NAME : MARINA HARYATI MOHAMAD

MATRIC NO : WEK020116

TITLE : SMART TRANSDUCER INTERFACE MODULE
(MAIN STATE MACHINE VHDL)

SUPERVISOR : EN. NOORZAILY MOHAMMED NOOR

MODERATOR : EN. MOHD YAMANI IDNA IDRIS

ABSTRACT

This project is about the development of Smart Transducer Interface Module in
hardware. The IEEET451.2 smart sensor approach specifies a “plug and play’ capability
in a transducer module, which is achieved through transducer electronic data sheet
(TEDS). It specifies a digital interface to access this data sheet, read sensor and st
actuator. A write and logic function to access TEDS and transducer are defined. This
STIM will be implemented using VHSIC Hardware Description Language (VHDL),
Peak FPGA software. This report will comprise the STIM phase from the design phase

of main state machine until the end of testing phase.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to all those who had helped
me throughout this project. First and foremost, I would like to thanksgiving to Allah for
his grace and mercy in completing this project. My sincere thank to En. Noorzaily as my
Supervisor for all his guidance, advise and was kind enough to help me at times. Also

thank to En. Yamani Idris whose always gives suggestion and comment during the

duration of this project.

Last but not least, my grateful thank to my friends that also involved in this
STIM project, Ana, Ain and Yoges. [would like to thank both my parents En. Mohamad
and Pn Masithah for continue support and prayers. All of them always encourage me and

made me believe myself even though sometimes I'm low in confidence done this

project.

Thank you.

TABLE OF CONTENT

Content

ABSTRACT
ACKNOWLEDGE

CHAPTER1: INTRODUCTION

1.0
1.1
1.2
1.3
1.4
158
1.6
1.7

Introduction
Objective Of Project
Scope Of Project
Project Constraint
Problem Definition
Problem Solving
Project Layout

Project Schedule

CHAPTER 2: LITERETURE REVIEW

2.0

2.1

2.2

A Brief Explanation Of Sensor

2.0.1 Introduction

2.0.2 What A Sensor

2.0.3 Issue Of Analog Sensor

The IEEE1451 Family Of Transducer Interface
2.1.1 Building Plug and Play Network Smart Transducer
2.1.2 Issues Of Sensor Industry

Smart Transducer Interface Module (STIM)
2.2.1 Whatls STIM

2.2.2 Transducer Channel Types

2.2.3 Typesof TEDS

Sensing The Future

e

Page

1

o

A W B W W N

10
11
13
16
17
20

20

Content Page

2.3.1 Endless Possibilities 24
2.4 Comparison Between Existing STIM and STIM In This Project 26

CHAPTER 3: METHADOLOGY
3.0 The FPGE/ASIC Design Process 28

CHAPTER 4: SYSTEM ANALYSIS

4.0 Introduction 31
4.1 Addressing 31
4.2 Interface Data Transport 33
4.2.1 Write Control Command 35
4.2.2 Read status channel 36
4.2.3 Read Data Sheet Information (TEDS) 37
4,3 Triggering 39
4.3.1 Triggering Sensor 40
4.3.2 Triggering Actuator 41
4.4 Interface Signal Lines 44
4.4.1 Bit Transfer 45
4.42 timing 45
4.5 A Brief history Of VHDL 47
4.6 WhatIs VHDL 48
47 Why Choose To Use VHDL Design 49
4.8 Basic VHDL Terminology 50
4.9 Objects, Data Types, Operators 53
4.9.1 Using Signal 54
4.9.2 Using Valuables 55
4.9.3 Using Constraints and Literals 55
4.10 Types and Subtypes 55
4.11 VHDL Testbench and Verification 57

Content
4.12 VHDL Modeling

CHAPTER 5: SYSTEM DESIGN

Sal
5.2
D
5.4
059
5.6

Introduction
IEEE1451 Smart Sensor

State Machine
Block Diagram of Main State Machine

Flow Chart of Main Function STIM
Block Diagram Of Sub modules
5.6.1 Data Transport

5.6.2 Triggering

CHAPTER 6: TOOLS AND DESIGN IMPLEMENTATION

6.1
6.2

How To Apply PeakFPGA Designer Suite
User Manual

6.2.1 Top Level Data Transport

6.2.2 Top Level Trigger

6.2.3 Port and Signal Declaration

CHAPTER 7: SYSTEM IMPLEMENTATION AND TESTING

7.1
7%
13
7.4

Introduction

Coding Approach
Coding Implementation
Coding explanation
7.4.1 Receiver

7.4.2 Transmitter
7.4.3 Map Memory

Page
58

60
60
61
63
69
70
70
72

75
84
84
88
90

98
98
99
99
99
101
104

Page

Content
7.4.3.1 Map Memory Address 107
7.4.3.2 map Memory for Channel 1 and Channel 2 108
7.4.4 Trigger sensor 108
7.4.5 Trigger Actuator 114
7.5 Testbench 116
7.6 Simulation Result 116
CHAPTER 8: DISCUSSION
8.1 Introduction 126
8.2 System Strength 126
8.3 System Weaknesses 127
8.4 Future Enhancement 127
8.5 Problem Solving 128
CHAPTER 9: CONCLUSION
9.1 Introduction 131
9.2 Experience and Knowledge Gained 132
REFERENCES 134
APPENDIX 136

Vi

Figure

2.1
4.1
4.2
4.3
4.4
5.1
912
510
5.4
05
5.6
5.7
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
il
(732
(9%
7.4
7.5
7.6

A general model of samrt sensor
Address layout

General response of STIM to trigger
Sensor activity

Actuator activity

General model of IEEE1451 smart sensor
State machine of STIM

Block diagram state machine of STIM
Read function perform by data transport
Write function perform by data transport
Triggering function

The main program control flow chart
Create the project files

Create new VHDL module

The declaration of entity and port name
To rebuild hierarchy

Compile for each module

Prompt that module is successfully

New module appears to create testbench

Declaration of entity and port anme for testbench module

Selection of object for VHDL simulator
Flow chart for triggering sensor

Flow chart for triggering actuator
Simulation for triggering sensor
Simulation for triggering actuator
Simulation for transmitter

Simulation for map memory

vii

Page

12
32
41

42
43
62
63
65
66
66
67
68
76
77
78

79
80
80
81
82
83
113
115
117
119
121
123

Table
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
7.1
2
7.3
7.4

Direction bit values

The commonly used channel function address

Standard control command

Standard status bit

Data transfer timing parameter
Triggering sequence timing parameter
Sensor state

Actuator

Port description for data transport

Port description for receiver

Signal description for receiver

Port description for transmitter

Signal description for transmitter

Port description for map memory
Signal description for map memory
Port description for triggering sensor
Signal description for triggering sensor
Port description for triggering actuator
Signal description for triggering actuator
Expected output for triggering sensor
Expected output for triggering actuator
Expected output for transmitter

Expected output for map memory

viii

Page

32
33
36
37
38
38
40
43
90
91
91
92
92
93
93
94
94
95
95
118
120
122
124

CHAPTER 1

1.0

CHAPTER 1 : INTRODUCTION

INTRODUCTION

Transducer serve a wide variety of industry’s needs, manufacturing, industrial
control, building automotive and biomedicine are but a few. Since the transducer
market is very diverse, transducer manufactures are seeking ways to build low-
cost and large-scale production. Since then, research has been done by family of
IEEE to investigate low cost of data interface for low cost sensor. Family of
IEEE 1451 have proposed a standard that VHDL implementation of STIM is
suitable for compact solution allowing cost reduction and enhanced product
functionality. All these are significant contributes to productivity improvement

and will benefit producers, vendor, system integrates and user.

Smart sensor that can extract more information from surrounding
environment since it has computational capability. This sensor is equipped with
some elaboration unit that treats incoming signals operating, for instances, an
analog to digital conversion and a calibration producer. A key characteristic of
smart sensor is that it operates on the input signal in a logical fashion to increase
the value of the information that it process. The sensor is capable of making
logical decisions as the source of the information. Other than that, smart sensors

include their capabilities for self-test, adaptive calibration and ease of setup and

use.

1.1 OBJECTIVE OF PROJECT

There are several objectives to be achieved in completing this project.

To improve the STIM performances that already exist, by target a low cost of

0,
0.0

smart sensor with integrated sensor. This can be achieved by using VHDL

approach. VHDL is a hardware language that created to describe the behaviors of

systems and electronic digital circuit.

To have a fully understanding of STIM implementation, fundamental and
architecture. Also understand of how each module communicate each other.

% To design, coding and simulate the main state machine of STIM using VHDL
application software that is Peak FPGA Design Suite by having a good command

of VHDL at the end of this project.

1.2 SCOPE OF PROJECT

The research will mainly concentrate on the main state machine that manages all
the primary operation of the STIM. Since, the main state machine accomplishes
more function to implement the STIM, so this project only coordinating data
transport and trigger. Hence, due this limitation, some of the features maybe
can’t fully implement the STIM. This STIM only describe two TEDS, Meta

TEDS and Channel TEDS. Also used only two channel, sensor and actuator.

o)

1.3

1.4

Beside that, it is design the STIM in terms of drawing necessary diagram

and developing the necessary sub modules, data transport and trigger using

VHDL source code.

PROJECT CONSTRAINT

The STIM cannot be implementing all the features available in the standard of
STIM. This is because the complexity of certain features. This STIM only apply
two channels than seven channels in the standard and only utilize Meta TEDS

and Channel TEDS compare with the standard, there are eight TEDS exist.

There is also the time constraint on developing the source code and
simulation of the design and whether the simulation and coding of the modules

can be completed within the duration due to the lack of experience

PROBLEM DEFINITION

The main problem that has been detected during the early stages:

1. Defining the scope

Standard design of main state machine manages all the features needed. So it is

difficult to identify the fundamental of each data transport and trigger because

1.5

e

each of sub modules interconnected with each other.
2. Design the block diagram

Block diagram for each module and sub modules are needed to present on

Chapter 4.

3. Developing source code

It is quite hard to learn VHDL in order to build and implement main state

machine of STIM.

PROBLEM SOLVING

To define the scope, we have to really understand the fundamental and
implementation of STIM. By review the standard and literature related to STIM
the function that used in STIM can be identify. All the relevant source code
based on the function.

To design a complete block diagram, more time is needed. We have to consider
all the process and action involved and also consider the input and output for
each sub modules. Also frequent meeting with the Supervisor to discuss the
design.

To develop a good command of source code, more time is needed to learn

VHDL language again and again and try to meeting with the Supervisor.

1.6

PROJECT LAYOUT

This project consists of seven chapters. The purpose of this layout is to give an

overview of phases involved during the project development. The summary of

each chapter presented as follows:

CHAPTER 1:INTRODUCTION

This chapter gives an overview of major phase of the project that has to be done,

the objective, project scope and project schedule.

CHAPTER 2: LITERATURE REVIEW

A brief explanation on topic researches that relevant to this project. It covers

about STIM, explanation what is STIM, standard of STIM, how itworks and

others.

CHAPTER 3: METHADOLOGY
Emphasize on the justification for the project methodology, what kind of life

cycle and programming language to be used in STIM implementation.

CHAPTER 4: SYSTEM ANALYSIS

A brief explanation on the scope of the project, that is data transport and
triggering function, description of each sub modules. VHDL plays an important
role in the completion of this project. A brief explanation of VHDL

programming language will be presented and discussed here also.

1.7

CHAPTER 5: SYSTEM DESIGN

This chapter focused on the conceptual and technical design of main state STIM

and each module. It covers data flow diagram and process for each module.

CHAPTER 6: SYSTEM IMPLEMENTATION AND TESTING

This chapter focused on the design implementation and the coding process
involved transforming of the design into the programming language. Also
discuss about testing and result achieved from the test to assure that the

implementation of modules works and to find any error or fault during

implementation.

CHAPTER 7: SYSTEM EVALUATION

This chapter will touch various areas like conclusion of project, suggestion for

future enhancement, problem encountered during development process and

others.

PROJECT SCHEDULE

The Gantt chart below shows the activities of each phase that will be carried out
through the development of the system. This is important because each phase
must be done on time and careful planning will make it possible. It will take

approximately time of nine months to finish the whole project.

6

NOLLVINTIWNDO0a

ONILSAL WALSAS

NOLLVINTWATINI

NODISFId WALSAS

SISATVNY WALISAS |

SISATVNY |
INTWAAINOAY |
| 1

S0 944

SO NVI

¥0 Odd

¥0 AON

¥0 LDO

¥0 44dS

¥0 OOV

¥0 10r

¥0 NOr

ASVHd ‘ ON
|

LIVHD LINVHD

CHAPTER 2

2.0

2.0.1

CHAPTER 2 : LITERITURE REVIEW
A BRIEF EXPLANATION OF SENSOR

Introduction

Just about everything today in the technology area is a candidate for having the
prefix smart added to it. The term smart sensor was coined in the mid 1980s, and
since then several devices have been called smart sensors. The intelligent
required by such devices are available from microcontroller unit (MCU), digital
signal processor (DSP) and application specific integrated circuit (ASIC). Today
microelectronic technology is applied to sensor. Before availability of
microelectronic, the sensor or transducer used to measure physical quantities
such as temperature, pressure and flow usually will couple directly to readout
device, typically a meter that was read by an observer. The transducer converted
the physical quantity being measured to a displacement. The observer initiated
system correction to change the reading closer to desired value. A sensor STIM
can be used to take measurements of any type with the appropriate analog

sensors, such as pressure, temperature, air flow, volume, and digital input sensors

like switches.

Commonly, the definition of transducer is a device that converts energy

from one domain into another, calibrated to minimize the errors in the conversion

9

2.0.2

process. A sensor is a device that provides useful output to a specified
measurand. The sensor is the basic element of a transducer but it may refer to a

detection of voltage in the electrical regime that does not required conversion.

An Institute of Electrical and Electronic Engineers (IEEE) committee has
beenactively consolidating terminology that applies to microelectronic sensors.
The recently approved IEEE1451.2 specification defines a smart sensor as a
sensor that provides function beyond those necessary for generating a correct of

a sensed or controlled quantity. This function simplifies the integration of the

transducer into application in a network environment.

What a sensor

A suite of technologies underlie the rise of sensors, including MEMS, piezo-
materials, micromachines, very large scale integration (VLSI) video, and a
handful of other technologies MEMS are by far the most important of the
technologies enabling the rise of sensors in the near term. In concept, MEMS
technology is simplicity itself: it amounts to nothing more than using
semiconductor manufacturing techniques to create analog devices. MEMS
research has been underway for over a decade, (2) and MEMS-based devices are
already finding their way into the marketplace. The automobile industry is a

major consumer of MEMS devices, and is likely to be the single largest early

market.

10

2.0.3

Piezo-materials are materials (typically ceramics) that give off an

electrical charge when deformed and, conversely, deform when in the presence
of an electrical field. (3) Put a charge in, the material deforms; deform the
material, it sends out a charge. Piezos are particularly useful as surface-mount

sensors for measuring physical movement and stress in materials. But more

importantly, piezos are useful not just for sensing, but for effecting --

manipulating the analog world

Micromachines are semiconductor cousins to MEMS technology. Like
MEMS, Micromachines are built using semiconductor manufacturing techniques
Dy

but unlike MEMS, they are more complex in design, incorporating in some

instances micrometer-scale gears and other moving parts.

Issues of analog sensor

Research have been done to investigate multi-sensor modules. In addition to the
increased number of sensors used in current vehicles, one or more vehicle-wide
data-communication networks are being used. These networks link various
sensors to actuators and control centers and enable a variety of new automotive
functions. penalty goes along with this conversion from a "dumb" analog sensor
to a "smart" sensor capable of vehicle-wide communications. This cost can

exceed several dollars per sensor.

Examination of sensor function and placement shows that a variety of sensors

lend themselves to being placed in localized clusters. These multi-sensor

modules can share a single set of communication chips, thereby lowering the

overall cost associated with the conversion to a smart sensor network. Packaging

is one of the more expensive pieces of sensor manufacturing. By using a single

housing, sensor cost is also reduced by eliminating multiple connectors and

cables. Reducing the number of connectors, integrated circuits, and cables not

only saves costs but also improves reliability and the assembly process and

reduces vehicle weight.

Network specific

Network

Local user
interface

Sensor | Signal —P{ Analog to Application Communication
conditioning digital algorithm

conversion

i

Data storage

Figure 2.0 A general model of smart sensor

2.1

The 1451 Family of Transducer Interfaces

Transducers, defined here as sensors or actuators, serve a wide variety of
industry's needs, manufacturing, industrial control, automotive, aerospace,
building, and biomedicine are but a few. Since the transducer market is very
diverse, transducer manufacturers are seeking ways to build low-cost, networked
smart transducers. Accepting the limitations created by the diverse technologies
associated with sensors, actuators, networks and processors, the IEEE 1451
family of sensors can be viewed as the cumulative efforts of several experts
highly experienced in the area of networking sensors. With this approach, the
I[EEE 1451 series becomes a reference set containing valuable guidelines,
practical rules, and insights into technical problems and possible solutions

associated with networking sensors and actuators.

