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ORAL CANCER GENOMICS DATA MINING AND INTEGRATION FOR 

PREDICTIVE THERAPEUTICS 

ABSTRACT 

Global oral cancer incidence and mortality rates are increasing rapidly, with more than 

350 000 new cases and 170 000 deaths recorded in 2018. Depressingly, standard 

treatments for oral cancer such as surgery, chemotherapy, and radiotherapy are associated 

with significant morbidity and a relatively static 5-year survival rate of around 50 – 60%. 

To date, three drugs - cetuximab, pembrolizumab, and nivolumab, are available for 

treating oral cancer. However, only a small fraction of oral cancer patients respond to 

these drugs. Discovery of further efficacious drugs in a cost-effective way through drug 

repurposing can potentially uncover the best combinatorial drug therapy against oral 

cancer. In this thesis, I aimed to create, using computational and statistical approaches, 

an integrative digital resource that can be mined to identify drug candidates that could be 

repurposed for oral cancer treatment. To this end, two bioinformatics tools were 

developed. The first tool – GENIPAC (Genomic Information Portal on Cancer Cell 

Lines), is a web resource for exploring, visualising, and analysing genomics information 

from 44 head and neck cancer cell lines. The second tool – DeSigN (Differentially 

Expressed Gene Signatures - Inhibitors), links the gene expression of oral cancer cell lines 

to the publicly available gene expression databases that have drug sensitivity data. To 

validate the efficacy of drug candidate shortlisted by DeSigN on a panel of oral cancer 

cell lines, several in vitro experiments were performed. Using gene expression signatures 

retrieved from the ORL Series in GENIPAC, DeSigN predicted bosutinib, an Src/Abl 

kinase inhibitor used for treating leukemia, to have inhibitory effect on oral cancer cell 

lines. Subsequent in vitro drug sensitivity validation showed that these oral cancer cell 

lines were susceptible to bosutinib treatment at IC50 of 0.8 – 1.2 µM. Later, anti-

proliferative experiments confirmed the efficacy of bosutinib in controlling tumour 
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growth in oral cancer cell lines. Technical evaluation of performance reliability of six 

gene signature similarity scoring algorithms showed that the Weighted Connectivity 

Score or the statistically significant Connectivity Map, are prime candidates for upgrading 

the current core algorithm of DeSigN, which is based on the Kolmogorov-Smirnov 

statistic. In conclusion, the present work has demonstrated that cancer genomics data 

mining and integration through GENIPAC and DeSigN is a viable approach to 

accelerating the drug development process for oral cancer. Importantly, application of 

these two tools led to the discovery of bosutinib as a new, promising drug  candidate to 

be repurposed for treating oral cancer in the future. 

 

Keywords: Connectivity Map, oral cancer, gene expression, gene signature similarity 

scoring algorithms, drug sensitivity 
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PERLOMBONGAN DAN PERSEPADUAN DATA GENOMIK KANSER 

MULUT UNTUK RAMALAN TERAPEUTIK 

ABSTRAK 

Kadar kejadian dan kematian kanser mulut global meningkat dengan pesat, 

mencatatkan lebih daripada 350 000 kes baru dan 170 000 kematian pada tahun 2018. 

Yang menyedihkan, rawatan piawai untuk kanser mulut seperti pembedahan, kemoterapi 

dan radioterapi adalah dikaitkan dengan kematian yang nyata dan secara relatifnya kadar 

hidup 5 tahun adalah kekal sekitar 50 – 60%. Sehingga kini, tiga dadah – cetuximab, 

pembrolizumab, dan nivolumab boleh didapati untuk merawat kanser mulut. Namun 

demikian, hanya sebahagian kecil pesakit-pesakit kanser mulut yang bertindak balas 

terhadap dadah-dadah tersebut. Penemuan dadah mujarab yang berterusan dengan cara 

yang kos efektif melalui penggunaan semula dadah berpotensi untuk menyerlahkan 

kombinasi terapi dadah yang terbaik terhadap kanser mulut. Dalam tesis ini, saya 

mempunyai matlamat untuk menciptakan satu sumber digital bersepadu yang boleh 

dilombong, dengan menggunakan pendekatan-pendekatan pengkomputeran dan statistik, 

bagi mengenal pasti calon-calon dadah yang berkemungkinan untuk diguna semula untuk 

rawatan kanser mulut. Sehingga kini, dua perkakasan bioinformatik telah dibangunkan. 

Perkakasan yang pertama – GENIPAC (Genomic Information Portal on Cancer Cell 

Lines) merupakan sumber web untuk meneroka, menggambarkan dan menganalisis 

maklumat genomik daripada 44 susuran sel kanser leher dan kepala. Perkakasan yang 

kedua – DeSigN (Differentially Expressed Gene Signatures - Inhibitors) menghubungkan 

ekspresi gen susuran sel kanser mulut terhadap pangkalan data umum ekspresi gen yang 

mengandungi data kepekaan dadah. Beberapa eksperimen in vitro telah dijalankan untuk 

mengesahkan kemujaraban calon dadah yang disenaraipendekkan oleh DeSigN terhadap 

satu panel susuran sel kanser mulut. Dengan menggunakan corak ekspresi gen yang 

diperoleh daripada ORL Series dalam GENIPAC, DeSigN telah meramalkan bahawa 
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bosutinib, suatu perencat kinase Src/Abl yang digunakan untuk merawat leukemia, 

mempunyai kesan perencatan terhadap susuran sel kanser mulut. Pengesahan kepekaan 

dadah secara in vitro yang berikutnya menunjukkan bahawa susuran sel kanser mulut 

adalah peka terhadap rawatan bosutinib pada nilai IC50 0.8 – 1.2 µM. Selanjutnya, 

eksperimen anti-proliferasi telah mengesahkan kemujaraban bosutinib dalam mengawal 

pertumbuhan tumor dalam susuran sel kanser mulut. Penilaian teknikal dari segi 

kebolehpercayaan prestasi enam algoritma pemarkahan corak gen seiras menunjukkan 

bahawa Weighted Connectivity Score atau statistically significant Connectivity Map 

merupakan calon-calon algoritma utama untuk menaik taraf algoritma teras DeSigN sedia 

ada yang berasaskan statistik Kolmogorov-Smirnov. Kesimpulannya, hasil kerja ini telah 

menunjukkan bahawa perlombongan dan integrasi data genomik kanser melalui 

GENIPAC dan DeSigN merupakan pendekatan yang berdaya maju dalam 

mempercepatkan proses pembangunan dadah untuk kanser mulut. Yang pentingnya, 

aplikasi kedua-dua perkakasan tersebut telah membawa kepada penemuan bosutinib 

sebagai satu calon dadah yang baru dan boleh diharapkan untuk diguna semula bagi 

merawat kanser mulut pada masa depan. 

 

Kata kunci: Connectivity Map, kanser mulut, ekspresi gen, algoritma pemadanan corak 

gen yang seiras, kepekaan dadah 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Oral cancer is among the most devastating head and neck squamous cell carcinoma 

(HNSCC) subtypes. The incidence and mortality rates are growing worldwide, recording 

more than 350 000 new cases and 170 000 deaths in 2018 based on the report from 

GLOBOCAN 2018 (Bray et al., 2018). While HNSCC that is detected early can be 

effectively treated with surgery and radiotherapy (Gilyoma et al., 2015; Joshi et al., 2014), 

about 75% of patients are diagnosed at a late stage where treatment options become 

limited. This is reflected in the overall 5-year survival rate of about 60% (Marur & 

Forastiere, 2016). In the Malaysian context, more than 70% of the oral cancer patients are 

diagnosed in their advanced stage with poor survival (Ghani et al., 2019). 

Presently, three targeted therapies have so far been approved by the US Food and Drug 

Administration (FDA) to treat oral cancer. Cetuximab, a monoclonal antibody that 

inhibits epidermal growth factor receptor (EGFR) signaling, has been the only molecular-

targeted therapy approved for the treatment of recurrent and metastatic HNSCC for the 

past ten years (Vermorken et al., 2008). Only very recently two inhibitors of the immune 

checkpoint molecule PD-1: pembrolizumab, and nivolumab have been approved for the 

treatment of platinum-refractory HNSCC (Bauml et al., 2017; Ferris et al., 2016). While 

this is an improvement in the repertoire of therapeutic options for recurrent and metastatic 

HNSCC, these treatments are only effective in less than 20% of HNSCC patients (Bauml 

et al., 2017; Ferris et al., 2016; Mehra et al., 2018), thus underscoring the urgent need to 

develop more effective therapies and those that are associated with less side effects. 

One of the innovative approaches to identifying effective therapies is to match inherent 

gene expression signatures with potentially efficacious drug candidates. This concept was 
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first demonstrated through the Connectivity Map (CMap) project by Lamb et al. in 2006. 

One key component of CMap concept is the ‘gene expression changes’, which is used to 

connect a disease-specific gene signature (up-regulated and down-regulated genes) to a 

reference database containing drug-specific gene expression profiles. Following the 

inception of CMap, more recently, a couple of large-scale public pharmacogenomic 

studies, such as the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012; 

Iorio et al., 2016), Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012), and 

Cancer Therapeutics Response Portal (CTRP) (Basu et al., 2013) have since been 

developed. While CMap focuses on drug-induced gene expression profiles, these newer 

pharmacogenomic studies instead emphasise on the drug sensitivity response and 

characterise the genomic profiles of more than a thousand cancer cell lines (CCL) at the 

baseline level. Notably, more than 700 drugs have since been tested on these CCL, 

representing one of the most substantial endeavour reported so far in trying to identify 

lists of drugs that could potentially be efficacious against certain cancers. 

While these public pharmacogenomic databases are a valuable resource for association 

studies between genomic features and drug response, they cannot be readily integrated 

with experimental data generated by individual research laboratories. For example, Hsp90 

inhibitor 17-AAG was shown to have a favourable response against the HNSCC cell lines 

(Garnett et al., 2012). However, predicting which new cell lines derived from HNSCC 

patients that are likely to respond to 17-AAG remains challenging. 

Fortunately, the availability of these open-source pharmacogenomics studies offers an 

unprecedented opportunity for developing practical computational algorithms that could 

leverage on the availability of the comprehensive drug response as well as gene 

expression data. The use of computational algorithms to mine and integrate genomics 

data of cancers with public pharmacogenomics database will accelerate the identification 
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of molecular features in cancers that are associated with sensitivity to specific drugs. 

Thus, the development of computational algorithm that could predict drug sensitivity in 

CCL is particularly crucial for cancers with limited therapeutic options, such as oral 

cancer.  

 

1.2 Aims and Objectives 

In this study, I aim to create an integrative resource for HNSCC that can be mined to 

repurpose existing drugs for effective treatment of oral cancer. To this end, four objectives 

will be met. They are listed as follows: 

(i) To develop a user-friendly web resource for exploring, visualising, and 

analysing genomics information of commonly-used head and neck CCL; 

(ii) To develop computational approaches that can associate the gene expression 

profile of oral CCL of interest to gene expression profiles that are augmented 

with drug sensitivity data in publicly available databases; 

(iii) To experimentally validate the computational prediction of the approach in 

objective (ii) on oral CCL; 

(iv) To evaluate different gene signature similarity scoring algorithms for optimal 

drug sensitivity prediction. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Oral Cancer 

2.1.1 Epidemiology 

Head and neck squamous cell carcinoma (HNSCC) (C00-C13) refers to a 

heterogeneous group of tumours that originate from various tissue types along the upper 

aerodigestive tract. It is the sixth most common cancer worldwide based on the 

GLOBOCAN 2018 report (Bray et al., 2018). Oral squamous cell carcinoma (OSCC) 

(C00-C06), meanwhile, is the most common subtype of HNSCC. 

GLOBOCAN 2018 reported more than 350 000 new cases and 170 000 deaths due to 

oral cancer in 2018. Of these, approximately 65% (227 906 new cases) occurred in Asia 

(Figure 2.1) (Bray et al., 2018). Similarly, the Asian continent reported the highest 

number of deaths due to this disease, with 129 939 patients reported to have succumbed 

to oral cancer in 2018 (Figure 2.1). Notably, within countries in Asia, about 68% of the 

new cases were from the South Asian countries (India, Pakistan, Bangladesh, and Sri 

Lanka) where the incidence of oral cancer is also among the highest in the world (Figure 

2.2). Similarly, about 73% of the death cases (n = 94 537) were from these four South 

Asian countries (Figure 2.2). These alarming incidence and mortality rates are in part 

attributed to risk factors such as smoking, tobacco chewing (with or without areca nut) 

and/or heavy alcohol drinking (Sankaranarayanan et al., 2013). Univ
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Figure 2.1: Incidence and mortality rates of oral cancer in 2018 for both sexes at all ages 
according to different continents. The Asian continent has the highest incidence and 
mortality rates, with 227 906 new cases and 129 939 deaths occurring in 2018. The data 
was retrieved and adapted from GLOBOCAN 2018 (URL: 
https://gco.iarc.fr/today/home). 

 

 

Figure 2.2: Top ten incidence and mortality rates of oral cancer for countries in Asia for 
both sexes at all ages. Oral cancer is frequently diagnosed in the South Asian countries 
such as India, Pakistan, Bangladesh, and Sri Lanka. South East Asian (SEA) countries 
such as Indonesia, Thailand, and Myanmar were also listed amongst the top ten countries 
in Asia for both incidence and mortality rates for oral cancer. The data was retrieved and 
adapted from GLOBOCAN 2018 (URL: https://gco.iarc.fr/today/). 

 

Likewise, the incidence rate for oral cancer in South East Asian (SEA) (comprises of 

11 countries) has been regarded as alarmingly high for many years (Warnakulasuriya, 

2009). Although one report stated that oral cancer is more commonly diagnosed in 

females in Khon Kaen, Thailand (Vatanasapt et al., 2011), generally GLOBOCAN 2018 
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reported that oral cancer is still a male-dominant disease, a trend that is shared across the 

globe as well as in SEA countries (Table 2.1). Focusing on the epidemiology data for 

SEA countries more closely, an estimation of 10 234 males and 6584 females were 

diagnosed with oral cancer in 2018, with a male-to-female ratio of 1.55:1. There is a 

marked variation in the age-standard rate (ASR) across the different SEA countries 

ranging from 0.81 to 6.9 per 100 000 for males, with Myanmar having the highest 

incidence; and 0.61 to 3.1 per 100 000 for females, with Thailand having the highest 

(Table 2.1). Meanwhile, the mortality to incidence ratio in SEA has been reported 

previously to be among the highest in Asia (Ng et al., 2015; Vatanasapt et al., 2011), and 

in 2018, the mortality due to oral cancer in SEA was estimated as 8542 cases, where 5327 

and 3215 were men and women respectively, with a male-to-female ratio of 1.66:1 (Table 

2.1). Based on the estimated deaths due to oral cancer, a wide range is observed across 

the SEA countries. Among males, the mortality rates were 1.2 to 4.4 per 100 000 persons, 

with Myanmar having the highest rates. Among female, the ASR was 0.42 to 2.1 per 100 

000 persons, with Cambodia having the highest mortality rates (Table 2.1). Notably, 

looking at the ASR of incidence for oral cancer across the world as reported in 

GLOBOCAN 2018, only the females from Thailand (ranked 18; ASR: 3.1 per 100 000 

persons) and Cambodia (ranked 20; ASR: 3.1 per 100 00 persons) were listed among the 

top 20 countries with the highest incidence of oral cancer. In terms of ASR of mortality, 

males from Myanmar (ranked 19; ASR: 4.4 per 100 000 persons) and females from 

Cambodia (ranked 14; ASR: 2.1 per 100 000 persons) and Laos (ranked 20; ASR: 1.8 per 

100 000 persons) were among the top 20 countries in the world. 

In the Malaysian setting, based on the GLOBOCAN 2018 report, the estimated number 

of cases of oral cancer for males was 335 (ASR = 2.2/100 000) and 332 for females (ASR 

= 2.1/100 000) (Table 2.1). As for the mortality rate, the number of cases of death was 

179 (ASR = 1.2/100 000) for males and 148 (ASR = 0.94/100 000) for females (Table 
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2.1). Concurrently, the latest Malaysian National Cancer Registry Report (2007-2011), 

which was published in 2016 (Azizah et al., 2016) stated that HNSCC, inclusive of oral 

cancer, is the fourth most common cancer amongst all ethnicity. Looking specifically at 

oral cancer (C00: lip, C01-C02: tongue, and C03-C06: mouth) and in accordance to the 

same clinical cataloguing system (International Statistical Classification of Diseases and 

Related Health Problems-10th Revision codes C00-C97) used by GLOBOCAN 2018, 

oral cancer was ranked as the 16th most common cancer across all ethnicities between 

2007 and 2011 in Malaysia. Although it is not amongst the top ten cancers in Malaysia, 

it was ranked the sixth most common cancer amongst males (ASR = 4.8/100 000) and 

second for females (ASR = 10.0/100 000) of Indian origin. 

Table 2.1: Estimated incidence and mortality rate of oral cancer in 2018 in SEA 
countries according to sex (GLOBOCAN 2018). Abbreviation: ASR = age-standard rate 
per 100 000 populations. 

Population 
Incidence Mortality 

Male (ASR) Female (ASR) Male (ASR) Female (ASR) 
Indonesia 3132 (2.5) 1946 (1.5) 1508 (1.2) 818 (0.63) 
Thailand 2545 (5.1) 2027 (3.1) 1299 (2.6) 1052 (1.6) 
Myanmar 1652 (6.9) 719 (2.5) 1012 (4.4) 400 (1.4) 
Vietnam 1308 (2.6) 569 (0.92) 639 (1.3) 283 (0.42) 
Philippines 813 (2.1) 614 (1.3) 430 (1.2) 297 (0.66) 
Malaysia 335 (2.2) 332 (2.1) 179 (1.2) 148 (0.94) 
Cambodia 213 (4.3) 211 (3.1) 141 (3) 136 (2.1) 
Singapore 141 (2.8) 84 (1.4) 62 (1.2) 33 (0.56) 
Laos 90 (3.8) 78 (3.1) 53 (2.3) 45 (1.8) 
Timor-Leste 4 (1.2) 3 (0.87) 4 (1.2) 3 (0.87) 
Brunei 1 (0.81) 1 (0.61) - - 
Total 10 234 6 584 5 327 3 215 

 

2.1.2 Risk Factors Associated with Oral Cancer 

From the risk factors point of view, oral cancer is most commonly associated with the 

use of tobacco, both smoked and smokeless. This is most prevalent in South and SEA 

countries. For example, Indonesia and Timor-Leste are amongst the countries with the 
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highest tobacco smoking rates in the world, where 72.3% and 96.5% respectively of the 

male population smoke (Sreeramareddy et al., 2014). In contrast, women from the SEA 

are among the highest users of smokeless tobacco globally (Sreeramareddy et al., 2014). 

In SEA, smokeless tobacco is often used as one of the ingredients of betel quid, a mixture 

of substances that contain areca nut, slaked lime, and other condiments (Boucher & 

Mannan, 2002). Notably, areca nut itself is a carcinogen (Secretan et al., 2009); the use 

of betel quid with or without smokeless tobacco is highly associated with oral potentially 

malignant disorders (OPMD) and oral cancer of the population in SEA (Kampangsri et 

al., 2013; Loyha et al., 2012). A recent report stated that 19.7% of women in Cambodia 

indulged in betel quid chewing and this was the most potent risk factor associated with 

OPMD with a relative risk of 6.7 (Chher et al., 2018). 

 

2.1.3 Prognosis and Treatment of Oral Cancer 

The prognosis for HNSCC is highly heterogeneous, with an average 5-year survival 

rate of around 60% (Marur & Forastiere, 2016). For patients who experience 

locoregionally recurrent or metastatic oral cancer, median survival is 8-10 months 

(Zandberg & Strome, 2014). In most cases, therapeutic options for HNSCC patients 

consist of either radical surgery, surgery plus neoadjuvant or postoperative radiation 

therapy, and/or chemotherapy and targeted therapies (Leemans et al., 2011). According 

to the National Comprehensive Cancer Network (NCCN) guidelines for oral cancer 

treatment, if a tumour is restricted to a limited region, surgery and radiation therapy would 

be the treatments of choice. In the event the cancer cells have spread into lymph nodes 

and distant parts of the body, a combination of therapies would be applied depending on 

the extent of the disease. This could include an addition of radiation and/or chemotherapy 

(cisplatin) following surgery. In the recurrent and metastatic setting, targeted therapy 
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(cetuximab), and immunotherapy (pembrolizumab and nivolumab) are also indicated 

(Bauml et al., 2017; Ferris et al., 2016; Vermorken et al., 2007). 

The chemotherapeutic agents currently approved by the US Food and Drug 

Administration (FDA) for the treatment of HNSCC include cisplatin, methotrexate, 5-

fluorouracil (5-FU), bleomycin, and docetaxel. The treatment choice of either 

concomitant platinum-based chemoradiotherapy (CRT) or surgery followed by adjuvant 

radiation or chemoradiation is the current standard of care for patients with locally 

advanced (LA) HNSCC. For patients with recurrent and/or metastatic (R/M) HNSCC, 

platinum-based chemotherapy plus 5-FU has a response rate (RR) of 30-40% and median 

survival of 6-9 months (Cohen et al., 2004). 

