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ABSTRACT 

Big data with exponential growth come in various forms and require efficient data 

processing systems for fast retrieval. The disrupted features that are associated with big 

data have elicited attention from research and industry; the research efforts aim to explore 

viable solutions that can improve data retrieval performance for better insight. Indexing 

has undoubtedly contributed to increased search performance for big data sets; for big 

data indexing, researchers have used many indexing structures such as clustered and non-

clustered. However, because of the continuous increase in data size, contemporary big 

data indexing mechanisms are inadequate to achieve efficiency in query responses. 

Clustered indexing approaches are constrained to number of replicas to offer indexing on 

a sufficient number of attributes, whereas non-clustered indexing implementation incurs 

high indexing overhead. Therefore, existing big data indexing structures are unable to 

achieve the maximum index hit ratio. The aim of this study is to expedite the data retrieval 

process with minimum indexing overhead and maximum index hit ratio against search 

queries for big data by using non-clustered indexing approach. Static indexes are created 

based on a user-provided list of index attributes before starting query execution, which 

are updated adaptively based on changing query workload to obtain an increased index 

hit ratio. We investigate contemporary big data indexing implementation and analyze its 

inefficiency in index creation time and index size. Furthermore, we observe that because 

of the limited number of indexes available with clustered indexing approaches, most 

queries are executed without using indexes. Thus, we propose a novel indexing 

framework for big data, named SmallClient, with minimized indexing overhead, 

improved search performance, and improved index hit ratio. SmallClient leverages B-

Tree indexing structure and uses novel predictor logic for indexing. We collected data for 

indexing overhead (both in terms of indexing time and index size) as well as search 

Univ
ers

ity
 of

 M
ala

ya



iv 

performance and index hit ratio for static and adaptive indexing, respectively, to validate 

the performance of the framework. We use benchmarking and mathematical modeling for 

verification of SmallClient results. The results of indexing time prove that SmallClient 

has decreased indexing time overhead by up to 32% from 47%, taken by the Lucene 

indexing library. Similarly, index size overhead is 41% for large data sets where Lucene 

fails to create indexes. The results also prove that the search performance of SmallClient 

is more than 92% without intervening data uploading cost and that this framework 

achieves improved index hit ratio by adaptively updating indexes. 
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ABSTRAK 

Big data dengan pertumbuhan eksponen datang dalam pelbagai bentuk dan 

memerlukan sistem cekap memproses data untuk capaian cepat. Ciri-ciri disrupted yang 

dikaitkan dengan big data telah elicited perhatian daripada penyelidikan dan industri; 

usaha-usaha penyelidikan ini bertujuan untuk meneroka penyelesaian yang berdaya maju 

yang boleh meningkatkan prestasi pencarian data wawasan yang lebih baik. Indeks tidak 

syak lagi telah menyumbang kepada prestasi meningkat Cari set big data; untuk big data 

Indeks, penyelidik telah menggunakan banyak struktur Indeks seperti berkelompok dan 

bebas berkelompok. Walau bagaimanapun, disebabkan oleh peningkatan berterusan 

dalam saiz data, mekanisme Indeks kontemporari big data adalah tidak mencukupi untuk 

mencapai kecekapan dalam jawapan pertanyaan. Pendekatan pengindeksan Berkelompok 

akan dikekang bilangan replika agar Indeks bilangan mencukupi sifat-sifat, manakala 

pelaksanaan Indeks-Berkelompok akan tinggi Indeks overhed. Oleh yang demikian, 

struktur Indeks big data yang sedia ada tidak dapat mencapai Indeks maksimum 

mencecah nisbah. Kajian ini bertujuan untuk mempercepatkan proses pencarian data 

dengan minimum pengindeksan overhed dan Indeks maksimum mencecah nisbah 

terhadap pertanyaan carian untuk big data dengan menggunakan pendekatan Indeks non-

clustered. Statik Indeks dicipta berdasarkan pengguna-menyediakan senarai atribut 

Indeks sebelum memulakan pelaksanaan pertanyaan, yang akan dikemaskini Kurangkan 

berdasarkan perubahan beban kerja pertanyaan untuk mendapatkan Indeks meningkat 

mencecah nisbah. Kami menyiasat kontemporari big data Indeks pelaksanaan dan 

menganalisis dengan ketidakcekapan dalam Indeks penciptaan masa dan Indeks saiz. 

Tambahan pula, kita Perhatikan bahawa kerana bilangan terhad disediakan Indeks dengan 

pendekatan pengindeksan Berkelompok, kebanyakan pertanyaan dijalankan tanpa 

menggunakan Indeks. Oleh itu, kami mencadangkan rangka pengindeksan novel untuk 

big data, bernama SmallClient, dengan diminimumkan pengindeksan overhead, Cari 
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peningkatan prestasi, dan peningkatan indeks hit nisbah. SmallClient memanfaatkan B-

Tree pengindeksan struktur dan menggunakan novel faktor peramal logik untuk 

mengindeks. Kami mengumpul data untuk Indeks overhead (baik dari segi indeks masa 

dan Indeks saiz) dan Cari prestasi dan Indeks hit nisbah bagi statik dan mudah suai Indeks, 

masing-masing untuk mengesahkan prestasi rangka kerja. Kami menggunakan tanda aras 

dan model matematik untuk pengesahan keputusan SmallClient. Keputusan indeks masa 

membuktikan bahawa SmallClient telah menurun indeks masa overhed sehingga 32% 

daripada 47%, diambil oleh Lucene pengindeksan Perpustakaan. Begitu juga, Indeks saiz 

overhed adalah 41% bagi set data yang besar di mana Lucene gagal untuk mencipta 

Indeks. Keputusan juga membuktikan bahawa prestasi Cari SmallClient adalah lebih 

daripada 92% tanpa kematangan data naik kos dan bahawa rangka kerja ini mencapai 

peningkatan indeks hit nisbah dengan Kurangkan mengemas kini indeks adaptif. 
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CHAPTER 1: INTRODUCTION  

This chapter provides an overview of the current study. We explain the motivation for 

this thesis on big data indexing and present the research problem that we have addressed 

and investigated. Moreover, we present the aim and objectives of our research; the 

proposed methodology in undertaking the research process is also described in this 

chapter. In addition, we briefly outline the structure of this thesis in this chapter. 

The rest of this chapter is organized as follows: Section 1.1 presents the background 

and motivation of our research. We present the statement of the problem in Section 1.2, 

followed by the research aim and objectives in Section 1.3. The proposed research 

methodology is illustrated in Section 1.4 and the thesis outline is presented in Section 1.5. 

1.1 Research Motivation  

Information technology has become a crucial part of today’s lifestyle. This role has 

resulted in the voluminous amount of structured and non-structured data, which is rapidly 

growing. This type of data is known as big data. Potential contributors of big data 

repositories are healthcare monitoring and diagnosing systems, social networks, e-

science, and e-commerce. Big data management systems are also improving to cope with 

current challenges. However, big data is beyond the capabilities of these systems to fulfill 

its storage, processing, and visualization requirements. Therefore, there is still an urge for 

an efficient technology to handle big data. 

Big data sets have crossed the boundaries of traditional data structures and comprise 

more than mere relational records such as text, audio, images, and videos in 

heterogeneous formats. Given the wider data type coverage and inclusion of every bit 

produced by information sensing systems, this pool of data is estimated to be doubled 
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after every two years. The volume of the digital universe is further projected to grow by 

a factor of 300 and will be up to 40,000 exabytes from 2005 to 2020. 

 

Figure 1-1: Trends of Big Data and Indexing 

Figure 1-1 depicts the shift of big data from traditional data in terms of volume, variety, 

and velocity. The figure chronologically presents the evolution of data management 

systems from Relational Database Management System (RDBMS) to recent NoSQL 

technologies. The figure also shows that during this evolution, a distinct change in volume 

and variety of data must be processed.  

Figure 1-1 also presents the attained performance improvement in data retrieval 

process by current NoSQL technologies through indexing implementation. Although the 

available big data management tools include well-defined standards and procedures, they 

are not capable of handling the challenges of emerging big data. Therefore, the research 

on big data storage and analytics aims to escalate the adaptability of data management 

architectures and operational models for forthcoming big data needs. 

The main concern of big data analytics is to perform efficient search and retrieval 

operations on big data to obtain insights towards generating value. Undoubtedly, 
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immense indexing procedures are available for traditional data retrieval and search 

systems that demonstrate competitive outcomes. However, in the era of big data, terabyte 

to petabyte scale records deteriorate the performance of traditional indexing procedures. 

Moreover, the complexity and velocity associated with big data also hinder their 

performance. Longer execution times and additional storage requirements are the 

immediate consequences of implementing traditional indexing procedure on big data. 

This inadequacy provides a motivation to undertake the research on an acceptable data 

retrieval solution; it encourages designing an improved search mechanism. 

The emergence of new storage technologies to confront the needs of big data also 

reveals the need for quick responses to data search queries. Therefore, efficiency in query 

execution and data retrieval is highly important for faster decision-making. For instance, 

in the field of body sensor networks, the increasing costs of healthcare and ageing of 

population are major subjects that have critical information-retrieval requirements. Thus, 

in distributed and replicated big data storage systems, we conduct this research because 

of the need for fast data processing and timely query responses. 

1.2 Statement of Problem 

Performing fast data search and retrieval operations over big text data for data analytics 

and visualization is a challenging task because millions of records are located in a 

distributed replicated environment. Prevailing big data management systems propose 

numerous indexing mechanisms with the evolution of big data. However, these systems 

do not show satisfactory performance for search queries because indexes are not well-

designed. We explain the limitations of various indexing approaches for big data and 

present the statement of the problem. 

Clustered indexing approaches with static and adaptive features are applicable for big 

data only with certain limitations. These approaches physically re-order data records 
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based on an attribute to create a single index and require a distinct number of replicas of 

a data set to create more than one index. Therefore, an increase in the number of indexes 

requires an increase in the number of replicas. This limitation imposes storage constraints 

that might prevent big data sets from having as many replicas as the number of indexes 

required. 

Complex index updating is another limitation of clustered indexing approaches. 

Replacing an available index with a new index requires re-ordering the data records of 

that replica. Adding new indexes requires creating new replicas for data sets with a new 

physical order of data records that are based on new index attributes. Furthermore, the 

selection of attributes for indexing is also challenging for clustered indexing approaches. 

Given that the number of indexes is limited to the number of replicas for a data set and 

index updating is a complex process, determining a useful list of attributes for indexing 

is critical.  

Non-clustered indexing approaches for big data have their own inadequacies. Unlike 

clustered indexing approaches, non-clustered approaches do not restrict the number of 

indexes with a number of replicas for a data set. These approaches allow as many indexes 

to be created as required on only a single replica of a data set. However, non-clustered 

indexing approaches incur high indexing overhead (i.e., additional index creation time 

and storage space) and increase the delay to start the query execution process. 

The selection of attributes that are to be utilized to create indexes is highly critical for 

a well-designed indexing structure. Creating indexes on all attributes that are provided as 

schema of a data set is impractical. The reason is that performing full text indexing on big 

data that comprises an extensive number of records results in high indexing upfront cost 

in terms of size and time. Thus, a longer delay occurs between data uploading and 

executing first query when the indexing mechanism is not suitable for such data and 
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indexing is performed on all data attributes. Moreover, these indexes consume 

sufficiently large storage space. 

Indexing for specific attributes is relatively preferable to minimize upfront cost of 

indexing. However, these statically created indexes do not fulfill requirements for queries 

that have selection predicates on different attributes. Consequently, these queries are 

executed using full scan, which is a remarkably time-consuming activity for big data. 

The possibility also exists that indexing on a predetermined set of attributes may only 

be efficient for a specific span of time. Adding/deleting indexes that have the changing 

trend of data retrieval and having different workloads of queries is needed so that up-to-

date indexes are available. This index updating can be invoked by users and/or by systems 

that automatically predict the changing query workload. 

An indexing mechanism is needed that has wisely selected attributes to create indexes, 

thereby resulting in minimized indexing overhead for big data. In the meantime, by 

considering the changing query workload, predicting future query workload is needed to 

create or destroy indexes. 

1.3 Statement of Objectives 

This study aims to expedite the data search and data retrieval process from the pool of 

big data and provide up-to-date indexes through a proposed novel indexing framework 

that introduces both static and adaptive indexing to minimize indexing overhead, improve 

data search performance, and ultimately improve index hit ratio. The proposed solution 

is deployable on contemporary big data storage and processing systems such as Hadoop. 

The following are the objectives that are needed to attain the aim of our research: 

a. Investigate the capability of existing indexing techniques towards the challenges 

of big data to establish the potential research problem. Big data indexing 
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requirements are defined to analyze their fulfillment by existing indexing 

techniques. Review and investigation on existing indexing techniques based on 

defined big data indexing requirements leads to clarify the research gap to further 

address in this research. 

b. Design and implement an indexing framework that uses the non-clustered 

indexing structure incorporated with predictor function to adaptively update for 

adaptive index updating, thereby ensuring the following: 

 minimized indexing overhead in terms of index creation/updating 

time and the space consumed by indexes (index size) for large 

volume data, 

 reduced data retrieval time with faster query execution, and 

 maximized index hit ratio by predicting the future workload of 

incoming search queries. 

c. Validate the effectiveness of the proposed indexing framework with respect to 

indexing overhead, query execution and data retrieval time, as well as index hit 

ratio. Existing approaches are used as benchmark to ensure that proposed indexing 

framework has achieved minimized indexing time, reduced data retrieval time and 

maximized index hit ratio. 

d. Verify the results of the proposed indexing framework by comparing experimental 

results with mathematical modeling results. The results obtained from 

experiments and mathematical model are compared to ensure that proposed 

framework demonstrates same performance in both environments. 

1.4 Proposed Methodology 

This section presents the research methodology of our thesis. We describe the 

milestones and steps undertaken to accomplish each milestone. Figure 1-2 explains the 

methodology of our research. We have the following four milestones: establishment of 
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research problem, modeling the solution, evaluating the solution, and validating the 

results. 

 

Figure 1-2: Research Milestones and Methodology 

We establish the research problem by reviewing and investigating the performance of 

existing indexing solutions for big data. We first identify big data indexing requirements 

and analyze recent indexing techniques for traditional data. We further performed review 

and investigation on indexing implementations for big data. Thereafter, we established 

the research problem by analyzing the performance of existing indexing implementations 

on big data. 

We model the solution by proposing the indexing framework for big data named as 

SmallClient. SmallClient offers indexing procedure to create static and adaptive indexes. 

Users can provide a list of attributes for indexing either to be created during the data 

uploading process of SmallClient or at any random time whenever required. Furthermore, 
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SmallClient introduces predictor logic to automatically predict future query workload 

based on which existing indexes are updated. 

We validate the effectiveness of the solution by presenting the results for indexing 

overhead, query execution time, and index hit ratio. We show that SmallClient fulfills the 

objectives of this research and shows performance improvement in terms of minimized 

indexing overhead, minimized query execution cost, and increased index hit ratio. 

We verify the results by using benchmarking and mathematical modeling. We collect 

data for benchmarking by using well-known big data search procedures such as Hadoop 

MapReduce and Hive for full scan and Apache Lucene indexing library for indexed 

search comparison. We use Petri nets to design a mathematical model for SmallClient 

and compare the experiment results with mathematical modeling results for verification. 

1.5 Thesis Organization 

The organization of the thesis is described in this section, and is presented in Figure 

1-3. 
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Figure 1-3: Thesis Organization 
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Chapter 2 presents a review of big data indexing techniques that enable identifying the 

potential problems that are related to indexing big data. It first investigates state-of-the-

art indexing techniques for traditional data and identifies the indexing requirements 

related to big data. Then, indexing implementations on big data are reviewed and the 

potential problems are emphasized. 

Chapter 3 presents the performance analysis of contemporary big data indexing 

techniques to establish the research problem of our thesis. Apache Lucene indexes are 

used to create indexes on different sizes of data sets to observe indexing overhead and 

search performance. Based on experimental results, the performance is analyzed and the 

problem is established by validating the results. 

Chapter 4 introduces SmallClient, the proposed indexing framework for big data. The 

architecture of the data retrieval system and sequence flow of SmallClient to achieve the 

research objectives is presented in this chapter. The most appealing features of 

SmallClient are also emphasized in Chapter 4. 

Chapter 5 elaborates the evaluation method of our research. Evaluation measures used 

to collect data and evaluate the solution are discussed in this chapter. Furthermore, the 

algorithms designed for the framework are presented. 

Chapter 6 presents the performance results and their verification. We discuss the 

findings of collected data for indexing overhead, search performance, and index hit ratio. 

We use benchmarking and mathematical modeling to further verify the experiment 

results. 

Chapter 7 concludes the thesis. It describes the mapping of the aim and objectives with 

the research findings. The main contribution of the study is presented in this chapter. 

Furthermore, the significance of the proposed research and future work is described.  
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CHAPTER 2: BIG DATA INDEXING TECHNIQUES: THE STATE-OF-THE-

ART 1 

This chapter presents a review of indexing techniques for big data to identify potential 

problems. We first define indexing requirements for big data as investigation criteria and 

later analyze existing indexing techniques for traditional data by using these requirements 

for performance investigation. Furthermore, we review indexing mechanisms that have 

been recently implemented on big data in this chapter. The challenges and potential 

problems for big data indexing are also presented in this chapter by analyzing 

contemporary big data indexing implementations. 

This chapter comprises four sections. Section 2.1 identifies and elaborates indexing 

requirements for big data. Section 2.2 presents investigation of contemporary indexing 

techniques for traditional data by using big data indexing requirements. Section 2.3 

investigates indexing advancements in big data under clustered and non-clustered 

categories. Section 2.4 concludes the discussion. 

2.1 Big Data Indexing Requirements 

This section discusses the requirements of big data indexing. Accuracy and timeliness 

are the significant parameters in data retrieval operation performed using an indexing 

technique. Accuracy of results from data search operations deals with the consistency 

when same queries are applied whereas timeliness refers to the prompt response on 

submitted queries. However, knowledge of data requirements to develop an indexing 

                                                 
1 The work presented in this chapter is partially obtained from the following research contribution: 

Gani, Abdullah, Siddiqa, Aisha, Shamshirband, Shahaboddin, & Hanum, Fariza. (2015). A survey on 
indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information 
Systems, 46(2), 1-44. doi: 10.1007/s10115-015-0830-y 

Siddiqa, Aisha, Karim, Ahmad, Gani, Abdullah, & Chang, Victor.  On the analysis of big data indexing 
execution strategies (2016). Journal of Intelligent and Fuzzy Systems 
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technique is essential. The literature reports the efficiency and effectiveness of existing 

indexing techniques when they are applied to traditional data sets (Raghavendra et al., 

2016). However, our investigation is related to an analysis of the capability of these 

techniques to handle big data. We emphasize the indexing requirements that are 

specifically related to big data for investigation. 

Big data refers to voluminous and exponentially growing data generated by 

heterogeneous resources for which existing technologies become incapable of handling 

and analyzing these data sets (Philip Chen & Zhang, 2014; Siddiqa, Karim, & Gani, 

2016). Big data has its own structural and managerial features; traditional data 

management technologies are inadequate to deal with big data. Similarly, we analyze 

recent indexing techniques based on these big data features to prove their inefficiency. 

The following are the significant features of big data, which we introduce as big data 

indexing requirements: 

 Volume 

Volume is related to the size of big data, which is at present measurable in petabytes 

and is expected to reach zettabytes in the near future (Katal, Wazid, & Goudar, 2013). 

“Bigness” in the term “big data” refers to its volume. This extensive volume associated 

with big data is challenging for indexing and requires reduction in query execution time 

(Chen et al., 2013). Therefore, volume is the most important requirement to be considered 

when designing an indexing technique for big data. 

 Velocity 

Velocity refers not only to the rapid and exponential growth in data volume but also 

to the need to apply query processing (Hashem et al., 2015). With the emergence of big 

data, query processing trends are also transformed from batch processing to temporal (i.e., 
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monthly, weekly, daily, and hourly) and now the speed requirement for big data analysis 

is in real time for certain applications. For instance, e-commerce requires management 

for both speed of data generation and real-time data retrieval for quick decision making 

(Kaisler, Armour, Espinosa, & Money, 2013). 

 Variety 

Another structural requirement of big data is handling data generated from various 

resources such as web pages, web log files, social media sites, e-mails, web documents, 

and sensor device data. These heterogeneous resources generate data in different formats 

and data types that bring forth the challenge of big data variety (Kaisler et al., 2013; Philip 

Chen & Zhang, 2014; Yang et al., 2014). An indexing techniques must be generic to 

support more than one data format and data type. 

 Veracity 

Accuracy, reliability, and trustworthiness define the veracity of big data. Big data with 

exponential generation rate from heterogeneous resources should ensure that data are in 

fact sufficiently accurate, and not spoofed, corrupted, or obtained from an expected 

source. This is an important issue known as big data veracity (X. Wang, Luo, & Liu, 

2014). Accuracy of results for query execution is required by an indexing technique that 

addresses big data veracity. 

 Variability 

Variability handles inconsistencies in big data flow. Data loads become difficult to 

maintain, especially with the increasing usage of social media, which generally causes 

peaks in data loads when certain events occur (Katal et al., 2013). Variability brings the 
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challenge for indexing techniques to ensure timeliness and accuracy of results for 

submitted queries. 

 Value 

Value refers to the insights and benefits that are obtained by keeping and managing 

such big data. Data usefulness in decision making defines its value. The accuracy and 

timeliness of results is significant to increase insight when insight is preferable to quantity 

(Kaisler et al., 2013; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2013). 

 Complexity 

Big data structures have a high degree of interconnectedness and dependencies 

(Kaisler et al., 2013). The challenges that are related to big data complexity are its linking, 

matching, cleansing, and transformation across systems (Siddiqa, TargioHashem, et al., 

2016). However, connecting and correlating relationships, hierarchies, and multiple data 

linkages are also very important. If complexity in terms of these objectives is not 

considered, big data cannot be organized effectively (Barbierato, Gribaudo, & Iacono, 

2014). 

Volume, velocity, and variety are the structural features of big data, whereas the rest 

of the features are related to the managerial aspect. Structural features are the essential 

requirements for a system that is designed to handle big data. Therefore, one proposal is 

to consider the structural features of big data when designing a big data management 

system, specifically an indexing mechanism. An indexing technique is proven efficient 

when it satisfies requirements such as large volume, rapid growth, and heterogeneous data 

types along with efficiency of the indexing procedure itself. 
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By focusing on volume, velocity, and variety of big data, an indexing technique is 

efficient when indexing cost in terms of index creation time and index size is low. 

Meanwhile, query execution time must also be minimized to ensure effectiveness of an 

indexing technique for big data. 

2.2 Indexing for Traditional Data 

In this section, we present state-of-the-art indexing techniques that are found in the 

latest literature for traditional data. We review the recent indexing techniques for 

traditional data and categorize them based on their adopted procedures. We define each 

category and explain the characteristics of each technique in these categories. We also 

analyze the performance of these indexing techniques through big data indexing 

requirements that are elaborated in Section 2.1. 

An indexing mechanism facilitates the data search and retrieval tasks when data sets 

comprise an enormous number of records and when scanning the whole data set incurs 

high operational cost (M. Wang, Holub, Murphy, & O’Sullivan, 2013). Indexing 

improves the performance of query operations and reduces data retrieval time for search 

queries over high-volume data sets (Chen et al., 2013). Therefore, indexing is an essential 

task for a data analysis system in terms of effectiveness of performing complex queries 

and accessing larger-sized data sets. 

Recent research advancements indicate that various indexing mechanisms have been 

adopted based on the nature of data and type of data analysis. For instance, semantic 

indexing is used for enhanced search procedures for big data on cloud (Rodríguez-García, 

Valencia-García, García-Sánchez, and Samper-Zapater (2013), an inverted index method 

for event stream indexing on a large text collection in a distributed environment 

(Cambazoglu, Kayaaslan, Jonassen, & Aykanat, 2013), and R-Tree indexing on multi-

dimensional data (J. Wang, Wu, Gao, Li, & Ooi, 2010). The requirement of consuming 
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less time and cost to apply search operation has become critical for high-volume and 

continuously growing big data (Kadiyala & Shiri, 2008). Thus, the study shows 

continuous improvement in the implementation procedure of indexing. 