The four standards in the IEEE 1451 family include:

IEEE 1451.1-1999

Network Capable Application Processor (NCAP) Information Model. This
specification describes the object model of a smart transducer. It includes the

object classes, methods, and behaviors of a smart transducer. This standard was

approved recently.
IEEE 1451.2-1997

Standard for a Smart Transducer Interface for Sensors and Actuators: Transducer

13

to Microprocessor Communication Protocols and Transducer Electronic Data
Sheet (TEDS) Formats. This specification describes the hardware interface and
communication protocols between the smart transducer interface module (STIM)
and the NCAP. It also includes a definition of the transducer electronic data sheet

(TEDS), which allows users to store information about transducer characteristics

in the sensor itself.

IEEE P1451.3

Digital Communication and Transducer Electronic Data Sheet (TEDS) Formats
for Distributed Multidrop Systems. This standard is still in the approval phase.
[EEE-P1451.4

Mixed-Mode Communication Protocols and Transducer Electronic Data Sheet
(TEDS) Formats. This specification describes how some sensors may use some
of the digital features of 1451, such as electronic data sheets, while still allowing
analog outputs. This specification is important for applications that require high

data-acquisition rates, such as automotive impact testing. This standard is still in

the approval phase.

Network s

pecific

Network

Local user
interface

v

Sensor Signal

conditioning

Analog to
digital
conversion

Application
algorithm

i

Data storage

Communication

TEDS

> Hardware

Interface

Network specific

Network independent

Analog to digital conversion Local user
T Signal 1451.2 1451.2 Application —=
conditioning interface interface algorithms Communication
..... TEDS Correction
engine
N
Sensor Data storage
interface
STIM NCAP
Network

o

231%1

Building Plug and Play Network Smart Transducer

In response to the data explosion experienced by society, technical journals and
the mass media have raised the issue of the present and future needs for
bandwidth. Smart sensors help to reduce the communications bandwidth
requirements by converting data into information. The advantage of a smart

sensor is that it reduces or even eliminates the communications and control

infrastructure needed to manage a system.

In the case of building or factory controls, the systems are large, and the
sensor infrastructure is expensive. Smart sensors not only provide significant
savings by reducing cabling and monitoring equipment costs, they also provide
enhanced reliability and safety because the sensor maintains local control even if

the facilitywide control network fails.

With large data acquisition (DA) systems, there is a need for self-
identification of sensors. This feature provides substantial savings in the labor
required to record the serial numbers, calibration factors, and calibration dates
for all the sensors, and this feature reduces the chance of errors. Self-
identification by itself is probably adequate justification for using smart sensors
in critical DA upplicutiom.(iivcn the advantages of smart sensors, why are

network-compatible smart sensors not in wider use? One reason is the

16

fragmented nature of the fieldbus market and the unwillingness or inability of
transducer manufacturers to support all the networks now in use. Many sensor
network or fieldbus implementations are available, each with its own strengths
and weaknesses for a specific class of applications. Interfacing transducers to all
these control networks and supporting the wide variety of communications

protocols represents a significant and costly effort to transducer manufacturers.

Today, there is no common digital communication interface standard
between transducers and network communications nodes; each transducer
manufacturer defines and builds its own interface. Consequently, transducer
manufacturers cannot afford to support all the control networks for which their
products are suited. An open, universally accepted transducer interface standard
would facilitate the development of network-capable smart sensors and actuators

and should result in faster acceptance and implementation of smart sensors into

the market.

Issues of Sensor Industry

Issues addressed will include the status of IEEE 1451.3 and 1451.4, wireless
sensing using Bluetooth technology, adding intelligence to sensors, smart
interfacing, and a variety of smart sensing applications. Since the industry

appears to be focusing its future efforts on Ethernet networks, there may no

17

longer be a need for compatibility with several types of networks and, therefore,
no need for several types of NCAPS. The issue now becomes whether make
smart sensors that integrate much of the STIM functionality into the sensor

product and then connect these smart sensors to someone else's NCAP product.

Sensor Synergy's strategy is to combine the NCAP and STIM into an
adaptable smart transducer interface and cost-effectively provide the most useful
features of IEEE 1451.2 to end-users and transducer manufacturers. .This
approach addresses the reality of an Ethernet-dominated network environment
without requiring sensor manufacturers to rework their product offerings by

tightly integrating microelectronics intelligence into their sensors.

IEEE 1451.3 defines a digital interface for connecting multiple,
physically separated sensors. The multi-drop transducer bus standard is a
minibus implementation that is sufficiently small and inexpensive to integrate
into a transducer. IEEE 1451.4 addresses analog sensors with respect to their
existing wiring and the requirement for wide bandwidth analog measurements.
IEEE 1451.4 will allow analog-output, mixed-mode transducers to communicate
digital information with a high-level IEEE 1451 object. To fit into the digital
network defined by other 1451 standards, the bi-directional digital
communication of self-identification, test, and programmable signal conditioning

functionality is being defined with an eye toward simplicity and low cost.

18

In other applications that do not involve multiple protocols, alternative
ways of communicating smart-sensor information are preferable, where,
Crossbow Technology, Inc. is using the TEDS from 1451.2 in wireless sensor
networking solutions based on the Bluetooth™ 2.45 GHz frequency hopping
spread spectrum standard. Their CrossNET™ architecture is an integrated
hardware/software solution for implementing wireless sensor networks. The
solution facilitates the use of sensors in applications that, for example, are

difficult or possible to wire or are subjected to harsh conditions.

The CrossNet node incorporates a Bluetooth radio for wireless
communication with a computer or handheld device, and can control up to four
sensors. Smart I/0 cables connect sensors to the CrossNet node and provide self-
identifying circuitry using the TEDS. Using a Bluetooth radio, a PC can
communicate wirelessly with CrossNet nodes, extending data acquisition and
control capabilities to multiple users connected via a network. For users
requiring a Bluetooth interface to their personal computer, Crossbow supplies a
USB to Bluetooth radio connection. The Bluetooth interface is connected to a

personal computer via the USB port, up to a distance of 10 meters.
At Crossbow, we believe that software, combined with the right digital

architecture, will be the key to smarter sensing solutions This approach can bring

even older mechanical and analog sensors into the digital world by turning them

19

2:2

2.2.1

into smart sensors. Coupling this with wireless technology really bridges the gap

between the analog, physical world and the new computer/Interment

infrastructure."

SMART TRANSDUCER INTERFACE MODULE (STIM)

What is a STIM?

A Smart Transducer Interface Module (STIM) is a module that contains TEDS,
logic to implement the transducer interface, the transducer(s) and any signal
conversion or signal conditioning. It consists of 1 to 255 sensors or actuators or
any combination of them, DAC, ADC and Digital I/0O to interface the sensors or
actuators. It also consists of conversion circuitry, address logic, and digital
electronics or microprocessors to convert the sensor readings into digital form, or
to convert digital output to manipulate actuators to and from the network. A
STIM is controlled by a Network Capable Application Processor (NCAP)
module by means of a dedicated digital interface. This interface is not a network.
The NCAP mediates between the STIM and a digital network, and may provide
local intelligence. Through the NCAP sensor data is passed to a network. When a
STIM contains more than one transducer, it may be referred to as a multichannel

STIM or a multi variable STIM.

20

2.2.2

LG

A transducer channel is denoted “smart” in this context because of the following

three features:

It is described by a machine-readable, Transducer Electronic Data Sheet (TEDS).

The control and data associated with the channel are digital.

Triggering, status, and control are provided to support the proper functioning of

the channel.

When power is applied to the STIM, the information that it carries in the
TEDS is made available to the NCAP for local usage, and for distribution to the
rest of the network as necessary. Once the TEDS is read, the NCAP knows how
fast it can communicate with the STIM, how many channels the STIM has, and
the data format of each channel. It can then send information to the STIM, or ask

the sensor to perform a reading or get information about readings from the

sensor.

Transducer channel types

There six channel types in this STIM. An additional seventh channel type is
identified to allow for extensions to STIM behavior. Each channel type has their

owns detailed timing and control. The seven channel types are as follows:

Sensor

A sensor measures some physical parameter on demand and returns digital data

representing that parameter. A new data set shall be sampled once for each

21

d

(S

>

*,

triggering event. The data set available to be read shall be the data set acquired as
a result of the most recent trigger event.

Actuator

An actuator causes a physical or virtual action to occur that shall be related to the

data set sent to the actuator. The actuator state changes to match the data set most
recently sent to it when a triggering event occurs.

Buffered sensor

A buffered sensor has a single level of data buffering on the output channel. A
new data set shall be sampled once for each triggering event. The data set

available to be read shall be the data set acquired on the second most recent

trigger event.

Data sequence sensor

A data sequence sensor acquires data continuously, with sampling times under

control of the STIM. The data set selected shall be the one acquired immediately

following the trigger.

Buffered data sequence sensor

A buffered data sequence sensor acquires data continuously, with sampling times
under control of the STIM. The data set selected shall be the one acquired
immediately previous to the trigger.

Event sequence sensor

An event sequence sensor produces a signal whenever a specific event occurs

The signal shall be the same signal used by sensors and actuators to acknowledge

triggering events.

2.2.3

0

e

L

>
.0

Types of TEDS

Meta TEDS provide global information to the client about the STIM unit
attached to the NCAP and includes the information necessary to access data in
any of the channel TEDS.

Channel TEDS contains information specific to one of the transducers
connected to the STIM; each sensor and each actuator connected to the STIM
must have its own Channel TEDS

Calibration TEDS an optional TEDS, provides a data calibration capability
using a standardized mathematical correction algorithm

Meta ID TEDS an optional TEDS with at most one of these TEDS per STIM
unit, provides information about the STIM

Channel ID TEDS another optional TEDS with at most one of these TEDS for
each Channel TEDS, provides information about the transducers associated with
the specified channel.

Calibration ID TEDS provides a human-readable description of any
information deemed relevant to the calibration of each channel

End User Application Specific TEDS is provided as a place to store any

additional human-readable data which is not recovered by the specific TEDS

Industry Extensions TEDS

23

2.3

2.3.1

SENSING THE FUTURE

The impact of sensors will be as surprising in the decade ahead as
microprocessors were in the 1980s and lasers in the 1990s. And the surprises will
be additive because of new interaction among existing generations of technology,
with some of the most interesting applications of sensing technology applied to
dealing with current problems. It's still early, but in the future, society and
business will be saturating the world with communications and information. The
future is not going to be people talking to people; it's not going to be people
accessing information. It's going to be about using machines to talk to other
machines on behalf of people. That's where the growth is going to be. It's also
why all of our assumptions about available bandwidth and how much bandwidth
we need is wrong by orders of magnitude, once all of these machines start talking
to each other. We're talking about washing machines, cars, bank machines,

appliances of all kinds, oatmeal in boxes tagged with sensors, not talking

machine like computer.

Endless Possibilities
RFID (Radio Frequency Identification Devices) is an ID chip, a computer on a
chip that you can embed in, say, a box of detergent, and the detergent now can

tell what it is, where it's from and where it went once it left the store. Sure, its

obvious application is factory inventory control, but you can use it for all sorts of

things. the market for RFID is vast today.

Today, when you're thinking of machines talking to machines, people
think about the personal computer or the mobile phone. But that's not even the
start of it. Machines talking to machines are all about little devices inside
everyday things that we won't even see and won't even know exist. Imagine a
home burglary system that's wireless. Each little burglar alarm, each little burglar

sensor has its own processor with its own Web page.

This is another possibilities, that washer machine turns out that its got
Internet connectivity but it also has a little wireless transponder in it. And it
wakes up and it listens for a radio signal, and it picks up this little signal from the
802.11 box on the side of your house that you already use for wireless Ethernet
distribution for your computer. And washing machine starts a conversation with
computer and Ethernet box. Electrolux is already doing it. They wanted to do this
because there's this huge unserved market of young people who would love to
have a washing machine in their house They going to give them a washing
machine, and we will charge them by the load. The machine will be in their
house. but the title will remain with us. It was basically having the convenience

of a machine at home, and yet you as the consumer just paid a monthly bill.

CHAPTER 3

CHAPTER 3: METHADOLOGY

A system development methodology is a collection of procedure techniques, tools and
documentation which help the developer to implement the product by translate the detail
design into code. Therefore choosing the correct methodology for a project is very

important because it will ensure the consistency and reproducibility to the product. This

chapter illustrates the methodology that has been used in this project.

3.0 The FPGA/ASIC Design Process

Requirement

\

RTL Model l:>

]
i

e \
Synthesis
\ TESTBENCH
N
Gate Level g
mnodel :
Place and Route
ASIC/ : iL \
Timing Model

J

28

The following diagram shows a simplified design process including both
synthesis and simulation, assuming that the target of the process is one or more
programmable logic or ASIC chips. The key to understanding this process, and to
understanding how best to use VHDL, is to remember the importance of test

development. Test development should begin as soon as the general requirements of the

system are known.

VHDL (along with other forms of entry, such as schematics and block diagrams),

will be used for design entry: after being captured into a design entry system using a text
editor (or via a design entry tool that generates VHDL from higher-level graphical

representations), the VHDL source code can be input to simulation, allowing it to be

functionally verified, or can be passed directly to synthesis tools for implementation in a

specified type of device.

On the test development side, VHDL test benches can be created that exercise

the circuit to verify that it meets the functional and timing constraints of the

specification. These test benches may be entered using a text editor, or may be generated

from other forms of test stimulus information, such as graphical waveforms.

For accurate timing simulation of post-route circuits, a timing model generation

program obtained will be used from a device vendor or third party simulation model

supplier. Model generation tools such as this typically generate timing-annotated VHDIL,

source files that support very accurate system-level simulation.

29

CHAPTER 4

4.0

4.1

CHAPTER 4: SYSTEM ANALYSIS

Introduction

In this chapter, it will include all the function involved within in this
scope of project. STIM shall implement addressing, interface data transport and
triggering. There will a brief explanation on each sub modules, data transport and

triggering function. In this project there are two channel involved which are

sensor and actuator. Each channel may implement two TEDS that are Meta

TEDS and Channel TEDS function.

Addressing

Addressing is used in conjunction with the interface data transport. A full address
specifies whether data is being read or written, to which function, and to which
STIM channel Functional and channel addresses are logical addresses. The
mapping of functional or channel addresses to physical addresses shall be
accomplished within the STIM

Address Structured

A full address shall be 2 bytes long and structured. For convenience, the most
significant byte is called the functional address and the least significant byte is

called the channel address

31

Functional address Channel address
Most significant byte Least significant byte
r/'w Function code Channel number
msb| - Isb | msb Isb

Figure 4.1: Address layouts

% Functional Address

The msb of the functional address is used to specify the direction of data

communication over the interface, according to table below. The remaining bits

of the functional address represent the function selected.

Table 4.1: Direction bit values

Value Communication direction

0 Write to the STIM
] Read from the STIM

% Channel Address

Each transducer in a STIM shall be assigned a channel number. A STIM may have
up to 255 channels. The number of implemented channels can be determined by
reading the Meta-TEDS. Implemented channels shall be numbered consecutively
starting from one. Every channel number between one and the highest implemented
channel number shall address an implemented channel. Channel address zero has
special meaning and is referred to throughout the standard as CHANNEL_ZERO.

When CHANNEL ZERO is used, the function shall refer to the STIM as a whole or

32

to all channels collectively. The word global or the prefix meta- is used to modify
the functional address name. CHANNEL_ZERO will not include in this project

because this project only consider two channel, sensor and actuator as mentioned

early in this chapter.

< Function Selected

Table 4.2: The commonly used channel functional address

Address Function
0 Write channel transducer data
1 Write channel control command
3 Write triggered channel address
5 Write channel standard interrupt mask
128 Read channel transducer data
130 Read channel standard status
160 Read Meta TEDS
161 Read Channel TEDS

4.2 Interface data transport

< Function

The data transport shall be supported by a group of signal lines in the physical
interface. This service conveys addressing to the STIM and the data associated

with the address between the STIM and the NCAP. The data transport role

33

*

interacts with the trigger function. The data transport function shall be
inactivated before the trigger is asserted.

A data transport frame shall begin by the NCAP sending an address to the
STIM. The complete address specifies whether data shall be written to or read
from the STIM, and which channel and function are involved. Means shall be
provided on the physical interface for the NCAP to signal when the data
transport is active and to delimit data transport frames. It shall also be provided

for the STIM to acknowledge its readiness for data transport.

Data transport is also used to read data sheet information such as the

TEDS and to read status and write control commands to channels.

Data Format

Data shall always consist of an integral number of bytes. When data transport
involves multiple byte numeric representations, the most significant byte shall be
sent first. For N-byte integer data representation that are not a multiple of 8 bits,
pad bits shall be added above the most significant bit to bring the total to a
multiple of eight. For N-byte fractional data representations that are not a
multiple of 8 bits, pad bits shall be added below the least significant bit to bring

the total to a multiple of eight. The physical interface shall transport each data

byte in bit-serial form, most significant bit first.

