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ABSTRACT 

Nowadays, our lives rely significantly on technologies and communications between 

these technologies from manufacturing industries downward to daily activities which 

made networks become bigger and it is continuously growing more and more where this 

gives viruses opportunity to spread faster causing a real threat to human. One of the 

methods researchers working on it to prevent spreading of viruses is to understand how 

these viruses propagate in a network via building mathematical models that represent 

virus propagation. This research project proposes a new SLBC (Susceptible-Latent-

Breaking-out-Countermeasure) virus propagation model and studies its invariant, 

equilibrium, and stability. In addition, finds the optimal control system for the model. 

Lastly, some examples are presented to study virus prevalence over different conditions. 

  

Keywords: computer virus model, optimal control, Pontryagin maximum/minimum 

principle  
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ABSTRAK 

Pada masa kini, kehidupan kita bergantung kepada teknologi dan komunikasi antara 

teknologi-teknologi ini daripada industri pengilangan sehingga ke aktiviti harian yang 

menjadikan rangkaian lebih luas dan terus berkembang dengan pesat yang membuka 

peluang kepada virus untuk disebarkan lebih cepat sekaligus menyebabkan ancaman 

yang nyata kepada manusia. Salah satu kaedah yang penyelidik-penyelidik gunakan 

untuk mencegah penyebaran virus adalah untuk memahami bagaimana virus-virus ini 

disebarkan dalam satu-satu rangkaian melalui penciptaan model matematik yang 

menyerupai penyebaran virus. Projek penyelidikan ini mencadangkan model 

penyebaran virus SLBC (Susceptible-Latent-Breakingout-Countermeasure) yang baru 

dan mengaji invarian, keseimbangan dan kestabilannya. Di samping itu, penyelidikan 

itu turut mengaji sistem kawalan optimum untuk model itu. Akhir sekali, beberapa 

contoh dibentangkan untuk mengkaji kelaziman virus dalam keadaan yang berbeza. 

 

Kata kunci: model virus komputer, kawalan optimum, maksimum Pontryagin / 

prinsip minimum Pontryagin. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

This chapter presents generally information about why this subject has been chosen. 

It starts with background of a problem, definitions, main paths for solving this problem, 

and reasons why one of these paths has been preferred. In addition, problem statement, 

objectives, and scope of this work are determined. At the end of this chapter, it is 

mentioned how this thesis organized. 

 

1.2 Background 

We are in the cloud data age where computers and microelectronics communication 

technology make science of information technology develops rapidly. This played an 

important role in the living ways of human beings from basic daily life to industry 

sector (Liang, 2010). At the end, we are making bigger and bigger computer network 

providing an opportunity for computer viruses and worms to propagate and spreading 

faster causing a real threat for smooth and normal operation by either damaging data or 

stealing sensitive information (Ray et al., 2007). 

 

1.2.1 Malware, Virus, and Worm 

The general term ‘malware’ is defined as the unwelcomed and dangerous program 

normally attached to a junk mail or a code spreading in the internet and try to reach a 

computer through deception, masquerade as innocent (Pérez García, Alfonso-Cendón, 

Sánchez González, Quintián, & Corchado, 2018). Malware can perform a variety of 

harms to the hosted computer: deleting data or files, stealing information, or destroying 

operating systems. Mostly, malware operates in background, so operators do not notice 

it. Types of malware include computer virus, computer worms, ransomware, and trojan 
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horses where all types can be classified to self-replicating and not self-replicating (M. 

Zhang, Liu, Chen, & Li, 2018). Computer virus and worm are of the class self-

replicating. 

The term ‘computer virus’ originated after Cohen’s program which infects 

computers, replicates itself, and spreads to other computers (Cohen, 1987). It attaches 

itself to a non-malicious software and when this hosted software is activated, the virus 

starts copies itself to other files and programs. Whereas worms have same functionality 

of virus except they do not need to be attached to other software where they can stand 

alone (Del Rey & Sánchez, 2012). Dormant period is the period when virus reach a host 

software before the host software runs but as the host software runs, the virus enters 

latency period. In latent period the virus tries to spread and infect as much as possible of 

files, programs and other computers before it breaks out ‘breaking-out period’. 

Breaking-out period stays till the virus is wiped (X. Yang & Yang, 2012). 

 

1.2.2 Options to Encounter Viruses 

Researchers are trying in different directions to encounter spreading and emerging of 

viruses. According to (White, 1998) there are four directions where researchers are 

working on. One of these methods is by developing new viruses then from that point 

develop new detection techniques. This method does not guarantee the extent of 

damages. Second method uses an analysis center where each time new virus appears in 

the network will be sent to the center to invent new cure then automatically will be 

deployed worldwide. However, always there will be a lag between the cure and the 

virus as well as the center has to handle so many requests and some them may not be 

real. Third of these, using anti-viruses where this method requires security companies to 

find viruses and their cures before they spread also customers have to update their anti-

virus program as fast as possible. Clearly there will be a huge lag in this method. 
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Finally, computer virus propagation modeling where researchers study birth and death 

rates and connections between computers through internet network, emails, media, … 

etc. Virus propagation still ambiguous and incomplete  (White, 1998). 

 

1.2.3 Advantages of Computer Virus Modeling 

There are many reasons making modeling of computer virus important. First, it gives 

a visualization of extent of threats can happen due these viruses and understand new 

propagation techniques (Staniford, Paxson, & Weaver, 2002). Second, researchers take 

advantage of these models to create containment  and disinfection approaches without 

the needs to do experiments by releasing the virus and test the approaches so expose 

network to risk (Whalley et al., 2000). Third, models combined with accurate network 

structure can lead to locate failures in network infrastructure. In addition to, describe 

features and symptoms of computer virus and use them as early detection (Serazzi & 

Zanero, 2003). 

 

1.3 Problem Statement 

Internet is becoming part of all aspects of life and has brought huge benefits to 

human society. However, this makes spreading of digital viruses faster so causing 

threats to development and inflicting large economic losses. Therefore, network security 

researchers have been concerning about how can effectively suppress spreading of 

digital viruses. Mathematical modeling of computer viruses’ propagation is considered 

as a feasible approach to the assessment of prevalence of digital viruses. 
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1.4 Objectives of Research 

The main aim of this research project is to stop spreading of computer virus in 

Networks. This can be reached via these objectives: 

1. Establish a mathematical model for computer virus’s propagation. 

2. To analyze the new model. 

3. To optimize trade-off between countermeasure cost and virus prevalence. 

 

1.5 Scope of Study 

This work will build a new mathematical model for propagation of computer viruses 

where all the model depends on probabilities. All work will be in calculations and 

simulations, no real experiment, so the model will combine some advantages of existing 

models and import new assumptions.  

 

1.6 Thesis Organization 

This chapter has given the introduction of the topic, explained the problem statement, 

and determined the research project objectives. The rest of this work is organized as 

follows, chapter two contains literature review of topic. Methodology and 

implementation of the model are in chapter three. Chapter four shows simulation results 

and discussions. Finally, conclusions and recommendations for future work presented in 

chapter five. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter starts with some examples of computer viruses and their financial 

losses. Then it presents how epidemic spreads with some examples of existing models. 

Moreover, a quick glance on system analysis is presented at the end of this chapter. 

 

2.2 History of Viruses’ Threats 

For example, in March 1999, a virus called Melissa attacked some big companies 

and forced them to shut down their e-mail systems, making an estimated loss of $800 

million. In May 2000, “ILOVEYOU” virus was hidden in an e-mail headed 

‘ILOVEYOU’ starts outbreak in Asia spreading to Europe then USA. The virus caused 

damage of estimated $15 billion by infecting 45 million computers in 20 countries 

(Norton_Team, 2016). Gives estimation of losses due to The Code Red worm equal to 

$2.6 billion in two months only in 2001 (Berghel, 2001).  