2.2.1 Classification of Indexing Techniques 

We categorize contemporary indexing techniques and devise a taxonomy comprising 

three categories: non-artificial intelligence (NAI), artificial intelligence (AI), and 

collaborative artificial intelligence (CAI). We present the taxonomy of existing indexing 

techniques in Figure 2-1. These techniques are discussed in this section. 
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Figure 2-1: Taxonomy of Indexing Techniques (Gani, Siddiqa, Shamshirband, & Hanum, 2015)  

Indexing Techniques

Artificial Intelligence (AI)

Artificial neural networks 
(Wu, Wang et al. 2009)

Fuzzy (Dittrich, Blunschi et 
al. 2011)

Soft Computing (SC)

State support vector (SVM) 
(Paul, Chen et al. 2013)

Self-learning (Ongenae, 
Claeys et al. 2013)

Manifold learning (Lazaridis, 
Axenopoulos et al. 2013)

Machine Learning (ML)

Non Artificial Intelligence (NAI)

Hashing

Sparse Hashing (SH)
(Zhu, Huang et al. 2013)

Hashing (Thilakanathan, 
Chen et al. 2013)

Triplet-based (Jayaraman, 
Prakash et al. 2013)

Geometric Hashing

(Mehrotra, Majhi et al. 
2010)

(Kaushik, Umarani et al. 
2013)

Merkle Hash Tree (Ali, 
Sivaraman et al. 2013)

Semi supervised Hashing 
(Wang, Kumar et al. 2012)

Sampled Enveloped B-Tree 
(Li, Yi et al. 2010)

R+-tree (KR+-index) (Wei, 
Hsu et al. 2013)

R-Tree (Wu, Cong et al. 
2012)

Graph query processing 
(Cheng, Ke et al. 2011)

Graph-lattice (Yuan and 
Mitra 2013)

K-Tree (Hsu, Lee et al. 2002)

Composition of trees(Qian, 
Tagare et al. 2010)

Authenticated Tree (Li, 
Hadjieleftheriou et al. 2010)

Compact Steiner Tree (CS 
Tree) (Li, Feng et al. 2011)

Red-Black tree (Yeh, Su et al. 
2013)

Shortest-Path Tree (Maier, 
Rattigan et al. 2011)

Inverted Index Tree (Wang, 
Holub et al. 2013)

Composite B-Tree (Sandu 
Popa, Zeitouni et al. 2011)

Graph-based

Collaborative Artificial Intelligence (CAI)

Collaborative semantic 
(Leung and Chan 2010)

Collaborative Semantic 
(Gacto, Alcala et al. 2010)

Collaborative Annotation 
(Elleuch, Zarka et al. 2011)

Collaboration Semantic 
(Dieng-Kuntz, Minier et al. 

2006)

Collaborative KRR (CKRR)Bitmap

Bit-sliced index (MacNicol 
and French 2004)

Bitmap (Gündem and 
Armağan 2006)

Two-level equality-equality 
encoding 

(Sinha and Winslett 2007)

Semantic Annotations 
(Done, Khatri et al. 2010)

Semantic quad-tree (Zou, 
Wang et al. 2013)

Phrase-based Semantic 
(Chu, Liu et al. 2005)

Latent Semantic (van der 
Spek and Klusener 2011)

Semantic audiovisual Web 
(Cuggia, Mougin et al. 

2005)

Semantic ontologies 
(Yıldırım, Chaoji et al. 2012)

Semantic (Rodríguez-García, 
Valencia-García et al. 2013)

Knowledge Representation 
and Reasoning (KRR)

Collaborative ML (CML)

Social learning model 
(Wai-Tat 2012)

Incremental Collaborative 
filtering (Komkhao, Lu et al. 

2013)

Collaborative filtering
(Huang, Lu et al. 2012)

Collaborative unsupervised 
learning-based indexing 

(Weng and Chuang 2012)
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Figure 2-1 presents the detailed taxonomy and divides indexing techniques into the 

NAI, AI, and CAI categories. NAI is further categorized as graph-based, bitmap, and 

hashing. AI involves soft computing (SC), machine learning (ML), and knowledge 

representation and reasoning (KRR). CAI consists of subcategories, namely collaborative 

machine learning (CML) and collaborative knowledge representation and reasoning 

(CKRR). 

We define each category of taxonomy and explain the indexing techniques under each 

category in the rest of this section. We also discuss the advantages and limitations of 

implementing these techniques. We summarize all indexing techniques later in Table 2-1. 

 Non-artificial Intelligence (NAI) Techniques 

The NAI category comprises indexing techniques that have straightforward procedures 

for index creation and query execution. Furthermore, these techniques are adaptable to 

fast data retrieval requirements. Therefore, NAI indexing techniques are widely used in 

the literature. Graph-based indexes develop a tree structure that improves traversal and 

data retrieval performance (Zhang et al., 2015). B-Tree and B+-Tree are used to index the 

under graph-based category of NAI. Sampled envelop B-Tree (F. Li, Yi, & Le, 2010) 

uses near-linear time to answer any top-k (t) query with optimal I/O cost expected. 

Similarly, R+-Tree and R-Tree also reside in graph-based NAI indexing techniques 

that are used for efficient data retrieval on range and nearest-neighbor queries. KR+-index 

(Wei, Hsu, Peng, & Lee, 2013) is designed using R+-Tree for skewed spatial data. 

However, for keyword search queries, the compact Steiner tree (G. Li, Feng, Zhou, & 

Wang, 2011) outperforms other indexing mechanisms, thereby reducing the 

implementation cost. The Steiner tree can be seamlessly integrated with any existing 

RDBMS. 
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The second subcategory of NAI indexing techniques is bitmap, which is considered as 

an effective indexing mechanism for range queries on append-only data (K. Wu, 

Shoshani, & Stockinger, 2010). In bitmap indexing structure, bulk index data is stored as 

a sequence of bits; this bit sequence is used to answer queries. A bit-sliced index 

(MacNicol & French, 2004) adopts binary encoding, which reduces the number of 

bitmaps. However, compared with other methods, bit-sliced index still consumes more 

time in query execution. 

Hashing methods of indexing for high-dimensional data uses the least time in 

executing approximate similarity search queries (Shang, Yang, Wang, Chan, & Hua, 

2010). Hashing represents high-dimensional data into compact binary codes to increase 

query execution performance. Sparse hashing (Zhu, Huang, Cheng, Cui, & Shen, 2013) 

also performs better for approximate similarity search queries by converting the original 

feature space of data into low-dimensional data. 

 Artificial Intelligence (AI) Techniques 

The AI category of indexing techniques involves techniques that are highly technical 

and specialized; they use a knowledge base for efficient data retrieval. This category 

includes soft computing (SC), machine learning (ML), and knowledge representation and 

reasoning (KRR) methods of indexing. A prominent feature of AI indexing techniques is 

that each technique involves training the indexing model as a prerequisite for labeled data. 

This training process requires immense computational resources. Therefore, AI indexing 

needs more computational resources than does NAI indexing. 

SC includes artificial neural networks and fuzzy based methods for AI indexing. The 

hierarchical tree (S. Wu, Wang, & Xia, 2009) is designed using the artificial neural 

network method for efficient indexing and data retrieval for human motion data. 
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Hierarchical tree indexing consumes more time in artificial neural network-based 

unsupervised learning. Fuzzy rule-based indexing is also efficient for indexing moving 

objects; index creation time is minimal (Dittrich, Blunschi, & Vaz Salles, 2011). 

However, dealing with unknown events in data is not possible in fuzzy rule base. 

Therefore, hybrid fuzzy classifiers (Bordogna, Pagani, & Pasi, 2006) are adopted to 

dynamically adjust the rule to ensure better detection ratio. 

In the AI category, ML-based indexing introduces an iterative process of observing 

patterns in data to make predictions. Multi-model descriptor index (Lazaridis, 

Axenopoulos, Rafailidis, & Daras, 2013) uses manifold learning, which optimizes the 

search and retrieval process for large data sets. The initial state support vector machine 

network (Chen-Yu, Ta-Cheng, Jhing-Fa, & Li Pang, 2009), which models human 

behavior in surveillance situations, is followed by Paul et al. (2013). This study generates 

probabilistic scores that are based on input frames and computes transition probability 

using training data. 

KRR indexing assigns tags to documents and semantics to data obtained from a user 

response on a system such as a social network. Semantic indexing (Y. Wang, 2008) stores 

annotations of a document by assigning them weights and finds closeness in scores of 

semantics. An enhanced approach in semantic indexing (Rodríguez-García et al., 2013) 

is applied on ontologies to retrieve information on cloud resources based on user needs. 

KRR indexing improves knowledge discovery and decision making for large data sets. 

 Collaborative Artificial Intelligence (CAI) Techniques 

Indexing techniques under the CAI category combine two or more indexing techniques 

to improve accuracy and search efficiency (Gacto, Alcala, & Herrera, 2010). This 
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category includes collaborative machine learning (CML) and collaborative knowledge 

representation and reasoning (CKRR) methods. 

CML-based indexing (Wai-Tat, 2012) for various types of data is designed using social 

learning that combines KRR to induce semantic indexing. This method of collaborative 

indexing assists with enhanced representation of semantics and makes them easily 

interpretable for users who may have different knowledge backgrounds or information 

needs. CML indexing also supports in developing recommendation systems to retrieve 

more accurate and precise information for keyword search queries in medical knowledge 

(Huang, Lu, Duan, & Zhao, 2012). These recommendation systems use expert 

suggestions and user profiles to ensure an accurate data retrieval process.  

Under the CKKR category of CAI indexing techniques, the semantic indexing method 

(Dieng-Kuntz et al., 2006) combines the graph-based method to design a knowledge 

management model in medical ontology as a “virtual staff” tool that provides 

collaborative diagnosis. 

We summarize the indexing techniques and emphasize their distinctive features in 

Table 2-1. The Table 2-1comprises indexing techniques under the NAI, AI, and CAI 

categories. These techniques include the application domain in which these indexing 

techniques are implemented, data set availability and type of data set used in evaluation, 

objectives of designing indexing techniques, and salient features. 
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Table 2-1: Indexing Techniques for Traditional Data (Gani et al., 2015) 

Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

Non-Artificial Intelligent Methods (NAI) 

G
ra

p
h

-b
a
se

d
 

Tr
ee

-b
as

ed
 

Sampled 
Envelope (SE) B-
tree for top-k 
queries (F. Li, Yi, 
et al., 2010) 

L P1/ P2 Temporal To design a simple and efficient 
indexing for ranking queries on 
temporal data 

 Simple structure of indexing 
 Index takes less space 
 Its creation is faster 
 Small increase in creation cost when variance of 

data increases 
 Faster query response 
 Less update cost 

Graph 
partitioning and a 
composite B+-
Tree (Sandu 
Popa, Zeitouni, 
Oria, Barth, & 
Vial, 2011) 

L P1 Trajectory To provide efficient indexing for 
trajectories of moving objects in a 
network 

 Faster query response even when query size and 
data size is increased 

 Less update cost which increases gradually 

Inverted Index 
Tree (M. Wang et 
al., 2013) 

C P1 Event 
Stream 
(Log) 

To design an index for multiple 
keyword-based queries on generic 
stream data where bidirectional 
reference are created between leaf 
nodes and event indices so that 

 Index take less space but takes more time to load in 
memory 

 Manageable query processing cost 
 Faster query response 

                                                 
i. 2Performed application domain: Cloud (C), Network (N), and Local data on a single computer (L) 
ii. 3Type of applied data set: Public (P1), Private (P2), and Unspecified (U) 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

CPU cost is reduced and efficient 
indexing is achieved 

R+-tree (KR+-
index) (Wei et al., 
2013) 

C P1 Spatial To present a novel 
multidimensional key design index 
based on an R+-tree KR+ index for 
efficient search and retrieval of 
skewed spatial data 

 Index takes more space 
 Query response time depends upon query size and 

data size 
 Scalable for large data 

R-Tree (D. Wu, 
Cong, & Jensen, 
2012) 

N P1 Spatial To design a hybrid inverted file R-
Tree to retrieve text and query 
spatial proximity 

 Index takes more space 
 Query response depends upon buffer size 
 Less query processing cost 

A graph query 
processing index 
system (Cheng, 
Ke, Fu, & Yu, 
2011) 

L P1/ P2 Graph Design a graph querying system 
that achieves both fast indexing and 
efficient query processing 

 Index take less space 
 Faster index creation 
 Faster query response 
 Less update cost 
 Scalable for large data and query response time 

remains the same 
A network 
structure index 
with Shortest-
Path Trees 
(Maier, Rattigan, 
& Jensen, 2011) 

L P1/ P2 Graph 
(network 
path) 

To present and design an indexing 
technique for auxiliary data 
structures that provides fast look-
ups for common operations 

 Index takes linear space 
 Efficient search for common operations 
 Accurate query results 
 Applicable on real data sets 
 More computational costs for large networks 

A framework of 
Red–Black tree as 
an efficient and 

C U Text To present a Red–Black tree 
framework for big data cloud 
collaborative editing 

 Less index creation cost 
 Less update time 
 Reduced data encryption overhead 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

secure approach 
(Yeh, Su, Chen, 
& Lin, 2013) 

 Efficient encryption compared to 3DES encryption 
and AES encryption 

Compact Steiner 
Tree (CS Tree) 
(G. Li et al., 
2011) 

L P1 Graph To optimize the Steiner tree to 
answer keyword queries more 
efficiently, to effectively implement 
keyword search, and to utilize 
DBMS capabilities 

 Accurate query results 
 Faster query response 

Authenticated 
Tree- Based 
Index Structures 
(F. Li, 
Hadjieleftheriou, 
Kollios, & 
Reyzin, 2010) 

N P1/ P2 Spatial To develop efficient index 
structures for authenticating 
aggregation queries over large data 
sets 

 More accurate query results 
 Less query execution cost 
 Dynamic index updating 

Composition of 
Coordinate tree, 
metric tree, and 
kd-tree (Qian, 
Tagare, Fulbright, 
Long, & Antani, 
2010) 

L P1 Image To present an optimal shape 
embedding procedure to index 
shapes for complete and partial 
shape similarity retrieval 

 Less index computational cost 
 Fast query response 
 Less query execution cost 

K-Tree (Hsu et 
al., 2002) 

L P2 Image To develop a new indexing method 
called K-tree to process RkNN 

 Faster query response 
 Accurate query results Univ
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

(Reverse k-Nearest Neighbors) 
queries efficiently 

A graph-lattice-based 
index (Yuan & Mitra, 
2013) 

L P1 Graph To describe indexing techniques 
based on sub-graphs 

 Fast query response 
 Index creation is faster and easy 
 Index update is faster 
 Faster query results for sub-graph-querying 
 False graphs can be filtered easily 

B
it

m
a
p

 

Bit-sliced index 
(MacNicol & French, 
2004) 

N U Transaction
al 

To present a multi-component 
bitmap index created from three 
basic encoding schemes 

 Index takes less space 
 Less query processing cost 
 Querying is slower than multi-level indexes 

Two-level equality-
equality encoding 
(Sinha & Winslett, 
2007) 

L / N P1 Hierarchical 
Data 
Format 

To propose multi-resolution and 
parallelizable bitmap indexes 

 Index takes more space 
 Faster query response 
 Better results for range queries 
 Index is scalable in cluster environment 

H
a

sh
in

g
 

A novel Sparse 
Hashing (SH) method 
(Zhu et al., 2013) 

L P1/ P2 Image, Text To develop a novel sparse hashing 
(SH) method for fast approximate 
similarity searches 

 Accurate query results for large data sets 
 More index computational cost 
 More training cost for large data set 
 Fast encoding 

Merkle Hash Tree (Ali, 
Sivaraman, & Ostry, 
2013) 

C P2 Real-time To design an authentication scheme 
to detect loss in data using the 
Merkle hash tree 

 Accurate query results (90%) 
 Less creation cost 

Hashing 
(Thilakanathan, Chen, 

C P2 Medical 
(ECG) 

Design a system to ensure fast 
healthcare data download using a 
hash function 

 Efficient query response for large data set 
 More initial setup time Univ
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

Nepal, Calvo, & Alem, 
2013) 
Triplet-based Hashing 
(Jayaraman, Prakash, 
& Gupta, 2013) 

L P1 Medical 
(ECG) 

To propose an indexing technique 
for a biometric image database 

 Index takes less space 
 Less computational cost 
 Invariant to scaling 

G
eo

m
et

ric
 h

as
hi

ng
 

(Kaushik, 
Umarani, Gupta, 
Gupta, & Gupta, 
2013) 

L P1 Image 
(face) 

To present an efficient scheme to 
index a database of facial images 

 Index takes less space 
 Less computational cost 
 Accurate query results 

(Mehrotra, 
Majhi, & Gupta, 
2010) 

L P1 Image (Iris) To propose an efficient indexing 
scheme for searching a large iris 
biometric database 

 Index takes less space 
 Fast query response 
 More accurate query results 
 Robust in similarity transformations as well as 

occlusion 
 Capable of localizing iris images with change in 

gaze, occlusion, and illumination 
HubRank (Chakrabarti, 
Pathak, & Gupta, 2011) 

L P1 Graph To design an efficient index for 
consistent results of PageRank 
query 

 Index takes less space 
 Accurate query results 
 Less index creation time 
 Fast query response 
 Efficient query processing 

A novel term-based 
inverted index partitioning 
model that relies on 

N P1 Text To minimize the communication 
overhead that will be incurred by 
future queries 

 Index takes less space 
 More computational cost 
 Scalable index 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

hypergraph partitioning 
(Cambazoglu et al., 2013) 
A Compressed Permuterm 
Index (CPI) (Ferragina & 
Venturini, 2010) 

L P1 Graph To propose a Compressed 
Permuterm Index which supports 
fast queries 

 Index takes less space 
 Fast query results 
 Easy updating 

Three-level Indexing 
Hierarchy (TIH) (C.-H. 
Wang et al., 2010) 

L P2 Multimedia 
(video) 

To present a novel indexing 
architecture in order to support a 
range of smart playback functions 
in collaborative telemedicine 
systems 

 Simple index 
 Index takes less space 
 Less computational cost 
 Accurate query results 

Artificial Intelligent Methods (AI) 

S
o

ft
 C

o
m

p
u

ti
n

g
  
(S

C
) 

A hierarchical tree 
based on artificial 
neural networks (S. 
Wu et al., 2009) 

L P1 Motion data To develop an efficient indexing 
and retrieval approach for human 
motion data 

 Fast query response 
 Accurate query results 
 More time consuming for artificial neural network-

based unsupervised learning 
Fuzzy (Dittrich et al., 
2011) 

N P2 Road 
Network 

To design an indexing technique for 
such application where objects are 
moving at a high update rate 

 Index takes less space 
 Less index creation time 
 Faster index update 
 Faster query response time 
 Scalable 
 Index image is created frequently so it is time 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

M
a
ch

in
e 

L
ea

rn
in

g
 (

M
L

) 

State support vector 
(SVM) (Paul et al., 
2013) 

L P1 Multimedia To present a video search and 
indexing system based on the state 
support vector (SVM) network, 
video graph, and reinforcement 
agent 

 Less index creation time 
 Accurate query results 

 Time consuming at Learning stage 

Multimodal descriptor 
indexing based on 
manifold learning 
(Lazaridis et al., 2013) 

L P1 Multimedia 
(Audiovisu
al) 

To propose a complete solution for 
search and retrieval of rich 
multimedia content over modern 
databases 

 Less index creation time 
 Less index creation cost 
 Faster query response 
 Scalable 
 Time consuming for manifold learning method 

Self-learning 
(Ongenae et al., 2013) 

L P1 Temporal To propose a self-learning, 
probabilistic, ontology-based 
framework which allows healthcare 
context-aware applications to adapt 
their behavior to run-time 

 Fast query response 

 Accurate query results 

K
n

o
w

le
d

g
e 

R
ep

re
se

n
ta

ti
o
n

 a
n

d
 

R
ea

so
n

in
g
 (

K
R

R
) 

Semantic Annotations 
(Done, Khatri, Done, 
& Draghici, 2010) 

L P1/ P2 Annotated Design a technique to detect Gene 
Ontology annotations with the help 
of finding relationships between 
genes and functions 

 Accurate query results 

Semantic (Rodríguez-
García et al., 2013) 

C P1 Annotated Offer a platform to facilitate the 
retrieval and selection of cloud 
resources on the basis of keyword 
search query meeting the users’ 
needs 

 Automatic index updating 
 Fast query response 
 Accurate query results 
 Applicable to unstructured documents 
 More information required to provide enough 

accuracy 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

 It supports only keyword-based queries 
 To ensure accuracy it needs more knowledge 

Scalable reachability 
index (GRAIL) based 
on semantic ontologies 
(Yıldırım, Chaoji, & 
Zaki, 2012) 

L P1/ P2 Graph Propose randomized interval 
labeling based on the graph theory. 

 Simple Index 
 Fast query response for large graphs 
 Scalable 
 Comparatively low performance for small graphs 

semantic quad-tree and 
Chord ring (Zou, 
Wang, Cao, Qu, & 
Wang, 2013) 

N P2 Spatial To present a novel semantic overlay 
network for large-scale multi-
dimensional spatial information 
indexing 

 Scalable 
 Supports complex range queries 

Phrase-based Semantic 
(Chu, Liu, Mao, & 
Zou, 2005) 

L P1 Text To present a new knowledge-based 
approach to support scenario-
specific retrieval applicable in 
healthcare monitoring 

 Fast query response in real time 
 Accurate query results 

Latent Semantic (van 
der Spek & Klusener, 
2011) 

L P1 Text To apply a dynamic threshold to 
improve cluster detection of LSI 
(Latent Semantic Indexing) 

 Applicable to large document sets 
 Fully automated 

Semantic audiovisual 
Web indexing (Cuggia, 
Mougin, & Beux, 
2005) 

N U Multimedia 
(Video) 

To propose an audiovisual Web 
indexing system for medical 
audiovisual resources 

 Simple index 
 Demonstrates possibilities of conceptual indexing 

based on medical ontologies 

Collaborative Artificial Intelligent Methods (CAI) 

C
o
ll

a

b
o
ra

ti

v
e 

M
L

 Social learning model 
utilized in 

N P2 Folksonom
y 

A machine learning based approach 
to present a social learning model 

 Faster query response 
 Supports structuring of information 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

collaborative indexing 
(Wai-Tat, 2012) 

which is, in collaboration with 
knowledge representation, applied 
as collaborative indexing for 
retrieval of relevant documents and 
knowledge exploration 

 Scalable for large data 
 Efficient in semantic representation 
 Efficient human-system integration 
 Learning is time consuming 

Collaborative 
unsupervised learning-
based indexing via 
matrix factorization 
(Weng & Chuang, 
2012) 

L P1 Multimedia 
(Video) 

To present a recommendation 
system of unsupervised video re-
indexing developed based on 
collaborative filtering approach 
which refines and improves the 
indexing scores generated by 
concept classifiers 

 Faster Index creation 
 More query response cost 
 Accurate in query results 

Collaborative filtering 
based Medical 
Recommendation 
System (Huang et al., 
2012) 

N or L P2 Clinical To develop a collaborative filtering 
based medical knowledge 
recommendation system so that 
clinicians can retrieve trust-based 
accurate knowledge 

 Faster query response 
 Accurate in query results 
 More human effort is required in recommendation 

recording 
 Motivation is required in recording 

recommendation 
Incremental 
Collaborative Filtering 
based Recommender 
System (Komkhao, Lu, 
Li, & Halang, 2013) 

L P1 Text To design a model-based 
collaborating filtering technique to 
improve the accuracy and 
scalability of recommender system 

 More accurate query results 
 Scalable and the performance is improved for 

larger training data set 

C
o
ll

a

b
o
ra

ti

v
e 

K
R

R
 Collaborative semantic 

(Leung & Chan, 2010) 
L U Multimedia 

(music) 
To design a collaborative semantic 
indexing and metadata based 

 Accurate in query results 
 Accuracy increases as the index is updated 
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Method Application 

domain
2
 

Applied 

data set
3
 

Data set 

Type 

Objectives Features 

retrieval for music information so 
that accurate results are available to 
users 
To design an approach for deep 
content-based music information 
retrieval 

 Index size is gradually increasing 
 Fault tolerant 
 Resilient, community validated structure 
 Eliminates inappropriate index terms 

Collaboration-based 
Semantic Indexing 
(Dieng-Kuntz et al., 
2006) 

N P1/ P2 Cognitive 
(concept 
based) 

To present a method for 
reconstituting a medical ontology 
by translating a medical database 
into RDF language in the context of 
a healthcare network. A virtual staff 
is developed where more number of 
healthcare members are involved 
for better diagnosis 

 Guaranteed knowledge management 
 Useful for a healthcare network dedicated to heavy 

pathology 
 Accurate in query results 

Collaborative 
Annotation (Elleuch, 
Zarka, Ammar, & 
Alimi, 2011) 

L P1 Multimedia 
(video) 

To improve the semantic concept 
detection process through 
collaboration of fuzzy with 
ontology 

 Improvement in accuracy of query results 
 Improvement in precision of context and concept 

detection 
 More relevant query results 

Collaborative 
Semantic (Gacto et al., 
2010) 

L P1 Regression To design an index for natural 
language context preserving to 
make it simple and more 
interpretable 

 More accurate query results 
 Results are more interpretable 

i. 1Performed application domain: Cloud (C), Network (N), and Local data on a single computer (L) 

ii. 2Type of applied data set: Public (P1), Private (P2), and Unspecified (U) 
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Table 2-1 shows that graph-based NAI indexing techniques are usually adopted to 

create indexes for graph, temporal, spatial, image, and text types of data and result in 

reduced index creation time and small index size. Graph-based NAI indexing techniques 

provide an indexing structure that aims to fasten query execution and data retrieval 

process. Bitmap indexes in the NAI category are designed for transactional and 

hierarchical data formats. Bitmap indexes do not always guarantee a low index creation 

cost in terms of index creation time and index size. Most of the applications of hashing 

are for image data indexing. Although some hashing implementations for indexing reduce 

the index size, the computational cost for index creation or initialization is not guaranteed 

with the hashing method. Therefore, graph-based indexing techniques are widespread in 

efficient data retrieval systems for various types of data sets. 

