
FORENSIC INVESTIGATION OF LINK FABRICATION
ATTACK IN SOFTWARE DEFINED NETWORKS

SULEMAN KHAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

FORENSIC INVESTIGATION OF LINK
FABRICATION ATTACK IN SOFTWARE DEFINED

NETWORKS

SULEMAN KHAN

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Suleman Khan

Registration/Matric No: WHA130036

Name of Degree: Doctor of Philosophy

Title of Dissertation: Forensic Investigation of Link Fabrication Attack in Software
 Defined Networks

Field of Study: Forensics in Mobile Cloud Computing (COMPUTER SCIENCE)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
of

Mala
ya

iii

ABSTRACT

Software Defined Networking (SDN) is an emergent network architecture with a

unique feature of decoupling an infrastructure plane from the control plane. SDN enables

network-wide visibility to the applications running on top of the controller by executing

a topology discovery module. However, the adversaries try to exploit the controller

visibility due to its centralized control management of the entire network. The SDN faces

topology vulnerabilities due to lack of security concern in its initial development of the

architecture. Thus, the existing vulnerabilities in the controller attract the adversary to

exploit SDN for various illegitimate reasons. For instance, the controller lacks an

authentication mechanism to differentiate between legitimate and spoofed Link Layer

Discovery Protocol (LLDP) packets. The LLDP packets are used by the topology

discovery module to determine a link between the switches which further assists the

controller to build the network topology. The legitimate network topology is an utmost

important in SDN because adversaries can inject fake links between the switches to

fabricate the network topology. The fabrication of fake links in the network topology is

called Link Fabrication Attack (LFA). The LFA occurs due to malicious switches and

hosts that spoof the LLDP packets to generate fake links between the switches. The fake

links are used for numerous illegal reasons including eavesdropping, diverting legitimate

traffic, and packet drops. Currently, the available techniques are available to detect fake

links, but they fail to identify the real source of the attack. Thus, SDN requires having a

forensic method which not only detects fake links but determines the real source of the

fake links. Therefore, we proposed a forensic-based investigation method (FoR-Guard)

to detect fake links as well as determine the real source of the LFA. The FoR-Guard is

composed of three main phases namely trigger, Detection and Source Identification

(DeSI), and validation phase. The trigger phase triggers an alarm message to the DeSI

phase by observing the fake link generated between the switches. The trigger phase used

Univ
ers

ity
 of

 M
ala

ya

iv

Malicious Index Record (MIR) of the switches to trigger a message. The DeSI phase

investigates to detect fake links between the switches by checking the Link

Communication Direction (LCD) and MIR information of the respective link and switch

respectively. Afterwards, a traceback mechanism is used to identify the cause of the attack

by determining the malicious host connected to the switch. The validation phase verifies

the true source of the attack by using probability and entropy measurements. Furthermore,

the FoR-Guard is compared with state-of-the-art detection mechanism of LFA by

controller processing time. It founds that by employing forensic-based investigation

method (FoR-Guard) the processing time of the controller is reduced significantly.

Results show that FoR-Guard reduces the controller processing time up to 30.03

microseconds as compared to 89.94 and 68.49 microseconds of TopoGuard and Sphinx

for 10 switches, having 20 fake links out of 50 total numbers of links. Different

experiments highlight that FoR-Guard utilize maximum 35 microseconds to detect up to

20 fake links in any network topology which is significant as compared to TopoGuard

and Sphinx controller processing time. Hence, the FoR-Guard provides an efficient,

comprehensive forensic-based solution for SDN.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Software Defined Networking (SDN) adalah satu rangkaian seni bina yang

mempunyai ciri unik iaitu nyahgandingan satah data dari satah kawalan. SDN juga

membolehkan darjah penglihatan rangkaian yang luas terhadap aplikasi yang beroperasi

di atas pengawal dengan melaksanakan modul topologi penemuan. Walau bagaimanapun,

darjah penglihatan pengawal dapat dieksploitasi kerana seluruh rangkaian dikawal secara

berpusat. Selain itu, topologi SDN juga terdedah pada pelbagai serangan kerana

kekurangan ciri-ciri keselamatan di dalam pengawal dan tidak dipertimbangkan di awal

pembangunan SDN. Oleh itu, pengawal menjadi sasaran utama untuk mengeksploitasi

SDN. Contohnya, pengawal tidak mempunyai satu mekanisme pengesahan untuk

membezakan antara Link Layer Protocol Discovery (LLDP) paket yang sah atau tidak.

Paket LLDP digunakan oleh modul topologi penemuan untuk menentukan hubungan

antara suis yang membantu pengawal untuk membina topologi rangkaian. Rangkaian

topologi yang sah adalah penting di dalam SDN untuk mengelakkan suntikan pautan

palsu diantara suis bagi memalsukan topologi rangkaian. Fabrikasi pautan palsu dalam

topologi rangkaian dipanggil Link Fabrication Attack (LFA). LFA berlaku kerana

terdapat suis dan host hasad yang memalsukan paket LLDP untuk menjana pautan palsu

di antara suis. Pautan palsu tersebut digunakan untuk melaksanakan aktiviti yang tidak

sah seperti mencuri dengar, mengalihkan lalu lintas yang sah, dan menggugurkan paket.

Pada masa ini, teknik yang sedia ada hanya dapat mengesan pautan palsu, tetapi gagal

untuk mengenal pasti punca serangan tersebut. Oleh itu, SDN memerlukan kaedah

forensik untuk mengesan pautan palsu dan terutama sekali menentukan sumber sebenar

pautan palsu. Oleh itu, satu kaedah siasatan berdasarkan forensik (FoR-Guard) untuk

mengesan pautan palsu serta menentukan sumber sebenar LFA dicadangkan. FoR-Guard

terdiri dari tiga fasa utama iaitu pencetus, Pengesanan dan Mengenalpasti Sumber (DeSI),

dan fasa pengesahan. Fasa pencetus mengeluarkan mesej penggera bagi fasa DeSI untuk

Univ
ers

ity
 of

 M
ala

ya

vi

memerhatikan sekiranya terdapat rangkaian palsu dihasilkan antara suis. Fasa pencetus

menggunakan Malicious Index Record (MIR) untuk mengeluarkan mesej. Fasa DeSI

menyisasat sekiranya terdapat pautan palsu antara suis dengan memeriksa Direction Link

Communication (LCD) dan maklumat MIR bagi pautan dan suis yang berkenaan. Selepas

itu, satu mekanisme mengenal pasti digunakan untuk mencari punca serangan dengan

menentukan host hasad yang bersambung dengan suis. Fasa pengesahan menentusahkan

punca sebenar serangan dengan mengukur kebarangkalian dan entropi. FoR-Guard

dibandingkan dengan mekanisme pengesanan terkini oleh LFA dari segi masa

pemprosesan pengawal. Penggunaan kaedah siasatan berdasarkan forensik (FoR-Guard)

didapati mengurangkan masa pemprosesan pengawal dengan ketara. Hasil kajian

mendapati FoR-Guard mengurangkan masa pemprosesan pengawal sehingga 30.03

mikrosaat berbanding TopoGuard dan Sphinx iaitu 89.94 dan 68.49 mikrosaat bagi 10

suis yang mempunyai 20 pautan palsu dari jumlah 50 pautan. Dari kajian yang berbeza,

FoR-Guard memerlukan maksimum 35 mikrosaat untuk mengesan 20 pautan palsu di

dalam topologi rangkaian berbanding masa pemprosesan pengawal yang diperlukan oleh

TopoGuard dan Sphinx. Oleh itu, FoR-Guard menyediakan penyelesaian forensik yang

komprehensif dan cekap bagi SDN.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

First of all, I am thankful to Almighty Allah for bestowing me the strength, wisdom,

and endless blessings during my PhD study.

I am deeply indebted to my supervisors, Prof. Dr Abdullah Gani (Supervisor) and Dr

Ainuddin Wahid Abdul Wahab (Co-Supervisor) for their invaluable guidance,

supervision, and encouragement to me throughout this research. Their continuous

guidance and support assisted me conducting a valuable piece of research reported in this

thesis. They provided me with the opportunity to broaden my professional experience and

prepare me for future challenges. The countless efforts of my supervisors encourage me

to work hard to achieve my milestones in a defined time limit.

I would like to express my sincerest gratitude and appreciation to my family for their

endless love and support during my life especially my parents and spouse. Without their

moral support, this dissertation would never have been completed. No words can express

my feelings how grateful I am to my parents and siblings for all of the sacrifices that they

have made on my behalf so I dedicate the highest achievement of my student life to them.

I would like to express my deep appreciation to my dear lab friends, who provided so

much support and encouragement throughout this research and studies process. I wish

them all the best in their future undertaking.

Finally, I would like to thank Bright Sparks Unit of the University of Malaya for

offering me a full research scholarship throughout my doctoral study. I would also like to

thank Faculty of Computer Science and Information Technology in helping me in all sorts

of matters during my study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT .. iii
ABSTRAK ... v
ACKNOWLEDGEMENTS .. vii
TABLE OF CONTENTS ... viii
LIST OF FIGURES ... xi
LIST OF TABLES ... xiii
LIST OF ACRONYMS .. xv
CHAPTER 1: INTRODUCTION .. 1
1.1 Introduction .. 1
1.2 Motivation .. 4
1.3 Statement of the Problem ... 7
1.4 Statement of Objectives ... 8
1.5 Proposed Methodology .. 9
1.6 Layout of Thesis .. 10
CHAPTER 2: LITERATURE REVIEW .. 14
2.1 Background .. 14

2.1.1 Software Defined Networks (SDN) ... 14
2.1.2 Threats to Software Defined Networks planes ... 17

2.1.2.1 Attacks on the SDN infrastructure plane 18
2.1.2.2 Attacks on the SDN control plane ... 19
2.1.2.3 Attacks on the SDN application plane 20
2.1.2.4 Attacks on the SDN interfaces .. 21

2.2 Topology Discovery .. 24
2.2.1 Importance .. 24
2.2.2 Topology Discovery in Traditional Networks .. 25
2.2.3 Topology Discovery in SDN .. 27

2.3 A Thematic Taxonomy: Topology Discovery ... 28
2.3.1 Discovery Entities .. 29

2.3.1.1 Host Discovery .. 30
2.3.1.2 Switch Discovery .. 31
2.3.1.3 Inter-connected link between switches...................................... 31

2.3.2 Controller Platform ... 35
2.3.2.1 Topology Discovery in Single Controller Platforms 35
2.3.2.2 Topology Discovery in Multiple Controller Platforms 36

2.3.3 Dependent Services .. 37
2.3.3.1 Routing .. 37
2.3.3.2 Mobility Tracking ... 38
2.3.3.3 Load Balancing ... 38
2.3.3.4 Topology-based Slicing ... 39

2.3.4 Objective .. 40
2.4 Topology Discovery Threats and Solutions .. 42

2.4.1 Attack Entity ... 43
2.4.1.1 Host-based Attacks .. 43
2.4.1.2 Switch-based Attacks .. 44

2.4.2 Controller Vulnerabilities ... 45
2.4.2.1 Host Tracking Systems (HTS) .. 45
2.4.2.2 Link Discovery Procedure ... 46

2.4.3 Current solutions .. 47
2.4.3.1 SPHINX .. 47
2.4.3.2 TopoGuard .. 48

Univ
ers

ity
 of

 M
ala

ya

ix

2.4.3.3 Authentication of LLDP Packets ... 50
2.4.3.4 OFDPv2 ... 50

2.4.4 Miscellaneous Threats .. 53
2.4.4.1 Man-in-the-middle .. 53
2.4.4.2 Denial of service .. 54
2.4.4.3 Identity spoofing ... 54
2.4.4.4 Repudiation ... 55

2.5 Future Challenges and Directions .. 56
2.5.1 Multiple SDN Domains .. 56
2.5.2 Topology Discovery through OF switches ... 57
2.5.3 Identification of fake links ... 58
2.5.4 Frequent migration ... 58
2.5.5 Topology discovery information safety ... 59
2.5.6 Controller upgrade .. 61

2.6 Conclusion ... 62
CHAPTER 3: PROBLEM ANALYSIS .. 64
3.1 Formal Methods ... 64

3.1.1 Formal Definition ... 64
3.1.2 HOL Syntax and semantics .. 65

3.2 Formal Representation of SDN ... 66
3.3 Formal Representation of SDN as a Service ... 70
3.4 Formal Representation of Network Vulnerability ... 72
3.5 Contextual Analysis of LFA Attack in SDN ... 74

3.5.1 Link Fabrication Attack in SDN .. 74
3.5.2 Formal Representation of Link Fabrication Attack 75

3.6 Link Fabrication Attack: An Illustration ... 77
3.6.1 Satisfiability Test .. 79

3.7 Performance metrics of Link Fabrication Attack in SDN 80
3.7.1 Effectiveness (Processing time) ... 80
3.7.2 Sensitivity ... 81
3.7.3 Specificity ... 81
3.7.4 False Alarm Rate .. 82

3.8 Conclusion ... 83
CHAPTER 4: FORENSIC INVESTIGATION METHOD (FOR-GUARD) 84
4.1 Overview of FoR-Guard .. 84
4.2 Design principle of FoR-Guard ... 86

4.2.1 FoR-Guard states .. 87
4.2.2 FoR-Guard Events .. 88

4.3 Forensic Investigation Method (FoR-Guard) .. 89
4.3.1 Trigger Phase .. 89
4.3.2 Detection and Source Identification (DeSI) Phase 96
4.3.3 Validation Phase ... 105

4.4 Conclusion ... 107
CHAPTER 5: EVALUATION ... 109
5.1 Experimental tools and SDN controller ... 109

5.1.1 Mininet ... 110
5.1.2 Floodlight Controller 1.0 .. 111
5.1.3 Packit Tool ... 113

5.2 Performance Analysis .. 114
5.2.1 Confidence Interval of the Data Collection .. 114
5.2.2 Processing Time ... 116

5.2.2.1 Data collection of trigger phase processing time 117

Univ
ers

ity
 of

 M
ala

ya

x

5.2.2.2 Data collection of DeSI phase processing time 118
5.2.2.3 Data collection of validation phase processing time 119

5.2.3 Sensitivity ... 119
5.2.4 Specificity ... 123
5.2.5 False Alarm Rate .. 123
5.2.6 Data collection for sensitivity, specificity, and false alarm rate 123

5.2.6.1 Data collection of 10 switches and 50 total links 124
5.2.6.2 Data collection of 10 switches and 75 total links 127
5.2.6.3 Data collection of 20 switches and 50 total links 129
5.2.6.4 Data collection of 20 switches and 75 total links 135

5.3 Performance analysis of FoR-Guard with existing solutions 139
5.4 Conclusion ... 141
CHAPTER 6: RESULTS AND DISCUSSIONS .. 143
6.1 Performance Analysis of FoR-Guard .. 143

6.1.1 Trigger phase processing time .. 143
6.1.2 DeSI phase processing time ... 145
6.1.3 Validation phase processing time ... 147

6.2 Comparison of FoR-Guard phases in different scenarios 149
6.3 Performance analysis of FoR-Guard through ROC analysis 153

6.3.1 ROC graphs for 50 total number of links ... 154
6.3.2 ROC graphs for 75 total number of links ... 158

6.4 Comparison of FoR-Guard with existing solutions ... 162
6.4.1 Processing time ... 162

6.4.1.1 Empirical results of 10 switches and 50 total links 162
6.4.1.2 Empirical results of 10 switches and 75 total links 164
6.4.1.3 Empirical results of 20 switches and 50 total links 165
6.4.1.4 Empirical results of 20 switches and 75 total links 167

6.5 Conclusion ... 168
CHAPTER 7: CONCLUSION ... 170
7.1 Achievement of research objectives .. 170
7.2 Contribution of the research .. 172

7.2.1 Thematic taxonomy .. 172
7.2.2 Formal representation of SDN ... 173
7.2.3 Dynamic trigger mechanism for fake links .. 173
7.2.4 Algorithms for detection and source identification of fake links 173
7.2.5 Validation of source identification ... 174
7.2.6 FoR-Guard Evaluation ... 174
7.2.7 Accepted journal articles from thesis ... 174
7.2.8 Accepted journal articles in other research areas 175
7.2.9 Accepted journal articles in collaboration with group members 175

7.3 Research scopes and limitations .. 176
7.4 Future work .. 177
REFERENCES .. 179

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF FIGURES

Figure 1.1: SDN Market Forecast ... 6
Figure 1.2: Outline of the Thesis... 13
Figure 2.1: General SDN Layer Architecture ... 16
Figure 2.2: A Flow Chart for Packet_In Message .. 17
Figure 2.3: Classification of attacks on SDN Planes .. 22
Figure 2.4: A thematic taxonomy of topology discovery in SDN 29
Figure 2.5: The LLDP process in SDN environment .. 33
Figure 2.6: Single controller architecture.. 36
Figure 2.7: Multiple controllers .. 36
Figure 2.8: A diagram illustrating link fabrication attacks ... 40
Figure 2.9: Classification of topology discovery threats and solutions 44
Figure 3.1: A fake link between switches in SDN .. 75

Figure 4.1: The integration of proposed modules within SDN architecture 86
Figure 4.2: The state transition diagram of FoR-Guard .. 89
Figure 4.3: An illustration of a fake link between switches .. 98
Figure 5.1: Python code for a single switch and ‘k’ number of hosts 111
Figure 5.2: Floodlight controller supports communication with there is a single link
between OF Island and non-OF Island ... 112
Figure 5.3: The connection of remote controller to the Mininet infrastructure 113
Figure 5.4: Floodlight controller does not support communication with there is a loop
between OF Island and non-OF Island ... 113
Figure 6.1: Processing time of trigger phase for 10 switches and (50,75) total links ... 144
Figure 6.2: Processing time of trigger phase for 20 switches and (50,75) total links ... 145
Figure 6.3: Processing time of DeSI phase for 10 switches and (50,75) total links 146
Figure 6.4: Processing time of DeSI phase for 20 switches and (50,75) total links 147

Figure 6.5: Processing time of validation phase for 10 switches and (50,75) total links
 ... 148
Figure 6.6: Processing time of validation phase for 20 switches and (50,75) total links
 ... 149
Figure 6.7: Processing time comparison of FoR-Guard phases in 10 switches and 50 total
links ... 150
Figure 6.8: Processing time comparison of FoR-Guard phases in 10 switches and 75 total
links ... 151

Figure 6.9: Processing time comparison of FoR-Guard phases in 20 switches and 50 total
links ... 152

Figure 6.10: Processing time comparison of FoR-Guard phases in 20 switches and 75
total links ... 153
Figure 6.11: ROC graph for single fake link in 50 total links....................................... 155

Figure 6.12: ROC graph for 05 fake links in 50 total links .. 156
Figure 6.13: ROC graph for 10 fake links in 50 total links .. 157

Figure 6.14: ROC graph for 15 fake links in 50 total links .. 158
Figure 6.15: ROC graph for 20 fake links in 50 total links .. 158

Figure 6.16: ROC graph for single fake link in 75 total links....................................... 159
Figure 6.17: ROC graph for 05 fake links in 75 total links .. 160
Figure 6.18: ROC graph for 10 fake links in 75 total links .. 161

Figure 6.19: ROC graph for 20 fake links in 75 total links .. 161

Figure 6.20: ROC graph for 20 fake links in 75 total links .. 162
Figure 6.21: Comparison of processing time of FoR-Guard with TopoGuard and Sphinx
in 10 switches and 50 links ... 163

Univ
ers

ity
 of

 M
ala

ya

xii

Figure 6.22: Comparison of processing time of FoR-Guard with TopoGuard and Sphinx
in 10 switches and 75 links ... 165

Figure 6.23: Comparison of processing time of FoR-Guard with TopoGuard and Sphinx
in 20 switches and 50 links ... 166
Figure 6.24: Comparison of processing time of FoR-Guard with TopoGuard and Sphinx
in 20 switches and 75 links ... 167

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF TABLES

Table 2.1: SDN layers/Interfaces possible attacks and existing solutions 23
Table 2.2: Comparison between traditional network and SDN topology discovery....... 28
Table 2.3: Topology-dependent applications with its effected attacks 40
Table 2.4: A general description of state-of-the-art topology discovery 51
Table 2.5: A side effect of threats on topology discovery .. 55
Table 2.6: A description of future challenges and directions of topology discovery with
its possible solutions ... 59
Table 3.1: The logical symbols used in HOL ... 66
Table 4.1: Symbol descriptions of FoR-Guard algorithms ... 92
Table 5.1: Python code for a single switch and ‘k’ number of hosts 111
Table 5.2: Network topology setup for our experiments .. 117
Table 5.3: Processing time of the controller in the trigger phase 119

Table 5.4: Processing time of the controller in the DeSI phase 120
Table 5.5: Processing time of the controller in the Validation phase 121
Table 5.6: Data collection for switches=10, total links=50, Legitimate links=49, fake
links=01 ... 124
Table 5.7: Data collection for switches=10, total links=50, Legitimate links=45, fake
links=05 ... 125
Table 5.8: Data collection for switches=10, total links=50, Legitimate links=40, fake
links=10 ... 1256
Table 5.9: Data collection for switches=10, total links=50, Legitimate links=35, fake
links=15 ... 1267
Table 5.10: Data collection for switches=10, total links=50, Legitimate links=30, fake
links=20 ... 1288
Table 5.11: Data collection for switches=10, total links=75, Legitimate links=74, fake
links=01 ... 128
Table 5.12: Data collection for switches=10, total links=75, Legitimate links=70, fake
links=05 ... 130
Table 5.13: Data collection for switches=10, total links=75, Legitimate links=65, fake
links=10 ... 130

Table 5.14: Data collection for switches=10, total links=75, Legitimate links=60, fake
links=15 ... 131
Table 5.15: Data collection for switches=10, total links=75, Legitimate links=55, fake
links=20 ... 131
Table 5.16: Data collection for switches=20, total links=50, Legitimate links=49, fake
links=01 ... 132
Table 5.17: Data collection for switches=20, total links=50, Legitimate links=45, fake
links=05 ... 133

Table 5.18: Data collection for switches=20, total links=50, Legitimate links=40, fake
links=10 ... 1334

Table 5.19: Data collection for switches=20, total links=50, Legitimate links=35, fake
links=15 ... 134

Table 5.20: Data collection for switches=20, total links=50, Legitimate links=30, fake
links=20 ... 1355
Table 5.21: Data collection for switches=20, total links=75, Legitimate links=74, fake
links=01 ... 136

Table 5.22: Data collection for switches=20, total links=75, Legitimate links=70, fake
links=05 ... 136

Univ
ers

ity
 of

 M
ala

ya

xiv

Table 5.23: Data collection for switches=20, total links=75, Legitimate links=65, fake
links=10 ... 1377

Table 5.24: Data collection for switches=20, total links=75, Legitimate links=60, fake
links=15 ... 137
Table 5.25: Data collection for switches=20, total links=75, Legitimate links=55, fake
links=20 ... 138
Table 5.26: Comparison of processing time in 10 switches and 50 total links 139
Table 5.27: Comparison of processing time in 10 switches and 75 total links 140
Table 5.28: Comparison of processing time in 20 switches and 50 total links 1411
Table 5.29: Comparison of processing time in 20 switches and 75 total links 141
Table 6.1: Paired sample t-tests for 10 switches and 50 links 164
Table 6.2: Paired sample t-tests for 10 switches and 75 links 165
Table 6.3: Paired sample t-tests for 20 switches and 50 links 167
Table 6.4: Paired sample t-tests for 20 switches and 75 links 168

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF ACRONYMS

A-TrgM : Adaptive Trigger Manager
AT : Attack Target
AT : Attacker
AV : Attack Victim
BDDP : Broadcast Domain Discovery Protocol
BER : Bayesian error rate
BPDU : Bridge Protocol Data Units
CI : Confidence Interval
DeSI : Detection and Source Investigation
EM : Entropy Measurement
ES : Standard Error
FAR : False Alarm Rate
FN : False Negative
FP : False Positive
HMAC : Hash Message Authentication Code
HOL : High Order Logic
HTS : Host Tracking System
IoT : Internet of Things
LCD : Link Communication Direction
LFA : Link Fabrication Attack
LH : Link Handler
LLDP : Link Layer Discovery Protocol
LM : Link Manager
LSA : Link State Advertisements
MIB : Management Information Base
MLA : Malicious Link Arbitrator
OF : Open Flow
OLSR : Optimized Link State Routing
OSPF : Open Short Path First
SDN : Software Defined Networks
TC : Topology Controller
TCP : Transmission Control Protocol
TLS : Transport Layer Security
TLV : Type Length Value
UTP : User Datagram Protocol

 Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter provides a synopsis of the research work conducted in this thesis. The

research work is focusing on the forensic investigation of Link Fabrication Attack (LFA)

in Software Defined Networks (SDN). The overview of the work is explained in several

sub-sections as follows. Section 1.1 provides the introduction of the chapter. Section 1.2

discusses the motivation of the research work and the statement of the problem is

presented in Section 1.3 by emphasising on LFA in SDN. Section 1.4 describes the

research objectives, and Section 1.5 presents a brief description of the research

methodology to achieve the defined objectives. Finally, Section 1.6 provides a layout of

the thesis.

1.1 Introduction

The SDN is a new emerging network architecture which decouples the network control

and forwarding functions of the network devices (S. Khan, Gani, Wahab, Guizani, &

Khan, 2016). SDN offer programmers an abstract network visibility and direct control

over the underlying switches through logically-centralized SDN controller. The dynamic,

adaptive, manageable, and cost-effective architecture of SDN provides an ideal situation

for applications with dynamic and high bandwidth nature to execute efficiently.

Currently, SDN is addressing the computing trends that need to be driven for a new

network paradigm. The value proposition of SDN encompasses new capabilities,

including rapid deployment of network functions at software speed rather than firmware

product cycles or hardware and seamless integration of the network with IT processes

through programmable APIs.

SDN enables an insight of the entire network as opposed to the traditional networks

due to disaggregation of its architecture. The architecture of SDN is divided into three

planes, namely infrastructure plane, control plane, and application plane (B. A. A. Nunes,

M. Mendonca, X.-N. Nguyen, K. Obraczka, & T. Turletti, 2014). An infrastructure plane

Univ
ers

ity
 of

 M
ala

ya

2

is a bottommost plane in SDN architecture which contains the network devices used to

forward the data to the entire network. Usually, Open Flow (OF) switches are used in the

infrastructure plane to forward the network flows through flow rules installed in the flow

tables (McKeown et al., 2008). These flow rules in the OF switches apply to all OSI layers

which forward the data to its destination.

The control plane provides an abstract view of the network infrastructure to the

applications running on top of the controller (Kreutz, Ramos, & Verissimo, 2013). The

controller is a logical entity of the control plane that acts as a brain in SDN. The role of

the controller is to receive instructions from the application plane and relays them to the

network devices down in the infrastructure plane. The controller used various

programmable interfaces to interact with infrastructure and application planes. The well-

known interfaces include south and north interfaces. The former interface is used to

integrate infrastructure and control planes, whereas latter integrates control and

application planes.

The application plane contains different services to manage network resources through

specific requirements and used the controller as an intermediate entity (Haleplidis et al.,

2015). These services include business applications, network management, and analytics

mechanism to operate large data center networks usually in the cloud computing. For

instance, network analytics application might be built to analyze the suspicious activity

of the attacker for security purposes.

Although SDN layer architecture offers several advantages to the entire network (such

as abstraction, flexibility, high asset usage, and low cost), they are susceptible to

exploitation through different security breaches. It is because security was not the major

concern in the initial development of SDN architecture. The attack on the infrastructure

plane can be performed either from outside or inside the network. An attacker could gain

unauthorized access to the network devices to exploit the victim connected to SDN by

Univ
ers

ity
 of

 M
ala

ya

3

destabilizing the network operation. The attacks can be in the form of Denial of Services

(DoS), installation of malicious flows, eavesdropping flows, and disturbance of the

routing paths (Kreutz et al., 2013). Moreover, the control plane is the most targeted

location for attackers due to centralized control of the controller. Once the attacker gets

an illegal control of the controller, the rest of the network can be easily affected.

Moreover, the attacker might use an illegal access to perform numerous malicious

behaviors such as transfer the spoof control messages between south or northbound

interfaces, bypass the security policies, consume the controller resources, perform

network diversion, and damage the controller network visibility. The attack on the

application plane could be in the form of malicious services which bypass the security

measures of the northbound-API. Once the malicious application bypass the northbound

API’s and reaches the controller, it easily exploits the core functionality of the controller

such as topology discovery, routing services, and load balancing.

Topology discovery is an important function of the controller which provides a

network visibility to the topology-dependent applications running on top of the controller

(S. Khan et al., 2016). The topology discovery information help applications to execute

their operation by having an abstract view of the underlying network infrastructure at the

infrastructure plane of SDN. The topology information is managed by the controller,

which is a key target for the attackers. Securing the topology information is important to

prevent the attackers from exploiting the controller network visibility which further

distracts the network applications. There are various ways to make the topology

information malicious by modifying the network entities, including switches, hosts, and

links between the switches. An illegal modification to the network entities will change

the network topology by providing an incorrect view of the network to the controller. The

illegal modification causes the topology to change falsely, and such a phenomenon is

Univ
ers

ity
 of

 M
ala

ya

4

known as topology poisoning. Onwards, our main focus will be on the link modification

which causes the topological poisoning attacks in SDN.

One way to modify the network topology illegally is to inject fake links between the

switches (Dhawan, Poddar, Mahajan, & Mann, 2015; Hong, Xu, Wang, & Gu, 2015).

Such a malicious mechanism is known as LFA. The LFA is performed through spoofed

Link Layer Discovery Protocol (LLDP) packets. The spoofed LLDP packets are

generated from malicious hosts through malicious switches. It happens because there is

no mechanism available in the controller to provide authentication for the LLDP packet.

The controller receives LLDP packets from the malicious switches and updates the link

information in the network topology by assuming the packets arrived from the trusted

switches. Thus, LFA generates incorrect abstraction of the network to the controller that

further propagates the wrong information to the applications executing on top of the

controller. These applications include routing, load balancing, mobility tracking, and

topology-based slicing. The execution of applications based on the spoofed topology

information results with the disturbances in SDN.

Conclusively, SDN requires a forensic mechanism to detect and investigate the fake

links in the network topology. However, due to large data centers containing numerous

switches, frequent migration of the network instances, customized user system demands,

and lack of trustworthiness, it is highly challenging to detect and investigate fake links

among the switches in SDN. This research focuses on the forensic method to detect and

investigate the fake links injected by the malicious host through malicious switches to

poison the network topology in SDN.

1.2 Motivation

In today's world, SDN has transformed the fixed and predictable traditional network

architecture to an agile and flexible architecture without increasing the cost significantly.

The architectural approach of SDN delivers the output to the market with minimal

Univ
ers

ity
 of

 M
ala

ya

5

operating expenses and improves the time span of the network management. A survey

conducted by Information Week regarding SDN in July 2012, interviewed 250 business

technology professionals and reported that 29% of the data center cost will be reduced by

adopting SDN (Jim, 2012). The report also highlights that IT organization can implement

SDN for cost saving and further utilize its capabilities. Currently, IT organizations are

frequently migrating towards SDN due to its cost-effective, flexible, and programmable

features. Juniper which is the industry leader in the network innovation had announced

in mid-2014 that 52.5 % of US businesses intend to adopt SDN-enabled technology and

74% of them are planning to adopt SDN by next year, i.e., 2015 (Hamel, 2014). The

market report “SDxCentral SDN and NFV Market Size” published by SDxCentral in

2015 predicts that the combined revenue of SDN, network function virtualization, and

next-generation networking paradigms will exceed US-$105B per annum by 2020 as

shown in Figure 1.1 (SDxCentral, 2015).

However, despite the increasing interest and progress of SDN, there are various

challenges especially related to the security threats, organizations should be aware of it

before adopting the SDN paradigm. The security was not the main characteristics in the

early development of the SDN architecture. The security parameter should be widely

adopted in SDN to provide integrity, privacy, and availability to all connected resources

and information. The security features of SDN should not be limited to the upper level

(services) but extended to the foundation (bottom level architecture) as well to have an

error-prone environment. According to the Juniper report (Hamel, 2014), 34 % of 400

IT decision makers expressed that security is one of the biggest hurdles for them to adopt

SDN. Another study reports that security in SDN is rising due to the increasing demand

for cloud infrastructure, extended enterprise campuses, and IoT (T. SDxCentral, 2015).

The report published by Markets and Markets; a forecast that cybersecurity spending will

increase up to US-$170 billion by 2020 (Rohan, 2016). It concludes that the security

Univ
ers

ity
 of

 M
ala

ya

http://www.investors.com/news/technology/cisco-ibm-dell-ma-brawl-whacks-symantec-palo-alto-fortinet/

6

threats are not only posed to SDN. Instead, but it is also a major challenge for all IT

market today. Therefore, most organizations spend more time in the research phase to

adopt security solution for their requirements (T. SDxCentral, 2015). Similarly, an

organization requires more time to evaluate and test SDN security solutions before

developing a proof-of-concepts. On the other hand, many organizations are expecting a

great potential and benefits in a secure SDN. The report (Jim, 2012) indicates that SDN

can benefit the network security in applying unified security policy (44%), data security

(32%), granular access control (29%), security controls for application security (28%),

packet inspection (22%), malware filtering (22%), application-aware security (22%),

security appliance performance (17%), and DoS mitigation (17%).

Figure 1.1: SDN Market Forecast

Although academia and industry have conducted much research in protecting SDN

from threats, a solution to completely stop adversaries from their malicious behaviors has

yet to be found. Among the threats, LFA is the most lethal attack in SDN as it inserts fake

links between the switches to affect the visibility of the controller. The visibility of the

controller is important to provide an abstraction to the topology-dependent applications

for efficient execution. The controller visibility of the entire network is the unique feature

Univ
ers

ity
 of

 M
ala

ya

7

embedded in SDN. Therefore, traditional topology poisoning attack solutions failed to fit

in SDN. Hence, there is a need for a solution to address the LFA in SDN. The solution

should detect the attack at its early stage and determine the real source of the attack. The

proposed research presented in this thesis is a step towards preventing the attackers from

exploiting the network topology in an emerging network paradigm such as SDN and can

become a part of the future SDN security technologies.

1.3 Statement of the Problem

The main function of the controller to work properly is to have correct information

about the network topology. The controller discovers the network topology by collecting

information about hosts, switches, and the interconnected link between the switches.

However, any illegal insertions or deletions of information in the network topology can

cause the controller to provide an erroneous abstraction of the network infrastructure to

the applications running on top of the controller (Hong et al., 2015). The application

produces incorrect outputs based on the falsified visibility of the network provided by the

controller. One way to poison the network topology and falsified the network visibility is

to insert fake links between the switches (Dhawan et al., 2015). The fake links are

different from the legitimate links in SDN which are generated based on the spoofed

information crafted inside the LLDP packets. The crafted LLDP packet is embedded in

the Packet_In message and forwards it to the controller by the switches. The controller

receives the message assuming the information in the Packet_In message is correct. The

fake links are generated in SDN due to lack of packet authentication schemes in the

controller and verification of the OF switches. Thus, the controller fails to detect

Packet_In message that contains either legitimate or fake LLDP packet information.

 The situation becomes sophisticated for the controller to have dynamic changes in the

network. Today, a dynamic network topology is inevitable due to customer demands,

virtualization, and a large choice of resources available to the users in cloud computing.

Univ
ers

ity
 of

 M
ala

ya

8

The network topology changes in seconds and the controller have to cope-up with such a

dynamic environment to update its topology accordingly. To update and verify the

legitimacy of the network topology in a short time span is a challenging task. The

insertion of the topology verification models in the controller will create extra

computation and time overhead, which will affect the performance of SDN.

Based on the discussion, we conclude that detecting and investigating the LFA is

utmost important in SDN as it has been neglected to date. Therefore, to overcome the

LFA, we identified a research problem and addressed it in this thesis.

The network topology enables the controller to assist topology-dependent applications

to execute accurately. However, the incorrect network topology affects the controller

network visibility by injecting spoofed information during the topology discovery

mechanism. One way to indulge the visibility of the controller is to craft an LLDP packet,

which generates fake links among the switches. Under such circumstances, applications

view the incorrect network topology which leads them to produce falsifies outputs.

1.4 Statement of Objectives

This research aims to address the problem of fake links generated between the OF

switches to indulge the visibility of the SDN controller. We define the following

objectives to be achieved to attain the aim of this research.

 To study and review the recent topology poisoning methods in SDN to gain

insight about the LFA and identify their shortfalls.

 To investigate and analyze the impact of fake links in the network topology

through high order logic formal methods.

 To propose a forensic investigation method for LFA that is capable of detecting

and investigating the attack with less processing overhead of the controller and

high detection rate.

Univ
ers

ity
 of

 M
ala

ya

9

 To evaluate and validate the proposed method in the emulation environment

and compare the performance with the state-of-the-art LFA proposed detection

methods.

1.5 Proposed Methodology

This research study is divided into four main phases to accomplish the defined

objectives shown in Section 1.4. Each phase is further divided into several steps to

achieve the objectives.

A comprehensive review and synthesis of the current topology discovery methods are

undertaken to have an insight about the visibility of the SDN controller. The thematic

taxonomy of the topology discovery is devised to have enough knowledge about its

research area. The investigation reveals that visibility of the controller can distract

through topology poisoning attacks. Through our literature review, we have identified

two main entities in SDN which plays a vital role in launching the LFA such as (a) hosts,

and (b) switches. In our research, we have focused on the fake links that distract visibility

of the SDN controller through the generation of the spoofed LLDP packets from the

malicious host through malicious switches.

The research problem is investigated using High Order Logic (HOL). The HOL is a

group of formal information representation of a specific domain which helps to establish

LFA in SDN environment. To investigate the LFA, we have defined the formal

representation of SDN regarding systems liability, service information, dependencies,

and switch & host vulnerabilities. Finally, we have represented LFA formally and

performed its satisfiability analysis test.

To alleviate the LFA, we propose and implement a forensic investigation method

(FoR-Guard). The aim of FoR-Guard method is to detect and investigate the LFA in SDN

with high detection accuracy rate and less processing overhead on the controller. The

FoR-Guard is divided into three main phases: a) Trigger phase, b) Detection and Source

Univ
ers

ity
 of

 M
ala

ya

10

Identification (DeSI) phase, and c) Validation phase. The FoR-Guard uses the switching

behavior to trigger the detection mechanism, Link Communication Direction (LCD)

along the switching behavior to perform detection, and Entropy Measurement (EM) to

calculate the uncertainty presented in the network topology which further helps the

controller to verify the real source of the attack.

The performance of the proposed method is implemented and evaluated in an emulated

SDN environment. Different modules are designed and developed for each phase of the

proposed method that executes in the Floodlight controller. The experimental data are

collected by running the proposed method in different scenarios to evaluate the detection

accuracy and processing time of the Floodlight controller.

1.6 Layout of Thesis

This thesis is composed of seven chapters, and each chapter contains a part of our

research work conducted to address the research problem. The thesis layout is shown in

Figure 1.2 and organized as follows.