34

L/
0.0

4.2.1

Data Transport Rate

Data rates shall be controlled by the NCAP. All STIMs shall support the
common data flow rate. The rate may be changed to a higher rate based on
information available in the TEDS. Means shall be provided for both the STIM

and the NCAP to regulate the flow of data bytes within a frame. This is referred

to as pacing.

Transducer Data

Data transport is most frequently used to read data from sensor and to write data
to actuator and event sequence channels. Writing data to a sensor shall have no
effect. Reading from a sensor, without triggering shall return the same data as

when last read. Reading data from any sensor after an aborted trigger cycle may

produce unpredictable results.

Reading data from an actuator shall return the latest data written to it. Reading

data from an actuator after initialization, but before writing data to it, shall return

the initial state of the actuator.

Write Control Command

The control function allows commands to be sent to the STIM to each channel
which affects their state or operation. It shall be accessed by writing to the

functional address write channel control command for a specified channel

35

Control commands shall be 1 bytes only. 4.2.2 explained a complete description

of this bit.
Table 4.3: Standard control commands
Value Individual channel definition
0 No operation
1 Reset channel
2 Initiate channel self-test
3 Calibrate channel
4 Zero channel
5 Enable event sequence sensor
6 Disable event sequence sensor
7 Set event sequence sensor to the configuration mode
8 Reserved |
9 Enable data sequence or buffered data sequence sensors
10 Disable data sequence or buffered data sequence sensors
11-255 | Reserved

4.2.2 Read Status Channel
The status function allows the NCAP to determine the state of the STIM of

individual channels. Each bit in a specific status register represents the presence
or absence of a particular condition. The presence of a condition shall be
represented by a one in the appropriate bit position. The standard status register

shall be accessed by reading from the functional address read channel standard

36

status for the channel. The status function is also used in conjunction with

interrupts to indicate that the STIM is requesting service and for any purpose.

Table 4.4: Standard status bits

Bit Individual channel definition

msb | Open to industry
- Open to industry

- Open to industry

- Open to industry

- Reserved

- Reserved

- Reserved

- Channel operational bit

Channel hardware error bit

- Channel data /event bit

Channel missed data or event bit

Channel auxiliary status available bit

- Reserved

S Channel has been reset bit

Channel trigger acknowledged bit

Isb Channel service request bit

4.2.3 Read Data Sheet Information (TEDS)

The TEDS contains fields that fully describe the type, operation, and attributes of
the transducer. There is a setting limit in the TEDS for all data transfer and

triggering sequence between NCAP and STIM. It shall be accessed by reading

37

from the functional address read Meta-TEDS and read Channel TEDS for a

specified channel.

Table 4.5: Data transfer timing parameter

No field

Description

No of bytes

19

STIM Handshake Timing
Maximum time the STIM requires to negate

acknowledge after the data transport end.

4

20

End-Of-Frame Detection Latency
Maximum time the STIM requires to detect the
end of the a data transport. The STIM should be

ready to start for the new transaction.

2]

TEDS Hold-Off Time
Maximum time the STIM requires to
acknowledge the transfer of a single byte.

RZ

Operational Hold-Off Time
Maximum time the STIM requires to
acknowledge the data transfer addressed to

operational function.

Table 4.6 Triggering sequences timing parameter

No field

Description

No of bytes

19

STIM Handshake Timing
Maximum time the STIM requires to negate

acknowledge after the trigger sequence end.

4

22

Channel Write Setup Time
Maximum time required by the STIM after a
write transaction but before a trigger.

2

Channel Read Setup Time
Minimum time required by STIM after a trigger
but before a read transaction,

38

4.3

Triggering

Signal lines in the physical interface shall support triggering. The triggering
function provides means for an NCAP to send to a STIM a command for an
action to take place (the trigger signal), and for the STIM to signal the time when
the action occurred (trigger acknowledgment). Trigger acknowledges is also a
response to the NCAP confirming that the action requested by the trigger
did occur. Each transducer channel type differs from another chiefly in the way
it responds to triggering. The timing of trigger acknowledges depends on
the transducer type of the triggered channel. The actions of each transducer
channel type in response to triggering are described in 4.3.1 and 4.3.2.

The triggered channel address specifies the channel to which the trigger
applies. If the triggered channel address is within the range of implemented
channels, then all triggering shall be directed at that channel alone.

Triggering shall only apply to a single channel either sensor or actuator.
The channel to which the trigger applies is selected by the triggered channel
address. The state diagram in Figure 4.1 illustrates the behavior of the triggering
system from the point of view of the STIM. The action initiated by normal
triggering belongs to a separate, channel-type-dependent, concurrent
process. The timing specifications referred to in the transition from invalid to

valid data is described further for individual channel types.

39

4.3.1

Trigger sensor

The trigger signal shall cause a sensor channel to acquire new data or a new data

set. For the simplest sensors, an analog-to-digital converter begins a conversion.

For a sensor channel, the STIM shall send a trigger acknowledgment coincident

with the sample time. Subsequent to this trigger acknowledge and the additional

duration specified by the Channel Read Setup Time, the data shall be available to

the NCAP. Irrespective of the time needed to read the transducer data, the NCAP

shall wait for at least the duration of the Channel Sampling Period between

successive triggers. Figure 4.3 illustrate sensor activity concurrent with the

quiescent and triggered state

Table 4.7: Sensor states

State Description
Acquire The sample is being acquired. The action is complete when the
sample sample acquisition is complete, irrespective of any further
digitization.
Convert The STIM channel is digitizing the sample and moving it to the
data transducer data buffer. The STIM leaves this state when all
conditions for valid data are met. The Channel Read Setup
Time is the time spent in this state.
Valid data Valid data from the triggered channel is available to be read.

40

Power On
Initialization

l Data transport complete
—=p QUIESCENT Data
Transport
Trigger asserted f
Abort] Data transport active
€ e [G | L0 ZETE
Trigger negated
l Action complete
Acknowledge
Trigger
Trigger negated
Remove
Acknowledge

Figure 4.2: General response of STIM to trigger

4.3.2 Triggering actuators

The trigger signal shall cause an actuator channel to assume a new state or to step
through a set of states. The data set associated with the new state shall have been
written to the actuator channel previous to the trigger. Trigger shall not occur
until the Channel Write Setup Time has passed following the time the new data
is written. Irrespective of the time necessary to write new data to the actuator, the

NCAP shall wait for at least the duration of the Channel Sampling Period

41

between successive triggers. Figure 4.4 illustrate sensor activity concurrent with
the quiescent and triggered state.

. SN
Quiescen Clompleted trigger
Convert aned conversion Valid
Sample ’ Data
Trigeer asserted (shared weth
the ingeer stare machine
Action complete
{xhared with the Tl’iggered
trigger
steite machine) Acquire
Sample
\“\
\ \ i =
4 \ P o
\) Power On ,/ - -
\‘ " Intlializaten e L
1 i / -
\ -
\ P
A o Ou owo—-:Atj Data
A
L
\

|
Transpart ¥
t f
\
¢ l Abart AI‘_U_I Triggesed

Action

Acknowledge
Triggar

Remave
Acknowlanage

Figure 4.3: Sensor activity

42

State

Table 4.8: Actuator states

Data

Description

Actuator

Transferred To

Invalid Data

transferred to the actuator output buffer.

The last data written to the actuator channel is being

The STIM is processing newly received data. The STIM leaves
this state when the Channel Write Setup Time and Channel

Sampling Period restrictions are met.

Valid Data

Valid data is available to the actuator channel. The channel
may be triggered.

1
)
|
1 | Powet On
'
\
\

Quiescent

Valid
Data

\

All g specs mer
,< 8

Invalid
Data

Trigger asserted
(shared with the
rigger state
micicinne)

ﬁ.‘\r'ﬂrm complete (shared wath

the trigeer state machiine)

Triggered

Data Transferred
to Actuator

Nk alzaton

Quascant
v L

asn -

> Transpon .

\ ‘

Abort
Acsson

Trggurer

Acknowadpe
Trppe

v

Hgmove
Aukaowedpe

Figure 4.4: Actuator activity

43

Interface signal lines

Group Line Driven by Function
Data DOUT STIM -Data transport from STIM to NCAP
DIN NCAP -Address and data transport from
NCAP to STIM.

DCLK NCAP -Positive-going edge latches data on
both DIN and DOUT.

NIOE NCAP -Signals that the data transport is
active and delimits data transport
framing.

Triggering | NTRIG NCAP -Performs triggering function
Interrupt NINT STIM -Used by the STIM to request
service from the NCAP
Support POWER NCAP -Nominal 5 V power supply
COMMON NCAP -Signal common or ground
NACK STIM -Serves two functions:
» Trigger acknowledge
» Data transport
acknowledge
NSDET STIM -Used by the NCAP to detect the

presence of a STIM

44

4.4.1 Bit Transfer
Data shall be transferred in bit-serial form from the NCAP to the STIM via

DIN and from the STIM to the NCAP via DOUT. The transfer shall be

controlled by the DCLK line.

> DCLK idles high
» On the first falling edge of DCLK, the first bit to be transferred is

asserted by the sender (the NCAP on DIN and the STIM on
DOUT).

» On the subsequent rising edge of DCLK, the bit is latched by the
receiver (the STIM on DIN and the NCAP on DOUT).

» Subsequent bits are transferred by repetitions of steps one and

two.

4.4.2 Timing

This timing is for the data transport and trigger signal. All NCAPS and all
STIMS shall support a common data rate of 6000 bits/s. The STIM shall
support a maximum data rate that is at least this fast; the NCAP shall
support a data rate at least this slow. When an NCAP frst communicates
with a STIM it shall use a data rate (fclk) less than or equal to 6000 bits/s.
After the NCAP reads the Meta-TEDS, it may switch to a data rate less
than or equal to the maximum data rate specified in the Meta-

TEDSTiming of the data transport is complicated by the fact that the

45

NCAP is allowed to change the data rate. In order to ensure reliable data
transport at the selected data rate, most data-transport-related timing

parameters, such as setup and hold times, are based on one of the

following parameters:

46

4.5

A Brief History Of VHDL

VHDL that stands for VHSIC Hardware Description Language was developed in
the early 1980s as a spin-off of a high-speed integrated circuit research project
funded by the U.S. Department of Defense. During the VHSIC program,
researchers were confronted with the daunting task of describing circuits of
enormous scale (for their time) and of managing very large circuit design
problems that involved multiple teams of engineers. With only gate-level design

tools available, it soon became clear that better, more structured design methods

and tools would need to be developed.

To meet this challenge, a team of engineers from three companies --
IBM, Texas Instruments and Intermetrics -- were contracted by the Department
of Defense to complete the specification and implementation of a new. language-

based design description method. The first publicly available version of VHDL,.

version 7.2, was made available in 1985.

IEEE 1076-1987, is the basis for virtually every simulation and synthesis
product sold today. An enhanced and updated version of the language, IEEE
1076-1993, was released in 1994, and VHDL tool vendors have been responding
by adding these new language features to their products. IEEE 1076-1987 was

adopted, simulator companies began enhancing VHDL with new signal types

47

4.6

(typically through the use of syntactically legal, but non-standard enumerated
types) to allow their customers to accurately simulate complex electronic
circuits.The IEEE 1076-1987 and IEEE 1164 standards together form the
complete VHDL standard in widest use today. (IEEE 1076-1993 is slowly

working its way into the VHDL mainstream, but does not add significant new

features for synthesis users.)

What is VHDL?

VHDL is a programming language that has been designed and optimized for
describing the behavior of digital circuits and systems. As such, VHDL combines
features of the following:

& A Simulation Modeling Language

% A Design Entry Language

% A Test Language

*,
*

*

A Netlist Language

A Standard Language

.0

*

48

4.7

Why choose to use VHDL design?

VHDL (like a structured software design language) is most beneficial when use
a structured, top-down approach to design. Real increases in productivity will

come later, when you have climbed higher on the VHDL learning curve and

have accumulated a library of reusable VHDL components.

Productivity increases will also occur when you begin to use VHDL to
enhance communication between team members and when you take advantage
of the more powerful tools for simulation and design verification that are
available. In addition, VHDL allows you to design at a more abstract level.

Instead of focusing on a gate-level implementation, you can address the

behavioral function of the design.

VHDL increases can productivity. By making it easy to build and use
libraries of commonly used VHDL modules. VHDL makes design reuse feel
natural. As you discover the benefits of reusable code, you will soon find
yourself thinking of ways to write your VHDL statements in ways that make

them general purpose. Writing portable code will become an automatic reflex.

Another important reason to use VHDL is the rapid pace of development
in electronic design automation (EDA) tools and in target technologies. Using a

standard language such as VHDL can greatly improve your chances of moving

49

into more advanced tools (for example, from a basic low-cost simulator to a
more advanced one) without having to re-enter your circuit descriptions. Your
ability to retarget circuits to new types of device targets (for example, ASICs

FPGAs, and complex PLDs) will also be improved by using a standard design

entry method.

4.8 Basic VHDL Terminology

» [Entity
All designs are expressed in terms of entities. An entity is the most basic building
block in a design. The uppermost level of the design is the top-level entity. If the
design is hierarchical, then the top-level description will have lower-level
descriptions contained in it. These lower-level descriptions will be lower-level

entities contained in the top-level entity description.

entity fulladder is
port (X: in bit;
Y: in bit;
Cin: in bit;
Cout: out bit;

Sum: out bit);

end fulladder;

50

» Architecture.

All entities that can be simulated have an architecture description. The

architecture describes the behavior of the entity. A single entity can have

multiple architectures. One architecture might be behavioral, while another might

be a structural description of the design.

architecture concurrent of fulladder is

begin
Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end concurrent;

» Configuration.

A configuration statement is used to bind a component instance to an entity-
architecture pair. A configuration can be considered as a parts list for a design. It

describes which behavior to use for each entity, much like a parts list describes

which part to use for each part in the design.

configuration this_build of rcomp is

for structure
for COMP1: compare use entity work.compare(comparel);

for ROT1: rotate use entity work.rotate(rotatel);

end for;

end this_build;

» Package.

A package is a collection of commonly used data types and subprograms used

in the design. Think of a package as a toolbox that contains tools used to build

51

designs. If the package contains declarations of subprograms (functions or
procedures) or defines one or more deferred constants (constants whose value is
not immediately given), then a package body is required in addition to the
package declaration. A package body (which is specified using the package
body keyword combination) must have the same name as its corresponding

package declaration, but it can be located anywhere in the design, in the same

or a different source file.

» Attribute.
An attribute is data that is attached to VHDL objects or predefined data about

VHDL objects. Examples are the current drive capability of a buffer or the

maximum operating temperature of the device.

» Generic.

A generic is VHDL's term for a parameter that passes information to an entity.

For instance, if an entity is a gate level model with a rise and a fall delay, values

for the rise and fall delays could be passed into the entity with generics.

» Process.

A process is the basic unit of execution in VHDL. All operations that are

performed in a simulation of a VHDL description are broken into single or

multiple processes.

52

architecture behavior of dff is
begin
process (Rst, CIk)
begin
if Rst = ‘1’ then
Q <="00000000";
elsif Clk = ‘1’ and Clk’event then

Q<=D;
end if;
end process,

end behavior;

4.9 Objects, Data Types and Operators

VHDL includes a number of language elements, collectively called objects, that
can be used to represent and store data in the system being described. The three
basic types of objects that you will use when entering a design description for
synthesis or creating functional tests (in the form of a test bench) are signals,
variables and constants. Each object that you declare has a specific data type

(such as bit or integer) and a unique set of possible values.
The values that an object can take will depend on the definition of the
type used for that object. For example, an object of type bit has only two

possible values, '0' and 'l', while an object of type real has many possible

53

values (floating point numbers within a precision and range defined by the
VHDL standard and by the specific simulator you are using).When an explicit
value is specified (such as when you are assigning a value to a signal or

variable, or when you are passing a value as a parameter to a subprogram), that

value is represented in the form of a literal.

Data Type Values

Bit AEL

Bit_vector (array of bits)
Boolean True, False

Integer =2y =100, R 3%4 ..,
Real 1.0, -1.0ES

Time 1 uva, 7 ns, 100 ps
Character ‘a’, ‘b’, ‘2, ‘§’, etc.
String (Array of characters)

4.9.1 Using Signals

Signals are objects that are used to connect concurrent elements (such as

components, processes and concurrent assignments), similar to the way

that wires are used to connect components on a circuit board or in a
schematic. Signals can be declared globally in an external package or

locally within architecture, block or other declarative region.

54

4.9.2 Using Variables

Variables are objects used to store intermediate values between
sequential VHDL statements. Variables are only allowed in processes

procedures and functions, and they are always local to those functions.

4.9.3 Using Constants and Literals

Constants are objects that are assigned a value once, when declared, and
do not change their value during simulation. Constants are useful for
creating more readable design descriptions, and they make it easier to
change the design at a later time. Explicit data values that are assigned
to objects or used within expressions are called literals. Literals

represent specific values, but they do not always have an explicit type.