In 2003, the Blaster worm infected 100,000 Microsoft windows systems which costs 

millions without considering recovery efforts (Bailey, Cooke, Jahanian, & Watson, 

2005). Fastest spreading computer worm is known as Slammer or Sapphire where it 

infected almost all vulnerable hosts (>90%) in less than ten minutes. It spread through 

internet and made big financial losses in transportation, and government institutions 

(Moore et al., 2003).  According to the Britch Security Firm, in 2004, MyDoom virus 

caused over $26.1 billion (Zhu, Yang, & Ren, 2012).  

The worm known as Downadup, Conficker, or Kido, first discovered in 2008, has 

infected over than 9 million computers with full administrator right also resets restore 

points of computer to make it harder to recover (BBC, 2009). “Shamoon” destroyed 
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data of more than 30000 computers of Saudi Arabia oil’s company ‘ARAMCO’, 

causing the company 17 days of offline work where all reports, contracts, shipping, and 

supplies process to be on papers and transmission via interoffice mail or fax page by 

page (Pagliery, 2015). 

 

2.3 Epidemic Spreading Process 

Network representation shows relationship or connection between parts of a system 

or individuals of a population. Many economical, biological, technological, and other 

systems have pair-wise dependencies through their subsystems. Network representation 

uses nodes and links between nodes to represent components and relationship between 

them. For example, social network represents individuals by nodes and friendships by 

links (Kephart & White, 1992). 

Epidemic spreading is one of the dynamics over networks. A mathematical epidemic 

model describes how infections spread in the network. Propagation models have led to 

successful results in prevention and predication of epidemics. However, this is not only 

applicable in biology, computer viruses mimic these biological viruses. From that point, 

researchers started using biological models as models for computer viruses but that was 

considered a start where modified and newly models appeared (Meisel, Pappas, & 

Zhang, 2010). 

The beginning of modeling study started by dividing population into several different 

groups or called compartments and the interaction between each compartment depends 

on specific rates not necessary all compartments are interchangeable directly or in both 

forward and backward. For example, SIR compartment model, Susceptible-Infected-

Recovered, a susceptible computer node get infected by virus at specific infectious rate 
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and infected node becomes recovered after cured at specific curing rate. in this model 

assumed recovered computer will not be susceptible again neither infected. Whereas, 

other models suppose recovered nodes will lose immunity over time, no recovered 

compartment, or introducing other compartments (Darabi Sahneh, 2014). 

Compartments models studied epidemic over homogenous population and did not 

provide details about the effect of network structure/topology so new approaches has 

emerged as (Moreno, Pastor-Satorras, & Vespignani, 2002) proposed a network with 

heterogenous node degree distribution also (Pastor-Satorras & Vespignani, 2001) did 

the study over scale-free network. These approached showed that interconnection 

between nodes play an important role in the spreading of an epidemic. To explore role 

of contact in more details an individual- based models have appeared like (Wang, 

Chakrabarti, Wang, & Faloutsos, 2003). The contact between nodes in a network is 

considered a static dynamic where contacts will not change with time. This is because 

dynamic of virus is faster than dynamic of existence of nods which is result of shorter 

average lifetime of epidemic compared to lifetime of individuals (Youssef & Scoglio, 

2011) The link between two connected nodes will take value one and link of not 

connected nodes will take value zero. 

 

2.4 Existing Models 

The beginning of computer virus modeling was through (Kephart & White, 1992) 

then many models exist with different strategies to capture propagation of computer 

virus in reality and prevent spreading of viruses. 

Computer models can be categorized, based on the topology of propagation, into two 

classes: homogenous and heterogenous models (Zhu & Cen, 2017). Homogenous 
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models assume the propagation network as fully connected. In fact, an infected 

computer will spread to any random vulnerable computer in the network such models 

SLBS (Susceptible, Latent, Breaking out, Susceptible) by  (L.-X. Yang, Yang, Zhu, & 

Wen, 2013) and SEIRS (Susceptible, Exposed, Infected, Recovered, Susceptible) by 

(Dong, Wang, & Liao, 2016). In contrast heterogenous models suppose that virus in an 

infected computer can transfer only through contacted computers which means through 

direct topological neighbor. For Example, (L.-X. Yang & Yang, 2014) studied the 

behavior of SI (Susceptible, Infected) model over simple scale-free network where he 

assumes existing of two degrees K, number of connections that a computer has. 

Homogenous and heterogenous models have provided a significant impact in 

understanding detailly and qualitatively how and when computer viruses outbreak. 

Majority of viruses have quite long propagation period before breaking out which 

called latent period. The distinctive characteristic of viruses in this phase is its infectious 

ability where they be at high infectivity (C. Zhang, 2018). So, he examined a multilayer 

SLBS model using individual-based (node-based) where each node has its state to be 

investigated alone which gives more details about individuals. In this model he assumed 

only infected nodes can be cured, no latent nodes be cured. Moreover, transition from 

latent to break-out is homogenous. 

(Z. Zhang & Wang, 2017) proposed SLBQRS (Susceptible, Latent, Breaking, 

Quarantined-Recovered, Susceptible) compartment model with time delay due to the 

cleaning process of the anti-virus programs and did stability analysis of the model. Then 

(Zhao & Bi, 2017) add time delay to move from latent period of virus to be breaking out 

also investigated properties of Hopf bifurcation of the model. Quarantine compartment 

introduces concerns about increasing in quarantine rate leads to reducing threshold 𝑅0 

in which increasing probability of virus domination. 
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Countermeasure compartment is considered one of the strategies to suppress virus 

spreading in computers networks since CMC ( countermeasure Competing) strategy by 

(Chen & Carley, 2004). A countermeasure is an action or method to suppress or reduce 

potential threats to computers servers, operating system, information system, or 

networks. Countermeasure tools include anti-virus software and firewalls.  Recently, (X. 

Zhang & Gan, 2018) used SICS (Susceptible-Infected-Countermeasure-Susceptible) 

model with dynamic countermeasures, not disseminated with a constant rate, where 

taking into account topology of the network. It is a degree compartment model which 

divides nodes into compartments each with different degrees. Furthermore, they found 

the optimal control to minimize both density of infected computers and the total budget 

for countermeasures. One of disadvantages of these models include absence of latent 

period. 

 

2.5 Network Topology 

According to (Barabási & Bonabeau, 2003; Faloutsos, Faloutsos, & Faloutsos, 1999), 

Internet, World-Wide-Web, and social connections are a scale-free network where 

distribution of node linkages follow power law distribution where the network does not 

have a scale or uniform distribution. In fact, more nodes have less connections except 

some nodes which have huge number of links.  

 

2.6 System Analysis 

Mathematical models have to be analyzed before they have been applied to 

investigate characteristics of trajectories (solutions) of the system. These analysis shows 
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how a system will behave in different conditions and that include its stability, critical 

points, invariant, and others. 

 

2.6.1 Positive Invariance 

When designing dynamical models, it has to reveal if these models start from an 

initial point within a set will stay inside the set for all time t. Positive invariant can be 

expressed mathematically as: 

Let dynamical system  𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)). 𝑥 ∈ 𝑅𝑛 with initial point 𝑥0 and trajectory 

𝑥(𝑡, 𝑥0).  

A subset 𝜗 ⊂ 𝑅 to be a positive invariant set if for all 𝑥0 ∈ 𝜗 ⟹  𝑥(𝑡) ∈ 𝜗 , ∀ 𝑡 ≥ 0 

(Benzaouia, 2012) 

 

2.6.2 Equilibrium Points 

Equilibrium points in differential equations are considered constants solutions to the 

differential equations (Boyce, DiPrima, & Meade, 2017).  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥)  (1) 

Point 𝑥∗(𝑡) ∈ 𝑅𝑛 is called equilibrium point if  𝑓(𝑡, 𝑥) = 0 , ∀  𝑡. 
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2.6.3 Stability Theory 

Describes stability of the trajectory of differential equations due small perturbations 

of initial conditions. For instance, for equilibrium point 𝑥∗ and for every small > 0 , 

exists 𝛿 > 0 such that: 

1. Stable: for a nearby initial condition will stay indefinitely close to the 

equilibrium point. 