In contrast to standard cytotoxic chemotherapies, the research community is aiming to 

develop molecular-base targeted therapies that could offer more effective targeting of 

tumour cells based on the molecular mechanism driving the cancer. This was the basis 

for the development of the EGFR-targeted therapy cetuximab. In 2006, the US FDA 

approved cetuximab as a monoclonal antibody that inhibits epidermal growth factor 

receptor (EGFR) signaling. Cetuximab is approved to be used in combination with 

radiation for LA disease, in combination with platinum-based chemotherapy and 5-FU 

for first-line treatment of R/M HNSCC and as a monotherapy for R/M disease after 

patients fail platinum-based chemotherapy (Bonner et al., 2006; Vermorken et al., 2008; 

Vermorken et al., 2007). Cetuximab exerts anti-tumour activity by inhibiting cell 

proliferation, triggering antibody-dependent cell-mediated cytotoxicity and increasing 

the cytotoxic effects of chemotherapy and radiotherapy (Ang et al., 2002; Herbst & Hong, 

2002; Needle, 2002; Schneider-Merck et al., 2010). However, HNSCC tumours display 

heterogeneity in drug response, with only 10% – 20% of patients reportedly having a 

favourable response to cetuximab as a monotherapy (Vermorken et al., 2007). 
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Nonetheless, better clinical outcome was observed when cetuximab was used in 

combination with platinum-fluorouracil-based chemotherapy or radiotherapy (Bonner et 

al., 2006; Vermorken et al., 2008). For instance, the addition of cetuximab to platinum-

fluorouracil chemotherapy improved overall survival (increased from 20% to 36%) when 

given as first-line treatment in patients with R/M HNSCC (Vermorken et al., 2008). 

 

2.1.4 Immunotherapy of Oral Cancer 

The better understanding of molecular targets of HNSCC, without doubt, has helped 

us to tailor better management strategies for HNSCC patients. Over the past years, one of 

the significant advancements in the field of cancer research is the success of immuno-

oncology as a promising strategy for cancer therapy. The relevance of the PD-1: PD-L1 

checkpoint in cancer immunity is highlighted by reports which demonstrate that blockade 

of PD-1 or PD-L1 by specific monoclonal antibodies can reverse the anergic state of 

tumour-specific T cells and thereby enhance the anti-tumour immunity (Dong et al., 2002; 

Strome et al., 2003). As a result, immune checkpoint inhibitors such as pembrolizumab 

or nivolumab, which target the interaction between programmed death receptor 

1/programmed death ligand 1 (PD-1/PDL-1) and PDL-2, have been approved for the 

treatment of various malignancies (Bauml et al., 2017; Ferris et al., 2016; Mehra et al., 

2018).  

Following the failure of platinum-based chemotherapy, nivolumab, a monoclonal 

antibody that inhibits the interaction of the immune checkpoint receptor PD-1 with its 

ligands PD-L1 and PD-L2, has been approved as a single-agent in recurrent HNSCC 

patients. Ferris et al. (2016) in their phase III trial reported that an overall response rate 

of 13.3% (95% confidence interval (CI): [9.3%, 18.3%]) was observed in the nivolumab 
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treatment group (n = 32 patients) versus 5.8% (95% CI: [2.4%, 11.6%]) in the standard-

therapy group (n = 7) (CheckMate 141 ClinicalTrials.gov Identifier: NCT02105636). 

Pembrolizumab, a monoclonal antibody with the same target as nivolumab, was also  

approved as a monotherapy in R/M HNSCC following the failure of platinum-based 

chemotherapy (Bauml et al., 2017; Seiwert et al., 2016; Sheth & Weiss, 2018). The 

evaluation of the efficacy of pembrolizumab on 171 HNSCC patients (phase II) by Bauml 

et al. (2017), reported an overall response rate of 16% (95% CI: [11%, 23%]). One patient 

achieved a complete response while 27 patients achieved partial response (KEYNOTE-

055 ClinicalTrials.gov Identifier: NCT02255097). 

 

2.2 Genomic Landscape of Cancer Cells 

The few examples stated above show that cancer cells indeed display a broad spectrum 

of genetic alterations that include gene arrangements, point mutations, and gene 

amplification (Vargas & Harris, 2016). As defined by the National Cancer Institute (NCI), 

biomarkers are substances that are produced by cancer or by other cells of the body in 

response to cancer or certain benign (noncancerous) conditions. Most biomarkers are 

expressed at much higher levels in cancerous conditions as compared to the healthy cells. 

Cancer biomarkers are used to help detect, diagnose, and manage some types of cancer. 

While it is true that targeted drugs work best when there is a biomarker, there are only a 

handful of cancer types such as breast, colorectal, leukemia, melanoma, and lung that 

have approved cancer biomarkers. Most cancers up to now do not have any approved and 

actionable biomarkers, and HNSCC is one of the cancers that has not received approved 

biomarkers by the US FDA. The current list of approved cancer biomarkers can be 

accessed through the NCI webpage: https://www.cancer.gov/about-cancer/diagnosis-

staging/diagnosis/tumor-markers-fact-sheet#q1. 
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More recently, with the advent of next generation sequencing, the genomics of cancers 

have been documented to unprecedented depth. For instance, the amplification of CCND1 

(cyclin D1) or the loss of SMAD4 was shown to be associated with sensitivity to multiple 

EGFR-family inhibitors, including lapatinib and BIBW2992 (Garnett et al., 2012). 

Pharmacogenomics studies also identified elevated expression of the AHR gene (aryl 

hydrocarbon receptor) to be strongly correlated with sensitivity to the MEK inhibitor PD-

0325901 in NRAS-mutant cancer cell lines (CCL), leading to the hypothesis that enhanced 

sensitivity of NRAS-mutant cell lines to MEK inhibitors might relate to a coexistent 

dependency on AHR function (Barretina et al., 2012). These data give rise to a slightly 

different context of identifying targeted therapies and their corresponding biomarkers 

where genetic patterns or gene expression signatures other than the genetic targets could 

be useful for predicting response to targeted therapies. 

 

2.3 Gene Expression Patterns as an Alternative Drug Response Indicator 

Besides examining the potential of using specific molecular targets as therapeutic 

targets, cancer researchers are turning attention to evaluate signatures of gene expression 

for their ability to help determine a patient’s prognosis or response to therapy. For 

example, results of the NCI-sponsored Trial Assigning IndividuaLized Options for 

Treatment (Rx), or TAILORx (ClinicalTrials.gov Identifier: NCT00310180) showed that 

for women recently diagnosed with lymph node-negative, hormone receptor-positive, 

HER2-negative breast cancer who had undergone surgery, those with the lowest 21-gene 

(Oncotype Dx®) recurrence scores had low recurrence rates when given hormone therapy 

alone and thus can be spared chemotherapy (Sparano et al., 2015). 

In fact, when examining the different types of molecular features including copy-

number variation, gene expression, and whole exome sequencing, researchers reported 
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that gene expression has the best predictive power for drug response (Costello et al., 

2014). This conclusion was based on the 44 drug sensitivity prediction algorithms 

submitted by data scientists worldwide where mRNA gene expression microarrays were 

found to carry the most significant weight in their statistical models in predicting the 

sensitivity of 28 drugs on 53 breast CCL. 

Indeed, large-scale human CCL pharmacogenomics studies such as GDSC reported 

the same observation. By using the HSP90 inhibitor 17-AAG as an example, they found 

that the sets of genes overexpressed (up-regulated genes) in the sensitive CCL are down-

regulated in the resistant CCL, and vice versa (Garnett et al., 2012) (Figure 2.3). These 

findings from large-scale pharmacogenomics exemplify the opportunity to predict drug 

response based on the gene expression signature. 

 

Figure 2.3: Heat map of highly significant genes associated with sensitivity and resistance 
to 17-AAG (HSP90 inhibitor). Cell line names are shown at the top of the heat map, 
followed by expression features (blue corresponds to lower expression, red for higher 
expression). To the right of the heat map is the list of genes that are associated with the 
response to 17-AAG. Bars in purple indicate expression features associated with 
sensitivity, and bars in yellow indicate features associated with resistance. In total, there 
are more than 250 drug sensitivity profiles currently hosted in GDSC web portal, with 
which each drug has its distinct gene expression signatures. Retrieved and adapted from 
(Garnett et al., 2012). 
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One of the critical components to launch a clinical trial is to have an actionable 

molecular target to evaluate, such as oncogenic mutation of an essential gene. One such 

clinical trial success story concerns the patients with BRAF V600E mutation-positive 

metastatic melanoma that showed a response rate of approximately 50% to vemurafenib 

(BRAF inhibitor) (Chapman et al., 2011). In other words, the systematic collections of the 

patients’ molecular profiles need to be in place before launching a clinical trial. 

Nonetheless, in the context of HNSCC, using gene expression signatures to predict drug 

response could be a more viable approach. This is mainly because thus far there are no 

apparent oncogenic mutations (except for PIK3CA) reported in HNSCC (Qiu et al., 2006) 

and the majority of the mutations reported in HNSCC are tumour suppressor mutations 

such as TP53 and NOTCH (Cancer Genome Atlas Network, 2015) which are difficult to 

target therapeutically. This is because mutations will cause the inactivation or loss of 

normal cellular regulatory of tumour suppressor genes, and strategies to restore and 

maintain the functional copy of tumour suppressor genes to comparable level as in the 

normal cells have been proven to be technically challenging (Guo et al., 2014). 

To facilitate genomics-driven drug response prediction, a key step is to set up a unified 

data repository that could host all available genomics data for HNSCC, in terms of the 

transcriptome, copy-number variation, and mutations data. These valuable genomic data 

could be shared amongst HNSCC researchers, thereby facilitating new biological 

discoveries as well as to promote quicker turnaround time for new treatment discoveries 

for HNSCC patients. In order to have an efficient way to share genomics information, 

one can take a lesson from the cBioPortal web portal set up by the Memorial Sloan-

Kettering Cancer Center, USA. Five other multi-institutional teams, consisting of the 

Dana Farber Cancer Institute, Princess Margaret Cancer Centre in Toronto, Children's 

Hospital of Philadelphia, The Hyve in the Netherlands, and Bilkent University in Ankara, 

Turkey are also involved in setting up this comprehensive public cancer genomics 
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database. The cBioPortal for Cancer Genomics (http://www.cbioportal.org/) is a web 

resource to explore, visualise, and analyse multidimensional cancer genomics data 

(Cerami et al., 2012; Gao et al., 2013). The cBioPortal currently provides access to 

genomic data from more than 10 000 tumour samples across 32 cancer types (as of April 

8, 2019). By lowering the barriers of accessing complex genomics data, cBioPortal allows 

cancer researchers to translate large-scale cancer genomics datasets into biological 

insights and clinical applications. 

To provide gene signatures as a means to predict drug response, a dedicated web 

resource for HNSCC cell line genomics data called GENIPAC will be set up as a research 

outcome of my Ph.D. study. The genomic information, particularly gene expression 

profiles, will be used to predict drugs that are efficacious against HNSCC. A detailed 

implementation of the GENIPAC database is given in Section 3.1. 

 

2.4 The Connectivity Map Concept 

One of the advancements in pharmacogenomics studies is the development of the 

Connectivity Map (CMap) (Lamb et al., 2006). The CMap concept is based on the 

observation that gene expression can be measured accurately and has shown promise as 

a “universal language” in disease characterisation and prognostication. Generally, the 

computational approach that utilised the CMap concept as the functional look-up table 

consists of three main components: a drug-sensitivity or drug perturbed gene expression 

database, a set of gene signatures given by users (a query), and a gene signature similarity 

scoring algorithm that correlates the user-defined gene signatures to the gene expression 

profiles in the reference database. 
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The CMap database contains microarray-based gene expression profiles from cultured 

human cancer cell cells treated using a wide range of experimentally and clinically-used 

small molecules. Its goal is to create an extensive public database that collects as many 

genomics and drugs signatures as possible, where one then can query the CMap data using 

the web-based gene signature similarity scoring algorithm by inputting a gene expression 

profile of interest. The outcome of this similarity search is a list of ranked CMap drugs. 

A drug sensitivity prediction tool called DeSigN that leveraged on the concept of CMap 

will be built in this thesis. The DeSigN workflow will be described in detail in Section 

3.2. 

 

2.4.1 The CMap Datasets 

The inception of first-generation CMap (Build 1) saw a total of 164 distinct small-

molecule perturbagens profiled on five CCL, i.e., MCF7, ssMCF7 (breast), PC3 

(prostate), HL60 (leukemia), and SKMEL5 (melanoma). To widen the coverage of the 

gene expression profiles, these cell lines were screened on 42 different concentrations 

(0.01 nM – 10 µM) at two time points: six, and 12 hours. A treatment “instance” was 

defined relative to three control treatments: DMSO, ethanol, or complete medium. These 

data were collected using Affymetrix GeneChip microarrays, HG-U133A (22 277 probe 

sets) and HT_HG-U133A (22 283 probe sets) and were preprocessed using the standard 

MAS 5.0 algorithm for microarrays. In total, 564 gene expression profiles were produced, 

representing 453 individual instances (i.e., one treatment-vehicle pair). 

The updated version of CMap (Build 2) contains 6100 instances of unique treatment-

control pairs, where treatment constitutes a selection of 1309 drugs, 156 different 

concentrations (0.01 nM – 10 µM), two time points (six hours and 12 hours) and five cell 

lines (HL60, MCF7, ssMCF7, PC3, and SKMEL5) against vehicle controls (either 
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DMSO, ethanol or complete medium) for a parallel series of analysis. On top of the two 

Affymetrix GeneChip microarrays used previously in Build 1, one additional Affymetrix 

GeneChip microarray, HT_HG-U133A_EA (22 944 probe sets) was used to process the 

data in this updated CMap Build 2 version. 

In CMap, a non-parametric, rank-based gene signature similarity scoring strategy 

based on the Kolmogorov-Smirnov (KS) statistic (Smirnov, 1939) was devised to detect 

similarities between the query signatures and the drug signatures of the reference gene 

expression profiles in the CMap dataset (Lamb et al., 2006). A query signature is any list 

of rank-ordered genes whose expression is correlated with a biological state of interest, 

carrying a sign that indicates whether it is up-regulated or down-regulated. Examples 

could be genes correlated with different time points of treatment (72 hours versus 24 

hours) or enriched in specific biological pathways. The reference gene expression profiles 

in the CMap dataset are also represented in a non-parametric fashion. The genes on the 

array are sorted into decreasing order according to their differential expression values 

relative to the vehicle control, converted to a rank vector separately for each instance. 

The query signature is then compared to each list of rank-ordered genes in the 

reference profile to determine whether up-regulated query genes tend to appear near the 

top of the list and down-regulated query genes near the bottom (“positive connectivity”) 

or vice versa (“negative connectivity”), yielding a connectivity score (CS) ranging from 

-1 to +1. All instances in the database are then ranked according to their CS; those at the 

top are positively correlated to the query signatures, and those at the bottom are negatively 

correlated (Figure 2.4). The CMap Build 2 can be freely accessed at 

https://portals.broadinstitute.org/cmap/. 
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Figure 2.4: The CMap workflow. Users provide a pair of up-regulated and down-
regulated genes (A) to query the CMap reference database (B). A gene signature 
similarity analysis would then be carried out using a gene signature similarity scoring 
algorithm to compute the gene expression similarity between the user-defined gene 
signatures and the reference profile (C). The outcome is a ranked list of inhibitors, with a 
CS ranging between 1 (maximal efficacy) and -1 (minimal efficacy) (D). 

 

2.4.2 Application of CMap Datasets 

Using CMap as the reference database, Jahchan et al. (2013) identified the tricyclic 

antidepressants (TCA) inhibitors as potent inducers of cell death in small cell lung cancer 

(SCLC) cells. They showed that treatment with two such TCA inhibitors: imipramine and 

promethazine disrupted the autocrine survival signals involving neurotransmitters and 

their G protein-coupled receptors. The potential of repurposing TCA inhibitors, as seen 

for treating SCLC, was also observed in other neuroendocrine tumours, such as Merkel 

cell carcinoma, and neuroblastoma tumour cells, thus highlighting the importance of 

autocrine mechanisms in promoting the growth of neuroendocrine tumour cells. Their 

findings led to the initiation of a phase IIA clinical trial, assessing the efficacy of the TCA 

inhibitor desipramine in SCLC and other high-grade neuroendocrine tumours 

(ClinicalTrials.gov Identifier: NCT01719861). 

In combating epithelial ovarian cancer (EOC) through the identification of novel 

therapeutics, Raghavan et al. (2016) used the EOC gene expression signatures derived 

from The Cancer Genome Atlas (TCGA) (n = 407) and Mayo Clinic (n = 326) participants 

to query CMap. They identified 11 drugs to have potential efficacy on EOC. Notably, 
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five of those drugs (mitoxantrone, podophyllotoxin, wortmannin, doxorubicin, and 17-

AAG) were known a priori to be cytotoxic to the EOC cells. A significant reduction in 

cell viability was observed upon treatment of these five drugs on a set of 10 EOC cell 

lines following 72 hours of drug treatment. Therefore, it will be interesting to know how 

the remaining short-listed six drugs would fare when tested in vitro. 

In the context of HNSCC, Wei et al. (2019) used 401 differentially expressed genes 

(201 up-regulated and 200 down-regulated genes) obtained from two public databases: 

TCGA and Genotype-Tissue Expression Project (GTEx) to query the CMap and 

discovered that most of these genes are highly dysregulated in cell cycle and p53 signaling 

pathway. A further protein-protein interactions (PPI) analysis found that these highly 

dysregulated genes form two hub genes: PCNA and CCND1. In total, 22 drugs 

corresponding to the two pathways were chosen as the candidate drugs for HNSCC, and 

seven of these drugs had no previous indication for cancer-combating properties. 

Subsequent molecule docking analysis revealed that two drugs: bepridil and MG-262, 

have a strong binding affinity with PCNA, suggesting their possible roles in perturbing 

the development of HNSCC through targeting the PCNA gene. 

In addition to the CMap reference database, several public pharmacogenomic 

databases that incorporate high-throughput drug testing on several orders of magnitude 

more cell lines as compared to CMap have started to emerge more recently. In this thesis, 

the Genomics of Drug Sensitivity (GDSC) study will be the key pharmacogenomic 

database used to develop the drug repurposing tool meant for predicting potential drugs 

for effective treatment of oral cancers. 
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2.5 The Pharmacogenomic Datasets 

2.5.1 Genomics of Drug Sensitivity in Cancer 

The Genomics of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/) is one of the most extensive public resources for 

information on drug sensitivity in cancer cells and molecular markers of drug response. 

In 2012, GDSC launched their first version of the datasets, containing drug sensitivity 

data for almost 75 000 experiments, describing the response of 138 anticancer drugs 

across almost 700 CCL (Garnett et al., 2012; Yang et al., 2013). GDSC provides unique 

resources incorporating enormous drug sensitivity and genomic datasets to facilitate the 

discovery of new therapeutic targets for cancer therapies. The collection of compounds 

available in GDSC include cytotoxic chemotherapeutics as well as targeted therapeutics 

from commercial sources, academic collaborations, and the biotechnology and 

pharmaceutical industries. 

The updated version (2016) of the GDSC currently has more than a thousand CCL 

genomics datasets (Iorio et al., 2016). The genomic information available for each cell 

line includes somatic mutation of 75 cancer genes, genome-wide gene copy number for 

amplification and deletion, targeted screening for seven gene rearrangement, markers of 

microsatellite instability, tissue type and transcriptional data. Various statistical 

approaches, such as multivariate analysis of variance (MANOVA) and elastic net 

regression, are used to correlate drug sensitivity with genomic alterations in cancer. 

The number of cell lines available in GDSC varies according to different tissue types 

(Table 2.2). For example, the lung has the highest number of cell lines (n = 215), while 

the thyroid has only 17 cell lines currently hosted in GDSC. Meanwhile, HNSCC, 

forming part of the aerodigestive tract, has 42 cell lines in GDSC. Due to its large number 

of cell lines as well as drug sensitivity data, GDSC datasets were used as the reference 
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profile in this thesis for drug sensitivity prediction. The detailed implementation of GDSC 

datasets as the drug sensitivity reference database will be described in Section 3.2.1. 

Table 2.2: Breakdown of the number of cell lines based on tissue types in GDSC 
(version 2016). 

Tissue type Number of cell lines 
Lung 215 
Blood 182 
Urogenital system 114 
Digestive system 107 
Nervous system 92 
Aerodigestive tract 82 
Skin 67 
Breast 53 
Bone 44 
Kidney 35 
Pancreas 32 
Soft tissue 21 
Thyroid 17 

 

There is, however, one pitfall with regards to GDSC drug sensitivity datasets that one 

must take note. In many cases, the IC50 values of the tested drugs could not be computed 

for all cell lines, as the drug concentration necessary to inhibit 50% of the cell’s growth 

was not reached. As depicted in Figure 2.5, with the screening concentration of 

palbociclib between 0.0156 µM and 4 µM, only about 43% (n = 367) of the 852 cell lines 

have IC50 values that fall within this screening concentration. For the rest of the 485 cell 

lines, a Bayesian sigmoid model is used to extrapolate their IC50 values.  Univ
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Figure 2.5: The IC50 values of the cytostatic drug palbociclib treated on 852 cell lines. 
The screening concentration ranges from 0.0156 µM (minimal) to 4 µM (maximal). The 
green dots represent cell lines with IC50 values that fall within the tested screening 
concentration, while red dots represent cell lines with extrapolated IC50 values estimated 
using the Bayesian sigmoid model. Retrieved and adapted from GDSC web portal: 
https://www.cancerrxgene.org/. 

