
Perpustakaan SKTM

Projek Ilmiah Tahap Akhir I & II
Session 2003/2004

Implementation of RIO in UMJaNetSim

Name: Chan Chin We
Matrix no: WEK010029
Supervisor: Mr. Phang Keat Keong
Moderator: Mr. Ang Tan Fong

Univ
ers

ity
 of

 M
ala

ya

Abstract

As the complexity and diversity of network have grown, network simulator has

proven to be an important tool in the design, analysis, testing and performance

estimation of network. Besides that, network simulator can also perform a variety of

functionalities such as network planning, network monitoring, protocol analyzer and

so forth.

In this project, I w111 do some research on the recent TCP congestion control and

avoidance mechanisms and implement one of the mechanisms into the Java Network

Simulator (JaNetSim). The current version of JaNetSim has been implemented RED

congestion avoidance mechanism. Therefore, this project will focus on the RJO

(RED with in and out profile) queue mechanism.

RI , initial! proposed in the context of I iffcrcntiatcd crviccs networks by

di tinguish bet. CCI\ (\ 0 .las CS of' packets in-profile and Out-of-profile, which is

based on the marking scheme. Besides that, various marking scheme have also been

proposed. In thi proje t, l ' ill focus on the earliest making algorithm, which is

calculating the average queue sizes for in-profile packets and total packets.

Traditional! , packet marking is performed by ingress routers according to a user

profile specified in term of bandwidth.

Univ
ers

ity
 of

 M
ala

ya

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my supervisor,

Mr. Phang Keat Keong for his guidance, advices and encouragements throughout the

entire project. Thanks to Mr. Ang Tan Fung and Mr. Lim for their useful and

informative feedbacks to this project.

I please to thank my project group members, Andrew Chiam, Au Yee Boon, Chee

Wai Hong, Chia Kai Yan, Lim Lee Wen, Malini, and Tang Geck Hiang for their

cooperation and sharing the crucial thought throughout the project. Besides that,

special thanks also to the other fellow course mates for sharing their knowledge and

ideas with me.

Last but not the least thanks to my love! family for their supports and encourages.

II

Univ
ers

ity
 of

 M
ala

ya

Table of Content

Abstract i
Ac know led gm en t ii
Table of Content iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1

I. I Today's Internet I
1.2 TCP/IP 2
1.3 Project objective 4
1.4 Project scope 5
1.5 Project schedule 6
1.6 Report organization 6

Chapter 2 Literature Review 8
2.1 Congestion overview 8
2.2 Introduction of congestion avoidance 10
2.3 Drop Tail. 16

2 .. I Algorithm description 17
-· Evaluation 17

-.4RE 19
-.4.1 Algorithm des ription 22
-.4._ valuation 2

-· fREI 28
-· . I Al iorithm description 29

~ aluution 31
-.6 WR D 33
2.7 Introdu tion of network simulator 36
2.8 Summary 39

hapter 3 RIO 40
3. I Introduction of RI .40
".2 RIO algorithm .41
-'·-' Packet marking 44
3.4 Summary 47

Chapter 4 Simulator Overview and System Analysis 49
4. I JaNetSim network simulator overview 49

4.1. I Event management. 50
4. l.1.1 The simulation time 51

4.1.2 GUI management. 51
4.1.3 RED implementation 52

4.2 Software specification .
4.3 Hardware specification .
4.4 Functional requirement. .
4.5 Non-functional requirement............................ 7
4.6 Sutnmary... ::.7

111

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 System Design 58
5.1 Location of profile meter in the network 58
5.2 The spectrum of services 59
5.3 System flow 61
5.4 Summary 65

Chapter 6 System Implementation 66
6.1 Implementation Overview and Simulator Version Being

Used 66
6.2 Coding Added 67

6.2.1 Method sw use rio 73
6.2.2 Method sw _use _rio _dropping 74

6.3 Summary 79
Chapter 7 System Testing 80

7.1 Simulation Setup 80
7.2 Simulation Result. 81
7.3 Summary 88

Chapter 8 Conclusion & Future Work 89
8.1 System Strengths 90
8.2 System Limitations 90
8.3 Future Work 91

Appendix 92
Reference 93

IV

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figures

Figure 1. 1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

The Internet Organization

Typical behavior of a network under increasing traffic load

TCP congestion control prevents the network from entering

the congestion collapse region

Evolution of congestion avoidance mechanisms

Drop Tail

Algorithm for Drop Tail Queue Management

Random Early Detection

R ~ D drop probabilit

Algorithm for R ~ gateway

Figure -.10 Aggrc rate T P Throughput (kb/s) vs. Time (second) in the

Figure Z. 11

F . ? J? igure -· _

Figure 3. I

Figure 3.2

Figure 3.3

Figure J.4

Figure 4. I

Figure 4.2

presence or an unresponsive, hi iii-bandwidth u p flow

for FIF , R D and FRED

JP Header

WRED

RIO

RIO drop probability

RIO algorithm

TSW algorithm

JaNetSim overall architecture

REI parameters

Pages

2

10

14

15

16

17

21

22

23

0

35

36

41

42

43

46

.0

v

Univ
ers

ity
 of

 M
ala

ya

Figure 5.1 Location of profile meter in the network 58

Figure 5.2 System flow diagram 64

Figure 7.1 Simulation Topology 80

Figure 7.2 ip cbrl application average queue length 84

Figure 7.3 ip cbr2 application average queue length 84

Figure 7.4 ip cbr3 application average queue length 85

Figure 7.5 Modified simulation topology 86

\ I

Univ
ers

ity
 of

 M
ala

ya

List of Tables

Tables Pages

Table 7.1 IP CBR applications detail 81

Table 7.2 A TM LSR parameters configuration 82

Table 7.3 Simulation result 82

Table 7.4 Modified simulation topology- source(s) and destination 86

Table 7.5 Modified simulation topology - IP CBR applications detail 86

Table 7.6 Modified simulation topology- A TM LSR parameters 87

configuration

Table 7.7 Modified simulation topology- simulation result 87

\ 11

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 1: Introduction

1.1 Today's of Internet

The Internet is enabling a global revolution in scholarly communication. For the first

time in history, we have an infrastructure that can deliver information any time, any

place. This could change our society and global culture as dramatically and

unpredictably; as did once the printing press and the automobile.

The Internet began in 1969 as a local network between universities in the United

States and ever since has quietly doubled in size each year. By the 1980s, it already

spanned the globe, though it remained little known outside of universities. This

suddenly changed in 1993 when a new oftware program called Mosaic let users

display text and images from the Internet and explore a "World Wide Wcb(WWW)"

by selecting objects on the screen with a rnou c. Million of people began to acces

the Web from home. The Internet has continued to double in size every year or so,

but the mathematical results of this process have become astonishing; up to I 0% of

the world's population could soon be onlinc.

As the Internet grew, its organization and management were delegated to the Internet

Advisory Board, or (IAB) (refer Figure 1.1). Originally, the IAB consisted of a

number of subsidiary organizations, but their main function was to coordinate the

Internet task forces. In I 989, the task forces were placed into two major groups

within the IAB: lnternet Research Task Force (IRTF) and the Internet Engineering

Task Force (IETF). The IRTF is responsible for rescar hing problem concerning the

T 'P/JJ> (1. . . ransrn1ss1on ontrol Proto .ol/Intcrn .tworkin 1 Protocol n .twork

community and the Internet. The IETF its .lf is .hnrt ·rut to id ·ntl1)1 I robkms 111 I

Univ
ers

ity
 of

 M
ala

ya

coordinate problem solving in the areas of Internet management, engineering and

operations[I].

Internet
society

Internet engineering
steering group

(IESG)

Task Forces

Figure 1. 1 The Internet Organization

It is important to under tand that the Internet is not a new kind of phy ·ical network.

It is, instead, a method on interconnecting phy ical networks and a et of

conventions for using nctv orks that allow the computers they reach to interact.

While nctv ork hardv are pla s onl minor role in the overall design, under tanding

the Internet technolog requires one to distinguish between low-level mechanisms

provided by the hardware itself and the higher-level facilities that the TCP/IP

protocol softv are provided.

1.2 Transmission Control Protocol/Internetworking Protocol

(TCP/JP)

The use of T P/IP and related protocols continues to 'ro' , raisin' some interest in'

points to the Open System lntcrconn .ction ((SI) mod ·I. Mn11y I ·opk h .licvc th \t

Univ
ers

ity
 of

 M
ala

ya

TCP/IP is a more viable approach for a number of reasons. First, TCP/IP is here and

it works. Second, a wealth of products are available that use the TCP/IP protocol

suites. Third, it has a well-founded, functioning administrative structure through

JAB. Fourth, it provides easy access to documentation. Fifth, it is used in many

UNIX products.

The Transmission Control Protocol/Intemetworking Protocol (TCP/IP) actually is a

set of protocols that defines how all transmissions are exchanged across the Internet.

It is made of five layers: physical, data link, network, transport, and application. The

application layer in TCP/IP can be equated with the combination of session,

presentation, and application layers of the OSI model.

At the Iran port layer, T P/IP defines two protocols: Transrni sion ontrol Protocol

(TCP) and User Data irarn Protocol (U P). At the network layer, the main protocol

defined b T P/lP is lntcrnctv orking Protocol (IP), although there arc some other

protocols that support data movement at this layer. At the physical and data link

layers, T P/IP does not define any specific protocol. A network in a TCP/IP

internetwork in a TCP/lP can be a local area network (LAN), a metropolitan area

network (MAN), or a wide area network (WAN).

Internetwork Protocol (IP) is an unreliable and connectionless datagram protocol - a

best-effort delivery service. The term best-effort means that IP provides no error

checking or tracking. IP assumes the unreliability of the underlying layers and does

its best to get a transmission through to its destination, but' ith no runrnnt -~ ·.

Univ
ers

ity
 of

 M
ala

ya

The Transmission Control Protocol (TCP) provides full transport layer services to

applications. TCP is a reliable stream transport port-to-port protocol. The term

stream, in this context means connection-oriented; a connection must be established

between both ends of a transmission before either may transmit data. Reliability is

ensures by provision for error detection and retransmission of damaged frames; all

segments must be received and acknowledged before the transmission is considered

complete.

The User Datagram Protocol (UDP) is the simpler transport layer protocol. It is an

end-to-end transport level protocol that adds only port addresses, checksum error

control, and the length information to the data from the upper layer. It does not

provide any sequencing or reordering functions and cannot specify the damaged

packet when reporting an error. UI P contains only a checksum; it docs not contain

an ID or sequencing number for a particular data segment.

1.3 Project objective

As this is my final ear project, the primary objective is to enhance the current

ver ion of network simulator, Java Network Simulator (JaNetSim) that developed at

the Network Research lab, Faculty of Computer Science and lnfonnation

Technology, University of Malaya with other new or latest technology. This

including add-in new functionalities to existing components, or add-in new

component with their corresponding functionalities. This is needed to make the

simulator up-to-date with the latest technology before it can perform its tunctionalu

to simulate various type of network.

·I

Univ
ers

ity
 of

 M
ala

ya

Besides that, the second objective is to study the various of congestion avoidance

mechanisms exist nowadays. The congestion avoidance mechanism is important to

avoid high link utilization and thus prevents the network bottleneck problem.

Congestion avoidance is also useful to stop misbehaving users and ensures fairness

to all network users based on their requirements. Meanwhile congestion avoidance

involves queue management technique as proposed for use in the differentiated

services initiative of the LETF. The differentiated-services model provides a very

simple facility for negotiating and supporting service contracts between service

providers and end-users.

1.4 Project scope

• Allow network simulation with RI feature as a new congestion avoidance

mechani m.

• Implement RIO mechanism tn UMJaNetSirn and allow user to choose the

RI parameters durin 1 simulation.

• Show the simulation result and parameters selected.

• Compare the simulation result with the RED. Univ
ers

ity
 of

 M
ala

ya

1.5 Project schedule

Activities
Nov

Literature review

System analysis

System design

Implementation

Integration

System testing

Documentation

June
2003

Jan
2004

Oct Dec

1.6 Report organization

The following is the organization of the project documentation.

Chapter I will give the introduction of the Internet and also the most widely used

internetworking protocol, T P/IP. Besides that, this chapter als contains the

objective cope and schedule of this proje .r.

Chapter 2 will give the literature review about the topic related with this project.

First, I will introduce about the congestion and congestion avoidance. After that, I

will discuss about some of the congestion avoidance mechanisms, which is Drop

Tail, RED (Random Early Detection), FRED (Fair RED), and WRED (Weighted

RED . I also give some introduction to the network simulator including their

functionalities.

Univ
ers

ity
 of

 M
ala

ya

The next chapter is chapter 3 will discuss about the RIO algorithm in detail. The

explanation includes RIO algorithm and also packets marking algorithm.

Chapter 4 will mainly focus on the simulation overview and system analysis. These

include the overview of UMJaNetSim network simulator, system analysis (hardware

and software specifications), functional, and non-functional requirements.

Next, I will explain system design, which is the chapter 5 of this project

documentation. This chapter will further study about the RIO specifications and

parameters setting. Besides that, the simulation flow will also being discuss in detail

in this chapter.

Later on the chapter 6 will explore on the s .tcrn implementation. The

implementation will focu on the parameter and variables declared in the existing

system. The methods defined in the s stem will also be explained in this chapter.

Chapter 7 is focus on the stem te tin 1• The tcstin 1 is done by creating simulation

topology and configures the added parameters before start the simulation. The result

of the simulation shown there and explained.

The last chapter, chapter 8 will conclude the implementation of RIO in the simulator.

The strengths, limitations and also future work of this implementation are the focus

of this chapter.

