GenCalcUlMan. After that the 

Gen alcU I Man refreshes the creen with the answer using the function 

refrcshScrcenf). Next, the en alcUJMan add the calculation to the hist ry list using 

the add ulculation(). The I listList IMan then update the record in the database using 

function updateRecord() in the I list lridllntity and update the di splayed Ji t with 

function updateList() in I list rid. 

88 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

89 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

o 
l3 c 
Q) o 

~ o 
Cl) 
c 
Q) o 

c 
<ti 
~ 
::::> - (/) ::J - (/) £ 

'~ 

0 - (/) ::J -~ ~ 
<ti 

~ -0 a. 
8 :::J 
Q) 
0:: 
$ 
<ti 
"O a. 
:::J 

' .. 

0 c n 
~ rt; a 

(ij 

~ 
0 -0 .... <ti 
Q) 

~ 
0, 

~ 
O,~ c c 

Q) Q) 

b O> b 
Cl) C/) 
..c c s: 
~ 0 (/) 

'(ij Q) 

fj .t:: (/) 
Q) Q) .... ..... .... 

a 
@ ~ 
-0 - 0 Q) ....... 

-0 - -0 m $ -0 m 
(/) a. (/) 
Q) ::J Q) 
'- 

~ 
'- Cl. Cl. 

>. >. 
Q) ..c Q) 
,:,,,:. Cl) .::.c. 

c • g '- 
Q) 

m ~ B c c 
~ Q m 

(/) Q) 

~ 
'- 

.b ·5 
>. 

~ 
8" 

~ <( 

Flgur 5-1 S queue din ram d n ral nlculatlon 

9 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Perform Standard Deviation Calculation 

Figure 5-2 illustrates the use-case realisation for use case Perform Standard Deviation 

Calculation with a sequence diagram. 

:SDCalcUIMan :SDAnswerPanel 

Add data - 
add() 

updateAnswer() _ 

Remove dat/ 
Clear list 

;:. 
dekete() 

;:. 

updateAnswer() 

Figure 5-2 Sequence diagram describing use case Perform Standard Deviation alculation 

Flow of event: The user performs standard deviation calculation by through the 

SDCalcUlMan form. The user adds data to the data list through the SDList object. 

The SDList will inform the SDCalcUJMan using the add() function. Finall , the 

SDCalcUIMan updates the answers on SDAnswerPanel using the updateAnswer() 

function. 

The data delete data from the data list through the S List object a well. The SDList 

will inform the SD alcUIMan using the add() function. Finally, the SDCalcUIMan 

updates the answers on SDAnswerPancl using the updateAns er( function. 

91 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Save Calculation to Memory List 

Figure 5-3 illustrates the use-case realisation for use case Save Calculation to Memory 

List with a sequence diagram. 

Flow of event: The user presses the save calculation button on the MemToolbar to 

save the recent calculation into memory. The MemToolbar will request 

MemListUIMan to add calculation using the addCalc() function. The MemListUIMan 

form then get the current expression and answer from GenCalcUIMan with 

getExpAnswer() function. GenCalcUIMan will then execute the expression with 

GenCalc object using the getAnswer() function. As GenCalc returns the answer to 

GenCalcUIMan, it refreshes the display of GenScreen using function refreshScreen(). 

Then, GenCalcUIMan will add the executed calculation to the history list using the 

addCalculation() function in HistListUIMan form. The HistListUIMan uses the 

updateRecord() function in HistListEntity to update the record. The update record 

operation might involve deleting the tenth calculation before adding the new one r 

just add the calculation in if the list is not yet full. Before updating it also need to 

check for redundancy. Then, HistListUIMan will update the list being displayed using 

the function updateList() in the HistGrid. After updating the history Ii t, the 

expression and answer that MemListUIMan wanted would have been received and it 

will update the memory list record using the MemList ntity through the 

updateRecord() function. Finally, MemListUIMan will update the list being displayed 

in MemGrid with function updateList(). 

2 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

rn 
rn !!l ::c 

:t: 
'E 
w 
~ 
_J 

~ ::c 

[I] 
111 

[]] 
ot-<~I 

. 