4.10 Types and Subtypes

Four classes of data types:

> Scalar types represent a single numeric value or, in the case of enumerated
types, an enumeration value. The standard types that fall into this class are
integer, real (floating point), physical, and enumerated types. All of these basic

types can be thought of as numeric values.

55

» Composite types represent a collection of values. There are two classes of

composite types: arrays containing elements of the same type, and records

containing elements of different types.

Access types provide references to objects in much the same way that pointer

types are used to reference data in software programming languages.

File types reference objects (typically disk files) that contain a sequence of

Values.

56

4.11

VHDL Testbench and Verification

VHDL verification is performed using a set of modules and stimuli called VHDL
testbench. The purpose of a testbench is to verify the functionality of a developed
model or package. A testbench should be a distinct design unit separated from
the model or package to be verified, placed in a design library separate from the
model itself. The purpose of the verification is to verify that the developed model
is correct, with few or no errors being found. It should not be a means to locate
errors in the VHDL code in order to patch them. If the testbench incorporates
models of components surrounding the model to be tested, they need only to
incorporate functions and interfaces required to properly operate with the model
under test; it is not necessary to develop complete VHDL models of them. If
external stimuli or configuration data is required, it should be implemented by
reading an ASCII file in order to ensure portability.
The verification should be performed by someone not involved in the creation of

that model or package, to avoid that the same misunderstanding in the

verification masks a misunderstanding of the functionality.

57

4.12 VHDL Modeling

VHDL Modeling is performed in various details such as component model,
board-level model, and system model. Every model is subject to verification.
The main purpose of a model for component simulation is to be used for
verification of a component under development, before proceeding with the
manufacture. This implies that the model should exactly reflect the structure and
functions of the underlying hardware; accuracy being more important than
simulation speed. The model shall have correct timing characteristics, at least
using estimated values for timing parameters. The main purpose of a model for
board-level simulation is to be used for the verification of a board using the
component, normally together with several other components. This can be seen
as the simulation version of bread boarding. This implies that the model must
have acceptable simulation speed, but only need to model the functionality
possibly affecting the board and other models. The model should be on the

Register Transfer level or higher. The model need necessarily not reflect the

actual internal structure of the component

58

CHAPTER 5

5.1

5.2

5.0 SYSTEM DESIGN

INTRODUCTION

In this chapter, each module is seen at its block diagram level and at its input and
output. We will define the function for each sub module in this project scope.
These functions are also in their own respective sub modules. Before we begin,
here is a look at our general model of IEEE1451 smart sensor. We will see the
design from the top down, then work it way up again for RTL level design. After

that, we will see how it all works by looking at the main state machine block

diagram with a detailed description for each sub module.

IEEE1451 SMART SENSOR

An overview of a STIM and how it associates through the TII to an NCAP is
specifies. The physical connection between the NCAP and STIM is via the 10-
pin Transducer Independent Interface (TII). Several dedicated lines have been

added to provide power, ground and special purpose control lines. Each line will

be driven either by STIM or NCAP.

60

DOUT

DIN

DCLK

NIOE
NTRIG

STIM — NCAP

COMMON

NACK

NSDET
NINT

YVYVY

5.3

Figure 5.1 General model of IEEE1451 smart sensor

STATE MACHINE

Figure 5.2 represent the state machine of STIM, where there are data transport
state and trigger state in this STIM. From the state machine we can see that data
transport function and trigger function always interact each other. The trigger
function is applies to the selected address channel either sensor or actuator, There

will be a Quiescent or waiting state after start state, where STIM is waiting for

61

either data transport or the trigger to be active. If trigger active when NCAP

assert NTRIG signal, then STIM acknowledge the trigger and NCAP will negate

the trigger. The state machine proceeds directly to the waiting state. When data
transport active , trigger remains inactive until data transport complete. The state
involved in data transport same like trigger function. There will be acknowledge
state and negate state. Main state machine can resolve indeterminate states as it
happens, for example, if trigger and data transport actions simultaneously
activated by NCAP asserting both NTRIG and NIOE. Moreover, NINT signal is

generated by STIM if main machine verifies interrupt conditions.

62

5.4

TRIGGER STATE DATA TRANSPORT STATE

L——————————-—-—————————-ﬂ

Figure 5.2: State machine of STIM
BLOCK DIAGRAM OF MAIN STATE MACHINE

Main state machine manages all the primary operation of the STIM coordinating

both Data Transport and Trigger machines; it controls key signal of STIM

(NIOE, NTRIG, NACK) to decide what and whenever an action must be

performed, activating the corresponding STIM component. Figure 5.3 depicts

block diagram state machine of STIM and all function involved.

63

Data Transport is responsible for bit, byte and frame transmission over

the TII. It decodes functional and channel address obtaining right position and

exact length of any incoming and or outgoing frames. It signals for special bit
and frames in DIN signal, like reading data from sensor and writing data to

actuator. Also write control commands, read status register, read data

information from TEDS.

Figure 5.4 illustrate read function perform by data transport, reading data
from sensor (2 byte), read status register (2 byte) and read TEDS (2 byte). Figure
5.5 depicts write function perform by data transport, writing data to actuator (2

byte) and write control commands (1 byte). All the explanation of each function

has been describe in the previous chapter.

Smart sensor triggering is operates if a trigger signal for the channel

(sensor or actuator) is applied, otherwise they are Quiescent. In other words, a

sensor takes data only when triggered by the NCAP and an actuator updates its

output only when triggered by the NCAP. Figure 5.6 depicts triggering function

perform by trigger.

64

Control
register

Status
register

TEDS

NTRIG

—DOUT

NIOE

v

T TRIGGER

NACK

DATA
TRANSPORT DIN
—
DCLK
Interrupt s
F ADC Sensor
P DAC actuator

Figure 5.3: Block diagram state machine of STIM

65

{—Doury,
Control J—DNACK g,
register DATA |, NIOE
TRANSPORT DIN
Status ~ | P
register
[reos [[e
< ADC | 4— sensor |
P DAC | actuator
NTRIG
NACK TRIGGER

Figure 5.4: Read function perform by Data Transport

Control (g DATA i S

register NIOE

TRANSPORT [, piv

2
I: DCLK

Status 1
register

ADC sensor

A

| DAC | actuator

!

TRIGGER

NTRIG
NACK

Figure 5.5: Write function perform by Data Transport

66

Control

register

Status
register

TEDS

DATA

NIOE

TRANSPORT [o

DCLK

ADC

sensor

=25 TRIGGER

NACK

\ 4

DAC |

actuator

Figure 5.6: Triggering function

67

Power-On
Initialisation
Roiitine

'

Start
Infinite loop

Y
= Perform the reset

P function requested

Was there a
reset
requested?

No

Read

Read or Write
transport
requested

Is Data
Transport
active?

Process

read
reniiest

Write
No Process

P write

reniiest

Process trigger
routine

No J

Figure 5.7 The main program control flow chart

68

5.5

FLOW CHART OF MAIN FUNCTION OF STIM

The program control flow is shown in figure 5.3. This represents the main
function contained within the STIM code module. When power is supplied to the
STIM board, the STIM will go through an initialization routine. On the first
iteration of the main loop there can be no ‘reset request’, as this request can only

occur as a result of a ‘control’ function written to the STIM via the data transport

protocol.

The data transport is tested for activity and if there is transport activity
pending, the ‘data transport’ processing block is entered. It is in this block that

read and write functions are deciphered and the correct response action taken

On completion of data transport, or if there is no transport active, the
triggering function is polled for activity. The trigger is the means by which a
sensor sample is triggered or an actuator data set is written. In order that a trigger

can validly occur, the triggered channel address must first be written during a

data transport function.

If the actuator is triggered, the actuator data set should already have been
written into the channel data buffer, and the trigger simply causes this data to be
sent to the actuator from that buffer. Conversely, if the sensor channel has been

triggered, the sample i acquired and stored into the channel data buffer at trigger

69

time. The sensor data will only be returned to the NCAP if it is subsequently

requested during a data transport frame.

BLOCK DIAGRAM OF SUB MODULES

5.6.1 Data Transport

NIOE NACK
DI;I DATA DOUT
DCEK TRANSPORT
The parameters of data transport are

Input pin : 1) DCLK (2 byte)

2) DIN (2 byte)
3) NIOE (2 byte)

Output pin ~ : 1) NACK (2 byte)
2) DOUT (2 byte)

70

» Read channel

13

Data transfer shall be controlled by DCLK. NCAP keep clocking
DCLK and looks for the data on DOUT.

The NIOE signal is asserted by the NCAP to tell the STIM to get
ready for data transfer.

The NCAP waits for the STIM to assert the NACK signal.

The STIM asserts the NACK signal and the NCAP sends the function
address to the STIM.

The NCAP waits for the NACK signal to be asserted. When the STIM
asserts NACK, the NCAP reads the first byte of the data from the
STIM.

The NCAP waits for the NACK signal to be negated and then reads

the second byte of data from the STIM.

The NCAP negates NIOE and waits for the STIM to negate NACK.

%» Write channel

13

Data transfer shall be controlled by DCLK. NCAP keeps clocking

DCLK and places the data on DIN.
The NIOE signal is asserted by the NCAP to tell the STIM to get

ready for data transfer.

The NCAP waits for the STIM to assert the NACK signal.

71

4. The STIM asserts the NACK signal and the NCAP sends the function

address to the STIM.
5. The NCAP waits for the NACK signal to be asserted. When the STIM
asserts NACK, the NCAP write the first byte of the data to the STIM.
6. The NCAP waits for the NACK signal to be negated and then write

the second byte of data to the STIM.

The NCAP negates NIOE and waits for the STIM to negate NACK.

5.6.2 Trigger

NTRIG / TRIGGER / NACK

The parameters of trigger are

[nput pin : NTRIG (2 byte)

Output pin : NACK (2 byte)

72

» Triggering

Triggering is normally used before reading a sensor or after writing to an

actuator.

1. NCAP waits for the duration of Channel Write Setup Time.

2. NCAP asserts NTRIG.
3. STIM asserts NACK.
4. NCAP negates NTRIG.

5. STIM negates NACK.

NCAP waits for the duration of the Channel Read Setup Time.

73

CHAPTER 6

CHAPTER 6: TOOLS AND DESIGN IMPLEMENTATION

6.1 HOW TO APPLY Peak FPGA Designer Suite

The steps using Peak FPGA Designer Suite
Step 1: Create the project file

Step 2: Create a new VHDL module

Step 3: Add functionality to the new module
Step 4: Compile the VHDL module

Step 5: Create a test bench

Step 6: Simulate the design

Step 7: Synthesize the design

Step 1: Create the project file

To create a new project file we select New Project from the File menu (or select the

New Project icon, which appears on the far left of the toolbar). An empty, untitled
Hierarchy Browser window appears as shown below. To give our new project a name
and determine where its associated files are to be stored, we then save the project file

selecting the Save Project As item from the File menu.

75

#4 PeakFPGA Designer Suite FPGA Synthesis Edition e 9 (=] lm
File Edit View Simulate Synthesize Options Window Help Froos rerl

IR HER: am.amo;mm@

nnnnnnnnnn

Figure 6.1: Create the project file
There are two ways to add VHDL files to a project: import them from outside the

project, or create them in Peak FPGA. To import a file, you simply use the Add Module

button or right click in Hierarchy Browser window then select Add Module.

Step 2: Create a new VHDL module

To create a new VHDL module within Peak FPGA, we will select the Create New
Module toolbar button as shown below. When this button is selected, the New Module

dialog appears. This dialog has three large buttons labeled as follows:

Module Wizard. This button is used to invoke the New Module Wizard to create
a template synthesizable module. This Wizard is intended to help you create a

VHDL, module that will have some functionality that you wish to implement in

76

logic (in our case, in an FPGA device). When we select the Module Wizard

button, a New Entity dialog appears. Then you have to generate all the needed

declarations.

Test Bench Wizard. This button is used to invoke the New Module Wizard to
create a template test bench. As we will see, you can use this Wizard after using
the Test Bench Wizard to quickly and easily create a nearly complete test bench
for your synthesizable module.

Create Blank Module. This button is used to create a new, empty VHDL source
file and add the module to the project. This is useful if you want to create a new

VHDL file without the Wizard (for example, of you are creating a module that

contains only a package and no other functionality, or if do not want to use the

template created by the Module Wizard).

syvess i 0

File Edt View Simulate (Synthesize Options Window Help Register!

Hﬁﬂl[ﬁ’ﬁﬁl

———

/

Figure 6.2: Create new VHDL module

77

¥ Use IEEE 1164 standard logic
W Generate sunthesizable modole template @’

[Architecture name — | I Generateitest benchite mplate

i[|Behavior

{'Ponnme [Mode Type Ty s

| B o — YT
 Port declarations : e e
| 0 f

[Please enter the name, direction, and type for each port of your circuit. You will be able to

modify these declarations at any time. After entering the port information, click Create to Croote

generate the synthesizable module o test bench template. osid s I
Cancel ’

Figure 6.3: The declaration of entity and port name

In the preceding screen image, notice that the module name appears in the Hierarchy
Browser, but there is no plus sign next to the name, indicating no hierarchy information.

Then click on the Rebuild Hierarchy button to control when hierarchy information is

updated in the Browser window.

Step 3: Add functionality to the new module

The VHDL source file created by the New Module Wizard is not a complete VHDL file.

The next step, then, is to complete the source file by adding the needed functionality.

78

&4 PeakFPGA Designer Suite FPGA Synthesis Edition

Fle Edt View Smulate Synthesize Options Window Help Peulstfr!

BEaRlPa Ell;a.al!bIOI‘&IHI@

DDone reading project file | |

Figure 6.4: To rebuild hierarchy

Step 4: Compile the VHDL module

Once we have entered the VHDL code and modified the template to our liking, we can
check our work by invoking the simulation compiler. To invoke the compiler, make sure

the appropriate module (at this point there is only one) is selected in the Hierarchy

Browser and select the Compile button from the toolbar.

Notice that the compiler has reported an error, then click Jump to line button to solve the
problem. If it will compile without error as shown in the following transcript

“Compilation is complete, all selected object files are up to date ",

79

t4 PeakFPGA Designer Suite FPGA Synthesis Edition
File Edit View Simulate Synthesize Options Window Help Foicter!

'BaR B a a:;.m El e | @ L 4 &

B [conple St Moo for St
dh| % %[M|

- [E] MODULE TEST_TESTBEN_DT.VHD

i Transcript I . +

Comple | Lk | Simulate | Syrthesize | System |
Compilation is complete, all selected object files are up to date.]

Jump to Line Error Summary Close |

Figure 6.6: Prompt that the modules is successfully

80

Step 5: Create a test bench

Simulation in VHDL, requires that you not only describe the design (or component of a
design) itself, but that you also provide a test bench. A test bench is a VHDL source file
that describes stimulus to be applied to the design. As in the earlier step, the New

Module dialog appears with the three Wizard buttons. This time, select the Test Bench

Wizard button.

s PeakFPGA Designer Suite FPGA Synthesis Edit]
File Edit View Simulate bynlhts:] ﬁptnons Wlnduw Help R@gn ter!

B ﬁﬂl@@ lﬂl.a.albIOI& n1<r>
i '|"{;|”i,,m_‘\\ X|

[% Add new module to project ‘ @J

ModdeWead |

Test Bench Wizard l .

|

Figure 6.7: New Module appears to create testbench

81

i Entity name 7
| ‘ ¥ Use IEEE 1164 standard logic
VI Generate syrthesizable moduls template @
\"A'mam IV CGieperate lest bench template
| [Behavior |
 Port name - I{ Mode - I e

I |std_logic _vjl Add Port |

il |
[~ Port declarations
L[- Unable to parse the port list. Please remove this comment text and enter your port kist here. Tip: if you he j ’

[n =l

— copied your port fist to the Windows clipboard from an editing window, you can paste the port list into thi
- window by pressing CTRL-Y. When entering or pasting your port list, make sure the ports are separated
—- semicolons. and do not place a semicolon after the final port in the list. Here is a sample port list:

Clk: in std_logic;

Reset: in std_logic;

my, inputl: in std_logic_vector (7 downto O); z ’

4 | _’J—‘ |

Plea:eenludnnm.dwﬁm-ﬂﬁolmo@m&dmﬂdajﬂﬂwﬂhﬂﬂo

modily these declarations at any time. ter entering the port information, click Create to

malaﬂwwrﬂm&abbmodkuwbonchtunpld‘ &J
Cancel I

Figure 6.8: Declaration of entity and port name for testbench modules

Step 6: Simulate the design

Now that we have the test bench we are ready to simulate the design. First we compile
the test bench by highlighting the TEST_TESTBEN_DT.VHD module and clicking the
Compile button. If we are lucky enough to have no VHDL coding errors, our transcript
looks like this: Next we link the project by again highlighting the test bench module

(TEST_TESTBEN_DT.VHD) and clicking the Link button. After clicking the Close

button to dismiss the Options dialog, we can select the Load selected simulation button

(first making sure that the test bench is the highlighted module) to start the simulator:

We will simply use the Add Primaries button to make all top-level signals in the design

available for display. When the signals are selected and ordered to our liking, we can

click the Close button to dismiss the selection dialog.