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 2: Literature Review

2.1 Congestion Overview

In the Internet, connections share network resources like link-bandwidth, buffers at

routers, and so forth. Packets from different connection contend for use of output link

at the router, where each of these contending packets is placed in a queue waiting to

be transmitted over the output link. When number of such packets contending for the

same link increases beyond the buffer capacity, buffer become overflows and packets

have to be dropped. When such packet drops become common event, the network is

said to be congested.

Meanwhile, in the packet switching networks, there are two common cause of

congestion. ne is at interface points ' here a low output link .crvc a fa ·t input

link. This situation can mostl be found at the edge of the network, when a slow

WAN connection erve LAN traffic, r when a shared acros · network medium is

used by a fast traffic source. The other ommon location or congestion is inside the

switching nodes, such a router . Packets arriving from multiple input ports arc often

routed to the same output port creating congestion at the output port even all the

links have the same line speed.

In response to congestion, a router is required to notify some connections to back off,

i.e., reduce their incoming traffic at that node. Choosing the connections to notify is a

difficult task. If all the connections are notified or the congestion then it leads to

underutilization of the output link in next phase. Also Iuirnc s constraint di .rnt .s that

such notification policy be uniform over a period of tim ·.

Univ
ers

ity
 of

 M
ala

ya

Besides that, Internet traffic is a mix of connections that implement congestion

control (like TCP) and ones that do not (like UDP), the router must ensure that at

time of congestion, when the responsive flows back off, the non-responsive

connections do not get unfair advantage over the responsive flows. The router needs

to have mechanism to identify and police such sources.

The degrading effect of congestion on the application performance can be observed

by monitoring the throughput and the response time in the network. Throughput

indicates the throughput at the TCP layer, and response time is the delay between

packet transmission and ACK reception. This well-known throughput/delay behavior

of a node under increasing traffic load is sketched in Figure 2. I.

Traffic load is the average packet arrival rate. For light traffic loads the throughput

increases linearly with increasing load while delay remains constant. This i a region

of low link utilization with no queuing at all. The constant delay equals to the

transmission delay betv een end-points. When the load increases further, a slight

increase in the delay is observable due to the onset queuing. The throughput keeps

increasing in the region benefiting from the buffering in the node. In this region the

maximum link utilization is achieved, and the average delay is only slightly larger

than the transmission delay. With further increase of traffic load, the average queue

size increases rapidly, and buffer overflows start to take place. This has a degrading

effect on both the throughput and the response time. Now the node has entered the

state of congestion, and can approach rapidly to a point or zero throughput and

infinite response time if the load keeps increasing - the so called 'con .estion

collapse".

Univ
ers

ity
 of

 M
ala

ya

Li:1,:i1I

Figure 2. I: Typical behavior of a network under increasing traffic load. The right

hand side of the maximum throu 1hput point is considered congestion region".

2.2 Introduction of Congestion Avoidance

ongestion avoidance techniques monitor network traffic loads in an effort to

anticipate and avoid congestion at common network bottlenecks. ongestion

avoidance is achieved through packet droppin 1. It is different from th' con icstiun

control mechanisms now exist in tht: Internet nowadn: s s11 h as Sim Stnr 1. F ist

I 0

Univ
ers

ity
 of

 M
ala

ya

Retransmit and so on. Besides that, congestion control is used between two TCP

application at the source and destination. Below is the brief explanation between the

different of congestion control and congestion avoidance.

Once a TCP connection is established between two end applications, the application

process at the sender writes bytes to the sender's TCP send buffer. TCP grabs chunks

of size maximum segment size (MSS), encapsulates each chunk within a TCP

segment, and then passes the segments to the network layer for transmission across

the network. The TCP congestion window regulates the times at which the segments

are sent into the network.

Initially, the congestion window is equal to one MSS. TCP sends the first segment

into the network and waits for an acknowledgment. If this segment is acknowledged

before its timer times out, the ender increase! the congestion window by one M S

and send out two maximum- izc segments. If' these segments arc acknowledged

before their timeouts the sender increases the conge uion window by one MSS for

each acknowledged segments gi in 1 a ongcstion window of four MSS, and sends

out four maximum-sized segments. This procedure continues as Jong as the

congestion window is below the threshold and the acknowledgment arrive before

their corresponding timeouts.

During this phase of the congestion control procedure, the congestion window

increases exponentially fast, i.e., the congestion window is initialized to one MSS,

after one round-trip times (RTT) the window is increased to two segments after tw

RTT the window is increased to four sc 1me111s, afi .r thrc · RTT th' windm si1 · is

11

Univ
ers

ity
 of

 M
ala

ya

increased to eight segment and so on. This phase of the algorithm is called Slow Start

because it begins with a small congestion window equal to one MSS and then

accelerates rapidly.

The slow start phase ends when the window size exceeds the value of certain

threshold. Once the congestion window is larger than the current value of the

threshold, the congestion window grows linearly rather exponentially. This has the

effect of increasing the congestion window by one in each RTT for which the entire

window's worth of acknowledgments arrives. This phase of the algorithm is called

congestion avoidance.

The congestion avoidance phase continues as long as the acknowledgments arrive

before their corresponding timeouts. But the window ize, and hence the rate at

which the TCP sender can send cannot incrca ·e forever. ventually, the T P rate

will be such that one of the links alon • the path becomes saturated and which point

loss (and a resulting timeout at the sender) will occur. When a timeout occurs, the

value of threshold is set to half the alue of the current congestion window, and the

congestion window is reset to one MSS. The sender then again grows the congestion

window exponentially fast using the slow start procedure until the congestion

window hits the threshold.

Congestion avoidance takes care of violation [2]. Lost packets are a good indication

of congestion on the network. In the current Internet, the TCP transport protocol

detects congestion only after a packet has been dropped from the gateway. l lowever,

it would clearly be unde .irablc to have lar re queues thnt were full much or the rim .:

I_

Univ
ers

ity
 of

 M
ala

ya

this would significantly increase the average delay in the network. Therefore, with

increasingly high-speed networks, it is increasingly important to have mechanisms

that keep throughput high but average queue sizes low.

The throughput/delay behavior of a node under varying traffic load is extremely

useful to define the difference between controlling the congestion and avoiding it. A

congestion control system, like the one implemented in the TCP, prevents the

network from falling into the congestion collapse state, by reducing the load after the

congestion region is entered. This mechanism has been serving the Internet for two

decades.

The IP network does not provide any state information to the user, e.g. black box

a Sumption. Therefore, T P needs to rely on 1 ackct lo s or extreme delay to figure

out that the load in the network reached a critical point, and that the transmis ion

windows should be reduced to avoid congestion collapse. n the other hand, T P

tends to increase the load if there art: no indications of congestion, in order to achieve

the maximum utilization it can. The resulting behavior or the state of a node under

TCP load is one that swings betv een the regions of less than maximum utilization

and congestion (Figure-.-).

Congestion avoidance, however, aims to maintain a stable state at the point with

maximum throughput and minimum delay. It tries to prevent entering a congestion

state in the first place, instead of entering and escape constantly. Congestion

avoidance would minimize packet loss, and keep the average queue .ize low. In

order to achieve this proactive operation, the con zest ion avoidnuc • s. st 'Ill r .quir ·s

I~

Univ
ers

ity
 of

 M
ala

ya

the cooperation of the network. Most specifically, three components are required to

complement a congestion avoidance system:

1. A congestion detection mechanism in the network

11. A congestion notification system

iii. A congestion control mechanism

J
l

Figure 2.2: TCP congestion control prevents the network from entering the

congestion collapse region (zero throughput and infinite delay). But the state of the

network swings back and forth between congestion and low utilization. Congestion

avoidance aims to maintain at stable operation point at high utilization and low

dcla .

1.1

Univ
ers

ity
 of

 M
ala

ya

In this few years, the computer scientists around the world have proposed several

methods as congestion avoidance algorithms. The first and standard algorithm is

based on the first-in-first-out (FIFO) principle. When the average queue size exceeds

certain threshold, the packets are dropped based on the time of the packet being in

the queue. The packet comes in last the queue will be dropped first. Meanwhile, this

algorithm has some drawbacks and currently, other algorithms to implement

congestion avoidance are undergo their performance, fairness, complexity, and

compatibility analysis. The following sections will introduce the congestion

avoidance algorithms that are well known nowadays and brief explanation about

their features.

rop Tail

FRED

R D

WRED RlO

Figure 2.3: Evolution of congestion avoidance mechanisms

Univ
ers

ity
 of

 M
ala

ya

2.3 Drop Tail

The default queuing behavior in Internet routers has long been drop tail. This

algorithm is using the First-In-First-Out (FIFO) policy, which w111 start drop from

tail when the queue is full. With this scheme packets are enquired at the tail of a

queue as they arrive and desuetude from the head of the queue when there is capacity

on the link.

There was no special rationale in providing these queuing semantics. There is simply

the default behavior of a finite capacity queue. The focus when these queues were

added to routers was simply to have a queue of some form to provide buffering

associated with the outbound link. The buffer is there simply to accommodate

transient overloads that result from the bursty nature of the Internet. The general rule

of thumb in determining the buffer's capacity was simply to allocate space

equivalent to two or four times the delay bandwidth.

Overall, drop tail buffering ha performed well. The primary evidenc in support of

this claim can be found in the more than 011c hundred million hosts currently

connected to the Internet. Hov ever, drop tail buffering does have some significant

performance flaws.

Ii~·· ,, ·~ ': .1.-.J·~·:1

<:)---· _ _.__-.L- _.__......._ _ _,__---Jt-----<o . ~., ... '·,_!i ..

Figure 2.4: Drop Tail

I 1

Univ
ers

ity
 of

 M
ala

ya

2.3.1 Algorithm Description

The algorithm for implementing a drop tail FIFO queue is a simple modification of

the standard queue as a linked list in data structure. When a packet arrives, if the

queue is not full, the packet is enqueued. If the queue is full, the packet is dropped.

When a packet departs, it is dequeued and sent. The enqueue and dequeue functions

are expected to update the value of q_Ien (queue length). The code is shown in the

figure below:

Constants:
int qIimit; //upper limit on queue size

Variables:
int q_len = O; //current queue occupancy

General functions:
void enqueuetf'),
Packet dequeue();
void send(P);
void drop(P);

//enqueue P and update !en
//dequeue p and update len
//transmit P
//discard r

for each arriving packet P {
if(len qIirnit) //ifqueueisnotfull
enqueue(P);

else
drop(P);

} //end for each arriving

for each departing packet {
P =dequeue(); //dequeue and send the packet
Send(P);

] //end for each departing

Figure 2.5: Algorithm for Drop Tail Queue Management

2.3.2 Evaluation

HFO scheduling accomplishes its major design goal: accommodating bursty traffic.

1 lowever, it suffers from problems of lock-out and full queues [3], Lock-out refers to

a phenomenon in which the shared resource, link bandwidth, is unlairl consumed

Univ
ers

ity
 of

 M
ala

ya

exclusively by a small number of flows. The remaining flows are locked-out of (i.e.,

denied access to) the queue and, consequently, locked-out of the outbound link. In

this phenomenon, the queue is occupied only by the packets from a small number

flows while the packets associated with most flows are consistently discarded.

As a result, most flows receive none of the link bandwidth, and starve. This

phenomenon occurs because of timing effects which result in some flow's packet

always arriving to find the queue full. For example, consider a situation where many

sources are periodically sending bursts of packets that in aggregate exceed the

queue's capacity. If these sources become synchronized, all sending nearly

simultaneously, the first packets to arrive (e.g. from the source closer to the

bottleneck link) will find a queue with some available capacity while the subsequent

packets will be discarded. ff the same relative order is maintained between the

sources, those sources that send first will consistently make progress while the other

flows will consistently have all packets discarded and thus, starve.

Full queues are queues that are usual! occupied to capacity. If bursts of packets

arrive to a full queue, many packets are dropped simultaneously. This can lead to

large oscillations in the network utilization. If the dropped packets are from different

flows there may be synchronized responses (back-off) among multiple flows.

Synchronized back-off is a phenomenon in which many sources simultaneously

receive congestion notification and reduce their generated load. As a result, the

overall load on the network may drop below the capacity of the link and then rise

back to exceed the link's capacity resulting in a full queue and once again leading to

18

Univ
ers

ity
 of

 M
ala

ya

simultaneous drops. This oscillating behavior rs exactly counter to the buffer's

intended function, acting as a smoothing filter.

Note that full queues and long queues are not necessarily equivalent. A long queue is

one containing a large number of packets, regardless of capacity; while a full queue

is one containing the maximum number of packets it can hold. Long queues cause

problems because of queue-induced latency. However, the fact that a queue is long

says nothing about its available capacity. A high capacity queue may have many

packets enqueued but still have a great deal of unused capacity, leaving it with

capacity to accept newly arriving packets and allowing it to perform its intended

function of accommodating packet bursts. While full may also be long queues, the

length of the queue is not the primary problem with full queues. A queue that is

usually full is not able to perform it primary function of ac ornmodating bursts.

2.4 RED

For solving the problems of conventional Drop Tail routers, researches on AQM

(Active Queue Management) mechanisms have been performed actively in the last

few years [4]. AQM mechanism controls the queue length (i.e., the number of

packets in the router's buffer) by actively discarding arriving packets before the

router's buffer becomes full. For instance, one type of AQM mechanism called

Random ~arly Detection (RED) was proposed by Floyd and Jacobson [5) as an

effective mechanism to control the congestion in the network routers or ratewa s. It

also helps to prevent the global synchronization in the T .P .onn · ·tions sl111ri11 • a

I >

Univ
ers

ity
 of

 M
ala

ya

congested router and to reduce the bias against bursty connections. Currently it has

been implemented in various routers and has been recommended for queue

management by IETF.