~ 

~ 

0 
1ii 
::J - ~ "E ro 

8 "O a. 
(I) ::i 
0:: 
Q) 

-ro 
"O 
Q- 

~ 

,......., 
';:::' 

~ 0 

~ 0 c ::i 
~ c o 

~ ro 
~ 

0 
0 1i) t> ~ (Y ::J 

';:::' ~ :c ro Q) ~ 
Q) (/) ro ro 

~ e "O "O 
a. a. - ::i 

~ 
~ ::i 

Q) 
,......., 0) 

Q; ~ 
~ c 
<{ 
~ 
~ 
(I) ,.,., 

' 
c 
.Q 
ro 
0 
"O 
"O ro 

........ g 
.8 ~~ 
~ 3 ~ ro ~ E en 

Figure 5-3 equenc • clingrnm de crlblng 11, c ens Snve 'nk11l11tlo11 to M mory Li t 

93 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Retrieve Calculation from Memory List 

Figure 5-4 illustrates the use-case realisation for use case Retrieve Calculation to 

Memory List with a sequence diagram. 

:MemToolbar MemlistUIMar l:MemGridl GenCalcUIMar :GenScreen 

Retrieve 
caicuanorr 

retrieveCalcQ - .. 
~ etSelectedCalc( 

- 
overw riteExp () 

::: 

refrestScreen 
:: 

Figure 5-4 Sequence diagram descirbing use case Retrieve Calculation from Memory List 

Flow of event: The user retrieve the saved calculation from the memory Ii t by 

pressing the retrieve calculation button on the MemToolbar. The MemToolbar will 

request MemListUIMan to perform the operation using the retrieveCalc() function. 

The MemListUIMan then get the selected calculation for retrieval using the 

getSelectedCalc() function from MemGrid. As the requested calculation i r cei ed 

MemListUIMan overwrite the existing calculation expre st n using the 

overwriteExp() function in GenCalcUlMan. Finally, the GenCalcUIMan refre he the 
- 

calculation screen using the refreshScreen() function in en creen. 

94 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Retrieve Value from Memory List 

Figure 5-5 illustrates the use-case realisation for use case Retrieve Value to Memory 

List with a sequence diagram. 

:MemToolbar Memllst Ma l:MemGrldl B \:GenScreenl 

Retrieve 
Value - 

retrieve Valuet) 

~ etSelectedNam~ () ~ 

apper dToken() . 
refrestScreen - 

Figure 5-5 Sequence diagram describing use case Retrieve Value from Memory List 

Flow of event: The user retrieve the value of a saved calculation from the memory 

list by pressing the retrieve value button on the MemToolbar. The MemToolbar will 

request MemListUIMan to perform the operation using the retrieveValue() function. 

The MemListUIMan then get the slot name for retrieval u mg the 

getSelectedSlotName() function from MemGrid. The slot name will be plac d in the 

calculation expression instead of the value. As the reque ted calculation i recei ed 

MemListUIMan appends the retrieved slot name to the existing calculation expres ion 

using the appendToken() function in GenCalcUIMan. Finally the Gen alcUlMan 

refreshes the calculation screen u ing the refreshScreen() function in Gen creen. 

95 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Delete Calculation from Memory List 

Figure 5-6 illustrates the use-case realisation for use case Delete Calculation to 

Memory List with a sequence diagram. 

: Mem T oolbar MemlistU I Mar : Mam ListEntlh I: Mam Grid I 
Delete 
ca1cu1auon - 

deleteCalc() _ 
p 

deleteRecord() - 
remove Row() - 

Figure 5-6 Sequence diagram describing use case Delete Calculation from Memory List 

Flow of event: The user deletes a saved calculation from the memory Ii t by pressing 

the delete calculation button on MemToolbar. The MemToolbar then reque t 

MemListUIMan to perform the operation using deleteCalc() function. Fir tly the 

MemListUTMan deletes the record in the database using deleteRecord() function with 

MemListEntity. Then, MemListUIMan remove the calculation from the list displa ed 

in MemGrid using removeRow() function. 

9 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Retrieve Calculation from History List 

Figure 5-7 illustrates the use-case realisation for use case Retrieve Calculation to 

History List with a sequence diagram. 

:HistToolbar I :HistlistUIMan 11 :HlstGrid I :GenCalcUIMan l:"enScreenJ 

Retrieve 
calculation - 

retrieveCalc(). 
- 

getSelectedCalc ) 
.. 

- 
overwirt ~Exp() 

- 
refreshScreen(). - 

Figure 5-7 Sequence diagram describing use case Retrieve Calculation from History List 

Flow of event: The user retrieve a calculation from the history Ii t by pressing the 

retrieve calculation button on the HistToolbar. The HisrToolbar will reque t 

HistListUIMan to perform the operation using the retrieveCalc() function. The 

MemListUIMan then get the selected calculation for retrieval using the 

getSelectedCalc() function from HistGrid. As the requested calculation is received 

HistListUlMan overwrite the existing calculation expression using the overwriteExp() 

function in GenCalcU1Man. Finally, the GenCalcUlMan refre hes the calculation 

screen using the refreshScreen() function in GenScreen. 