AI indexing techniques are usually adopted to index multimedia, motion, and temporal 

data. However, the KRR subcategory of AI indexing techniques is mostly used for 

annotation and text data. SC and ML indexing techniques ensure less query execution 

time and need less time in index creation, whereas initial learning for these mechanisms 

is time consuming, thereby increasing the delay to start query execution. Similarly, KRR 

indexing methods also ensure less query execution time. However, KRR implements 

semantic logic for indexing; thus, it is unsuitable for schema-based data. 

CAI indexing techniques offer collaborations of more than one mechanism for better 

indexing solution. In CML, learning methods usually adopt collaborative filtering and 

KRR methods to increase the accuracy of query results. Most CML indexing mechanisms 

are scalable, but additional computational cost is required. Similarly, CKRR-based 

indexing methods are also designed to increase the accuracy of results. For example, 

collaborative annotation (Elleuch et al., 2011) is a CKRR approach that integrates fuzzy 
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soft computing with ontology for improved semantic detection and ensures more relevant 

results for queries. 

2.2.2 Analysis of Indexing Techniques for Big Data Indexing Requirements 

In this section, we investigate indexing techniques that are discussed in Section 2.2.1. 

We analyze the fulfillment of indexing requirements related to big data by investigating 

the support of the discussed indexing techniques for each derived criterion, i.e., volume, 

velocity, veracity, variability, value, and complexity (see Table 2-2). The analysis leads 

to an assessment of the viability of these indexing techniques for big data. 
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Table 2-2: Analysis of Indexing Techniques for Big Data Indexing Requirements (Gani et al., 2015) 

Indexing Method Authors 
Big data indexing requirements4 

Volume Velocity Variety Veracity Variability Value Complexity 

Non- artificial intelligence Indexing (NAI) 

G
ra

p
h

-b
a
se

d
 

B-Tree Li, Yi et al. (2010) √ NA NA NA √ √ NA 

R+-tree Wei, Hsu et al. (2013) √ NA × NA √ NA NA 

Suffix Tree Russo, Navarro et al. (2008) √ × NA NA NA NA NA 

Graph Query Tree Cheng, Ke et al. (2011) √ √ NA NA NA NA √ 

Shortest Path Tree Maier, Rattigan et al. (2011) √ NA √ √ √ √ NA 

Red–Black tree  Yeh, Su et al. (2013) √ √ × √ NA √ √ 

Bitmap Wu, Shoshani et al. (2010) √ √ × NA √ × √ 

H
a

sh
in

g
 Hashing Zhu, Huang et al. (2013) √ × √ × NA NA NA 

Geometric hashing Mehrotra, Majhi et al. (2010) √ √ × √ √ NA √ 

Inverted index Cambazoglu, Kayaaslan et al. (2013) √ NA × NA NA NA √ 

Lazy Indexing Richter, Quiané-Ruiz et al. (2012) × NA × √ NA √ NA 

Artificial Intelligence (AI) 

Semantic Indexing 

 

Rodríguez-García, Valencia-García et al. 

(2013) 

√ NA √ √ √ √ NA 

                                                 
4 Big Data Indexing Requirements: √ = Satisfied, × = Not Satisfied, NA = Not Applicable 
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Indexing Method Authors 
Big data indexing requirements4 

Volume Velocity Variety Veracity Variability Value Complexity 

Done, Khatri et al. (2010) √ × √ √ NA NA NA 

Manifold Learning Lazaridis, Axenopoulos et al. (2013) √ √ √ √ NA NA √ 

Fuzzy Dittrich, Blunschi et al. (2011) √ √ × × NA √ √ 

Support Vector Machine Paul, Chen et al. (2013) NA NA × √ NA √ NA 

Randomized interval labeling Yıldırım, Chaoji et al. (2012) √ √ × √ √ NA √ 

Hierarchical Tree Wu, Wang et al. (2009) √ √ × √ NA NA √ 

Collaborative Artificial Intelligence (CAI) 

Collaborative Semantic Leung and Chan (2010) √ NA × √ NA √ NA 

Dieng-Kuntz, Minier et al. (2006) √ NA × NA NA √ NA 

Gacto, Alcala et al. (2010) NA NA NA √ NA NA NA 

Collaborative filtering technique Weng and Chuang (2012) √ √ √ √ NA NA NA 

Huang, Lu et al. (2012)  NA × √ × √ × 

Incremental Collaborative 

Filtering 

Komkhao, Lu et al. (2013) √ NA NA √ NA × NA 

Collaborative learning Wai-Tat (Wai-Tat, 2012) √ NA √ NA NA NA NA 

Collaborative Annotation Elleuch, Zarka et al. (2011) √ NA NA √ NA NA NA 

Big Data Indexing Requirements: √ = Satisfied, × = Not Satisfied, NA = Not Applicable 

 Univ
ers

ity
 of

 M
ala

ya



 

36 

In Table 2-2, we present an investigation of NAI, AI, and CAI indexing techniques 

based on big data indexing requirements. We show that an indexing technique satisfies 

one or more indexing requirements of big data, thereby leading a researcher to select a 

technique based on the preference for analyzed data set. 

NAI indexing techniques mostly satisfy a large volume requirement of big data. The 

suffix tree, for instance, ensures efficiency when implemented on large volume data 

supports, thereby revealing its feasibility for big data (Russo et al., 2008). Hashing (Zhu 

et al., 2013), inverted index (Cambazoglu et al., 2013), and other NAI methods also show 

their support to large volumes of data. B-Tree is capable of dealing with volume, 

variability, and value of data. Furthermore, query execution time is very low. Thus, the 

efficiency of B-Tree for big data is confirmed (F. Li, Yi, et al., 2010). 

AI-based indexing is more concerned about accuracy of results. The techniques such 

as semantic (Rodríguez-García et al., 2013) and support vector machine (Paul et al., 2013) 

show improved performance in terms of veracity and value. Rodríguez-García et al. 

(2013) obtained up to 300 different services of various data types from the ICT domain 

to validate the semantic technique results. They found an 88% precision value for 

accuracy. Therefore, we recommend choosing an AI mechanism for indexing when the 

data analysis procedure aims to show accurate results. 

The CAI methods for indexing fulfill volume, veracity, and value requirements of big 

data (Leung & Chan, 2010). The results obtained from semantic KRR indexing (Leung 

& Chan, 2010) implementation on large digital music data demonstrate the robustness, 

fault tolerance, and data retrieval efficiency of this method. 

Precisely, an indexing technique is considered efficient for big data, thereby satisfying 

volume, velocity, and variety requirements. Minimum indexing cost in terms of both 
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index creation time and index size, and minimum query execution and data retrieval time 

also prove the effectiveness of the indexing technique for big data. 

2.3 Indexing Implementation on Big Data 

In this section, we review indexing techniques that are designed to support big data 

indexing requirements as well as to facilitate query execution and search performance for 

big data. We have previously described that contemporary technologies are becoming 

inefficient to meet capture, preparation, analysis, and visualization requirements of big 

data (Kwon, Lee, & Shin, 2014). Thus, big data bring new challenges in processing such 

as quick and up-to-date responses to search queries and in-time data availability. The need 

for fast data processing and timely responses associated with big data are used to evaluate 

the performance of indexing and search process so that challenges revealed by the 

emergence of big data can be emphasized. 

Numerous solutions have been proposed by researchers to improve the efficiency of 

the search and data retrieval process for voluminous data records. Some examples are 

vertical partitioning (Jindal, Quiané-Ruiz, & Dittrich, 2011), clustered attribute-based 

indexing (Dittrich et al., 2012; Dittrich et al., 2010) for distributed parallel processing 

systems, and clustered adaptive indexing (Richter et al., 2012) for changing query 

workload. Likewise, in medical research, a batch processing-based image retrieval system 

(Zhuang, Jiang, Li, Chen, & Ju, 2015) contributes in scheduling multiple query requests; 

minimized response time is achieved when large distributed image data sets face the 

problem of multi-query optimization. Consequently, for distributed and replicated big 

data storage systems, an efficient indexing technique is needed to serve a larger number 

of queries for improved search performance. 

We categorize big data indexing techniques as clustered and non-clustered approaches 

to illustrate them effectively. Chaudhuri, Datar, and Narasayya (2004) define these 
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categories as follows: the clustered approach of indexing physically reorders data 

according to the values of indexed column(s), whereas the non-clustered approach creates 

a redundant index structure for a data set. Clustered approaches use sorting algorithms to 

reorder data, whereas non-clustered approaches use the indexing techniques as discussed 

in Section 2.1. We provide a comparative chart for both indexing categories in Table 2-3. 

Table 2-3: Comparison of Clustered and Non-Clustered Indexing 

Features Clustered Indexing Non-Clustered Index 

Process Physically sorts and stores data 
rows 

Separate structure containing key-value. Key is the 
content of indexed attribute and the value is pointer 
to the row/ indexed attribute 

No. of Indexes One replica can have one index Single replica can have as  many indexes as 
required 

Index Size Less size Separate structure needs more space. However, 
creating index is less costly than creating separate 
replica 

Index Updating Index rebuilding needs re-
ordering whole data 

Index rebuilding is easy (delete and create new) 

Data write Slow (requires re-ordering) Each index of last data block is updated 
Data read Fast (searches in sorted list) First traverses index then jumps to record 

Fast query execution and data retrieval are the main challenges for big data that are 

distributed over clusters of heterogeneous machines. Researchers are interested in 

accepting these challenges and they have focused on exploiting various methods to 

optimize search performance for such big data. To date, many indexing approaches are 

available to perform fast search operations on big data on distributed parallel systems. 

However, these approaches have unaddressed challenges. We describe both clustered and 

non-clustered indexing implementation on big data and emphasize their potential 

problems in the following subsections. 

2.3.1 Clustered Indexing on Big Data 

This section presents clustered indexing approaches for big data. Clustered indexing 

approaches are implemented over Hadoop, a framework for big data processing. These 

approaches are further categorized as static and adaptive based on the invocation of index 

creation process and the ability to update indexes. More explicitly, static indexes are 
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created at data upload time and they do not allow index updating once created. By 

contrast, adaptive indexes are the result of query execution with the flexibility to create 

as many indexes as index attributes fed by incoming queries. 

Clustered static indexes that are developed for big data offer single-attribute indexing, 

such as the Trojan index (Dittrich et al., 2010), or a varying number of index attributes, 

such as HAIL (Dittrich et al., 2012). Indexes are created on the entire data set in parallel 

with data uploading. Thus, the query execution process can be conducted immediately 

when a query is submitted because it does not invoke index creation or updating. 

However, selection of attributes to be indexed should be well considered because these 

are the only indexes that are available throughout the data search process; they cannot be 

updated later. Based on anticipated query workload knowledge, better indexes are 

created. Queries that have the same selection predicate can be executed using static 

indexes; otherwise, full scan can be performed. In the Trojan index, only one particular 

attribute is selected for indexing, whereas HAIL can extend the number of indexes up to 

the available number of replicas. We elaborate this concept in Equations 2-1 and 2-2 for 

Trojan index and HAIL, respectively. 

𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 = 1 2-1 

𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 =  𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠  2-2 

In contrast to static indexes, adaptive indexes do not offer pre-created indexes to serve 

incoming new queries. These indexes continue updating with new queries and are being 

used by repeated queries. Data blocks are replicated for each new index attribute. Lazy 

indexing (LIAH) is proposed by Richter et al. (2012) as adaptive indexing using clustered 

approach. LIAH uses an offer rate to minimize indexing I/O cost and creates as many 

indexes as suggested by incoming queries. However, future utilization of these indexes 

remains unpredictable. Similarly, from the offer rate perspective, a better tradeoff exists 

to minimize index creation overhead when the offer rate value is set to low. Nevertheless, 
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to completely index all data blocks, a low offer rate requires a larger number of 

MapReduce jobs. 

Thus, LIAH must compromise either the indexing overhead or the number of 

MapReduce jobs, thereby motivating a dynamically adapting offer rate (Richter, Quiané-

Ruiz, Schuh, & Dittrich, 2014). Query workload prediction is not required and, unlike 

static indexing, no replication factor dependency is used to consider the number of index 

attributes in both of these approaches. However, performing a full scan for each new 

query and replicating the data block for each new index attribute are the performance 

bottlenecks of LIAH. Therefore, the proposal by Schuh and Dittrich (2015) is to drop the 

indexes from existing replicas and use these replicas to create new indexes based on the 

changing query workload. 

2.3.2 Non-clustered Indexing on Big Data 

The non-clustered indexing category encompasses all indexing techniques discussed 

in Section 2.2. Among these techniques, any indexing technique that is suitable and 

efficient for the required indexing mechanism can be chosen to design an indexing 

solution for big data. To date, Apache Lucene (Białecki, Muir, & Ingersoll, 2012) is a 

great achievement in full-text indexing and searching big data with high performance. 

Apache Lucene is an open-source Java-based library that was initially introduced by 

Gospodnetic and Hatcher (2005) to create indexes for big data using the inverted index, 

which is a non-clustered indexing structure. Indexes are created using mapping of 

attributes in a document along with their location, and a pluggable mechanism is later 

applied to code and store indexes. 

Indexes created with the Lucene library are capable of being incrementally updated 

based on a user-provided list of index attributes. Thus, static indexes and adaptive indexes 

can be created any time using the Lucene indexing library. Lucene indexing is 
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implemented on Twitter data to create a breaking news detection system (Phuvipadawat 

& Murata, 2010) and to develop a social web search engine (Bouadjenek, Hacid, & 

Bouzeghoub, 2013). Implementing a non-clustered approach of indexing, Apache Lucene 

allows as many indexes for data as the number of attributes in a data set. Lucene indexes 

are very fast in query execution and take only a few seconds in processing (Kelley et al., 

2015). However, longer index creation time and separate index structure are the time and 

space overhead of Lucene indexing. 

2.3.3 Analysis of Indexing Techniques Implemented on Big Data 

In this section, we analyze clustered and non-clustered indexing implementations on 

big data. We summarize static and adaptive clustered indexing approaches in Table 2-4. 

Their method, success points, and weaknesses are detailed in this table. Furthermore, 

index hit ratio (defined in Chapter 3), which is a significant efficiency measure for 

indexing, is also described for each approach. 
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Table 2-4: Analysis of Clustered Indexing Approaches for Big Data 

Approach Method Achievements Problems/Un-addressed Index Hit Ratio 

S
ta

ti
c 

Trojan Index 
(Dittrich et 
al., 2010) 

One particular 
attribute is 
indexed and 
stored on all 
replicas 

 Index is created at data uploading 
time, no indexing cost at each 
query 

 Full scan option is still valid for 
queries on non-indexed attributes 

 Same or improved query execution 
performance as shared-nothing 
databases 

 One particular index is not sufficient 
 Indexing upfront cost is higher than running a full scan 

query 
 Index Miss ratio is very high 
 Index may be unused, increasing indexing overhead 
 Anticipated query workload knowledge is required 

before index creation 
 No mechanism for changing query workload 

 Only one 
attribute is 
indexed that is 
why all queries 
having selection 
predicates other 
than index 
attributes are 
missed 

Aggressive 
(Dittrich et al., 
2012) 

Change physical 
data layout on 
each replica based 
on index attributes 

 Reduced Index Miss Ratio up to 
number of replicas 

 Upload cost is negligible by 
utilizing un-used CPU cycles 

 Full scan option is still valid for 
queries on non-indexed attributes 

 High index upfront cost 
 No knowledge about query workload 
 Index Miss Ratio is still high 
 Indexes are replica dependent 
 Indexes may be unused by queries 

 In order to 
improve Index 
Hit Ratio, more 
number of 
replicas are 
required 

A
d

a
p

ti
v

e 

Lazy Indexing 
(LIAH) 
(Richter et al., 
2012) 

Indexing is the 
effect of query 
execution. 
Records in data 
block are 
reordered during 
scan and pseudo 
data block is 
created if 
required. 

 Adaptive to query workload 
 Query can be executed right after 

data upload 
 No Indexing upfront cost 
 Reduced indexing overhead 

because of selective block indexing 
 No additional I/O cost 
 Quick convergence to complete 

index 

 Every first time query faces full scan 
 Each new index replicates the data block and increases 

space consumption 
 Data block replicas are continuously growing with 

index creation process 
 Not all data blocks are indexed during one time query 

execution 

 Every first time 
query faces full 
scan (index hit 
ratio is NULL) 

 In order to 
improve Index 
Hit Ratio more 
number of block 
replicas are 
required 
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Approach Method Achievements Problems/Un-addressed Index Hit Ratio 

 Constant offer rate either supports indexing overhead or 
number of MapReduce jobs to completely index all data 
blocks 

Adaptive 
indexing - 
replace 
indexes 
(Schuh & 
Dittrich, 2015) 

Adaptively create 
and delete un-used 
indexes 

 Query may not result in index 
creation and help in dropping index 

 Number of continuously growing 
index replicas is reduced 

 Physical restructuring for each index is required to 
replace index 

 Data blocks are still replicated for new index and 
consume disk space 

 Index Hit Ratio is 
same as Lazy 
Indexing 
Approach 

H
y
b

ri
d

 

Eager 
Adaptive 
Indexing 
(Richter et al., 
2014) 

Introduce cost 
model for LIAH 
with varying offer 
rate. Missing 
indexes of HAIL 
are created 
adaptively 

 Static HAIL adapts to new query 
workload 

 Indexing cost is not over burdened 
 Adaptive indexing overhead is less 

than full scan 
 Quick convergence to complete 

index 

 Data block replicas are continuously growing with 
index creation process 

 Index Hit Ratio is 
improved from 
HAIL as new 
indexes are 
created runtime 
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Table 2-4 shows that clustered indexing approaches, whether static or adaptive, allow 

one index per replica and replicating the extensive volume of data for more indexes does 

not seem practical. Similarly, a better predictor to future query workload is lacking in to-

date clustered indexing advancements. Predicting future query workload may assist in 

deciding attributes to be indexed so that the costly procedure of later index updating and 

frequent data re-ordering can be avoided. 

When comparing clustered and non-clustered indexing approaches, we observe that 

although clustered indexing implementation on big data has high performance gains, 

index management and updating is not as straightforward as it should be. Changing query 

workload and requiring more indexes during the search process is natural. However, 

replicating voluminous data to create indexes is not a practical approach, which is the 

only option with clustered indexing. 

Similarly, non-clustered indexes have their own limitations. Taking extra time to 

create indexes and separate storage space comprise the overhead that is associated with 

non-clustered indexing. However, many indexing techniques are available in the literature 

(Section 2.1), thereby reducing the indexing overhead along with improving query 

execution and search performance. The Apache Lucene indexing library, for example, 

uses the non-clustered indexing approach and results in faster query execution time with 

smaller index size and least index creation time. 

We are able to identify current challenges in big data indexing from Table 2-3 by 

presenting the comparison of clustered and non-clustered indexing and in Table 2-4 by 

highlighting the problems of clustered indexing under static and adaptive methods. These 

challenges provide insights to develop an optimum indexing solution for big data. The 

following findings from the preceding review are the milestones to formulate new 
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research objectives toward the development of an improved indexing mechanism. Thus, 

efficiency in search operations over big data can be achieved with reduced index storage 

consumption and index creation time 

 Indexing is a significant process to improve data search and query execution 

performance for relatively large and growing data sets. 

 Clustered indexes are proven to result in less indexing overhead, whereas non-

clustered indexes require separate index storage space and indexing time. 

However, index updating and adding new indexes using the clustered approach 

is less convenient than non-clustered approach of indexing. 

 Overhead from indexing process is one time and becomes negligible when 

clear improvement in search performance is obtained. 

 Overall indexing overhead is somehow inversely proportional to the size of the 

data set but is directly proportional to the number of index attributes. 

 The more the number of attributes considered in indexing, the greater the 

overhead is, although the index hit ratio increases. 

 A wise selection of attributes for indexing provides a better tradeoff between 

indexing overhead and hit ratio. 

 Adaptive to changing query workload index updating also supports our prior 

claim. 

2.4 Conclusion 

This chapter reviews recent indexing advancements in the field of big data and 

emphasizes their potential problems. We define indexing requirements for big data and 

use these requirements as criteria to investigate the adequacy of contemporary indexing 

techniques for big data. We also present a review of indexing mechanisms that are 

implemented on big data to analyze their efficiency. 
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The investigation of recent indexing techniques by using big data indexing 

requirements shows that each category, i.e., NAI, AI, and CAI has distinct adaptability. 

The NAI indexing techniques support the volume of big data. As we have presented in 

Table 2-2, all NAI indexing techniques except lazy indexing have support to volume. The 

performance of NAI indexing is also justifiable for velocity and variety of big data. 

However, the AI indexing category signifies robustness and accuracy of results, and CAI 

indexing fulfils the volume requirements of big data as well. The spectrum of NAI 

indexing to support big data indexing requirements is wider than the AI and CAI indexing 

categories. 

The investigation of indexing implementation on big data shows that both clustered 

and non-clustered approaches result in a significant improvement in search and data 

retrieval performance for big data. However, both have their own design constraints. The 

clustered approach results in minimum indexing overhead because indexes are not 

separate structures. By contrast, adding new indexes needs data to be replicated, thereby 

indicating that the number of indexes for a data set is subject to availability of storage 

space to create the same number of replicas. The non-clustered approach of indexing 

creates separate index structures and requires additional storage. However, index storage 

consumption caused by the non-clustered approach remains less than the replicating data 

for adding new indexes. 