 

2.5.1.1 Application of GDSC Datasets 

Bladder cancer remains one of the most deadly cancer diseases, with roughly 79 000 

new cancer cases and 17 000 cancer-related deaths reported in the United States in 2017 

(Siegel et al., 2017). Adopting the idea that biomarkers of therapeutic response developed 

in one cancer type can be effectively applied across multiple cancer types (Barretina et 

al., 2012; Garnett et al., 2012; Goodspeed et al., 2016), Goodspeed et al. (2018) first 

derived a novel 67-gene signature from 68 colorectal cancer patients that was associated 

with sensitivity response to several EGFR inhibitors. Using this 67-gene signature that is 

known for association with response to cetuximab (EGFR monotherapy) in colorectal 

cancer, they successfully identify a subset of bladder CCL (n = 5) that harbour the same 

gene expression signature. Indeed, these subset of bladder CCL were later found out to 

be sensitive to afatinib (EGFR/HER2 tyrosine kinase inhibitor) according to published 

IC50 values provided in GDSC (Goodspeed et al., 2018). Additionally, using the GDSC 

datasets, they found that for those bladder cell lines that were resistant to EGFR inhibitors, 
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they are sensitive to PI3K and mTOR inhibitors such as temsirolimus. Notably, the 

concept of leveraging on biomarkers of response from other cancer types was also 

adopted by the NCI-MATCH clinical trials, which use a panel of single genomic 

biomarkers to identify therapies for cancer patients independent of cancer type 

(ClinicalTrials.gov Identifier: NCT02465060). 

In the context of HNSCC, De Cecco et al. (2015) successfully clustered the 46 upper 

aerodigestive tract cell lines available in GDSC into six molecular subtypes information 

based on their study from a cohort of 527 HNSCC samples (Table 2.3). They further 

evaluated the drug sensitivity profiles of HNSCC cell lines belonging to different clusters 

towards the drugs available in GDSC. Indeed, they found that lines in different subtypes 

have a statistically significant difference in drug sensitivity profile: paclitaxel for a subset 

of cell lines enriched for HPV-like pathway, Z-LLNle-CHO for those enriched for 

mesenchymal pathway, afatinib for hypoxia-associated cell lines, nutlin3a for defense 

response and immunoreactive related cell lines, and rapamycin for the cell lines enriched 

in classical pathway, respectively. 

Table 2.3: Characteristic of HNSCC subtypes (n = 527) identified by De Cecco et al. 
(2015). 

HNSCC subtypes Functional pathways 
CL1 HPV-like 
CL2 Mesenchymal 
CL3 Hypoxia-associated 
CL4 Defense response 
CL5 Classical 
CL6 Immunoreactive 
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2.5.2 The Ushijima Database 

Contrary to the CMap database that profiles a thousand small molecule inhibitors on 

human CCL, but not necessarily restricted to anticancer compounds, Ushijima et al. 

(2013) developed a public gene expression database that focuses on cancer drugs. The 

database contains 83 anticancer compounds including 25 clinically used anticancer agents 

tested on five human CCL: H2228 (lung), HT29 (colon), K562 (leukemia), PC-9 (lung), 

and SKOV3 (ovary). 

Ushijima et al. (2013) obtained the gene expression data by treating these five human 

CCL with the anticancer compounds at 11 concentrations (10 nm – 10mM) for six or 16 

hours, generating a total of 129 treated samples. Gene expression changes were collected 

using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Unlike CMap gene 

expression data which were derived mainly from MCF7 (breast) or PC3 (prostate) cells, 

the majority of Ushijima gene expression datasets (107 out of 129 treatment samples; 

83%) were acquired explicitly using the human colon cancer HT-29 cells. One unique 

feature about HT-29 cell lines is that it is a TP53 mutant line (COSMIC GRCh38 Cell 

Line v87). Thus, the Ushijima database expands the coverage of the drug-associated gene 

expression profiles already available in CMap. 

There are currently 22 chemotherapy drug-treated gene expression profiles hosted in 

the Ushijima database, including some of the common chemotherapy drugs such as 5-FU, 

cisplatin, docetaxel, and mitomycin that are not in the CMap database, thus making this 

database unique and an essential resource for cancer research. This is because although 

chemotherapy drugs are the mainstay of cancer treatment, which chemotherapy drugs 

work the best for each cancer patient remains challenging to predict. The need to have a 

tool that can guide the correct choice of chemotherapy drugs highlights the rationale of 

using gene expression to predict the efficacy of chemotherapy drug candidates, as 
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chemotherapy remains the primary treatment for a recurrent and metastatic disease such 

as oral cancer. The Ushijima drug-treatment gene expression database can be freely 

accessible at http://scads.jfcr.or.jp/db/cs/. 

 

2.5.3 Other Pharmacogenomic Datasets 

2.5.3.1 Library of Integrated Network-based Cellular Signatures 

The LINCS project is a National Institutes of Health Common Fund program that 

catalogues how human cells globally respond to chemical, genetic, and disease 

perturbations. Compared to CMap that profiles gene expression of CCL using 

microarrays upon treatment of compounds, the LINCS project additionally collects the 

genetic manipulation data of knocking-down genes by shRNA or over-expressing genes 

by cDNA. One unique feature about the LINCS project is that it constitutes an ongoing 

endeavour, which means the data in the LINCS project will be updated as and when new 

data are available. New data are still being generated to date (Musa et al., 2018). As of 

2018, the LINCS program has generated almost 1.3 million profiles for over 20 000 drugs 

and 7494 genetic perturbations (e.g., single gene knockdown or overexpression assays). 

In contrast to CMap which uses only five cell lines, the LINCS dataset currently has data 

for over 70 different human cell types, including meta information about the experimental 

conditions and cell lines (Duan et al., 2014; Vidović et al., 2014). 

Under the Common Fund programme, the same group of researchers who initiated the 

original CMap at the Broad Institute developed the third generation of CMap using a new 

technology called the L1000 platform. The L1000 technology measures only the 

expression of 978 genes (hence termed the ‘L1000 landmark genes’) (Subramanian et al., 

2017). The expression value of the remaining transcriptome, each containing 

approximately 22 000 genes, are estimated by a model built from the processing of 
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thousands of gene expression datasets from the Gene Expression Omnibus (GEO) (Peck 

et al., 2006). The rationale for using this computational modelling approach is that gene 

expression data contain a high degree of statistical dependencies between measured 

variables (mRNAs). The selected 978 landmark genes could capture most of the 

information contained within the entire transcriptome (Peck et al., 2006). Users can query, 

browse, and interrogate this third generation of CMap at the CLUE website 

(https://clue.io/). 

As a whole, the L1000 technology is relatively newer compared to CMap. In the 

context of HNSCC, no studies thus far have used the L1000 technology to find novel 

biological discoveries. 

 

2.5.3.2 NCI-60 Panel 

Drug screening approach using a panel of 60 human CCL pioneered by the National 

Cancer Institute (hence the NCI-60 panel) represents the earliest endeavour in using 

human CCL to screen compounds for novel compounds with tumour-killing properties 

(Monks et al., 1991; Shoemaker, 2006). These cell lines (consisting of brain, colon, 

leukemia, lung, melanoma, ovarian, renal, breast, and prostate cancer) were molecularly-

characterised to identify biomarkers of response, thus providing the first resource for 

cancer pharmacogenomics. 

Some concerns about the limited number of lines available for any given cancer (6-7 

lines for each cancer type) were raised for the NCI-60 panel. Wilding and Bodmer (2016) 

pointed out in their review paper that due to the molecular heterogeneity with cancers, 

given such sample sizes, there will not be enough statistical power to detect correlations 

with even a single key relatively common difference. The successful use of cell lines for 

evaluating drug responses concerning tumour properties depends critically on the use of 
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substantial cell lines for adequate statistical power. Because of the limited number of cell 

lines hampers the full potential of NCI-60 panel, more recent large-scale 

pharmacogenomics screens, such as the Genomics of Drug Sensitivity in Cancer (GDSC), 

Cancer Cell Line Encyclopedia (CCLE), and Cancer Therapeutics Response Portal 

(CTRP), that contain several orders of magnitude more cell lines have since gained much 

popularity. 

 

2.5.3.3 Cancer Cell Line Encyclopedia and Cancer Therapeutics Response Portal 

The Cancer Cell Line Encyclopedia (CCLE) (https://portals.broadinstitute.org/ccle) is 

a public pharmacogenomics database containing genomic data from 947 human CCL. 

These data cover microarray and RNA-seq gene expression, chromosome copy number 

variation, DNA methylation, and Achilles shRNA knockdown (Barretina et al., 2012). 

Using the pharmacological profiles of 504 of the cell lines over 24 anticancer drugs in the 

CCLE database, Barretina et al. (2012) successfully applied naive Bayes and elastic net 

regression to predict the drug sensitivity profiles of these 504 cell lines. As a proof of 

principle for their approach, they presented plausible correlations of drug activity with 

aberrations in particular genes such as IGF1R, AHR, NRAS, and SLFN11. All CCLE-

associated data are archived in the Gene Expression Omnibus (GEO) (Accession number: 

GSE36139). 

The Cancer Therapeutics Response Portal (CTRP) 

(https://portals.broadinstitute.org/ctrp.v2.1/) is another public pharmacogenomics 

database that enables users to correlate genetic features to sensitivity in specific tissue 

lineages (Basu et al., 2013). Notably, CTRP was set up to complement drug response data 

hosted in CCLE that has a relatively smaller amount of drugs (n = 24).  Although CTRP 
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does not provide gene expression profile data, it contains the drug response data for cell 

lines that have been characterised previously by CCLE. 

In Version 1, CTRP measured the sensitivity of 242 genomically-characterised CCL 

to 185 compounds that target many protein molecules, uncovering (i) genetic 

dependencies of these CCL as a result of specific cancer-genomic alterations such as the 

somatic mutations or translocation; and (ii) small-molecules that target these genetic 

dependencies. For example, using CTRP datasets, Basu et al. (2013) observed that EGFR 

mutant lung CCL are highly sensitive to neratinib - a dual ERBB2/EGFR inhibitor. A 

phase II trial evaluating the safety of neratinib in advanced non-small cell lung cancer 

patients has just recently concluded in 2018 (ClinicalTrials.gov Identifier: 

NCT00266877). 

Moving on to Version 2, CTRP generated a set of 481 small-molecule probes and 

drugs that collectively modulate a broad array of cellular processes. The sensitivity of 860 

CCL to these compounds was measured, and the association studies to connect the 

sensitivity of these 860 CCL to cancer features such as mutations, gene expression, copy-

number variation, and lineage were carried out. CTRP performs statistics-based 

enrichment analyses that combined rank-based and parametric tests to identify genetic 

alterations and cellular features that are significantly enriched among sensitive (AUC < 

3.5) or unresponsive (AUC > 5.5) CCL. 

With this wealth of large-scale drug sensitivity studies, we are now poised to utilise 

these pharmacogenomic datasets to accelerate the identification of molecular features in 

cancers that are associated with sensitivity to specific drugs. To do this, computational 

algorithms that could mine and integrate both gene expression changes, as well as 

associated drug sensitivity response, are highly sought after. One prerequisite component 
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to successfully carrying out such computational drug discovery approaches is to have 

effective gene signature similarity scoring algorithms. 

 

2.6 Gene Signature Similarity Scoring Algorithms 

To date, several computational algorithms for detecting gene signature similarity have 

been developed to make use of the perturbagen-induced signatures information contained 

in CMap. Here, six commonly-used gene signature similarity scoring algorithms were 

briefly introduced. These are (i) Kolmogorov-Smirnov (KS) statistic (Lamb et al., 2006); 

(ii) Weighted Connectivity Score (Subramanian et al., 2017); (iii) statistically significant 

Connectivity Map unordered (Zhang & Gant, 2008); (iv) statistically significant 

Connectivity Map ordered (Zhang & Gant, 2008); (v) eXtreme Sum (Cheng et al., 2014); 

and (vi) eXtreme Cosine (Cheng et al., 2013). Since few systematic evaluations of the 

performance of these gene signature similarity scoring algorithms are available (Cheng 

et al., 2014; Musa et al., 2017), it is necessary to evaluate the strengths and weaknesses 

of these six methods in this thesis. Some of the commonly-used performance evaluation 

metrics such as the positive predictive value, and enrichment analysis of drugs with 

similar mechanism of action could be useful for evaluating the performance of these gene 

signature similarity scoring algorithms (Powers, 2011). 

 

2.6.1 Kolmogorov-Smirnov Statistic 

The KS statistic is used for testing whether the distribution of observed data come from 

a hypothesised distribution, or whether the distributions of two sets of samples are the 

same (Smirnov, 1939). For a one-sample case, it is the supremum of the distance between 

the empirical cumulative distribution function (ECDF) and a hypothesised distribution 

function. In the two-sample case, the KS statistic is the supremum of the distance between 
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the ECDF of the two samples. Figure 2.6 shows an example of the KS statistic obtained 

from comparing the ECDF of two standard normal distributions. Here, the KS statistic is 

given by the largest absolute deviation between the two ECDF (0.26, as indicated by the 

red arrow). 

 

Figure 2.6: Empirical cumulative distribution function (ECDF) of two randomly 
generated standard normal distribution samples. The maximum height between the two 
ECDF is 0.26 (indicated by the distance between the red arrows). 

 

The concept of the KS statistic is manifested in the use of the enrichment score (ES) 

in Gene Set Enrichment Analysis (GSEA; Subramanian et al., 2005). The ES is a KS-like 

statistic in the sense that it is calculated as the maximum deviation of the ES function 

from 0. Figure 2.7 gives an example of output from the GSEA. Note the changes to the 

ES as we walk down the ordered (according to some statistics such as the t-statistic) list 

of genes. 
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Figure 2.7: An example of ES output from GSEA. The red arrowed bar indicates the 
maximum deviation of the ES function from the flat line at 0. 

 

To put things into the perspective of CMap, the KS statistic is used to perform gene 

signature similarity analysis of the up-regulated and down-regulated query genes to the 

compound-associated gene expression profile in CMap. Two KS values would be 

generated, one each for up-regulated (KSup) and down-regulated (KSdown) genes. The 

connectivity score (CS) is calculated by computing the difference between KSup and 

KSdown, with the exception that in the event both KSup and KSdown have the same algebraic 

sign, then the CS takes on the zero value. See Section 3.2.3 for detailed implementation 

of KS statistic in terms of gene signature similarity analysis. 
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2.6.2 Weighted Connectivity Score 

The weighted connectivity score (WTCS; Subramanian et al., 2017) uses a weighted 

version of ES, a KS-like statistic described previously in Lamb et al. (2006). WTCS is a 

composite, bi-directional version of ES. The ES values for up-regulated and down-

regulated genes would be computed separately for a given set of query gene set according 

to the ranked (in descending order) fold change values in the reference database. The 

different feature that WTCS has compared to KS statistics is that it does not take into 

consideration the ranking of the query gene signature. Instead, it calculates the ES of the 

instance in the CMap reference database that matches the query genes given by the users. 

By taking the normalised ES score, the WTCS values range between +1 and -1 

(normalised using the absolute largest and smallest WTCS for individual positive and 

negative values, respectively). Signatures that are positively / negatively correlated will 

have positive  / negative WTCS respectively. Those that are uncorrelated will have nearly 

zero WTCS. WTCS is zero when both ES values for up-regulated and down-regulated 

genes have the same algebraic sign. WTCS is implemented as the gene signature 

similarity scoring metric in the third generation of CMap using the L1000 platform 

(Subramanian et al., 2017). See Section 3.4.2.2 for details implementation of WTCS for 

gene signature similarity analysis. 

 

2.6.3 eXtreme Sum and eXtreme Cosine 

eXtreme Sum (XSum) (Cheng et al., 2014) and eXtreme Cosine (XCos) (Cheng et al., 

2013) use differentially up-regulated and down-regulated genes to query the reference 

database. In contrast to KS and WTCS algorithms, which evaluate the queried genes that 

span across the entire reference profile, XSum and XCos calculation start by subsetting 

the reference database to top N up-regulated and bottom N down-regulated genes by fold 

change values between the compound treated and control samples for each drug instance 
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in CMap. The default value of N is 500. The rationale for using this approach of focusing 

on the extreme ends is to ensure high specificity, as one can only pursue a limited number 

of drug-disease indication hypotheses, especially in a drug repositioning exercise. In other 

words, the aim is to sacrifice some true positives to keep the false positive low. XSum is 

computed by taking the difference between the sums of the fold change value for the 

genes that match the up-regulated and down-regulated genes, respectively. The XCos 

algorithm, meanwhile, requires the user to provide additional fold change values of their 

differentially expressed genes. By having both fold change values for the reference profile 

(vector A) and the query signatures (vector B), the XCos values can then be calculated as 

a dot product of vector A and vector B. See Section 3.4.2.3 for detailed implementation 

of XSum and XCos for gene signature similarity analysis. 

 

2.6.4 sscMap 

Zhang and Gant (2008) used three principles in developing the sscMap algorithm. 

First, treatment and control instances are treated similarly, making the effect of the 

treatment instances to be determined by differentially expressed genes. Second, the genes 

that are affected to greater extents by the treatment, that is, genes that are more highly 

differentially expressed, are given more weight in characterising the treatment. Finally, 

the up-regulated and down-regulated genes are treated equally in the sense that a two-fold 

up-regulation or two-fold down-regulation of a gene has the same relevance in 

constructing the reference profile. The genes are ordered based on their absolute value of 

the differential log of fold change, as the up-regulated and down-regulated genes are 

considered the same. A query gene signature can be an ordered gene list, or just a 

collection of genes without specific ordering, which will be referred to as ordered and 

unordered gene signature, respectively. 
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Based on this ranking proposed by Zhang and Gant (2008), the importance of a gene 

is determined by the absolute value of its signed rank rather than its differential expression 

value. The signed rank (either + or – sign) would, therefore, dictate the direction of the 

regulation. The most significant gene will be at the top of the list, while most of the 

insignificant gene will be at the bottom. For the specific implementation of sscMap for 

gene signature similarity analysis, please see Section 3.4.2.4. 

As a whole, an effective gene signature similarity scoring algorithm is a valuable tool 

for computational discovery of new indications for drugs. Given practical scoring 

algorithms and stronger validation datasets, we believe that computationally predicting 

efficacious drugs through CMap concept will prove to be an effective method to 

repurpose drugs across a broad range of diseases. Computational drug candidates 

prediction could be one viable approach to serve the unmet need of oral cancer patients 

for more therapeutic options. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 GENIPAC: Genomic Information Portal on Cancer Cell Lines 

A key component of identifying potential efficacious drugs for HNSCC is to put 

together a database of query signatures. To do this, a cell line database containing 

genomics information on HNSCC cell lines including gene expression signatures was 

established. This interactive web portal called GENIPAC – Genomic Information Portal 

on Cancer Cell Lines, takes advantage of the recently developed cBioPortal (Cerami et 

al., 2012; Gao et al., 2013) which hosts and displays genomic data on head and neck 

cancer cell lines (CCL). By facilitating easy information access, GENIPAC provides gene 

expression data to mine for drug efficacy. In addition it enables users to explore complex 

datasets of head and neck cancer for the development of biological hypotheses based on 

commonly altered gene profiles and biological pathways. 

GENIPAC (http://genipac.cancerresearch.my/) (Lee et al., 2018) uses the cBioPortal 

engine, which runs on Apache Tomcat and enables the visualisation, analysis, and 

downloading of large-scale genomic datasets (Cerami et al., 2012; Gao et al., 2013). The 

genomic datasets (mutations, copy number alterations, and mRNA expression) hosted in 

GENIPAC are freely available to the public as stated under the Affero GPLV3 license. 

Currently, GENIPAC contains datasets from three series of HNSCC cell lines: ORL 

Series (Fadlullah et al., 2016), OPC-22 (Martin et al., 2014), and H Series (Prime et al., 

1990). The ORL Series established by Cancer Research Malaysia consists of 16 oral 

squamous cell carcinoma (OSCC) cell lines described in Fadlullah et al. (2016). The cell 

lines in this series were derived from Asian patients with diverse etiological factors, 

including those who consumed tobacco products (smokeless and smoked), those who 

chewed betel quid, and those who consumed alcohol. There are also cell lines which were 
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derived from patients with no known risk habits. In terms of age at diagnosis, the age of 

the patients ranged from 36 to 79 years old, with the majority of them from the Indian 

ethnicity (n = 13). The demographic details of the patients from whom the ORL Series 

were derived have been described previously (Fadlullah et al., 2016). The second set of 

data was from the OPC-22 study (Martin et al., 2014), which consists of 22 HNSCC cell 

lines that are widely used in the HNSCC research field (Li et al., 2014; Lui et al., 2013; 

Zhao et al., 2011), with some of these lines dating back to the 1980s (Kimmel & Carey, 

1986). This series of cell lines, which were recently described in detail, were derived from 

different anatomic sites, and some testing positive for human papillomavirus. Finally, the 

H Series of cell lines was obtained from the University of Bristol, United Kingdom. These 

cell lines were among the first OSCC cell lines to be established and used in oral cancer 

research (Prime et al., 1990). 