Chapter 2: Literature Review

This chapter reviews the research undertaken in the field of topology discovery and

state-of-the-art network topology threats in SDN. Also, a comprehensive knowledge

about SDN, SDN forensics, and different threats related to SDN layer architecture are

described. The thematic taxonomy of topology discovery is devised by considering

several aspects to explore the domain knowledge of topology discovery management in

SDN. A classification of topology discovery threats is presented to understand threats

that affect the network topology. The LFA is comprehensively explained to know about

its working steps and exploitation to the network topology. Moreover, we listed the

potential threats that can be generated through topology poisoning attack in SDN. Finally,

we have identified potential challenges that need important consideration in the future to

have effective network discovery in SDN.

Univ
ers

ity
 of

 M
ala

ya

11

Chapter 3: Problem Analysis

This chapter presents a formal analysis of the LFA in SDN using HOL formal methods.

The HOL assists in representing the LFA formally. The formal representation of LFA in

HOL helps to understand better steps of the attack performed in SDN. We investigate the

attack by building the HOL for the entire systems liabilities, service information,

dependencies, and switches as well as hosts vulnerabilities. Moreover, we perform

satisfiability analysis to verify the formal representation of LFA. Finally, various

parameters are selected to analyze the effect of the LFA.

 Chapter 4: Forensic investigation method (FoR-Guard)

This chapter proposed a forensic investigation method to determine LFA in SDN. It

explains the phases in the proposed method (FoR-Guard) along with the algorithms

presented in each phase. The distinct features of the proposed method are also

highlighted.

Chapter 5: Evaluation

This chapter describes the techniques used for the experimental setup and data

collection method for the evaluation of the proposed method. It also explains the tools

used to evaluate the proposed method. Moreover, confidence interval, a statistical

technique is used to provide a range of values obtains from the sample statistics that tend

to represent the value of an unknown population size of the data collection.

Chapter 6: Results and Discussions

This chapter reports the results obtained from different experiments and analyzed the

effectiveness of the proposed method. We compare and contrast our experimental results

of the proposed method with the benchmark results of the state-of-the-art methods. The

statistical validation is performed to know the significant differences between the FoR-

Guard and state-of-the-art detection methods.

Chapter 7: Conclusion

Univ
ers

ity
 of

 M
ala

ya

12

This chapter concludes the thesis by explaining how the research objectives have been

achieved. The main contributions of this research work are summarized, and research

significance is highlighted. Finally, limitations and future research directions of the

proposed method are discussed.

Univ
ers

ity
 of

 M
ala

ya

13

Figure 1.2: Outline of the Thesis

Univ
ers

ity
 of

 M
ala

ya

14

CHAPTER 2: LITERATURE REVIEW

This chapter presents an overview of the security aspect of SDN to elaborate

topological vulnerabilities found in the controller. The objective of this chapter is to

highlight the significance of source identification in LFA which has been neglected up to

date. The topology discovery domain of SDN is reviewed to gain an insight into the

problems faced by the controller during the topological poisoning attacks. A thematic

taxonomy of topology discovery in SDN is devised based on significant parameters such

as discovery entities, controller platform, topology-dependent services, and objectives.

Moreover, threats faced by the topology discovery are classified into four categories such

as attack entity, controller vulnerabilities, current solutions, and miscellaneous threats.

The remainder of this chapter is as follows. Section 2.1 introduces brief description

about SDN, and possible threats occurred in SDN layers architecture. Section 2.2 presents

an importance of topology discovery regarding traditional networks and SDN. Section

2.3 devises a thematic taxonomy presenting insight of the topology discovery in SDN.

Section 2.4 classifies topology discovery threats and solutions. Section 2.5 highlights

future challenges and directions. Finally, Section 2.6 concludes with summarizing the

chapter.

2.1 Background

This section presents comprehensive information about the SDN and threats faced to

its layered architecture.

2.1.1 Software Defined Networks (SDN)

The widely known separation of the control plane and the forwarding infrastructure

plane in SDN is shown in Figure 2.1. This architecture results in numerous benefits,

including easy insertion of applications and services, streamlined processes, improved

efficiency, reduced complexity, and better user experiences (B. Nunes, M. Mendonca,

X.-N. Nguyen, K. Obraczka, & T. Turletti, 2014). The control plane is controlled by

Univ
ers

ity
 of

 M
ala

ya

15

logically centralized controller instead of the conventional control mechanisms present

in the border gateway protocol (Stewart III, 1998) and open shortest path first (J. T. Moy,

1998). The centralized control assists network administrator to change the network traffic

without re-configuring the network devices dynamically. For instance, the controller can

dynamically change the network flow towards high bandwidth channels while observing

high delays on low bandwidth network channels without affecting the network operation

(Saha, Sambyo, & Bhunia, 2016).

In Figure 2.1, SDN architecture is divided into three main layers/planes, i.e.,

infrastructure, control, and application plane (Kreutz et al., 2015; Suleman, Abdullah,

Ainuddin, Ahmed, & Mustapha, 2016). The infrastructure plane consists of all the

network devices that communicate and share information with each other (B. A. Nunes,

M. Mendonca, X.-N. Nguyen, K. Obraczka, & T. Turletti, 2014). For instance, OF

switches forward the packets towards the destination using rules specified by the

controller.

The controller (in the control plane) acts as a brain in SDN, which manages the entire

network through the logically centralized controller (Civanlar, Lokman, Kaytaz, & Murat

Tekalp, 2015),(Shu et al.). The controller has an abstract view of the network topology

that assists different applications running on top of the controller in the application plane

(Cui, Yu, & Yan, 2016). The application plane is responsible for implementing essential

network services (application, algorithms, protocols, and others) through the controller

(Zou, Xie, & Yin, 2013). With the given abstract network, the application plane deploys

various network applications. These applications include load balancing (Zou et al.,

2013), intrusion detection systems (Chung, Khatkar, Xing, Lee, & Huang, 2013), network

monitors (Chowdhury, Bari, Ahmed, & Boutaba, 2014), firewalls (H. Hu, Han, Ahn, &

Zhao, 2014), and scheduling (L. E. Li, Mao, & Rexford, 2012).

Univ
ers

ity
 of

 M
ala

ya

16

SDN Controller

South Bound Interface

North Bound Interface

In
fr

as
tr

u
ct

u
re

 L
ay

e
r

A
p

p
lic

at
io

n
 L

ay
e

r

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts
Hosts

Lo
ad

 B
al

an
ci

n
g

In
tr

u
si

o
n

D

e
te

ct
io

n

Fi
re

w
al

l

Tr
af

fi
c

Sc
h

e
d

u
lin

g

R
o

u
ti

n
g

C
o

n
tr

o
l L

ay
e

r

[Packet_In]

[Packet_Out]

Applications

Figure 2.1: General SDN Layer Architecture

The controller has different interfaces/API’s to communicate with other planes and

network devices such as south, north, east, and westbound API’s (Jarraya, Madi, &

Debbabi, 2014). The most common API’s used in SDN are the southbound and the

northbound. The southbound API enables communication between the infrastructure

plane network devices and the controller. Initially, when a new packet is received by the

OF switch from the host, it checks the matching field of the packet header that match with

the flow rules installed in the flow table (Banikazemi, Olshefski, Shaikh, Tracey, &

Wang, 2013; Moshref, Bhargava, Gupta, Yu, & Govindan, 2014). If the match is not

found, a Packet_In message is generated by the OF switch and it is sent to the controller

on the southbound API. The controller checks the packet header for the necessary

information and replies back to the OF switch through a Packet_Out message. The

Packet_Out message contains the specific rules for the respective network flows which

are inserted in the flow table of the OF switch. When a similar type of flow (i.e., the same

source and destination) arrives at the OF switch, it is forwarded based on the previously

Univ
ers

ity
 of

 M
ala

ya

17

inserted flow rule in the flow table (Akyildiz, Lee, Wang, Luo, & Chou, 2014). The flow

chart of the Packet_In message is shown in Figure 2.2.

Start

 Host request to the OF switch

 OF switch check for the match field

 Apply the flow rules to the packet

 Generate Packet_In message

 Send Packet_In to the controller

 Controller check the packet header

 Create rules for Packet_In message

 Send the flow rules to the OF switch

 Generate Packet_Out message

Match

No

Yes

Figure 2.2: A Flow Chart for Packet_In Message

Moreover, the controller modifies the packet header information in real-time by

modifying source/destination addresses and ports (Feamster, Rexford, & Zegura, 2014).

This characteristic of the controller provides flexibility and reliability to the network.

Similarly, the northbound API connects the controller to various network applications

that deploy algorithms and protocols to operate an SDN (Zhou, Li, Luo, & Chou, 2014).

Unlike, the southbound API, the standard northbound API is not available yet, which

presents several security threats (Hakiri, Gokhale, Berthou, Schmidt, & Gayraud, 2014;

Sharma et al., 2013). The eastbound and westbound API’s manage the distributed

controllers in SDN (Sezer et al., 2013). That is, multiple controllers can be deployed in

SDN to manage different parts of the network (Dixit, Hao, Mukherjee, Lakshman, &

Kompella, 2013) due to different assigned functions such as load balancing, monitoring

and task allocation.

2.1.2 Threats to Software Defined Networks planes

The centralized control, network abstraction, and software-based network changes

attract malicious users to perform attacks in SDN. Attacks can be on the 1) network

Univ
ers

ity
 of

 M
ala

ya

18

devices in the infrastructure plane, 2) control modules in the control plane, 3) applications

in the application plane, or 4) different API’s in the SDN (Kreutz et al., 2013). In this

section, we discuss and classify different attacks as illustrated in Figure 2.3. Moreover,

we explain attacks performed on various interfaces of SDN. Table 2.1 illustrates the

existing available solutions for each attack in the SDN planes and interfaces.

2.1.2.1 Attacks on the SDN infrastructure plane

There are different ways to exploit the network devices in the infrastructure plane

wherein some of these attacks are specific to the SDN while others are inherited from the

traditional networks. Each of these attacks is discussed as follows.

(a) Malicious OF Switches:

Forwarding network flows through a malicious OF switch allows it to alter the network

packets. In this case, the network flow diverts and the legitimate traffic is dropped, which

interrupts the communication between the SDN devices. It slows down the network traffic

and may prevent the legitimate switch from receiving the traffic due to an excessive idle

time specified for the flow entries in the flow tables. It causes the network packets to be

dropped (Kamisiński & Fung, 2015) or generate numerous Packet_In messages to the

controller due to mismatch at the OF switch.

(b) Malicious hosts in the infrastructure plane:

Malicious hosts can attack any switch and controller in the SDN by generating forged

network packets (Antikainen, Aura, & Särelä, 2014). In forged network packets, various

fields (such as the IP field, the MAC field or other fields), can be modified to hide the

identity of the attacker. Also, a malicious host can generate millions of packets in the

form of a Denial-of-Service (DoS) attack to overload the memory of the OF switches

(Shin, Yegneswaran, Porras, & Gu, 2013). Similarly, for every new forged packet (i.e.,

unique source IP address), OF switches generates the Packet_In message to the controller

Univ
ers

ity
 of

 M
ala

ya

19

which can result in decreasing the performance of the controller (Tootoonchian,

Gorbunov, Ganjali, Casado, & Sherwood, 2012).

2.1.2.2 Attacks on the SDN control plane

The attacker is more interested in the control plane due to its significant function such

as the network control, network abstraction, and support to various network applications.

There are various types of attacks which can be performed by the controller as follows.

(a) Malicious modules inside the controller:

The integration of core controller functions creates an initial setup of the SDN. For

instance, the topology manager stores information regarding devices such as switches and

hosts in the network (Syrivelis et al., 2012) and uses the LLDP to discover the

interconnected links between the OF switches (Kempf et al., 2012). An attacker can

exploit vulnerabilities within these building blocks. As an example, a recent topological

poisoning attack (Hong et al., 2015) exploits the link discovery module running in the

controller by generating fake links between the switches. As a result, fake links affect the

functionalities of the entire network (Klaedtke, Karame, Bifulco, & Cui, 2015).

(b) Compromised controllers:

The controllers can also be distributed which exchanges information from time-to-

time to update their states (Phemius, Bouet, & Leguay, 2014). The attacker can exploit

the communication among the distributed controllers. For instance, Open Daylight

controller uses ODL-SDNi app for distributed communication among multiple

controllers. The problem arises when one of the controllers is performing maliciously and

shares wrong information among the controllers. To identify the malicious controller

among a pool of the controllers is a challenging task due to the isolated functionality of

each controller. The malicious controller disseminates incorrect topological updates to

another controller to make the network malfunction (H. Li, Li, Guo, & Nayak, 2014).

Univ
ers

ity
 of

 M
ala

ya

20

(c) Attack on management consoles:

The management console allows authorized individuals to access the SDN. An

attacker can get unauthorized access to the management console through a brute-force

password attack or leaking the password from different sources. Once the attacker gets

access to the SDN, attacks can be generated on the controller as well as on different

resources of the network. Usually, access to the management console is defined in the

policy agent module of the controller. The compromised management console empowers

the attacker to create a gateway in launching various other attacks in SDN.

2.1.2.3 Attacks on the SDN application plane

The SDN application plane consists of different applications/software (Braun &

Menth, 2014) such as load balancing, routing, firewall, and intrusion detection. These

applications/software may be used to monitor the traffic, extract statistical traffic features,

apply authentication mechanism to different user domains, and diverts the traffic based

on the network load. The application development in the application plane is considered

as a dramatic change to an SDN architecture (Qazi et al., 2013). A single network

infrastructure can be used by multiple applications at the same time to fulfil their

requirements. However, this is not possible in the traditional network where the

configuration of network device needs update upon using different network applications.

A user can easily develop an application module and embed it in the application plane

(Jarschel, Wamser, Hohn, Zinner, & Tran-Gia, 2013). It allows malicious users to affect

the entire network. There are various possible attacks in the SDN application plane which

are briefly discussed as follows.

(a) Unauthorized access to applications:

Unauthorized access to the applications, help the attackers to bypass the security level

of the controller (Akyildiz, Lee, Wang, Luo, & Chou, 2016; Sandra Scott-Hayward,

O'Callaghan, & Sezer, 2013). The controller treats all applications as normal network

Univ
ers

ity
 of

 M
ala

ya

21

services because of the absence of a trust mechanism between the application and control

layers. The unauthorized access to various applications can inform attackers about the

operation of the network which further creates a chance to exploit various parts of the

network.

(b) Disclosure of information through the application server:

Once an attacker gains access to the application server, the information of any

application that is currently or previously executed in the RAM can be accessed and

disclosed. In a traditional network, such kind of attack is called a RAM scraper attack

(Saini, Rao, & Panda, 2012). In SDN, an attacker can scan the RAM processes in the

application server to gain access to the application information through the northbound

API. An attacker can further identify the rules of the controller for various network flows.

(c) Modification of user privileges for application execution

Due to network virtualization, each user can treat the network with its requirement

provided with isolation (Blenk, Basta, Reisslein, & Kellerer, 2016; Drutskoy, Keller, &

Rexford, 2013). Each user is provided with specific rights to execute different

applications according to its requirement. However, if the attacker accesses the

application server, the user privileges can be changed to produce the malfunctioning

results (Z. Hu, Wang, Yan, Yin, & Luo, 2015).

2.1.2.4 Attacks on the SDN interfaces

The southbound and northbound interfaces are used for the centralized controller

environment while the eastbound and westbound interfaces are used in a distributed

controller environment respectively. These interfaces are used to send and receive

network information which attracts the attackers to eavesdrop the information

(Antikainen et al., 2014).

Univ
ers

ity
 of

 M
ala

ya

22

Threats to software Defined

Network Layers

Data Plane Attacks

Application Plane Attacks
Control Plane Attacks

SDN interfaces Attacks

Malicious modules inside the controller

Compromised controllers

Attack on management consoles

Malicious OpenFlow Switches

Malicious hosts in data plane

Unauthorized access to applications

Disclosure of information

Modification of user privileges

Attack on southbound interface

Attack on northbound interface

Attack on east & westbound

Figure 2.3: Classification of attacks in SDN Planes

(a) Attacks on the southbound interface

Mostly, the southbound interface in SDN uses the standard OF protocol (Nadeau &

Gray, 2013). The OF protocol allows communication between the OF switch and the

controller. Each OF switch has to communicate with the controller through Packet_In

message upon reception of the new packets (Monaco, Michel, & Keller, 2013). It makes

the southbound interface more suitable for information extraction from the Packet_In

messages. The attacker can exploit the Transport Layer Security (TLS) vulnerabilities

and to take control over the southbound interface (Dover, 2013). Subsequently, the

attacker can create, modify, and delete the flow rules. It produces malfunctioning results

in the network due to malicious flow entries in the flow table. Moreover, an attacker can

generate forged packets to the OF switches with a unique identity to force OF switch to

generate a large number of Packet_In messages to overload the bandwidth channel used

between the OF switches and the controller (Wang, Xu, & Gu, 2014).

(b) Attacks on the northbound interface

The northbound interface is used for communication among the applications of the

application plane with the controller (Cho et al., 2015). Unlike the southbound interface,

the northbound interface does not use a standard protocol because of its initial stage of

development (Hakiri et al., 2014; Sharma et al., 2013). The attacker can use the

northbound interface to interfere the communication between the application and the

Univ
ers

ity
 of

 M
ala

ya

23

controller. An attacker can get unauthorized access to the northbound interface and may

delete some information which can lead to the falsified output of the application.

Table 2.1: SDN layers/interfaces possible attacks and existing solutions

SD
N

La

ye
rs

/In
te

rf
ac

es

Possible Attacks Existing Solutions
Attack
Nature

Infrastructure
Plane

Malicious
switches

FortNOX, SDNsec SDN-based
attack

Malicious hosts VAVE, OFGUARD,
FlowVisor

TN-based
attack

Control Plane

Malicious
modules

VeriCon, FRESCO, SPIRIT SDN-based
attack

Compromised
controllers

Fleet , DISCO, HyperFlow SDN-based
attack

Management
consoles

Sandbox-based system SDN-based
attack

Application

Plane

Unauthorized
access

PermOF, SDN Rootkits TN-based
attack

Disclosure of
information

Proactive strategies and
Randomization

TN-based
attack

Modification of
user privileges

OFX TN-based
attack

SDN

Interfaces

Southbound
interface threats

VeriFlow, HSCS architecture SDN-based
attack

Northbound
interface threats

Dynamic Filtering SDN-based
attack

Eastbound &
westbound
threats

DRS SDN-based
attack

Similarly, the attacker can use a malicious application to inform the controller to

disconnect other applications leading to a flow rule modification problem. Moreover, the

malicious application can send numerous requests to overload the CPU of the controller

as well as to occupy the available bandwidth of the northbound interface. Note that,

proper authentication and encryption mechanism is not standardized for the northbound

Univ
ers

ity
 of

 M
ala

ya

24

interface. Various APIs for the northbound interface can increase the security threats

because of the built-in vulnerabilities. It then decreases the trustworthiness between the

controller and various applications.

(c) Attacks on the eastbound & westbound interfaces

The eastbound and westbound interfaces are also prone to various attacks. The

information updates through these interfaces can be exploited by the attacker with

unauthorized access to the management console. The attacker can take advantage of

unencrypted communication of data between the controllers for sharing the network

information updates (Dixon et al., 2014). An attacker can also compromise the network

by tapping the application to eavesdrop on clear text communications between two

controllers.

2.2 Topology Discovery

2.2.1 Importance

The topology management is a unique feature of SDN which allows the controller to

facilitate the applications in the application plane (Shenker, Casado, Koponen, &

McKeown, 2011). For instance, a routing application uses the network topology to route

the network traffic to its destination (Kotronis, Dimitropoulos, & Ager, 2012; Mahdi et

al.; Staff, 2016). The controller discovers a topology through (Hong et al., 2015) a) Host

discovery, b) Switch discovery, and c) Inter-connected links between the switches. The

controller discovers the host by receiving a Packet-In message from the switch. The

switches are discovered during the initial handshake process with the controller, and inter-

connected links between switches are discovered through the Open Flow Discovery

Protocol (OFDP). However, there are vulnerabilities found in the core applications of the

controller which are exploited to initiate LFA (Zaalouk, Khondoker, Marx, & Bayarou,

2014).

Univ
ers

ity
 of

 M
ala

ya

25

If an attacker poisons the network topology information, its effect will immediately be

visible to all its dependent applications (Dhawan et al., 2015). Therefore, it is important

to detect a topology poisoning attack at its early stage. Note that, detecting a fake link

between the OF switches created by the topology poisoning attack is relatively easy than

identifying the source of the attack. Mostly, attackers hide their identity information after

they perform the attack (Hwang & Kim). Similarly, in a topology poisoning attack, the

attacker creates a fake link between the OF switches by spoofing the LLDP packet to hide

its identity (Alharbi, Portmann, & Pakzad, 2015). The controller should be aware of fake

links upon their insertion in the network so that the attack can be prevented at its early

stage.

2.2.2 Topology Discovery in Traditional Networks

Topology poisoning attacks are not new to traditional networks. The main aim of a

topology poisoning attack is to fabricate the network topology and disturb normal

network operations regarding control and management (Jajodia, Noel, & O’Berry, 2005).

If a malicious router advertises its routing information to its neighbors, it will result in a

falsified network traffic distribution based on the malicious routing information

(Padmanabhan & Simon, 2003). For instance, a network using the Routing Information

Protocol (RIP) protocol allows each router to send its link with an update information of

their topological view to its neighbors (Pei, Massey, & Zhang, 2003). The information

includes a destination identifier and a cost metric to the destination. However, the

information sent by a malicious router can update the neighbor routers link database with

the incorrect information and can affect the entire routing process (Mizrak, Cheng,

Marzullo, & Savage, 2006). Also, the malicious router may advertise the least cost path

to a specific destination, thus causing the traffic to be diverted from other sources to a

malicious destination (Suleman Khan, Gani, Wahab, Shiraz, & Ahmad, 2016; Suleman

Khan, Shiraz, et al., 2014).

Univ
ers

ity
 of

 M
ala

ya

26

A similar type of attacks can also be performed in the link-state protocol, i.e., OSPF,

where every router is bound to send its link update to its neighbors to calculate the optimal

path depending on the metrics (Katz, Kompella, & Yeung, 2003). In OSPF, the update

link information sent by the router is called Link State Advertisements (LSA). A

malicious router may send a false LSA to its neighbors defining other routers by forging

their original information (J. Moy, Pillay-Esnault, & Lindem, 2003). It diverts the

network traffic towards the malicious router which may forward the packet to the longer

path, perform eavesdropping, modify the packet information, and drop some/all the

packets in the network flow. Besides the wired networks, topological information can be

exploited in the wireless networks as well. For instance, the Optimized Link State Routing

(OLSR) is used in mobile ad-hoc networks to discover and disseminate the link-state

information throughout the network (Clausen et al., 2003). This information helps nodes

to compute the optimal path to the next node in the network to reach the destination.

The OLSR determine and forward the link state information to the neighbor nodes by

using hello and topology control messages. These messages can be falsified to

disseminate the wrong information and results in a false topological development.

Moreover, Bridge Protocol Data Units (BPDU’s) in the Spanning Tree Protocol (STP)

(Choudhary, 2010) can be forged to exploit the information. Such exploitation can be

performed by the attacker to make the malicious switch as a root bridge in the network

and therefore gain access to the network traffic. Such type of attack is also called STP

mangling (Ornaghi & Valleri, 2003). The STP mangling affects the topology of the

network by selecting the incorrect switch as a root bridge. The root bridge has easy access

to the network traffic that is costly when a malicious switch is selected as a root bridge in

the selection process.

Univ
ers

ity
 of

 M
ala

ya

27

2.2.3 Topology Discovery in SDN

The topology management is a unique characteristic of SDN as compared to traditional

networks. Table 2.2 provides a comparison between the traditional network and SDN

topology discovery. The decoupling of the control plane from the infrastructure plane

enables an SDN to have a logically centralized control of the network (Akyildiz et al.,

2016; Kloti, Kotronis, & Smith, 2013). To achieve the centralized control, a controller

(responsible to control the network centrally) should have a global visibility of the entire

network (Staff, 2016). The controller incorporates various core modules that assist

various SDN applications (Mogul et al., 2013). Among the core modules, a topology

manager is a module that builds the network topology of the entire SDN infrastructure

(Pakzad, Portmann, Tan, & Indulska, 2015). The topology not only facilitates the

controller but also assists the application plane services to perform its operation using the

network programmability (Aslan & Matrawy, 2016). The network topology is significant

to both control plane and application plane because it provides an abstract visibility of

the entire network devices.

The OF protocol is a standard approach used for communication between the

controller and the OF switches on the southbound interface in SDN (McKeown et al.,

2008). The southbound interface carries requests and replies to both the controller and

the OF switches. The updated network topology information is significant to the

controller in providing efficient control and management of the network. As a result, the

efficient topology discovery is considered to be an important characteristic for the

controller. Developing a topology of the network requires switch discovery, host

discovery, and interconnected switches’ discovery (Hong et al., 2015). Each of these

discovery mechanisms is briefly explained in Section 2.3.1.

In the work (Pakzad et al., 2015), an efficient topology discovery mechanism is

proposed which reduces the topology discovery overhead up to 40 % by minimizing

Univ
ers

ity
 of

 M
ala

ya

28

Packet_Out messages generated from the controller. A single LLDP packet is sent to each

of the OF switches rather than the de-facto standard of sending each LLDP packet to each

port of the OF switch. The switch broadcasts the LLDP packet to all its active ports which

further discovers links between the switches. The work in (Saha et al., 2016) proposes to

represent network topology, find loops, and determine alternative paths at the time of link

failure in SDN. An adjacency matrix is used to represent the LLDP packets corresponding

to the switches in the network. It finds the loops and alternative paths at the time of link

failure in SDN. Moreover, the work in (Alharbi et al., 2015) presents the security of

topology discovery in SDN and shows that how information can be spoofed to generate

fake links in the network topology. Finally, it also presents a countermeasure by using

the Keyed-Hash Message Authentication Code (HMAC) authentication.

Table 2.2: Comparison between traditional network and SDN topology
discovery

Features
Topology Discovery in
Traditional Networks

Topology Discovery in
SDN

Host Discovery NMAP Packet_In message
Switch Discovery SNMP Initial Handshaking

process
Link Discovery Various updates (RIP, OSPF,

LSA, OLSR)
LLDP

Control
Management

Independent Controller

Scalability No. of switches No. of OF switches
Communication
updates

Switch- Switch Controller-Switch-
Controller

2.3 A Thematic Taxonomy: Topology Discovery

In this section, we provide in-depth information about the topology discovery in SDN.

We devise a thematic taxonomy of the topology discovery in SDN as illustrated in Figure

2.4. The thematic taxonomy can be used to establish a conceptual knowledge of the

topology discovery (Thomas et al., 2016). The taxonomy consists of four main categories

including (1) Discovery Entities, (2) Controller Platform, (3) Topology-Dependent

Univ
ers

ity
 of

 M
ala

ya

29

Services, and (4) Objective. These categories provide a clear understanding of the

topology discovery in SDN.

2.3.1 Discovery Entities

The controller has a visibility of the entire network topology. To create a topology of

the entire network, the controller has to discover network entities and inter-connected

links among them. In particular, the controller has to discover three entities for a complete

view of the network topology, i.e., a) Hosts, b) Switches and c) Inter-connected links

between the switches. The hosts are the physical or virtual systems (virtual machines)

connected to the switches that are used by users to execute their services.

Topology Discovery

in SDN

Discovery Entities Objective

Switches

Inter-connected switch

links

Hosts
Discover Topology on

OpenFlow Network

Spanning Tree

Controller Platform
Topology

Dependent Services

Centralized

De-Centralized

Routing

Mobility Tracking

Load Balancing

Topology based Slicing

Robustness

Manage Topology

Changes

Statistical Data

Gathering

Traffic Scheduling

Resource Provisioning

Figure 2.4: A thematic taxonomy of topology discovery in SDN

The switches are known as the OF switches that forward the packets from source to

the destination upon receiving flow rules from the controller. The inter-connected links

are the physical or the virtual links between the OF switches which are used to transfer

Univ
ers

ity
 of

 M
ala

ya

30

the network packets. Discovery of these entities is significant for the topology

management in updating a network topology view of the controller.

2.3.1.1 Host Discovery

The discovery of the host helps the controller in identifying the exact location of the

host in the network which allows for traffic monitoring, assisting in traffic routes, and

determining the source of the packets (Scott et al., 2014). A host tracking function is

available in most of the controllers, which determines the host and its respective port with

the switch (Goncalves, Martins, Corujo, & Aguiar, 2014). The host tracking can trace the

virtual machine migrations in the data centers, which are difficult if done manually due

to their frequent migrations. The controller maintains a host profile table for each of the

hosts that join the network.

Similarly, the controller deletes the host profile table when a host leaves the network.

To populate the empty host table, the controller uses the Packet_In message to generate

a host profile table for each host sent by the OF switch. For example, a host attached to a

port of the OF switch generates a request message. This request message is encapsulated

by the OF switch in the form of Packet_In message and it is then sent to the controller.

Based on the Packet-In message, a controller identifies the identity of the host.

The host profile is built by Packet-In message which contains information such as a)

IP address, b) MAC address and c) Meta information (DPID, port number, and last

timestamp). When a host migrates from one switch to another, its port and switch IDs are

changed due to its new location. The controller updates the record for the migrated host

based on the Packet-In messages received from another OF switch. The payload

information in the Packet-In message helps the controller to track the location of the host.

Different controllers have different host tracking applications to discover hosts in the

network (Hong et al., 2015). For instance, the ‘hosttracker.cc’ is used in NOX controller,

Univ
ers

ity
 of

 M
ala

ya

31

the ‘host tracker.py’ is used in Ryu controller, the ‘DeviceManagerImpl.java’ is used in

Floodlight controller, and the ‘OFMDeviceManager.java’ is used in OpenIRIS controller.

2.3.1.2 Switch Discovery

Typically, OF switches communicate with the controller on the arrival of new packets,

i.e., Packet_In messages. The controller replies with a Packet_Out message to insert flow

entries in the OF switches. The location of the OF switches is vital to the controller due

to its frequent two-way communication. The controller discovers the location of the OF

switches in its initial handshake process.

The OF switches are discovered in the initial handshaking process by the controller.

Once the OF switch is added to the network, the controller gets the existence and key

properties of the OF switch. The controller records the MAC address, the number of ports,

and other information about the OF switch. There is no requirement for a separate

protocol to discover the location of the OF switch in SDN.

2.3.1.3 Inter-connected link between switches

The discovery of interconnected links between the switches is significant to generate

a topology by the controller in SDN. The inter-connected links determine the connectivity

between the OF switches that helps the controller and the application plane services to

utilize the network according to their requirements. In most of the times (if not all), the

OFDP is used to discover the inter-connected links between the OF switches. The OFDP

uses LLDP to advertise the capabilities and neighbor information of the nodes in the

network (Hollander, 2007). The LLDP is usually used in the Ethernet switch, which

actively sends and receives LLDP packets to each of its active ports. The extracted

information from the LLDP packet is stored in a Management Information Base (MIB)

in the switch.

The collected information from different MIB’s of the switches via SNMP helps to

determine the network topology. When the switch sends the LLDP packet through its

Univ
ers

ity
 of

 M
ala

ya

32

active ports, the Ethernet frame encapsulates the payload of LLDP and set the Ether Type

field to 0x88cc. The Ethernet frame contains the LLDP Data Unit (LLDPDU) that

consists of a Type Length Value (TLV) structure. The TLV contains a switch identifier

(chassis ID), Port ID, Time to live value, and other optional values. The OFDP uses a

similar format of LLDP packet, however; it operates differently due to its limited API’s

match-action functionality. Moreover, in SDN the OF switches does not send, receive,

and process the LLDP messages itself but the controller initiates the process. The

operation of the LLDP packet in an SDN is briefly explained below.

(a) Inter-connection between OF switches:

The link discovery using LLDP does not require any other discovery approach because

both ends of the link consist the OF switches which support the topology discovery

mechanism. The topology discovery determines the initial IP address and the TCP port

of the controller which helps the OF switch to establish a connection soon after it is

connected to the controller. The OF switch also has a pre-configured rule, which

generates the Packet_In message to the controller when it is received on the ports other

than the controller. Initially, when an OF switch establishes a connection with a

controller, the controller passes a request message to the OF switch such as

FEATURE_REQUEST_MESSAGE, wherein the switch response with an

FEATURE_REPLY_MESSAGE. The response includes the switch ID and active ports

along with their respective MAC addresses.

The controller encapsulates the LLDP packet in a Packet_Out message and sends it to

each active port of all OF switches in the network. The destination address in the LLDP

packet is the multicast MAC address defined in the IEEE 802.1AB standard. The total

number of Packet_Out messages sent by the controller is equal to the number of active

ports in the network, i.e., (Total Packet_Out message = Number of active ports of all the

switches). The Packet_Out message installs the flow entries in the OF switch to route

Univ
ers

ity
 of

 M
ala

ya

33

each LLDP packet to its destination port as indicated in the TLV field. The OF switches

forward the received LLDP packet to the corresponding port which connects to another

OF switch. When the neighbor of the OF switch receives the LLDP packet on the port

other than the connected controller port, the switch encapsulates the LLDP packet in a

Packet_In message and forwards it to the controller. The fields in the Packet_In message

include the switch ID and Port ID on which the LLDP packet is received. The controller

updates its network topology based on LLDP messages and by default; this process is

repeated every 5 seconds. The illustration of this process is shown in Figure 2.5.

OpenFlow Switch

Controller

OpenFlow Switch

P
a
c
k
e
t
_
O
u
t

(
L
L
D
P
)

P
a
c
k
e
t
_
I
n

(
L
L
D
P
)

Switch (S1) Switch (S2)

Active Ports

Inactive Ports

P-1

P-2

P-3

P-4

P-1

P-2

S1, P-3

S1, P-4

S1, P-2

S1, S2, P-2

S1, S2, P-1, P-2

Figure 2.5: The LLDP process in SDN environment

(b) Inter-connection between the OF switch and the traditional switch

Currently, the adoption of SDN architecture in the current emerging networks

integrates OF protocol with the existing traditional network technologies. It requires a

new mechanism to operate in a new network infrastructure without affecting the

performance. Similarly, using both traditional and OF switches in data centers will create

problems to identify the inter-connected link between these switches. The approach in

finding the inter-connected link between the OF switches is not implemented in a hybrid

switch infrastructure. The controller needs a mechanism for the handshake with an OF

switch to identify its information and capabilities. However, a handshake is not performed

for the traditional switches.

Univ
ers

ity
 of

 M
ala

ya

34

A controller in a hybrid switch infrastructure can identify the inter-connected links

between the OF switch and traditional switch which must be connected to another OF

switch. This scenario can be considered as a non-direct connection between two OF

switches. Simply, a controller can find the multi-hop connections between the OF

switches. The LLDP is a single-hop discovery mechanism, and it is not applicable to a

multi-hop connection. It requires a new approach for finding non-directed connections

among the OF switches. To identify the inter-connection between two OF switches, the

OF switches should be in the same broadcast domain or the controller will not able to

associate addresses to the multi-hops among the OF switches. The current open source

controller such as Floodlight and Open Daylight controller have integrated layer 2

topology discovery protocols such as the LLDP and the Broadcast Domain Discovery

Protocol (BDDP) to discover multi-hop links between OF switches and traditional

switches within a broadcast domain (Ochoa Aday, Cervelló Pastor, & Fernández

Fernández, 2015).

The BDDP message and the LLDP messages are identical but have different

destination MAC address fields. The BDDP message has a broadcast address in its

destination field while the LLDP message has a multicast address in its destination field.

This characteristic allows the traditional switch to forward a BDDP message to find multi-

hop links between the OF switches within a broadcast domain. The controller sends each

BDDP message to each active port of the switch by encapsulating it in the Packet_Out

message. When the Packet_Out message is sent to the OF switch, it installs a flow entry

in the flow table indicating that the OF switch has received the message. Then, the OF

switch forwards the message to the neighbor switches via a port indicated in the TLV

field. If the neighbor switch is the traditional switch, it examines the destination MAC

address and further floods the packet to all its active ports. The port connecting the

controller receives the Packet_In message that incorporates the metadata required to

Univ
ers

ity
 of

 M
ala

ya

35

identify multi-hop links. The Packet_In message contains a BDDP packet which helps

the controller to know indirect links between two OF switches such as through multi-hop

links.

2.3.2 Controller Platform

The SDN has an architecture which consists of a single or multiple controllers to

control the entire network as illustrated in Figure 2.6 and 2.7 respectively. Usually, a

small data center network incorporates a single controller while large data centers are

distributed and have multiple controllers. This section explains the significance of a

topology discovery in single and multiple controller platforms in SDN.

2.3.2.1 Topology Discovery in Single Controller Platforms

The single controller platform is used for a homogeneous network, which is a network

of devices connected within a single physical location. The controller is responsible for

discovering the network topology by querying the switches through the LLDP packets as

described in Section 2.3.1.3.

The controller communicates with the switches through LLDP packet after a specified

time interval (i.e., after every 5 seconds) to identify links between the OF switches in the

network. In discovering the network topology, the position of the controller is crucial.

That is, the controller that is closer to the switches will result in a faster transmission of

the LLDP packets to the OF switches as well as receiving a quick response from the OF

switches.

 Univ
ers

ity
 of

 M
ala

ya

36

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Hosts

ControllerSwitches

Controller

Figure 2.6: Single SDN controller architecture

2.3.2.2 Topology Discovery in Multiple Controller Platforms

Large networks are employed using the heterogeneous setting that includes multiple

controllers responsible for different portions of the network. All these controllers

coordinate through a logically centralized controller. Each controller requires discovery

of the network topology of the assigned SDN domain. The topology discovery

information is sent to the centralized controller and also to the neighboring controllers for

the latest updates. However, sharing topology information among controllers requires a

standard procedure which is not available till date.

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Hosts

Controller-1

Switches

Controller-1

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Hosts

Controller-2

Switches

Controller-2

Figure 2.7: Multiple SDN controllers’ architectures

Univ
ers

ity
 of

 M
ala

ya

37

The shared topology information is not verified during the sharing process and might

be shared by the malicious controller. It may affect the performance of the other

controllers regarding routing, load balancing, scheduling and various other services. The

importance of topology discovery in multiple controller platforms increases due to the

distributed controllers, sharing of topology updates, and instance (virtual machine)

migration (Aslan & Matrawy, 2016) among different SDN domains.

2.3.3 Dependent Services

This section discusses the topology-dependent services used in SDN. The logically

centralized visibility of the network supports various network applications to perform

tasks and control the network devices efficiently. We have explained some of the

topology-dependent services to highlight the significance of the topology discovery in

SDN as shown in Table 2.3.

2.3.3.1 Routing

The routing application depends on the controller’s abstract view of the topology to

have the entire visibility of the network (Karakus & Durresi, 2015). For instance, a

routing application will require information about the network topology to route the

network traffic to its destination on the shortest path (Lee, Yoon, & Shin, 2016).

However, falsified topological information may lead the routing application to route its

network traffic on to a malicious route.

In the case of an LFA, an attacker can spoof the LLDP packet with a malicious switch

DPID and Port ID to inject a fake link in the network topology. It may affect the existing

legitimate shortest path towards the destination. For example, as shown in Figure 2.8,

host 1 requires four hops (switches) to reach host 4. However, during an LFA, host 1 will

send the LLDP packet with DPID-3 and Port ID-1 to switch 1, which further inserts

DPID-1 and ingress Port ID-1 in the metadata of the Packet_In message and informs the

controller that there is a direct link between switch-1 and switch-3. Subsequently, the

Univ
ers

ity
 of

 M
ala

ya

38

controller may incorrectly update its topology information by assuming a direct link

between switch 1 and switch 3. It affects the legitimate shortest path, as the traffic from

host 1 can be sent to host 4 through the newly added fake link. As a result, the malicious

switch 3 can eavesdrop or modify the traffic before it reaches the destination.