We found that indexing techniques under the NAI, AI, and CAI categories are non-

clustered approaches from which the NAI indexing techniques are more inclined to fulfil 

big data indexing requirements. We also found that the non-clustered approaches offer 

increased flexibility to create and update indexes regardless of constrained storage for big 

data. Therefore, the non-clustered approach, specifically NAI indexing, has been proven 

more effective than other methods for big data analysis environment. 
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CHAPTER 3: PERFORMANCE ANALYSIS OF INDEXING TECHNIQUES 

FOR BIG DATA  5 

This chapter aims to establish the research problem by examining the performance and 

identifying the limitations of indexing mechanisms when implemented for big data. We 

have elaborated in Chapter 2 (Table 2-2 and Table 2-3) that the non-clustered approach 

of indexing has more options to create indexes with minimized indexing overhead and 

improved search performance. Thus, in this chapter, we implement non-clustered 

indexing to explore its limitations and deficiencies. We obtain results from experiments 

and present the overhead caused by performing indexing in terms of indexing time and 

index size. Moreover, we examine the search and data retrieval time for MapReduce jobs 

and indexed jobs. 

This chapter consists of three sections. Section 3.1 presents the experimental setup and 

data collection method used in problem analysis. Section 3.2 presents the results and 

discusses the reported results. Section 3.3 concludes the chapter. 

3.1 Experimental Setup and Data Collection 

In this section, we describe the experimental setup and data design. We investigate the 

performance of indexing implementation on big data. The experimental setup to conduct 

analysis consists of hardware and software specifications of used devices, whereas data 

design includes performance metrics, description of data set, and data collection process. 

We implement the indexing mechanism on the big data processing framework and 

analyze the effect of indexing on data retrieval performance. We verify the query 

                                                 
5 The work presented in this chapter is partially obtained from the following research contribution: 

Siddiqa, Aisha, Karim, Ahmad, Gani, Abdullah, & Chang, Victor.  On the analysis of big data indexing 
execution strategies (2016). Journal of Intelligent and Fuzzy Systems 
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processing latencies that are observed in current big data processing systems and identify 

the overhead and inefficiency of indexing structures for big data. 

3.1.1 The Model 

We present the experimental model that we have used for performance evaluation. We 

select Hadoop, a big data processing framework that comprises the MapReduce 

programming model, to execute a job in a distributed parallel manner that supports a 

tremendous amount of big data. We use the distributed file system incorporated with 

Hadoop (HDFS) for storing and managing data sets in the form of files. 

 

Figure 3-1: Experimental Model 

We demonstrate our experimental model in Figure 3-1. In this analysis, we establish a 

test bed that comprises four physical commodity servers and configure the Hadoop four-

node cluster. The master–slave cluster comprises four slave nodes; one of these slaves 

also acts as a master. We configure the respective MapReduce and HDFS daemons that 

are required for data processing and storage. 

As shown in Figure 3-1, we use Hive and Lucene to execute queries on full scan and 

indexed search environments, respectively. We configure Hive warehouse over Hadoop, 

which offers full scan execution of SQL-like queries on big data using Hive Query 

Language (HQL). We use the Apache Lucene indexing library to execute queries with 

indexes. The two query execution environments of our experiment, i.e., full scan and 

indexed search, are explained as follows: 
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 Full Scan 

The full scan environment for query execution over the Hadoop framework is the 

process of executing the MapReduce job on slave nodes to perform search and retrieval 

operations on big data. We use the Hive warehouse to execute queries in the full scan 

environment. 

MapReduce divides a job into small tasks that use map, combine, and reduce functions. 

Each map function generates the results in the form of <key, value> pairs for the records 

that match the query. The combine function merges the records based on query 

requirements. Finally, the reduce function uses the output generated by map and combine 

functions across all TaskTrackers and concatenates the results. The output of the reduce 

task is the overall output that contains the retrieved data for a query. 

 Indexed Search 

The indexed search environment uses indexes to perform query search operation. We 

use the Apache Lucene library, which is highly efficient in creating indexes and 

performing data retrieval operations on big data using indexes. Apache Lucene utilizes 

inverted indexing that is a non-clustered NAI indexing approach. We use index creation 

and query execution program codes written in Java when importing the library.  

 

Figure 3-2: Indexed Search Query Execution 
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The process of indexed search using Lucene is elaborated in Figure 3-2. We apply 

necessary pre-processing on data before storing the data in HDFS. For instance, attributes 

or columns in records may have different separators such as space, comma, tab, or others. 

During pre-processing, we convert the separators into commas (CSV). 

We perform index creation on data that we have uploaded in HDFS as data files. The 

process begins by creating an object in the memory where indexes are created. The data 

file is then read from HDFS and the indexes are stored as index files. We store these index 

files in HDFS for further utilization. 

We perform indexed search for query execution by loading index files in a memory 

object from HDFS. Search operations to obtain required data are performed based on the 

selection predicate that is specified in query. In Lucene indexes, index files store the 

pointers only for the records for which the indexes are created. Therefore, data can be 

retrieved only for those data attributes that are included in index files. Thus, all attributes 

are required to be indexed to retrieve the entire record from the file. 

3.1.2 Performance Measures 

This subsection presents the metrics that we have used to analyze the performance of 

full scan and indexed search operations. Index size, indexing time, and search 

performance are the conventional metrics used in research to analyze indexing. However, 

index hit ratio is also useful for big data indexing when creating indexes on all attributes 

is not feasible. The description of performance metrics is provided as follows: 

 Index Size (MB): Index size is the space that is required by the index in memory 

and/or on storage. Many factors affect index size, such as the number of non-

empty values for an index attribute and the size of these values. Index size is an 
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overhead on actual size of big data sets and therefore, index size is recommended 

to be very small. 

 Indexing Time (sec): Indexing activity takes time when applied to big data sets. 

However, users appreciate minimum delays. This delay is calculated as indexing 

time, known as index creation time. Similar to a small index size, short indexing 

time is appreciated. 

 Search Time (sec): Search time measures the time required to execute a query and 

retrieve data. The search space that is offered by indexing is less and more 

structured than the actual data search space, which is used by full scan. Therefore, 

a minimized time to execute queries and retrieve data is achieved. 

 Index Hit Ratio: We introduce index hit ratio to examine the rate of incoming 

queries that are served by indexes. Index hit ratio is the ratio of queries that hit the 

index during execution. In attribute-based indexing, where all attributes of data 

are not indexed because of increased indexing overhead (i.e., index size and 

indexing time), the index hit ratio is significant to ensure that maximum incoming 

queries are executed with these indexes. We calculate the index hit ratio using the 

following equation: 

𝐼𝑛𝑑𝑒𝑥 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑑𝑒𝑥 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 3-1 

3.1.3 Data Set Used 

We use varying size data sets in our experiment to determine the behavior of index 

operations on different workloads. For this purpose, we obtain TIGER data sets (Eldawy 

& Mokbel, 2015), which contain the spatial features of geographical areas. These data 

sets offer flexibility of observation as they vary in size, No. of records, No. of attributes 

and No. of created blocks and allow to analyze the impact of varying characteristics of a 

data set on obtained results. Later, the results have shown that the characteristics other 
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than data set size also influence the performance of indexing and search operations. Table 

3-1 summarizes the data sets. 

Table 3-1: Data Sets 

Data Sets Data Size  No. of Records No. of 

Attributes 

No. of Blocks 

Primary Roads 77.1 13373 10 2 
Area Landmark 406 121960 15 7 
Tabulation Area 1,600 33144 15 25 
Area Hydrography 6,460 2298808 16 104 
All Edges Combined 16,220 19291957 37 260 
Linear Hydrography 18,270 5857442 11 293 

We leverage six different data sets from the TIGER database to collect results for data 

sets with varying sizes. Each data set differs in size and number of records. As shown in 

Table 3-1, data sets have varying numbers of blocks depending on data set size. The 

primary road data set (77.1MB) is the smallest in our experiment. It comprises 13,373 

records and HDFS has stored the primary road data set in two blocks. Table 3-1 

summarizes the information of each data set in which linear hydrography (18,270) is the 

largest with 5,857,442 records and comprises 293 blocks in HDFS. 

3.1.4 Data Collection Tools 

To obtain accurate results for each parameter, we design data collection tools carefully. 

We collect data for index size and data set size from the user interface to browse the file 

system, whereas data for time is collected from the console and stopwatch Apache API. 

We upload each data set in Hive warehouse from the local disk by running the HQL 

command in the console; the time taken to run this command is the data upload time. We 

perform full scan operation using HQL command in the console and note the time as the 

full scan search time. The stopwatch Apache API returns the time for indexed search 

operations (i.e., indexing time and searching time). 
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3.2 Results and Discussion 

In this section, we present and discuss the results of our experiments. We provide the 

results of indexing overhead in terms of index size and indexing time. We perform search 

operation on both full scan and indexed environment to observe the effect of indexing for 

big data. The experiment incurs an out-of-memory error when creating indexes for the 

all-edges combined data set, thereby showing that the indexing code uses more memory 

than available at the physical machine during this experiment. Therefore, we are unable 

to obtain results for this set. 

We compare the results of index size with the data set size, indexing time with data 

uploading time, and indexed search time with full scan search time. Given that we have 

implemented non-clustered indexing, we compare the index hit ratio of non-clustered 

indexing with the clustered indexing approach. 

An interesting observation from the execution of Apache Lucene indexing is that the 

success of index creation process depends upon the available main memory size (i.e. 

RAM). We have shown in Figure 3-2 that data set is loaded into main memory to create 

indexes. The experiment returns out of memory error whenever heap size cannot 

accommodate a data set. For instance, Apache Lucene library fails to create indexes for 

All Edges Combined data set (see Table 3-2 and Table 3-3). Therefore, our performance 

analysis is limited to six data sets where data set size remains under heap size. 

3.2.1 Index Size Results 

We present the results of index size and index size overhead. As shown in Table 3-2, 

two observations are related to index size. First, index size grows with data set size. We 

have chosen data sets that grow in size. The results show that the index size is also 

growing. Index size overhead demonstrates the percentage of growth in data set size 
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because of indexing. Second, index size grows with the number of attributes to be 

considered for indexing (i.e., index attributes). We consider up to five index attributes for 

each data set to observe the effect of increased number of index attributes.  
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Table 3-2: Index Size Results 

Data Sets Data Size 

(MB) 

Index Size for varying No. of Index Attributes Index Size Overhead (%) 

1 2 3 4 5 1 2 3 4 5 

Primary Roads 77.1 0.36 0.67 0.96 1.24 1.53 0.46 0.86 1.23 1.58 1.94 
Area Landmark 406 2.39 5.55 6.27 8.11 9.05 0.58 1.34 1.51 1.95 2.17 
Tabulation Area 1,600 0.92 1.78 2.60 3.47 4.30 0.05 0.11 0.16 0.22 0.27 
Area Hydrography 6,460 28.51 39.92 57.95 82.57 185.17 0.43 0.61 0.88 1.26 2.78 
All Edges 
Combined 

16,220 Out of memory Error - - - - - 

Linear Hydrography 18,270 114.25 136.64 294.78 329.55 369.93 0.62 0.74 1.58 1.77 1.98 
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The results for the primary road data set (77.1 MB) show that index size are 0.36, 0.67, 

0.96, 1.24, and 1.53 MB for one to five indexes, respectively (Table 3-2). Thus, index 

size overhead for the primary road data set increases from 0.46% to 1.94%. The area 

landmark data set (406MB) has an initial 2.39MB index size for one index attribute; this 

size grows with the number of index attributes to 5.55, 6.27, 8.11, and 9.05MB for five 

index attributes, and the overhead reaches 0.58% to 2.17%. We also present the index 

size results for up to five attributes for tabulation area (1600MB), area hydrography 

(6460MB), and linear hydrography (18270MB) in Table 3-2.  

Table 3-2 also shows that the index size overhead from the primary road data set 

(77.1MB) to linear hydrology data set (18,270MB) is almost similar and less than 3%. 

However, the index size overhead is smallest (~0.3%) for the tabulation area data set 

(1600MB). The reason is that the tabulation area data set contains the smallest number of 

records, as presented in Table 3-1. Fewer records in larger size data set is also significant 

in index size; thus, the index size overhead becomes very low. Collectively, index size 

overhead results show that the memory-based indexes created by Lucene are very small 

and that the size overhead does not reach more than 3%. 

 

Figure 3-3: Index Size comparison with Data Set size and Number of Index 

Attributes 
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We also present index size results in plotted form for better elaboration for an 

increasing number of index attributes in Figure 3-3. The bars show that index size is 

considerably less than the data set size; for area landmark and tabulation area data sets, 

the index size is almost invisible. Figure 3-3 also shows that the index size for one or two 

index attributes is almost invisible and slightly grows when the number of index attributes 

is increased. 

 

Figure 3-4: Index Size Overhead for varying number of Index Attributes 

We present the percentage growth of index size overhead in Figure 3-4. The least index 

size overhead is for the tabulation area data set and is almost parallel to x axis. The 

overhead for other data sets is also very low and the effect of adding more attributes in 

index creation is not very high. Figure 3-4 also shows that for each data set, although the 

overhead increases with the number of index attributes, it is still less than 3% of the actual 

data set size for five index attributes. 

The index size increases with data set size. The results show that indexing activity 

increases the storage space requirements for data sets. The index size mainly depends on 

the size of the data set. The results have proven that for large data sets, the index size is 

also large.  

Another important factor that affects index size is the number of records in a data set. 

A data set may be very large while having a certain number of records, i.e., the tabulation 

area data set (1600MB) comprises 33,144 records. By contrast, the area landmark data 
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set (406MB), which is smaller than the tabulation area data set, contains 121,960 records. 

Given the small number of records in the tabulation area data set, the index size is always 

observed as less than the area landmark data set (Table 3-2).  

The content size and number of occurrences of an index attribute also contribute to the 

index size. The results for area hydrography data set (6460MB) show a slight increase in 

index size when created for the first four index attributes. The index size grows almost 

linearly for up to four index attributes, i.e., 28.51, 39.92, 57.95, and 82.57MB. However, 

when a fifth index attribute is added, an abnormal increase in index size occurs, i.e., 

185.17MB. The increase in index size with the fifth index attribute shows that only 

increasing the number of index attributes is not the reason. The reason is that either the 

content size of the fifth index attribute is higher than that of the first four index attributes 

or that the number of occurrences is very high. 

The factors that affect the index size for a data set are not completely under the control 

of an indexing mechanism. The index size mostly depends on the nature of the data set. 

However, an efficient indexing mechanism that offers a structure with reduced index sizes 

even when more index attributes are considered, is preferable. 

3.2.2 Indexing Time Results 

We present the results of indexing time and overhead in this section. Indexing activity 

increases the delay to start query execution. We indicate this delay as indexing overhead. 
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Table 3-3: Indexing Time Results 

Data Sets Data 

Upload 

Time 

Indexing Time for varying No. of Index Attributes Indexing Time Overhead (%) 

1 2 3 4 5 1 2 3 4 5 

Primary Roads (77.1 MB) 7.71 10.00 10.27 10.39 10.44 10.68 56.47 57.11 57.40 57.53 58.07 

Area Landmark (406 MB) 39.28 405.04 409.94 410.55 414.91 415.29 91.16 91.25 91.27 91.35 91.36 

Tabulation Area (1,600 MB) 151.88 152.79 153.21 154.01 154.21 154.57 50.15 50.22 50.35 50.38 50.44 

Area Hydrography (6,460 MB) 703.41 720.30 726.58 732.99 733.70 739.90 50.59 50.81 51.03 51.05 51.26 

All Edges Combined (16,220 

MB) 
1773.66 Out of memory Error - - - - - 

Linear Hydrography (18,270 

MB) 
1984.72 1695.56 1696.85 1757.67 1759.03 1764.55 46.07 46.09 46.97 46.99 47.06 
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Table 3-3 shows the indexing time and indexing overhead results. Indexing on the 

primary road data set (77.1 MB) takes 10, 10.27, 10.39, 10.44, and 10.68 s for one to five 

index attributes, respectively. Thus, indexing time overhead for the primary road data set 

increases from 56.47% to 58.07%. Area landmark data set (406MB) initially takes 405.04 

s for one index attribute that respectively grows with the number of index attributes to 

409.94, 410.55, 414.91, and 415.29 s for five index attributes; the overhead reaches 

91.16% to 91.36%. Similarly, the indexing time for up to five attributes for tabulation 

area (1600MB), area hydrography (6460MB), and linear hydrography (18270MB) are 

also shown in Table 3-3. 

Table 3-3 also shows that indexing time overhead for all data sets is almost similar, 

which ranges from 45%–60%, except for the area landmark data set (406 MB). Indexing 

time overhead for the area landmark data set with varying number of index attributes is 

very high (~92%). The reason is that the area landmark data set contains a large number 

of records (i.e., 121,960), as shown in Table 3-1. Thus, creating indexes using the Lucene 

library results in very long delays (up to 60%), which may increase when a large number 

of records are present in a data set.  

 

Figure 3-5: Indexing Time comparison with Data Upload Time and Number of 

Index Attributes 

We visualize the indexing time results in a bar chart. Figure 3-5 presents the results of 

indexing time with respect to data uploading time and number of index attributes. The 
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bars show that index time is slightly higher than data upload time for primary roads, 

tabulation area, and area hydrography data sets. By contrast, for the linear hydrography 

data set, indexing time is slightly less than data upload time. However, for all these data 

sets, indexing takes almost the same time as data upload time. Indexing time is only high 

for the area landmark data set. Figure 3-5 also shows that indexing time slightly increases 

as the number of index attributes for each data set increases. 

 
Figure 3-6: Indexing Time Overhead for varying number of Index Attributes 

Figure 3-6 presents the effect of increasing number of index attributes on indexing 

time overhead where the indexing overhead for the area landmark data set is highest. The 

indexing overhead for other data sets ranges from 40%–60%. The lines that indicate 

indexing time overhead for each data set are almost linear, thereby indicating that the 

increasing number of index attributes does not have a significant effect on indexing time 

overhead. Therefore, this analysis indicates that considering more index attributes has a 

linear increase in indexing time overhead. 

Two observations that relate to indexing time are found. First, indexing takes more 

time for larger data sets. To prove this observation, we chose data sets with different sizes; 

the indexing overhead shows that the percentage increased the delay with a growing 

volume of data sets. Second, indexing time increases with the number of index attributes. 
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However, the rate of increase in indexing time caused by the number of index attributes 

is very low.  

Indexing time results also show that indexing activity increases the delay between 

uploading data and starting query execution. Creating indexes using the Lucene library 

needs almost same time as does uploading data. Thus, the delay is two times higher than 

the full scan to perform indexed search operation. 

Another significant observation from Figure 3-6 is that the number of records in a data 

set also affects indexing time. Indexing time overhead is less for a data set that has fewer 

records even when the size of the data set is larger (i.e., a tabulation area data set of 

1600MB that comprises 33,144 records) than indexing time overhead caused by area 

landmark data set (Table 3-3). The indexing time overhead increases because of a higher 

number of records in the area landmark data set. The reason is that the indexing process 

reads records individually in the index creation process (Figure 3-2). 

The discussed factors affect the indexing time. A larger data set size, a higher number 

of index attributes and a higher number of records in a data set increase the indexing time. 

Therefore, an indexing mechanism is needed that considers these factors and offers 

minimized time consumption in the index creation process. 

3.2.3 Search Time Results 

In this section, we present the results of search time that were taken by full scan and 

indexed search. We show the query execution time results obtained from full scan and 

indexed search and compare the improved search performance of indexed search. 

Table 3-4: Search Time Results 

Data Sets 
Search Time Search Performance 

(%) Full Scan Indexed 

Primary Roads (77.1 MB) 9.60 1.29 86.57 
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Area Landmark (406 MB) 31.85 1.40 95.60 
Tabulation Area (1,600 MB) 21.84 2.54 88.37 
Area Hydrography (6,460 MB) 63.69 2.97 95.34 
All Edges Combined (16,220 MB) - No index - 
Linear Hydrography (18,270 MB) 183.00 2.98 98.37 

Table 3-4 presents the results of query execution and search performance. For the 

primary road data set (77.1 MB), full scan takes 9.60 s in searching, whereas indexed 

search time is decreased to 1.29 s. Thus, search performance improvement with indexing 

is 86.57% for the primary road data set. Similarly, search time results with full scan are 

31.85, 21.84, 63.69, and 183.00 s for other data sets such as area landmark (406 MB), 

tabulation area (1600 MB), area hydrography (6460 MB), and linear hydrography (18270 

MB), respectively. Search time with indexed search results are 1.40, 2.54, 2.97, s and 

2.98s, respectively, for these data sets.  

Table 3-4 also shows that search time is significantly reduced for each data set when 

indexed search is applied and search performance is improved to 95.60%, 88.37%, 

95.34%, and 98.37%. Search performance improvement is more than 86% with indexed 

search; it gradually increases with larger size data sets except for tabulation area data set 

(1600 MB), which is 88.37%. Although performance is high, it is not as much as that 

obtained with other data sets. The reason is that the tabulation area data set takes 

significantly less search time with full scan because of fewer records, whereas indexed 

search takes a normal amount of time. Thus, overall search performance has not 

increased. The search time is significantly reduced with Lucene indexes and search 

performance increases with larger size data sets such as indexed search takes 2.98s for 

Linear Hydrography data set that is largest data set in our experiment. 
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Figure 3-7: Search Time Comparison between Full Scan and Indexed Search 

Figure 3-7 shows the search time results in both full scan and indexed search cases for 

all data sets. Full scan bars show that search time increases with data set size. However, 

full scan search time is 21.84 s for tabulation area data set (1600 MB), which is less than 

the full scan search time taken by a smaller size data set, i.e., area landmark (406 MB) 

because of the small number of records in tabulation area data set. Indexed search bars 

are very small in Figure 3-7, thereby showing that search time with indexed search is very 

low for all data sets. The size of data set has a very small effect on indexed search time. 

 

Figure 3-8: Improved Search Performance with Index Search 

Figure 3-8 shows that search performance improvement with indexed search is more 

than 86% of full scan. This performance increases with data set size. The primary road 

data set (77.1 MB) is smallest in our experiment, for which the search performance gains 
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are 86.57%. Search performance is respectively improved to 95.60%, 88.37%, 95.34%, 

and 98.37% with growth of data set size, i.e., area landmark (406 MB), tabulation area 

(1600 MB), area hydrography (6460 MB), and linear hydrography (18270 MB).  

One interesting observation from query execution and search performance is that 

search time increases with data set size in both full scan and indexed search cases. 

However, the increase in indexed search time is less than the full scan search time. We 

chose data sets with varying sizes to prove the indexed search performance improvement. 

The second observation is related to performing queries to retrieve data for non-

indexed attributes. Lucene performs search for only indexed attributes; Lucene is unable 

to retrieve data for non-indexed attributes. Therefore, we executed queries that have 

indexed attributes as both selection predicates and search predicates. When entire records 

are retrieved using Lucene indexing, all attributes must be indexed. 

Search time results show that indexing activity minimizes query execution time, 

thereby improving overall search performance. Performing indexed search via Lucene 

indexing takes significantly less time than does full scan search. A large data set that 

comprises a higher number of blocks needs more map and reduce jobs to perform data 

search and retrieval operation. However, indexing reduces the search space, thereby 

resulting in very quick responses. The results have proved that the search time is more 

than 86% improved with indexed search. 

The results also show that performance improvement is more than indexing overhead, 

which is a positive aspect of Lucene indexing. Indexing overhead results show that 

indexing increases roughly 3% size of a data set and takes 40%–60% more time than data 

uploading. However, the search performance improvement of indexing is more than 86%, 

thereby proving that usefulness of indexing is more than the cost of indexing. 
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3.2.4 Index Hit ratio 

In this section, we present the results of index hit ratio for varying numbers of index 

attributes. We show that regardless of the data set size, considering a higher number of 

attributes in index creation increases the index hit ratio. 

Table 3-5: Index Hit Ratio Results 

Data Sets Data Size 

(MB) 

No. of data 

Attributes 

Index Hit Ratio for No. of Index 

Attributes 
1 2 3 4 5 

Primary Roads 77.1 10 0.1 0.2 0.3 0.4 0.5 
Area Landmark 406 15 0.07 0.13 0.20 0.27 0.33 
Tabulation Area 1,600 15 0.07 0.13 0.20 0.27 0.33 
Area Hydrography 6,460 16 0.06 0.13 0.19 0.25 0.31 
Linear Hydrography 18,270 11 0.09 0.18 0.27 0.36 0.45 

Table 3-5 shows the results of index hit ratio for all data sets. The primary road data 

set (77.1 MB) comprises 10 data attributes and the index hit ratio for up to five index 

attributes is 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The index hit ratios for both area 

landmark (406 MB) and tabulation area (1600 MB) data sets is the same for the five 

attributes, which are 0.07, 0.13, 0.20, 0.27, and 0.33, respectively. The reason is that both 

data sets have an equal number of data attributes. The index hit ratio for area hydrography 

(6460 MB) and linear hydrography (18270 MB) are also shown in Table 3-5 with respect 

to an increase in the number of indexed attributes. 