82

UM Select Display Objects (Signals and Yarlables)

Dblocts to dhaphay ——————rmiy [T
STIM_on
RAESET_ch
INCOME_ch1

o

-]
:
H

i

DUT presentstate_ch!
DUT nextstate_chl

WMI
Help l
_ Cow |

=

1
t
|
|

and variables) to display. Use the Add Frimaries butt
¢ display if they are declared in labeled processe

Figure 6.9: Selection of objects for VHDL simulation

Click the Go button to run the simulation. Notice that the simulation results show us that

the shifter appears to be working properly, wrapping the left-most or right-most bit

(depending on direction) to the opposite side of the collection of bits while shifting them

accordingly:

Step 7: Synthesize the design

83

6.2 USER MANUAL

6.2.1 Top level of data transport

DATA_TRANSPORT

— (1)

(2)

| A4)

e 1{9)

(6)

i1

(C) N —

en wf dts Receiver wf b
™) ©) uffer_dts
reset_dts_or_nioe_dts)
3) (7) |wi_buffer_ready dts
(4)
wi_buffer_reset_dts
®) (8)
en_rf_dts Transmitter
1 T
reset_dts_or_nioe_dts M)
(2) (10)
3) (8)
rf_dts
(4)
loads_en_rf_dts | (5) (9) [aim_bit_rf_dts
reset_aim_bit_rf_dts | (6)
(11)
Map_memory
en-calculates_address) @ aim_calculates_address_dts
function_add_dts 2) (5) calculates_addresses_dts
channel_add_dts calculates_byte_dts
3) (6)

(7)

valid_funct_ch_address_dts

(8) —

Black box of module

< DATA TRANSPORT MODULE

BUFFER_DT<7:0> (1) (8) ADDR_PORT_DT<8:0>
DIN DT PORT_DT<7:0>
a! (2) (9)
DCLK_DT | (3) (10) | STATE DT
INV_DT | (4)
NIOE_DT (5) (11) | NACK_DT
RESET DT
(6)
STIM DT WENB_DT
= (7) (12)

Data transport module has 12 declaration of entity as described in the pin
description at Table 6.1. There are seven input port, three output port and only
one buffer port. There are 23 signal has been declared, 12 signal for common
function, four signal for write frame transfer protocol, five signal for write

transfer protocol and two signal for management map memory,

85

Black box of sub module

< Receiver sub module

RESET_REC DT_OUT_READY_REC
(2) (7) =
DIN_REC | (3)
DCLK_REC | (4 (8) BH_REGISTER_REC<6:0>

DT_OUT RESET REC (5)

Receiver sub module has eight declaration of entity. There are five input port

and three buffer port.

<> Transmitter sub module

EN_TRAN | (4) (7) | DOUT_TRAN
SHIFT_REG_TRAN<7:0>

RESET_TRAN | o) @)

DCLK_TRAN | (3)

DATA_TRAN<7:0> | (4) (9) | AIM_NBIT_TRAN

LOAD_DT_TRAN
()

RESET_NBIT_TRAN
e (6)

86

Transmitter sub module has nine declaration of entity. There are six input port

and one for out, inout and buffer port.

< Map memory sub module

EN_MAP_MEMORY (1)

FUNCTIONAL_ADDR<7:0> | ()

(3)
CHANNEL_ADDR<7:0>

(4)

functional_addresses_012_s

(5)

CALCULATE_ADDR

(6)

CNT_BYTE_ADDR

(7)

FUNC_CH_VALID_ADDR

Map memory sub module has seven declaration of entity. There are three input

port and three for buffer port.

87

6.2.2 Top level of trigger

< TRIGGER MODULE

STIM_ON_T

NTRIG_T

RESET_T

CHANNEL_STATE_T

CLK_T

TRIG CH1 T

TRIG_CH2_T

INCOME_CH1_T

INCOME_CH2_T

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

(14)

(18)
(16)
(17)

(18)

STATE_CH1_T

STATE_CH2_T

NACK_T

STATE_T

MEM_CH1_T

MEM_CH2 T

DATA_OUT_CH1_T

DRIVE_BIN_CH2_T

RENB_CH1 T

88

Black box of sub modliles

< Trigger sensor sub module

NIOE_CH1 NACK_CH1
= (2) (8) =
RESET_CH1 | (3) (9) | WENB_CH1
TRIG_CH1 | (4) (10) MEM_CH1
DOUT_CH1<7:
INCOME_CH?1 (5) (11) 4 <7:0>
CLK_CH1 AlM_CH1
- (6) (12)

< Trigger actuator sub module

STIM_ON_ch2 1) (6) STATE_ch2
h2 MEM_ch2
NIOE_c (2) (7)
TRIG_ch2 | (3) (8) | DRIVE_BIN_ch2
DATA_IN_ch2 <7:0> | (4) (9) AIM_TRIG_ch2
LK_ch2
CLESE) (6)

89

6.2.3 Port and Signal Description

< PORT DESCRIPTION (DATA TRANSPORT)

Table 6.1: Port description of data transport

PORT TYPE DESCRIPTION

STIM DT IN Data transport power is on

NIOE DT IN Enable data transport

CLK DT IN Clock that control internal operation of data

transport

RESET DT IN Reset data transport

DIN DT IN Port for data income

INV DT IN Invalid data has been received

BUFFER DT IN Buffer of data transport

STATE DT ouT State of data transport

PORT DT BUFFER Value of port for address
WR_PORT_DT BUFFER Address port of data transport

WENA DT BUFFER Write enable of data transport

NACK DT BUFFER Acknowledgement of data transport

90

< PORT DESCRIPTION (RECEIVER)

Table 6.2: Port description of receiver

—

PORT TYPE DESCRIPTION
EN_REC IN Enable the receiver to be active
RESET REC IN Reset the receiver
DCLK_REC IN Clock that control the internal operation of
data receive
DIN_REC IN Income data to enters in a circuit of single

channel

DT_OUT RESET REC |IN

Reset of data receive by the register

SH_REGISTER REC BUFFER

Shift register address to load the data

DT _OUT REC

BUFFER

Support register where to unload the data
received

DT_OUT READY REC | BUFFER

It marks the receiver of ready data in the
support registry

< SIGNAL DESCRIPTION (RECEIVER)

—Table 6.3: Signal description of receiver

SIGNAL
\

DESCRIPTION

din_rec g

To filtered the income data from single

channel

delk rec g

Clock of receiver

cntkrcc“s

Counter of n bit of receive data

91

< PORT DESCRIPTION (TRANSMITTER)

Table 6.4: Port description of transmitter

R —
PORT TYPE DESCRIPTION
EN TRAN IN Enable the transmitter to be active for
transmission of data
RESET_TRAN IN Reset of the transmission
DCLK TRAN IN Clock .that control the internal operation of
transmitter
DATA TRAN IN Loading data in the shift register
LOAD DATA TRAN | IN It marks them of data loading in the shift register
RESET_NBIT_TRAN IN Reset the transmission of n bit
SHIFT_REG_TRAN INOUT Shift register for transmission of data
AIM_NBIT TRAN | BUFFER | Aim for transmission of n bit
DOUT TRAN BUFFER | MSB data after have been shifted 3

< SIGNAL DESCRIPTION (TRANSMITTER)

@e 6.5: Signal description of transmitter
SIGNAL DESCRIPTION

Cnt_tran_ s Counter of n bit or the amount of
transmit bit of data

< PORT DESCRIPTION (MAP_MEMORY)

Table 6.6: Port description of map memory

PORT

TYPE

DESCRIPTION

EN_MAP MEMORY ADDR |IN

Enable the map memory address to be
active

FUNCTIONAL_ADDR IN One byte of functional address
CHANNEL_ADDR IN One byte of channel address
CNT_BYTE_ADDR BUFFER Counter of byte in the address

functional _addresses 012 s BUFFER

The last three bits in the functional
address

FUNCT_CH_VALID ADDR BUFFER

Check whether the address valid or not

CALCULATE_ADDR

BUFFER

-

Calculation of address

< SIGNAL DESCRIPTION (MAP_MEMORY)

Table 6.7: Port description of map memory

SIGNAL

DESCRIPTION

error_addr_s

Check whether the address error
has any error or not

base addr s

The address in map memory that
based on functional address

93

< PORT DESCRIPTION (TRIGGER_SENSOR)

Table 6.8: Port description of trigger sensor

PORT TYPE DESCRIPTION

STIM on IN The STIM power is on

NIOE chl IN Enable channel sensor to be active

RESET chl IN Reset the channel sensor

TRIG chl IN Triggering to be perform to channel sensor

INCOME _chl IN The first bit to be sent

CLK chl IN Clock .of trigger sensor to control the internal
operation

STATE_chl BUFFER The value of state in triggering process

NACK chl ouT Acknowledgement of triggering channel
sensor

RENB_chl BUFFER Enable read process to channel sensor

MEM chl BUFFER It marks that memory has been use

DOUT chl BUFFER Data that has been read from sensor

AIM chl BUFFER Aim for triggering of channel sensor to take
place

SIGNAL DESCRIPTION

Table 6.9: Signal description of trigger sensor

SIGNAL

DESCRIPTION

presentstate_chl

Present state of channel sensor

nextstate chl

Next state of channel sensor

94

% PORT DESCRIPTION (TRIGGER_ACT)

Table 6.10: Port description of trigger actuator

PORT TYPE DESCRIPTION

STIM_ON_ch2 IN The STIM power is on

NIOE_ch2 IN Enable channel actuator to be active

TRIG ch2 IN Triggering to be perform to channel actuator

DATA_IN_ch2 IN Port for incoming data

CLK ch2 IN Clock 'of trigger actuator to control the internal
operation

STATE_ch2 BUFFER The value of state in triggering process

MEM ch2 BUFFER [t marks that memory has been use

DRIVE BIN ch2 BUFFER To drive the binary to actuator

AIM_TRIG ch2 BUFFER Aim for triggering of channel actuator to take
place

SIGNAL DESCRIPTION

Table 6.11: Signal description of trigger actuator

SIGNAL

DESCRIPTION

presentstate chl

Present state of channel sensor

nextstate chl

Next state of channel sensor

95

CHAPTER 7

7.1

1)

CHAPTER 7: SYSTEM IMPLEMENTATION AND TESTING

INTRODUCTION

Before the implementation of the coding, a diagram of finite state machine and
the flow chart is drawn as a guide. This is to make sure, really understanding on
how data transport and trigger module function in the STIM. It is easier done the
coding of component first, in the STIM. After the component successfully
implement, and then proceed with the coding of top level module linking the
portmap of component. VHDL codes must easy to understand to make sure

testbench can be created easily.

CODING APPROACH

Most of the sub modules and module have the same coding style. This is to avoid
any misunderstanding of the port name and signal name. For the port name the
next letter after input and output name is underscore followed by the name of
entity. Most of the port name is described in a capitals letter. While the signal is
in lower case followed by underscore s, as a signal. Another thing is, the coding
provide a comment at the end of the statement. Beside, this is to avoid forgotten
Wwhenever there is a changes for each statement. This is because this software

can’t undo too many times, it only undo the last changes that have been done.

98

13

7.4

74.1

CODING IMPLEMENTATION

For this project, three component of data transport, which are receiver,
transmitter and map memory has been done first, then proceed with trigger
component, there are trigger sensor and trigger actuator. Then it keeps on by

implement trigger top level coding.

CODING EXPLANATION

Receiver

Receiver is one of the components in the top-level data transport. The entity
name mentioned that, this sub module would receive a data. The generic constant
n as an integer is the constant value to specify how many bits in each data will be
receives by STIM. 8 bits of data will be received. All the description for each
port and signal has been discuss in the port description and signal description
under user manual part. For each component in the top-level data transport, they
provide package declaration where each component includes the set of
declaration needed to model a data transport design. The important thing is that
they can be collected or linked together into a separate design and therefore data
transport can be worked on independently. The identifier provides a name for the
package, so that we can use elsewhere in data transport model to refer the
package. The behavior of receiver is implemented by the process reception.

Whenever RESET REC is ‘17, then all port will be initialized.

99

if (RESET REC='1l') then
SH REGISTER REC <= (others => '0');
DT OUT REC <= (others => '0');
cnt rec s <==(;

DT_OUT_ READY REC <= '0';

To express the behavior, whenever clk_rec_s is at rising edge then it need to
evaluate a number of different conditions and complete a different sequence of
statement for each case. If EN_REC equal to “0”, then it will go to for loop

statement.

elsif (rising edge(dclk_rec)) then
if (EN_REC='0') then
for i in n-2 downto 1 loop
SH_REGISTER REC(i) <= SH_REGISTER REC (i-1);

end loop;

=

& =
V
\ SH_REGISTER REC s
Y
DT OUT REC

The sequence of statement in for loop body indicate the receiving bit from 6

downto 1 only because SH_REGISTER REC(0) will be din_rec. Within for loop

100

14.2

statement cnt_rec_s will be evaluated. If the counter signals less then 7 then it
will incremented 1 by luntil cnt_rec_s larger than 7, then another for loop will
carry out. The SH_REGISTER_REC will become DT _OUT REC at the end of
loop statement and cnt_rec_s will stop increment. The signal becomes 0’ again
waiting other data to receive. The shifted shows on how the bit will be receive bit
by bit.

if (cnt_rec s<n-1) then

ent . rec s <= cnt rec: s+l;

else
for i in n-2 downto 0 loop
DT OUT REC(i+l) <= SH REGISTER REC(i);
end loop;
Transmitter

Transmitter is another component in the top-level data transport. The behavior
of the transmitter is implemented by the process transmission; where each data or
bits of data will be transmitting in the STIM. Likewise, generic constant is eight,
Where the amount of bits transmits is eight bits. The process begins when
RESET_TRAN condition will be tested. If RESET TRAN is ‘1, then
SHIFT REG_TRAN, cnt_trans_s and AIM_NBIT TRAN will be initialized as
‘0’. When LOAD DATA TRAN condition is ‘1°, then it marks income data to

be load into shift register.

101

skan (RESET TRAN ='1') then
SHIFT REG _TRAN <= (others => '0');
cnt_tran s <= 0;
AIM NBIT TRAN <= '0';

elsif (LOAD DATA TRAN='l') then
SHIFT REG TRAN <= DATA TRAN;

Whenever there is a falling edge of DCLK_TRAN, then EN TRAN condition
will be evaluated. If EN_TRAN is set to ‘0°, then it will go to next statement.
This for loop statement includes a specification of seven times the body of the
loop to be executed. The sequence of statement in for loop body shows on how
transmission of bit. The MSB will be transmit first because MSB will specify the
direction of data communication whether write to STIM or read from STIM.
DOUT_TRAN is the MSB that will be transfer first. Then the data will shift to

the left until the end of loop.

elsif (falling edge (DCLK TRAN)) then
if (EN_TRAN='0') then
for i in n-1 downto 1 loop
DOUT_TRAN <= SHIFT REG_TRAN (n-1);
SHIFT_REG_TRAN (i) <= SHIFT REG TRAN(i-1)
SHIFT REG TRAN(0) <= '0';

end loop;
cnt_tran s <= cnt_tran s+l;
Within the sequence in for loop, the counter will be incremented whenever one

bit has been shifted to the left for transmission. The counter plays with signals

102

that has been declare cnt_tran_s. if ent_tran_s value is seven, then it is the end of bit

transmission and the signal will be set as 0’ again.

Example of shifted data
SHIFT REG TRAN
A
— \

0 1 0 1 0 1 0 0
B 0 1 0 [0 0 0

0 1 0 1 0 0 0 0
F 0 1 0 0 0 0 0 |

103

743 Map Memory

The behavioral architecture for map memory contains calculate_address process.
This each channel depends on functional address and channel address. The
functional address and channel address will be test to make sure it operates in

certain condition.