2.3.3.2 Mobility Tracking

The mobility tracking refers to a mechanism for tracking a mobile node in the network.

Mobility tracking is associated with the cellular networks (Pakzad et al., 2015; Yu &

Leung, 2002). The mobility tracking in SDN is achieved through a mobility management

function running on top of the controller (Karimzadeh, Valtulina, & Karagiannis, 2014).

The mobile management function is responsible for monitoring nodes’ movements.

Mobility tracking depends on the network topology information of the current and future

location of the network nodes. Usually, when a network node (host) changes its position

from one switch to another, it changes its IP address and results in a connection break

down. However, in SDN, with the help of a mobility management function, the

forwarding function informs the controller about the nodes’ movement which then re-

calculates the forwarding rules and forwards it to the forwarding function to route the IP

packets accordingly.

As a result, it continues with the application session and makes the movement of the

node without changing the IP address. Node mobility changes the network topology

which is updated by the controller based on the information received from the forwarding

function. Thus, the node movement should be sent to the controller and mobility tracking

function on a timely basis to keep the network topology up to date in SDN.

2.3.3.3 Load Balancing

The load balancing is used to improve the utilization of resources and power by

distributing the traffic more simply and more efficiently. The load balancer uses a

logically centralized control of the SDN to perform traffic load balancing (Namal,

Univ
ers

ity
 of

 M
ala

ya

39

Ahmad, Gurtov, & Ylianttila, 2013b). The dependency of the load balancing on the

network topology is significant, which is its selection of the optimal server for the traffic

execution. For instance, the load balancing application that is installed on top of the

controller requires the location of the servers and optimal path to access them in the

network.

The optimal path is selected by computing augmented bandwidth of links between the

switches. Any modification in the network topology causes the load balancer to re-

calculate the bandwidth for the optimal path. Thus, topology discovery plays a vital role

in executing the load balancing properly in SDN.

2.3.3.4 Topology-based Slicing

The topology-based slicing is a mechanism of the Flow-visor in SDN that divide the

network topology into different parts/slices (Sherwood et al., 2009). The aim of slicing is

to provide a dedicated link to each of the tenants in the multi-tenant environment.

Topology-based slicing, also known as port-based slicing, creates different slices based

on the switch ports. Each switch port has a subset of full network topology controlled by

the Flow-visor (You, Qian, He, Qian, & Tao, 2014).

The Flow-visor handles the network traffic on each of the connected links by adding

a flow space. The slicing phenomenon reduces the controller load by focusing on specific

OF switches of the topology. Therefore, the slicing depends on locations and ports of the

OF switches which are key entities of the network topology discovery. However, any

modification in the topology will cause Flow-visor to re-compute the specific slice that

is affected by the change in the specific domain.

Univ
ers

ity
 of

 M
ala

ya

40

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts-1

Controller

Switch-1 Switch-2 Switch-3 Switch-4

Hosts-2 Hosts-3
Hosts-4

Fake Link

L
in

k

Malicious

Host

In
fr

as
tr

u
ct

u
re

 L
ay

e
r

C
o

n
tr

o
l L

ay
e

r C

1

2

Switches

Controller

3

4

F
a

k
e

L

i
n

k

1

1
1

2
2

1

2

3
3 3

Controller Visibility

Fake Link

Link

Destination

Figure 2.8: A diagram illustrating link fabrication attacks

2.3.4 Objective

The key objectives which are achieved through an efficient topology discovery in SDN

are listed as follows.

(a) Multiple switches:

The topology discovery provides an easy way to identify OF switches in SDN. The

OF switches could be in single or multiple management domains, controlled by single or

multiple distributed controllers (Heller, Sherwood, & McKeown, 2012). The

identification of OF switches in the network assists the topology discovery in updating

its topology information respectively.

Table 2.3: Topology-dependent applications with its effected attacks

Topology-
Dependent

Applications
Description Effected attacks

Routing Route network traffic from
source to the destination

Link Fabrication

Mobility
Tracking

Determine the location of the
host in the network

Host Location
Hijacking

Load Balancing Distribute network traffic
among different servers

Link Fabrication

Topology-based
Slicing

Divide single network topology
into sub-topologies

Link Fabrication

Univ
ers

ity
 of

 M
ala

ya

41

(b) Spanning Tree:

The spanning tree protocol in SDN (Nelson, Ferguson, Scheer, & Krishnamurthi,

2014) provides a loop-free topology. It utilizes discovery services to identify neighbor

link detection between the OF switches. The spanning tree installs flow entries in the OF

switches. However, without having an efficient topology discovery, the spanning tree is

unable to select an appropriate path to eliminate a loop from the network.

(c) Managing Topology changes:

The host migration, isolation of working domains, and insertion/deletion of the

network devices in SDN can cause modifications in the network topology. The function

of topology discovery includes coping up with the change detected in the network. For

instance, in a data center environment, virtual machines (hosts) often migrate from one

resource to another, which results in topological changes such as the appearance of new

switches and ports ID (Mayoral, Vilalta, Muñoz, Casellas, & Martinez, 2015).

Consequently, the changes in the network should be sent to the controller to update the

topology based on its discovery mechanism.

(d) Traffic Scheduling:

Often, the optimal path, i.e., the shortest path is selected to route the network traffic

from source to the destination. The topology discovery assists the traffic scheduler in

finding the optimal path with fewer propagation delays between a different number of

hops (switches) (Akyildiz et al., 2014; Berde et al., 2014). However, incomplete

information regarding the network topology may lead to improper traffic scheduling that

causes high bandwidth delays and time overhead.

(e) Robustness:

The ability to tolerate the packet loss depends on the topology. If the controller timely

updates the topology, the network application runs smoothly without causing any packet

Univ
ers

ity
 of

 M
ala

ya

42

loss. The correct topology of the network reduces the overhead of the controller that cause

to increase the robustness of the SDN without affecting its normal operation.

(f) Statistical Data Gathering:

The OF switches provide different levels of statistical information to the controller

including port statistics, flow statistics, and other counter measurements (Rotsos, Sarrar,

Uhlig, Sherwood, & Moore, 2012). The statistical information helps the controller to have

an in-depth observation of the flows, network devices and overall behavior of the

network. However, changes in the network topology (due to the insertion of new hosts,

flow entries, and inter-connected links) between the OF switches can cause changes in

the statistical data previously gathered by the controller. The controller has to update its

database information based on the new topology of the network.

(g) Resource Provisioning:

To operate an elastic data center infrastructure through the SDN architecture, a

resource provisioning mechanism is required to enable on-demand resources for the

applications (Bakshi, 2013). The resource provision depends on the network topology to

understand the allocation and processing of available resources to different applications.

The topology discovery information assists the resource provisioning module in selecting

the right resources for the right application.

2.4 Topology Discovery Threats and Solutions

In this section, we provide a comprehensive description of the potential threats to the

topological discovery. The threats exploit the vulnerabilities in the controller by

performing attacks on the network. We devise a classification of the topology discovery

threats as illustrated in Figure 2.9. The classification comprises of four categories, such

as a) Attack entity, b) Controller vulnerabilities, c) Current solutions, and d)

Miscellaneous threats. Each of the categories is explained as follows.

Univ
ers

ity
 of

 M
ala

ya

43

2.4.1 Attack Entity

Several security threats from different parts of the SDN architecture can be recognized

through literature. In this section, we focus on the topology poisoning attacks. The

topology poisoning attack is generated by two entities in SDN architecture, i.e., hosts and

OF switches. These attacks are explained based on their working operations as follows.

2.4.1.1 Host-based Attacks

The topology poisoning attack generated from the host (system connected to the

switch) is called host location hijacking attack. In this attack, the attacker impersonates

the target host location in the network and starts receiving traffic intended for the target

host. The attacker exploits Host Tracking System (HTS) of the controller which lacks an

authentication mechanism especially for the host mobility in SDN. The controller uses

HTS to record parameters such as joining and mobility of the host in SDN by maintaining

a host profile table. The controller uses Packet-In message to update the host profile table

by monitoring the DPID, Ingress Port ID, and other metadata information. However, lack

of security consideration in HTS provides an opportunity for the attacker to temper the

target host location information by diverting the host target traffic towards itself.

The controller may assume that the target host has moved towards the new location

but the host remains at its location. The attacker easily hijacks the traffic of the target host

by generating a spoofed IP address of the target host using the Packet_In message. Upon

receiving the Packet-In message, the controller updates the host profile table of the target

host using its new location. As a result, it affects the topology-dependent applications

including routing, load balancing, and various others.

Univ
ers

ity
 of

 M
ala

ya

44

Figure 2.9: Classification of topology discovery threats and solutions

Moreover, the malicious host in SDN can spoof the legitimate LLDP packets and

forward it to the OF switch as well. That is, the OF switch can forward the spoofed LLDP

packet to all of its active ports, which may reach the controller and can update its link

record between the OF switches. The malicious host can also send a legitimate LLDP

packet to another OF switch, which may create a fake link between the OF switches.

Therefore, the controller may route the traffic on fake links that get forward to the

malicious host.

2.4.1.2 Switch-based Attacks

The topology poisoning attack can also be performed through the malicious OF

switches. The malicious OF switches forward the spoofed LLDP packets by creating fake

links in the network. This type of attack is called an LFA in SDN. The malicious switches

can affect a large scale of the network due to fake connections with many network

devices. The topology poisoned through malicious switches is difficult to detect due to

the minimal clues about the fake link creation in the network. For instance, it does not

require any host to create a fake link between the OF switches during a topological

poisoning attack.

Topology Discovery
Threats and Solutions

Attack Entity

Host-based
Attack

Switch-based
Attack

Controller
Vulnerabilities

Host Tracking
Systems

Link Discovery
Procedure

Current
Solutions

SPHINX

TopoGuard

Authentication
of LLDP
packets

OFDPv2

Miscellaneous
Threats

Man-In-The-
Middle

Denial-of-
Services

Identity Spoofing

Repudiation

Univ
ers

ity
 of

 M
ala

ya

45

After receiving the LLDP packet from a single OF switch, the malicious OF switch

relays the packets to another OF switch instead of forwarding them to the controller.

Subsequently, upon reception of LLDP packets by the new OF switch, the LLDP packets

are sent to the controller in the form of Packet-In message. It betrays the controller into

believing that there exists a link between the malicious OF switch and the legitimate OF

switch that forward the LLDP packet to the controller. Such fake link injection attracts

possible future attacks such as the DoS attack, man-in-the-middle attack and many others.

2.4.2 Controller Vulnerabilities

This section describes the vulnerabilities in the controller that are used by the attacker

to launch an attack.

2.4.2.1 Host Tracking Systems (HTS)

The vulnerability discovered in the HTS attracts attackers to hijack the location of the

hosts. As stated earlier that the host profile in the controller contains the DPID, Ingress

Port ID, and other metadata information which exhibits the controller with the location

of the host and the connected OF switch. The key exploited vulnerability includes the

lack of authentication mechanism that can be used to verify the host updates received by

the controller through Packet-In message. All information received by the controller is

considered as genuine (even if received from a malicious OF switch) and the host profile

is updated accordingly.

In previous versions of Floodlight and Open Daylight controllers, an empty shell API

‘isEntityAllowed’ is provided, which accepts all updates related to the host locations. The

attacker simply spoofs the packet with target host identity and forwards it to the connected

OF switch which further sends it to the controller in the form of Packet_In message. The

controller assumes a shift of the position of the host and updates the host profile for the

target host. The lack of authentication mechanism in HTS makes the controller update

Univ
ers

ity
 of

 M
ala

ya

46

the topology with falsified host information and this affects numerous services, especially

the routing.

2.4.2.2 Link Discovery Procedure

 The vulnerability in the link discovery procedure can also be exploited by fabricating

the false link between the OF switches. Firstly, there is no authentication mechanism for

the controller to ensure the origin of the LLDP packet. Secondly, the controller is unable

to verify the traversed path used by the LLDP. Addressing these issues is critical in

preventing the OF switches from inserting a fake link. Note that; the OF switches receive

LLDP packets from each of its ports. It allows the attacker to spoof the LLDP packets to

create a fake link between the OF switches which is known as LFA.

This attack can be performed in two ways 1) modification of LLDP packets, and 2)

through the LLDP relay. In the case of the LLDP modification, a fake link is established

between the OF switches by spoofing the DPID and the Port ID of legitimate OF switch.

It causes the controller to update a new link between legitimate and malicious OF switch.

The LFA generated through the modified LLDP packet is explained with an example

shown in Figure 2.8.

The host attached to switch-1 learns about the LLDP syntax from receiving the LLDP

packet from the controller. The switch-1 then forwards it to all its ports except the

controller port. The host-1 sends LLDP packet to the switch-1 with spoofed information

including DPID=3 of switch-3 and Port ID=1 of switch 3. The switch-1 inserts the

DPID=1, and Port ID=1 in the metadata and forwards the Packet-In message to the

controller. The controller checks the Packet_In message and perceives a link between

switch 3 and switch 1. The controller takes the LLDP source information from the TLV

such as (DPID=3, Port ID=1) and the link information from the metadata such as

(DPID=1, Port ID=1). Thus, the controller is updated with the incorrect information

related to a fake link.

Univ
ers

ity
 of

 M
ala

ya

47

In another type of LFA, the attacker simply forwards one of the legitimate LLDP

packets to another OF switch and resulting in falsified link information received by the

controller. The malicious OF switch requires a relay OF switch to forward the LLDP

packet to the target OF switch. The relay OF switch is identified through a connection

test. Also, some controllers such as POX and Floodlight disable the HTS on the internal

link switch ports. However, an attacker can still launch the attack by using a tunnel-based

LLDP relay attack. The tunnel-based LLDP relay attack is used to launch fake links

between multi-hop link ports having OF switches connected to the traditional switches.

It is difficult to disable these ports in SDN due to the availability of the hybrid switches

in the network. Thus, the LFA also opens doors to numerous attacks including DoS and

man-in-the-middle attack.

2.4.3 Current solutions

We explain the state-of-the-art topological poisoning solutions in this section.

However, the literature has very few solutions for LFA. We briefly explain the state-of-

the-art solutions concerning their proposed methodology. Table 2.4 presents the

comparison between the proposed solutions using parameters such as techniques, SDN

features, attack entity, the problem addressed, and future work. The parameter techniques

highlight the key module/application developed by the proposed solution. The SDN

features parameter points out which features have been used to model the solution in

SDN. The attack entity shows which type of attacks can be detected through the current

solution. The parameter problem addressed points out an objective function which has

been addressed to detect the attack. Finally, the parameter future work explains future

research directions of the current solution.

2.4.3.1 SPHINX

In (Dhawan et al., 2015), the work has presented several attacks which target the

network topology and forwarding devices in SDN. It has been shown that an attack can

Univ
ers

ity
 of

 M
ala

ya

48

be launched from malicious hosts and OF switches. A proposed solution as a SPHINX is

presented to detect an unknown attack on network topology and the forwarding devices

in SDN. The SPHINX provides a real-time and accurate verification solution of the

network behavior by a) monitoring all OF messages; b) analyzing features set of the

messages, and c) providing a fast validation of the network updates. The SPHINX focuses

on four messages, i.e., Packet_In, stats_reply, features_reply, and flow_mod to get the

metadata about network topology and forwarding device attacks. First, the SPHINX

intercepts the OF messages transferred between the switch and the controller. Then, it

builds the incremental flow graphs with new updates and validates the network behavior.

These intercepts are important to identify the malicious behavior of the attacker. After

getting the latest update, SPHINX increments and updates its network topology flow

graphs and detects malicious behavior based on the tangible changes observed in the

network topology and the infrastructure plane forwarding.

Specifically, IP/MAC address binding, MAC/port binding, and flow statistics of the

host are used to provide metadata for assisting SPHINX to detect malicious behaviors in

the network topology and the infrastructure plane forwarding. The network behavior is

validated through the SPHINX policy engine. The policy engine enables administrators

to validate the incremental flow graphs. The constraints specified by the administrators

are written in the policy language. However, validating the policy itself is not considered

in the SPHINX and is left for future work. In (Yan, Yu, Gong, & Li, 2016), a policy-

based security is provided in SDN.

2.4.3.2 TopoGuard

Hong et al. (Hong et al., 2015) have first time proposed an attack in SDN architecture

that affects the visibility of the controller by providing poisoned network topology view.

The attack illegally modifies the network visibility by hijacking the host location and

inserting fake links between the OF switches. These attacks disturb the operation of

Univ
ers

ity
 of

 M
ala

ya

49

different network applications that run on top of the controller such as packet routing,

network virtualization, and mobility tracking. A TopoGuard application is proposed to

overcome the problem of the poisoned network topology in SDN.

The TopoGuard application is executed in the OF controller that is composed of three

main modules namely, port manager, host prober, and topology update checker. Each of

these modules in the TopoGuard application depends on the Packet_In message to

investigate and detect the illegal modifications in the network topology. The port manager

provides information related to the device type connected to the switch. The device type

contains values of host, switch, or any (another device rather than hosts and switches).

The value any is the default value for the device type and will change to host or switch

once the packet has been forwarded. The port manager detects the attack and generates

an alert to the topology update checker by receiving LLDP packets from the host. The

alerts are generated when LLDP packets traverse between internal link ports of the

switches rather than the hosts.

Upon migration to a new location, the host probe module is responsible for checking

whether the host’s previous location is unreachable or not. The location is checked by

sending the probe packets (i.e., ICMP echo packets) to the host’s previous location. If the

host probe receives the echo replies, it will inform the topology update checker to hold

the update of a new host location due to the host location hijacking attack. Similarly,

topology update checker is also responsible for checking and verifying the information

on the host migration and new link discovery in the network topology. Once the host

migration is detected, the topology update checker collects the host’s previous location

from the host probe and then updates its topology discovery of the network.

For the link discovery, topology update checker checks cryptographic hash value for

the integrity of the LLDP packet. After the integrity check, the device type is checked

from which the LLDP packet is generated. If the device found has a host entity, the

Univ
ers

ity
 of

 M
ala

ya

50

topology update checker considers it as an attack and holds the update of the discovery

link in the network topology. Therefore, TopoGuard enables a real-time detection of the

topology poisoning attacks in SDN.

2.4.3.3 Authentication of LLDP Packets

In (Alharbi et al., 2015), a countermeasure based mechanism is proposed to overcome

the security problem presented in the OFDP. The OFDP lacks an authentication of LLDP

packets that may create a risk for the packets to be forged. The proposed method uses a

cryptographic Message Authentication Code (MAC) in each of the LLDP packets to

authenticate the packet’s integrity. The HMAC is used to compute the MAC code. The

uniqueness of the HMAC in authenticating the LLDP packet is the use of a dynamic key

instead of the static key. In each round of the topology discovery, a dynamic key is used

for each LLDP packet which makes difficult for the adversaries to speculate the key.

Guessing the key is critical to computing the MAC value and launches a successful LFA.

The key is selected randomly for security and it is difficult for the attacker to guess the

key especially when the key is generated with an entropy measurement. Moreover, the

controller can detect any attempt made by the attacker for guessing the key. The controller

keeps track of each key generated for each packet and verifies the authenticity of the

received LLDP packets. The Chassis ID and Port ID are combined to provide a necessary

identifier while hashing is performed through an MD5 hashing function. The HMAC

value is inserted in the optional TLV field of the LLDP packet which shows that OFDP

having HMAC can detect any fabrication of the LLDP packets generated by the attacker.

The proposed method using HMAC values in the LLDP packet creates 8% of the CPU

overhead which is lower than identifying fabricated links in the network.

2.4.3.4 OFDPv2

In (Pakzad, Portmann, Tan, & Indulska, 2014), a simple and practical modification is

performed on the existing topology discovery approach for reducing the control load and

Univ
ers

ity
 of

 M
ala

ya

51

to increase the efficiency of the controller. The proposed approach modifies the de-facto

standard of the topology discovery by introducing OFDPv2-A and OFDPv2-B. The two

new proposed versions have the same functionality of OFDP with significantly less

number of control messages used for link identification between the OF switches. The

reduction of control messages significantly decreases the controller load.

In OFDPv2-A, a specified rule is inserted in the flow table of every switch. The rule

is inserted to direct the OF switch to create a copy of the received LLDP packet and

forward it to all of its active ports. The forwarded message has a modified MAC address

for each port. The LLDP packets are limited to the number of the available OF switches.

However, the unique LLDP packet in OFDP is sent to the active ports of the switches that

cause to increase the workload on the controller due to handling a large amount of the

LLDP packets. Also, Packet-In message event handler in the controller is changed to

know the source MAC address of the Ethernet frame in place of Port ID TLV field of the

LLDP payload. The OFDPv2-B operates similar to OFDPv2-A, but it has no rules to

handle the LLDP packets send from the controller. An action list is added to each of the

Packet_Out messages to inform OF switches about forwarding the packets.

Table 2.4: A general description of state-of-the-art topology discovery

C
la

ss
ifi

ca
tio

n

T
ec

hn
iq

ue
s

SD
N

 F
ea

tu
re

s

A
tta

ck
 E

nt
ity

Pr
ob

le
m

A

dd
re

ss
ed

Fu
tu

re
 W

or
k

SP
H

IN
X

SP
H

IN
X

 c
on

tro
lle

r
ap

pl
ic

at
io

n

In
cr

em
en

ta
l f

lo
w

gr

ap
hs

 w
ith

 m
et

ad
at

a
in

fo
rm

at
io

n

H
os

t-b
as

ed
 a

tta
ck

To
 d

et
ec

t s
us

pi
ci

ou
s

ch
an

ge
s o

bs
er

ve
 in

ne

tw
or

k
to

po
lo

gy
 a

nd

in
fr

as
tru

ct
ur

e
 p

la
ne

Sp
hi

nx
 w

ill
 c

on
si

de
r

flo
w

 ru
le

 a
gg

re
ga

tio
n,

Pr

oa
ct

iv
e

O
F

en
vi

ro
nm

en
t,

an
d

M
ix

ed
 n

et
w

or
ks

 in
 th

e
fu

tu
re

.

Univ
ers

ity
 of

 M
ala

ya

52

C
la

ss
ifi

ca
tio

n

T
ec

hn
iq

ue
s

SD
N

 F
ea

tu
re

s

A
tta

ck
 E

nt
ity

Pr
ob

le
m

A

dd
re

ss
ed

Fu
tu

re
 W

or
k

To
po

G
ua

rd

To
po

G
ua

rd

ap
pl

ic
at

io
n

Ex
te

ns
io

n
of

 O
F

co
nt

ro
lle

r b
y

de
si

gn
in

g
to

po
lo

gy

up
da

te
 c

he
ck

er

H
os

t-b
as

ed
 a

tta
ck

,
Sw

itc
h-

ba
se

d
at

ta
ck

,
C

on
tro

lle
r-

ba
se

d
at

ta
ck

D
et

ec
tio

n
of

 n
et

w
or

k
to

po
lo

gy
 p

oi
so

ni
ng

at

ta
ck

s

D
es

ig
n

a
ne

w
 se

cu
rit

y
fr

am
ew

or
k

w
hi

ch

de
te

ct
s m

or
e

vu
ln

er
ab

ili
tie

s i
n

SD
N

A
ut

he
nt

ic
at

io
n

of
 L

LD
P

pa
ck

et
s

H
as

h
M

es
sa

ge

A
ut

he
nt

ic
at

io
n

C
od

e

U
si

ng
 H

M
A

C
 in

si
de

LL

D
P

pa
ck

et
 in

 e
ve

ry

to
po

lo
gy

 d
is

co
ve

ry
 ro

un
d

H
os

t-b
as

ed
 a

tta
ck

Pr
ov

id
es

 a
ut

he
nt

ic
at

io
n

an
d

pa
ck

et
 in

te
gr

ity
 fo

r
LL

D
P

pa
ck

et
s

C
he

ck
 th

e
im

pa
ct

 o
f t

he

pr
op

os
ed

 so
lu

tio
n

in

an
ot

he
r a

re
a

ra
th

er
 th

an

ro
ut

in
g.

O
FD

Pv
2

O
pe

nF
lo

w
 d

is
co

ve
ry

pr

ot
oc

ol

M
od

ify
 d

e-
fa

ct
o

st
an

da
rd

 o
f t

op
ol

og
y

di
sc

ov
er

y,
 i.

e.
 O

FD
P

C
on

tro
lle

r-
ba

se
d

at
ta

ck

R
ed

uc
e

th
e

co
nt

ro
l

m
es

sa
ge

s u
se

d
to

id

en
tif

y
th

e
lin

ks

be
tw

ee
n

sw
itc

he
s

Th
e

di
sc

ov
er

y
of

 h
os

ts

in
 S

D
N

 n
et

w
or

k

The action list contains the forwarding logic similar to the OFDPv2-A. The key

advantage of the OFDPv2-B is the minimum use of the OF switch memory. However,

OFDPv2-B has a disadvantage of increased size the of Packet_Out messages due to the

insertion of an action list for each switch. The experiment results prove that OFDPv2-A

and OFDPv2-B reduce 40% of the CPU overload and control traffic overhead as

compared to the de-facto standard such as OFDP.

Univ
ers

ity
 of

 M
ala

ya

53

2.4.4 Miscellaneous Threats

With a successful topology poisoning attack, the chance for other security threats also

increases. The threats including man-in-the-middle, denial of service, identity spoofing,

and repudiation are explained in the subsequent sections, and their side effects on the

topology discovery are presented in Table 2.5.

2.4.4.1 Man-in-the-middle

The man-in-the-middle attack is performed in SDN in various ways (Namal, Ahmad,

Gurtov, & Ylianttila, 2013a). One of way is to inject a fake link in the network topology.

The attacker eavesdrops the traffic from source to destination by using a false update by

the controller. The fake link may force the controller to divert traffic to the attacker

location due to shortest path. It might affect the confidentiality as well as the integrity of

the network traffic passing through the fake link created between the OF switches.

To mitigate the man-in-the-middle attack in SDN, a proposed solution (Hong et al.,

2015) is presented. The proposed solution used device types such as (switch or host) to

detect the spoofed LLDP packet, i.e., generated from the host rather than switches.

Usually, no host participates in the legitimate LLDP propagation process. The LLDP

packets traverse between the switches to determine a link between each other. The

proposed solution determines whether the LLDP packet is generated from the host. In

that case, the packet is considered as spoofed, and further propagation of the packet in the

network is stopped.

The host devices are easily detected through the normal network traffic such as the

TCP and UDP. Once the device type is detected as a host, then any information regarding

its topology update will not be considered as legitimate. Thus, the solution effectively

prevents the man-in-the-middle attack at its early stage by finding the malicious host in

SDN.

Univ
ers

ity
 of

 M
ala

ya

54

2.4.4.2 Denial of service

The controller uses the spanning tree algorithm to remove redundant ports after each

topology update. However, an attacker can use the same feature to shut down the normal

OF switch ports after injecting the fake links in the topology. It causes a burden on the

other links connected to the target OF switch and results in a DoS attack (Yan et al.,

2016). A legitimate link can be removed by sending a fake LLDP packet by the attacker

to the OF switch having lower DPID. The attacker announces a link with a target switch

as well. However, if the DPID of the selected OF switch by the attacker is lower than the

target switch connected to another switch, then the port of the target switch connected to

another switch is removed. It causes overhead on the selected OF switch which causes

DoS attack due to an increase in the network traffic overload. The availability of the OF

switch is affected due to numerous flow rules in the flow table generated through as a

result of a DoS attack.

The literature has various solutions to mitigate the DoS attacks in SDN. In (Shin et al.,

2013), a connection migration tool is proposed to reduce infrastructure control plane

interaction that detects dynamic flow changes in the network traffic. In (Fonseca,

Bennesby, Mota, & Passito, 2012), a seamless primary controller backup is proposed to

defend the centralized network operating system from failure. Another DoS prevention

mechanism is proposed in (Wang, Xu, & Gu, 2015), which uses proactive flow rules to

preserve network policy enforcement. It uses packet migration mechanism to defend the

controller from overloading its memory due to numerous Packet_In messages. However,

the solution fails to find the real source of the attack.

2.4.4.3 Identity spoofing

When a malicious host injects spoofed LLDP packets, the controller updates the false

information in the host profile system. The controller thinks the host has changed its

position, and the information is sent to its new position from where the LLDP is received,

Univ
ers

ity
 of

 M
ala

ya

55

i.e., malicious host. The target host remains at its position, however; the malicious host

pretends to be a legitimate (target) host. The controller passes the information to the

malicious host hence, affecting the confidentiality and integrity of the data by modifying

it and forwarding it to the further destinations.

To overwhelm the spoofed identity problem in SDN, work in (Hong et al., 2015)

proposes a solution based on the pre-condition and post-condition of the host migration.

In the pre-condition, once the host migrates from its position, it has to inform SDN

controller about its previous port_shutdown. In the post-condition, the controller confirms

that host is not reachable by sending ping messages to its previous location. Thus, the

controller can effectively track the real location of the host and can determine the spoofed

identity of the malicious host.

2.4.4.4 Repudiation

The lack of a proper authentication mechanism of LLDP packet in the controller may

cause repudiation attacks. The repudiation attacker creates a fake link through injected

spoofed LLDP packet and then denies it to generate by him. The attacker inserts the

spoofed DPID and Port ID of the victim OF switch and forwards the packet to the

controller by showing it has come from another OF switch. The spoofed LLDP packet

loses its confidentiality and integrity by modifying its original value in the packet field.

The work presented in (Dhawan et al., 2015) builds an updated flow graph based on

metadata of the Packet_In and FEATURES_REPLY messages to detect the fake links

generated through spoofed LLDP packets. The MAC-IP address binding mechanism of

the proposed solution is built by using the language policy engine that assists the

controller to detect the fake links upon observing the deviation from such bindings.

Table 2.5: A side effect of threats on topology discovery

Univ
ers

ity
 of

 M
ala

ya

56

Threats Possible Reason Affect

C
on

fid
en

tia
lit

y

In
te

gr
ity

A
va

ila
bi

lit
y

Man-in-the-middle Injected fake link
Change the
shortest path

Yes Yes No

Denial of services
Removing
legitimate link

Increase a
workload

No No Yes

Identity spoofing
Spoofing host
identity

Illegal
information
exploitation

Yes Yes No

Repudiation
Spoofed LLDP
packet

Hiding the
attacker identity

Yes Yes No

2.5 Future Challenges and Directions

In this section, future research challenges and directions of topology discovery in SDN

are presented. The research on topology discovery is still in its early stages. Therefore,

ample opportunities exist for future work to mitigate the challenges in topology

discovery. The following future directions will help academicians, industrialists, SDN

vendors, and network specialists to explore novel solutions in making the topology

discovery secure and sustainable in SDN. The descriptions of possible solutions for each

future direction are given in Table 2.6.

2.5.1 Multiple SDN Domains

Practically, the SDNs are created by the network operators in the enterprise according

to their network requirements. Mostly, the enterprise has different domains which are

controlled by each controller resulting in a multiple SDN domains environments.

However, small-scale data center network may require a single SDN domain while a

large-scale data center network (carrier networks) may require several SDN domains that

are controlled by the logically centralized controller. The division of SDN domains varies

on the requirements that include physical locations, traffic monitoring, load balancing,

and various others.

Univ
ers

ity
 of

 M
ala

ya

57

However, interconnecting multiple SDN domains and sharing the network topology

updates in the topology discovery can be a very challenging task. These interconnections

require a standard protocol to efficiently share and secure the control information between

the SDN devices. Moreover, the standard protocol must be able to consider various

important aspects of the topology discovery including for instance a) how the network

topologies in various SDN domains are connected, b) how one controller communicates

with its neighbor controller, c) what will be the form of information format to share

among the controllers, d) how to get the controller addresses, and e) which policies and

procedures have to be adopted for the communication. The work presented in (S. Scott-

Hayward, Natarajan, & Sezer, 2016) proposed Auto Slice virtualize layer for the SDN

architecture to separate multiple SDN domains on the shared network physical resources.

It enables efficient sharing of topology discovery information among the controllers

placed in multiple SDN domains.

2.5.2 Topology Discovery through OF switches

Currently, the topology discovery function is executed by the controller, and the SDN

controller is a single point of failure. The applications in SDN can be affected by the

malicious attacks on the controller. One way to overwhelm this issue is to shift the

responsibility of a topology discovery to the OF switches. It will reduce the liability on

the controller and protects the topology discovery function at the time the controller is

attacked. The OF switches can send the LLDP packets to their ports after a specified time

interval to determine the links between their neighbor OF switches. The LLDP packet

should contain the switch ID and an output port number to identify the origin of the LLDP

packet. The OF switch should update the controller on every new link detected for the

latest updates. Therefore, the topology discovery cost will be independent of the number

of controllers in SDN. However, discovering a network topology for each controller

Univ
ers

ity
 of

 M
ala

ya

58

domain is costly regarding the LLDP messages used in communication between

controllers and the OF switches, network bandwidth consumption, and the time overhead.

The above complications can be minimized through the dependable and simpler

topology discovery mechanisms in SDN. For instance, the use of the OF switch-based

topology discovery can decrease the controller cost linearly because a single discovery

mechanism will work for all the controllers in the network. Moreover, the OF switches

can increase the priority values for the LLDP packets in the flow tables to transfer the

packets on time even in the heavily loaded network links. It assists the controller to have

more consideration towards the other core functionalities.

2.5.3 Identification of fake links

The injection of a fake link in the network topology will critically damage the

controller visibility and affect the network services to produce the false results. To

determine whether the link is fake or legitimate, the controller has to be intelligent enough

to decide the legitimacy of the link in network topology within a specified time. However,

currently, a proposed mechanism is lacking essential features to distinguish between

legitimate and fake links.

A potential solution to this issue is to access the historical information of the OF switch

to identify its involvement of malicious activities. Another solution is to check the traffic

flow on the newly inserted link as most of the fake links are created to overload the

resources, i.e., OF switches by flooding the link with packets. Also, selecting the optimal

feature of the network traffic plays a vital part in the detection of the fake link. Therefore,

utilizing a machine learning techniques can make the topology discovery management

more secure with identifying various features.

2.5.4 Frequent migration

Mostly, in medium and large data center networks, SDN architecture is implemented

for different purposes. The topology discovery is more sophisticated in these data center

Univ
ers

ity
 of

 M
ala

ya

59

networks due to the frequent migration of the virtual instances in a virtualized network

environment (Gani et al., 2014; Qi, Shiraz, Gani, Whaiduzzaman, & Khan, 2014). It

overloads the controller which requires to frequently updating the network instances to

have a clear and fair network visibility of the network. It opens the opportunity for the

malicious node to connect to other network nodes and create fake links in a different part

of the network.

An intelligent mechanism based on statistical probability is required to track the

network nodes behavior to assist in determining the malicious activities that affect the

topology discovery mechanism. One way is to use the entropy measurement technique to

determine the uncertainty in SDN after the attack (Yan et al., 2016). For instance, the

attacker injects the fake links in the network which create uncertainty in the network due

to incorrect network topology. The entropy can be used to determine the locations where

the fake links are inserted by calculating the uncertainty in the network. It can support

forensics mechanism in reaching the real source of the attack (Suleman Khan, Ahmad, et

al., 2014; Suleman Khan, Gani, Wahab, & Bagiwa, 2015). As a result, the topology

discovery will be performed efficiently by focusing on the visibility rather than the

security parameters.

2.5.5 Topology discovery information safety

The internal state information of the controller is recorded in the Network Information

Base (NIB). The NIB is a separate module in the controller that stores the critical states

of the controller. These states can be used to regenerate the events at a specific time as

required. Similarly, the topology discovery information is saved in the NIB module of

the controller. Nowadays, the controller has become a key focus of attacks due to its core

management functions and logically centralized control.

Table 2.6: A description of future challenges and directions of topology
discovery with its possible solutions

Univ
ers

ity
 of

 M
ala

ya

60

Future Directions Description Possible Solutions

Multiple SDN
domain

The SDN controllers
controlling different domains
create complication in sharing
topology discovery
information

— Standard protocol

Topology discovery
through OF
switches

Reduce less burden on the
controller due to topology
discovery

— Use OF switches
for Topology
discovery

Identification of
fake links

To know about the status of the
link

— Check OF switch
history record

— Verify traffic
flow on the link

Frequent migration

Topology discovery
mechanism becomes
sophisticated due to frequent
migration of instances

— Statistical
probability

— Entropy
measurement

Safety of topology
discovery
information

The attackers can exploit the
topology discovery states

— Strong
authentication
mechanism

— Redundant
Topology
discovery states

Upgradation of the
controller

The topology discovery should
be consistent at the time of the
controller up gradation

— Redundant
Topology
discovery states

The controller can be attacked through various channels to produce a false output. The

decision of the malicious controller cannot be trusted and can lead to an incorrect

decision. Similarly, during the attack on the controller, the NIB states can be affected,

which might destroy the topology states stored in the NIB. As a result, the controller in

the next iteration of the topology discovery updates its record without having the

information from the previous topology discovery iteration. It may cause the controller

to update the malicious information injected by the attacker after exploiting the records

of topology discovery state in the NIB.

To circumvent the issue above, a controller should forward a copy of its topology

discovery states to its neighbor controller. The neighbor controller can re-generate the

Univ
ers

ity
 of

 M
ala

ya

61

topology discovery states whenever the topology discovery states are affected by an

attack. Alternatively, having a strong authentication mechanism will prevent the attackers

from exploiting the core management modules of the controller. The work presented in

(Phemius et al., 2014) proposed an extendable control plane, i.e., DISCO to deliver end-

to-end network services using a distributed controller environment. It enables highly

manageable control channels for sharing aggregated network information among the

controllers. Thus, it can traverse topology discovery information among the controllers

in a controlled environment.

2.5.6 Controller upgrade

The controller must be periodically upgraded by adding features, fixing bugs to improve

its performance. It is important due to frequent change in the network infrastructure in

the dynamic virtualized environment. Currently, the SDN lacks the effective techniques

to assist the controller in upgrading without affecting the current operation of the network.

In existing controller up gradation techniques, the controller is restarted, or the old states

of the controller are recorded and then replayed in the upgraded controller to recover its

previous states. Similarly, the situation is same for the topology discovery states. Upon

upgrading the controller for its new assignments, the previous topology discovery states

are lost. It incurs the overhead of re-executing the topology discovery right from its initial

stage to acquire the network visibility of the network.

One of the possible solutions is to save the topology discovery state in the neighbor

controller (Blenk et al., 2016). After the controller is upgraded, the operation of the

topology discovery is resumed from the last recorded status. However, when the network

topology changes during the upgrades, the records will be inadequate in the respective

topology. To minimize the inadequate records, the controller should be upgraded at the

time when the chance for the topological change is less in the network.

Univ
ers

ity
 of

 M
ala

ya

62

2.6 Conclusion

This chapter explains the concept of SDN with forensic aspect by focusing on topology

poisoning attacks. It analyzes topology discovery mechanism of SDN controller by

devising a thematic taxonomy that presents various parameters. It provides insight into

various threats that affect the network visibility of the controller. It discusses state-of-the-

art topology discovery techniques used to detect topological poisoning attacks. Moreover,

a brief discussion is presented to highlight possible solutions for efficient topology

discovery in SDN. Finally, various challenges are highlighted regarding topology

discovery of SDN.