2. ||𝑥(𝑡0) − 𝑥∗|| < 𝜀     ∀ 𝑡 > 𝑡0      ||𝑥(𝑡) − 𝑥∗|| < 𝛿 

3. Asymptotically stable: nearby initial condition will converge to the equilibrium 

point. 

4. ||𝑥0 − 𝑥∗|| < 𝜀        𝑡 → ∞      ||𝑥(𝑡) − 𝑥∗|| = 0 𝑜𝑟 𝑥(𝑡) → 𝑥∗ 

5. Global asymptotically stable: any initial condition will converge to the unique 

equilibrium point (Murray, 2017) 

∀  𝑥0  𝑎𝑛𝑑   𝑡 → ∞       ||𝑥(𝑡) − 𝑥∗|| = 0 𝑜𝑟  𝑥(𝑡) → 𝑥∗ 

 

2.7 Optimal Control 

Optimal control, it is an extension from the calculus of variations, whereas the 

optimal control dealing with maximization or minimization to find the optimum result. 

Mainly the optimal control problem consisting of two kind of functions: 

a. Cost Function or Objective Function 

b. Dynamical system or states functions: that’s describe the behaviors of the states 

with time. 

Simply, the optimal control is finding the optimum control that maximize/minimize 

the cost function at the same time achieving any constraints like control constraint, state 

constraint, and time constraint. 
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The optimal control method basically classified into two approaches, direct and 

indirect methods. Each method could be solved by different numerical methods like 

direct single shooting, dynamic programing, and in-direct single shooting. However, 

some tries to find optimal control used un-conventional methods, like using PID 

controller (Proportional-Integral-Derivative) or using linear time varying approximation 

(LTV)  (Itik, Salamci, & Banks, 2009; Khadraoui et al., 2016). 

Direct method converts the optimal control problem to non-linear programing 

problem. It starts by discretizing the control problem, after that using non-linear 

programing techniques to solve the problem. It is called stochastic approach. 

On the other hand, direct method converts the optimal control problem to boundary 

value problem by building Hamiltonian equation, then using Pontryagin 

maximum/minimum principle. It is called deterministic approach. 

 

2.8 Summary 

A virus propagation model that simulate real-world situations has to be a node-based 

model because many real-world networks were showed to have a highly structured 

property and a node-based model will show behavior of each computer in the network. 

additionally, the model has to be heterogenous where it is not fully connected. Besides, 

virus does not break-out ‘disrupt’ immediately after it infects a computer, this called 

latent period, it should be long and highly infectious too. Applying countermeasure will 

be an advantage to the model where it helps in finding optimal control strategy. The 

model can be supported by some analysis like invariant, equilibrium, and stability. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

From previous chapter, some important specifications are determined to represent 

computer virus’s propagation. In this chapter, these specifications are used to build a 

new mathematical model. At the beginning, the model is established step by step. Then, 

invariant, equilibrium, and stability analyses of the model are performed. 

 

3.2 Computer Virus Modeling 

From the literature review in previous chapter, a new model has a combination of 

advantages of existing models with some improvements can be obtained. First of all, 

most viruses have a latent period before breaking out where its infectious rate in this 

period is high. This requires existing of latent compartment in the new model with high 

infectious rate. Second, computers do not become infected uniformly, infectiousness is 

not homogenous through the network. This can be represented as a not fully connected 

network. Third, same as infectiousness, countermeasure must not be applied for all the 

network uniformly or randomly. In addition, the goal is to optimize this process where 

least costs of anti-viruses applied and least of infected computers. Consequently, an 

optimal control problem has to be solved. Last but not least, breaking-out of latent 

computers does not occur instantly and this has been modeled by different options, for 

example, implying a constant time period before computer breaks-out or a constant rate. 

In this work, a new strategy has been suggested which implies that viruses breaking-out 

rate will be affected by how many neighbors have been infected because if virus breaks-

out, user will use anti-virus, format his computer, disconnect from internet, or shut-

down the computer to save his remaining files or his work process so stop virus from 

spreading through the network which result in removing the virus, so if viruses break-
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out before infecting much of neighbors, viruses will vanish and will not be an epidemic 

threats network so in the new model will let breaking-out compartment not infectious 

and will not be treated. 

It is assumed that the network has a population of N nodes (computers) labeled 1, 2, 

3, …, N. Connections between these nodes will be unvaried. 𝐴 = (𝑎𝑖𝑗)𝑁×𝑁 denote the 

adjacency matrix of the network 𝑎𝑖𝑗 = 𝑎𝑗𝑖 and 𝑎𝑖𝑗 = 0  ∀  𝑖 = 𝑗. Thus 𝐴 is irreducible. 

The new model has four compartments, Susceptible, Latent, Breaking-out, 

Countermeasure, SLBC. So, each node has one of four possible states and each will be 

given a probability as 𝑆𝑖(𝑡), 𝐿𝑖(𝑡), 𝐵𝑖(𝑡), and 𝐶𝑖(𝑡), which represents probability node 𝑖 

at time 𝑡 to be susceptible, latent, Breaking-out, and countermeasures respectively. 

Then,  𝑆𝑖(𝑡) + 𝐿𝑖(𝑡) + 𝐵𝑖(𝑡) + 𝐶𝑖(𝑡) = 1, 1 ≤ 𝑖 ≤ 𝑁.  

Let us impose set of assumptions about state transitions of nodes, it is shown Figure 

3.1: 

• Due to contact with latent node 𝑗, susceptible node 𝑖 becomes latent by 

𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡). 𝛽 is a positive infectious rate. 

• Susceptible node 𝑖 becomes countermeasures by a vaccination rate 𝛾𝑖. 𝛾𝑖 ≤ 𝛾𝑖 ≤

𝛾𝑖 

• Latent node becomes breaking-out by 𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗). 𝜌 is a positive breaking-

out rate. 

• Due to applied treatment, a latent node becomes a countermeasure by a 

treatment rate 𝛼𝑖  . 𝛼𝑖 ≤ 𝛼𝑖 ≤ 𝛼𝑖 

These state transitions assumptions can be explained mathematically as follows, with 

∆𝑡 be a very small-time interval: 

Univ
ers

ity
 of

 M
ala

ya



26 

 

 

 

 

 

 

Figure 3.1 Diagram for state transition assumptions. 

 

Pr{𝑖 𝑖𝑠 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡 | 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡} = 𝛽∆𝑡∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) +

𝑜(∆𝑡)  

Pr{𝑖 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡 | 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡} =

𝛾𝑖∆𝑡∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) + 𝑜(∆𝑡)  

Pr{𝑖 𝑖𝑠 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 − 𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡 | 𝑖 𝑖𝑠 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡} = 𝜌∆𝑡∑𝑗𝑎𝑖𝑗(1 −

𝑆𝑗) + 𝑜(∆𝑡)  

Pr{𝑖 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡 | 𝑖 𝑖𝑠 𝑙𝑎𝑡𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡} = 𝛼𝑖 + 𝑜(∆𝑡)  

Pr{𝑖 𝑖𝑠 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 − 𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ∆𝑡 | 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡} = 𝑜(∆𝑡)  

Remaining state transitions will be same as last one, equal 𝑜(∆𝑡). 