The index hit ratio for each data set linearly increases with the number of index 

attributes. The index hit ratios for primary roads and linear hydrography data sets are 

higher than those of the other data sets. Meanwhile, the index hit ratios are the same for 

both area landmark and tabulation area data sets, whereas area hydrography has a slightly 

higher index hit ratio. The index hit ratio only considers the number of index attributes 

and total number of attributes in a data set. Therefore, the ratio increases with a higher 

number of index attributes and decreases with a higher number of total attributes in a data 

set. 
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Figure 3-9: Index Hit ratio Comparison with varying No. of Index Attributes 

We visualize the index hit ratio for all data sets with varying number of index attributes 

in Figure 3-9. The index hit ratio of the primary roads data set for each index attribute is 

the highest among all data sets. The bars for the area landmark and tabulation area data 

sets show equal index hit ratios at each number of index attributes, whereas this ratio is 

slightly low for the area hydrography data set. Similarly, the index hit ratio of linear 

hydrography at each number of index attribute is slightly lower than the primary roads 

data set.  

Index hit ratio depends on the number of attributes in a data set instead of size or other 

features of a data set. We used a fixed number of index attributes for each data set in our 

evaluation. The number of index attributes for a data set can be increased to achieve 

higher index hit ratios. However, an increasing number of index attributes has an obvious 

effect on index size and indexing time. Therefore, the selection of attributes to be 

considered in indexing is crucial. 

3.3 Conclusion 

In this chapter, we investigate the effect of clustered indexing for big data in terms of 

indexing overhead and search time performance. We found that indexing improves search 

performance when increasing overhead on data size and data uploading time.  
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The results of investigation proved that indexes created using the Lucene library 

improve data search performance by at least 86% and that the performance is improved 

for larger data sets. However, adding an attribute to be indexed increases overall index 

size and index size overhead on the data set size. Moreover, increasing the number of 

index attributes also increases indexing time as well as indexing time overhead on data 

upload time. Furthermore, the results indicate that indexing time depends on the number 

of records in a data set and that indexing time overhead is very high (i.e., 40–60%) 

compared with index size overhead (i.e., ~3%). Therefore, indexing time reduction can 

make the indexing process more appealing for big data users because the delay to start 

query execution is minimized. 

We also identified that creating more indexes increases the index hit ratio if incoming 

query workload is supposed to be equal for all attributes. The results have proved that 

adding to index attributes linearly increases the index hit ratio. However, assuming that 

the query workload is equal for all attributes is unrealistic. Query workload may be 

irregular and may vary from time to time. Thus, creating indexes only before starting 

query execution is not practical. Therefore, an adaptive to query workload indexing along 

with one-time static indexing can increase the index hit ratio. 
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CHAPTER 4: SMALLCLIENT FOR BIG DATA: PROPOSED INDEXING 

FRAMEWORK 6 

This chapter presents the proposed indexing framework for big data. The framework 

aims to attain minimized indexing overhead in terms of index creation/updating time and 

index size, reduced data retrieval time with faster query execution, and maximum index 

hit ratio by predicting the future workload of incoming search queries. Our indexing 

framework, named SmallClient, uses a non-clustered NAI indexing approach to perform 

efficient indexing and query execution process on big data sets. The implemented 

indexing approach is efficient in reducing indexing overhead with an increase in the 

number of index attributes. Furthermore, SmallClient offers predictor logic to adaptively 

update indexes, thereby achieving an improved index hit ratio. 

This chapter consists of the following six sections: Section 4.1 introduces the proposed 

indexing framework and Section 4.2 presents the system architecture and explains the 

process flow of how SmallClient interacts with the user and the underlying file system. 

Section 4.3 describes each module of SmallClient. Section 4.4 presents the mathematical 

model for the proposed framework. Section 4.5 highlights its prominent features and 

Section 4.6 concludes the chapter. 

4.1 SmallClient Indexing Framework 

We propose SmallClient for indexing big data. SmallClient is a generalized compact 

framework to address data search and query execution operations over contemporary 

                                                 
6 The work presented in this chapter is partially available in following research papers: 

Siddiqa, A., Karim, A., & Chang, V. (2016). SmallClient for big data: an indexing framework 
towards fast data retrieval. Cluster Computing, 1-16. doi:10.1007/s10586-016-0712-4 

Siddiqa, A., Karim, A., & Chang, V. Modelling SmallClient indexing framework for big data 
analytics. Supercomputing (Under Review) 
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distributed file systems such as HDFS. We adopt B-Tree, which is a non-clustered NAI 

indexing approach to create separate, easily manageable, and updatable index structure. 

SmallClient deals with the problems of both clustered and non-clustered approaches that 

are identified in Chapter 3. SmallClient offers maximum possible indexes for big data 

sets. SmallClient also enables creating indexes for each data block instead of the entire 

data set, thereby making the indexes manageable as data volume grows. 

SmallClient solves the problems of contemporary clustered indexing approaches for 

big data. As identified in Chapter 3, the number of indexes that use the clustered indexing 

approach is constrained to the number of replicas. However, available storage capacity 

may not allow creating many replicas for big data sets. Thus, only a limited number of 

indexes can be created. As a result, all incoming queries may not use available clustered 

indexes. In addition, the overall index hit ratio is very low. The clustered approach 

performs physical data reordering to update the index list, thereby resulting in high 

computational cost. SmallClient implements the non-clustered indexing approach in 

which indexes are separately manageable structures. Separate indexes that are created via 

SmallClient are independent from the number of replicas for a data set. Therefore, when 

using SmallClient, increasing the number of attributes for indexing has no limit. 

SmallClient considers the limitations of recently deployed non-clustered indexing 

approaches. The problem with existing implementation of non-clustered indexing on big 

data is that indexing time overhead and index size overhead are very high. SmallClient 

uses specialized procedures to reduce the indexing overhead. Existing approaches use the 

data set as a whole and incur out-of-memory errors, whereas SmallClient offers index 

creation for separate data blocks. Thus, memory utilization for index creation is very low. 

The proposed big data indexing framework comprises procedures that are related to 

creating static indexes based on user-specified lists of attributes, offering a query 
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execution platform, and adaptively updating pre-created indexes with the passage of 

query execution. In addition to indexing, SmallClient offers a block creation procedure 

that creates blocks for data sets to avoid tuple rupturing during the filling of a block 

container. Consequently, novel procedures to perform data retrieval operations enable 

SmallClient to outperform existing big data indexing mechanisms. 

 

Figure 4-1: Proposed indexing framework, SmallClient 

Figure 4-1 presents the framework of our proposed indexing client, SmallClient. We 

decompose our client into three modules: the first is designed to create data blocks that 

split data into smaller manageable chunks and uploads these series of chunks as data 

blocks to a file system. We present index creation design as a second module that uses 

the B-Tree NAI technique of non-clustered indexing. The predictor function is used to 

update indexes adaptively based on query workload. The third module offers query 

execution procedure to retrieve required data and shows improved search performance 

for large data sets. 

4.2 The Architecture 

In this section, we present the system architecture and process of a distributed file 

system in which SmallClient facilitates data retrieval operation as an intermediate layer 
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between user interface and file system. In this section, we describe the process of each 

layer and present the interaction of SmallClient with other layers. The systematic layered 

visualization of data retrieval system is depicted as Figure 4-2. 

 

Figure 4-2: The Architecture for SmallClient 

We present a file system data retrieval architecture for SmallClient in Figure 4-2. 

SmallClient is an intermediate layer between user input/output and file system layers to 

support the data retrieval process by offering indexes on attributes that are most expected 

to be the selection predicates of incoming queries. SmallClient receives queries from user 

as input, loads relevant indexes from the file system, traverses these indexes to find the 

location of data, and retrieves required data from the location returned by indexes. 

The first layer is the user interface layer from which the user interacts with 

SmallClient. The user provides the data set location and its schema and invokes the block 

creation module to upload this data. The user can also provide index attributes along with 

data to create static indexes during data uploading. However, index creation can be 
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invoked any time if the data are already in the file system. The user submits a query to 

SmallClient for data retrieval and obtains the required data from the user interface layer. 

The second layer of the architecture contains the procedures of the SmallClient 

framework. This layer performs block creation, index creation, and query execution 

processes. The block creation module takes data as user input, reads data records 

individually, and fills them in the block buffer and then uploads the blocks to the file 

system. The index creation module takes data blocks and index attributes as input either 

from the user or from the file system to extract <key, value> pairs, generates metadata for 

each index, and uploads indexes and index metadata to the file system. The query 

execution module takes queries as input, uses indexes for data search if indexes are 

available, and returns requested data to the user if found in the data set. The query 

execution module updates the query log after processing each query. The predictor uses 

the query log to analyze past query trends and decides to update indexes by predicting 

future query workload. 

The third layer is a file system layer that comprises files and file system information 

that are involved in different SmallClient processes. Files contain data blocks and 

supporting content for a data set such as block metadata, schema, index metadata, indexes, 

and query log. These files reside in storage nodes. The file system replicates files for a 

data set based on its available replication factor information. SmallClient also uses file 

system information to access the file system. This information provides basic statistics of 

nodes and directories in a file system. 

4.3 Framework Modules 

This section presents a brief description of all components of the SmallClient 

framework. As described earlier in this chapter, the SmallClient indexing framework has 

three execution modules: block creation, index creation, and query execution. In this 
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section, we describe each module in detail. We further explain static and adaptive 

indexing and predictor logic offered by SmallClient. 

4.3.1 Block Creation 

In this section, we elaborate the block creation and data uploading process module of 

SmallClient. Contemporary big data processing systems offer distributed storage for big 

data when voluminous data are handled as small chunks. These chunks or data blocks are 

manageable pieces of large data sets. Each big data storage system has its own data 

splitting mechanism in which data block size and location to store each block is decided. 

Data uploading time should be very low for an efficient block creation process with 

minimum storage overhead on actual size of data set. 

HDFS also has a unique block creation policy. HDFS uses contiguous bits from data 

to create blocks. The last record in a block usually faces breakage when HDFS splits data 

into fixed size blocks. In HDFS, the storage of two blocks that contain this broken record 

on a single site is not expected. Therefore, HDFS incurs high processing cost to access 

more than one node to retrieve the broken record. 

We propose our own block creation method to avoid the processing costs that are 

associated with accessing multiple sites for a single broken record. Our proposition to 

place distinct records on a single site, thereby decreasing the time required to access the 

resulting records. We introduce block creation such that the last record in a block is never 

split. 
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Figure 4-3: Block Creation Process 

Figure 4-3 presents the block creation process of SmallClient. The block creation 

module starts reading records and stores these records in a temporary container with a 

pre-defined block size until the container does not have any capacity to store more bytes 

with larger record size. This container is uploaded to a file system as a block of a data set. 

All blocks are created and uploaded one by one as a data set to the file system. For the 

last block, the container continues to store records until the end of the file, and this 

container is handed over to the file system for storage. 

SmallClient offers adjustable block size and replication factor for a data set during 

block creation. The block size should be adjusted such that a minimum space remains in 

a block after the records are kept. The size of records may be sufficiently large. When the 

default block size of HDFS is utilized, a significantly large unused space may exist in 

each block and the overall size of uploaded data for a data set increases. Therefore, having 

an adjustable block size reduces unused space in each block.  

SmallClient also offers an adjustable replication factor so that users can specify the 

number of replicas for a data set. A better tradeoff between available storage nodes and 

data size should be achieved by adjusting the replication factor for a data set based on 

storage capacity and data availability requirements. The block creation module incurs 

data size and uploading time overhead unlike the HDFS data uploading process. The 
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overhead on data size is due to the additional unused space in blocks caused by storing 

variable size records in fixed-sized blocks, whereas uploading time overhead is incurred 

with additional time required to read records of a data set. However, this overhead is 

minimized for larger data sets, which requires a longer time for HDFS to upload. 

4.3.2 Index Creation 

This section discusses the index creation process module of SmallClient. Indexes are 

relatively a small search space for a data set to determine the location of required data. 

To improve query execution and data search performance for big data, fast traversable 

indexes with minimum indexing overhead must be created. 

The SmallClient index creation module solves the problems of both clustered and non-

clustered approaches, as highlighted in Chapter 3. SmallClient uses B-Tree structure for 

indexing, which is a non-clustered NAI indexing technique to overcome the replica 

dependency problem of clustered approach, thereby resulting in maximized index hit 

ratio. The B-Tree structure ensures less indexing time and size overhead than the existing 

inverted index approach, which is implemented by Lucene library for big data indexing. 

Thus, indexing overhead is minimized, query execution performance is improved, and 

index hit ratio is increased.  

 

Figure 4-4: Index Creation Process 
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The index creation process is presented in Figure 4-4. The process begins by obtaining 

the list of attributes (i.e., index_attr_list) either from users or from predictors for which 

indexes should be created. This list is further verified with a schema of data set to ensure 

that the provided attribute names are correct and to remove unmatched attribute names. 

The system obtains the offset address from the schema for each of the verified index 

attributes during verification to determine the position of the index attribute in the records. 

These offset addresses are further utilized to access keys. All < key, value > pairs from 

a data block are added to the B-Tree structure. The indexes of a data block and index 

metadata are stored in a file system. The sequence flow of index creation is presented in 

Figure 4-5. 
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Figure 4-5: Sequence Diagram of Index Creation 

SmallClient offers index creation at three stages of data handling in a file system: (a) 

index creation at data uploading time and (b) any time a user feels the need for additional 

indexes and adaptive index creation upon the recommendation of predictor logic. These 

three index creation options are elaborated as follows: 
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 Index Creation during data uploading (Static):  

SmallClient offers index creation during the block creation process of data uploading. 

Users specify a list of index attributes along with the data. Figure 4-1 shows that the block 

creation module reads data records and adds these records to a block container. If the list 

of index attributes is not empty, these records are input to the index creation process, 

which extracts key(s) from records and calculates the offset of a record. Performing index 

creation with data uploading is very efficient because indexes are created in parallel with 

the block creation process. The delay to start query execution is significantly less than 

invoking index creation after the data uploading process. Index hit ratio is maximized 

because users initially know the attribute data to be queried and provide these attributes 

as a list of index attributes. However, users are free to perform index creation in parallel 

or separate from data uploading. Static indexes may not always be useful when query 

workload changes. 

 Index Creation/Deletion when required (Adaptive):  

Users can invoke index creation any time. Figure 4-1 shows that the index creation 

module loads each block for a data set from a file system into memory, reads records from 

a block one by one, extracts < key, value > pairs, and adds these pairs to new indexes. 

Users can specify the list of indexes to be deleted, which will not be further utilized by 

incoming queries. Indexes require significant space to be stored. Therefore, when a user 

feels the need for new indexes or knows that available indexes will never or rarely be 

utilized by incoming queries, the user invokes index creation or deletion methods. 

 Predictor Logic for Adaptive Indexing (Adaptive): 

SmallClient offers automatic index updating based on predictor logic decision. Users 

have a choice to invoke an index creation or a deletion process when required. However, 
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users can only invoke index updating when incoming queries are predictable. The 

predictor function of SmallClient offers adaptive indexing for unpredictable and changing 

query workload, which works based on historical data obtained from query log and 

automatically updates indexes. Query log retains the information of past queries, i.e., 

selection predicates of queries and query submission time of both hit and missed queries. 

Hit queries were executed using indexes, whereas missed queries occur when indexes 

were not available for any or all selection predicates. Predictor logic decides to create 

new indexes based on hit queries and to delete existing indexes based on missed queries. 

 

Figure 4-6: Predictor Function 

Figure 4-6 presents the detailed process of the predictor function. Query log is loaded 

to the main memory to analyze queries in n time slots for prediction. Using only some 

recent queries is impossible when query workload changes, which indicates that most 

incoming queries do not have the same selection predicates. Query log is divided in equal 

time slots, and 10 recent time slots are considered for prediction (n=10). The number of 

total queries, hit queries, and missed queries may vary in each time slot. 

All the attributes of a data set from a schema are obtained, and their access rates in the 

respective time slots are calculated based on available information in time slots. The 

access rate is zero for an attribute when it is never submitted as a selection predicate in 

queries (calculation of access rate is defined as Equation 5-20 in Section 5.3). When n 
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values of the access rate for each attribute are obtained, the average access rate is 

calculated. The average access rate is used to make decisions. 

The predictor function decides to create indexes for non-indexed attributes when the 

Average Access Rate is greater than the pre-set threshold value (i.e., 

create_threshold_value). Predictor function decides to remove an index for indexed 

attributes when Average Access Rate is less than the pre-set threshold value (i.e., 

remove_threshold_value). The remove_threshold_value is lower than the 

create_threshold_value because deleting an index is highly critical. Low accuracy in 

prediction may result in the deletion of indexes, which may be utilized by incoming 

queries. 

4.3.3 Query Execution 

The decisive module of our indexing framework is query execution. Query execution 

takes queries that are submitted by users as input, searches data required by users, and 

returns the data if these data are found in a data set. The overall time taken to traverse a 

data set and retrieve required data should be very low to achieve efficient query execution.  

Query execution occurs when full scan or indexes are used. Existing full scan is 

performed by leveraging Apache Hive warehouse, which offers an SQL-like query 

language called HQL and utilizes MapReduce for efficient execution. However, as stated 

in Chapter 3, indexed search is more advantageous than full scan. Queries are executed 

by using indexed search when indexes are available. As discussed in Chapter 3, both 

clustered and non-clustered approaches were recently implemented for big data indexing 

to reduce time consumption in query execution. However, this search performance must 

be improved by using SmallClient, which implements a fast traversable indexing method 

to decrease query execution time. 
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A query execution module that utilizes indexes created by the index creation module 

is presented. Queries, for which indexes are not available, are executed using full scan. 

Submission of queries invokes the query execution module, and the module analyzes 

query strings before execution. During query string analysis, SmallClient separates the 

sel_data_list, file_name, and selection predicates. sel_data_list specifies the attribute 

names for the data that should be retrieved. Selecting the predicate of a query consists of 

two parts: the name of attributes and the value of attributes. The name of attributes should 

match any of the stored index names to perform indexed search, whereas the value of 

attributes is used as a key to search an index. When the query string is analyzed, 

SmallClient verifies all the collected parameters. The process of query execution can be 

conducted only if valid sel_data_list, file_name, and selection predicates are provided. 
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Figure 4-7: Sequence Diagram of Query Execution 

The sequence flow of query execution is presented in Figure 4-7. Respective indexes 

are loaded to the memory, and the indexes are traversed to determine the location of 

records. The data from the file are obtained by directly accessing the location of expected 

records.  
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4.4 Mathematical Model for SmallClient 

The mathematical model for SmallClient is described in this section. SmallClient 

modules are modeled by using Colored Petri Nets (CPN) tools, which leverage the 

mathematical modeling language of Petri nets. The mathematical modeling results are 

compared with the results obtained from experiments to verify the correctness of 

SmallClient results. 

CPN tools (Jensen, Kristensen, & Wells, 2007) were utilized, which were broadly used 

for modeling and analyzing concurrent systems. Each module of SmallClient is 

implemented using CPN Tools. Basic graphical notation and primitives for modeling are 

implemented by adopting built-in discrete-event modeling language, whereas standard 

meta-language (ML) is utilized to define data types, describe data manipulation, and 

create models. The time for each activity of the modules is set in milliseconds (ms). 

The number of records in a data set and the block size for the block creation module 

are specified. The data set, which is in the form of records, resides in the local disk from 

where each record is read and added in a block if the block size is appropriate. When a 

block reaches its maximum size, it is sent in HDFS for storage. The index creation module 

is modeled parallel to the block creation module. However, the index creation process 

can also be invoked when records are read from HDFS instead of the local disk. The 

indexes from HDFS are accessed for the query execution module, and these indexes are 

traversed to search the selection predicates provided in a query. Index traversal returns 

the locations to retrieve required records. 
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Figure 4-8: Mathematical Model for SmallClient 

Figure 4-8 presents the mathematical model for SmallClient, which comprises places 

presented as ovals, transitions denoted as rectangles, input and output arcs shown as 

arrows and initial marking, respectively. The proposed model for SmallClient contains 

16 places and 11 transitions. Each place and transition in the model is explained in Table 

4-1 and Table 4-2, respectively. Two timers were added to this model to collect the time 

results. The first timer is used to calculate data uploading and index creation time, 

whereas the second timer (i.e., Timer 2) is utilized to calculate query execution time.  

The mathematical model elaborates that sequential, forking, and joining operations are 

performed. For instance, search key and fetch data are executed sequentially, whereas 

both store and get <key, value> are forking operation that generate outputs for two places. 

Add is one of the joining operations. Read Records, Get <key, value>, Store Block, Store 
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Index, Get Block, Get Index, and Fetch Data transitions in the proposed model are timed 

transitions, and each transition entails a certain amount of time. Firing time is defined for 

these transitions in the next chapter. The timed transitions show that block creation and 

index creation times depend on the number of records of a data set and block_size 

(number of blocks also influences these times). Query execution time depends on the 

number of blocks and the number of instances in an index. 

The block creation module and start execution from the place Local are modeled. The 

initial marking, i.e., total_records, denotes the number of records in a data set. These 

records are read one by one with an increment in timer value and placed in a buffer until 

the buffer reaches block_size. Store block transition is enabled when the buffer is full (see 

corresponding guard function in Figure 4-8). This transition also increments a timer. The 

process continues to upload the entire data set. 

The index creation module is initialized from the place Record. This place accepts 

records either from read records transition, which is enabled during block creation, or 

from read transition, which creates indexes for data blocks residing in HDFS. The keys 

and values from each record are obtained and sent to Key and Value places while the 

timer is incremented. The transition adds two tuple <key, value> pairs in the index. Store 

index transition is enabled when the index has entries for all records of a data block. This 

transition also increments the timer. 

The query execution module of SmallClient is modeled by taking the token as input 

from the Query place. Index transition is enabled when query and indexes are available 

in HDFS. Indexes are loaded in the memory with one time increment, and the selection 

predicates of queries are sent to Query Key place. The search key transition searches keys 

in the loaded index and returns the value. Search key transition also increments the timer. 
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The data from the location specified by the token in the Value place are retrieved from 

the loaded data block while incrementing the timer by one. 

Table 4-1: Description of Places in SmallClient Mathematical Model 

Place Description Initial Marking 

Local Local place contains data set residing on local 
disk No. of records in a data set 

Buffer Buffer place contains the in-writing block Empty 

Blocks Blocks place contains data blocks stored on 
HDFS, each block is up to specified block_size Empty 

Timer Timer place contains time taken in block 
creation and/or index creation 

One token initially having 
0ms time 

Record Record place contains one record and is used for 
indexing No record 

Key Key place contains the contents of record for 
indexing Empty 

Value Value place contains the record location Empty 
Index Index place contains array of key-value pairs Empty 
Indexes Indexes place contains indexes stored on HDFS Empty 
Query Query place contains query At least one 
Loaded 
Index 

Loaded Index place contains index which is 
loaded from HDFS and is utilized by queries Empty 

Query 
Key Query Key place contains selection predicate Empty 

Accessed 
Value 

Accessed Value place contains value of the 
matched key in query execution Empty 

Loaded 
Block 

Loaded Block contains records of a block 
loaded from HDFS to create indexes. Loaded 
Block is also used to retrieve data for a query. 

Empty 

Data Data place contains records which are retrieved 
for a query Empty 

Timer 2 Timer 2 place contains time taken in query 
execution and data retrieval 

One token initially having 
0ms time 

 Table 4-2: Description of transitions in SmallClient Mathematical Model 

Transition Description 

Read records Reads records one by one from locally stored data set and sends each record 
to buffer if buffer has capacity. Records are also sent for index creation. 