Source identification is an emerging research area of SDN forensic which has been

neglected for various reasons. Firstly, security was not a part of the initial development

of SDN architecture. When SDN starts receiving various attacks after its implementation,

people realize that security should be a major part of SDN architecture. Secondly,

identification of source attacks is not a simple and easy task. It is considered one of a

difficult task in the security field, i.e., forensic science. Mostly, SDN researchers have

focused on the detection of attacks rather than focusing on the cause of the attack. Thirdly,

multiple controllers in SDN have made the situation more complicated for source

identification of attacks regarding control management of SDN instances. For instance, a

malicious host controlled by a single controller at the time of attack may be a part of other

controlled network during the time of the investigation. Fourthly, virtual machines

migrations have to make source identification more sophisticated due to their frequent

mobility, especially in cloud computing.

The literature advocates that topological poisoning attack especially LFA damages

network visibility of the controller which is an important requirement for control and

application plane in SDN architecture. Several techniques have been proposed to

overwhelm such a problem by detecting the attack. However, it is utmost important to

Univ
ers

ity
 of

 M
ala

ya

63

find the real source of the LFA to assist SDN controller in preventing similar attacks in

the future. Thus, trace back of LFA is a challenging problem of SDN security domain

that is addressed in this research.

Univ
ers

ity
 of

 M
ala

ya

64

CHAPTER 3: PROBLEM ANALYSIS

The complex nature of SDN coupled with the huge number of services they provide;

make the system as a whole prone to some malicious attacks. An attack such as LFA is

becoming more and more common with a high degree of sophistication. Different

techniques exist which examines the occurrence of LFA in SDN. To ensure that SDN

does not suffer from the same attack from the same origin, we have to consider in general

the entire system liability, service information, dependencies, and switch as well as host

vulnerabilities. However, due to the complex nature and scalability property of SDN,

determining the origin of the LFA is not a straight forward. Although other solutions have

been proposed to address this problem in traditional networks, a formal method to

security in SDN is lacking. In this chapter, we discuss a formal method for SDN using

Higher Order Logic (HOL) and as a case study use to examine the LFA in SDN.

This chapter is organized into eight sections. Section 3.1 explains formal method along

semantics of HOL. Section 3.2 presents formal representation of SDN whereas Section

3.3 describes formal representation of SDN as services. Section 3.4 describes formal

representation of network vulnerabilities. Section 3.5 provides contextual analysis of

LFA in SDN. Section 3.6 presents formal analysis of LFA by providing satisfiability test.

Section 3.7 presents performance metrics used to evaluate proposed method with state-

of-the-art solutions. Finally, Section 3.8 concludes the chapter.

3.1 Formal Methods

In this section, we have explained briefly the formal methods used in our problem

analysis phase of the research.

3.1.1 Formal Definition

In this section, we provide a brief discussion on Higher Order Logic (HOL) (Van

Benthem & Doets, 2001). We also argument our discussion with the reasons why we

think HOL can be suitable in describing SDN framework, liabilities, and attack scenarios.

Univ
ers

ity
 of

 M
ala

ya

65

HOL is a group of formal information representation of a specific domain of an

application. HOL has more expressive power than the first order and second order

predicate logic. The centre behind the brain of HOL is (typically) the decidable and

proficient methods.

HOL are atomic formulas that are generated from a given set (L) of non-logical

constants, among which we can distinguish individual constants, function symbols, and

relation signs. The HOL is obtained from turning these atomic formulas into an inductive

definition allowing the formation of more complicated types and considering quantifiers

for all such types.

3.1.2 HOL Syntax and semantics

There are some choices for higher logic that might be selected for a research study of

this nature. However, we adopt an approach that extends the approach of HOL

programming by describing an analogue of Horn clause within a rich HOL that was

proposed in church’s simple theory of types. There are two types of symbols in HOL.

These symbols are the logical and non-logical symbols. The logical symbols used in HOL

and their interpretations are at this moment summarized in Table 3.1.

Using the HOL symbols in Table 3.1, we now define a formal representation of SDN.

This involves the formal representation of network devices and how they are connected

in SDN. We will also define access level on network devices (switches) and host to have

clear understandability to differentiate between authorized and unauthorized users. The

services running on the host is also be defined. It aims at obtaining the entire network

configuration at each point in time. In general, we will examine and represent the formal

framework of SDN using HOL as a formal language.

Univ
ers

ity
 of

 M
ala

ya

66

Table 3.1: The logical symbols used in HOL

Symbols Usage Interpretations

∀ Quantifier ∀x For all possible values of x
∃ Quantifier ∃x There exist a value x

⋀
Logical connective Logical conjunction: The statement: (A ∧ B) is

true if and only if A is true and B is true

∨
Logical connective Logical disjunction: The statement: (A ∨ B) is true

if either one of A is true or B is true

→

Logical connective Implication: The statement: A → (B ∧ C) asserts
the truth of A if and only if B and C are true.
Similarly, the statement A → (B ∨ C) asserts the
truth of A if either B or C are true

↔
Logical connective Logical Bi-conditional: The statement :(A ↔ B)

asserts A if and only if B

⊣
Logical connective Logical Negation: The statement (⊣ A) asserts to

does not yield A

≝
Equality The statement: (A ≝ B ∧ C) asserts that the truth

of B and the truth of C equals A by definition

3.2 Formal Representation of SDN

The unique feature of SDN facilitates the network operators to develop a simple

program that controls the network in a programmable way. It is important to verify the

security properties of these programs before it is deployed in SDN for its execution. Thus,

an effective approach to check and ensure the security of these programs or systems is to

use formal methods.

Formal methods assist network operators in protecting the systems or network from

unexpected errors that might not be detected at the time of development and deployment.

Therefore, we have used HOL as a formal specification to represent the SDN

infrastructure.

Definition 1: SDN (S) is a four-tuple system that is made up of (Γ, Φ, 𝜆, Δ) where (𝛤)

represent a non-empty set of controllers, (𝛷) represent a non-empty set of switches, (𝜆)

represent a non-empty set of hosts and (𝛥) represent non-empty links that connect

switches to each other. The links are between switches, switches to hosts, and switches

Univ
ers

ity
 of

 M
ala

ya

67

to a controller. Thus, we now model the SDN which is represented by the term (𝑆) in

HOL as follows in

 ∀ 𝑆 ≝ ∃𝛤 ∧ ∃𝛷 ∧ ∃ 𝜆 ∧ ∃𝛥 (3.1)

Theorem 1: If we assume the definition in equation 3.1, (S) is non-biased for all

occurrences of SDN, and then we can imply the truth of the following statement in

equation 3.2 for all occurrences of SDN.

 ∀ 𝑆 → ∃𝛤 ∧ ∃𝛷 ∧ ∃ 𝜆 ∧ ∃𝛥 (3.2)

Proof:

The statement in Theorem 1 for SDN is non-trivial since it will always evaluate to be

a universal truth for all occurrences of SDN when

(∞ < 𝛤 > 0)
(∞ < 𝛷 > 0)
(∞ < 𝜆 > 0)
(∞ < 𝛥 > 0)

Since we have now defined the SDN and have proven that SDN is a non-empty set of

a four-tuple containing (Γ, Φ, 𝜆, Δ). Therefore, we move further to define (Γ) which we

use to represent the non-empty set of controllers. The controller is the brain behind the

operation in SDN; we now modelled the controller in HOL as follows.

Definition 2: A controller (Γ) in well-defined SDN system consist of three main

entities which are defined in a couple as (Μ, Ι, R)

 ∀ 𝛤 ≝ ∃𝛭 ⋀ ∃𝛪 ⋀ ∃𝑅 (3.3)

Where (Μ) are the core modules within the controller that involve the routing

information, topology monitoring, load balancing, and others. The (𝐼) is the interfaces of

the controller and (R) are different services that are provided by the controller. Note that

the controller is made up of four interfaces which includes south, north, and east &

westbound. Since our focus is on southbound interface that links controller to the

switches, then we define its specification in formal representation using HOL as follows.

Univ
ers

ity
 of

 M
ala

ya

68

Definition 3: A southbound interface of a control plane which we represent as (𝑠𝑖) is

a component of the controller that connect to a switch (Φ) in SDN

 ∀𝛤 ∃𝑠𝑖 ↔ ∃≥1𝛷 (3.4)

Since switches have information associated with them and are made up of one or more

interfaces and an operating system, then we define every switch as follows.

Definition 4: A switch is a two-tuple component that is made up of the switch

information and switch interfaces. We represent these two components as Φ(χ, ψ). Thus

we define a switch in HOL as follows.

 ∀𝛷 (∃𝜒 ∧ ∃𝜓) (3.5)

Where (χ) represent the switch information and (ψ) represent the switch interfaces.

Thus,

 ∀𝛷 (∀𝜒 (∃𝑖𝑝(1) ∧ ∃𝑝𝑛𝑜 ∧ ∃𝑠𝑛) (3.6)

Where (ip) represent the IP address of the switch whereas its value (1) indicates that

only one IP address is allowed for each switch. The (pno) represent the switch ports and

(sn) represent the switch name.

Definition 5: A link (𝛥) in SDN connects host through switches using interfaces. Thus

we define a link as

 ∀ 𝛥 (∃>1𝜓) (3.7)

Theorem 2: For every link to be successful there has to be more than one functional

interface from the participating devices. Such as, we define a switch interface as follows

 ∀(𝛷. 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) → 𝑖𝑝(1) ∧ ∃≥1 𝑝𝑛𝑜 ∧ 𝑛𝑎𝑚𝑒 (3.8)

Proof

This is a straight forward prove because the expression in equation 3.8 will always

evaluate to be true, given that all host computers within an SDN will have a unique IP

Univ
ers

ity
 of

 M
ala

ya

69

address, name, and port no > 0. Hence, the theorem is a universal truth if the host

computer is connected to a switch in the network.

Definition 6: A host (𝜆) is a representation of a computer system that is defined over

three entities in SDN. These entities include the host information, interface, and operating

system.

𝐻𝑜𝑠𝑡 ≝ 𝜆. 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ∧ 𝜆. 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∧ 𝜆. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 (3.9)

Since host is primarily for providing services, we define the host information as

𝜆. 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ≝ ∃ 𝑛𝑎𝑚𝑒𝑑 ℎ𝑜𝑠𝑡 ∨

∃ 𝑢𝑛𝑎𝑚𝑒𝑑 ℎ𝑜𝑠𝑡 (3.10)

The host information includes the proper identification of the computer system in the

network which is known as named host or the host which joins the network through illegal

circumstances is known as the unnamed host. These both types of hosts are important to

be differentiated to known about the legitimate and malicious hosts in SDN.

∀𝑛𝑎𝑚𝑒𝑑 ℎ𝑜𝑠𝑡 ≝ (∃(𝜆. 𝑛𝑎𝑚𝑒) ∧ ∃(𝜆. 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) ∧

∃(𝜆. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚) ∧ ∃(𝜆. 𝑠𝑒𝑟𝑣𝑖𝑐𝑒))

 (3.11)

The named host consists of proper name, its interface details, an operating system

which it is using and the services it is going to be provided. However, such information

is missing for the unnamed host.

 𝜆. 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ≝ (∃(𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠(1)) ∩ ∃(𝑝𝑛𝑜(𝑚𝑎𝑐 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(1))) (3.12)

The host interface consists of IP and mac address along with its port number. The value

(1) of IP and mac address shows that it will have only one value each.

𝜆. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 ≝ ∃ 𝑏𝑟𝑎𝑛𝑑 ∧ ∃ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∧ ∃𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∧

∃ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (3.13)

Univ
ers

ity
 of

 M
ala

ya

70

The operating system of host consists of brand name, version, core components, and

its configuration.

 ∀𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (∃. 𝑛𝑎𝑚𝑒 ∧ ∃ 𝑉𝑒𝑟𝑠𝑖𝑜𝑛) (3.14)

Each host component consists of its name and version to differentiate it from others.

 ∀𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (∃ 𝑝𝑎𝑟𝑎_𝑛𝑎𝑚𝑒 ∧ ∃ 𝑝𝑎𝑟𝑎_𝑣𝑎𝑙𝑢𝑒) (3.15)

Each configuration file contains various parameters which are composed of parameter

name and values.

 ∀𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (∃ 𝑁𝑎𝑚𝑒 ∧ ∃ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛) (3.16)

The application which runs on the host provides a name along its version to have

services for the users in the network.

3.3 Formal Representation of SDN as a Service

In this section, we will now model important information in SDN as a service.

However, to successfully do that, we have described services with unique identification

protocols such as service name, service version, service protocol, the port used for service

communication, and access policy. We, therefore describe services as identification

protocol as follows.

Definition 7: We define SDN services (Ζ) through its identification protocol as

Ζ (ℕ, ℘) where (ℕ) represent the service information and (℘) represent the access policy.

 Ζ ≝ ∃ℕ ∧ ∃℘ (3.17)

 ℕ (∃ 𝑛𝑎𝑚𝑒 ∧ ∃ 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ∧ ∃𝑣𝑒𝑟𝑠𝑖𝑜𝑛) (3.18)

The service information (ℕ) is elaborated with information of name, protocol and its

version.

℘ (∃ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 ∨ ∃ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑢𝑠𝑡 ∨ ∃ 𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠) (3.19)

The access policy is defined regarding three aspects including controlled environment,

uncontrolled environment, and anonymous environment. The controlled environment is

Univ
ers

ity
 of

 M
ala

ya

71

defined where the user has given legal access to the services in the network. However, in

an uncontrolled environment, the user has illegal access to the services in the network. In

anonymous environment users from outside the network access the services in the

network through different illegal channels.

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 (∃ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 ∧ ∃ 𝑙𝑜𝑐𝑎𝑙 𝑎𝑐𝑐𝑜𝑢𝑛𝑡) (3.20)

To ensure the controlled environment, user access to the network through two accounts

such as global and local accounts. The global account users can access the SDN services

from outside the network through legal authorization, however; local account users can

only access the SDN services from inside the network.

 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 (∃ 𝑢𝑠𝑒𝑛𝑎𝑚𝑒 ∧ ∃ 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 ∧ ∃ 𝑎𝑐𝑐𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙) (3.21)

The global account contains the username and password along with its access level.

The access level specifies the services a user can access in SDN. It depends on the pre-

defined control access level in SDN.

𝑙𝑜𝑐𝑎𝑙 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 (∃ ℎ𝑜𝑠𝑡 ∧ ∃ 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 ∧ ∃ 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 ∧ ∃ 𝑎𝑐𝑐𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙)
 (3.22)

The local account is comprised of host identity, username, password, and access level

of user to access the services in SDN. The host identity indicates that from which part of

the SDN the services are accessed by the host.

Theorem 3: A host will be trusted if the access policy is controlled and verified

through a trusted list by the true evaluation of the global and local account access as

shown in equation 3.20. Thus, we define the theorem in equation 3.23 for controlled with

trusted host in the controller.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑢𝑠𝑡 → (∃ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 ∧ ∃ 𝑡𝑟𝑢𝑠𝑡_𝑙𝑖𝑠𝑡) (3.23)

Proof

Univ
ers

ity
 of

 M
ala

ya

72

The proof of Theorem 3 is non-trivial because the expression in equation 3.23 may not

always evaluate to be true, given that provided services originated from anonymous

sources. Hence, the theorem is only true if services originate from a secured host.

Theorem 4: A host will not be trusted if the access policy is controlled but not verified

through a trust list by the evaluation of the global and local account access from equation

3.20. Thus, we define the theorem in equation 3.24 for an uncontrolled host with no trust

in the controller.

⊢ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑢𝑠𝑡 → (∃ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 ∨ ∃ 𝑡𝑟𝑢𝑠𝑡_𝑙𝑖𝑠𝑡) (3.24)

Proof

The proof of Theorem 4 is trivial as the expression defined in equation 3.24 may not

always evaluate to be true. This because the certain host may be controlled but not trusted

within the SDN infrastructure. Hence the theorem is considered as a non-universal truth

and only evaluates to be true if and only if a host is controlled and trusted.

3.4 Formal Representation of Network Vulnerability

We have successfully modelled SDN as formal logics up to now. Further, we will go

to represent the network vulnerability regarding formal representation. Thus, we define

vulnerability by the vulnerability name, a precondition and a postcondition respectively.

Definition 8: The equation 3.25 presents a definition of vulnerability present in the

network system.

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≝ ∃ 𝑛𝑎𝑚𝑒 ∧ ∃ 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ ∃ 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (3.25)

Theorem 5: An attacker needs certain access level before he or she can access the

vulnerabilities of the network or system. Therefore, we define vulnerability precondition

and post conditions as follows.

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≝

∃𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐸𝑙𝑒𝑚𝑒𝑛𝑡⋁(𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⋀ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)

Univ
ers

ity
 of

 M
ala

ya

73

𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≝

𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐸𝑙𝑒𝑚𝑒𝑛𝑡⋁(𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⋀ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)

However, we note that a precondition that defines vulnerability may be made up of

two or more preconditions which are referred to as a complex precondition. However, to

determine whether a complex precondition is true, we need a series of logical AND

operations to be true which we require the network to be passed. As such, we redefine

vulnerability as follows.

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 → ∃ 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. 𝑟𝑢𝑙𝑒 ∨ (∃ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧

∃ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛) (3.26)

Using this definition, we can now abstractly define a simple attack model and complex

attack model as follows.

 ∀ 𝑆𝑖𝑚𝑝𝑙𝑒 𝐴𝑡𝑡𝑎𝑐𝑘

≝ (∃ 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∨ (∃ 𝑎𝑡𝑡𝑎𝑐𝑘 ∧ ∃ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛) (3.27)

The simple attack model is true when the attacker exploits the liabilities in the network

by attacking a network entity through by passing some test restrictions. Thus, we define

test restrictions regarding post and preconditions as follows.

𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑇𝑒𝑠𝑡𝑅𝑒𝑠

≝ (𝑃𝑐𝑜𝑛𝑑1 ∨ 𝑃𝑐𝑜𝑛𝑑2 ∨ … … ∨ 𝑃𝑐𝑜𝑛𝑑𝑛) ∧ ∃ 𝑛𝑜𝑛

− 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑃𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑇𝑒𝑠𝑡𝑅𝑒𝑠𝑡

≝ (𝑇𝑐𝑜𝑛𝑑1 ∨ 𝑇𝑐𝑜𝑛𝑑2 ∨ … … ∨ 𝑇𝑐𝑜𝑛𝑑𝑛)

∧ ∃𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

∀ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑎𝑡𝑡𝑎𝑐𝑘 ≝ ∃ 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∨ (∃>1𝑎𝑡𝑡𝑎𝑐𝑘 ∧ ∃ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)
 (3.28)

Univ
ers

ity
 of

 M
ala

ya

74

The complex attack is similar to the simple attack model, but it is the combination of

more than one attack. It happens when an attacker generates more than one attack or

generates some attack attempts on the single network entity.

3.5 Contextual Analysis of LFA Attack in SDN

In this section, we utilize the proposed model in representing an example of SDN and

perform a contextual analysis against an LFA. Initially, we briefly explain the LFA; we

then define the attack using formal representation. Finally, a practical example of LFA is

analyzed using the attack model.

3.5.1 Link Fabrication Attack in SDN

In this section, we have explained the way an LFA is performed in SDN. A complete

description about the LFA is provided in section 2.4.2.2 of chapter 2 and is illustrated in

Figure 3.1. The LFA generates a fake link between the switches. The attack can be

generated through malicious hosts and compromised switches in SDN. The attacker used

a LLDP packet to generate fake links in SDN.

The attacker spoofs the LLDP packets which are sent by the controller to the switches.

Once the switches receive the LLDP packet from the controller, it forwards to all the

active ports to determine connected links between the switches. The malicious host also

receives the LLDP packets as it is connected to a port of the switch. The malicious host

finds out the format of the LLDP packets and generates a false LLDP packet by spoofing

the switch identity in the packet. The spoofed LLDP packet is forwarded to the connected

switch which further forwards the LLDP packet to its neighbor switches connected with

its active ports.

The neighbor switch gets the incorrect information from the LLDP packet and

generates a Packet_In message by encapsulating the LLDP packet and forwards it to the

controller. The controller receives the LLDP packets and assumes that there is a link

between the two switches. The controller updates a fake link between the switches in its

Univ
ers

ity
 of

 M
ala

ya

75

topology database which may results in falsified outputs during the execution of network

applications such as load balancing and routing.

Controller

OpenFlow Switch

Switch (S1)

Active Ports

Fake Ports

OpenFlow Switch

Switch (S2)
OpenFlow Switch

Switch (S3)

Hosts-1 Hosts-2 Hosts-3 Hosts-4

Legitimate Link

Fake Link

Figure 3.1: A fake link between switches in SDN

3.5.2 Formal Representation of Link Fabrication Attack

To model an LFA, we need to represent it as to our SDN proposed HOL representation.

The fundamental definitions of the entity involved in the SDN LFA are as follows.

AV, AT, AT, Host [i]

The AV is the attack victim, AT is the attack target, AT is the attacker, and Host [i] is

the number of host in the network. The AV is the network node used by an attacker AT

as a relay node during the attack. The relay node does not take part in the process of an

attack but is used as a support to launch an attack. The AT is the targeted node to which

an attack is launched by the attacker AT in the network.

∀𝜆 (∃ Sv)

The Sv is the services provided by the hosts regarding the application running on it.

∀AT (∀≥1𝛥)

Univ
ers

ity
 of

 M
ala

ya

76

The attacker AT can generate one or more than one links with the switches in the

network.

As per our initial definition of the attack, the action of the attacker is considered to be

an attack if the following condition is true such as

∀ 𝐴𝑡𝑡𝑎𝑐𝑘 (∃(𝑇𝑟𝑢𝑒) 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

This shows that the attacker has generated an attack by exploiting the vulnerabilities

found in the network.

∀𝐴𝑉 ≝ ((∃ 𝐴𝑡𝑡𝑎𝑐𝑘 ∧ ∃ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∨ (∃ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑎𝑡𝑡𝑎𝑐𝑘 ∧

∃ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)) (3.29)

The victim attack node can be formally defined as it is a part of the attack when the

attacker exploits the network vulnerabilities through generating complex attacks by

bypassing the test restriction of the network security.

∀𝐴𝑇 → ((∃ 𝐻𝑜𝑠𝑡[𝑖] ∧ ∃ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∨ (∃ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑎𝑡𝑡𝑎𝑐𝑘 ∧

 ∃ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛)) (3.30)

Similarly, the attack target node is any switch that has been targeted by the attacker

(Host[i]) through a complex attack by bypassing the test restriction of the network

security to exploit the vulnerabilities found in the network.

Theorem 6: A host is expected to provide application services to other hosts through

switches. Thus, we define a host that is either an attack victim or an attack target in

equation 3.31.

 𝐻𝑜𝑠𝑡[𝑖] → ∃ 𝑆𝑣 ∧ (∃ 𝐴𝑉 ∨ ∃ 𝐴𝑇) (3.31)

Proof

The statement in equation 3.31 of Theorem 6 is also non-trivial, although it is a known

fact that hosts in SDN provide services. However, it is not that certain that a host will be

a victim of an attack or a target of an attack or both at the same time. Thus, we infer this

Univ
ers

ity
 of

 M
ala

ya

77

theorem as a non-universal truth since it only evaluates to be true when certain conditions

are fulfilled.

Theorem 7: The LFA occurs when the adversary host creates a fake link by accessing

the system vulnerabilities and spoofing the LLDP packets. Thus, we extend Theorem 6

to LFA in equation 3.32.

𝐿𝐹𝐴𝑡𝑡𝑎𝑐𝑘 → ∃ 𝐻𝑜𝑠𝑡[𝑖] ∧ ∃ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∧ (∃𝐴 𝑉 ∨ ∃ 𝐴𝑇) ∧ 𝐿𝐿𝐷𝑃𝑆𝑝𝑜𝑜𝑓𝑒𝑑
 (3.32)

Proof

The equation 3.32 in Theorem 7 is straight forward since it will evaluate to be true for

all LFA. The malicious host will use vulnerabilities by using attack victim to attack the

attack target node. The LLDP packets are spoofed by inserting incorrect information in

the fields.

Thus, we have demonstrated the LFA situation. In the remaining parts, we portray an

example of SDN which we model in HOL; we now move on to describe an attack we

need to analyze its problem against LFA in SDN.

3.6 Link Fabrication Attack: An Illustration

Assume an attack situation in which some hosts and switches are situated on the same

network. A host in the network is also assumed to be connected to one or more switch.

We note that for an attacker to successfully launch an attack on a target, it is imperative

that the attacker be on the same network as the intended victim. In this manner, the

attacker can fabricate a fake link to its intended victim using an unencrypted session.

Now, to develop the system model we utilize a few assumptions which cover the

knowledge of the network.

We expect to extract this knowledge from the SDN controller using some network

scanning tools. Once the knowledge is extracted successfully, we can use formal

derivative rules for the model network verification and the network satisfiability check

Univ
ers

ity
 of

 M
ala

ya

78

for LFA. It is noted that we are assuming the host as an attacker and switch as an attack

target in the below-mentioned scenario. The following assumptions are as follows.

Asssumption-1: ∀𝐴𝑉(∃ 𝐻𝑜𝑠𝑡)

The attack victim (AV) nodes in SDN are hosts.

Asssumption-2: ∀𝐴^𝑇(∃ (𝛷))

The attack targets (A^T) nodes in SDN are switches.

Asssumption-3: ∀𝐴𝑡𝑡𝑎𝑐𝑘(∃ 𝑆𝑣)

The attack is a malicious activity or services used to spoof LLDP packets to launch

the LFA.

Asssumption-4:

 ∀𝑅𝑒𝑚𝑜𝑡𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 (∃ 𝑈𝑛𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∨ ∃ 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒)

The attacker AT can have remote access to the network through encrypted or un-

encrypted services.

Asssumption-5: ∀𝑈𝑠𝑒𝑟 (∃ 𝐿𝑜𝑐𝑎𝑙 𝑎𝑐𝑐𝑜𝑢𝑛𝑡)

The host in the network can access the network services through its local account.

Based on the assumptions mentioned above, we are going to represent the LFA in SDN

formally.

Theorem 8: Lack of authentication mechanism causes an attack victim to accept the

attacker as a trusted authenticated host, and as such continue to create a session with the

attacker through the attack victim. Thus, LFA involves three agents namely attack victim,

attack target and exploited vulnerabilities. Therefore, we define LFA in equation 3.33.

<𝐿𝐹𝐴𝑡𝑡𝑎𝑐𝑘 → (𝐴𝑉) ∧ ∃ (𝐴𝑇) ∧ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ∧

∃ (𝑈𝑛𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∨ (𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑎𝑡𝑡𝑎𝑐𝑘 ∧ 𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛) ∧

𝐿𝐿𝐷𝑃𝑆𝑝𝑜𝑜𝑓𝑒𝑑) (3.33)

Univ
ers

ity
 of

 M
ala

ya

79

The LFA is formally defined in the equation 3.33, as the attack is launched when the

attacker AT use the victim attack node to attack the attack target node through un-

encrypted services by launching a complex attack by bypassing the test restriction of the

network security.

3.6.1 Satisfiability Test

After representing the LFA in its formal description, now we should attempt to check

the satisfiability of term (𝐿𝐹𝐴𝑡𝑡𝑎𝑐𝑘). To do this, we have to fabricate the term from existing

presumptions so that we could demonstrate that this class is not equivalent to an empty

set. Initially, the attacker is in the same network as follows.

Asssumption-6: ∀𝐴𝑉,∀ AT ∃ (𝑡ℎ𝑒𝑆𝑎𝑚𝑒𝑁𝑒𝑡𝑤𝑜𝑟𝑘)

This assumption would yield to a simple precondition. Then again four other

assumptions that may come to existence would include the following preconditions:

Asssumption-7: ∀ 𝐴𝑇, ∀ 𝑅𝑒𝑚𝑜𝑡𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 ∃ (𝑆𝑣)

This assumption indicates that an attack target node can be accessed remotely through

its services. The remote access could be legally through a global legal account, or it would

be through illegal account bypassing the network security.

Asssumption-8: ∀ 𝑅𝑒𝑚𝑜𝑡𝑒 𝑎𝑐𝑐𝑒𝑠𝑠, ∀ 𝑈𝑠𝑒𝑟 ∃ (𝑆𝑣)

The remote access is performed by the users to access the services in the network. The

users may be legitimate or malicious users outside from the network.

Asssumption-9: ∀ 𝑈𝑠𝑒𝑟, ∀ 𝐴𝑉 ∃ (𝑆𝑣)

The users can use the victim attack node as a relay node to access the attack target

node to access its services.

The existence of the above precondition would result in the occurrence of an

unencrypted service. Thus, it is expected that the reasoner that is embedded in the SDN

controller would catch the presence of LFA which will suggest that the investigated SDN

Univ
ers

ity
 of

 M
ala

ya

80

is vulnerable. This analysis would help SDN security overseers to discover framework

vulnerabilities and shortcomings which may permit security infringement.

3.7 Performance metrics of Link Fabrication Attack in SDN

Various solutions have been proposed by different researchers for the detection of LFA

in SDN. It is intended to create a high end secured SDN structure. If there should be an

occurrence of LFA in SDN, the controller should be capable enough to trace back the

origin of the attack. To keep the consideration of source identification of the attack in

SDN, we identify performance metric for evaluating the strength of these solutions. These

metrics includes

 Effectiveness (Processing time)

 Sensitivity

 Specificity

 False Alarm

3.7.1 Effectiveness (Processing time)

This is the response of the SDN controller against an occurrence of the LFA. It consists

of the total application execution time I(s

t
) which comprises of Time to Detect an Attacker

(TTDA), controller Response Time (RT), and Link Test Transfer Time (LTTT). Thus the

total effectiveness can be mathematically represented as in equation 3.34.

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑇𝑇𝐷𝐴 + 𝑅𝑇 + 𝐿𝑇𝑇𝑇 (3.34)

Thus, the total effectiveness can be formally defined using HOL as:

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑛𝑒𝑠𝑠 = (∀ (𝐼 (
𝑠

𝑡
)) 𝑇𝑇𝐷𝐴) ∧ (∀ (𝐼 (

𝑠

𝑡
)) 𝑅𝑇) ∧

∀ (𝐼 ((
𝑠

𝑡
)) 𝐿𝑇𝑇𝑇) + 𝐸𝑅𝑅

 (3.35)

Univ
ers

ity
 of

 M
ala

ya

81

3.7.2 Sensitivity

This is a statistical measurement of the performance of a binary classification test.

Sensitivity is sometimes also referred to as a classification function in statistics. In most

fields, it is termed as the true positive rates or the recall. It measures the rate of positives

that are correctly identified as positives. For instance, a percentage of the attack hosts in

an SDN that are correctly identified as the host attackers. Mathematically, sensitivity can

be expressed as follows.

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.36)

Note that; a perfect predictor would be described as 100% sensitive if all elements in

the data are identified as true (e.g., all attack host in SDN are identified as attackers), that

is no host in SDN is identified as genuine. However, theoretically, any predictor will

possess a minimum error bound known as the Bayes Error Rate (BER). Thus, sensitivity

can be further mathematically expressed as follows.

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 𝐵𝐸𝑅 (3.37)

Where (BER) is the Bayesian error rate and can be mathematically expressed as

 𝐵𝐸𝑅 = ∑ ∫ 𝑝(𝑐1≠𝑐𝑧 ∀𝑥∈𝐻𝑖
𝑥|𝑐𝑖)𝑝(𝑐𝑖) 𝑑𝑥 (3.38)

Where (𝑥) is an instance, (𝑐𝑖) is a class into which an instance is classified, (𝐻𝑖) is the

area/region that a classifier function (h) classifies as (𝑐𝑖).

Thus, we define sensitivity using HOL as:

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ≝ ∀ (
𝑇𝑃

𝑇𝑃+𝑇𝑁
) + ∃(∑ ∫ 𝑝(𝑐1≠𝑐𝑧 ∀𝑥∈𝐻𝑖

𝑥|𝑐𝑖)𝑝(𝑐𝑖) 𝑑𝑥) (3.39)

3.7.3 Specificity

This is also a statistical measurement of the performance of a binary classification test.

Specificity, in most fields, is termed as the true negative rate. It measures the rate of

negatives that are correctly identified as negatives. For instance, the percentage of the

non-attacker hosts in an SDN that are correctly identified as the non-attacker hosts.

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/w/index.php?title=Error_bound&action=edit&redlink=1
https://en.wikipedia.org/wiki/Bayes_error_rate

82

Mathematically, specificity can be expressed as:

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.40)

We also note that a perfect predictor would be described as 100% specific just as in

the case of specificity. Therefore, theoretically, any predictor will possess a

minimum error bound known as the (BER). Thus, specificity can be further

mathematically expressed as follows.

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
+ 𝐵𝐸𝑅 (3.41)

Where (BER) is the Bayesian error rate which is mathematically expressed in equation

3.38 such as follows.

𝐵𝐸𝑅 = ∑ ∫ 𝑝(

𝑐1≠𝑐𝑧 ∀𝑥∈𝐻𝑖

𝑥|𝑐𝑖)𝑝(𝑐𝑖) 𝑑𝑥

Where (𝑥) is an instance, (𝑐𝑖) is a class into which an instance is classified, (𝐻𝑖) is the

area/region that a classifier function (h) classifies as (𝑐𝑖).

Thus, we define specificity using HOL as:

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ≝ ∀ (
𝑇𝑁

𝑇𝑁+𝐹𝑃
) + ∃(∑ ∫ 𝑝(𝑐1≠𝑐𝑧 ∀𝑥∈𝐻𝑖

𝑥|𝑐𝑖)𝑝(𝑐𝑖) 𝑑𝑥) (3.42)

3.7.4 False Alarm Rate

The False Alarm Rate (FAR) which is also referred to as the false positive rate is the

expectancy of the occurrence of false positives during a statistical inference. The FAR

usually obtained when a result indicates that a certain condition has been fulfilled, which

is not true, i.e., a presumed erroneous positive effect has occurred. The FAR can be

mathematically expressed as

 𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3.43)

Thus, we define FAR using HOL as follows.

 𝐹𝐴𝑅 ≝
∀𝐹𝑃

∀𝐹𝑃∧∀𝑇𝑁
 (3.44)

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/w/index.php?title=Error_bound&action=edit&redlink=1
https://en.wikipedia.org/wiki/Bayes_error_rate

83

3.8 Conclusion

In this chapter, we used HOL as formal methods to representation the LFA in SDN.

To better understand the LFA attack, we represent the key components of SDN formally

by focusing the entire system liability, service information, dependencies, and switch as

well as host vulnerabilities. Formal methods assist network operators in protecting the

systems or network from unexpected errors that might not be detected at the time of

development and deployment. Therefore, we have used HOL as a formal specification to

represent the SDN infrastructure. Moreover, we formally represent of network devices

and how they are connected in SDN.

After formally representing SDN infrastructure, we have represented LFA through

HOL and illustrated with an example. Moreover, we have identified important

performance metrics of LFA in SDN and represent them in HOL formal methods. These

performance metrics will help us to evaluate our proposed method while comparing with

state-of-the-art LFA detection solutions.

Therefore, we proposed forensic investigation method that aims to minimize the

processing time of the controller and increases the accuracy of detecting fake links. The

proposed method triggers the alarm messages dynamically upon observing the suspicious

links and start investigating the behavior of fake links while identifying the real source of

the attack.

Univ
ers

ity
 of

 M
ala

ya

84

CHAPTER 4: FORENSIC INVESTIGATION METHOD (FOR-GUARD)

This chapter presents a forensic investigation method (FoR-Guard) to identify and

investigate fake links in SDN. The proposed method detects the fake links before it is

updated in the controller topology database. The FoR-Guard uses various mathematical

techniques to detect the fake links and verifies its sources in SDN. The FoR-Guard is

divided into three sequential phases. Each phase of the FoR-Guard is briefly explained

and provided with algorithms to elaborate its working steps. The first phase is used to

trigger the detection phase after observing the malicious behavior of the switch at the time

of link insertion. The second phase deals with finding the status of the link either it is

legitimate or fake link. It also identifies the source of the LFA by using a traceback

mechanism. The third phase verifies the source of a fake link by using entropy

measurement concept adopted from information theory.

This chapter is organized into four sections. Section 4.1 starts with an overview of the

proposed method regarding SDN. It followed the design principle of the proposed method

in Section 4.2, where we provide a description of the state transitions along its event

generation for each phase. Section 4.3 elaborates the proposed method with detail

description of each of its phase. Also, we explain each phase along with its algorithms to

have an insight of its working steps. Finally, this chapter is concluded in Section 4.4.

4.1 Overview of FoR-Guard

The SDN controller is responsible for discovering a network topology of the entire

network. However, the attacker aims to generate fake links in the network to disturb the

network visibility of the controller (Dhawan et al., 2015). As a result, topology-dependent

applications in the application plane that runs on top of the controller results with falsified

outputs in SDN. To overcome this problem, we have proposed a forensic investigation

method (FoR-Guard) to identify and investigate fake links in the network topology of

SDN. The FoR-Guard uses various methods of mathematical sciences that include graph

Univ
ers

ity
 of

 M
ala

ya

85

theory, adjacency matrix, and entropy measurement to detect and investigate fake links.

The FoR-Guard assists the controller in finding a source of fake links by tracing back the

port of the switch in SDN. The FoR-Guard is composed of three main phases namely,

trigger phase, Detection and Source Identification (DeSI) phase, and validation phase as

depicted in Figure 4.1. Each of the phases contains different application modules running

on the controller. The FoR-Guard assumes that all the proposed modules for each phase

are safe from all types of security threats.

The trigger phase of FoR-Guard has two goals to achieve that include (a) discovery of

the network topology after every pre-defined time interval and (b) trigger of the DeSI

phase. To discover the network topology, FoR-Guard used a de-facto standard of the SDN

topology discovery mechanism while to trigger the DeSI phase, the historical record of

the switch is checked that have generated fake links. The trigger phase consists of two

modules known as Adaptive Trigger Manager (A-TrgM) and Malicious Link Arbitrator

(MLA). Both of these modules integrate together to generate a trigger message to the

DeSI phase for investigating the link.

The DeSI phase investigates the link upon receiving the trigger message from the

trigger phase. The main objective of this phase is to investigate and detect the fake link

generated through the malicious switch in SDN. Moreover, it traces back the malicious

switch by finding the cause of the attack. The proposed traceback mechanism assists the

controller in identifying fake links generated from the malicious switches. This phase

consists of four main modules which integrate together to perform detection and source

identification of the fake link. These modules include Topology Converter (TC), Link

Handler (LH), Link Manager (LM), and trace back. The TC module is responsible for

converting network graph to the adjacent matrix and storing it in a database for future

investigation purposes. The LH module checks the type of the link either it is symmetric

or asymmetric. The type of link information is required to identify the link behavior either

Univ
ers

ity
 of

 M
ala

ya

86

it is a legitimate or fake link. The LM module is considered to be the main module of this

phase which detects and declares a fake link upon receiving the information from the LH

and MLA modules. The traceback module is responsible for finding the real source of the

attack by using the LLDP record stored by MLA module during the topology discovery

process in SDN.

The validation phase assists the controller in verifying the real source of the fake link

using entropy measurement concept adopted from the information theory. The entropy

helps to measure the randomness created through fake links in the network. This phase

has a module called Source Verifier (SV) which extracts the information from the TC

module and performs Shannon entropy on it to verify the real source of the fake link

identified at the DeSI phase.

