
STATIC AND ADAPTIVE INDEXING FRAMEWORK FOR
BIG DATA USING PREDICTOR LOGIC

AISHA SIDDIQA

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017 Univ
ers

ity
 of

 M
ala

ya

STATIC AND ADAPTIVE INDEXING

FRAMEWORK FOR BIG DATA USING PREDICTOR

LOGIC

AISHA SIDDIQA

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

I would like to dedicate my work to my soulmate;

behind my success there is he…

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: AISHA SIDDIQA

Registration/Matric No: WHA130025

Name of Degree: DOCTOR OF PHILOSOPHY:

Title of Thesis: Static and Adaptive Indexing Framework for Big Data Using Predictor

Logic

Field of Study: BIG DATA INDEXING (COMPUTER SCIENCE)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

Mala
ya

iii

ABSTRACT

Big data with exponential growth come in various forms and require efficient data

processing systems for fast retrieval. The disrupted features that are associated with big

data have elicited attention from research and industry; the research efforts aim to explore

viable solutions that can improve data retrieval performance for better insight. Indexing

has undoubtedly contributed to increased search performance for big data sets; for big

data indexing, researchers have used many indexing structures such as clustered and non-

clustered. However, because of the continuous increase in data size, contemporary big

data indexing mechanisms are inadequate to achieve efficiency in query responses.

Clustered indexing approaches are constrained to number of replicas to offer indexing on

a sufficient number of attributes, whereas non-clustered indexing implementation incurs

high indexing overhead. Therefore, existing big data indexing structures are unable to

achieve the maximum index hit ratio. The aim of this study is to expedite the data retrieval

process with minimum indexing overhead and maximum index hit ratio against search

queries for big data by using non-clustered indexing approach. Static indexes are created

based on a user-provided list of index attributes before starting query execution, which

are updated adaptively based on changing query workload to obtain an increased index

hit ratio. We investigate contemporary big data indexing implementation and analyze its

inefficiency in index creation time and index size. Furthermore, we observe that because

of the limited number of indexes available with clustered indexing approaches, most

queries are executed without using indexes. Thus, we propose a novel indexing

framework for big data, named SmallClient, with minimized indexing overhead,

improved search performance, and improved index hit ratio. SmallClient leverages B-

Tree indexing structure and uses novel predictor logic for indexing. We collected data for

indexing overhead (both in terms of indexing time and index size) as well as search

Univ
ers

ity
 of

 M
ala

ya

iv

performance and index hit ratio for static and adaptive indexing, respectively, to validate

the performance of the framework. We use benchmarking and mathematical modeling for

verification of SmallClient results. The results of indexing time prove that SmallClient

has decreased indexing time overhead by up to 32% from 47%, taken by the Lucene

indexing library. Similarly, index size overhead is 41% for large data sets where Lucene

fails to create indexes. The results also prove that the search performance of SmallClient

is more than 92% without intervening data uploading cost and that this framework

achieves improved index hit ratio by adaptively updating indexes.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Big data dengan pertumbuhan eksponen datang dalam pelbagai bentuk dan

memerlukan sistem cekap memproses data untuk capaian cepat. Ciri-ciri disrupted yang

dikaitkan dengan big data telah elicited perhatian daripada penyelidikan dan industri;

usaha-usaha penyelidikan ini bertujuan untuk meneroka penyelesaian yang berdaya maju

yang boleh meningkatkan prestasi pencarian data wawasan yang lebih baik. Indeks tidak

syak lagi telah menyumbang kepada prestasi meningkat Cari set big data; untuk big data

Indeks, penyelidik telah menggunakan banyak struktur Indeks seperti berkelompok dan

bebas berkelompok. Walau bagaimanapun, disebabkan oleh peningkatan berterusan

dalam saiz data, mekanisme Indeks kontemporari big data adalah tidak mencukupi untuk

mencapai kecekapan dalam jawapan pertanyaan. Pendekatan pengindeksan Berkelompok

akan dikekang bilangan replika agar Indeks bilangan mencukupi sifat-sifat, manakala

pelaksanaan Indeks-Berkelompok akan tinggi Indeks overhed. Oleh yang demikian,

struktur Indeks big data yang sedia ada tidak dapat mencapai Indeks maksimum

mencecah nisbah. Kajian ini bertujuan untuk mempercepatkan proses pencarian data

dengan minimum pengindeksan overhed dan Indeks maksimum mencecah nisbah

terhadap pertanyaan carian untuk big data dengan menggunakan pendekatan Indeks non-

clustered. Statik Indeks dicipta berdasarkan pengguna-menyediakan senarai atribut

Indeks sebelum memulakan pelaksanaan pertanyaan, yang akan dikemaskini Kurangkan

berdasarkan perubahan beban kerja pertanyaan untuk mendapatkan Indeks meningkat

mencecah nisbah. Kami menyiasat kontemporari big data Indeks pelaksanaan dan

menganalisis dengan ketidakcekapan dalam Indeks penciptaan masa dan Indeks saiz.

Tambahan pula, kita Perhatikan bahawa kerana bilangan terhad disediakan Indeks dengan

pendekatan pengindeksan Berkelompok, kebanyakan pertanyaan dijalankan tanpa

menggunakan Indeks. Oleh itu, kami mencadangkan rangka pengindeksan novel untuk

big data, bernama SmallClient, dengan diminimumkan pengindeksan overhead, Cari

Univ
ers

ity
 of

 M
ala

ya

vi

peningkatan prestasi, dan peningkatan indeks hit nisbah. SmallClient memanfaatkan B-

Tree pengindeksan struktur dan menggunakan novel faktor peramal logik untuk

mengindeks. Kami mengumpul data untuk Indeks overhead (baik dari segi indeks masa

dan Indeks saiz) dan Cari prestasi dan Indeks hit nisbah bagi statik dan mudah suai Indeks,

masing-masing untuk mengesahkan prestasi rangka kerja. Kami menggunakan tanda aras

dan model matematik untuk pengesahan keputusan SmallClient. Keputusan indeks masa

membuktikan bahawa SmallClient telah menurun indeks masa overhed sehingga 32%

daripada 47%, diambil oleh Lucene pengindeksan Perpustakaan. Begitu juga, Indeks saiz

overhed adalah 41% bagi set data yang besar di mana Lucene gagal untuk mencipta

Indeks. Keputusan juga membuktikan bahawa prestasi Cari SmallClient adalah lebih

daripada 92% tanpa kematangan data naik kos dan bahawa rangka kerja ini mencapai

peningkatan indeks hit nisbah dengan Kurangkan mengemas kini indeks adaptif.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor Professor Dr. Abdullah Gani for his

continual support and guidance throughout this research. His encouragement has made

me produce such valuable piece of contribution in the form of this thesis. Besides that,

working under his supervision was also a memorable experience of my life.

I also acknowledge Ministry of Higher Education, Malaysia for the financial support

for this duration of study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT .. III

ABSTRAK .. V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS .. VIII

LIST OF FIGURES .. XII

LIST OF TABLES .. XV

LIST OF SYMBOLS AND ABBREVIATIONS ... XVI

CHAPTER 1: INTRODUCTION .. 1

1.1 Research Motivation .. 1

1.2 Statement of Problem .. 3

1.3 Statement of Objectives ... 5

1.4 Proposed Methodology .. 6

1.5 Thesis Organization ... 8

CHAPTER 2: BIG DATA INDEXING TECHNIQUES: THE STATE-OF-

THE-ART .. 11

2.1 Big Data Indexing Requirements .. 11

2.2 Indexing for Traditional Data .. 15

2.2.1 Classification of Indexing Techniques .. 16

2.2.2 Analysis of Indexing Techniques for Big Data Indexing
Requirements ... 33

2.3 Indexing Implementation on Big Data .. 37

2.3.1 Clustered Indexing on Big Data .. 38

2.3.2 Non-clustered Indexing on Big Data ... 40

2.3.3 Analysis of Indexing Techniques Implemented on Big Data 41

2.4 Conclusion ... 45

CHAPTER 3: PERFORMANCE ANALYSIS OF INDEXING TECHNIQUES

FOR BIG DATA .. 47

Univ
ers

ity
 of

 M
ala

ya

ix

3.1 Experimental Setup and Data Collection ... 47

3.1.1 The Model.. 48

3.1.2 Performance Measures .. 50

3.1.3 Data Set Used .. 51

3.1.4 Data Collection Tools .. 52

3.2 Results and Discussion .. 53

3.2.1 Index Size Results ... 53

3.2.2 Indexing Time Results ... 58

3.2.3 Search Time Results .. 62

3.2.4 Index Hit ratio .. 66

3.3 Conclusion ... 67

CHAPTER 4: SMALLCLIENT FOR BIG DATA: PROPOSED INDEXING

FRAMEWORK ... 69

4.1 SmallClient Indexing Framework ... 69

4.2 The Architecture .. 71

4.3 Framework Modules .. 73

4.3.1 Block Creation ... 74

4.3.2 Index Creation ... 76

4.3.3 Query Execution .. 81

4.4 Mathematical Model for SmallClient .. 84

4.5 Features of SmallClient ... 88

4.6 Conclusion ... 90

CHAPTER 5: EVALUATION ... 92

5.1 Test bed .. 92

5.2 Evaluation Measures .. 93

5.2.1 Data Upload Overhead .. 93

5.2.2 Indexing Overhead .. 95

5.2.3 Search Performance ... 96

5.2.4 Index Hit Ratio .. 98

Univ
ers

ity
 of

 M
ala

ya

x

5.3 Framework Design... 99

5.4 Data Collection Tools .. 103

5.4.1 Data Collection for Experiment ... 103

5.4.2 Data Collection for Benchmarking .. 104

5.4.3 Data Collection for Mathematical Model .. 106

5.5 Conclusion ... 108

CHAPTER 6: RESULTS AND DISCUSSION .. 109

6.1 Validation .. 109

6.1.1 Experimental Results ... 110

6.1.2 Mathematical Modeling Results .. 120

6.2 Verification .. 123

6.2.1 Benchmarking .. 123

6.2.2 Mathematical Modeling ... 134

6.3 Conclusion ... 136

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 138

7.1 Fulfillment of Aim and Objectives .. 138

7.1.1 Investigating the capability of existing indexing techniques to address
the challenges of big data to establish potential research problem 138

7.1.2 Designing and implementing an indexing framework using non-
clustered indexing structure incorporated with predictor function for
adaptive index updating, which ensures the following: 139

7.1.3 Evaluating the effectiveness of proposed indexing framework with
respect to overhead resulted by static and adaptive indexing, query
execution and data retrieval time, and index hit ratio.......................... 140

7.1.4 Verifying the results of proposed indexing framework using
benchmarking and mathematical modeling ... 140

7.2 Research Contributions .. 141

7.2.1 Taxonomy of State-of-the-Art Indexing Techniques 141

7.2.2 SmallClient: a novel indexing framework for big data 141

7.2.3 Algorithmic Design for SmallClient .. 142

7.2.4 Java Class Library for SmallClient .. 142

7.2.5 Mathematical Model of SmallClient ... 143

Univ
ers

ity
 of

 M
ala

ya

xi

7.3 Limitations and Future Work .. 143

REFERENCES .. 145

 Data Uploading ... 152

 Indexing .. 155

 Query Execution ... 172

 Predictor .. 184

LIST OF PUBLICATIONS AND PAPERS PRESENTED 186

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure 1-1: Trends of Big Data and Indexing ... 2

Figure 1-2: Research Milestones and Methodology ... 7

Figure 1-3: Thesis Organization.. 9

Figure 2-1: Taxonomy of Indexing Techniques (Gani, Siddiqa, Shamshirband, & Hanum,
2015) ... 17

Figure 3-1: Experimental Model ... 48

Figure 3-2: Indexed Search Query Execution ... 49

Figure 3-3: Index Size comparison with Data Set size and Number of Index Attributes
 ... 56

Figure 3-4: Index Size Overhead for varying number of Index Attributes 57

Figure 3-5: Indexing Time comparison with Data Upload Time and Number of Index
Attributes ... 60

Figure 3-6: Indexing Time Overhead for varying number of Index Attributes 61

Figure 3-7: Search Time Comparison between Full Scan and Indexed Search 64

Figure 3-8: Improved Search Performance with Index Search 64

Figure 3-9: Index Hit ratio Comparison with varying No. of Index Attributes 67

Figure 4-1: Proposed indexing framework, SmallClient .. 71

Figure 4-2: The Architecture for SmallClient ... 72

Figure 4-3: Block Creation Process .. 75

Figure 4-4: Index Creation Process ... 76

Figure 4-5: Sequence Diagram of Index Creation .. 78

Figure 4-6: Predictor Function .. 80

Figure 4-7: Sequence Diagram of Query Execution ... 83

Figure 4-8: Mathematical Model for SmallClient ... 85

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 6-1: Data Upload Time Experiment Results .. 111

Figure 6-2: Data Size Results from Experiments .. 112

Figure 6-3: Indexing Time Results from Experiments for up to five indexes 115

Figure 6-4: Index Size Resuts for five indexes ... 117

Figure 6-5: Query Execution Time Results from Experiments 118

Figure 6-6: Index Hit Ratio Results for Static and Adaptive Indexes 120

Figure 6-7: Data Upload Time Resuts using Mathematical Model 121

Figure 6-8: Indexing Time Resuts using Mathematical Model 122

Figure 6-9: Query Execution Time Resuts using Mathematical Model 122

Figure 6-10: Benchmarking on Data Uploading Time ... 124

Figure 6-11: Data Upload Time Overhead.. 125

Figure 6-12: Benchmarking on Data Size ... 126

Figure 6-13: Data Upload Size Overhead ... 126

Figure 6-14: Indexing Time Comparison for up to five indexes when created using Lucene
vs SmallClient ... 128

Figure 6-15: Indexing Time Results using Lucene, SmallCLient and I-SmallClient ... 129

Figure 6-16: Indexing Time Overhead Results ... 130

Figure 6-17: Index Size Results using Lucene and SmallCLient 131

Figure 6-18: Index Size Overhead Results.. 132

Figure 6-19: Query Execution Time Comparison between full scan, Lucene and
SmallClient .. 133

Figure 6-20: Search Performance results using SmallClient and Lucene 133

Figure 6-21: Data Upload Time Mathematical Verification ... 135

Figure 6-22: Indexing Time Mathematical Verification ... 136

Figure 6-23:s Query Execution Time Mathematical Verification 136

Univ
ers

ity
 of

 M
ala

ya

xiv

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF TABLES

Table 2-1: Indexing Techniques for Traditional Data (Gani et al., 2015) 22

Table 2-2: Analysis of Indexing Techniques for Big Data Indexing Requirements (Gani
et al., 2015) .. 34

Table 2-3: Comparison of Clustered and Non-Clustered Indexing 38

Table 2-4: Analysis of Clustered Indexing Approaches for Big Data 42

Table 3-1: Data Sets .. 52

Table 3-2: Index Size Results ... 55

Table 3-3: Indexing Time Results ... 59

Table 3-4: Search Time Results .. 62

Table 3-5: Index Hit Ratio Results ... 66

Table 4-1: Description of Places in SmallClient Mathematical Model 87

Table 4-2: Description of transitions in SmallClient Mathematical Model 87

Table 6-1: Data Upload Time Results ... 110

Table 6-2: Data Upload Size Results .. 111

Table 6-3: Indexing Time Results for up to five Indexes ... 114

Table 6-4: Index Size Results for up to five Indexes .. 116

Table 6-5: Query Execution Time and Search Performance Results 118

Table 6-6: Query Log observations and Index Hit Ratio Results before and after Predictor
Logic ... 119

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

AI : Artificial Intelligent

CAI : Collaborative Artificial Intelligent

CKRR : Collaborative Knowledge Representation and Reasoning

CML : Collaborative Machine Learning

CPN : Colored Petri Nets

CSV : Comma Separated Values

ER : Entity Relationship

HDFS : Hadoop Distributed File System

NAI : Non Artificial Intelligent

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter provides an overview of the current study. We explain the motivation for

this thesis on big data indexing and present the research problem that we have addressed

and investigated. Moreover, we present the aim and objectives of our research; the

proposed methodology in undertaking the research process is also described in this

chapter. In addition, we briefly outline the structure of this thesis in this chapter.

The rest of this chapter is organized as follows: Section 1.1 presents the background

and motivation of our research. We present the statement of the problem in Section 1.2,

followed by the research aim and objectives in Section 1.3. The proposed research

methodology is illustrated in Section 1.4 and the thesis outline is presented in Section 1.5.

1.1 Research Motivation

Information technology has become a crucial part of today’s lifestyle. This role has

resulted in the voluminous amount of structured and non-structured data, which is rapidly

growing. This type of data is known as big data. Potential contributors of big data

repositories are healthcare monitoring and diagnosing systems, social networks, e-

science, and e-commerce. Big data management systems are also improving to cope with

current challenges. However, big data is beyond the capabilities of these systems to fulfill

its storage, processing, and visualization requirements. Therefore, there is still an urge for

an efficient technology to handle big data.

Big data sets have crossed the boundaries of traditional data structures and comprise

more than mere relational records such as text, audio, images, and videos in

heterogeneous formats. Given the wider data type coverage and inclusion of every bit

produced by information sensing systems, this pool of data is estimated to be doubled

Univ
ers

ity
 of

 M
ala

ya

2

after every two years. The volume of the digital universe is further projected to grow by

a factor of 300 and will be up to 40,000 exabytes from 2005 to 2020.

Figure 1-1: Trends of Big Data and Indexing

Figure 1-1 depicts the shift of big data from traditional data in terms of volume, variety,

and velocity. The figure chronologically presents the evolution of data management

systems from Relational Database Management System (RDBMS) to recent NoSQL

technologies. The figure also shows that during this evolution, a distinct change in volume

and variety of data must be processed.

Figure 1-1 also presents the attained performance improvement in data retrieval

process by current NoSQL technologies through indexing implementation. Although the

available big data management tools include well-defined standards and procedures, they

are not capable of handling the challenges of emerging big data. Therefore, the research

on big data storage and analytics aims to escalate the adaptability of data management

architectures and operational models for forthcoming big data needs.

The main concern of big data analytics is to perform efficient search and retrieval

operations on big data to obtain insights towards generating value. Undoubtedly,

Terabytes Petabytes

1990's 2000's 2010's

B
ig

 D
a
ta

 S
c
a
le

RDBMS NoSQLDigital Content

Management

2020's

Traditional Data Big Data

10x Insertion performance and 268x Query performance

MongoDB

32x fast performance by using MapReduce

Hadoop

2.5x throughput than MongoDB
Couchbase

Fast index creation and data retrieval

OrientDB

Structured Data
Text

Audio

Image

Video

Gigabytes Zetabytes

Univ
ers

ity
 of

 M
ala

ya

3

immense indexing procedures are available for traditional data retrieval and search

systems that demonstrate competitive outcomes. However, in the era of big data, terabyte

to petabyte scale records deteriorate the performance of traditional indexing procedures.

Moreover, the complexity and velocity associated with big data also hinder their

performance. Longer execution times and additional storage requirements are the

immediate consequences of implementing traditional indexing procedure on big data.

This inadequacy provides a motivation to undertake the research on an acceptable data

retrieval solution; it encourages designing an improved search mechanism.

The emergence of new storage technologies to confront the needs of big data also

reveals the need for quick responses to data search queries. Therefore, efficiency in query

execution and data retrieval is highly important for faster decision-making. For instance,

in the field of body sensor networks, the increasing costs of healthcare and ageing of

population are major subjects that have critical information-retrieval requirements. Thus,

in distributed and replicated big data storage systems, we conduct this research because

of the need for fast data processing and timely query responses.

1.2 Statement of Problem

Performing fast data search and retrieval operations over big text data for data analytics

and visualization is a challenging task because millions of records are located in a

distributed replicated environment. Prevailing big data management systems propose

numerous indexing mechanisms with the evolution of big data. However, these systems

do not show satisfactory performance for search queries because indexes are not well-

designed. We explain the limitations of various indexing approaches for big data and

present the statement of the problem.

Clustered indexing approaches with static and adaptive features are applicable for big

data only with certain limitations. These approaches physically re-order data records

Univ
ers

ity
 of

 M
ala

ya

4

based on an attribute to create a single index and require a distinct number of replicas of

a data set to create more than one index. Therefore, an increase in the number of indexes

requires an increase in the number of replicas. This limitation imposes storage constraints

that might prevent big data sets from having as many replicas as the number of indexes

required.

Complex index updating is another limitation of clustered indexing approaches.

Replacing an available index with a new index requires re-ordering the data records of

that replica. Adding new indexes requires creating new replicas for data sets with a new

physical order of data records that are based on new index attributes. Furthermore, the

selection of attributes for indexing is also challenging for clustered indexing approaches.

Given that the number of indexes is limited to the number of replicas for a data set and

index updating is a complex process, determining a useful list of attributes for indexing

is critical.

Non-clustered indexing approaches for big data have their own inadequacies. Unlike

clustered indexing approaches, non-clustered approaches do not restrict the number of

indexes with a number of replicas for a data set. These approaches allow as many indexes

to be created as required on only a single replica of a data set. However, non-clustered

indexing approaches incur high indexing overhead (i.e., additional index creation time

and storage space) and increase the delay to start the query execution process.

The selection of attributes that are to be utilized to create indexes is highly critical for

a well-designed indexing structure. Creating indexes on all attributes that are provided as

schema of a data set is impractical. The reason is that performing full text indexing on big

data that comprises an extensive number of records results in high indexing upfront cost

in terms of size and time. Thus, a longer delay occurs between data uploading and

executing first query when the indexing mechanism is not suitable for such data and

Univ
ers

ity
 of

 M
ala

ya

5

indexing is performed on all data attributes. Moreover, these indexes consume

sufficiently large storage space.

Indexing for specific attributes is relatively preferable to minimize upfront cost of

indexing. However, these statically created indexes do not fulfill requirements for queries

that have selection predicates on different attributes. Consequently, these queries are

executed using full scan, which is a remarkably time-consuming activity for big data.

The possibility also exists that indexing on a predetermined set of attributes may only

be efficient for a specific span of time. Adding/deleting indexes that have the changing

trend of data retrieval and having different workloads of queries is needed so that up-to-

date indexes are available. This index updating can be invoked by users and/or by systems

that automatically predict the changing query workload.

An indexing mechanism is needed that has wisely selected attributes to create indexes,

thereby resulting in minimized indexing overhead for big data. In the meantime, by

considering the changing query workload, predicting future query workload is needed to

create or destroy indexes.

1.3 Statement of Objectives

This study aims to expedite the data search and data retrieval process from the pool of

big data and provide up-to-date indexes through a proposed novel indexing framework

that introduces both static and adaptive indexing to minimize indexing overhead, improve

data search performance, and ultimately improve index hit ratio. The proposed solution

is deployable on contemporary big data storage and processing systems such as Hadoop.

The following are the objectives that are needed to attain the aim of our research:

a. Investigate the capability of existing indexing techniques towards the challenges

of big data to establish the potential research problem. Big data indexing

Univ
ers

ity
 of

 M
ala

ya

6

requirements are defined to analyze their fulfillment by existing indexing

techniques. Review and investigation on existing indexing techniques based on

defined big data indexing requirements leads to clarify the research gap to further

address in this research.

b. Design and implement an indexing framework that uses the non-clustered

indexing structure incorporated with predictor function to adaptively update for

adaptive index updating, thereby ensuring the following:

 minimized indexing overhead in terms of index creation/updating

time and the space consumed by indexes (index size) for large

volume data,

 reduced data retrieval time with faster query execution, and

 maximized index hit ratio by predicting the future workload of

incoming search queries.

c. Validate the effectiveness of the proposed indexing framework with respect to

indexing overhead, query execution and data retrieval time, as well as index hit

ratio. Existing approaches are used as benchmark to ensure that proposed indexing

framework has achieved minimized indexing time, reduced data retrieval time and

maximized index hit ratio.

d. Verify the results of the proposed indexing framework by comparing experimental

results with mathematical modeling results. The results obtained from

experiments and mathematical model are compared to ensure that proposed

framework demonstrates same performance in both environments.

1.4 Proposed Methodology

This section presents the research methodology of our thesis. We describe the

milestones and steps undertaken to accomplish each milestone. Figure 1-2 explains the

methodology of our research. We have the following four milestones: establishment of

Univ
ers

ity
 of

 M
ala

ya

7

research problem, modeling the solution, evaluating the solution, and validating the

results.

Figure 1-2: Research Milestones and Methodology

We establish the research problem by reviewing and investigating the performance of

existing indexing solutions for big data. We first identify big data indexing requirements

and analyze recent indexing techniques for traditional data. We further performed review

and investigation on indexing implementations for big data. Thereafter, we established

the research problem by analyzing the performance of existing indexing implementations

on big data.

We model the solution by proposing the indexing framework for big data named as

SmallClient. SmallClient offers indexing procedure to create static and adaptive indexes.

Users can provide a list of attributes for indexing either to be created during the data

uploading process of SmallClient or at any random time whenever required. Furthermore,

Univ
ers

ity
 of

 M
ala

ya

8

SmallClient introduces predictor logic to automatically predict future query workload

based on which existing indexes are updated.

We validate the effectiveness of the solution by presenting the results for indexing

overhead, query execution time, and index hit ratio. We show that SmallClient fulfills the

objectives of this research and shows performance improvement in terms of minimized

indexing overhead, minimized query execution cost, and increased index hit ratio.

We verify the results by using benchmarking and mathematical modeling. We collect

data for benchmarking by using well-known big data search procedures such as Hadoop

MapReduce and Hive for full scan and Apache Lucene indexing library for indexed

search comparison. We use Petri nets to design a mathematical model for SmallClient

and compare the experiment results with mathematical modeling results for verification.

1.5 Thesis Organization

The organization of the thesis is described in this section, and is presented in Figure

1-3.

Univ
ers

ity
 of

 M
ala

ya

9

Figure 1-3: Thesis Organization

Univ
ers

ity
 of

 M
ala

ya

10

Chapter 2 presents a review of big data indexing techniques that enable identifying the

potential problems that are related to indexing big data. It first investigates state-of-the-

art indexing techniques for traditional data and identifies the indexing requirements

related to big data. Then, indexing implementations on big data are reviewed and the

potential problems are emphasized.

Chapter 3 presents the performance analysis of contemporary big data indexing

techniques to establish the research problem of our thesis. Apache Lucene indexes are

used to create indexes on different sizes of data sets to observe indexing overhead and

search performance. Based on experimental results, the performance is analyzed and the

problem is established by validating the results.

Chapter 4 introduces SmallClient, the proposed indexing framework for big data. The

architecture of the data retrieval system and sequence flow of SmallClient to achieve the

research objectives is presented in this chapter. The most appealing features of

SmallClient are also emphasized in Chapter 4.

Chapter 5 elaborates the evaluation method of our research. Evaluation measures used

to collect data and evaluate the solution are discussed in this chapter. Furthermore, the

algorithms designed for the framework are presented.

Chapter 6 presents the performance results and their verification. We discuss the

findings of collected data for indexing overhead, search performance, and index hit ratio.

We use benchmarking and mathematical modeling to further verify the experiment

results.

Chapter 7 concludes the thesis. It describes the mapping of the aim and objectives with

the research findings. The main contribution of the study is presented in this chapter.

Furthermore, the significance of the proposed research and future work is described.

Univ
ers

ity
 of

 M
ala

ya

11

CHAPTER 2: BIG DATA INDEXING TECHNIQUES: THE STATE-OF-THE-

ART 1

This chapter presents a review of indexing techniques for big data to identify potential

problems. We first define indexing requirements for big data as investigation criteria and

later analyze existing indexing techniques for traditional data by using these requirements

for performance investigation. Furthermore, we review indexing mechanisms that have

been recently implemented on big data in this chapter. The challenges and potential

problems for big data indexing are also presented in this chapter by analyzing

contemporary big data indexing implementations.

This chapter comprises four sections. Section 2.1 identifies and elaborates indexing

requirements for big data. Section 2.2 presents investigation of contemporary indexing

techniques for traditional data by using big data indexing requirements. Section 2.3

investigates indexing advancements in big data under clustered and non-clustered

categories. Section 2.4 concludes the discussion.