 

3.1.1 Mutations and mRNA Expression 

Transcriptomic analyses of these three head and neck cancer studies using RNA-seq 

were done in 2012. The transcripts from the ORL Series and H Series were mapped to 

the human reference genome (Ensembl GRCh37) with Tophat2 2.0.9 using default 

parameters (Trapnell et al., 2012). Variant calling was conducted with the use of GATK 

HaplotypeCaller 2.8 (DePristo et al., 2011). A series of variant calling and filtering 

criteria were applied as described previously (Fadlullah et al., 2016). Gene expression in 

raw read counts was extracted through the use of featureCounts software with default 

parameters (Liao et al., 2014). Genes with zero expression value across all samples were 

excluded. Raw read counts of the remaining genes were normalised and then log-

transformed (base 2) in the R computing environment (R 3.4.0; R Core Team 2015) with 

the R package DESeq2 (Love et al., 2014).  
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For the OPC-22 series, the RNA-Seq transcriptome analyses were carried out 

separately by Dr. Silvio Gutkind’s lab in the National Institute of Health (Bethesda, USA) 

(Martin et al., 2014). Briefly, the splice junction aligner GSNAP mapped the RNA-seq 

transcriptome data to the human reference genome hg19 (Wu & Nacu, 2010). Reads were 

mapped according to the UCSC.hg19.KnownGene database and later counted and 

annotated with the GenomicFeatures (Lawrence et al., 2013), Rsamtools (Morgan et al., 

2017), and org.Hs.eg.db (Carlson, 2017) packages in R. To run variant calling for OPC-

22, whole exome sequencing reads were first mapped to hg19 genome with Novoalign 

aligner, processed according to recommended guidelines of GATK (DePristo et al., 

2011), and lastly annotated using the ANNOVAR software (Wang et al., 2010). Variant 

effect analysis of the OPC-22 was performed using the PROVEAN tool (Choi et al., 

2012). 

 

3.1.2 Copy Number Alterations 

The copy number (CP) changes of ORL Series cell lines (in Affymetrix .CEL format) 

derived from Genome Wide Human Cytoscan HD array (Affymetrix) were preprocessed 

in Chromosome Analysis Suite 3.2. The generated DNA CP of each sample was subjected 

to segmentation with the Circular Binary Segmentation algorithm (Olshen et al., 2004), 

implemented in R package as DNAcopy (Seshan & Olshen, 2017). Altered regions were 

tested whether they were the result of amplification or deletion using GISTIC 2.0 

(Mermel et al., 2011), with the low-level amplification and deletion threshold of 0.1. 

CP alterations for the OPC-22 cell lines were extracted from Martin et al. (2014). 

Briefly, Strand NGS software was applied to compute the CP variations of the OPC-22 

lines (Strand Life Sciences, Bangalore, India). A pseudo-normal sample was computed 

from the average read depth of all the OPC-22 lines and then used to define the CP 
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baseline against which all the OPC-22 cell lines were compared. The CP values reported 

in Martin et al. (2014) were defined as follows: CP < 0.8, homozygous deletion (–2); CP 

0.8 to < 1.5, hemizygous deletion (–1); CP 1.5 to 4.0, neutral (0); CP > 4.0 to 8.0, gain 

(+1); and CP > 8.0, high-level amplification (+2). 

 

3.1.3 Data Formatting 

The cBioPortal platform supports several types of the data format as query input (see 

the official cBio Portal Documentation webpage at 

https://readthedocs.org/projects/cbioportal/). cBioPortal requires several files to be 

uploaded for it to work optimally, as well as information on the cancer study and mutation 

data. To speed up the data extraction and preparation processes, a script was developed 

to automate data extraction from the original unmodified datasets. The datasets were 

extracted into several files with the ASCII text files extension. The lists of files input into 

GENIPAC are as follows: (i) cancer study, which contains information on the type of 

cancer, description, and an identifier in GENIPAC; (ii) mutation data, which contain 

mutation data for each gene with the unique Entrez gene ID, chromosome number, variant 

classification, and protein position; (iii) discrete copy number data, which contain all copy 

number levels for each gene; (iv) expression data, which consist of expression values of 

the genes in each sample; and (v) anonymised clinical data from patients. 

All the file formats mentioned above can be uploaded into GENIPAC through either 

the console or the SSH terminal. The data then undergo multiple sessions of data 

validation and correction with dataset validator tools, which are built-in for cBioPortal 

(see https://cbioportal.readthedocs.io/en/latest/Using-the-dataset-validator.html). The 

validated genomic data, particularly gene expression values will undergo differential 

analysis to generate up-regulated and down-regulated genes. These differentially 
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expressed genes (DEG) would be used as the input query genes for DeSigN analysis in 

Section 3.2. 

 

3.2 DeSigN: Differentially Expressed Gene Signatures – Inhibitors Platform 

To identify drugs that could be repurposed for cancer, the current challenge is to 

develop discovery pipelines to prioritise testing of already approved drugs, particularly 

in cancers with limited chemotherapy options, such as oral cancer (Vermorken et al., 

2008). DeSigN is a web-based bioinformatics tool for associating gene signatures with 

drug response phenotype, using IC50 data (Lee et al., 2017). The DeSigN platform (Figure 

3.1) consists of three key components: (i) a reference database that contains a set of pre-

defined gene expression profiles associated with drug response data to 140 drugs derived 

from Genomics of Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/); (ii) a set of DEG signatures as query input; and (iii) KS 

statistic as gene signature similarity scoring algorithm for evaluating similarity between 

the query gene signature and drug-associated gene expression profiles in the reference 

database. 
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Figure 3.1: Principal workflow of DeSigN. (A) A reference database of cell lines that are 
sensitive and resistant to drugs available in the GDSC database was created. Version 1.0 
contains 140 drugs with their unique ranked-based gene signatures. (B) Differentially 
expressed gene signatures are generated from differential expression analysis of cell lines 
from two distinct experimental conditions, e.g., cell line gene expression data from 
tumour samples versus normal samples. The up and down-regulated genes (|log2 fold 
change| > 1 and p-value < 0.01) thus selected will be used to query the DeSigN database. 
(C) Using a gene signature similarity scoring algorithm, the similarity analysis would then 
be carried out to compute the gene expression similarity between the query signatures and 
DeSigN database (D) A rank-based list of inhibitors is generated, with CS between 1 
(maximal efficacy) and −1 (minimal efficacy). This allows users to prioritise the testing 
of these candidates. 

 

3.2.1 Reference Database 

The reference database was built using baseline microarray and drug sensitivity data 

obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The raw 

CEL microarray data files of solid tumour cell lines (normalised using the MAS 5.0 

algorithm) were first downloaded from GDSC (Garnett et al., 2012). The probe sets were 

collapsed to gene symbols using the “Collapse Dataset” function provided in Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al., 2005) with HT HG-U133A chip as the 

reference. This process produced 12 772 unique genes. For each drug, the CCL’s drug 

response phenotype (resistant or sensitive) was classified in the following way: (i) the cell 

lines were first ranked by their IC50 values (lowest to highest); (ii) cell lines with IC50 that 

were U standard deviations larger than the median IC50 of all cell lines were considered 

to be resistant; those that were L standard deviations smaller were considered to be 

sensitive. The parameters U and L were chosen carefully on a case-by-case basis. These 

two cut-offs were generally values where sharp transitions in IC50 were observed in the 

Univ
ers

ity
 of

 M
ala

ya



61 

scatter plot of –log10(IC50) against rank. About 20 cell lines each from the sensitive and 

resistant phenotype were thus defined. The list of sensitive and resistant cell lines defined 

for the 140 drugs in DeSigN is provided in Appendix 1. Figure 3.2 shows an example of 

the scatter plot of –log10(IC50) against rank for Mitomycin-C, a commonly-used drug for 

bladder and gastric cancer (Bosschieter et al., 2018; Murata et al., 2018). The scatter plot 

of –log10(IC50) against rank for all the 140 drugs can be found in Appendix 2. 

 

Figure 3.2: Example of -log10(IC50) rank plot to define drug response phenotype. The 
solid line represents the median IC50 values of inhibitor mitomycin-C whereas the lower 
and upper dashed lines represent the cut-off for classifying cell lines into sensitive or 
resistant phenotypes, respectively. 

 

Differential expression of microarray gene expression data between the sensitive and 

the resistant phenotype was done using the Linear Models for Microarray Data (limma) 

algorithm (Ritchie et al., 2015; Smyth, 2004). The result from limma for each drug was 

sorted and converted into ranked lists according to the gene’s moderated t-statistic (rank 

1 for the largest value). This reference database was used to connect the queries and return 

the rank-ordered list of drugs for a particular query (Figure 3.1A). 
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Figure 3.3 shows an example of a limma output with the ranking of the genes ordered 

according to the moderated t-statistic in descending order. Upon treatment of a particular 

drug, the tested cell lines can be classified to sensitive (green cells) and resistant (red 

cells) lines. Limma would then be used to generate the t-statistic for the gene expression 

values comparison between the sensitive and resistant lines. The resulting moderated t-

statistic is used to rank the genes in descending order. Figure 3.3 shows that TP53 is 

ranked first among 15 000 genes because its moderated t-statistic value is the largest 

(15.558); conversely, EGFR is ranked lowest since its moderated t-statistic value is the 

smallest (-10.732). 

 

Figure 3.3: An example of limma output with the ranking of the genes ordered according 
to t-statistic in descending order. Cells highlighted green refers to sensitive cell lines 
while red indicates resistant cell lines in regards to the treatment of a particular drug. 
Limma is used to analyse the sensitive and resistant cell lines, with the moderated t-
statistic used to rank the genes in descending order. 

 

3.2.2 Query Signature 

The query signatures were obtained from microarray or RNA-seq gene expression data 

of cell lines from two different phenotype classes. In this thesis, the query signature 

validation datasets were obtained from two sources. The first source, which is published 

drug sensitivity studies, were obtained from the NCBI GEO database. The second set of 
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query signatures was obtained from OSCC lines, in which their gene expression data can 

be retrieved from GENIPAC under the ORL Series tab. Notably, these DEGs were 

selected using joint filtering of p-value and fold change (Xiao et al., 2014), with the 

threshold value set at |log2 fold change| > 1 and p-value < 0.01 (Figure 3.1B). 

Figure 3.4 shows an example of the volcano plot for query signature generation using 

joint filtering method. Red dots indicate the down-regulation of genes and blue dots refer 

to genes that are up-regulated. The up-regulated and down-regulated genes selected in 

this way take both statistical significance (such as p-value) and biological relevance (such 

as fold change) into consideration (Xiao et al., 2014). 

 

Figure 3.4: A volcano plot showing an example of the query signature generation using 
the joint filtering of p-value < 0.01 and |log2 fold change| > 1. Red dots indicate down-
regulated genes while blue dots indicate up-regulated genes. 
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3.2.3 Gene Signature Similarity Scoring Algorithm - Kolmogorov-Smirnov 

Statistic 

A gene signature similarity scoring algorithm based on the non-parametric KS statistic 

(Lamb et al., 2006) was used to associate query signature to the drug-specific, rank-

ordered gene expression profile database.  

The CS is computed according to Lamb et al. (2006) as follows. Let N be the total 

number of genes in the reference database, and T the number of genes in the query 

signature for up-regulated or down-regulated genes. For every drug in the reference 

database, the rank-ordered (using moderated t-statistic) list R for all N genes was 

computed. Let j index the query genes in such a way that R(j), the rank of the j-th gene in 

the N total number of genes, is monotone increasing. For ! = 1, 2,… , ', the threshold ( 

and ) for up-regulated gene signature was computed as: 

( = max
-./.0

1
!
'
−
3(!)
6

7 ,																																																																																																																	(1) 

) = max
-./.0

1
3(!)
6

−
(! − 1)
'

7 .																																																																																																						(2) 

Similarly, the threshold	(′ and )′ were computed for the down-regulated gene signature. 

Using the ranking of the ERBB2 and CDK4 in Figure 3.3 as an example, the calculation 

of threshold a (Eq. 1) and b (Eq. 2) is shown in Table 3.1. 
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Table 3.1: An example of threshold a and b calculations for an hypothetical up-
regulated gene signature of size 2 derived from Figure 3.3. For this example, a = 0.9999 
and b = 0.00013. 

Gene  Threshold a Threshold b 
ERBB2 1

2
−

2
15000

= 0.4999 
2

15000
−
(1 − 1)

2
= 0.00013 

CDK4 2
2
−

5
15000

= 0.9999 
5

15000
−
(2 − 1)

2
= −0.4997 

Maximum 0.9999 0.00013 
 

Subsequently, for each drug i, the KS-like statistics for up-regulated and down-

regulated query gene signature, ABCDE  and ABFGHIE  are computed as (subscript omitted) 

ABE = 1
(, JK	( > );																																																																																																																						(3)
−), JK	( < ).																																																																																																																			(4) 

Figure 3.5 below shows an example of KS statistic calculation considering the 

threshold a and threshold b using Eq. 1 and Eq. 2 respectively. In situation A, given an 

input of three differentially expressed genes by the user: TP53, PIK3CA, and NOTCH1, 

we have ( = 0.924 > 0.337 = ), hence the KS value for Drug A in situation A is 0.924 

(Eq. 3). In situation B, given the set of three differentially expressed genes by the user: 

NOTCH1, FJX1, and CDK4, we have ( = 0.493 < 0.767 = ), hence the KS value for 

Drug B in situation B is -0.767 (Eq. 4). 

 

Figure 3.5: An example of KS value output considering the threshold of a and b 
respectively. (A) The KS value for Drug A is 0.924 (highlighted green) because a =
0.924 > 0.337 = b. (B) Drug B has the KS value of -0.767 (highlighted green) because 
a = 0.493 < 0.767 = b. 
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The ES for the drug i (QRE) in the reference database is set to zero if both ABCDE  and 

ABFGHI
E  have the same algebraic sign; otherwise, QRE = ABCDE − ABFGHI

E . The CS (RE) for 

non-zero instances is a normalised ES computed as: 

RE =

⎩
⎪
⎨

⎪
⎧ QRE

W
, JKQRE > 0;

−X
QRE

Y
Z , JK	QRE < 0,

 

where W = maxE QRE  and Y = minE QRE are the normalising constants. DeSigN returns a 

ranked list of drugs, with RE  ranging between 1 (maximal efficacy) and -1 (minimal 

efficacy) (Figure 3.1C). 

Figure 3.6 below shows an example of KS statistic calculation implemented in 

DeSigN. The drugs are ranked according to their respective CS in descending order. 

Notably, in the event where both KS for up-regulated and down-regulated genes have the 

same algebraic sign, their CS is set to zero (e.g., 17-AAG and axitinib). In such situation, 

the drugs are ranked according to their KS value for up-regulated genes, by which 17-

AAG is ranked higher than axitinib because it has higher KS value for up-regulated genes 

(KSup = 0.614) compared to axitinib (KSup = -0.789). The positive normalising constant 

(P) is 1.774 (cell highlighted green) whereas negative normalising constant (Q) is -1.852 

(cell highlighted yellow). 

 

Figure 3.6: An example of KS statistic calculation. The maximum value for P is 1.774 
(cell highlighted green), and the minimum value of Q is -1.852 (cell highlighted yellow). 
The drugs are ranked according to their CS values. 
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To evaluate the statistical significance of RE , a permutation approach was used to 

simulate the null distribution of RE. Thus, ] random gene sets, each having the same size 

as the size of the input gene signature, were selected from the N total number of genes in 

the reference database. Each gene set then yields R^_IFG`E (A) , where A  indexes the 

random gene set. The p-value was computed as 

a − b(cde =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧1
]
f ghijklmnop (q)	r	ips,																																																									if	R

E > 0;

`

qu-

1
]
fg(ijklmnop (q)	v	ip)

`

qu-

,																																																									if	RE < 0;

max w
1
]
fg(ijklmnop (q)	r	ip)

`

qu-

,
1
]
fg(ijklmnop (q)	v	ip)

`

qu-

x ,	if	RE = 0,

 

where gy is the indicator function that takes the value 1 if event A occurs, and 0 otherwise. 

Here, ] = 1000 was set. 

 

3.2.4 The DeSigN Web Interface 

The web interface of DeSigN uses PHP (v7.0) with the support of jQuery (version 

1.4.2). It is hosted using the Apache Server. The reference database is generated and 

managed using the MySQL database (v5.5.49). DeSigN makes use of the AJAX feature 

to load the content quickly without reloading the pages. All queries are sent to the Java-

based computing cluster to perform parallel computation. A help document providing a 

guide for users to query and navigate DeSigN is available on the website, with examples 

given. The DeSigN website is freely available at http://design.cancerresearch.my/. 
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3.2.5 NCBI Gene Expression Omnibus Datasets 

To demonstrate how DeSigN could be used to predict candidate drugs 

computationally, differentially expressed genes generated from studies published in the 

NCBI GEO database were used to validate DeSigN (Table 3.2). Several inclusion and 

exclusion criteria guided the inclusion of the studies: (i) the medians of the distribution 

of gene expression values of each sample were more or less equal; (ii) the subject of the 

drug sensitivity study was Homo sapiens; (iii) drug treatment was given for at least 24 

hours; (iv) only one drug was used. Blood cancer-related studies were excluded. For each 

study, a list of DEG was identified and used to query DeSigN. Two studies - GSE9633 

and GSE4342, were included. 

The raw microarray gene expression CEL files from the two GEO studies were 

background-corrected, normalised, and summarised into probe sets values using the 

standard Robust Multichip Average (RMA) algorithm (Irizarry et al., 2003). The probe 

sets were then collapsed to gene symbols (maximum probe set value was chosen in the 

case where multiple probe sets mapped to the same gene) using the “Collapse Dataset” 

function provided in GSEA (Subramanian et al., 2005) with respective Affymetrix chip 

(HG-U133A_2: GSE9633; HG-U133A: GSE4342) as reference. Sensitive cell lines were 

defined as having IC50 < 1 µM and resistant cell lines as having IC50 ≥ 1 µM. 

Subsequently, differential gene expression analyses between the sensitive and resistant 

cell lines of these two studies were processed as described in Section 3.2.2. The generated 

DEG were then subjected to DeSigN analysis to determine the rank of the intended drug 

for each study. 
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Table 3.2: GEO studies to validate DeSigN prediction. 

GEO 
reference 

Drug Response Number of 
sensitive 
samples 

Number 
of 
resistant 
samples 

Reference 

GSE9633 Dasatinib Sensitive 11 5 Wang et al., 2007 
GSE4342 Gefitinib Sensitive 18 11 Coldren et al., 2006 

 

 

3.3 Identifying Potential Drug Candidates for Oral Cancer 

3.3.1 Computational Analyses of OSCC Cell Lines 

To identify drugs that could be repurposed for oral cancer treatment, the RNA-seq data 

of five OSCC (ORL-48, ORL-150, ORL-156, ORL-196, and ORL-204) and three normal 

oral keratinocytes (NOK) cultures (Fadlullah et al., 2016) were subjected to differential 

expression analysis (OSCC versus NOK). The latter was carried out using DESeq2 (Love 

et al., 2014). Notably, the RNA-seq data of these lines can be obtained under the ORL 

Series tab in GENIPAC. 

The list of DEG (149 up-regulated and 251 down-regulated genes) generated from 

DeSeq2 underwent further filtering parameters of |log2 fold change| > 1 and p-value < 

0.01 as described in Section 3.2.2. These DEGs were then used to query DeSigN to 

shortlist candidate drugs for subsequent experimental validation. Following this, one of 

the candidate drugs, bosutinib, was selected for in vitro validation to evaluate its efficacy 

against the OSCC cell lines. 
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3.3.2 Experimental Validation of Drugs Selected using DeSigN 

3.3.2.1 Cell Culture 

ORL cell lines and HSC-4 (sensitive control for response to bosutinib) were cultured 

in Dulbecco’s Modified Eagle Medium (DMEM/F12) (1:1) supplemented with 10% 

(v/v/) heat-inactivated fetal calf serum (FBS), 100 IU penicillin/streptomycin and 0.5 

µg/ml hydrocortisone as described previously (Fadlullah et al., 2016). NOK were cultured 

in keratinocyte serum-free media (KSFM; GIBCO, Carlsbad, CA, USA) supplemented 

with 25 µg/ml bovine pituitary extract, 0.2 ng/ml epidermal growth factor; 0.031 mM 

calcium chloride and 100 IU penicillin/streptomycin (GIBCO, Carlsbad, CA, USA) as 

described previously (Fadlullah et al., 2016). The breast CCL MCF7 (resistant control for 

response to bosutinib) was cultured in RPMI 1640 medium (GIBCO, Carlsbad, CA, USA) 

supplemented with 10% (v/v) heat-inactivated FBS and 100 IU penicillin/streptomycin. 

All cultures were incubated in a humidified atmosphere 5% CO2 at 37°C. 

 

3.3.2.2 Viability Assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) 

The effect of bosutinib on the selected OSCC cell lines was determined using MTT 

assay with 1.5− 8 x 103 cells per well as described previously (Fadlullah et al., 2016). 

Cells were treated with 0.04−  5 µM of bosutinib, and cell viability was measured after 

72 hours of treatment. DMSO (0.5%) served as vehicle control. The two-sample t-test 

was used to assess whether the difference in the sample mean of IC50 between the tested 

cell lines was statistically significant (p-value < 0.05). Experiments were repeated three 

times for ORL-204, HSC-4, and MCF7, four times for ORL-196, and five times for ORL-

48. 
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3.3.2.3 Apoptosis Assay 

Apoptosis was quantified using a FITC Annexin V Apoptosis Detection Kit (BD 

Biosciences, San Jose, CA, USA) according to the manufacturer’s instructions. Briefly, 

floating and attached cells were collected at 24, 48 and 72 hours after bosutinib treatment 

at 1 µM, and then stained using FITC Annexin V/Propidium iodide (PI). Apoptosis 

detection was performed using BD FACSCANTO™ II flow cytometer and data was 

analysed using the BD FACSDiva™ software (BD Biosciences, San Jose, CA, USA). For 

each of the three time points, the two-sample t-test was used to test whether the mean of 

the total number of apoptotic events differed significantly (p-value < 0.05) between 

bosutinib-treated cells and the vehicle control (0.01% DMSO) cells. Experiments were 

repeated two times for ORL-48, and ORL-204, and three times for ORL-196. 