I
n

t
r
u

s
i
o

n

D
e

t
e

c
t
i
o

n

F
i
r
e

w
a

l
l

L
o

a
d

B
a

l
a

n
c

i
n

g

T
r
a

f
f
i
c

M
o

n
i
t
o

r
i
n

g

S
c

h
e

d
u

l
i
n

g

A
p

p
l
i
c

a
t
i
o

n

P

l
a

n
e

D
a

t
a

P

l
a

n
e

Network Infrastructure

Applications

S
o

u
t
h

B
o

u
n

d

I
n

t
e

r
f
a

c
e

N
o

r
t
h

B
o

u
n

d

I
n

t
e

r
f
a

c
e

1

2

4

3

5

6

Adaptive Trigger

Manager

Malicious Link

Arbitrator

Topology

Convertor

Link Handler

Link Manager

Source Verifier

C
o

n
t
r
o

l

P

l
a

n
e

Figure 4.1: The integration of proposed modules in SDN architecture

4.2 Design principle of FoR-Guard

In this section, we present a state diagram to explain the design principle of FoR-

Guard. There are three states and five events which describe the working steps of our

Univ
ers

ity
 of

 M
ala

ya

87

system as depict in Figure 4.2. The states represent the main phases of our system

whereas; events represent the transition between different states. The three main states

used in our system are a trigger, DeSI, and validation. The description of the each state is

as follows.

4.2.1 FoR-Guard states

In this section, we present the states of FoR-Guard by describing its individual role

and transition from one state to another state. Each state along its event is illustrated in

Figure 4.2.

Trigger State: When the new link is generated between the switches, the system is

said to be in a trigger state. This state is responsible for providing correct information

about the new link to the topology manager module executing in the controller. The

topology manager is responsible for discovering the network topology and providing an

abstract view of the controller that further assists topology-dependent applications

running on top of the controller. The trigger state remains in its state unless and until the

legitimate switch generates the link. However, the trigger state changes to DeSI state

when the new link is generated by the malicious switch in SDN. The event generated

upon the state transition is explained in Section 4.2.2.

DeSI State: Upon receiving the trigger message from the trigger state, the

investigation process of the DeSI state begins to identify the status of a new link such as

a legitimate or fake link. The investigation process of a new link is performed because

the correct topology information needs to be modified by the topology manager in the

controller during every topology discovery round. The system remains in DeSI state until

it does not find either the link is legitimate or fake. It integrates the historical fake link

generation information of the switch and the communication direction of a new link to

detect the link status. After the investigation and detection of the link, the source of the

fake link is identified. It helps the controller to prevent the fake link generated again from

Univ
ers

ity
 of

 M
ala

ya

88

the same port of the switch. The state is changed to the validation state when the source

of the fake link is identified. The events generated by the transition of DeSI state is

explained in Section 4.2.2.

Validation State: It is the final state of our system that computes the uncertainty

presented in the network topology that is generated through fake links. The computation

of uncertainty and the declaration of a threshold value assist the controller in validating

the real source of the fake link that has been previously identified in the DeSI state.

However, if the source is not validated, then the validation state performs a transition to

the trigger state mentioning that the source has not been found. The event generated upon

the transition from the validation state to DeSI state is explained in Section 4.2.2.

4.2.2 FoR-Guard Events

In this section, we explain the events generated upon the transitions from one state to

another. In our proposed method, there are five events which are generated based on the

transition between the states. Each of the events is described as follows.

(a) Event-1 (Trigger): The trigger event occurs when a fake link is created in the

network topology. The trigger event informs the DeSI state that the link has been

generated by the switches in the network, and it needs to be investigated.

(b) Event-2 (Detection failure): The detection failure event is generated from the DeSI

state to the trigger state when the fake link is not detected. It confirms that the new link

generated between the switches is a legitimate link.

(c) Event-3 (Detection success): The detection success event occurs when the link is

detected as a fake link, and its source is identified. This event is generated between DeSI

and validation states. The information is forward to the validation state to confirm the

source of a fake link.

Univ
ers

ity
 of

 M
ala

ya

89

(d) Event-4 (Validation failure): The validation failure event is generated from the

validation state to the DeSI state. The validation state informs the DeSI state that the

source identified is not the real source of the LFA.

(e) Event-5 (Validation success): The validation success event occurs when there is a

transition between validation and trigger states. The event is generated when the source

identified by a state validation tally with the source identified in the DeSI state.

Detection and

Source

Identification

State

Trigger State

Validation State

2

1

3

45

1

2

3

4

5

Trigger

Detection Failure

Detection Success

Validation Failure

Validation Success

 Generate adjacency matrices

 Check the link status

 Detect the fake link and find its sources.

 Topology discovery

 Check the switch fake link history

 Trigger message

 Compute entropy values based on adjacency matrices

 Defined a threshold value based on weighted values

 Determine and validate the source of a fake link

Figure 4.2: The state transition diagram of FoR-Guard

4.3 Forensic Investigation Method (FoR-Guard)

We proposed a forensic investigation method (FoR-Guard) to detect and determine

fake links in the network topology which may cause a LFA. The FoR-Guard has three

phases which execute in a sequence. Each phase has a main contribution in detecting and

determining the fake links in the network topology along with finding the cause of the

attack. Each of the FoR-Guard phases is comprehensively described and explained

through algorithms. The symbol descriptions used in various FoR-Guard algorithms are

shown in Table 4.1.

4.3.1 Trigger Phase

The trigger phase is an initial and important phase of FoR-Guard that discovers the

network topology along with triggering the detection mechanism in the DeSI phase of

Univ
ers

ity
 of

 M
ala

ya

90

FoR-Guard. The trigger phase integrates a triggering mechanism with a de-facto standard

topology discovery mechanism of SDN. This integration assists the SDN controller to

have an abstract view of the entire network. Furthermore, the trigger phase triggers the

next phase (DeSI) of FoR-Guard based on the observation of the malicious behavior of

the switches.

The aim of the trigger phase is of twofold such as a) discover the network topology

and b) trigger the detection mechanism in the next phase upon observing the malicious

behavior of the switch regarding fake link injection in the network topology. The

discovery of the network topology is performed through LLDP packets. The controller

sends the LLDP packet to the switch with its DPID and port ID. The switch receives the

LLDP packet from the controller and inserts its information including DPID and

forwarding port ID and forwards it to the neighbor connected switches. The neighbor

switches upon receiving the LLDP packet forward the same packet to the controller by

inserting its identities such as DPID and incoming switch port ID. The LLDP packet is

encapsulated in the Packet_In message before forwarding it to the controller. The

controller checks the LLDP packet and observes that the packet arrives from another

switch. The controller extracts information from the received Packet_In message and

assumes that there exists a link between both the switches. The controller updates its

network visibility accordingly.

The current SDN controllers do not know about the status of the link either it is

legitimate or fake links due to lack of an authentication mechanism to verify the links.

The controller normally updates the newly generated link in the topology upon receiving

the information through LLDP packets. However, the link can be legitimate link

generated for the purpose of determining the shortest routing path, minimizing latency,

and maximizing throughput. Moreover, the link can be a fake link used to exploit switches

Univ
ers

ity
 of

 M
ala

ya

91

and hosts in the network to extract information, forge network traffic, and divert network

traffic to the longest routing paths before reaching the destination.

The trigger message in the trigger phase has a great impact on the performance of the

DeSI phase of the FoR-Guard. The early trigger of the DeSI phase could prevent the

attack from exploiting the network at its initial stage of its occurrence. However, if the

DeSI phase is triggered late to inform about the malicious switch found in the network

topology, it may generate numerous fake links which might affect the topology-

dependent applications using network topology for their execution. Therefore, it is utmost

important to have real-time triggering mechanism in the network that triggers the DeSI

phase suddenly after observing the malicious behavior of the switches in the network. To

overcome this problem, we have proposed a novel adaptive trigger mechanism that

contains A-TrgM module to trigger the DeSI phase based on the switching behavior.

We assumed that the switch has two states such as legitimate and malicious states.

With a passage of a time the switch can change from one state to another state. The

transition of the switch states depends on the generation of the links in the network. The

switch is considered to be in a legitimate state or approaching to a legitimate state when

it starts to create legitimate links whereas, the switch is in a malicious state or approaching

towards the malicious state when it starts to generate fake links in the network.

Based on the switch states information, A-TrgM decides to trigger the DeSI phase. To

determine states of the switches, Malicious Link Arbitrator (MLA) which is the main

module executing in the controller is proposed to maintain a Malicious Index Record

(MIR) for each of the switches as well as LLDP packets in the network. The MLA records

MIR value for each switch which joins the SDN. The MIR value is maintained by taking

into consideration the historical information of the links generated by the switches. The

switch that generates more fake links will have higher MIR value and vice versa. When

Univ
ers

ity
 of

 M
ala

ya

92

the switch generates a new link, MLA checks the MIR value of the switch before

informing to the topology manager module in the controller.

Table 4.1: Symbol descriptions of FoR-Guard algorithms

Symbols Descriptions

S(i) Number of switch/es in SDN
L(i)0, 1 Link between the switches, i.e., S1 ← S0

Fi Malicious index record of switch S (i).
CLM Link manager module in DeSI phase
MLA Malicious link arbitrator module in trigger phase
LF(i)0, 1 Link frequency of the link between the switches, i.e., S1 ← S0
TC Topology controller module in DeSI Phase
P.adjM Previous adjacency matrix
C.adjM Current adjacency matrix
S.sw Source switch
D.sw Destination switch
Ctlr Controller
W.adjM Weighted adjacency matrix
LH Link handler
S(i) Opponent switch
src.idtf Source identification
Sy Symmetric
Asy Asymmetric
E(n) Entropy of value (n)
P(n) Probability of value (n)
θm Minimum threshold limit
θn Maximum threshold limit

Higher the MIR value of the switch; more malicious is the switch due to more

generation of fake links and lower is the MIR value; less malicious is the switch due to a

high number of legitimate links. At the initial deployment of the network topology, MIR

value for each of the switch is equal to zero (0), as no links are generated between

different switches. The MIR value increases every time by one (1) when a fake link is

generated between two or more switches in the network. However, the legitimate link can

also be generated dynamically in SDN due to the frequent migration of network instances.

The MIR value decreases every time by one (1) when the malicious switch starts reacting

normally and generates legitimate links. Once the link is declared legitimate by the LM

Univ
ers

ity
 of

 M
ala

ya

93

in the DeSI phase of FoR-Guard, LM sends the information back regarding the link to

MLA for updating the MIR value of the switch. The MIR value decreases maximum to

the value equal to zero (0). The value zero shows that the switch is capable and

trustworthy enough to generate a legitimate link in the network. The MLA keeps a record

of each LLDP packet generated from the source switch towards the destination switch.

Such information is necessary for the traceback algorithm (algorithm 5) to trace back the

attack source. The working step of traceback algorithm is explained in DeSI phase of

FoR-Guard. Moreover, the working steps of the MLA module are presented in the

algorithm 1.

Algorithm 1: - MLA: Compute the switch status
Input: The switch and its link generation record.
Output: To maintain and find status of the switch
1. Select switch S(i)
2. If links S(i) = (L(i)0, 1 > 0) then
3. check status Fi
4. record Fi ← value
5. If L(i)0, 1 ← new link then
6. request info CLM ← L(i)0, 1
7. receive CLM ← info
8. If L(i)0, 1← fake link then
9. increment Fi = Fi +1
10. set status S(i)=malicious switch
11. else If L(i)0, 1← legitimate link then
12. decrement Fi = Fi -1
13. else if Fi > 0 then
14. set status S(i)=malicious switch
15. else Fi = 0 then
16. set status S(i)=legitimate switch
17. else L(i)0, 1 ← no new link then
18. unchanged Fi ← value
19. else links S(i) = (L(i)0, 1 = 0) then
20. set status S(i)=legitimate switch

The MLA algorithm explains that how the MIR value of the switch is increased or

decreased determining states of the switch. The MIR values depend on the link

Univ
ers

ity
 of

 M
ala

ya

94

information provided by the LM module running in the DeSI phase of FoR-Guard

proposed method.

The trigger phase builds and updates the network topology accurately without

inserting fake links. To determine fake links, one has to investigate the switch status. To

do this, MLA computes the MIR value for each of the switch in the network as shown in

the algorithm 1. The algorithm 1 presents that if a switch has some links, i.e., greater than

0 than the MIR value is recorded as shown with a symbol Fi (lines 1-4). Moreover, the

switch status is computed by requesting information about the link status from an LM

module running in the controller. (lines 5-7). Whenever the link is declared as a fake link

than MLA increments the counter Fi by 1 such as Fi = Fi +1 and the switch status is set as

a malicious (lines 8-10). However, if the link is declared as a legitimate link than the

counter of Fi value is decremented by 1 such as Fi = Fi -1 (lines 11-12). Also, after

decrementing the value of Fi, still if the value of Fi is greater than 0 than the switch status

is set as a malicious (lines 13-14) otherwise if the value of Fi is equal to 0 than the switch

status is set as a legitimate switch (lines 15-16). Furthermore, initially, if the switch has

no links than it is considered to be a new switch in the network and its status set to a

legitimate switch (lines 17-20).

The module A-TrgM triggers a message for a new link to the DeSI phase based on

MIR value such as Fi. The working steps of the A-TrgM module are shown in the

algorithm 2 as follows.

The A-TrgM algorithm checks when to trigger a message to the DeSI phase for

investigating a new link inserted in the network. Initially, a switch which generates a link

is investigated based on its previous link record (lines 1-3). For investigating the switch,

Fi value of the switch is checked which is obtained from the MLA module (lines 4-6).

The Fi value is checked if it is greater than 0 then a trigger message is send to the DeSI

phase to investigate the link before updating it in the network topology database of the

Univ
ers

ity
 of

 M
ala

ya

95

controller (lines 7-9). However, if the Fi value is equal to 0, then the link frequencies are

checked for a switch in the last 4 seconds. The 4 seconds have been selected based on the

default topology discovery process in SDN. Mostly, controllers update its topology after

5 seconds. Thus, we keep it less than the default value and higher than its half value, i.e.,

[4 > (5 / 2)].

Algorithm 2: - A-TrgM: Trigger a message based on the switch status
Input: The new link between the switches.
Output: To trigger an alarm message to the DeSI phase
1. for switch S(i)
2. If link S(i) = (L(i)0, 1 ← new link)
3. investigate status S(i)
4. check Fi ← value
5. request info MLA ← Fi
6. receive MLA ← info
7. If value Fi > 0 then
8. trigger send.message ()
9. message (investigate().link)
10. else if value Fi = 0 then
11. set threshold value=4
12. check frequency S(i) ←LF(i)0, 1
13. else If frequency S(i) ← (LF(i)0, 1 >= 3) then
14. trigger send.message ()
15. message (investigate().link)
16. else frequency S(i) ← (LF(i)0, 1 < 3) then
17. send.info (controller)
18. update set.updatetopo ()
19. else link S(i) = (L(i)0, 1 ← no new link)
20. send.info (controller)
21. set.topo (same)

We have defined a threshold value for link frequencies of the switch equal to 3. As

mentioned above, if the Fi value is equal to 0, then the switch link frequency (LF) is

checked to decide that a trigger message is sent to the DeSI phase or not. The link

frequency of a switch assists the controller to know how frequent a switch is generating

a link with other switches in the network. Usually, a switch in a malicious state generates

a frequent number of links within a short period to exploit the network. If the link

frequency of a switch is greater or equal to 3, then a switch is considered to be in a

Univ
ers

ity
 of

 M
ala

ya

96

malicious state and a trigger message is generated to the DeSI phase to investigate the

link (lines 10-15). However, if the link frequency is less than 3 then the switch is

considered to be in a legitimate state which does not require to trigger a message and the

network topology is updated in the controller database accordingly (lines 16-18). Also, if

there is no link generated between the switches within topology discovery round, i.e., 5

seconds, the controller keeps the same current topology with itself (lines 19-21).

Therefore, A-TrgM dynamically triggers the DeSI phase so that the controller

investigates a fake link at its early stage of creation with a less computational overhead.

However, if the trigger mechanism is not adaptive than it may require more computation

and time overhead to detect and investigate the fake links due to instance migration of

adversary, anti-forensics mechanisms, and falsified impact on the network.

4.3.2 Detection and Source Identification (DeSI) Phase

The A-TrgM module in the trigger phase triggers a message to the DeSI phase to

investigate the new link generated in the network. The DeSI is the second phase of FoR-

Guard that aims to investigate the status of a new link either it is a legitimate or fake link.

In FoR-Guard, the network topology is represented by a directed graph. Each vertex

represents a switch, and an edge represents a link between the switches in the directed

graph. The two vertices Vi and Vj of a directed graph are adjacent if there exist an edge

from Vi to Vj or from Vj to Vi. For a link from Vi to Vj, then Vi and Vj are the endpoints

and Vi is a tail and Vj is ahead of the edge. The directed graph can be represented using

an adjacent matrix to show a direct connectivity between the switches.

The adjacent matrix is one of the best choices to represent the network topology

(directed or undirected graph). It provides a way to understand the connectivity between

the switches. The adjacent matrix is a square matrix which represents a directed link

between the vertices in the graph. The adjacency matrix rows and columns are labelled

by graph vertices, with a value of 1 or 0 in a position (Vi, Vj) according to whether Vi and

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Square_matrix

97

Vj are adjacent or not. The value 0 indicates that there is no link between the switches

while 1 indicates a link between the switches.

Suppose we have an adjacency matrix A with its values ai,j as follows.

ai,j = 1 Vi and Vj are adjacent

 0 Otherwise

The value 1 for an element ai,j of the adjacency matrix A shows that there exist a link

between the switches whereas the value 0 for an element ai,j represents no link between

the switches. The adjacency matrix in current shape cannot represent a link

communication direction (LCD) status, i.e., either it is symmetric or asymmetric. To find

the LCD status, we have proposed a weighted adjacency matrix called W-adjacency

matrix. The W-adjacency matrix contains values [0, 0.5, 1]. The value in the W-adjacency

matrix represents the LCD status along with its adjacency between the switches. The LCD

is important in the investigation of the link behavior in SDN, i.e., either it is a legitimate

or fake link.

Suppose we have a W-adjacency matrix B with its values bi,j as follows.

bi,j = 1 Vi and Vj are adjacent, and the link is symmetric.

 0.5 Vi and Vj are adjacent, and the link is asymmetric.

 0 otherwise

The value 1 for an element bi,j of the adjacency matrix B shows a symmetric link

whereas the value 0.5 shows an asymmetric link, and the value 0 shows no link between

the switches.

As discussed above, the LCD status is an important factor to know about a link, i.e.,

fake or legitimate. When the switch generates a fake link with another switch for an illegal

purpose in SDN, a link is usually generated as an asymmetric link, i.e., a direct link from

the malicious switch to the legitimate switch. For instance, in a network topology shown

in Figure 4.3, the malicious switch S-1 wants to divert the network traffic from switch S-

Univ
ers

ity
 of

 M
ala

ya

98

2 to switch S-3 by using a fake link generated by switch S-1 with switch S-3. Figure 4.3

illustrates that a fake link between switch S-1 and switch S-3 is asymmetric. Therefore, a

host-1 attached with the switch S-1 can ping the host-3 attached with the switch S-3 but

cannot receive a response to the ping messages accordingly.

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts-1

Controller

S-1
S-2

S-3

Hosts-2 Hosts-3

Fake Link

Malicious Switch

C

1

2

Switches

Controller

3

F
a

k
e

L

i
n

k

Controller Visibility

Fake Link

Normal Link

Figure 4.3: An illustration of a fake link between switches

Initially, when the DeSI phase receives a trigger message from the A-TrgM module of

the trigger phase for a topological change (new link); the module called Topology

Controller (TC) received the trigger message and informed the Link Handler (LH)

module in the controller. The role of a TC module is to generate an adjacency matrix for

the current network topology and store it for a future reference. Based on the network

information collected from the trigger phase, TC generates an adjacency matrix for the

network graph to have better understandability of the links. The TC generates an

adjacency matrix for the every update of the network topology. The LH module collects

the current and previous adjacency matrix from the TC to confirm which switch has

created a link in which location of the network.

Univ
ers

ity
 of

 M
ala

ya

99

Algorithm 3: - LH: Determine the link communication direction (LCD)
Input: The new link between the switches.
Output: Direction of the communication on the new link
1. If link S(i) = (L(i)0, 1 ← new link) then
2. request info TC← [P.adjM, C.adjM]
3. receive TC ← info
4. compare matrix [P.adjM, C.adjM]
5. record change [P.adjM, C.adjM]= = success
6. select link S.sw && D.sw
7. request install Ctlr ← flow rules
8. Ctlr ←install.flow rules ()
9. generate test.traffic ()
10. if (response ()= success) then
11. L(i)0, 1 ← symmetric link
12. record status ← L(i)0, 1
13. update W.adjM (status, value=1)
14. else (response ()= fail) then
15. L(i)0, 1 ← asymmetric link
16. record status ← L(i)0, 1
17. update W.adjM (status, value=0.5)
18. else link S(i) = (L(i)0, 1 ← new link) then
19. request info TC← [P.adjM, C.adjM]
20. receive TC ← info
21. compare matrix [P.adjM, C.adjM]
22. record change [P.adjM, C.adjM]= = fail
23. update info Ctlr ← link.info = wrong
24. set.investigation(stop)

The role of an LH module is to find and record LCD status of the new link. The switch

that has generated a link is identified by comparing the previous and current adjacency

matrices. Once the switch is identified, the LH instructs the controller to install the

temporary flow rules in the flow tables of both the switches connecting the new link. The

flow rules are installed in the flow tables of both the switches to generate test traffic on

the new link. The idle time for each flow rules is set to 1 second which is kept small due

to temporary rules installed in the flow tables of the switches. The test is conducted to

know about the LCD status of the new link generated in the network. The test packets are

transferred on the link from a source switch to the destination switch of the link and waits

for a response to the packets.

Univ
ers

ity
 of

 M
ala

ya

100

In the case of a fake link, we have observed that no response from the destination is

received which shows that the link status is asymmetric. However, in the normal situation,

the response is received from the destination switch which indicates that a new link is

symmetric in nature. After finding the LCD status, a W-adjacency matrix is generated by

the LH for the specified switch with its LCD values. Till this moment, the LH finds either

the link is symmetric with its value 1 or asymmetric with its value 0.5. The complete

working steps of the LH module are shown in the algorithm 3 as follows.

The algorithm 3 explains that upon a new link generation; LH module is informed to

investigate its behavior; it first requests TC to send the current and previous adjacency

matrices of the network topology to confirm the switch which has generated a link (lines

1-4). The LH compares both the adjacency matrices for a change value. The change of a

value determines the switch which has a connection with a link. The LH informs the

controller to install flow rules between the switch connecting the link to send a test

message to find the LCD status (lines 5-9). If a response is received on the link for test

messages than LH updates such information, i.e., value 1 in the W-adjacency matrix and

declare the link as a symmetric link (lines 10-13). Otherwise, it declares as an asymmetric

link and with an updated value of 0.5 in the W-adjacency matrix (lines 14-17). However,

if LH compares the two adjacency matrices and there is no difference between the values,

then the controller is informed that the trigger message generated by the A-TrgM has

been wrong. The controller stops investigating the link furthermore (lines 18-24).

Algorithm 4:- LM: Investigate the new link status along its source identification
Input: The new link along with its LCD status.
Output: Determine the link status (fake or legitimate).
1. receive. Info (investigate)
2. link. investigate ()
3. request info MLA && LH
4. receive MLA ← info
5. receive LH ← info

Univ
ers

ity
 of

 M
ala

ya

101

Algorithm 4:- LM: Investigate the new link status along its source identification
Input: The new link along with its LCD status.
Output: Determine the link status (fake or legitimate).
6. record info Fi && L(i)0, 1 ← status
7. If [S(i) ← (Fi = 0)] && [L(i)0, 1 ← status. Sy ()] then
8. set link status (legitimate)
9. update net.topo (link)
10. If [S(i) ← (Fi = 0)] && [L(i)0, 1 ← status. Asy ()] then
11. update net.topo (null)
12. check status S(i)
13. else if S(i) ← (Fi > 0) then
14. set link status (legitimate)
15. update net.topo (link)
16. else S(i) ← (Fi = 0) then
17. set link status (fake)
18. update net.topo (null)
19. traceback src.idtf [S(i), L(i)0, 1]
20. If [S(i) ← (Fi > 0)] && [L(i)0, 1 ← status. Asy ()] then
21. set link status (fake)
22. update net.topo (null)
23. traceback src.idtf [S(i), L(i)0, 1]
24. If [S(i) ← (Fi > 0)] && [L(i)0, 1 ← status. Sy ()] then
25. update net.topo (null)
26. check status S(i)
27. else if S(i) ← (Fi > 0) then
28. set link status (fake)
29. update net.topo (null)
30. traceback src.idtf [S(i), L(i)0, 1]
31. else S(i) ← (Fi = 0) then
32. set link status (legitimate)
33. update net.topo (link)

The algorithm 4 aims to investigate the behavior of a link as well as to find the source

of a fake link. When LM receives a message to investigate a link, it requests MLA and

LH to provide information regarding link status of the switches (source and destination

switches) and LCD of the link respectively (lines 1-6). The LM investigates the switch

based on information sent by the MLA and LH such as Fi and link status LCD. If Fi = 0

and LCD is symmetric, then a link is declared as a legitimate link because the switch has

no previous fake link record and packets can be sent and receive on the link. The LM

informs the controller to update a link in the network topology (lines 7-9). However, if Fi

Univ
ers

ity
 of

 M
ala

ya

102

= 0 and LCD status is asymmetric, then the LM informs the controller not to update a link

in the network topology. The link status of the opponent switch S(i) is checked to

investigate the behavior of the link further. If the opponent switches Fi > 0, then the link

is declared as a legitimate link because a normal switch can make a link with a malicious

opponent switch without knowing its status. It can happen due to the frequent migration

of the virtual instances in the data centers. The LM informs the controller to update a link

in the network topology (lines 10-15).

However, if the opponent switch Fi = 0, then the link is considered to be a fake link.

The reason is that when a normal switch creates a link with a normal switch it has to be

symmetric in nature but this case both the switches have Fi = 0, and the link is asymmetric.

The opponent switch has not recognized the source switch. Therefore, the controller does

not update this link in the network topology and start to trace back its source to prevent

the switch from regenerating further fake links in the network (lines 16-19).

Similarly, the LM checks a condition for switches which have Fi value greater than 0,

i.e., Fi > 0. If the value of Fi > 0 and a link status is asymmetric than LM, treat this link

as a fake link. It is due to the switch has previously created more fake links as well as its

link status is asymmetric in nature. So the controller not updates a link in the network

topology and start to trace back the source of the link (lines 20-23). However, if the value

of Fi > 0 and a link status is symmetric than the LM informs the controller not to update

the network topology with the current link. A link is investigated based on its opponent

switch status (lines 24-26). The status of the opponent switch is checked. If Fi > 0, then

the link is declared as a fake link because both the switches are malicious, and the link is

symmetric in nature. The controller starts to trace back the link to find its source (lines

27-30). However, if Fi = 0 than a link is declared as a legitimate link because the opponent

switch has no previous fake link records and both the switches has recognized each other

Univ
ers

ity
 of

 M
ala

ya

103

by having a symmetric link between them. Thus, the source switch which has Fi > 0 is

moving towards its legitimate state by generating a legitimate link (lines 31-33).

The algorithm 5 explains the traceback mechanism used to find the source of fake links

after detecting them. The working steps of traceback algorithm are explained in algorithm

5. Once LM identifies the fake link, a traceback function is called to identify the source

of fake links. The traceback algorithm starts executing by requesting LLDP record

(TKRLLDP) for the switches in SDN. The TKRLLDP is maintained by MLA module running

in the controller (lines 1-3). Once the TKRLLDP information has received, traceback

function starts traversing back the switches from the switch where the fake link is

attached. The traversing start checking the similarity between current and previous LLDP

information which is used by the controller to update the links between the switches (lines

4-6). If the switch has same LLDP information for its ports based on its previous and

current status than traversing the source of the attack is continued. (lines 7-9). However,

if the LLDP information is different for the port than the source switch (Ssrc) of the fake

link is selected to investigate the number of hosts attached to the switch (lines 10-12).

Afterwards, the traceback enters into the second level to start investigating the host to

find the attacker (host).

There is the probability that the attacker (host) generates a fake link and start migrated

to another location to hide its identity. If any host among the host list has changed its

position, then its new location is tracked based on the host profile table maintained by the

HTS (lines 13-16).

Algorithm 5: - traceback: Traceback the real source of the attack
Input: The fake link along with its direct connected switch.
Output: Malicious host responsible for fake link generation.
1. info link status (fake)
2. request info TKRLLDP
3. receive TKRLLDP ← info
4. traverse back (Prec, Crec)

Univ
ers

ity
 of

 M
ala

ya

104

Algorithm 5: - traceback: Traceback the real source of the attack
Input: The fake link along with its direct connected switch.
Output: Malicious host responsible for fake link generation.
5. for (i=Sdes, i>=S0, i--)
6. check diff LLDP ← (Sdes, Ssrc)
7. If diff LLDP ==false then
8. Decrement by 1, i.e., (i --)
9. Continue;
10. else If diff LLDP ==true then
11. record diff (Sdes, Ssrc)
12. check Ssrc ←Host list
13. for (j=0, j<=n, j++)
14. If H [j] == position.change then
15. record H [j] ← new location
16. check H [j] ← LLDPrecord
17. If LLDPrecord == spoofed then
18. H [j] ← attackSrc
19. else LLDPrecord != spoofed then
20. H [j] ← Incorrect attackSrc
21. else H [j] != position.change then
22. check H [j] ← LLDPrecord
23. If LLDPrecord == spoofed then
24. H [j] ← attackSrc
25. else LLDPrecord != spoofed then
26. H [j] ← Incorrect attackSrc
27. record attackSrc
28. inform LM ← Info

Once the location is found, the LLDP information is checked either there exist any

spoofed information or not. If the LLDP generated by the host is spoofed than the host is

considered to be an attacker else it fails to find the attacker (lines 17-20). Similarly, if the

hosts attached to the selected source switch (Ssrc) have not changed their positions than

its LLDP record is checked. Any spoofed information found in the LLDP will lead to

declare the host as an attacker otherwise the attacker is not found when there is any

spoofed information in the LLDP packets (lines 21-26). Thus, upon finding the attacker

by founding spoofed information in the LLDP packet, the attacker information is recorded

and is forwarded to LM module for further necessary actions (lines 27-28).

Univ
ers

ity
 of

 M
ala

ya

105

4.3.3 Validation Phase

The link which is either legitimate or fake is detected in the second phase, i.e., DeSI

phase of FoR-Guard. The LM in the DeSI phase assists the controller only in updating a

link in the network topology which is declared as a legitimate link. The link which is

affirmed to be fake link is prevented to be updated in the network topology during the

topology discovery updates. It enables the controller not only to detect but also investigate

the fake link to identifying the real source of a fake link, i.e., the malicious switch. The

identification of the switch which helps to generate a fake link is important due to

preventing the malicious switch from regenerating a fake link again. In DeSI phase, we

have used a traceback algorithm to find the source of the link. However, in this phase, the

concept of entropy is used to verify the source switch either it is a real source of the attack

or not. For this, we use the information from the LH module which records the W-

adjacency matrix for every link updated (insertion and deletion) in the network. The LH

compares previous and current adjacency matrices to determine a new link location in the

network.

The module known as Source Verifier (SV) is used in the validation phase to verify

the source of a fake link (malicious switch). The SV first find the probability of the each

switch based on their corresponding links obtain from previous and current adjacency

matrices. It helps the SV module to know about the modification occurred in the network

due to a new link between the switches after comparing the two probabilistic matrices.

Based on the probabilistic values of both matrices, entropy is used to measure the average

weight of the switches to detect a new link generation. The entropy is a concept used to

determine a randomness of the network.

Algorithm 6: - SV: Validation of a source of the attack
Input: The previous and current adjacency matrices of the network.
Output: Verification of the attack source
1. info link status (fake)
2. request info LH

Univ
ers

ity
 of

 M
ala

ya

106

Algorithm 6: - SV: Validation of a source of the attack
Input: The previous and current adjacency matrices of the network.
Output: Verification of the attack source
3. receive LH ← info
4. record matrix [P.adjM, C.adjM]
5. compute probability [P.adjM, C.adjM]
6. calculate entropy weight matrix [P.adjM, C.adjM]
7. E(n) p(n)log(p(n))
8. record E(n)
9. set threshold value (θm, θn)
10. If value between (θm, θn) such as
11. θm ≤ E(n) ≤ θn then
12. exclude switches
13. Investigate == null
14. else value not between (θm, θn) such as
15. θm ≤ E(n) ≤ θn then
16. Investigate == yes
17. select switch
18. compare switch S(i) with a selected switch S(j) from LM
19. if [S(i) == S(j)] then
20. source.validate (yes)
21. else [S(i) ≠ S(j)] then
22. source.validate (no)

We used entropy as a tool to verify the source of the fake link. The fake links created

randomness in the network due to illegal connection with the various switches causing to

disturb the network operation. Entropy is one of the best tools to measure the randomness

occurred due to fake links in the network topology. Also, we have used a threshold value

to discard normal links and focus on the fake links generated in the network. The complete

working steps of the SV module in our validation phase are explained in the algorithm 6.

The SV module uses Shannon entropy to measure the average weight of the switches

which helps to determine the real source (malicious host) of fake links.

The algorithm 6 aims to validate the source of a fake link which has been identified in

the DeSI phase of the FoR-Guard method. Once the fake link is detected and the source

switch is identified, SV module starts executing its process by requesting LH module for

information regarding the previous and current W-adjacency matrices of the network

Univ
ers

ity
 of

 M
ala

ya

107

topology (lines 1-2). The SV records the previous and current W-adjacency matrices

values after receiving it from the LH module (lines 3-4). The probability for each switch

for the previous and current W-adjacency matrices is computed based on the link values

present in the W-adjacency matrices. Furthermore, a probability value of each switch is

used to calculate the entropy value for previous and current W-adjacency matrices. (lines

5-8).

The entropy value assists the controller to know about the randomness presented after

the switch has generated the fake link. Moreover, the min and max threshold value are

defined within a range of entropy weighted value of the matrices to exclude the switches

from the investigation list. The switchs are excluded as they are considered to be

legitimate switches. It reduces the number of switches to be investigated to reach the real

source of the fake link, i.e., malicious host. If the weighted value of the switches lies

between the min and max threshold value, then the switch is not considered to be the

source of a fake link (lines 9-12). However, if a weighted value of the switches does not

lies between the min and max threshold value than these switches are considered to be

potential switches that may generate a fake link and can be investigated.

To find the exact switch among the number of switches which are highlighted through

a threshold value, previous historical fake links of the switches are checked to verify a

real source of the fake link, i.e., malicious host (lines 13-15). Once the source of a fake

link is identified, it is compared with the source determine at the DeSI phase of FoR-

Guard. If the source matches than it is verified that SV has identified the real source of

the attack and if it does not match then the real source of the attack is not found (lines 16-

20).

4.4 Conclusion

We propose a forensic investigation method to identify the fake links along

determining its real source of the attack in SDN. The proposed method (FoR-Guard) used

Univ
ers

ity
 of

 M
ala

ya

108

three phases to investigate LFA in SDN. The trigger phase aims to trigger an alarm

message to the DeSI phase upon observing the malicious behavior of the switches during

the time of generating links in SDN. It reduces the computational overhead cost of the

controller by enabling the controller to investigate only the links which are generated by

the malicious switches. However, state-of-the-art techniques investigate all newly

generated links to find out their behavior.

The DeSI phase detects the fake links by investigating the switching behavior and

checking the communication direction of the links. Four modules are developed which

runs in the controller to determine the fake links. Moreover, the DeSI phase identifies the

real source of the attack by using a traceback algorithm. The validation phase verifies the

source of the attack by measuring uncertainty in the network generated through fake links

by using entropy concept adopted from the information theory. The FoR-Guard provides

less controller processing time and high detection accuracy in determining the fake links

in SDN as compared to the state-of-the-art techniques available for LFA.

Univ
ers

ity
 of

 M
ala

ya

109

CHAPTER 5: EVALUATION

This chapter discusses the data collection method for the effectiveness and evaluation

of the proposed FoR-Guard method in SDN environment. The objective of this chapter

is to explain the experimental setup and data collection techniques to evaluate our

proposed method. The experimental setup discusses the Mininet emulation tool used to

emulate the SDN environment; Floodlight controller used to have centralized control of

the entire SDN environment, and Packit network auditing tool used to spoof LLDP

packets for generating the fake links in SDN. The data is collected from different

experiments to evaluate the processing time of the proposed FoR-Guard method in

distinctive phases such as a trigger, DeSI, and validation. Also, the data is collected to

measure the sensitivity, specificity, and false alarm rate of FoR-Guard method. Moreover,

data collection for comparison of FoR-Guard with existing solutions regarding processing

time is presented.

The chapter is organized into four main sections. Section 5.1 explains the

benchmarking tools and controller used to run our experimental setup. Section 5.2

presents data collection methods to obtained data from different experimental scenarios

to evaluate the performance of FoR-Guard method. The data is evaluated for processing

time, sensitivity, specificity, and false alarm rate metrics. Section 5.3 presents the

comparison data of FoR-Guard, TopoGuard, and Sphinx regarding their processing time

in detecting a different number of fake links in SDN. Finally, Section 5.4 concludes the

chapter.

5.1 Experimental tools and SDN controller

In this section, we explained the tools used to evaluate FoR-Guard method along with

SDN controller used to provide centralized control of the entire network.

Univ
ers

ity
 of

 M
ala

ya

110

5.1.1 Mininet

The Mininet is an open-source network emulator that designs to support research in

SDN (de Oliveira, Schweitzer, Shinoda, & Prete, 2014). Mininet enables realistic virtual

network environment that runs real switches, kernel, and user code on a single machine.

The single kernel runs hosts, switches, routers, and links in a lightweight virtualized

environment to make a single machine look like a single entire network.

The host created in a Mininet is a real host where it can do what it can be done on the

physical machine. A program can be installed that support the Linux kernel and can

remotely connect the host system through ssh and various other operations. The only

difference between Mininet network components and real network components lies at a

difference of software and hardware. The Mininet network components are created

through software while real network components are built through hardware. The

functionality is same for both the network components.

Mininet is used to emulate real-world SDN scenario which helps to emulate our

experimental setup to evaluate the proposed method, i.e., FoR-Guard. We have used the

latest version of Mininet 2.2.1 to emulate our SDN experimental setup. Mininet allows

us to create a customize network topologies from a single switch to a large data center

networks by using few line of Python code. Figure 5.1 illustrates the Python code to create

a single switch with ‘k’ number of hosts in the network. Moreover, Mininet assists in

providing flexible network topologies which are configured based on different parameters

and can be reused in different experiments. Table 5.1 depicts main functions used to

create a network topology in Mininet emulation environment.