7 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Retrieve Constant from Constant List 

Figure 5-8 illustrates the use-case realisation for use case Retrieve Constant to 

Constant List with a sequence diagram. 

:ConstT oo!ba[ :~onstLlsjU !Man I :~onstGrid I : Gen(;alcWMan I :GenScrne n I 
Retrieve - constant retrieveConst(~ 

letSelectedConst ) .. 
- 

appendl K>ken() 
- 
refreshScreen() 

Figure 5-8 Sequence diagram describing use case Retrieve Constant from Constant List 

Flow of event: The user retrieve a constant from the constant list by pres ing the 

retrieve constant button on the ConstToolbar. The ConstToolbar will reque t 

ConstListUJMan to perform the operation using the retrieveConst() function. The 

ConstListUIMan then get the symbol for retrieval using the get elected ymbol( 

function from ConstGrid. The symbol will be placed in the calculation expres ion 

instead of the value. As the requested calculation is received ConstListUlMan 

appends the retrieved symbol to the existing calculation expressi n u ing the 

appendToken() function in GenCalcUlMan. Finally, the en alcUIMan refreshe the 

calculation screen using the refreshScreen() function in GenScreen. 

8 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

5.2 Design Class 

This subsection specifies the design classes of this project. The results presented in 

this subsection are extracted from the previous. subsection, which has provided a clear 

picture of the design classes through describing each use case realisation as 

collaboration of design objects using sequence diagram. 

Figure 5-9 illustrates the design classes of the project with the association 

relationships using class diagram. Again, there are two unrelated groups in the class 

diagram. The standard deviation calculation has been realised using one active class 

named SDCalcUIMan and two other controls. As for the general calculation, there 

five classes for evaluating the supported functions. They are named Arithmetic, 

Trigonometry and Hyperbolic, Logarithm, Indexes, and Statistic. 

9 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

SD List 
- SOCalcUIMan 

~ 
Arithmetic 

SDAnswerPanel 

) Trigonometry 
and 

GenScreen r-------_ (,/' Hyperbolic 

GenCalcUIMan GenCalc Logarithm 
~ GenKeypad 

~ 

Indexes 

Memlist 
~ 

MemlistUIMan MemlistEntity Statistic v .. 
MemToolbar 

Histlist r----- 
HistllstUIMan HistllstEntity 

t.>: HistToolbar 

ConstUst r----- 
ConstUstUIMan ConstlJstEntity 

~ ConstT oolbar 

Figure 5-9 Class diagram showing the design classes 

--------------------------------~ ~--------~----------------------~ 100 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

ListUIMan 

MemListUIMan HistListU I Man ConstListU I Man 

(a) 

ListEntity 

MemListEntity HistlistEntity ConstllstEntlty 

(b) 

Figure 5-10 Class diagram showing the generalisation relationship of design classes 

5.3 Chapter Summary 

The design model for this project has been presented and described in this chapter. 

There are twenty-four design classes participated in the realisation of the eight u e 

cases specified in the previous chapter. 

5.4 References 

[1] Jacobson, I., Booch, G., Rumbaugh, J.(1999).The Unified Software 

Development Process. United States: Addison-Wesley. 

[2] Jacobson, I., Booch, G., Rumbaugh, J.( 1999).The Unified Modelling Language 

User Guide. United tares: Addison-Wesley. 

101 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Chapter 6 Implementation 

This chapter will describe the major components of eSciCalc and their respective 

development approach. 

6.1 Core components and development approach 

6.1.1 Calculator screen 

The most important part of eSciCalc is the calculator screen. This screen has been 

implemented as an ActiveX control. The services provided by this control includes 

expression key in, expression drawing, as well as calculating the expression and 

providing the answer. Since there is another component in the design that could 

utilise the expression service, most of the functionality of this control has been 

embedded into a hierarchy of class called Expression. This would enable more than 

one control to utilise this important service. Moreover, this would enable the ervices 

to be developed and tested with a console application or a Window application that the 

Visual C++ IDE provides debug services which the ActiveX control development 

does not. 

In order to achieve the vision of having standard notation on the display the font u ed 

would have to include numerous symbols that are used in mathematical calculation . 

Although all the symbols are included with the Unicode version of most Windows 

font, many of them are not included in the ASCH. Since one of the aim of thi product 

is to run on Windows 9x and Windows 9x does not support Unicode a cu tom font 

has been created. It is loaded when the calculator runs. 

6.1.2 Expression classes 

The expression class provides the fundamental form of any kind of expression. This 

class is an abstract class and i inherited by the en ale eta in e ci ale. The use of 

this hierarchy of classes for expression has also enable the support of com pie, number 

and basc-n calculation cosily. 