 

3.3.2.4 Proliferation Assay 

The anti-proliferative effect of bosutinib on the OSCC cell lines was examined using 

Click-iT EdU Cell Proliferation Assay Kit (Invitrogen, Carlsbad, CA, USA) as previously 

described (Fadlullah et al., 2016). The cell lines ORL-48, ORL-196, and ORL-204 were 

treated with 0.3− 3	µM bosutinib, for 24 hours and cell proliferation evaluation was 

based on 5-ethynyl-2’-deoxyuridine (EdU) incorporation according to the manufacturer’s 

protocol. Images were captured from 4 to 11 different fields of each treatment 

concentration and further analysed using EBImage (Pau et al., 2010). The percentage of 

EdU-labelled cells was expressed as the percentage of red fluorescent nuclei over the total 

number cells reflected by DAPI-stained nuclei, and the data was presented as the relative 

percentage compared to vehicle control cells (0 µM). The two-sample t-test was used to 

test whether the difference in the relative percentage of EdU+ cells differed significantly 

(p-value < 0.05) between treatment and vehicle control for the three cell lines. 
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Experiments were repeated two times for ORL-48 and ORL-204, and three times for 

ORL-196. 

 

3.4 Evaluation of Gene Signature Similarity Scoring Algorithms 

The KS statistic has been the most widely used gene signature similarity scoring 

algorithm to associate query signature to the drug-associated gene expression profile. 

More recently, several scoring algorithms have emerged since the inception of CMap in 

2006, however, the systematic evaluation of the strengths and weaknesses of these 

algorithms remain limited (Cheng et al., 2014; Musa et al., 2017). 

 

3.4.1 The Drug-associated Gene Expression Database for Algorithms Evaluation 

To carry out the systematic evaluation of the various algorithms, the treatment-control 

pairs of CMap (Build 2) microarray gene expression profiles (Lamb et al., 2006) was 

used. A total of 7056 raw CEL microarray data files were downloaded from 

https://portals.broadinstitute.org/cmap/cel_file_chunks.jsp. In total, the CMap Build 2 

contains 6100 unique treatment-control instances, where treatment constitutes a selection 

of 1309 drugs, administered at 156 different concentrations (0.01 nM – 10 µM), at two 

time points (six hours and 12 hours) on five cell lines (HL60, MCF7, PC3, SKMEL5 and 

ssMCF7) and drug responses were compared against vehicle controls (either DMSO, 

ethanol or complete medium). These raw CEL files were first background-corrected, 

normalised, and summarised into probe sets values using the standard Robust Multichip 

Average (RMA) algorithm (Irizarry et al., 2003). The probe sets for each of these instance 

were collapsed to gene symbols (maximum probe set value was chosen in the case where 

multiple probe sets mapped to the same gene) using the “Collapse Dataset” function 

provided in GSEA (Subramanian et al., 2005) with respective chip (either HG-U133A, 
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HT-HG-U133A or HT_HG-U133A_EA) as reference. In total, 13 321 unique genes were 

generated. 

After collapsing to the gene symbols, the resulting gene-level expressions were 

subjected to further analysis in order to create two types of CMap reference profile. 

Firstly, fold change of treatment to control values for each instance was calculated for 

each gene and sorted in decreasing order, thereby creating the CMap Build 2 reference 

profiles of ordered fold change values. Secondly, the ordered fold change values were 

ranked separately for each instance. Thus, the gene that was most up-regulated received 

rank 1 and most down-regulated received rank 13 321. The CMap reference database is a 

matrix of 13 321 genes x 6100 instances. 

 

3.4.2 Gene Signature Similarity Scoring Algorithms 

Following the development of the CMap reference profile, six gene signature 

similarity scoring algorithms were evaluated with respect to ranking analysis, positive 

predictive value, enrichment analysis of similar mechanism of action, and stability 

analysis. These six algorithms were chosen primarily because of their widespread use in 

drug repurposing research. To ease discussion, the following algebraic notations are 

introduced here: z , the CMap reference database; i, the drug instance in the CMap 

reference database; j, the index of the query genes; L, the ranked list of genes; and N, the 

total number of genes in the CMap reference database. 

 

3.4.2.1 Algorithm 1: Kolmogorov-Smirnov Statistic 

The KS statistic algorithm described in Section 3.2.3 is the current gene signature 

similarity scoring algorithm implemented in DeSigN. 
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3.4.2.2 Algorithm 2: Weighted Connectivity Score 

The weighted connectivity score (WTCS; Subramanian et al., 2017) uses a composite, 

bi-directional version of ES, a KS-like statistic described previously in Subramanian et 

al. (2005). Let {CD and {FGHI be the query gene set of up-regulated and down-regulated 

genes respectively. The ES for {CD and {FGHI for every instance J in z (using the rank-

ordered CMap reference profile) reflects the degree to which the query genes are 

overrepresented at the extremes (top or bottom) of the entire ranked list | in z. The score 

is calculated by walking down the gene list | for every instance J, increasing a running-

sum statistic when encountering a gene in the query and decreasing it when encountering 

genes not in the query. Let {`}`~}^  be the total number of query genes (either {CD or 

{FGHI) encountered when going down the list L. If a gene is encountered in the query, 

then that particular gene receives the value of 1/{`}`~}^; if not, it receives the value of 

−1/(6 − {`}`~}^). 

The CMap datasets used for WTCS analysis is the rank-ordered reference database, 

which means the rankings of the genes in the CMAp reference database for each instance 

i have been converted to the rank-ordered fold change value in descending order. Table 

3.3 shows an example of how a running sum analysis of a rank-ordered dataset is 

computed. Genes in the list that are elements of the query gene set receive 0.25 (1/4), 

otherwise, they receive -0.167 (-1/(10-4)). The total number of genes in this example is 

N = 10, and the total number of encountered query genes, {`}`~}^  = 4. The QR for WTCS 

is defined as the maximum deviation from zero value encountered in the running sum of 

the random walk down the list L, and in this particular example, the ES is -0.334. Figure 

3.7 shows the corresponding running sum plot for Table 3.3. 

 

Univ
ers

ity
 of

 M
ala

ya



75 

Table 3.3: An example of running sum analysis for a set of four encountered query 
genes (denoted by *). The maximum deviation from the zero value (ES), in this 
example, is -0.334 occurred at rank number two (highlighted in bold). 

Gene Rank Running sum 
PTEN 1 -0.167 
CUL3 2 -0.167 + (-0.167) =  - 0.334 
*TSC1 3 -0.334 + 0.25 = -0.084 
*REDD1 4 -0.084 + 0.25 = 0.166 
TRAF3 5 0.166 + (-0.167) = -0.001 
NFE2L2 6 -0.001 + (-0.167) = -0.168 
*NSD1 7 -0.168 + 0.25 = 0.082 
HLA-A 8 0.082 + (-0.167) = -0.085 
*RB1 9 -0.085 + 0.25 = 0.165 
AJUBA 10 0.165 + (-0.167) = -0.002 

 

 

Figure 3.7: An example of running sum plot for a query set of four encountered genes. 
The ES, which is the maximum deviation from the zero dash line occurred at rank number 
two, -0.334. 

 

For every query gene set, QRCD and QRFGHI , which denote the enrichment scores for 

the set of up-regulated and down-regulated genes respectively, are computed. The CS for 

the instance i in z is set to zero if both QRCDE  and QRFGHIE  have the same algebraic sign; 
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otherwise, ÄRE = (QRCDE − QRFGHI
E )/2. Subsequently, WTCS for non-zero instance i is a 

normalised CS computed as: 

Å'ÄRE =

⎩
⎪
⎨

⎪
⎧ÄR

E

W
,											if	ÄRE > 0;

− X
ÄRE

Y
Z ,	if	ÄRE < 0,

 

where W = maxEÄRE  and Y = minEÄRE  are the normalising constants. WTCS returns a 

ranked list of drug instances, with values range between −1 and 1. In the event where 

WTCS is zero, the ranking of the drug instances is ordered according to the latters’. 

Table 3.4 shows an example of the WTCS analysis for six drugs. The drugs are ranked 

in descending order based on the sign and magnitude of WTCS. Notably, the ranking of 

docetaxel and AZD-0530 are ordered based on their QRCDvalues in descending order since 

they have zero values for WTCS. 

Table 3.4: An example of WTCS calculation. 

Drug QRCD QRFGHI  ÄR WTCS  Ranking 
BIBW2992 0.684 -0.382 0.533 1.000  1 
AICAR 0.545 -0.380 0.463 0.869  2 
Docetaxel 0.397 0.062 0.000 0.000  3 
AZD-0530 0.393 0.191 0.000 0.000  4 
Pazopanib -0.453 0.270 -0.362 -0.995  5 
GSK269962A -0.353 0.374 -0.364 -1.000  6 

 

3.4.2.3 Algorithm 3 and 4: eXtreme Sum and eXtreme Cosine 

eXtreme Sum (XSum) (Cheng et al., 2014) uses two gene sets (YCD	and	YFGHI) to 

query the CMap reference database (z), with YCD, YFGHI ⊆ z. By default, N was set to 

500. Let ÄÉÑÑ  and ÄÖÉÑÑ  be the set of top and bottom 500 up-regulated and down-

regulated genes by log2FC, respectively. Then, let ÜCD = YCD ∩ ÄÉÑÑ  and ÜFGHI =
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YFGHI ∩ ÄÖÉÑÑ . Let LFCup = çlogëíÄE: J ∈ ÜCDï and LFCdown = çlogëíÄ/: ! ∈ ÜFGHIï. 

The XSum score for each instance of i in z was computed as  

ÜRd] =f|íÄCD −f|íÄFGHI = f log2íÄE
E∈òôö

− f log2íÄ/
/∈òmnõl

. 

Figure 3.8 shows an example of the reference database derived from a particular drug 

treatment. First, the top N number of genes to focus on need to be set, in this case, N = 5. 

Assuming that the user supplied YCD = {Äùû62ü, íü'1,'W53, ÄüRW8,6°'Ä¢1} and 

YFGHI = {¢3üR, í§ÜÅ7}.  Then ÄÉ = {Äùû62ü, íü'1, 'W53,ÄüRW8, ü•¶§ü}  and 

ÄÖÉ = {í§ÜÅ7,¢3üR, 'ßí§32,¢|ü-ü,6Rù1}, hence ÜCD = {Äùû62ü, íü'1} and 

ÜFGHI = {í§ÜÅ7, ¢3üR}. Thus, ÜRd] = (5.432	 + 	5.145) − ™−1.117	 +

(−5.208)´ = 16.902 (Table 3.5). The fold change value for NOTCH1 is not taken into 

consideration because XSum focuses on the extreme ends of the fold change value (top 

and bottom N = 5), ignoring those that fall in between the extreme ends. The ranking of 

the drugs would then be arranged in descending order of the XSum values. 

Similar to the XSum algorithm, eXtreme cosine (XCos) similarity score (Cheng et al., 

2013) retains the set of N top and N bottom up-regulated and down-regulated genes 

ranked according to log2FC. By default, N is set to 500. XCos differs from XSum in that 

XCos requires additional input about estimated log2FC for the query genes. The cosine 

similarity between the sets ÜCD and ÜFGHI is defined as a ratio, with the numerator being 

sum of the product of |íÄq,F_¨_~_≠}  and |íÄq,C≠}^ , over A ∈ {up,down} ; and the 

denominator being the product of the Euclidean norms of |íÄF_¨_~_≠}  and |íÄC≠}^ . 

Thus, 

ÜÄÆB =
∑ |íÄq∈{CD,FGHI} q,F_¨_~_≠}

∙ |íÄq,C≠}^

‖|íÄF_¨_~_≠}‖ 	×		‖|íÄC≠}^‖
. 
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Table 3.5 shows an illustration of the calculation for XCos using the same genes listed 

in Figure 3.8. Given the same condition for the case in XSum, thus, 

 XCos = (13.531 + 7.1 + 1.262 + 5.755)/(√(29.507 + 26.471 + 1.248 +

																		27.123	) × √(6.205 + 1.904 + 1.277 + 1.221)) = 0.924. 

The drugs are then ranked in descending order of the XCos values. 

 

Figure 3.8: An example of the reference database used for XSum and XCos analysis. 
Cells highlighted green and red denote overlapping of up-regulated and down-regulated 
genes respectively with the reference database. 
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Table 3.5: An example of XSum and XCos calculation. Cells highlighted green and red 
denote overlapping of up-regulated and down-regulated genes respectively with the 
reference database. 

Gene Log2FC 
(database) 

Log2FC 
(user) 

Log2FC 
(database) x 
Log2FC 
(user) 

[Log2FC 
(database)]2 

[Log2FC(user)]2 

CDKN2A 5.432 2.491 13.531 29.507 6.205 
FAT1 5.145 1.380 7.100 26.471 1.904 
TP53 4.957 3.746 18.569 24.572 14.033 
CASP8 4.441 -1.775 -7.883 19.722 3.151 
AJUBA 3.978 0.456 1.814 15.824 0.208 
PIK3CA 3.478 3.142 10.928 12.096 9.872 
NOTCH1 3.122 -1.113 -3.475 9.747 1.239 
KMT2D 2.781 -0.488 -1.357 7.734 0.238 
NSD1 1.589 2.945 4.680 2.525 8.673 
HLA-A 0.498 1.389 0.692 0.248 1.929 
TGFBR2 0.389 2.212 0.860 0.151 4.893 
HRAS -1.117 -1.130 1.262 1.248 1.277 
FBXW7 -5.208 -1.105 5.755 27.123 1.221 
 

3.4.2.4 Algorithm 5 and 6: sscMap unOrdered and sscMap Ordered 

CMap reference profiles of ordered fold change values were used in evaluating the 

statistically significant Connectivity Map (sscMap) algorithm (Zhang & Gant, 2008). The 

main difference between sscMap and the other four algorithms is that all the genes for 

every instance J in CMap reference profile z were first ranked in ascending order using 

the absolute value of log2FC. The ranks are then multiplied with the sign of the log2FC 

value, so that they become signed ranks. Subsequently, the final ranks of the genes for 

each instance i in CMap reference profile z were re-ordered based on the magnitude of 

the signed rank in descending order. In this way, the importance of a gene is indicated by 

the magnitude of the rank, with the sign indicating its regulation status. 

Table 3.6 shows an example of the sscMap reference database for a particular drug 

instance. After ordering based on the magnitude of the signed ranked in descending order, 
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both FBXW7 and HRAS, for example, get the rank of two and nine respectively, with the 

negative sign indicating their down-regulation status. 

Table 3.6: An example of the sscMap reference database for one particular drug 
instance. The genes are first ordered in ascending order using the absolute value of 
log2FC. The sign of the log2FC value was then used to multiply the rank to generate the 
signed rank. The final rank of the genes, meanwhile, takes on the magnitude of the 
signed rank in descending order. 

Gene Log2FC Signed rank 
CDKN2A 5.432 10 
FBXW7 -5.208 -9 
FAT1 5.145 8 
TP53 4.957 7 
PIK3CA 3.478 6 
NOTCH1 3.122 5 
KMT2D 2.781 4 
NSD1 1.589 3 
HRAS -1.117 -2 
HLA-A 0.498 1 

 

A query gene set, meanwhile, can be an ordered gene list, or just a collection of genes 

without specific ordering, which will be referred to as ordered and unordered gene list 

respectively. For an ordered gene set, the genes in the list are ranked the same way as the 

CMap reference profile z (see Table 3.6). Thus, the gene with the strongest degree of 

differential expression in the set of m query genes will receive the signed rank of m or –

m; whereas the one with the weakest degree of differential expression will receive the 

signed rank of 1 or -1. The connection strength between the set of query genes of size m 

(Y`) and the set of genes in the database of size N (z∂) is defined as 

Ä(Y`, z∂) = f signed	rankE,F_¨_~_≠} × signed	rankE,∫C}^ª.
E∈ºo
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Table 3.7 shows an example of the connection strength calculation for one particular 

drug instance. 

Table 3.7: An example of sscMap connection strength calculation for one particular 
drug instance. 

Gene Query signed rank Database signed rank Connection strength 
TNFSF9 5 10491 52455 
RAB40B -4 -8064 32256 
PMM1 3 881 2643 
TACC1 -2 12289 -24578 

LGALS1 1 -12643 -12643 
Sum   50133 

 

For an ordered gene list, after calculating the connection strength for every instance i 

in CMap reference profile z, the maximum positive connection strength is given by: 

Ä`_ΩG (Y`, Ä∂) =f(6 − ! + 1)(] − ! + 1)
`

/u-

. 

Similarly, maximum negative connection strength = −Ä`_ΩG (Y`, Ä∂). 

For an unordered query gene list, the signed rank of YE,∫C}^ª is replaced with the sign 

function for up-regulation (+1) and down-regulation (-1). Thus, the maximum magnitude 

of connection strength for an unordered query list is given by 

Ä`_ΩC (Y`, Ä∂) =f(6 − ! + 1)

`

/u-

. 

Given a query gene set and a reference gene expression profile, the connection score 

is computed as the normalised connection strength, i.e., æG = Ä(Y`, z∂)/Ä`_ΩG (Y`, z∂) 

for ordered query gene list, and æC = Ä(Y`, z∂)/Ä`_ΩC (Y`, z∂) for unordered query 

gene list.  
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Table 3.8 below shows an example of sscMap calculation. The maximum value of the 

connection strength, which is 53893586 (highlighted bold in Table 3.8) is used to 

normalise the sscMap score, c. The value æ = 1 means that the query gene set has the 

maximum positive connection strength with the instance J in the CMap reference profile 

z; and æ = −1 indicates that the query gene set and the instance J are most inversely 

correlated. The range of æ is from -1 to 1. 

Table 3.8: An output example of sscMap calculation. 

Drug Connection strength sscMap score, c Rank 
Afatinib 53893586 1.000 1 
Bosutinib 53116288 0.986 2 
Cisplatin 11813766 0.219 3 
Dasatinib -20280839 -0.376 4 
Elesclomol -26889776 -0.499 5 
Maximum 53893586   

 

3.4.3 Query Signatures 

The 39 query signatures extracted from the Ushijima dataset was used to test the 

prediction performance of these six gene signature similarity scoring algorithms 

(http://scads.jfcr.or.jp/db/cs/download_csv2.html). Notably, these 39 query signatures 

were derived from 19 compounds relative to untreated cells as negative controls. These 

19 compounds mainly consist of clinically-used standard anticancer agents and related 

drugs (Ushijima et al., 2013). The details of these 39 signatures are listed in Table 3.9 and 

the list of up-regulated and down-regulated genes for each signature can be found in 

Appendix 3. These 39 query signatures were subjected to gene signature similarity 

analysis using CMap as the reference profile database, by which performance of these 

algorithms was evaluated. Some of the signatures (indicated by * in Table 3.9) were 

excluded for positive predictive value evaluation. The reasons for these are explained in 

the Results section in Chapter 4. 
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Table 3.9: Details of 39 Ushijima signatures. Signatures denoted by * were excluded 
from positive predictive value analysis. Abbreviation: MoA = mechanism of actions. 

Signature Compound # up-regulated 
genes 

# down-
regulated genes 

Target/ MoA 

C001 2-deoxy-D-glucose 279 212 Glycolysis 
C003 Thapsigargin 148 75 SERCA 
C006 Trichostatin A 716 580 HDAC 
C007 Vorinostat 698 588 HDAC 
C009 MG-132 219 274 Proteasome 
C010* Geldanamycin 16 20 Hsp90 
C011* Tanespimycin 40 21 Hsp90 
C013* Paclitaxel 16 4 Tubulin 
C023* Methotrexate 21 31 DHFR 
C024* Mercaptopurine 19 31 Purine 
C029 Irinotecan 280 1 151 Topoisomerase I 
C030 Camptothecin 342 1 434 Topoisomerase I 
C032 Doxorubicin 227 601 DNA intercalator 

⁄ Topoisomerase 
II 

C033* Etoposide 23 77 Topoisomerase II 
C034 Mitoxantrone 162 642 DNA intercalator 

⁄ Topoisomerase 
II 

C044* Gefitinib 20 17 EGFR 
C045* Gefitinib 104 54 EGFR 
C047 Vorinostat 950 934 HDAC 
C049* Geldanamycin 5 934 Hsp90 
C050* Tanespimycin 6 4 Hsp90 
C052 Paclitaxel 95 147 Tubulin 
C056 Vorinostat 765 652 HDAC 
C058 Vorinostat 1 021 953 HDAC 
C064 Methotrexate 356 249 DHFR 
C065* Mercaptopurine 173 139 Purine 
C069 Etoposide 271 139 Topoisomerase II 
C090* Decitabine 3 16 DNA 

methyltransferase 
C101 Irinotecan 351 888 Topoisomerase I 
C102 Doxorubicin 187 1 104 DNA intercalator 

⁄ Topoisomerase 
II 

C104 Irinotecan 458 941 Topoisomerase I 
C105* Doxorubicin 95 104 DNA intercalator 

⁄ Topoisomerase 
II 

C106* Imatinib 137 134 Bcr-Abl/KIT 
C111 Irinotecan 234 843 Topoisomerase I 
C112 Doxorubicin 57 88 DNA intercalator⁄ 

Topoisomerase II 
C115* Gefitinib 90 100 EGFR 
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C116* Gefitinib 130 107 EGFR 
C118* Celecoxib 666 640 COX2 
C128 Irinotecan 129 695 Topoisomerase I 
C129 Doxorubicin 11 857 DNA intercalator 

⁄ Topoisomerase 
II 

 

3.4.4 Algorithm Performance Evaluation 

To systematically evaluate the performance of these gene signature similarity scoring 

algorithms, four performance evaluation metrics, i.e., ranking analysis, positive 

predictive value (PPV), enrichment analysis of similar mechanism of action (MoA), and 

ranking analysis were employed. In particular, PPV was chosen because it focuses on the 

reliability of positive results. Table 3.10 shows a 2 x 2 contingency table for summarising 

the four possible types of truth-prediction outcomes. 