In our experimental setup, we have selected OF 2.3.1 switches instead of using Mininet

switches to make the real OF switches. An OF 1.0 is selected for the control channel

management as many controllers support it. We have not enabled TLS option in the

Univ
ers

ity
 of

 M
ala

ya

111

communication between OF switches and the controller to avoid the unnecessary

complexity has it is not effected by the attacks.

class SingleSwitchTopo(Topo):
 "Single switch connected to k hosts."
 def build(self, k=2, **_opts):
 "k: number of hosts"
 self.k = k
 switch = self.addSwitch('s1')
 for h in range(1, k):
 host = self.addHost('host' % h)

 self.addLink(host, switch)

Figure 5.1: Python code for a single switch and ‘k’ number of hosts

Table 5.1: Basic topology functions with its descriptions

Topology Functions Description

build() This method is overridden in topo class by passing
parameter through Topo.__init__()

addSwitch() Insert the switch in the topology and return its name
addHost() Insert the host in the topology and return its name
addLink() Create bi-directional link in the topology
start() It starts the network
stop() It stops the network
pingAll() It testifies the connectivity between all host in the

topology
dumpNodeConnections() Dumps connection between specified nodes

5.1.2 Floodlight Controller 1.0

Floodlight is a Java-based open-source SDN controller supported by a community of

developers and network engineers from Big Switch Networks (Wallner & Cannistra,

2013). It is extensible Java development environment that provides an easy way for its

used. Floodlight controller supports a broad range of physical and virtual OF switches

which helps to run large experimental setups. We select Floodlight controller for our

experiments as it is mostly used in the SDN security literature and due to its popularity

in the market. The Floodlight controller is adopted by different research universities,

network vendors, users, and developers. The complete solution of Floodlight controller

Univ
ers

ity
 of

 M
ala

ya

112

regarding the modular system, easy Web UI, and active research and developer

community has attracted many researchers to used Floodlight controller for their

developments and experiments.

The Floodlight controller used a single shortest path between any source and

destination OF switches in the OF Island. The OF Island is also known as OF cluster; that

connect different OF switches to form a topology. The Floodlight supports OF Island

communication with a non-OF Island when it is connected only with a single link. There

should be no loop between OF and non-OF Island. Figures 5.2 and 5.4 illustrates the

situation of connected OF Island with a non-OF Island through a single and double link

respectively.

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Controller

OpenFlow

Switches

Hosts

Traditional

Switches

Hosts

Hosts

OpenFlow Island

Non-OpenFlow Island

Figure 5.2: Floodlight controller supports communication with single link
between OF Island and non-OF Island

In our experiments, we have used Eclipse to setup Floodlight controller with the OF

network. It is easy to use Eclipse rather than manually installing the Floodlight controller

in the virtualized network such as Mininet. We used ‘ant’ to import Floodlight package

in the Eclipse other than Mininet environment. It provides an easy way to stop and run

the controller during our experiments. Afterwards, running the Floodlight controller in

the Eclipse, we have to connect the controller with the Mininet infrastructure. For this,

we used a command in the Mininet as shown in Figure 5.3.

Univ
ers

ity
 of

 M
ala

ya

113

sudo mn --controller=remote, ip=<controller ip>,port=6653 --switch
ovsk,Protocols=OF10

Figure 5.3: The connection of remote controller to the Mininet infrastructure

The Mininet network infrastructure connects with the Floodlight controller through its

remote IP address. Moreover, we can easily import our proposed modules in the

Floodlight controller. After developing modules, we have to upload it in the starting

modules stack of the Floodlight controller such as

‘net.floodlight.core.module.IFloodlightModule’. The starting module stack allows

executing our modules in the Floodlight controller.

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Controller

OpenFlow

Switches

Hosts

Traditional

Switches

Hosts

Hosts

OpenFlow Island

Non-OpenFlow Island

Figure 5.4: Floodlight controller does not support communication with a loop
between OF Island and non-OF Island

5.1.3 Packit Tool

The Packit is a network analysis and auditing toolkit. It is famous for spoofing the

packet header of the packets in the network traffic (Darren, 2016). Packit used to monitor,

inject, and manipulate the network traffic. Packit toolkit is mostly used to testify intrusion

detection systems, firewalls, proxies, security tests, port scanners, and IP auditing

systems. We used Packit toolkit to spoof the LLDP packet. The spoofed LLDP packet

provides falsified information to the controller which further creates a fake link between

the switches.

Univ
ers

ity
 of

 M
ala

ya

114

In the process of creating a fake link between the switches, we used a malicious host

to spoof LLDP packet by using Packit toolkit. We modify the fields in the LLDP packet

such as DPID value of the switch. The Port ID TLV field can also be used to spoof the

LLDP packet to create a fake link between the switches. For instance, instead of port # 2,

value port # 3 is inserted in the field of Port ID TLV field of the LLDP packet.

5.2 Performance Analysis

This section explains the metrics that are applied to examine the efficiency of our

proposed solution (FoR-Guard), such as processing time, sensitivity, specificity, and false

alarm rate.

5.2.1 Confidence Interval of the Data Collection

There are different intervals used in statistics to characterize the results. However, we

have used a confidence interval based on our experimental data. A confidence interval

provides a range of values obtain from the sample statistics that tend to represent the

value of an unknown population size (Nakagawa & Cuthill, 2007). The confidence

interval shows the uncertainty and precision of a selective sample. In our experimental

evaluation, we have conducted each of our experiment 10 times to estimate each

parameter performance based on our sample statistics.

We have selected 95% level of confidence for our sample data used to evaluate

performance parameters. The 95% level of confidence means 9.5 out of 10 samples will

represent the same confidence interval that contains the population parameter. In other

words, one can be confident that 95% of the entire population mean will fall in the range

of the sample intervals.

To calculate the confidence interval, we have computed the processing time of our

proposed solution at its each phase such as a trigger, DeSI, and validation. The processing

time is calculated for our different experiments depending on our topologies. Each

topology has different network entities such as the number of switches, the total number

Univ
ers

ity
 of

 M
ala

ya

115

of links, and the number of fake links which results with different processing time at each

phase of FoR-Guard.

The experimental topologies upon which we have collected the data have been

explained in the next subsequent sections. The confidence interval formula is shown in

equation 5.1 as follows.

 CI = MS * ES (5.1)

Where (CI) is the confidence interval, (MS) is the sample mean value, and (ES) is the

standard error. The steps used to calculate the confidence interval for our sample data is

as follows.

Step 1: We have run each experiment 10 times and recorded the processing time for

each of the phase of FoR-Guard.

Step 2: A mean is calculated for the 10 values recorded from each of the experiment.

Step 3: Standard deviation is calculated based on our sample size and the mean value

which is calculated in step 2.

Step 4: The level of confidence, i.e., 95% is selected to compute the confidence

interval.

Step 5: The confidence interval (CI) is calculated based on the sample mean (MS) and

standard error (ES) as shown in equation 5.1. The standard error is the standard deviation

divided by the square root of the sample size multiples the critical value. The ES can be

calculated as follows.

 ES = z * 𝜎/√𝑛 (5.2)

The critical value (z) is used to measure the margin of the error. The critical value (z)

for the 95% confidence interval is 1.96 as per z-table. Thus, the standard error can be

calculated as follows.

 ES = 1.96 * σ/√n (5.3)

Univ
ers

ity
 of

 M
ala

ya

116

The next section describes the confidence interval of the data collected for the

processing time during the each phase of FoR-Guard.

5.2.2 Processing Time

The processing time of the controller is considered an important metric to examine the

overall SDN efficiency. The controller performs the maximum task executions due to its

centralized control over the entire network. The integration of various functionalities in

the control plane will increase the processing time of the controller. We have integrated

our proposed forensic investigation modules (FoR-Guard) in the control plane to trigger,

detect, and determine the source of LFA in SDN.

The FoR-Guard method involves three phases; trigger, DeSI, and validation phase. As

explained in Chapter 4, each phase is responsible for fulfilling a specific task which incurs

a processing time of the controller. As a result, proposed method such as triggering,

detection, and source identification of LFA incurs following processing times of the

controller.

The processing time of trigger phase: This phase utilizes the processing time of the

controller when the switch is examined for its MIR value to identify about its malicious

or legitimate states.

The processing time of DeSI phase: This phase used the controller processing time to

detect and identify the source of the fake link in SDN.

The processing time of validation phase: This phase utilizes the processing time of

the controller when entropy measurement is performed to validate the real source of the

attack.

In our emulation, we have conducted our experiments based on the number of switches

and links in SDN. We have first selected 10 switches with varying number of links to

perform our experiment. We first select 50 and then 75 total links with having a varying

number of fake links generated from a single malicious switch. The number of fake links,

Univ
ers

ity
 of

 M
ala

ya

117

i.e., 01, 05, 10, 15, 20 is generated by 10 switches within 50 and 75 links. Each

experiment is performed 10 times and an average value for the processing time is selected.

The complete elaboration of our experimental setup is shown in Table 5.2.

Table 5.2: Network topology setups for our experiments

Ex
pe

rim
en

ts

To
ta

l n
um

be
r o

f
sw

itc
he

s

To
ta

l n
um

be
r o

f
lin

ks

Le
gi

tim
at

e
lin

ks

Fa
ke

 li
nk

s

N
o.

 o
f

Ex
pe

rim
en

ts

1

10

50

49 01 10
2 45 05 10
3 40 10 10
4 35 15 10
5 30 20 10
6

75

74 01 10
7 70 05 10
8 65 10 10
9 60 15 10
10 55 20 10
11

20

50

49 01 10
12 45 05 10
13 40 10 10
14 35 15 10
15 30 20 10
16

75

74 01 10
17 70 05 10
18 65 10 10
19 60 15 10
20 55 20 10

5.2.2.1 Data collection of trigger phase processing time

In this first phase of FoR-Guard, the controller is responsible for building a topology

upon changes observes in the network. The changes can be through insertion, deletion,

and migration of hosts, switches, and links in SDN. The controller is responsible for

updating its topological view to have centralized abstract view of the entire network. In

our case, we are focusing on the insertion of a link in the network which can be a

Univ
ers

ity
 of

 M
ala

ya

118

legitimate or fake link. The controller has to update only the legitimate link in the

topology whereas; to trigger an alarm message to the detection phase upon observing the

fake link. In our proposed method, the controller processing time in trigger phase is used

when the attacker generates a link through a malicious switch.

The module MLA running in the controller checks the MIR value of the switch to

decide either a trigger message will be triggered or not. If the MIR value of the switch is

greater than zero than MLA triggers an alarm message. However, if MIR value is equal

to zero then it considers has a legitimate switch which allows the controller to update its

topology by considering the new links as a legitimate link. Table 5.3 depicts the

processing time of the controller to determine the MIR value of the switch and triggers

an alarm message to the detection phase of our proposed solution, i.e., DeSI phase.

5.2.2.2 Data collection of DeSI phase processing time

The DeSI is the second phase of our proposed method which detects and identifies the

source of the fake links in SDN. This phase utilizes the controller processing time by

investigating to detect and identify the source of the fake links. The modules LH and LM

running in the controller are responsible for detecting and identifying the source of the

fake links.

The controller processing time is utilized when the module LH find the link direction

of the newly generated link such as symmetric or asymmetric. The fake links generated

in SDN are asymmetric in nature as malicious switch builds a connection with the

legitimate switch for various illegal purposes. Moreover, the controller processing time

is utilized when the module LM what to declare a newly generated link as a fake link or

legitimate link upon MIR value of the switch and LCD value of the link. The processing

time of the controller used in the DeSI phase of FoR-Guard is shown in Table 5.4.

Univ
ers

ity
 of

 M
ala

ya

119

5.2.2.3 Data collection of validation phase processing time

The validation phase is a third and last phase of our proposed method which validates

the source of the fake link identified in the DeSI phase. This phase uses entropy

measurement to find the randomness in the network caused by fake links. The processing

time of the controller is less in this phase as compared to the previous phases due to single

module SV running in the controller which is responsible for computing the entropy value

for the W-adjacency matrices before and after the insertion of the fake link in SDN.

The probability values for both the matrices are used to calculate the Shannon entropy

to identify the randomness presented in the network. The SV modules find the average

weight of the entropy value for each matrix which is further used to determine the source

switch of the fake link by using threshold values. Table 5.5 depicts the processing time

of the controller used to validate the source of the fake links.

5.2.3 Sensitivity

The sensitivity is another parameter to evaluate our proposed FoR-Guard. As

discussed in Chapter 3, sensitivity measures the rate of positives that are correctly

identified as positives. For instance, the occurrence of an attack in SDN is correctly

identified as an attack. In our evaluation case, we measure the sensitivity value regarding

LFA, i.e., generation of fake links. The sensitivity can be measured by the equation 5.4.

Sensitivity =
Number of True positives

Number of True positives+ Number of False Negatives
 (5.4)

In our evaluation criteria, the sensitivity metric shows the strength of FoR-Guard to

detect the fake links generated in the network topology. Higher the sensitivity value,

better FoR-Guard is in detecting the fake links. The data collected to evaluate the

sensitivity metric is shown in Tables (5.6- 5.25) due to our different experimental setups.

Table 5.3: Controller processing time in the trigger phase

Univ
ers

ity
 of

 M
ala

ya

120

No. of
Switches

Total
Links

No. of
Legitimate
Links

No. of
Fake
links

Controller
Processing
Time Mean (10)

Standard
Deviation

Confidence
Interval
(95%)

10

50 49 01 0.0118765 3.71 0.0118765
(+/-) 1.33

50 45 05 0.0183279

1.95 0.0183279
 (+/-) 0.70

50 40 10 0.0235505

1.63 0.0235505
 (+/-) 0.58

50 35 15 0.0257810

2.08 0.0257810
(+/-) 0.74

50 30 20 0.0291104

2.55 0.0291104
(+/-) 0.91

75 74 01 0.0123484

1.54 0.0123484

(+/-) 0.55
75 70 05 0.0197853 1.44 0.0197853

(+/-) 0.52
75 65 10 0.0291327 1.39 0.0291327

(+/-) 0.50
75 60 15 0.0304424 2.43 0.0304424

(+/-) 0.87
75 55 20 0.0321456 2.50 0.0321456

(+/-) 0.89

20

50 49 01 0.0123555 1.54 0.0123555
(+/-) 0.55

50 45 05 0.0189068 2.42 0.0189068
(+/-) 0.87

50 40 10 0.0245121 9.12 0.0245121
(+/-) 3.26

50 35 15 0.0260081 1.54 0.0260081
(+/-) 0.55

50 30 20 0.0294520 1.55 0.0294520
(+/-) 0.55

75 74 01 0.0147828 2.26 0.0147828

(+/-) 0.81
75 70 05 0.0207653 1.82 0.0207653

(+/-) 0.65
75 65 10 0.0307911 1.67 0.0307911

(+/-) 0.60
75 60 15 0.0320034 2.27 0.0320034

(+/-) 0.81
75 55 20 0.0337770 1.28 0.0337770

(+/-) 0.46

Table 5.4: Controller processing time in the DeSI phase

Univ
ers

ity
 of

 M
ala

ya

121

No. of
Switches

Total
Links

No. of
Legitimate
Links

No. of
Fake
links

Controller
Processing
Time Mean (10)

Standard
Deviation

Confidence
Interval
(95%)

10

50 49 01 0.0006213 1.29 0.0006213
(+/-) 0.46

50 45 05 0.0006829 1.81 0.0006829
(+/-) 0.65

50 40 10 0.0007134 1.90 0.0007134
(+/-) 0.68

50 35 15 0.0007844 2.47 0.0007844
(+/-) 0.88

50 30 20 0.0009219 1.34 0.0009219
(+/-) 0.48

75 74 01 0.0006663 1.98 0.0006663

(+/-) 0.48
75 70 05 0.0006767 1.67 0.0006767

(+/-) 0.60
75 65 10 0.0007429 1.36 0.0007429

(+/-) 0.49
75 60 15 0.0008047 8.58 0.0008047

(+/-) 3.07
75 55 20 0.0008178 1.82 0.0008178

(+/-) 0.65

20

50 49 01 0.0006179 9.59 0.0006179
(+/-) 3.43

50 45 05 0.0007025 2.09 0.0007025
(+/-) 0.75

50 40 10 0.0007936 1.30 0.0007936
(+/-) 0.47

50 35 15 0.0009176 1.37 0.0009176
(+/-) 0.49

50 30 20 0.0010831 1.61 0.0010831
(+/-) 0.58

75 74 01 0.0007344 1.67 0.0007344

(+/-) 0.60
75 70 05 0.0007860 2.57 0.0007860

(+/-) 0.92
75 65 10 0.0008435 1.79 0.0008435

(+/-) 0.64
75 60 15 0.0008625 7.76 0.0008625

(+/-) 2.78
75 55 20 0.0009467 1.77 0.0009467

(+/-) 0.63

Table 5.5: Controller processing time in the Validation phase

Univ
ers

ity
 of

 M
ala

ya

122

No. of
Switches

Total
Links

No. of
Legitimate
Links

No. of
Fake links

Controller
Processing
Time Mean (10)

Standard
Deviation

Confidence
Interval
(95%)

10

50 49 01 0.0001257 1.63 0.0001257
(+/-) 0.58

50 45 05 0.0001463 1.90 0.0001463
(+/-) 0.68

50 40 10 0.0001540 2.36 0.0001540
(+/-) 0.84

50 35 15 0.0001871 8.19 0.0001871
(+/-) 2.93

50 30 20 0.0001923 9.22 0.0001923
(+/-) 3.30

75 74 01 0.0002757 6.26 0.0002757

(+/-) 2.2
75 70 05 0.0002943 1.12 0.0002943

(+/-) 0.40
75 65 10 0.0003115 8.17 0.0003115

(+/-) 2.92
75 60 15 0.0003034 7.73 0.0003034

(+/-) 2.77
75 55 20 0.0003581 1.23 0.0003581

(+/-) 0.44

20

50 49 01 0.0005062 1.36 0.0005062
(+/-) 0.49

50 45 05 0.0005416 8.89 0.0005416
(+/-) 3.18

50 40 10 0.0005583 8.84 0.0005583
(+/-) 3.16

50 35 15 0.0006415 7.31 0.0006415
(+/-) 2.62

50 30 20 0.0006483 8.44 0.0006483
(+/-) 3.02

75 74 01 0.0005617 7.94 0.0005617

(+/-) 2.84
75 70 05 0.0005359 6.68 0.0005359

(+/-) 2.39
75 65 10 0.0005346 8.84 0.0005346

(+/-) 3.16
75 60 15 0.0006135 7.30 0.0006135

(+/-) 2.61
75 55 20 0.0006324 7.30 0.0006324

(+/-) 2.61

Univ
ers

ity
 of

 M
ala

ya

123

5.2.4 Specificity

The specificity metric of FoR-Guard is calculated by looking towards true negatives

and false positives. The equation of specificity is shown in equation 5.5. The specificity

measures the rate of negatives that are correctly identified as negatives. For instance,

correctly identified legitimate links as legitimate links regarding FoR-Guard.

 Specificity =
Number of True negatives

Number of True negatives+ Number of False positive
 (5.5)

The specificity metric evaluates the FoR-Guard that it should identify the legitimate

link as a legitimate link during its forensic investigation in the DeSI phase. Higher the

specificity value, better FoR-Guard has identified the legitimate links. The data collected

to evaluate the specificity metric is shown in Tables (5.6- 5.25) due to our different

experimental setups.

5.2.5 False Alarm Rate

The false alarm rate is the expectancy of the occurrence of false alarm during a

statistical inference. It can be calculated as the ratio between negatives identified wrongly

as positives and the total number of negatives. The equation to calculate false positive

rate is shown in equation 5.6.

False Alarm Rate =
Number of False positive

Number of False positive+Number of True negatives
 (5.6)

The data collected to evaluate the false alarm rate metric is shown in Tables (5.6- 5.25)

due to our experiment different setups.

5.2.6 Data collection for sensitivity, specificity, and false alarm rate

In this section, we have explained the method of collecting the data for sensitivity,

specificity, and false alarm rate metrics based on our experiments. The experimental setup

for collecting data for different metrics is shown in Table 5.2. Each experiment is

performed 10 times, and their results are shown in Tables (5.6-5.25) respectively.

Univ
ers

ity
 of

 M
ala

ya

124

5.2.6.1 Data collection of 10 switches and 50 total links

In our current experiment, we have selected 10 switches with having 50 total numbers

of links in our network topology. For conducting different experiments to evaluate FoR-

Guard performance, we have selected a different number of fake links such as 1, 5, 10,

15, and 20 in the network topology.

Table 5.6 shows 10 different experiment values for calculating sensitivity, specificity,

and false alarm rate. In our current experiment, we selected 10 switches with having 50

total numbers of links. Among 50 total links, there are 49 legitimate links and 01 fake

links. The correct identified (true positive) attribute shows the value for correctly

identifying the number of fake links. The incorrect identified (false positive) attribute

shows the value for not identifying the number of fake links.

Table 5.6: Data collection for switches=10, total links=50, Legitimate links=49,
fake links=01

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 49 01 01 00 100% 100% 00%
2 50 49 01 01 00 100% 100% 00%
3 50 49 01 01 00 100% 100% 00%
4 50 49 01 01 00 100% 100% 00%
5 50 49 01 01 00 100% 100% 00%
6 50 49 01 01 00 100% 100% 00%
7 50 49 01 01 00 100% 100% 00%
8 50 49 01 01 00 100% 100% 00%
9 50 49 01 01 00 100% 100% 00%
10 50 49 01 01 00 100% 100% 00%

The sensitivity attribute calculates the value through TP/(TP+FP)*100, specificity

attribute calculates through (TN/TN+FP)*100, and false alarm rate calculates through

(FP/FP+TN)*100 respectively. For instance, experiment # 6 in Table 5.6 depicts that

Univ
ers

ity
 of

 M
ala

ya

125

there are 50 total links, 49 is legitimate links, and 01 is a fake link. The FoR-Guard

identifies 01 fake links as a fake link so the value for incorrect identified remains zero.

The value for sensitivity and specificity will be 100% while false alarm rate remains 00%.

Table 5.7 presents 10 switches with having 50 total numbers of links. Among 50 total

links, there are 45 legitimate links and 05 fake links. We have observed that in

experiments # 5 and 7, values for sensitivity is 80% and 60 % respectively. It is due to

the low-frequency rate (LF) of the link generation of the switch in the specified time

interval as explained in Chapter 4. The switch is in the malicious state, but its frequency

rate for its link generation is less than the threshold value. The FoR-Guard treated such

links as a legitimate link. However, it happens very rarely because the malicious switches

have a high number of frequency rates of link generation in the network.

Table 5.7: Data collection for switches=10, total links=50, Legitimate links=45,
fake links=05

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 45 05 05 00 100% 100% 00%
2 50 45 05 05 00 100% 100% 00%
3 50 45 05 05 00 100% 100% 00%
4 50 45 05 05 00 100% 100% 00%
5 50 45 05 04 01 80% 97.8% 2.17%
6 50 45 05 05 00 100% 100% 00%
7 50 45 05 03 02 60% 95.7% 4.25%
8 50 45 05 05 00 100% 100% 00%
9 50 45 05 05 00 100% 100% 00%
10 50 45 05 05 00 100% 100% 00%

Table 5.8 depicts 10 switches with having 50 total numbers of links. Among 50 total

links, there are 40 legitimate links and 10 fake links. The sensitivity value is 70% with

Univ
ers

ity
 of

 M
ala

ya

126

the specificity rate of 93.1% in case of experiment # 7. It occurs due to the switch have

less MIR value, but it starts to behave maliciously by generating fake links.

Table 5.8: Data collection for switches=10, total links=50, Legitimate links=40,
fake links=10

Table 5.9 summarizes the values for 10 switches with having 50 total numbers of links.

Among 50 total links, there are 35 legitimate links and 15 fake links. In experiment # 2,

the false alarm rate is 5.40 % due to not identifying the 02 out of 13 fake links. The 02

fake links are generated from the switch which has MIR value equals to zero, but they

have first time involved in generating fake links.

Table 5.10 shows the values for 10 switches with having 50 total numbers of links.

Among 50 total links, there are 30 legitimate links and 20 fake links. The sensitivity value

is 95% and 90% for experiments # 5 and 9 respectively. It is due to a high number of

malicious switches in the network which generates more fake links. The malicious

switches hide their illegitimate identity by starting to generate legitimate links in the

network.

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 40 10 09 01 90% 97.5% 2.43%
2 50 40 10 10 00 100% 100% 00%
3 50 40 10 10 00 100% 100% 00%
4 50 40 10 10 00 100% 100% 00%
5 50 40 10 10 00 100% 100% 00%
6 50 40 10 10 00 100% 100% 00%
7 50 40 10 07 03 70% 93.1% 6.97%
8 50 40 10 10 00 100% 100% 00%
9 50 40 10 10 00 100% 100% 00%
10 50 40 10 10 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

127

5.2.6.2 Data collection of 10 switches and 75 total links

In this current experimental setup, we have selected 10 switches with having 75 total

numbers of links in our network topology. For conducting different experiments to

evaluate FoR-Guard performance we have selected a different number of fake links such

as 1, 5, 10, 15, and 20 in the network topology.

Table 5.9: Data collection for switches=10, total links=50, Legitimate links=35,
fake links=15

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 35 15 15 00 100% 100% 00%
2 50 35 15 13 02 86.6% 94.5% 5.40%
3 50 35 15 15 00 100% 100% 00%
4 50 35 15 15 00 100% 100% 00%
5 50 35 15 15 00 100% 100% 00%
6 50 35 15 15 00 100% 100% 00%
7 50 35 15 15 00 100% 100% 00%
8 50 35 15 15 00 100% 100% 00%
9 50 35 15 15 00 100% 100% 00%
10 50 35 15 15 00 100% 100% 00%

Table 5.11 shows the values for 10 switches with having 75 total numbers of links.

Among 75 total links, there are 74 legitimate links and 01 fake links. The experiment # 5

indicates that FoR-Guard does not find the fake link due to MIR value of the switch, i.e.,

(Fi = 0). The switch has created more legitimate links with other switches in the network

to hide its illegitimate identity in the network.

Univ
ers

ity
 of

 M
ala

ya

128

Table 5.10: Data collection for switches=10, total links=50, Legitimate links=30,
fake links=20

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 30 20 20 00 100% 100% 00%
2 50 30 20 20 00 100% 100% 00%
3 50 30 20 20 00 100% 100% 00%
4 50 30 20 20 00 100% 100% 00%
5 50 30 20 19 01 95% 96.7% 3.22%
6 50 30 20 20 00 100% 100% 00%
7 50 30 20 20 00 100% 100% 00%
8 50 30 20 20 00 100% 100% 00%
9 50 30 20 18 02 90% 93.7% 6.25%
10 50 30 20 20 00 100% 100% 00%

Table 5.11: Data collection for switches=10, total links=75, Legitimate links=74,
fake links=01

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 74 01 01 00 100% 100% 00%
2 75 74 01 01 00 100% 100% 00%
3 75 74 01 01 00 100% 100% 00%
4 75 74 01 01 00 100% 100% 00%
5 75 74 01 00 01 00% 98.6% 1.33%
6 75 74 01 01 00 100% 100% 00%
7 75 74 01 01 00 100% 100% 00%
8 75 74 01 01 00 100% 100% 00%
9 75 74 01 01 00 100% 100% 00%
10 75 74 01 01 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

129

Table 5.12 shows the values for 10 switches with having 75 total numbers of links.

Among 75 total links, there are 70 legitimate links and 05 fake links. The specificity value

is 98.5% for experiment # 6 due to less frequency rate of link generation for the switch.

It indicates that the switch which generates the fake link is passively acting in the network

due to generating fake links time to time.

Table 5.13 shows the values for 10 switches with having 75 total numbers of links.

Among 75 total links, there are 65 legitimate links and 10 fake links. The sensitivity

values are 80%, 90%, and 70% for experiments # 1, 7, and 10 respectively. It is due to

increase the number of fake links in the network, the value of MIR frequently changes

due to the generation of links in the network topology.

Table 5.14 shows the values for 10 switches with having 75 total numbers of links.

Among 75 total links, there are 60 legitimate links and 15 fake links. The sensitivity value

is 93.3% for experiment # 1 due to the switch has generated the fake link at the time the

MIR value was equal to zero.

Table 5.15 summarizes the values for 10 switches with having 75 total numbers of

links. Among 75 total links, there are 55 legitimate links and 20 fake links. The specificity

value is 98.2% and 96.4% for experiments # 2 and 9 respectively. The specificity value

is less than 100% due to switches are in legitimate states, and they are shifting towards

malicious states due to the generation of fake links.

5.2.6.3 Data collection of 20 switches and 50 total links

In this current experimental setup, we have selected 20 switches with having 50 total

numbers of links in our network topology. For conducting different experiments to

evaluate FoR-Guard performance we have selected a different number of fake links such

as 1, 5, 10, 15, and 20 in the network topology.

Univ
ers

ity
 of

 M
ala

ya

130

Table 5.12: Data collection for switches=10, total links=75, Legitimate links=70,
fake links=05

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 70 05 05 00 100% 100% 00%
2 75 70 05 05 00 100% 100% 00%
3 75 70 05 05 00 100% 100% 00%
4 75 70 05 05 00 100% 100% 00%
5 75 70 05 05 00 100% 100% 00%
6 75 70 05 04 01 80% 98.5% 1.40%
7 75 70 05 05 00 100% 100% 00%
8 75 70 05 05 00 100% 100% 00%
9 75 70 05 05 00 100% 100% 00%
10 75 70 05 05 00 100% 100% 00%

Table 5.13: Data collection for switches=10, total links=75, Legitimate links=65,
fake links=10

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 65 10 08 02 80% 97.1% 2.98%
2 75 65 10 10 00 100% 100% 00%
3 75 65 10 10 00 100% 100% 00%
4 75 65 10 10 00 100% 100% 00%
5 75 65 10 10 00 100% 100% 00%
6 75 65 10 10 00 100% 100% 00%
7 75 65 10 09 01 90% 98.4% 1.51%
8 75 65 10 10 00 100% 100% 00%
9 75 65 10 10 00 100% 100% 00%
10 75 65 10 07 03 70% 95.5% 4.41%

Univ
ers

ity
 of

 M
ala

ya

131

Table 5.14: Data collection for switches=10, total links=75, Legitimate links=60,
fake links=15

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 60 15 14 01 93.3% 98.3% 1.63%
2 75 60 15 15 00 100% 100% 00%
3 75 60 15 15 00 100% 100% 00%
4 75 60 15 15 00 100% 100% 00%
5 75 60 15 15 00 100% 100% 00%
6 75 60 15 15 00 100% 100% 00%
7 75 60 15 15 00 100% 100% 00%
8 75 60 15 15 00 100% 100% 00%
9 75 60 15 15 00 100% 100% 00%
10 75 60 15 15 00 100% 100% 00%

Table 5.15: Data collection for switches=10, total links=75, Legitimate links=55,
fake links=20

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 55 20 20 00 100% 100% 00%
2 75 55 20 19 01 95% 98.2% 1.78%
3 75 55 20 20 00 100% 100% 00%
4 75 55 20 20 00 100% 100% 00%
5 75 55 20 20 00 100% 100% 00%
6 75 55 20 20 00 100% 100% 00%
7 75 55 20 20 00 100% 100% 00%
8 75 55 20 20 00 100% 100% 00%
9 75 55 20 18 02 90% 96.4% 3.50%
10 75 55 20 20 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

132

Table 5.16 summarizes the values for 20 switches with having 50 total numbers of

links. Among 50 total links, there are 49 legitimate links and 01 fake link. It has been

observed that the sensitivity is 98% for experiment # 9 due to MIR value equal to zero

for the switch at the time of investigating the link.

Table 5.16: Data collection for switches=20, total links=50, Legitimate links=49,
fake links=01

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 49 01 01 00 100% 100% 00%
2 50 49 01 01 00 100% 100% 00%
3 50 49 01 01 00 100% 100% 00%
4 50 49 01 01 00 100% 100% 00%
5 50 49 01 01 00 100% 100% 00%
6 50 49 01 01 00 100% 100% 00%
7 50 49 01 01 00 100% 100% 00%
8 50 49 01 01 00 100% 100% 00%
9 50 49 01 00 01 00% 98% 02%
10 50 49 01 01 00 100% 100% 00%

Table 5.17 summarizes the values for 20 switches with having 50 total numbers of

links. Among 50 total links, there are 45 legitimate links and 05 fake links. The sensitivity

for experiment #1, 5, and 9 are observed as 80% for each respectively. It is due to less

number of links generated by the switch as compared to its specified threshold value, i.e.,

LF.

Table 5.18 summarizes the values for 20 switches with having 50 total numbers of

links. Among 50 total links, there are 40 legitimate links and 10 fake links. The sensitivity

value is 80 % and 90% for experiment # 1 and 2 with its false alarm rate 4.76% and 2.43%

respectively. The suspicious links were considered as legitimate links due to the behavior

of the switch that proceed towards legitimate state by generating legitimate links.

Univ
ers

ity
 of

 M
ala

ya

133

Table 5.17: Data collection for switches=20, total links=50, Legitimate links=45,
fake links=05

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 45 05 04 01 80% 97.8% 2.17%
2 50 45 05 05 00 100% 100% 00%
3 50 45 05 05 00 100% 100% 00%
4 50 45 05 05 00 100% 100% 00%
5 50 45 05 04 01 80% 97.8% 2.17%
6 50 45 05 05 00 100% 100% 00%
7 50 45 05 05 00 100% 100% 00%
8 50 45 05 05 00 100% 100% 00%
9 50 45 05 04 01 80% 97.8% 2.17%
10 50 45 05 05 00 100% 100% 00%

Table 5.19 summarizes the values for 20 switches with having 50 total numbers of

links. Among 50 total links, there are 35 legitimate links and 15 fake links. It has been

observed that FoR-Guard identified all the fake links generated from the malicious

switches in all the 10 experiments.

Table 5.20 presents the values for 20 switches with having 50 total numbers of links.

Among 50 total links, there are 30 legitimate links and 20 fake links. The experiments #

1 and 6 have specificity 93.7% and 88.2% with its false alarm rate as 6.25% and 11.76%

respectively. The specificity is less than 100% due to some fake links generated by the

switch after some time interval. The attackers use such a strategy to hide its identity by

generating more legitimate links as compared to fake links.

Univ
ers

ity
 of

 M
ala

ya

134

Table 5.18: Data collection for switches=20, total links=50, Legitimate links=40,
fake links=10

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 40 10 08 02 80% 95.2% 4.76%
2 50 40 10 09 01 90% 97.5% 2.43%
3 50 40 10 10 00 100% 100% 00%
4 50 40 10 10 00 100% 100% 00%
5 50 40 10 10 00 100% 100% 00%
6 50 40 10 10 00 100% 100% 00%
7 50 40 10 10 00 100% 100% 00%
8 50 40 10 10 00 100% 100% 00%
9 50 40 10 10 00 100% 100% 00%
10 50 40 10 10 00 100% 100% 00%

Table 5.19: Data collection for switches=20, total links=50, Legitimate links=35,
fake links=15

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 35 15 15 00 100% 100% 00%
2 50 35 15 15 00 100% 100% 00%
3 50 35 15 15 00 100% 100% 00%
4 50 35 15 15 00 100% 100% 00%
5 50 35 15 15 00 100% 100% 00%
6 50 35 15 15 00 100% 100% 00%
7 50 35 15 15 00 100% 100% 00%
8 50 35 15 15 00 100% 100% 00%
9 50 35 15 15 00 100% 100% 00%
10 50 35 15 15 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

135

Table 5.20: Data collection for switches=20, total links=50, Legitimate links=30,
fake links=20

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 50 30 20 18 02 90% 93.7% 6.25%
2 50 30 20 20 00 100% 100% 00%
3 50 30 20 20 00 100% 100% 00%
4 50 30 20 20 00 100% 100% 00%
5 50 30 20 20 00 100% 100% 00%
6 50 30 20 16 04 80% 88.2% 11.76%
7 50 30 20 20 00 100% 100% 00%
8 50 30 20 20 00 100% 100% 00%
9 50 30 20 20 00 100% 100% 00%
10 50 30 20 20 00 100% 100% 00%

5.2.6.4 Data collection of 20 switches and 75 total links

In the current experimental scenario, we have selected 20 switches with having 75

total numbers of links in our network topology. For conducting different experiments to

evaluate FoR-Guard performance we have selected a different number of fake links such

as 1, 5, 10, 15, and 20 in the network topology.

Table 5.21 shows the values for 20 switches with having 75 total numbers of links.

Among 75 total links, there are 74 legitimate links and 01 fake link. The FoR-Guard

identifies all the fake links generated from the malicious switches.

Table 5.22 depicts the values for 20 switches with having 75 total numbers of links.

Among 75 total links, there are 70 legitimate links and 05 fake links. The experiment # 6

has 60% of sensitivity due to MIR value of the switch is equal to zero.

Univ
ers

ity
 of

 M
ala

ya

136

Table 5.21: Data collection for switches=20, total links=75, Legitimate links=74,
fake links=01

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 74 01 01 00 100% 100% 00%
2 75 74 01 01 00 100% 100% 00%
3 75 74 01 01 00 100% 100% 00%
4 75 74 01 01 00 100% 100% 00%
5 75 74 01 01 00 100% 100% 00%
6 75 74 01 01 00 100% 100% 00%
7 75 74 01 01 00 100% 100% 00%
8 75 74 01 01 00 100% 100% 00%
9 75 74 01 01 00 100% 100% 00%
10 75 74 01 01 00 100% 100% 00%

Table 5.22: Data collection for switches=20, total links=75, Legitimate links=70,
fake links=05

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 70 05 05 00 100% 100% 00%
2 75 70 05 05 00 100% 100% 00%
3 75 70 05 05 00 100% 100% 00%
4 75 70 05 05 00 100% 100% 00%
5 75 70 05 05 00 100% 100% 00%
6 75 70 05 03 02 60% 97.2% 2.77%
7 75 70 05 05 00 100% 100% 00%
8 75 70 05 05 00 100% 100% 00%
9 75 70 05 05 00 100% 100% 00%
10 75 70 05 05 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

137

Table 5.23: Data collection for switches=20, total links=75, Legitimate links=65,
fake links=10

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 65 10 10 00 100% 100% 00%
2 75 65 10 09 01 90% 98.4% 1.51%
3 75 65 10 07 03 70% 95.5% 4.41%
4 75 65 10 10 00 100% 100% 00%
5 75 65 10 10 00 100% 100% 00%
6 75 65 10 10 00 100% 100% 00%
7 75 65 10 10 00 100% 100% 00%
8 75 65 10 10 00 100% 100% 00%
9 75 65 10 10 00 100% 100% 00%
10 75 65 10 09 01 90% 98.4% 1.51%

Table 5.24: Data collection for switches=20, total links=75, Legitimate links=60,
fake links=15

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 60 15 15 00 100% 100% 00%
2 75 60 15 15 00 100% 100% 00%
3 75 60 15 15 00 100% 100% 00%
4 75 60 15 15 00 100% 100% 00%
5 75 60 15 15 00 100% 100% 00%
6 75 60 15 15 00 100% 100% 00%
7 75 60 15 15 00 100% 100% 00%
8 75 60 15 15 00 100% 100% 00%
9 75 60 15 14 01 93.3% 98.3% 1.63%
10 75 60 15 15 00 100% 100% 00%

Univ
ers

ity
 of

 M
ala

ya

138

Table 5.25: Data collection for switches=20, total links=75, Legitimate links=55,
fake links=20

Ex
pe

rim
en

ts

To
ta

l L
in

ks

N
o.

 o
f L

eg
iti

m
at

e
Li

nk
s

(T
N

)
N

o.
 o

f F
ak

e
lin

ks

C
or

re
ct

 Id
en

tif
ie

d
(T

P)

In
co

rr
ec

t I
de

nt
ifi

ed
 (F

P)

Se
ns

iti
vi

ty

TP
/(T

P+
FP

)*
10

0

Sp
ec

ifi
ci

ty

(T
N

/T
N

+F
P)

*1
00

Fa
ls

e
A

la
rm

 R
at

e
(F

P/
FP

+T
N

)*
10

0

1 75 55 20 19 01 95% 98.2% 1.78%
2 75 55 20 20 00 100% 100% 00%
3 75 55 20 20 00 100% 100% 00%
4 75 55 20 20 00 100% 100% 00%
5 75 55 20 20 00 100% 100% 00%
6 75 55 20 20 00 100% 100% 00%
7 75 55 20 17 03 85% 94.8% 5.17%
8 75 55 20 20 00 100% 100% 00%
9 75 55 20 20 00 100% 100% 00%
10 75 55 20 20 00 100% 100% 00%

Table 5.23 presents the values for 20 switches with having 75 total numbers of links.