2.1 Big Data Indexing Requirements

This section discusses the requirements of big data indexing. Accuracy and timeliness

are the significant parameters in data retrieval operation performed using an indexing

technique. Accuracy of results from data search operations deals with the consistency

when same queries are applied whereas timeliness refers to the prompt response on

submitted queries. However, knowledge of data requirements to develop an indexing

1 The work presented in this chapter is partially obtained from the following research contribution:

Gani, Abdullah, Siddiqa, Aisha, Shamshirband, Shahaboddin, & Hanum, Fariza. (2015). A survey on
indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information
Systems, 46(2), 1-44. doi: 10.1007/s10115-015-0830-y

Siddiqa, Aisha, Karim, Ahmad, Gani, Abdullah, & Chang, Victor. On the analysis of big data indexing
execution strategies (2016). Journal of Intelligent and Fuzzy Systems

Univ
ers

ity
 of

 M
ala

ya

12

technique is essential. The literature reports the efficiency and effectiveness of existing

indexing techniques when they are applied to traditional data sets (Raghavendra et al.,

2016). However, our investigation is related to an analysis of the capability of these

techniques to handle big data. We emphasize the indexing requirements that are

specifically related to big data for investigation.

Big data refers to voluminous and exponentially growing data generated by

heterogeneous resources for which existing technologies become incapable of handling

and analyzing these data sets (Philip Chen & Zhang, 2014; Siddiqa, Karim, & Gani,

2016). Big data has its own structural and managerial features; traditional data

management technologies are inadequate to deal with big data. Similarly, we analyze

recent indexing techniques based on these big data features to prove their inefficiency.

The following are the significant features of big data, which we introduce as big data

indexing requirements:

 Volume

Volume is related to the size of big data, which is at present measurable in petabytes

and is expected to reach zettabytes in the near future (Katal, Wazid, & Goudar, 2013).

“Bigness” in the term “big data” refers to its volume. This extensive volume associated

with big data is challenging for indexing and requires reduction in query execution time

(Chen et al., 2013). Therefore, volume is the most important requirement to be considered

when designing an indexing technique for big data.

 Velocity

Velocity refers not only to the rapid and exponential growth in data volume but also

to the need to apply query processing (Hashem et al., 2015). With the emergence of big

data, query processing trends are also transformed from batch processing to temporal (i.e.,

Univ
ers

ity
 of

 M
ala

ya

13

monthly, weekly, daily, and hourly) and now the speed requirement for big data analysis

is in real time for certain applications. For instance, e-commerce requires management

for both speed of data generation and real-time data retrieval for quick decision making

(Kaisler, Armour, Espinosa, & Money, 2013).

 Variety

Another structural requirement of big data is handling data generated from various

resources such as web pages, web log files, social media sites, e-mails, web documents,

and sensor device data. These heterogeneous resources generate data in different formats

and data types that bring forth the challenge of big data variety (Kaisler et al., 2013; Philip

Chen & Zhang, 2014; Yang et al., 2014). An indexing techniques must be generic to

support more than one data format and data type.

 Veracity

Accuracy, reliability, and trustworthiness define the veracity of big data. Big data with

exponential generation rate from heterogeneous resources should ensure that data are in

fact sufficiently accurate, and not spoofed, corrupted, or obtained from an expected

source. This is an important issue known as big data veracity (X. Wang, Luo, & Liu,

2014). Accuracy of results for query execution is required by an indexing technique that

addresses big data veracity.

 Variability

Variability handles inconsistencies in big data flow. Data loads become difficult to

maintain, especially with the increasing usage of social media, which generally causes

peaks in data loads when certain events occur (Katal et al., 2013). Variability brings the

Univ
ers

ity
 of

 M
ala

ya

14

challenge for indexing techniques to ensure timeliness and accuracy of results for

submitted queries.

 Value

Value refers to the insights and benefits that are obtained by keeping and managing

such big data. Data usefulness in decision making defines its value. The accuracy and

timeliness of results is significant to increase insight when insight is preferable to quantity

(Kaisler et al., 2013; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2013).

 Complexity

Big data structures have a high degree of interconnectedness and dependencies

(Kaisler et al., 2013). The challenges that are related to big data complexity are its linking,

matching, cleansing, and transformation across systems (Siddiqa, TargioHashem, et al.,

2016). However, connecting and correlating relationships, hierarchies, and multiple data

linkages are also very important. If complexity in terms of these objectives is not

considered, big data cannot be organized effectively (Barbierato, Gribaudo, & Iacono,

2014).

Volume, velocity, and variety are the structural features of big data, whereas the rest

of the features are related to the managerial aspect. Structural features are the essential

requirements for a system that is designed to handle big data. Therefore, one proposal is

to consider the structural features of big data when designing a big data management

system, specifically an indexing mechanism. An indexing technique is proven efficient

when it satisfies requirements such as large volume, rapid growth, and heterogeneous data

types along with efficiency of the indexing procedure itself.

Univ
ers

ity
 of

 M
ala

ya

15

By focusing on volume, velocity, and variety of big data, an indexing technique is

efficient when indexing cost in terms of index creation time and index size is low.

Meanwhile, query execution time must also be minimized to ensure effectiveness of an

indexing technique for big data.

2.2 Indexing for Traditional Data

In this section, we present state-of-the-art indexing techniques that are found in the

latest literature for traditional data. We review the recent indexing techniques for

traditional data and categorize them based on their adopted procedures. We define each

category and explain the characteristics of each technique in these categories. We also

analyze the performance of these indexing techniques through big data indexing

requirements that are elaborated in Section 2.1.

An indexing mechanism facilitates the data search and retrieval tasks when data sets

comprise an enormous number of records and when scanning the whole data set incurs

high operational cost (M. Wang, Holub, Murphy, & O’Sullivan, 2013). Indexing

improves the performance of query operations and reduces data retrieval time for search

queries over high-volume data sets (Chen et al., 2013). Therefore, indexing is an essential

task for a data analysis system in terms of effectiveness of performing complex queries

and accessing larger-sized data sets.

Recent research advancements indicate that various indexing mechanisms have been

adopted based on the nature of data and type of data analysis. For instance, semantic

indexing is used for enhanced search procedures for big data on cloud (Rodríguez-García,

Valencia-García, García-Sánchez, and Samper-Zapater (2013), an inverted index method

for event stream indexing on a large text collection in a distributed environment

(Cambazoglu, Kayaaslan, Jonassen, & Aykanat, 2013), and R-Tree indexing on multi-

dimensional data (J. Wang, Wu, Gao, Li, & Ooi, 2010). The requirement of consuming

Univ
ers

ity
 of

 M
ala

ya

16

less time and cost to apply search operation has become critical for high-volume and

continuously growing big data (Kadiyala & Shiri, 2008). Thus, the study shows

continuous improvement in the implementation procedure of indexing.

2.2.1 Classification of Indexing Techniques

We categorize contemporary indexing techniques and devise a taxonomy comprising

three categories: non-artificial intelligence (NAI), artificial intelligence (AI), and

collaborative artificial intelligence (CAI). We present the taxonomy of existing indexing

techniques in Figure 2-1. These techniques are discussed in this section.

Univ
ers

ity
 of

 M
ala

ya

 17

Figure 2-1: Taxonomy of Indexing Techniques (Gani, Siddiqa, Shamshirband, & Hanum, 2015)

Indexing Techniques

Artificial Intelligence (AI)

Artificial neural networks
(Wu, Wang et al. 2009)

Fuzzy (Dittrich, Blunschi et
al. 2011)

Soft Computing (SC)

State support vector (SVM)
(Paul, Chen et al. 2013)

Self-learning (Ongenae,
Claeys et al. 2013)

Manifold learning (Lazaridis,
Axenopoulos et al. 2013)

Machine Learning (ML)

Non Artificial Intelligence (NAI)

Hashing

Sparse Hashing (SH)
(Zhu, Huang et al. 2013)

Hashing (Thilakanathan,
Chen et al. 2013)

Triplet-based (Jayaraman,
Prakash et al. 2013)

Geometric Hashing

(Mehrotra, Majhi et al.
2010)

(Kaushik, Umarani et al.
2013)

Merkle Hash Tree (Ali,
Sivaraman et al. 2013)

Semi supervised Hashing
(Wang, Kumar et al. 2012)

Sampled Enveloped B-Tree
(Li, Yi et al. 2010)

R+-tree (KR+-index) (Wei,
Hsu et al. 2013)

R-Tree (Wu, Cong et al.
2012)

Graph query processing
(Cheng, Ke et al. 2011)

Graph-lattice (Yuan and
Mitra 2013)

K-Tree (Hsu, Lee et al. 2002)

Composition of trees(Qian,
Tagare et al. 2010)

Authenticated Tree (Li,
Hadjieleftheriou et al. 2010)

Compact Steiner Tree (CS
Tree) (Li, Feng et al. 2011)

Red-Black tree (Yeh, Su et al.
2013)

Shortest-Path Tree (Maier,
Rattigan et al. 2011)

Inverted Index Tree (Wang,
Holub et al. 2013)

Composite B-Tree (Sandu
Popa, Zeitouni et al. 2011)

Graph-based

Collaborative Artificial Intelligence (CAI)

Collaborative semantic
(Leung and Chan 2010)

Collaborative Semantic
(Gacto, Alcala et al. 2010)

Collaborative Annotation
(Elleuch, Zarka et al. 2011)

Collaboration Semantic
(Dieng-Kuntz, Minier et al.

2006)

Collaborative KRR (CKRR)Bitmap

Bit-sliced index (MacNicol
and French 2004)

Bitmap (Gündem and
Armağan 2006)

Two-level equality-equality
encoding

(Sinha and Winslett 2007)

Semantic Annotations
(Done, Khatri et al. 2010)

Semantic quad-tree (Zou,
Wang et al. 2013)

Phrase-based Semantic
(Chu, Liu et al. 2005)

Latent Semantic (van der
Spek and Klusener 2011)

Semantic audiovisual Web
(Cuggia, Mougin et al.

2005)

Semantic ontologies
(Yıldırım, Chaoji et al. 2012)

Semantic (Rodríguez-García,
Valencia-García et al. 2013)

Knowledge Representation
and Reasoning (KRR)

Collaborative ML (CML)

Social learning model
(Wai-Tat 2012)

Incremental Collaborative
filtering (Komkhao, Lu et al.

2013)

Collaborative filtering
(Huang, Lu et al. 2012)

Collaborative unsupervised
learning-based indexing

(Weng and Chuang 2012)

Univ
ers

ity
 of

 M
ala

ya

18

Figure 2-1 presents the detailed taxonomy and divides indexing techniques into the

NAI, AI, and CAI categories. NAI is further categorized as graph-based, bitmap, and

hashing. AI involves soft computing (SC), machine learning (ML), and knowledge

representation and reasoning (KRR). CAI consists of subcategories, namely collaborative

machine learning (CML) and collaborative knowledge representation and reasoning

(CKRR).

We define each category of taxonomy and explain the indexing techniques under each

category in the rest of this section. We also discuss the advantages and limitations of

implementing these techniques. We summarize all indexing techniques later in Table 2-1.

 Non-artificial Intelligence (NAI) Techniques

The NAI category comprises indexing techniques that have straightforward procedures

for index creation and query execution. Furthermore, these techniques are adaptable to

fast data retrieval requirements. Therefore, NAI indexing techniques are widely used in

the literature. Graph-based indexes develop a tree structure that improves traversal and

data retrieval performance (Zhang et al., 2015). B-Tree and B+-Tree are used to index the

under graph-based category of NAI. Sampled envelop B-Tree (F. Li, Yi, & Le, 2010)

uses near-linear time to answer any top-k (t) query with optimal I/O cost expected.

Similarly, R+-Tree and R-Tree also reside in graph-based NAI indexing techniques

that are used for efficient data retrieval on range and nearest-neighbor queries. KR+-index

(Wei, Hsu, Peng, & Lee, 2013) is designed using R+-Tree for skewed spatial data.

However, for keyword search queries, the compact Steiner tree (G. Li, Feng, Zhou, &

Wang, 2011) outperforms other indexing mechanisms, thereby reducing the

implementation cost. The Steiner tree can be seamlessly integrated with any existing

RDBMS.

Univ
ers

ity
 of

 M
ala

ya

19

The second subcategory of NAI indexing techniques is bitmap, which is considered as

an effective indexing mechanism for range queries on append-only data (K. Wu,

Shoshani, & Stockinger, 2010). In bitmap indexing structure, bulk index data is stored as

a sequence of bits; this bit sequence is used to answer queries. A bit-sliced index

(MacNicol & French, 2004) adopts binary encoding, which reduces the number of

bitmaps. However, compared with other methods, bit-sliced index still consumes more

time in query execution.

Hashing methods of indexing for high-dimensional data uses the least time in

executing approximate similarity search queries (Shang, Yang, Wang, Chan, & Hua,

2010). Hashing represents high-dimensional data into compact binary codes to increase

query execution performance. Sparse hashing (Zhu, Huang, Cheng, Cui, & Shen, 2013)

also performs better for approximate similarity search queries by converting the original

feature space of data into low-dimensional data.

 Artificial Intelligence (AI) Techniques

The AI category of indexing techniques involves techniques that are highly technical

and specialized; they use a knowledge base for efficient data retrieval. This category

includes soft computing (SC), machine learning (ML), and knowledge representation and

reasoning (KRR) methods of indexing. A prominent feature of AI indexing techniques is

that each technique involves training the indexing model as a prerequisite for labeled data.

This training process requires immense computational resources. Therefore, AI indexing

needs more computational resources than does NAI indexing.

SC includes artificial neural networks and fuzzy based methods for AI indexing. The

hierarchical tree (S. Wu, Wang, & Xia, 2009) is designed using the artificial neural

network method for efficient indexing and data retrieval for human motion data.

Univ
ers

ity
 of

 M
ala

ya

20

Hierarchical tree indexing consumes more time in artificial neural network-based

unsupervised learning. Fuzzy rule-based indexing is also efficient for indexing moving

objects; index creation time is minimal (Dittrich, Blunschi, & Vaz Salles, 2011).

However, dealing with unknown events in data is not possible in fuzzy rule base.

Therefore, hybrid fuzzy classifiers (Bordogna, Pagani, & Pasi, 2006) are adopted to

dynamically adjust the rule to ensure better detection ratio.

In the AI category, ML-based indexing introduces an iterative process of observing

patterns in data to make predictions. Multi-model descriptor index (Lazaridis,

Axenopoulos, Rafailidis, & Daras, 2013) uses manifold learning, which optimizes the

search and retrieval process for large data sets. The initial state support vector machine

network (Chen-Yu, Ta-Cheng, Jhing-Fa, & Li Pang, 2009), which models human

behavior in surveillance situations, is followed by Paul et al. (2013). This study generates

probabilistic scores that are based on input frames and computes transition probability

using training data.

KRR indexing assigns tags to documents and semantics to data obtained from a user

response on a system such as a social network. Semantic indexing (Y. Wang, 2008) stores

annotations of a document by assigning them weights and finds closeness in scores of

semantics. An enhanced approach in semantic indexing (Rodríguez-García et al., 2013)

is applied on ontologies to retrieve information on cloud resources based on user needs.

KRR indexing improves knowledge discovery and decision making for large data sets.

 Collaborative Artificial Intelligence (CAI) Techniques

Indexing techniques under the CAI category combine two or more indexing techniques

to improve accuracy and search efficiency (Gacto, Alcala, & Herrera, 2010). This

Univ
ers

ity
 of

 M
ala

ya

21

category includes collaborative machine learning (CML) and collaborative knowledge

representation and reasoning (CKRR) methods.

CML-based indexing (Wai-Tat, 2012) for various types of data is designed using social

learning that combines KRR to induce semantic indexing. This method of collaborative

indexing assists with enhanced representation of semantics and makes them easily

interpretable for users who may have different knowledge backgrounds or information

needs. CML indexing also supports in developing recommendation systems to retrieve

more accurate and precise information for keyword search queries in medical knowledge

(Huang, Lu, Duan, & Zhao, 2012). These recommendation systems use expert

suggestions and user profiles to ensure an accurate data retrieval process.

Under the CKKR category of CAI indexing techniques, the semantic indexing method

(Dieng-Kuntz et al., 2006) combines the graph-based method to design a knowledge

management model in medical ontology as a “virtual staff” tool that provides

collaborative diagnosis.

We summarize the indexing techniques and emphasize their distinctive features in

Table 2-1. The Table 2-1comprises indexing techniques under the NAI, AI, and CAI

categories. These techniques include the application domain in which these indexing

techniques are implemented, data set availability and type of data set used in evaluation,

objectives of designing indexing techniques, and salient features.

Univ
ers

ity
 of

 M
ala

ya

 22

Table 2-1: Indexing Techniques for Traditional Data (Gani et al., 2015)

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

Non-Artificial Intelligent Methods (NAI)

G
ra

p
h

-b
a
se

d

Tr
ee

-b
as

ed

Sampled
Envelope (SE) B-
tree for top-k
queries (F. Li, Yi,
et al., 2010)

L P1/ P2 Temporal To design a simple and efficient
indexing for ranking queries on
temporal data

 Simple structure of indexing
 Index takes less space
 Its creation is faster
 Small increase in creation cost when variance of

data increases
 Faster query response
 Less update cost

Graph
partitioning and a
composite B+-
Tree (Sandu
Popa, Zeitouni,
Oria, Barth, &
Vial, 2011)

L P1 Trajectory To provide efficient indexing for
trajectories of moving objects in a
network

 Faster query response even when query size and
data size is increased

 Less update cost which increases gradually

Inverted Index
Tree (M. Wang et
al., 2013)

C P1 Event
Stream
(Log)

To design an index for multiple
keyword-based queries on generic
stream data where bidirectional
reference are created between leaf
nodes and event indices so that

 Index take less space but takes more time to load in
memory

 Manageable query processing cost
 Faster query response

i. 2Performed application domain: Cloud (C), Network (N), and Local data on a single computer (L)
ii. 3Type of applied data set: Public (P1), Private (P2), and Unspecified (U)

Univ
ers

ity
 of

 M
ala

ya

 23

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

CPU cost is reduced and efficient
indexing is achieved

R+-tree (KR+-
index) (Wei et al.,
2013)

C P1 Spatial To present a novel
multidimensional key design index
based on an R+-tree KR+ index for
efficient search and retrieval of
skewed spatial data

 Index takes more space
 Query response time depends upon query size and

data size
 Scalable for large data

R-Tree (D. Wu,
Cong, & Jensen,
2012)

N P1 Spatial To design a hybrid inverted file R-
Tree to retrieve text and query
spatial proximity

 Index takes more space
 Query response depends upon buffer size
 Less query processing cost

A graph query
processing index
system (Cheng,
Ke, Fu, & Yu,
2011)

L P1/ P2 Graph Design a graph querying system
that achieves both fast indexing and
efficient query processing

 Index take less space
 Faster index creation
 Faster query response
 Less update cost
 Scalable for large data and query response time

remains the same
A network
structure index
with Shortest-
Path Trees
(Maier, Rattigan,
& Jensen, 2011)

L P1/ P2 Graph
(network
path)

To present and design an indexing
technique for auxiliary data
structures that provides fast look-
ups for common operations

 Index takes linear space
 Efficient search for common operations
 Accurate query results
 Applicable on real data sets
 More computational costs for large networks

A framework of
Red–Black tree as
an efficient and

C U Text To present a Red–Black tree
framework for big data cloud
collaborative editing

 Less index creation cost
 Less update time
 Reduced data encryption overhead

Univ
ers

ity
 of

 M
ala

ya

 24

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

secure approach
(Yeh, Su, Chen,
& Lin, 2013)

 Efficient encryption compared to 3DES encryption
and AES encryption

Compact Steiner
Tree (CS Tree)
(G. Li et al.,
2011)

L P1 Graph To optimize the Steiner tree to
answer keyword queries more
efficiently, to effectively implement
keyword search, and to utilize
DBMS capabilities

 Accurate query results
 Faster query response

Authenticated
Tree- Based
Index Structures
(F. Li,
Hadjieleftheriou,
Kollios, &
Reyzin, 2010)

N P1/ P2 Spatial To develop efficient index
structures for authenticating
aggregation queries over large data
sets

 More accurate query results
 Less query execution cost
 Dynamic index updating

Composition of
Coordinate tree,
metric tree, and
kd-tree (Qian,
Tagare, Fulbright,
Long, & Antani,
2010)

L P1 Image To present an optimal shape
embedding procedure to index
shapes for complete and partial
shape similarity retrieval

 Less index computational cost
 Fast query response
 Less query execution cost

K-Tree (Hsu et
al., 2002)

L P2 Image To develop a new indexing method
called K-tree to process RkNN

 Faster query response
 Accurate query results Univ

ers
ity

 of
 M

ala
ya

 25

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

(Reverse k-Nearest Neighbors)
queries efficiently

A graph-lattice-based
index (Yuan & Mitra,
2013)

L P1 Graph To describe indexing techniques
based on sub-graphs

 Fast query response
 Index creation is faster and easy
 Index update is faster
 Faster query results for sub-graph-querying
 False graphs can be filtered easily

B
it

m
a
p

Bit-sliced index
(MacNicol & French,
2004)

N U Transaction
al

To present a multi-component
bitmap index created from three
basic encoding schemes

 Index takes less space
 Less query processing cost
 Querying is slower than multi-level indexes

Two-level equality-
equality encoding
(Sinha & Winslett,
2007)

L / N P1 Hierarchical
Data
Format

To propose multi-resolution and
parallelizable bitmap indexes

 Index takes more space
 Faster query response
 Better results for range queries
 Index is scalable in cluster environment

H
a

sh
in

g

A novel Sparse
Hashing (SH) method
(Zhu et al., 2013)

L P1/ P2 Image, Text To develop a novel sparse hashing
(SH) method for fast approximate
similarity searches

 Accurate query results for large data sets
 More index computational cost
 More training cost for large data set
 Fast encoding

Merkle Hash Tree (Ali,
Sivaraman, & Ostry,
2013)

C P2 Real-time To design an authentication scheme
to detect loss in data using the
Merkle hash tree

 Accurate query results (90%)
 Less creation cost

Hashing
(Thilakanathan, Chen,

C P2 Medical
(ECG)

Design a system to ensure fast
healthcare data download using a
hash function

 Efficient query response for large data set
 More initial setup time Univ

ers
ity

 of
 M

ala
ya

 26

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

Nepal, Calvo, & Alem,
2013)
Triplet-based Hashing
(Jayaraman, Prakash,
& Gupta, 2013)

L P1 Medical
(ECG)

To propose an indexing technique
for a biometric image database

 Index takes less space
 Less computational cost
 Invariant to scaling

G
eo

m
et

ric
 h

as
hi

ng

(Kaushik,
Umarani, Gupta,
Gupta, & Gupta,
2013)

L P1 Image
(face)

To present an efficient scheme to
index a database of facial images

 Index takes less space
 Less computational cost
 Accurate query results

(Mehrotra,
Majhi, & Gupta,
2010)

L P1 Image (Iris) To propose an efficient indexing
scheme for searching a large iris
biometric database

 Index takes less space
 Fast query response
 More accurate query results
 Robust in similarity transformations as well as

occlusion
 Capable of localizing iris images with change in

gaze, occlusion, and illumination
HubRank (Chakrabarti,
Pathak, & Gupta, 2011)

L P1 Graph To design an efficient index for
consistent results of PageRank
query

 Index takes less space
 Accurate query results
 Less index creation time
 Fast query response
 Efficient query processing

A novel term-based
inverted index partitioning
model that relies on

N P1 Text To minimize the communication
overhead that will be incurred by
future queries

 Index takes less space
 More computational cost
 Scalable index

Univ
ers

ity
 of

 M
ala

ya

 27

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

hypergraph partitioning
(Cambazoglu et al., 2013)
A Compressed Permuterm
Index (CPI) (Ferragina &
Venturini, 2010)

L P1 Graph To propose a Compressed
Permuterm Index which supports
fast queries

 Index takes less space
 Fast query results
 Easy updating

Three-level Indexing
Hierarchy (TIH) (C.-H.
Wang et al., 2010)

L P2 Multimedia
(video)

To present a novel indexing
architecture in order to support a
range of smart playback functions
in collaborative telemedicine
systems

 Simple index
 Index takes less space
 Less computational cost
 Accurate query results

Artificial Intelligent Methods (AI)

S
o

ft
 C

o
m

p
u

ti
n

g

(S

C
)

A hierarchical tree
based on artificial
neural networks (S.
Wu et al., 2009)

L P1 Motion data To develop an efficient indexing
and retrieval approach for human
motion data

 Fast query response
 Accurate query results
 More time consuming for artificial neural network-

based unsupervised learning
Fuzzy (Dittrich et al.,
2011)

N P2 Road
Network

To design an indexing technique for
such application where objects are
moving at a high update rate

 Index takes less space
 Less index creation time
 Faster index update
 Faster query response time
 Scalable
 Index image is created frequently so it is time

consuming Univ
ers

ity
 of

 M
ala

ya

 28

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

M
a
ch

in
e

L
ea

rn
in

g
 (

M
L

)

State support vector
(SVM) (Paul et al.,
2013)

L P1 Multimedia To present a video search and
indexing system based on the state
support vector (SVM) network,
video graph, and reinforcement
agent

 Less index creation time
 Accurate query results

 Time consuming at Learning stage

Multimodal descriptor
indexing based on
manifold learning
(Lazaridis et al., 2013)

L P1 Multimedia
(Audiovisu
al)

To propose a complete solution for
search and retrieval of rich
multimedia content over modern
databases

 Less index creation time
 Less index creation cost
 Faster query response
 Scalable
 Time consuming for manifold learning method

Self-learning
(Ongenae et al., 2013)

L P1 Temporal To propose a self-learning,
probabilistic, ontology-based
framework which allows healthcare
context-aware applications to adapt
their behavior to run-time

 Fast query response

 Accurate query results

K
n

o
w

le
d

g
e

R
ep

re
se

n
ta

ti
o
n

 a
n

d

R
ea

so
n

in
g
 (

K
R

R
)

Semantic Annotations
(Done, Khatri, Done,
& Draghici, 2010)

L P1/ P2 Annotated Design a technique to detect Gene
Ontology annotations with the help
of finding relationships between
genes and functions

 Accurate query results

Semantic (Rodríguez-
García et al., 2013)

C P1 Annotated Offer a platform to facilitate the
retrieval and selection of cloud
resources on the basis of keyword
search query meeting the users’
needs

 Automatic index updating
 Fast query response
 Accurate query results
 Applicable to unstructured documents
 More information required to provide enough

accuracy

Univ
ers

ity
 of

 M
ala

ya

 29

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

 It supports only keyword-based queries
 To ensure accuracy it needs more knowledge

Scalable reachability
index (GRAIL) based
on semantic ontologies
(Yıldırım, Chaoji, &
Zaki, 2012)

L P1/ P2 Graph Propose randomized interval
labeling based on the graph theory.