Table 3.10: A 2 x 2 contingency table for algorithm performance metric evaluation. 

  True condition  
 Total 

population 
Positive 

instance (P) 
Negative 

instance (N) 
 

Predicted 
condition 

Predicted 
positive 
instance (T) 

True positive 
(TP) 

False positive 
(FP) WWø	 = 	

'W
'W + íW

 

Predicted  
negative 
instance (N) 

False negative 
(FN) 

True negative 
(TN) 

 

 

In total, there are four possible output in a 2 x 2 contingency table. The green diagonal 

cells in Table 3.10 represent correct predictions, and the pink diagonal cells indicate 

incorrect predictions. For a general understanding, if the sample is positive and it is 

predicted as positive, i.e., correctly predicted positive sample, it is counted as a true 

positive (TP); if it is predicted as negative, it is considered as a false negative (FN). If the 

sample is negative and it is predicted as negative it is considered as true negative (TN); if 

it is predicted as positive, it is counted as false positive (FP). In this particular algorithm 
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performance evaluation analysis, the “sample” is hereinafter referred to the intended 

compound in CMap reference database. 

 

3.4.4.1 Ranking Analysis 

The goal of the ranking analysis is to gauge which scoring algorithm performs better 

in returning the highest ranking of the drug instance associated with the respective 

Ushijima signature. Of note, each signature could be associated with more than one drug 

instance in CMap reference database. For example, out of the total number of 1309 drug 

instances in CMap reference database, 182 of those drug instances are associated with 

vorinostat (HDAC inhibitor) derived from different treatment concentrations and time 

points. Therefore, to evaluate the ranking performance of the scoring algorithm using, for 

example, the Ushijima Signature C007 (vorinostat), the highest ranking returned by any 

of these 182 drug instances would be taken into consideration. The same analogy applies 

to the other 38 Ushijima signatures. 

 

3.4.4.2 Positive Predictive Value 

The second performance metric is the PPV. It represents the proportion of positive 

samples that were correctly classified among total number of positive predicted samples 

(Sokolova et al., 2006) as indicated in the following equation (see Table 3.10): 

WWø =
'W

'W + íW
. 

Given a gene signature, the PPV analysis is carried out by evaluating the performance 

of the six algorithms at different interval of K. Here, the interval of K is set at 

{1,	5,	10,	15,	20,	25,	30,	35,	40,	45,	50}. To ease understanding, K is set at 10 (i.e., K = 

10) when PPV is used to analyse the proportion of correctly classified positive samples 
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within the top-10 of the prediction result returned by DeSigN. The same analogy applies 

to other interval of K. 

 

3.4.4.3 Mechanism of Action Enrichment Analysis 

The goal to carry out the MoA enrichment analysis is to reflect the degree to which the 

drug instances of a similar MoA is overrepresented at the extremes (top or bottom) ends 

of the entire ranked list of the 1309 drug instances in the CMap reference database. For 

example, if a signature is associated with EGFR inhibition, inhibitors such as gefitinib, 

erlotinib, afatinib, and lapatinib that target the EGFR signaling should theoretically 

appear at the top of the returned ranked list of inhibitors upon querying the CMap 

reference database. In such a case, the MoA enrichment analysis would take on a high 

positive value, and vice versa. The idea of enrichment analysis for similar MoA leverages 

on the seminal work of GSEA by Subramanian et al. (2005). To translate the concept of 

GSEA into the context of similar MoA, the enrichment analysis is calculated by walking 

down the ranked list of instances, increasing a running-sum statistic when encountering 

an instance with the same MoA and decreasing it when encountering instances with 

different MoA. 

 

3.4.4.4 Stability Analysis 

The stability analysis of the gene signature similarity scoring algorithms was carried 

out to evaluate the sensitivity of each algorithm towards varying query size. An algorithm 

is considered good and practical if it consistently returns the intended compound upon 

querying the CMap reference database under varying sample sizes of the original query. 

Xu et al. (2005) first devised the stability analysis on their new algorithm - the top-scoring 

pair (TSP) classifier, in identifying prostate cancer biomarkers from various microarray 
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training datasets. To perform stability analysis on gene signature similarity scoring 

algorithms using varying query size, a subset of the original Ushijima query signature 

(C006 and C058) was randomly sampled, and simulated rankings from the reduced rank-

ordered query datasets were generated. After repeating for ten times (n = 10) with the 

different values of simulated sample size B (B = 50, 100, 200, 400 and 800), the mean 

ranks of each sample size B was calculated for each algorithm. The list of up-regulated 

and down-regulated genes of respective simulated sample sizes for signature C006 and 

C058 can be found in Appendix 4. 

 

3.5 Computational Work 

All methods, unless stated otherwise, are implemented in R computing   environment 

(R 3.5.1; R Core Team 2018). All the R codes developed for the computational analyses 

are available at https://gitlab.com/blkb0427/phd-thesis.
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CHAPTER 4: RESULTS 

 

4.1 GENIPAC: A Platform to Visualise Genomic Data from HNSCC Cell Lines 

The compilation of all available genomic data from HNSCC cell lines into a single 

web resource is a critical first step towards enabling routine querying of this resource for 

prediction of drug efficacy against HNSCC cell lines. To this end, an interactive web 

resource – GENIPAC (http://genipac.cancerresearch.my/) was built to enable exploration 

of the compiled genomic data from HNSCC cell lines. GENIPAC runs on the cBioPortal 

engines; it hosts mutations, mRNA gene expression, and copy number alterations data for 

44 HNSCC cell lines taken from three individual studies (Figure 4.1A) (Fadlullah et al., 

2016; Martin et al., 2014; Prime et al., 1990). The summary view page, assessed through 

the “Summary” icon (Figure 4.1B) presents overview information, such as the names of 

the HNSCC cell lines and clinical data associated with the selected dataset. For example, 

the ORL Series dataset consists of 16 HNSCC cell lines derived from an Asian 

population. The clinical information (e.g. patient demographics, risk factors, and primary 

sites of the tumour) associated with these cell lines is summarised in Figure 4.1C. 

Appendix 5 contains details of demographics of patients who contributed the cell lines in 

all three HNSCC studies. 

To explore, visualise, and analyse the cancer genomics data, we can query the datasets 

in GENIPAC using gene sets of interest from a single study, or multiple studies (Figure 

4.1D). Besides querying the three datasets directly on the web interface, the genomic data 

can be downloaded through the “Download Data” tab for offline analysis (Figure 4.1E). 

GENIPAC enables researchers to examine useful summary statistics, such as the 

frequency of unique genetic alterations. Additionally, it makes it easy to identify HNSCC 
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cell lines with specific genomic profiles – a useful step toward crafting hypothesis-driven 

research projects in oral cancer biology. 

 

Figure 4.1: Query page of the GENIPAC. (A) Users have the option of choosing which 
head and neck cancer studies and genomics datasets to query from this panel. (B, C) 
Additional information of each study can be obtained under the “Summary” tab. (D) 
Users can key in their gene sets of interest here in order to query the three datasets. (E) 
Option to download the datasets for offline analysis is also available. 
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Many of the gene alterations reported for HNSCC are found in the cell lines in 

GENIPAC. For example, the mutational status of the top five most significant mutated 

genes (TP53, FAT1, CDKN2A, PIK3CA, and NOTCH1) were assessed in 279 HNSCC 

tumours from the TCGA database (Cancer Genome Atlas Network, 2015) and the cell 

lines within GENIPAC. Mutations observed in HNSCC tumours were consistent with 

those in HNSCC cell lines in GENIPAC (Figure 4.2 A, B), albeit with some variation in 

the frequencies across the different datasets. An overview of the top five mutated genes 

between cell lines and tumours showed good representation of the unique mutational 

patterns within HNSCC. A closer examination of these top five mutated genes revealed a 

distinct HNSCC tissue-specific mutational pattern that is different from other solid 

tumours available in TCGA, such as melanoma, leukemia, pancreatic, and breast cancers 

(Appendix 6). Besides reporting the percentage of a mutation within a HNSCC study, 

additional details about the mutation can be viewed through a mouse-over operation 

(Figure 4.2C). 

 

Figure 4.2: Overview of the mutational distribution pattern of the top five most mutated 
genes in HNSCC. (A) TCGA and (B) GENIPAC. TP53 is the most mutated gene in 
TCGA (74%) and GENIPAC (89%). The percentage shown is the number of specimens 
or cell lines that contain any genetic change within the gene. (C) Details of the mutations 
can be viewed through mouse-over operations on the cell representing each cell line. 
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To illustrate the functionality of GENIPAC, TP53 was used as a case study. By 

querying GENIPAC with TP53, most of the TP53 mutations (54/92; 59%) were observed 

to be missense mutations that frequently occurred within the DNA-binding domain 

(amino acid positions: 95 to 289; Figure 4.3A), in concordance with previous reports 

(Chang et al., 2016). Notably, some of the most common mutational hotspots, such as at 

the amino acid position of R175, H179, R196, R273, and R282 were also reported in 

Catalogue of Somatic Mutations in Cancer (COSMIC) database (Figure 4.3A, Appendix 

7). The HNSCC lines that harbour these TP53 mutations, such as ORL-166, ORL-204, 

ORL-215, CAL33, DETROIT-562, WSU-HN6, and WSU-HN8 can be easily identified 

using GENIPAC (Figure 4.3B). Additionally, different features associated with these 

TP53 mutations, including their frequency in COSMIC as well as clinical implication, 

and biological effects are well-documented in tabular form as shown in Figure 4.3B. 
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Figure 4.3: Distribution of TP53 mutations in GENIPAC across the Pfam protein 
domains. (A) Hotspot mutations in TP53 at amino acid positions R175, H179, R196, 
R273, and R282 are consistently shown in cell lines within GENIPAC. (B) Information 
about the type of mutation and its clinical implication, biological effects, and frequency 
reported in COSMIC are tabulated in detail. 

 

4.2 mRNA Expression and Copy Number Alterations 

GENIPAC allows joint visualisation of gene expression levels with copy number 

variation in the HNSCC cell lines. The example of the epidermal growth factor receptor 

(EGFR) is considered here. Understanding the molecular biology of EGFR signaling in 

HNSCC pathogenesis has led to the clinical use of cetuximab as targeted therapy for 

HNSCC (Bonner et al., 2006; Vermorken et al., 2008) and other inhibitors targeting 
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EGFR, used alone or in combination with a variety of therapies that are currently being 

evaluated (ClinicalTrials.gov Identifier: NCT02979977, NCT00496652, and 

NCT00083057). In HNSCC, high EGFR expression levels are correlated with poor 

prognosis and resistance to radiation therapy (Baumann & Krause, 2004; Zimmermann 

et al., 2006). An examination of the EGFR status in 279 HNSCC tumours from TCGA 

(Cancer Genome Atlas Network, 2015) showed that EGFR is overexpressed and/or 

amplified in 20% of the specimens (Figure 4.4A, B). Specifically, of the 279 HNSCC 

tumours in TCGA, overexpression of EGFR is reported in 17% (47/279) of them, and 

amplification of copy number in 11% (30/279) of them. 

GENIPAC enables the identification of cell lines that overexpress EGFR. Thus, the 

majority of the HNSCC cell lines in the ORL Series (12/16; 75%) are shown to have 

EGFR amplification concurrent with overexpression (Figure 4.4C, D). Figure 4.4D shows 

that the cell line in the ORL Series that has the highest level of EGFR expression is ORL-

136, as reported previously (Fadlullah et al., 2016). Another gene that is commonly 

amplified and overexpressed in HNSCC is CCND1, located on chromosome 11q13 

(Smeets et al., 2006). Overexpression of CCND1 results in the activation of different 

pathways controlling cell cycle progression, migration, and differentiation (Musgrove et 

al., 2011). Targeting the CDK4/6-cyclin axis is currently under investigation using the 

drug palbociclib (Michel et al., 2016), and it is anticipated that further work to identify 

biomarkers of response will be an essential component in this research area. Using 

GENIPAC, researchers can quickly identify cell lines that contain CCND1 amplification 

and those that have concomitantly high levels of mRNA (Figure 4.4C, D), so that 

appropriate drug testing and biomarker experiments can be designed using these cell lines. 
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Figure 4.4: mRNA expression and copy number variations of EGFR and CCND1 in 
TCGA and GENIPAC. (A) Genomics profiles (mRNA expression and copy number 
variation) of EGFR and CCND1 are altered in 55 tumours (20%) and 92 tumours (33%), 
respectively, in TCGA. (B) Copy number alterations of EGFR and CCND1 in TCGA. 
Similar trends were observed where amplification of copy number is correlated with 
overexpression of EGFR and CCND1. (C, D) EGFR and CCND1 are overexpressed in all 
cell lines in the ORL Series, while 75% of the lines in the ORL Series have amplification 
in EGFR and CCND1. Cell lines with amplification tend to have higher expression of 
EGFR and CCND1. 
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4.3 Visualising Genetic Alterations within Pathways using GENIPAC 

Phosphatidylinositol 3-kinase (PI3K) is the most altered mitogenic signaling pathway 

in HNSCC, harbouring the highest percentage of mutations in patients with HNSCC 

(30.5%) (Lui et al., 2013). In particular, PIK3CA (p110) is the most mutated gene in this 

pathway, affecting 12.6% of patients with HNSCC, while copy number gain and mRNA 

overexpression of PIK3CA are also frequent events, occurring in 20% and 52% of patients 

with HNSCC, respectively (Iglesias-Bartolome et al., 2013). Genetic alterations in this 

pathway have clinical implications, and drugs that target specific components within this 

pathway are actively being studied and tested (Isaacsson Velho et al., 2015). Notably, 

different components of the pathway could be altered, and these have been demonstrated 

to modulate drug response. For example, a recent report of five HNSCC cases found that 

mTOR-based targeted therapy may be more effective in HNSCC tumours harbouring 

PIK3CA mutation and/or PTEN loss of expression (Holsinger et al., 2013). 

To examine the status of the PI3K pathway in HNSCC cell lines, five representative 

molecules (PIK3CA, PIK3R1, PTEN, AKT1, and MTOR) in the PI3K pathway were 

studied. As reported in TCGA (Appendix 8), alterations in the PI3K pathway in patients 

with HNSCC are represented in these cell lines, and those with amplification, mRNA 

upregulation, and mutations in the different components are easily identifiable (Figure 

4.5A). Specifically, the commonly reported PIK3CA activating mutations: E542K, 

E545K, and H1047L/R are presence in all three series of HNSCC cell lines in GENIPAC. 

These lines, including ORL-115 (ORL Series), H400 (H Series), CAL33 (OPC-22) could 

be useful models for the evaluation of therapies targeting the PI3K pathway. 
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Figure 4.5: Overview of the five representative genes involved in the PI3K pathway in 
GENIPAC. (A) Out of the five genes involved in the PI3K pathway, PIK3CA has the 
highest frequency of alteration events in mRNA expression, mutation, and copy number 
variations. The percentage shown is the number of cell lines that contain any genetic 
change within the gene. (B) Hotspot activating mutations (E542K, E545K, H1047L/R) 
were present in cell lines included in GENIPAC. 

 

Judging from the comparisons of the distribution of the most mutated genes, the 

mRNA expression levels, copy number amplification, and analysis of essential pathways, 

it is evident that the genomic information of the tumours are well-represented by the 

HNSCC cell lines. These well-curated genomics data therefore accentuate the relevance 

of using HNSCC cell lines to evaluate the efficacy of drug candidates. In the next section, 

the gene expression profiles of the ORL Series hosted in GENIPAC will be used to 

showcase the practical use of a bioinformatics tool (DeSigN; see Section 4.4) in 

predicting therapeutic drugs for HNSCC cell lines. 

 

4.4 Identifying Drugs through DeSigN 

DeSigN (Differentially Expressed Gene Signatures – Inhibitors) 

(http://design.cancerresearch.my/) works by connecting gene signature to pre-defined 
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gene expression profiles that are associated with drug response data (IC50) of 140 drugs. 

To gauge the prediction efficiency of DeSigN, in silico validation using two published 

drug sensitivity datasets were first done. Following that, DeSigN was used to shortlist 

potentially efficacious inhibitors for OSCC lines. Subsequently, in vitro experiments were 

carried out to validate the efficacy of the shortlisted drug candidate on a panel of OSCC 

cell lines. 

 

4.4.1  In silico Validation of Candidate Compounds Predicted using DeSigN 

Two drug sensitivity studies with published drug response and microarray gene 

expression datasets deposited in the NCBI GEO database (GSE9633 and GSE4342) were 

used to computationally validate predictions using DeSigN. Primarily, these two studies 

were chosen because the tested drugs - dasatinib and gefitinib, are available in the DeSigN 

database. Dasatinib is an oral dual BCR/ABL and SRC family tyrosine kinase inhibitor 

approved for use in patients with chronic myelogenous leukemia (CML). Dasatinib has 

since been found to be effective as well for treating other kinds of cancer. While testing 

for the efficacy of dasatinib in a panel of prostatic CCL, Wang et al. (2007) chanced upon 

a subset of the prostatic lines that was sensitive to dasatinib treatment (GSE9633). 

Likewise, gefitinib is an EGFR inhibitor approved for non-small cell lung cancer 

(NSCLC) treatment. However, upon subjecting a panel of NSCLC lines to getifinib 

treatment, Coldren et al. (2006) reported that only a subset of the NSCLC lines was found 

to have a sensitive response towards gefitinib treatment (GSE4342). With respect to these 

two published drug sensitivity studies, both dasatinib and gefitinib are expected to be 

among the top-ranked inhibitors with high positive CS (indicating a sensitive response) 

returned by DeSigN. The DeSigN analyses for both studies were carried out using the 

DEGs derived from the differential analysis of sensitive versus resistant lines in response 

to respective drugs. 
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4.4.1.1 GSE9633 Dataset 

The GSE9633 dataset contains Affymetrix microarray gene expression profiles of a 

panel of 16 prostatic CCL (Wang et al., 2007). This panel of 16 prostatic CCL was used 

to test the efficacy of dasatinib. In this study, 11 lines were found to be sensitive to 

dasatinib treatment, with IC50 < 1µM, while another five lines had IC50 ≥ 1 µM (hence 

defined as resistant). By querying DeSigN using 848 up-regulated and 553 down-

regulated genes derived from differential gene expression analysis of sensitive versus 

resistant lines using limma, dasatinib was returned as one of the top-ranked (ranked 

eighth) drugs with CS of 0.993 (p-value 0.025) (Figure 4.6). 

 

Figure 4.6: DeSigN prediction result for GSE9633. Using the derived DEG, 17 out of the 
140 drugs were found to have p-value < 0.05, with which 15 of them to have positive CS 
and two with negative CS. The intended drug, dasatinib, was returned by DeSigN (ranked 
eighth), with a CS of 0.993 and p-value 0.025 (red line). 
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4.4.1.2 GSE4342 Dataset 

The GSE4342 dataset contains Affymetrix microarray gene expression profiles of 29 

NSCLC cell lines. Coldren et al. (2006) tested the sensitivity of these NSCLC lines 

against gefitinib (an EGFR-inhibitor). Out of these 29 NSCLC lines, 18 lines were found 

to have IC50 < 1µM (hence defined as sensitive) while the remaining 11 lines to have IC50 

≥ 1µM (hence defined as resistant) (Coldren et al., 2006). By querying DeSigN using 357 

up-regulated and 278 down-regulated genes derived from differential gene expression 

analysis of sensitive versus resistant lines using limma, gefitinib was returned as one of 

the top-ranked inhibitors (ranked seventh) with a CS of 0.985 (p-value = 0.042) (Figure 

4.7). Two additional EGFR drugs: BIBW2992 (afatinib; ranked first), and lapatinib 

(ranked third), were also returned with high positive CS (p-value < 0.05). Besides, two 

inhibitors, RDEA119 (refametinib; ranked fourth) and AZD6244 (selumetinib; ranked 

fifth) targeting the MEK1/2, which is the effector molecule activated by EGFR, were also 

returned as candidate drugs with high positive CS and p-value < 0.05. Against the 

backdrop of the GSE4342 dataset, which aimed at testing the inhibitory effects of EGFR 

on NSCLC, finding a list of efficacious candidate drugs returned by DeSigN that 

primarily targeted molecules in the EGFR pathways strengthens the confidence in the 

utility of DeSigN. 
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Figure 4.7: DeSigN prediction result for GSE4342. DeSigN returned 17 drugs with p-
value of < 0.05, with which seven of them were predicted to have sensitive effect against 
the NSCLC cell lines. The intended drug, gefitinib (ranked seventh), together with 
another two EGFR inhibitors: BIBW2992 (ranked first), and lapatinib (ranked third) were 
returned as one of the top–ranked inhibitors with positive CS and p-value < 0.05 (red 
lines). Another two inhibitors: RDEA119, and AZD6244, which target the MEK1/2 
(downstream molecule of EGFR) were also returned as top-ranked inhibitors (blue lines). 

 

For each of the two drug sensitivity validation studies, DeSigN returned CS that 

correctly correlated drug response outcomes with those in the respective published GEO 

studies. In these studies, DeSigN successfully associated input gene signatures with the 

right drugs, all with p-values < 0.05 (Table 4.1). The list of DEG of each study used to 

query DeSigN is provided in Appendix 9. 
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Table 4.1: NCBI GEO datasets validation summary. 