The RED approach does not possess the same undesirable overhead characteristics as

some non-FIFO queuing techniques (e.g. simple priority queuing, class based

queuing, weighted fair queuing fair queuing). With RED, it is simply a matter who

gets into the queue in the first place - no packet reordering or queue management

takes place. When packets are placed into the outbound queue, they are transmitted

in the order, which they are queued.

While the principles behind RED gateways are fairly general and RED gateways can

be useful in controlling the average queue izc even in the network where the

transport protocol cannot be tru ted to be cooperative, R D gateways are intended

for a network where the transport protocol responds to congestion indications from

the network. The gatewa congestion control mechanism in RED gateways

simplifies the congestion control job required or the tran iport protocol, and should be

applicable to transport layer congestion control mechanisms other than the current

version of TCP, such as protocols with rate-based rather than window-based flow

control.

However, some aspects of RED gateways are specifically targeted to TCP/IP

networks. The RED gateway is designed for a network where a single marked or

dropped packet is sufficient to signal the presence of congestion to the tran .port layer

protocol.

()

Univ
ers

ity
 of

 M
ala

ya

The RED congestion control mechanisms monitor the average queue size for each

output queue and using randomization, choose connections to notify of that

congestion. Transient congestion is accommodated by a temporary increase in the

queue. Longer-lived congestion is reflected by an increase in the computed average

queue size, and results in randomized feedback to some of the connections to

decrease their windows. The probability that a connection is notified of congestion is

proportional so that connection's share of the throughput through the gateway.

Gateways that detect congestion before the queue overflows are not limited to packet

drops as the method for notifying connections of congestion. RED gateways can

mark a packet by dropping it at the gateway by setting a bit in the packet header,

depending on the transport protocol. When the average queue size exceeds a

maximum threshold, the RED gateway marks every packet that arrives at the

gateway. If RED gateways mark packets by dropping them rather than by setting a

bit in the header when the average queue size exceeds the maximum threshold, the

RED gateway controls the average queue size even in the absence of' a cooperating

transport protocol.

l11p111 lrJf~

Figure 2.6: Random Early Detection

Univ
ers

ity
 of

 M
ala

ya

2.4.1 Algorithm Description

The RED gateway calculates the average queue size using a low pass filter with an

exponential weighted moving average. The average queue size is compared to two

thresholds: a minimum and a maximum threshold. When the average queue size is

less than the minimum threshold, no packets are marked. When the average queue

size is greater than the maximum threshold, every arriving packet is marked. If

marked packets are, in fact, dropped or if the all source nodes are cooperative, this

ensures that the average queue size does not significantly exceed the maximum

threshold.

A RED router is configures with the following parameters: min11i, rnaxj, and Prnu.x· lt

works as illustrated in the figure 2. 7 - the x-axis is avg, the average queue size, and

the y-axis is the probability of dropping an arriving packet. There are three phases in

RED, defined by the average queue size in the range of fO, min11i), [min11i. max.c),

[rnaxj; co), respectively. The three phase arc normal operation. ongc .tion avoidance

and congestion control.

I•'•

l - - ·- .,-- .

. '-1
I'·

Figure 2. 7: RED drop probability

During the normal operation phase, when the average queue size is below mi1111i. the

router does not drop any packets. When the average queue size is b .twecn the two

thresholds, the router is operating in the con rcstion avoidnu · · rhns '.an I ·a .h I nck ·t

Univ
ers

ity
 of

 M
ala

ya

drop serves the purpose of notifying the end-host transport layer to reduce its sending

rate. Therefore, the dropping probability is a fraction of Pmax, and is usually small.

When the average queue size is above minj, the router drops every arriving packet,

hoping to maintain a short queue size.

avg: average queue size
q_time: start of the queue idle time
count: packets since last marked packet

Initialization:
avg= 0
count= -I

for each packet arrival
calculate the new average queue size avg:

if the queue is nonempty
avg= (I - wq)*avg + wq q

else
m =/(time - q_time)
avg= (I - wq)"' * avg

if miru, <avg - maxn,
increment count
calculate probability pa:
pb 11UL'Cp (avg - mCIX111)/(111ClXrh - min11J
pa pb/(/ - count · pb)
with probability pa:
mark th, arriving pa .ket
count 0

else iftnaxs, · avg
mark th, arriv ing pa ·k ,,

CO/Int ()

else co11111 - I
when q 11e11e be ·0111 'S empt

q_time time

Variables:

Fixed parameters:
wq: queue weight
rrunj; minimum threshold for queue
maxj; maximum threshold for queue
maxr: maximum value for pb

Figure 2.8: Algorithm for Rl~l •atcwuy (Purl I ofZ)

Univ
ers

ity
 of

 M
ala

ya

pa: current packet-marking probability
q: current queue size
time: current time
f(t): a linear function of the time t

Other:

Figure 2.8: Algorithm for RED gateway (Part 2of2)

As average queue size avg varies from min., to maxj, the packet-marking probability

pb varies linearly from 0 to max;

ff we directly use this formula we find the inter-marking interval is not a uniform

random variable, to do this. We apply following formula to Pb

pa pb (/ - '01111/ * pb)

The final packet-marking probability pa increases slowly as the count increases since

the last marked packet. This ensures that marking of puckers is fairl uniform

One option for the RED gatewa is to measure the queue in bytes rather than in

packets. With this option, the average queue size accurately reflects the average

delay at the gateway. When this option is used, the algorithm would be modified to

ensure that the probability that a packet is marked is proportional to the packet size in

bytes:

pb - pb PacketSi::e!MaximumPacketS'i:::e

pa " pbl(J - count*pb)

In this case a large FTP packet is more likely to be marked than is a small TELN ~T

packet.

_.,

Univ
ers

ity
 of

 M
ala

ya

If the queue remains empty for a large period of time, the old value of avg should

have a lesser share in new value of queue average size, RED ensures that with the

following equation.

avg= (I-wq)" *avg

where m denotes the time for which queue has remained idle.

2.4.2 Evaluation

The RED algorithm meets its design goals, avoiding the problems of lock-out and

full queues. It also provides effective feedback to responsive flows. It is also

worthwhile to note that RED can be deployed without changes to existing protocols

or infrastructure beyond the single router that is being added to. As a result, it can be

gradually deployed into the Internet. The following de cribe the goal that have been

met by RED gateway:

• Congestion avoidance - if the IU:.D gateway in fact drops packets that

arriving at the gateway when the average queue size rcache the maximum

threshold, then the RE gateway guarantees that the calculated average

queue size does not exceed the maximum threshold. If the RED gateway sets

a bit in packet headers when the average queue size exceeds the maximum

threshold rather than dropping packets, the RED gateway relies on the

cooperation of the sources to control the average queue size.

• Appropriate time scales - after notifying a connection of congestion by

marking a packet, it takes at least a round-trip time for the gateway to see a

reduction in the arrival rate. In RED gateway, the time scale for the detection

or congestion roughly matches the time scale required for '(H111c tionx to

Univ
ers

ity
 of

 M
ala

ya

respond to congestion. RED gateways do not notify connections to reduce

their windows as a result of transient at the gateway.

• No global synchronization - the rate at which RED gateways mark packets

depends on the level of congestion. During low congestion, the gateway has a

low probability of marking each arriving packet and, as congestion increases,

the probability of marking each packet increases. RED gateways avoid global

synchronization by marking packets as low a rate as possible.

• Simplicity - the RED gateway algorithm could be implemented with

moderate overhead in current network.

• Fairness - the RED gateway does not discriminate against particular

connections or classes of connections (this is contrast to Drop Tail). For the

RED gateway, the fraction of marked packets for each connection is roughly

proportional to that connection's share or the bandwidth. RED gateways

provide a mechanism to identify the level of congestion, and could also be

used to identi ly connections using lar re share or the total bandwidth.

• Appropriate for wide range of environments - the randomized mcchani m

for marking packets is appropriate for networks with connections with a

range of round-trip times and throughput, and for a large range in the number

of active connections at one time. Changes in the load are detected through

changes in the average queue size, and the rate at which packets are marked is

adjusted correspondingly.

However, RED is still vulnerable to misbehaving flows. Although a RED router that

uses drops as its notification method can constrain unresponsive flows somewhat, the

-)

Univ
ers

ity
 of

 M
ala

ya

unresponsive flows will still force the responsive flows to reduce their load to near

zero.

RED is unfair to low speed connections. When the high speed is reached, RED drops

packets randomly, and probably the dropped packet belongs to a connection that is

using less resources than its fair share. The same happens when the average queue

length is at fixed point within the two thresholds since all incoming packets are

dropped with the same probability. In addition, RED cannot deal with misbehaving

users. Even though the maximum threshold is enforced, if the user does not decrease

its rate, RED does not have any mechanisms to protect other users. Instead, the

misbehaving users could end up getting the whole bandwidth. Finally, TCP

congestions with larger window sizes and smaller round-trip times usually consume

more bandwidth.

Besides that, the R ~ D mechanism is extremely sensitive to changes lo values of the

RED parameters and the performance of RED largely depends on the fine-tuning of

these parameters. Although these parameters allow flexibility to the network

managers to adapt to the network conditions, the optimal values of the parameters for

which the network performance is maximum are hard to predict. No rules are known

that can guide us in setting these parameters. Worse still a set of parameters that are

known to perform well for a particular type of traffic may give bad performance if

the traffic pattern changes. Setting these the RED parameters is still remains an

inexact science.

7

Univ
ers

ity
 of

 M
ala

ya

2.5 FRED

One of the most important features of RED is that the fact RED provides fairness by

dropping packets according to the connection's share of the bandwidth. However,

RED still suffers from several other fairness problems. Experiments with a mixture

of sources with short and long round-trip times (RTT) as well as adaptive TCP

sources and non-adaptive constant bit rate sources (sources that do not react to

congestion indications) demonstrate that low RTT connections get more bandwidth

than long RTT connections, and that RED is ineffective in handling non-adaptive

sources.

Flow RED or FRED [6] solves these fairness issues by maintaining thresholds and

buffer occupancies for each active flow (per-connection information). Two

thresholds are used per connection in order to guarantee a minimum buffer space as

well as to control misbehaving users. This is how FRED protect. long RTT

connections against low RTT connections and adaptive sources against non-adaptive

sources. l.n addition, two global thresholds are also used, as in FR~ D, in order to

keep the global average queue length within the desired limits. Solving these fairness

issues in not free. FRED needs to keep per-flow information to drop packets

accordingly and achieve its goals, and this is a costly operation for the routers. FRED

must identify every flow that has packets in the buffer and update the information of

those flows on a per-packet basis. In order to do so, FRED must look at the packet

source and destination addresses, port numbers, and protocol ID of every packet.

Further FR~ D identifies non-responsive aggressive connections, and penalizes such

connection by allowing only the such connections to buffer just their lair share of

Univ
ers

ity
 of

 M
ala

ya

bandwidth, i.e. bursts from such connections are not be accommodated by the router

and such burst packets will be dropped. On other hand if a connections has been

responsive then, even if the connection has already used its fair share, the next

incoming packet from that connection is not deterministically dropped but is given a

random dropper where it is probabilistically dropped, depending upon the average

queue length. Hence a burst of packet from such responsive connection would be

accommodated in the queue. This behavior works as a sort of incentive for

connections to be responsive to packet drop, and helps avoid congestion. FRED

addresses the problems of very small connections like telnet that have very small

data to send and hence use very less than their share of the available bandwidth. Also

such connections do not have data always ready to send. FRED has provision for

such connections. FRED always allows packets from such connections unless the

queue as exceeded its max threshold.

FRED as it just builds on R ~ D, continues to have its improvement over rop-Tail

and is also able to achieve isolation protection albeit at cost or added complexity of

per-active flow accounting. Like R , FRED docs not make any assumptions

about queuing architecture, it will work with a FIF gateway.

2.5. 1 Algorithm Description

Apart from normal RED variables like average queue size avg, mm., and maxj,

thresh-hold, max., FRED also uses following variables:

)

Univ
ers

ity
 of

 M
ala

ya

1. max, and mm, : These per flow variables refer to the maximum and

minimum number of packets a connection would be allowed to have in

the buffer.

11. avgcq: A number representing the fair buffer share of a connection at the

router.

111. qlen.: A per-flow variable representing the number of packets a

connection has currently enqueued in the buffer.

rv. strike, : A variable is used to identify unresponsive connections. An

unresponsive connection has non-zero value for this variable. An

unresponsive connection is one that tries to exceed the limit of "max,"

number of packets.

Figure 2.9: Algorithm for FRED (part I of 2)

(or each arriving packet J>
ifJ> isfrom a flow i that does not have packets in the queue

//initialize the connections per-flow variable
qlen, O;
strikei O;

//identify and manage non-adaptive flows
//The incoming packet would be deterministically dropped and its now
marked as non-responsive under following cases

[/'(qlen, " ma.xq Ii //the connection has exceeded its maximum limit
(avg "·- ma.x,11 && qleni <, 2*av 7cq) I\ (qleni · avec,1 && strike, I)

)

//(The connection is already a non-responsive connection and hence all its
above its fair share are dropped. (note this limit for responsive connection
is twice the fair share)

strike, ' ' ;
drop packet P;
return; //drop packet and return no further processing required

.0

Univ
ers

ity
 of

 M
ala

ya

//queue size is between max., and minj, operate in random drop mode:
if (miru; < = avg < max.s)
(//subject to random drop only if connection is not a very small connection
(like telnet) else packet is unconditionally accepted

if (qi en; > = MAX(minq. avgcq))
{
cal cu/ate drop probability pa ;
with probability pa;
drop packet P;
return;

}

//The average queue size is less than minimum threshold, hence accept the
incoming packet

else if (avg< min.i)
{
count -I;
accept the incoming packet

}

//The average queue size has exceeded the max., and hence drop incoming
packet

sls ,
{
drop pa .ke! I';
rel urn;

}

Figure 2. 9: Algorithm for I· REI (part 2 or 2)

2.5.2 Evaluation

FRED seeks to provide fairness between flows. It does this by isolating flows from

one another by maintaining per-flow statistics and constraining those flows that

consume more than their fair share. The results of this approach can be compared to

the results with FlFO and RED using the TCP throughput graph as shown in figure

below.