 Simple Index
 Fast query response for large graphs
 Scalable
 Comparatively low performance for small graphs

semantic quad-tree and
Chord ring (Zou,
Wang, Cao, Qu, &
Wang, 2013)

N P2 Spatial To present a novel semantic overlay
network for large-scale multi-
dimensional spatial information
indexing

 Scalable
 Supports complex range queries

Phrase-based Semantic
(Chu, Liu, Mao, &
Zou, 2005)

L P1 Text To present a new knowledge-based
approach to support scenario-
specific retrieval applicable in
healthcare monitoring

 Fast query response in real time
 Accurate query results

Latent Semantic (van
der Spek & Klusener,
2011)

L P1 Text To apply a dynamic threshold to
improve cluster detection of LSI
(Latent Semantic Indexing)

 Applicable to large document sets
 Fully automated

Semantic audiovisual
Web indexing (Cuggia,
Mougin, & Beux,
2005)

N U Multimedia
(Video)

To propose an audiovisual Web
indexing system for medical
audiovisual resources

 Simple index
 Demonstrates possibilities of conceptual indexing

based on medical ontologies

Collaborative Artificial Intelligent Methods (CAI)

C
o
ll

a

b
o
ra

ti

v
e

M
L

 Social learning model
utilized in

N P2 Folksonom
y

A machine learning based approach
to present a social learning model

 Faster query response
 Supports structuring of information

Univ
ers

ity
 of

 M
ala

ya

 30

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

collaborative indexing
(Wai-Tat, 2012)

which is, in collaboration with
knowledge representation, applied
as collaborative indexing for
retrieval of relevant documents and
knowledge exploration

 Scalable for large data
 Efficient in semantic representation
 Efficient human-system integration
 Learning is time consuming

Collaborative
unsupervised learning-
based indexing via
matrix factorization
(Weng & Chuang,
2012)

L P1 Multimedia
(Video)

To present a recommendation
system of unsupervised video re-
indexing developed based on
collaborative filtering approach
which refines and improves the
indexing scores generated by
concept classifiers

 Faster Index creation
 More query response cost
 Accurate in query results

Collaborative filtering
based Medical
Recommendation
System (Huang et al.,
2012)

N or L P2 Clinical To develop a collaborative filtering
based medical knowledge
recommendation system so that
clinicians can retrieve trust-based
accurate knowledge

 Faster query response
 Accurate in query results
 More human effort is required in recommendation

recording
 Motivation is required in recording

recommendation
Incremental
Collaborative Filtering
based Recommender
System (Komkhao, Lu,
Li, & Halang, 2013)

L P1 Text To design a model-based
collaborating filtering technique to
improve the accuracy and
scalability of recommender system

 More accurate query results
 Scalable and the performance is improved for

larger training data set

C
o
ll

a

b
o
ra

ti

v
e

K
R

R
 Collaborative semantic

(Leung & Chan, 2010)
L U Multimedia

(music)
To design a collaborative semantic
indexing and metadata based

 Accurate in query results
 Accuracy increases as the index is updated

Univ
ers

ity
 of

 M
ala

ya

 31

Method Application

domain
2

Applied

data set
3

Data set

Type

Objectives Features

retrieval for music information so
that accurate results are available to
users
To design an approach for deep
content-based music information
retrieval

 Index size is gradually increasing
 Fault tolerant
 Resilient, community validated structure
 Eliminates inappropriate index terms

Collaboration-based
Semantic Indexing
(Dieng-Kuntz et al.,
2006)

N P1/ P2 Cognitive
(concept
based)

To present a method for
reconstituting a medical ontology
by translating a medical database
into RDF language in the context of
a healthcare network. A virtual staff
is developed where more number of
healthcare members are involved
for better diagnosis

 Guaranteed knowledge management
 Useful for a healthcare network dedicated to heavy

pathology
 Accurate in query results

Collaborative
Annotation (Elleuch,
Zarka, Ammar, &
Alimi, 2011)

L P1 Multimedia
(video)

To improve the semantic concept
detection process through
collaboration of fuzzy with
ontology

 Improvement in accuracy of query results
 Improvement in precision of context and concept

detection
 More relevant query results

Collaborative
Semantic (Gacto et al.,
2010)

L P1 Regression To design an index for natural
language context preserving to
make it simple and more
interpretable

 More accurate query results
 Results are more interpretable

i. 1Performed application domain: Cloud (C), Network (N), and Local data on a single computer (L)

ii. 2Type of applied data set: Public (P1), Private (P2), and Unspecified (U)

Univ

ers
ity

 of
 M

ala
ya

32

Table 2-1 shows that graph-based NAI indexing techniques are usually adopted to

create indexes for graph, temporal, spatial, image, and text types of data and result in

reduced index creation time and small index size. Graph-based NAI indexing techniques

provide an indexing structure that aims to fasten query execution and data retrieval

process. Bitmap indexes in the NAI category are designed for transactional and

hierarchical data formats. Bitmap indexes do not always guarantee a low index creation

cost in terms of index creation time and index size. Most of the applications of hashing

are for image data indexing. Although some hashing implementations for indexing reduce

the index size, the computational cost for index creation or initialization is not guaranteed

with the hashing method. Therefore, graph-based indexing techniques are widespread in

efficient data retrieval systems for various types of data sets.

AI indexing techniques are usually adopted to index multimedia, motion, and temporal

data. However, the KRR subcategory of AI indexing techniques is mostly used for

annotation and text data. SC and ML indexing techniques ensure less query execution

time and need less time in index creation, whereas initial learning for these mechanisms

is time consuming, thereby increasing the delay to start query execution. Similarly, KRR

indexing methods also ensure less query execution time. However, KRR implements

semantic logic for indexing; thus, it is unsuitable for schema-based data.

CAI indexing techniques offer collaborations of more than one mechanism for better

indexing solution. In CML, learning methods usually adopt collaborative filtering and

KRR methods to increase the accuracy of query results. Most CML indexing mechanisms

are scalable, but additional computational cost is required. Similarly, CKRR-based

indexing methods are also designed to increase the accuracy of results. For example,

collaborative annotation (Elleuch et al., 2011) is a CKRR approach that integrates fuzzy

Univ
ers

ity
 of

 M
ala

ya

33

soft computing with ontology for improved semantic detection and ensures more relevant

results for queries.

2.2.2 Analysis of Indexing Techniques for Big Data Indexing Requirements

In this section, we investigate indexing techniques that are discussed in Section 2.2.1.

We analyze the fulfillment of indexing requirements related to big data by investigating

the support of the discussed indexing techniques for each derived criterion, i.e., volume,

velocity, veracity, variability, value, and complexity (see Table 2-2). The analysis leads

to an assessment of the viability of these indexing techniques for big data.

Univ
ers

ity
 of

 M
ala

ya

 34

Table 2-2: Analysis of Indexing Techniques for Big Data Indexing Requirements (Gani et al., 2015)

Indexing Method Authors
Big data indexing requirements4

Volume Velocity Variety Veracity Variability Value Complexity

Non- artificial intelligence Indexing (NAI)

G
ra

p
h

-b
a
se

d

B-Tree Li, Yi et al. (2010) √ NA NA NA √ √ NA

R+-tree Wei, Hsu et al. (2013) √ NA × NA √ NA NA

Suffix Tree Russo, Navarro et al. (2008) √ × NA NA NA NA NA

Graph Query Tree Cheng, Ke et al. (2011) √ √ NA NA NA NA √

Shortest Path Tree Maier, Rattigan et al. (2011) √ NA √ √ √ √ NA

Red–Black tree Yeh, Su et al. (2013) √ √ × √ NA √ √

Bitmap Wu, Shoshani et al. (2010) √ √ × NA √ × √

H
a

sh
in

g
 Hashing Zhu, Huang et al. (2013) √ × √ × NA NA NA

Geometric hashing Mehrotra, Majhi et al. (2010) √ √ × √ √ NA √

Inverted index Cambazoglu, Kayaaslan et al. (2013) √ NA × NA NA NA √

Lazy Indexing Richter, Quiané-Ruiz et al. (2012) × NA × √ NA √ NA

Artificial Intelligence (AI)

Semantic Indexing

Rodríguez-García, Valencia-García et al.

(2013)

√ NA √ √ √ √ NA

4 Big Data Indexing Requirements: √ = Satisfied, × = Not Satisfied, NA = Not Applicable

Univ
ers

ity
 of

 M
ala

ya

 35

Indexing Method Authors
Big data indexing requirements4

Volume Velocity Variety Veracity Variability Value Complexity

Done, Khatri et al. (2010) √ × √ √ NA NA NA

Manifold Learning Lazaridis, Axenopoulos et al. (2013) √ √ √ √ NA NA √

Fuzzy Dittrich, Blunschi et al. (2011) √ √ × × NA √ √

Support Vector Machine Paul, Chen et al. (2013) NA NA × √ NA √ NA

Randomized interval labeling Yıldırım, Chaoji et al. (2012) √ √ × √ √ NA √

Hierarchical Tree Wu, Wang et al. (2009) √ √ × √ NA NA √

Collaborative Artificial Intelligence (CAI)

Collaborative Semantic Leung and Chan (2010) √ NA × √ NA √ NA

Dieng-Kuntz, Minier et al. (2006) √ NA × NA NA √ NA

Gacto, Alcala et al. (2010) NA NA NA √ NA NA NA

Collaborative filtering technique Weng and Chuang (2012) √ √ √ √ NA NA NA

Huang, Lu et al. (2012) NA × √ × √ ×

Incremental Collaborative

Filtering

Komkhao, Lu et al. (2013) √ NA NA √ NA × NA

Collaborative learning Wai-Tat (Wai-Tat, 2012) √ NA √ NA NA NA NA

Collaborative Annotation Elleuch, Zarka et al. (2011) √ NA NA √ NA NA NA

Big Data Indexing Requirements: √ = Satisfied, × = Not Satisfied, NA = Not Applicable

 Univ
ers

ity
 of

 M
ala

ya

36

In Table 2-2, we present an investigation of NAI, AI, and CAI indexing techniques

based on big data indexing requirements. We show that an indexing technique satisfies

one or more indexing requirements of big data, thereby leading a researcher to select a

technique based on the preference for analyzed data set.

NAI indexing techniques mostly satisfy a large volume requirement of big data. The

suffix tree, for instance, ensures efficiency when implemented on large volume data

supports, thereby revealing its feasibility for big data (Russo et al., 2008). Hashing (Zhu

et al., 2013), inverted index (Cambazoglu et al., 2013), and other NAI methods also show

their support to large volumes of data. B-Tree is capable of dealing with volume,

variability, and value of data. Furthermore, query execution time is very low. Thus, the

efficiency of B-Tree for big data is confirmed (F. Li, Yi, et al., 2010).

AI-based indexing is more concerned about accuracy of results. The techniques such

as semantic (Rodríguez-García et al., 2013) and support vector machine (Paul et al., 2013)

show improved performance in terms of veracity and value. Rodríguez-García et al.

(2013) obtained up to 300 different services of various data types from the ICT domain

to validate the semantic technique results. They found an 88% precision value for

accuracy. Therefore, we recommend choosing an AI mechanism for indexing when the

data analysis procedure aims to show accurate results.

The CAI methods for indexing fulfill volume, veracity, and value requirements of big

data (Leung & Chan, 2010). The results obtained from semantic KRR indexing (Leung

& Chan, 2010) implementation on large digital music data demonstrate the robustness,

fault tolerance, and data retrieval efficiency of this method.

Precisely, an indexing technique is considered efficient for big data, thereby satisfying

volume, velocity, and variety requirements. Minimum indexing cost in terms of both

Univ
ers

ity
 of

 M
ala

ya

37

index creation time and index size, and minimum query execution and data retrieval time

also prove the effectiveness of the indexing technique for big data.

2.3 Indexing Implementation on Big Data

In this section, we review indexing techniques that are designed to support big data

indexing requirements as well as to facilitate query execution and search performance for

big data. We have previously described that contemporary technologies are becoming

inefficient to meet capture, preparation, analysis, and visualization requirements of big

data (Kwon, Lee, & Shin, 2014). Thus, big data bring new challenges in processing such

as quick and up-to-date responses to search queries and in-time data availability. The need

for fast data processing and timely responses associated with big data are used to evaluate

the performance of indexing and search process so that challenges revealed by the

emergence of big data can be emphasized.

Numerous solutions have been proposed by researchers to improve the efficiency of

the search and data retrieval process for voluminous data records. Some examples are

vertical partitioning (Jindal, Quiané-Ruiz, & Dittrich, 2011), clustered attribute-based

indexing (Dittrich et al., 2012; Dittrich et al., 2010) for distributed parallel processing

systems, and clustered adaptive indexing (Richter et al., 2012) for changing query

workload. Likewise, in medical research, a batch processing-based image retrieval system

(Zhuang, Jiang, Li, Chen, & Ju, 2015) contributes in scheduling multiple query requests;

minimized response time is achieved when large distributed image data sets face the

problem of multi-query optimization. Consequently, for distributed and replicated big

data storage systems, an efficient indexing technique is needed to serve a larger number

of queries for improved search performance.

We categorize big data indexing techniques as clustered and non-clustered approaches

to illustrate them effectively. Chaudhuri, Datar, and Narasayya (2004) define these

Univ
ers

ity
 of

 M
ala

ya

38

categories as follows: the clustered approach of indexing physically reorders data

according to the values of indexed column(s), whereas the non-clustered approach creates

a redundant index structure for a data set. Clustered approaches use sorting algorithms to

reorder data, whereas non-clustered approaches use the indexing techniques as discussed

in Section 2.1. We provide a comparative chart for both indexing categories in Table 2-3.

Table 2-3: Comparison of Clustered and Non-Clustered Indexing

Features Clustered Indexing Non-Clustered Index

Process Physically sorts and stores data
rows

Separate structure containing key-value. Key is the
content of indexed attribute and the value is pointer
to the row/ indexed attribute

No. of Indexes One replica can have one index Single replica can have as many indexes as
required

Index Size Less size Separate structure needs more space. However,
creating index is less costly than creating separate
replica

Index Updating Index rebuilding needs re-
ordering whole data

Index rebuilding is easy (delete and create new)

Data write Slow (requires re-ordering) Each index of last data block is updated
Data read Fast (searches in sorted list) First traverses index then jumps to record

Fast query execution and data retrieval are the main challenges for big data that are

distributed over clusters of heterogeneous machines. Researchers are interested in

accepting these challenges and they have focused on exploiting various methods to

optimize search performance for such big data. To date, many indexing approaches are

available to perform fast search operations on big data on distributed parallel systems.

However, these approaches have unaddressed challenges. We describe both clustered and

non-clustered indexing implementation on big data and emphasize their potential

problems in the following subsections.

2.3.1 Clustered Indexing on Big Data

This section presents clustered indexing approaches for big data. Clustered indexing

approaches are implemented over Hadoop, a framework for big data processing. These

approaches are further categorized as static and adaptive based on the invocation of index

creation process and the ability to update indexes. More explicitly, static indexes are

Univ
ers

ity
 of

 M
ala

ya

39

created at data upload time and they do not allow index updating once created. By

contrast, adaptive indexes are the result of query execution with the flexibility to create

as many indexes as index attributes fed by incoming queries.

Clustered static indexes that are developed for big data offer single-attribute indexing,

such as the Trojan index (Dittrich et al., 2010), or a varying number of index attributes,

such as HAIL (Dittrich et al., 2012). Indexes are created on the entire data set in parallel

with data uploading. Thus, the query execution process can be conducted immediately

when a query is submitted because it does not invoke index creation or updating.

However, selection of attributes to be indexed should be well considered because these

are the only indexes that are available throughout the data search process; they cannot be

updated later. Based on anticipated query workload knowledge, better indexes are

created. Queries that have the same selection predicate can be executed using static

indexes; otherwise, full scan can be performed. In the Trojan index, only one particular

attribute is selected for indexing, whereas HAIL can extend the number of indexes up to

the available number of replicas. We elaborate this concept in Equations 2-1 and 2-2 for

Trojan index and HAIL, respectively.

𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 = 1 2-1

𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 = 𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 2-2

In contrast to static indexes, adaptive indexes do not offer pre-created indexes to serve

incoming new queries. These indexes continue updating with new queries and are being

used by repeated queries. Data blocks are replicated for each new index attribute. Lazy

indexing (LIAH) is proposed by Richter et al. (2012) as adaptive indexing using clustered

approach. LIAH uses an offer rate to minimize indexing I/O cost and creates as many

indexes as suggested by incoming queries. However, future utilization of these indexes

remains unpredictable. Similarly, from the offer rate perspective, a better tradeoff exists

to minimize index creation overhead when the offer rate value is set to low. Nevertheless,

Univ
ers

ity
 of

 M
ala

ya

40

to completely index all data blocks, a low offer rate requires a larger number of

MapReduce jobs.

Thus, LIAH must compromise either the indexing overhead or the number of

MapReduce jobs, thereby motivating a dynamically adapting offer rate (Richter, Quiané-

Ruiz, Schuh, & Dittrich, 2014). Query workload prediction is not required and, unlike

static indexing, no replication factor dependency is used to consider the number of index

attributes in both of these approaches. However, performing a full scan for each new

query and replicating the data block for each new index attribute are the performance

bottlenecks of LIAH. Therefore, the proposal by Schuh and Dittrich (2015) is to drop the

indexes from existing replicas and use these replicas to create new indexes based on the

changing query workload.

2.3.2 Non-clustered Indexing on Big Data

The non-clustered indexing category encompasses all indexing techniques discussed

in Section 2.2. Among these techniques, any indexing technique that is suitable and

efficient for the required indexing mechanism can be chosen to design an indexing

solution for big data. To date, Apache Lucene (Białecki, Muir, & Ingersoll, 2012) is a

great achievement in full-text indexing and searching big data with high performance.

Apache Lucene is an open-source Java-based library that was initially introduced by

Gospodnetic and Hatcher (2005) to create indexes for big data using the inverted index,

which is a non-clustered indexing structure. Indexes are created using mapping of

attributes in a document along with their location, and a pluggable mechanism is later

applied to code and store indexes.

Indexes created with the Lucene library are capable of being incrementally updated

based on a user-provided list of index attributes. Thus, static indexes and adaptive indexes

can be created any time using the Lucene indexing library. Lucene indexing is

Univ
ers

ity
 of

 M
ala

ya

41

implemented on Twitter data to create a breaking news detection system (Phuvipadawat

& Murata, 2010) and to develop a social web search engine (Bouadjenek, Hacid, &

Bouzeghoub, 2013). Implementing a non-clustered approach of indexing, Apache Lucene

allows as many indexes for data as the number of attributes in a data set. Lucene indexes

are very fast in query execution and take only a few seconds in processing (Kelley et al.,

2015). However, longer index creation time and separate index structure are the time and

space overhead of Lucene indexing.

2.3.3 Analysis of Indexing Techniques Implemented on Big Data

In this section, we analyze clustered and non-clustered indexing implementations on

big data. We summarize static and adaptive clustered indexing approaches in Table 2-4.

Their method, success points, and weaknesses are detailed in this table. Furthermore,

index hit ratio (defined in Chapter 3), which is a significant efficiency measure for

indexing, is also described for each approach.

Univ
ers

ity
 of

 M
ala

ya

 42

Table 2-4: Analysis of Clustered Indexing Approaches for Big Data

Approach Method Achievements Problems/Un-addressed Index Hit Ratio

S
ta

ti
c

Trojan Index
(Dittrich et
al., 2010)

One particular
attribute is
indexed and
stored on all
replicas

 Index is created at data uploading
time, no indexing cost at each
query

 Full scan option is still valid for
queries on non-indexed attributes

 Same or improved query execution
performance as shared-nothing
databases

 One particular index is not sufficient
 Indexing upfront cost is higher than running a full scan

query
 Index Miss ratio is very high
 Index may be unused, increasing indexing overhead
 Anticipated query workload knowledge is required

before index creation
 No mechanism for changing query workload

 Only one
attribute is
indexed that is
why all queries
having selection
predicates other
than index
attributes are
missed

Aggressive
(Dittrich et al.,
2012)

Change physical
data layout on
each replica based
on index attributes

 Reduced Index Miss Ratio up to
number of replicas

 Upload cost is negligible by
utilizing un-used CPU cycles

 Full scan option is still valid for
queries on non-indexed attributes

 High index upfront cost
 No knowledge about query workload
 Index Miss Ratio is still high
 Indexes are replica dependent
 Indexes may be unused by queries

 In order to
improve Index
Hit Ratio, more
number of
replicas are
required

A
d

a
p

ti
v

e

Lazy Indexing
(LIAH)
(Richter et al.,
2012)

Indexing is the
effect of query
execution.
Records in data
block are
reordered during
scan and pseudo
data block is
created if
required.

 Adaptive to query workload
 Query can be executed right after

data upload
 No Indexing upfront cost
 Reduced indexing overhead

because of selective block indexing
 No additional I/O cost
 Quick convergence to complete

index

 Every first time query faces full scan
 Each new index replicates the data block and increases

space consumption
 Data block replicas are continuously growing with

index creation process
 Not all data blocks are indexed during one time query

execution

 Every first time
query faces full
scan (index hit
ratio is NULL)

 In order to
improve Index
Hit Ratio more
number of block
replicas are
required

Univ
ers

ity
 of

 M
ala

ya

 43

Approach Method Achievements Problems/Un-addressed Index Hit Ratio

 Constant offer rate either supports indexing overhead or
number of MapReduce jobs to completely index all data
blocks

Adaptive
indexing -
replace
indexes
(Schuh &
Dittrich, 2015)

Adaptively create
and delete un-used
indexes

 Query may not result in index
creation and help in dropping index

 Number of continuously growing
index replicas is reduced

 Physical restructuring for each index is required to
replace index

 Data blocks are still replicated for new index and
consume disk space

 Index Hit Ratio is
same as Lazy
Indexing
Approach

H
y
b

ri
d

Eager
Adaptive
Indexing
(Richter et al.,
2014)

Introduce cost
model for LIAH
with varying offer
rate. Missing
indexes of HAIL
are created
adaptively

 Static HAIL adapts to new query
workload

 Indexing cost is not over burdened
 Adaptive indexing overhead is less

than full scan
 Quick convergence to complete

index

 Data block replicas are continuously growing with
index creation process

 Index Hit Ratio is
improved from
HAIL as new
indexes are
created runtime

Univ
ers

ity
 of

 M
ala

ya

44

Table 2-4 shows that clustered indexing approaches, whether static or adaptive, allow

one index per replica and replicating the extensive volume of data for more indexes does

not seem practical. Similarly, a better predictor to future query workload is lacking in to-

date clustered indexing advancements. Predicting future query workload may assist in

deciding attributes to be indexed so that the costly procedure of later index updating and

frequent data re-ordering can be avoided.

When comparing clustered and non-clustered indexing approaches, we observe that

although clustered indexing implementation on big data has high performance gains,

index management and updating is not as straightforward as it should be. Changing query

workload and requiring more indexes during the search process is natural. However,

replicating voluminous data to create indexes is not a practical approach, which is the

only option with clustered indexing.

Similarly, non-clustered indexes have their own limitations. Taking extra time to

create indexes and separate storage space comprise the overhead that is associated with

non-clustered indexing. However, many indexing techniques are available in the literature

(Section 2.1), thereby reducing the indexing overhead along with improving query

execution and search performance. The Apache Lucene indexing library, for example,

uses the non-clustered indexing approach and results in faster query execution time with

smaller index size and least index creation time.

We are able to identify current challenges in big data indexing from Table 2-3 by

presenting the comparison of clustered and non-clustered indexing and in Table 2-4 by

highlighting the problems of clustered indexing under static and adaptive methods. These

challenges provide insights to develop an optimum indexing solution for big data. The

following findings from the preceding review are the milestones to formulate new

Univ
ers

ity
 of

 M
ala

ya

45

research objectives toward the development of an improved indexing mechanism. Thus,

efficiency in search operations over big data can be achieved with reduced index storage

consumption and index creation time

 Indexing is a significant process to improve data search and query execution

performance for relatively large and growing data sets.

 Clustered indexes are proven to result in less indexing overhead, whereas non-

clustered indexes require separate index storage space and indexing time.

However, index updating and adding new indexes using the clustered approach

is less convenient than non-clustered approach of indexing.

 Overhead from indexing process is one time and becomes negligible when

clear improvement in search performance is obtained.

 Overall indexing overhead is somehow inversely proportional to the size of the

data set but is directly proportional to the number of index attributes.

 The more the number of attributes considered in indexing, the greater the

overhead is, although the index hit ratio increases.

 A wise selection of attributes for indexing provides a better tradeoff between

indexing overhead and hit ratio.

 Adaptive to changing query workload index updating also supports our prior

claim.

2.4 Conclusion

This chapter reviews recent indexing advancements in the field of big data and

emphasizes their potential problems. We define indexing requirements for big data and

use these requirements as criteria to investigate the adequacy of contemporary indexing

techniques for big data. We also present a review of indexing mechanisms that are

implemented on big data to analyze their efficiency.

Univ
ers

ity
 of

 M
ala

ya

46

The investigation of recent indexing techniques by using big data indexing

requirements shows that each category, i.e., NAI, AI, and CAI has distinct adaptability.

The NAI indexing techniques support the volume of big data. As we have presented in

Table 2-2, all NAI indexing techniques except lazy indexing have support to volume. The

performance of NAI indexing is also justifiable for velocity and variety of big data.

However, the AI indexing category signifies robustness and accuracy of results, and CAI

indexing fulfils the volume requirements of big data as well. The spectrum of NAI

indexing to support big data indexing requirements is wider than the AI and CAI indexing

categories.

The investigation of indexing implementation on big data shows that both clustered

and non-clustered approaches result in a significant improvement in search and data

retrieval performance for big data. However, both have their own design constraints. The

clustered approach results in minimum indexing overhead because indexes are not

separate structures. By contrast, adding new indexes needs data to be replicated, thereby

indicating that the number of indexes for a data set is subject to availability of storage

space to create the same number of replicas. The non-clustered approach of indexing

creates separate index structures and requires additional storage. However, index storage

consumption caused by the non-clustered approach remains less than the replicating data

for adding new indexes.

We found that indexing techniques under the NAI, AI, and CAI categories are non-

clustered approaches from which the NAI indexing techniques are more inclined to fulfil

big data indexing requirements. We also found that the non-clustered approaches offer

increased flexibility to create and update indexes regardless of constrained storage for big

data. Therefore, the non-clustered approach, specifically NAI indexing, has been proven

more effective than other methods for big data analysis environment.

Univ
ers

ity
 of

 M
ala

ya

47

CHAPTER 3: PERFORMANCE ANALYSIS OF INDEXING TECHNIQUES

FOR BIG DATA 5

This chapter aims to establish the research problem by examining the performance and

identifying the limitations of indexing mechanisms when implemented for big data. We

have elaborated in Chapter 2 (Table 2-2 and Table 2-3) that the non-clustered approach

of indexing has more options to create indexes with minimized indexing overhead and

improved search performance. Thus, in this chapter, we implement non-clustered

indexing to explore its limitations and deficiencies. We obtain results from experiments

and present the overhead caused by performing indexing in terms of indexing time and

index size. Moreover, we examine the search and data retrieval time for MapReduce jobs

and indexed jobs.

This chapter consists of three sections. Section 3.1 presents the experimental setup and

data collection method used in problem analysis. Section 3.2 presents the results and

discusses the reported results. Section 3.3 concludes the chapter.

3.1 Experimental Setup and Data Collection

In this section, we describe the experimental setup and data design. We investigate the

performance of indexing implementation on big data. The experimental setup to conduct

analysis consists of hardware and software specifications of used devices, whereas data

design includes performance metrics, description of data set, and data collection process.

We implement the indexing mechanism on the big data processing framework and

analyze the effect of indexing on data retrieval performance. We verify the query

5 The work presented in this chapter is partially obtained from the following research contribution:

Siddiqa, Aisha, Karim, Ahmad, Gani, Abdullah, & Chang, Victor. On the analysis of big data indexing
execution strategies (2016). Journal of Intelligent and Fuzzy Systems

Univ
ers

ity
 of

 M
ala

ya

48

processing latencies that are observed in current big data processing systems and identify

the overhead and inefficiency of indexing structures for big data.

3.1.1 The Model

We present the experimental model that we have used for performance evaluation. We

select Hadoop, a big data processing framework that comprises the MapReduce

programming model, to execute a job in a distributed parallel manner that supports a

tremendous amount of big data. We use the distributed file system incorporated with

Hadoop (HDFS) for storing and managing data sets in the form of files.

Figure 3-1: Experimental Model

We demonstrate our experimental model in Figure 3-1. In this analysis, we establish a

test bed that comprises four physical commodity servers and configure the Hadoop four-

node cluster. The master–slave cluster comprises four slave nodes; one of these slaves

also acts as a master. We configure the respective MapReduce and HDFS daemons that

are required for data processing and storage.

As shown in Figure 3-1, we use Hive and Lucene to execute queries on full scan and

indexed search environments, respectively. We configure Hive warehouse over Hadoop,

which offers full scan execution of SQL-like queries on big data using Hive Query

Language (HQL). We use the Apache Lucene indexing library to execute queries with

indexes. The two query execution environments of our experiment, i.e., full scan and

indexed search, are explained as follows:

MapReduce

HDFS
DataNode

TaskTracker

Slave 4

DataNode

TaskTracker

Slave 3

DataNode

TaskTracker

Slave 2

Hadoop

Hive Lucene

DataNode

TaskTrackerJobTracker

NameNode

Master/Slave 1

Univ
ers

ity
 of

 M
ala

ya

49

 Full Scan

The full scan environment for query execution over the Hadoop framework is the

process of executing the MapReduce job on slave nodes to perform search and retrieval

operations on big data. We use the Hive warehouse to execute queries in the full scan

environment.

MapReduce divides a job into small tasks that use map, combine, and reduce functions.

Each map function generates the results in the form of <key, value> pairs for the records

that match the query. The combine function merges the records based on query

requirements. Finally, the reduce function uses the output generated by map and combine

functions across all TaskTrackers and concatenates the results. The output of the reduce

task is the overall output that contains the retrieved data for a query.