GEO 
reference 

Reported 
drug 

Expected drug 
sensitivity 

DeSigN 
rank 

Target CS p-value 

GSE9633 Dasatinib Sensitive 8 ABL, SRC, 
KIT, PDGFR 

0.993 0.025 

GSE4342 Gefitinib Sensitive 7 EGFR 0.985 0.042 
 

4.4.2 Using DeSigN to Shortlist Potentially Efficacious Inhibitors for OSCC Lines 

To identify potential drugs that could be efficacious in controlling the growth of OSCC 

cell lines, 149 up-regulated, and 251 down-regulated genes were used to query DeSigN 

(Appendix 10). These DEGs were derived from differential gene expression analysis 

between five OSCC cell lines and three NOK published previously (Fadlullah et al., 

2016). The gene expression values of these OSCC and NOK lines can be retrieved from 

the ORL Series in GENIPAC. Five potentially effective drugs were returned by DeSigN; 

in addition, the HNSCC cell lines were also predicted to be resistant to three drugs (p-

value < 0.05; Figure 4.8). The ranking results corroborated well with recent findings. Two 

of the candidates, BIBW2992 (ranked third) and bosutinib (ranked fifth), have recently 

been reported to have efficacy in HNSCC cell lines through computational analysis of 

large-scale drug screening studies (Nichols et al., 2014). 

Particularly, the efficacy of bosutinib, which targets Src, Abl, and TEC, was further 

evaluated as it is a recently FDA-approved drug for treating BCR-ABL leukemic patients 

and has no known effects against HNSCC or OSCC; therefore, the efficacy of bosutinib 

is unanticipated when used against OSCC cell lines. 
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Figure 4.8: DeSigN prediction results for OSCC cell lines. Eight drugs were returned by 
DeSigN to have p-value of < 0.05. Bosutinib (ranked fifth), was retuned as one of the five 
drugs with positive CS of 0.980 and p-value 0.046 (red line), suggesting that OSCC lines 
could possibly have sensitive effects upon treatment with bosutinib. 

 

 

In order to validate the efficacy of bosutinib against OSCC experimentally, three 

OSCC cell lines (ORL-196, ORL-204, and ORL-48) that can be cultured efficiently in 

the laboratory were used. The HSC-4 (mean IC50: 1.82 ± 0.03 µM, p-value < 0.05), and 

MCF7 (mean IC50: 12.22 ± 1.32 µM, p-value < 0.05) cancer lines were used as the 

sensitive and resistant controls respectively. The mean IC50 of HSC-4 and MCF7 were 

consistent with results of a previously reported study (Garnett et al., 2012). Notably, when 

exposed to bosutinib, all three OSCC cell lines had significantly lower mean IC50 values 

(between 0.75 µM and 1.19 µM; p-value < 0.05) compared to the sensitive control HSC-

4 (Table 4.2, Figure 4.9). The raw IC50 values (µM) for three OSCC cell lines and the 

respective controls are provided in Appendix 11. 
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Table 4.2: Mean IC50 (µM) of cell lines upon exposure to bosutinib treatment. HSC-4 
and MCF7 were used as the sensitive and resistant control respectively. All OSCC lines 
(ORL-196, ORL-204, and ORL-48) had lower mean IC50 values compared to the 
sensitive control HSC-4. Statistical significance (p-value < 0.05) relative to sensitive 
control HSC-4 is denoted by *. 

Cell lines Mean IC50	±	SE (µM) 
*ORL-196 (n = 4) 0.75 ± 0.03 
*ORL-204 (n = 3) 0.90 ± 0.04 
*ORL-48 (n = 5) 1.19 ± 0.05 
HSC-4 (n = 3) 1.82 ± 0.03 
MCF7 (n = 3) 12.22 ± 1.32 

 

 

Figure 4.9: Mean IC50 (µM) of each OSCC cell line from MTT assay. The bars represent 
mean IC50 ± SE of at least three experiments. Statistical significance (p-value < 0.05) 
relative to sensitive control HSC-4 is denoted by *. 
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This finding is supported by fluorescence-activated cell sorting (FACS) analysis of the 

cells where bosutinib induced cell death in OSCC cell lines in a time-dependent manner 

(Figure 4.10A, Appendix 12). In particular, ORL-196 cells were found to be most 

susceptible to bosutinib amongst the three tested OSCC lines, as about 35% of apoptotic 

cells were detected as early as 24 hours following treatment with bosutinib. By 72 hours, 

a significant proportion of apoptotic cells (35 – 95%) were detected in all the OSCC cell 

lines (p-value < 0.01), indicating the cytotoxic effect of bosutinib in these OSCC cells.  

Further confirmation from the Click-iT EdU cell proliferation assay showed that 

bosutinib inhibited the proliferation of ORL-48, ORL-196 and ORL-204 cells as 

demonstrated by the significant reduction in the number of proliferating cells (red-stained 

cells) compared to the non-treated cells (Figure 4.10B). ORL-196 and ORL-204 

demonstrated growth inhibition of ~70 – 80% (p-value = 0.03, n = 3; p-value = 0.049, n 

= 2 respectively) whilst ORL-48 showed growth inhibition of ~40% following bosutinib 

treatment at 1 µM at 72 hours (p-value = 0.04, n = 2) (Figure 4.10C, Appendix 13, and 

Appendix 14). The level of inhibition in the OSCC cell lines corroborated well with their 

mean IC50 value for bosutinib. Taken together, these biological observations showed that 

the anti-proliferative and cytotoxic properties of bosutinib against OSCC cell lines are 

real. 
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Figure 4.10: Differential sensitivity of OSCC cell lines, ORL-48, ORL-196 and ORL-204 
to bosutinib. (A) Bosutinib induced apoptosis in OSCC cell lines. ORL-48, ORL-196, 
and ORL-204 cells were treated with 1 µM of bosutinib for 24, 48 and 72 hours followed 
by Annexin V/PI staining coupled with flow cytometry analysis. The bars represent the 
mean percentage of apoptotic cells ± SE of each cell line of at least two experiments. (B) 
Bosutinib inhibited the proliferation of OSCC cells as demonstrated by the reduced 
number of proliferating cells (red stained cells) following 72 hours treatment at 1 µM. 
The blue-stained nuclei represent the total number of cells in a field while the red-stained 
nuclei represent proliferating cells that have incorporated the EdU label. (C) OSCC cell 
proliferation was significantly inhibited by bosutinib with ORL-196 showing the greatest 
sensitivity (~80% inhibition) followed by ORL-204 (~70% inhibition) and ORL-48 
(~50% inhibition) after bosutinib treatment at 1 µM for 72 hours. Statistical significance 
(p-value < 0.05) relative to control cells is denoted by *. 

 

4.5 Evaluation of Different Gene Signature Similarity Scoring Algorithms for 

Optimal Drug Sensitivity Prediction 

The ability to associate the right drugs with patterns of perturbations in gene 

expression requires a robust gene signature similarity scoring algorithm. Thus far, the KS 

statistic is the most commonly-used gene signature similarity scoring algorithm to 
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associate gene expression to the drug response phenotype. More recently, however, 

several other newer computational algorithms for detecting gene signature similarity have 

been developed to make use of the perturbagen-induced signatures contained in CMap. 

Yet, few systematic evaluations have been done to evaluate the performance of these 

more recent algorithms against the KS statistic (Cheng et al., 2014; Musa et al., 2017). 

Thus, a systematic evaluation of the strengths and weaknesses for these algorithms (KS, 

sscMap ordered, sscMap unordered, XCos, XSum, and WTCS) was conducted. 

The Ushijima dataset (Ushijima et al., 2013), which consists of 39 query signatures, 

was used to illustrate how different gene signature similarity scoring algorithms can affect 

the prediction performance. Except for the ranking analysis, algorithm performance 

evaluation using PPV was limited to the top 50 of the ranked list of drugs returned by 

each scoring algorithm. The cut-off of top 50 was chosen because, in a real-case drug-

repurposing scenario, the correctly predicted drugs should theoretically rank high up in 

the ranked list of inhibitors returned by each algorithm. 

Additionally, due to the implementation of XSum and XCos algorithms that subset the 

CMap reference profile to top 500 and bottom 500 of differentially expressed genes for 

each drug instance, a signature that does not have overlapping genes with these 1000 

genes would be discarded. In such a scenario, the connectivity score for XSum and XCos 

could not be computed. The 39 gene signatures from this dataset were reviewed based on 

the criteria described above to ensure that the gene signatures could be evaluated across 

all gene signature similarity scoring algorithms. Thus, 22 of the 39 Ushijima signatures 

were deemed to be suitable for downstream analysis. 

In summary, there are altogether 6100 drug instances in the CMap reference database, 

in which these drug instances consist of 1309 unique small molecule inhibitors. 

Specifically, every small molecule inhibitor is associated with different number of drug 
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instances, being derived from different drug treatment concentration, the time points 

captured as well as the cell lines tested. 

 

4.5.1 Ranking Analysis 

To carry out the performance evaluation, the first metric used was ranking analysis. 

To ease understanding, for a given gene signature derived from a drug, an algorithm is 

said to perform well if it could predict that same particular drug with a relatively higher 

ranking (approaching rank 1). Figure 4.11 shows the cluster heat map of the highest drug 

instance ranking (log10 transformed) returned by each algorithm for the respective 22 

Ushijima signatures. The dendrogram shows that the five algorithms: sscMap ordered, 

sscMap unordered, XCos, XSum, and WTCS returned the expected ranks relatively better 

than the KS method. In addition, sscMap unordered and sscMap ordered had similar 

ranking profiles, as is the case of WTCS and XCos. In particular, WTCS registered the 

highest overall median ranking of 1.5, closely followed by the other four algorithms 

(median ranking in the range of 2 to 6). KS, meanwhile, did not perform well in this case. 

It returned the lowest median ranking of 69, more than 45-fold lower than the best 

performing algorithm, WTCS. Additional information about the rankings returned by 

each algorithm for the respective 22 signatures is available at Appendix 15. 
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Figure 4.11: Heat map of the highest drug instance ranking (log10 transformed) returned 
by each algorithm for the respective 22 Ushijima signatures. Hierarchical clustering of 
these six algorithms based on the drug instance ranking revealed the presence of two 
major subgroups. Cells in blue indicate drug instance rankings that are highly ranked 
(approaching rank 1) while cells in red indicate lower ranking of the drug instances 
returned by the respective algorithm. The heat map was made using the Euclidean 
distance as the distance metric, and the Ward algorithm as the clustering algorithm 
(Warnes et al., 2019). 

 

4.5.2 Positive Predictive Value 

Having demonstrated that all algorithms apart from the KS method performed 

relatively well in returning the highest ranking of the intended drug instance, the next 

performance evaluation metric considered was the PPV. The PPV analysis across all six 

algorithms gradually increased from interval of K = 1 until 50. At each interval of K, the 

PPV for the 22 Ushijima signatures was computed and compared across the six gene 

signature similarity scoring algorithms. 
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Figure 4.12 shows the PPV profile for the six gene signature similarity scoring 

algorithms as a function of K. Similar to the findings observed in the previous ranking 

analysis, all algorithms had better PPV performance than the KS method. When 

considering only the drug instances that fall within top ten (K = 10), WTCS, XCos, 

sscMap ordered, and sscMap unordered generally had better PPV performance than the 

rest; WTCS, meanwhile, recorded the highest mean PPV at K interval of 1 (mean PPV = 

0.50). Within the cut-off of K = 10, XSum showed a relatively intermediate PPV 

performance. The cut-off of K = 15 seems to be a reasonable cut-off point because the 

rate of change in mean PPV is quite small for values of K after this cut-off, for all methods 

(Figure 4.12). To summarise, except KS, all other methods had similar mean PPV 

profiles, particularly for interval of K after 15. 

 

Figure 4.12: Mean PPV analysis of the six gene signature similarity scoring algorithms, 
with the cut-off for interval of K gradually increasing from 1 to 50. All algorithms 
performed better than KS method at all interval of K. WTCS scored the highest mean 
PPV at K interval of 1. 
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4.5.3 Mechanism of Action Enrichment Analysis 

Besides PPV, the ability of gene signature similarity scoring algorithm to pick up drug 

instances of similar mechanism of action (MoA) given a query signature was also 

assessed. For example, if a gene signature (up-regulated and down-regulated genes) 

associated with gefitinib (EGFR small molecule inhibitor) is used to query the CMap 

reference database, a practical algorithm would be able to pick up other drug instances of 

the same MoA to gefitinib, in this case, drug instances that are involved in EGFR 

signaling. Thus, an algorithm that is more efficient in clustering drug instances of similar 

MoA towards the top of the rank-ordered list of drug prediction would generate a higher 

positive enrichment score (ES) value and vice versa. Figure 4.13 shows the cluster heat 

map of MoA analysis in terms of ES returned by each algorithm using the 22 Ushijima 

signatures. All algorithms except KS had a mean MoA ES of at least 0.75, suggesting 

these five algorithms are more efficient in retrieving drug instances of similar MoA 

compared to the KS method. 
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Figure 4.13: Heat map of the ES of MoA for the 22 Ushijima signatures returned by six 
different scoring algorithms. Generally, all algorithms but KS had a mean ES for MoA of 
at least 0.75. Cells in red indicate positive ES for MoA analysis, while cells in blue 
indicate negative value for ES of MoA. The heat map was made using the Euclidean 
distance as the distance metric, and the Ward algorithm as the clustering algorithm 
(Warnes et al., 2019). 

 

4.5.4 Stability Analysis 

The next evaluation metric is the stability analysis of scoring algorithms under varying 

query sizes. Here, we say that an algorithm is consistent, if, given different permutations 

of size N' of a query signature of size N where N' < N, the mean rank of the intended drug 

instance is close to the rank obtained using the query signature. The ranks of the intended 

drug instance returned by a consistent algorithm are robust against changes in the size of 

query signatures. 
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  To carry out the stability analysis, two Ushijima signatures: C006 and C058 were 

used. The first signature contained 716 up-regulated and 580 down-regulated genes; the 

second contained 1021 up-regulated and 953 down-regulated genes. The minimum size, 

each for up-regulated and down-regulated genes, was set at 50. The maximum for 

Signature C006 was set at 400; and for Signature C058, at 800. 

Figure 4.14 shows the mean rankings returned by each algorithm for Signature C006 

at four different sampling sizes. It can be seen that XSum, sscMap ordered, sscMap 

unordered, and WTCS performed relatively stable under varying query sizes. Variation 

in mean ranking due to query signature size was clear for KS and XCos algorithm. 

Amongst the tested six algorithms, XCos is probably most prone to variation in query 

signature size (Figure 4.15). For both stability analyses, the original ranking of Signature 

C006 and C058 (indicated by the black bars) were used for benchmarking purpose. 

Judging from these two analyses, it seems that WTCS, sscMap ordered, sscMap 

unordered and XSum are relatively more robust to variations in query signature size 

compared to KS and XCos. 
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Figure 4.14: The stability analysis of different scoring algorithms under varying query 
sizes for the Signature C006. By examining the mean ranking returned by each algorithm, 
XSum, sscMap ordered, sscMap unordered and WTCS performed relatively more stable 
than KS and XCos under all query sizes. Black bars represent the original ranking of 
Signature C006 returned by each algorithm. 

 

 

Figure 4.15: The stability analysis of different scoring algorithms under varying query 
sizes for the Signature C058. KS, XSum, sscMap ordered, sscMap unordered and WTCS 
performed relatively more stable than XCos under all query sizes. The fluctuation of 
ranking was observed under query size of 50 for XCos. Black bars depicted the original 
ranking of Signature C006 returned by each algorithm. 
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Summarising from the performance evaluation results with respect to rankings, PPV, 

ES of similar MoA and stability test on varying query sizes, it appears that KS performs 

poorly in almost all aspects, and XCos as well, to some extend. Table 4.3 summarises the 

performance of these algorithms under four evaluation metrics, where every algorithm 

apart from KS gave similar performance across different performance evaluation metrics, 

and consistently scored better than the KS algorithm. All associated performance 

evaluation metrics analyses of 22 Ushijima signatures are provided in Appendix 16. 

Table 4.3: Summary of the performance evaluation metrics for the 22 Ushijima 
signatures. Abbreviation: SE = standard error. 

Algorithms 
Median 

ranking 

Mean PPV ± SE Mean 

MoA ES 
Stability 

K = 1 K = 5 K = 10 

WTCS 1.5 0.50 ± 0.11 0.26 ± 0.05 0.20 ± 0.04 0.75 Stable 

XCos 2.0 0.45 ± 0.11 0.28 ± 0.06 0.22 ± 0.05 0.75 Not stable 

sscMap 

unordered 

3.0 0.41 ± 0.11 0.27 ± 0.05 0.20 ± 0.04 0.76 Stable 

sscMap 

ordered 

4.0 0.41 ± 0.11 0.30 ± 0.05 0.20 ± 0.04 0.76 Stable 

XSum 6.0 0.27 ± 0.10 0.22 ± 0.07 0.17 ± 0.04 0.76 Stable 

KS 69.0 0.14 ± 0.07 0.07 ± 0.04 0.04 ± 0.03 0.61 Not stable 
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CHAPTER 5: DISCUSSION 

 

5.1 GENIPAC 

GENIPAC (Genomic Information Portal on Cancer Cell Lines) uses the functionality 

of cBioPortal, a powerful open access platform for exploring multidimensional cancer 

genomics data of tumour samples. Due to cBioPortal’s ease of use, novel discoveries 

across multiple samples have been made, such as the identification of APOBEC3A as a 

potential oral cancer prognostic biomarker (Chen et al., 2017) and the identification of 

distinct subtypes and suggestions of new drivers of esophageal cancer (Lin et al., 2018). 

For HNSCC cell lines, several resources are currently available online for users to access 

their genomics profiles, including COSMIC (Forbes et al., 2011), GDSC (Garnett et al., 

2012) and CCLE (Barretina et al., 2012). These databases serve specific purposes. For 

example, the COSMIC database documents somatic mutations found in cancers, while 

GDSC and CCLE host gene expression and copy number variation data. Several novel 

gene-drug associations are available in the latter two databases, such as the amplification 

of CCND1 or loss of SMAD4, which are associated with sensitivity to multiple EGFR 

family inhibitors (Garnett et al., 2012). Paradoxically, these disparate databases are 

evidence of a lack of a centralised genomic database that puts all available genomic 

information on cell lines in a single platform. Such a resource would be invaluable for the 

exploration of genetic alterations across samples to facilitate biological discoveries and 

to validate hypothesis-driven research questions. 

In line with the objective of developing a user-friendly web resource for exploring, 

visualising, and analysing genomics information of commonly-used head and neck CCL, 

GENIPAC offers the HNSCC research community a consolidated resource that shares 

genomic information of many commonly-used HNSCC cell lines 
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(http://genipac.cancerresearch.my/). In total, GENIPAC currently hosts genomic 

information of three HNSCC studies, comprising of 44 HNSCC cell lines. Notably, 

GENIPAC provides an additional 33 HNSCC lines not currently available on any other 

online databases. With this inclusion, the total amount of HNSCC cell line data across 

four databases: GENIPAC, COSMIC, GDSC, CCLE stands at 98 (Figure 5.1). For 

additional information about the HNSCC cell lines, such as the name of the HNSCC cell 

lines available in these four databases, please refer to Appendix 17 and Appendix 18. 

 

Figure 5.1: Venn diagram of HNSCC cell lines distribution in GENIPAC, COSMIC, 
CCLE, and GDSC. Among the 44 HNSCC cell lines available in GENIPAC, 33 of them 
are not available on any other databases. Notably, a total number of 98 HNSCC lines are 
hosted across these four databases, where nine lines are shared across all the four 
databases. 

 

Among the three HNSCC studies currently available in GENIPAC, the ORL Series is 

the main focus of this thesis. This is mainly because the HNSCC cell lines in ORL Series 

were derived from Asian patients with diverse etiology that is relevant to this part of the 
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region, in particular for HNSCC patients in the Malaysian setting. Specifically, the gene 

expression of the OSCC cell lines in ORL Series was mined to derive gene signatures that 

were used to query DeSigN. On the other hand, GENIPAC was also used to identify ORL-

115 and ORL-150 lines in ORL Series that harbour PIK3CA mutation. Subsequent in 

vitro and in vivo experiments confirmed the association of PIK3CA mutation (H1047L 

and Q546R) with the resistance of OSCC cell lines to palbociclib (CDK4/6 inhibitor) 

(Zainal et al., 2019). 

The few examples stated above demonstrate the utility of GENIPAC to perform data 

exploration and visualisation from integrated genomics data sources, such as the gene 

expression profile as well as the mutational data. It also underscores the value of sharing 

genomic information of HNSCC cell lines under one single platform, which is critical in 

driving research in the postgenomic era. One of the unique features of GENIPAC is that 

it meant to be a dynamic web resource that will evolve and expand continuously as and 

when new data available. For example, one of the studies that are planned to be included 

in future GENIPAC implementation is the head and neck pre-cancer cell culture model 

(de Boer et al., 2019). De Boer et al. (2019) recently reported their efforts in establishing 

and genetically-characterised 29 margins and five (erythro)leukoplakia from head and 

neck mucosal lining. This study is of particular interest because these established pre-

cancer cells could be suitable in vitro model to develop targeted treatments to prevent 

HNSCC formation. 

Nasopharyngeal carcinoma (NPC) is another aspect of head and neck study that is 

planned to be included in the upcoming GENIPAC implementation; particularly 

nasopharyngeal cancer is the third most common cancer in Malaysian male, and 

approximately 60% of the nasopharyngeal cancer cases were detected at a late stage 

(Stage 3 & 4). Forming part of the head and neck cancer, currently there is no targeted 

Univ
ers

ity
 of

 M
ala

ya



118 

therapy for NPC treatment, highlighting the significant unmet need to new and effective 

treatment options for NPC patients. 