The first condition is calculated and if EN_ MAP_ MEM ADDR is ‘0’ the
statement after the first then is performed. Thus, the FUNCTIONAL ADDR port
will be inserted to functional addresses 012 s signal. Furthermore, it will
evaluated the nested if statement. Second if statement will be tested. if
FUNCTIONAL_ADDR is “0000000” then base_addrs s value is “111110010".
After that, it will evaluate CHANNEL ADDR case statement. If
CHANNEL_ADDR equal to “00000001” it may be read from sensor channel,
while it may be write to actuator channel if CHANNEL ADDR equal to

“00000010™. If the condition is true, then all three statements are accomplished.

if (functional addresses 012 s="000") then
base addr s <= "111110010";
case CHANNEL ADDR is
when "00000001"™ =>
CNT_BYTE ADDR <= 1;
error addr s <= '0';
when "00000010"
CNT_BYTE ADDR <= 1;
error_addr s <= '(Q';
when others

error addr s <= '1°';

104

If condition of functional addresses 012 s in the second if statement is false
then functional addresses 012 s case statement will be check. If the value
selection expression matches to any of value in the range, the statement will be
carrying out. Functional addresses 012 s will select the function to be
performing to each channel, whether it performs write process or perform read

process. Below is a part of functional_addresses 012 s to be evaluated.

case CHANNEL ADDR is
when "00000001" =>
base addr_s <= "000100000"; --32 chl
when "00000010" =>
base addr s <= "001000000"; --64 ch2
when others =>
error addr s <= 11",

end case;

case functional addresses 012 s is

when "001%"s=>

CNT _BYTE ADDR <= 2;

error addr_s <= '0;
whem "010" =>

CNT_BYTE ADDR <= 2;

error addr s <= '0';
when "011" =>

CNT_BYTE ADDR <= 1;

error addr s <= '0';
when "100" =>

CNT BYTE ADDR <= 2;
when others =>

error addr s <= 'l';

end case;

105

The final evaluation is to test whether FUNCTIONAL_ADDR value is
“1010000”, if the condition evaluates to true, the TEDS statement is

implemented. It performs selected condition in the case statement.

elsif (FUNCTIONAL_ADDR="10100000") then
base addr_s <= "010000000";
case CHANNEL ADDR is
when "00000001" =>
CNT BYTE_ADDR <= 96;
error_addr_s <= '0';
when "00000010" =>
CNT _BYTE_ADDR <= 96;
error addr_s <= '0';
when others =>
error _addr_s <= 'l';

end case;

The end of the process, if EN_MAP MEM _ADDR is ‘1" then
FUNC CH VALID ADDR set as ‘0’ this indicates that the address is unvalid

and no need to calculate the address.

elsif (EN MAP MEMORY ADDR='l') then --en=1
FUNCT CH_VALID ADDR <= '0';
CALCULATE_ADDR <= '0';

106

7.4.3.1 Map memory

107

7.4.3.2 Map memory for channel 1 and channel 2

7.4.4

A0 A0 000000000000 0000000000000 00000 0
DA A0 0000000000000 000000000000 0000000000000 00000000000 R0
A A A A0 0000000000000 0000000000000
A 0000000000000 0000000000000 06
A 0000 0000000000000 0000000000000 00000 00
[A 000 AR RRRE
Ry iaaaaaaaattssiasssasaaaadadd s a s aaasaassaas i iiidd
A0 0000000000000 000000000000 AR

Triggering sensor

The coding represents one of the components in top-level trigger. This triggering
function provides means for all NCAP to send STIM a command for an action to
take place. Trigger shall be applying to a sensor. Trigger sensor behavior will be
described in a finite state machine. The coding shows on how triggering sensor
change from one state to another state. There are six state has been described in

the coding. Figure 7.1 depicts the flow chart of state in triggering sensor.

A behavioral architecture body for trigger sensor is shown. The process
trigger sensor implement the behavior. When STIM power is on then it will
perform for loop statement where DOUT _chl will became “00000000™ the end
of loop statement. It is because assumption the data that will be read form sensor
is “00000000’.Then it will go through presentstate chl case statement for

selective next state of trigger sensor. All the output port will be initialized.

if (STIM on='0' or RESET_chl='l') then

NACK chl <= 'l1';

DOUT chl(0) <= INCOME chl;

MEM chl <= '0';

RENB chl <= '0';

AIM chl <= 'l1';

nextstate chl <= quiescent_chl;
else

for i in 7 downto 1 loop

DOUT chl(i) <= '0';

end loop;

case presentstate_chl is

The first state is quiescent chl state. The trigger sensor does nothing while
waiting for trigger on action take place to sensor. All ports will be initaliazed.
The state of quiescent chl state is “000” because STATE chl port using
std logic vector to identified each state in trigger_sensor process. If NIOE_chl

is ‘1’ then the next state will be triggering_chl.

when quiescent chl

NACK chl <= '1';

109

DOUT chl(0) <= INCOME_chl;
MEM chl <= '0';
RENB chl <= '0';
AIM chl <= '1';
STATE_chl <= "000"; --0
if (NIOE chl='l') then
nextstate chl <= quiescent_chl;
elsif (NIOE chl='0') then
nextstate chl <= triggering_chl;

end 1f;

During triggering state, each port will be initialized based on the value that have
been set up in the process and it depends on their function. For AIM chl is
active in the present state. This buffer port, aims to perform triggering function.
If NIOE chl is ‘0’, triggering_chl state changes state to demanduse_mem_chl
state. Triggering state is “001”.

when triggering chl =>
DOUT chl(0) <= INCOME_chl;
NACK chl <= '0"';
MEM chl <= '0';
RENB chl <= '0';
AIM chl <= '0';
STATE chl <= "001";
if (NIOE chl='l') then
nextstate chl <= quiescent_chl;
else
nextstate chl<= demanduse_mem_chl;

end if;

110

The port MEM_ch1 will be set as ‘1” in demanduse_mem_chl state. If else

statement will check the condition of TRIG chl. If TRIG chl equal to ‘0°, then

the next state is write. mem_chl. While, if TRIG_chl is ‘1°, it indicates that the

next state still demanduse_mem_ch1 state.

when

i

el

el

demanduse mem chl=>
NACK chl <= '0';
DOUT chl(0) <= INCOME_chl;
MEM chl <= '1';
RENB chl <= '0';
AIM chl <= '0';
STATE chl <= "010";
(NIOE chl='1") then
nextstate chl <= quiescent_chl;
sif (TRIG chl='l') then
nextstate chl<= demanduse mem_ chl;
sif (TRIG chl='0') then
nextstate chl<= read mem chl;

end 1f;

read mem _chl state is the read from memory process; therefore MEM chl and

RENB chl will be set as ‘1°. STATE chl is “0117. The proceeding state will be

the set_aim_chl.

when

read mem_chl =>

NACK chl <= '0';

DOUT chl(0) <= INCOME_chl;
MEM chl <= '1";

RENB chl <= '1';

AIM chl <= '0';

STATE_chl <= "011"; --3

Nextstate chl <= set_aim chl

111

In set aim chl, port MEM chl still set as ‘1* because this process still using a

memory and AIM_ch1 will be set as*1°. The next state is inactivate_chl.

when set aim chl =>
NACK chl <= '0';
DOUT chl (0) <= INCOME_chl;
MEM chl <= 'l';
RENB chl <= '0';
AIM chl <= '1';
STATE chl <= "100"; --4

nextstate chl <= inactivate_chl;

While in the final state. trigger_sensor action became inactivate. All triggering
action is disable. If NIOE chl is ‘0’, trigger_sensor still in the inactivate_chl
state. From all the process that has been go through, if NIOE_chl condition is

“1°, the next state will be quiescent_chl state.

Another process is trigger_sensor_clk process. Whenever there are rising edge in
the clock cycle then nextstate_chl will became presentstate_chl. This is to show

Hiow one state change to another state depends on the clock cycle.

trigger sensor_clk: process (CLK _chl)
begin
if (rising edge (CLK chl)) then
presentstate chl <= nextstate_chl;
end if;

end process trigger sensor_ clk;

112

Quiscent of chl
o

ENABLE DISABLE

Triggering of chl

TRIG_CHI1=1

Demand to use
memory

DISABLE TRIG_CHI=0

Read from
memory

Mark of set aim of
triggering

S L Inactivate of chl

Figure 7.1: Flow chart for triggering sensor

113

7.4.5 Triggering actuator

Triggering actuator is another component of triggering top level. The trigger
signal shall cause a data written to the actuator channel. Trigger sensor behavior
will be described in a finite state machine. The coding shows on how triggering
sensor change from one state to another state. There are five state has been
described in the coding. Figure 7.2 shows the whole state involves in triggering
actuator. Most of the state, same like in the triggering sensor, the different is that
triggering sensor is to read data from sensor, while triggering actuator is to write
data to the actuator. Actuator demand use the memory first before triggering
action

Not all of the state has been discussed here, only state two will discuss in
detailed, because most of the coding quite simple and similar to sensor state. In
second state triggering process will be applied, data will be writing to the
actuator.

when triggering ch2 =>
DRIVE BIN ch2 <= DATA_IN ch2(0);
STATE._ch2 <= 2;

nextstate ch2 <= set_aim_chZ2;

114

DISABLE

e Inactivate of chl

Quiscent of ch2

ENABLE DISABLE

Demand to use
memory

TRIG_CH2=1

Triggering of ch2

TRIG_CH2=0

Mark of set aim of
triggering

Figure 7.2: Flow chart for triggering actuator

115

7.5

7.6

TESTBENCH

Testing state is very important state in developing this project. In this stage
hopefully every error can be detected and correction can be done especially in
the coding. This is mainly to recognize or avoid error. The error not only
encountered during compiling but also during simulation when the waveform are
not as expected. The figures show the simulation for all components and the

expected output for each clock cycle of components.

SIMULATION RESULT

116

Josuas Sunad3in Joj uonenuwig :¢°/ 2InJig

117

(AON dVD c s —Suvez L TN S8L ‘GHA'LHONB1S3171531 *© paddors)

S20L SuR }Rang

I L
ST 000T 9WTa 03 Dupumang

~Xpeay

T rSITQRTITA BUTIINY

**+3337dW0D UCTIABITTSEITUL

IBU YE AUy dpwm iLgiu
2,0, =>TU2 N2 138710
wWeZO0T SOTO6T SUQS--— U §2 3IO3F artea :seTo®™

2, T =>TU2 12 »8T0

e~]

Mm..ﬁm—unmﬁ Jo us0sall |Yd sSeAjoeul 10 wie 3 wew piisw asnpi LYo juaosanb -~ buebt] |yo jusasamb
n "D 12 USISSIL YO SRAI0RUl (40 uNe a0 Waw Pl ious — bunsb Yo juaosainb
100 000 X LoL 1 ool LD 0L 100 000

©
E

e

LYo Busstbn= |y aeseu | NA|
Ly2 Wwadsenb LYo usosaind= Yo awsuasad | Nl
100 X [Ta) 000=14°" 31V1S
1 L=

| ———— .
I LH_ L= 197NN
00000 00000000=1L% LN0C

(i——— s | T S —— 1 =

I | oy | ST

[Ele!

0=19730IN
0= 14 INW0IN
] e | O=14>" 13534
I L=u0TWILS
= e e e T e e e e e e s L e e i e T e o e e e L T A e e

s

L=19"310
upnZ sunpg SUDNG SuUQOY suUO0E suQoz supolL

[LvimoNalsaL IS @ oF HET ER ¢ e @ D FmE B e

118

L _ W e [T — Iy wew o 3 i = = _ 4 i
Yo jusdsIND ajeAnoey| LYo wieTjes waw™ pesy asnpuewaq | LYo JUs0SIND | LYo juSOSIND | LYo JusdsID | Luyo Buuebbul | Lyd wedsinD | L SEsuxeu’1nNa
|ma&~oom:_ LYo wieT1es Em&ﬁ%m |w%_un_wh_=8 Lyo Buuabbuy | pyo Buuabbul | LyoTjusdsIND | Lyo BuuabBul | LYo jusdSIND | 1w eEsuesaxd ing |
101 001 110 010 100 000 000 100 000 | 142 JLVIS |
| I 0 0 0 [| 0 I | 192 NIV |
I 0 [0 0 0 0 0 0 140 gN3Y |
0 I I I 0 0 0 0 0 | 192 WAN |
00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 142 1.N0Od |
0 0 0 0 0 I I 0 I | | 140 JOVN |
0 0 0 0 0 I 0 0 0 0 w 142 OIYAL |
I I 0 0 0 0 I | 0 | | 192 JOIN |
0 0 0 0 0 0 0 0 0 0 . 192 FINODNI |
0 0 0 0 0 0 0 0 0 0 142 13S3d
I I I I I I I I | | uo NILS
1 I I I I | I | I | | 142 1O
SuQQ¢s SuQSy SuQ0f suQce SuQO€g SuQce SuQ0T SUQSI SuQo1 up | 1AJ0d

Josuds Sulas3i 10] Indino pajoadxy :1°L JIqeL

Jojenyoe Suna33L 10j uoneNWIS :p°/ N1

—————— SEEE———
N dva sugel euay SEL “QHAZHIHIDIIY1~LS31 1@ peddars. ey

I

Swop
-+ *BOITTTETITUT

*=*SurpeoT
Z8U §Z I07 aATeN ILETO
2,0, =>2U2 N12 iSET0
WSZOT SOTOST SUOS—- few gz 303 ATEA iSETo e
2. T.=>Z92 12 IPETO
oabag IEET0
ss3200xd :THI0TD :ZETI0

: I~ g

2 ae Tue DL (TR 2 uSISaI 0 Sr wie oW esnpl 7Yoo Jusdsamb Yo W T eSnpURWSR=4y0 " siesaseu | NA)
[0 s1eAnOd 0 LR 120 bul JSUW 3sNPY D U 3saI[d 31PAINOY 4O B asnpl ZYyo usosainb TR T wsasanb=7y0 " aesussaxd | NG
I + 3 A T il ¥ o i e =

0=24> 31VIS
S0 N=TWTNIE 3AIHG
i == 1 ==~ =gl

L= LW

r 0= W3IN

001 1 __nnnnnnnn LI00OLLOI=24 NI V1va

§ =2 ol

0=2% 30IN

L=ZU2TNO HWILY

I el T Tesl T em e Tam | e (s | N] D=2 510
sugoz

sugoL
[reHouaoOML 1531 B of EE EF 4 e @ o) KRR H &

7 4 deH mopum, ucgerass matA op [
m:uxuuu:__mu:;o.m_:.:_ms_;_m_

119

120

ZYo wieTjes

W
~Buuabbu |

2w
“juagsaind

ZU0_ajeAiRY|

ZYowie 1es

ZYo weaw
Tasnpuewag

Yo
~Buusbbu

Zyo waw
Tesnpuewsaq

ZU0_ SjeAoey|

Yo wie jes

Zud
“Buuabbuj

_ oW
u30saIND

R SEspxau’1ng |

Lo ayeswesaid' 1nQ |

[4

!

14

€

C

0

CY° JLVIS |

!

I

!

[

!

n

<Y NId JARIA |

0

0

!

[

0

!

Y2 ORRL NIV |

!

!

!

!

!

0

U2 W |

11001000

11001000

11001101

LL00LLIOl

11004101

L100LLI0L

L100LL0L

192 NI V1vd |

!

0

0

0

U2 OIIL |

0

0

0

0

742 JOIN |

!

!

!

I

TYd U0 JAILLS |

!

I

!

I

TP N1 |

SuQo€

SuQsT

SuQOz

Sugst

1d0d

Jojenjoe Sund33Ln J0J Indino pajoadxy 177/ JqEL

121

JanIwsuel) Joj uone[nwis g/ In3ig

CHWON

0°H3LLIWI 1S3 5u papses

£01 ‘QHA'H3L1IWI 1531 1© paddols.