 Indexed Search

The indexed search environment uses indexes to perform query search operation. We

use the Apache Lucene library, which is highly efficient in creating indexes and

performing data retrieval operations on big data using indexes. Apache Lucene utilizes

inverted indexing that is a non-clustered NAI indexing approach. We use index creation

and query execution program codes written in Java when importing the library.

Figure 3-2: Indexed Search Query Execution

S
e

a
rc

h
in

g

Query

Load Index

Search

Render Data

P
re

p
ro

c
e

s
s

in
g

Upload

TSV

CSV

Cleanse

Data

In
d

e
x

in
g

Index Attributes

Read Lines

Create Index

Store Index

HDFS

Univ
ers

ity
 of

 M
ala

ya

50

The process of indexed search using Lucene is elaborated in Figure 3-2. We apply

necessary pre-processing on data before storing the data in HDFS. For instance, attributes

or columns in records may have different separators such as space, comma, tab, or others.

During pre-processing, we convert the separators into commas (CSV).

We perform index creation on data that we have uploaded in HDFS as data files. The

process begins by creating an object in the memory where indexes are created. The data

file is then read from HDFS and the indexes are stored as index files. We store these index

files in HDFS for further utilization.

We perform indexed search for query execution by loading index files in a memory

object from HDFS. Search operations to obtain required data are performed based on the

selection predicate that is specified in query. In Lucene indexes, index files store the

pointers only for the records for which the indexes are created. Therefore, data can be

retrieved only for those data attributes that are included in index files. Thus, all attributes

are required to be indexed to retrieve the entire record from the file.

3.1.2 Performance Measures

This subsection presents the metrics that we have used to analyze the performance of

full scan and indexed search operations. Index size, indexing time, and search

performance are the conventional metrics used in research to analyze indexing. However,

index hit ratio is also useful for big data indexing when creating indexes on all attributes

is not feasible. The description of performance metrics is provided as follows:

 Index Size (MB): Index size is the space that is required by the index in memory

and/or on storage. Many factors affect index size, such as the number of non-

empty values for an index attribute and the size of these values. Index size is an

Univ
ers

ity
 of

 M
ala

ya

51

overhead on actual size of big data sets and therefore, index size is recommended

to be very small.

 Indexing Time (sec): Indexing activity takes time when applied to big data sets.

However, users appreciate minimum delays. This delay is calculated as indexing

time, known as index creation time. Similar to a small index size, short indexing

time is appreciated.

 Search Time (sec): Search time measures the time required to execute a query and

retrieve data. The search space that is offered by indexing is less and more

structured than the actual data search space, which is used by full scan. Therefore,

a minimized time to execute queries and retrieve data is achieved.

 Index Hit Ratio: We introduce index hit ratio to examine the rate of incoming

queries that are served by indexes. Index hit ratio is the ratio of queries that hit the

index during execution. In attribute-based indexing, where all attributes of data

are not indexed because of increased indexing overhead (i.e., index size and

indexing time), the index hit ratio is significant to ensure that maximum incoming

queries are executed with these indexes. We calculate the index hit ratio using the

following equation:

𝐼𝑛𝑑𝑒𝑥 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 3-1

3.1.3 Data Set Used

We use varying size data sets in our experiment to determine the behavior of index

operations on different workloads. For this purpose, we obtain TIGER data sets (Eldawy

& Mokbel, 2015), which contain the spatial features of geographical areas. These data

sets offer flexibility of observation as they vary in size, No. of records, No. of attributes

and No. of created blocks and allow to analyze the impact of varying characteristics of a

data set on obtained results. Later, the results have shown that the characteristics other

Univ
ers

ity
 of

 M
ala

ya

52

than data set size also influence the performance of indexing and search operations. Table

3-1 summarizes the data sets.

Table 3-1: Data Sets

Data Sets Data Size No. of Records No. of

Attributes

No. of Blocks

Primary Roads 77.1 13373 10 2
Area Landmark 406 121960 15 7
Tabulation Area 1,600 33144 15 25
Area Hydrography 6,460 2298808 16 104
All Edges Combined 16,220 19291957 37 260
Linear Hydrography 18,270 5857442 11 293

We leverage six different data sets from the TIGER database to collect results for data

sets with varying sizes. Each data set differs in size and number of records. As shown in

Table 3-1, data sets have varying numbers of blocks depending on data set size. The

primary road data set (77.1MB) is the smallest in our experiment. It comprises 13,373

records and HDFS has stored the primary road data set in two blocks. Table 3-1

summarizes the information of each data set in which linear hydrography (18,270) is the

largest with 5,857,442 records and comprises 293 blocks in HDFS.

3.1.4 Data Collection Tools

To obtain accurate results for each parameter, we design data collection tools carefully.

We collect data for index size and data set size from the user interface to browse the file

system, whereas data for time is collected from the console and stopwatch Apache API.

We upload each data set in Hive warehouse from the local disk by running the HQL

command in the console; the time taken to run this command is the data upload time. We

perform full scan operation using HQL command in the console and note the time as the

full scan search time. The stopwatch Apache API returns the time for indexed search

operations (i.e., indexing time and searching time).

Univ
ers

ity
 of

 M
ala

ya

53

3.2 Results and Discussion

In this section, we present and discuss the results of our experiments. We provide the

results of indexing overhead in terms of index size and indexing time. We perform search

operation on both full scan and indexed environment to observe the effect of indexing for

big data. The experiment incurs an out-of-memory error when creating indexes for the

all-edges combined data set, thereby showing that the indexing code uses more memory

than available at the physical machine during this experiment. Therefore, we are unable

to obtain results for this set.

We compare the results of index size with the data set size, indexing time with data

uploading time, and indexed search time with full scan search time. Given that we have

implemented non-clustered indexing, we compare the index hit ratio of non-clustered

indexing with the clustered indexing approach.

An interesting observation from the execution of Apache Lucene indexing is that the

success of index creation process depends upon the available main memory size (i.e.

RAM). We have shown in Figure 3-2 that data set is loaded into main memory to create

indexes. The experiment returns out of memory error whenever heap size cannot

accommodate a data set. For instance, Apache Lucene library fails to create indexes for

All Edges Combined data set (see Table 3-2 and Table 3-3). Therefore, our performance

analysis is limited to six data sets where data set size remains under heap size.

3.2.1 Index Size Results

We present the results of index size and index size overhead. As shown in Table 3-2,

two observations are related to index size. First, index size grows with data set size. We

have chosen data sets that grow in size. The results show that the index size is also

growing. Index size overhead demonstrates the percentage of growth in data set size

Univ
ers

ity
 of

 M
ala

ya

54

because of indexing. Second, index size grows with the number of attributes to be

considered for indexing (i.e., index attributes). We consider up to five index attributes for

each data set to observe the effect of increased number of index attributes.

Univ
ers

ity
 of

 M
ala

ya

 55

Table 3-2: Index Size Results

Data Sets Data Size

(MB)

Index Size for varying No. of Index Attributes Index Size Overhead (%)

1 2 3 4 5 1 2 3 4 5

Primary Roads 77.1 0.36 0.67 0.96 1.24 1.53 0.46 0.86 1.23 1.58 1.94
Area Landmark 406 2.39 5.55 6.27 8.11 9.05 0.58 1.34 1.51 1.95 2.17
Tabulation Area 1,600 0.92 1.78 2.60 3.47 4.30 0.05 0.11 0.16 0.22 0.27
Area Hydrography 6,460 28.51 39.92 57.95 82.57 185.17 0.43 0.61 0.88 1.26 2.78
All Edges
Combined

16,220 Out of memory Error - - - - -

Linear Hydrography 18,270 114.25 136.64 294.78 329.55 369.93 0.62 0.74 1.58 1.77 1.98

Univ
ers

ity
 of

 M
ala

ya

56

The results for the primary road data set (77.1 MB) show that index size are 0.36, 0.67,

0.96, 1.24, and 1.53 MB for one to five indexes, respectively (Table 3-2). Thus, index

size overhead for the primary road data set increases from 0.46% to 1.94%. The area

landmark data set (406MB) has an initial 2.39MB index size for one index attribute; this

size grows with the number of index attributes to 5.55, 6.27, 8.11, and 9.05MB for five

index attributes, and the overhead reaches 0.58% to 2.17%. We also present the index

size results for up to five attributes for tabulation area (1600MB), area hydrography

(6460MB), and linear hydrography (18270MB) in Table 3-2.

Table 3-2 also shows that the index size overhead from the primary road data set

(77.1MB) to linear hydrology data set (18,270MB) is almost similar and less than 3%.

However, the index size overhead is smallest (~0.3%) for the tabulation area data set

(1600MB). The reason is that the tabulation area data set contains the smallest number of

records, as presented in Table 3-1. Fewer records in larger size data set is also significant

in index size; thus, the index size overhead becomes very low. Collectively, index size

overhead results show that the memory-based indexes created by Lucene are very small

and that the size overhead does not reach more than 3%.

Figure 3-3: Index Size comparison with Data Set size and Number of Index

Attributes

Univ
ers

ity
 of

 M
ala

ya

57

We also present index size results in plotted form for better elaboration for an

increasing number of index attributes in Figure 3-3. The bars show that index size is

considerably less than the data set size; for area landmark and tabulation area data sets,

the index size is almost invisible. Figure 3-3 also shows that the index size for one or two

index attributes is almost invisible and slightly grows when the number of index attributes

is increased.

Figure 3-4: Index Size Overhead for varying number of Index Attributes

We present the percentage growth of index size overhead in Figure 3-4. The least index

size overhead is for the tabulation area data set and is almost parallel to x axis. The

overhead for other data sets is also very low and the effect of adding more attributes in

index creation is not very high. Figure 3-4 also shows that for each data set, although the

overhead increases with the number of index attributes, it is still less than 3% of the actual

data set size for five index attributes.

The index size increases with data set size. The results show that indexing activity

increases the storage space requirements for data sets. The index size mainly depends on

the size of the data set. The results have proven that for large data sets, the index size is

also large.

Another important factor that affects index size is the number of records in a data set.

A data set may be very large while having a certain number of records, i.e., the tabulation

area data set (1600MB) comprises 33,144 records. By contrast, the area landmark data

Univ
ers

ity
 of

 M
ala

ya

58

set (406MB), which is smaller than the tabulation area data set, contains 121,960 records.

Given the small number of records in the tabulation area data set, the index size is always

observed as less than the area landmark data set (Table 3-2).

The content size and number of occurrences of an index attribute also contribute to the

index size. The results for area hydrography data set (6460MB) show a slight increase in

index size when created for the first four index attributes. The index size grows almost

linearly for up to four index attributes, i.e., 28.51, 39.92, 57.95, and 82.57MB. However,

when a fifth index attribute is added, an abnormal increase in index size occurs, i.e.,

185.17MB. The increase in index size with the fifth index attribute shows that only

increasing the number of index attributes is not the reason. The reason is that either the

content size of the fifth index attribute is higher than that of the first four index attributes

or that the number of occurrences is very high.

The factors that affect the index size for a data set are not completely under the control

of an indexing mechanism. The index size mostly depends on the nature of the data set.

However, an efficient indexing mechanism that offers a structure with reduced index sizes

even when more index attributes are considered, is preferable.

3.2.2 Indexing Time Results

We present the results of indexing time and overhead in this section. Indexing activity

increases the delay to start query execution. We indicate this delay as indexing overhead.

Univ
ers

ity
 of

 M
ala

ya

 59

Table 3-3: Indexing Time Results

Data Sets Data

Upload

Time

Indexing Time for varying No. of Index Attributes Indexing Time Overhead (%)

1 2 3 4 5 1 2 3 4 5

Primary Roads (77.1 MB) 7.71 10.00 10.27 10.39 10.44 10.68 56.47 57.11 57.40 57.53 58.07

Area Landmark (406 MB) 39.28 405.04 409.94 410.55 414.91 415.29 91.16 91.25 91.27 91.35 91.36

Tabulation Area (1,600 MB) 151.88 152.79 153.21 154.01 154.21 154.57 50.15 50.22 50.35 50.38 50.44

Area Hydrography (6,460 MB) 703.41 720.30 726.58 732.99 733.70 739.90 50.59 50.81 51.03 51.05 51.26

All Edges Combined (16,220

MB)
1773.66 Out of memory Error - - - - -

Linear Hydrography (18,270

MB)
1984.72 1695.56 1696.85 1757.67 1759.03 1764.55 46.07 46.09 46.97 46.99 47.06

Univ
ers

ity
 of

 M
ala

ya

60

Table 3-3 shows the indexing time and indexing overhead results. Indexing on the

primary road data set (77.1 MB) takes 10, 10.27, 10.39, 10.44, and 10.68 s for one to five

index attributes, respectively. Thus, indexing time overhead for the primary road data set

increases from 56.47% to 58.07%. Area landmark data set (406MB) initially takes 405.04

s for one index attribute that respectively grows with the number of index attributes to

409.94, 410.55, 414.91, and 415.29 s for five index attributes; the overhead reaches

91.16% to 91.36%. Similarly, the indexing time for up to five attributes for tabulation

area (1600MB), area hydrography (6460MB), and linear hydrography (18270MB) are

also shown in Table 3-3.

Table 3-3 also shows that indexing time overhead for all data sets is almost similar,

which ranges from 45%–60%, except for the area landmark data set (406 MB). Indexing

time overhead for the area landmark data set with varying number of index attributes is

very high (~92%). The reason is that the area landmark data set contains a large number

of records (i.e., 121,960), as shown in Table 3-1. Thus, creating indexes using the Lucene

library results in very long delays (up to 60%), which may increase when a large number

of records are present in a data set.

Figure 3-5: Indexing Time comparison with Data Upload Time and Number of

Index Attributes

We visualize the indexing time results in a bar chart. Figure 3-5 presents the results of

indexing time with respect to data uploading time and number of index attributes. The

Univ
ers

ity
 of

 M
ala

ya

61

bars show that index time is slightly higher than data upload time for primary roads,

tabulation area, and area hydrography data sets. By contrast, for the linear hydrography

data set, indexing time is slightly less than data upload time. However, for all these data

sets, indexing takes almost the same time as data upload time. Indexing time is only high

for the area landmark data set. Figure 3-5 also shows that indexing time slightly increases

as the number of index attributes for each data set increases.

Figure 3-6: Indexing Time Overhead for varying number of Index Attributes

Figure 3-6 presents the effect of increasing number of index attributes on indexing

time overhead where the indexing overhead for the area landmark data set is highest. The

indexing overhead for other data sets ranges from 40%–60%. The lines that indicate

indexing time overhead for each data set are almost linear, thereby indicating that the

increasing number of index attributes does not have a significant effect on indexing time

overhead. Therefore, this analysis indicates that considering more index attributes has a

linear increase in indexing time overhead.

Two observations that relate to indexing time are found. First, indexing takes more

time for larger data sets. To prove this observation, we chose data sets with different sizes;

the indexing overhead shows that the percentage increased the delay with a growing

volume of data sets. Second, indexing time increases with the number of index attributes.

Univ
ers

ity
 of

 M
ala

ya

62

However, the rate of increase in indexing time caused by the number of index attributes

is very low.

Indexing time results also show that indexing activity increases the delay between

uploading data and starting query execution. Creating indexes using the Lucene library

needs almost same time as does uploading data. Thus, the delay is two times higher than

the full scan to perform indexed search operation.

Another significant observation from Figure 3-6 is that the number of records in a data

set also affects indexing time. Indexing time overhead is less for a data set that has fewer

records even when the size of the data set is larger (i.e., a tabulation area data set of

1600MB that comprises 33,144 records) than indexing time overhead caused by area

landmark data set (Table 3-3). The indexing time overhead increases because of a higher

number of records in the area landmark data set. The reason is that the indexing process

reads records individually in the index creation process (Figure 3-2).

The discussed factors affect the indexing time. A larger data set size, a higher number

of index attributes and a higher number of records in a data set increase the indexing time.

Therefore, an indexing mechanism is needed that considers these factors and offers

minimized time consumption in the index creation process.

3.2.3 Search Time Results

In this section, we present the results of search time that were taken by full scan and

indexed search. We show the query execution time results obtained from full scan and

indexed search and compare the improved search performance of indexed search.

Table 3-4: Search Time Results

Data Sets
Search Time Search Performance

(%) Full Scan Indexed

Primary Roads (77.1 MB) 9.60 1.29 86.57

Univ
ers

ity
 of

 M
ala

ya

63

Area Landmark (406 MB) 31.85 1.40 95.60
Tabulation Area (1,600 MB) 21.84 2.54 88.37
Area Hydrography (6,460 MB) 63.69 2.97 95.34
All Edges Combined (16,220 MB) - No index -
Linear Hydrography (18,270 MB) 183.00 2.98 98.37

Table 3-4 presents the results of query execution and search performance. For the

primary road data set (77.1 MB), full scan takes 9.60 s in searching, whereas indexed

search time is decreased to 1.29 s. Thus, search performance improvement with indexing

is 86.57% for the primary road data set. Similarly, search time results with full scan are

31.85, 21.84, 63.69, and 183.00 s for other data sets such as area landmark (406 MB),

tabulation area (1600 MB), area hydrography (6460 MB), and linear hydrography (18270

MB), respectively. Search time with indexed search results are 1.40, 2.54, 2.97, s and

2.98s, respectively, for these data sets.

Table 3-4 also shows that search time is significantly reduced for each data set when

indexed search is applied and search performance is improved to 95.60%, 88.37%,

95.34%, and 98.37%. Search performance improvement is more than 86% with indexed

search; it gradually increases with larger size data sets except for tabulation area data set

(1600 MB), which is 88.37%. Although performance is high, it is not as much as that

obtained with other data sets. The reason is that the tabulation area data set takes

significantly less search time with full scan because of fewer records, whereas indexed

search takes a normal amount of time. Thus, overall search performance has not

increased. The search time is significantly reduced with Lucene indexes and search

performance increases with larger size data sets such as indexed search takes 2.98s for

Linear Hydrography data set that is largest data set in our experiment.

Univ
ers

ity
 of

 M
ala

ya

64

Figure 3-7: Search Time Comparison between Full Scan and Indexed Search

Figure 3-7 shows the search time results in both full scan and indexed search cases for

all data sets. Full scan bars show that search time increases with data set size. However,

full scan search time is 21.84 s for tabulation area data set (1600 MB), which is less than

the full scan search time taken by a smaller size data set, i.e., area landmark (406 MB)

because of the small number of records in tabulation area data set. Indexed search bars

are very small in Figure 3-7, thereby showing that search time with indexed search is very

low for all data sets. The size of data set has a very small effect on indexed search time.

Figure 3-8: Improved Search Performance with Index Search

Figure 3-8 shows that search performance improvement with indexed search is more

than 86% of full scan. This performance increases with data set size. The primary road

data set (77.1 MB) is smallest in our experiment, for which the search performance gains

Univ
ers

ity
 of

 M
ala

ya

65

are 86.57%. Search performance is respectively improved to 95.60%, 88.37%, 95.34%,

and 98.37% with growth of data set size, i.e., area landmark (406 MB), tabulation area

(1600 MB), area hydrography (6460 MB), and linear hydrography (18270 MB).

One interesting observation from query execution and search performance is that

search time increases with data set size in both full scan and indexed search cases.

However, the increase in indexed search time is less than the full scan search time. We

chose data sets with varying sizes to prove the indexed search performance improvement.

The second observation is related to performing queries to retrieve data for non-

indexed attributes. Lucene performs search for only indexed attributes; Lucene is unable

to retrieve data for non-indexed attributes. Therefore, we executed queries that have

indexed attributes as both selection predicates and search predicates. When entire records

are retrieved using Lucene indexing, all attributes must be indexed.

Search time results show that indexing activity minimizes query execution time,

thereby improving overall search performance. Performing indexed search via Lucene

indexing takes significantly less time than does full scan search. A large data set that

comprises a higher number of blocks needs more map and reduce jobs to perform data

search and retrieval operation. However, indexing reduces the search space, thereby

resulting in very quick responses. The results have proved that the search time is more

than 86% improved with indexed search.

The results also show that performance improvement is more than indexing overhead,

which is a positive aspect of Lucene indexing. Indexing overhead results show that

indexing increases roughly 3% size of a data set and takes 40%–60% more time than data

uploading. However, the search performance improvement of indexing is more than 86%,

thereby proving that usefulness of indexing is more than the cost of indexing.

Univ
ers

ity
 of

 M
ala

ya

66

3.2.4 Index Hit ratio

In this section, we present the results of index hit ratio for varying numbers of index

attributes. We show that regardless of the data set size, considering a higher number of

attributes in index creation increases the index hit ratio.

Table 3-5: Index Hit Ratio Results

Data Sets Data Size

(MB)

No. of data

Attributes

Index Hit Ratio for No. of Index

Attributes
1 2 3 4 5

Primary Roads 77.1 10 0.1 0.2 0.3 0.4 0.5
Area Landmark 406 15 0.07 0.13 0.20 0.27 0.33
Tabulation Area 1,600 15 0.07 0.13 0.20 0.27 0.33
Area Hydrography 6,460 16 0.06 0.13 0.19 0.25 0.31
Linear Hydrography 18,270 11 0.09 0.18 0.27 0.36 0.45

Table 3-5 shows the results of index hit ratio for all data sets. The primary road data

set (77.1 MB) comprises 10 data attributes and the index hit ratio for up to five index

attributes is 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The index hit ratios for both area

landmark (406 MB) and tabulation area (1600 MB) data sets is the same for the five

attributes, which are 0.07, 0.13, 0.20, 0.27, and 0.33, respectively. The reason is that both

data sets have an equal number of data attributes. The index hit ratio for area hydrography

(6460 MB) and linear hydrography (18270 MB) are also shown in Table 3-5 with respect

to an increase in the number of indexed attributes.

The index hit ratio for each data set linearly increases with the number of index

attributes. The index hit ratios for primary roads and linear hydrography data sets are

higher than those of the other data sets. Meanwhile, the index hit ratios are the same for

both area landmark and tabulation area data sets, whereas area hydrography has a slightly

higher index hit ratio. The index hit ratio only considers the number of index attributes

and total number of attributes in a data set. Therefore, the ratio increases with a higher

number of index attributes and decreases with a higher number of total attributes in a data

set.

Univ
ers

ity
 of

 M
ala

ya

67

Figure 3-9: Index Hit ratio Comparison with varying No. of Index Attributes

We visualize the index hit ratio for all data sets with varying number of index attributes

in Figure 3-9. The index hit ratio of the primary roads data set for each index attribute is

the highest among all data sets. The bars for the area landmark and tabulation area data

sets show equal index hit ratios at each number of index attributes, whereas this ratio is

slightly low for the area hydrography data set. Similarly, the index hit ratio of linear

hydrography at each number of index attribute is slightly lower than the primary roads

data set.

Index hit ratio depends on the number of attributes in a data set instead of size or other

features of a data set. We used a fixed number of index attributes for each data set in our

evaluation. The number of index attributes for a data set can be increased to achieve

higher index hit ratios. However, an increasing number of index attributes has an obvious

effect on index size and indexing time. Therefore, the selection of attributes to be

considered in indexing is crucial.

3.3 Conclusion

In this chapter, we investigate the effect of clustered indexing for big data in terms of

indexing overhead and search time performance. We found that indexing improves search

performance when increasing overhead on data size and data uploading time.

Univ
ers

ity
 of

 M
ala

ya

68

The results of investigation proved that indexes created using the Lucene library

improve data search performance by at least 86% and that the performance is improved

for larger data sets. However, adding an attribute to be indexed increases overall index

size and index size overhead on the data set size. Moreover, increasing the number of

index attributes also increases indexing time as well as indexing time overhead on data

upload time. Furthermore, the results indicate that indexing time depends on the number

of records in a data set and that indexing time overhead is very high (i.e., 40–60%)

compared with index size overhead (i.e., ~3%). Therefore, indexing time reduction can

make the indexing process more appealing for big data users because the delay to start

query execution is minimized.

We also identified that creating more indexes increases the index hit ratio if incoming

query workload is supposed to be equal for all attributes. The results have proved that

adding to index attributes linearly increases the index hit ratio. However, assuming that

the query workload is equal for all attributes is unrealistic. Query workload may be

irregular and may vary from time to time. Thus, creating indexes only before starting

query execution is not practical. Therefore, an adaptive to query workload indexing along

with one-time static indexing can increase the index hit ratio.

 Univ
ers

ity
 of

 M
ala

ya

69

CHAPTER 4: SMALLCLIENT FOR BIG DATA: PROPOSED INDEXING

FRAMEWORK 6

This chapter presents the proposed indexing framework for big data. The framework

aims to attain minimized indexing overhead in terms of index creation/updating time and

index size, reduced data retrieval time with faster query execution, and maximum index

hit ratio by predicting the future workload of incoming search queries. Our indexing

framework, named SmallClient, uses a non-clustered NAI indexing approach to perform

efficient indexing and query execution process on big data sets. The implemented

indexing approach is efficient in reducing indexing overhead with an increase in the

number of index attributes. Furthermore, SmallClient offers predictor logic to adaptively

update indexes, thereby achieving an improved index hit ratio.

This chapter consists of the following six sections: Section 4.1 introduces the proposed

indexing framework and Section 4.2 presents the system architecture and explains the

process flow of how SmallClient interacts with the user and the underlying file system.

Section 4.3 describes each module of SmallClient. Section 4.4 presents the mathematical

model for the proposed framework. Section 4.5 highlights its prominent features and

Section 4.6 concludes the chapter.

4.1 SmallClient Indexing Framework

We propose SmallClient for indexing big data. SmallClient is a generalized compact

framework to address data search and query execution operations over contemporary

6 The work presented in this chapter is partially available in following research papers:

Siddiqa, A., Karim, A., & Chang, V. (2016). SmallClient for big data: an indexing framework
towards fast data retrieval. Cluster Computing, 1-16. doi:10.1007/s10586-016-0712-4

Siddiqa, A., Karim, A., & Chang, V. Modelling SmallClient indexing framework for big data
analytics. Supercomputing (Under Review)

Univ
ers

ity
 of

 M
ala

ya

70

distributed file systems such as HDFS. We adopt B-Tree, which is a non-clustered NAI

indexing approach to create separate, easily manageable, and updatable index structure.

SmallClient deals with the problems of both clustered and non-clustered approaches that

are identified in Chapter 3. SmallClient offers maximum possible indexes for big data

sets. SmallClient also enables creating indexes for each data block instead of the entire

data set, thereby making the indexes manageable as data volume grows.

SmallClient solves the problems of contemporary clustered indexing approaches for

big data. As identified in Chapter 3, the number of indexes that use the clustered indexing

approach is constrained to the number of replicas. However, available storage capacity

may not allow creating many replicas for big data sets. Thus, only a limited number of

indexes can be created. As a result, all incoming queries may not use available clustered

indexes. In addition, the overall index hit ratio is very low. The clustered approach

performs physical data reordering to update the index list, thereby resulting in high

computational cost. SmallClient implements the non-clustered indexing approach in

which indexes are separately manageable structures. Separate indexes that are created via

SmallClient are independent from the number of replicas for a data set. Therefore, when

using SmallClient, increasing the number of attributes for indexing has no limit.

SmallClient considers the limitations of recently deployed non-clustered indexing

approaches. The problem with existing implementation of non-clustered indexing on big

data is that indexing time overhead and index size overhead are very high. SmallClient

uses specialized procedures to reduce the indexing overhead. Existing approaches use the

data set as a whole and incur out-of-memory errors, whereas SmallClient offers index

creation for separate data blocks. Thus, memory utilization for index creation is very low.

The proposed big data indexing framework comprises procedures that are related to

creating static indexes based on user-specified lists of attributes, offering a query

Univ
ers

ity
 of

 M
ala

ya

71

execution platform, and adaptively updating pre-created indexes with the passage of

query execution. In addition to indexing, SmallClient offers a block creation procedure

that creates blocks for data sets to avoid tuple rupturing during the filling of a block

container. Consequently, novel procedures to perform data retrieval operations enable

SmallClient to outperform existing big data indexing mechanisms.

Figure 4-1: Proposed indexing framework, SmallClient

Figure 4-1 presents the framework of our proposed indexing client, SmallClient. We

decompose our client into three modules: the first is designed to create data blocks that

split data into smaller manageable chunks and uploads these series of chunks as data

blocks to a file system. We present index creation design as a second module that uses

the B-Tree NAI technique of non-clustered indexing. The predictor function is used to

update indexes adaptively based on query workload. The third module offers query

execution procedure to retrieve required data and shows improved search performance

for large data sets.