Among 75 total links, there are 65 legitimate links and 10 fake links. The sensitivity of

experiment # 2, 3, and 10 is 90%, 70%, and 90% respectively. The number of link

frequency is less as compared to the threshold value because the malicious switches

maintain its MIR value equal to zero by generating legitimate links as well with different

switches in the network.

Table 5.24 summarizes the values for 20 switches with having 75 total numbers of

links. Among 75 total links, there are 60 legitimate links and 15 fake links. The

experiment # 9 has sensitivity equals to 93.3% as FoR-Guard is not recognized one fake

link due to MIR value of the switch which is equal to zero.

Table 5.25 depicts the values for 20 switches with having 75 total numbers of links.

Among 75 total links, there are 55 legitimate links and 20 fake links. It has been observed

in experiment # 1 and 7 that FoR-Guard fails to identify some fake links. It happens due

to link generation frequency of the malicious switch is less as compared to the specified

Univ
ers

ity
 of

 M
ala

ya

139

threshold value. However, if the threshold value is less than link generation frequency of

the switch, it means that the malicious switch is generating fake links by making more

connection in the network.

5.3 Performance analysis of FoR-Guard with existing solutions

In this section, we collect the data extracted from the experiments to compare the

processing time of FoR-Guard with existing solutions. We compare the processing time

of FoR-Guard for its first two phases such as trigger and DeSI with TopoGuard (Hong et

al., 2015) and Sphinx (Dhawan et al., 2015) because to have a fair comparison. The

solutions TopoGuard and Sphinx are not validating the source of the attack in their

proposed solutions. However, FoR-Guard provides a validation phase to verify the source

of the LFA identified in the DeSI phase. Therefore, we exclude the processing time of

validation phase of FoR-Guard during the comparison experiments.

Table 5.26 depicts the processing time comparison of FoR-Guard (trigger + DeSI

phases) with TopoGuard and Sphinx. The comparison shows that FoR-Guard has less

processing time as compared to the state-of-the-art solutions such as TopoGuard and

Sphinx. The TopoGuard has high processing time as compared to FoR-Guard and Sphinx

because it has to mark each LLDP packet through cryptographic value to ensure the

integrity of the packet. The Sphinx processing time is high as compared to FoR-Guard

due to generating network graphs for each update in the network which requires collecting

the topological metadata from the OF control messages.

Table 5.26: Processing time comparison in switches=10 and total links=50

Fake Links FoR-Guard TopoGuard Sphinx
1 12.497 38.54 24.21
5 19.009 57.51 37.14
10 24.263 78.04 42.87
15 26.565 84.33 52.67
20 30.031 89.94 68.49

Univ
ers

ity
 of

 M
ala

ya

140

Table 5.27 shows the comparison values of processing time of FoR-Guard with

TopoGuard and Sphinx regarding 10 switches and 75 total links. The result depicted in

Table 5.27 indicates that the processing time is increased with the increasing number of

fake links. FoR-Guard has less processing time as compared to TopoGuard and Sphinx

due to its focus on the switch which has generated a new link. However, TopoGuard

marks the LLDP packets and Sphinx captures metadata information from the OF control

messages which lead them to high processing overhead. For instance, the detection of 5

fake links cost FoR-Guard for 20.481 microseconds as compared to TopoGuard and

Sphinx which cost them 89.28 and 48.92 microseconds respectively.

Table 5.27: Processing time comparison in switches=10 and total links=75

Fake Links FoR-Guard TopoGuard Sphinx

1 13.014 57.15 39.21
5 20.481 89.28 48.92
10 29.874 106.21 56.14
15 31.248 135.49 72.91
20 32.962 170.98 83.79

Table 5.28 shows that TopoGuard has high processing time as compared to FoR-Guard

and Sphinx. The results for processing time depicted in Table 5.28 are based on 20

switches and 50 total links. The increase in a number of the switches has not a significant

impact on the FoR-Guard whereas, it have an impact on the TopoGuard and Sphinx. More

switches will cause more LLDP packets to be marked based the connectivity of the

switches. The controller has to send LLDP packets to each port of each switch to know

about their connectivity with their neighbor switches. It causes a high processing time

especially for TopoGuard while Sphinx has to build a network graph which depends on

the number of switches as well. For instance, the detection of 20 fake links in 20 switches

and 50 total links cost FoR-Guard 30.535 microseconds processing time as compared to

TopoGuard and Sphinx which cost 98.21and 75.49 microseconds respectively.

Univ
ers

ity
 of

 M
ala

ya

141

Table 5.28: Processing time comparison in switches=20 and total links=50

Fake Links FoR-Guard TopoGuard Sphinx

1 12.972 49.75 30.74
5 19.609 63.28 40.07
10 25.305 84.67 48.61
15 26.925 92.47 59.39
20 30.535 98.21 75.49

Table 5.29 shows the processing time of FoR-Guard (trigger + DeSI phases) with

TopoGuard and Sphinx regarding 20 switches and 75 total links. The comparison shows

that FoR-Guard has less processing time as compared to the state-of-the-art solutions such

as TopoGuard and Sphinx. The increase in a number of links has a significant impact on

the processing time of TopoGuard and Sphinx. For instance, the detection of 15 fake links

in 20 switches and 75 total links cost FoR-Guard 32.865 microseconds processing time

as compared to TopoGuard and Sphinx which cost 152.87 and 79.28 microseconds

respectively. Thus, the processing time of FoR-Guard is significantly better than

processing time of TopoGuard and Sphinx in all experiment setups.

Table 5.29: Processing time comparison in switches=20 and total links=75

Fake Links FoR-Guard TopoGuard Sphinx

1 15.516 72.64 46.89
5 21.551 99.23 55.19
10 31.634 125.41 69.88
15 32.865 152.87 79.28
20 34.723 198.21 99.45

5.4 Conclusion

This chapter presents the experimental tools and setup used to evaluate FoR-Guard

proposed method to determine the fake links in SDN. The Floodlight controller is briefly

elaborated which use to generate a centralized controlled environment in SDN. The data

collection method is presented to examine FoR-Guard based on performance metrics

including processing time (effectiveness), sensitivity, specificity, and false alarm rate.

Univ
ers

ity
 of

 M
ala

ya

142

The data of comparison among FoR-Guard, TopoGuard, and Sphinx is presented with its

critical description.

The data collection is performed based on different experimental setups depending on

the number of switches, the total number of links, and the number of fake links. The

processing time data is collected for each experiment in the sample space of 10 values.

The 95% confidence interval is used to calculate the mean value of the sample space. The

data collection for sensitivity, specificity, and false alarm rate shows the accuracy of FoR-

Guard regarding detecting fake links in SDN. Thus, it has been shown that FoR-Guard

has less processing time in executing the proposed method and have high detection

accuracy rate in detecting the fake links as compared to TopoGuard and Sphinx in SDN.

Univ
ers

ity
 of

 M
ala

ya

143

CHAPTER 6: RESULTS AND DISCUSSIONS

This chapter evaluates the performance of FoR-Guard and presents the experimental

results in a graphical format to have a logical conclusion. We start by evaluating each

phase of FoR-Guard by evaluating the controller processing time. We derive the points

to know which phase of FoR-Guard has a high impact on the controller processing time.

Subsequently, we evaluate the performance of FoR-Guard by using ROC graphs. We

perform a comparative analysis of FoR-Guard with TopoGuard and Sphinx in measuring

the processing time. The comparative experimental data is validated by using paired

sample t-tests. Finally, we show that FoR-Guard is effective in having less processing

time to detect and identify the fake links in SDN.

The rest of the chapter is organized as follows. Section 6.1 presents the performance

analysis of each phase of FoR-Guard by measuring the processing time. Section 6.2

compares the processing time of trigger and DeSI phases with the validation phase of

FoR-Guard. Section 6.3 investigates the performance of FoR-Guard by using ROC

graphs. Section 6.4 discusses the comparison between FoR-Guard and the existing

solutions. Finally, Section 6.5 concludes the chapter by highlighting the significance of

FoR-Guard.

6.1 Performance Analysis of FoR-Guard

In the section, we analyzed the computational burden of the controller due to proposed

forensic investigation method for LFA in SDN. The processing time of the controller is

analyzed for each FoR-Guard phase such as a trigger, DeSI, and validation phase.

6.1.1 Trigger phase processing time

In our early discussion about FoR-Guard in section 4.3.1 of chapter 4; we discuss that

the trigger phase is mainly responsible for two tasks, i.e., discovering network topology

and triggering the DeSI phase of FoR-Guard. The time taken by the controller to discover

the network topology depends on the de-facto standard for SDN controllers. However,

Univ
ers

ity
 of

 M
ala

ya

144

triggering a trigger message to the DeSI phase utilize the controller time by computing

and collecting MIR value of the switches.

In our experimental evaluation, we performed each experiment 10 times, and its

average value is recorded for the processing time. We have performed our experiments

on two network data traces having 10 and 20 switches which contain 50 and 75 total

number of links respectively. Each network trace is tested for 1, 5, 10, 15, and 20 numbers

of fake links.

Figure 6.1: Processing time of trigger phase for switches=10 and total
links=(50,75)

Figure 6.1 presents the processing time of the controller to trigger a message based on

various numbers of fake links. The y-axis shows the processing time in microseconds and

x-axis represents the number of fake links. The graph shows that the processing time

increases due to increase in the number of fake links. For instance, when there are 10

switches and 01 fake links than the processing time is recorded as 11.876 microseconds

as compared to 25.781 microseconds for 10 switches and 15 fake links out of 50 total

links. The processing time increases with the number of fake links because the controller

has to collect MIR value information from the switches. Similarly, the processing time

Univ
ers

ity
 of

 M
ala

ya

145

increases when the total number of links in the network topology increases. For instance,

10 switches and 10 fake links out of 50 total links in the network topology utilize 23.550

microseconds of the controller as compared to 10 switches and 10 fake links out of 75

total links which use 29.132 microseconds of the controller time.

The processing time of the controller increases because topology manager has to send

LLDP packets to each switch to inquire the links between the switches. The more links

in the network topology result in a more time of the controller to get information of the

links from the switches. Thus, the network topology of 75 links will have more processing

time as compared to 50 links in the network topology. Similarly, processing time trend

for the controller have 20 switches and (50,75) total links is shown in Figure 6.2.

Figure 6.2: Processing time of trigger phase for switches=20 and total
links=(50,75)

6.1.2 DeSI phase processing time

Figure 6.3 shows the processing time of the controller to investigate the fake links in

the network topology. The controller investigates the fake links by detecting and finding

the real source of the attack. The y-axis shows the processing time in microseconds and

x-axis represents the number of fake links. The processing time of the DeSI phase of FoR-

Univ
ers

ity
 of

 M
ala

ya

146

Guard is less as compared to the triggering phase. The trigger phase involves de-facto

standard network topology discovery to update the controller view. Thus, the processing

time of the controller becomes high as compared to the DeSI phase. However, other than

network topology discovery, the controller spends very less time to measure and collects

the MIR value of switches in the trigger phase.

Figure 6.3: Processing time of DeSI phase for switches=10 and total
links=(50,75)

The processing time of the controller in DeSI phase increases with the increasing

number of fake links due to finding LCD for each suspicious link which needs to be

investigated. For instance, when there are 10 switches and 05 fake links than the

processing time is recorded as 0.682 microseconds as compared to 0.921 microseconds

for 10 switches and 20 fake links out of 50 total links. Similarly, the processing time

increases when the total number of links in the network topology increases. For instance,

10 switches and 15 fake links out of 50 total links in the network topology utilize 0.784

microseconds of the controller as compared to 10 switches and 15 fake links out of 75

total links which use 0.804 microseconds of the controller time. However, we have

observed in Figure 6.3, the processing time of 20 fake links within 50 total links is high

Univ
ers

ity
 of

 M
ala

ya

147

as compared to the 20 fake links within 75 total links. This trend has been observed due

to generation of different fake links at different switches rather than different fake links

at the single switch in the network topology. If fake links are scattered in the network

topology that generates from different switches than the processing time for 20 fake links

within 50 total links would be less as compare to 75 total links. Similarly, the processing

time of the controller having 20 switches and (50,75) total links are shown in Figure 6.4.

Figure 6.4: Processing time of DeSI phase for switches=20 and total
links=(50,75)

6.1.3 Validation phase processing time

Figure 6.5 illustrates the graph showing the processing time of the controller to verify

the source of fake links identified in the DeSI phase of FoR-Guard. The SV module is

used in the controller to verify the source of the fake links. The y-axis shows the

processing time in microseconds and x-axis represents the number of fake links. The

processing time of the validation phase of FoR-Guard is less as compared to both the

phases including trigger and DeSI phase. The validation phase has only to apply

measurement entropy calculation on the already build adjacency matrices. This task has

Univ
ers

ity
 of

 M
ala

ya

148

been performed by SV module which collects information from other modules

responsible for DeSI phase of the FoR-Guard.

Figure 6.5: Processing time of validation phase for switches=10 and total
links=(50,75)

The processing time of the controller in validation phase increases with the increasing

number of fake links due to verifying more sources for generated fake links. For instance,

when there are 10 switches and 01 fake links than the processing time is recorded as 0.125

microseconds as compared to 0.192 microseconds for 10 switches and 20 fake links out

of 50 total links. Similarly, the processing time increases when the total number of links

in the network topology increases. For instance, 10 switches and 10 fake links out of 50

total links in the network topology utilize 0.154 microseconds of the controller as

compared to 10 switches and 10 fake links out of 75 total links which use 0.311

microseconds of the controller time. This trend has been observed due to calculating

probabilistic values for adjacency matrices and measurement of the entropy values for

each switch along with its comparison with other switches. Similarly, the processing time

of the controller having 20 switches and (50,75) total links is shown in Figure 6.6.

Univ
ers

ity
 of

 M
ala

ya

149

Figure 6.6: Processing time of validation phase for switches=20 and total
links=(50,75)

6.2 Comparison of FoR-Guard phases in different scenarios

In this section, we analyze the processing time of the validation phase by comparing

it with first two phases of FoR-Guard such as trigger and DeSI phases. The comparison

is important to observe the effect of the validation phase regarding processing time of the

controller by integrating it with trigger and DeSI phases of FoR-Guard. The validation

phase verifies the source identified at the DeSI phase by computing the entropy

measurement based on previous and current adjacency matrices. There is no state-of-the-

art solution available that use a validation mechanism to verify the sources of LFA. Thus,

the overall comparison shows that the validation phase imposes low processing time

overhead on the controller as compared to the trigger and DeSI phases of FoR-Guard.

Figure 6.7 compares the processing time of first two phases (trigger + DeSI) with the

third phase (validation) of the FoR-Guard. The x-axis and y-axis coordinates show a

different number of fake links and processing time of the controller respectively. The aim

of this comparison is to highlight how much processing time is increased by integrating

the validation phase to the FoR-Guard.

Univ
ers

ity
 of

 M
ala

ya

150

Figure 6.7: Processing time comparison of FoR-Guard phases in switches=10
and total links=50

Figure 6.7 clearly shows that only some part of a micro-second is added to the

processing time of the controller regarding a different number of fake links. It happens

because the FoR-Guard used an SV module which used an entropy measurement to

validate the source of the attack. The SV compute the entropy weighted value based on

the previous and current adjacency matrices which are already maintained by the LH

module in the controller. The increase in the number of fake links increases the processing

time of validation phase but not significantly. For instance, 0.146 and 0.192 microseconds

are added to the processing time of the controller for verifying the sources for 05 and 20

fake links respectively. Thus, the validation phase plays an important role in FoR-Guard

to verify the source of the attack by integrating the acceptable amount of processing time

to the first two phase of the FoR-Guard running in the controller.

Univ
ers

ity
 of

 M
ala

ya

151

Figure 6.8: Processing time comparison of FoR-Guard phases in switches=10
and total links=75

Figure 6.8 depicts the comparison of validation phase processing time with trigger and

DeSI phases processing time in terms of 10 switches and 75 total links. It is observed that

increasing total number of links does not affect the processing time of the validation

phase. For instance, the processing time of the validation phase was 0.146 and 0.192

microseconds for 05 and 20 fake links regarding 10 switches and 50 links as shown in

Figure 6.7 above. However, the processing time of the validation phase is 0.294 and 0.358

microseconds for 05 and 20 fake links regarding 10 switches and 75 links.

Figure 6.9 shows the comparison of validation phase processing time with trigger and

DeSI phase processing time regarding 20 switches and 50 total numbers of links. The

result shows that the validation phase has less processing time as compared to trigger and

DeSI phases of FoR-Guard.

Univ
ers

ity
 of

 M
ala

ya

152

Figure 6.9: Processing time comparison of FoR-Guard phases in switches=20
and total links=50

Figure 6.10 shows that validation phase has processing time less than one

microseconds regarding different fake links whereas, the trigger and DeSI phase have

collective processing time up to 34 microseconds. The trigger phase has high processing

time as compared to rest of the phases of FoR-Guard. The processing time is high because

the topology manager module running in the controller discovers the network topology

after specified interval of time which prolongs the processing time of the controller in the

trigger phase. Therefore, the processing time for the validation phase has no negative

impact on the overall performance of the FoR-Guard.

Univ
ers

ity
 of

 M
ala

ya

153

Figure 6.10: Processing time comparison of FoR-Guard phases in switches=20
and total links=75

6.3 Performance analysis of FoR-Guard through ROC analysis

In this section, we have used the Receiver Operating Characteristic (ROC) graphs to

evaluate the classification capabilities of our proposed method FoR-Guard. The ROC

graph is a useful tool to evaluate and visualize the classifiers. The ROC graph is a handy

two-dimensional graph to depict the degree of trade-off between true positive rates

(sensitivity) and false positive rates (1- specificity). The graph plots the true positive rate

on y-coordinates representing the sensitivity and false positive rate on x-coordinates

representing 1-specificity.

The curves in the ROC graph is of worth importance, the lower left point (0,0)

represents that there is a gain in true positives and the classifier not commits any false

positive errors. However, the upper left point in the ROC space depicts no false negatives

and false positive indicating in 100% sensitivity and specificity. The diagonal line in the

ROC graph represents the (0.5,0.5) changes for the values such as 50% sensitivity and

specificity respectively. Thus, the points plotted on the curve above the diagonal line is

better than the points plotted on the curves below the diagonal line in the ROC graph.

Univ
ers

ity
 of

 M
ala

ya

154

The ROC graph fits our evaluation criteria, as our focus is to determine the fake links

as a fake link in SDN. We used ROC graphs because it provides better measures of

classification performance as compared to different scalar measures including accuracy,

error cost, and error rate. Moreover, ROC graphs have more advantages over precision-

recall graphs and lift curves.

6.3.1 ROC graphs for 50 total number of links

The ROC graphs illustrated in figures (Figures 6.11-6.20) have been plotted based on

the data collected from our experiments as shown in Tables (Table 5.6 – 5.25) in chapter

5. We have plotted the ROC graphs for the worst case of each experiment. For instance,

Table 5.9 depicts the 10 experimental values for FoR-Guard to detect 15 fake links out of

50 total number of links. In this situation, FoR-Guard has correctly identified 15 fake

links in the 9 experiments, however, in one experiment (experiment # 2) it detects 13 fake

links. Thus, sensitivity remains 86.6%, specificity 94.5%, and false alarm rate 5.40%.

The values have been converted into a percentage for the sake of simplicity. In the above

example, we have only plotted ROC graphs for the lowest percentage value, i.e.,

experiment # 2 in the data collection table (Tables 5.9) presented in Chapter 5 same

applies to all ROC graphs. The ROC graphs will be same for all the values which have

100% sensitivity.

Figure 6.11 shows the ROC graph for 10 and 20 switches with having one fake link in

the pool of 50 total number of links. The x-axis and y-axis represent the true positive rate

(sensitivity) and false positive rate (1- specificity) respectively. The figure 6.11 is plotted

base on the experiment # 3 and experiment # 9 of Table 5.6 and 5.16 respectively. These

experiments have been selected because of the minimum value of sensitivity present in

the respective tables as discussed above. The ROC curves for 10 switches have 100%

sensitivity with zero false positive rates. However, the ROC curve for 20 switches is far

from the topmost left corner in the ROC space indicating with less sensitivity as compared

Univ
ers

ity
 of

 M
ala

ya

155

to 10 switches, i.e., 98%. Thus, FoR-Guard as a classifier identifies the single fake link

in the case of 10 switches while in 20 switches it not identifies the fake link during the

experiment # 9. It is due to the value of MIR value of the switch is equal to zero at the

time the controller queries the switch.

Figure 6.11: ROC graph for single fake link in total links=50

Figure 6.12 shows the detection accuracy of FoR-Guard by using ROC graph for 10

and 20 switches with having 05 fake links in the pool of 50 total number of links. The

number of switches such as 10 and 20 and a total number of links, i.e., 50 and 75 is

common for all of our experiments while the number of fake links varies. The ROC curves

of both 10 and 20 switches show the better results as it is plotted above the diagonal

reference line in the graph. However, the detection accuracy for 20 switches is better than

10 switches as it is closer to the left side of the ROC space. The closer to the left side,

betters the sensitivity is observed for the classifiers. It is observed that upper part of the

curve is touching the upper side of the ROC space because our FoR-Guard identifies all

the legitimate links. Our focus in experiments is only to check that how accurate our

proposed method (FoR-Guard) is to identify fake links as a fake link in SDN.

Univ
ers

ity
 of

 M
ala

ya

156

Figure 6.12: ROC graph for fake links=05 in total links=50

Figure 6.13 shows the ROC graph for 10 fake links in the pool of 50 total number of

links. The both ROC curves of 10 and 20 switches are plotted above the diagonal

reference line which indicates the better performance regarding the fake links. It is

observed that increasing fake links do not affect much the sensitivity and false positive

rate. It is due to adaptive trigger mechanism proposed in FoR-Guard which triggers an

alarm message after checking the behavior of the switch, i.e., MIR value. Thus, it assists

the controller in the DeSI phase to use the MIR value of the switch in detecting the fake

links. The detection accuracy of 20 switches is better than 10 switches as it identifies 08

fake links as compared to 07 fake links identified by the 10 switches.

Univ
ers

ity
 of

 M
ala

ya

157

Figure 6.13: ROC graph for fake links=10 in total links=50

Figure 6.14 represents the ROC graph for 15 fake links. It is observed that in 20

switches experiment, FoR-Guard identifies all the fake links, i.e., 15 fake links with

resulting in 100% sensitivity. However, FoR-Guard in the 10 switches identifies 13 fake

links out of 15 links in its worst case. Thus, increase in the number of switches in SDN

does not affect FoR-Guard in detecting the fake links.

Figure 6.15 shows the ROC graph generated base on the data collected from the Table

5.10 and 5.20 respectively. It is observed that curve for 20 switches is closer to the

diagonal reference line while curve for 10 switches is closer to the left most side of the

ROC space. The sensitivity is higher for 10 switches as compared to 20 switches. The

FoR-Guard finds 18 and 16 fake links in the case of 10 and 20 switches respectively.

However, in most of the case, FoR-Guard has 100% sensitivity and zero false alarm rate

in different experimental setup. The Figure 6.15 is representing the worst case as fake

links are generated randomly between different switches. The FoR-Guard may not detect

the fake link generated by the switch if the switch has MIR value equal to zero or the link

has a less frequent number of links generated (explained in chapter 4).

Univ
ers

ity
 of

 M
ala

ya

158

Figure 6.14: ROC graph for fake links=15 in total links=50

Figure 6.15: ROC graph for fake links=20 in total links=50

6.3.2 ROC graphs for 75 total number of links

In this section, we have explained the ROC graphs for 10 and 20 switches which have

75 total number of links. We have increased the total number of links such as from 50 to

75 links as discuss in the previous section. We have built the ROC graphs based on the

data shown in Tables (5.6- 5.25) in chapter 5. We have generated the ROC graph for the

Univ
ers

ity
 of

 M
ala

ya

159

lowest percentage value of sensitivity in each table as the highest value is same for all

experiments regarding fake links.

Figure 6.16 depicts the ROC graph for 10 and 20 switches with having one fake link

in the pool of 75 total number of links. The experiment # 5 in Table 5.11 of Chapter 5

shows that FoR-Guard does not detect the fake link because the MIR value of the switch

was zero at the time of the investigation. Therefore, the curves are plotted on top of the

diagonal reference line of the ROC graph. However, all experiments performed for 20

switches have detected the fake link which results in the curve to be plotted on top of the

leftmost line of the ROC space.

Figure 6.16: ROC graph for single fake link in total links=75

Figure 6.17 shows the comparison between the ROC curves for 05 fake links in 10 and

20 switches environment. The sensitivity of 10 switches is high than 20 switches.

Therefore, its curve is closer to the left most side of the ROC space. The curve for 20

switches is closer to the diagonal reference line. However, the sensitivity value of 20

switches is still good as its curve is plotted above the diagonal line. The top part of both

the curves in Figure 6.17 is horizontal to the upper part of the ROC graphs has FoR-Guard

determines all the legitimate links as legitimate links in SDN.

Univ
ers

ity
 of

 M
ala

ya

160

Figure 6.17: ROC graph for fake links=05 in total links=75

Figure 6.18 illustrates the ROC graphs generated based on the data of the Table 5.13

and 5.23 respectively. We can see that both the curves are plotted at the same points. The

true positive rate is same for both the curves. The curves have plotted points above the

diagonal reference line which indicates the FoR-Guard has good sensitivity rate with the

acceptable false positive rate.

Figure 6.19 shows the ROC curves generated from the data selected from the Tables

5.14 and 5.24. The FoR-Guard has detected all the fake links regarding 20 switches.

However, it does not detect 01 fake links in the pool of 15 fake links for 10 switches. It

is due to MIR value is zero because the attacker hides its identity by generating legitimate

links within SDN. Both the curves are plotted above the diagonal reference line which

indicates the better sign of the classification.

Figure 6.20 represents the graphical representation of the experiment # 9 and 7 in 10

and 20 switches respectively. The ROC curve of 10 switches is above the 20 switches

curve and much closer to the left side of the ROC space. The result shows higher true

positive rate for the 10 switches as compared to the 20 switches. Moreover, we have

concluded from our experiments that the detection of fake links is not affected by

Univ
ers

ity
 of

 M
ala

ya

161

increasing number of the switches, but it has some effect based on the total number of

fake links in SDN.

Figure 6.18: ROC graph for fake links=10 in total links=75

Figure 6.19: ROC graph for fake links=15 in total links=75

Univ
ers

ity
 of

 M
ala

ya

162

Figure 6.20: ROC graph for fake links=20 in total links=75

6.4 Comparison of FoR-Guard with existing solutions

In this section, we compare the performance of For-Guard with state-of-the-art

solutions such as TopoGuard and Sphinx based on the processing time. The TopoGuard

and Sphinx proposed solutions to detect LFA in SDN which are briefly explained in

Sections 2.4.3.1 and 2.4.3.2 of Chapter 2 respectively.

6.4.1 Processing time

In this section, we compare the processing time of our proposed method FoR-Guard

with the TopoGuard and Sphinx solutions. Herein, we present the results for 5 different

network traces having a different number of fake links. Each network trace is used for 10

and 20 number of switches to analyze the processing time of FoR-Guard, TopoGuard,

and Sphinx respectively. The processing time is less for FoR-Guard in all the network

traces.

6.4.1.1 Empirical results of 10 switches and 50 total links

Figure 6.21 presents the comparison of FoR-Guard processing time, with the Sphinx

and TopoGuard solutions in case of 10 switches and 50 total number of links. In this case,

FoR-Guard takes 12.497 microseconds, whereas processing time for TopoGuard and

Univ
ers

ity
 of

 M
ala

ya

163

Sphinx is 38.54 and 24.21 microseconds in identifying one fake link in 10 switches and

50 total number of links respectively. The increased in processing time of TopoGuard is

because the topology update checker module verifies the integrity of LLDP packet by

placing signature TLV value in LLDP packets which is the cryptographic value of DPID

and Port ID. Moreover, it also checks the LLDP propagation path to verify the LLDP is

generated from the switch.

The processing time of Sphinx is less than TopoGuard but higher than FoR-Guard

because it has to capture all the control OF messages to extract topological metadata from

it to detect the malicious behavior observe in the traffic. Moreover, it builds the network

graph from the metadata to detect the diversion of the flow behavior. Similarly, FoR-

Guard has 30.031 microseconds processing time as compared to TopoGuard and Sphinx

which have 89.94 and 68.49 microseconds respectively regarding 20 fake links.

Figure 6.21: Processing time comparison of FoR-Guard with TopoGuard and
Sphinx in switches=10 and total links=50

Statistical Validation

Univ
ers

ity
 of

 M
ala

ya

164

In the above section, we empirically analyze the processing time of FoR-Guard with

the available existing solutions such as TopoGuard and Sphinx regarding 10 switches and

50 total links. In this section, we analyze the comparison results obtained from the

experiments for FoR-Guard, TopoGuard, and Sphinx through statistical analysis. The

statistical analysis allows us to know how much FoR-Guard is significant regarding

processing time as compared to TopoGuard and Sphinx.

We used paired sample t-tests to validate the correctness of our empirical results

(Lakens, 2013). Table 6.1 shows the results for paired sample t-tests. The value of (t-

Stat) is 7.284325 and value of (p) are 0.001888. The result is significant as the value of p

≤ 0.05.

Table 6.1: Paired sample t-tests for switches=10 and total links=50

Comparison t-Stat P(T<=t) two-tail

FoR-Guard <-> TopoGuard 7.28432507 0.001887591

FoR-Guard <-> Sphinx 4.942772 0.007801

6.4.1.2 Empirical results of 10 switches and 75 total links

In Figure 6.22, we compare FoR-Guard with TopoGuard and Sphinx by increasing the

total number of links from 50 to 75. The results have shown that increasing total number

of links have more effect on the TopoGuard and Sphinx but have less effect on the FoR-

Guard. The TopoGuard processing time increases with the increasing number of the total

link because it has to insert the cryptographic values in the LLDP packets. However,

Sphinx processing time increases because it has to capture all OF control messages to

extract the topological information. The control messages increase with the increase in

total links. The FoR-Guard processing time is significantly less as compared to

TopoGuard and Sphinx due to checking MIR value of the switch that generates the link.

Statistical Validation

Univ
ers

ity
 of

 M
ala

ya

165

Table 6.2 shows the results for paired sample t-tests to validate the correctness of our

empirical comparison results. The value of P should be less than or equal to 0.005 to have

statistically significant difference between the two comparisons. The value of P is 0.005

and 0.002195 in comparison of FoR-Guard <-> TopoGuard and FoR-Guard <-> Sphinx

respectively. Thus, FoR-Guard has statistically significant values regarding processing

time with a comparison of TopoGuard and Sphinx.

Figure 6.22: Processing time comparison of FoR-Guard with TopoGuard and
Sphinx in switches=10 and total links=75

Table 6.2: Paired sample t-tests for switches=10 and total links=75

Comparison t-Stat P(T<=t) two-tail

FoR-Guard <-> TopoGuard 5.362788 0.005835

FoR-Guard <-> Sphinx 6.997278 0.002195

6.4.1.3 Empirical results of 20 switches and 50 total links

Figure 6.23 shows the processing time comparison of FoR-Guard with Sphinx and

TopoGuard solutions regarding 20 switches and 50 total number of links. In this case,

FoR-Guard takes 12.972 microseconds, whereas processing time for TopoGuard and

Univ
ers

ity
 of

 M
ala

ya

166

Sphinx is 49.75 and 30.74 microseconds in finding one fake link in 20 switches and 50

total number of links.

Figure 6.23: Processing time comparison of FoR-Guard with TopoGuard and
Sphinx in switches=20 and total links=50

The increase in a number of switches has no significant effect on the processing time

of FoR-Guard however, TopoGuard and Sphinx processing time is increased due to

marking the LLDP packets and building network graphs for each switch respectively. The

processing time of FoR-Guard for 15 fake links is 26.92 microseconds whereas,

TopoGuard and Sphinx have 92.47 and 59.39 microseconds respectively.

Statistical Validation

Table 6.3 depicts the statistical results of paired sample t-tests to validate the

correctness of comparison results of FoR-Guard with TopoGuard and Sphinx. The value

of t-Stat is 8.914161 and 5.610224 for FoR-Guard <-> TopoGuard and FoR-Guard <->

Sphinx respectively. Also, the value of P is 0.000875 and 0.004959 for FoR-Guard <->

TopoGuard and FoR-Guard <-> Sphinx respectively. The value of t-Stat and P shows that

the comparison results is valid regarding the significance difference available between

FoR-Guard and existing solutions such as TopoGuard and Sphinx.

Univ
ers

ity
 of

 M
ala

ya

167

Table 6.3: Paired sample t-tests for switches=20 and total links=50

Comparison t-Stat P(T<=t) two-tail

FoR-Guard <-> TopoGuard 8.914161 0.000875

FoR-Guard <-> Sphinx 5.610224 0.004959

6.4.1.4 Empirical results of 20 switches and 75 total links

As mentioned above, the increase in a number of switches and links have no significant

impact on the processing time of FoR-Guard whereas, it affect the processing time of

TopoGuard and Sphinx. In the case of 10 fake links, FoR-Guard has a processing time of

31.63 microseconds whereas TopoGuard and Sphinx have 125.41 and 69.88

microseconds respectively as shown in Figure 6.24. In the case of 20 fake links, For Guard

has a processing time of 34.72 microseconds whereas TopoGuard and Sphinx have

198.21 and 99.45 microseconds respectively.

Figure 6.24: Processing time comparison of FoR-Guard with TopoGuard and
Sphinx in switches=20 and total links=75

Univ
ers

ity
 of

 M
ala

ya

168

Statistical Validation

Table 6.4 presents the statistical results of paired sample t-tests to validate the

correctness of comparison results of FoR-Guard with TopoGuard and Sphinx in 20

switches and 75 total links. The value of t-Stat is 5.563618 and 7.102225 for FoR-Guard

<-> TopoGuard and FoR-Guard <-> Sphinx respectively. Also, the value of P is 0.005 and

0.002076 for FoR-Guard <-> TopoGuard and FoR-Guard <-> Sphinx respectively. The

value of P is less than or equal than 0.005 which indicates the comparison difference

between FoR-Guard and existing solutions such as TopoGuard and Sphinx is significant.

Table 6.4: Paired sample t-tests for switches=20 and total links=75

Comparison t-Stat P(T<=t) two-tail

FoR-Guard <-> TopoGuard 5.563618 0.005111

FoR-Guard <-> Sphinx 7.102225 0.002076

6.5 Conclusion

This chapter presents the graphical representation of the experimental results for the

FoR-Guard method regarding controller processing time and detection accuracy

regarding detecting and identifying fake links in SDN. The experiment was conducted

based on specific criteria such as (a) number of switches, (b) number of total links, and

the (c) number of fake links. The processing time of each phase of FoR-Guard was tested

based on the criteria mentioned above. The processing time of the trigger phase is high

as compared to other two phase, i.e., DeSI and validation phases because the controller

has to discover network nodes in each topology discovery round. The validation phase of

FoR-Guard has less processing time because the controller has to compute entropy value

for each switch based on the information available from the DeSI phase.

Moreover, the performance of the FoR-Guard in detecting fake links was analyzed

through plotting ROC graphs to know about the tradeoff between the sensitivity and false

alarm rate. Mostly, the ROC curves plotted above the diagonal curve in ROC graphs,

Univ
ers

ity
 of

 M
ala

ya

169

mentioning that the detection rate of FoR-Guard is effective. To validate the performance

of FoR-Guard, we perform a comparison with TopoGuard and Sphinx by measuring their

processing time. The processing time of trigger and DeSI phases is used for FoR-Guard

in comparing the results with TopoGuard and Sphinx because the validation phase is not

available in the latter solutions.

We also validated the results by using the paired sample t-tests to study whether there

is a significant difference between the mean values of the experimental results or not. The

result concludes that there is a significant difference between FoR-Guard and existing

solutions such as TopoGuard and Sphinx regarding the controller processing time. Thus,

it makes FoR-Guard efficient from TopoGuard and Sphinx in detecting fake links in

SDN.

Univ
ers

ity
 of

 M
ala

ya

170

CHAPTER 7: CONCLUSION

This chapter concludes the overall research presented in this thesis and highlights the

future research directions. We re-examine the research objectives by re-evaluating them

again to ensure that we have accomplished it in our thesis. Moreover, the contribution of

the research has been highlighted, and research scope with its limitations has been

discussed. Finally, the future work has been highlighted to improve this research.

The complete organization of this chapter is as follows. Section 7.1 describes the

different ways that how the research objectives were fulfilled. Section 7.2 highlights the

main contribution of the research. Section 7.3 examines the research scope and limitation

of the research work. Section 7.4 highlights the future work which can further improve

this research work.

7.1 Achievement of research objectives

The main purpose of this study is to investigate the problem of LFA in SDN. The

proposed method is capable of having a dynamic triggering mechanism, efficient

detection and source identification method, and validation process. In following, it has

been shown that four research objectives have been achieved which was highlighted in

Section 1.4 of Chapter 1.

The first research objective was to review the state-of-the-art topology poisoning

attack techniques to have insight about the LFA in SDN. First, topology discovery process

of SDN is studied by devising a thematic taxonomy. Second, different topology discovery

threats are classified to gain enough knowledge about how the adversary performs the

malicious behavior to affect the network topology. It enables to focus specifically on fake

links generated in the network topology during the time of LFA. Third, we have studied

different research articles related topology discovery security collected from various

digital libraries including Science Direct, IEEE, Springer, ACM, and Elsevier. Also, we

continue to read and study various SDN security web pages and web blogs to have

Univ
ers

ity
 of

 M
ala

ya

171

updated knowledge about SDN security including topology discovery, LFA, and

controller vulnerabilities. A qualitative analysis is performed on the collected research

materials which lead to identifying the open research issues for the security of topology

discovery in SDN.

The second objective was to formally investigate and analyze the impact of fake links

in the network topology of SDN. We first formally represent the SDN infrastructure

through HOL formal methods. After that, we represent SDN as a service through HOL

with unique identification protocols such as service name, service version, service

protocol, the port used for service communication, and access policy. Moreover, LFA is

formally represented with a HOL and analyzed through various parameters including

effectiveness, sensitivity, specificity, and false alarm rate. It establishes the problem of

LFA in SDN as non-trivial.