GZ01 Bun p_un]

. B
Juop

***BUT2TTETITUT

** *SutpeoT

‘l c]]bl 4]] IL‘ N

Zpotaad 103 QaTEA
2, T =>NViL J12a :Z0T0
utdag ITO0TO

c0TO®

e m

0000LOLO=NVHL 934 14IHS

0=Nvd1 13534

ok D=Nvdl llaN 13534

[

o O=Nvd1 V¥1va av0l

e]) ot o i

e 0=NvH1 N3

|| |]

i =2 S ey (0280 o L | o S W L

o ma»SuJSSo
! | S FERE] . 2! .L=NVH1 1nog
| S ey Y ooy TP ey () ey T A" 0 IR s |

01010110 1

L=N¥Hd1 100
0LLLOLOO hnn

OLOIOLIO=N¥Hl ¥1¥d

sUp0g

D=Nvdl lIGN Wi

supoge supoz sugoL

w56 & of Wi - o @D S B e

HEN

deH ~Mopuw uogeuag M 4 [
[H3111W3 1531] - oenung AQI>_mu_

122

00101011 | 01010110 | 00000000 | 00000001 | 00000011 | 00000I LT | 0000LTTO | 000TTIOL | 00ITIOI0 | OTTTI0I00 | NVYL O3 IJIHS |
0 0 0 0 0 0 0 0 0 0 NVIL 13S3Y |

0 0 0 0 0 0 0 0 0 0 NVIL LIgN 13S3d

0 [0 0 0 0 0 0 0 ! NVIL VIvVd avOol

0 0 0 0 0 0 0 0 0 0 NVIL N4

[0 L 9 S 14 € [4 ! 0 S uen W 1Nd

0 0 ! ! ! 0 I 0 0 N NVIL 1N0d
0 ! 0 0 0 0 0 0 0 0 NVYL 100 |
0IOIOITO | OIOIOITO | OTTTOI00 | OTTIOT00 | OTTTOI00 | OTTTIOI00 | OITIOIO00 | OITIOI00 | OITIOI00 | OTTIOI00 NVYL V1vd |
0 I 0 0 0 0 0 0 0 0 NVIL LIgN NIV |
sugos SuQSy SuQoy SuQse Sugoe SUQST suQoT Supst supol sups 1d0d |

Janwisuer) 10j yndino pajoadxy 1L 2IqeL

123

AJowaw dew JOj uone[nWIS :9°/ 2In31]

Suelz:oum| £11 {GHA'AHOWIW ™ dvW 1531 3° paddols) ey

| I»
Iuop

**fUTZTTETITUT

.. .05004

ZpoTI3A 103 ATEA <6110
2,0.=>dVH J12a 18710
Zpotaad 103 aTEBA HAag(L |
2, T =>d¥H J12d 19710

] I

JL=sTppeoueing

L=HAa¥ 31VINOTVI

0=Haavy arvA HJ 1ONNd

00000 L000=S"PPR 72529 I NG

8¥3EBFZ¥1Z=HAQY 31LA8 IND

EELE% 1 01000000 1L0000000=HAa¥ 13NNVHD
XX 0xn X0 000 XXX=8"Z |0 s3ssaippe”jeuonouny

LLL00000 01000000 10000000 00000000 LLLOO000=HAAy T¥NOILINNS

0=HAQv AHOW3IWN J9W N3

R B e B e e L £ e i e e e W T e T L=d¥W 3100

suggz supoz sugg L supgL

sugg
Clomaw oW isil] & of B0 Bk @ © @ B CE Gl H &

S e R e [AUOWIW dviN 1531] - s0rejnuns JaHa !

deH mopua uopenws Mo ol]

124

0 0 0 0 0 0 0 0 0 0 S Jppe Joux'1Nd

I I [I I I I [I | JAAAV JLVINDTVO |

0 I [[[I I I I [JAAAV dI'TVA HO ONNA |
00000010 | 00000010 | 00000010 | 00001000 | 000OIN0O | 0000OINO | 0000I000 | 00000100 | 00001000 | OIOOIILI S Ippe aseq I1Nd |
n 96 96 £l €l € € [4 T I JAAV LAY IND
10000000 | 01000000 | [0000000 | 01000000 | 10000000 | 10000000 | 01000000 | 10000000 | 01000000 | 01000000 JAAV TINNVHO
010 000 000 I11 I11 010 010 100 100 000 S TI0Q Ssssaippe [euonduny
0IOOITOT | 0000010 | 00000IOI | TT1100000 | TII00000 | 01000000 | 01000000 | 10000000 | 10000000 | 00000000 JAAV T¥YNOILLONNA
0 ! 0 0 0 0 0 0 0 0 JAAVY AdOWTIW dVIN NF |
suQOg SuQchy SuQ0t SuQce SuQog sSu)pce suQ0T SuQcl SuQo 1 suQg 1A0d |

Arowsw dew 1oy Indino payoadxy :1°Z 3L

CHAPTER 8

8.1

8.2

CHAPTER 8 : DISCUSSION

INTRODUCTION

This chapter discuss mostly on system evaluation is a process happened
continuously from the beginning until the end of the project implementation.
Within the duration, generally many technical and non technical problems
encountered during the development coding. Although, most of the problems
were detected and resolved, but some of the error are not. This chapter
concentrate more on the problem encountered writing the codes and during the
simulation. Beside that, system strength and system weakness have been discuss
in detailed. So, every weaknesses of the simulation can be improved in the future

enhancement the end of this chapter.

SYSTEM STRENGTH

VHDL is designed to fill a number of needs in the design process. It allows how
it is decomposed into subsystem and how the subsystems are interconnected.
Second, it allows the specification of function of system using familiar
programming language forms, and then it allows the design of a system to be
simulated before being manufactured. The data transport and trigger designed
does not actually have certain advantages, it does a basic function. The
simulation results of triggering sensor, transmitter, receiver and map memory

show that the function works properly.

126

8.3

8.4

SYSTEM WEAKNESSES

Even though, during the design of the STIM, it is made of two modules data
transport and triggering of sensor, only triggering of sensor successfully
implemented. The data transport contains three sub modules and this entire sub
modules could generates the waveforms, but not all perform as expected output.

Thus, the portmap coding of data transport design could not be implemented, due

to the lack of time.

FUTURE ENHANCEMENT

Here are some of the suggestion and possible future enhancement that could be
considered on improving the STIM design. Because the coding only covers the
behavior of sub modules of data transport and trigger, future could implement the
top level of data transport and trigger function, then simulation of each. Then the

expected output of finite state machine of data transport can be shown.

Due to the complexity of STIM design, the coding only shows a few
modules the data transport and trigger module. In the real STIM design, there is
another module such as controller and interrupt module that should be
implementing. For each module, there still having other sub modules to be
implement. If the entire module successfully develops, then real STIM have been

implemented can be called as working chip.

127

8.4

Beside that, after using PeakFPGA as a software to implement VHDL
coding, I found that a lot of limitation in the software. Although, it is easy to use
but this software lack of functionality compared then Xilinx software. Future
design should be done in using Xilinx software because Xilinx have a lot of

functionality and Xilinx can zoom in into the STIM and all can be shown.

PROBLEM SOLVING

Problem encountered since in the beginning until the end of the project. The
problem occur when writing the codes and during simulation. This is because of
the complexity of STIM. Before writing coding for the top level, I have to zoom
in into data transport module, which component occupies. Then try to write
coding for the component first. After that, proceed with the top-level module
coding. Since there are five sub modules have to complete first, only trigger
module able to finish on time, but data transport still in development. This is due

to the lack of time and lack of experience in VHDL language.

Time constraint

I’m not only took this course in this final semester. I have another four courses
that I have taken along with this project. Most of the course needs more
concentration because each course has an individual and group assignment to be
complete in a given time as well as this project. Of course I have to spent more
time study each course, to make sure I can score in the quiz and final exam for

this final semester.

128

To solve the problem, I have to manage and schedule my time properly than
before. One month before viva, I spent most of my time in Jawinet lab because
most of the component still not completes that time. This is to ensure the project

can be settle down when viva week around the corner.

Lack of experience in language

Although I have learned VHDL before but I still lack of experience. A lot of
thing to learn for more detail, because there are difficult to develop VHDL codes
and testbench. Problems arise frequently during writing coding and simulation. A
lot of time to spent in order to get exactly like expected output. To overcome this
problem, I always refer several of examples from Internet, reference book and

also having discussion with supervisor and moderator.

129

CHAPTER 9

9

CHAPTER 9 : CONCLUSION

INTRODUCTION

Design a STIM, need a lot of understanding on how the STIM function. STIM
contains a lot of component to be a working chip. Only highly experienced
people can design such complexity circuit. The above factor also, means that the
time taken to complete the whole function in a STIM is not within two or three
month. As an experienced person also, they need five years to complete this
project. Therefore this project not achieved working chip. This project
implements the coding of component for top-level data transport and top level
trigger. Trigger top level also has been created but has not been fully achieved

because trigger sensor and trigger actuator portmap are not connected properly.

This is due to lack of time.

This proposed design, actually covers only the basic functionality from
what I have understand after study the STIM. So, this design maybe and may not
achieved 100% as a real STIM. It might be achieved certain coding. I have try
my best to totally understand on VHDL programming language, by refers
various source from reference book, internet and having a discussion with
supervisor and moderator to share but, I still lack of experience and need more
time to really master in this hardware language. The problem encountered has

been resolved, but one of the simulations not fulfilled as expected output. If I get

131

9.2

a chance and a time to spend, study back and modify the coding, maybe the

simulation will achieve the expected output.

EXPERIENCED AND KNOWLEDGE

Throughout the duration of system development a lot of invaluable experience
has been obtained. The most important is the experience of developing hardware
coding. Develop top level of STIM in VHDL coding is indeed challenging and
exciting experienced. All theory that I have learned in my course last year has
been applied. During the system implementation and testing, I had through my
hard time especially during testing stages. A lot of error encountered and
sometimes there is no error but the simulation still does not prove as the expected
output. Sometimes, I have to repeat same process and work a few times to get
any solution for the problem. Even though I have to repeat again and again, at the
end, I feel happy because the simulation accomplishment. From that, I have
learned what my mistake and how to troubleshoot, and when the same problem

arise again, I can solve it immediately, faster than the day before.

Beside that, by developing the project, personally, I feel that I have
learned a lot of knowledge on VHDL programming language, which I never
realized and thought before this. VHDL subject that I have learned during my
studies, just a basic theory and easy to understand, we never encountered any
significant problem while using Peak FPGA. But in the real world development,

this programming language is complicated, a lot of process to be implements in

132

order to reach working chip. What I have learned before is not enough for this
project; we have to get more information and knowledge from revision book,
Internet and other findings to gain more example. From the examples I can get an
indication on how to create the coding, it give a lot of hint that I never done
before. Another thing is, to success on study we must have our own
responsibility to ask a person who are master in those language. No need to shy
asking someone who has more experienced, because we must learn from our own
mistake. With the help of certain individual especially my supervisor, moderator,

and senior a part of the problem was overcome.

133

REFERENCES

: . th
Stephen R. Schach, (2002), Object Oriented and Classical Software Engineering. 6™ ed.

New York: McGrawHill.

S‘ > »
llene J. Bush-Vishniac, (1999), Electromechanical sensors and actuator. 1™ ed. New

York: Springer.

e LB . Heinemann Professional
K. Brindla‘ql, (1998). Sensor and Transducer. 1* ed. London: Heinemann Professiona

Publishers.

Pferrari. A. Flammini. D. Marioli, A. Torani, A low cost Internet-enable smart sensor,
) . ’ . b b

Proc. On IEEE Sensors 2002, 12-14 June 2002, Orlando, USA.

Institute of Electrical and Electronics Engineers, IEEE Standard for a Smart Transducer
Interface for Sensor and Actuator-Transducer o Microprocessor Communication

Protocols and Transducer Electronic Data Sheet (TEDS) Format, IEEE Std. 1451.2-
1997,

Peter J, Ashenden, (1996). The Designer 's Guide to VHDL. 1* ed. San Franscisco,

California: Morgan kaufmann Publishers, Inc.

134

From Internet

-(URL-http:/www.smartsensor.com/data/tmi2-sa.pdf/)

-(URL-http:// ieee1451.nist.gov/senoct11-2col.pdf/)

-(URL-http:// kistler.com/web/article.nsf/.../000-276/$File/000-276e-06.01.pdf)

-(URL-http:// www.sensorsmag.com/articles/0600/83/main.shtml)

-(URL-http:// standards.ieee.org/bearer/sba/03-25-04.html)

-(URL-http:// ece.osu.edu/ie/main/Publications/wireless_sensor/deepika_thesis. pdf)

-(URL-http:// www.vIsibank.com/sessionspage.asp?titl_id=3050)

-(URL-http:/Awww.sensorsportal.com/HTML/SENSORS/TEDS_Sensors.htm)

-(URL-http://www.doulos.com/)

-(URL-http://www.safoo.com/)

135

APPENDIX

IEEE-P1451.2 Smart Transducer Interface Module

Stan P. Woods Hewlett-Packard Company

Janusz Bryzek, Ph.D. Intelligent MicroSensor Technology

Steven Chen Aeptec Microsystems

Jeff Cranmer Lucas Control Systems Products

Edwin Vivian El-Kareh AB Networks

Mike Geipel Eurotherm Controls

Fernando Gen-Kuong ~ Endevco

John Houldsworth Eurotherm Controls

Norm LeComte Texas Instruments

Kang Lee National Institute of Standards and Technology

Michael F. Mattes SSI-Controls Technology

David E. Rasmussen Hewlett-Packard Company
Abstract

This paper provides a technical overview of the smart transducer interface module (STIM), the key
element of the proposed IEEE-P1451.2 Draft Standard for Transducer to Microprocessor Communication
ll:rotocfols and Transducer Electronic Data Sheets (TEDS) Formats. The draft standard is released for
balloting as of August, 1996. Objectives and genealogy of this standard are summarized. Key technical
innovations such as the TEDS, representation of physical units, general calibration model, triggering of
f::szrs and actuators, variable transfer rate between a host and the STIM, and support for multivariable
an(li].s luce:rs are bricfly discussed. Detailed descriptions of the STIM, TEDS, digital interface, and plug-
e play operation are also provided. The specifics of physical units encoding, an example of a TEDS,
an example of timing requirements for taking a sensor reading are also included to aid the overview.

1. Objectives of IEEE-P1451

The D
Sensorrsa f:nitz;\ndard for A Smart Transducer Interface for
rans gy CtuatP(S, IEEE-P1451, aims at simplifying
P145) connectivity to existing networks. IEEE-
P]S‘onmsts of two parts:
0 jesci'l’ developing a network independent common
. model for smart transducers.

P145) .
Work '2-’ enabling connection of transducers to net-
microprocessors.

2-
G Introduction
. “8Ine that you ca:

elect

measyr the transducer best suited to solve the

the se] ement or control problem independently of
. ccted control network.

nestivotrll](:_ same transducers on multiple control

S

a;:;ic;at:g:: co\:‘";\" network best suited for .t‘hc

COnstraintg, ithout transducer ~ compatibility

d:chclf\: ::)ur:g:]c?ﬁc Sclf.conﬁgurat.ion when a trans-
ed to a network microprocessor.

These are goals the IEEE-P1451.2 Smart Transducer
Interface’ is helping to meet.

This paper describes the progress made to date by the
IEEE-P1451.2 Transducer to Microprocessor Working
Group to facilitate the case of connecting transducers to
MIiCroprocessors. At the core of this effort is a
transducer electronic data sheet (TEDS), which is a data
structure stored in a small amount of nonvolatile
memory, physically associated with the transducer. The
TEDS is used to store parameters which describe the
transducer to the network capable application processor
(NCAP), making self-identification of the transducer to a
system possible.

The working group has defined the contents of the TEDS
and a digital hardware interface to access the TEDS, read
sensors, and set actuators. The resulting har(iware
partition encapsulates the measurement aspccls2 in a
smart transducer interface module (STIM) on one side of

' These goals are being met in combination with IEEE-
1451.1 which is not covered in this paper.
2 Covered by P1451.2.

¢ digital interface, and the application related aspects’
1 the NCAP.

his paper describes the hardware block diagram of the
TIM, including the TEDS and the digital interface.

. Background

ontrol networks provide many benefits for transducers,’
uch as:
Significant reduction of installation costs by
eliminating long and large numbers of analog wires.
Acceleration of control loop design cycles, reduction
of commissioning time, and reduction of downtime.
Dynamic configuration of measurement and control
loops via software.
Addition of intelligence by leveraging the micro-
processors used for digital communication.

Jne major problem for analog transducer manufacturers
s the large number of networks on the market today. It
s currently too costly for many transducer manufacturers
0o make unique smart transducers tailored for each
network on the market.

In September 1993, the proposal of developing a smart
sensor communication interface standard was accepted by
[EEE-TC9.” In March, 1994, the National Institute of
Standards and Technology (NIST) and the Institute of
Electrical and Electronics Engineers (IEEE), hosted a
first workshop to discuss smart sensor interfaces and the
possibility of developing a standard interface that would
simplify connectivity of smart transducers to networks.
Since then, a series of four more workshops have been
held and two technical working groups formed in
February, 1995:

e The P1451.1 working group concentrating on a

common object model for smart transducers along
with interface specifications to the model [1] [2] [3].
The P1451.2 working group concentrating on
defining the TEDS, the STIM, and the digital
interface including connector pin allocation and a

com-munication protocol between the STIM and the
NCAP [1] [4].

? Covered by P1451.1.

* “Transducer” is defined by IEEE-P1451 working
groups as either a sensor or an actuator.

? Technical Committee 9 (TC-9) on Sensor Technology
of the Instrumentation and Measurement Society

4. Key technical features

Figure 1A. depicts a STIM and the associated digital
interface as described in the P1451.2 draft. The STIM is
shown here under the control of a network-connected
microprocessor. In addition to their use in control
networks, STIMs can be used with microprocessors in a
variety of applications such as portable instruments and
data acquisition cards & shown in Figure 1B.

The STIM embodies specific unique features of this
proposed standard, which are briefly described below.

4.1 Single general purpose TEDS

The TEDS as presently defined supports a wide variety of
transducers with a single general purpose TEDS
structure.® This apprmach makes the rest of the system
easier to implement and the implementation scaleable. If
specific fields are nct required for a given transducer,

these fields have zero width, saving the required
memory.

4.2 Representation of physical units

The P1451.2 draft adopts a general method for describing
physical units sensed or actuated by a transducer. The
method, described inthe table in Appendix A, employs a
binary sequence of ten bytes to encode physical units. A
unit is represented s a product of the seven SI” base
units and the two Sl supplementary units, each raised to a
rational power. This structure encodes only the
exponents; the product is implicit. Appendix A containg
examples for distance, pressure, acceleration, and strain.

The U/U forms (enumerations one and three in Appendix
A) are for expressing “dimensionless” units such as
strain (meters per meter) and concentration (moles per
mole). The numerator and denominator units are

identical, each being specified by subfields two through
ten [S).