If all above transitions are divided by 𝑑𝑡 and ∆𝑡 → 0, then: 

 

 

𝑆𝑖𝛽∑𝑗𝑎𝑖𝑗 𝐿𝑗  

𝜌∑𝑗 𝑎𝑖𝑗 (1 − 𝑆𝑗 (𝑡)) 

𝛾𝑖(𝑡) 
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(2) 

 

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) − 𝑆𝑖(𝑡)𝛾𝑖(𝑡)  

𝑑𝐿𝑖(𝑡)

𝑑𝑡
= 𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  −  𝐿𝑖(𝑡)𝛼𝑖(𝑡)       

𝑑𝐵𝑖(𝑡)

𝑑𝑡
=  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  

𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝑆𝑖(𝑡)𝛾𝑖(𝑡)   +  𝐿𝑖(𝑡)𝛼𝑖(𝑡)  

With initial conditions 

(𝑆1(0),… , 𝑆𝑁(0), 𝐿1(0), … , 𝐿𝑁(0), 𝐵1(0),… , 𝐵𝑁(0), 𝐶1(0),… , 𝐶𝑁(0))𝑇𝜖 �̌� 

Where 

�̌� = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁 , 𝐶1, … , 𝐶𝑁)𝑇𝜖𝑅+
4𝑁|𝑆𝑖 + 𝐿𝑖 + 𝐵𝑖 + 𝐶𝑖 = 1, 𝑖 =

1,2, …𝑁  

Admissible control set: 

𝒰 = {𝑢(𝑡) ∈ (𝐿2[0, 𝑇])2𝑁|  𝛾𝑖 ≤ 𝛾𝑖(𝑡) ≤ 𝛾𝑖  , 𝛼𝑖 ≤ 𝛼𝑖(𝑡) ≤ 𝛼𝑖  ,   1 ≤ 𝑖 ≤ 𝑁 }  

Let:  �̃�(𝑡) = (𝑆1, … , 𝑆𝑁, 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁, 𝐶1, … , 𝐶𝑁) 𝑇 

𝑑�̌�(𝑡)

𝑑𝑡
= 𝐹(�̃�(𝑡), 𝑢(𝑡)) 
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3.3 Model Analysis 

Three analyses have been done in this part. Positive invariant, equilibrium, and 

stability are proved below. They are as follow: 

 

3.3.1 Positive Invariant 

Wants to prove that the system will stay in the set �̌� with any initial point inside the 

set: 

�̃�(0) ∈ �̌�   𝑖𝑚𝑝𝑙𝑖𝑒𝑠  �̃�(𝑡) ∈ �̌�    ∀  𝑡 ≥ 0 

According to (Yorke, 1967), let a smooth dynamical system 𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡)) defined 

at least in a compact set 𝜗. 𝜗 is positive invariance if any point x in the boundary of 𝜗 is 

pointing into 𝜗. 

Let 𝜕�̌� denotes the boundary of system (1) where it consists of the 5N hyperplanes: 

𝐻𝑖 = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁, 𝐶1, … , 𝐶𝑁)𝑇 ∈ Ω | 𝑆𝑖 = 0},    1 ≤ 𝑖 ≤ 𝑁 

𝐻𝑁+𝑖 = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁, 𝐶1, … , 𝐶𝑁)𝑇 ∈ Ω | 𝐿𝑖 = 0},    1 ≤ 𝑖 ≤ 𝑁 

𝐻2𝑁+𝑖 = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁 , 𝐶1, … , 𝐶𝑁)𝑇 ∈ Ω | 𝐵𝑖 = 0},    1 ≤ 𝑖 ≤ 𝑁 

𝐻3𝑁+𝑖 = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁, 𝐶1, … , 𝐶𝑁)𝑇 ∈ Ω | 𝐶𝑖 = 0},    1 ≤ 𝑖 ≤ 𝑁 

𝐻4𝑁+𝑖 = {(𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁, 𝐶1, … , 𝐶𝑁)𝑇 ∈ Ω | 𝑆𝑖 + 𝐿𝑖 + 𝐵𝑖 + 𝐶𝑖 = 1},    1 ≤ 𝑖

≤ 𝑁 

For  1 ≤ 𝑖 ≤ 𝑁 , 𝐻𝑖  , 𝐻𝑁+𝑖 , 𝐻2𝑁+𝑖 , 𝐻3𝑁+𝑖 , 𝑎𝑛𝑑  𝐻4𝑁+𝑖 have 

𝑛𝑖 = (0,… , 0, −1 , 0, … ,0)𝑇 , 
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𝑛𝑁+𝑖 = (0,… , 0, −1 , 0, … ,0)𝑇, 

𝑛2𝑁+𝑖 = (0,… , 0, −1 , 0, … ,0)𝑇 , 

𝑛3𝑁+𝑖 = (0,… , 0, −1 , 0, … ,0)𝑇 , 𝑎𝑛𝑑 

𝑛𝑖 = (0,… , 0, 1 , 0, … ,0, 1 , 0, … , 0, 1 , 0, … ,0)𝑇 

as their respective outer normal vectors. 

Let 𝑥∗ = (𝑆1
∗, … , 𝑆𝑁

∗ , 𝐿1
∗ , … , 𝐿𝑁

∗ , 𝐵1
∗, … , 𝐵𝑁

∗ , 𝐶1
∗, … , 𝐶𝑁

∗ ) be a smooth point of 𝜕Ω. It is 

distinguished among 5 possibilities: 

Case 1: some 𝑆𝑖
∗ = 0  , 0 < 𝑖 < 𝑁  ,  then < 𝐹(𝑥∗), 𝑛𝑖 >= 0 

Case 2: some 𝐿𝑖
∗ = 0  , 0 < 𝑖 < 𝑁  ,  then < 𝐹(𝑥∗), 𝑛𝑁+𝑖 >= 0 

Case 3: some 𝐵𝑖
∗ = 0  , 0 < 𝑖 < 𝑁  ,  then < 𝐹(𝑥∗), 𝑛2𝑁+𝑖 >= − 𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 −

𝑆𝑗)  ≤ 0 

Case 4: some 𝐶𝑖
∗ = 0  , 0 < 𝑖 < 𝑁  ,  then < 𝐹(𝑥∗), 𝑛3𝑁+𝑖 >= −𝑆𝑖(𝑡)𝛾𝑖  −  𝛼𝑖𝐿𝑖(𝑡) ≤ 0 

Case 5: some 𝑆𝑖
∗ + 𝐿𝑖

∗ + 𝐵𝑖
∗ + 𝐶𝑖

∗ = 1  , 0 < 𝑖 < 𝑁  ,  then < 𝐹(𝑥∗), 𝑛4𝑁+𝑖 >= 0 

Combining above discussion prove that �̌� is positive invariant set. 

 

3.3.2 Equilibrium Points 

Equilibrium points impose the system to keep the states forever as the system is 

entered these states. This requires all differential equations to be zero and this happens 

only when all latent and susceptible nodes are equal to zero. 
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(3) 

𝐹(𝑋(𝑡)) = 0  if only if 𝐿𝑖 = 𝑆𝑖 = 0    ∀   0 < 𝑖 ≤ 𝑁 

 

3.3.3 Stability 

Because the system is nonlinear ordinary differential system, the eigenvalues of the 

system to determine its stability cannot be directly found. Equilibrium point is 

considered a solution for the system and the Jacobian matrix at the equilibrium point is 

used to check stability. 

Before building Jacobian matrix, system (1) will be reduced to simplify stability 

analysis. Obviously, system (1) does not depend on �̇�𝑖 and �̇�𝑖, uncoupled equations, 

differential equations �̇�𝑖and �̇�𝑖 can be solved without solving �̇�𝑖 and �̇�𝑖. Therefore, if 

this  initial condition  𝑆𝑖 + 𝐿𝑖 + 𝐵𝑖 + 𝐶𝑖 = 1 is guaranteed and system equations 𝑑𝑆𝑖(𝑡)

𝑑𝑡
+

𝑑𝐿𝑖(𝑡)

𝑑𝑡
+

𝑑𝐵𝑖(𝑡)

𝑑𝑡
+

𝑑𝐵𝑖(𝑡)

𝑑𝑡
= 0 then explore stability at equilibrium points of 𝑆𝑖 and 𝐿𝑖 is 

enough.  