The third objective was to design and develop the method to detect the fake links in

SDN along with its identification of malicious sources. A forensic investigation method

has been proposed to address the issue of LFA in SDN. The proposed method used a

dynamic triggering mechanism to trigger the DeSI phase to minimize the processing time

of the controller in investigating fake links. The trigger phase of the proposed method

reduces the controller overhead by only triggering a message for the links generated from

the malicious switches as compared to the current techniques which investigate all the

new inserted links in the network topology. The detection and source identification phase

of the proposed method investigate the suspicious link by looking towards the LCD and

MIR of the switch. It reduces false alarm rates by investigating metadata of the malicious

links and switches to detect the fake links in the network topology. The proposed method

also reduce the computation overhead of the controller by avoiding complex algorithms

used to detect the fake links. After the detection of the fake link, a traceback technique is

used to identify the real source of the attack to mitigate the attack in the future. The source

Univ
ers

ity
 of

 M
ala

ya

172

of the fake link is verified in the validation phase of our proposed method by using

entropy measurement. The entropy determines the uncertainty in the network generated

through the fake links which lead towards source identification of the LFA.

The final objective was to evaluate the performance of the proposed method with the

state-of-the-art LFA solutions. The proposed solution has been implemented in SDN

emulated environment by using Mininet and Floodlight controller version 1.0. The

performance verification of the proposed method was done through different metrics

namely, effectiveness, sensitivity, specificity, and false alarm rates. The experimental

results have shown that the proposed method performs better than existing solutions

regarding controller processing time, computation overhead, and false alarm rate as

compared to the state-of-the-art solutions.

7.2 Contribution of the research

In this section, we explain some contributions to the body of knowledge which are

summarized as follows.

7.2.1 Thematic taxonomy

We devise a thematic taxonomy of topology discovery in SDN to have a conceptual

knowledge of topology discovery by grouping the concepts that participate in the same

scenario. The taxonomy is classified into four different categories by topology discovery

features namely, discovery entities, controller platform, topology-dependent services, and

objectives.

We aim to analyze the critical aspect of the state-of-the-art topology discovery security

techniques and compare the techniques by significant parameters. The literature review

helps us to identify open issues of the topology discovery security solutions that need to

be addressed.

Univ
ers

ity
 of

 M
ala

ya

173

7.2.2 Formal representation of SDN

We contribute to the body of knowledge by representing SDN as an HOL formal

method. The HOL assist network operators in protecting the systems or network from

unexpected errors that might not be detected at the time of development and deployment.

Similarly, it is important to verify the security properties of the programs that control the

network before it is deployed in SDN for its execution.

Thus, an effective approach to check and ensure the security of these programs or

systems is to use HOL formal methods. Thus, we formally modelled the LFA using HOL

formal methods. The LFA is analyzed through various performance metrics namely,

effectiveness, sensitivity, specificity, and false alarm rate.

7.2.3 Dynamic trigger mechanism for fake links

The next contribution of this research is a proposed dynamic trigger mechanism which

triggers an alarm message to the DeSI phase (second phase of our proposed method) on

the observation of the suspicious link. The dynamic trigger mechanism reduces the

processing time of the controller by investigating only the links which have been

generated by the malicious switches.

The malicious switches are identified through the MIR value which has been generated

based on their historical link generation stats. Thus, dynamic trigger mechanism allows

the controller to have less computational cost due to only investigating suspicious links

rather than investigating all newly generated links in the network topology.

7.2.4 Algorithms for detection and source identification of fake links

We have designed and developed three algorithms to detect and determine the real

source of fake links in SDN. The developed modules assist the controller to identify the

status of the link such as a legitimate or fake link. The proposed algorithms acquire

malicious switch information (MIR) from the previous phase and identify the link

communication direction (LCD) of the link which is under investigation.

Univ
ers

ity
 of

 M
ala

ya

174

The integration of MIR and LCD enables the controller to identify the status of the

link. If the status of the link is declared as a fake link then the proposed algorithm trace

back the malicious source of the fake link. Otherwise, the controller is informed to update

its network topology due to the legitimate link.

7.2.5 Validation of source identification

This contribution strengthens our research work by validating the source of the fake

link that has been identified in the detection phase of our proposed method. The source

identification is an important characteristic of the forensic investigation which leads the

controller to prevent the attack in the future. We validate the source of the fake links

through the concept of information theory such as entropy measurement.

The entropy is used as a tool to confirm that the source of the fake link identified

previously is correct or not. It may create some extra computational burden on the

controller, but it assists the controller to update the network topology with correct

information.

7.2.6 FoR-Guard Evaluation

We contribute to the knowledge by evaluating our proposed method with the state-of-

the-art solutions which detects the fake links in the network topology. The results verify

that FoR-Guard used less processing time of the controller to detect the fake links as

compared to the current solutions. Moreover, the forensic aspect of the FoR-Guard leads

to identify the real source of the fake links which can be prevented through efficient

mitigation techniques.

7.2.7 Accepted journal articles from thesis

1. Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Mohsen

Guizani, and Muhammad Khurram Khan, Topology Discovery in Software Defined

Networks: Threats, Taxonomy, and State-of-the-art, IEEE Communications Surveys &

Tutorials, Accepted 19 July 2016 (ISI, Q1, Impact Factor: 9.22)

Univ
ers

ity
 of

 M
ala

ya

175

2. Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Ahmed

Abdelaziz, Muhammad Khurram Khan, and Mohsen Guizani, Software-defined Network

Forensics: Motivation, Potential Locations, Requirements, and Challenges, IEEE

Networks, Accepted 23 August 2016 (ISI Q1, Impact Factor: 2.88)

7.2.8 Accepted journal articles in other research areas

1. Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Muhammad

Shiraz, Mustapha Aminu Bagiwa, Samee U. Khan, Raj Kumar Buyya, and Albert Y.

Zomaya, Cloud Log Forensics: Foundations, State-of-the-art, and Future Directions,

ACM Computing Surveys, Volume 49 Issue 1, June 2016

Article No. 7 (ISI Q1, Impact Factor: 3.37)

2. Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Muhammad

Shiraz, and Iftikhar Ahmad, Network Forensics: Review, Taxonomy, and Open

Challenges, Journal of Network and Computer Applications, Volume 66, May 2016,

Pages 214–235 (ISI, Q1, Impact Factor: 2.22)

3. Suleman Khan, Muhammad Shiraz, Ainuddin Wahid Abdul Wahab, Abdullah

Gani, Qi Han, and Zulkanain Bin Abdul Rahman, A Comprehensive Review on

Adaptability of Network Forensics Frameworks for Mobile Cloud Computing, The

Scientific World Journal, July 2014, Pages 27 (ISI Q1, Impact Factor 1.73)

7.2.9 Accepted journal articles in collaboration with group members

1. Thomas, Bimba Andrew, Norisma Idris, Ahmed Al-Hnaiyyan, Rohana Binti

Mahmud, Ahmed Abdelaziz, Suleman Khan, and Victor Chang. "Towards Knowledge

Modeling and Manipulation Technologies: A Survey." International Journal of

Information Management, Volume 36, Issue 6, Part A, December 2016, Pages 857–871

(ISI, Q1, Impact Factor: 2.69)

2. Mahdi, Omar Adil, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris,

Ammar Abu Znaid, Yusor Rafid Bahar Al-Mayouf, and Suleman Khan. WDARS: A

Univ
ers

ity
 of

 M
ala

ya

http://dl.acm.org/citation.cfm?id=2906149
http://www.sciencedirect.com/science/article/pii/S1084804516300121
http://www.sciencedirect.com/science/article/pii/S1084804516300121
http://www.sciencedirect.com/science/journal/10848045/66/supp/C
http://www.sciencedirect.com/science/journal/02684012/36/6/supp/PA

176

Weighted Data Aggregation Routing Strategy with Minimum Link Cost in Event-Driven

WSNs, Journal of Sensors, Accepted 25 May 2016 (ISI, Q3, Impact Factor: 1.18)

3. Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna

Idris, and Suleman Khan, Digital Video Inpainting Detection Using Correlation Of

Hessian Matrix, Malaysian Journal of Computer Science, Accepted 11 May 2015 (ISI,

Q4, Impact Factor: 0.40)

4. Shiraz, Muhammad, Abdullah Gani, Azra Shamim, Suleman Khan, and Raja

Wasim Ahmad. Energy efficient computational offloading framework for mobile cloud

computing, Journal of Grid Computing, Vol 13, Issue 1, March 2015, Pages 1-18. (ISI,

Q1, Impact Factor: 1.50)

5. Qi, Han, Muhammad Shiraz, Abdullah Gani, Md Whaiduzzaman, and Suleman

Khan, Sierpinski triangle based data center architecture in cloud computing, The Journal

of Supercomputing, Vol 69, Issue 2, August 2014, Pages 887-907 (ISI, Q2, Impact

Factor: 0.84)

6. Gani, Abdullah, Golam Mokatder Nayeem, Muhammad Shiraz, Mehdi Sookhak,

Md Whaiduzzaman, and Suleman Khan. A review on interworking and mobility

techniques for seamless connectivity in mobile cloud computing, Journal of Network and

Computer Applications, Vol 43, August 2014, Pages 84–102 (ISI, Q1, Impact Factor:

1.77)

7.3 Research scopes and limitations

The proposed forensic investigation method of LFA is effective for all types of SDN

controllers. The proposed modules in the proposed method are capable enough to detect

single and multiple fake links in the network topology. Moreover, the abstract level of

design and development of the modules enables to be adapted to the multiple SDN

controller environments. Thus, it increases the scalability factor of the forensic

investigation in SDN with an incorporating minimum level of design efforts.

Univ
ers

ity
 of

 M
ala

ya

http://www.sciencedirect.com/science/journal/10848045/43/supp/C

177

The third phase of the proposed method, i.e., validation phase verifies the real source

of the fake links with an execution and computational cost of the controller. The

validation phase has been integrated into the proposed solution to verify the real source

as it is considered to be an important factor in investigating the attack. Also, the proposed

method depends on both MIR switch information and LCD of the link and assumes that

each of the information will be untampered from any modification. The fake link cannot

be identified correctly when the switch information is spoofed which provides incorrect

information to the modules running in the controller. Finally, the proposed modules have

been executed in the Floodlight controller 1.0 in the Mininet emulation environment and

are not guaranteed to work on other versions of the controllers.

7.4 Future work

In this section, we enlist a possible future work that can be elevated from this research

study.

1. In this research study, we have only target LFA which poison the topological view

of the controller in SDN. However, there include other possible ways to poison the

topological view of the controller. For instance, host hijacking attacks in which the

controller is informed with spoof host location information which pretends the host is

migrated to another new location in the network. However, the host remains at its

previous location and the controller start sending the information to the wrong location

that has been pretended by the malicious host. It may cause eavesdropping of information

which may further assist in other attacks.

2. We aim to detect the LFA in heterogeneous OF environment where OF switches

communicate with non-OF switches. Our research study has focused the fake links in the

network having only OF switches. In future, we are going to implement our proposed

modules in heterogeneous OF environment to validate the performance of our proposed

method.

Univ
ers

ity
 of

 M
ala

ya

178

3. We also aim to address the issue of predicting the communication patterns of the

link to assist the controller in identifying the fake links in SDN. The communication

pattern of the link traffic will enable the controller to identify the behavior of the

malicious switches, especially in highly dynamic SDN environment.

4. The authentication mechanism of the LLDP packets can significantly reduce the

fake links in SDN. The integration of such a mechanism can improve the efficiency and

reliability of the topology discovery process in SDN. It will lead towards an improvement

in the throughput of the application-dependent services running on top of the controller.

Univ
ers

ity
 of

 M
ala

ya

179

REFERENCES

Akyildiz, Ian F, Lee, Ahyoung, Wang, Pu, Luo, Min, & Chou, Wu. (2014). A roadmap
for traffic engineering in SDN-OpenFlow networks. Computer Networks, 71, 1-
30.

Akyildiz, Ian F, Lee, Ahyoung, Wang, Pu, Luo, Min, & Chou, Wu. (2016). Research
challenges for traffic engineering in software defined networks. IEEE Network,
30(3), 52-58.

Alharbi, Talal, Portmann, Marius, & Pakzad, Farzaneh. (2015). The (In) Security of
Topology Discovery in Software Defined Networks. Paper presented at the Local
Computer Networks (LCN), 2015 IEEE 40th Conference on.

Antikainen, Markku, Aura, Tuomas, & Särelä, Mikko. (2014). Spook in Your Network:
Attacking an SDN with a Compromised OpenFlow Switch Secure IT Systems (pp.
229-244): Springer.

Aslan, Mohamed, & Matrawy, Ashraf. (2016). On the Impact of Network State Collection
on the Performance of SDN Applications.

Bakshi, Kapil. (2013). Considerations for software defined networking (SDN):
Approaches and use cases. Paper presented at the Aerospace Conference, 2013
IEEE.

Banikazemi, Mohammad, Olshefski, David, Shaikh, Ali, Tracey, John, & Wang, Guohui.
(2013). Meridian: an SDN platform for cloud network services. Communications
Magazine, IEEE, 51(2), 120-127.

Berde, Pankaj, Gerola, Matteo, Hart, Jonathan, Higuchi, Yuta, Kobayashi, Masayoshi,
Koide, Toshio, . . . Snow, William. (2014). ONOS: towards an open, distributed
SDN OS. Paper presented at the Proceedings of the third workshop on Hot topics
in software defined networking.

Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2016). Survey on Network
Virtualization Hypervisors for Software Defined Networking. IEEE
Communications Surveys & Tutorials, 18(1), 655-685. doi:
10.1109/COMST.2015.2489183

Braun, Wolfgang, & Menth, Michael. (2014). Software-Defined Networking using
OpenFlow: Protocols, applications and architectural design choices. Future
Internet, 6(2), 302-336.

Cho, Sungryung, Chung, Sungmoon, Lee, Wooyeob, Joe, Inwhee, Park, Jeman, Lee,
Soohyung, & Kim, Wontae. (2015). An Software Defined Networking
Architecture Design Based on Topic Learning-Enabled Data Distribution Service
Middleware. Advanced Science Letters, 21(3), 461-464.

Choudhary, Jagjit. (2010). Distributed BPDU processing for spanning tree protocols:
Google Patents.

Univ
ers

ity
 of

 M
ala

ya

180

Chowdhury, Shubhajit Roy, Bari, M Faizul, Ahmed, Rizwan, & Boutaba, Raouf. (2014).
Payless: A low cost network monitoring framework for software defined networks.
Paper presented at the Network Operations and Management Symposium
(NOMS), 2014 IEEE.

Chung, Chun-Jen, Khatkar, Pankaj, Xing, Tianyi, Lee, Jeongkeun, & Huang, Dijiang.
(2013). NICE: Network intrusion detection and countermeasure selection in
virtual network systems. Dependable and Secure Computing, IEEE Transactions
on, 10(4), 198-211.

Civanlar, Seyhan, Lokman, Erhan, Kaytaz, Bulent, & Murat Tekalp, A. (2015).
Distributed management of service-enabled flow-paths across multiple SDN
domains. Paper presented at the Networks and Communications (EuCNC), 2015
European Conference on.

Clausen, Thomas, Jacquet, Philippe, Adjih, Cédric, Laouiti, Anis, Minet, Pascale,
Muhlethaler, Paul, . . . Viennot, Laurent. (2003). Optimized link state routing
protocol (OLSR).

Cui, Laizhong, Yu, F Richard, & Yan, Qiao. (2016). When big data meets software-
defined networking: SDN for big data and big data for SDN. Network, IEEE,
30(1), 58-65.

Darren, Bounds (2016). Packit Network Injection and Capture. Retrieved 18-09-2016,
2016, from http://packetfactory.openwall.net/projects/packit/

de Oliveira, Rogério Leão Santos, Schweitzer, Christiane Marie, Shinoda, Ailton Akira,
& Prete, Ligia Rodrigues. (2014). Using mininet for emulation and prototyping
software-defined networks. Paper presented at the Communications and
Computing (COLCOM), 2014 IEEE Colombian Conference on.

Dhawan, Mohan, Poddar, Rishabh, Mahajan, Kshiteej, & Mann, Vijay. (2015). SPHINX:
Detecting Security Attacks in Software-Defined Networks. Paper presented at the
NDSS.

Dixit, Advait, Hao, Fang, Mukherjee, Sarit, Lakshman, TV, & Kompella, Ramana.
(2013). Towards an elastic distributed SDN controller. ACM SIGCOMM
Computer Communication Review, 43(4), 7-12.

Dixon, Colin, Olshefski, David, Jain, Vinesh, Decusatis, Casimer, Felter, Wes, Carter,
Jenny, . . . Recio, Renato. (2014). Software defined networking to support the
software defined environment. IBM Journal of Research and Development,
58(2/3), 3: 1-3: 14.

Dover, Jeremy M. (2013). A denial of service attack against the Open Floodlight SDN
controller: Dover Networks LCC.

Drutskoy, Dmitry, Keller, Eric, & Rexford, Jennifer. (2013). Scalable network
virtualization in software-defined networks. Internet Computing, IEEE, 17(2), 20-
27.

Univ
ers

ity
 of

 M
ala

ya

http://packetfactory.openwall.net/projects/packit/

181

Feamster, Nick, Rexford, Jennifer, & Zegura, Ellen. (2014). The road to SDN: an
intellectual history of programmable networks. ACM SIGCOMM Computer
Communication Review, 44(2), 87-98.

Fonseca, Paulo, Bennesby, Ricardo, Mota, Edjard, & Passito, Alexandre. (2012). A
replication component for resilient OpenFlow-based networking. Paper presented
at the Network Operations and Management Symposium (NOMS), 2012 IEEE.

Gani, Abdullah, Nayeem, Golam Mokatder, Shiraz, Muhammad, Sookhak, Mehdi,
Whaiduzzaman, Md, & Khan, Suleman. (2014). A review on interworking and
mobility techniques for seamless connectivity in mobile cloud computing.
Journal of Network and Computer Applications, 43, 84-102.

Goncalves, Patricia, Martins, Alfredo, Corujo, Daniel, & Aguiar, Rui. (2014). A fail-safe
SDN bridging platform for cloud networks. Paper presented at the
Telecommunications Network Strategy and Planning Symposium (Networks),
2014 16th International.

Hakiri, Akram, Gokhale, Aniruddha, Berthou, Pascal, Schmidt, Douglas C, & Gayraud,
Thierry. (2014). Software-defined networking: Challenges and research
opportunities for future internet. Computer Networks, 75, 453-471.

Haleplidis, Evangelos, Pentikousis, Kostas, Denazis, Spyros, Salim, J Hadi, Meyer,
David, & Koufopavlou, Odysseas. (2015). Software-defined networking (sdn):
Layers and architecture terminology.

Hamel, Danielle. (2014). New Juniper Networks Study Finds U.S. Companies Split on
Adopting Software-Defined Networking. Retrieved from
http://newsroom.juniper.net/press-releases/new-juniper-networks-study-finds-u-
s-companies-sp-nyse-jnpr-1134411

Heller, Brandon, Sherwood, Rob, & McKeown, Nick. (2012). The controller placement
problem. Paper presented at the Proceedings of the first workshop on Hot topics
in software defined networks.

Hollander, Jeremy. (2007). A Link Layer Discovery Protocol Fuzzer: Citeseer.

Hong, Sungmin, Xu, Lei, Wang, Haopei, & Gu, Guofei. (2015). Poisoning Network
Visibility in Software-Defined Networks: New Attacks and Countermeasures.
Paper presented at the NDSS.

Hu, Hongxin, Han, Wonkyu, Ahn, Gail-Joon, & Zhao, Ziming. (2014). FLOWGUARD:
building robust firewalls for software-defined networks. Paper presented at the
Proceedings of the third workshop on Hot topics in software defined networking.

Hu, Zhiyuan, Wang, Mingwen, Yan, Xueqiang, Yin, Yueming, & Luo, Zhigang. (2015).
A comprehensive security architecture for SDN. Paper presented at the
Intelligence in Next Generation Networks (ICIN), 2015 18th International
Conference on.

Hwang, Sungmin, & Kim, Kyungbaek. Middlebox Driven Security Threats in Software
Defined Network.

Univ
ers

ity
 of

 M
ala

ya

http://newsroom.juniper.net/press-releases/new-juniper-networks-study-finds-u-s-companies-sp-nyse-jnpr-1134411
http://newsroom.juniper.net/press-releases/new-juniper-networks-study-finds-u-s-companies-sp-nyse-jnpr-1134411

182

Jajodia, Sushil, Noel, Steven, & O’Berry, Brian. (2005). Topological analysis of network
attack vulnerability Managing Cyber Threats (pp. 247-266): Springer.

Jarraya, Yosr, Madi, Taous, & Debbabi, Mourad. (2014). A survey and a layered
taxonomy of software-defined networking. Communications Surveys & Tutorials,
IEEE, 16(4), 1955-1980.

Jarschel, Michael, Wamser, Florian, Hohn, Thomas, Zinner, Thomas, & Tran-Gia, Phuoc.
(2013). Sdn-based application-aware networking on the example of youtube video
streaming. Paper presented at the Software Defined Networks (EWSDN), 2013
Second European Workshop on.

Jim, Metzler. (2012). Understanding Software-Defined Networks InformationWeek
Software-Defined Networking Survey (pp. 1-26). North America:
InformationWeek Reports.

Kamisiński, Andrzej, & Fung, Carol. (2015). FlowMon: Detecting Malicious Switches in
Software-Defined Networks. Paper presented at the Proceedings of the 2015
Workshop on Automated Decision Making for Active Cyber Defense.

Karakus, Murat, & Durresi, Arjan. (2015). A Scalable Inter-AS QoS Routing Architecture
in Software Defined Network (SDN). Paper presented at the Advanced
Information Networking and Applications (AINA), 2015 IEEE 29th International
Conference on.

Karimzadeh, Morteza, Valtulina, Luca, & Karagiannis, Georgios. (2014). Applying
sdn/openflow in virtualized lte to support distributed mobility management
(dmm).

Katz, Dave, Kompella, K, & Yeung, D. (2003). Traffic engineering (TE) extensions to
OSPF version 2: RFC 3630, September.

Kempf, James, Bellagamba, Elisa, Kern, András, Jocha, David, Takács, Attila, &
Sköldström, Pontus. (2012). Scalable fault management for OpenFlow. Paper
presented at the Communications (ICC), 2012 IEEE International Conference on.

Khan, S., Gani, A., Wahab, A. Abdul, Guizani, M., & Khan, M. K. (2016). Topology
Discovery in Software Defined Networks: Threats, Taxonomy, and State-of-the-
art. IEEE Communications Surveys & Tutorials, PP(99), 1-1. doi:
10.1109/COMST.2016.2597193

Khan, Suleman, Ahmad, Ejaz, Shiraz, Muhammad, Gani, Abdullah, Wahab, Ainuddin
Wahid Abdul, & Bagiwa, Mustapha Aminu. (2014). Forensic challenges in
mobile cloud computing. Paper presented at the Computer, Communications, and
Control Technology (I4CT), 2014 International Conference on.

Khan, Suleman, Gani, Abdullah, Wahab, Ainuddin Wahid Abdul, & Bagiwa, Mustapha
Aminu. (2015). SIDNFF: Source identification network forensics framework for
cloud computing. Paper presented at the Consumer Electronics-Taiwan (ICCE-
TW), 2015 IEEE International Conference on.

Univ
ers

ity
 of

 M
ala

ya

183

Khan, Suleman, Gani, Abdullah, Wahab, Ainuddin Wahid Abdul, Shiraz, Muhammad,
& Ahmad, Iftikhar. (2016). Network forensics: Review, taxonomy, and open
challenges. Journal of Network and Computer Applications, 66, 214-235.

Khan, Suleman, Shiraz, Muhammad, Abdul Wahab, Ainuddin Wahid, Gani, Abdullah,
Han, Qi, & Bin Abdul Rahman, Zulkanain. (2014). A comprehensive review on
adaptability of network forensics frameworks for mobile cloud computing. The
Scientific World Journal, 2014.

Klaedtke, Felix, Karame, Ghassan O, Bifulco, Roberto, & Cui, Heng. (2015). Towards
an access control scheme for accessing flows in SDN. Paper presented at the
Network Softwarization (NetSoft), 2015 1st IEEE Conference on.

Kloti, Rowan, Kotronis, Vasileios, & Smith, Paul. (2013). OpenFlow: A security
analysis. Paper presented at the Network Protocols (ICNP), 2013 21st IEEE
International Conference on.

Kotronis, Vasileios, Dimitropoulos, Xenofontas, & Ager, Bernhard. (2012). Outsourcing
the routing control logic: Better Internet routing based on SDN principles. Paper
presented at the Proceedings of the 11th ACM Workshop on Hot Topics in
Networks.

Kreutz, Diego, Ramos, Fernando MV, Esteves Verissimo, P, Esteve Rothenberg, C,
Azodolmolky, Siamak, & Uhlig, Steve. (2015). Software-defined networking: A
comprehensive survey. Proceedings of the IEEE, 103(1), 14-76.

Kreutz, Diego, Ramos, Fernando, & Verissimo, Paulo. (2013). Towards secure and
dependable software-defined networks. Paper presented at the Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking.

Lakens, Daniël. (2013). Calculating and reporting effect sizes to facilitate cumulative
science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4,
863.

Lee, Seungsoo, Yoon, Changhoon, & Shin, Seungwon. (2016). The Smaller, the
Shrewder: A Simple Malicious Application Can Kill an Entire SDN Environment.
Paper presented at the Proceedings of the 2016 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization.

Li, He, Li, Peng, Guo, Song, & Nayak, Amiya. (2014). Byzantine-resilient secure
software-defined networks with multiple controllers in cloud. Cloud Computing,
IEEE Transactions on, 2(4), 436-447.

Li, Li Erran, Mao, Z Morley, & Rexford, Jennifer. (2012). Toward software-defined
cellular networks. Paper presented at the Software Defined Networking
(EWSDN), 2012 European Workshop on.

Mahdi, Omar Adil, Wahab, Ainuddin Wahid Abdul, Idris, Mohd Yamani Idna, Znaid,
Ammar Abu, Al-Mayouf, Yusor Rafid Bahar, & Khan, Suleman. WDARS: A
Weighted Data Aggregation Routing Strategy with Minimum Link Cost in Event-
Driven WSNs.

Univ
ers

ity
 of

 M
ala

ya

184

Mayoral, A, Vilalta, R, Muñoz, R, Casellas, R, & Martinez, R. (2015). Experimental
Seamless Virtual Machine Migration Using a SDN IT and Network Orchestrator.

McKeown, Nick, Anderson, Tom, Balakrishnan, Hari, Parulkar, Guru, Peterson, Larry,
Rexford, Jennifer, . . . Turner, Jonathan. (2008). OpenFlow: enabling innovation
in campus networks. ACM SIGCOMM Computer Communication Review, 38(2),
69-74.

Mizrak, Alper Tugay, Cheng, Yu-Chung, Marzullo, Keith, & Savage, Stefan. (2006).
Detecting and isolating malicious routers. Dependable and Secure Computing,
IEEE Transactions on, 3(3), 230-244.

Mogul, Jeffrey C, AuYoung, Alvin, Banerjee, Sujata, Popa, Lucian, Lee, Jeongkeun,
Mudigonda, Jayaram, . . . Turner, Yoshio. (2013). Corybantic: towards the
modular composition of SDN control programs. Paper presented at the
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks.

Monaco, Matthew, Michel, Oliver, & Keller, Eric. (2013). Applying operating system
principles to SDN controller design. Paper presented at the Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks.

Moshref, Masoud, Bhargava, Apoorv, Gupta, Adhip, Yu, Minlan, & Govindan, Ramesh.
(2014). Flow-level state transition as a new switch primitive for SDN. Paper
presented at the Proceedings of the third workshop on Hot topics in software
defined networking.

Moy, J, Pillay-Esnault, Padma, & Lindem, Acee. (2003). Graceful OSPF restart.
RFC3623, November.

Moy, John T. (1998). OSPF: anatomy of an Internet routing protocol: Addison-Wesley
Professional.

Nadeau, Thomas D, & Gray, Ken. (2013). SDN: software defined networks: " O'Reilly
Media, Inc.".

Nakagawa, Shinichi, & Cuthill, Innes C. (2007). Effect size, confidence interval and
statistical significance: a practical guide for biologists. Biological Reviews, 82(4),
591-605.

Namal, Suneth, Ahmad, Ishtiaq, Gurtov, Andrei, & Ylianttila, Mika. (2013a). Enabling
secure mobility with openflow. Paper presented at the Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for.

Namal, Suneth, Ahmad, Ishtiaq, Gurtov, Andrei, & Ylianttila, Mika. (2013b). Sdn based
inter-technology load balancing leveraged by flow admission control. Paper
presented at the Future Networks and Services (SDN4FNS), 2013 IEEE SDN for.

Nelson, Tim, Ferguson, Andrew D, Scheer, Michael JG, & Krishnamurthi, Shriram.
(2014). Tierless programming and reasoning for software-defined networks.
Paper presented at the 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14).

Univ
ers

ity
 of

 M
ala

ya

185

Nunes, Bruno AA, Mendonca, Manoel, Nguyen, Xuan-Nam, Obraczka, Katia, & Turletti,
Thierry. (2014). A survey of software-defined networking: Past, present, and
future of programmable networks. Communications Surveys & Tutorials, IEEE,
16(3), 1617-1634.

Nunes, Bruno Astuto A, Mendonca, Marc, Nguyen, Xuan-Nam, Obraczka, Katia, &
Turletti, Thierry. (2014). A survey of software-defined networking: Past, present,
and future of programmable networks. IEEE Communications Surveys &
Tutorials, 16(3), 1617-1634.

Nunes, Bruno, Mendonca, Manoel, Nguyen, Xuan-Nam, Obraczka, Katia, & Turletti,
Thierry. (2014). A survey of software-defined networking: Past, present, and
future of programmable networks. Communications Surveys & Tutorials, IEEE,
16(3), 1617-1634.

Ochoa Aday, Leonardo, Cervelló Pastor, Cristina, & Fernández Fernández, Adriana.
(2015). Current Trends of Topology Discovery in OpenFlow-based Software
Defined Networks.

Ornaghi, Alberto, & Valleri, Marco. (2003). Man in the middle attacks. Paper presented
at the Blackhat Conference Europe.

Padmanabhan, Venkata N, & Simon, Daniel R. (2003). Secure traceroute to detect faulty
or malicious routing. ACM SIGCOMM Computer Communication Review, 33(1),
77-82.

Pakzad, Farzaneh, Portmann, Marius, Tan, Wee Lum, & Indulska, Jadwiga. (2014).
Efficient topology discovery in software defined networks. Paper presented at the
Signal Processing and Communication Systems (ICSPCS), 2014 8th International
Conference on.

Pakzad, Farzaneh, Portmann, Marius, Tan, Wee Lum, & Indulska, Jadwiga. (2015).
Efficient topology discovery in OpenFlow-based Software Defined Networks.
Computer Communications.

Pei, Dan, Massey, Dan, & Zhang, Lixia. (2003). Detection of invalid routing
announcements in rip protocol. Paper presented at the Global
Telecommunications Conference, 2003. GLOBECOM'03. IEEE.

Phemius, Kévin, Bouet, Mathieu, & Leguay, Jérémie. (2014). Disco: Distributed multi-
domain sdn controllers. Paper presented at the Network Operations and
Management Symposium (NOMS), 2014 IEEE.

Qazi, Zafar Ayyub, Lee, Jeongkeun, Jin, Tao, Bellala, Gowtham, Arndt, Manfred, &
Noubir, Guevara. (2013). Application-awareness in SDN. Paper presented at the
ACM SIGCOMM Computer Communication Review.

Qi, Han, Shiraz, Muhammad, Gani, Abdullah, Whaiduzzaman, Md, & Khan, Suleman.
(2014). Sierpinski triangle based data center architecture in cloud computing. The
Journal of Supercomputing, 69(2), 887-907.

Univ
ers

ity
 of

 M
ala

ya

186

Rohan. (2016). Cyber Security Market worth 202.36 Billion USD by 2021. Retrieved
18-09-2016, 2016, from
http://www.marketsandmarkets.com/PressReleases/cyber-security.asp

Rotsos, Charalampos, Sarrar, Nadi, Uhlig, Steve, Sherwood, Rob, & Moore, Andrew W.
(2012). OFLOPS: An open framework for OpenFlow switch evaluation. Paper
presented at the Passive and Active Measurement.

Saha, Anish Kumar, Sambyo, Koj, & Bhunia, CT. (2016). Topology Discovery, Loop
Finding and Alternative Path Solution in POX Controller. Paper presented at the
Proceedings of the International MultiConference of Engineers and Computer
Scientists.

Saini, Hemraj, Rao, Yerra Shankar, & Panda, TC. (2012). Cyber-crimes and their
impacts: A review. International Journal of Engineering Research and
Applications, 2(2), 202-209.

Scott-Hayward, S., Natarajan, S., & Sezer, S. (2016). A Survey of Security in Software
Defined Networks. IEEE Communications Surveys & Tutorials, 18(1), 623-654.
doi: 10.1109/COMST.2015.2453114

Scott-Hayward, Sandra, O'Callaghan, Gemma, & Sezer, Sakir. (2013). SDN security: A
survey. Paper presented at the Future Networks and Services (SDN4FNS), 2013
IEEE SDN For.

Scott, Colin, Wundsam, Andreas, Raghavan, Barath, Panda, Aurojit, Or, Andrew, Lai,
Jefferson, . . . Whitlock, Sam. (2014). Troubleshooting blackbox SDN control
software with minimal causal sequences. Paper presented at the ACM SIGCOMM
Computer Communication Review.

SDxCentral. (2015). SDxCentral SDN and NFV Market Size Report SDN and NFV
Market Size Report 2015. Sunnyvale, CA, USA.

SDxCentral, Team. (2015). SDx Infrastructure Security Report SDx Infrastructure
Security Report 2015 (pp. 43). Sunnyvale, CA, USA.

Sezer, Sakir, Scott-Hayward, Sandra, Chouhan, Pushpinder-Kaur, Fraser, Barbara, Lake,
David, Finnegan, Jim, . . . Rao, Neeraj. (2013). Are we ready for SDN?
Implementation challenges for software-defined networks. Communications
Magazine, IEEE, 51(7), 36-43.

Sharma, Parmanand, Banerjee, Sean, Tandel, Sébastien, Aguiar, Rui, Amorim, Ronan, &
Pinheiro, David. (2013). Enhancing network management frameworks with SDN-
like control. Paper presented at the Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on.

Shenker, Scott, Casado, M, Koponen, Teemu, & McKeown, N. (2011). The future of
networking, and the past of protocols. Open Networking Summit, 20.

Sherwood, Rob, Gibb, Glen, Yap, Kok-Kiong, Appenzeller, Guido, Casado, Martin,
McKeown, Nick, & Parulkar, Guru. (2009). Flowvisor: A network virtualization
layer. OpenFlow Switch Consortium, Tech. Rep, 1-13.

Univ
ers

ity
 of

 M
ala

ya

http://www.marketsandmarkets.com/PressReleases/cyber-security.asp

187

Shin, Seungwon, Yegneswaran, Vinod, Porras, Phillip, & Gu, Guofei. (2013). Avant-
guard: Scalable and vigilant switch flow management in software-defined
networks. Paper presented at the Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security.

Shu, Zhaogang, Wan, Jiafu, Li, Di, Lin, Jiaxiang, Vasilakos, Athanasios V, & Imran,
Muhammad. Security in Software-Defined Networking: Threats and
Countermeasures. Mobile Networks and Applications, 1-13.

Staff, CACM. (2016). A purpose-built global network: Google's move to SDN.
Communications of the ACM, 59(3), 46-54.

Stewart III, John W. (1998). BGP4: inter-domain routing in the Internet: Addison-
Wesley Longman Publishing Co., Inc.

Suleman, Khan, Abdullah, Gani, Ainuddin, Wahid Abdul Wahab, Ahmed, AbdelAziz, &
Mustapha, Aminu Bagiwa. (2016). FML: A novel Forensics Management Layer
for Software Defined Networks. Paper presented at the 6th International
Conference on Cloud System and Big data Engineering, Confluence-2016, 14-15
Jan, 2016, Amity University, , Noida, UP India.

Syrivelis, Dimitris, Parisis, George, Trossen, Dirk, Flegkas, Paris, Sourlas, Vasilis,
Korakis, Thanasis, & Tassiulas, Leandros. (2012). Pursuing a software defined
information-centric network. Paper presented at the Software Defined
Networking (EWSDN), 2012 European Workshop on.

Thomas, Bimba Andrew, Idris, Norisma, Al-Hnaiyyan, Ahmed, Binti Mahmud, Rohana,
Abdelaziz, Ahmed, Khan, Suleman, & Chang, Victor. (2016). Towards
Knowledge Modeling and Manipulation Technologies: A Survey. International
Journal of Information Management.

Tootoonchian, Amin, Gorbunov, Sergey, Ganjali, Yashar, Casado, Martin, & Sherwood,
Rob. (2012). On Controller Performance in Software-Defined Networks. Hot-
ICE, 12, 1-6.

Van Benthem, Johan, & Doets, Kees. (2001). Higher-order logic Handbook of
Philosophical Logic (pp. 189-243): Springer.

Wallner, Ryan, & Cannistra, Robert. (2013). An SDN approach: quality of service using
big switch’s floodlight open-source controller. Proceedings of the Asia-Pacific
Advanced Network, 35, 14-19.

Wang, Haopei, Xu, Lei, & Gu, Guofei. (2014). Of-guard: A dos attack prevention
extension in software-defined networks. The Open Network Summit (ONS).

Wang, Haopei, Xu, Lei, & Gu, Guofei. (2015). FloodGuard: a dos attack prevention
extension in software-defined networks. Paper presented at the Dependable
Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on.

Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2016). Software-Defined Networking (SDN) and
Distributed Denial of Service (DDoS) Attacks in Cloud Computing

Univ
ers

ity
 of

 M
ala

ya

188

Environments: A Survey, Some Research Issues, and Challenges. IEEE
Communications Surveys & Tutorials, 18(1), 602-622. doi:
10.1109/COMST.2015.2487361

You, Wanqing, Qian, Kai, He, Xi, Qian, Ying, & Tao, Lixin. (2014). Towards security in
virtualization of SDN. Paper presented at the Proceedings of the International
Conference on Computer Communications and Networks Security, ser. ICCCNS.

Yu, Fei, & Leung, Victor. (2002). Mobility-based predictive call admission control and
bandwidth reservation in wireless cellular networks. Computer Networks, 38(5),
577-589.

Zaalouk, Adel, Khondoker, Rahamatullah, Marx, Ronald, & Bayarou, Kpatcha. (2014).
OrchSec: An orchestrator-based architecture for enhancing network-security
using Network Monitoring and SDN Control functions. Paper presented at the
Network Operations and Management Symposium (NOMS), 2014 IEEE.

Zhou, Wei, Li, Li, Luo, Min, & Chou, Wu. (2014). REST API design patterns for SDN
northbound API. Paper presented at the Advanced Information Networking and
Applications Workshops (WAINA), 2014 28th International Conference on.

Zou, Ting, Xie, Haiyong, & Yin, Hongtao. (2013). Supporting software defined
networking with application layer traffic optimization: Google Patents.

Univ
ers

ity
 of

 M
ala

ya

