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STAGNATION POINT FLOW OF NON-NEWTONIAN NANOFLUIDS WITH

ACTIVE AND PASSIVE CONTROLS OF NANOPARTICLES

ABSTRACT

In this thesis, newly upgraded non-Newtonian nanofluids models near a stagnation point

are proposed under the influence of active and passive controls of the nanoparticles. These

boundary layer fluid flows considered Maxwell, Williamson, second-grade, Carreau and

Powell-Eyring non-Newtonian fluids. The flows are represented by the conventional partial

differential equations in fluid dynamics added with unique expression of stress tensor in the

momentum equation which satisfy the continuity equation for conservation of mass. The

Buongiorno’s model is used as a base model in this analysis as it takes into consideration

the effect of Brownian motion and thermophoresis of the nanoparticles in the energy and

mass transport equations of the flows. All these equations are reduced into a set of simpler

partial differential equations via boundary layer approximation. The governing equations

are later converted to a set of nonlinear ordinary differential equations by using similarity

transformation. Shooting technique is employed to reduce these resulting equations into a

set of boundary value problem in the form of nonlinear first order ordinary differential

equations subject to the specific initial and boundary conditions which reflect the effect

of active and passive controls of the nanoparticles in two different occasions. The bvp4c

function, developed based on finite difference method by MATLAB is utilized to further

solve the newly upgraded Maxwell, Williamson, Carreau and Powell-Eyring models

while the BVPh 2.0 package in Mathematica is employed to solve the newly upgraded

second grade nanofluids flow model. The effects of active and passive controls of the

nanoparticles are compared graphically and tabularly. The influences of other considered

parameters towards the flow profiles are also presented while the numerical values of
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skin friction coefficient, Nusselt number and Sherwood number are listed. The stagnation

parameter increases the heat transfer of all the non-Newtonian nanofluids flows studied.

Furthermore, the heat transfer rate of the boundary layer flows under passive control of

nanoparticles is consistently higher in magnitude as compared to the ones under active

control of nanoparticles.

Keywords: stagnation point, boundary layer, active and passive, nanofluid, non-Newtonian

fluid
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ALIRAN TITIK GENANGAN BENDALIR NANO BUKAN NEWTON DI

BAWAH KAWALAN PARTIKEL NANO AKTIF DAN PASIF

ABSTRAK

Dalam tesis ini, model bendalir nano bukan Newton berhampiran titik genangan yang baru

dinaik taraf diajukan di bawah pengaruh kawalan partikel nano aktif dan pasif. Aliran

bendalir lapisan sempadan ini mempertimbangkan bendalir bukan Newton Maxwell, Willi-

amson, gred kedua, Carreau dan Powell-Eyring. Aliran-aliran ini diwakili oleh persamaan

pembezaan separa konvensional dalam dinamik bendalir yang ditambah ungkapan unik

tensor tegasan ke dalam persamaan momentum yang mematuhi persamaan keselanjaran

bagi pengabadian jisim. Model Buongiorno digunakan sebagai model asal dalam analisis

ini kerana ia mempertimbangkan kesan gerakan Brownian dan thermophoresis partikel

nano dalam persamaan tenaga dan pengangkutan jisim bagi aliran. Kesemua persama-

an ini diturunkan kepada satu set persamaan pembezaan separa yang ringkas dengan

menggunakan penghampiran lapisan sempadan. Persamaan menakluk itu kemudiannya

ditukarkan kepada satu set persamaan pembezaan biasa tak linear dengan menggunakan

transformasi keserupaan. Teknik meluru digunakan untuk menurunkan persamaan yang

terhasil kepada satu set permasalahan nilai sempadan dalam bentuk persamaan pembezaan

biasa peringkat pertama tak linear yang tertakluk kepada syarat permulaan dan sempadan

yang khusus yang mencerminkan kesan kawalan partikel nano aktif dan pasif dalam

dua keadaan yang berlainan. Fungsi bvp4c yang dibangunkan berasaskan kaedah beza

terhingga oleh MATLAB diguna pakai untuk menyelesaikan model Maxwell, Williamson,

Carreau dan Powell-Eyring manakala pakej BVPh 2.0 dalam Mathematica digunakan

untuk menyelesaikan model aliran bendalir nano peringkat kedua yang baru dinaik taraf.

Kesan kawalan partikel nano aktif dan pasif dibandingkan secara grafik dan penjadualan.
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Pengaruh parameter lain yang dipertimbangkan terhadap profil aliran juga dibentangkan

manakala nilai berangka pekali geseran kulit, nombor Nusselt dan nombor Sherwood dise-

naraikan. Parameter genangan meningkatkan pemindahan haba semua aliran bendalir nano

bukan Newton yang dikaji. Selain itu, kadar pemindahan haba aliran lapisan sempadan

di bawah kawalan partikel nano pasif adalah secara konsisten bermagnitud lebih tinggi

berbanding dengan yang berada di bawah kawalan partikel nano aktif.

Kata kunci: titik genangan, lapisan sempadan, aktif dan pasif, bendalir nano, bendalir

bukan Newton
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CHAPTER 1: INTRODUCTION

1.1 Preliminary

This chapter consists of preliminary of research, problem statement, the motivation that

encourages us to pursue this topic, the objectives of the study that we hope to achieve and

our contributions towards the scientific knowledge in this field. Lastly, the structure of the

thesis will be described in detail.

In general, matter can be divided into solids and fluids. Solids have definite shape and

volume while fluids have no fixed shape and deform continuously under applied shear

stress. Fluids can roughly be divided into Newtonian and non-Newtonian fluids. The

most common fluids among us such as water and air are Newtonian. Under constant

temperature, their viscosity will remain constant regardless of the amount of shear stress

applied on them. However, the fluids commonly used in our daily life such as ketchup,

toothpaste, paint and shampoo are mostly non-Newtonian. The viscosity of non-Newtonian

fluids are dependent on the shear stress that is applied on them. Heat transfer fluids are

important in many industrial sectors including power generation, chemical production,

transportation and microelectronics to name a few. Most conventional heat transfer fluids

such as water, ethylene glycol and oil, have limited capabilities in terms of thermal

properties which may impose several restrictions in thermal applications. The concept of

nanofluids is introduced as a new class of heat transfer fluids with expected higher thermal

conductivity as compared to conventional heat transfer fluids. They are engineered by

suspending nanoparticles made of metals, oxides, carbides or carbon nanotubes in a base

fluid. Meanwhile, stagnation-point flow over a stretching surface is a classic problem in

fluid mechanics. The flow is seen whenever a fluid is impinged on a solid surface where

its velocity reduced to zero and its pressure and heat mass transfer reached its highest
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point. The stagnation point flow rises in many applications and has a very important role

in industrial processes such as cable coating, glass fibre production, glass blowing and

designing of rockets and ships.

1.2 Problem Statement and Motivation

Nanofluids are base fluids with suspended nanoparticles in it. The use of nanofluids in

a wide range of applications appears promising. Its application of interest in particular

is as the next-generation heat transfer fluids. Heat transfer fluids are used in a cooling

and heating system for vehicles, buildings and electronic appliances. It is also used in

fuel, brake fluid, power reactors and many other applications. From a recent review

(Raja et al., 2016), it is found that the convective heat transfer behaviour of nanofluids is

evidently more superior than the conventional fluids with both numerical and experimental

studies supporting the fact. The larger relative surface area of nanoparticles should

significantly improve heat transfer capabilities as well the stability of suspensions and

abrasion-related properties (C. Y. Wang, 2008). With the recent trend of miniaturization

in modern science and technology, successful employment of nanofluids will be very

beneficial towards component miniaturization by enabling a smaller and lighter design

of heat exchanger system. Despite all the recent advances, development of this field

still faces some huge challenges. Some difficulties that need to be overcome includes

nanoparticle aggregation, stability of the nanofluids and erosion of oxide nanoparticles in

pipes. Suspended nanoparticles can also alter the fluid flow and heat transfer characteristics

of the base fluid. To conquer this problem, it is important to conduct more experiments and

studies to explore and to understand the underlying physics of the nanofluids under various

systems before wide applications for nanofluids can be found. However, these experiments

are very costly with production of nanofluids using expensive materials and equipments.

The next best approach that is much more affordable is by utilizing numerical modelling of
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nanofluids to stimulate the flow and to assess the thermal performance of the system.

There have been many attempts in developing convective transport models for nanofluids.

Most of the earlier proposed model can be classified into two main groups; single-phase

model and two-phase model. The single-phase model main assumption is that nanofluid

is considered as a homogenous liquid. Due to its superfine size, the nanoparticles are

assumed to be easily dispersed in the base fluid and are in thermal balance without any

slip between molecules. Using this model for nanofluid will simplifies the simulation

and it has the lowest computational cost but it comes with some limitations. The model

may underestimate the heat transfer rate obtained as this model is strongly dependent

on adopted thermophysical properties (Safaei et al., 2016). Therefore, selecting suitable

thermophysical properties are of much importance for this model. In two-phase model, a

classic theory of solid liquid mixture is applied for nanofluids. Nanoparticles and base

fluids are considered as two separate phases with different temperature and velocity (Safaei

et al., 2016). It took into account other slip mechanisms to provide more appropriate results.

It seems to be more appropriate to use this model for nanofluid simulation, although it

does come with a much higher computational cost.

Over the years, a lot of new mechanism and unconventional models has been proposed

but there is yet a general formulation that can be used for all nanofluids. A review of

the latest works on mathematical modelling for nanofluids simulation has been done by

Safaei et al. (2016). The Buongiorno (2006) model is a non-homogenous two-component

equilibrium model. It was developed not to explain the effect of nanoparticles on

their thermophysical properties but to focus on explaining the further heat advancement

that is observed in convective situations. It is an alternative model that eliminates the

shortcomings of the homogenous and dispersion models. The model described the effect

of the nanoparticle/base-fluid relative velocity more mechanistically than in the dispersion

3

Univ
ers

ity
 of

 M
ala

ya



models. The results predicted with this model are in promising accordance with results

from previous studies. It took into consideration the effects of the Brownian motion and

thermophoresis. A common boundary condition used to study nanofluid boundary layer

flow is to assume a constant nanoparticle volume fraction near the wall surface. That is to

say, there exist a normal mass flux of nanoparticles at the surface. However, in practical,

there is no justification on how the concentration of nanoparticles can be controlled actively

at the surface. Nield and Kuznetsov (2009) in their paper shares an idea that they had in

which if one could control the temperature at the boundary, one could also control the

nanoparticle volume fraction in the same way. Again, the thoughts are difficult to apply in

practice hence no indication is given on how it could be done. But recently, they revisited

the problem and proposed a new condition (Kuznetsov & Nield, 2013). In order to make

the model physically more realistic, the boundary condition they proposed now assumed

that, the nanoparticle volume fraction on the surface is being controlled passively via

temperature gradient which resulted in a zero mass flux of nanoparticles at the boundary.

Thus, combined with the Buongiorno model, it is hoped that the nanofluid boundary layer

flow can be represented more realistically and hence providing a more accurate results on

the flow characteristics. Previously, researchers on nanofluid only have the option to apply

the active boundary condition for their model. Even though the active boundary condition

is still used and valid till now (Noor et al., 2015; Mabood & Khan, 2016; Othman et al.,

2017; Saif et al., 2017), there are an increasing works on nanofluids that used the newly

introduced passive control boundary condition (Rahman et al., 2014; Mustafa et al., 2015;

Haq et al., 2015; Dhanai et al., 2015). There are also many authors that published a revised

model of their work to incorporate the passive control boundary conditions (Kuznetsov &

Nield, 2014; Nield & Kuznetsov, 2014a; Hayat, Shafiq, et al., 2016; Ishfaq et al., 2016;

M. Khan, 2016; Waqas et al., 2017; Jahan et al., 2017). Because of this trend, it motivates
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us to study both boundary conditions of active and passive control of nanoparticles, in

order to capture their effects and differences towards the boundary layer flow characteristic.

Stagnation-point flow is a classic problem in fluid dynamics. It describes the flow

around the stagnation region and it exists on all solid bodies moving in a fluid. The

stagnation region encounters the highest pressure, heat and mass transfer rate. This flow

has many benefits and it arises in many applications. One of the more widely known

application of this flow is in aerodynamics where it has a definite role especially in

designing rockets, aircrafts, submarines and oil ships. It is also important in analytical

chemistry where isolated microfluidic stagnation point flows are used for characterizing

emulsions and polymers (Brimmo & Qasaimeh, 2017). Admittedly, there are already an

abundance of literatures available on stagnation-point flow of boundary layers. However,

with the recently introduced boundary condition for nanoparticles, it opens up new research

opportunity as well as new perspective on this well-known flow. Hence, it is important to

study this particular flow, knowing that it will contributes to the knowledge in this field.

As mention earlier, nanofluids are expected to be very beneficial as heat transfer

fluid in various industries and applications. There are many industrial fluids that show

non-Newtonian behaviour (Bush, 1989) such as those encountered in chemical and plastic

processing industry as well as in applications such as lubrication and biomedical flows.

As such, the simulation of non-Newtonian nanofluids flow is of importance to industry.

There are many different non-Newtonian fluids, each with different viscosity. For a

particular application, viscosity can play a vital role in the selection of the nanofluid as

higher viscosity may incur a penalty in pressure drop, and thus gives rise in pumping

power (Sharma et al., 2016). Since the flow behaviours are so diverse, there is no unique

mathematical relationship that can explain all the rheological attributes of these flows.

Thus, there are various non-Newtonian fluid models proposed as researchers try to capture
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the different characteristic of the non-Newtonian fluids. Different fluid model might have

different characteristic that can be highlighted, hence explained the various type of fluid

model used in this study.

In short, the aim of the present work is to analyze the stagnation boundary layer flow of

several non-Newtonian nanofluid model under active and passive control of nanoparticles

over a stretching surface with Buongiorno’s model as the basis.

1.3 Scope of Research

The goal of this work is to provide a better understanding of the stagnation-point flow of

non-Newtonian nanofluids. The non-Newtonian fluids included in the study are Maxwell,

Williamson, second grade, Carreau and Powell-Eyring fluids. The study of each model

emphasizes on the flow characteristics under the active and passive control environments.

It is hoped that this work can help to discover more flow characteristic and heat transfer

enhancement properties of the extended non-Newtonian nanofluid models in this study.

1.4 Research Questions and Objectives

The research questions for this study are listed as follows:

1. Does stagnation flow show similar characteristics in different non-Newtonian fluids?

2. What are the implications of applying active and passive controls of nanoparticles in

the boundary condition towards the flow characteristic? Will there be any difference

between the two boundary conditions?

3. How can different stream and boundary condition affect the stagnation flow of the

nanofluids?

4. How can non-Newtonian stagnation point flows with active and passive controls of

nanoparticles be solved?
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5. Can the results obtained be interpreted to discuss specific characteristics of the

non-Newtonian model considered?

The following research objectives are maneuvered to answer the above research

questions:

• Objective 1: To develop extended models of some non-Newtonian boundary layer

nanofluid flows. The specific extension for each model are as follow:

+ To extend the Maxwell nanofluid model with stagnation point flow and

hydrodynamic slip velocity.

+ To extend the Williamson nanofluid model with stagnation point flow over a

stretching/shrinking surface.

+ To extend second-grade nanofluid model with stagnation point flow.

+ To extend Carreau nanofluid model with unsteady stagnation point flow.

+ To extend mixed convection Powell-Eyring model with stagnation point flow.

• Objective 2: To study the effects of active and passive controls of nanoparticles

towards the fluid profiles and its heat and mass transfer rate.

+ To include both active and passive boundary conditions of nanoparticles in

each model.

+ To study the boundary layer flow behaviour under active and passive controls

of the nanoparticles.

• Objective 3: To study the effects of various stream and boundary conditions towards

the boundary layer flow. The specific conditions for each model are as follow:

+ To study the effect of slip velocity in Maxwell nanofluid model.

+ To study the flow characteristic over both stretching and shrinking surface in

Williamson nanofluid model.
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+ To study the second-grade nanofluid model using an augmented boundary

condition.

+ To study an unsteady MHD flow with thermal radiation effect in Carreau

nanofluid model.

+ To study the effect of buoyancy force in Powell-Eyring nanofluid model

• Objective 4: To find the approximate solutions for the extended non-Newtonian

nanofluids model

+ To utilize the MATLAB bvp4c package and Mathematica BVPh2.0 to solve

the models.

+ To develop programme codes unique to each model to be used together with

the bvp4c and BVPh2.0 package.

• Objective 5: To analyze the results obtained pertaining to the specific non-Newtonian

boundary layer problems

+ To use descriptive analysis to quantitatively describes the numerical data

obtained.

+ To provide physical interpretation for the flow profiles when necessary.

+ To understand the effect of each parameter on the boundary layer flow.

1.5 Contribution to Scientific Knowledge

This thesis considers the stagnation-point flow of some non-Newtonian nanofluids

under active and passive controls of nanoparticles. The study of stagnation-point flow

over a stretching surface is such a classic problem in fluid dynamics that it has become

quite saturated over the years. However, with the introduction of nanofluid in 1995

(Choi & Eastman, 1995), combined with the recently proposed boundary conditions for

nanoparticle near the wall (Kuznetsov & Nield, 2013), it opens up a new research interest
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in this particular field. This research contributes by extending some existing models of

some non-Newtonian nanofluids to study the stagnation-point flow under various stream

and boundary conditions. The specific extension of each model is as follows:

• Maxwell nanofluid

The model presented in Chapter 4 is among the earliest to consider stagnation-point

flow of Maxwell nanofluid past a stretching surface. It also considers the effect

of hydrodynamic velocity slip. Another model that is published around the same

time is by Ramesh et al. (2016) who considered stagnation-point flow of Maxwell

nanofluid with suction. However, the model is only studied under active control of

nanoparticles.

• Williamson nanofluid

Nadeem et al. (2013) claimed to be the first ones to develop a two-dimensional

boundary layer equations for the Williamson fluid past a stretching sheet. Later,

Nadeem and Hussain (2014a) extended the model to study the flow and heat transfer

of Williamson nanofluid over a stretching sheet. They consider an active control

of nanoparticles for their boundary condition. Not many works have been done

on stagnation-point flow of Williamson nanofluid yet. One available is by Gorla

and Gireesha (2016) who investigated the stagnation flow of Williamson nanofluid

under a convective boundary condition over a stretching and shrinking surface using

active control of nanoparticles. The model presented in Chapter 5 considered a

stagnation-point flow of a Williamson nanofluid over a stretching and shrinking

surface which is simpler than the earlier model proposed by Gorla and Gireesha

(2016) but without the convective boundary condition.