4.2 The Architecture

In this section, we present the system architecture and process of a distributed file

system in which SmallClient facilitates data retrieval operation as an intermediate layer

Block

Creation

Index

Creation

Query

Execution

Data

File System

Queries Data

Predictor

Univ
ers

ity
 of

 M
ala

ya

72

between user interface and file system. In this section, we describe the process of each

layer and present the interaction of SmallClient with other layers. The systematic layered

visualization of data retrieval system is depicted as Figure 4-2.

Figure 4-2: The Architecture for SmallClient

We present a file system data retrieval architecture for SmallClient in Figure 4-2.

SmallClient is an intermediate layer between user input/output and file system layers to

support the data retrieval process by offering indexes on attributes that are most expected

to be the selection predicates of incoming queries. SmallClient receives queries from user

as input, loads relevant indexes from the file system, traverses these indexes to find the

location of data, and retrieves required data from the location returned by indexes.

The first layer is the user interface layer from which the user interacts with

SmallClient. The user provides the data set location and its schema and invokes the block

creation module to upload this data. The user can also provide index attributes along with

data to create static indexes during data uploading. However, index creation can be

Storage
Nodes

Data

Block Creation

Data Blocks

Get Offset

Create
Index

Verify
Attributes

Read Lines

Write Block

1 2 3 41 2 3 41 2 3 4

Schema

Index Attributes

Block
Metadata

Index Creation

Get Keys Get
Values

Index
Metadata

Indexes

Query

Verify
Attributes

Query Execution

Index
Metadata

Index

Analyze
Query

Verify
Indexes

Load
Indexes

Search
Keys

Values Fetch Data

Add Log

Query Log

Data

Replication Factor

Block Size File Path

Node Selection

File System Name

Job Execution Host
Available Nodes

Capacity
File System

Info
Live Nodes

F
il
e

 S
y
s

te
m

S
m

a
ll
C

li
e

n
t

Data Blocks

Read Lines

Load Block

Predictor
Get Log Create

Time-Slots

Total
Queries

Indexed
Attributes

Non-Indexed
Attributes

Calculate
Access-Rate

Decide
Calculate
Average

Create Delete

U
I

Univ
ers

ity
 of

 M
ala

ya

73

invoked any time if the data are already in the file system. The user submits a query to

SmallClient for data retrieval and obtains the required data from the user interface layer.

The second layer of the architecture contains the procedures of the SmallClient

framework. This layer performs block creation, index creation, and query execution

processes. The block creation module takes data as user input, reads data records

individually, and fills them in the block buffer and then uploads the blocks to the file

system. The index creation module takes data blocks and index attributes as input either

from the user or from the file system to extract <key, value> pairs, generates metadata for

each index, and uploads indexes and index metadata to the file system. The query

execution module takes queries as input, uses indexes for data search if indexes are

available, and returns requested data to the user if found in the data set. The query

execution module updates the query log after processing each query. The predictor uses

the query log to analyze past query trends and decides to update indexes by predicting

future query workload.

The third layer is a file system layer that comprises files and file system information

that are involved in different SmallClient processes. Files contain data blocks and

supporting content for a data set such as block metadata, schema, index metadata, indexes,

and query log. These files reside in storage nodes. The file system replicates files for a

data set based on its available replication factor information. SmallClient also uses file

system information to access the file system. This information provides basic statistics of

nodes and directories in a file system.

4.3 Framework Modules

This section presents a brief description of all components of the SmallClient

framework. As described earlier in this chapter, the SmallClient indexing framework has

three execution modules: block creation, index creation, and query execution. In this

Univ
ers

ity
 of

 M
ala

ya

74

section, we describe each module in detail. We further explain static and adaptive

indexing and predictor logic offered by SmallClient.

4.3.1 Block Creation

In this section, we elaborate the block creation and data uploading process module of

SmallClient. Contemporary big data processing systems offer distributed storage for big

data when voluminous data are handled as small chunks. These chunks or data blocks are

manageable pieces of large data sets. Each big data storage system has its own data

splitting mechanism in which data block size and location to store each block is decided.

Data uploading time should be very low for an efficient block creation process with

minimum storage overhead on actual size of data set.

HDFS also has a unique block creation policy. HDFS uses contiguous bits from data

to create blocks. The last record in a block usually faces breakage when HDFS splits data

into fixed size blocks. In HDFS, the storage of two blocks that contain this broken record

on a single site is not expected. Therefore, HDFS incurs high processing cost to access

more than one node to retrieve the broken record.

We propose our own block creation method to avoid the processing costs that are

associated with accessing multiple sites for a single broken record. Our proposition to

place distinct records on a single site, thereby decreasing the time required to access the

resulting records. We introduce block creation such that the last record in a block is never

split.
Univ

ers
ity

 of
 M

ala
ya

75

Figure 4-3: Block Creation Process

Figure 4-3 presents the block creation process of SmallClient. The block creation

module starts reading records and stores these records in a temporary container with a

pre-defined block size until the container does not have any capacity to store more bytes

with larger record size. This container is uploaded to a file system as a block of a data set.

All blocks are created and uploaded one by one as a data set to the file system. For the

last block, the container continues to store records until the end of the file, and this

container is handed over to the file system for storage.

SmallClient offers adjustable block size and replication factor for a data set during

block creation. The block size should be adjusted such that a minimum space remains in

a block after the records are kept. The size of records may be sufficiently large. When the

default block size of HDFS is utilized, a significantly large unused space may exist in

each block and the overall size of uploaded data for a data set increases. Therefore, having

an adjustable block size reduces unused space in each block.

SmallClient also offers an adjustable replication factor so that users can specify the

number of replicas for a data set. A better tradeoff between available storage nodes and

data size should be achieved by adjusting the replication factor for a data set based on

storage capacity and data availability requirements. The block creation module incurs

data size and uploading time overhead unlike the HDFS data uploading process. The

1 2 3 41 2 3 4 1 2 3 4

Data Data Blocks

Univ
ers

ity
 of

 M
ala

ya

76

overhead on data size is due to the additional unused space in blocks caused by storing

variable size records in fixed-sized blocks, whereas uploading time overhead is incurred

with additional time required to read records of a data set. However, this overhead is

minimized for larger data sets, which requires a longer time for HDFS to upload.

4.3.2 Index Creation

This section discusses the index creation process module of SmallClient. Indexes are

relatively a small search space for a data set to determine the location of required data.

To improve query execution and data search performance for big data, fast traversable

indexes with minimum indexing overhead must be created.

The SmallClient index creation module solves the problems of both clustered and non-

clustered approaches, as highlighted in Chapter 3. SmallClient uses B-Tree structure for

indexing, which is a non-clustered NAI indexing technique to overcome the replica

dependency problem of clustered approach, thereby resulting in maximized index hit

ratio. The B-Tree structure ensures less indexing time and size overhead than the existing

inverted index approach, which is implemented by Lucene library for big data indexing.

Thus, indexing overhead is minimized, query execution performance is improved, and

index hit ratio is increased.

Figure 4-4: Index Creation Process

**

**

**
**

**

**

**

**

**

**

Index Attribute

Data Block

keyValue

<key,value>
Univ

ers
ity

 of
 M

ala
ya

77

The index creation process is presented in Figure 4-4. The process begins by obtaining

the list of attributes (i.e., index_attr_list) either from users or from predictors for which

indexes should be created. This list is further verified with a schema of data set to ensure

that the provided attribute names are correct and to remove unmatched attribute names.

The system obtains the offset address from the schema for each of the verified index

attributes during verification to determine the position of the index attribute in the records.

These offset addresses are further utilized to access keys. All < key, value > pairs from

a data block are added to the B-Tree structure. The indexes of a data block and index

metadata are stored in a file system. The sequence flow of index creation is presented in

Figure 4-5.

Univ
ers

ity
 of

 M
ala

ya

78

Client FileystemShell
Attribute
Analyzer

createIndex

analyze Index
Attributes

file exisits

true

get schema

schema

has index metadata

true

index attribute list

attribute offset list

exit

err
exit

(already exist)

false

get BlockInfo
(file_name)

BlockInfo

not matchedexit

Indexer

create Index

get Block
(block Location)

Block

Key-Value
Extractor

get key,value pairs

key,value

Metadata
creator

store index

create index metadata get index size

index sizeindex Metadata

update index Metadata

successsuccess
indexing time,

index sizes

match Index Attributes

read lines

[all indexes]

loop

create empty BTree(s)

index attribute list is empty

loop

[all blocks]

add in BTree

Figure 4-5: Sequence Diagram of Index Creation

SmallClient offers index creation at three stages of data handling in a file system: (a)

index creation at data uploading time and (b) any time a user feels the need for additional

indexes and adaptive index creation upon the recommendation of predictor logic. These

three index creation options are elaborated as follows:

Univ
ers

ity
 of

 M
ala

ya

79

 Index Creation during data uploading (Static):

SmallClient offers index creation during the block creation process of data uploading.

Users specify a list of index attributes along with the data. Figure 4-1 shows that the block

creation module reads data records and adds these records to a block container. If the list

of index attributes is not empty, these records are input to the index creation process,

which extracts key(s) from records and calculates the offset of a record. Performing index

creation with data uploading is very efficient because indexes are created in parallel with

the block creation process. The delay to start query execution is significantly less than

invoking index creation after the data uploading process. Index hit ratio is maximized

because users initially know the attribute data to be queried and provide these attributes

as a list of index attributes. However, users are free to perform index creation in parallel

or separate from data uploading. Static indexes may not always be useful when query

workload changes.

 Index Creation/Deletion when required (Adaptive):

Users can invoke index creation any time. Figure 4-1 shows that the index creation

module loads each block for a data set from a file system into memory, reads records from

a block one by one, extracts < key, value > pairs, and adds these pairs to new indexes.

Users can specify the list of indexes to be deleted, which will not be further utilized by

incoming queries. Indexes require significant space to be stored. Therefore, when a user

feels the need for new indexes or knows that available indexes will never or rarely be

utilized by incoming queries, the user invokes index creation or deletion methods.

 Predictor Logic for Adaptive Indexing (Adaptive):

SmallClient offers automatic index updating based on predictor logic decision. Users

have a choice to invoke an index creation or a deletion process when required. However,

Univ
ers

ity
 of

 M
ala

ya

80

users can only invoke index updating when incoming queries are predictable. The

predictor function of SmallClient offers adaptive indexing for unpredictable and changing

query workload, which works based on historical data obtained from query log and

automatically updates indexes. Query log retains the information of past queries, i.e.,

selection predicates of queries and query submission time of both hit and missed queries.

Hit queries were executed using indexes, whereas missed queries occur when indexes

were not available for any or all selection predicates. Predictor logic decides to create

new indexes based on hit queries and to delete existing indexes based on missed queries.

Figure 4-6: Predictor Function

Figure 4-6 presents the detailed process of the predictor function. Query log is loaded

to the main memory to analyze queries in n time slots for prediction. Using only some

recent queries is impossible when query workload changes, which indicates that most

incoming queries do not have the same selection predicates. Query log is divided in equal

time slots, and 10 recent time slots are considered for prediction (n=10). The number of

total queries, hit queries, and missed queries may vary in each time slot.

All the attributes of a data set from a schema are obtained, and their access rates in the

respective time slots are calculated based on available information in time slots. The

access rate is zero for an attribute when it is never submitted as a selection predicate in

queries (calculation of access rate is defined as Equation 5-20 in Section 5.3). When n

Query Log Access Rate 1

Access Rate 2

Access Rate 3

Access Rate n

Decide

1 2 3 n

No. of Queries:
Hit Queries Missed Queries
------------- -------------
------------- -------------
------------- ------------- Sustain

Create

DeleteSchema

Univ
ers

ity
 of

 M
ala

ya

81

values of the access rate for each attribute are obtained, the average access rate is

calculated. The average access rate is used to make decisions.

The predictor function decides to create indexes for non-indexed attributes when the

Average Access Rate is greater than the pre-set threshold value (i.e.,

create_threshold_value). Predictor function decides to remove an index for indexed

attributes when Average Access Rate is less than the pre-set threshold value (i.e.,

remove_threshold_value). The remove_threshold_value is lower than the

create_threshold_value because deleting an index is highly critical. Low accuracy in

prediction may result in the deletion of indexes, which may be utilized by incoming

queries.

4.3.3 Query Execution

The decisive module of our indexing framework is query execution. Query execution

takes queries that are submitted by users as input, searches data required by users, and

returns the data if these data are found in a data set. The overall time taken to traverse a

data set and retrieve required data should be very low to achieve efficient query execution.

Query execution occurs when full scan or indexes are used. Existing full scan is

performed by leveraging Apache Hive warehouse, which offers an SQL-like query

language called HQL and utilizes MapReduce for efficient execution. However, as stated

in Chapter 3, indexed search is more advantageous than full scan. Queries are executed

by using indexed search when indexes are available. As discussed in Chapter 3, both

clustered and non-clustered approaches were recently implemented for big data indexing

to reduce time consumption in query execution. However, this search performance must

be improved by using SmallClient, which implements a fast traversable indexing method

to decrease query execution time.

Univ
ers

ity
 of

 M
ala

ya

82

A query execution module that utilizes indexes created by the index creation module

is presented. Queries, for which indexes are not available, are executed using full scan.

Submission of queries invokes the query execution module, and the module analyzes

query strings before execution. During query string analysis, SmallClient separates the

sel_data_list, file_name, and selection predicates. sel_data_list specifies the attribute

names for the data that should be retrieved. Selecting the predicate of a query consists of

two parts: the name of attributes and the value of attributes. The name of attributes should

match any of the stored index names to perform indexed search, whereas the value of

attributes is used as a key to search an index. When the query string is analyzed,

SmallClient verifies all the collected parameters. The process of query execution can be

conducted only if valid sel_data_list, file_name, and selection predicates are provided.

Univ
ers

ity
 of

 M
ala

ya

83

Client FileystemShell
Attribute
Analyzer

Query
Manager

Query Log
Manager

Query
Parser

runQuery parse Query

verify file_name

not exist

exists

err
exit

(file not found)

verify sel_data

unsuccessfulerr
exit

(unrecognized data)

success

file_name

sel_data

unsuccessfulerr
exit

(unrecognized criteria)

successattr_list

has Index Metadata

false
err

(no index)

update log
(file_name, attr_list, meta_status)

create/update log

successsuccess

truehas Indexes

search records
(keys)

get schema

schema

get index

index

location(s)

exit
(not found) fetch data

(location(s))
datadata

exit

get Block Info

Block Info

parse()

[all blocks]

loop

if empty

 meta_Status = "miss"

update log
(file_name, attr_list, meta_status)

create/update log

successsuccess
exit

(go for full scan)

match attributes

 match attributes

[all attr_list]

loop

search (key)

merge record locations

verify
sel_predicates

meta_Status = "hit"

Figure 4-7: Sequence Diagram of Query Execution

The sequence flow of query execution is presented in Figure 4-7. Respective indexes

are loaded to the memory, and the indexes are traversed to determine the location of

records. The data from the file are obtained by directly accessing the location of expected

records.

Univ
ers

ity
 of

 M
ala

ya

84

4.4 Mathematical Model for SmallClient

The mathematical model for SmallClient is described in this section. SmallClient

modules are modeled by using Colored Petri Nets (CPN) tools, which leverage the

mathematical modeling language of Petri nets. The mathematical modeling results are

compared with the results obtained from experiments to verify the correctness of

SmallClient results.

CPN tools (Jensen, Kristensen, & Wells, 2007) were utilized, which were broadly used

for modeling and analyzing concurrent systems. Each module of SmallClient is

implemented using CPN Tools. Basic graphical notation and primitives for modeling are

implemented by adopting built-in discrete-event modeling language, whereas standard

meta-language (ML) is utilized to define data types, describe data manipulation, and

create models. The time for each activity of the modules is set in milliseconds (ms).

The number of records in a data set and the block size for the block creation module

are specified. The data set, which is in the form of records, resides in the local disk from

where each record is read and added in a block if the block size is appropriate. When a

block reaches its maximum size, it is sent in HDFS for storage. The index creation module

is modeled parallel to the block creation module. However, the index creation process

can also be invoked when records are read from HDFS instead of the local disk. The

indexes from HDFS are accessed for the query execution module, and these indexes are

traversed to search the selection predicates provided in a query. Index traversal returns

the locations to retrieve required records.

Univ
ers

ity
 of

 M
ala

ya

85

Figure 4-8: Mathematical Model for SmallClient

Figure 4-8 presents the mathematical model for SmallClient, which comprises places

presented as ovals, transitions denoted as rectangles, input and output arcs shown as

arrows and initial marking, respectively. The proposed model for SmallClient contains

16 places and 11 transitions. Each place and transition in the model is explained in Table

4-1 and Table 4-2, respectively. Two timers were added to this model to collect the time

results. The first timer is used to calculate data uploading and index creation time,

whereas the second timer (i.e., Timer 2) is utilized to calculate query execution time.

The mathematical model elaborates that sequential, forking, and joining operations are

performed. For instance, search key and fetch data are executed sequentially, whereas

both store and get <key, value> are forking operation that generate outputs for two places.

Add is one of the joining operations. Read Records, Get <key, value>, Store Block, Store

Univ
ers

ity
 of

 M
ala

ya

86

Index, Get Block, Get Index, and Fetch Data transitions in the proposed model are timed

transitions, and each transition entails a certain amount of time. Firing time is defined for

these transitions in the next chapter. The timed transitions show that block creation and

index creation times depend on the number of records of a data set and block_size

(number of blocks also influences these times). Query execution time depends on the

number of blocks and the number of instances in an index.

The block creation module and start execution from the place Local are modeled. The

initial marking, i.e., total_records, denotes the number of records in a data set. These

records are read one by one with an increment in timer value and placed in a buffer until

the buffer reaches block_size. Store block transition is enabled when the buffer is full (see

corresponding guard function in Figure 4-8). This transition also increments a timer. The

process continues to upload the entire data set.

The index creation module is initialized from the place Record. This place accepts

records either from read records transition, which is enabled during block creation, or

from read transition, which creates indexes for data blocks residing in HDFS. The keys

and values from each record are obtained and sent to Key and Value places while the

timer is incremented. The transition adds two tuple <key, value> pairs in the index. Store

index transition is enabled when the index has entries for all records of a data block. This

transition also increments the timer.

The query execution module of SmallClient is modeled by taking the token as input

from the Query place. Index transition is enabled when query and indexes are available

in HDFS. Indexes are loaded in the memory with one time increment, and the selection

predicates of queries are sent to Query Key place. The search key transition searches keys

in the loaded index and returns the value. Search key transition also increments the timer.

Univ
ers

ity
 of

 M
ala

ya

87

The data from the location specified by the token in the Value place are retrieved from

the loaded data block while incrementing the timer by one.

Table 4-1: Description of Places in SmallClient Mathematical Model

Place Description Initial Marking

Local Local place contains data set residing on local
disk No. of records in a data set

Buffer Buffer place contains the in-writing block Empty

Blocks Blocks place contains data blocks stored on
HDFS, each block is up to specified block_size Empty

Timer Timer place contains time taken in block
creation and/or index creation

One token initially having
0ms time

Record Record place contains one record and is used for
indexing No record

Key Key place contains the contents of record for
indexing Empty

Value Value place contains the record location Empty
Index Index place contains array of key-value pairs Empty
Indexes Indexes place contains indexes stored on HDFS Empty
Query Query place contains query At least one
Loaded
Index

Loaded Index place contains index which is
loaded from HDFS and is utilized by queries Empty

Query
Key Query Key place contains selection predicate Empty

Accessed
Value

Accessed Value place contains value of the
matched key in query execution Empty

Loaded
Block

Loaded Block contains records of a block
loaded from HDFS to create indexes. Loaded
Block is also used to retrieve data for a query.

Empty

Data Data place contains records which are retrieved
for a query Empty

Timer 2 Timer 2 place contains time taken in query
execution and data retrieval

One token initially having
0ms time

 Table 4-2: Description of transitions in SmallClient Mathematical Model

Transition Description

Read records Reads records one by one from locally stored data set and sends each record
to buffer if buffer has capacity. Records are also sent for index creation.

Get <key,val> Returns keys and values from incoming records
Add Adds <key,value> pairs in index
Store Stores blocks and/or indexes to HDFS
Get Index Returns index from HDFS
Discard Index Discards index from memory when utilized by a query
Search Key Searches the input key from query in an index and returns value if key is

matched
Get Block Returns records of a block stored on HDFS
Read Reads records one by one from a loaded block and sends for index creation
Discard Discards data block from memory when all records are read
Fetch Data Returns data residing on an input location

Univ
ers

ity
 of

 M
ala

ya

88

4.5 Features of SmallClient

Aside from the performance gains of indexing, some quality aspects are considered to

design and develop this framework. Therefore, a big data indexing client, which is

deployable on contemporary distributed file systems, exhibits the following properties:

 Adjustable Block Size

Designing an indexing client with data split utility allows the size of data blocks to be

adjusted according to manageability of the file system. However, the default block size

of the file system can also be utilized. Block size plays a significant role in improving the

utility of storage space. In the case of a fixed block size, a larger free space may be

occupied by data blocks. For instance, if the size of records in a data set is large (i.e.,

approximately 10 MB) and the block size is 64 MB, every block will have up to 4 MB

unused space. Although 4 MB does not seem to be an overhead for terabyte-scale data

sets, which comprise thousands of blocks, 4 MB of unused space per block drastically

affect the overall space consumed by the data.

When the block size (i.e., 60 MB) is adjusted during the block creation stage, this

overhead can be minimized. Furthermore, this framework is deployable on this

distributed file system, which allows data blocks with their own default block size. The

block size in the data upload parameters can be adjusted according to the nature of data

sets or based on the file system default block.

 Configurable Replication Factor

The replication factor for the data set and/or for indexes is also configurable in the

indexing client. Depending on the availability of storage space and other factors related

to imposing replication, the big data indexing client allows the replication factor to be

Univ
ers

ity
 of

 M
ala

ya

89

adjusted. A fixed number of replicas when data are uploaded on a file system has its own

implications: the capacity of a file system may prohibit more replicas of large data sets.

The physical condition of a cluster (i.e., distance between storage nodes and/or

contingency of storage node failure) may require more replicas to ensure data integrity.

The replication of indexes is subject to the access of the indexes. More replicas of indexes

are suggested if more users are expected to access these indexes. However, the indexes

are fairly small for big data sets. Thus, storage space limitations of a file system do not

prevent the number of index replicas to increase.

The default replication factor of HDFS is used for data storage, which is three. The

indexes were not replicated for evaluation purposes in this thesis because the data loss,

which is attributed to the rare node failure observed in the cluster, is not predicted.

Furthermore, the storage nodes in the cluster are physically co-located. Therefore, the

proposed replication factor of HDFS is sufficient to ensure data availability and integrity.

 Adaptable to changing query workload

The predictor function of SmallClient automatically updates indexes for a data set with

changing query workload. Static indexes, which are created based on user-specified index

attributes, may not fulfill incoming query needs when users cannot predict future

workload of incoming queries. In this case, SmallClient is sufficiently smart to decide

new indexes. Query log is maintained, which stores the history of incoming queries. This

query log is utilized by the predictor function, which determines whether each attribute

is indexed or non-indexed to identify its access rate in recent past queries. New indexes

are created. Non-indexed attributes are analyzed from missed queries. Existing indexes

are deleted, whereas non-indexed attributes are analyzed. Predictor function keeps the

Univ
ers

ity
 of

 M
ala

ya

90

indexes up-to-date and adaptive to query workload. Thus, the increased index hit ratio is

achieved using SmallClient.

 Support to big data indexing requirements

The big data indexing requirements were explained in Chapter 2. SmallClient

effectively supports the volume, velocity, and variety of big data. Varying size data sets

were taken to show the capability of SmallClient to support big data. The experiments

show that indexing overhead decreases and search performance increases with data size

(see Chapter 6).

With the rapid growth of data volume, index update is straightforward in SmallClient.

SmallClient suggests block level indexing where indexes for each data block are

separately created without the intervention of indexes on other data blocks. Block level

indexing takes specific data block as input, reads all records one by one, and creates

indexes for the provided list of index attributes. When data are added in the existing data

set, new blocks are easily indexed.

Data sets from various sources, such as spatial data, are utilized where shape files are

converted into CSV files to ensure the variety of data. Any type of data set with metadata

and schema can be indexed using SmallClient.

4.6 Conclusion

The proposed SmallClient indexing framework and its modules, namely, block

creation, index creation, and query execution, are presented in this chapter. The layered

architecture of query execution on a file system for big data is described. The components

of SmallClient and their process flows are presented by using sequence diagrams. The

mathematical model for SmallClient is also shown.

Univ
ers

ity
 of

 M
ala

ya

91

The block creation module of SmallClient overcomes the problem of record splitting

and improves record retrieval performance by reducing the number of MapReduce jobs

required to access jobs. However, block creation results in negligible data uploading time

and data set size overhead for big data sets.

The index creation module of SmallClient achieves minimized indexing overhead. The

index creation module implements non-clustered NAI indexing approach, which

overcomes the problems of existing clustered indexing approaches for big data. The

adopted approach is specialized to demonstrate its lower index time and index size

performance than that of contemporary non-clustered implementations.

The query execution module of SmallClient ensures improved search performance.

SmallClient indexes are fast traversable, thereby quickly returning the record offset(s) of

required data. Data retrieval operation jumps the offset and displays required data.

Predictor logic, which is associated with the index creation module of SmallClient,

confirms the maximized index hit ratio by suggesting automatic index updating. Adaptive

index updating adds new indexes and removes existing indexes based on changing query

workload. Thus, the maximum incoming queries are served by available indexes.

SmallClient supports the large volume, velocity, and variety from big data indexing

requirements, and is therefore efficient for big data.

Univ

ers
ity

 of
 M

ala
ya

92

CHAPTER 5: EVALUATION

This chapter aims to present the evaluation of the proposed indexing framework for

indexing overhead, query execution time, and index hit ratio. The test bed, which specifies

hardware and software utilized in experiments to collect data, is presented. The evaluation

measures are discussed, and the algorithms are presented as framework logic to execute

the experiment. All the modules of SmallClient are implemented by using Eclipse IDE

on a physical four-node cluster, and data are collected for data upload overhead, indexing

overhead, and search performance. The tools to gather data for the experiment,

benchmarking, and mathematical modeling are also described in this chapter.

This chapter has four sections: Section 5.1 presents the test bed by explaining the

hardware and software specifications. Section 5.2 discusses the evaluation measures,

whereas Section 5.3 explains the algorithms used to execute the framework. Section 5.2

elaborates the data collection tools, and this chapter is concluded in Section 5.5.

5.1 Test bed

The experimental setup, including hardware and software specifications, is explained

in this section. The hardware consists of four physical machines. Each machine has 250

GB disk storage, 4 GB RAM, and 2 GHz processor. The operating system runs on 64-bit

Ubuntu Desktop latest stable release. The available cluster size is 1 TB.

A four-node Hadoop cluster is configured on these machines. MapReduce and HDFS

daemons are configured. One master and four slave nodes are created. MapReduce and

HDFS daemons are configured on the master–slave cluster for data processing and

storage purposes.

Univ
ers

ity
 of

 M
ala

ya

93

The default configuration of Hadoop is used for most data sets, i.e., default replication

factor is three and the default block size is 64 MB. However, SmallClient allows custom

configuration according to user needs and data set requirements.

The framework modules, i.e., block creation, index creation, and query execution, are

developed for evaluation. Each module of SmallClient is implemented, and several Java,

Lucence, and Hadoop packages are used. Eclipse IDE is utilized for code implementation.

These modules can be executed from any client in a cluster.

5.2 Evaluation Measures

The metrics, which are used to evaluate the performance of the proposed indexing

framework, are discussed. These metrics are as follows: data upload overhead, indexing

overhead, search performance, and index hit ratio. The definition of each measure is

provided by using equations. The framework is validated and the results are verified using

these metrics.

The evaluation measures are used to obtain the results from each module of

SmallClient. The results show the extent to which the research aim and objectives are

achieved. An explanation of each established evaluation measure is presented in this

section.