Our reduced system  

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) − 𝑆𝑖(𝑡)𝛾𝑖(𝑡)  

𝑑𝐿𝑖(𝑡)

𝑑𝑡
= 𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  −  𝐿𝑖(𝑡)𝛼𝑖(𝑡)  

Let:  𝑋(𝑡) = (𝑆1, … , 𝑆𝑁, 𝐿1, … , 𝐿𝑁) 𝑇  where 𝑋𝑁 = 𝑆𝑁  ,   𝑋2𝑁 = 𝐿𝑁 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡))  

Jacobian matrix: 

[
 
 
 

𝑑𝑓1

𝑑𝑥1
⋯

𝑑𝑓1

𝑑𝑥2𝑁

⋮ ⋱ ⋮
𝑑𝑓2𝑁

𝑑𝑥1
⋯

𝑑𝑓2𝑁

𝑑𝑥2𝑁]
 
 
 

||

𝑆𝑖=𝐿𝑖=0
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For this model: 

𝑑𝑓𝑖

𝑑𝑥𝑖
|
𝑆=𝐿=0

=
𝑑

𝑑𝑆𝑖
(
𝑑𝑆𝑖

𝑑𝑡
)|

𝑆=𝐿=0
= |−𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) − 𝛾𝑖|𝑆=𝐿=0

= −𝛾𝑖   , ∀    1 ≤ 𝑖 ≤ 𝑁  

𝑑𝑓𝑖

𝑑𝑥𝑚
|
𝑆=𝐿=0

=
𝑑

𝑑𝑆𝑚
(
𝑑𝑆𝑖

𝑑𝑡
)|

𝑆=𝐿=0
= 0  , ∀   𝑖 ≠ 𝑚    1 ≤ 𝑖 ≤ 𝑁   ,   1 ≤ 𝑚 ≤ 𝑁     

𝑑𝑓𝑖

𝑑𝑥𝑚
|
𝑆=𝐿=0

=
𝑑

𝑑𝐿𝑝
(
𝑑𝑆𝑖

𝑑𝑡
)|

𝑆=𝐿=0

= 0  , ∀    1 ≤ 𝑖 ≤ 𝑁  , 𝑁 + 1 ≤ 𝑚 ≤ 2𝑁  , 1 ≤ 𝑝 ≤

𝑁  

𝑑𝑓𝑖

𝑑𝑥𝑚
|
𝑆=𝐿=0

=
𝑑

𝑑𝑆𝑚
(
𝑑𝐿𝑝

𝑑𝑡
)|

𝑆=𝐿=0
= 0  , ∀   𝑁 +  1 ≤ 𝑖 ≤ 2𝑁  , 1 ≤ 𝑚 ≤ 𝑁  , 1 ≤ 𝑝 ≤

𝑁  

𝑑𝑓𝑚

𝑑𝑥𝑚
|
𝑆=𝐿=0

=
𝑑

𝑑𝐿𝑖
(
𝑑𝐿𝑖

𝑑𝑡
)|

𝑆=𝐿=0
= −𝜌∑𝑗𝑎𝑖𝑗  −  𝛼𝑖  , ∀   1 ≤ 𝑖 ≤ 𝑁  ,   𝑁 + 1 ≤ 𝑚 ≤

2𝑁     

𝑑𝑓𝑖

𝑑𝑥𝑚
|
𝑆=𝐿=0

=
𝑑

𝑑𝐿𝑝
(
𝑑𝐿𝑝

𝑑𝑡
)|

𝑆=𝐿=0

= 0 , ∀  𝑖 ≠ 𝑚    𝑁 + 1 ≤ 𝑖 ≤ 2𝑁  , 𝑁 + 1 ≤ 𝑚 ≤

2𝑁   , 1 ≤ 𝑝 ≤ 𝑁   

To make easy to understand, Jacobian matrix will be divided into this form: 

[
𝐴 𝐵
𝐶 𝐷

] , A, B, C, and D all 𝑁 × 𝑁 matrices. 

Then, from the above equations, it can be built A, B, C, and D matrices as follow: 

𝐴 = [
−𝛾1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝛾𝑁

]   𝐵 = 𝐶 = [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]  

 𝐷 = [

−𝜌∑𝑗𝑎1𝑗  −  𝛼1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝜌∑𝑗𝑎𝑁𝑗  −  𝛼𝑁

] 
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(4) 

The eigenvalues 𝜆 of the system can obtained from the following formula: 

|𝜆𝐼 − 𝐴| = 0  , the determinant of 𝜆 multiplied by the identity matrix 𝐼,  𝐴 in this 

case is the Jacobian matrix at equilibrium point. 

𝐴 = [
𝐴 𝐵
𝐶 𝐷

]  

|𝜆𝐼 − [
𝐴 𝐵
𝐶 𝐷

]| =

|

|
[
𝜆 + 𝛾1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆 + 𝛾𝑁

] [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]

[
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] [

𝜆 + 𝜌∑𝑗𝑎1𝑗 + 𝛼1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆 + 𝜌∑𝑗𝑎𝑁𝑗 + 𝛼𝑁

]
|

|

  

=(𝜆 + 𝛾1)(𝜆 + 𝛾2)… (𝜆 + 𝛾𝑁)(𝜆 + 𝜌∑𝑗𝑎1𝑗 + 𝛼1)(𝜆 + 𝜌∑𝑗𝑎2𝑗 + 𝛼2)… (𝜆 +

𝜌∑𝑗𝑎𝑁𝑗 + 𝛼𝑁) = 0  

⟹ 𝜆𝑖 = −𝛾𝑖  or 𝜆𝑚 = −𝜌∑𝑗𝑎𝑖𝑗 − 𝛼𝑖 1 ≤ 𝑖 ≤ 𝑁  ,   𝑁 + 1 ≤ 𝑚 ≤ 2𝑁 

As 𝛾𝑖, 𝛼𝑖 , 𝜌 are nonnegative, all eigenvalues are negative. As a result, the system is 

asymptotically stable. 

 

3.4 Study of The Optimal Control 

In this section the optimal control of the following cost/objective function will be 

studied.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢(.)∈𝒰  𝐽(𝑢(. )) = ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡
𝑇

0
      

𝐿(𝑥(𝑡), 𝑢(𝑡)) = ∑ (𝐵𝑖 +
1

2
𝑝𝛾𝑖(𝑡) +

1

2
𝑞𝛼𝑖(𝑡))𝑖    (5) 
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(6) 

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) − 𝑆𝑖(𝑡)𝛾𝑖(𝑡)  

𝑑𝐿𝑖(𝑡)

𝑑𝑡
= 𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  −  𝐿𝑖(𝑡)𝛼𝑖(𝑡)    

𝑑𝐵𝑖(𝑡)

𝑑𝑡
=  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  

𝑥 = (𝑆1, … , 𝑆𝑁 , 𝐿1, … , 𝐿𝑁 , 𝐵1, … , 𝐵𝑁) 𝑇  

𝑓(𝑥, 𝑢) =
𝑑𝑥

𝑑𝑡
  

𝒰 = {𝑢(. ) ∈ (𝐿2[0, 𝑇])|  𝛾𝑖 ≤ 𝛾𝑖(. ) ≤ 𝛾𝑖  , 𝛼𝑖 ≤ 𝛼𝑖(. ) ≤ 𝛼𝑖  ,   1 ≤ 𝑖 ≤ 𝑁 }  

 

3.4.1 Existing of optimal control 

To examine existing of optimal control for problem (3) & (4), (Kamien & Schwartz, 

2012; Liberzon, 2011) mentioned if the problem satisfies the following six conditions 

and the system is positive invariant then there is existing an optimal control solution. 

a. There is 𝑢(. ) ∈ 𝒰 such that system (3) is solvable, 

b. 𝒰 is convex, 

c. 𝒰 is closed, 

d. 𝑓(𝑥, 𝑢) is bounded by a linear function in 𝑥, 

e. 𝐿(𝑥, 𝑢) is convex in 𝒰, and 

f. 𝐿(𝑥, 𝑢) ≥ 𝑐1‖𝑢‖2
𝒫 + 𝑐2 for some 𝒫 > 1 , 𝑐1 > 0 . 