.d

Univ
ers

ity
 of

 M
ala

ya

1400

1200

1000

-
0. 800
.<:
Cl

e
I- 600

400

200

0
0 20 40 60 80 100

Time

-FIFO
-RED
-FRED

Figure 2. l 0: Aggregate TCP Throughput (kb/s) vs. Time (second) in the presence of

an unresponsive, high-bandwidth UDP flow for FIFO, RED and FRED.

The misbehaving blast is active during time [15, 70) second. While there is some

decrease in TCP throughput, the overall performance is much better than that seen

when simply using RED or Flf'O, FIFO has the lowest throughput during the blast

while the throughput for RED is slightly better and FR · D is much better. There is no

congestion collapse.

One point to debate with FRED is the definition of fair. RED attempt to be fair by

assuring that all flows received feedback and were constrained in proportion to their

actual packet arrive rate. RED attempted to insure that the throughput of all flows

was degraded by the same percentage by dropping the same percentage of packets

for all flows. However, FRED attempts to insure that all flows are constrained to

roughly equal shares of the link's capacity. This rails to .onsid T th· foct thut 11ows

Univ
ers

ity
 of

 M
ala

ya

are associated with applications that may have minimum tolerable throughput values.

Perhaps it is more reasonable to assume that all flows can tolerate a I 0% degradation

in throughput than to assume that the high bandwidth flows can tolerate a 50%

degradation. Consider streaming video. Human perception thresholds demand a

minimum latency, frame rate, and image fidelity in order for the interaction to have a

value. If the initial data flow is degraded slightly it may remain tolerable, but below

some minimum packet-rate, the frame rate and/or image fidelity degrade to

uselessness. At that point, the data that does make it through the network is simply

wasting network bandwidth. The notion of fairness is a worthwhile concept to

explore. However, it may be necessary to introduce flexibility by making the

thresholds configurable instead of simply trying to offer equal shares.

In summary, FR D offers good T P performance and constrains misbehaving flows

well. However its notion of fairness by allocating all flows an equal share may be too

inflexible. FRED is noteworthy for its application or the queue management on a

per-flow basis, for its identification of robust and misbehaving flows, and for its

introduction of the concept of fairness to queue management.

2.6 WRED

Actually, nowadays, there are many version of RED have been proposed as an

enhancement of the RED algorithm to overcome its drawbacks. WRED - Weighted

RED, is a congestion avoidance algorithm that randomly drops packets when

congestion is detected prior to the interface overflowing completely and cau ing

uncontrollable dropped packets.

1.

Univ
ers

ity
 of

 M
ala

ya

The random early detection (RED) algorithms are designed to avoid congestion in

internetworks before it becomes a problem. RED works by monitoring traffic load at

points in the network and stochastically discarding packets if the congestion begins

to increase. The result of the drop is that the source detects the dropped traffic and

slows its transmission. RED is primarily designed to work with TCP in IP

internetwork environments.

WRED combines the capabilities of the RED algorithm with IP precedence [7]. This

combination provides for preferential traffic handling for higher-priority packets. It

can selectively discard lower-priority traffic when the interface starts to get

congested and can provide differentiated performance characteristics for different

classes of service. Therefore, WRED allows the reading or the Type of Service (ToS)
in the IP packets and as such preference is given to the type of packets to be dropped

during congestion.

WRED is useful on any output interface expected to have congestion. WRED is

usually used in the core routers of a network, rather than the edge. dge routers

assign IP precedence to packets as they enter the network. The precedence is defined

in the ToS field (8 bits) by changing it to Precedence (3 bits) and Type of Service (4

bits) fields.

J.I

Univ
ers

ity
 of

 M
ala

ya

16-Bit
Total length (in Bytes)

]
l' '

~ -· - .' to • ' . ' .
Typ

Pr e of
ec Serv

~- '; ~,,. ' '; .. ' . . ,.. ,1 . ~ - '

Figure 2.11: IP Header

Within each queue, a finite number of packets can be housed. A full queue causes tail

drops. Tail drops are dropped packets that could not fit into the queue because the

queue was full. This is undesirable because the packet discarded may have been a

high-priority packet and the router did not have a chance to queue it. If the queue is

not full, the router can look at the priority or all arriving packets and drop the lower-
priority packets, allowing high-priority packets into the queue. Through managing

the depth of the queue (the number of packets in the queue) by dropping various

packets, the router can do its best to make sure that the queue does not fill and that

tail drops are not experienced. This allows the router to make the decision on which

packets get dropped when the queue depth increases. WRED also helps prevent

overall congestion in an internetwork. WRED uses a minimum threshold for each IP

precedence level to determine when a packet can be dropped. (The minimum

threshold must be exceeded for WRED to consider a packet as a candidate for being

dropped.)

Univ
ers

ity
 of

 M
ala

ya

Queue

Figure 2.12: WRED

However, WRED has the following restrictions:

• WRED is only useful when the bulk of the traffic is TCP/IP traffic. With

TCP, dropped packets indicate congestion, so the packet source will reduce

its transmission rate. With other protocols, packet sources may not respond or

may resend dropped packets at the same rate. Thus, dropping packets docs

not decrease congestion.

• WRED treats non-IP traffic as precedence 0 the lowest precedence. Non-IP

traffic will be dropped more often than IP traffic.

2.7 Introduction of Network Simulator

Twenty years ago, when computers were more the exception than the norm in the

world of office automation, most personal computers were used as stand-alone

devices for simple tasks like word processing, and the media for 'X. 'han) . (r

. 6

Univ
ers

ity
 of

 M
ala

ya

information was still paper. At that time, most serious computing was done on large

mainframes, each with many terminals, working almost independently of each other,

and computer networking was not a problem.

Today, with personal computers becoming increasingly powerful, and cost-effective,

more people are turning to using a larger number of less powerful and less expensive

machines to satisfy their computing demands. With the availability of such wide

variety of computing resources and peripheral devices, a need to exchange

information between various computers arose. Computers, with the ability to be used

as flexible communication tools, have become an integral part of today's information

hungry society.

In the networked environment, a computer is a powerful tool for information

gathering, organization, storage and disbursement. A communication network

represents the backbone of most major computing systems today, and is most often a

critical factor in the performance or the entire computer system. arcful design and

analysis of the communication network can often lead to coast-effective solutions

that satisfy the communication needs of an organization. On the other hand, a poorly

designed communication system will result in costly investments in maintenance,

constant monitoring, troubleshooting and eventual replacement.

While many tools exist for the design and analysis of communication network

systems, there exit none powerful enough to deal with the complex systems into

which communication networks have evolved. Most simulation tools are capable

only of simulating small, unrealistic, simple communication n 'I\ orks. Many

. 7

Univ
ers

ity
 of

 M
ala

ya

different network design principles exist today, and even these change constantly as

further research into new network designs, and analysis of current network systems

shows which networking paradigms are effective for satisfying the networking needs

of today. What is needed is a flexible tool that is powerful enough to simulate the

widely varies and complex communication networks commonly found in many

organization today, and yet one, that is capable of evolving as networking needs and

design paradigms change.

The simulator is used as a network planning tool by simulating various network

configurations and traffic loads, and obtaining statistics such as utilization of

network links and throughput rates of virtual circuits. It can be used to answer

questions such as: where will the bottlenecks be in the circuits?; what is the effect of

changing the speed of a link?; or will adding a new application cause congestion?

The simulator can also be used as a protocol analysis tool to study the total system

effect of a particular network protocol. For example, one can investigate the

effectiveness of various flow control mechanisms for /\TM network and address

such issues as mechanisms for fair bandwidth allocation, protocol overhead, and

bandwidth utilization. The simulator is designed in such a way that modules

simulating components of an network can be easily changed, added, or deleted.

J8

Univ
ers

ity
 of

 M
ala

ya

2.8 Summary

Each of these three approaches I have discussed approached the issue of fairness and

isolation between different types of flows in a different manner than RED. RED

simply applied the same drop-rate to all flows in an effort to give equal feedback and

equalJy constrain all flows. FRED took the approach that fairness means allowing alJ

flows to claim equal shares of the link capacity. Meanwhile, WRED provide fairness

based on the precedence on the packets, which give higher priority to those packets

will higher precedence.

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 3: RIO

3.1 Introduction of RIO

RIO - RED with IN and Out bit/profile, is an active queue management technique

proposed for use in the differentiated-services initiative of the IETF. The

differentiated-services model provides a very simple facility for negotiating and

supporting service contracts between service providers and end-users. It allows end

users or network administrators to negotiate profiles specifying the type of traffic

load they will place on the network. The service provider then promises to give

traffic that conforms to its negotiated profile preferential treatment. RIO is an

integrated approach that combines service profiles, policing at network ingress

points, and a preferential drop policy based on the RED queue management

mechanism (8). As packets pas through network ingress points, they are policed to

be sure they conform to the negotiated profile. Those packets that conform to the

profile are marked as in-profile while those that exceed the negotiated profile arc

marked as out-of-profile.

By applying the RED algorithm differently to each category of packets, the router

can preferentially drop out-of-profile packets before dropping those that are in

profile. In this way, RIO provides feedback to responsive flows and isolates the

flows that conform to their profiles from the effects of those flows that misbehave.

Flows are associated with a service profile. The profile constitutes an agreement on

the behavior of that now (or group of flows) between the end- ystcm on one side and

the service provider on the other side. Upon in tress to the service provider's

network, packets arc tagged as In or (ut of profil ·I) a poli .inn in· .h mism, , hi .h

·I (

Univ
ers

ity
 of

 M
ala

ya

will discuss in detail in the later section. If the flow is exceeding it profile, then those

packets that represent its excess will be tagged as out-of-profile and those packets

may be preferentially dropped.

RED with IN and OUT bit

lnptl Tw'll;;:.. OUf'Ul l'rJftk

Figure 3.1: RIO

3.2 RIO Algorithm

RIO uses the same mechanism as m RED but is configured with two sets of

parameters, one for in-profile packets and one for out-of-profile packets. Upon each

packet arrival at the router, the router checks whether the packet is tagged as in

profile or out-of-profile. If it is an in-profile packet, the router calculates avg_in, the

average queue for the in-profile packets; if it is an out-of-profile packet, the router

calculates the avg total, the average total average queue size for all (both in-profile

and out-of-profile packets) arriving packets. The probability of dropping an in-profile

packet depends on avg_in, and the probability of dropping an out-of-profile packet

depends on avg total.

As shown in the figure below, there are three parameters for each of the twin

algorithms. The three parameters are min_in, max jn, and P11111x_111, which define the

normal operation [O, min_in), congestion avoidance lmin_in, ma.x_in). and

Univ
ers

ity
 of

 M
ala

ya

congestion control [max _in, oo] phase for in-profile packets. Similarly, min_ out,

max_ out, and P max_out define the corresponding phases for out-of-profile packets.

Drop probabi lity

---- - ---- - ---- - --y------.-----

:lfa.r
P.,111

:lfa.r
P.
Ill

11)11)
()//{

min;,, 111'1 \ out ma \ . Oucuc ..;j Z\..'
Ill

Figure 3.2: RrO drop probability

The discrimination against out-of-profile packets in R10 is created by carefully

choosing the parameters for (min_in, max in, Pma.x 1,,), and (min_oul max_out,

Pmax_o111). As illustrated in the figure above, a RIO router is more aggressive in

dropping out-of-profile packets on three counts:

• First, it drops out-of-profile packets much earlier than it drops in-profile

packets; this is done by choosing min_out smaller than min_in.

• Secondly, in the congestion avoidance phase, it drops out-of-profile packets

with a higher probability by setting P,,,ax_oui higher than P,,,ax_in·

• Third, it goes into congestion control phase for the out-of-profile packets

much earlier than in-profile packets by choosing max_out much smaller than

max in.

Univ
ers

ity
 of

 M
ala

ya

In essence, RIO router drops out-of-profile packets first when it detects incipient

congestion, and drops all out-of-profile packets if the congestion persists. Only for

the last resort, occurring when the router is flooded with in-profile packets, it drops

in-profile packets in the hope of controlling congestion. In a well-provisioned

network, this situation should never happen. When a router is consistently operating

in a congestion control phase by dropping in-profile packets, this is a clear indication

that the network is underprovisioned.

For each packet arrival
If it is an in-profile packet

Calculate the average in-profile queue size (avg_in);
Calculate the average queue size (avg_total);

If it is an in-profile packet
If min in « avg_in max in

Calculate probability />;11;
With probability />;11, drop this packet;

Else if max in avg in
Drop this packet:

Ifthis is an out-of-profile packet
If min 0111 avg total · max 0111

Calculate probabilit !'011{;
With probability />011,, drop this packet;

Else if max out avg total
Drop this packet;

Figure 3.3: RIO algorithm

The choice of using avg_tota/, the total average queue size to determine the

probability of dropping an out-of-profile packet, is subtle. Unlike in-profile packets,

which the network can properly provision for, the out-of-profile packets represent

opportunistic traffic, and there is no val id indication of what amount of out-of-profile

packets is proper. ff we had used the average out-of-profile packets queue to control

Univ
ers

ity
 of

 M
ala

ya

the dropping of out-of-profile packets, this would not cover the case where the total

queue is growing due to arriving in-profile packets.