5.2.1 Data Upload Overhead

Data upload overhead is the percentage of increased activity to upload data using the

block creation module of SmallClient for a big data processing file system in comparison

with their own data upload policy. The data upload overhead is measured in terms of both

data upload time overhead and data size overhead. Both overheads are defined as follows:

Univ
ers

ity
 of

 M
ala

ya

94

Data upload time is composed of the time (in seconds) to create data blocks and store

these data blocks on the file system. Chapter 4 indicates that the block creation process

reads records from the data set and maintains the records in a block until the block does

not have any capacity to store more records (~𝑏𝑙𝑜𝑐𝑘_𝑙𝑖𝑚𝑖𝑡). Data upload time is

calculated in the following equation for a data set with 𝑘 blocks:

𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 = ∑(𝑇𝑐𝑟𝑒𝑎𝑡𝑒(ℬ`𝑐) + 𝑇𝑢𝑝𝑙𝑜𝑎𝑑(ℬ`𝑐))

𝑘

𝑐=1

 5-1

The time taken by the block creation module of SmallClient is utilized as data upload

time. Therefore, 𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 is used to define data upload time where

𝑇𝑐𝑟𝑒𝑎𝑡𝑒(𝐵′𝑐) denotes the time to create a block 𝑐 and 𝑇𝑢𝑝𝑙𝑜𝑎𝑑(𝐵′𝑐) indicates the time to

upload a block. The percentage increase in data uploading time defines the upload time

overhead. This overhead is defined as follows:

𝑂𝑑𝑎𝑡𝑎𝑈𝑝𝑙𝑜𝑎𝑑 =
𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎

𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎
 × 100 5-2

where 𝑂𝑑𝑎𝑡𝑎𝑈𝑝𝑙𝑜𝑎𝑑 denotes data upload overhead, 𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 is the data uploading

time of SmallClient, and 𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎 is the data upload time of the existing file system.

The size of uploaded data (in MB) using SmallClient also differs from the actual size

of data sets. While records of data are added to a block where block size is same for all

blocks for a data set, some space of few bytes are left empty in a block container.

However, the configurable block size offered by SmallClient allows the block size to be

adjusted according to the size of records. Therefore, the overall size overhead becomes

negligible. The size of each block (i.e., SB`) and the overall data set size (i.e., S𝔻`) are

defined in the following equations, where S𝔻` − S𝔻 < 𝑙:

Univ
ers

ity
 of

 M
ala

ya

95

𝑆𝐵` = 𝑙 5-3

𝑆𝔻` = 𝑆𝐵` × 𝑘 5-4

The size of SmallClient blocks SB` is the configured block size 𝑙, and the size of an

entire data set is the product of block size SB` and the number of blocks in data set which

is denoted as 𝑘.

Data size overhead 𝑂𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒 is calculated using Equation 5-5.

𝑂𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒 =
S𝔻` − S𝔻

S𝔻
 × 100 5-5

where S𝔻` denotes the size of data sets uploaded using SmallClient, and S𝔻 indicates the

data set size uploaded using HDFS.

5.2.2 Indexing Overhead

Indexing overhead is the increased cost of performing the index creation process on

data sets. Although indexing can improve data search performance, the cost to create

indexes should not be high to execute queries using full sequential scan. Therefore,

indexing overhead is a significant evaluation measure for big data where users do not

tolerate long delays to start query execution after uploading their data (Idreos, Alagiannis,

Johnson, & Ailamaki, 2011). This overhead is measured in terms of both index creation

time and the size of indexes.

Index creation time is the time taken to extract < key, value > pairs according to an

index attribute from each block. Each pair is at the right place in the B-Tree index, and

the index is uploaded to the file system. According to Algorithms 5-2 and 5-3, index

creation time varies with the number of blocks i.e. 𝑘, index attributes, and records in a

Univ
ers

ity
 of

 M
ala

ya

96

block i.e. 𝑚𝑖. The indexing time and indexing overhead for a data set with 𝑘 blocks are

defined in the following equations:

𝑇𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 = ∑ (∑ 𝑇𝑔𝑒𝑡 & 𝑝𝑢𝑡(<𝑘𝑒𝑦,𝑣𝑎𝑙𝑢𝑒>𝑝𝑎𝑖𝑟𝑠)

𝑚𝑖

𝑟𝑒𝑐𝑜𝑟𝑑=1

) + 𝑇𝑠𝑡𝑜𝑟𝑒𝐼𝑛𝑑𝑒𝑥𝑒𝑠

𝑘

𝑖=1

 5-6

𝑂𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 =
𝑇𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔

𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎
 × 100 5-7

Index size S𝛪 refers to the aggregated size of B-Tree objects i.e. 𝑆𝐵−𝑇𝑟𝑒𝑒𝑖,𝑐
 for all index

attributes and all 𝑘 blocks. The number of index attributes 𝑗, size of keys, and number of

records in a data set affect index size S𝛪. S𝛪 is defined in the following equation:

S𝛪 = ∑ ∑ 𝑆𝐵−𝑇𝑟𝑒𝑒𝑖,𝑐

𝑘

𝑐=1

𝑗

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑒=1

 5-8

Index size overhead 𝑂𝑖𝑛𝑑𝑒𝑥 𝑠𝑖𝑧𝑒 is defined as follows:

𝑂𝑖𝑛𝑑𝑒𝑥 𝑠𝑖𝑧𝑒 =
S𝛪

S𝔻
 × 100 5-9

5.2.3 Search Performance

Search performance refers to the percentage of improvement in the data search

process. Indexing primarily aims to reduce query execution time to retrieve specific data

from big data. Therefore, the percentage of reduced query execution time because of

indexing indicates the overall data search performance. Query execution, which uses full

scan, traverses all records in each data block despite the millions of records in a data set.

By contrast, smaller indexes are traversed for query execution in the case of indexed data.

Thus, search performance improves. However, indexing is a costly process. Thus, the

Univ
ers

ity
 of

 M
ala

ya

97

search performance is expected to be significantly higher than the cost of index creation.

An efficient index structure should be faster in traversal to improve search performance.

Search performance is used to evaluate the query execution time with indexes, which

are created using the index creation module. The query execution module takes a query

as input, loads respective indexes in the memory, which were previously created, obtains

record positions as values by traversing the indexes using keys provided in queries, and

fetches the required data by directly accessing the records of a data set. Index traversing

time and data fetch time for each block 𝑐 are mathematically represented in the following

equations. The traversing time for B-Tree structures is proven (Comer, 1979) as Ο(log n).

Therefore, the time to traverse indexes 𝑇𝑇𝑐(𝑘𝑒𝑦𝑠) at block 𝑐 for 𝑗 indexes given in the

selection predicate is:

𝑇𝑇𝑐(𝑘𝑒𝑦𝑠) = ∑ Ο(log 𝑛)

𝑗

𝑎𝑡𝑡𝑟=1

 5-10

The indexes return the offset of data records as 𝑣𝑎𝑙𝑢𝑒 , which are requested by queries.

Time to retrieve data 𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) is the product of the number of required records 𝑆𝑣𝑎𝑙𝑢𝑒

and the time required to access each record 𝑇𝑎𝑐𝑐𝑒𝑠𝑠. 𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) is defined as follows:

𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) = 𝑆𝑣𝑎𝑙𝑢𝑒 × 𝑇𝑎𝑐𝑐𝑒𝑠𝑠 5-11

The overall query execution time for all blocks of a data set is defined as:

𝑇𝑄 = ∑(𝑇𝑇𝑎𝑡𝑡𝑟,𝑐) + 𝑇𝐹𝑠𝑒𝑙_𝑑𝑎𝑡𝑎,𝑐

𝑘

𝑐=1

 5-12

The query execution time depends on the length of selection predicates, number of

blocks in a data set, and number of records to be retrieved against that query. Thus, the

Univ
ers

ity
 of

 M
ala

ya

98

search performance is the percentage difference of query execution times of SmallClient

𝑇𝑄 and full scan operation 𝑇𝐹𝑆.

𝑆𝑒𝑎𝑟𝑐ℎ_𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑇𝐹𝑆 − 𝑇𝑄

𝑇𝐹𝑆
× 100 5-13

5.2.4 Index Hit Ratio

The index hit ratio (IHR) is the ratio of queries that are executed using indexes. IHR

is introduced as a measure to evaluate the probable rate of incoming queries to be

executed using indexes. If more indexes are created for a data set, the probability to

execute queries using indexes increases and full scan is avoided. Incoming queries are

unpredictable. The only way to increase the probability of executing these queries using

indexes is to raise the index attribute space (aI). IHR is calculated using the following

equation:

𝐼𝐻𝑅 =
𝑆aΙ

𝑆𝑎𝔻

 5-14

However, creating more indexes may adversely affect the indexing overhead. For

instance, some index structures (Dittrich et al., 2012; Halim, Idreos, Karras, & Yap, 2012)

do not allow more than one index to be created on each replica of a data set. Thus, more

replicas of data sets are needed to create more indexes. In this situation, the index size for

one attribute corresponds to the size of a data set and incrementally increases for each

new index. Thus, IHR can help present the capability of an indexing structure to the

maximum number of indexes, which can be created with a manageable indexing

overhead.

IHR can also be improved when users know the incoming query workload and invoke

index creation or updating according to the predicted query workload. However, users

cannot always predict the query workload. In this case, SmallClient leverages historical

Univ
ers

ity
 of

 M
ala

ya

99

information on queries from the query log to update indexes. This feature positively

affects IHR. IHR is defined in Equation 5-23 for adaptive indexes, which are updated

with predicting query workload.

𝐼𝐻𝑅𝑤 =
𝑁𝑜. 𝑜𝑓 𝐻𝑖𝑡 𝑄𝑢𝑒𝑟𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑄𝑢𝑒𝑟𝑖𝑒𝑠
 5-15

5.3 Framework Design

This section presents the logic design of the proposed indexing framework by defining

the different processes involved for block creation, index creation, and query execution

modules, which were explained in the previous section. Algorithms and equations are

utilized to define these processes.

Algorithm 5-1 createBlocks(file)

1. block_limit = DefaultBlockSize
2. has_capacity = true
3. block_number = 0
4. while reading records not reached end of file do
5. if has_capacity then
6. add record in block
7. else

8. uploadBlock(block, block_number)
9. block_number = block_number + 1

10. has_capacity = true
11. end if

12. end while

13. uploadBlock(block, block_number)
14. Return

The process of block creation is presented in Algorithm 5-1. block_limit defines the

block size specified for a data set. The default block size offered by HDFS is used.

has_capacity determines whether the block container can contain an incoming record or

not, and block_number is used to manage the sequence of blocks.

In Equations 5-16 and 5-17, based on the assumption that a data set 𝔻 is composed of

𝑥 records, block creation initiates by reading records one by one. Block ℬ` , which is

Univ
ers

ity
 of

 M
ala

ya

100

created using the block creation module, has 𝑚 records out of 𝑥, and the remaining bytes

to reach block limit 𝑙 are denoted as α. Overall, 𝑘 blocks are created for 𝔻.

𝔻 = ∑ 𝑟𝑒𝑐𝑜𝑟𝑑𝑐

𝑥

𝑐=1

 5-16

ℬ`𝑖 = ∑ 𝑟𝑒𝑐𝑜𝑟𝑑𝑐

𝑚𝑖

𝑐=1

 + 𝛼 ∶ 0 ≤ 𝑖 < 𝑘
5-17

When the block reaches block_limit, the block is uploaded, block_number is

incremented, and block_limit is set to true. After uploading the last block, the process

ends and returns the time taken in the block creation process.

Algorithm 5-2 runIndex(file_name, file_schema, index_attr_list)

1. if index_attr_list is empty then
2. write err_message
3. Exit
4. end if

5. compare index_attr_list with file_schema & remove unmatched attributes from
index_attr_list

6. calculate index_attr_offset_list from updated index_attr_list
7. get block_info
8. for all blocks do
9. createIndexes(file, block_locations, index_attr_offsets_list)

10. for all indexes do
11. storeIndex(index, file_name, index_attr)
12. get & update index_metadata
13. end for

14. end for

The next stage is creating indexes for uploaded blocks of a data set. The process of

index creation is elaborated in Algorithms 5-2 and 5-3. Algorithm 5-2 shows the pre-

index creation verification steps involved to obtain the exact index attribute set according

to the provided schema of a data set. Users may mistakenly provide some attributes in

index_attr_list, which are not present in the data set. Comparing index_attr_list with the

schema helps remove these attributes from index_attr_list. The offset addresses of index

Univ
ers

ity
 of

 M
ala

ya

101

attributes are also obtained from the schema, which are helpful to transform to contents

as keys in a record. The index creation phase is invoked.

Based on the assumption that a𝔻 denotes the list of attributes of a data set that is

available in its schema, index_attr_list, 𝑎𝐼 is defined in the following equation:

𝑎𝐼 𝑎𝔻 5-18

Empty B-Tree index objects are initialized for each element of index_attr_list after

successful verification. SmallClient starts reading blocks line by line and obtains keys

corresponding to the offset addresses and value from each record. As explained in the

previous section, the content from a record for each index attribute is collected as key and

the location of that record is collected as value. More than one occurrence of a key in a

block are stored as list of values in B-Tree. As a result, we can define our index I for a

block 𝑖 as follows:

𝐼𝑎𝑡𝑡𝑟,𝑖 = ∑ < 𝑘𝑒𝑦𝑎𝑡𝑡𝑟𝑟𝑒𝑐𝑜𝑟𝑑
, 𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑐𝑜𝑟𝑑 >

𝑚𝑖

𝑟𝑒𝑐𝑜𝑟𝑑=1

 5-19

Algorithm 5-3 createIndex(file, block_location, index_attr_offset_list)

1. for all index_attr do
2. create empty BTree
3. end for

4. value = block_offset
5. while reading records not reached end of block do
6. for all index_attr do
7. key = contents at index_attr_offset
8. add <key, value> in its BTree
9. end for

10. end while

11. store each BTree
12. store index_metadata of each BTree

Univ
ers

ity
 of

 M
ala

ya

102

Algorithm 5-3 presents the steps involved in creating indexes. The process begins with

creating 𝑛 (i.e., 𝑛 = Sindex_attr_list) empty B-Trees, which shows that the indexes do not

contain any < key, value > at this stage. The offset of block is assigned as the offset of

the first record to value. The value of the next record is updated by adding the byte size

of the record. The process continues until all records in a block are indexed. The indexes

and their metadata are stored in the file system as small objects, which maintain the

information of indexes.

SmallClient also offers adaptive indexes based on the proposed predictor logic. This

function calculates the access rate for each attribute of a data set by using Equation 5-20,

where Occurenceattr,i denotes the number of queries in a time slot 𝑖 with attribute attr as

the selection predicate and Total queriesi indicates the total number of queries in time

slot 𝑖. Ten values of the access rate for each attribute are calculated because 10 time slots

are used for prediction.

𝐴𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒𝑎𝑡𝑡𝑟,𝑖 =
𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑎𝑡𝑡𝑟,𝑖

𝑇𝑜𝑡𝑎𝑙 𝑞𝑢𝑒𝑟𝑖𝑒𝑠𝑖
 , 𝑖 = 1,2,3, … , 𝑛 5-20

Algorithm 5-4 runQuery(query)

1. if analyze(query) is not successful then
2. write error_message

3. Exit
4. end if

5. get & verify provided file_name from query
6. get & verify sel_data_list from query
7. get sel_data_offset_list from file_schema
8. get attr_list from selection predicate(s) of query
9. if indexes are not available for attr_list then

10. go for full_scan
11. Else
12. get values of attribute_list as keys from query
13. get block_locations
14. for all blocks do
15. load respective index(es)

Univ
ers

ity
 of

 M
ala

ya

103

16. search keys & fetch sel_data_list if keys are found
17. end for

18. end if

The query execution process of SmallClient is explained. Algorithm 5-4 describes the

process of executing queries using indexes. An incoming query is first analyzed to

validate its syntax, and the parameters specified in the query are verified. Queries with

typographical and syntax errors or queries that do not match any file in the file system are

discarded after an error message is received. The successful analysis of query string

provides attribute(s) as selection predicates to search data. Full scan operation is

recommended only when indexes are not available for selection predicates.

5.4 Data Collection Tools

Data collection tools are presented in this section. Experiments are executed on the test

bed to collect data for all modules of SmallClient. These data are further testified where

benchmarking and mathematical modeling are employed. Data collection methods for

experimental data verification are also presented.

5.4.1 Data Collection for Experiment

Java code is executed in Eclipse, and Apache StopWatch API and Hadoop FileStatus

package were used to obtain most of the results. HDFS user interface and console were

utilized for data collection. StopWatch was used to obtain the time results of different

processes. Data uploading time, index creation time, and query execution time results are

generated with Apache StopWatch API, which starts and ends with the process and

displays the time taken by a process.

User interface is utilized to browse HDFS and Hadoop FileStatus package to obtain

the size results. The HDFS user interface is used to collect the results uploaded file size,

whereas Hadoop FileStatus package is used to generate the size of indexes. These Java

Univ
ers

ity
 of

 M
ala

ya

104

packages generate reliable and accurate results without human intervention. Therefore,

these packages were leveraged to achieve accurate results for further evaluation. Full-

scan operation was performed using HQL queries in the console, and the query execution

time generated by the console is determined as the full-scan search time.

5.4.2 Data Collection for Benchmarking

This section elaborates the method used to collect data for benchmarking for each

performance measure. The process of executing different modules of the proposed

framework was elaborated to collect data for data upload overhead, indexing overhead,

and search performance.

Data were obtained for evaluation measures by executing SmallClient modules. Block

creation and index creation modules can be invoked together or separately depending on

user requirements. Users can also request to perform index deletion based on query

workload knowledge. However, SmallClient offers adaptive index updating for

unpredictable incoming query workload. SmallClient utilizes configuration information

and block placement policy of Hadoop during the execution of these modules. Users can

also invoke query execution module from any node that uses Hadoop block selection

policy.

Block creation module of SmallClient offers custom data uploading, thereby resulting

in data uploading time and data set size, which differ from HDFS. The results for data

uploading time and data set size are collected and compared with the results for Hadoop

default data uploading. The percentage overhead of data uploading of SmallClient was

calculated to compare SmallClient data uploading results with HDFS data uploading.

Data upload time and size results are presented in Chapter 6.

Univ
ers

ity
 of

 M
ala

ya

105

The indexing overhead results of SmallClient in terms of index creation time and index

size are collected and compared with the results of Lucene indexing overhead.

SmallClient also offers index creation with data uploading (called i-SmallClient). In this

case, the indexing overhead of i-SmallClient is different from the overhead when indexes

are created separately. Therefore, two evaluation methods exist for index creation. First,

SmallClient data uploading without indexing results are compared with i-SmallClient

results. The result shows the overhead caused by indexing. Second, the i-SmallClient

results are compared with separate index creation in SmallClient.

The indexing results obtained from SmallClient are compared with Lucene indexing

results. The comparison indicates that SmallClient performs better. Index updating

includes the creation of new indexes and deletion of unused indexes. The current index

deletion results are presented. The new index size overhead is calculated and compared

with the previous index size overhead before being deleted. All index overhead results

are presented in Chapter 6.

The query execution time and search performance results of SmallClient are obtained

by executing multiple queries. The query execution time results of SmallClient are

compared with the full-scan results of Hadoop using HQL and with Lucene indexed

search results. The same queries are executed on Hive for full scan and on Lucene and

SmallClient for indexed search.

The search performance of SmallClient is calculated over full-scan query execution

and the search performance of Lucene indexes. The same process is employed to calculate

search performance for both SmallClient and Lucene indexes. The search performance of

SmallClient is compared with that of Lucene for evaluation.

Univ
ers

ity
 of

 M
ala

ya

106

The IHR results for both unpredictable query workload and after predicting query

workload are obtained. The IHR results of SmallClient results for unpredictable and

predictive query workload are compared with the IHR results of Lucene. IHR is improved

because the indexes in SmallClient are adaptively updated. The results are presented in

Chapter 6.

5.4.3 Data Collection for Mathematical Model

The time results are collected to mathematically verify and validate the correctness

and reachability of the specified properties of SmallClient mathematical model. The state

space report for each module provides fair information on some state space statistics and

standard behavioral properties, e.g., integer bound of places and multi-set bound of

places. A state space report is generated by specifying the number of records and

block_size for a data set to be uploaded without index creation. A state space report is

created for index creation with block creation and for separate index creation.

Furthermore, a state space report for query execution is also generated.

Block creation in the mathematical model offers data uploading with a specified

number of records in a data set and block_size. Data upload time results are obtained by

observing the value of tokens at Timer place. The supply of records is halted to obtain

<key, value> transition and the accurate results of data upload time, which also

increments Timer. The data upload time is presented in following Equation 5-21.

𝐷𝑎𝑡𝑎 𝑈𝑝𝑙𝑜𝑎𝑑 𝑇𝑖𝑚𝑒 = (𝑐 × 𝑆𝔻) + (𝜇
𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

× 𝐿𝑜𝑐𝑎𝑙#) + (𝜇
𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘

× 𝐵𝑙𝑜𝑐𝑘𝑠#) 5-21

where 𝑐 denotes the factor of data set size 𝑆𝔻 , which shows the effect of data set size on

data uploading time. 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 indicates the time to read a record and 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘 is

the time to store a block. 𝐿𝑜𝑐𝑎𝑙# presents the number of records of a data set and

Univ
ers

ity
 of

 M
ala

ya

107

Blocks#denotes the number of tokens in Blocks place. The following values are set:

0.065 for 𝑐, 0.00006 for 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 and 3.5 for 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘.

The indexing overhead results are obtained from the mathematical model of

SmallClient in terms of index creation time. The model offers index creation during data

uploading or for data blocks residing in HDFS. The value of tokens in a timer place shows

the time taken to create indexes in both cases. The index creation time is presented in

Equation 5-22, where 𝜇𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙> denotes time to obtain <key, value> pair from each

record out of 𝐿𝑜𝑐𝑎𝑙#. 𝜇𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 indicates the time to store an index for a block where

the total number of blocks in a data set are 𝐵𝑙𝑜𝑐𝑘𝑠#. Equation 5-6 has also explained this

indexing time calculation and shows that this time is accumulative to creating

<key,value> pairs for data set and storing index into file system.

𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = (𝜇
𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙>

× 𝐿𝑜𝑐𝑎𝑙#) + (𝜇
𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥

× 𝐵𝑙𝑜𝑐𝑘𝑠#) 5-22

The query execution time and search performance results of SmallClient are collected

by adding tokens in Query place. Query execution time results are the value of tokens at

Timer2 place. The value of token at Timer2 place is updated by loading index in memory,

traversing index to match keys, and retrieving data from Block place. Therefore, query

execution time is calculated as follows:

𝑄𝑢𝑒𝑟𝑦 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

= (𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥 × 𝐵𝑙𝑜𝑐𝑘𝑠#) + (𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦 × 𝐿𝑜𝑐𝑎𝑙#) + 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎

5-23

where 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥 denotes the time to load the index for a block to memory, 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦 is

the time to compare the value of the selection predicate with each key in an index and to

return the relevant value when they are matched, and 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 is the time to load data

from the file system. The explanation of 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 is provided in Equation 5-11.

Univ
ers

ity
 of

 M
ala

ya

108

𝐵𝑙𝑜𝑐𝑘𝑠# are used to present the number of index files for a data set. Block level indexing

is performed where indexes are managed at the block level. Thus, the number of index

files is equal to the number of blocks. Each record in a data set is assumed to have a <key,

value> pair in index. Thus, 𝐿𝑜𝑐𝑎𝑙# represents the number of comparisons performed to

retrieve the location from index. As we have defined in Equation 5-12, query execution

time includes time to traverse indexes and time to fetch data. 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥 and 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦

in Equation 5-23 define time to traverse indexes whereas 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 defines time to fetch

data.

5.5 Conclusion

Performance evaluation of the proposed indexing framework is presented in this

chapter. The test bed where all the modules of SmallClient are executed is explained to

evaluate the effectiveness of the modules. The algorithms showed the implementation

processes of the modules, such as block creation, index creation, and query execution, to

collect data. Data collection tools presented a method to obtain data for evaluation

measures. Data collections tools also explained the procedure to collect data for

benchmarking and mathematical modeling. These data are utilized to verify the

experimental data for each evaluation measure, such as data uploading overhead,

indexing overhead, and search performance.

 Univ
ers

ity
 of

 M
ala

ya

109

CHAPTER 6: RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained by executing the proposed

SmallClient. The objectives of proposing the SmallClient indexing framework for big

data are achieved, as described in this chapter. Chapter 4 stated that SmallClient

minimizes indexing overhead, reduces query execution and data search time, and

maximizes index hit ratio. The experimental results of data upload overhead, indexing

overhead, and search performance are verified by using benchmarking and mathematical

modeling in this chapter.

The rest of the chapter is organized as follows: Section 6.1 presents the performance

validation, and Section 6.2 presents the verification of the results by using benchmarking

and mathematical modeling. Section 6.4 concludes the chapter.

6.1 Validation

The results of SmallClient for data upload overhead, indexing overhead, search

performance, and IHR are presented and discussed. The effectiveness of SmallClient is

ensured to fulfill research objectives, i.e., minimize indexing overhead, reduce data

retrieval time with faster query execution, and achieve the maximum index hit ratio.

Statistical tables and charts are used to present the results. Same data sets (Eldawy &

Mokbel, 2015) are used to execute the experiment that were utilized for performance

analysis in Chapter 3.

The data collection process was executed in 10 iterations for reliability. The data,

which are collected for time results, exhibit a slight difference (i.e., few milliseconds).

However, the size results are consistent in all 10 executions. Therefore, mode is

considered from the observations for time results in evaluation, whereas the data for size

results are used from any iteration.

Univ
ers

ity
 of

 M
ala

ya

110

6.1.1 Experimental Results

The experimental results are collected by executing experiments on a test bed, as

described in the previous chapter (see Section 5.4.1). The data upload time and data

upload size results are presented for block creation module validation. The indexing

overhead, search performance, and IHR results from the experiments are described.

 Data Upload Results

Data uploading affects the time taken to upload data and the size of uploaded data. The

results are presented from both perspectives. Table 6-1 shows the results of data upload

time, whereas Table 6-2 indicates the results of data upload size.

Table 6-1: Data Upload Time Results

Data Sets
Data Set Size

(MB)

No. of

Records

Data Upload Time (sec)

SmallClient I-SmallClient

Primary Roads 77.1 13373 15.46 17.78
Area Landmark 406 121960 57.03 62.54
Tabulation Area 1560 33144 172.89 212.15
Area Hydrography 6460 2298808 820.74 981.55
All Edges Combined (I) 16220 19291957 2535.13 3128.76
Linear Hydrography 18270 5857442 2252.09 2504.94
All Edges Combined (II) 23180 70000000 4962.00 7270.70
All Edges Combined (III) 61900 72700000 72304.00 11452.94
All Nodes 96400 2700000000 124010.00 135252.64
Road Network 137500 717000000 103788.00 114864.52

Table 6-1 presents the results of data uploading time taken by the experiments on the

block creation module. Data uploading offers parallel index creation, which decreases

overall delay to start query execution. The time results of data uploading are presented,

as well as index creation. This module is called i-SmallClient. The index creation time

for five indexes is included to present the i-SmallClient results. The results of SmallClient

and i-SmallClient indicate that data uploading time slightly increased when five indexes

are created in parallel.

Univ
ers

ity
 of

 M
ala

ya

111

Table 6-1 shows that data sets All Edges Combined (II) and All Edges Combined (III)

consist of almost the same number of records, whereas their sizes vary significantly.

Therefore, the difference between overheads of data upload time for these data sets is also

very high. This result indicates that the size of the data set and the number of records in

a data set both affect the data uploading time taken by SmallClient.

Figure 6-1: Data Upload Time Experiment Results

The data upload time experiment results of SmallClient and i-SmallClient are

presented in Figure 6-1. The closed dotted bars indicate the data uploading time results

for SmallClient, and dotted bars show the time for i-SmallClient. Figure 6-1 indicates that

data uploading time increases with data set size. The experiment results also show that

index creation in parallel to data uploading saves time as a minor increase in data

uploading time occurs when five indexes are created during data uploading.

Table 6-2 presents the results of the size of uploaded data using SmallClient. Table 6-2

shows that the uploaded data using SmallClient are larger than the actual data size.

However, this difference becomes negligible for large data sets.