• Second-grade nanofluid

Mustafa et al. (2014) are among the first few to examine the second-grade nanofluid
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flow, followed by Goyal and Bhargava (2014) and Bhargava and Goyal (2014). They

have considered active control of nanoparticles for the boundary condition. The

model in Chapter 6 considered the stagnation-point flow of second grade nanofluid

using an augmented boundary condition. The literature on stagnation-point flow

of second grade nanofluid is still very scarce. Few literatures that are available

include the work done by Farooq et al. (2016) who studied stagnation flow of MHD

second grade nanofluid with convective boundary condition under passive control of

nanoparticles and a recent work by Saif et al. (2017) who investigated the mixed

convection stagnation flow of second grade nanofluid over non-linear stretched

surface with variable thickness under active control of nanoparticles.

• Carreau nanofluid

The model presented in Chapter 7 considered an unsteady stagnation point flow of

Carreau nanofluid over a stretching surface. There is no work done on unsteady

stagnation point flow of Carreau nanofluid under both active and passive controls

yet. There are researches available on unsteady Carreau nanofluid, for example

the study by M. Khan, Azam, and Alshomrani (2017a) and M. Khan, Azam, and

Munir (2017), who both considered a Falkner-Skan flow of MHD Carreau nanofluid

over a wedge. M. Khan and Azam (2017) investigated the unsteady flow of MHD

Carreau nanofluid while M. Khan, Azam, and Alshomrani (2017b) examined the

effect of velocity slip and thermal radiation towards unsteady Carreau nanofluid

under convective boundary condition.

• Powell-Eyring nanofluid

The mixed convection flow of Powell-Eyring nanofluid flow has been studied by

Malik et al. (2015) who considered the effect of magnetic field and active control

of boundary condition. The model presented in Chapter 8 is on stagnation-point
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flow of mixed convection Powell-Eyring nanofluid over a vertical stretching surface.

No work has been published yet on this particular type of flow of mixed convection

Powell-Eyring nanofluid.

This research also contributes by considering the study of boundary condition of both

active and passive controls of nanoparticles. Most available literatures in this field only

consider either one of the conditions. Some authors published a revised model of their

work to incorporate the passive control of nanoparticles. By considering both boundary

conditions, this research can provide a better insight on the effects the boundary conditions

have towards the boundary layer flow, heat and mass transfer characteristics.

1.6 Outline of Thesis

The thesis is organized as follows:

Chapter 1 is an introductory chapter. It contains problem statement, research motivation,

scope and objectives of the research. This chapter also outlines thewhole thesis arrangement.

Chapter 2 ismainly about literature reviews and themathematical formulation. The literature

reviews are subdivided into three main topic that is stagnation point flow, nanofluids and

non-Newtonian fluid. The characteristic of the stagnation point flow is briefly explained,

the basic concept of nanofluids are introduced and classification of non-Newtonian fluids is

given. Recent works on these topics are also compiled and arranged. Chapter 3 covers the

mathematical formulation and methodology. The governing equations of a boundary layer

flow and the unique constitutive equations for non-Newtonian fluids are given. Different

stream conditions are discussed and its mathematical term are presented. All initial and

boundary conditions used throughout the thesis are also explained. To solve the governing

equations, similarity transformation is applied, and the non-dimensional variables used are

provided for both steady and unsteady cases. Important dimensionless number are also
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listed. Lastly, a methodology section that includes work flow charts and information on

the mathematical package used to solve the models.

In the subsequent chapters, the model and analysis of each particular non-Newtonian

nanofluid under both active and passive controls of nanoparticles are described in detail.

They include a short literature review on each particular fluid, the problem formulation,

similarity transformation, numerical method, results and discussion as well as each chapters’

summary.

Chapter 4 is on stagnation-point flow of a Maxwell nanofluid model. A hydrodynamic

slip velocity is added to the initial condition as a component of the stretching velocity. To

validate the accuracy of the computation, the present results are compared with published

work of others that used different numerical methods that is HAM, finite difference method

and also, RK4. Brownian motion and thermophoresis parameter are defined and used to

study the effect nanoparticles had onto the flow.

Chapter 5 is on stagnation-point flow of a Williamson nanofluid model. The flow is

studied over a stretching and shrinking surface. Compared to the other four models, this

model defined a parameter for heat capacity ratio of nanoparticles over nanofluid and also

a parameter for diffusivity ratio of Brownian diffusivity over thermophoretic diffusivity.

Numeric validations are made by comparing present results with results obtained by others

that used Keller-Box method and HAM. The effect of stretching surface and shrinking

surface had towards the flow physical quantities can be investigate using this model.

Chapter 6 is on stagnation-point flow of a second grade nanofluid model. This model

incorporated the augmented boundary condition to compensate the paucity of existing

boundary conditions. Due to the nature of this model, a HAM based analytical tool are

needed to solve the problem posed. Convergence analysis are done to make sure of the

accuracy and convergence of the numerical.
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Chapter 7 is on stagnation-point flow of a Carreau nanofluid model. The model is a

time dependent model that took into consideration the effect of both magnetic and thermal

radiation. This is the only model in the thesis that considered an unsteady boundary layer

flow. Result comparison are made with other existing literature to validate the numerical

calculation accuracy.

Chapter 8 is on mixed convection stagnation-point flow of a Powell-Eyring nanofluid

model. It is a flow resulting from buoyancy forces that arises from temperature and

concentration gradient of comparable magnitude. Effects of opposing and assisting flows

can be observed through the variation of buoyancy parameter.

All governing PDEs for the models in Chapter 4 to Chapter 8 are reduced into a system

of ODEs by using similarity transformation. The resulting systems of ODEs are then

solved using bvp4c function in MATLAB software except for the second grade nanofluid

model in Chapter 6 that is solved using BVPH2.0; a Mathematica package software based

on HAM. All obtained results are then tabulated and shown graphically to exhibit the

impact of different parameters towards the flow, heat and mass transfer characteristics.

Lastly, in Chapter 9, we summarized the conclusion of all of our research and discussed

some improvements that can be made on current research and possible future research.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter consists of study background of the research focusing on the three main

topic that is boundary layer stagnation point flow, nanofluids and also non-Newtonian fluid.

Boundary layer is a narrow region adjacent to solid surface where confined modifying

effect appears. For flowing fluids, it is a region with steep gradient of shearing stress.

The description of the boundary layer concept was first introduced by a German scientist,

Ludwig Prandtl in 1904. He presented the boundary layer equations for steady two

dimensional flows, assuming that the non-slip condition at the surface and that frictional

effects were experienced only in a thin region near the surface (Anderson, 2005). The

concept of boundary layer has allowed prediction of skin friction drag, heat transfer from

the wall and separation of the boundary layer that enable proper design of airplanes, ships

and other equipments (Tulapurkara, 2005). His work provided the key in the analysis and

understanding of fluid dynamics which has now developed rapidly and applied in almost

all branches of engineering.

Boundary layers are of vital importance for transport phenomena. There is a specific

boundary layer with different properties for each transport phenomena. The boundary

layers can be classified as viscous boundary layer (for the velocity or momentum), thermal

boundary layer (for temperature or energy) and mass boundary layer (for the chemical

concentrations) (Hauke, 2008).

2.2 Stagnation-point Flow

One class of flows which has thoroughly been studied in literature is the stagnation-point

flow. The plane stagnation point flow is also known as Hiemenz flow, referring to the

first person who discovered that the stagnation point flow can be analyzed exactly by the
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Navier-Stokes equations. Weidman and Putkaradze (2003) characterized these flows as

inviscid or viscous, steady or unsteady, two-dimensional or three-dimensional, symmetric

or asymmetric, normal or oblique, homogeneous or two-fluid, and forward or reverse.

Figure 2.1: A stagnation-point flow.

Consider a steady flow impinging on a perpendicular plate (Fig. 2.1). There is one

streamline that divides the flow in half. Along it, the fluid moves towards the plate and

come to rest at the point where it meets the plate i.e it stagnates. The point it comes to rest

is called the stagnation point and the dividing streamline is called stagnation streamline.

The Bernoulli’s equation states that in a steady inviscid and incompressible flow, the total

pressure along a streamline is constant:

P +
1
2
ρV2 + ρgz = constant (2.1)

Here, P is the static pressure, 1
2 ρV2 is the dynamic pressure and ρgz is the hydrostatic

pressure. Then, assuming that the elevation effects are negligible, the Bernoulli’s equation

along the stagnation streamline is given as (Smits, 2018):

Pe +
1
2
ρV2

e + ρgze = Po +
1
2
ρV2

o + ρgzo (2.2)
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where ρ is the fluid density,V is the fluid velocity, z is the elevation and g is the gravitational

acceleration. The points “e” and “o” represent the far upstream and stagnation point

respectively. Since the velocity at the stagnation point is zero (Vo = 0) and ze = zo, it

became (Smits, 2018):

Pe +
1
2
ρV2

e = Po (2.3)

From the above equation, it can be seen that the pressure at a stagnation point is the sum of

static pressure and dynamic pressure, making it the point with the highest pressure in the

flow field.

The stagnation point flow over a stretching surface is a classic problem in fluidmechanics.

This flow arises in many applications and it has a definite role especially in transportation

industries on designing of rockets, aircraft, submarines and oil ships as well as in the process

of polymer extrusion, paper production, insulating materials, glass drawing, continuous

casting, fine fibre mats and many others. A large number of analytical and numerical

studies explaining various aspects of the boundary layer stagnation point flow over a

stretching/shrinking surface have been done.

Study on a stagnation point flow of a nanofluid has also garnered interest from many

investigators. Mustafa et al. (2011) are one of the first few who investigate the stagnation-

point flow of a nanofluid. They take into account the combined effects of heat and mass

transfer in the presence of Brownian motion and thermophoresis. Then, Bachok et al.

(2012) investigated the boundary layer of an unsteady two-dimensional stagnation-point

flow of a nanofluid. Alsaedi et al. (2012) further conducted an analysis to examine the

stagnation point flow of nanofluid near a permeable stretched surface with a convective

boundary condition. Some studies include the pioneering article on the stagnation point

flow of CNTs over a stretching sheet by Akbar et al. (2014). Water is used as the base
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fluid encompassing single- and multi-wall CNTs to discuss flow under the influence of

slip velocity and convective boundary condition. U. Khan et al. (2014) presented the

effects of thermo-diffusion on stagnation point flow of a nanofluid towards a stretching

surface with applied magnetic field. Hayat, Asad, et al. (2015) studied the stagnation point

flow of Jeffrey fluid over a convectively heated stretching sheet. They took into account

the combined effects of thermal radiation and magnetic field. Their result showed that

for a sufficiently large Biot number, the analysis for constant wall temperature case can

be recovered and that the velocity ratio has a dual behavior on the momentum boundary

layer and the skin friction coefficient. Sajid et al. (2015) investigated the steady mixed

convection stagnation point flow of a MHD Oldroyd-B fluid over a stretching sheet. They

found that the magnitude of heat transfer at the wall increases by increasing the Archimedes

number. Dinarvand et al. (2015) investigated the development of double-diffusive mixed

convective boundary layer flow of a nanofluid near stagnation point region over a vertical

surface. The model is solved numerically using Keller-box method and a comprehensive

study of the boundary layer behavior is illustrated through the sensitivity analysis model.

Hamid et al. (2015) dealt with a stagnation point boundary layer flow towards a permeable

stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned.

Their research showed that the non-alignment function can ruin the symmetry of the

flows which are prominent in the shrinking sheet. However, the fluid suction can reduce

the impact of the non-alignment function while increasing the velocity profiles and the

shear stress at the surface. W. A. Khan et al. (2016) investigated non-aligned MHD

stagnation point flow of nanofluids with radiation. They found that the non-alignment of

the re-attachment point on the sheet surface decreases with an increase in the magnetic

field intensity. Ramesh et al. (2016) have carried out an analysis to study the stagnation

point flow of Maxwell fluid towards a permeable stretching sheet in the presence of

17

Univ
ers

ity
 of

 M
ala

ya



nanoparticles. Their study showed increasing trend of velocity and decreasing temperature

and concentration profile when the Maxwell parameter is increased. Farooq et al. (2016)

addressed the MHD stagnation point flow of a viscoelastic nanofluid towards a stretching

surface with non-linear radiative effects. The obtained result shows that the skin friction

increases with increasing magnetic parameter. A. U. Khan et al. (2016) analyzed the slip

effects on the oscillatory oblique stagnation point flow of MHD nanofluid using three

different nanoparticles namely copper (Cu), alumina (Al2O3) and titania (TiO2). Most

recently, Dinarvand et al. (2017) applied the Tiwari-Das nanofluid model in investigating

the steady axisymmetric mixed convective stagnation-point flow of a nanofluid over a

vertical permeable circular cylinder in the presence of transverse magnetic field. Their

computation shows that the curvature parameter has a strong additive effect on the skin

friction coefficient and local Nusselt number.

A stagnation flow in pure forced convection usually refers to the rather symmetric flow

in the neighbourhood of a stagnation point line. However, a mixed convection stagnation

flow will no longer be symmetrical towards the stagnation line (Ramachandran et al.,

1988). Ishak et al. (2007) studied the mixed convection of the stagnation-point flow of an

incompressible viscous fluid towards a stretching vertical sheet. Their study shows that

dual solution exists for the opposing flow while a unique solution is available for assisting

flow. Later, they investigated the effects that stagnation mixed convection flow had when a

constant magnetic field is applied normal to the vertical plate (Ishak et al., 2010). With

applied suction and injection on the surface, their results show that dual solution actually

exists for both assisting and opposing flows. Suction as well as magnetic field increases

the range of buoyancy parameter for which the solution exists. Hayat et al. (2010) applied

the homotopy analysis method (HAM) in their study on the influence of thermal radiation

on the MHD stagnation point flow with mixed convection. Both thermal radiation and
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magnetic parameter are found to improve the heat transfer rate of the fluid in assisting flow

as well as opposing flow. Aman et al. (2011) considered a boundary slip in the mixed

convection stagnation-point flow on a vertical surface. In their study, velocity slip helps

to improve the heat transfer rate while the thermal slip worsens it. Abbas et al. (2010)

discussed the stagnation point flow of a Maxwell fluid on a stretching vertical surface with

mixed convection. They found that increasing the fluid relaxation time represented by the

Deborah number will increase the heat transfer rate in opposing flow but decreases it in

assisting flow. Hayat et al. (2012) studied the stagnation-point flow of Casson fluid with

mixed convection under convective boundary conditions. Their result shows that the Biot

number has a qualitatively similar effect towards velocity and temperature profiles.

Nowadays, there are a lot of literatures on mixed convection stagnation point flow of

nanofluid available. Some of them include work from Makinde et al. (2013) who studied

the influence of buoyancy force and magnetic field had on stagnation point flow towards a

convectively heated surface. Here, the buoyancy force helps to improve the heat transfer

rate of the fluid. Noor et al. (2015) investigated the mixed convection boundary layer

flow of a micropolar nanofluid near a stagnation point along a vertical stretching sheet

with slip effects. Their investigation showed that the presence of slip velocity between the

base fluid and the nanoparticles has significant impact on the heat transfer enhancement

of the stagnation flow. Pal and Mandal (2015) researched on the effects of thermal

radiation, heat generation and viscous dissipation towards a mixed convection flow over a

stretching/shrinking surface that is embedded in nanofluids. Hsiao (2016) investigated

the stagnation point flow of a nanofluid with electrical magnetohydrodynamic (EMHD)

and slip boundary effect on a stretching surface. Abbasi et al. (2016) analyzed the mixed

convection flow of Jeffrey nanofluid while taking into consideration the effects of thermal

radiation and double stratifications. Their result shows that thermal radiation increases the
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fluid temperature, but thermal stratification lowers the temperature. Just recently, Othman

et al. (2017) worked on a mixed convection stagnation point flow of a nanofluid past a

vertical stretching/shrinking surface.

2.3 Nanofluids

The term nanofluids was first coined by Dr. Stephen Choi in 1995 (Choi & Eastman,

1995). Nanofluids are colloidal mixtures of nanometre-sized particles (1 - 100nm) in a base

fluid. The nanoparticles can be metallic, oxide, carbide, and carbonic among others while

the base fluid may be liquids such as water, refrigerant, ethylene glycol, mineral oil or even

a mixture of different types of liquids. Dispersion of a small amount of solid nanoparticles

in a base fluid may alter the thermo-physical properties of fluids. Various experiments

have shown that nanofluids shows a remarkable improvement in the thermal conductivity

for heat transfer process. Besides the enhanced thermal conductivity, nanofluids also

have special qualities which includes ultra fast heat transfer ability, decreased pumping

power, enhanced stability over other colloids, superior lubrication, decreased friction

coefficient and decreased erosion and clogging in microchannels (Solangi et al., 2015). This

uncommon features makes the use of nanofluids significant for various applications such

as in microelectronics, thermal engineering, nuclear reactors, solar thermal, transportation,

biomedicine, medical and military applications.

It has been 20 years since the term nanofluid first introduced and extensive theoretical

and experimental research have been made to study the nanofluid properties. However,

the research in nanofluids are still growing with more and better models incorporating

nanoparticles being proposed over the years. In 2006, Buongiorno (2006) proposed a

transport model for the nanofluids that took into consideration the effect of Brownian

diffusion and thermophoresis. His model quickly become one of the most used in nanofluid

modelling. In 2009, Nield and Kuznetsov (2009) made an assumption that one could control
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the value of the nanoparticle fraction at the boundary the same way one could control the

temperature. However, no indication is given on how it could be done in practice. Recently,

they revised the problem by replacing the boundary condition with a more physically

realistic set that accounts for the effect of both Brownian and thermophoresis parameters

(Kuznetsov & Nield, 2013). It is now assumed that there is no normal nanoparticle

mass flux at the plate and that the particle fraction value there adjusts accordingly. Since

then, more models are presented by taking into consideration the zero normal flux of

nanoparticles at the wall. Nield and Kuznetsov themselves have revised a few of their

existing models on the corresponding problems in the onset of convection in a horizontal

nanofluid layer of finite depth (Nield & Kuznetsov, 2014a), in natural convective boundary

layer flow of a nanofluid (Kuznetsov & Nield, 2014) and in a thermal instability analysis

of a nanofluid-saturated porous layer (Nield & Kuznetsov, 2014b).

The new boundary condition was also employed by others such as Rahman et al. (2014)

where they investigated the forced convective flow and heat transfer characteristics of a

nanofluid over an exponentially permeable stretching/shrinking surface in the presence of

partial slip at the interface. They identified the critical suction and stretching/shrinking

parameters that determine the existence of the dual solutions. Mustafa et al. (2015) explored

the boundary layer flow due to convectively heated non-linear stretching sheet. Their results

show that influence of Brownian motion on the temperature and nanoparticle volume

fraction is negligible. Haq et al. (2015) discussed the combined effects of both thermal

radiation and thermal slip on MHD boundary layer stagnation-point flow of nanofluid. It

is found that both slip parameter and Hartmann number enhance the temperature profile.