% As opposed to creating a unique TEDS structure for
each kind of transducer: for example, one TEDS
structure for temperature sensors and another TEDS

structure for servo actuators, each structure with unique
required fields.

7 Le Systéme Intemational d’Unités

the digital interface, and the application related aspects’
on the NCAP.

This paper describes the hardware block diagram of the
STIM, including the TEDS and the digital interface.

3. Background

Control networks provide many benefits for transducers,’

such as:

* Significant reduction of installation costs by
eliminating long and large numbers of analog wires.

* Acceleration of control loop design cycles, reduction
of commissioning time, and reduction of downtime.

* Dynamic configuration of measurement and control
loops via software.

e Addition of intelligence by leveraging the micro-
processors used for digital communication.

One major problem for analog transducer manufacturers
is the large number of networks on the market today. It
is currently too costly for many transducer manufacturers
to make unique smart transducers tailored for each

network on the market.

In September 1993, the proposal of developing a smart

sensor communication interface standard was accepted by

IEEE-TC9.° In March, 1994, the National Institute of

Standards and Technology (NIST) and the Institute of

Electrical and Electronics Engineers (IEEE), hosted a

first workshop to discuss smart sensor interfaces and the

possibility of developing a standard interface that would
simplify connectivity of smart transducers to networks.

Since then, a series of four more workshops have been

held and two technical working groups formed in

February, 1995: :

* The P1451.1 working group concentrating on a
common object model for smart transducers along
with interface specifications to the model [1] [2] [3]-

o The PI451.2 working group concentrating on
defining the TEDS, the STIM, and the digital
interface including connector pin allocation and a
com-munication protocol between the STIM and the

NCAP [1] [4].

* Covered by P1451.1. !
* “Transducer” is defined by IEEE-P1451 working

groups as either a sensor or an actuator.
I'echnical Committee 9 (TC-9) on Sensor Tf.chnology
of the Instrumentation and Measurement Society

4. Key technical features

Figure 1A. depicts a STIM and the associated digital
interface as described in the P1451.2 draft. The STIM is
shown here under the control of a network-connected
microprocessor. In addition to their use in control
networks, STIMs can be used with microprocessors in a
variety of applications such as portable instruments and
data acquisition cards as shown in Figure 1B.

The STIM embodies specific unique features of this
proposed standard, which are briefly described below.

4.1 Single general purpose TEDS

The TEDS as presently defined supports a wide variety of
transducers with a single general purpose TEDS
structure.® This approach makes the rest of the system
easier to implement and the implementation scaleable. If
specific fields are not required for a given transducer,
these fields have zero width, saving the required
memory.

4.2 Representation of physical units

The P1451.2 draft adopts a general method for describing
physical units sensed or actuated by a transducer. The
method, described in the table in Appendix A, employs a
binary sequence of ten bytes to encode physical units. A
unit is represented as a product of the seven SI" base
units and the two SI supplementary units, each raised to a
rational power. This structure encodes only the
exponents; the product is implicit. Appendix A contains
examples for distance, pressure, acceleration, and strain.

The U/U forms (enumerations one and three in Appendix
A) are for expressing “dimensionless” units such as
strain (meters per meter) and concentration (moles per
mole). The numerator and denominator units are
identical, each being specified by subfields two through
ten [5].

® As opposed to creating a unique TEDS structure for
each kind of transducer: for example, one TEDS
structure for temperature sensors and another TEDS
structure for servo actuators, each structure with unique
required fields.

7 Le Systéme International d’Unités

Network Networked sensors
DCLK
DouUT
iy Interface Signal Transducer
NIOE logic | conditioning and #1
Network conversion
Car.)abl.c NTRIG TEDS Data acquisition cards
Application
Processor NTRACK :
(NCAP) TRiEE [f
or NIO_INT #255 | RN [
Host ;
Microprocessor Portable instruments
1 Y STIM
Common |
| A |ooo
(Networking / P1451.2 digital ~ (Encapsulated
application) interface measurement) D
= P1451.2 transducer
A) B)

Figure 1: Hardware partition proposed by P1451.2 and possible uses for the interface

4.3 General calibration model

The P1451.2 draft provides a general model to optionally
specify the transducer calibration. It is very flexible yet
can collapse to an acceptable size for a simple linear
relationship. The scheme supports a multi-variablz, piece-
wise polynomial with variable segment widths and variable
segment offsets.

4.4 Triggering of sensors and actuators

The proposed digital interface has hardware trigger lines to
allow the NCAP to initiate Sensor measurements and
actuator actions, and to allow the STIM to report the
completion of the requested actions. The NCAP can trigger
an individual channel, or all transducer channels at once.
In the latter case, there are TEDS fields provided to specify
timing offsets between the STIM’s channels and to
determine when each measurement or actuation has
occurred relative to the single trigger acknowledgment.
The draft proposes that the slowest channel be the
reference channel and that all the offsets be specified
relative to this channel.

4.5 Variable transfer rate between host
and STIM

The hardware data clock line is driven by the NCAP.
There is a field in the TEDS which specifies the maximum
data transport rate that the STIM can support. This
provides a flexible mechanism to match NCAPs and
STIMs.

4.6 Support for multi-variable
transducers

P1451.2 includes support for multi-variable transducers in
a single STIM. A STIM may have up to 255 inputs or
outputs allowing the creation of multi-variable sensors,
actuators, or combinations thereof. Several multi-variable
STIM examples are shown in Figure 3.

5. STIM

Figure 2 shows the block diagram for a STIM, along with
the interfaces between each module. A TEDS is
incorporated into a STIM. In addition to the TEDS, the
STIM contains logic to implement the P1451.2 interface,
the transducer, and any necessary signal conditioning and
signal conversion.*

Only interface “A” is defined by P1451.2. Interfaces “B”,
“C” “D”, and “E” allow transducer manufacturers to
continue to obtain competitive differentiation in areas of
performance, quality, feature set, and cost by choosing how
these interfaces are implemented. At the same time
P1451.2 offers the opportunity to design transducers to a
common interface between a STIM and NCAPs enabling
the use of the same transducer across many networks and
applications [6].

P1451.2 P1451.2 Signal Signal Transducer
P b 1ot conversion | conditioning | (Sensor or
9/ i b(l)glf(Actuator)
i 0C
: N C D SR E
A] TEDS
B STIM

Figure 2: STIM block diagram

The P1451.2 logic block shown in Figure 2 may be
implemented in several ways. The working group has now
implemented STIMs using a field programmable gate array
(FPGA) and a low-cost microcontroller to serve as the
logic block. These methods demonstrate that P1451.2
STIMs can be built today using off-the-shelf parts. The
microcontroller option provides the additional advantage of
potentially combining all the logic, TEDS, and signal
conversion into one integrated circuit, where the P1451.2
logic block is implemented using microcontroller
firmware.

Figure 3 shows four examples of STIM configurations
using a low-cost microcontroller. These examples
demonstrate the flexibility in STIM design provided by
P1451.2.

¥ Signal conditioning and sigral conversion are not
covered by P1451.2,

The first example in Figure 3A demonstrates a single
channel analog sensor implementation.

A) Temperature sensor STIM

P1451.2 Micro-controller
< ; ADC '—{ Temperature sensor
TEDS
STIM
B) Eight channel digital I/O STIM
P1451.2 Micro-controller “_____' In
4 /" +—
; —
—
——————— Out
—
—
STIM

C) Four channel sensor STIM

Micro-controller

9’ l TEDS l
| ADC

P1451.2
'

4
<

Temperature sensor l

Pressure sensor I

Flow sensor |

U

STIM pH sensor l
D) Sensor and actuator STIM
P1451.2 :
i 5 Micro-controller ‘/l Temperature scnsoq
~r— - -
9 | TEDS I ADC
\l Pressure sensor]
DAC
Digital \Al Proportional valve l
\hl Relay
STIM l

Figure 3: STIM examples

The second example in Figure 3B demonstrates the
implementation of a digital input/output (1/0) module with
four digital inputs and four digital outputs. The TEDS
model in P1451.2 allows this STIM to be described as an
eight-channel STIM or alternatively it could be described
as a two-channel STIM with one input channel and one
output channel each with a length of four. This flexibility

in the model allows digital I/0 modules with thousands of

inputs/outputs to be implemented if such a product were
needed.

The third example in Figure 3C shows a STIM with
multiple analog sensors. These four sensors could be
measuring a process liquid.

Figure 3D illustrates that combinations of sensors and
actuators can be combined into one STIM to support all the
transducers used in control system solutions. The code
implementing the control loop could reside either in the

NCAP or the microcontroller used to implement the
P1451.2 interface.

6. TEDS

The TEDS is one of the main technical innovations
introduced in P1451.2. A TEDS, which carries information
about the transducer and its performance, is not a new
concept. Companies have been embedding data structures
in memory associated with their products for many years
[7] [8] [9] [10]. What is new is the general model of a
transducer behind the P1451.2 TEDS which supports a
wide variety of sensors and actuators.

The TEDS contains fields that fully describe the type,
operation, and attributes of the transducer. If the
transducer is moved to a new location, it is moved with the
TEDS. This way the information necessary for using the
transducer in a system is always present.

Figure 4 shows the main addressable sections of the TEDS
along with examples of the content for each segment. The
sections shown with dotted lines (calibration-TEDS,
application specific-TEDS and extension-TEDS) are
optional.

The calibration specification in the TEDS permits the
sensor manufacturer to describe a multi-dimensional
calibration for each channel. To eliminate high order
polynomials it is possible to specify a segmented
calibration where each segment can have a variable width
and offset. It is expected that a general correction engine
will be present in the NCAP that understands this
calibration scheme so that it can be run “blindly” no matter
which transducer is attached. An example of a multi-
segment calibration curve with simple linear segments is
shown in Figure 5.

One per STIM:

Contains the overall description
of the TEDS data structure,
worst case STIM timing
parameters, and channel
grouping information.

Meta-TEDS

One per STIM channel:
Contains upper/lower range
limits, physical units, warm up
time, presence of self-test,
uncertainty, data model,
calibration model, and
triggering parameters.

Channel TEDS

One per STIM channel:
Contains the last calibration
date, calibration interval and all
the calibration parameters
supporting the multi-segment
model.

Application
specific TEDS

Multiple per STIM:
For application specific use.

Multiple per STIM:

Extension TEDS Used to implement future and

industry extensions to P1451.2.

MaSusesanassnnnnns)

Figure 4: Overview of the TEDS structure

Appendix B contains an example of the complete P1451.2
TEDS for a single channel pressure sensor. It is a ceramic
pressure sensor with an analog output between 0 to 5 V dc
corresponding to 0 to 20,684,190 Pa (3000 lb/in’) pressure
input. The sensor has a 10 ms response time, no
appreciable warm-up requirement and the maximum non-
linearity is measured to be 0.56% of Vpny. The primary
components of the single channel STIM are a serial 12-bit
analog-to-digital converter (ADC) for data conversion (75
Ms conversion cycle), and an 8-bit PIC-type processor with
4K by 12-bit on-chip EEPROM (8 MHz operation).
Calibration is fixed and is specified using five equal
segments with non-zero offsets for each segment. This
allows first order calibration functions to be used to reduce

the non-linearity in the analog output (0.56% reduced to
0.03%).

Physical units

| o o e - - — — o ————— o ——————— o -

| SIS, = T

ADC counts

Figure 5: Multi-segment calibration curve

This specific TEDS implementation in Appendix B
required the following amount of memory:

Meta TEDS 366 bytes
Channel TEDS 96 bytes
Calibration TEDS 103 bytes
Total 565 bytes

Out of the 565 bytes, the manufacturer identification
consumed 55 bytes, and product description consumed 205
bytes, for a total of 260 bytes or 46% of the TEDS.

The TEDS in Appendix B was created by Texas
Instruments to demonstrate how a real transducer could be
described by P1451.2. This does not imply that Texas
Instruments will be offering this as a product.

7. Digital interface

Figure 1A shows the digital lines specified in the digital
interface. Basic communications between the NCAP and
STIM require four lines (DCLK, DOUT, DIN, and NIOE).
DCLK is driven by the NCAP. The data transfers are based
on SPI-like (serial peripheral interface), bit-transfer
protocol.

The NCAP drives the NTRIG line to initiate a
measurement or action, and the STIM uses the NTRACK
line to acknowledge that the requested function has been
performed. The STIM can notify the NCAP of any
exception conditions by use of the NIO_INT line.

The P1451.2 draft defines a set of status registers to
support notification of standard exceptions such as
hardware errors, busy channels, STIM power cycle,
calibration failure, and self-test failure.

A power supply of +5 V is also a part of the interface
specification.

Appendix C shows a timing diagram of the digital
interface while reading from a sensor.

8. “Plug and play” operation

The operating mode for P1451.2 transducers is “plug-and-
play.” Since the TEDS resides with the transducer, one is
able to move the transducer from one NCAP to another and
simply plug it in to achieve self-identification. Figure 6
shows a temperature STIM connecied to an NCAP of one
vendor’s network. The pressure STIM can be connected
either to the same network or pligged into any of the
NCAPs on the second network.

“Plug & play” operation requires standardization of a
connector. The P1451.2 draft proposes three types of
connectors which have been defined for different
environments where the standard may find use.

Control network “A”

NCAITt[j—i STIM (temperature) |

OH{_ STIM pressure) |

Control network “B” .

Figure 6: “Plug-and-play” mode! of use

It is important to note that P1451.2 may be implemented as
a single row of pins or wires connecting two circuit boards
(an NCAP and a STIM) together. This implementation
could be used internally on a product where the separation
between NCAP and STIM is not visible to the user. A
company may want to build several networked transducers
and use a common internal interface (P1451.2) to join the
transducer portion with the network/application portion of
the networked smart transducer.

Figure 7A shows the NCAP hardware support required to
drive a STIM. This may be as simple as firmware driving

an eight bit microprocessor port or it may be hardware
assisted.

Figure 7B shows a very simple NCAP firmware block
diagram with three blocks: STIM driver, application code
and the network protocol stack. The STIM driver is
composed of four major functions:

e “Bits and bytes” is responsible for getting data across
the interface.

e “TEDS parser” has knowledge about the P1451.2
TEDS structure and assembles the data into
meaningful pieces.

e “Correction engine” is the algorithm that converts raw
readings from the STIM into units specified in the
TEDS for sensors or units specified in the TEDS into
STIM settings for actuators.

e “Pl451.2 application programming interface (API)
driver” provides access to TEDS blocks, sensor
readings, actuator control, triggers and interrupt
requests.

A) NCAP hardware

P1451.2
NCAP
HW STIM
interface
B) NCAP firmware
NCAP
Network [Application| STIM
protocol | firmware | driver STIM
stack
P1451.2 API Bits
driver TEDS and
Correction parser | bytes
engine

Figure 7: NCAP support required for P1451.2

Most of the TEDS’ contents need not be parsed and kept
on the NCAP. This will depend on the measurement or
control problem being solved and differentiation desired in
NCAP products. If the application needs the contents of the
TEDS for use in another part of the system, then the TEDS

may be read from the STIM and sent out over the network
with very little parsing. If the NCAP will be making
sensor measurements and sending sensor readings in
engineering units, then the calibration factors must be
parsed and kept on the NCAP for use by a correction
engine.

In principle only one STIM driver for each kind of NCAP
is required to support P1451.2. For each microprocessor
family supporting this proposed standard there could be a
single software driver for the P1451.2 interface, a single
TEDS parser, and a single conversion engine,

It is expected that the drivers for the popular networks will
be developed by the network providers. In past demo
implementations, three network providers developed IEEE-
1451.2 drivers for their network’s NCAPs: Allen-Bradley
Company (DeviceNet™), Echelon Corporation
(LonWorks™) and Honeywell Micro Switch Division
(Smart Distributed System™) **

9. Status of proposed standard

The working group has released IEEE-P1451.2 D2.01 [11]
to IEEE for balloting by approximately fifty IEEE
Members.
Persons interested in participation in the working group
please contact:

Kang Lee at NIST

(301)-975-6602

Email: Kang.Lee@NIST.GOV

10. Acknowledgments

The authors would like to thank all the people who have
contributed ideas for this proposed standard, in particular
those who have participated in the working group meetings
and demonstrations of the key concepts of self-
identification of transducers and transducer plug-and-play
operation on multiple networks.

11. Summary

We have presented an overview of the technical aspects of
IEEE-P1451.2. In addition, some of the practical
considerations for implementation and support of the
standard have been discussed. The working group has
made progress and has reached the first official IEEE
ballot milestone permitting a wider audience to obtain a
copy of the working group’s efforts.

[[2A9] podsuen ele(q

:

J

(LR

e

edid

(LYOdSNVIL VLVA) TIVMLI0S XNITIX WOYA AHOYVIAIH NOISTd 1LY

J

L L

L.

|

=

L

=] |

111111111

Data transport level 3

Data transport level 2

G [2A9] wodsuen ele(q [2A9] Modsuen ele(q