Proofs: 

a. It is approved above that Ω is positively invariant for 𝑥(0) ∈ Ω. Also, here 

𝑓(𝑥, �̅�) is continuously differentiable. Hence, following the Continuation 
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Theorem for differential equations (Robinson, 2012), there is 𝑢(. ) ∈ 𝒰 such that 

system (4) is solvable. 

b. The admissible set 𝒰 is convex. Let 

𝑢(. )(1) = (𝛾1(. )
(1), … , 𝛾𝑁(. )(1), 𝛼1(. )

(1), … , 𝛼𝑁(. )(1))𝑇 ∈ 𝒰 

𝑢(. )(2) = (𝛾1(. )
(2), … , 𝛾𝑁(. )(2), 𝛼1(. )

(2), … , 𝛼𝑁(. )(2))𝑇 ∈ 𝒰 

0 < 𝒢 < 1 

As (𝐿2[0, 𝑇])2𝑁 is a real vector space, then 

(1 − 𝒢)𝑢(. )(1) + 𝒢𝑢(. )(2) ∈ (𝐿2[0, 𝑇])2𝑁 

Can be illustrated as: 

𝛾 ≤ (1 − 𝒢)𝛾𝑖(. )
(1) + 𝒢𝛾𝑖(. )

(2) ≤ 𝛾    ,   𝛼 ≤ (1 − 𝒢)𝛼𝑖(. )
(1) + 𝒢𝛼𝑖(. )

(2) ≤ 𝛼 

(Rudin, 1964), So admissible set 𝒰 is convex. 

c. The admissible set 𝒰 is closed. Let 

𝑢(. ) = (𝛾1(. ), … , 𝛾𝑁(. ), 𝛼1(. ),… , 𝛼𝑁(. ))𝑇 

𝑢(𝑛)(. ) = (𝛾1
(𝑛)(. ), … , 𝛾𝑁

(𝑛)(. ), 𝛼1
(𝑛)(. ),… , 𝛼𝑁

(𝑛)(. ))𝑇 

𝑢(. ) is a limit point in 𝒰  and  𝑢(𝑛)(. ) is a sequence of points in 𝒰. It is known 

from completeness of (𝐿2[0, 𝑇])2𝑁 that 

lim
𝑛→∞

𝑢𝑛(. ) =𝑢(. ) ∈ (𝐿2[0, 𝑇])2𝑁 

So, by observing the following, 𝒰 is closed 

𝛾 ≤ 𝛾𝑖(. ) = 𝑙𝑖𝑚
𝑛→∞

𝛾𝑖
𝑛(. ) ≤ 𝛾   𝛼 ≤ 𝛼𝑖(. ) = 𝑙𝑖𝑚

𝑛→∞
𝛼𝑖

𝑛(. ) ≤ 𝛼 
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d. 𝑓(𝑥, 𝑢) is bounded by a linear function in 𝑥. 

Can be proved by observation of 𝑓(𝑥, 𝑢) as follow 

−𝑆𝑖𝛽∑𝑗𝑎𝑖𝑗 − 𝑆𝑖𝛾𝑖  ≤  −𝑆𝑖𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗 − 𝑆𝑖𝛾𝑖  ≤  −𝑆𝑖𝛾𝑖 

− 𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗 − 𝐿𝑖(𝑡)𝛼𝑖   ≤   𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗)  −

 𝐿𝑖(𝑡)𝛼𝑖  ≤   𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗  

0 ≤ 𝐿𝑖𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗) ≤ 𝐿𝑖𝜌∑𝑗𝑎𝑖𝑗 

Proof is completed. 

e. 𝐿(𝑥, 𝑢) is convex on 𝒰. Let  

𝑢(1)(𝑡) = (𝛾1
(1)(𝑡),… , 𝛾𝑁

(1)(𝑡), 𝛼1
(1)(𝑡), … , 𝛼𝑁

(1)(𝑡))𝑇 ∈ 𝒰 

𝑢(2)(𝑡) = (𝛾1
(2)(𝑡),… , 𝛾𝑁

(2)(𝑡), 𝛼1
(2)(𝑡), … , 𝛼𝑁

(2)(𝑡))𝑇 ∈ 𝒰 

𝐿 (𝑥, (1 − 𝒢)𝑢(1)(𝑡) + 𝒢𝑢(2)(𝑡)) = ∑ [𝐵𝑖 +
1

2
𝑝[(1 − 𝒢)𝛾𝑖

(1)(𝑡) + 𝒢𝛾𝑖
(2)(𝑡)]

2
+𝑖

1

2
𝑞[(1 − 𝒢)𝛼𝑖

(1)(𝑡) + 𝒢𝛼𝑖
(2)(𝑡)]

2
] ≤ ∑ [𝐵𝑖 +

1

2
𝑝 [(1 − 𝒢)[𝛾𝑖

(1)(𝑡)]
2
+𝑖

𝒢[𝛾𝑖
(2)(𝑡)]

2
] +

1

2
𝑞 [(1 − 𝒢)[𝛼𝑖

(1)(𝑡)]
2
+ 𝒢[𝛼𝑖

(2)(𝑡)]
2
]] ≤ (1 − 𝒢)𝐿(𝑥, 𝑢(1)(𝑡)) +

𝒢𝐿(𝑥, 𝑢) 

(Rudin, 1964), Proof is complete. 

f. 𝐿(𝑥, 𝑢) ≥ 𝑐1‖𝑢‖2
𝒫 + 𝑐2 , for some 𝒫 > 1  , 𝑐1 > 0  , 𝑐2 

Proof.  Let 𝑐1 =
𝑚𝑖𝑛𝑖{𝑝,𝑞}

2
  , 𝒫 = 2  , 𝑐2 = 0  ,⟹

𝑚𝑖𝑛𝑖{𝑝,𝑞}

2
× ‖𝑢‖2

2 ≤ 𝐿(𝑥, 𝑢)  

From (a. to f.)  the optimal control problem (3) and (4) has an optimal control solution. 
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3.4.2 Optimality System 

After making sure that the optimal control problem (3) & (4) has an optimal solution, 

here deriving of the optimal control system will be done. First of all, Hamiltonian 

equation will be established. Then, find co-states and controller conditions for the 

optimal problem. 

𝐻 = 𝐿(𝑥, 𝑢) + ∑𝜆𝑖𝑓𝑖(𝑥, 𝑢)

𝑖

= 𝐿(𝑥(𝑡), 𝑢(𝑡)) + ∑𝜆𝑖

𝑑𝑆𝑖

𝑑𝑡
𝑖

+ ∑𝒴𝑖

𝑑𝐿𝑖

𝑑𝑡
𝑖

+ ∑𝒵𝑖

𝑑𝐵𝑖

𝑑𝑡
𝑖

 

𝐻 = ∑(𝐵𝑖 +
1

2
𝑝𝛾𝑖(𝑡) +

1

2
𝑞𝛼𝑖(𝑡))

𝑖

+ ∑𝜆𝑖 (−𝑆𝑖(𝑡)𝛽 ∑𝑎𝑖𝑗𝐿𝑗(𝑡)

𝑖

− 𝑆𝑖(𝑡)𝛾𝑖(𝑡))

𝑖

+ ∑𝒴𝑖 (𝑆𝑖(𝑡)𝛽 ∑𝑎𝑖𝑗𝐿𝑗(𝑡)

𝑗

−  𝐿𝑖(𝑡)𝜌 ∑𝑎𝑖𝑗 (1 − 𝑆𝑗(𝑡))

𝑗𝑖

− 𝐿𝑖(𝑡)𝛼𝑖(𝑡)) + ∑𝒵𝑖

𝑖

( 𝐿𝑖(𝑡)𝜌 ∑𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))

𝑗

) 

𝜆𝑖 , 𝒴𝑖 , and 𝒵𝑖  for 1 ≤ 𝑖 ≤ 𝑁 , all are co-states. Hamiltonian function has the 

variables 𝑆𝑖 , 𝐿𝑖  , 𝐵𝑖 , 𝜆𝑖 , 𝒴𝑖  , 𝒵𝑖 , 𝛾𝑖 , and  𝛼𝑖. (Liberzon, 2011) Pontryagin Minimum 