Dhanai et al. (2015) investigated the combined effects of magnetic field, mass transfer

parameter and viscous dissipation on steady boundary layer nanofluid flow induced by a

power law stretching/shrinking sheet.
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Some of the recent studies on nanofluid involved the study done by Garoosi et al. (2016a,

2016b) on heat transfer performance of nanofluids in a heat exchanger. Amani et al. (2017)

investigated the effect of heterogeneous distribution of nanoparticles using a two-phase

mixture model for nanofluid turbulent flow and heat transfer. They observed that an increase

in the Peclet number caused heterogeneity in the distribution of the properties and the

effect of nanofluid concentration on Nusselt number is more noticeable in lower Reynolds

number. Sheikholeslami and Sadoughi (2017) investigated a magnetohydrodynamic

(MHD) nanofluid convective flow in a porous cavity while taking into accounts the

various shapes of nanoparticles. G. Wang and Zhang (2017) calculated the thermal and

power efficiencies of nanofluid flows around cylinder and developed a nanofluid-flowrate

assessment criterion for nanofluid applications. They found out that the nanoparticle

density plays a more significant role than the thermal conductivity in determining the

thermal performances.

2.4 Non-Newtonian Fluid

Rheological analysis of nanofluids shows that they can exhibit either or both Newtonian

and non-Newtonian behaviours. The behaviour depends on various factors such as

nanoparticle shape, nanoparticle size, nanoparticle concentration, nanoparticle structure,

surfactants, shear rate range and even magnetic field (Sharma et al., 2016). Viscosity of

nanofluids can play a vital role in selection of the nanofluid for a particular applications.

Non-Newtonian fluids are marking their important presence with their complex and

yet interesting characteristics. They are multi-component and chemically complex, and

they display shear-dependence of viscosity, thixotropy and elasticity in different degrees

(Pearson & Tardy, 2002). These fluids are characterized by their viscosity behaviour.

Considerable efforts have been directed towards understanding the characteristics of these

so-called rheological fluids because of their growing use in various manufacturing and
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processing industries.

Due to their flow diversities, it is no surprise that there is no unique single mathematical

relationship that can explain all the rheological attributes related to these non-Newtonian

fluids. As a result, a variety of non-Newtonian fluid models have been proposed. One of

the earliest models that gained much acceptance is the power-law model in which the shear

stress varies according to a power function of the strain rate (Xu et al., 2006). Schowalter

(1960) and Acrivos et al. (1960) were the first to perform the theoretical analysis of a

steady boundary layer flow of incompressible power-law fluids in 1960. Since then, more

and better models have been proposed to suit different types of non-Newtonian behavior

such as Jeffrey fluid, Bingham fluid, Oldroyd-B fluid and Casson fluid, to name a few.

These non-Newtonian fluids may be grouped into three general classes (Chhabra, 2010):

• Generalized Newtonian fluids

The rate of shear of this particular fluid at any point is determined only by the

value of shear stress at that point at that instant. Also known as a purely viscous or

time-independent fluid.

• Time-dependent fluids

The relation between shear stress and shear rate of this fluid depends upon the

duration of shearing and their kinematic history. There are two types of the fluids,

thixotropy and rheopexy.

• Viscoplastic fluids

The fluid exhibits characteristics of both ideal fluid and elastic solid. It shows partial

elastic recovery after deformation.

The above classifications are quite arbitrary as most real materials often display a

combination of two or even all these types of features under appropriate circumstances.

The fluids from the time-independent group can further be subdivided into three types:
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• Shear-thinning / pseudoplastic

This fluid is characterized by an apparent viscosity that decreases with increasing

shear rate. At a very low or very high shear rates, most of this shear-thinning fluid

will exhibit Newtonian behaviour.

Example: power-law model, Carreau model, Ellis fluid model

• Shear thickening / dilatant

The fluid is similar to pseudoplastic fluid in which they show no yield stress but the

apparent viscosity increases with increasing shear rate. Dilatant fluids are typically

multi-phase fluids.

Example: Oobleck

• Viscoplastic

This fluid is characterized by the existence of a yield stress which must be exceeded

before the fluid will deform or flow. When external stress is applied, the fluid will

behave like an elastic solid or it may exhibit Newtonian behavior or shear-thinning

characteristics, depending on the magnitude of the stress applied against the fluids

yield stress.

Example: Bingham plastic model, Herschel-Bulkley model, Casson model

In this thesis, five different non-Newtonian fluid has been considered which is Maxwell,

Williamson, second-grade, Carreau and Powell-Eyring.

2.4.1 Maxwell fluid

Maxwell model is the simplest subclass of rate-type fluid that can predict the relaxation

time effects. Investigations involving Maxwell fluid are plenty (Shehzad et al., 2013; Awais

et al., 2014; Abbasbandy et al., 2014; Nadeem, Haq, & Khan, 2014; Ramesh et al., 2016).

Some recent ones include the study by Hussain et al. (2016) on the impact of double

24

Univ
ers

ity
 of

 M
ala

ya



stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid.

Their study showed that the thermal stratification parameter and concentration stratification

parameter caused a reduction in temperature and nanoparticle concentration. N. Khan et al.

(2016) investigated the heat and mass transfer on MHD mixed convection axisymmetric

chemically reactive flow of a Maxwell fluid driven by exothermal and isothermal stretching

disks. Sadeghy et al. (2006) opted to study the stagnation-point flow of viscoelastic fluids

by relying on a more realistic constitutive equation. They proposed that upper-convected

Maxwell UCM model is the best candidate to study the effects of fluid elasticity on the

characteristics of its boundary layer in stagnation-point flow. Currently, there are not many

literature available on stagnation-point flow of Maxwell nanofluid. One available work is

done by Ramesh et al. (2016) who studied the stagnation point flow of Maxwell nanofluid

with suction.

2.4.2 Williamson fluid

One of the most encountered non-Newtonian fluids is pseudoplastic fluids. The study of

the boundary layer flow of pseudoplastic fluids has garnered much interest due to its wide

range of applications in industry that includes extrusion of polymer sheets, solutions and

melts of high molecular weight polymers and emulsion coated sheets like photographic

films. Many models have been proposed to explain the behavior of this type of fluid such

as the power law model, Carreau model, Cross model and Ellis model but little attention

has been paid to the Williamson fluid model. The flow of pseudoplastic materials has

been discussed by Williamson (1929). He proposed a model to describe the flow of

pseudoplastic fluids and experimentally verified the results. A fluid has both minimum

and maximum effective viscosities depending upon the molecular structure of the fluid. In

the Williamson fluid model, both the minimum and maximum viscosities are considered

to ensure better results for pseudoplastic fluids. Articles on Williamson fluid model are
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available (Nadeem & Akram, 2010; Akbar et al., 2012; Ellahi et al., 2013; N. A. Khan et

al., 2014; Zehra et al., 2015; Eldabe et al., 2016), but most of them describe the peristaltic

flows of the Williamson fluid. Nadeem et al. (2013) are the first ones to develop the

two-dimensional boundary layer equations for the flow of Williamson fluid past a stretching

sheet. The problem is solved analytically using HAM. Their results show that both velocity

profile and skin friction decrease with increasing Williamson parameter. Nadeem and

Hussain (2014b) considered the flow of Williamson fluid over an exponentially stretching

sheet. They explored the effects of heat transfer by considering two cases of boundary

temperature; the PEST and the PEHF. They also examined the two dimensional flow of

Williamson nanofluid over a stretching sheet (Nadeem & Hussain, 2014a). They found out

that the parameters Le,Nbt,Nc and Pr have strong impacts on heat transfer very close to the

wall and are almost negligible slightly away from the wall. Literature on stagnation point

flow ofWilliamson fluid over stretching/shrinking surface is still very scarce. One available

is by Gorla and Gireesha (2016) who investigated the stagnation flow of Williamson

nanofluid under a convective boundary condition over a stretching and shrinking surface

using active control of nanoparticles.

2.4.3 Second grade fluid

One of the simplest model of differential type fluids is known as second grade fluid.

This fluid model is capable in exploring the shear thinning and shear thickening effects.

It can also describe the normal stress effects especially in steady flows. However, its

equation of motion is an order higher than the standard Navier-Stokes equation. This

renders towards the boundary condition insufficiency in determining the complete solution.

In order to overcome the difficulty caused by the paucity existing of boundary conditions,

Garg and Rajagopal (1990) suggested to augment them on the basis of physically reasonable

assumptions. This is possible in the case of flows with unbounded domains by using the fact
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that the solution has to be bounded or the solution has a certain smoothness at infinity. Their

study of the stagnation flow of second grade fluid with augmented boundary conditions

shows good agreement with other study that used perturbation approach. Labropulu and

Li (2008) examined the steady two dimensional stagnation point flow of a second grade

fluid with slip. The numerical solutions are obtained using a quasi-linearization technique.

Gorder and Vajravelu (2010) established the existence and uniqueness results over the

semi-infinite interval for a hydromagnetic stagnation point flow of a second grade fluid

over a stretching sheet. Hassan and Siddiqui (2012) proposed a modified approach to

exact solutions of a general form of a non-Newtonian second grade fluid. Mehmood et al.

(2013) worked on non-orthogonal stagnation point flow of a micropolar second grade fluid

towards a stretching surface with heat transfer. Hayat and his fellow researchers (Hayat

et al., 2007, 2011; Hayat, Qasim, et al., 2014) discussed the flow of a second grade fluid

under different conditions over the years including the MHD flow in a porous channel, a

convective boundary condition as well as an unsteady stagnation point flow with variable

free stream.

It is found that the literature on second grade nanofluid in general is still very scarce.

Ramzan and Bilal (2015) studied the series solution of time dependent MHD second

grade incompressible nanofluid towards a stretching sheet while taking into account the

effects of mixed convection and thermal radiation. Hayat with his co-authors (Hayat,

Muhammad, et al., 2015; Hayat, Aziz, et al., 2016; Hayat, Shafiq, et al., 2016) investigated

second grade nanofluid covering different environments including a three dimensional

boundary layer flow past a stretching surface with thermal radiation and heat source/sink,

a magnetohydrodynamics flow over a nonlinear stretching sheet and impact of melting

phenomenon in the Falkner-Skan wedge flow. Saif et al. (2017) presented a research on

the flow of second grade nanofluid towards a nonlinear stretching surface near a stagnation
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point that is subjected to variable surface thickness. They studied the simultaneous effects

of melting heat and mixed convection towards the flow. Most recently, Sithole et al. (2018)

addressed the matter of entropy generation in a magnetohydrodynamic flow of a second

grade nanofluid over a heated stretching surface. They also took into consideration the

effect of nonlinear thermal radiation and viscous dissipation. The model is then solved

using the spectral local linearization method. Their finding shows that entropy generation

is improved when higher values of magnetic parameters and Reynolds number are used.

2.4.4 Carreau fluid

One of the various models of non-Newtonian fluids available is called the Carreau fluid

model from the class of generalized Newtonian fluids. This model gains a wider acceptance

in chemical engineering and technological process for its ability to depict both the shear

thinning and shear thickening properties. Research on Carreau fluid involves one done by

Nadeem, Riaz, et al. (2014) who presented an analytical series solution for the unsteady

peristaltic flow of Carreau fluid in a gap between two eccentric tubes. M. Khan, Hussain,

and Azam (2016) investigated the heat transfer and squeezed flow of Carreau fluid over a

sensor surface with variable thermal conductivity and found out that increasing the values

of squeezed flow parameter will enhance the velocity and temperature profile. Raju et al.

(2017) analyzed the MHD unsteady Carreau nanofluid over a cone filled with different

alloy nanoparticles. Their result shows that the viscous variation parameter enables to

enhance the heat transfer rate.

However, amongst the abundance of research done on Carreau fluids, there is a shortage

of literature available on the flow of Carreau fluids past a stretching/shrinking sheet. It

is not until recently that researchers begin to study this flow on Carreau fluids. Hayat,

Asad, et al. (2014) are the first few that considered a 2-D boundary layer flow of Carreau

fluid above a stretching sheet with convective boundary condition. Their result shows
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that material parameter increases the fluid velocity while decreases the temperature field.

Sulochana et al. (2016) investigated the transpiration effect on stagnation-point flow of a

Carreau nanofluid. They found out that the non-Newtonian parameter effectively increases

the heat and mass transfer rate. Recently, Waqas et al. (2017) explored the MHD flow of

Carreau nanoliquid by exponentially convected stretchable surface. Their results show that

large Hartman number will retards the flow for both shear thinning and thickening cases.

Zaib et al. (2018) studied the effect of nonlinear thermal radiation on stagnation-point flow

of Carreau nanofluid over a nonlinear stretching surface while also taking into account

the activation energy and binary chemical reaction. Currently, M. Khan and his fellow

researchers (M. Khan & Hashim, 2015; M. Khan, Hashim, & Alshomrani, 2016; M. Khan,

Hussain, & Azam, 2016; M. Khan & Azam, 2016; M. Khan, 2016) are ones of the most

active contributors into the literature of Carreau fluid over stretching/shrinking sheet. Their

recent works on unsteady flow of Carreau nanofluid involved a magnetohydrodynamic

flow (M. Khan & Azam, 2017), a slip flow (M. Khan, Azam, & Alshomrani, 2017b), a

Falkner-Skan flow (M. Khan, Azam, & Alshomrani, 2017a) and MHD Falkner-Skan flow

(M. Khan, Azam, & Munir, 2017).

2.4.5 Powell-Eyring fluid

Among the abundance of non-Newtonian fluids available, the Powell-Eyring fluid holds

some advantages over the others especially in chemical engineering. This particular fluid

model is derived from the kinetic theory of liquids. Furthermore, the model can properly

exhibit Newtonian behaviour at low and high shear rates. Bhatti et al. (2016) investigated

the entropy generation of an Eyring-Powell nanofluid through a permeable stretching

surface and found that the entropy profile enhances all the physical parameters involved.

Hayat and his fellow researchers presented a few works on Powell-Eyring nanofluid which

include radiative flow with convective boundary conditions (Hayat, Hussain, et al., 2017),
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effectiveness of magnetic nanoparticles in radiative flow (Hayat, Khan, et al., 2017) and

MHD nonlinear stretching flow (Hayat, Sajjad, et al., 2017). Rahimi et al. (2017) applied

collocation method towards a boundary layer flow of Eyring-Powell nanofluid over a

linear stretching surface. Qayyum et al. (2017) described the nonlinear convective flow

of Powell-Eyring nanofluid with enforced Newtonian heat and mass condition near the

surface. Upadhay et al. (2017) addressed the heat and mass transfer flow of an unsteady

Eyring-Powell dusty nanofluid by imposing a Cattaneo-Christove heat flux model. And

recently, I. Khan et al. (2018) explored the flow ofMHDmixed convection of Eyring-Powell

nanofluid over an inclined surface with exponentially varying viscosity.
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CHAPTER 3: MATHEMATICAL FORMULATION AND METHODOLOGY

3.1 Introduction

This chapter presented the governing equations and their boundary conditions. Specific

terminologies and parameters that are used throughout the thesis will also be explained

briefly. The methodology used for this study is presented including some information on

the numerical tools used to solve the models.

3.2 Mathematical Formulation

3.2.1 Boundary Layer Flow

The fluid flow in physical domain is driven by various properties. In order to develop a

mathematical model that can present the fluid characteristics, those properties have to be

defined precisely as to provide transition between physical and numerical domain. In order

to predict the evolution of a fluid field, a system of non-linear transport equations needs

to be solved. The Navier-Stokes equation is a partial differential equation that is widely

used to describes the flow of incompressible fluids. The equation is expressed based on

the principle of conservation of mass, momentum and energy and can be extended with

thermodynamical equations of state.

Following the discovery of nanofluid as the next possible heat transfer fluid, Buongiorno

(2006) worked to develop an explanation for the observed abnormal convective heat transfer

in nanofluids. The absolute velocity of the nanoparticles are viewed as the sum of the base

fluid velocity and a relative (slip) velocity. He considered seven possible mechanisms that

the nanoparticles can develop slip velocity with against the base fluid: inertia, Brownian

diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage and gravity

settling. Out of the seven, he concluded that the only two important nanoparticle/base-fluid

slip mechanisms are Brownian diffusion and thermophoresis. Brownian motion is the
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random motion of nanoparticles within the base fluid that happens due to continuous

collisions between nanoparticles and molecules of the base fluid while thermophoresis is a

phenomenon where particles diffuse under the effect of a temperature gradient.

Buongiorno (2006) then proceed to develop a transport model for the nanofluids by

treating the nanofluid as a two-component mixture (base fluid + nanoparticles). Consider

a steady boundary-layer flow of a nanofluid past a stretching surface which coincides with

the plane y = 0 (Fig. 3.1). T and C represents the fluid temperature and the nanoparticle

volume concentration. Temperature at the surface of the wall is defined as Tw while the

ambient temperature and nanoparticle volume concentration are denoted by T∞ and C∞

respectively. Using the model of Buongiornos’ and abiding the conservation of total

Figure 3.1: A boundary layer flow over a stretching flat plane.

mass, momentum, thermal energy and nanoparticles, Nield and Kuznetsov (2010) makes

the standard boundary layer approximation based on scale analysis and wrote down the

continuity, momentum, energy and nanoparticle volume fraction equation as below:
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3.2.1.1 Continuity equation

The continuity equation for nanofluid is written as:

∇.v = 0 (3.1)

where v is the nanofluid velocity. This equation is identical to the continuity equation for a

pure incompressible fluid. In Cartesian coordinates:

∂u
∂x
+
∂v

∂y
= 0, (3.2)

where u, v are the velocity components in the x, y directions respectively.

3.2.1.2 Momentum equation

The nanofluid momentum equation is given as (Buongiorno, 2006; Bachok, Ishak, &

Pop, 2010):

ρ

(
∂v

∂t
+ v.∇v

)
= −∇P + µ∇2v (3.3)

where ρ is the density of the base fluid, t is time, P is pressure and µ is the dynamic

viscosity. This equation is identical to the momentum equation for a pure fluid. In Cartesian

coordinates:

u
∂u
∂x
+ v

∂u
∂y
= ν

(
∂2u
∂x2 +

∂2u
∂y2

)
. (3.4)

where ν is the kinematic viscosity.
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3.2.1.3 Energy equation

The nanofluid energy equation is given as (Buongiorno, 2006; Bachok et al., 2010):

ρc
[
∂T
∂t
+ v.∇T

]
= κ∇2T + (ρc)p

[
DB∇C.∇T +

(
DT

T∞

)
∇T .∇T

]
(3.5)

where T is the nanofluid temperature, κ is the thermal conductivity, (ρc)p is the effective

heat capacity of the nanoparticle material, DB is the Brownian diffusion coefficient and

DT is the thermophoretic diffusion coefficient. The equation states that heat in nanofluid

can be transported via convection, conduction and also by nanoparticle diffusion. The last

two terms on the right-hand side represent the contribution associated with nanoparticle

motion relative to the fluid. In Cartesian coordinates:

u
∂T
∂x
+ v

∂T
∂y
= α̊

(
∂2T
∂x2 +

∂2T
∂y2

)
+ τDB

(
∂C
∂x

∂T
∂x
+
∂C
∂y

∂T
∂y

)
+
τDT

T∞

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
]
,

(3.6)

where α̊ is the thermal diffusivity of the fluid and τ is the ratio of effective heat capacity

between the nanoparticles material and the fluid.