102 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

The components of this class are mostly developed in a simple console mode 

application (wherever no graphical user interface is needed) or a simple MFC window 

application to make sure the way work and the working code has been developed 

before being integrated into the class being built since it is larger. 

An expression object saves the expression it is handling as a string. String has been 

chosen as an expression might have to be stored into a database which does not 

support any user defined type directly. In addition, user defined type would not be 

possible to be passed in between an ActiveX control and its user. 

This string representation of the expression will be transformed into a binary tree to 

perform expression drawing as well as expression calculation. A binary tr.ee is used in 

this case as the expression could be easily tokenised according to its precedence. 

Moreover, the binary tree also automatically grouped the whole expression. For 

example, if a particular node is a fraction, we could easily identify its width, height, 

and so on since the left and right side of the node would be the fraction's numerator 

and denominator .. This would ease the expression drawing. 

Besides that, the Expression class also store a list of variables and constant va I ues as a 

linked list. This is where the values of variables could be as igned for alculation. 

This is implemented to support the use of memory list. 

6.2 References 

[l] Deitel, H.M., Deitel, P.J.(1994).C: How to Program. United States: Prentice 

Hall. 

(2] Kruse, RI., Tondo, C.L., Leung, B.P.(J 997).Data Structure & Program De ign 

in 0. United States: Prentice Hall. 

[3] Sebesta, R. W.(1999).Concepts of Programming Languages,( 4th ed). United 

States: Addison-Wesley. 

103 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Chapter 7 Testing 

The purpose of testing is to 

• Plan the tests required in each iteration, including integration tests and system 

tests. Integration tests are required for every build within the iteration, 

whereas system tests are required only at the end of the iteration. 

• Design and implement the test by creating test cases that specify what to test, 

creating test procedures that specify how to perform the test, and creating 

executable test components to automate the test if possible. 

• Perform the various tests and systematically handle the results of each test. 
Builds found to have defects are tested and possibly sent back to other core 

workflows, such as design and implementation, so that the significant defects 

can be fixed.I l] 

This chapter present the result of testing for this project. There are four section in 

this chapter. The first section, Section 7.1 will specify the input, result and condition 

of use-case realisation of the design model. Section 7.2 describes the test pro edurc. 

The third section, Section 7.3 provides a summary of the chapter while, ection 7.4 

states the references. 

7.1 Test Case 

A test case specify one way of testing the system, including what to test with which 

input or result, and under which conditions to test. 

Use Case: Perform General Calculation 

This test case will verify the key-in part of use case Perform General Calculation. 

Input 

• Key in the calculation statement I I· 2 3)/ sin20 by pressing the keys on the 

enKcypad panel. 

Result 

• The application sh uld update the expression displayed. 

104 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Conditions 

• No other use cases (instances) are allowed to access the General Calculation 

Interface during this test case. 

This test case will verify the execute expression part of use case Perform General 

Calculation. 

Input 

• The equal key on the GenKeypad panel is pressed. 

Result 

• The General Calculation Interface should display 6.476780e as the answer. 

• The history list should have the calculation. 

• The database should update the record. 

Condition 

• No other use cases (instances) are allowed to access the General alculation 

Interface during this test case. 

Use Case: Perform Standard Deviation Calculation 

This test case will verify the use case Perform Standard Deviation alculati n. 

Input 

• From the General Calculation Interface pressed the Standard Deviation 

Calculation button. 

• Key in 3, 4, and 5 into the data list. 

Result 

• The number of data (n) should show a value of 3. 

• The mean (x) should show a value of 4. 

• The population (.xa,,) hould show a value of0.8165. 

• The iarnplc ( xa,,_1) should show a value of 1. 

• The Sum olvaluc (L::X) should show a value of 12. 

• The Sum or Squares (:Lx2 should. how a value of 50. 

105 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Use Case: Save Calculation to Memory List 

This test case will verify the use case Save Calculation to Memory List. 

Input 

• Key in the calculation statement 1 + (2+ 3)/ sin20 by pressing the keys on the 

GenKeypad panel. 

• Press the memory list button on the toolbar above the screen. 

• Pressed the save button on the Memory List Interface. 

Result 

• The memory list record will be update, which the Calculation column should 

show calculation statement (l+ (2+3)/ sin20) and the result of the calculation 

(6.476780e) should show in the result column. 

Condition 

• No redundancy is allowed. 

• The memory list is not full. 

Use Case: Retrieve Calculation from Memory List 

This test case will verify the use case Retrieve Calculation from Memory List. 