Table 6-2: Data Upload Size Results

Data Sets No. of Blocks Data Size (MB) Data Upload Size (MB)

Primary Roads 2 77.1 128
Area Landmark 7 406 448

Univ
ers

ity
 of

 M
ala

ya

112

Tabulation Area 25 1560 1560
Area Hydrography 104 6460 6500
All Edges Combined (I) 260 16220 16250
Linear Hydrography 293 18270 18310
All Edges Combined (II) 363 23180 23190
All Edges Combined (III) 969 61900 61940
All Nodes 1500 96400 96460
Road Network 2141 137500 137570

The size of uploaded data for small size data sets significantly increases when these

data are uploaded using SmallClient (i.e., for primary road data set, the size of uploaded

data using HDFS is 77.1 MB, whereas this size is 128 MB when the data are uploaded

using SmallClient). This observation occurs because the default block size of Hadoop for

data uploading, which is 64 MB, and the size of primary road data set are slightly larger

than the data in one block. SmallClient created two blocks for the fixed-sized data set of

primary road of while null values are added in the end. Therefore, the size of uploaded

data for the data set of primary roads increased. The data upload size results are presented

in Figure 6-2.

Figure 6-2: Data Size Results from Experiments

The data uploading results for both data uploading time and data upload size indicate

that data uploading time and data upload size also increased with data set size. The time

Univ
ers

ity
 of

 M
ala

ya

113

results for i-SmallClient are presented, which show that index creation parallel to data

upload is more efficient. Five indexes are created with a slight increase in time.

 Indexing Results

The indexing experiment results are presented in terms of indexing time and index size

in this section. Up to five indexes are created for evaluation. Table 6-3 shows the results

for indexing time and index sizes.

Table 6-3 presents the results of indexing time of SmallClient to create up to five

indexes. The results indicate that indexing time increases for large data sets. Indexing

time also depends on the number of records in a data set. When a data set has more

records, indexing time also increases. For instance, all edges combined (I) data set has

more records than its adjacent data sets. Therefore, this data set takes more time to create

one to five indexes using SmallClient.

The relationship between data set size and the number of records, which affects

indexing time, is depicted in Table 6-3 for all nodes and road network data sets. All nodes

data set is smaller. These data sets have more records. Thus, the indexing time for all node

data sets is higher than the indexing time taken by road networks.

Indexing time is also affected when the number of indexes increases. Table 6-3 shows

that indexing time is low to create one index, whereas more than one index takes more

time in index creation. The index time experiment results are presented in Figure 6-3.

Univ
ers

ity
 of

 M
ala

ya

 114

Table 6-3: Indexing Time Results for up to five Indexes

Data Sets Data Set Size (MB) No. of Records
Indexing Time (sec)

1 2 3 4 5

Primary Roads 77.1 13373 3.35 3.48 3.95 4.40 4.50
Area Landmark 406 121960 8.19 9.30 10.80 11.94 13.19
Tabulation Area 1560 33144 24.72 27.54 30.01 31.29 32.25
Area Hydrography 6460 2298808 141.65 155.66 164.74 154.34 176.59
All Edges Combined (I) 16220 19291957 380.53 420.30 504.42 617.57 795.93
Linear Hydrography 18270 5857442 288.26 418.14 444.34 464.16 492.07
All Edges Combined (II) 23180 70000000 785.52 1121.05 1488.22 1988.89 2335.09
All Edges Combined (III) 61900 72700000 1694.89 1772.45 1829.82 1890.37 1991.86
All Nodes 96400 2700000000 20572.89 20534.76 20725.30 20899.25 20922.36
Road Network 137500 717000000 17350.42 18210.49 18991.21 19390.75 19948.28

Univ
ers

ity
 of

 M
ala

ya

115

Figure 6-3: Indexing Time Results from Experiments for up to five indexes

Figure 6-3 shows the indexing time experiment results and indicates that indexing time

increases with data set size. The slight elevation in indexing time with the increase in the

number of index attributes shows that SmallClient facilitates the creation of more indexes

for a data set, which is advantageous to improve search performance. Therefore,

SmallClient offers fast index creation despite the increased number of indexes for index

creation.

The data for index size evaluation are obtained. The index size results for up to five

indexes are presented in Table 6-4. The table shows the index size results when up to five

indexes are created using SmallClient. Index size depends on data set size and the number

of records in a data set. Therefore, index size increases with data set size for SmallClient.

Index size increases with the number of indexes. This increase in index size is higher for

small data sets after three indexes.

Univ
ers

ity
 of

 M
ala

ya

 116

Table 6-4: Index Size Results for up to five Indexes

Data Sets Data Set Size (MB) No. of Records
Index Size (MB)

1 2 3 4 5

Primary Roads 77.1 13373 0.13 0.34 0.85 1.37 1.90
Area Landmark 406 121960 0.16 1.35 3.91 8.41 14.94
Tabulation Area 1560 33144 0.34 1.80 3.44 5.11 6.89
Area Hydrography 6460 2298808 0.07 5.12 24.24 43.37 62.60
All Edges Combined (I) 16220 19291957 173.22 315.98 754.62 1460.54 2397.80
Linear Hydrography 18270 5857442 0.21 16.16 156.24 296.33 340.87
All Edges Combined (II) 23180 70000000 2197.11 5078.66 8242.46 11529.61 15659.79
All Edges Combined (III) 61900 72700000 554.79 1150.99 2692.31 4986.74 8532.78
All Nodes 96400 2700000000 1062.34 2130.24 3521.57 4827.45 7321.65
Road Network 137500 717000000 2645.25 4837.94 7346.86 9826.15 20134.67

Univ
ers

ity
 of

 M
ala

ya

117

More indexes for a data set occupy more space. Thus, index size increases. The index

size results for up to five indexes are shown in Figure 6-4. The size of bars indicates the

size of the index. Figure 6-4 shows that the index size is low for small data sets. The index

size also increases with the number of indexes for a data set.

Figure 6-4: Index Size Resuts for five indexes

 Search Performance

The query execution time and search performance results are presented in this section.

Table 6-5 indicates the results of query execution and search performance. The query

execution time for a specific attribute (I) and for the entire record (*) are included using

full scan and indexed search. The results of query execution time indicate that time

increases with data set size.

Another factor that affects query execution time is the index size of a data set. When

the index size is large, i.e., the index size for all edges combined (I) and all edges

combined (II) data sets, the query execution time for these data sets is also high.

Univ
ers

ity
 of

 M
ala

ya

118

Table 6-5: Query Execution Time and Search Performance Results

Data Sets Full Scan

Query

Execution Time

(sec)

Search

Performance

 I * I *
Primary Roads 15.55 15.45 0.66 0.08 95.76
Area Landmark 21.21 20.04 1.50 1.46 92.93
Tabulation Area 21.84 38.97 1.16 1.25 94.68
Area Hydrography 56.31 45.54 2.90 3.68 94.85
All Edges Combined (I) 102.25 102.25 40.42 41.12 60.47
Linear Hydrography 183.00 152.61 3.11 3.04 97.96
All Edges Combined (II) 175.77 174.52 61.51 65.45 65.00
All Edges Combined (III) 280.26 275.45 3.92 3.88 98.60
All Nodes 410.34 410.21 7.21 7.24 98.24
Road Network 546.80 545.54 10.56 10.43 98.07

The query execution time results for specific attribute retrieval are presented in Figure

6-5. Figure 6-5 also indicates that the query execution time increases with the size of data

sets in all cases. For instance, query execution time for smallest size data set i.e. Primary

Roads data set is least in Figure 6-5. Query execution time for larger size data sets is

higher than Primary Roads data set. However, the query execution time for all edges

combined (I) and all edges combined (II) data sets is high because of the large indexes.

Figure 6-5: Query Execution Time Results from Experiments

 Index Hit Ratio

The index ratio results are presented in Table 6-6 and Figure 6-6. Predictor logic was

adopted to decide whether new indexes are created or existing indexes are deleted, as

Univ
ers

ity
 of

 M
ala

ya

119

described in Chapter 4. Predictor logic observes 10 time slots of the query log to make

decisions. Thus, IHR increases. The results of 20 time slots, which were obtained from

the query log, are presented in Table 6-6. Total queries indicate the number of queries,

which are executed in a time slot, whereas hit queries represent the number of queries that

utilized indexes.

The first 10 time slots (i.e., T1 to T10) consist of queries that are executed when static

indexes were created. Each attribute from a data set schema is observed in each of the 10

time slots by predictor logic, and indexes are adaptively updated. Ten time slots (i.e., T11

to T20) are taken for adaptive indexes, which are updated using predictor logic. The IHR

in Table 6.8 fluctuates with changing query workload in each time slot. However, after

updating the indexes, the overall IHR increases to more than 0.54 for the T11 to T16 time

slots.

Table 6-6: Query Log observations and Index Hit Ratio Results before and after

Predictor Logic

Time Slots Total Queries Hit Queries Index Hit Ratio

S
ta

ti
c

In
d

ex
es

T1 28 23 0.82
T2 22 15 0.68
T3 21 6 0.29
T4 24 4 0.17
T5 30 5 0.17
T6 26 18 0.69
T7 24 12 0.50
T8 22 9 0.41
T9 30 8 0.27
T10 27 5 0.19

A
d

a
p

ti
v

e
In

d
ex

es

T11 35 23 0.66
T12 32 19 0.59
T13 28 18 0.64
T14 33 25 0.76
T15 31 20 0.65
T16 24 13 0.54
T17 21 4 0.19
T18 24 7 0.29
T19 30 7 0.23

Univ
ers

ity
 of

 M
ala

ya

120

T20 26 6 0.23

Figure 6-6 depicts the IHR for static and adaptive indexes when predictor logic is

applied. The bars from T11 to T16 in the adaptive indexes show that the IHR improves

when the indexes are updated according to the changing query workload. The bars from

T17 to T20 are very short, which indicates that the index must be updated again.

Figure 6-6: Index Hit Ratio Results for Static and Adaptive Indexes

6.1.2 Mathematical Modeling Results

The validation of the results from the mathematical modeling of data uploading,

indexing, and query execution modules of SmallClient is presented in this section. The

transitions in the proposed mathematical model are tuned with the timed values and

collected data for uploading time, indexing time, and query execution time.

 Data Upload Time

The data upload time results are collected by using the mathematical model designed

for SmallClient. Data uploading time integrates the time taken by reading each record and

storing these blocks in a distributed file system, as described in Chapter 5 (see Equation

5-21). Data set size also affects block creation and data uploading time. Therefore, 0.065

Univ
ers

ity
 of

 M
ala

ya

121

was set as the data set size factor, which was denoted by 𝑐, 0.00006 for 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 and

3.5 for 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘. The data upload time results are presented in Figure 6-7.

Figure 6-7: Data Upload Time Resuts using Mathematical Model

 Indexing Time

The indexing time results are obtained using the mathematical model when the data

are already uploaded to the file system. Indexing time is composed of time periods to

obtain <key, value> pairs from each record and store an index for a block to the file

system (see Equation 5-14). The values for 𝜇𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙> and 𝜇𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 are set to

0.000006 and 1, respectively. The indexing time results obtained from the mathematical

model are presented in Figure 6-8.

Univ
ers

ity
 of

 M
ala

ya

122

Figure 6-8: Indexing Time Resuts using Mathematical Model

 Search Performance

The query execution time results, which are obtained from the mathematical model,

are used to validate the search performance. The values for 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥, 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦, and

𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 are set to 0.004, 0.000000002, and 0.0015, respectively, to collect the query

execution time results from the CPN model using Equation 5-15. The collected results

are presented in Figure 6-9.

Figure 6-9: Query Execution Time Resuts using Mathematical Model

Univ
ers

ity
 of

 M
ala

ya

123

6.2 Verification

The verification of the performance results of SmallClient for all modules, such as data

upload overhead, indexing overhead, and search performance, are presented in this

section. Benchmarking and mathematical modeling are employed to verify the

correctness of the results obtained by executing the experiments.

6.2.1 Benchmarking

The SmallClient results are verified by using benchmarking. Hive and Lucene library

are used for benchmarking, which return the results for full scan and indexed search

environments, respectively.

As shown in Chapter 5 (see Section 5.1), the test bed is designed and Apache Hadoop

four-node cluster is created. Hadoop offers highly efficient distributed task execution and

data management by using MapReduce and HDFS. Apache Hive warehouse is configured

to execute SQL-Like queries, which leverage MapReduce instead of indexes, to

efficiently execute full-scan data search operation in a distributed parallel manner. The

proposed indexing framework outperforms Apache Hive in query execution with a

minimum overhead caused by indexing.

Apache Lucene is used as a benchmark for verification, which offers an indexing

library to achieve high search and data retrieval performance on big data. SmallClient

performs better than Apache Lucene in query execution and reduced indexing overhead.

 Data Upload Overhead

The results obtained from the SmallClient experiments for data uploading time and

data upload size are compared with data uploading time and data size of HDFS. As

defined in Chapter 5, data upload overhead is the percentage of increased activity to

Univ
ers

ity
 of

 M
ala

ya

124

upload data using the block creation module of SmallClient. Therefore, the level of size

and time increase by SmallClient is presented as overhead.

The data upload time overhead and data upload size overhead verification are first

presented. Figure 6-10 shows the data upload time taken by HDFS and SmallClient. The

figure also indicates the data upload time results for i-SmallClient. The bars that present

the data upload time for i-SmallClient are the largest, whereas the bars that indicate the

data upload time for HDFS are the smallest, which indicates that the time taken in data

uploading by i-SmallClient is the highest. However, the data uploading time for

SmallClient is also high.

Figure 6-10: Benchmarking on Data Uploading Time

Figure 6-10 indicates that SmallClient takes more time in data uploading than HDFS.

This time consumption increases with data set size. SmallClient reads the entire data set

line by line, pushes them into blocks, and uploads each block individually. The proposed

data uploading mechanism is explained in Chapter 4. Data uploading is considerably

time-consuming with SmallClient because of the process involved in block creation

activities. The data uploading time by i-SmallClient includes additional time to create

indexes. Therefore, this time consumption is the highest in all platforms.

Univ
ers

ity
 of

 M
ala

ya

125

The data uploading overhead caused by SmallClient depends on two factors: data set

size and number of records. When a data set is larger and the number of records is less,

the data uploading time overhead becomes very low. For instance, the size of the

tabulation area data set is larger than the area landmark data set, whereas the number of

records is less. Therefore, the observed data uploading time overhead of SmallClient for

the tabulation area data set is lower than that of the area landmark data set.

Figure 6-11: Data Upload Time Overhead

The data uploading time overhead results by SmallClient are presented as a line graph

in Figure 6-11. The Primary Roads data set, which is the smallest data set, has the

maximum data upload time overhead. The line in Figure 6-11 gradually decreases for

larger data sets even when the number of records, i.e., area landmark and tabulation area

data sets, gradually increase. However, data uploading overhead is high for data sets with

larger data sets, which are composed of an extensive number of records, i.e., All Edges

Combined (I), All Edges Combined (II), and All Nodes data sets.

Univ
ers

ity
 of

 M
ala

ya

126

Figure 6-12: Benchmarking on Data Size

The data upload size results are also verified. Figure 6-12 presents the data upload size

results obtained from HDFS and SmallClient. The data upload sizes using HDFS and

SmallClient are almost the same. The downward diagonal bars indicate the size of

uploaded data using HDFS, whereas the closed dotted bars show the data size results for

SmallClient. Figure 6-12 depicts that the difference between the sizes of uploaded data

using HDFS and SmallClient is negligible.

Figure 6-13: Data Upload Size Overhead

The data upload size overhead is presented in Figure 6-13. The points on the line that

start in the X-axis for large data sets show that the data upload size overhead decreases

and approaches zero for large data sets. The results indicate that data size overhead for

Univ
ers

ity
 of

 M
ala

ya

127

primary roads is high at 66.02%. However, for large-volume data sets, the size of

uploaded data using SmallClient is almost similar to the size of uploaded data using

HDFS. This result verifies that the SmallClient data uploading module is efficient for

large data sets and the size overhead of uploaded data is less than 1%.

The data uploading overhead for both data uploading time and data upload size

presented in this section show that SmallClient affects the size and uploading time of data.

The overhead of the data upload size using SmallClient is very low for large data sets.

However, the data uploading time depends on the size of a data set and the number of

records. Therefore, the data uploading time varies with the size and number of records.

 Indexing Overhead

The indexing results of the proposed SmallClient are compared with the Lucene

indexes, which are created using well-known Apache Lucene indexing library for big

data. Apache Lucene, which is a widely adopted library for big data indexing and other

search operations, creates indexes while loading data sets in the main memory. As

explained in Chapter 3, the Lucene results are out-of-memory error when the data set is

larger than the available main memory (see Table 3-2). Therefore, Lucene fails to create

indexes for All Edges Combined (I), All Edges Combined (II), All Edges Combined (III),

and All Nodes and Road Network data sets. However, SmallClient outperforms Lucene

and results in low index creation overhead. Univ
ers

ity
 of

 M
ala

ya

128

Figure 6-14: Indexing Time Comparison for up to five indexes when created

using Lucene vs SmallClient

The index creation time and index size overhead of SmallClient are presented and

compared with the results of the Apache Lucene indexes. Figure 6-14 shows the index

creation time results for Lucene and SmallClient. The figure indicates that the indexing

time of SmallClient is lower than that of Lucene. The indexing time results are verified

for up to five indexes, which indicate that SmallClient performed better.

Figure 6-14 shows that Lucene could not create indexes for large data sets and returned

out of main memory error. However, SmallClient solves this problem by considering

small manageable data blocks instead of the entire data set in index creation. The results

prove that Lucence takes more time to create indexes regardless of data set size or other

features of a data set. Univ
ers

ity
 of

 M
ala

ya

129

Figure 6-15: Indexing Time Results using Lucene, SmallCLient and I-

SmallClient

The index time results when five indexes are created using Lucene, SmallClient, and

i-SmallClient are presented in Figure 6-15. The downward diagonal bars show the

indexing time for Lucene, the near dotted bars denote the indexing time taken by

SmallClient, and the dotted bars indicate the indexing time results for i-SmallClient. The

time taken by Lucene to create five indexes is the highest for each data set. The indexing

time by i-SmallClient is the least among all the indexing methods for all data sets. This

result indicates that creating indexes in parallel to data uploading is more beneficial to

users. Moreover, creating indexes any time with changing query workload using

SmallClient is still better than utilizing Lucene.

The indexing time overhead shows additional delay because of indexing to start query

execution. The indexing time overhead SmallClient is lower than that of Lucene. The

indexing time overhead results are presented in Figure 6-16.

Univ
ers

ity
 of

 M
ala

ya

130

Figure 6-16: Indexing Time Overhead Results

Figure 6-16 shows that SmallClient has lower indexing time overhead than that of

Lucene, which proves that SmallClient minimizes indexing time overhead. The lowest

indexing time overhead of i-SmallClient indicates that indexes should be created parallel

to data uploading.

Queries experience more than 40% delay when these queries are executed after Lucene

index creation, whereas this delay is reduced to 14%–32% when SmallClient indexing is

applied. However, i-SmallClient further reduced indexing overhead to 6%–32%. Figure

6-16 shows the improved results of SmallClient in indexing time overhead.

The index size performance of SmallClient improves for large data sets. Its index size

in creating up to five indexes is lower than Lucene indexes. The index size results of

SmallClient and Lucene are presented in Figure 6-17.
Univ

ers
ity

 of
 M

ala
ya

131

Figure 6-17: Index Size Results using Lucene and SmallCLient

Figure 6-17 presents a comparison of the index size results of SmallClient and Lucene.

The downward diagonal bars show the index size results for Lucene, and the near dotted

bars present the index size results for SmallClient. Index size is proven to be lower with

SmallClient than with Lucene for large data sets, i.e., area hydrography and linear

hydrography data sets. SmallClient performs well, and its indexes require lesser space for

large data sets than that of Lucene indexes.

The index size overhead for five indexes over data size using Lucene and SmallClient

is presented in Figure 6-18. The results show that the index size overhead using

SmallClient decreases for large data sets. SmallClient exhibits better index size overhead

performance when the indexes are created for large data sets and the index size overhead

is up to 41%.

Univ
ers

ity
 of

 M
ala

ya

132

Figure 6-18: Index Size Overhead Results

The results in Figure 6-18 show that the index size overhead using SmallClient is

higher than that of Lucene for small data sets, such as primary roads and area landmarks.

However, the index size overhead using SmallClient for other large data sets decreases,

which indicates that SmallClient exhibits better index size performance for large data sets.

 Search Performance

Apache Lucene indexes are used for indexed search comparison, and Hive is used for

full-scan comparison. Up to five indexes are generated instead of creating indexes on all

attributes of a data set.

Lucene does not allow access to the entire record through query. However, only these

attributes can be retrieved using Lucene indexes for which indexes are available.

Therefore, the query execution time results for the entire record retrieval are not available

using Lucene. Moreover, query execution time results are not available for data sets where

Lucene failed to create indexes.

SmallClient outperforms Lucene and overcomes this limitation. Therefore, the entire

records can be accessed and retrieved from a data set composed of indexed and/or non-

indexed attributes by using SmallClient.

Univ
ers

ity
 of

 M
ala

ya

133

Figure 6-19: Query Execution Time Comparison between full scan, Lucene and

SmallClient

Figure 6-19 presents the query execution time results by using full scan, Lucene

indexes, and SmallClient indexes. The results show that the speed query execution

improves with indexes. Full scan requires a longer time than indexes. The query execution

performance of SmallClient is better than that of Lucene indexes. Figure 6-19 also

indicates that query execution time increases at a higher rate with data set size than that

of Lucene and SmallClient Indexes.

Figure 6-20: Search Performance results using SmallClient and Lucene

The search performance results using Lucene and SmallClient are presented in Figure

6-20. The search performance results indicate that search performance improves using

Univ
ers

ity
 of

 M
ala

ya

134

SmallClient. The search performance of SmallClient is more than 92% for all data sets

except for All Edges Combined (I) and All Edges Combined (II) data sets because of the

large indexes of these data sets.

6.2.2 Mathematical Modeling

The experimental results of SmallClient are verified by using mathematical modeling.

The experimental data for data upload time, indexing time, and query execution time are

compared with the data collected using the mathematical model to verify the correctness

of these results.

Petri nets mathematical modeling language was used to develop the mathematical

model for the proposed SmallClient framework by using CPN tools. CPN tools leverage

their built-in discrete-event modeling language and Standard ML. The data are obtained

from the mathematical model, and the comparison of the results from the experiment and

mathematical model verifies the performance of the proposed framework.

 Data Upload Overhead

The data upload time results obtained for the data upload overhead from the

experiments are compared with results for the same parameter from the mathematical

model. The comparison is described in Figure 6-21. The dotted bars show the data upload

time results from the experiment, whereas the line indicates the validation results, which

are obtained using the mathematical model.
Univ

ers
ity

 of
 M

ala
ya

135

Figure 6-21: Data Upload Time Mathematical Verification

Figure 6-21 shows that both the experiments and mathematical model produced almost

the same results for all data sets except the All Nodes data set, which verifies the accuracy

of data upload time using SmallClient in the performance evaluation. The points of lines

touching the top of the bar verify the results.

 Indexing Overhead

The indexing time taken by SmallClient is considered in verifying the indexing

overhead results when SmallClient is executed using the experiments and the

mathematical model. The indexing time comparison results are presented in Figure 6-22.

Univ
ers

ity
 of

 M
ala

ya

136

Figure 6-22: Indexing Time Mathematical Verification

The bars in Figure 6-22 indicate the indexing time for each data set obtained from the

experimental model, whereas the line shows the results from the mathematical model.

The points in the line slightly touch the top of the relevant bars for each data set, which

shows that the results exhibit minor differences and verifies the results for indexing time.

 Search Performance

The query execution time results are selected to verify the search performance results

from the experiments and the mathematical model. Figure 6-23 presents the verification

results for query execution time.

Figure 6-23:s Query Execution Time Mathematical Verification

The bars in Figure 6-23 indicate the experiment results for query execution, whereas

the line validates these results using the mathematical model. The slight distance between

each line point and the relevant bar top verifies the results for query execution time.

6.3 Conclusion

This chapter presents the evaluation results of the performance of the proposed

SmallClient. The data for data upload overhead, indexing overhead, search performance,

Univ
ers

ity
 of

 M
ala

ya

137

and index hit ratio are obtained and validated. Varying size data sets are used in the

experiment, which shows that SmallClient can create indexes for any data set size.

However, the performance of SmallClient is better for large data sets. The data upload

overhead from SmallClient reduces for large data sets. Indexing overhead in terms of

index creation time and index size is also reduced. Indexing overhead using i-SmallClient

is lower than that using SmallClient.

The verification of search performance results using benchmarking indicates that a

remarkable difference exists between query execution time by full scan (using Hadoop)

and SmallClient when similar queries are submitted. SmallClient performs better than

Apache Lucene indexing, which is considered as a high-performance information

retrieval and search software.

The SmallClient framework is effective in index creation, whereas Apache Lucene

cannot handle large data sets. The Apache Lucene program returns out-of-memory error

for up to 20 GB data sets on the test bed, whereas the proposed indexing mechanism,

SmallClient, efficiently handles the workload and successfully accomplishes the index

creation task.

The verification of SmallClient results by using mathematical modeling also proves

the reliability of SmallClient results. The results for data uploading, indexing, and query

execution time are obtained using the mathematical model of SmallClient. The

comparison of the experimental and mathematical modeling results is presented. The

comparison verified the results and proved the better performance of the proposed

indexing framework.

Univ
ers

ity
 of

 M
ala

ya

138

CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter concludes the research work and highlights future research directions.

The objectives of this thesis are achieved, as described in this chapter. The contributions

are highlighted.

The rest of the chapter is organized as follows: Section 7.1 presents the examination

of the achieved objectives. Section 7.2 highlights the contributions of this study, and

Section 7.3 presents the limitations and future work.

7.1 Fulfillment of Aim and Objectives

The achieved objectives of this thesis are examined in this section. As described in

Chapter 1, the aim of this study was to expedite the data retrieval process against search

queries over big data by proposing a novel indexing framework that introduces both static

and adaptive indexing with minimized indexing overhead and improves data search

performance and index hit ratio. This section describes how the objectives are fulfilled in

this study.

7.1.1 Investigating the capability of existing indexing techniques to address the

challenges of big data to establish potential research problem

The indexing techniques for traditional data, which are presented in credible

publications, are reviewed to fulfill this objective. The indexing requirements for big data

are identified as the “six Vs” (volume, velocity, variety, veracity, variability, and value)

and complexity. The performance of contemporary indexing implementation on big data

under the clustered and non-clustered categories is reviewed (see Chapter 2). The problem

of this thesis is established by analyzing the performance of the Apache Lucene indexing

library, which implements the non-clustered indexing approach on big data (see Chapter

3).

Univ
ers

ity
 of

 M
ala

ya

139

The clustered indexing approach allows a number of indexes up to available data

replicas. To create more indexes, clustered indexing requires more replicas of an entire

data set or several blocks, which increase the storage overhead for big data. Lucene

indexes are non-clustered. However, indexing overhead in terms of index size and

indexing time is moderately high.

7.1.2 Designing and implementing an indexing framework using non-clustered

indexing structure incorporated with predictor function for adaptive index

updating, which ensures the following:

 Minimized indexing overhead in terms of index creation or updating time

and the space consumed by indexes (index size) for large-volume data;

 Reduced data retrieval time with faster query execution and data search

performance; and

 Maximum index hit ratio by predicting the future workload of incoming

search queries

This objective is achieved by proposing a novel indexing framework for big data called

SmallClient, which implements the non-clustered indexing approach and allows indexes

to be created either statically at the time of data uploading or any time when users realize

changing query workload and invoke adaptive index updating. SmallClient also

introduces predictor function, which automatically predicts incoming query workload and

updates available indexes (see Chapter 4).

SmallClient is an indexing solution for big data with minimized indexing overhead

and improved query execution and data search performance. The adaptability of

SmallClient to changing query workload functionality keeps available indexes up-to-date.

Thus, the maximum index hit ratio is achieved.

Univ
ers

ity
 of

 M
ala

ya

140

7.1.3 Evaluating the effectiveness of proposed indexing framework with respect to

overhead resulted by static and adaptive indexing, query execution and data

retrieval time, and index hit ratio

The test bed is designed to validate the performance of SmallClient. Varying data set

sizes are used to execute the experiment. Data for data upload overhead, indexing

overhead, search performance, and index hit ratio are collected. The obtained data from

the experiment on varying size data sets proves the adaptability of SmallClient on big

data.

The results proved that SmallClient can fulfil the indexing and data search

requirements of data sets of any size. However, the performance of SmallClient is better

for large data sets. The data upload overhead results from SmallClient reduces for large

data sets. Indexing overhead in terms of index creation time and index size is also reduced.