3.2.1.4 Mass transport equation

The nanoparticle continuity equation is given as (Buongiorno, 2006; Bachok et al.,

2010):

∂c
∂t
+ v.∇C = ∇.

[
DB∇C +

DT

T∞
∇T

]
(3.7)

whereC is the nanoparticle volume concentration. The equation states that the nanoparticles

can move homogenously within the fluid but also possesed a slip velocity relative to the
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fluid due to Brownian diffusion and thermophoresis. In Cartesian coordinates:

u
∂C
∂x
+ v

∂C
∂y
= DB

∂2C
∂y2 +

DT

T∞

∂2T
∂y2 . (3.8)

3.2.2 Constitutive Equations for Non-Newtonian Fluids

The non-Newtonian fluids are characterized by their viscosity behaviors. These are

represented by the constitutive equation that relates the stress to motion of the continuum.

Different non-Newtonian fluids models can be distinguished via the momentum equation

of each fluid.

3.2.2.1 Maxwell fluid

Maxwell fluid is a subclass of a rate-type fluid. The shear viscosity of a UCM fluid

model is a constant which enables it to focus on the fluid elasticity effects towards the

boundary layer characteristic. The model can predict the relaxation time effects. For an

UCM model, the constitutive equation can be written as (Sadeghy, Najafi, & Saffaripour,

2005):

τi j + k1
δ

δt
τi j = 2µodi j (3.9)

where µo is the zero-shear rate viscosity, k1 is the relaxation time of the fluid and di j is the

symmetric part of the velocity gradient tensor; that is:

di j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (3.10)

Using the above equations, the momentum equation for UCM can be written as:

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2 − k1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u
∂y2 + 2uv

∂2u
∂x∂y

)
(3.11)
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where ν is the kinematic viscosity.

3.2.2.2 Williamson fluid

Depending on the molecular structure of the fluid, a real fluid has both minimum and

maximum effective viscosities. Williamson fluid model takes into consideration of both

viscosities. The constitutive equations of the Williamson fluid model are given as (Nadeem

et al., 2013):

T = −PI + τi j,

τi j =

[
µ∞ +

(µo − µ∞)

1 − Υ Ûγ

]
A1,

(3.12)

where T is the Cauchy stress tensor, P is the pressure, I is the identity vector, τi j is the extra

stress tensor, µo is the limiting viscosity at zero shear rate, µ∞ is the limiting viscosity at

infinite shear rate, Υ > 0 is the time constant, A1 is the first Rivlin-Erickson tensor and Ûγ

is defined as:

Ûγ =

√
1
2
Π, Π = trace(A2

1). (3.13)

Here Π is the second invariant of strain-rate tensor. Consider the case when µ∞ = 0 and

Υ Ûγ < 1, then we have:

τi j = µo [1 + Υ Ûγ] A1. (3.14)

By using the above equations, the momentum equation for Williamson fluid can be written

as follows:

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2 +

√
2νΥx

∂u
∂y

∂2u
∂y2 (3.15)

where ν is the kinematic viscosity and Υx is a local time constant.
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3.2.2.3 Second grade fluid

Second grade fluid model is an example of a differential type fluids model that can be

used to study the effect of shear thinning and shear thickening. Additionally, it is used

to describe the normal stress effects especially in steady flows (Hayat et al., 2011). The

constitutive equation for the Cauchy stress tensor T that describes the second-grade fluids

is given by (Bariş, 2002):

T = −PI + µA1 + α1A2 + α2A
2
1, (3.16)

where P is the pressure, I is the identity tensor, µ is the coefficient of viscosity, α1, α2 are

the material modulli which also referred as the normal stress modulli and A1, A2 are the

kinematical tensor of Rivlin-Ericksen defined as:

A1 = (∇v) + (∇v)
T,

A2 =
dA1
dt
+ (∇v)A1 + (∇v)

T A1.

(3.17)

where v is the velocity vector and ∇ is the gradient operator. For a fluid modelled by

(3.16) to be compatible with thermodynamics, it has to be characterized with following

restrictions:

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (3.18)

By using the above equations, the momentum equation for second-grade fluid can be

written as follows:

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2 +

ω

ρ

[
u
∂3u
∂x∂y2 +

∂u
∂x

∂2u
∂y2 + v

∂3u
∂y3 +

∂u
∂y

∂2v

∂y2

]
(3.19)
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where ω is the material fluid parameter and ρ is the density.

3.2.2.4 Carreau fluid

Carreau rheological model is from the class of generalized Newtonian fluids. The

model can predict the viscosity for low and high shear rates. The constitutive equation for

a Carreau fluid is (Hayat, Asad, et al., 2014):

τi j =
[
µ∞ + (µo − µ∞)(1 + (Γ Ûγ)2)

n−1
2

]
Ûγ, (3.20)

where τi j is the extra stress tensor, µ∞ is the infinity shear rate viscosity, µo is the zero

shear rate viscosity, Γ is the material constant, n is the dimensionless power law index and

Ûγ is defined as

Ûγ =

√
1
2

∑
i

∑
j

Ûγi j Ûγ ji =

√
1
2
Π (3.21)

Here Π is the second invariant of strain-rate tensor. Consider the constitutive equation

when µ∞ = 0, so (3.20) becomes:

τi j =

[
µo

(
1 + Γ Ûγ)2

) n−1
2

]
Ûγ. (3.22)

By using (3.22), the momentum equation for Carreau fluid is as follows:

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2

[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

+ ν(n − 1)Γ2 ∂
2u
∂y2

(
∂u
∂y

)2
[
1 + Γ2

(
∂u
∂y

)2
] n−3

2

(3.23)

where ν is the kinematic viscosity.
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3.2.2.5 Powell-Eyring fluid

Powell-Eyring model is derived from kinetic theory of liquids. It reduced to Newtonian

behaviour for low and high shear rates and is able to describes the shear thinning properties

of fluids. A constitutive equation for a Powell-Eyring fluid is given by (Hayat, Farooq,

Alsaedi, & Iqbal, 2013):

τi j = µ
∂ui

∂x j
+

1
β

sinh−1
(
1
è
∂ui

∂x j

)
, (3.24)

where µ is the viscosity coefficient, β and è are the fluid parameter for Powell-Eyring.

Using

sinh−1
(
1
è
∂ui

∂x j

)
�

1
è
∂ui

∂x j
−

1
6

(
1
è
∂ui

∂x j

)3
,

����1è ∂ui

∂x j

���� � 1, (3.25)

the momentum equation for Powell-Eyring can be written as:

u
∂u
∂x
+ v

∂u
∂y
=

(
ν +

1
ρβè

)
∂2u
∂y2 −

1
2ρβè3

(
∂u
∂y

)2
∂2u
∂y2 (3.26)

where ν is the kinematic viscosity and ρ is the density.

3.2.3 Stream Condition

A flow has many different properties such as density, viscosity, heat capacity, thermal

conductivity and diffusion coefficients to name a few. Depending on the model and problem

posed, the properties can be specified accordingly.

3.2.3.1 Classification of fluid flow

Fluid flow can be classified according to the following criteria (Hauke, 2008):

• Stationary and non-stationary

The flow is stationary when the fluid variables in the Eularian description do not

39

Univ
ers

ity
 of

 M
ala

ya



depend on time. That is

∂·

∂t
= 0. (3.27)

For a large, fixed control volume, it is possible that inflow and outflow conditions

do not change with time. If the fluid properties inside the control volume are also

independent of time, the flow is called a steady flow. When this is not the case, the

flow is transient or unsteady. This is the situation when the flow is evolving from the

initial state towards stationary solution. There are cases when the long-term solution

is not steady but it repeats itself in time. This flow is called periodic.

• Compressible and incompressible flow

Incompressible flow assumed constant density. It satisfies

∇.v = div v = 0. (3.28)

Compressible flows depends on the Mach number, Ma which is the ratio of local

fluid velocity and local propagation speed of sound. The flow can be classified as

subsonic, transonic or supersonic.

• Dimensionality of flow field

The dimensionality of a flow field is governed by the number of space dimensions

needed to define the flow field completely. In one-dimensional flow, the flow

variables can only vary in one direction. For example, a spherically symmetric flow.

In a two-dimensional flow, the flow variables vary along the flow direction as well

as across it. A plane flow is a two-dimensional flow with respect to Cartesian or

polar coordinates. In three-dimensional flow, the flow variables will vary in all three

directions.
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• Viscous and ideal flow

Flows where friction is taken into account are termed viscous flows. This friction

between the layers of fluid that provides resistance to the motion is caused by a fluid

property called viscosity, µ. When this fluid property is neglected (µ = 0), the fluid

motion will be frictionless and it is called ideal flows. For this type of fluid, the rest

of the diffusion coefficients like thermal conductivity and mass diffusivity will also

be neglected.

• Laminar and turbulent

The flow is laminar when the motion of the fluid particles is well-organized,

predictable and deterministic. A flow is called turbulent when it has random

component and its flow is the sum of an average motion plus chaotic fluctuations

due to the non-linearities of the transport equations.

3.2.3.2 Stagnation point flow

The structure of a boundary layer formed in a stagnation-point flow of an incompressible

viscous fluid towards a stretching surface is found to depend on the ratio of the velocity of

the stretching surface to the inviscid flow in the neighbourhood of the stagnation point

(Mahapatra & Gupta, 2002).

The stagnation flow is represented by the term:

ue
due

dx
(3.29)

in the fluid momentum equation where ue is the velocity distribution for the free stream, far

away from the surface. The term signifies the fluid flow towards the vertical plate surface

by the free stream normally (Hsiao, 2016).
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3.2.3.3 Magnetohydrodynamic (MHD)

MHD flow past a flat surface has many applications in industry such as polymer

technology and metallurgy where hydromagnetic techniques are used. In the case where

the final product actually depends on the rate of cooling, an electrically conducting fluid

subject to magnetic is very important. It can control the cooling rate thus helps in achieving

the desired standard of the final product. The MHD term is represented by the term:

σB2

ρ
u (3.30)

where σ is the electrical conductivity, B is the uniform magnetic field and ρ is the

fluid density. In an unsteady boundary layer flow, a time dependent magnetic field

B(t) = Bo/
√

1 − bt will be applied normally to the surface where Bo is the initial strength

of magnetic field and b is a positive constant.

3.2.3.4 Thermal radiation

Thermal radiation is important in some applications because of the manner in which

radiant emission depends on temperature. Radiation is intensified at high absolute

temperature. The thermal radiation term is represented by the term:

1
ρcp

∂qr

∂y
(3.31)

where qr is the radiative heat flux defined by Rosseland approximation (Haq et al., 2015):

qr = −
4σ∗

4k∗
∂T4

∂y
, (3.32)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the Rosseland mean absorption

coefficient. By describing T4 as a linear function of temperature and expanding it in
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Taylors series about the free stream temperature T∞, we have T4 � 4T3
∞T − 3T4

∞. The

radiative heat flux can now be expressed as

qr = −
16σ∗

3k∗
T3
∞

∂T
∂y

(3.33)

3.2.3.5 Mixed convection

Mixed convection flow occurs when effects from forced convection and natural convec-

tion mechanism contributes significantly to heat transfer. According to Chen, Sparrow,

and Mucoglu (1977), buoyancy forces that arise from temperature difference will instigate

a longitudinal pressure gradient which changes the flow field and hence the heat transfer

rate from the surface as well. The mixed convection term is represented by the term:

g [βT (T − T∞) + βC(C − C∞)] (3.34)

where g is the acceleration due to gravity, βT is the thermal expansion coefficient and βC

is the nanoparticle volumetric coefficient.

3.2.4 Initial and Boundary Conditions

When solving a mathematical model, initial and boundary conditions are a required

component. For fluid flow model, appropriate initial conditions and boundary conditions

are needed as they direct the motion of the flow. The initial conditions provide the initial

state from which the flow evolves. The boundary conditions are values of flow properties

or fluxes that must be provided on the surface of the control volume. Different types of

boundary condition can be applied using different variables. There are many types of

boundary conditions such as the boundary conditions for flow inlets and outlets that permit

the flow to enter and exit the solution domain, wall boundaries condition that is used to
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bound fluid and solid regions, axis boundaries, porous media conditions and many others.

3.2.4.1 Velocity

For viscous flow, the velocity v of the fluid in contact with a wall equals the wall velocity

vw. This is called the no-slip boundary condition (Smits, 2018). In this thesis, a steady

boundary layer flow over a linearly stretching surface is considered.

At y = 0 : u = uw(x) = cx, v = 0 (3.35a)

As y →∞ : u = ue(x) = ax. (3.35b)

For the case where an unsteady boundary layer flow is studied, the velocity boundary

condition is given as (Freidoonimehr, Rashidi, & Mahmud, 2015):

At y = 0 : u = uw(x, t) =
cx

1 − bt
, v = 0 (3.36a)

As y →∞ : u = ue(x, t) =
ax

1 − bt
(3.36b)

Here, uw is the fluid velocity near the wall or the stretching surface velocity and ue is the

velocity outside the boundary layer or the free stream velocity. Flow of an incompressible

viscous fluid over a stretching surface has an important bearing on technological processes.

In processes like melt-spinning in extrusion of polymer, metals casting, fibres spinning

and glass blowing, there are flows due to at least one stretching surface. In all these cases,

the quality of final product depends on the rate of heat transfer at the stretching surface

(Mahapatra & Gupta, 2002).
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• Stretching/shrinking surface

Velocity boundary condition for a linearly stretching/shrinking surface is given as:

At y = 0 : u = Suw(x) = Scx , v = 0 (3.37)

Here, S is the stretching parameter that determines the surface condition. For S < 0,

it will be a shrinking surface and for S > 0, it will be a stretching surface (Pal,

Mandal, & Vajravelu, 2014).

• Slip boundary condition

In general, the widely accepted boundary condition for a fluid over a solid surface is

the no-slip condition. However, there is a large class of polymeric materials that slip

or stick-slip on solid boundaries (Hayat, Khan, & Ayub, 2005). The slip velocity

highly depends on the shear stress. The constitutive equations for slip developed

are mostly depend mostly on shear stress but some do take into consideration the

effect of normal stress too (Rao & Rajagopal, 1999). There is no one fixed term for

the velocity slip. In this thesis, the hydrodynamic velocity slip is imposed on the

Maxwell model and the term is as follows:

Uslip = αw

[
(1 + k1c)

∂u
∂y

]
, (3.38)

where αw is the dimensional slip coefficient and k1 is the relaxation time of Maxwell

fluid. The velocity boundary condition near the wall will then become:

At y = 0 : u = uw(x) = cx +Uslip, v = 0 (3.39)
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3.2.4.2 Temperature

For a steady boundary layer flow of an incompressible fluid, temperature T at the wall

equals to the wall temperature Tw (Smits, 2018).

At y = 0 : T = Tw (3.40)

In unsteady flow, the wall temperature boundary condition is given as (Freidoonimehr et

al., 2015):

At y = 0 : T = Tw(x, t) = T∞ +
cx

(1 − bt)2
(3.41)

As the flow moves further away from the wall, the temperature will reach a uniform value:

As y →∞ : T = T∞ (3.42)

3.2.4.3 Nanoparticle volume concentration

• Active control of nanoparticles

In most nanofluid literature, the nanoparticle volume fraction is assumed to be

constant at the surface (actively controlled). Therefore, there exist a normal mass

flux of nanoparticles at the surface with independent Sherwood number. However,

there is no justification on how the concentration of nanoparticles can be controlled

actively at the surface (Zargartalebi, Ghalambaz, Noghrehabadi, & Chamkha, 2015).

The condition is represented as follows:

At y = 0 : C = Cw . (3.43)
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• Passive control of nanoparticles

A new condition was introduced by Kuznetsov and Nield (2013) which stated that

there is a zero normal mass flux of nanoparticles at the boundary. It started with the

idea that one could control the value of nanoparticle volume fraction at the boundary

in the same way as the temperature there could be controlled (Nield & Kuznetsov,

2009). However, the thoughts are difficult to apply in practice. Thus, in order to

make the model physically more realistic, the boundary conditions are defined as

follows:

At y = 0 : DB
∂C
∂y
+

DT

T∞

∂T
∂y
= 0 (3.44)

It is now assumed that the nanoparticle volume fraction is being controlled passively

on the surface via temperature gradient. The condition may result in negative

values of nanoparticles volume fraction at the surface when the thermophoresis

effect is more dominant than the Brownian effect. Accordingly, as negative volume

fraction of nanoparticles is physically not valid, it represents zero volume fraction of

nanoparticles i.e zero mass flux near the surface (Zargartalebi et al., 2015).

As the flow moves further away from the wall, the nanoparticle volume concentration will

reach a uniform value:

As y →∞ : C = C∞ (3.45)

3.2.4.4 Augmented boundary condition

The viscoelastic model is capable in exploring the shear thinning and shear thickening

effects. It can also describe the normal stress effects especially in steady flows. However,

its equation of motion is an order higher than the standard Navier-Stokes equation. This
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renders towards the boundary condition insufficiency in determining the complete solution.

In order to overcome the difficulty caused by the paucity of the existing of boundary

conditions, Garg and Rajagopal (1991) suggested to augment them on the basis of physically

reasonable assumptions. This is possible in the case of flows with unbounded domains by

using the fact that the solution must be bounded or the solution has a certain smoothness at

infinity. The augmented condition is as follows:

As y →∞ :
∂u
∂y
→ 0 (3.46)

3.2.5 Similarity Transformation

In certain flow problems, similarity transform may be applied to reduce the partial

differential equations (PDEs) of Navier-Stokes equations to a set of nonlinear ordinary

differential equations (ODEs). The most common one used in fluid mechanics is the

scaling transformation. Prandtl found a similarity transformation for the two-dimensional

incompressible laminar fluid flow by employing ad hoc methods (Pakdemirli & Yurusoy,

1998). Similarity transform reduces the number of independent variables of PDE and is

only possible for problems with certain physical symmetries (C. Y. Wang, 2008). The

similarity solutions describe fundamental physically significant problems and also serve as

accuracy standards for full numerical solutions. The simplified ODEs made the original

PDEs easier to be solved and reduce the computing time in the numerical analysis.

3.2.5.1 Non-dimensional variables

For a two-dimensional flow of an incompressible fluid, the velocity can be expressed in

terms of another scalar function ψ, called the stream function that satisfies the continuity
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Eqn. (3.2):

u =
∂ψ

∂y
and v = −

∂ψ

∂x
(3.47)

To transform the partial differential equations (PDEs) into ordinary differential equations

(ODEs), a set of non-dimensional variables are introduced:

• Variables for a steady flow:

The similarity variable: η = y

√
c
ν
,

The stream function: ψ =
√

cνx f (η),

The temperature function: θ(η) =
T − T∞
Tw − T∞

,

The nanoparticle volume fraction function:

For passive control of φ : φ(η) =
C − C∞

C∞
,

For active control of φ : φ(η) =
C − C∞
Cw − C∞

.