We could have used avg_in, the average queue for the in-profile packets, to see how

much "free space" (buffer space) the routers have for out-of-profile packets, i.e.,

drop fewer out-of-profile packets when the avg_in is small and drop more out-of

profile packets when avg_in is large. But this only works when the number of in

profile packets in the queue is large, so the routers have good control on the number

of out-of-profile packets and the total queue length.

By using the avg_total, the total average queue size, the routers can maintain short

queue length and high throughput no matter what kind of traffic mix they have. It is

conceivable that one could achieve a more respon ivc control or out-of-profile

packets by changing the dropping parameters to depend on both the average m

profile queue size, avg in and the average total queue size, tivg total.

3.3 Packet Marking

The RIO algorithm is meant to work along with "profile meters" located at the

network access point, at the network egress point or at both location simultaneously.

These meters tag or mark packets as in-profile or out-of-profile packets based on

predefined contracts between the user and the services provider. The network

provider allocates enough resources to comply with the user requirements. The

·l·I

Univ
ers

ity
 of

 M
ala

ya

profile meters are "time-sliding window (TSW)" taggers with two components: a rate

estimator and a tagging algorithm.

TSW refers to the rate estimator algorithm. TSW provides a smooth estimate of the

TCP sending rate over a period of time. With the estimated rate, avg_rate, the

tagging algorithm can tag packets as out packets once the traffic exceeds a certain

threshold.

A rate estimator is used to smooth out the burstiness of TCP traffic as well as to be

sensitive to instantaneous sending rates. This can be achieved through which TSW

estimates the sending rate upon each packet arrival and decays, or forgets, the past

history of time. The design of TSW is also very simply. TSW maintains three state

variables - Win length, which i · measured in unit of time, Avg rule, the rate

estimate upon each packet arrival, and T front, which is the time of the last packet

arrival. TSW is used to estimate the rate upon each packet arrival, so state variables

Avg rate and T front arc updated each time a packet arrives, but Win length is

preconfigured when the profile meter is installed. The TSW rate estimator works as

shown in the figure below:

Univ
ers

ity
 of

 M
ala

ya

Initially:
Win_ length = a constant;
Avg_rate =connection's target rate, Rr;
TJront=O;

Upon each packet arrival, TSW updates its state variables as follows:
Bytes_ in_ TS W =Avg_ rate * Win_ length;
New bytes = Bytes_in_TSW + pktsize;
Avg_rate = New bytes I (now- TJront + Win_lengtlt);
T Jront =now;

Where now is the time of the current packet arrival time; andpkt_size is the
packet size of the arrival packet.

Figure 3.4: TSW Algorithm

The window length, determines the worth of past history of the algorithm

remembers, or in other words the weight of the past against the present. After the rate

estimation the following tagging algorithm is executed.

Ifavgrate · Nr large/ rate Rt

Mark packets as in-profile;

Else

With probability Poul (avg rate - Nt) Nr:

Mark packets as out-of-profile;

/:'/se

Iv/ark packets as in-profile;

The probabilistic marking allows for the well-known oscillations of a TCP

connection in pursuit of its maximum rate. As a matter of fact, for a TCP connection

to achieve a given average rate, the connection should be a II owed to oscillate around

that value. The drawback is that this mechanism will permit other types of

·Ii

Univ
ers

ity
 of

 M
ala

ya

connections, like a CBR-like (constant bit rate) connection, to get in average more

than the target rate.

The policer is attached to an intermediate node representing a router and monitors the

aggregate of traffic which enters/leaves the nodes. If the rate of the aggregate is

below its target rate, packets are forwarded unchanged, but if the target rate is

exceeded, the packet arriving with marked in-profile get remarked to out-of-profile

before being forwarded.

3.4 Summary

RIO is noteworthy as it represents one of the first instances of combining

classification with queue management. Instead of classifying packets to assign them

to different priority queues to be dealt with by a scheduling mechanism. RIO uses a

simple binary classification to determine which set or active queue management

parameters to apply. All of the packets still go in the same queue so there is no need

for the complexity of a scheduling mechanism. Moreover, order is maintained. This

has positive effects for both multimedia and TCP. Because multimedia packets are

usually played out when they are received, out-of-order packets are often discarded

to maintain the illusion of continuity (since subsequent frames have already

displayed). For TCP, out-of-order packets can trigger duplicate acknowledgments

and unnecessarily trigger congestion control mechanisms. However, the separation

statistics allow the two classes to be managed in different ways.

47

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: Simulator Overview and System
Analysis

4.1 JaNetSim Network Simulator Overview

JaNetSim is Java Network Simulator developed at the Network Research Lab,

Faculty of Computer Science and Information Technology (FCSIT), University of

Malaya. The current version of the simulator is 0.66. the basic concepts used by

JaNetSim are shown as follows:

• Discrete-event model

• Central simulation engine with a centralized event manager.

• Simulation scenario consists of a finite number of interconnected components

(simulation objects), each with a set of parameters (component properties).

• Simulation execution involves components sending messages among each

other. A message is sent by scheduling an event (to happen some later time)

for the target component.

With the above architecture, the simulator can simulate virtually "anything" that can

be modeled by a network of components that send messages to one another. These

concepts are adopted from the NIST ATM/HFC Network Simulator.

·I<)

Univ
ers

ity
 of

 M
ala

ya

0'·lt11lll.1t1•
·11 I 11:~ 111· .:

-

I ··.·.·111 '· ,1 I I I •.' ·.f 1··.·
.1.1111:.,:·. I 11·:111 · -. 1:111:1 .'c"·:t)) · • t ii I " I ·

'~ ; .. J. ~, 1, ~,
0'·ll11ltl.1tt•'i) I .. , .•. ·I···,:· -,

··q 11111l.1I1· 'i l ·,.It 111ti.11 I• ·I)
I · ·t 11j"·• ·il· "il I ,....._..... ,_ ___

I " I 1111" ·ll·." ill

The simulation engine is the sole event manager and is responsible for the managing

Figure 4.1: JaNetSim overall architecture

of all the user interface elements. The engine also provides convenient means for file

saving and data logging, among other tools.

4.1.J Event Management

The event manager manages an event queue and a global simulation clock. When

simulation runs, the simulation engine interacts with the simulation topology

(consists of all the simulation components) through two main operations:

• A simulation component schedules an event for a target component (can be the

source component itself) to be happen at a specific time

.0

Univ
ers

ity
 of

 M
ala

ya

• The simulation engine invokes the event handler of the target component when

that specific time is reached. The target component will react to the event

according to .its behavior.

4.1.1.1 The Simulation Time

Any event can happen at any time, up to the precision allowed by the granularity of

the simulation clock. The simulation time is based on "ticks". The duration of a tick

is configurable in the simulator. By default, a tick is equivalent to 10 nanoseconds.

The SimC/ock object provides helper methods for the conversion between real time

and the tick.

4.1.2 GUI Management

rt is possible to run the simulator in non-GUI mode once a scenario is built. The

building of simulation scenarios is done using the Ul mode. The simulator has a

main window, and within the main frame, there is a main simulation view area,

which displays the simulation components and the connections among them.

Basically the GUl manager handles all these automatically with only minimal effort

from component developers.

A scenario is built by creating simulation components, connecting components and

setting component parameters. The GUI manager handles all three tasks, and will

signal the relevant components when these operations happen so that a component

can react accordingly.

. I

Univ
ers

ity
 of

 M
ala

ya

Basically, building a component that needs no custom component graphics and only

uses pre-built parameter types (integer, double, Boolean etc.) does not require any

GUI-related programming. For better GUI and mo~e complex parameter types,

JaNetSim provides a set of APis to help simplifying this task.

4.1.3 RED Implementation

The version 0.66 of JaNetSim has been implemented RED algorithm as well. It is

implemented at the IP router. The RED implementation is optional; which mean that

users can choose whether want to use RED during the simulation or not. Besides

that, the RED parameters, which are RED queue weight, RED minimum queue

threshold, RED maximum queue threshold, RED maximum probability and RED

packets transmission time are configurable by the u ers.

~rt 1 - Properties . · ·1~1.

' Delay to process a byte (uSec) o.o J T:
1 ·I·:·

Switching Speed (Mbit/s) r=J =11=o0=o0o==~i l.i .. il:f.
Output q_slze (kbytes, -1•1nf) . i-------------1 _o ____, :~:·
=~b~:: weight (>•0.001) J 0.0020 I i\''

1-RE-D-r-nl_n_q-th_r_e-sh-o-ld_(_k_byt_es-)---1 J 10 I]{
RED max q threshold (kbytes) 1=3=0=====!1 }i
RED max p (<0.1) J 0.02 I ~:!::

1-RE-D_s_(_p-ac_k_et_t-ra_n_s-. t-im-e)-(-uS_e_c-1) r=J =4=0=0.=0=~I ~

Speedup q_size (kbytes, -1=inf) J 100 I

Averaging Interval (usec) J 100000.0 I 1---------------1 Use ARP queue for IP packets ~
Use name as seed ~

Logging every(ticks) (e.g.1, 100) J ~

i======:;- rJ n uames Rece.bte.d I 0 .,,. ·~~~~~-'- ~~~---'"---'

Figure 4.2: Rl·;,O parameters

Univ
ers

ity
 of

 M
ala

ya

4.2 Software Specification

First of al1, the platform/operating system required to run this simulator is any

platform that support Java Virtual Machine. This includes Microsoft Windows

operating systems, Sun Solaris, Macintosh, Unix and so forth.

Besides that, in order to implement RIO mechanism in JaNetSim, the programming

language that will be used in Java programming language. The main reason Java

programming language is chosen is due to the current JaNetSim network simulator is

written in Java. If anyone wants to enhance the network simulator using other

programming language than Java, then he/she has to rewrite every component, event

and parameter with the programming language that have been chosen. This is very

time consuming and not advisable.

Java is a groundbreaking computing platform released by Sun Microsystems in 1995.

Originally called OAK, the Java programming language was renamed as Java in the

same year. Java opens up a wealth of exciting possibilities for consumers. It enables

just about any application - including games, tools, and information programs and

services - to run on just about any computer or device. From desktop PCs to mobile

handheld devices and cell phones, Java today is just about everywhere. Moreover,

Java programming language is chosen due to other features such as:

• It supports Object-oriented programming (OOP) approach - Java has all the

OOP features (i.e. classes hierarchy, inheritance, and polymorphism). This

enables users to develop more reusable software component.

• It is simple - Java is simpler than other object-oriented programming

language such as 1 1. Java has simplified 1 1 pro irarnminu Ian iua ic b

5.

Univ
ers

ity
 of

 M
ala

ya

both adding features beyond those found in C++ and by removing some of

the features that make C++ more difficult to master.

• It is platform-independent - the programs written in Java are first compiled

into Java byte code, which is machine independent. The Java virtual machine

interprets the byte code into code that could be run in many different

platform, which may have different instruction length.

• It supports multithreading - applications contain threads of execution, each

thread designating a portion of a program that may execute concurrently with

other threads. Multithreading allows computer to perform operation

concurrently and synchronized. Synchronization is very useful in creating

distributed systems. Besides that, Java also provides a low-priority garbage

collector thread that reclaims dynamically allocated memory that is no longer

needed. The garbage collector runs when processor time is available and

there are no higher priority runnable threads. The garbage collector runs

immediately when the system is out of memory to try lo reclaim memory.

• lt is robust - the Java objects can contain no references to data external to

themselves or other known objects. This ensures that an instruction cannot

contain the address of data storage in another application or in the operating

system itself, either of which would cause the program and perhaps the

operating system itself to terminate or "crash". The Java virtual machine

makes a number of checks on each object to ensure integrity.

• lt is secure - closely related to Java's robustness is its focus on security.

Because Java does not use pointers to directly reference memory locations, as

is prevalent in C and C+·t, Java has a great deal of control over the code that

exists within the Java environment.

Univ
ers

ity
 of

 M
ala

ya

Overall, Java is a suitable programming language that will use to develop programs

which reusability is an very important issue. Network simulator is a program that

will always need to change and update as the network technologies may change

frequently. Therefore, frequently enhancement in network simulator is needed and

with software reusability, it could be done more easily.

On the other hand, since the Java 2 Software Development Kit (J2SDK) Standard

Edition does not provide any graphical user interface to allow users make use of their

toolkits in more convenient way, therefore by having lntegrated Development

Environment (IDE) is an added advantage for me. There are several IDE available in

the market nowadays. Some of them are freeware while the other required purchase

from the respective company. Examples of IDE are: Borland JBuilder, JCreator LE,

NetBeans and so on.

r have decided to choose JCreator LE due to several reasons. First, it is a freeware

that can be downloaded from the Internet and therefore allows free distribution.

Secondly, it does provides a very simple GUI mode to make the interaction between

users and toolkit more convenient - just at buttons click. Moreover, it also provides

debugging tool to make the debugging more easier.

Univ
ers

ity
 of

 M
ala

ya

4.3 Hardware Specification

On the other hand, hardware specification to perform network simulation is very

cheap. It can be run in any personal computers (platforms) that support Java such as

Microsoft Windows operating systems, Linux and Solaris. Besides that, the JDK

(Java Development Kit) 1.3.0 or later software must be installed in order to run this

simulator.

There is no client-server environment is needed to run this simulator. The simulator

is able to simulate the network based on the user's settings and no any other real

hardware is required. This has make the simulator more cost effective.

4.4 Functional Requirement

The main purpose of implementing RI mechanism in JaNctSim is to make it

capable to perform simulation with the newer network technology, This is why the

network simulator tools are very important and useful when dealing with network

design, management and maintenance. Therefore, the functional requirement for this

project is as follow:

• The simulator should be able to perform network simulation with or without

RIO mechanism, which mean that RIO is optional during simulation.