Principle says there are functions 𝜆𝑖
∗(𝑡) , 𝒴𝑖

∗(𝑡) , and 𝒵𝑖
∗(𝑡) such that 

𝑑𝜆𝑖
∗

𝑑𝑡
= −

𝜕𝐻∗

𝜕𝑆𝑖
= 𝜆𝑖𝛽 ∑𝑎𝑖𝑗𝐿𝑗

𝑗

+ 𝜆𝑖𝛾𝑖 − 𝒴𝑖𝛽 ∑𝑎𝑖𝑗𝐿𝑗

𝑗

− 𝜌 ∑𝑎𝑖𝑗𝐿𝑗𝒴𝑗

𝑗

+ 𝜌 ∑𝑎𝑖𝑗𝐿𝑗𝒵𝑖

𝑗

 

𝑑𝒴𝑖
∗

𝑑𝑡
= −

𝜕𝐻∗

𝜕𝐿𝑖
= 𝛽 ∑𝑎𝑖𝑗𝑆𝑗𝜆𝑗

𝑗

− 𝛽 ∑𝑎𝑖𝑗𝑆𝑗𝒴𝑗

𝑗

+ 𝒴𝑖𝜌 ∑𝑎𝑖𝑗(𝑎 − 𝑆𝑗)

𝑗

+ 𝒴𝑖𝛼𝑖

− 𝒵𝑖𝜌 ∑𝑎𝑖𝑗(1 − 𝑆𝑗)

𝑗
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𝑑𝒵𝑖
∗

𝑑𝑡
= −

𝜕𝐻∗

𝜕𝐵𝑖
= −1 

By using the optimality condition: 

𝐻∗ = 𝐻(𝑆∗(. ), 𝐿∗(. ), 𝐵∗(. ), 𝜆∗(. ), 𝒴∗(. ), 𝒵∗(. ), 𝑢∗(. ))

= min
𝑢(.)∈𝒰

𝐻(𝑆∗(. ), 𝐿∗(. ), 𝐵∗(. ), 𝜆∗(. ), 𝒴∗(. ), 𝒵∗(. ), 𝑢(. )) 

then 𝑢(. ) For 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑡 ≤ 𝑇 By either 

𝜕𝐻(𝑆,𝐿,𝐵,𝜆,𝒴,𝒵)

𝜕𝛾𝑖
= 𝑝𝛾𝑖

∗(𝑡) − 𝜆𝑖(𝑡)𝑆𝑖(𝑡) = 0  ⟹  𝛾𝑖
∗ =

1

𝑝
𝜆𝑖(𝑡)𝑆𝑖(𝑡)    

or   𝛾𝑖
∗ = 𝛾𝑖    or   𝛾𝑖

∗ = 𝛾𝑖 

𝜕𝐻(𝑆,𝐿,𝐵,𝜆,𝒴,𝒵)

𝜕𝛼𝑖
= 𝑞𝛼𝑖

∗ − 𝒴𝑖(𝑡)𝐿𝑖(𝑡) = 0 ⟹  𝛼𝑖
∗ =

1

𝑝
𝒴𝑖(𝑡)𝐿𝑖(𝑡)   

or   𝛼𝑖
∗ = 𝛼𝑖    or   𝛼𝑖

∗ = 𝛼𝑖 

Combining the above equations, the optimality system will be as below: 
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1 ≤ 𝑖 ≤ 𝑁 

0 ≤ 𝑡 ≤ 𝑇 

(7) 

 

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡) − 𝑆𝑖(𝑡)𝛾𝑖(𝑡)  

𝑑𝐿𝑖(𝑡)

𝑑𝑡
= 𝑆𝑖(𝑡)𝛽∑𝑗𝑎𝑖𝑗𝐿𝑗(𝑡)  −  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))  −  𝐿𝑖(𝑡)𝛼𝑖(𝑡)  

𝑑𝐵𝑖(𝑡)

𝑑𝑡
=  𝐿𝑖(𝑡)𝜌∑𝑗𝑎𝑖𝑗(1 − 𝑆𝑗(𝑡))   

𝑑𝜆𝑖(𝑡)

𝑑𝑡
= (𝜆𝑖(𝑡) − 𝒴𝑖(𝑡))𝛽 ∑ 𝑎𝑖𝑗𝐿𝑗(𝑡)𝑗 + 𝜌 ∑ 𝑎𝑖𝑗𝐿𝑗(𝑡)(𝒵𝑗(𝑡) − 𝒴𝑗(𝑡))𝑗 + 𝜆𝑖(𝑡)𝛾𝑖(𝑡)  

𝑑𝒴𝑖(𝑡)

𝑑𝑡
= 𝛽 ∑ 𝑎𝑖𝑗𝑆𝑗(𝑡)(𝜆𝑗(𝑡) − 𝒴𝑗(𝑡))𝑗 + (𝒴𝑖(𝑡) − 𝒵𝑖(𝑡))𝜌 ∑ 𝑎𝑖𝑗 (1 − 𝑆𝑗(𝑡))𝑗 +

𝒴𝑖(𝑡)𝛼𝑖(𝑡)   

𝑑𝒵𝑖(𝑡)

𝑑𝑡
= −1  

𝛾𝑖(𝑡) = max {min {
1

𝑝
𝜆𝑖(𝑡)𝑆𝑖(𝑡) , 𝛾𝑖 }  , 𝛾𝑖 }  

𝛼𝑖(𝑡) = max {min {
1

𝑝
𝒴𝑖(𝑡)𝐿𝑖(𝑡) , 𝛼𝑖 }  , 𝛼𝑖 }  

Transversality conditions  𝜆𝑖(𝑇) = 0  , 𝒴𝑖(𝑇) = 0  , 𝒵𝑖(𝑇) = 0  

 

3.5 Summary 

At his point, a new SLBC computer virus’s propagation model is built and analyzed. 

Its invariant and stability around equilibrium point are proved. Finally, the optimality 

system is derived.  
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CHAPTER 4: RESULTS AND DISCUSSION  

4.1 Introduction 

In this chapter, the properties was discussed in last chapter, like positive invariant 

and optimality, will be shown. Besides, some examples performed to notice behavior of 

the model in different scenarios. These examples are divided into two cases. Case 1, the 

new model will be simulated with zero countermeasure in four examples to see the 

extent of spreading, effect of changing virus’s starting point, immunization effect, and 

early detection impact. Case 2, compare optimal control solution to constant controls 

using the cost function to verify effectiveness of the optimal system. 

Hint: all the examples below will be in a scale-free Network with 100 nodes. 

Distribution of node linkages follow power law distribution. Each node supposed to 

enter the network with four links so each node in the network have at least four 

connections. 

𝑆∗, 𝐿∗, 𝐵∗, and 𝐶∗ will denote to average proportion of susceptible, latent, breaking-

out, and countermeasure in the network respectively. 

𝑆∗(𝑡) =
1

𝑁
∑𝑆𝑖(𝑡)

𝑁

𝑖=1

 , 𝐿∗(𝑡) =
1

𝑁
∑𝐿𝑖(𝑡)

𝑁

𝑖=1

 , 𝐵∗(𝑡) =
1

𝑁
∑𝐵𝑖(𝑡)

𝑁

𝑖=1

 , 𝐶∗(𝑡) =
1

𝑁
∑𝐶𝑖(𝑡)

𝑁

𝑖=1

 

 

4.2 Equipment  

Below simulations were carried out using a laptop with CPU Core i3-4030, 1.9 GHz 

and memory RAM of 4 GB. MATLAB R2018a was the software used. All the codes for 

the next examples are placed in Appendix A. 
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4.3 Case 1 

In this part, four examples will exhibit how the computers in the scale-free network 

will behaves towards different situations. All these examples in case 1. will have zero 

vaccination and treatment rates (𝛾 and 𝛼). 