(3.48)

• Variables for an unsteady flow:

The similarity variable: η =

√
c

ν(1 − bt)
y,

The stream function: ψ =

√
cν

1 − bt
x f (η),

The temperature function: θ(η) =
T − T∞
Tw − T∞

,

The nanoparticle volume fraction function:

For passive control of φ : φ(η) =
C − C∞

C∞
,

For active control of φ : φ(η) =
C − C∞
Cw − C∞

.

(3.49)
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3.2.5.2 Dimensionless number

• Dynamic viscosity, µ

Dynamic viscosity is the proportionality constant between the viscous stress τxy and

the velocity gradient.

τxy = µ
du
dy

(3.50)

Its dimensions are [µ] = ML−1T−1 and its units in the SI is PA s or kg/(ms).

• Kinematic viscosity, ν

The kinematic viscosity is the ratio

ν =
µ

ρ
(3.51)

where µ is the dynamic viscosity and ρ is the density. Its dimensions are [ν] = L2/T .

• Thermal conductivity, κ

Thermal conductivity is the proportionality coefficient between the heat flux and the

temperature gradient.

qy = −κ
∂T
∂y

(3.52)

Its units in the SI are [κ] = W/(mK).

• Thermal diffusivity, α̊

Its the ratio

α̊ =
κ

ρcp
(3.53)

where κ is the thermal conductivity, ρ the fluid density and cp the specific heat at

constant pressure. Its dimensions are [α̊] = L2/T

• Reynolds number, Re

The Reynolds number comes from dividing the convective term by the viscous term,
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representing the ratio of inertial to viscous forces. In the study, the local Reynolds

number is defined as:

Re =
uw(x)· x

ν
(3.54)

where uw(x) is the velocity function near the wall and ν is the kinematic viscosity. If

Re << 1, the viscous forces (friction) are dominant and when Re >> 1, convection

(inertial) forces are dominant.

• Prandtl number, Pr

Prandtl number is a ratio of viscous diffusion over thermal diffusion. It is defined as:

Pr =
ν

α̊
(3.55)

The number indicates the importance of momentum transport by diffusion as

compared to heat transport by diffusion.

• Lewis number, Le

Lewis number is a ratio of thermal diffusion over mass diffusion. It is defined as:

Le =
α̊

DB
(3.56)

where α̊ is the thermal diffusivity and DB is the Brownian diffusion coefficient.

• Schmidt number, Sc

Schmidt number is a ratio of viscous diffusion over mass diffusion. It is defined as:

Sc =
ν

DB
(3.57)

where ν is the kinematic diffusivity and DB is the Brownian diffusion coefficient.
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• Brownian motion parameter, Nb

The Brownian motion parameter is given as:

For passive control of φ: Nb =
τDBC∞

ν
,

For active control of φ: Nb =
τDB (Cw − C∞)

ν
.

(3.58)

where τ = (ρc)p/(ρc) f is the effective heat capacity ratio of nanoparticles and the

nanofluid and DB is the diffusion coefficient.

• Thermophoresis parameter, Nt

The thermophoresis parameter is given as:

Nt =
τDT (Tw − T∞)

νT∞
. (3.59)

where τ = (ρc)p/(ρc) f is the effective heat capacity ratio of nanoparticles and the

nanofluid and DT is the thermophoretic diffusion coefficient.

• Heat capacity ratio, Nc (Nadeem & Hussain, 2014a):

The heat capacity ratio is given as:

Nc =
(ρc)p
(ρc) f

(Cw − C∞) =
nanoparticles heat capacity
nanofluid heat capacity

, (3.60)

• Diffusivity ratio, Nbt (Nadeem & Hussain, 2014a):

The diffusivity ratio is given as:

Nbt =
DBT∞ (Cw − C∞)

DT (Tw − T∞)
=

Brownian diffusivity
Thermophoretic diffusivity

(3.61)
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• Skin friction coefficient, C fx

The local skin friction coefficient is given as:

C fx =
τw

ρu2
w(x)

, (3.62)

where ρ is the density and uw(x) is the velocity function near the wall. The wall

shear stress, τw differs with each fluid and are defined accordingly with the specific

fluid properties:

+ Maxwell fluid (Nadeem, Haq, & Khan, 2014):

τw = µ(1 + K)
(
∂u
∂y

)
y=0

(3.63)

where K is the elasticity parameter.

+ Williamson fluid (Nadeem & Hussain, 2014a):

τw = µ

[
∂u
∂y
+
Υx
√

2

(
∂u
∂y

)2
]
y=0

, (3.64)

where Υx is the time constant.

+ Second-grade fluid (Hayat, Shafiq, et al., 2016):

τw = µ

(
∂u
∂y

)
+ α1

[
u
∂2u
∂x∂y

+ v
∂2u
∂y2 + 2

∂u
∂x

∂u
∂y

]
y=0

(3.65)

where α1 is the material fluid parameter for second-grade fluid.

+ Carreau fluid (M. Khan, Hashim, & Alshomrani, 2016):

τw = µ
∂u
∂y

[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

y=0

(3.66)
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where Γ is the material constant for Carreau fluid and n is the power law index.

+ Powell-Eyring fluid (I. Khan et al., 2018):

τw =

[(
ν +

1
ρβè

)
∂u
∂y
−

1
6βè3

(
∂u
∂y

)3
]
y=0

(3.67)

where β and c̀ is the fluid parameter for Powell-Eyring and ρ is the density.

• Nusselt number, Nux

The wall heat transfer coefficient or the local Nusselt number is given as:

Nux =
qwx

κ(Tw − T∞)
(3.68)

where qw is the surface heat flux and is defined by:

qw = −κ
(
∂T
∂y

)
y=0

(3.69)

• Sherwood number, Shx

The wall mass transfer coefficient or the local Sherwood number for actively

controlled nanoparticle is given as:

Shx = −
qmx

DB(Cw − C∞)
. (3.70)

where qm is the surface mass flux and is defined by:

qm = −DB

(
∂C
∂y

)
y=0

(3.71)

Sherwood number for passively controlled nanoparticle is not defined directly due

to the assumption of zero normal mass wall flux.
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3.3 Methodology

All boundary flow models of the non-Newtonian fluids proposed in this thesis are made

of systems of non-linear partial differential equations (PDE). Using the non-dimensional

variables introduced in subsection 2.5.5.1, the PDEs are reduced into ordinary differential

equations (ODEs) by applying similarity transformation. The resulting ODEs are then

solved using either bvp4c function in MATLAB or BVPh2.0 package that utilized

Mathematica.

3.4 Numerical Toolbox

3.4.1 MATLAB bvp4c

The function bvp4c offered in MATLAB is used to solve boundary value problems for

ordinary differential equations (ODEs). The numerical method of bvp4c can be viewed

as an implicit Runge-Kutta formula with a continuous extension. Its algorithm is a finite

difference code that implements the three-stage Lobatto IIIa formula which is a collocation

method (Kierzenka & Shampine, 2001). The solution provided is of fourth-order accuracy

and it is uniformly distributed in the interval [a, b] while the error control and mesh

selection are based on the residual of the continuous solution. In bvp4c, the quality of

the solution is heavily dependent on the initial guess. A bad initial guess may result in

inaccurate solutions, or no solutions, or solutions that makes no sense (X. Wang, 2009).

In this thesis, the models of Maxwell, Williamson, Carreau and Powell-Eyring are

solved using bvp4c. In the initialization process, all the global parameters need to be

defined accordingly following each model. A suitable finite value of η → ∞ is chosen

and the relative error tolerance is set. The transformed ODEs are rewritten as a system of

first order ODEs with its corresponding boundary conditions. Most of the time, the initial

guesses with all zeroes are enough for the solution to converge. However, for the cases

where the solution failed to met the relative error tolerance condition, the initial guesses
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can be improved using shooting method. The steps are summarized in a flow chart given

in Figure 3.2. Further details and information on the method used in bvp4c can be read in

the paper by Kierzenka and Shampine (2001).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: 

Define the global parameter: r, Nb, Nt, Pr, Le 

• Maxwell model: K, α 

• Williamson model: Sc, λ, S 

• Carreau: A, We, Rd, M 

• Powell-Eyring: ε, δ, ϒ, N 

Set the interval limit: η∞ = 10 

Set: RelTol = 10-10 

Evaluate: Run bvp4c 

Define the governing functions in 1st order ODE:  

f(i),  i = 1,2,….n 

Define the boundary conditions. 

Define initial guesses: 

• All zeroes 

• Shooting method 

START 

Output: f(i), i = 1,2,3….n 

If relative 

tolerance 

< RelTol 

STOP 

NO 

YES 

Figure 3.2: Flow chart for using MATLAB bvp4c.
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3.4.2 Mathematica BVPh 2.0

The OHAM-based Mathematica package BVPh2.0 can deal with many systems of

coupled ODEs defined in finite and/or semi-infinite intervals. It is an analytic tool for

nonlinear boundary layer value and eigenvalue problems. Compared to bvp4c, it is based

on the idea of “computing numerically with functions instead of numbers” (Zhao &

Liao, 2013). According to Liao (2013), HAM has few advantages over the traditional

non-perturbation methods:

• It is independent of any small/large physical parameters

• It provides great freedom and flexibility in choosing the equation type and solution

expression of linear high-order approximation equations

• It provides a guarantee of the convergence of approximation series.

Themodel of second-grade nanofluid is solved using BVPh2.0. In the initialization step, the

differential equations, boundary conditions, solution interval, initial guesses, auxiliary linear

operator and the physical parameters are defined. Using BVPh2.0, the optimal values of

the convergence-control parameters are then obtained together with the m−th order of HAM

approximation. Figure 3.3 shows the steps taken when using the BVPh2.0. The BVPh2.0

are available free on-line at http : //numericaltank .s jtu.edu.cn/BVPh2_0.htm.
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Figure 3.3: Flow chart for using MATHEMATICA BVPh2.0.
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CHAPTER 4: ACTIVE AND PASSIVE CONTROLS OF NANOPARTICLES IN
MAXWELL STAGNATION POINT FLOW OVER A SLIPPED STRETCHED

SURFACE

4.1 Introduction

In this chapter, the model of a stagnation-point flow of Maxwell nanofluid is presented.

The model included the effect of slip velocity by adding a hydrodynamic slip velocity in

the initial condition and studied under active and passive control of nanoparticles. The

work has been published in Meccanica (Halim, Haq, & Noor, 2017).

4.2 Problem Formulation

Consider a two-dimensional steady stagnation-point flow of an incompressible Maxwell

fluid towards a horizontal linearly stretching sheet which coincides with the plane y = 0.

The flow is assumed to be confined to y > 0 with the stretching velocity uw(x) = cx while

the velocity external to the boundary layer flow is ue(x) = ax where a and c are positive

constants. Temperature at the surface of the wall is defined as Tw. Nanoparticle volume

concentration takes the value Cw at the surface for actively controlled mass flux while

the ambient temperature and concentration are denoted by T∞ and C∞ respectively. The

nanoparticle volume fraction for passively controlled mass flux is defined separately by

the temperature gradient resulting with zero normal flux of nanoparticles. By mean of

the above said assumptions, the problem can be formulate using the continuity equation

(3.2), energy equation (3.6) and nanoparticle volume concentration equation (3.8) with the

momentum equation given as:

u
∂u
∂x
+ v

∂u
∂y
= ue

due

dx
+ ν

∂2u
∂y2 − k1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u
∂y2 + 2uv

∂2u
∂x∂y

)
, (4.1)
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Figure 4.1: Geometry of the flow in Cartesian coordinate.

subject to velocity boundary condition (3.35b, 3.39), temperature boundary condition

(3.40, 3.42) and the active and passive control of nanoparticle condition (3.43, 3.44). In

the equation, u and v are the velocity components in the x, y directions respectively, ν is

the kinematic viscosity and k1 is the relaxation time of the UCM fluid. By using the set of

non-dimensional variables for steady flow (3.48), the above model can then be transformed

into a simplified non-linear ordinary differential equation below:

f ′′′ − ( f ′)2 + f f ′′ + r2 + K(2 f f ′ f ′′ − f 2 f ′′′) = 0,

θ′′ + Pr
[

f θ′ + Nb θ′φ′ + Nt(θ′)2
]
= 0,

φ′′ + Le Pr f φ′ +
Nt
Nb

θ′′ = 0,

(4.2)
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subject to the corresponding boundary conditions

f (0) = 0, f ′(0) = 1 + α(1 + K) f ′′(0), θ(0) = 1, φ(0) = 1,
Nbφ′(0) + Nt θ′(0) = 0, (passive control of φ)

φ(0) = 1, (active control of φ)

f (∞) = 0, f ′(∞) = r, θ(∞) = 0, φ(∞) = 0.

(4.3)

where primes denote differentiation with respect to η. Here, r = a/c is the stagnation

parameter, K = k1c is the elasticity parameter, Pr is the Prandtl number, Le is the Lewis

number and α = αw
√

c/ν denotes the slip coefficient. The parameters of Brownian motion,

Nb and thermophoresis, Nt are defined as in (3.58, 3.59).

The physical quantities of interest are the local skin friction coefficient (3.62), the

wall heat transfer coefficient or the local Nusselt number (3.68) and the wall deposition

flux or the local Sherwood number (3.70). These expressions can be reduced into the

dimensionless form below:

C fx Re1/2
x = (1 + K) f ′′(0),

Nux Re−1/2
x = −θ′(0),
Shx Re−1/2

x = −φ′(0), for active control of φ

Shx Re−1/2
x = Nt

Nbθ
′(0), for passive control of φ

(4.4)

Following the classical shooting technique, the system of nonlinear differential equations
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(4.2) and (4.3) are first converted into the first-order system as below:

x′3 =
1

K x2
1 − 1

[
x1x3 + 2K x1x2x3 − x2

2 + r2] ,
x′5 = −Pr

[
x1x5 + Nb x5x7 + Nt x2

5
]
,

x′7 = −Le Pr x1x7 −
Nt
Nb

x′5,

(4.5)

subject to the boundary conditions

x1(0) = 0, x2(0) = 1 + α(1 + K)x3(0), x4(0) = 1,
Nbx7(0) + Ntx5(0) = 0, (for passive control of φ)

x6(0) = 1, (for active control of φ)

x2(∞) = r, x4(∞) = 0, x6(∞) = 0,

(4.6)

where

x1 = f , x2 = x′1 = f ′, x3 = x′2 = f ′′,

x4 = θ, x5 = x′4 = θ
′,

x6 = φ, x7 = x′6 = φ
′.

(4.7)

Solving the above system of first order ordinary differential equations required initial

guesses that could satisfy the boundary conditions. Since the values x3(0) = z1, x4(0) = z2

and x6(0) = z3 are not given initially, therefore all these missing conditions can be

determined using shooting method. In this case, setting the initial values to zeroes are

enough for the bvp4c function to solve the problem within the required error tolerance

which has been set to 10−10.
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Table 4.1: Comparison of the numerical values for the reduced Nusselt number when K = 0, Le = 1
and Nb = Nt = 0.

Pr r
Nux

Mustafa et al. (2011) Present Work
1.0 0.1 0.602156 0.602157

0.2 0.624467 0.624469
0.5 0.692460 0.692449

1.5 0.1 0.776802 0.776801
0.2 0.797122 0.797122
0.5 0.864771 0.864794

Table 4.2: Comparison of the numerical values for the reduced Nusselt number, and
the reduced Sherwood number in the absence of elasticity and stagnation parameter when
K = r = 0,Pr = 10, Le = 1,Nb = 0.1 and Nt is varied.

N t
Nadeem, Haq, and Khan (2014) Present Work
Nux Shx Nux Shx

0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.6932 2.2732 0.6932 2.2740
0.3 0.5201 2.5286 0.5201 2.5286
0.4 0.4026 2.7952 0.4026 2.7952
0.5 0.3211 3.0351 0.3211 3.0351

4.3 Results and Discussion

To ensure accuracy in our computation, present results are compared with the published

results as presented in Table 4.1 to Table 4.3. In Table 4.1, values for reduced Nusselt

number for various values of Pr and r are compared with the results published by Mustafa

et al. (2011) who employed HAM. Table 4.2 shows the comparison of the numerical values

for the reduced Nusselt number and the reduced Sherwood number in the absence of

elasticity and stagnation parameters as obtained by Nadeem, Haq, and Khan (2014) using

Runge-Kutta-Fehlberg method. Present results for the reduced Nusselt number when Pr

is varied as compared with the results by W. A. Khan and Pop (2010) who used implicit

finite-difference method is presented in Table 4.3. From these comparison tables, it can be

verified that all present results are in good agreement with existing studies.

Analysis has been made to see the influence of various emerging parameters such
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Table 4.3: Comparison of results for the reduced Nusselt number −θ ′(0) when
Le = 1,Nb = Nt = K = 0,r = 1 and Pr is varied.

Pr Nux

W. A. Khan and Pop (2010) Present Work
0.70 0.4539 0.4544
2.00 0.9113 0.9114
7.00 1.8954 1.8954
20.00 3.3539 3.3539
70.00 6.4621 6.4622

as stagnation parameter r, elasticity parameter K, Lewis number Le, slip parameter α,

Brownian motion parameter Nb and thermophoresis parameter Nt in both active and

passive control environments. The results of this analysis are presented in Fig. 4.2 to

Fig. 4.10. On the other hand, the numerical values of reduced skin friction coefficient,

Re1/2
x C fx , reduced Nusselt number, Re1/2

x Nux and reduced Sherwood number, Re1/2
x Shx

for different values of K , r , α, Le, Nb and Nt are also listed in Table 4.4 and Table 4.5 for

both active and passive controls on mass transfer.
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Figure 4.2: Velocity, temperature and nanoparticle volume fraction profiles for
both active and passive controls when the stagnation parameter r varies with
Pr = 1, Le = 1,K = 0,Nb = 0.2,Nt = 0.7, α = 0.5.