Input 

• Press the retrieve calculation button on the MemToolbar. 

Result 

• The General Calculation Interface should show the selected calculation. 

• If there is existing calculation expression on the General Calculation lnterface 

it should be overwriting. 

Use Case: Retrieve Value from Memory List 

This test case will verify the use case Retrieve Value from Memory List. 

Input 

• Press the retrieve value button on the Mern'Fo lbur. 

10 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Result 

• The General Calculation Interface should show the selected calculation's 

value. 

• If there is existing calculation expression or value, it should be overwriting. 

Use Case: Delete Calculation from Memory List 

This test case will verify the use case Delete Calculation from Memory List. 

Input 

• Press the delete calculation button on MemToolbar. 

Result 

• The record in the database should be deleting. 

• The calculation displayed in the memory list should be deleting. 

Use Case: Retrieve Calculation from History List 

This test case will verify the use case Retrieve Calculation from History List. 

Input 

• Press the retrieve calculation button on the HistToolbar. 

Result 

• The General Calculation Interface should show the selected calculation. 

• If there is existing calculation expression, it should be overwriting. 

Use Case: Retrieve Constant from Constant List 

This test case will verify the use case Retrieve Constant from Constant Li t. 

Input 

• Press the retrieve constant button on the onsToolbar. 

Result 

• The enera1 alculation Interface should show the elected ymb I. 

• If there is cxi uing calculation cxprcs ion or value, it should be overwriting. 

107 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

7.2 Test Procedure 

A test procedure specifies how to perform one or several test cases or parts of them. A 

test procedure in this project will be an instruction for an individual on how to perform 
a test case manually. 

Test case supported: calculation statement l+ (2+3)/ sin20 

1. From the General Calculation Interface, pressed the key on the Gen.Keypad panel 

follow the calculation statement 1+(2+3)/sin20. 

2. Verify the display in the General Calculation Interface, it should display 
1+(2+3)/sin20. 

3. Press the equal key on the GenKeypad panel. 

4. Verify the display in the General Calculation Interface· it should display 

6.476780e as the answer. 

5. Press the history list button on the toolbar above the screen. 

6. Verify the following fields: 

• Calculation is 1+(2+3)/sin20. 

• Result is 6.4 76780e. 

Test case supported: standard deviation calculation statement 3, 4, 5 

1. From the General Calculation Interface pressed the Standard Deviation 

Calculation button. 

2. Key in 3, 4, 5 into the data list. 

3. Verify the following fields: 

• Number of data (n) is 3. 

• Mean (x) is 4. 

• Variance (a2) is 0.66666667. 

• Standard deviation (a) is 0.81649658. 

• um of value o::x is 12. 

• Sum or quares (:Z::x2 is 50. 

108 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

7.3 Chapter Summary 

The test model for this project has been presented and described in this chapter. There 

are nine test cases and two test procedures in this chapter. The test cases specify what 

to test in the system and the test procedures specify how to perform the test cases. 

7 .4 References 

[l] Jacobson, I., Booch, G., Rumbaugh, J. (1999).The Unified Software 

Development Process. United States: Addison-Wesley. 

109 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Chapter 8 Evaluation 

System evaluation is the process of identifying the strengths and weaknesses of the 

system and suggestions for possible future enhancements. This chapter present the 

project evaluation for this project. There are four sections in this chapter. The first 

section, Section 8.1 will specify the strength of the project. Section 8.2 describes the 

limitation of the project. The third section, Section 8.3 states the project's 

enhancements while Section 8.4 provides a summary of the chapter. 

8.1 Strength 

Among the strength of eSciCalc is: 

• Runs on all 32-bit Windows Platform - Since Windows is currently the most 

popular and widely used operating system eSciCalc is designed to run on 

Windows platform. 

• User-friendly Interface - eSciCalc provide a better user interface that would 

promote the use of standard notation, easy to redo and reduce error rate and 

easy rechecking. Moreover, eSciCalc has a common Windows interface that 

the users have been used to. 

• Ease of Control and Manipulation - eSci ale can be used with the keyboard 

only, mouse only as well as a combination of both. Thi would provide all 

kinds of users with the method they prefer. 

• Easy to Expand Architecture - eSciCalc design with an eas to expand 

architecture. This would enable the product to support a more complete et of 

caleulations. 

8.2 Limitation 

There are limitations and weakness that could be improved in the future. Among the 

limitations are: 

• Insufficient functionality - c 'ci ale d cs not support adequate functions to be 

considered useful. 

110 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

• Calculation value not large enough - although the range of the calculation 

value supported by eSciCalc is considerably large, it would be good if it could 

support a near infinite range to support the fast growing need of scientific 
calculation. 