 

4.3.1 Example 1. 

Here the model will be tested with different rates of infection and breaking-out where 

infection rate is higher than breaking-out rate. Initial values are 𝑆𝑖(0) = 0.9 , 𝐿𝑖(0) =

0.1 , and 𝐵𝑖(0) = 𝐶𝑖(0) = 0. Figure 4.1 shows 𝑆∗(𝑡) , 𝐿∗(𝑡) , and 𝐵∗(𝑡) with multiple 

infection rates 𝛽 and breaking-out rates 𝜌. It is clear that the virus will eventually 

disperse over the whole network. 

 

4.3.2 Example 2. 

Now will let virus start from one computer each time of the network to see if there is 

any distinction between virus start from a popular computer “hub” which has many 

links and virus start from a computer has low number of connections. Initial values 

𝑆𝑖(0) = 1 , 𝐿𝑖(0) = 0 , and 𝐵𝑖(0) = 𝐶𝑖(0) = 0. For all 𝑖 except one computer every-

time has 𝑆𝑗(0) = 0 , 𝐿𝑗(0) = 1. Figure 4.2 exhibits 𝑆∗(𝑡) , 𝐿∗(𝑡) , and 𝐵∗(𝑡) in six 

situations, one-time a node with 39 links/connections be with 𝐿(0) = 1 and 𝑆(0) = 0 

and another time a node with 29 links be with 𝐿(0) = 1 and 𝑆(0) = 0 … etc. It is 

shown that virus at the end will be infecting all computers with the only different is how 

fast spreading is.  Consequently, in this network topology, virus prevalence does not 

depend on from which node it starts spreading. Basically, does not matters for virus to 

hunt either a popular node or any unpopular node. From security point of view, making 

Univ
ers

ity
 of

 M
ala

ya



41 

an administrative computer, in local network, not allowed to use internet for security 

purposes while other computers free to connect to internet will eventually lead to 

prevalence of virus as soon as any computer of the local network get infected. 
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(a) 

(b) 

(c) 

Figure 4.1 Average proportion of (a)Susceptible. (b)Latent. (c)Breaking-out. for 
different infection and breaking-out rates and zero countermeasure. 
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(a) 

(b) 

(c) 

Figure 4.2 Average proportion of (a)Susceptible. (b)Latent. (c)Breaking-out. for 
various virus starting node depending on node’s number of links. 
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4.3.3 Example 3 

Here, benefits of immunization of hub nodes will be tested. It starts with 

immunization of one node that has the highest number of connections. Then immunize 

hubs that have more than twenty connections. Finally, all nodes with ten connections 

are immunized. Immunization here will be represented by assuming that the node is in 

the countermeasure compartment since initial values. Figure 4.3 shows the result of 

simulation in four scenarios. Scenario 1. with no immunized nodes, Scenario 2. The 

most popular node, with 31 links, is immunized, Scenario 3. highest four hubs (with 31, 

28, 21, and 21 links) are immunized, and Scenario 4. all nodes with 10 links and more 

are immunized (24 nodes immunized, 24% of the network). On the whole, in scale-free 

network immunization of hubs’ nodes will not prevent virus from spreading over rest of 

the nodes. 

 

4.3.4 Example 4 

The breaking-out rate will be higher or equal to infection rate. Figure 4.4 shows the 

result for that. It is noted from the figure that virus will stop spreading without applying 

countermeasure if the breaking-out rate is higher than infection rate. Here high 

breaking-out rate can be considered same as an early detection of the virus because if 

the virus has been detected, either will be treated by user or the computer will be shut-

down, so virus not destroying more files, until find solution to it. Consequently, this will 

prevent virus reaching many computers. Same as in example 2. here virus starting node 

does not matter in its spreading extent. 𝛽 = 0.01 𝜌 = 0.001. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 4.3 Average proportion of (a)Susceptible. (b)Latent. (c)Breaking-out. for 
immunization of various nodes. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 4.4 Average proportion of (a)Susceptible. (b)Latent. (c)Breaking-out. 
with breaking-out rate (𝝆) higher or equal to infection rate (𝜷). 
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4.4 Case 2 

Vaccination and treatment rates (𝛾 and 𝛼) will take some values in the next example 

to compare them with the optimal rates. There is no specific values can be found for 

these rates but here these rates will take values as: (0.4 ≤ 𝛾𝑖 ≤ 0.01 , 0.4 ≤ 𝛼𝑖 ≤ 0.01). 

the minimum bound (0.01) is chosen because values of (𝐿(𝑡)) will not be zero easily as 

MATLAB decrease the value for many decimals below zero so it is needed that the 

minimum not to be zero to force virus not to burst again, also agree with (X. Zhang & 

Gan, 2017). If the maximum rate chosen to be more than (0.4), it makes negligible 

effect on the virus so for that it is chosen to be (0.4), also similar to (L.-X. Yang, Draief, 

& Yang, 2016).  

 

4.4.1 Example 5 

The model will be implemented with infection rate = 0.05 , breaking-out rate 𝜌 =

0.009 , various vaccination rate (𝛾) and treatment rate (𝛼) and finally with the optimal 

countermeasure. 𝑆∗(𝑡) and 𝐿∗(𝑡) are shown in Figure 4.5 and 𝐵∗(𝑡) and 𝐶∗(𝑡) are 

shown in Figure 4.6. Furthermore, Table 4.1 presents the values of the objective 

function (𝐽) equation (4) and average proportion of Breaking-out compartment at the 

end of the time (𝐵∗(𝑡𝑓)) for multiple vaccination and treatment rates. Figure 4.7 

illustrates how the average value of optimal vaccination and treatment rates. From that 

figure, one can notice that vaccination rate, which is for susceptible nodes, does not 

reach its maximum (0.4) and drops to its minimum after ten seconds unlike the 

treatment rate, which for latent nodes, starts at maximum (0.4) and stay for a while then 

reach its minimum after twenty seconds. This may indicate the important of treatment 

over vaccination and the more focus should be pointed toward latent computers while 

combating viruses. 
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Table 4.1 values of the objective function (𝑱) and breaking-out average 
proportion (𝑩∗) for different countermeasures rates. 

 Optimal 

𝛾 = 0.2 

𝛼 = 0.2 

𝛾 = 0.4 

𝛼 = 0.4 

𝛾 = 0.09 

𝛼 = 0.09 

𝛾 = 0.01 

𝛼 = 0.01 

𝛾 = 0.05 

𝛼 = 0.2 

𝛾 = 0.2 

𝛼 = 0.05 

𝐵∗(𝑡𝑓) 0.025 0.05 0.025 0.15 0.67 0.07 0.15 

𝐽 179.2 400.32 873.63 633.83 2030 404 690 
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(a) 

(b) 

Figure 4.5 Average proportion of (a)Susceptible. (b)Latent. for different 
countermeasures rates (vaccination (𝜸), treatment (𝜶)). 
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(a) 

 

(b) 

Figure 4.6 Average proportion of (a)Breaking-out. (b)Countermeasure. for 
different countermeasures rates (vaccination (𝜸), treatment (𝜶)). 
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(a) 

(b) 

Figure 4.7 Average of optimal countermeasure (a)Vaccination. (b)Treatment. 
over time. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion  

In this research project, a new SLBC (Susceptible-Latent-Breaking-out-

Countermeasure) mathematical model for computer virus propagation has been 

established and its positive invariance, equilibrium point, and stability proved. Optimal 

control strategy for the model to prevent prevalence of viruses has been built. Moreover, 

some results appeared throughout some examples conducted on the model and can be 

concluded as follow: in scale-free network, without countermeasure, viruses will 

contaminate all the computers in the network despite existing of vaccination nodes and 

virus’s starting point. In addition, effectiveness of the optimal control has been shown 

through achieving a low level of infections with a low cost of countermeasure. 

 

5.2 Future Work 

First, it is worthy to conduct a research on the impact of network topology on the 

optimal countermeasure strategy. Second, because of impulsive nature of infection and 

countermeasure, mathematical model and optimal control problem should be transferred 

to impulsive models. Last but not least, in real-world security level differs from node to 

another so rates of infection and breaking-out will be different throughout the network. 
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