The effects of stagnation parameter r to the flow are depicted in Fig. 4.2. The stagnation

parameter tends to increase the distributions of velocity and nanoparticle volume fraction
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Figure 4.3: Velocity, temperature and nanoparticle volume fraction profiles
for both active and passive controls when the slip parameter α varies with
Pr = 5, Le = 1,K = 0.3,Nb = 0.5,Nt = 0.2,r = 0.2.
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Figure 4.4: Velocity, temperature and nanoparticle volume fraction profiles for
both active and passive controls when the elasticity parameter K varies with
Pr = 5, Le = 1, α = 0.5,Nb = 0.5,Nt = 0.2,r = 0.2
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Figure 4.5: Temperature and nanoparticle volume fraction profiles for both active and passive
controls when the Lewis number Le varies with Pr = 5, α = 1,K = 0.2,Nb = 0.1,Nt = 0.7,r = 0.3

for passive control while opposite behaviors are observed for the temperature and active

controlled nanoparticle volume fraction profiles. It is also found that the presence of slip

parameter α promotes acceleration for r > 1.0 and deceleration for r < 1.0 in the flow

movement. Based on Fig. 4.3 and Fig. 4.4, the slip parameter α and elasticity parameter K

have the same effect on velocity and temperature. Velocity is a decreasing function while

temperature is an increasing function of α and K. Increasing value of both parameter

α and K gives the effect of increasing friction in the fluid. Because of the friction, the

velocity will decrease and subsequently temperature will arise as heat is being retained in

the flow longer instead of being transported to the surroundings. As for the nanoparticle

volume fraction in the active control, φ(η) will increase with increasing α and K .

From Fig. 4.5, it can be seen that Lewis number has an increasing effect towards

temperature. However, the effect in active control is very minimal if compared relatively

towards the effect in passive control. Le depends on the value of thermal diffusivity and
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Figure 4.6: Temperature and nanoparticle volume fraction profiles for both
active and passive controls when the Brownian parameter Nb varies with
Pr = 5, α = 0.5,K = 0.3, Le = 2,Nt = 0.1,r = 0.2.

Brownian diffusion parameter. Because of the zero flux condition in passive control, value

of Brownian diffusion coefficient is kept at minimum and thermal diffusivity becomes the

major contributor towards value of Le. Hence, higher value of Le means higher thermal

diffusivity which is a cause of increasing temperature. Nanoparticle volume fraction

however, reacts in the opposite manner. Increasing Le will decrease value of φ(η) in active

control.

In Fig. 4.6 andFig. 4.7, influences of nanoparticles towards temperature and nanoparticle

volume fraction are observed. Increasing the value of Brownian motion parameter and

thermophoresis parameter will result in increasing temperature. Increasing Nb means

more frequent collisions where heat absorbed from the collisions causes the temperature to

rise. Frequent collisions indicate that the displacements between nanoparticles are reduced

hence the decrement of volume fraction occurs. When the passive mass flux condition is

applied, it can be observed that Nb has almost a negligible effect on temperature making
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Figure 4.7: Temperature and nanoparticle volume fraction profiles for both ac-
tive and passive controls when the thermophoresis parameter Nt varies with
Pr = 5, α = 0.5,K = 0.3, Le = 2,Nb = 0.4,r = 0.2.

the effect of Nt is more significant in temperature increment. Higher Nt means a higher

temperature gradient and due to the increasing temperature difference, the nanoparticles are

more dispersed in order to escape to a cooler environment hence increasing the nanoparticle

volume fraction in the process. In passive control, φ(η) shows flipping behavior but in

opposite manner towards Nb and Nt. For Nb, φ(η) increases with increasing value of

Nb near the wall surface but it starts to flip to decrease as it moves away farther from the

wall. The same behavior of φ(η) can be seen in respond to increasing r and Le in Fig.

4.2(c) and Fig. 4.5(b). As for Nt, φ(η) decreases near the wall before it flips to increase

the same way it reacts to α in Fig. 4.4(c). It can be seen in Fig. 4.2 to Fig. 4.7 that the

variable φ(η) overshoots and attains negative values in the neighbourhood of the surface.

This behavior illustrates that the nanoparticle flux at the surface is being suppressed due to

passive control of mass transfer (Ishfaq et al., 2016). Note also that the temperature for

passive control model is always lower than the temperature in active control model.
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Pr = 5,K = 0.2, Le = 1,Nb = 0.5,Nt = 0.5.
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Figure 4.9: Variation of reduced skin friction coefficient, reduced Nusselt number and reduced
Sherwood number profiles against slip parameter α when the elasticity parameter, K varies with
Pr = 5,r = 0.2, Le = 1,Nb = 0.5,Nt = 0.5.
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Figure 4.8 and Fig. 4.9 show the influence of different values of r and K towards reduced

skin friction coefficient, reduced Nusselt number Re−1/2
x C fx and reduced Sherwood number

Re−1/2
x Nux with increasing value of slip velocity parameter. It is found that the reduced

skin friction and reduced Nusselt number behave oppositely towards α. With increasing α,

skin friction will increase while the heat flux rate will decrease. As for reduced Sherwood

number, it will decrease in active control but increases in passive control. It seems that

the stagnation parameter is an increasing function of Re−1/2
x C fx , Re−1/2

x Nux and active

control of Re−1/2
x Shx . The elasticity parameter however is affected by the value of α in

its outcome towards skin friction. When α is small (< 0.25), skin friction is decreasing

with increasing K before it flips to increase. Meanwhile, the Nusselt number decreases

when K increases suggested that the heat transfer performance of Newtonian fluid when

K = 0 in Fig. 4.9 is better than the non-Newtonian Maxwell fluid. Furthermore, mass flux

decreases in active control but increases in passive control with increasing value of K .

Figure 4.10 and Fig. 4.11 demonstrate the effects of different values of Nt towards heat

and mass fluxes with increasing K and Nb. Re−1/2
x Nux is a decreasing function of both Nb

and Nt. With increasing value of K , Re−1/2
x Shx is an increasing function of Nt in active

control but a decreasing function of Nt in passive control. However, with increasing Nb,

the reduced Sherwood number is an increasing function of Nt in both active and passive

control.

Table 4.4 and Table 4.5 list the values of reduced skin friction, reduced Nusselt number

and reduced Sherwood number for different parameters. It is observed that the values

of Re−1/2
x Shx in passive controls are all negative. The mass is being transferred to

surroundings due to the zero mass flux condition at the surface that prevents nanoparticle

deposition. Increasing values of both parameter K and α will decrease the magnitude of

the physical quantities. A slight fluctuation of value on the reduced Sherwood number
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Figure 4.10: Variation of reduced Nusselt number and reduced Sherwood number pro-
files against elasticity parameter K when the thermophoresis parameter, Nt varies with
Pr = 5,r = 0.2, Le = 2,Nb = 0.5, α = 0.5.
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Figure 4.11: Variation of reduced Nusselt number and reduced Sherwood number pro-
files against Brownian parameter Nb when the thermophoresis parameter, Nt varies with
Pr = 5,r = 0.3, Le = 5,K = 0.2, α = 0.5.

71

Univ
ers

ity
 of

 M
ala

ya



Table 4.4: Values of f ′′(0),−θ ′(0) and −φ′(0) for both active and passive control when
Pr = 5.0, Le = 1.0 and Nb = Nt = 0.5.

K r α Re−1/2
x C fx

Re−1/2
x Nux Re−1/2

x Shx

active passive active passive
0.1 0.2 0.5 -0.52698 0.13044 1.01791 1.51306 -1.01791
0.3 -0.49839 0.12695 0.99024 1.47276 -0.99024
0.5 -0.47782 0.12357 0.95643 1.41977 -0.95643
0.3 0.05 -0.53882 0.12489 0.93625 1.37584 -0.93625

0.1 -0.52889 0.12519 0.95067 1.40305 -0.95067
0.2 -0.49839 0.12695 0.99024 1.47276 -0.99024

0.3 0.2 0.1 -0.81574 0.14572 1.11980 1.65935 -1.11980
0.5 -0.49839 0.12695 0.99024 1.47276 -0.99024
0.9 -0.36588 0.11699 0.92125 1.37304 -0.92125

Table 4.5: Values of −θ ′(0) and −φ′(0) for both active and passive control when
K = 0.3, α = 0.5,r = 0.2 and Pr = 5.0.

Le Nb N t
Re−1/2

x Nux Re−1/2
x Shx

active passive active passive
0.1 0.5 0.5 0.54145 1.26549 0.01058 -1.26549
0.5 0.19732 1.10965 0.96423 -1.10965
1.0 0.12695 0.99024 1.47276 -0.99024
2.0 0.08863 0.86291 2.12723 -0.86291
1.0 0.3 0.24901 0.99024 1.45159 -1.65041

0.5 0.12695 0.99024 1.47276 -0.99024
0.7 0.06136 0.99024 1.44965 -0.70732
0.9 0.02838 0.99024 1.42375 -0.55014

1.0 0.5 0.3 0.17333 1.11641 1.40432 -0.66984
0.5 0.12695 0.99024 1.47276 -0.99024
0.7 0.09608 0.87336 1.53586 -1.22270
0.9 0.07499 0.76822 1.59081 -1.38280

for active control of nanoparticles is observed when value of Brownian parameter Nb

is increasing. Meanwhile, magnitude of the reduced Nusselt number in passive control

remains stagnant even though the value of Brownian parameter Nb is increased. This

pattern can be explained by the zero mass flux condition at the surface. It can also be

suggested that with the absence of nanoparticles, there is no Brownian motion.
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4.4 Concluding Remarks

The problem of a two-dimensional steady viscous flow of an incompressible Maxwell

fluid saturated with nanoparticles near a stagnation point over a slipped stretching surface is

introduced. A hydrodynamic slip velocity is proposed as a partial expression in the general

surface stretching velocity. The active control condition of nanoparticles is combined

together with a realistic passive boundary condition to assume zero nanoparticles flux at the

surface while taking into account the effects of both Brownian motion and thermophoresis.

The model is further solved numerically using a classical shooting technique with Newton’s

method by utilizing MATLAB bvp4c function. The effects of active and passive controls

of nanoparticles with emerging parameters are sketched and tabulated accordingly. The

main results of the present analysis are listed below:

• Temperature and nanoparticle volume fraction are decreasing functions of stagnation

flow parameter.

• Temperature distribution in passive control model is lower than the active control

model.

• Both temperature and nanoparticle volume fraction show identical behavior in

reaction to increasing non-Newtonian elasticity parameter and hydrodynamic slip

parameter.

• The reduced skin friction coefficient, heat transfer rate and mass transfer rate

decrease as the slip parameter increases.

• The Brownian motion parameter has negligible effect on the reduced heat transfer

rate when nanoparticles are passively controlled at the surface.

• Increasing value of Brownian motion and thermophoresis parameter causes the

heat transfer rate of the fluid to decline.

• The heat transfer performance of Newtonian fluid (in the absence of elasticity
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parameter) is better than the non-Newtonian Maxwell fluid.

• The stagnation parameter contributes towards better heat transfer performance for

both active and passive controls on normal mass flux.

• The heat transfer rate under passive control recorded a much higher reading

compared to those under active control.
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CHAPTER 5: ACTIVE AND PASSIVE CONTROLS OF THEWILLIAMSON
STAGNATION NANOFLUID FLOW OVER A STRETCHING/SHRINKING

SURFACE

5.1 Introduction

This chapter presented the model of a stagnation-point flow of a Williamson nanofluid.

It covers both stretching and shrinking surface and is studied under both active and

passive control of nanoparticles. The work has been published in Neural Computing and

Applications (Halim, Sivasankaran, & Noor, 2017)

5.2 Problem Formulation

Consider a two-dimensional steady stagnation-point flowof an incompressibleWilliamson

nanofluid towards a horizontal linearly stretching/shrinking sheet which coincides with

the plane y = 0. The flow is assumed to be confined to y > 0 with stretching/shrinking

velocity uw(x) = ±cx while the ambient fluid is moving with a velocity ue(x) = ax, where

a and c are positive constants. It is also assumed that the stretching/shrinking surface

has constant value of temperature defined as Tw. Nanoparticle volume fraction takes the

value Cw at the surface for actively controlled mass flux while the ambient temperature and

concentration are denoted by T∞ and C∞. The nanoparticle volume fraction for passively

controlled mass flux is defined separately by the temperature gradient resulting with zero

nanoparticles normal flux. The above problem can be formulate using the continuity

equation (3.2), energy equation (3.6) and nanoparticle volume concentration equation (3.8)

with the momentum equation given as (Nadeem & Hussain, 2014a):

u
∂u
∂x
+ v

∂u
∂y
= ue

due

dx
+ ν

∂2u
∂y2 +

√
2νΥ0

∂u
∂y

∂2u
∂y2 , (5.1)
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Figure 5.1: Geometry of the flow over a) stretching surface and b) shrinking surface in Cartesian
coordinate.

subject to velocity boundary condition (3.37, 3.39), temperature boundary condition (3.40,

3.42) and the active and passive control of nanoparticle condition (3.43, 3.44). In the

momentum equation above, u and v are the velocity components in the x, y directions

respectively, ν is the kinematic viscosity, Υx = Υ/x > 0 is a local time constant and x , 0.

Applying the set of non-dimensional variables for steady flow (3.48), the above model can

then be transformed into a simplified non-linear ordinary differential equation below:

f ′′′ − ( f ′)2 + f f ′′ + r2 + λ f ′′ f ′′′ = 0,

θ′′ + Pr f θ′ +
Nc

Le
θ′φ′ +

Nc

LeNbt
(θ′)2 = 0,

φ′′ + Sc f φ′ +
1

Nbt
θ′′ = 0,

(5.2)

subject to the corresponding boundary conditions:
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f (0) = 0, f ′(0) = S, θ(0) = 1,
Nc φ

′(0) + Nc

Nbt
θ′(0) = 0, for passive control of φ,

φ(0) = 1, for active control of φ,

f ′(∞) = r, θ(∞) = 0, φ(∞) = 0,

(5.3)

where primes denote differentiation with respect to η. Here, r = a/c is the stagnation

parameter, S is the stretching/shrinking parameter that can take a positive value for a

stretching sheet or a negative value for a shrinking sheet, Pr is the Prandtl number, Le is

the Lewis number, Sc is the Schmidt number, Nc is the heat capacity ratio (3.60) and Nbt

is the diffusivity ratio (3.61). The following non-dimensional parameter are introduced by

Nadeem and Hussain (2014a):

λ = Υ

√
2c3

ν
, (5.4)

where λ is the non-Newtonian Williamson parameter. It is important to note that we have

redefined the Williamson parameter λ by introducing the term Υx = Υ/x > 0 (refer (5.1))

to eliminate the x.

The physical quantities of interest are the local skin friction coefficient (3.62), the

wall heat transfer coefficient or the local Nusselt number (3.68) and the wall deposition

flux or the local Sherwood number (3.70). These expressions can be reduced into the
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dimensionless form below:

C fx Re1/2
x = f ′′(0) +

λ

2
f ′′(0)2,

Nux Re−1/2
x = −θ′(0),
Shx Re−1/2

x = −φ′(0), for active control of φ

Shx Re−1/2
x = Nt

Nbθ
′(0), for passive control of φ

(5.5)

where Rex stands for local Reynolds number.

To solve the model, the system of differential equations (5.2) are first converted into a

first-order system as below:

x3
′ =

1
1 + λx3

[
x2

2 − x1x3 − r2] ,
x5
′ = −

[
Pr x1x5 +

Nc

Le

(
x5x7 +

1
Nbt

x5
2
) ]

,

x7
′ = −

[
Scx1x7 −

1
Nbt

x5
′

]
,

(5.6)

subject to boundary conditions:

x1(0) = 0, x2(0) = S, x4(0) = 1,
Nc x7(0) + Nc

Nbt
x5(0) = 0, for passive control of φ

x6(0) = 1, for active control of φ

x2(∞) = r, , x4(∞) = 0, x6(∞) = 0.

(5.7)

The desired solution for the system of ordinary differential equations (5.6) requires an

initial guess that should satisfy the boundary conditions (5.7). Determining an initial guess

for the solution using bvp4c is not difficult as for this specific problem, the solution will

converge to the first solution even with poor guesses. The mesh selection and error control
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are based on the residual of the continuous solution. The relative error tolerance has been

set to 10−10 and a suitable finite value of η → ∞ are chosen as η = η∞ = 10. Unless

otherwise specified, the parameter values used throughout this chapter are as follows:

r = 1,Pr = 10,Nbt = 2,Nc = 0.5, Le = 4, λ = 0.2,Sc = 2 and S = 1.

5.3 Results and Discussion

To ensure the accuracy of our results, comparisons between present and available

published results are presented in Table 5.1 to Table 5.3. Table 5.1 shows the comparison

of results of f ′′(0) for various values of r obtained by Ishak et al. (2007) using Keller-box

method and Mustafa et al. (2011) who used the homotopy analysis method (HAM). In

Table 5.2 and Table 5.3, values for skin friction coefficient f ′′(0), reduced Nusselt number,

−θ′(0) and reduced Sherwood number, −φ′(0) for different parameters are compared with

the results published by Mustafa et al. (2011) and Nadeem and Hussain (2014a) using

HAM. From the comparison tables, it can be seen that all the results are in a very good

agreement.

Table 5.1: Comparison of results of f ′′(0) for various values of r when
Le = Pr = Nbt = Nc = Sc = λ = 0.

r = a/c f ′′(0)
Ishak et al. (2007) Mustafa et al. (2011) Present Work

0.01 0.9980 0.99823 0.99803
0.10 0.9694 0.96954 0.96939
0.20 0.9181 0.91813 0.91811
0.50 0.6673 0.66735 0.66726
2.00 2.0175 2.01767 2.01750
3.00 4.7294 4.72964 4.72928

Computations have been made to see the influence of various emerging parameters such

as stagnation parameter r, shrinking/stretching parameter S, the Lewis number Le, the

Prandtl number Pr, the Schmidt number Sc, the diffusivity ratio Nbt and the heat capacity

ratio, Nc under both active and passive control environments. The results are presented
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Table 5.2: Comparison of results for the physical quantity of interest when
Pr = Nc = 0.5,Sc = Nbt = 2,r = 0, Le = 4,Sc = 2, λ = 0.2.

C fxRe
1/2
x NuxRe

−1/2
x ShxRe

−1/2
x

Nadeem and Hussain (2014a)
(30th HAM approx.) 1.076 0.308 0.824

Present Work 1.076 0.311 0.825

Table 5.3: Comparison of results for the physical quantity of interest when
Le = Pr = Nbt = Sc = 1,Nc = 0.2,r = 0.1, λ = 0.

C fxRe
1/2
x NuxRe

−1/2
x ShxRe

−1/2
x

Mustafa et al. (2011)
(40th HAM approx.) 0.969386 0.555204 0.257129

Present Work 0.969386 0.511275 0.293838

in Fig. 5.2 to Fig. 5.10. Numerical values of reduced skin friction coefficient Re1/2
x C f ,

reduced Nusselt number Re1/2
x Nux and reduced Sherwood number Re1/2

x Shx for various

parameters are tabulated for both active and passive controls of mass transfer.

Figure 5.2 and Fig. 5.3 show the effects of stagnation parameter r towards velocity,

temperature and nanoparticle volume fraction profiles. The stagnation parameter is the ratio

of the free stream rate, a over the stretching/shrinking rate, c. It is observed that velocity

increases as r increases. Oppositely, it turns out that both temperature and nanoparticle

volume fraction are decreasing functions of r in both active and passive controls. As

the external velocity increases, heat is dispersed more quickly to the surrounding hence

reducing the fluid temperature. The stronger external stream also causes the nanoparticle

concentration to thin out and reduced the volume fraction.