• The simulator should allow the user to configure the parameter for the RJO

mechanism before start a simulation.

Univ
ers

ity
 of

 M
ala

ya

• The system should allow only one type of congestion avoidance mechanism

apply anytime. Therefore RED should be disable when RIO is applied and

otherwise, the RIO should be disable when the RED is applied.

4.5 Non-functional requirement

Beside functional requirements, this project also has several non-functional

requirements such as:

• The simulator should provide the graphics user interface (GUI) to enable the

user to select the RJO before start the simulation and also set the parameters

that are appropriated.

• As proposed, the RIO mechanism should performs the congestion avoidance

more effective than the RED mechanism.

4.6 Summary

This chapter gives the overview of the Java Network Simulator of version 0.66 and

also the implementation of RED algorithm. After that, the analysis on the software

and hardware specifications is done. The functional and non-functional requirements

are also defined at the end of this chapter.

. 7

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 5: System Design

5.1 Location of profile meter in the network

The general approach of the RIO mechanism is to define a service allocation profile

for each user and to design a mechanism in the router that favors traffic that is within

those service allocation profiles. The core of the idea is very simple - monitor the

traffic for each user as it enters the network and tag the packets as either In-profile or

Out-of-profile based on their service allocation profiles, then at each congested

router, preferentially drop packets that are tagged as being Out-of-profile.

RI R2

Host I, Host 2,

ISPI ISP2

figure 5.1: Location of profile meter in the network

The figure above illustrates the transmission of the packets for the sender to the

destination. All the routers (R) in the network have adopted a preferential dropping

algorithm (D). In the simple sender-based scheme the function that checks whether

traffic fits within a profile is implemented by tagging packets at the edge of the

network, e.g. the profile meter, MI is on the access link from the HI to the ISP I. A

profile describes an expectation of service obtained by a customer from a provider.

These relationships exist at many points in the network, ranging from the individual

users and their campus local area networks (LJ\N's) to the peering relationships

. 8

Univ
ers

ity
 of

 M
ala

ya

between global ISP' s. Any such boundary may be an appropriate place for the profile

meter.

Furthermore, the packet tagging associated with this service allocation profile will in

the general case, is performed by devices at both side of a boundary. One such

device, located at ingress point of the network, the "checking meter" , sits on the

arriving traffic side of a network boundary, checks the incoming traffic and marks

packets as Out-of-profile if the arriving traffic exceeds the assigned profile. The

example of this kind of profile meter is Ml and M2 as shown in the figure above.

5.2 The spectrum of services

During the design of this mechanism, I must serve two potentially conflicting goals.

First, I would like to implement a set or simple services that arc useful and easy to

understand and adopt. Second, I do not want to embed the above services into the

mechanisms so that the framework cannot adapt lo new applications with new

service requirements in the future. The decoupling of the service allocation profiles

at the edge of the network allows this flexibility. To oversimplify, the preferential

dropping scheme adopted in the routers in the center of the network will not change

over time. Since the characteristics of a service is defined and captured by its

corresponding profile meter, it is only necessary to create the profile meter at the

edge of the network to adopt a new service.

Univ
ers

ity
 of

 M
ala

ya

Meanwhile, the services provided by this framework are diverse. As a simple

example, it could be the equivalent of a dedicated link of some specified bandwidth

from a source to a destination. Such a model is easy for users to understand. A more

elaborate model can be aggregated commitment to a range of destinations, or

anywhere within an ISP, sometimes called a private virtual network. A virtual

network is by nature more difficult to offer with high assurance since offering

commitments to "anywhere within a virtual network" implies that the ISP has

provisioned its resources adequately to support all users sending in-profile traffic

simultaneously to any destination.

Not al] Internet traffic is continuous in its requirement for bandwidth. In fact, most

Internet traffic is very bursty. It may thus be that a "virtual-link" service model is not

what users really want. It is possible to support bursty traffic by changing the profile

meter to implement this new sort of service. the key issue is to ensure, in the center

of the network, that there is enough capacity to carry this bursty traffic and thus

actually meet the commitments implied by the outstanding profiles.

In the center of the existing Internet, especially at the backbone routers of the major

fSP's, there is a sufficiently high degree of aggregation that the bursty nature of

individual users will not create a substantial provisioning issue in the center of the

network, while possibly adding significant value to the service as perceived by the

users.

In summary, three things must be considered when describing a service allocation

profile.

>0

Univ
ers

ity
 of

 M
ala

ya

• Traffic specifications: what exactly is provided to the customer (for example,

10 Mbps average throughput)?

• Geographic scope: to where is this service provided (examples might be a

specific destination, a group of destinations, or all nodes on the local

provider)

• Probability of assurance: with what level of assurance is the service provided,

or alternately, what level of performance uncertainty can the user tolerate?

5.3 System flow

Before implement the RIO mechanism, f would like to make it more clear about the

flow the system after the mechanism is implemented. Basically, it works in the same

way as the RED mechanism. Before a user starts a simulation, he is required to build

his network by using the available network devices such as router, switch and TCP

application. This include build the link between every network device. The size and

topology of the network are based on the user requirement.

After that, the user needs to configure the TCP applications with the appropriate

setting. This may include the RIO mechanism, RED mechanism and others with the

corresponding parameters. Meanwhile, the user can either choose to run the

simulation with or without the RJO mechanism.

Once the simulation has been started, the TCP application will start sending out

packet generated by other modules of the simulator. The packets then will forward to

the destination through the link by using the appropriul<.; routing algorithm. Durinu

61

Univ
ers

ity
 of

 M
ala

ya

the transmission, the packet is definitely past through the switches and routers. There

have two type of routers in the UMJaNetSim, which are IP router and RJP router.

The RIP router is inherit from the IP router. Therefore, the RIP router will has all the

IP router features plus other added features since both of them are using different

protocols.

Later on, once the packet arrived at the router, the router will first checks whether the

RlO mechanism option is chosen. If the option is not chosen, then the router will just

forward the packet to the next destination or place in the queue if there is no enough

bandwidth. Besides that, the packet may be dropped if the network is congested.

On the other hand, if the RIO mechanism is selected, then the packet marking

algorithm and RIO algorithm will work as follow:

r. The packet will go through the profile meter that located at the front of

the router. During this process, the rate estimator algorithm will perform

some calculation and then the tagging algorithm will come in place to

mark the packet as In-profile or Out-of-profile based on the user's

parameter settings .
..
11. The marking algorithm that I am gomg to use is to set the reserved

(unused) bit in the DSCP (Differentiated Service Code Point) field in the

IP header.

111. The next phase is the router will exanimate the packet to check whether it

is tagged as In-profile or Out-of-profile packet.

iv. If it is an In-profile packets, the router will then calculate the average

queue size for In-profile packet and also total packets in the queue. The

,_

Univ
ers

ity
 of

 M
ala

ya

average queue size is used to compare with the minimum and maximum

thresholds for the In-profile packet which is set by the user to determine

whether the packet should be dropped or not.

v. Meanwhile, if the packet is an Out-of-profile packet, then the router will

calculate the total queue size in the buffer. Then this value will be used to

compare with the minimum and maximum thresholds for the Out-of

profile packet which is set by the user to determine whether the packet

should be dropped or not.

vi. The next phase is the packet will be forwarded to the next destination if

the required bandwidth is available. Otherwise, it will queue in the router

buffer.

The total time taken to perform the marking algorithm and RfO algorithm should be

as short as possible. This is due to it may affect the round-trip-time (RTT) of the

packets. Overall, the implementation should not cause too much delay, further

changes and unnecessary overhead to the routers. The following flow chart will

summarize the system flow.

Univ
ers

ity
 of

 M
ala

ya

TCP application sending out packets

Packets arrive at
thP. router

For each arriving packets, calculate the average rate, av,R" rate

Mark packet as In-profile

yes no

Mark packet as Out-of-profile

Check the packet's profile

no

Calculate the avg i11

Calculate the av.I?' total

Check avg_in/avg_total
< 111:ni11111m thrP.<:.hnlrk?

yes
no

Drop the packet

Check avg_in/avg_total
< mini mnm 1·hrP.dmld~?

yes no

Forward the packet
Calculate probability, P;,, P0111,

with P;1/P0111 drop this packet

Figure 5.2: System flow diagram

64

Univ
ers

ity
 of

 M
ala

ya

5.4 Summary

As the conclusion of this chapter, implement the RIO mechanism in the router in the

center of the network is recommended since it does not cause any changes to the

existing router architecture and the network design. It also allows any modification to

be done to the RIO mechanism more easy in future. Besides that, different users may

have different level of service requirements. The service profile is the service level

agreement between the service provider and the user. The users should negotiate

about the agreement with their service provider and try to not violate the rules

agreed. This will make the RJO mechanism functioning more effectively.

6

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 6: System Implementation

6.1 Implementation Overview and Simulator Version Being Used

Basically, the implementation of the RIO is done at the router of the simulator. This

is mainly due to the router will be able to do the checking, marking and dropping

whenever the source starts sending packets to the router it attached before the packets

can be forwarded to the desired destination.

Meanwhile, the version of the network simulator chosen is UM Java Network

Simulator version 0.49. This is an A TM (Asynchronous Transfer Mode) based

network. The main feature of an ATM network is the network is a cell-based network

compare to the traditional packet-based network. The cell is a fixed size frame that is

53 bytes (424 bits), while in the packet-based network, the packet size is variant.

This has made the ATM network is faster than other traditional packet-based

network.

In the simulator, the ATM-LSR will be used as the router for my implementation.

ATM-LSR is a label switch with several LSC-ATM interfaces. The router forwards

the cells among these interfaces using labels carried in the YPl/VCI field of the cells.

Besides that, the ATM-LSR must be running the IP-type network. Therefore, the

simulation topology will consists of ATM-LSR, IP BTE and also IP CBR

applications. To differentiate the IP over ATM from other applications support by the

A TM network, the protocol field in the cell header will contain the value

"PRO _DATA".

Univ
ers

ity
 of

 M
ala

ya

6.2 Coding Added

Overall, no special modification is needed to be done in the existing coding of the

ATM-LSR (ATMLSR.java) during implementation. Since the router wi11 create a

new port for each connection, therefore several new variables and parameters will be

defined in the class Port inside the A TMLSR.java. These variables and parameters

are defined fo11ow the style as other variables and parameters that are defined by the

original programmers.

The following is the list of the variables and parameters added in the class Port

together with the brief explanation.

private class Port implements Serializable (

/*------------------existing variables and parameters go here-------------------* I

//new queue and the queue size that will be used to hold the receiving cells and
perform the RIO algorithm

java.util.List out Qr-null;

SimParamlnt 0111 Q si:e -nuil;

//the average arrival rate of the cell

double avg__rate=O;

//the time of the current cell arrival (value same as theSim.now())
long last_ arrival=O;

//the profile of the cell, default is false (Out-profile)

boolean rio marked false;

//start of the queue idle time ("borrowed" from RED parameter)
long red q time O;

67

Univ
ers

ity
 of

 M
ala

ya

//the In-profile and total (In-profile and Out-profile) average queues size
SimParamDouble rio _ avg_in,·

SimParamDouble rio _ avg_total;

//total non-dropped cells that have arrived since the last cell dropped for both
queues

int rio in count=-1;

int rio total count=-]; - -

//the number of the cell being dropped
SimParamlnt rio _drop _count;

} /lend of class Port

On the other hand, these variables and parameters are also initialized with their

corresponding default/initial values whenever necessary. As defined by the data type,

these variables and parameters will be used to hold the value corresponding to the

precision required (such as integer or double value).

Besides that, these variables and parameters will appear in some of the methods

defined in the ATMLSR.java. For instance, in the method

void addNeighbor(SimComponent comp)

these variables and parameters are need to be added when a new port is created for

each neighbor added/connected to the ATM-LSR component. In this method, some

of these variables and parameters will be coded to display in the Properties option of

the ATM-LSR component. For example, rio avg in and rio avg total will display

the current In-profile and total average queues size and these value will be updated

68

Univ
ers

ity
 of

 M
ala

ya

whenever the new value is calculated. To update the value of the parameters being

displayed, the method

update(theSim.nowO)

will be called with the theSim.nowO as the parameter to be used as the time (tick) to

update with the current value of the parameter. The same steps also done to the

method

void removeNeighbor(SimComponent comp)

whenever a component is removed/disconnected from the ATM-LSR component.

These parameters will also needed to remove from being display in the Properties

option window straight away after the component is removed.

Moreover, in the method

void reseu)

these variables and parameters will also reset to their default/initial values. This

method is called when the user click the "Reset" button to reset the simulation. When

this method is called, all the variables and also parameters added arc need to re

initialize again. After that, some of these parameters that being displayed in the

Properties option window will have to update with the current value, which is the

default/initial value.

After that, the RIO parameters are then declare and added in the Properties option

window of the router (ATM-LSR). These parameters are added as the global

parameters for all the sources that connected to the router. This mean that the all the

sources connected will have the same target rate, minimum and maximum threshold

and maximum drop probability.

69

Univ
ers

ity
 of

 M
ala

ya

I/RIO parameters

private SimParamlntTag sw _red_ or _rio;

private SimParamDouble sw _rio _target_rate;

private SimParamDouble sw _rio _in_ minth;

private SimParamDouble sw _rio _in_ maxth;

private SimParamDouble sw _rio _in_ maxp;

private SimParamDouble sw _rio _out_ minth;

private SimParamDouble sw _rio _out_ maxth;

private SimParamDouble sw _rio _out_ maxp;

/lend RIO parameters

As shown above, these parameters are declared at the beginning of the

ATMLSR.java file. These parameters are then construct in the method

private void sw createt)

which is called by the class constructor. The constructions of these parameters are to

add-in into the Properties option window with their corresponding default values.