As a whole, GENIPAC represents a unique tool for the HNSCC community, as it 

provides a valuable research platform to generate data-driven hypothesis from integrative 

genomics data. The availability and continuous evolution of GENIPAC is envisioned to 

help accelerate discoveries in the field of cancer research. 

 

5.2 DeSigN 

The aim of developing DeSigN is to identify potentially efficacious drugs that can be 

used to treat oral cancer patients, by leveraging on the well-curated genomic information 

of HNSCC hosted in GENIPAC portal. In particular, the genomic information of gene 

expression profiles in ORL Series was mined to derive the OSCC gene signature, which 

was then used to query DeSigN for potential drug candidates. Guided by the OSCC query 

signature, one of the drug candidates, bosutinib, was returned by DeSigN as a potential 

candidate drug against the OSCC cell lines. Subsequent in vitro experiments validated 

the efficacy of bosutinib in controlling the tumour growth in OSCC cell lines. Emerging 

evidence, meanwhile, supports the possible use of bosutinib for the treatment of HNSCC. 

First, the molecular target of bosutinib, Src has been reported to be a frequently altered 

gene in HNSCC and has been identified as a promising drug target (Pickering et al., 

2013). Second, an analysis of gene expression data from 42 HNSCC cell lines also 

predicted that bosutinib has an anti-tumour effect on HNSCC (Nichols et al., 2014). To 

the best of our knowledge, this is the first time bosutinib was shown experimentally to 

have potency in OSCC cell lines. 

Using gene expression changes as an attribute to guide small molecule inhibitor 

selection was first demonstrated by Lamb et al. (2006) in their CMap seminal work. 
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Generally, the CMap concept can be regarded as a functional lookup table (analogous to 

the periodic table in chemistry), by which large-scale public database of CCL gene 

expression and drug response data such as CMap and GDSC can be mined to repurpose 

drugs for diseases that would otherwise have limited therapeutic options. Leveraging on 

this CMap approach, several types of cancers, such as the ovarian and lung cancers 

(Jahchan et al., 2013; Raghavan et al., 2016) have successfully expanded their treatment 

options. Likewise, the drug sensitivity prediction algorithms challenge organised by the 

National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment 

and Methods (DREAM) project (Costello et al., 2014) reported that gene expression 

patterns have the best predictive power for drug response prediction, thus further 

accentuating the relevance of using gene expression changes to guide candidate drugs 

selection. 

Given a robust gene expression signature, results returned by DeSigN could lead to the 

identification of other more relevant candidate drugs. Take the drug sensitivity study of 

gefitinib in a panel of NSCLC cell lines (GSE4342) as an example. Originally intended 

to predict the ranking of gefitinib based on the gene signature derived from GSE4342, 

DeSigN additionally returned two other EGFR inhibitor: BIBW2992, and lapatinib 

(ranked first and third). In particular, BIBW2992 is a relevant drug candidate because it 

is currently approved for treating NSCLC patients who are refractory to gefitinib and 

erlotinib. Being a newer generation of EGFR inhibitor, BIBW2992 could potentially 

replace gefitinib, a first-generation EGFR tyrosine kinase inhibitor that is increasingly 

becoming a non-viable solution. Clinical studies have shown that cancer cells of NSCLC 

patients treated with gefitinib inevitably develop resistance and relapse, with 8 – 10 

months of median time to progression (Maemondo et al., 2010; Sequist et al., 2011; 

Stinchcombe, 2014). 
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While DeSigN and other drug repurposing tools such as NFFinder, DMAP, and 

FMCM similarly adopted the CMap concept, DeSigN has its uniqueness whereby it 

capitalises on the large panel of 707 human CCL in GDSC that have well-characterised 

gene expression and drug response data. In comparison to CMap, DeSigN constructs 

drug-associated baseline gene expression profile of resistant and sensitive cell lines from 

these 707 cell lines, whereas CMap associates response to the drug by constructing the 

gene expression profiles of pre- and post-treatment conditions using five cell lines (HL60, 

MCF7, PC3, SKMEL5, and ssMCF7). NFFinder, meanwhile, explores the relationship 

of transcriptomic data to drugs, diseases, and experts using three databases: CMap, GEO 

(gene expression), and DrugMatrix (drug toxicology profiles) (Setoain et al., 2015), while 

DMAP builds its protein/gene-drug response database using STITCH (chemical-protein 

interaction networks) and HAPPI (protein-protein interactions) (Huang et al., 2015). The 

FMCM tool, on the other hand, extends the utility of CMap by allowing users to query 

the CMap using a module of functional genes instead of a set of individual up-regulated 

and down-regulated genes (Chung et al., 2014). The characteristics of DeSigN and other 

drug repurposing tools are shown in Table 5.1. 

Table 5.1: Comparison of drug repurposing tools that utilised the CMap concept. 

Tools Relationship feature Reference database 
DeSigN Baseline DEGs to drug response GDSC 
NFFinder Transcriptomic data to drugs, diseases, and 

experts 
GEO, CMap, and 
DrugMatrix 

DMAP Protein/gene to drug response STITCH and HAPPI 
FMCM Pre- and post-treatment gene expression to 

drug response 
CMap 

 

The new leads derived from DeSigN are useful for accelerating the discovery of new 

drugs for HNSCC treatment, which is currently limited to cetuximab, nivolumab and 

pembrolizumab (Bauml et al., 2017; Ferris et al., 2016; Vermorken et al., 2008). 
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Importantly, it should be emphasised that all candidates with positive and significant CS 

should be equally considered for validation instead of considering just a few top-ranked 

candidates, since factors such as cost of the drug, ease of availability, method of 

administering, side effects and other factors, are essential practical considerations in the 

clinical setting. 

Perhaps more compelling findings were that DeSigN predicted two tyrosine kinase 

inhibitors, palbociclib (CDK4/6 inhibitor) (Zainal et al., 2019) and afatinib (pan-EGFR 

inhibitor) (Yee et al., 2019) to be sensitive on a panel of head and neck CCL and these 

are successfully validated (in vitro and in vivo). Furthermore, DeSigN was also recently 

used by scientists from the Roswell Park Cancer Institute to prioritise drugs for basal 

breast cancers with a dysregulation of the citric acid cycle (CAC) pathway. Interestingly, 

none of the shortlisted 11 drugs such as 681640, GDC-0449, and NU-7441 that were 

predicted by DeSigN were initially designed to target the CAC pathway directly (Rosario 

et al., 2018) and therefore, without bioinformatics tools such as DeSigN 1.0, scientists 

might not have thought of testing drugs of different disease indications as possible 

treatment options. 

 

5.2.1 Limitations and Future Implementation Work on DeSigN 

Despite successes, the current implementation of DeSigN has a few shortcomings. 

First, it focuses on using differentially expressed genes as the starting points to associate 

gene signatures with drug response phenotype, ignoring the gene function redundancy 

and gene-gene interactions. This kind of input may not be necessarily optimal, for a 

disease is thought to rarely be a consequence of an abnormality in a single gene, but is 

instead reflected by a disruption of a complex gene network (Barabási et al., 2011). 

Furthermore, the parameters for generating gene signatures may be influenced by sample 
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size, the cell line being studied, disease severity, or differential gene expression methods 

(Patil et al., 2015). Moreover, gene expression signatures are often defined as an alteration 

in the expression of a gene (or genes) with validated specificity in terms of diagnosis, 

prognosis or prediction of therapeutic response, ignoring the possibility of gene 

interactions (Chibon, 2013). In other words, this definition focuses on the quantitative 

gene expression alteration but ignores the interconnections relationship.  

Additionally, it is noteworthy that genes that are involved in dysregulated pathways in 

the pathogenesis of cancer may not always have their expression substantially altered (de 

la Fuente, 2010), rendering them not to be listed as differentially expressed genes. A 

possible solution is to refine the DEG input genes using a set of genes from a subnetwork 

that is shown to be strongly associated with a disease condition. NetDecoder, for example, 

could dissect the subnetworks of input genes to identify key genes significantly impacting 

the cell behaviour specific to a given disease context (da Rocha et al., 2016). 

Despite all these shortcomings, drug sensitivity prediction algorithms challenge posed 

by the DREAM project reassures us that gene expression data carries the most weight in 

predicting drug efficacy. The issues mentioned above regarding the optimal usage of gene 

expression signatures may be resolved by integrating the gene expression signatures with 

network biology methods, which consider not only the expression but also the modular 

function of the genes (Liu et al., 2018). One of the avenues that could be explored is the 

Weighted Gene Co-Expression Network Analysis (WGCNA) method proposed by Zhang 

and Horvath (2005) by which nodes represent genes and nodes are connected if the 

corresponding genes are significantly co-expressed across samples. Recently, the 

WGCNA method was employed to re-analyse the transcriptional profiles of CMap data, 

and it was observed that CMap data could be clustered into seven gene set modules (Liu 

et al., 2018; B. Zhang & Horvath, 2005). A further Gene Ontology analysis found that 
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these modules were associated with molecular functions such as cell adhesion, 

extracellular matrix organisation, mRNA splicing, and translational initiation. The same 

WGCNA approach can, therefore, be applied to the differentially expressed genes before 

DeSigN analysis, thereby solving the gene function redundancy as well as functional 

annotation problems mentioned earlier. 

DeSigN analyses might not yield highly accurate results because it does not yet fully 

take into consideration context-dependence of a particular disease (e.g., tissue 

specificity). Busby et al. (2018), for example, recently reported their failure in identifying 

medications that can alter breast cancer risk using the combination methods of CMap and 

pharmaco-epidemiology. One of their arguments is that it might be due to the 

heterogeneous nature of breast cancers that are made up of different subtypes that could 

potentially mask the crucial signals for specific breast cancer subtypes. Hence, for future 

implementation of DeSigN reference database, perhaps an option of choosing which 

subtypes of tissue one is interested in querying would improve predictive accuracy. On 

top of that, such kind of drug prediction analysis should also bear in mind the biological 

background of the disease in order to have a more relevant drug prediction. 

Another way of evolving DeSigN is to integrate machine learning strategies in the 

framework of DeSigN analyses. One of the machine learning strategies that DeSigN can 

explore is the implementation of Learning to Rank (LTR) method to improve drug-target 

prediction. Yuan et al. (2016), for example, implemented LTR in DrugE-Rank, a machine 

learning approach they proposed that showed significant improvement in predicting FDA 

approved new and experimental drugs using the drug-target interaction obtained from 

DrugBank as the training datasets. Perhaps instead of using drug-target interactions data, 

DeSigN can make use of the 140 unique drug-gene signatures in the reference database 

as the training dataset to check for drug candidate prediction improvement. Another 
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essential feature implemented by DrugE-Rank is the ensemble learning to rank method, 

in which it integrates six different similarity-based machine learning methods to improve 

their drug-target prediction performance. Perhaps the same concept can be applied for 

future DeSigN implementation, in which the six gene signature similarity scoring 

algorithms discussed in Section 3.4.2 can be integrated as an ensemble method to improve 

drug candidate prediction. 

To ensure DeSigN stay relevant and competitive with newly-launched 

pharmacogenomics studies and drug candidates, the drug coverage of DeSigN reference 

profiles will continue to be enhanced by incorporating more clinically relevant 

experimental drugs and small molecule inhibitors from single-agent databases such as the 

GDSC version 2 (Iorio et al., 2016), Cancer Cell Line Encyclopedia (CCLE) (Barretina 

et al., 2012), Cancer Therapeutics Response Portal (CTRP) (version 1 and 2) (Basu et al., 

2013), and Genentech Cell Line Screening Initiative (gCSI) (Haverty et al., 2016). Plans 

are also in place of incorporating drug combinations datasets from Merck Research 

Laboratories (O'Neil et al., 2016) and The National Cancer Institute ALMANAC project 

(Holbeck et al., 2017). Importantly, this will enable the collection of reference profiles in 

DeSigN to span across more than 700 drugs and more than a thousand CCL. 

One significant improvement will be made for future DeSigN implementation, which 

is the inclusion of WTCS and sscMap as the new gene signature similarity scoring 

algorithms. This is based on the findings that both WTCS and sscMap perform better than 

standard KS statistic in terms of ranking, PPV, ES of similar MoA, and stability test under 

varying query sizes. Table 5.2 shows the comparison of current and future 

implementation of DeSigN. 

Table 5.2: Comparison of current and future DeSigN implementation. 

Features Current Future 
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Number of drugs  140 > 700 
Number of cell lines 707 > 1000 
Gene signature similarity 
scoring algorithm 

KS statistic WTCS and sscMap 

Pharmacogenomic databases GDSC version 1 • GDSC version 2 
• CCLE 
• CTRP version 1 
• CTRP version 2 
• Merck Research 
Laboratories 
• NCI ALMANAC 

 

Lastly, DeSigN is envisioned in the future to be a practical biomarker-driven tumour 

type-agnostic bioinformatics prediction tool for better patient stratification and clinical 

trial design. This is to echo with the current development of the tumour type-agnostic 

clinical trial approach, whereby patients are enrolled in a clinical trial based on the 

affected target gene rather than the conventional tumour histological site. Indeed, some 

drugs work on all tumours regardless of the site of a tumour, however other drugs only 

work for some, but not all, tumours that have the same biomarker. For example, the TRK 

inhibitor larotrectinib appears to work for all adult and pediatric cancers with TRK fusions 

(Taylor et al., 2018), and pembrolizumab and nivolumab, for adult and pediatric 

unresectable or metastatic solid tumours harbouring high microsatellite instability, or 

deficiency in DNA mismatch repair mechanism (Yan & Zhang, 2018). In contrast, 

patients with BRAF V600E mutation-positive metastatic melanoma showed a response of 

approximately 50% to vemurafenib (BRAF inhibitor) (Chapman et al., 2011), but only 

circumstantial responses were observed in anaplastic thyroid cancer, 

cholangiocarcinoma, salivary duct cancer, ovarian cancer and colorectal cancer (Hyman 

et al., 2015). This highlights that tumour type-agnostic approach is not universal, and it 

is critical to identify new and combinatory treatment approaches to address drug 

resistance. It is indeed exciting if DeSigN could be used to run drug sensitivity prediction 
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before the commencement of actual clinical trials where responders and non-responders 

could be identified, thus resulting to savings in time and cost. 

 

5.3 Gene Signature Similarity Scoring Algorithms Evaluation for Optimal Drug 

Sensitivity Prediction 

Having adopted the CMap concept, DeSigN successfully shortlisted bosutinib as the 

candidate drug that could be efficacious against OSCC cell lines. One key component for 

the successful development of DeSigN is the implementation of the KS statistic as the 

gene signature similarity scoring algorithm. The KS statistic has been the standard 

algorithm used to associate gene signatures given by the users to the drug perturbed gene 

expression profile in the CMap reference database. Newer algorithms have since been 

developed, yet few systematic evaluations have been done to evaluate their performance 

against the KS statistic. 

To ensure optimal drug sensitivity prediction, six scoring algorithms (KS, WTCS, 

sscMap unordered, sscMap ordered, XSum, and XCos) were chosen to evaluate their 

performance using 22 Ushijima signatures against the CMap reference database. This 

comprehensive performance evaluation of multiple gene signature similarity scoring 

algorithms can, therefore, serve as a benchmark to assess any new methodologies in the 

future. Table 5.3 shows the different characteristics of these six gene signature similarity 

scoring algorithms. Amongst the six algorithms, KS requires the gene signature to be 

transformed to rank-ordered, while sscMap ordered takes on the signed rank-ordered for 

gene signature. In terms of requiring fold change value to be provided, only XCos and 

sscMap ordered require this input. With respect to the reference profile, all algorithms 

use the fold change ranking in descending order. However, KS and WTCS require one 

additional step, which is to transform the fold change values into rank-ordered forms. 
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Table 5.3: Different characteristics of gene signature similarity scoring algorithms. 

Methods Gene signature Fold change 

value 

Reference profile 

KS Rank-ordered X Rank-ordered 

WTCS X X Rank-ordered 

XSum X X Fold change-ordered 

XCos X √ Fold change-ordered 

sscMap ordered Signed rank-ordered √ Fold change-ordered 

sscMap unordered X X Fold change-ordered 

 

Having carried out the performance evaluation concerning the rankings, PPV, ES of 

similar MoA, and stability test on varying query sizes, it appears that KS performs poorly 

in almost all aspects as compared to the other five algorithms. As shown in Table 5.3, the 

KS method has quite a distinct characteristic as compared to the other five algorithms. 

These features, i.e., gene signature ranking, the requirement of fold change value, and 

ordering of the reference profile that lies in the nature of the technical implementation of 

KS execution might have contributed to the poor performance. More technical analyses 

that evaluate these features need to be done in order to conclude this finding, which is out 

of the scope of this current thesis. 

On the other hand, additional drug perturbed reference databases aside from the CMap 

database should be used for performance evaluation for a more conclusive evaluation. 

This is because bias might have arisen from the use of CMap alone due to the limited 

number of CCL (n = 5) used to derive the profiles of transcriptional responses to 1309 

small molecule inhibitors. Table 5.4 shows the breakdown of the number of gene 

expression profiles derived for each cell line, which showed that the majority of the gene 

expression profiles in CMap are derived from MCF7, PC3, and HL60. With more than 

99% of the gene expression profiles derived from three cell lines, perhaps the fraction of 
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all possible induced cellular states represented in the CMap reference database might 

probably be minimal. 

Table 5.4: Breakdown of the number of transcriptional profile derived for each cell line 
in the CMap reference database. 

Cell line Tissue type Number of transcriptional profile derived 
MCF7 Breast 3095 
PC3 Prostate 1741 
HL60 Leukemia 1229 
ssMCF7 Breast 18 
SKMEL5 Melanoma 17 

 
 

Judging from the performance of these six algorithms, it seems that every algorithm 

apart from KS gave quite a similar performance across different performance evaluation 

metrics, and consistently scored better than the KS algorithm. However, both XSum and 

XCos have one technical limitation, whereby when the gene signatures provided by users 

do not match with the top 500 up-regulated, and bottom 500 down-regulated genes in the 

reference profile, the similarity scoring for XSum and XCos could not be executed. 

Taking into these considerations, both WTCS and sscMap could, therefore, be a better 

choice of gene signature similarity scoring algorithm for drug-disease prediction as their 

performance is similar and they do not have clear technical limitations. 
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CHAPTER 6: CONCLUSION 

 

6.1 GENIPAC 

In this study, a user-friendly web resource called GENIPAC (Genomic Information 

Portal on Cancer Cell Lines) was developed for exploring, visualising, and analysing 

genomics information of commonly-used HNSCC cell lines. In total, 44 HNSCC cell 

lines from three different studies (ORL Series, OPC-22, and H Series) are hosted in 

GENIPAC. The aim of implementing GENIPAC is to create easy access for head and 

neck cancer research community to mine genomic information of HNSCC cell lines, 

hence accelerate better understanding of HNSCC and lastly to develop new precision 

therapeutic options for HNSCC treatment. 

Importantly, the functional utility of GENIPAC was demonstrated with some of the 

genomic alterations that are commonly reported in HNSCC, such as TP53, EGFR, 

CCND1, and PIK3CA. These alterations as reported in 530 head and neck tumour samples 

in The Cancer Genome Atlas (TCGA) were shown to recapitulate in the HNSCC cell 

lines in GENIPAC. Additionally, GENIPAC also enables the visualisation of pathways 

within which these genomic alterations fall in. 

With the addition of more head and neck cancer data, hopefully, the cancer research 

community would find GENIPAC a valuable research platform to generate data-driven 

hypotheses for integrative analysis to accelerate discoveries in the field of HNSCC. 

 

6.2 DeSigN 

DeSigN (Differentially Expressed Gene Signatures - Inhibitors) is the drug 

repurposing tool that was developed to identify novel drugs that have good potential to 

Univ
ers

ity
 of

 M
ala

ya



130 

be repurposed for head and neck cancer therapy. The gene signature similarity scoring 

algorithm, KS statistic implemented within DeSigN was used to correlate oral squamous 

cell carcinoma (OSCC) gene signatures with the pre-defined gene expression profiles 

associated with 140 drug response data (IC50) available in Genomics of Drug Sensitivity 

in Cancer (GDSC).  

DeSigN predicted bosutinib, an Src/Abl kinase inhibitor as a sensitive inhibitor for 

OSCC cell lines. Bosutinib is recently approved by the FDA for treating BCR-ABL 

leukemic patients and have no known effects no against OSCC. Subsequent experimental 

validation demonstrated that indeed, OSCC cell lines were sensitive to bosutinib with 

IC50 of 0.8–1.2 µM. As further confirmation, bosutinib was also shown to have anti-

proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to predict 

drug that could control the growth of cancer cells. 

Moving forward, both WTCS and sscMap will be incorporated in the future 

implementation of DeSigN framework to increase the drug sensitivity prediction accuracy 

of DeSigN. 

 

6.3 Concluding Remarks 

The works presented in this thesis show that cancer genomics data mining and 

integration through the development of GENIPAC and DeSigN could be a viable 

approach in accelerating drug development process. It demonstrates an alternative route 

of developing new therapeutic candidates for cancers with limited therapeutic options, 

such as oral cancer. Importantly, clinical studies have shown that the current approved 

targeted therapies are only effective in less than 20% of HNSCC patients, which means 

the remaining 80% HNSCC patients are in urgent needs of new therapeutics options. The 
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drug repurposing approach through GENIPAC and DeSigN should, therefore, be able to 

expand the repertoire of therapeutic options for HNSCC patients in the near future. 
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