• The use of self-referenced structure instead of self-referenced class for 

the binary tree has make the code rather messy and difficult to expand. 

The future version could be overhauled to used self-referenced class. 

8.3 Future Enhancements 

Referring to eSciCalc's limitation given above, there is still high potential for future 

enhancements. These include: 

• The most needed improvement would be the use of self-referenced class for 

the binary tree. The current method has been limiting the application s 

expansion capability. Moreover, it encapsulates the code better and less 

messy. 

• Secondly, create or find a data type that would support higher value and 

precision like the one used in Microsoft Calculator ver i n 5. I which seem 

infinite. 

• Having a good framework already, more functions would be added to the 

general calculation mode of eSciCalc. Besides that, more calculation modes 

such as the complex number calculation would be added. 

8.4 Chapter Summary 

The evaluation and maintenance for this project has been presented and described in 

this chapter. The strength includes running on Windows platform ha ing user­ 

friendly interface, ease of control and manipulation and having an easy to expand 

architecture. As for the limitations, eSci ale has limited functions, having a large but 

could be larger calculation value, and the construction of binary tree with structure 

instead of class. 

111 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

Chapter 9 Conclusion 

This chapter present the conclusion for this project. There are two sections in this 

chapter. The first section, Section 9.1 will specify the problems and solutions of this 

project. Section 9.2 describes knowledge gained and Section 9.3 state the conclusion. 

9.1 Problems and Solutions 

Various problems were occurred during the period in development eSciCalc. The 

previously mentioned problems and the solutions are undertaken to resolve them are 

described in the following sections. 

• Difficulty in Choosing a Suitable System Development Tools - There are too 

many system development tools available to develop a stand-alone system 

currently. Therefore, choosing tools is very important in developing a system. 

The suitable tools can speed up System Development Life ycle and to 

minimal the unexpected bug and error. To determine which suitable to u e 

seeking advises and view from project upervisor and course mate engaging 

in similar project are carried out. Besides, surfing through the Internet and 

visiting the library help clarify some doubts. 

• How wide of the System Scope to be Build - This is impossible to build a full­ 

scale system because of time constraints. Also, inexperience and trange f 

the new programming language are contributed to this program (time consume 

in learning new programming language). Therefore, many discus ion were 

help with the project supervisor and user to outline the scope of the proje t to 

be build. After the project scope has been defined, analy i of the system was 

done and the project started to develop. 

9.2 Knowledge Gained 

• Learned additional programming language, such as Visual + 

• earned how to model and develop software using Unified Modelling 

Language. 

• •'nrichcd experience in problem solving, especially on de uggmg errors. 

112 

Univ
ers

ity
 of

 M
ala

ya



Chapter 5 Design 

• Improved on skills in writing documentation and reports. 

• Learnt to work independently. 

• Learnt the consequence of bad time management. 

9.3 Conclusion 

eSciCalc has achieved little objectives defined during the analysis phase but has 

provided the functions to be named a scientific calculator. In this project, eSciCalc 

focuses mainly on its user interface and calculation capabilities. 

Building a scientific calculator is not at all easy although it seems easy. A lot of 

research time and effort have been involved in making this project successful and in ' .. 
fulfilling the task's requirement. There was a lot of nudge and experience gained 

thought the development process of eSciCalc. One of the most essential knowledge 

gained from this project is the techniques on problem solving and knowledge on 

software development besides putting most of the programming method learnt these 

few years in to action. In additional, by developing this program, I have gained 

invaluable knowledge and experience. Besides that, I have enriched my knowledge 

and gained a lot of experience in system analysis, planning, design implementation 

and testing. The development of this project by using the Software ngmcenng 

techniques will ease the tasks of future enhancements and experience. 

11 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Appendix A User Manual 

Table of Content 

Overview of eSciCalc l 

Features I 

Keyboard equivalents of calculator keys 4 

General calculation 4 

Calculation 5 

Answer display format. 9 

Standard deviation calculation 9 

Conclusion l 0 

A.1 Overview of eSciCalc 

eSciCalc is a software-based scientific calculator. As the name suggest, it perform 

basic arithmetic calculations, such as addition, subtraction and multiplication, as well 

as scientific calculations, such as logarithm, trigonometric and hyperbolic. 

This is the first version and does not have a very wide array of functions. However, 

all the basic scientific functions have been included. 