In Fig. 5.4, effect of the stretching/shrinking parameter S is observed. The negative

value of S represents a shrinking surface while the positive value of S represents a stretching

surface. Increasing the values of S will results in increasing velocity. Although temperature

behaves similarly as a decreasing function of S in both active and passive controls, the

nanoparticle volume fractions react in the opposite manner in both cases. In active control,

80

Univ
ers

ity
 of

 M
ala

ya



0 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1

1.2

1.4

1.6

f 
'(

 
 )

S = 1, Pr = 10, N
bt

 = Sc = 2, N
c
 = 0.5, Le  = 4,  = 0.2

r = 0.4

r = 0.6

r = 1.6

r = 1.4

r = 1.2

r = 1.0

r = 0.8

Figure 5.2: Velocity profiles for different values of the stagnation parameter r .
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Figure 5.3: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different stagnation parameter r .
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φ(η) decreases as S increases and in passive control, φ(η) increases with S.
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Figure 5.4: Velocity, temperature and nanoparticle volume fraction profiles for both active and
passive controls for different stretching/shrinking parameter, S.

The effects of varied Prandtl number towards temperature and nanoparticle volume

fraction are displayed in Fig. 5.5. Temperature is a decreasing function of Pr in both

active and passive controls environment. Nanoparticle volume fraction seems to be quite

sensitive with Prandtl number. It appears that for each Pr value the trend for φ flips to

opposite direction at different critical points, from decreasing to increasing manner in

active control and vice versa in passive control respectively.

Referring to Fig. 5.6 and Fig. 5.7, Sc and Nbt show the same effects towards temperature

and nanoparticle volume fraction. They have almost negligible effects on temperature in

both active and passive controls. φ(η) is a decreasing function for active control and it

overshoots when Sc and Nbt values are less than 0.8. When the Brownian diffusivity is

stronger (Sc < 1), the nanoparticles are spread out more due to frequent collisions between

the particles and hence increasing the nanoparticles volume fraction. Thermophoresis
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Figure 5.5: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different Prandtl number, Pr.

controls the migration of nanoparticles that arises due to temperature difference. With

higher temperature gradient, the nanoparticles are dispersed more while increasing the

volume fraction. In passive control, φ(η) increases before flips to decrease with increasing

values of Sc and Nbt .

It is shown in Fig. 5.8 and Fig. 5.9 that Nc and Le have a similar but opposite behaviours

towards temperature and nanoparticle volume fraction in active control. Both parameters

have little effect on temperature in active control and almost insignificant effect in passive

control. Temperature shows increment with increasing Nc and a decrement with increasing

Le. φ(η) seems to decrease with increasing Nc but increases with Le in the region near the

surface before it converges as the flow moves away from the surface. In passive control,

both parameter have insignificant effects towards φ(η).

Figure 5.10 shows the effect of increasing value of the non-Newtonian Williamson

parameter λ towards skin friction at different rate of stretching and shrinking parameter S.
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Figure 5.6: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different Schmidt number, Sc.
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Figure 5.7: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different diffusivity ratio, Nbt .
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Figure 5.8: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different heat capacity ratio, Nc.
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Figure 5.9: Temperature and nanoparticle volume fraction profiles for both active and passive
controls for different Lewis number, Le.
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Here, λ = 0 represents the special case of Newtonian fluid. It is observed that the reduced

skin friction C fx Re1/2
x increases when λ increases. The results agree with equation (5.5).

It can also be seen that skin friction is larger on the shrinking surface than on the stretching

surface.
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Figure 5.10: Variation of reduced skin friction for different value of Williamson parameter λ at
different stretching/shrinking rate, S.

In Fig. 5.11 and Fig. 5.12, the effects of increasing heat capacity ratio Nc towards the

reduced Nusselt number, Nux Re−1/2
x are presented. The rate of heat transfer is decreasing

but the effect as Nc increases in passive control is reduced to minimum compared to its

effect in active control. This is due to the disappearance of Nc in the boundary condition

for passive control of φ(η). Heat transfer on shrinking surface is less than heat transfer on

stretching surface and the diffusivity ratio Nbt does not seem to have much influence on

the rate of heat transfer in passive control.

From Fig. 5.3 to Fig. 5.9, it can be seen that the variable φ(η) in passive control

overshoots and attains negative values in the neighborhood of the surface. This behaviour
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Figure 5.11: Variation of reduced Nusselt number for both active and passive controls for different
capacity ratio, Nc at different stretching/shringking rate, S.
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Figure 5.12: Variation of reduced Nusselt number for both active and passive controls for different
heat capacity ratio, Nc and diffusivity ratio, Nbt .
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illustrates that the nanoparticle flux at the surface is being suppressed due to the zero

nanoparticle flux condition at the surface (Ishfaq et al., 2016). Note also that the temperature

for passive control model is always less or equal to the temperature in active control model.

Table 5.4 to Table 5.6 list the values of reduced skin friction, reduced Nusselt number

and reduced Sherwood number for different parameters. It is observed that the values

of Re−1/2
x Shx in passive controls are all negative. The mass is being transferred to

surroundings due to the zero mass flux condition at the surface that prevents nanoparticle

deposition. Increasing values of the stagnation parameter r will increase the magnitude of

all the physical quantities. Shrinking/stretching parameter S has a mixed effect on skin

friction, heat flux and mass flux. Values of Re1/2
x C fx and Re−1/2

x Shx in active control

seem to fluctuate with increasing S. Critical point of S for skin friction is at SCf = −0.59.

The skin friction is increasing before it turns to decrease at the critical point. The same

manner is observed for Re−1/2
x Shx in active control at the critical point SSh = −0.54.

Meanwhile, increasing values of Schmidt number, Lewis number and the heat capacity

ratio have opposite effects towards the reduced Nusselt number and reduced Sherwood

number. Re−1/2
x Nux is a decreasing function of Sc and Nc but an increasing function of

Le. The opposite is true for Re−1/2
x Shx number. Moreover, Nbt has increasing effect to

both Re−1/2
x Nux and Re−1/2

x Shx .

Table 5.4: Values of Re1/2
x C fx,Re−1/2

x Nux and Re−1/2
x Shx for both active and passive controls

when r varies.

r Re1/2
x C fx

Re−1/2
x Nux Re−1/2

x Shx

active passive active passive
0.2 -0.885587 2.223107 2.316252 0.118880 -1.158126
0.5 -0.650677 2.282267 2.382625 0.196667 -1.191313
1.0 0.000000 2.407227 2.519242 0.311215 -1.259621
1.2 0.341642 2.459335 2.575648 0.350948 -1.287824
1.5 0.936789 2.536589 2.658957 0.405215 -1.329478
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Table 5.5: Values of Re1/2
x C fx,Re−1/2

x Nux and Re−1/2
x Shx for both active and passive controls

when S varies.

S Re1/2
x C fx

Re−1/2
x Nux Re−1/2

x Shx

active passive active passive
−1.0 1.377493 0.004139 0.004615 2.519242 -0.002308
−0.5 1.563384 0.454633 0.489208 0.478660 -0.244604
−0.3 1.490488 0.780779 0.831684 0.452715 -0.415842
0.3 0.976010 1.648791 1.733553 0.363877 -0.866777
0.5 0.730184 1.888375 1.981760 0.344411 -0.990880
1.0 0.000000 2.407227 2.519242 0.311215 -1.259621

Table 5.6: Values of Re−1/2
x Nux and Re−1/2

x Shx for both active and passive controls with various
parameters.

Sc Le Nc Nbt
Re−1/2

x Nux Re−1/2
x Shx

active passive active passive
0.5 4.0 0.5 2.0 2.460264 2.522084 -0.436034 -1.261042
1.0 2.437035 2.521089 -0.119055 -1.260545
2.0 2.407227 2.519242 0.311215 -1.259621
5.0 2.358554 2.514594 1.118822 -1.257297
2.0 0.5 1.687442 2.491917 0.646164 -1.245959

1.0 2.078924 2.507551 0.464904 -1.253776
4.0 2.407227 2.519242 0.311215 -1.259621
10.0 2.476387 2.521577 0.278678 -1.260788

2.0 4.0 0.2 2.476387 2.521577 0.278678 -1.260788
0.5 2.407227 2.519242 0.311215 -1.259621
1.2 2.250364 2.513790 0.384812 -1.256895
2.0 2.078924 2.507551 0.464904 -1.253776

2.0 4.0 0.5 0.5 2.312640 2.507551 -1.963494 -5.015102
1.0 2.375364 2.515348 -0.476146 -2.515348
2.0 2.407227 2.519242 0.311215 -1.259621
2.5 2.413640 2.520020 0.472247 -1.008008

5.4 Concluding Remarks

The problem of a two-dimensional steady stagnation-point flow of an incompressible

Williamson nanofluid is solved numerically on both shrinking and stretching surfaces. Both

conditions of zero and nonzero normal fluxes are introduced at the surface while taking into

account the effects of both Brownian motion and thermophoresis. The numerical results

are produced by converting the boundary value problem into an initial value problem. The

main results of the present analysis are listed below:
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• Temperature and nanoparticle volume fraction are decreasing functions of the

stagnation parameter, r .

• Temperature distribution in passive control model is always less or equal to the

temperature distribution in active control model.

• Both temperature and nanoparticle volume fraction show identical behaviours in

reaction to increasing Schmidt number (Sc) and diffusivity ratio (Nbt) effects.

• C fx Re1/2
x increases when value of λ increases.

• The stagnation parameter contributes towards better heat transfer performance for

both active and passive controls on normal mass flux.

• Heat transfer rate is more susceptible to changes in parameter Sc, Le,Nc,Nbt under

active control.

• Heat transfer rate on shrinking surface is lower than heat transfer rate on stretching

surface.

• Heat transfer rate under passive control is higher than those under active control.
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CHAPTER 6: ACTIVE AND PASSIVE CONTROLS OF NANOPARTICLES IN
STAGNATION-POINT FLOW OF SECOND GRADE NANOFLUID OVER A

STRETCHED SURFACE

6.1 Introduction

This chapter presented the model of stagnation-point flow of a second grade nanofluid.

The model incorporates the augmented boundary condition to cover for the insufficient

boundary condition and is studied under active and passive control of nanoparticles. The

work are being solved using BVPh 2.0; a Mathematica package software based on HAM

developed by Zhao and Liao (2013).

6.2 Problem Formulation

A boundary layer flow of an incompressible second grade nanofluid near a stagnation

point is examined on a permeable stretching surface parallel to the plane y = 0. The flow

is presumed to be limited to y > 0 and u and v are the velocity components in the x, y

directions. The free stream velocity and the stretching velocity are defined as ue(x) = ax

and uw(x) = cx respectively with a and c as positive constants. Temperature near the

wall surface is kept at a constant Tw. The surrounding temperature and concentration

are identified as T∞ and C∞ respectively. The nanoparticle volume fraction for actively

controlled nanoparticle is assumed to be constant and takes the value Cw near the wall

while nanoparticle volume fraction for passively controlled nanoparticle is defined by the

temperature gradient accordingly. Brownian diffusion coefficient, DB and thermophoretic

diffusion coefficient, DT is incorporated in the model following the Buongiorno’s model

(Buongiorno, 2006). The governing equations are defined as The above problem can

be formulate using the continuity equation (3.2), energy equation (3.6) and nanoparticle
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Figure 6.1: Geometry of the flow in Cartesian coordinate.

volume concentration equation (3.8) with the momentum equation given as:

u
∂u
∂x
+ v

∂u
∂y
= ue

due

dx
+ ν

∂2u
∂y2 +

ω

ρ

[
u
∂3u
∂x∂y2 +

∂u
∂x

∂2u
∂y2 + v

∂3u
∂y3 +

∂u
∂y

∂2v

∂y2 ,

]
(6.1)

subject to velocity boundary condition (3.35), temperature boundary condition (3.40,

3.42), the active and passive control of nanoparticle condition (3.43, 3.44) and also the

augmented boundary condition (3.46). In the momentum equation above, u and v are the

velocity components in the x, y directions respectively, ν is the kinematic viscosity, ω is the

material fluid parameter and ρ is the fluid density. By utilizing the set of non-dimensional

variables for steady flow (3.48), the above model can then be transformed into a third order

92

Univ
ers

ity
 of

 M
ala

ya



non-linear ordinary differential equation below:

f ′′′ − ( f ′)2 + f f ′′ + r2 + λ
[
2 f ′ f ′′′ − ( f ′′)2 − f f (iv)

]
= 0,

θ′′ + Pr
[

f θ′ + Nb θ′φ′ + Nt (θ′)2
]
= 0,

φ′′ + LePr f φ′ +
Nt
Nb

θ′′ = 0.

(6.2)

The associated boundary conditions can be written as:

f (0) = 0, f ′(0) = 1, θ(0) = 1,
Nb φ′(0) + Nt θ′(0) = 0, for passive control of φ

φ(0) = 1, for active control of φ

,

f ′(∞) = r, f ′′(∞) = 0, θ(∞) = 0, φ(∞) = 0,

(6.3)

where primes indicate the differentiation with respect to η. In the above equations,

r = a/c represent the stagnation parameter, λ = ωc/µ is the viscoelastic parameter, Pr

is the Prandtl number and Le is the Lewis number. Brownian motion parameter Nb and

thermophoresis parameter Nt are defined in (3.58) and (3.59) respectively. The local

skin friction coefficient C fx (3.62), the local Nusselt number Nux (3.68) and the local

Sherwood number Shx (3.70) can be define in dimensionless form as:

C fx Re1/2
x = f ′′(0) + λ [3 f ′(0) f ′′(0) − f (0) f ′′′(0)] ,

Nux Re−1/2
x = −θ′(0),
Shx Re−1/2

x = −φ′(0), for active control of φ

Shx Re−1/2
x = Nt

Nbθ
′(0), for passive control of φ.

(6.4)

where Rex stands for local Reynolds number.
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The model are solved using HAM-based package BVPh 2.0; an open-source software

written inMathematica for boundary value problems (Zhao&Liao, 2013). The input needed

to solve the problem by BVPh 2.0 includes the governing nonlinear ordinary differential

equations (6.2) with the boundary conditions (6.3), initial guesses and convergence-control

parameters. The accuracy of the approximate solutions is measured by computing the

squared residual error over the corresponding solution interval. As the boundary conditions

(6.3) are established in a semi-infinite interval, there is a need to truncate the infinite

interval to a finite interval to save the computation time. In this case, the integral interval

are defined as [0,10].

The auxiliary linear operators for the model are selected as follow:

L f =
∂3 f
∂η3 +

∂2 f
∂η2 ,

Lθ =
∂2θ

∂η2 − θ,

Lφ =
∂2φ

∂η2 − φ,

(6.5)

with the properties

L f [C1 + C2eη + C3e−η] = 0,

Lθ[C4eη + C5e−η] = 0,

Lφ[C6eη + C7e−η] = 0,

(6.6)

where Cj( j = 1, ...,7) are the arbitrary constants to be resolved by the boundary conditions.

By employing the rule of solution expressions and using the corresponding boundary
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Table 6.1: Optimal values of convergence control parameters of different orders of approximation
with r = λ = 0.2,Pr = 2, Le = 1,Nt = Nb = 0.5.

Order of Minimum Active control
CPU time (s)approx., total error at Convergence control parameter

m m-th order c
f
o cθo c

φ
o

2 4.48 × 10−3 -0.44817 -0.64750 -0.23974 4.87
4 1.63 × 10−3 -0.42605 -0.64272 -0.81381 31.14
6 8.54 × 10−4 -0.38091 -0.50385 -0.66990 103.84
8 4.82 × 10−4 -0.34946 -0.42493 -0.57484 341.27
10 2.90 × 10−4 -0.32791 -0.37268 -0.50772 1099.71
12 1.83 × 10−4 -0.30756 -0.33626 -0.45612 3270.44
14 1.18 × 10−4 -0.26290 -0.30894 -0.41742 8707.95

constraints, the initial guesses fo, θo and φo of f (η), θ(η) and φ(η) are specified as follows:

fo(η) = rη + (1 − r)[1 − e−η], θo(η) = e−η,
φo(η) = −

Nt
Nbe−η, for passive control of φ

φo(η) = e−η, for active control of φ.

(6.7)

The optimal values of the convergence-control parameters c f
o , cθo, c

φ
o are achieved by

minimizing the averaged squared residual error. The convergence-control parameter can

regulate and control the convergence region and ratio of the approximation series. Table

6.1 shows the optimal values of the convergence control parameters together with the

minimum squared residual error of the m-th order approximation and its CPU time. It can

be seen that the optimal values of the convergence-control parameters are not unique but

stays within a certain range of values. Higher order of approximation will require more

CPU time. Table 6.2 displays the error for each ODE in the system at increasing orders of

HAM approximation, k. The values are obtained using values of c f
o , cθo and cφo from the

14th order of approximation in Table 6.1. Furthermore, the BVPh 2.0 convergence can

also be easily seen via the converging values of coefficient of skin friction, heat flux and

mass flux in Table 6.3.
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Table 6.2: Individual average squared residual errors at increasing orders of HAM approximation,
k with r = λ = 0.2,Pr = 2, Le = 1,Nt = Nb = 0.5.

k ε f
k

εθ
k

εφ
k

CPU time (s)
2 2.30 × 10−5 2.02 × 10−2 8.10 × 10−4 0.97
4 2.87 × 10−6 4.42 × 10−3 2.09 × 10−3 3.70
6 2.94 × 10−7 1.24 × 10−4 1.58 × 10−3 9.56
8 2.82 × 10−8 3.64 × 10−4 8.31 × 10−4 20.17
10 2.61 × 10−9 1.16 × 10−4 3.72 × 10−4 38.11
12 2.22 × 10−10 4.82 × 10−5 1.66 × 10−5 67.95
14 6.68 × 10−11 2.63 × 10−5 9.20 × 10−5 112.2
16 5.65 × 10−10 1.93 × 10−5 7.96 × 10−5 174.06

Table 6.3: Convergence of HAM on the basis of the coefficient of skin friction
f ′′(0), heat flux −θ ′(0) and mass flux −φ′(0) under active control of nanoparticles with
r = λ = 0.2,Pr = 2, Le = 1,Nt = Nb = 0.5

k f ′′(0) −θ′(0) −φ′(0)
1 -0.825 0.753 0.736
5 -0.822 0.466 0.728
10 -0.821 0.410 0.832
12 -0.821 0.404 0.846
14 -0.821 0.402 0.853
16 -0.821 0.401 0.857
17 -0.821 0.401 0.858
18 -0.821 0.401 0.858
19 -0.821 0.401 0.859
20 -0.821 0.401 0.859

Similarly, Fig. 6.2 shows the combined curve plot of the total residual error against the

order of approximation for a specific set of physical parameters at different Nt values. It

can be seen that the errors are converging to zero at different rates as the order of iteration

increases.