These value are not fixed and therefore the user will be able to change it before start

a simulation. The declaration and construction of these parameters are also follow the

style of the existing parameters.

The first parameter, private Siml'aramlntl'av sw _red or rio, is used to create a pull-

down menu that enable user to choose the congestion avoidance method they would

like to apply during simulation. There is three option available: None, RED or RIO.

By doing this way, the user will be able to choose only one type of congestion

avoidance method during simulation as defined in the method requirements in

chapter 4.

70

Univ
ers

ity
 of

 M
ala

ya

Java. util.List red_ or _rio=new Java. util.Arrayl.istt);

red_ or _rio.add(new String("None''));

red_ or _rio.add(new String("RED''));

red or _rio.add(new String("!UO''));

sw _red_ or _rio=newSimParamlntTag("Congestion Avoidance

Type",getNameO.ctick.false,true,red_or _rio,0);

params.add(sw _red_or _rio);

From the above coding, an ordered collection variable, red_ or _rio, is declared to

store the option of the congestion avoidance type and then assign it to the

sw _red_ or _rio tag parameter. The last line of the coding will add this parameter

option in the Properties option window.

Meanwhile, privat ~ Siml'aramf oubl sw rio twp, t ml' is created to enable the

user to set the target rate of the simulation. The tar 1et rate is used to monitor all the

sources that connected to the router. ach ource therefore will has the ame target

rate.

Both In-profile and total (In-profile and Out-profile) queues will have the same

parameters which are minimum and maximum thresholds for the respective queue,

and also maximum drop probability. Therefore three parameters will be defined for

each queue. For In-profile queue, the parameters include:

pri ate S1ml'aram/Jouble vw rio in minth;

private ,)'1mParam/)ouhle sw rio in maxth;

private Siml'araml.ioub!e vw no in maxp;

and for the total queue (In-profile and Out-profile), the .orr ·spon lin pnmm •t ·1s

will be defined as:

71

Univ
ers

ity
 of

 M
ala

ya

private SimParamDouble sw _rio _out _minth;

private SimParamDouble sw _rio _out_ maxth;

private SimParamDouble sw _rio _out _maxp;

As mentioned in the chapter 3, the RJO uses twin REDs. Therefore, some of the

parameters defined for the RED may need to reuse in the RIO. The parameters are:

/IRED parameter set
private Siml'aramllouble sw _red_wq;

private SimParamDouble sw _red_s;

//end RED parameter set

The private ~ imParamlJouble sw red wq is the R D queue weight. The queue

weight is used to calculate the average queue size when consider the portion of the

queue and average queue size. n the other hand / riv at 1 Siml'araml oubl ~

sw _red s is used as an value in a linear method of the time to calculate the average

queue size when the queue is empty. At here, therefore, both parameters will be used

to in the same way ' hen perform the cal ulation for both ln-profilc and total (In

profile and Out-profile) queue .

The next step is to declare and define two methods, sw _use rio and

sw use rio dropping inside the ATMLSR.java. Both of this methods will perform

the RI checking, marking and dropping algorithm. These methods is called after the

method

prrvatc void sw receive tp datagram(Cell cell.Port voport)

is culled when received an JP datagram. The switch case at the be iinninu of this

method definition will determine what type Of con tcstion avoidance 111 •thod is b •int.\

7

Univ
ers

ity
 of

 M
ala

ya

chose by the user and then the corresponding congestion avoidance method will be

called.

6.2.1 Method sw_use_rio

The method

private void sw _use _rio(Cell cell, Port voport)

ts defined and added in the ATMLSR.java. Two parameters are passed to this

method, which are cell and voporl. The cell parameters are required to refer to each

cell arrived and therefore treat them differently. This is due to the RIO checking and

marking algorithms are perform to each arrival cell at the router. On the other hand,

the voport parameter is used to refer to the port whi h is created for the source to

send "in" the cells.

The following is the method definition:

privat void .n1 11S" rio(Cell cell, Port voport) /

voport.mg_rate -12-1 SimC/o -k. 'f'ick2Se ·(theSim.1wwQ-voport.last arrival):

voport.last arrival- the, inn. nowt);
(/(voport. avg rate · (rn1_rio _target _rate.get Valuei) * 1000000))

voport.rio _marked==true: In-profile

else
voport.rio marked=false; Out-profile

}

Overall, the checking and marking algorithms are preformed per port-based. After

that. the corresponding parameters of that particular port will b · updnt sd with th·

current value. The first line will calculate the avcra re .cll arrival rntc, in•,• mt',

which is equal to the source's bit rate. I am using the IP '13R for m simulation. IP

73

Univ
ers

ity
 of

 M
ala

ya

CBR is a constant bit rate application which cell sending rate takes a constant, fixed

value specified in the connection contract. Therefore, this value will also always be

the same al I the time.

The second line will then update the variable last_ arrival to the current simulator

time (equally to the theSim.nowO). After the checking algorithm is complete, the

marking algorithm will then take place. The avg_rate will be compared with the

target rate. Target rate (Mbps) is a parameter available at the ATM LSR component
and is configurable by the user. If the avg_rate is less than the target rate, the cell

will be marked (true) as In-profile and otherwise, it will remain unmarked (false) as

the default value.

6.2.2 Method sw_use_rio_dropping

After the method sw use rio is called to pcrfonn the checking and marking for each

cell arrival, the method

private void SH use rio dropping(Cell '~11. Port voport)

then will be called to perform the dropping algorithm for RI . Since each cell is

treats independently, the method will also receives two parameters: cell and voport .

Parameter cell i used to refer to individual cell that arrived at the router and if it has

to be dropped, the only this particular cell will be affected. The parameter voport is

used to refer to the connection of the source to the router. Therefore, by passing these

two parameters, we will be able to treat each cell of every source and also each

source independently.

Below is the method definition and also the explanation:

7·1

Univ
ers

ity
 of

 M
ala

ya

Basically, for each cell arrival, the new average total (In-profile and Out-profile)

queue size will be calculate whether the cell is marked or not. The calculation

method is same as the RED calculation method, which different calculation is

performed by consider the queue is empty or not. After the new average total is

calculated, the value display in the router's Properties option window will then be

updated.

if(voport.out_Q.isEmptyO) { //q empty

double m=SimClock.Tick2USec(theSim.nowO - vopon.red q Lime) I

sw _red_ s.get Values);

voport.rio _avg_total.setValue(Math.pow{l.0-sw .re«: wq.get Valuetj.m) *
»oport- rio _avg total.get Valuetl);

}
else { /lq is not empty

voport.rio avg total.set Value(voport.rio avg tolal.g't Valu ~o 1

sw red wq.gel I aluci) * (1 oport.out Lsi: 1() -

voporl.rio avg 101al.ge1Va/11 '0));

}

Then, the boolean alue drop/Pd is initial to false, \ hich mean that the cell i not

drop by default. Afterward it will check cell profile. tr the arrival cell is marked (In-

profile), then the new average In-profile queue will be calculated. The calculation

involved here is same as the calculation for average total (In-profile and Out-profile)

queue, which also differentiate between empty and non-empty queue.

7.

Univ
ers

ity
 of

 M
ala

ya

boolean dropped=false;

if(voport.rio _marked) {//In-profile

if(voport.out_Q.isEmptyO) {liq empty

double m = SimC!ock.Tick2USec(theSim.nowO -

voport.red_q_time)lsw _red_s.getValueO;

voport.rio _avg_in.setValue(Math.pow(J.O - sw _red_ wq.get Valuet), m) *
voport.rio _ avg_in.getValueO):

}
else {liq is not empty

voport.rio _ avg fn.set Value(voport.rio _ avg_in.get Values) +

sw _red_wq.getValueO * (voport.out _Q.si::eO -
voport.rio _avg_in.getValueO));

}

As the same time, after the calculation is performed and the value is updated in the

router Properties option window, the dropping algorithm will take place. The method

will first get the minimum and maximum thresholds for In-profile from the router

Properties option window. Later on, the new calculated uvcra 1e In-profile queue will

compared with the maximum threshold.

If average Jn-profile queue exceed the maximum threshold, the cell will definitely be

dropped and the total non-dropped cells count that have arrived since the last cell

dropped for In-profile queue w111 set to 0. Otherwise, if the average In-profile queue

ize more than the minimum threshold and less than the maximum threshold the
'

total non-dropped cells count that have arrived since the last cell dropped for In-

profile queues will increase by 1. Then, the probability, P. in, to drop this cell is

calculate based on the maximum drop probability, minimum and maximum

thresholds parameters and also the current average queue size for In-profile queue.

Univ
ers

ity
 of

 M
ala

ya

If the total non-dropped cells count for In-profile is larger than (llp_in), the this cell

will be dropped and the total non-dropped cells count will set to 0. For the last

condition where the average In-profile queue size is less than minimum threshold,

the cell will not be dropped and the total non-dropped count will reset to -1.

double in minth=sw rio in minth.geti/aluet}; - - - -

double in maxth=sw rio in maxth.getl/aluet); - - - -

[f(voport.rio_avg_in.getValueO '>=in ma.xth) { //avg_in > in_maxth

dropped=true;

voporl. rio .i«: count =0;
}

else [/(voporl.rio avg_in.get VahPO

//in minth avg_in < in_maxth

in mintli) {

voport, rio in co uni 1 1 ;

double p in .\'\•t rio in 11wxp.ge1 I uln '0 * (\ "! ort. rio avg in.s; ,, Value()

in minth) (i11 maxth-in minth);

[{(voport.rio in ·011111 (I p in)) {

dropp d true;

voport.rio in count O;

}

}

else { //avg_in < in_minth

voport, rio in count -I:

)

)

The .ame algorithm is performed if the cell is remain unmarked during cell's profile

checking (out-profile . But at here, the maximum drop probability, minimum and

maximum thresholds parameters for the Out-profile will be referred and 11s1.:d. The

77

Univ
ers

ity
 of

 M
ala

ya

average total (In-profile and Out-profile) queue size is used for the Out-profile as

well.

else {//Out-profile

double out _ minth=sw _rio _ out _ minth.get Valuei);

double out_ maxth=sw _rio _out_ maxth.get Valuei);

if(voport.rio _ avg total.getl/aluet} > = out_ max th) { //avg_total >out_ maxth

dropped=true;

voport.rio _total_count=O;

}

else iftvoport.rio _avg_total.get Valuet) = out _minth) {

//out_minth < avg_total < out_maxth

voport.rio fotal count 1 1;

double p out sw rio 0111 tnaxp.get Valuet) * (voport.rio avg totul.g 't Val11eO

- out minth) (out tnaxth-out minth);

!f(voport. rio total ·011nt · (/ p 0111)) {

dropp id Int','

voport.rio total ·011111 O;

}

)

else { //avg_total < out_minth

voport.rio in '01111t -I:

}

J

voport.rio avg in.setValuetvoport.rio _ avg_in.get Value/I};

voport.rio avg total.set Valuetvoport.rio _ avg_total.getValueO);

voport.rio avg 111. updatettheiiim.nowtj);

voport, rto avg total. updateit he<)'im. nowtt);

/\l this stage, the checking, marking and the decision of droppin' for the RI

algorithm arc done. If the cell i ·marked to be dropped, then th· , •II will b • droppcd

78

Univ
ers

ity
 of

 M
ala

ya

and the cell drop count of the respective connection to the router is increment by 1.

the cell drop count value will also update in the option window immediately.

Otherwise, the cell is then put into the queue, out _Q, to schedule it for the next event

as usual.

if(dropped) {

voport.rio _drop _count.setValue(voport.rio _drop _count.getVa/ueO+ J);

voport. rio _drop_ count. update(theSim.nowO);

cell=null;

}

else {

voport.out_Q.add(cell);

voport.out _Q size.set Valuetvoport.out Q size.get Valuet}« !);
}

voport. red_ q_ ti rne=theS i m. now()·

//output cell to link if possible

[f(lvoport.oul Q.isl:mpty() && lvoport.link busy) {

voport.link hll.\) true;

sw schedule output/: oport);

}

}

6.3 Summary

This chapter presented the method and coding involved for the implementation of

RI algorithm in the simulator. The parameters and variables declared are based on

the standard style of coding in the simulator. During the implementation, explanation

are inserted when necessary for future reference.

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 7: System Testing

7.1 Simulation Setup

Before start the simulation to test the RIO algorithm, a simulation topology is needed

to be setup. The simulation topology is a test case for the implementation that can be

used to prove the RIO algorithm is properly implemented in the network simulator.

The most important simulation component is the router or called ATM-LSR. The

ATM-LSR is capable to function under the IP network only. Besides that, three

sources are created, which will generate the cells and pump into the network. These

sources are the IP CBR (Constant Bit Rate) applications. These three IP CBR

applications are sending cells with different rate, but the sending rate for each

application is fixed all the time. Meanwhile, one IP BR applicati n will be u eel as

the destination for the simulation setup. The figure below sh ws the simulation

topology.

Figure 7.1: Simulation topolo y

80

Univ
ers

ity
 of

 M
ala

ya

From the figure, the IP BTE components are also needed to connect the IP CBR

applications to the ATM-LSR through a link between the IP BTE and ATM-LSR.

Originally, the IP BTE can be used to perform certain algorithm such as traffic

profiJing and other. Anyway, in order to simplify the simulation, the IP BTE

components will act as an intermediate nodes or destination network (source

"network") that will receive cells from IP CBR applications and the forward it to the

ATM-LSR component.