Get <key,val> Returns keys and values from incoming records 
Add  Adds <key,value> pairs in index 
Store Stores blocks and/or indexes to HDFS 
Get Index Returns index from HDFS 
Discard Index Discards index from memory when utilized by a query 
Search Key Searches the input key from query in an index and returns value if key is 

matched 
Get Block Returns records of a block stored on HDFS 
Read  Reads records one by one from a loaded block and sends for index creation 
Discard  Discards data block from memory when all records are read 
Fetch Data Returns data residing on an input location 
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4.5 Features of SmallClient 

Aside from the performance gains of indexing, some quality aspects are considered to 

design and develop this framework. Therefore, a big data indexing client, which is 

deployable on contemporary distributed file systems, exhibits the following properties: 

 Adjustable Block Size 

Designing an indexing client with data split utility allows the size of data blocks to be 

adjusted according to manageability of the file system. However, the default block size 

of the file system can also be utilized. Block size plays a significant role in improving the 

utility of storage space. In the case of a fixed block size, a larger free space may be 

occupied by data blocks. For instance, if the size of records in a data set is large (i.e., 

approximately 10 MB) and the block size is 64 MB, every block will have up to 4 MB 

unused space. Although 4 MB does not seem to be an overhead for terabyte-scale data 

sets, which comprise thousands of blocks, 4 MB of unused space per block drastically 

affect the overall space consumed by the data. 

When the block size (i.e., 60 MB) is adjusted during the block creation stage, this 

overhead can be minimized. Furthermore, this framework is deployable on this 

distributed file system, which allows data blocks with their own default block size. The 

block size in the data upload parameters can be adjusted according to the nature of data 

sets or based on the file system default block. 

 Configurable Replication Factor 

The replication factor for the data set and/or for indexes is also configurable in the 

indexing client. Depending on the availability of storage space and other factors related 

to imposing replication, the big data indexing client allows the replication factor to be 

Univ
ers

ity
 of

 M
ala

ya



 

89 

adjusted. A fixed number of replicas when data are uploaded on a file system has its own 

implications: the capacity of a file system may prohibit more replicas of large data sets. 

The physical condition of a cluster (i.e., distance between storage nodes and/or 

contingency of storage node failure) may require more replicas to ensure data integrity. 

The replication of indexes is subject to the access of the indexes. More replicas of indexes 

are suggested if more users are expected to access these indexes. However, the indexes 

are fairly small for big data sets. Thus, storage space limitations of a file system do not 

prevent the number of index replicas to increase. 

The default replication factor of HDFS is used for data storage, which is three. The 

indexes were not replicated for evaluation purposes in this thesis because the data loss, 

which is attributed to the rare node failure observed in the cluster, is not predicted. 

Furthermore, the storage nodes in the cluster are physically co-located. Therefore, the 

proposed replication factor of HDFS is sufficient to ensure data availability and integrity. 

 Adaptable to changing query workload 

The predictor function of SmallClient automatically updates indexes for a data set with 

changing query workload. Static indexes, which are created based on user-specified index 

attributes, may not fulfill incoming query needs when users cannot predict future 

workload of incoming queries. In this case, SmallClient is sufficiently smart to decide 

new indexes. Query log is maintained, which stores the history of incoming queries. This 

query log is utilized by the predictor function, which determines whether each attribute 

is indexed or non-indexed to identify its access rate in recent past queries. New indexes 

are created. Non-indexed attributes are analyzed from missed queries. Existing indexes 

are deleted, whereas non-indexed attributes are analyzed. Predictor function keeps the 
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indexes up-to-date and adaptive to query workload. Thus, the increased index hit ratio is 

achieved using SmallClient. 

 Support to big data indexing requirements 

The big data indexing requirements were explained in Chapter 2. SmallClient 

effectively supports the volume, velocity, and variety of big data. Varying size data sets 

were taken to show the capability of SmallClient to support big data. The experiments 

show that indexing overhead decreases and search performance increases with data size 

(see Chapter 6). 

With the rapid growth of data volume, index update is straightforward in SmallClient. 

SmallClient suggests block level indexing where indexes for each data block are 

separately created without the intervention of indexes on other data blocks. Block level 

indexing takes specific data block as input, reads all records one by one, and creates 

indexes for the provided list of index attributes. When data are added in the existing data 

set, new blocks are easily indexed. 

Data sets from various sources, such as spatial data, are utilized where shape files are 

converted into CSV files to ensure the variety of data. Any type of data set with metadata 

and schema can be indexed using SmallClient. 

4.6 Conclusion 

The proposed SmallClient indexing framework and its modules, namely, block 

creation, index creation, and query execution, are presented in this chapter. The layered 

architecture of query execution on a file system for big data is described. The components 

of SmallClient and their process flows are presented by using sequence diagrams. The 

mathematical model for SmallClient is also shown. 
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The block creation module of SmallClient overcomes the problem of record splitting 

and improves record retrieval performance by reducing the number of MapReduce jobs 

required to access jobs. However, block creation results in negligible data uploading time 

and data set size overhead for big data sets. 

The index creation module of SmallClient achieves minimized indexing overhead. The 

index creation module implements non-clustered NAI indexing approach, which 

overcomes the problems of existing clustered indexing approaches for big data. The 

adopted approach is specialized to demonstrate its lower index time and index size 

performance than that of contemporary non-clustered implementations. 

The query execution module of SmallClient ensures improved search performance. 

SmallClient indexes are fast traversable, thereby quickly returning the record offset(s) of 

required data. Data retrieval operation jumps the offset and displays required data. 

Predictor logic, which is associated with the index creation module of SmallClient, 

confirms the maximized index hit ratio by suggesting automatic index updating. Adaptive 

index updating adds new indexes and removes existing indexes based on changing query 

workload. Thus, the maximum incoming queries are served by available indexes. 

SmallClient supports the large volume, velocity, and variety from big data indexing 

requirements, and is therefore efficient for big data.  
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CHAPTER 5: EVALUATION 

This chapter aims to present the evaluation of the proposed indexing framework for 

indexing overhead, query execution time, and index hit ratio. The test bed, which specifies 

hardware and software utilized in experiments to collect data, is presented. The evaluation 

measures are discussed, and the algorithms are presented as framework logic to execute 

the experiment. All the modules of SmallClient are implemented by using Eclipse IDE 

on a physical four-node cluster, and data are collected for data upload overhead, indexing 

overhead, and search performance. The tools to gather data for the experiment, 

benchmarking, and mathematical modeling are also described in this chapter. 

This chapter has four sections: Section 5.1 presents the test bed by explaining the 

hardware and software specifications. Section 5.2 discusses the evaluation measures, 

whereas Section 5.3 explains the algorithms used to execute the framework. Section 5.2 

elaborates the data collection tools, and this chapter is concluded in Section 5.5. 

5.1 Test bed 

The experimental setup, including hardware and software specifications, is explained 

in this section. The hardware consists of four physical machines. Each machine has 250 

GB disk storage, 4 GB RAM, and 2 GHz processor. The operating system runs on 64-bit 

Ubuntu Desktop latest stable release. The available cluster size is 1 TB. 

A four-node Hadoop cluster is configured on these machines. MapReduce and HDFS 

daemons are configured. One master and four slave nodes are created. MapReduce and 

HDFS daemons are configured on the master–slave cluster for data processing and 

storage purposes. 
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The default configuration of Hadoop is used for most data sets, i.e., default replication 

factor is three and the default block size is 64 MB. However, SmallClient allows custom 

configuration according to user needs and data set requirements. 

The framework modules, i.e., block creation, index creation, and query execution, are 

developed for evaluation. Each module of SmallClient is implemented, and several Java, 

Lucence, and Hadoop packages are used. Eclipse IDE is utilized for code implementation. 

These modules can be executed from any client in a cluster. 

5.2 Evaluation Measures 

The metrics, which are used to evaluate the performance of the proposed indexing 

framework, are discussed. These metrics are as follows: data upload overhead, indexing 

overhead, search performance, and index hit ratio. The definition of each measure is 

provided by using equations. The framework is validated and the results are verified using 

these metrics. 

The evaluation measures are used to obtain the results from each module of 

SmallClient. The results show the extent to which the research aim and objectives are 

achieved. An explanation of each established evaluation measure is presented in this 

section. 

5.2.1 Data Upload Overhead 

Data upload overhead is the percentage of increased activity to upload data using the 

block creation module of SmallClient for a big data processing file system in comparison 

with their own data upload policy. The data upload overhead is measured in terms of both 

data upload time overhead and data size overhead. Both overheads are defined as follows: 
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Data upload time is composed of the time (in seconds) to create data blocks and store 

these data blocks on the file system. Chapter 4 indicates that the block creation process 

reads records from the data set and maintains the records in a block until the block does 

not have any capacity to store more records (~𝑏𝑙𝑜𝑐𝑘_𝑙𝑖𝑚𝑖𝑡). Data upload time is 

calculated in the following equation for a data set with 𝑘 blocks: 

𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 =  ∑(𝑇𝑐𝑟𝑒𝑎𝑡𝑒(ℬ`𝑐)  + 𝑇𝑢𝑝𝑙𝑜𝑎𝑑(ℬ`𝑐))

𝑘

𝑐=1

 5-1 

The time taken by the block creation module of SmallClient is utilized as data upload 

time. Therefore, 𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 is used to define data upload time where 

𝑇𝑐𝑟𝑒𝑎𝑡𝑒(𝐵′𝑐) denotes the time to create a block 𝑐 and 𝑇𝑢𝑝𝑙𝑜𝑎𝑑(𝐵′𝑐) indicates the time to 

upload a block. The percentage increase in data uploading time defines the upload time 

overhead. This overhead is defined as follows: 

𝑂𝑑𝑎𝑡𝑎𝑈𝑝𝑙𝑜𝑎𝑑 =  
𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 −  𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎

𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎
 × 100 5-2 

where 𝑂𝑑𝑎𝑡𝑎𝑈𝑝𝑙𝑜𝑎𝑑 denotes data upload overhead, 𝑇𝑏𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 is the data uploading 

time of SmallClient, and 𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎 is the data upload time of the existing file system. 

The size of uploaded data (in MB) using SmallClient also differs from the actual size 

of data sets. While records of data are added to a block where block size is same for all 

blocks for a data set, some space of few bytes are left empty in a block container. 

However, the configurable block size offered by SmallClient allows the block size to be 

adjusted according to the size of records. Therefore, the overall size overhead becomes 

negligible. The size of each block (i.e., SB`) and the overall data set size (i.e., S𝔻`) are 

defined in the following equations, where S𝔻` −  S𝔻 < 𝑙: 
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𝑆𝐵` = 𝑙 5-3 

𝑆𝔻` =  𝑆𝐵`  × 𝑘 5-4 

The size of SmallClient blocks SB` is the configured block size 𝑙, and the size of an 

entire data set is the product of block size SB` and the number of blocks in data set which 

is denoted as 𝑘. 

Data size overhead 𝑂𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒 is calculated using Equation 5-5. 

𝑂𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒 =  
S𝔻` −  S𝔻

S𝔻
 × 100 5-5 

where S𝔻` denotes the size of data sets uploaded using SmallClient, and S𝔻 indicates the 

data set size uploaded using HDFS. 

5.2.2 Indexing Overhead 

Indexing overhead is the increased cost of performing the index creation process on 

data sets. Although indexing can improve data search performance, the cost to create 

indexes should not be high to execute queries using full sequential scan. Therefore, 

indexing overhead is a significant evaluation measure for big data where users do not 

tolerate long delays to start query execution after uploading their data (Idreos, Alagiannis, 

Johnson, & Ailamaki, 2011). This overhead is measured in terms of both index creation 

time and the size of indexes. 

Index creation time is the time taken to extract < key, value > pairs according to an 

index attribute from each block. Each pair is at the right place in the B-Tree index, and 

the index is uploaded to the file system. According to Algorithms 5-2 and 5-3, index 

creation time varies with the number of blocks i.e. 𝑘, index attributes, and records in a 
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block i.e. 𝑚𝑖. The indexing time and indexing overhead for a data set with 𝑘 blocks are 

defined in the following equations: 

𝑇𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔  =  ∑ ( ∑ 𝑇𝑔𝑒𝑡 & 𝑝𝑢𝑡(<𝑘𝑒𝑦,𝑣𝑎𝑙𝑢𝑒>𝑝𝑎𝑖𝑟𝑠)

𝑚𝑖

𝑟𝑒𝑐𝑜𝑟𝑑=1

) + 𝑇𝑠𝑡𝑜𝑟𝑒𝐼𝑛𝑑𝑒𝑥𝑒𝑠  

𝑘

𝑖=1

 5-6 

𝑂𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔  =  
𝑇𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔

𝑇𝑢𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎
 × 100  5-7 

Index size S𝛪 refers to the aggregated size of B-Tree objects i.e. 𝑆𝐵−𝑇𝑟𝑒𝑒𝑖,𝑐
 for all index 

attributes and all 𝑘 blocks. The number of index attributes 𝑗, size of keys, and number of 

records in a data set affect index size  S𝛪. S𝛪 is defined in the following equation: 

S𝛪 =  ∑ ∑ 𝑆𝐵−𝑇𝑟𝑒𝑒𝑖,𝑐

𝑘

𝑐=1

𝑗

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑒=1

 5-8 

Index size overhead 𝑂𝑖𝑛𝑑𝑒𝑥 𝑠𝑖𝑧𝑒  is defined as follows: 

𝑂𝑖𝑛𝑑𝑒𝑥 𝑠𝑖𝑧𝑒 =  
S𝛪 

S𝔻
 × 100  5-9 

5.2.3 Search Performance 

Search performance refers to the percentage of improvement in the data search 

process. Indexing primarily aims to reduce query execution time to retrieve specific data 

from big data. Therefore, the percentage of reduced query execution time because of 

indexing indicates the overall data search performance. Query execution, which uses full 

scan, traverses all records in each data block despite the millions of records in a data set. 

By contrast, smaller indexes are traversed for query execution in the case of indexed data. 

Thus, search performance improves. However, indexing is a costly process. Thus, the 
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search performance is expected to be significantly higher than the cost of index creation. 

An efficient index structure should be faster in traversal to improve search performance. 

Search performance is used to evaluate the query execution time with indexes, which 

are created using the index creation module. The query execution module takes a query 

as input, loads respective indexes in the memory, which were previously created, obtains 

record positions as values by traversing the indexes using keys provided in queries, and 

fetches the required data by directly accessing the records of a data set. Index traversing 

time and data fetch time for each block 𝑐 are mathematically represented in the following 

equations. The traversing time for B-Tree structures is proven (Comer, 1979) as Ο(log n). 

Therefore, the time to traverse indexes 𝑇𝑇𝑐(𝑘𝑒𝑦𝑠) at block 𝑐 for 𝑗 indexes given in the 

selection predicate is: 

𝑇𝑇𝑐(𝑘𝑒𝑦𝑠) = ∑ Ο(log 𝑛)

𝑗

𝑎𝑡𝑡𝑟=1

 5-10 

The indexes return the offset of data records as 𝑣𝑎𝑙𝑢𝑒 , which are requested by queries. 

Time to retrieve data 𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) is the product of the number of required records 𝑆𝑣𝑎𝑙𝑢𝑒 

and the time required to access each record 𝑇𝑎𝑐𝑐𝑒𝑠𝑠. 𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) is defined as follows: 

𝑇𝑓𝑒𝑡𝑐ℎ(𝑠𝑒𝑙_𝑑𝑎𝑡𝑎) =  𝑆𝑣𝑎𝑙𝑢𝑒 × 𝑇𝑎𝑐𝑐𝑒𝑠𝑠 5-11 

The overall query execution time for all blocks of a data set is defined as: 

𝑇𝑄 =  ∑(𝑇𝑇𝑎𝑡𝑡𝑟,𝑐) + 𝑇𝐹𝑠𝑒𝑙_𝑑𝑎𝑡𝑎,𝑐

𝑘

𝑐=1

 5-12 

The query execution time depends on the length of selection predicates, number of 

blocks in a data set, and number of records to be retrieved against that query. Thus, the 
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search performance is the percentage difference of query execution times of SmallClient 

𝑇𝑄 and full scan operation 𝑇𝐹𝑆. 

𝑆𝑒𝑎𝑟𝑐ℎ_𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  
𝑇𝐹𝑆 −  𝑇𝑄 

𝑇𝐹𝑆
× 100 5-13 

5.2.4 Index Hit Ratio 

The index hit ratio (IHR) is the ratio of queries that are executed using indexes. IHR 

is introduced as a measure to evaluate the probable rate of incoming queries to be 

executed using indexes. If more indexes are created for a data set, the probability to 

execute queries using indexes increases and full scan is avoided. Incoming queries are 

unpredictable. The only way to increase the probability of executing these queries using 

indexes is to raise the index attribute space (aI). IHR is calculated using the following 

equation: 

𝐼𝐻𝑅 =
𝑆aΙ

𝑆𝑎𝔻

 5-14 

However, creating more indexes may adversely affect the indexing overhead. For 

instance, some index structures (Dittrich et al., 2012; Halim, Idreos, Karras, & Yap, 2012) 

do not allow more than one index to be created on each replica of a data set. Thus, more 

replicas of data sets are needed to create more indexes. In this situation, the index size for 

one attribute corresponds to the size of a data set and incrementally increases for each 

new index. Thus, IHR can help present the capability of an indexing structure to the 

maximum number of indexes, which can be created with a manageable indexing 

overhead. 

IHR can also be improved when users know the incoming query workload and invoke 

index creation or updating according to the predicted query workload. However, users 

cannot always predict the query workload. In this case, SmallClient leverages historical 
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information on queries from the query log to update indexes. This feature positively 

affects IHR. IHR is defined in Equation 5-23 for adaptive indexes, which are updated 

with predicting query workload. 

𝐼𝐻𝑅𝑤 =
𝑁𝑜. 𝑜𝑓 𝐻𝑖𝑡 𝑄𝑢𝑒𝑟𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑄𝑢𝑒𝑟𝑖𝑒𝑠
 5-15 

5.3 Framework Design 

This section presents the logic design of the proposed indexing framework by defining 

the different processes involved for block creation, index creation, and query execution 

modules, which were explained in the previous section. Algorithms and equations are 

utilized to define these processes. 

Algorithm 5-1 createBlocks(file) 

1. block_limit = DefaultBlockSize 
2. has_capacity = true 
3. block_number = 0 
4. while reading records not reached end of file do 
5. if has_capacity then 
6. add record in block 
7. else 

8. uploadBlock(block, block_number) 
9. block_number = block_number + 1 

10. has_capacity = true 
11. end if 

12. end while 

13. uploadBlock(block, block_number) 
14. Return 

The process of block creation is presented in Algorithm 5-1. block_limit defines the 

block size specified for a data set. The default block size offered by HDFS is used. 

has_capacity determines whether the block container can contain an incoming record or 

not, and block_number is used to manage the sequence of blocks. 

In Equations 5-16 and 5-17, based on the assumption that a data set 𝔻 is composed of 

𝑥 records, block creation initiates by reading records one by one. Block ℬ` , which is 
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created using the block creation module, has 𝑚 records out of 𝑥, and the remaining bytes 

to reach block limit 𝑙 are denoted as α. Overall, 𝑘 blocks are created for 𝔻.  

𝔻 = ∑ 𝑟𝑒𝑐𝑜𝑟𝑑𝑐

𝑥

𝑐=1

 5-16 

ℬ`𝑖  =  ∑ 𝑟𝑒𝑐𝑜𝑟𝑑𝑐

𝑚𝑖

𝑐=1

 +  𝛼 ∶ 0 ≤ 𝑖 < 𝑘 
5-17 

When the block reaches block_limit, the block is uploaded, block_number is 

incremented, and block_limit is set to true. After uploading the last block, the process 

ends and returns the time taken in the block creation process. 

Algorithm 5-2 runIndex(file_name, file_schema, index_attr_list) 

1. if index_attr_list is empty then 
2. write err_message 
3. Exit 
4. end if 

5. compare index_attr_list with file_schema & remove unmatched attributes from 
index_attr_list 

6. calculate index_attr_offset_list from updated index_attr_list 
7. get block_info 
8. for all blocks do 
9. createIndexes(file, block_locations, index_attr_offsets_list) 

10. for all indexes do 
11. storeIndex(index, file_name, index_attr ) 
12. get & update index_metadata 
13. end for 

14. end for 

The next stage is creating indexes for uploaded blocks of a data set. The process of 

index creation is elaborated in Algorithms 5-2 and 5-3. Algorithm 5-2 shows the pre-

index creation verification steps involved to obtain the exact index attribute set according 

to the provided schema of a data set. Users may mistakenly provide some attributes in 

index_attr_list, which are not present in the data set. Comparing index_attr_list  with the 

schema helps remove these attributes from index_attr_list. The offset addresses of index 
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attributes are also obtained from the schema, which are helpful to transform to contents 

as keys in a record. The index creation phase is invoked. 

Based on the assumption that a𝔻 denotes the list of attributes of a data set that is 

available in its schema, index_attr_list, 𝑎𝐼 is defined in the following equation: 

𝑎𝐼  𝑎𝔻  5-18 

Empty B-Tree index objects are initialized for each element of index_attr_list after 

successful verification. SmallClient starts reading blocks line by line and obtains keys 

corresponding to the offset addresses and value from each record. As explained in the 

previous section, the content from a record for each index attribute is collected as key and 

the location of that record is collected as value. More than one occurrence of a key in a 

block are stored as list of values in B-Tree. As a result, we can define our index I for a 

block 𝑖 as follows: 

𝐼𝑎𝑡𝑡𝑟,𝑖  =  ∑ < 𝑘𝑒𝑦𝑎𝑡𝑡𝑟𝑟𝑒𝑐𝑜𝑟𝑑
, 𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑐𝑜𝑟𝑑 >

𝑚𝑖

𝑟𝑒𝑐𝑜𝑟𝑑=1

  5-19 

 
Algorithm 5-3 createIndex(file, block_location, index_attr_offset_list) 

1. for all index_attr do 
2. create empty BTree 
3. end for 

4. value = block_offset 
5. while reading records not reached end of block do 
6. for all index_attr do 
7. key = contents at index_attr_offset 
8. add <key, value> in its BTree 
9. end for 

10. end while 

11. store each BTree 
12. store index_metadata of each BTree 
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Algorithm 5-3 presents the steps involved in creating indexes. The process begins with 

creating 𝑛 (i.e., 𝑛 = Sindex_attr_list) empty B-Trees, which shows that the indexes do not 

contain any < key, value > at this stage. The offset of block is assigned as the offset of 

the first record to value. The value of the next record is updated by adding the byte size 

of the record. The process continues until all records in a block are indexed. The indexes 

and their metadata are stored in the file system as small objects, which maintain the 

information of indexes. 

SmallClient also offers adaptive indexes based on the proposed predictor logic. This 

function calculates the access rate for each attribute of a data set by using Equation 5-20, 

where Occurenceattr,i denotes the number of queries in a time slot 𝑖 with attribute attr as 

the selection predicate and Total queriesi indicates the total number of queries in time 

slot 𝑖. Ten values of the access rate for each attribute are calculated because 10 time slots 

are used for prediction. 

𝐴𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒𝑎𝑡𝑡𝑟,𝑖 =  
𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑎𝑡𝑡𝑟,𝑖

𝑇𝑜𝑡𝑎𝑙 𝑞𝑢𝑒𝑟𝑖𝑒𝑠𝑖
 , 𝑖 = 1,2,3, … , 𝑛  5-20 

 
Algorithm 5-4 runQuery(query) 

1. if analyze(query) is not successful then 
2. write error_message 

3. Exit 
4. end if 

5. get & verify provided file_name from query 
6. get & verify sel_data_list from query 
7. get sel_data_offset_list from file_schema 
8. get attr_list from selection predicate(s) of query 
9. if indexes are not available for attr_list then 

10. go for full_scan 
11. Else 
12. get values of attribute_list as keys from query 
13. get block_locations 
14. for all blocks do 
15. load respective index(es) 
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16. search keys & fetch sel_data_list if keys are found 
17. end for 

18. end if 

 
The query execution process of SmallClient is explained. Algorithm 5-4 describes the 

process of executing queries using indexes. An incoming query is first analyzed to 

validate its syntax, and the parameters specified in the query are verified. Queries with 

typographical and syntax errors or queries that do not match any file in the file system are 

discarded after an error message is received. The successful analysis of query string 

provides attribute(s) as selection predicates to search data. Full scan operation is 

recommended only when indexes are not available for selection predicates. 