A.2 Features 

The features that eSciCalc provides are as follows:- 

1. Calculation expression that user keys in is using mathematical tandard notation. 

This makes the calculation to be performed clearly visible to the user. Thi 

eliminates key-in errors that are common in conventional calculator. Figure A-1 

shows the standard notation display on the calculator creen 

2. eSci ale has a dual line display to show the calculation expression and its answer 

at once. This enables the user to check the calculation expression with the answer 

they arc provided. Figure A-I shows cSci ale's screen with dual line display 

/\-1 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

30+ sin50 
2 

cos60+ln3 

19.6977476216788 

Figure A-1 eSciCalc calculator screen with standard notation and dual line display 

3. All the available functions in eSciCalc could be keyed in using the keyboard or 

the mouse. Some might prefer the keyboard while some might prefer the mouse. 

Generally, keyboard input is faster than the mouse. However, switching between 

the mouse and keyboard is daunting too. Hence, eSciCalc provide full support for 

both. 

4. The keypad of eSciCalc could be hidden and calculation being performed using 

the keyboard only. This feature is useful when the user is using eSciCalc with 

other application as hiding the keypad would provide a bigger visible area of the 

bottom application that the user wants to see. Figure A-2 shows keypad hiding. 

A-2 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Standord devlotlon 

Alwoys on top 
Exit 

Colculator Preferences 

Figure A-2 Select Hide keypad from the menu to hide the keypad 

5. eSciCalc can also be set always on top. This feature facilitate the calculate to be 

used together with other application as well. 1t will enable the user to read the 

value provided by the calculator while working with other application. 

6. eSciCalc provides a separate window to perform tandard deviation. It enable the 

user to view the whole list of values together with their respective mean, variance, 

and so on. The list could also be manipulated easily. 

7. eSciCalc provides answer formatting as well. The u er can cho e to have the 

answer shown in the normal from or the scientific form with the selected number 

of signi ficancc digit. 

/\- 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

8. The value that eSciCalc calculates has a range of ±1.7x10Bos. This range should 

be adequate for most of the calculation. In fact, most scientific calculator 

provides a range of ± 9x10199• 

A.3 Keyboard equivalents of calculator keys 

The keyboard equivalents of the keys on eSciCalc are shown in Table A-1. The 

keyboard equivalents for each key will be shown when the mouse is pointing at it. 

Button Key 

0 + 

[:] - 

0 * 

0 I 

0-9 0-9 

[Ac] Esc 

Button Key 

~ 
Home 

[EJ End 

~ 
Left 

~ 
Right 

[Del] Delete 

B Backspace 

Button Key 

-1 Ctr!+ A 

D 
[2J Ctr! + Shift+ " 

rn Ctrl + F 

~ 
Ctrl p 

~ 
Ctrl + C 

Table A-1 The keyboard equivalent of the keys of eSciCalc. 

A.4 General calculation 

Figure A-3 shows the window for general calculation. Thi is where the expres ion­ 

based calculations are performed. xpression-based calculation include calculations 

that could be written or keyed in as an expression. 

A-4 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

~·-~-~-----,.~·-- 
le~si~~!,l~~."" . " ., '"'·" . .. .. . . [g[tj]IBJ 
Calculator Preferences 

Figure A-3 General calculation window of eSciCalc. 

The expression for this calculation mode is generally divided into linear and non­ 

linear type. Linear expressions are calculations that could be written in a single line. 

This includes arithmetic, logarithm, trigonometric and hyperbolic. Non-linear 

expressions are expressions that could not be written in a single line if tandard 

notation is employed. This category includes fraction, power, combination and 

permutation. 

A.4.1 Calculation 

Arithmetic(+,-, x, +) 

Expression: 3 + 4 - 5 x 6 + 7 

Keyboard: [3] [+] [4] [-] [5] n [6] [/] [7] [Enter] 

Keypad: I 6 I ~ I s I + 1 I = 

/\- 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Screen: 

3+4-5x6-;-7 
= 2.71428571428571 

Logarithm (lg- logarithm base ten, In - natural logarithm, antilogarithm) 

Expression: e1"3 + 10183 

Keyboard: [e) [Ctrl +Shift+"] [I] [n] [3] [+] [1] [OJ [Ctrl +Shift+"] [I] [g] [3] [Enter] 

Keypad: [ e'( { In ( 3 { + { 10-.: ( 1g ( 3 J = J 

lo3 lg3 
e +10 

Screen: = 6 

Trigonometric (sine, cosine, tangent, and their arcs) 

Expression: sin 30 + cos30 +tan 30 

Keyboard: [s] [i] [n) [3] [OJ[+] [c] [o) [s] [3] [O] [+] [t] [a] [n] [3] [OJ [Enter] 