7.2 Simulation Result

Firstly, the testing is done on the overall RI al iorithm. The .imulation topology is

as shown in the figure in previou page. The detail of the three IP I R applications

is as follow:

-- - Source ip cbrl ip cbr? ip cbr

-- Bit Rate (Mbps) s.o 10.0 0.0

Number of Mbits to 100 100 100
be sent
Destination IP 10.0.4.2 10.0.4.2 10.0.4.2

Destination port 80 80 80

Table 7.1: IP CBR applications detail

81

Univ
ers

ity
 of

 M
ala

ya

Below is the list of parameters configured in the A TM-LSR component.

Congestion avoidance type RIO

Switching slot time (Mbit/s) I

Target Rate (Mbps) 10.0

RIO In-profile min threshold 0.50

RIO In-profile max threshold 0.75

RIO In-profile maxp 0.20

RIO Out-profile min threshold 0.35

RIO Out-profile max threshold 0.50

RlO Out-profile maxp 0.02

IP for interface to link I 10.0.1.1

IP for interface to link2 10.0.2.1

IP for interface to link IO.OJ. I

IP for interface to link4 10.0.4. I

Table 7.2: ATM LSR parameters configuration

The ip bte4 source "n twork" field' ill has the value or 10.0.4.-, where this is the

destination IP of the sources. The simulation is running for 40ms. Below is the

simulation result.

ip cbrl ip cbr2 ip cbr3

Bit Rate (Mbps) 5.0 10.0 20.0

Total cell drop 2 4 13

First cell drop time (ms) 32.97 16.73 6.75

Table 7.3: Simulation result

Univ
ers

ity
 of

 M
ala

ya

As shown in the table above, the sources (ip cbr3) that violates the target rate will

experience more cells drop that those sources that conform to theirs target rate. This

is due to the cells sent by ip cbr3 application will always mark as "Out-profile" and

the RIO algorithm will drop the Out-profile cells with higher probability that the

cells that are marked as "In-profile". This is done by setting maximum drop

probability for Out-profile much higher than the In-profile during the congestion

avoidance phase. Therefore, it is obvious that the ip cbr3 application will also

experience first cell drop much earlier than other applications that conform to their

target rate.

Meanwhile, for ip cbrl and ip cbr2 applications that are conforming to their target

rate, both of them will also experience cells drop. When the average In-profile queue

size for both applications exceed the minimum threshold, the total non-dropped cells

that have arrived since last cell drop count ·r will increment b I for every non-

dropped arrival cell. The counter is used here to protect a iainst burst cell losses,

since it will maintain a constant pa e bet' ccn the dropped .clls relative to the

dropping probabilit . On the other hand, the traditional REI algorithm will

randomly generate the drop probabilit for each cell based on the average queue

length, minimum and maximum thresholds. In this case, if the generated drop

probability is higher than maximum drop probability, then the particular cell will be

dropped.

From the result shov n in the table, we can conclude that for the In-profile

applications, the application (ip cbr2) will the higher cell sending rate will experience

cell drop much more earlier than the application (ip chrl) with low .r s .ndin • rat',

o o,

Univ
ers

ity
 of

 M
ala

ya

Besides that, the total cell dropped for ip cbr2 application is also greater than ipcbrl

application, as the ip cbrl only experience 2 cells dropped compare to ip cbr2 is

experience 4 cells dropped. The is due to the application with higher sending rate

will has higher average queue length and therefore will exceed the minimum

threshold earlier than the application with lower sending rate. The figures below

show the In-profile and Out-profile average queue length for each application in the

router.

40.029ms

Figure 7.2: ip br\ application a erage queue length

40.029ms

4 0 02 "'

Figure 7.3: ip cbr2 application average qu zu I in 'th

Univ
ers

ity
 of

 M
ala

ya

40.050ms

-··. ~--·x

40.050ms

Figure 7.4: ip cbr3 application queue length

For both ip cbrl and ip cbr2 applications the average queue length for both profiles

(In-profile and Out-profile) are the same. Both als have the peak average queue

length, which is 0.5355. Besides that, the ip cbr2 application will first achieve the

peak average queue length since then sending rate is hi zhcr than ip .brl application.

Anyway for the ip cbr appli ation, the peak a cragc queue length is 0.4460. This

application is the first application achie c the peak average queue length am ng

these three applications. ince ip cbr3 application is not conforming to the target rate,

theref re the In-profile queue will be empty (average queue length is zero).

Secondly, on the other hand, the simulation topology shown in the figure 7 .1 is

modified as shown in the figure and table below. The modification is done to make

the traffic flow from-and-to at the both side of the ATM-LSR component.

Univ
ers

ity
 of

 M
ala

ya

Figure 7.5: Modified simulation topology

Flow I

Sourcc(s) : Destination

Flow 2 Ip cbr5

ip cbr4

ip cbr

ip cbrl , ip cbr2

Table 7.4: Modified simulation topology - urcc(s) and destination

Source ip cbrl ip cbr2 ip cbr3 ip cbr4 ip cbr5

Bit Rate (Mbps) 5.0 zo.o 10.0

Number of Mbits to 100 100 '100 .
be sent
Destination IP 10.0.4.2 l 0.0.4.2 . :!O.O.S/2·:

Destination port 80 80 . 80"\ ..
·'';1
~;' ~·

Table 7.5: Modified simulation topology - IP CBR applications detail

8)

Univ
ers

ity
 of

 M
ala

ya

Congestion avoidance type RIO

Switching slot time (Mbit/s) 1

Target Rate (Mbps) 10.0

RIO In-profile min threshold 0.50

RIO In-profile max threshold 0.75

RIO In-profile maxp 0.20

RIO Out-profile min threshold 0.35

RIO Out-profile max threshold 0.50

RIO Out-profile maxp 0.02

IP for interface to link I 10.0.1.1

IP for interface to link2 10.0.2.1

IP for interface to link 10.0 .. 1

IP for interface to link4 10.0.4.1

IP for interface to link5 10.0.5.1

Table 7.6: Modified simulation topolog 1 - A TM LSR parameters confi iuration

The simulation is also running for 40ms. The result is shown in the table below.

Source ip cbrl ip cbr2 ip cbr3 ip cbr4 ip cbr5

Bit llatc (Mbps) 5.0 20.0 - - 10.0

Total cells drop 2 14 - - 4

First cell drop time 33. 122 6.724 - - 16.690 (ms)

Table 7.7: Modified simulation topology- simulation result

87

Univ
ers

ity
 of

 M
ala

ya

From the simulation result, the modified simulation topology also achieves the same

result as the original result. The total cells dropped and the first cell drop time is

almost the same. Therefore, the result are as expected. Anyway, the testing done here

is to show that the applications on both sides of the router are able to send and

receive cells at the same time. This mean that the RIO algorithm is able to function

properly in duplex traffic as the algorithm is perform at the input port of the router

only.

7.3 Summary

As the summary, the implementation of RI in the network simulator i able to

achieve the project objccti c. l csidcs that, the s stem fun tional and non-functional

requirements are also meet. This testing is important to make sure the RI algorithm

is functioning properly under different condition.

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Chapter 8: Conclusion & Future Work

Overall, the implementation of RJO algorithm has provided valuable insight into the

methodology of network simulation. Besides that, the concept of the RJO algorithm

can also be validated by using the network simulation.

In the today's Internet, the high degree of sharing of the available bandwidth makes

no commitment about the capacity that any user will actually receive. Therefore, the

implementation of Differentiated Service (DifTServ) is seen to support Quality of

Service (QoS) and ensures fairness among various type of users in the Internet. The

RlO algorithm is proposed as an algorithm to discriminate between the users that

conforms to their ervice level agreement (bandwidth in this case) and those users

whom are not.

Thus, the users who do not violate their tar ict rate ' ill he marked and treat them

with higher priorit omparc to the user who iolatc their target rate durin • normal

operation (congestion avoidance phase). Durin 1 .on icstion control phase, the

"marked" sources (In-profile) are protect against the "unmarked" (Out-profile)

sources by etting lower drop probabilit .

Therefore it allows the service providers to design widely different service and

pricing models, ' ithout ha ing to build these models into all of the switches and

routers of the network. In contrast, the service allocation profiles will change and

adapt to needs of the future applications and business models of IPS's, and will only

affect the edge of the network. This design thus pushes most of the ·0111pl ·xit to th·

edge of the network, making it scalable and flexible.

Univ
ers

ity
 of

 M
ala

ya

8.1 System Strengths

There are several strengths of this implementation:

• The implementation of RIO algorithm is relatively simple and does not

introduce significant changes in the router.

• The discrimination between In-profile and Out-profile sources can protect

sources that are conforming to their target rate. This is because the Out

profile sources will experience more cells drop and much earlier than In

profile sources. Therefore, the Out-profile sources will have lower

throughput.

• The dropping algorithm is able to prevent burst-cell losses. This is done by

having a counter that will increment when non-dropped cells have arrived and

reset the counter after a cell is dropped.

8.2 System Limitations

Besides that there are several limitations ' ithin m 1 implementation or RI

algorithm in the Ja a Netv ork Simulator whi .h arc:

• The sources application ar limited to the BR (onstant Bit Rate)

application. In the real en ironment the application may sending data at

different rate all the time. Therefore, the IP VBR (Variable Bit Rate)

application should also capable to use RIO algorithm in this case.

• There is no difference between the boundary and core routers for the

simulation.

)()

Univ
ers

ity
 of

 M
ala

ya

8.3 Future Work

The following are some of the promising avenues for the future work in this field:

• The RIO algorithm should be implemented in the packet-based network,

which is the Java Network Simulator version 0.66. By doing this way, the

behaviors of the TCP application will also influent the simulation result of

RIO algorithm. This is due to the TCP application is having its own

congestion control methods during congestion control phase.

• The implementation of different kinds of router - either boundary or core

routers (based on the location of the router). By doing this way, the boundary

router will do the checking and marking, meanwhile the core router will then

do the dropping for the congestion avoidance and conge tion control phases.

• Aggregate traffic - a profiler fr r aggrcgator traffic from a number of

connection be uggcsted and implemented.

} I

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Appendix

A. System User Manual ("README.txt")

+--+
Implementation of RIO (Random Early Detection with In/Out)

+--+

Below is the general guidelines to build a simple simulation topology and test the
RIO algorithm:

1. Create a simulation topology. The simulation topology should consists of IP CBR
application(s) as source(s) and destination, IP BTE(s) to interconnect the IP CBR
application(s) to router through a link(s), and ATM-LSR as the router.

2. Set the "Bit Rate (Mbps)", "Number of MBits to be sent", "Repeat count",
"Destination IP" and also "Destination port number" fields on the IP CBR
application(s) properties. Other fields remain unchange (using the default value).

3. For the ATM-LSR, set the IP address for all the interfaces created. After that,
choose the congestion avoidance method ("None"-default, "R D" or "RI ").

4. Dependent of which type of con iestion avoidance method is chosen, then
configure the relevant parameters. If the RI is hoscn please don't forget to set
the "Target Rate (Mbps)" field. ther field · of the RI parameters ma remain
unchange.

5. Set the "Switching Slot time (Mbi s)" field of the /\TM-LSR to "I". l3y doing
this way, the user will be able to sec the re ult more lcar.

6. for the destination's IP BTE the "Source Netx ork" need to be set with the II
address of the destination IP addrc . This IP address must be .arnc as the IP
address in the "Destination IP" field of the source(s).

7. tart the simulation and see the result.

8. Please take note that if you v ould like to get the result in a shorter time, you may
change the "RED queue weight (>=0.00 I)" field of the ATM-LSR to a bigger
value, uch as "0.02". The bigger value you choose, the faster you will get the
re ult.

I lope this guidelines can help you.

1)

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

Reference

1. Uyless Black, "TCP/IP and Related Protocols", 3rd Edition, McGraw-Hill,

1998.

2. Sally Floyd, "TCP and Explicit Congestion Notification (ECN)", ACM

Computer Communication Review, vol 24, pp 8-23, Oct. 1995.

3. M. A. Parris, "Class-Based Thresholds: Lightweight Active Router Queue

Management for Multimedia Networking", University of North Carolina, 200 I.

4. B. Braden et al., "Recommendations on queue management and congestion

avoidance in the Internet,", Request for omments (RFC) 2309, Apr. 1998.

5. Sally Floyd and Y. Jacobson, "Random Early Detection gateway· for

congestion avoidance," I Eli\ M 'I ransa tions on Nctworkin •, vol. I, pp.

397-413 Aug. 199 .

6. D. Lim and R. Morri "D narrucs of Random Earl Detection." Proc. or
SIGCOMM pp. 127-1 7 1997.

7. WRED: http:///w\V\ .networks.S\ in.edu.ai ervi .es qos/l/wrcd.

8. D. lark and J. Wroclawski "An Approach to 'ervice Allocation 111 the

Internet", Internet Draft draft-clark-diff-svc-alloc-00.txt. July 1997.

9. D.H. Nam Y. . hoi, B.C. Kim and Y.Z. Cho, "A Traffic Conditionng &

Buffer Management Scheme for Fairness in Differentiated Services",

Kyungpook National University, 200 I.

I 0. K. hang, Y. Kapoor, E. Kusmierek and C. Wighe, "Comparison of Packet

Markinu Scheme· in Differentiated Services", University of Minnesota, 1999.

Univ
ers

ity
 of

 M
ala

ya

11. A Habib, S. Fahmy and 8. Bhargava, "Design and Evaluation of an Adaptive

Traffic Conditioner for Differentiated Services Networks", Purdue University,

2001.

12. W.H. Park, S. Bahk and H. Kim, "A modified RIO algorithm that alleviates the

bandwidth skew problem in Internet Differentiated Service", Seoul National

University, 2000.

Univ
ers

ity
 of

 M
ala

ya