5.4 Data Collection Tools 

Data collection tools are presented in this section. Experiments are executed on the test 

bed to collect data for all modules of SmallClient. These data are further testified where 

benchmarking and mathematical modeling are employed. Data collection methods for 

experimental data verification are also presented. 

5.4.1 Data Collection for Experiment 

Java code is executed in Eclipse, and Apache StopWatch API and Hadoop FileStatus 

package were used to obtain most of the results. HDFS user interface and console were 

utilized for data collection. StopWatch was used to obtain the time results of different 

processes. Data uploading time, index creation time, and query execution time results are 

generated with Apache StopWatch API, which starts and ends with the process and 

displays the time taken by a process.  

User interface is utilized to browse HDFS and Hadoop FileStatus package to obtain 

the size results. The HDFS user interface is used to collect the results uploaded file size, 

whereas Hadoop FileStatus package is used to generate the size of indexes. These Java 
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packages generate reliable and accurate results without human intervention. Therefore, 

these packages were leveraged to achieve accurate results for further evaluation. Full-

scan operation was performed using HQL queries in the console, and the query execution 

time generated by the console is determined as the full-scan search time. 

5.4.2 Data Collection for Benchmarking 

This section elaborates the method used to collect data for benchmarking for each 

performance measure. The process of executing different modules of the proposed 

framework was elaborated to collect data for data upload overhead, indexing overhead, 

and search performance. 

Data were obtained for evaluation measures by executing SmallClient modules. Block 

creation and index creation modules can be invoked together or separately depending on 

user requirements. Users can also request to perform index deletion based on query 

workload knowledge. However, SmallClient offers adaptive index updating for 

unpredictable incoming query workload. SmallClient utilizes configuration information 

and block placement policy of Hadoop during the execution of these modules. Users can 

also invoke query execution module from any node that uses Hadoop block selection 

policy.  

Block creation module of SmallClient offers custom data uploading, thereby resulting 

in data uploading time and data set size, which differ from HDFS. The results for data 

uploading time and data set size are collected and compared with the results for Hadoop 

default data uploading. The percentage overhead of data uploading of SmallClient was 

calculated to compare SmallClient data uploading results with HDFS data uploading. 

Data upload time and size results are presented in Chapter 6. 
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The indexing overhead results of SmallClient in terms of index creation time and index 

size are collected and compared with the results of Lucene indexing overhead. 

SmallClient also offers index creation with data uploading (called i-SmallClient). In this 

case, the indexing overhead of i-SmallClient is different from the overhead when indexes 

are created separately. Therefore, two evaluation methods exist for index creation. First, 

SmallClient data uploading without indexing results are compared with i-SmallClient 

results. The result shows the overhead caused by indexing. Second, the i-SmallClient 

results are compared with separate index creation in SmallClient. 

The indexing results obtained from SmallClient are compared with Lucene indexing 

results. The comparison indicates that SmallClient performs better. Index updating 

includes the creation of new indexes and deletion of unused indexes. The current index 

deletion results are presented. The new index size overhead is calculated and compared 

with the previous index size overhead before being deleted. All index overhead results 

are presented in Chapter 6. 

The query execution time and search performance results of SmallClient are obtained 

by executing multiple queries. The query execution time results of SmallClient are 

compared with the full-scan results of Hadoop using HQL and with Lucene indexed 

search results. The same queries are executed on Hive for full scan and on Lucene and 

SmallClient for indexed search. 

The search performance of SmallClient is calculated over full-scan query execution 

and the search performance of Lucene indexes. The same process is employed to calculate 

search performance for both SmallClient and Lucene indexes. The search performance of 

SmallClient is compared with that of Lucene for evaluation. 
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The IHR results for both unpredictable query workload and after predicting query 

workload are obtained. The IHR results of SmallClient results for unpredictable and 

predictive query workload are compared with the IHR results of Lucene. IHR is improved 

because the indexes in SmallClient are adaptively updated. The results are presented in 

Chapter 6. 

5.4.3 Data Collection for Mathematical Model 

The time results are collected to mathematically verify and validate the correctness 

and reachability of the specified properties of SmallClient mathematical model. The state 

space report for each module provides fair information on some state space statistics and 

standard behavioral properties, e.g., integer bound of places and multi-set bound of 

places. A state space report is generated by specifying the number of records and 

block_size for a data set to be uploaded without index creation. A state space report is 

created for index creation with block creation and for separate index creation. 

Furthermore, a state space report for query execution is also generated. 

Block creation in the mathematical model offers data uploading with a specified 

number of records in a data set and block_size. Data upload time results are obtained by 

observing the value of tokens at Timer place. The supply of records is halted to obtain 

<key, value> transition and the accurate results of data upload time, which also 

increments Timer. The data upload time is presented in following Equation 5-21. 

𝐷𝑎𝑡𝑎 𝑈𝑝𝑙𝑜𝑎𝑑 𝑇𝑖𝑚𝑒 = (𝑐 × 𝑆𝔻) + (𝜇
𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

× 𝐿𝑜𝑐𝑎𝑙#) + (𝜇
𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘

× 𝐵𝑙𝑜𝑐𝑘𝑠#) 5-21 

where 𝑐 denotes the factor of data set size 𝑆𝔻 , which shows the effect of data set size on 

data uploading time. 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 indicates the time to read a record and 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘 is 

the time to store a block. 𝐿𝑜𝑐𝑎𝑙# presents the number of records of a data set and 
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Blocks#denotes the number of tokens in Blocks place. The following values are set: 

0.065 for 𝑐, 0.00006 for 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 and 3.5 for 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘.  

The indexing overhead results are obtained from the mathematical model of 

SmallClient in terms of index creation time. The model offers index creation during data 

uploading or for data blocks residing in HDFS. The value of tokens in a timer place shows 

the time taken to create indexes in both cases. The index creation time is presented in 

Equation 5-22, where 𝜇𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙> denotes time to obtain <key, value> pair from each 

record out of 𝐿𝑜𝑐𝑎𝑙#. 𝜇𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 indicates the time to store an index for a block where 

the total number of blocks in a data set are 𝐵𝑙𝑜𝑐𝑘𝑠#. Equation 5-6 has also explained this 

indexing time calculation and shows that this time is accumulative to creating 

<key,value> pairs for data set and storing index into file system. 

𝐼𝑛𝑑𝑒𝑥𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = ( 𝜇
𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙>

× 𝐿𝑜𝑐𝑎𝑙#) + (𝜇
𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥

× 𝐵𝑙𝑜𝑐𝑘𝑠#) 5-22 

The query execution time and search performance results of SmallClient are collected 

by adding tokens in Query place. Query execution time results are the value of tokens at 

Timer2 place. The value of token at Timer2 place is updated by loading index in memory, 

traversing index to match keys, and retrieving data from Block place. Therefore, query 

execution time is calculated as follows: 

𝑄𝑢𝑒𝑟𝑦 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

= ( 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥  × 𝐵𝑙𝑜𝑐𝑘𝑠#)  +  ( 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦  × 𝐿𝑜𝑐𝑎𝑙#)  +  𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 

5-23 

where 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥 denotes the time to load the index for a block to memory, 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦 is 

the time to compare the value of the selection predicate with each key in an index and to 

return the relevant value when they are matched, and 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 is the time to load data 

from the file system. The explanation of 𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 is provided in Equation 5-11. 
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𝐵𝑙𝑜𝑐𝑘𝑠# are used to present the number of index files for a data set. Block level indexing 

is performed where indexes are managed at the block level. Thus, the number of index 

files is equal to the number of blocks. Each record in a data set is assumed to have a <key, 

value> pair in index. Thus, 𝐿𝑜𝑐𝑎𝑙# represents the number of comparisons performed to 

retrieve the location from index. As we have defined in Equation 5-12, query execution 

time includes time to traverse indexes and time to fetch data. 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥 and 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦 

in Equation 5-23 define time to traverse indexes whereas  𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 defines time to fetch 

data. 

5.5 Conclusion 

Performance evaluation of the proposed indexing framework is presented in this 

chapter. The test bed where all the modules of SmallClient are executed is explained to 

evaluate the effectiveness of the modules. The algorithms showed the implementation 

processes of the modules, such as block creation, index creation, and query execution, to 

collect data. Data collection tools presented a method to obtain data for evaluation 

measures. Data collections tools also explained the procedure to collect data for 

benchmarking and mathematical modeling. These data are utilized to verify the 

experimental data for each evaluation measure, such as data uploading overhead, 

indexing overhead, and search performance. 
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CHAPTER 6: RESULTS AND DISCUSSION 

This chapter presents and discusses the results obtained by executing the proposed 

SmallClient. The objectives of proposing the SmallClient indexing framework for big 

data are achieved, as described in this chapter. Chapter 4 stated that SmallClient 

minimizes indexing overhead, reduces query execution and data search time, and 

maximizes index hit ratio. The experimental results of data upload overhead, indexing 

overhead, and search performance are verified by using benchmarking and mathematical 

modeling in this chapter.  

The rest of the chapter is organized as follows: Section 6.1 presents the performance 

validation, and Section 6.2 presents the verification of the results by using benchmarking 

and mathematical modeling. Section 6.4 concludes the chapter. 

6.1 Validation 

The results of SmallClient for data upload overhead, indexing overhead, search 

performance, and IHR are presented and discussed. The effectiveness of SmallClient is 

ensured to fulfill research objectives, i.e., minimize indexing overhead, reduce data 

retrieval time with faster query execution, and achieve the maximum index hit ratio. 

Statistical tables and charts are used to present the results. Same data sets (Eldawy & 

Mokbel, 2015) are used to execute the experiment that were utilized for performance 

analysis in Chapter 3. 

The data collection process was executed in 10 iterations for reliability. The data, 

which are collected for time results, exhibit a slight difference (i.e., few milliseconds). 

However, the size results are consistent in all 10 executions. Therefore, mode is 

considered from the observations for time results in evaluation, whereas the data for size 

results are used from any iteration. 
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6.1.1 Experimental Results 

The experimental results are collected by executing experiments on a test bed, as 

described in the previous chapter (see Section 5.4.1). The data upload time and data 

upload size results are presented for block creation module validation. The indexing 

overhead, search performance, and IHR results from the experiments are described. 

 Data Upload Results 

Data uploading affects the time taken to upload data and the size of uploaded data. The 

results are presented from both perspectives. Table 6-1 shows the results of data upload 

time, whereas Table 6-2 indicates the results of data upload size. 

Table 6-1: Data Upload Time Results 

Data Sets 
Data Set Size 

(MB) 

No. of 

Records 

Data Upload Time (sec) 

SmallClient I-SmallClient 

Primary Roads 77.1 13373 15.46 17.78 
Area Landmark 406 121960 57.03 62.54 
Tabulation Area 1560 33144 172.89 212.15 
Area Hydrography 6460 2298808 820.74 981.55 
All Edges Combined (I) 16220 19291957 2535.13 3128.76 
Linear Hydrography 18270 5857442 2252.09 2504.94 
All Edges Combined (II) 23180 70000000 4962.00 7270.70 
All Edges Combined (III) 61900 72700000 72304.00 11452.94 
All Nodes 96400 2700000000 124010.00 135252.64 
Road Network 137500 717000000 103788.00 114864.52 

Table 6-1 presents the results of data uploading time taken by the experiments on the 

block creation module. Data uploading offers parallel index creation, which decreases 

overall delay to start query execution. The time results of data uploading are presented, 

as well as index creation. This module is called i-SmallClient. The index creation time 

for five indexes is included to present the i-SmallClient results. The results of SmallClient 

and i-SmallClient indicate that data uploading time slightly increased when five indexes 

are created in parallel. 
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Table 6-1 shows that data sets All Edges Combined (II) and All Edges Combined (III) 

consist of almost the same number of records, whereas their sizes vary significantly. 

Therefore, the difference between overheads of data upload time for these data sets is also 

very high. This result indicates that the size of the data set and the number of records in 

a data set both affect the data uploading time taken by SmallClient.  

 
Figure 6-1: Data Upload Time Experiment Results 

The data upload time experiment results of SmallClient and i-SmallClient are 

presented in Figure 6-1. The closed dotted bars indicate the data uploading time results 

for SmallClient, and dotted bars show the time for i-SmallClient. Figure 6-1 indicates that 

data uploading time increases with data set size. The experiment results also show that 

index creation in parallel to data uploading saves time as a minor increase in data 

uploading time occurs when five indexes are created during data uploading. 

Table 6-2 presents the results of the size of uploaded data using SmallClient. Table 6-2 

shows that the uploaded data using SmallClient are larger than the actual data size. 

However, this difference becomes negligible for large data sets. 

Table 6-2: Data Upload Size Results 

Data Sets No. of Blocks Data Size (MB) Data Upload Size (MB) 

Primary Roads 2 77.1 128 
Area Landmark 7 406 448 
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Tabulation Area 25 1560 1560 
Area Hydrography 104 6460 6500 
All Edges Combined (I) 260 16220 16250 
Linear Hydrography 293 18270 18310 
All Edges Combined (II) 363 23180 23190 
All Edges Combined (III) 969 61900 61940 
All Nodes 1500 96400 96460 
Road Network 2141 137500 137570 

The size of uploaded data for small size data sets significantly increases when these 

data are uploaded using SmallClient (i.e., for primary road data set, the size of uploaded 

data using HDFS is 77.1 MB, whereas this size is 128 MB when the data are uploaded 

using SmallClient). This observation occurs because the default block size of Hadoop for 

data uploading, which is 64 MB, and the size of primary road data set are slightly larger 

than the data in one block. SmallClient created two blocks for the fixed-sized data set of 

primary road of while null values are added in the end. Therefore, the size of uploaded 

data for the data set of primary roads increased. The data upload size results are presented 

in Figure 6-2.  

 

Figure 6-2: Data Size Results from Experiments 

The data uploading results for both data uploading time and data upload size indicate 

that data uploading time and data upload size also increased with data set size. The time 
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results for i-SmallClient are presented, which show that index creation parallel to data 

upload is more efficient. Five indexes are created with a slight increase in time. 

 Indexing Results 

The indexing experiment results are presented in terms of indexing time and index size 

in this section. Up to five indexes are created for evaluation. Table 6-3 shows the results 

for indexing time and index sizes. 

Table 6-3 presents the results of indexing time of SmallClient to create up to five 

indexes. The results indicate that indexing time increases for large data sets. Indexing 

time also depends on the number of records in a data set. When a data set has more 

records, indexing time also increases. For instance, all edges combined (I) data set has 

more records than its adjacent data sets. Therefore, this data set takes more time to create 

one to five indexes using SmallClient.  

The relationship between data set size and the number of records, which affects 

indexing time, is depicted in Table 6-3 for all nodes and road network data sets. All nodes 

data set is smaller. These data sets have more records. Thus, the indexing time for all node 

data sets is higher than the indexing time taken by road networks. 

Indexing time is also affected when the number of indexes increases. Table 6-3 shows 

that indexing time is low to create one index, whereas more than one index takes more 

time in index creation. The index time experiment results are presented in Figure 6-3.  
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Table 6-3: Indexing Time Results for up to five Indexes 

Data Sets Data Set Size (MB) No. of Records 
Indexing Time (sec) 

1 2 3 4 5 

Primary Roads 77.1 13373 3.35 3.48 3.95 4.40 4.50 
Area Landmark 406 121960 8.19 9.30 10.80 11.94 13.19 
Tabulation Area 1560 33144 24.72 27.54 30.01 31.29 32.25 
Area Hydrography 6460 2298808 141.65 155.66 164.74 154.34 176.59 
All Edges Combined (I) 16220 19291957 380.53 420.30 504.42 617.57 795.93 
Linear Hydrography 18270 5857442 288.26 418.14 444.34 464.16 492.07 
All Edges Combined (II) 23180 70000000 785.52 1121.05 1488.22 1988.89 2335.09 
All Edges Combined (III) 61900 72700000 1694.89 1772.45 1829.82 1890.37 1991.86 
All Nodes 96400 2700000000 20572.89 20534.76 20725.30 20899.25 20922.36 
Road Network 137500 717000000 17350.42 18210.49 18991.21 19390.75 19948.28 
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Figure 6-3: Indexing Time Results from Experiments for up to five indexes 

Figure 6-3 shows the indexing time experiment results and indicates that indexing time 

increases with data set size. The slight elevation in indexing time with the increase in the 

number of index attributes shows that SmallClient facilitates the creation of more indexes 

for a data set, which is advantageous to improve search performance. Therefore, 

SmallClient offers fast index creation despite the increased number of indexes for index 

creation. 

The data for index size evaluation are obtained. The index size results for up to five 

indexes are presented in Table 6-4. The table shows the index size results when up to five 

indexes are created using SmallClient. Index size depends on data set size and the number 

of records in a data set. Therefore, index size increases with data set size for SmallClient. 

Index size increases with the number of indexes. This increase in index size is higher for 

small data sets after three indexes.  
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Table 6-4: Index Size Results for up to five Indexes 

Data Sets Data Set Size (MB) No. of Records 
Index Size (MB) 

1 2 3 4 5 

Primary Roads 77.1 13373 0.13 0.34 0.85 1.37 1.90 
Area Landmark 406 121960 0.16 1.35 3.91 8.41 14.94 
Tabulation Area 1560 33144 0.34 1.80 3.44 5.11 6.89 
Area Hydrography 6460 2298808 0.07 5.12 24.24 43.37 62.60 
All Edges Combined (I) 16220 19291957 173.22 315.98 754.62 1460.54 2397.80 
Linear Hydrography 18270 5857442 0.21 16.16 156.24 296.33 340.87 
All Edges Combined (II) 23180 70000000 2197.11 5078.66 8242.46 11529.61 15659.79 
All Edges Combined (III) 61900 72700000 554.79 1150.99 2692.31 4986.74 8532.78 
All Nodes 96400 2700000000 1062.34 2130.24 3521.57 4827.45 7321.65 
Road Network 137500 717000000 2645.25 4837.94 7346.86 9826.15 20134.67 
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More indexes for a data set occupy more space. Thus, index size increases. The index 

size results for up to five indexes are shown in Figure 6-4. The size of bars indicates the 

size of the index. Figure 6-4 shows that the index size is low for small data sets. The index 

size also increases with the number of indexes for a data set. 

 
Figure 6-4: Index Size Resuts for five indexes 

 Search Performance 

The query execution time and search performance results are presented in this section. 

Table 6-5 indicates the results of query execution and search performance. The query 

execution time for a specific attribute (I) and for the entire record (*) are included using 

full scan and indexed search. The results of query execution time indicate that time 

increases with data set size. 

Another factor that affects query execution time is the index size of a data set. When 

the index size is large, i.e., the index size for all edges combined (I) and all edges 

combined (II) data sets, the query execution time for these data sets is also high. 
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Table 6-5: Query Execution Time and Search Performance Results 

Data Sets Full Scan 

Query 

Execution Time 

(sec) 

Search 

Performance 

 I * I *  
Primary Roads 15.55 15.45  0.66 0.08 95.76 
Area Landmark 21.21 20.04 1.50 1.46 92.93 
Tabulation Area 21.84 38.97 1.16 1.25 94.68 
Area Hydrography 56.31 45.54 2.90 3.68 94.85 
All Edges Combined (I) 102.25 102.25 40.42 41.12  60.47 
Linear Hydrography 183.00 152.61 3.11 3.04 97.96 
All Edges Combined (II) 175.77 174.52 61.51 65.45 65.00 
All Edges Combined (III) 280.26 275.45 3.92 3.88 98.60 
All Nodes 410.34 410.21 7.21 7.24 98.24 
Road Network 546.80 545.54 10.56 10.43 98.07 

The query execution time results for specific attribute retrieval are presented in Figure 

6-5. Figure 6-5 also indicates that the query execution time increases with the size of data 

sets in all cases. For instance, query execution time for smallest size data set i.e. Primary 

Roads data set is least in Figure 6-5. Query execution time for larger size data sets is 

higher than Primary Roads data set. However, the query execution time for all edges 

combined (I) and all edges combined (II) data sets is high because of the large indexes. 

 
Figure 6-5: Query Execution Time Results from Experiments 

 Index Hit Ratio 

The index ratio results are presented in Table 6-6 and Figure 6-6. Predictor logic was 

adopted to decide whether new indexes are created or existing indexes are deleted, as 
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described in Chapter 4. Predictor logic observes 10 time slots of the query log to make 

decisions. Thus, IHR increases. The results of 20 time slots, which were obtained from 

the query log, are presented in Table 6-6. Total queries indicate the number of queries, 

which are executed in a time slot, whereas hit queries represent the number of queries that 

utilized indexes. 

The first 10 time slots (i.e., T1 to T10) consist of queries that are executed when static 

indexes were created. Each attribute from a data set schema is observed in each of the 10 

time slots by predictor logic, and indexes are adaptively updated. Ten time slots (i.e., T11 

to T20) are taken for adaptive indexes, which are updated using predictor logic. The IHR 

in Table 6.8 fluctuates with changing query workload in each time slot. However, after 

updating the indexes, the overall IHR increases to more than 0.54 for the T11 to T16 time 

slots. 

Table 6-6: Query Log observations and Index Hit Ratio Results before and after 

Predictor Logic 

 
Time Slots Total Queries Hit Queries Index Hit Ratio 

S
ta

ti
c 

In
d

ex
es

 

T1 28 23 0.82 
T2 22 15 0.68 
T3 21 6 0.29 
T4 24 4 0.17 
T5 30 5 0.17 
T6 26 18 0.69 
T7 24 12 0.50 
T8 22 9 0.41 
T9 30 8 0.27 
T10 27 5 0.19 

A
d

a
p

ti
v

e 
In

d
ex

es
 

T11 35 23 0.66 
T12 32 19 0.59 
T13 28 18 0.64 
T14 33 25 0.76 
T15 31 20 0.65 
T16 24 13 0.54 
T17 21 4 0.19 
T18 24 7 0.29 
T19 30 7 0.23 
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T20 26 6 0.23 

Figure 6-6 depicts the IHR for static and adaptive indexes when predictor logic is 

applied. The bars from T11 to T16 in the adaptive indexes show that the IHR improves 

when the indexes are updated according to the changing query workload. The bars from 

T17 to T20 are very short, which indicates that the index must be updated again. 

 

Figure 6-6: Index Hit Ratio Results for Static and Adaptive Indexes 

6.1.2 Mathematical Modeling Results 

The validation of the results from the mathematical modeling of data uploading, 

indexing, and query execution modules of SmallClient is presented in this section. The 

transitions in the proposed mathematical model are tuned with the timed values and 

collected data for uploading time, indexing time, and query execution time. 

 Data Upload Time 

The data upload time results are collected by using the mathematical model designed 

for SmallClient. Data uploading time integrates the time taken by reading each record and 

storing these blocks in a distributed file system, as described in Chapter 5 (see Equation 

5-21). Data set size also affects block creation and data uploading time. Therefore, 0.065 
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was set as the data set size factor, which was denoted by 𝑐, 0.00006 for 𝜇𝑟𝑒𝑎𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 and 

3.5 for 𝜇𝑠𝑡𝑜𝑟𝑒 𝑏𝑙𝑜𝑐𝑘. The data upload time results are presented in Figure 6-7. 