Keypad: [sin J 3 } 0 } + } cos} 3 } 0 J + } tan { 3 0 } = 

Screen: 

sin30+cos30+tan30 
. =-7.23911137085155 

' I ] I 1 .xprcssion: sin -cos l+ tun I 

Keyboard: [ ] [I] [n] [Ctrl +A] (1] [+] (c] [o] [s] [Ctrl +A] [1] [+] [t] [a) [n] [Ctr1 +A] (1) [Enter] 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Keypad: [s1n1) 1 J + )cos1( 1 J + Jtan1J 1 J = 

Screen: 

sin" l +cos" l +tan"! 
:::: 2 .35619449019234 

Hyperbolic (hyperbolic sine, cosine, tangent, and their arcs) 

Expression: sinh 3 + cosh 3 + tanh3 

Keyboard: [s] [i] [n] [h] [3] [+] [c] [o] [s] [h] [3] [+] [t] [a] [n] [h] [3] [Enter] 

Keypad: ( sinh ( 3 J + f coshJ 3 J + ) tanh J 3 J = } 

Screen: 

sinb3+cosb3+tanb3 
:::: 21.08059 J 67687 44 

Expression: sinh " I+ cosh " l + tanh " 0.5 

Keyboard: [s][i][n](h][Ctrl + A)[1] [+] [c][o][s][h][Ctrl + A)[1] [+] [t][a][n][h][Ctrl + A][.l[S] [Enter] 

Keypad: 

Screen: 

Fraction 

sinh" 1 + cosh" l +tanh" .5 
= 1.43067973135 36 

1\-7 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Expression: 

5 
1+- 

6 
7 

Keyboard: [Ctrl + F] [1] [+] [Ctrl + F] [5] [Right] [6] [Right] [7] [Enter] 

Keypad: ( V ( 1 ( + ( V ( 6 ( ... ( 6 ( ... ( 1 J = ] 

Screen: 

Power 

1+i 6 
F 7 
= 0.261904761904762 

I 

Expression: 222 + 83 

Keyboard: [2] [Ctrl +Shift+ 11] [2] [Ctrl +Shift+ 11] [2] [End][+] [8] [Ctrl +Shift+ 11] [Ctrl + F] 

[1] [Right] [3] [Enter] 

Keypad: ( 2 I x1 I 2 ( X1 ( 2 ( ~ ( + J 8 I x1 J V ( 1 J ... J 3 

~ 

Screen: 

2 1 

22 +8~ 
= 18 

Combination and Permutation 

xpression: 5 P2 +5 2 

Keyboard: [Ctrl + P] [5] [Right) [2] + [Ctrl + CJ [5) [Right] [2] [Enter] 

Keypad: 

A-8 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

Screen: 

A.4.2 Answer display format 

The answer display filed could be set according to the user's preference. There are 

two format provided by eSciCalc. The answer display format is specified using the 

menu under Preference+« Answer style. 

Normal 

The answer would be display without specific format and depending on the figure. If 

the value is too large and the exponent part exists, it will be shown. 

Scientific 

The answer would be displayed according to the number of ignificance digit 

specified. If the answer does not have that many significance digit , it zcr would c 

placed and if there are more digits than the specified significance digit , it would be 

rounded to the number of significance digits wanted. 

A.5 Standard deviation calculation 

eSciCalc provides standard deviation calculation support through a separate window 

(see Figure A-4). This separate window show the whole Ii t of value in the ample 

to be calculated. This has also let the user to be sure that the answer they get is the 

one they wanted. Another advantage is the ability to edit the Ii t easily in ca e of err r 

or similar list that they need to calculate. 

A-9 

Univ
ers

ity
 of

 M
ala

ya



Appendix A: User Manual 

•,,.-­ 
- ~~""""'~,,..."·' ··~·""''f'. <n-·· .1· .~_,,..,.._ · .. . : . • l~I 

Values 
30 13 
40 n 
50 x 80 
60 1400 
70 0'2 
80 O' 37. 4165738677394 
90 1040 

100 rx 
110 Ix2 101400 
120 
130 
140 

Delete Selected j Delete All l V•U• 114il 1c~~~::n 

Figure A-4 Standard deviation calculation window of eSciCalc. 

The bottom right corner of the window sited the controls that is used to manipulate the 

list. The button labelled "Delete All" is used to clear the list. As for deleting only a 

particular value, select the value with the mouse and press the button labelled ' elete 
Selected" 

In order to add values to the list, fill the text box next to the label alue with the 

number wanted to add and press the button to its right labelled" Add". 

Every time the content of the list changes, the six values will be recalculated 
automatically. 

A.6 Conclusion 

Thank you for using eSciCalc. 

J\-10 

Univ
ers

ity
 of

 M
ala

ya