The indexing overhead using i-SmallClient is lower than that using SmallClient.

7.1.4 Verifying the results of proposed indexing framework using benchmarking

and mathematical modeling

The results of experiments are verified by using benchmarking and mathematical

modeling. The full scan of Apache Hive and indexed search of Apache Lucene are used

for benchmarking. The results for data upload overhead, indexing overhead, and search

performance, which are obtained from the experiments on SmallClient, are compared

with the results of Apache Hive and Apache Lucene for the same parameters. The

comparison showed that SmallClient outperformed existing methods and exhibited

improved search performance with reduced indexing overhead.

Mathematical modeling was also utilized to verify the experiment results of

SmallClient. Petri nets are leveraged to design the mathematical model for SmallClient.

Data uploading time, indexing time, and query execution time are obtained. The

Univ
ers

ity
 of

 M
ala

ya

141

experiment results are compared with the mathematical model results, which prove that

SmallClient perform similarly in both environments.

7.2 Research Contributions

The contributions of this study to the body of knowledge are as follows:

7.2.1 Taxonomy of State-of-the-Art Indexing Techniques

The taxonomy of indexing techniques was devised, and recent indexing techniques are

categorized into NAI, AI, and CAI indexing techniques. Recent indexing contributions

from highly cited recent articles of credible journals are reviewed. The taxonomy was

created by analyzing each indexing technique. This taxonomy is presented in Chapter 2,

which is published (Gani et al., 2015) as a survey on indexing techniques for big data.

7.2.2 SmallClient: a novel indexing framework for big data

A novel indexing framework for big data is proposed, which is called SmallClient.

SmallClient implements non-clustered indexing and offers both static and adaptive

indexing mechanisms (see Chapter 4). Static indexes are created based on a user-provided

list of index attributes regardless of the number of indexes needed at the time of data

uploading. Indexing overhead for SmallClient is lower than that of the existing indexing

library for big data. Users can invoke index updating, i.e., create new indexes and/or

delete available indexes whenever the query workload changes.

The predictor logic is also introduced by SmallClient to adaptively update indexes with

changing query workload. Thus, the maximized index hit ratio which was an objective of

this study, is obtained. Index maintenance implements a non-clustered approach. Query

execution time is improved unlike that of existing full scan and indexed search

techniques.

Univ
ers

ity
 of

 M
ala

ya

142

7.2.3 Algorithmic Design for SmallClient

Algorithms are designed for block creation, index creation, and query execution

modules for the proposed indexing framework. The step-by-step procedures involved in

each module are presented. The algorithm for block creation takes the local disk location

of data and its schema as input and shows the process of creating and uploading blocks.

Index creation has two algorithms to accomplish the process: the first algorithm

presents the pre-index creation steps, such as verifying the provided list of index attributes

and obtaining the location of each index attribute from data set schema. The second

algorithm for index creation presents the activities of index creation. The algorithm for

query execution takes query as input, verifies the elements of queries, and defines data

search and retrieval operations.

7.2.4 Java Class Library for SmallClient7

The Java code for SmallClient indexing framework is developed by using Eclipse IDE.

Java IO, util and text packages, and Apache Hadoop FileSystem, conf and hdfs packages

are imported to implement procedures. The executable client offers block creation (see

Appendix A), index creation (see Appendix B), query execution (see Appendix C), and

predictor execution (see Appendix D) services. Users invoke various methods with input

parameters to obtain the required outputs.

Users invoke block creation by specifying data and their schema source and destination

location to upload data to HDFS. Users can also specify index attributes at this stage to

invoke index creation in parallel to block creation. Users invoke query execution with

query parameters to obtain data. The predictor method does not need any information

7 The library is publically available on following link:

https://github.com/aasiddiqa/smallclient

Univ
ers

ity
 of

 M
ala

ya

https://github.com/aasiddiqa/smallclient
https://github.com/aasiddiqa/smallclient

143

except the data set location form of users and automatically invokes index creation and

index deletion methods. All the methods are well-written and easy to use. Users do not

need Java proficiency to apply the solution for big-data analysis.

7.2.5 Mathematical Model of SmallClient

Another contribution of this study is the mathematical model for the indexing

framework. Petri net mathematical modeling language was used to develop the

SmallClient model. The model provides a clear visualization of the process flow for

SmallClient. The required time to perform block creation, index creation, and query

execution is calculated by specifying the required parameters. Block creation and index

creation time estimation requires data set size, the number of records in a data set, and

block size. Query execution time estimation requires index size.

7.3 Limitations and Future Work

Automatic index updating is limited to time setting in the current study. Real-time

index updating is disregarded. However, the periodic execution of predictor logic is

considered to automatically update indexes. The time setting for a frequently queried

system is 10 minutes. After the elapsed time setting, the predictor logic is invoked to

update indexes.

Triggered index updating by each incoming query is required in future research to

improve index hit performance. A novel predictor logic is proposed to automatically

update indexes while periodically predicting future query workload based on incoming

query trends.

User-provided metadata is also a limitation of the current study. Users provide schema

and metadata for data sets. Input metadata are considered to obtain knowledge on the

attributes of a data set. The current work is limited to user-provided metadata. However,

Univ
ers

ity
 of

 M
ala

ya

144

a data set may exhibit features other than those defined in the metadata. Users may have

data retrieval requirements, which differ from metadata that are available with data sets.

Automatic generation of metadata and provision of multi-schema for various kinds of

data sets, such as images, videos, and audio files, are required to induce intelligence in

the framework, which may increase the search options and improve the performance of

the data retrieval system. Metadata generation is facilitated when the set of properties for

a data set increases and more indexes exist for data retrieval.

The predictor logic of SmallClient depends on the derivation of the average access rate

for an attribute to make index updating decisions. The average access rate for an attribute

is calculated from queries that are executed in 𝑛 time slots. The average access rate of

indexed attributes is used to delete or keep the indexes. In the case of non-indexed

attributes, the average access rate is utilized to create new indexes. The exploitation of

machine learning methods is required to automatically learn the workload for indexes and

to improve the performance of the predictor logic.

SmallClient traverses the entire index for repetitive queries as many times as they are

submitted. SmallClient offers query log service to retain information of submitted

queries. However, the results of pre-executed queries, i.e., locations of records requested

by queries, are unavailable. Therefore, SmallClient repeats index traversal with the

submission of queries. Query result caching is required to avoid index traversal for

repetitive queries. The cache can return requested data locations with less time than index

traversal time.

Univ
ers

ity
 of

 M
ala

ya

145

REFERENCES

Ali, S. T., Sivaraman, V., & Ostry, D. (2013). Authentication of lossy data in body-sensor
networks for cloud-based healthcare monitoring. Future Generation Computer Systems,
35(0), 80-90. doi:http://dx.doi.org/10.1016/j.future.2013.09.007

Barbierato, E., Gribaudo, M., & Iacono, M. (2014). Performance evaluation of NoSQL
big-data applications using multi-formalism models. Future Generation Computer
Systems, 37(0), 345-353. doi:http://dx.doi.org/10.1016/j.future.2013.12.036

Białecki, A., Muir, R., & Ingersoll, G. (2012). Apache lucene 4. Paper presented at the
SIGIR 2012 workshop on open source information retrieval: 17-24.

Bordogna, G., Pagani, M., & Pasi, G. (2006). A dynamic hierarchical fuzzy clustering
algorithm for information filtering Soft Computing in Web Information Retrieval (Vol.
197, pp. 3-23): Springer.

Bouadjenek, M. R., Hacid, H., & Bouzeghoub, M. (2013). LAICOS: an open source
platform for personalized social web search. Paper presented at the Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining.

Cambazoglu, B. B., Kayaaslan, E., Jonassen, S., & Aykanat, C. (2013). A term-based
inverted index partitioning model for efficient distributed query processing. ACM Trans.
Web, 7(3), 1-23. doi:10.1145/2516633.2516637

Chakrabarti, S., Pathak, A., & Gupta, M. (2011). Index design and query processing for
graph conductance search. The VLDB Journal, 20(3), 445-470. doi:10.1007/s00778-010-
0204-8

Chaudhuri, S., Datar, M., & Narasayya, V. (2004). Index selection for databases: A
hardness study and a principled heuristic solution. Knowledge and Data Engineering,
IEEE Transactions on, 16(11), 1313-1323.

Chen-Yu, C., Ta-Cheng, W., Jhing-Fa, W., & Li Pang, S. (2009, 19-24 April 2009). SVM-
based state transition framework for dynamical human behavior identification. Paper
presented at the Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on:1933-1936.

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., & Zhou, X. (2013). Big data challenge:
a data management perspective. Frontiers of Computer Science, 7(2), 157-164.
doi:10.1007/s11704-013-3903-7

Cheng, J., Ke, Y., Fu, A. W.-C., & Yu, J. X. (2011). Fast graph query processing with a
low-cost index. The VLDB Journal, 20(4), 521-539.

Chu, W. W., Liu, Z., Mao, W., & Zou, Q. (2005). A knowledge-based approach for
retrieving scenario-specific medical text documents. Control Engineering Practice,
13(9), 1105-1121. doi:http://dx.doi.org/10.1016/j.conengprac.2004.12.011

Comer, D. (1979). Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2), 121-137.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.future.2013.09.007
http://dx.doi.org/10.1016/j.future.2013.12.036
http://dx.doi.org/10.1016/j.conengprac.2004.12.011

146

Cuggia, M., Mougin, F., & Beux, P. L. (2005). Indexing method of digital audiovisual
medical resources with semantic Web integration. International Journal of Medical
Informatics, 74(2–4), 169-177. doi:http://dx.doi.org/10.1016/j.ijmedinf.2004.04.027

Dieng-Kuntz, R., Minier, D., Růžička, M., Corby, F., Corby, O., & Alamarguy, L. (2006).
Building and using a medical ontology for knowledge management and cooperative work
in a health care network. Computers in Biology and Medicine, 36(7–8), 871-892.
doi:http://dx.doi.org/10.1016/j.compbiomed.2005.04.015

Dittrich, J., Blunschi, L., & Vaz Salles, M. (2011). MOVIES: indexing moving objects
by shooting index images. GeoInformatica, 15(4), 727-767. doi:10.1007/s10707-011-
0122-y

Dittrich, J., Quian, J.-A., Quiané-Ruiz, Richter, S., Schuh, S., Jindal, A., & Schad, J.
(2012). Only aggressive elephants are fast elephants. Proc. VLDB Endow., 5(11), 1591-
1602. doi:10.14778/2350229.2350272

Dittrich, J., Quiané-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., & Schad, J. (2010).
Hadoop++: making a yellow elephant run like a cheetah (without it even noticing).
Proceedings of the VLDB Endowment, 3(1-2), 515-529.

Done, B., Khatri, P., Done, A., & Draghici, S. (2010). Predicting novel human gene
ontology annotations using semantic analysis. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 7(1), 91-99.

Eldawy, A., & Mokbel, M. F. (2015). Spatial Hadoop: A MapReduce Framework for
Spatial Data. Paper presented at the 2015 IEEE 31st International Conference on Data
Engineering.

Elleuch, N., Zarka, M., Ammar, A. B., & Alimi, A. M. (2011). A fuzzy ontology: based
framework for reasoning in visual video content analysis and indexing. Paper presented
at the Proceedings of the Eleventh International Workshop on Multimedia Data Mining,
San Diego, California.

Ferragina, P., & Venturini, R. (2010). The compressed permuterm index. ACM Trans.
Algorithms, 7(1), 1-21. doi:10.1145/1868237.1868248

Gacto, M. J., Alcala, R., & Herrera, F. (2010). Integration of an Index to Preserve the
Semantic Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning
of Linguistic Fuzzy Systems. Fuzzy Systems, IEEE Transactions on, 18(3), 515-531.
doi:10.1109/TFUZZ.2010.2041008

Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2015). A survey on indexing
techniques for big data: taxonomy and performance evaluation. Knowledge and
Information Systems, 46(2), 1-44. doi:10.1007/s10115-015-0830-y

Gospodnetic, O., & Hatcher, E. (2005). Lucene: Manning:1-421.

Halim, F., Idreos, S., Karras, P., & Yap, R. H. (2012). Stochastic Database Cracking:
towards robust adaptive indexing in main-memory column-stores. Proceedings of the
VLDB Endowment, 5(6), 502-513

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.ijmedinf.2004.04.027
http://dx.doi.org/10.1016/j.compbiomed.2005.04.015

147

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015).
The rise of “big data” on cloud computing: Review and open research issues. Information
Systems, 47, 98-115.

Hsu, W., Lee, M. L., Ooi, B. C., Mohanty, P. K., Teo, K. L., & Xia, C. (2002). Advanced
database technologies in a diabetic healthcare system. Paper presented at the Proceedings
of the 28th international conference on Very Large Data Bases, Hong Kong, China.

Huang, Z., Lu, X., Duan, H., & Zhao, C. (2012). Collaboration-based medical knowledge
recommendation. Artificial Intelligence in Medicine, 55(1), 13-24.

Idreos, S., Alagiannis, I., Johnson, R., & Ailamaki, A. (2011). Here are my Data Files.
Here are my Queries. Where are my Results? Paper presented at the Proceedings of 5th
Biennial Conference on Innovative Data Systems Research, No. EPFL-CONF-161489.

Jayaraman, U., Prakash, S., & Gupta, P. (2013). Use of geometric features of principal
components for indexing a biometric database. Mathematical and Computer Modelling,
58(1–2), 147-164. doi:http://dx.doi.org/10.1016/j.mcm.2012.06.005

Jensen, K., Kristensen, L. M., & Wells, L. (2007). Coloured Petri Nets and CPN Tools
for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.,
9(3), 213-254. doi:10.1007/s10009-007-0038-x

Jindal, A., Quiané-Ruiz, J.-A., & Dittrich, J. (2011). Trojan data layouts: right shoes for
a running elephant. Paper presented at the Proceedings of the 2nd ACM Symposium on
Cloud Computing.

Kadiyala, S., & Shiri, N. (2008). A compact multi-resolution index for variable length
queries in time series databases. Knowledge and Information Systems, 15(2), 131-147.

Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, 7-10 Jan. 2013). Big Data:
Issues and Challenges Moving Forward. Paper presented at the System Sciences
(HICSS), 2013 46th Hawaii International Conference on.

Katal, A., Wazid, M., & Goudar, R. H. (2013, 8-10 Aug. 2013). Big data: Issues,
challenges, tools and Good practices. Paper presented at the Contemporary Computing
(IC3), 2013 Sixth International Conference on: 404-409.

Kaushik, V. D., Umarani, J., Gupta, A. K., Gupta, A. K., & Gupta, P. (2013). An efficient
indexing scheme for face database using modified geometric hashing. Neurocomputing,
116(0), 208-221. doi:http://dx.doi.org/10.1016/j.neucom.2011.12.056

Kelley, J., Stewart, C., Morris, N., Tiwari, D., He, Y., & Elnikety, S. (2015). Measuring
and managing answer quality for online data-intensive services. Paper presented at the
Autonomic Computing (ICAC), 2015 IEEE International Conference on.

Komkhao, M., Lu, J., Li, Z., & Halang, W. A. (2013). Incremental collaborative filtering
based on Mahalanobis distance and fuzzy membership for recommender systems.
International Journal of General Systems, 42(1), 41-66.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.mcm.2012.06.005
http://dx.doi.org/10.1016/j.neucom.2011.12.056

148

Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience
and acquisition intention of big data analytics. International Journal of Information
Management, 34(3), 387-394.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2013). Big data,
analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21-
32.

Lazaridis, M., Axenopoulos, A., Rafailidis, D., & Daras, P. (2013). Multimedia search
and retrieval using multimodal annotation propagation and indexing techniques. Signal
Processing: Image Communication, 28(4), 351-367.
doi:http://dx.doi.org/10.1016/j.image.2012.04.001

Leung, C. H. C., & Chan, W. S. (2010). Semantic Music Information Retrieval Using
Collaborative Indexing and Filtering. In E. Gelenbe, R. Lent, G. Sakellari, A. Sacan, H.
Toroslu, & A. Yazici (Eds.), Computer and Information Sciences (Vol. 62, pp. 345-350):
Springer Netherlands.

Li, F., Hadjieleftheriou, M., Kollios, G., & Reyzin, L. (2010). Authenticated Index
Structures for Aggregation Queries. ACM Trans. Inf. Syst. Secur., 13(4), 1-35.
doi:10.1145/1880022.1880026

Li, F., Yi, K., & Le, W. (2010). Top-k queries on temporal data. The VLDB Journal—The
International Journal on Very Large Data Bases, 19(5), 715-733.

Li, G., Feng, J., Zhou, X., & Wang, J. (2011). Providing built-in keyword search
capabilities in RDBMS. The VLDB Journal, 20(1), 1-19.

MacNicol, R., & French, B. (2004). Sybase IQ multiplex - designed for analytics. Paper
presented at the Proceedings of the Thirtieth international conference on Very large data
bases - Volume 30, Toronto, Canada.

Maier, M., Rattigan, M., & Jensen, D. (2011). Indexing network structure with shortest-
path trees. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(3), 15.

Mehrotra, H., Majhi, B., & Gupta, P. (2010). Robust iris indexing scheme using geometric
hashing of SIFT keypoints. Journal of Network and Computer Applications, 33(3), 300-
313. doi:http://dx.doi.org/10.1016/j.jnca.2009.12.005

Ongenae, F., Claeys, M., Dupont, T., Kerckhove, W., Verhoeve, P., Dhaene, T., & De
Turck, F. (2013). A probabilistic ontology-based platform for self-learning context-aware
healthcare applications. Expert Systems with Applications, 40(18), 7629-7646.
doi:http://dx.doi.org/10.1016/j.eswa.2013.07.038

Paul, A., Chen, B.-W., Bharanitharan, K., & Wang, J.-F. (2013). Video search and
indexing with reinforcement agent for interactive multimedia services. ACM Trans.
Embed. Comput. Syst., 12(2), 1-16. doi:10.1145/2423636.2423643

Philip Chen, C., & Zhang, C.-Y. (2014). Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.image.2012.04.001
http://dx.doi.org/10.1016/j.jnca.2009.12.005
http://dx.doi.org/10.1016/j.eswa.2013.07.038

149

Phuvipadawat, S., & Murata, T. (2010, Aug. 31 2010-Sept. 3 2010). Breaking News
Detection and Tracking in Twitter. Paper presented at the Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on: 120-
123.

Qian, X., Tagare, H. D., Fulbright, R. K., Long, R., & Antani, S. (2010). Optimal
embedding for shape indexing in medical image databases. Medical Image Analysis,
14(3), 243-254. doi:http://dx.doi.org/10.1016/j.media.2010.01.001

Raghavendra, S., Mara, G., Buyya, R., Rajuk, V. K., Iyengar, S., & Patnaik, L. (2016).
DRSIG: Domain and Range Specific Index Generation for Encrypted Cloud Data. Paper
presented at the Computational Techniques in Information and Communication
Technologies (ICCTICT), 2016 International Conference on.

Richter, S., Quiané-Ruiz, J.-A., Schuh, S., & Dittrich, J. (2012). Towards zero-overhead
adaptive indexing in Hadoop. arXiv preprint arXiv:1212.3480.

Richter, S., Quiané-Ruiz, J.-A., Schuh, S., & Dittrich, J. (2014). Towards zero-overhead
static and adaptive indexing in Hadoop. The VLDB Journal, 23(3), 469-494.
doi:10.1007/s00778-013-0332-z

Rodríguez-García, M. Á., Valencia-García, R., García-Sánchez, F., & Samper-Zapater, J.
J. (2013). Creating a semantically-enhanced cloud services environment through
ontology evolution. Future Generation Computer Systems, 32(0), 295-306.
doi:http://dx.doi.org/10.1016/j.future.2013.08.003

Russo, L. M., Navarro, G., & Oliveira, A. L. (2008). Fully-compressed suffix trees LATIN
2008: Theoretical Informatics (pp. 362-373): Springer.

Sandu Popa, I., Zeitouni, K., Oria, V., Barth, D., & Vial, S. (2011). Indexing in-network
trajectory flows. The VLDB Journal—The International Journal on Very Large Data
Bases, 20(5), 643-669.

Schuh, S., & Dittrich, J. (2015, 13-17 April 2015). AIR: Adaptive Index Replacement in
Hadoop. Paper presented at the Data Engineering Workshops (ICDEW), 2015 31st IEEE
International Conference on: 22-29.

Shang, L., Yang, L., Wang, F., Chan, K.-P., & Hua, X.-S. (2010). Real-time large scale
near-duplicate web video retrieval. Paper presented at the Proceedings of the
international conference on Multimedia.

Siddiqa, A., Karim, A., & Gani, A. (2016). Big data storage technologies: a survey.
Frontiers of Information Technology & Electronic Engineering, 1.

Siddiqa, A., TargioHashem, I. A., Yaqoob, I., Marjani, M., Shamshirband, S., Gani, A.,
& Nasaruddin, F. (2016). A Survey of Big Data Management: Taxonomy and State-of-
the-Art. Journal of Network and Computer Applications.

Sinha, R. R., & Winslett, M. (2007). Multi-resolution bitmap indexes for scientific data.
ACM Trans. Database Syst., 32(3), 16. doi:10.1145/1272743.1272746

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.media.2010.01.001
http://dx.doi.org/10.1016/j.future.2013.08.003

150

Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., & Alem, L. (2013). A platform for
secure monitoring and sharing of generic health data in the Cloud. Future Generation
Computer Systems, 35(0), 102-113. doi:http://dx.doi.org/10.1016/j.future.2013.09.011

van der Spek, P., & Klusener, S. (2011). Applying a dynamic threshold to improve cluster
detection of LSI. Science of Computer Programming, 76(12), 1261-1274.
doi:http://dx.doi.org/10.1016/j.scico.2010.12.004

Wai-Tat, F. (2012). Collaborative Indexing and Knowledge Exploration: A Social
Learning Model. IEEE Intelligent Systems, 27, 39-46.

Wang, C.-H., Jiau, H. C., Chung, P.-C., Ssu, K.-F., Yang, T.-L., & Tsai, F.-J. (2010). A
novel indexing architecture for the provision of smart playback functions in collaborative
telemedicine applications. Computers in Biology and Medicine, 40(2), 138-148.

Wang, J., Wu, S., Gao, H., Li, J., & Ooi, B. C. (2010). Indexing multi-dimensional data
in a cloud system. Paper presented at the Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data.

Wang, M., Holub, V., Murphy, J., & O’Sullivan, P. (2013). High volumes of event stream
indexing and efficient multi-keyword searching for cloud monitoring. Future Generation
Computer Systems, 29(8), 1943-1962.

Wang, X., Luo, X., & Liu, H. (2014). Measuring the veracity of web event via uncertainty.
Journal of Systems and Software(0), 1-11. doi:http://dx.doi.org/10.1016/j.jss.2014.07.023

Wang, Y. (2008). On contemporary denotational mathematics for computational
intelligence Transactions on computational science II (pp. 6-29): Springer, 5150.

Wei, L.-Y., Hsu, Y.-T., Peng, W.-C., & Lee, W.-C. (2013). Indexing spatial data in cloud
data managements. Pervasive and Mobile Computing, 15(0), 48-61.
doi:http://dx.doi.org/10.1016/j.pmcj.2013.07.001

Weng, M.-F., & Chuang, Y.-Y. (2012). Collaborative video reindexing via matrix
factorization. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMCCAP), 8(2), 23.

Wu, D., Cong, G., & Jensen, C. S. (2012). A framework for efficient spatial web object
retrieval. The VLDB Journal—The International Journal on Very Large Data Bases,
21(6), 797-822.

Wu, K., Shoshani, A., & Stockinger, K. (2010). Analyses of multi-level and multi-
component compressed bitmap indexes. ACM Trans. Database Syst., 35(1), 1-52.
doi:10.1145/1670243.1670245

Wu, S., Wang, Z., & Xia, S. (2009). Indexing and retrieval of human motion data by a
hierarchical tree. Paper presented at the Proceedings of the 16th ACM Symposium on
Virtual Reality Software and Technology, Kyoto, Japan.

Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., & Chen, J. (2014).
A spatiotemporal compression based approach for efficient big data processing on Cloud.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.future.2013.09.011
http://dx.doi.org/10.1016/j.scico.2010.12.004
http://dx.doi.org/10.1016/j.jss.2014.07.023
http://dx.doi.org/10.1016/j.pmcj.2013.07.001

151

Journal of Computer and System Sciences, 80(8), 1563-1583.
doi:http://dx.doi.org/10.1016/j.jcss.2014.04.022

Yeh, S.-C., Su, M.-Y., Chen, H.-H., & Lin, C.-Y. (2013). An efficient and secure
approach for a cloud collaborative editing. Journal of Network and Computer
Applications, 36(6), 1632-1641. doi:http://dx.doi.org/10.1016/j.jnca.2013.05.012

Yıldırım, H., Chaoji, V., & Zaki, M. (2012). GRAIL: a scalable index for reachability
queries in very large graphs. The VLDB Journal, 21(4), 509-534. doi:10.1007/s00778-
011-0256-4

Yuan, D., & Mitra, P. (2013). Lindex: a lattice-based index for graph databases. The
VLDB Journal, 22(2), 229-252. doi:10.1007/s00778-012-0284-8

Zhang, P., Zhou, C., Wang, P., Gao, B. J., Zhu, X., & Guo, L. (2015). E-tree: An efficient
indexing structure for ensemble models on data streams. IEEE Transactions on
Knowledge and Data Engineering, 27(2), 461-474.

Zhu, X., Huang, Z., Cheng, H., Cui, J., & Shen, H. T. (2013). Sparse hashing for fast
multimedia search. ACM Trans. Inf. Syst., 31(2), 1-24.
doi:http://dx.doi.org/10.1145/2457465.2457469

Zhuang, Y., Jiang, N., Li, Q., Chen, L., & Ju, C. (2015). Progressive Batch Medical Image
Retrieval Processing in Mobile Wireless Networks. ACM Trans. Internet Technol., 15(3),
1-27. doi:10.1145/2783437

Zou, Z., Wang, Y., Cao, K., Qu, T., & Wang, Z. (2013). Semantic overlay network for
large-scale spatial information indexing. Computers & Geosciences, 57(0), 208-217.
doi:http://dx.doi.org/10.1016/j.cageo.2013.04.019

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.jcss.2014.04.022
http://dx.doi.org/10.1016/j.jnca.2013.05.012
http://dx.doi.org/10.1145/2457465.2457469
http://dx.doi.org/10.1016/j.cageo.2013.04.019

186

LIST OF PUBLICATIONS AND PAPERS PRESENTED

All the contributions (see Section objectives) of this thesis were sent for publication to

premier peer-reviewed journals in the field of Computer Science. The following

publications are used in this thesis:

1. Gani, Abdullah, Siddiqa, Aisha, Shamshirband, Shahaboddin, & Hanum, Fariza.
(2015). A survey on indexing techniques for big data: taxonomy and

performance evaluation. Knowledge and Information Systems, 46(2), 1-44. doi:
10.1007/s10115-015-0830-y (Q1 Publication)

2. Siddiqa, Aisha, I.Targio, I.Yaqoob, M.Marjani, S.Shamshirband, A.Gani &
F.Hanum (2016). A Survey of Big Data Management: Taxonomy and State-

of-the-Art. Journal of Network and Computer Applications doi:
http://dx.doi.org/10.1016/j.jnca.2016.04.008 (Q1 Publication)

3. Siddiqa, Aisha, Karim, Ahmad, Gani, Abdullah. (2016). Big data storage

technologies: a survey. Frontiers of Information Technology & Electronic
Engineering (Q3 Publication)

4. Siddiqa, Aisha, Karim, Ahmad, Saba, Tanzila and Chang, Victor (2016). On the

analysis of big data indexing execution strategies. Journal of Intelligent and
Fuzzy Systems (Accepted)

5. Siddiqa, Aisha, Karim, Ahmad and Chang, Victor, SmallClient for Big Data: An

Indexing Framework towards fast Data Retrieval (2016), Cluster Computing
(Q1 Publication)

6. Modelling SmallClient indexing framework for big data analytics

Supercomputing, (Under Review)

7. Big IoT Data Analytics State-of-the-Art and Open Challenges IEEE
Transactions, (Under Review)

8. Greening the Emerging IT Technologies: Techniques and Practices Journal
of Internet Services and Applications, (Under Review)

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.jnca.2016.04.008