 

Figure 6-7: Data Upload Time Resuts using Mathematical Model 

 Indexing Time 

The indexing time results are obtained using the mathematical model when the data 

are already uploaded to the file system. Indexing time is composed of time periods to 

obtain <key, value> pairs from each record and store an index for a block to the file 

system (see Equation 5-14). The values for 𝜇𝑔𝑒𝑡<𝑘𝑒𝑦,𝑣𝑎𝑙> and 𝜇𝑠𝑡𝑜𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 are set to 

0.000006 and 1, respectively. The indexing time results obtained from the mathematical 

model are presented in Figure 6-8. 
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Figure 6-8: Indexing Time Resuts using Mathematical Model 

 Search Performance 

The query execution time results, which are obtained from the mathematical model, 

are used to validate the search performance. The values for 𝜇𝑔𝑒𝑡 𝑖𝑛𝑑𝑒𝑥, 𝜇𝑠𝑒𝑎𝑟𝑐ℎ 𝑘𝑒𝑦, and 

𝜇𝑓𝑒𝑡𝑐ℎ 𝑑𝑎𝑡𝑎 are set to 0.004, 0.000000002, and 0.0015, respectively, to collect the query 

execution time results from the CPN model using Equation 5-15. The collected results 

are presented in Figure 6-9. 

 

Figure 6-9: Query Execution Time Resuts using Mathematical Model 
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6.2 Verification 

The verification of the performance results of SmallClient for all modules, such as data 

upload overhead, indexing overhead, and search performance, are presented in this 

section. Benchmarking and mathematical modeling are employed to verify the 

correctness of the results obtained by executing the experiments. 

6.2.1 Benchmarking 

The SmallClient results are verified by using benchmarking. Hive and Lucene library 

are used for benchmarking, which return the results for full scan and indexed search 

environments, respectively. 

As shown in Chapter 5 (see Section 5.1), the test bed is designed and Apache Hadoop 

four-node cluster is created. Hadoop offers highly efficient distributed task execution and 

data management by using MapReduce and HDFS. Apache Hive warehouse is configured 

to execute SQL-Like queries, which leverage MapReduce instead of indexes, to 

efficiently execute full-scan data search operation in a distributed parallel manner. The 

proposed indexing framework outperforms Apache Hive in query execution with a 

minimum overhead caused by indexing. 

Apache Lucene is used as a benchmark for verification, which offers an indexing 

library to achieve high search and data retrieval performance on big data. SmallClient 

performs better than Apache Lucene in query execution and reduced indexing overhead. 

 Data Upload Overhead 

The results obtained from the SmallClient experiments for data uploading time and 

data upload size are compared with data uploading time and data size of HDFS. As 

defined in Chapter 5, data upload overhead is the percentage of increased activity to 
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upload data using the block creation module of SmallClient. Therefore, the level of size 

and time increase by SmallClient is presented as overhead. 

The data upload time overhead and data upload size overhead verification are first 

presented. Figure 6-10 shows the data upload time taken by HDFS and SmallClient. The 

figure also indicates the data upload time results for i-SmallClient. The bars that present 

the data upload time for i-SmallClient are the largest, whereas the bars that indicate the 

data upload time for HDFS are the smallest, which indicates that the time taken in data 

uploading by i-SmallClient is the highest. However, the data uploading time for 

SmallClient is also high. 

 
Figure 6-10: Benchmarking on Data Uploading Time 

Figure 6-10 indicates that SmallClient takes more time in data uploading than HDFS. 

This time consumption increases with data set size. SmallClient reads the entire data set 

line by line, pushes them into blocks, and uploads each block individually. The proposed 

data uploading mechanism is explained in Chapter 4. Data uploading is considerably 

time-consuming with SmallClient because of the process involved in block creation 

activities. The data uploading time by i-SmallClient includes additional time to create 

indexes. Therefore, this time consumption is the highest in all platforms. 
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The data uploading overhead caused by SmallClient depends on two factors: data set 

size and number of records. When a data set is larger and the number of records is less, 

the data uploading time overhead becomes very low. For instance, the size of the 

tabulation area data set is larger than the area landmark data set, whereas the number of 

records is less. Therefore, the observed data uploading time overhead of SmallClient for 

the tabulation area data set is lower than that of the area landmark data set. 

 
Figure 6-11: Data Upload Time Overhead  

The data uploading time overhead results by SmallClient are presented as a line graph 

in Figure 6-11. The Primary Roads data set, which is the smallest data set, has the 

maximum data upload time overhead. The line in Figure 6-11 gradually decreases for 

larger data sets even when the number of records, i.e., area landmark and tabulation area 

data sets, gradually increase. However, data uploading overhead is high for data sets with 

larger data sets, which are composed of an extensive number of records, i.e., All Edges 

Combined (I), All Edges Combined (II), and All Nodes data sets. 
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Figure 6-12: Benchmarking on Data Size 

The data upload size results are also verified. Figure 6-12 presents the data upload size 

results obtained from HDFS and SmallClient. The data upload sizes using HDFS and 

SmallClient are almost the same. The downward diagonal bars indicate the size of 

uploaded data using HDFS, whereas the closed dotted bars show the data size results for 

SmallClient. Figure 6-12 depicts that the difference between the sizes of uploaded data 

using HDFS and SmallClient is negligible. 

 
Figure 6-13: Data Upload Size Overhead 

The data upload size overhead is presented in Figure 6-13. The points on the line that 

start in the X-axis for large data sets show that the data upload size overhead decreases 

and approaches zero for large data sets. The results indicate that data size overhead for 
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primary roads is high at 66.02%. However, for large-volume data sets, the size of 

uploaded data using SmallClient is almost similar to the size of uploaded data using 

HDFS. This result verifies that the SmallClient data uploading module is efficient for 

large data sets and the size overhead of uploaded data is less than 1%.  

The data uploading overhead for both data uploading time and data upload size 

presented in this section show that SmallClient affects the size and uploading time of data. 

The overhead of the data upload size using SmallClient is very low for large data sets. 

However, the data uploading time depends on the size of a data set and the number of 

records. Therefore, the data uploading time varies with the size and number of records. 

 Indexing Overhead 

The indexing results of the proposed SmallClient are compared with the Lucene 

indexes, which are created using well-known Apache Lucene indexing library for big 

data. Apache Lucene, which is a widely adopted library for big data indexing and other 

search operations, creates indexes while loading data sets in the main memory. As 

explained in Chapter 3, the Lucene results are out-of-memory error when the data set is 

larger than the available main memory (see Table 3-2). Therefore, Lucene fails to create 

indexes for All Edges Combined (I), All Edges Combined (II), All Edges Combined (III), 

and All Nodes and Road Network data sets. However, SmallClient outperforms Lucene 

and results in low index creation overhead. Univ
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Figure 6-14: Indexing Time Comparison for up to five indexes when created 

using Lucene vs SmallClient 

The index creation time and index size overhead of SmallClient are presented and 

compared with the results of the Apache Lucene indexes. Figure 6-14 shows the index 

creation time results for Lucene and SmallClient. The figure indicates that the indexing 

time of SmallClient is lower than that of Lucene. The indexing time results are verified 

for up to five indexes, which indicate that SmallClient performed better. 

Figure 6-14 shows that Lucene could not create indexes for large data sets and returned 

out of main memory error. However, SmallClient solves this problem by considering 

small manageable data blocks instead of the entire data set in index creation. The results 

prove that Lucence takes more time to create indexes regardless of data set size or other 

features of a data set. Univ
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Figure 6-15: Indexing Time Results using Lucene, SmallCLient and I-

SmallClient 

The index time results when five indexes are created using Lucene, SmallClient, and 

i-SmallClient are presented in Figure 6-15. The downward diagonal bars show the 

indexing time for Lucene, the near dotted bars denote the indexing time taken by 

SmallClient, and the dotted bars indicate the indexing time results for i-SmallClient. The 

time taken by Lucene to create five indexes is the highest for each data set. The indexing 

time by i-SmallClient is the least among all the indexing methods for all data sets. This 

result indicates that creating indexes in parallel to data uploading is more beneficial to 

users. Moreover, creating indexes any time with changing query workload using 

SmallClient is still better than utilizing Lucene. 

The indexing time overhead shows additional delay because of indexing to start query 

execution. The indexing time overhead SmallClient is lower than that of Lucene. The 

indexing time overhead results are presented in Figure 6-16. 
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Figure 6-16: Indexing Time Overhead Results 

Figure 6-16 shows that SmallClient has lower indexing time overhead than that of 

Lucene, which proves that SmallClient minimizes indexing time overhead. The lowest 

indexing time overhead of i-SmallClient indicates that indexes should be created parallel 

to data uploading.  

Queries experience more than 40% delay when these queries are executed after Lucene 

index creation, whereas this delay is reduced to 14%–32% when SmallClient indexing is 

applied. However, i-SmallClient further reduced indexing overhead to 6%–32%. Figure 

6-16 shows the improved results of SmallClient in indexing time overhead.  

The index size performance of SmallClient improves for large data sets. Its index size 

in creating up to five indexes is lower than Lucene indexes. The index size results of 

SmallClient and Lucene are presented in Figure 6-17. 
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Figure 6-17: Index Size Results using Lucene and SmallCLient 

Figure 6-17 presents a comparison of the index size results of SmallClient and Lucene. 

The downward diagonal bars show the index size results for Lucene, and the near dotted 

bars present the index size results for SmallClient. Index size is proven to be lower with 

SmallClient than with Lucene for large data sets, i.e., area hydrography and linear 

hydrography data sets. SmallClient performs well, and its indexes require lesser space for 

large data sets than that of Lucene indexes. 

The index size overhead for five indexes over data size using Lucene and SmallClient 

is presented in Figure 6-18. The results show that the index size overhead using 

SmallClient decreases for large data sets. SmallClient exhibits better index size overhead 

performance when the indexes are created for large data sets and the index size overhead 

is up to 41%.  
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Figure 6-18: Index Size Overhead Results 

The results in Figure 6-18 show that the index size overhead using SmallClient is 

higher than that of Lucene for small data sets, such as primary roads and area landmarks. 

However, the index size overhead using SmallClient for other large data sets decreases, 

which indicates that SmallClient exhibits better index size performance for large data sets. 

 Search Performance 

Apache Lucene indexes are used for indexed search comparison, and Hive is used for 

full-scan comparison. Up to five indexes are generated instead of creating indexes on all 

attributes of a data set.  

Lucene does not allow access to the entire record through query. However, only these 

attributes can be retrieved using Lucene indexes for which indexes are available. 

Therefore, the query execution time results for the entire record retrieval are not available 

using Lucene. Moreover, query execution time results are not available for data sets where 

Lucene failed to create indexes. 

SmallClient outperforms Lucene and overcomes this limitation. Therefore, the entire 

records can be accessed and retrieved from a data set composed of indexed and/or non-

indexed attributes by using SmallClient.  
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Figure 6-19: Query Execution Time Comparison between full scan, Lucene and 

SmallClient 

Figure 6-19 presents the query execution time results by using full scan, Lucene 

indexes, and SmallClient indexes. The results show that the speed query execution 

improves with indexes. Full scan requires a longer time than indexes. The query execution 

performance of SmallClient is better than that of Lucene indexes. Figure 6-19 also 

indicates that query execution time increases at a higher rate with data set size than that 

of Lucene and SmallClient Indexes. 

 
Figure 6-20: Search Performance results using SmallClient and Lucene 

The search performance results using Lucene and SmallClient are presented in Figure 

6-20. The search performance results indicate that search performance improves using 
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SmallClient. The search performance of SmallClient is more than 92% for all data sets 

except for All Edges Combined (I) and All Edges Combined (II) data sets because of the 

large indexes of these data sets. 

6.2.2 Mathematical Modeling 

The experimental results of SmallClient are verified by using mathematical modeling. 

The experimental data for data upload time, indexing time, and query execution time are 

compared with the data collected using the mathematical model to verify the correctness 

of these results. 

Petri nets mathematical modeling language was used to develop the mathematical 

model for the proposed SmallClient framework by using CPN tools. CPN tools leverage 

their built-in discrete-event modeling language and Standard ML. The data are obtained 

from the mathematical model, and the comparison of the results from the experiment and 

mathematical model verifies the performance of the proposed framework. 

 Data Upload Overhead 

The data upload time results obtained for the data upload overhead from the 

experiments are compared with results for the same parameter from the mathematical 

model. The comparison is described in Figure 6-21. The dotted bars show the data upload 

time results from the experiment, whereas the line indicates the validation results, which 

are obtained using the mathematical model.  
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Figure 6-21: Data Upload Time Mathematical Verification 

Figure 6-21 shows that both the experiments and mathematical model produced almost 

the same results for all data sets except the All Nodes data set, which verifies the accuracy 

of data upload time using SmallClient in the performance evaluation. The points of lines 

touching the top of the bar verify the results. 

 Indexing Overhead 

The indexing time taken by SmallClient is considered in verifying the indexing 

overhead results when SmallClient is executed using the experiments and the 

mathematical model. The indexing time comparison results are presented in Figure 6-22.  
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Figure 6-22: Indexing Time Mathematical Verification 

The bars in Figure 6-22 indicate the indexing time for each data set obtained from the 

experimental model, whereas the line shows the results from the mathematical model. 

The points in the line slightly touch the top of the relevant bars for each data set, which 

shows that the results exhibit minor differences and verifies the results for indexing time. 

 Search Performance 

The query execution time results are selected to verify the search performance results 

from the experiments and the mathematical model. Figure 6-23 presents the verification 

results for query execution time.  

 
Figure 6-23:s Query Execution Time Mathematical Verification 

The bars in Figure 6-23 indicate the experiment results for query execution, whereas 

the line validates these results using the mathematical model. The slight distance between 

each line point and the relevant bar top verifies the results for query execution time. 

6.3 Conclusion 

This chapter presents the evaluation results of the performance of the proposed 

SmallClient. The data for data upload overhead, indexing overhead, search performance, 
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and index hit ratio are obtained and validated. Varying size data sets are used in the 

experiment, which shows that SmallClient can create indexes for any data set size. 

However, the performance of SmallClient is better for large data sets. The data upload 

overhead from SmallClient reduces for large data sets. Indexing overhead in terms of 

index creation time and index size is also reduced. Indexing overhead using i-SmallClient 

is lower than that using SmallClient. 

The verification of search performance results using benchmarking indicates that a 

remarkable difference exists between query execution time by full scan (using Hadoop) 

and SmallClient when similar queries are submitted. SmallClient performs better than 

Apache Lucene indexing, which is considered as a high-performance information 

retrieval and search software. 

The SmallClient framework is effective in index creation, whereas Apache Lucene 

cannot handle large data sets. The Apache Lucene program returns out-of-memory error 

for up to 20 GB data sets on the test bed, whereas the proposed indexing mechanism, 

SmallClient, efficiently handles the workload and successfully accomplishes the index 

creation task. 

The verification of SmallClient results by using mathematical modeling also proves 

the reliability of SmallClient results. The results for data uploading, indexing, and query 

execution time are obtained using the mathematical model of SmallClient. The 

comparison of the experimental and mathematical modeling results is presented. The 

comparison verified the results and proved the better performance of the proposed 

indexing framework. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

This chapter concludes the research work and highlights future research directions. 

The objectives of this thesis are achieved, as described in this chapter. The contributions 

are highlighted.  

The rest of the chapter is organized as follows: Section 7.1 presents the examination 

of the achieved objectives. Section 7.2 highlights the contributions of this study, and 

Section 7.3 presents the limitations and future work. 

7.1 Fulfillment of Aim and Objectives 

The achieved objectives of this thesis are examined in this section. As described in 

Chapter 1, the aim of this study was to expedite the data retrieval process against search 

queries over big data by proposing a novel indexing framework that introduces both static 

and adaptive indexing with minimized indexing overhead and improves data search 

performance and index hit ratio. This section describes how the objectives are fulfilled in 

this study. 

7.1.1 Investigating the capability of existing indexing techniques to address the 

challenges of big data to establish potential research problem 

The indexing techniques for traditional data, which are presented in credible 

publications, are reviewed to fulfill this objective. The indexing requirements for big data 

are identified as the “six Vs” (volume, velocity, variety, veracity, variability, and value) 

and complexity. The performance of contemporary indexing implementation on big data 

under the clustered and non-clustered categories is reviewed (see Chapter 2). The problem 

of this thesis is established by analyzing the performance of the Apache Lucene indexing 

library, which implements the non-clustered indexing approach on big data (see Chapter 

3).  
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The clustered indexing approach allows a number of indexes up to available data 

replicas. To create more indexes, clustered indexing requires more replicas of an entire 

data set or several blocks, which increase the storage overhead for big data. Lucene 

indexes are non-clustered. However, indexing overhead in terms of index size and 

indexing time is moderately high. 

7.1.2 Designing and implementing an indexing framework using non-clustered 

indexing structure incorporated with predictor function for adaptive index 

updating, which ensures the following: 

 Minimized indexing overhead in terms of index creation or updating time 

and the space consumed by indexes (index size) for large-volume data; 

 Reduced data retrieval time with faster query execution and data search 

performance; and 

 Maximum index hit ratio by predicting the future workload of incoming 

search queries 

This objective is achieved by proposing a novel indexing framework for big data called 

SmallClient, which implements the non-clustered indexing approach and allows indexes 

to be created either statically at the time of data uploading or any time when users realize 

changing query workload and invoke adaptive index updating. SmallClient also 

introduces predictor function, which automatically predicts incoming query workload and 

updates available indexes (see Chapter 4). 

SmallClient is an indexing solution for big data with minimized indexing overhead 

and improved query execution and data search performance. The adaptability of 

SmallClient to changing query workload functionality keeps available indexes up-to-date. 

Thus, the maximum index hit ratio is achieved. 
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7.1.3 Evaluating the effectiveness of proposed indexing framework with respect to 

overhead resulted by static and adaptive indexing, query execution and data 

retrieval time, and index hit ratio 

The test bed is designed to validate the performance of SmallClient. Varying data set 

sizes are used to execute the experiment. Data for data upload overhead, indexing 

overhead, search performance, and index hit ratio are collected. The obtained data from 

the experiment on varying size data sets proves the adaptability of SmallClient on big 

data. 

The results proved that SmallClient can fulfil the indexing and data search 

requirements of data sets of any size. However, the performance of SmallClient is better 

for large data sets. The data upload overhead results from SmallClient reduces for large 

data sets. Indexing overhead in terms of index creation time and index size is also reduced. 

The indexing overhead using i-SmallClient is lower than that using SmallClient. 

7.1.4 Verifying the results of proposed indexing framework using benchmarking 

and mathematical modeling 

The results of experiments are verified by using benchmarking and mathematical 

modeling. The full scan of Apache Hive and indexed search of Apache Lucene are used 

for benchmarking. The results for data upload overhead, indexing overhead, and search 

performance, which are obtained from the experiments on SmallClient, are compared 

with the results of Apache Hive and Apache Lucene for the same parameters. The 

comparison showed that SmallClient outperformed existing methods and exhibited 

improved search performance with reduced indexing overhead. 

Mathematical modeling was also utilized to verify the experiment results of 

SmallClient. Petri nets are leveraged to design the mathematical model for SmallClient. 

Data uploading time, indexing time, and query execution time are obtained. The 
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experiment results are compared with the mathematical model results, which prove that 

SmallClient perform similarly in both environments. 

7.2 Research Contributions 

The contributions of this study to the body of knowledge are as follows: 

7.2.1 Taxonomy of State-of-the-Art Indexing Techniques 

The taxonomy of indexing techniques was devised, and recent indexing techniques are 

categorized into NAI, AI, and CAI indexing techniques. Recent indexing contributions 

from highly cited recent articles of credible journals are reviewed. The taxonomy was 

created by analyzing each indexing technique. This taxonomy is presented in Chapter 2, 

which is published (Gani et al., 2015) as a survey on indexing techniques for big data. 

7.2.2 SmallClient: a novel indexing framework for big data 

A novel indexing framework for big data is proposed, which is called SmallClient. 

SmallClient implements non-clustered indexing and offers both static and adaptive 

indexing mechanisms (see Chapter 4). Static indexes are created based on a user-provided 

list of index attributes regardless of the number of indexes needed at the time of data 

uploading. Indexing overhead for SmallClient is lower than that of the existing indexing 

library for big data. Users can invoke index updating, i.e., create new indexes and/or 

delete available indexes whenever the query workload changes. 

The predictor logic is also introduced by SmallClient to adaptively update indexes with 

changing query workload. Thus, the maximized index hit ratio which was an objective of 

this study, is obtained. Index maintenance implements a non-clustered approach. Query 

execution time is improved unlike that of existing full scan and indexed search 

techniques. 
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7.2.3 Algorithmic Design for SmallClient 

Algorithms are designed for block creation, index creation, and query execution 

modules for the proposed indexing framework. The step-by-step procedures involved in 

each module are presented. The algorithm for block creation takes the local disk location 

of data and its schema as input and shows the process of creating and uploading blocks.  

Index creation has two algorithms to accomplish the process: the first algorithm 

presents the pre-index creation steps, such as verifying the provided list of index attributes 

and obtaining the location of each index attribute from data set schema. The second 

algorithm for index creation presents the activities of index creation. The algorithm for 

query execution takes query as input, verifies the elements of queries, and defines data 

search and retrieval operations. 

7.2.4 Java Class Library for SmallClient7 

The Java code for SmallClient indexing framework is developed by using Eclipse IDE. 

Java IO, util and text packages, and Apache Hadoop FileSystem, conf and hdfs packages 

are imported to implement procedures. The executable client offers block creation (see 

Appendix A), index creation (see Appendix B), query execution (see Appendix C), and 

predictor execution (see Appendix D) services. Users invoke various methods with input 

parameters to obtain the required outputs.  

Users invoke block creation by specifying data and their schema source and destination 

location to upload data to HDFS. Users can also specify index attributes at this stage to 

invoke index creation in parallel to block creation. Users invoke query execution with 

query parameters to obtain data. The predictor method does not need any information 

                                                 
7 The library is publically available on following link: 

https://github.com/aasiddiqa/smallclient 
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except the data set location form of users and automatically invokes index creation and 

index deletion methods. All the methods are well-written and easy to use. Users do not 

need Java proficiency to apply the solution for big-data analysis. 

7.2.5 Mathematical Model of SmallClient 

Another contribution of this study is the mathematical model for the indexing 

framework. Petri net mathematical modeling language was used to develop the 

SmallClient model. The model provides a clear visualization of the process flow for 

SmallClient. The required time to perform block creation, index creation, and query 

execution is calculated by specifying the required parameters. Block creation and index 

creation time estimation requires data set size, the number of records in a data set, and 

block size. Query execution time estimation requires index size.  

7.3 Limitations and Future Work 

Automatic index updating is limited to time setting in the current study. Real-time 

index updating is disregarded. However, the periodic execution of predictor logic is 

considered to automatically update indexes. The time setting for a frequently queried 

system is 10 minutes. After the elapsed time setting, the predictor logic is invoked to 

update indexes. 

Triggered index updating by each incoming query is required in future research to 

improve index hit performance. A novel predictor logic is proposed to automatically 

update indexes while periodically predicting future query workload based on incoming 

query trends. 

User-provided metadata is also a limitation of the current study. Users provide schema 

and metadata for data sets. Input metadata are considered to obtain knowledge on the 

attributes of a data set. The current work is limited to user-provided metadata. However, 
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a data set may exhibit features other than those defined in the metadata. Users may have 

data retrieval requirements, which differ from metadata that are available with data sets. 

Automatic generation of metadata and provision of multi-schema for various kinds of 

data sets, such as images, videos, and audio files, are required to induce intelligence in 

the framework, which may increase the search options and improve the performance of 

the data retrieval system. Metadata generation is facilitated when the set of properties for 

a data set increases and more indexes exist for data retrieval. 

The predictor logic of SmallClient depends on the derivation of the average access rate 

for an attribute to make index updating decisions. The average access rate for an attribute 

is calculated from queries that are executed in 𝑛 time slots. The average access rate of 

indexed attributes is used to delete or keep the indexes. In the case of non-indexed 

attributes, the average access rate is utilized to create new indexes. The exploitation of 

machine learning methods is required to automatically learn the workload for indexes and 

to improve the performance of the predictor logic.  

SmallClient traverses the entire index for repetitive queries as many times as they are 

submitted. SmallClient offers query log service to retain information of submitted 

queries. However, the results of pre-executed queries, i.e., locations of records requested 

by queries, are unavailable. Therefore, SmallClient repeats index traversal with the 

submission of queries. Query result caching is required to avoid index traversal for 

repetitive queries. The cache can return requested data locations with less time than index 

traversal time. 
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