6.3 Results and Discussion

Under this section, the effect of various influential parameters such as stagnation

parameter r, viscoelastic parameter λ, Lewis number Le, Brownian motion parameter

Nb, thermophoresis parameter Nt and Prandtl number Pr in active and passive control

conditions are discussed. Figure 6.3 and Fig. 6.4 illustrate the effect of stagnation parameter
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Figure 6.2: Total residual error vs. order of approximation when Nt varies under active control.

r and viscoelastic parameter λ on velocity, temperature and nanoparticle volume fraction

profiles respectively. It is discovered that both parameters react similarly under active and

passive controls. As r and λ increase, f ′(η) will increase but temperature and nanoparticle

volume fraction will decrease. Note that f ′(η) will converge asymptotically towards the

value of r , obeying the defined boundary conditions (6.3). Here, the value λ = 0 represents

the special case of Newtonian fluid. In terms of velocity, the Newtonian fluid has lower

velocity compared to non-Newtonian fluids. Higher velocity helps to spread the heat and

nanoparticles to the surrounding faster and further, thus lowering the temperature and

concentration of the fluid. Relatively, stagnation parameter r has a bigger impact towards

the fluid profile as compared to the viscoelastic parameter, λ.

In Fig. 6.5, it shows that temperature and also nanoparticle volume fraction will follow

the increasing trend profile as thermophoresis parameter Nt increases. The increasing

temperature difference leads the nanoparticles to migrate in search of a cooler environment

causing the increment of the nanoparticle volume fraction. Observed that there is almost

no change in nanoparticle volume fraction near the wall under active control where it
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Figure 6.3: Effect of stagnation parameter r on fluid profiles profiles when
λ = 0.2,Pr = 2, Le = 1,Nb = Nt = 0.5.
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Figure 6.4: Effect of viscoelastic parameter λ on fluid profiles when
r = 0.2,Pr = 2, Le = 1,Nb = Nt = 0.5.

is assumed to be constant. Figure 6.6 shows the impact of increasing Brownian motion

Nb parameter towards temperature and nanoparticle volume fraction. Note that it has

barely any effect on temperature under passive control but contributes toward increment in

temperature under active control. However, increasing Nb will lower the magnitude of

nanoparticle volume fraction in active control as well as in passive control. From Fig. 6.5

and Fig. 6.6, it shows that thermophoresis is of more important slip mechanism than the

Brownian motion since it has more influence especially towards temperature under passive
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Figure 6.5: Effect of thermophoresis parameter Nt on fluid profiles when
r = λ = 0.2,Pr = 2, Le = 1,Nb = 0.5.
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Figure 6.6: Effect of Brownian parameter Nb on fluid profiles when
r = λ = 0.2,Pr = 2, Le = 1,Nt = 0.5.

control environment.

Result of increasing Lewis number Le towards temperature and nanoparticle volume

fraction can be seen in Fig. 6.7. Near the wall, temperature seems to be increasing in active

control and also in passive control. However, the temperature in active control environment
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Figure 6.7: Effect of Lewis number Le on fluid profiles when r = λ = 0.2,Pr = 2,Nb = Nt = 0.5.

starts to decline midway as the fluid moves further from the wall. Nanoparticle volume

fraction, on the other hand, turns out to be a decreasing function of Le. Comparatively,

the impact of Le towards temperature profile is minimal and the nanoparticle volume

fraction are found to be more susceptible towards changes in Le. Figure 6.8 shows the

effect of Prandtl number on temperature and nanoparticle volume fraction. Both are

showing a decreasing trend as value of Pr increases. From the results above, lower

temperature is recorded in passive control environment as compared to in active control

environment (Figs. 6.3b, 6.4b, 6.5a, 6.6a, 6.7a, 6.8a). Also, due to the passive control

of mass transfer, the variable φ(η) attains negative values near the surface illustrating the

suppressed nanoparticle flux (Figs. 6.3c, 6.4c, 6.5b, 6.6b, 6.7b, 6.8b).

Table 6.4 lists the values of the coefficient of reduced skin friction f ′′(0), reduced

Nusselt number Nu and reduced Sherwood number Sh for different parameter variations.

The magnitude of f ′′(0) are the same for active control as well as passive control. It

is only affected by the increment of two parameters r and λ and remain stagnant with

other parameters’ variation. The active and passive control conditions of the model are
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Figure 6.8: Effect of Prandtl number Pr on fluid profiles when r = λ = 0.2, Le = 1,Nb = Nt = 0.5.
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Figure 6.9: Effect of thermophoresis parameter Nt and Brownian motion parameter Nb on heat
transfer rate when r = λ = 0.2,Pr = 2, Le = 1.
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Table 6.4: Values of f ′′(0),−θ ′(0) and −φ′(0) for both active and passive control.

r λ N t Nb Le Pr f ′′(0) Re−1/2
x Nux Re−1/2

x Shx

active passive active passive
0.2 0.2 0.5 0.5 1.0 1.0 -0.821 0.420 0.604 0.439 -0.604
0.5 -0.576 0.459 0.670 0.520 -0.670
0.7 -0.367 0.482 0.708 0.568 -0.708
0.2 0.2 -0.821 0.420 0.604 0.439 -0.604

1.0 -0.608 0.443 0.641 0.479 -0.641
2.5 -0.445 0.461 0.671 0.515 -0.671

0.2 0.2 0.3 -0.821 0.447 0.618 0.507 -0.371
0.5 -0.821 0.420 0.604 0.439 -0.604
0.7 -0.821 0.393 0.589 0.387 -0.825

0.2 0.2 0.5 0.3 -0.821 0.468 0.604 0.239 -1.006
0.5 -0.821 0.420 0.604 0.439 -0.604
0.7 -0.821 0.375 0.604 0.523 -0.431

0.2 0.2 0.5 0.5 1.0 -0.821 0.420 0.604 0.439 -0.604
1.5 -0.821 0.397 0.594 0.659 -0.594
2.0 -0.821 0.383 0.587 0.838 -0.587

0.2 0.2 0.5 0.5 1.0 1.0 -0.821 0.420 0.604 0.439 -0.604
2.0 -0.821 0.401 0.859 0.859 -0.859
3.0 -0.821 0.313 1.049 1.212 -1.049

controlled by the value of both Nb and Nt. Its effect towards the heat transfer rate is

highlighted in Fig. 6.9. It is noted that heat transfer rate for active control is lower than the

heat transfer rate in passive control. Under active control environment, Nu is a decreasing

function of Nb. However, Nu remains stagnant despite the increasing value of Nb under

passive control environment. This agrees with previous observation (Fig. 6.6a) where

increment in Nb does not affect the temperature under passive control environment. On

the other hand, increasing Nt will reduce the heat transfer in active control and also in

passive control.

6.4 Concluding Remarks

The model of a two-dimensional second grade nanofluid flow near a stagnation point is

examined. The main findings of the examination are listed below:

• Velocity is an increasing function of the stagnation parameter r and viscoelastic
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parameter λ.

• Increasing stagnation parameter will decrease both fluid temperature and concen-

tration in active and passive controls of nanoparticles.

• Temperature is an increasing function of the thermophoresis parameter Nt and also

Brownian motion parameter Nb.

• Nanoparticle volume fraction is an increasing function of Nt but a decreasing

function of other parameters, r, λ, Le,Nb and Pr .

• Newtonian fluid has lower velocity compared to non-Newtonian second grade fluid

but higher temperature and nanoparticle volume concentration.

• Increasing Nb and Nt will cause a decline in the heat transfer rate of the flow.

• The fluid behaves in the same trend when the parameters are varied under active

and passive controls except for when Le is varied and the temperature behaves in

opposite trend.

• The heat transfer rate is unaffected by variation of the Brownian motion parameter

Nb under passive control environment.

• The heat transfer performance is better in magnitude wise under passive control

environment.
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CHAPTER 7: STAGNATION-POINT FLOW OF MHD CARREAU NANOFLUID
UNDER ACTIVE AND PASSIVE CONTROLS OF NANOPARTICLES OVER A

STRETCHING SURFACE WITH THERMAL RADIATION

7.1 Introduction

This chapter presented the model of an unsteady stagnation-point flow of Carreau

nanofluid. The model took into consideration the effects of magnetohydrodynamic as well

as thermal radiation towards the flow. It was solved under active and passive control of

nanoparticles. It is believed that there is no work published on unsteady stagnation point

flow of Carreau nanofluid yet.

7.2 Problem Formulation

An unsteady two-dimensional magnetohydrodynamic (MHD) flow of an incompressible

Carreau nanofluid towards a stagnation point is examined on a permeable stretching surface

which coincides with the plane y = 0. Velocity of the stretching surface is assumed

to be uw(x, t) = cx/(1 − bt) and the velocity outside the boundary layer is defined as

ue(x, t) = ax/(1 − bt) where a, b and c are positive constants. A time dependent magnetic

field B(t) = B0/
√

1 − bt is applied normally to the surface, where B0 is the initial strength

of the magnetic field. The Reynolds number for the flow is assumed to be very small

making the induced magnetic field negligible. Temperature at the surface is defined as

Tw(x, t) for both cases of active and passive controls. On the other hand, nanoparticle

volume fraction for actively controlled mass flux takes the value Cw(x, t) at the surface

while the nanoparticle volume fraction for passively controlled mass flux is determined by

the temperature gradient that results in zero normal flux of nanoparticles. The ambient

temperature and concentration are denoted by T∞ and C∞ respectively. Taking into

consideration the effect of thermal radiation, Brownian motion and thermophoresis, along

with the above assumptions, the governing equations consists of the continuity equation
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Figure 7.1: Geometry of the flow in Cartesian coordinate.

(3.2), momentum (M. Khan, Azam, & Munir, 2017), energy and nanoparticle volume

fraction equations are given as follows:

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= ue

due

dx
+ ν

∂2u
∂y2

[
1 + Γ2

(
∂u
∂y

)2
] n−1

2

+ ν(n − 1)Γ2 ∂
2u
∂y2

(
∂u
∂y

)2
[
1 + Γ2

(
∂u
∂y

)2
] n−3

2

−
σB2(t)
ρ

u,

∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
= α̊

∂2T
∂y2 −

1
ρcp

∂qr

∂y
+ τDB

∂C
∂y

∂T
∂y
+ τ

DT

T∞

(
∂T
∂y

)2
,

∂C
∂t
+ u

∂C
∂x
+ v

∂C
∂y
= DB

∂2C
∂y2 +

DT

T∞

∂2T
∂y2 ,

(7.1)

subject to velocity boundary condition (3.36), temperature boundary condition (3.41,

3.42), the active and passive control of nanoparticle condition (3.43, 3.44). In the above

equations, u and v are the velocity components in the x, y directions respectively, ν is the

kinematic viscosity, Γ is the material constant, n is the power law index, σ is the electrical

conductivity, ρ is the fluid density, α̊ is the thermal diffusivity, cp is the specific heat, τ

105

Univ
ers

ity
 of

 M
ala

ya



is the ratio of effective heat capacity between the nanoparticles material and the fluid, qr

is the radiative heat flux (3.33), DB is the Brownian diffusion coefficient and DT is the

thermophoretic diffusion coefficient . Here, T and C represent the fluid temperature and

the nanoparticle volume fraction respectively.

By making use of the set of non-dimensional variables for an unsteady flow (3.49), the

above model can then be transformed into non-linear ordinary differential equation below:

[
1 +We2( f ′′)2

] [
1 +We2( f ′′)2

] n−3
2 f ′′′ + f f ′′′ − A( f ′ +

η

2
f ′′)

− ( f ′)2 + r2 − M2 f ′ = 0,

(1 +
4
3

Rd)θ′′ + Pr
[

f θ′ − f ′θ + Nb θ′φ′ + Nt (θ′)2
]
− Pr

A
2
(ηθ′ + 4θ) = 0,

For passive control of φ :

φ′′ + LePr( f φ′ −
A
2
ηφ′) +

Nt
Nb

θ′′ = 0,

For active control of φ :

φ′′ + LePr( f φ′ − f ′φ) − Le Pr
A
2
(ηφ′ + 4φ) +

Nt
Nb

θ′′ = 0,

(7.2)

subject to the corresponding boundary conditions:

f (0) = 0, f ′(0) = 1, θ(0) = 1,
Nb φ′(0) + Nt θ′(0) = 0, for passive control of φ

φ(0) = 1, for active control of φ

,

f ′(∞) = r, θ(∞) = 0, φ(∞) = 0,

(7.3)

where primes denote the differentiation with respect to η. Here, A = b/c is the unsteadiness

parameter, r = a/c is the stagnation parameter, Pr is the Prandtl number, Le is the Lewis

number, Nb and Nt is the parameters of Brownian motion and thermophoresis. The local
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Weissenberg number We, magnetic parameter M and thermal radiation parameter Rd are

defined as:

We =

√
Γ2c3x2

ν
, M =

σB2
o

ρc
, Rd =

4σ∗

κk∗
T3
∞, (7.4)

where σ is the electrical conductivity parameter, σ∗ is the Stefan-Boltzmann constant, κ is

the thermal conductivity and k∗ is the Rosseland mean absorption coefficient. The local

skin friction coefficient C fx (3.62), the local Nusselt number Nux (3.68) and the local

Sherwood number Shx (3.70) can be reduce into the dimensionless form below:

C fx Re1/2
x = f ′′(0) +

[
1 +We2( f ′′(0))2

] n−1
2 ,

Nux Re−1/2
x = −θ′(0),
Shx Re−1/2

x = −φ′(0), for active control of φ

Shx Re−1/2
x = Nt

Nbθ
′(0), for passive control of φ

(7.5)

where Rex stands for local Reynolds number.

The solution for the problem is obtained using the bvp4c package in MATLAB that

provides fourth-order accurate continuous solution. First, the governing nonlinear ordinary

differential equations (7.2) with the boundary conditions (7.3) are written as a system of

seven first-order ODEs:
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x′1 = x2,

x′2 = x3,

x′3 =
A(x2 +

η
2 x3) − f f ′′ + (x2)

2 − r2 + M2x2

[1 + nWe2(x3)2][1 +We2(x3)2]
n−3

2
,

x′4 = x5,

x′5 =
Pr A

2 (ηx5 + 4x4) − Pr(x1x5 − x2x4 + Nbx5x7 + Nt(x5)
2

1 + 4
3 Rd

,

x′6 = x7,

For passive control of φ :

x′7 = Le Pr
(

A
2
ηx7 − x1x7

)
−

Nt
Nb

x′5,

For active control of φ :

x′7 = Le Pr
A
2
(ηx7 + 4x6) − Le Pr(x1x7 − x2x6) −

Nt
Nb

x′5,

(7.6)

with the boundary conditions

x1(0) = 0, x2(0) = 1, x4(0) = 1,
Nbx7(0) + Ntx5(0) = 0, for passive control of φ

x6(0) = 1, for active control of φ

,

x2(∞) = r, x4(∞) = 0, x6(∞) = 0.

(7.7)

For calculation purpose, η → ∞ in this problem are set to η∞ = 10 and the numerical

solutions are evaluate at 100 equally spaced points with suitable initial guesses. The

relative tolerance are set to 1 × 10−10. To ensure the accuracy of our calculation and

method of choice, present results are compared with published results of others who used

different methods. Table 7.1 lists the compared values of f ′′(0) for various values of
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Table 7.1: Comparison of results for f ′′(0) of various valued of stagnation parameter, r when
We = Nb = Nt = Rd = A = M = 0,Pr = Le = 1.

r
Ishak et al. (2007) Mabood and Khan (2016) Current Study

Keller Box HAM bvp4c
0.01 - 0.9980 - - 0.99803
0.1 - 0.9694 - 0.96938 - 0.96939
0.2 - 0.9181 - 0.91811 - 0.91811
0.5 - 0.6673 - 0.66726 - 0.66726
2.0 2.0175 2.01750 2.01750
3.0 4.7294 4.72928 4.72928
10.0 36.2603 - 36.25733

stagnation parameter r . From the table, it is evident that the present results are consistent

with existing studies.

7.3 Results and Discussion

In this section, the effect of different instrumental parameters such as local Weissenberg

number We, power law index n, unsteadiness parameter A, stagnation parameter r,

magnetic parameter M , thermal radiation parameter Rd, Lewis number Le, Prandtl number

Pr, Brownian motion parameter Nb and thermophoresis parameter Nt in both active

and passive controls of nanoparticles are presented and discussed. These parameters

influence towards velocity f ′(η), temperature θ(η) and nanoparticle volume fraction φ(η)

are displayed in Fig. 7.2 to Fig. 7.11, while their effects towards skin friction coefficient

f ′′(0), local Nusselt number −θ(0) and local Sherwood number −φ(0) are tabulated in

Table 7.2 and Table 7.3. Interesting results towards heat transfer rate and mass transfer

rate are highlighted in Fig. 7.12 to Fig. 7.14.

Figure 7.2 depicts the impact that stagnation parameter r had on the fluid profiles.

As value of r increases, velocity of the fluid too increases but both temperature and

nanoparticle volume fraction decrease. Assuming that the stream velocity is constant,

increasing value of r also implies decreasing stretching velocity. The existence of two
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Figure 7.2: Effect of stagnation parameter r on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.

different velocities give rise to skin friction which lowers the velocity in general. Lower

stretching velocity means lower skin friction and hence higher velocity. The same pattern
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Figure 7.3: Effect of power law index n on a) velocity, b) temperature and c) nanoparticle volume
fraction profiles.

is observed in Fig. 7.3 where the power law index n is concerned. The nonlinearity of the

fluid depends on the value of n. The fluid is called pseudoplastic or shear-thinning fluid

when n < 1, a dilatant or shear-thickening fluid when n > 1 and Newtonian fluid when

n = 1. Velocity of the fluid increases with increasing value of n. Opposite behaviours
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are recorded when the local Weissenberg number We and magnetic parameter M are

varied ( Figs. 7.4, 7.5). When values of both parameters are increased, the velocity

will decrease resulting in increasing temperature and nanoparticle volume fraction. The

We number is the product of a characteristic time of the fluid and a characteristic rate

of deformation that is used to describe the degree of exhibited nonlinearity of the fluid

(Dealy, 2010). Meanwhile, applied magnetic field onto the fluid creates a drag force called

Lorentz force causing the velocity to decrease. As the velocity increases, the surrounding
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Figure 7.4: Effect of local Weissenberg number We on a) velocity, b) temperature and c)
nanoparticle volume fraction profiles.

heat gets swiftly distributed together with the nanoparticles and both the temperature and

nanoparticle volume fraction will decrease accordingly ( Figs.7.2, 7.3). The opposite

applies when the velocity decreases ( Figs. 7.4, 7.6). However, a different reaction is noted

when the unsteadiness parameter A is varied. It is found that increasing A has decreasing

effect towards velocity and temperature profiles. It is interesting to highlight that the trend

for nanoparticle volume fraction profile is different between active and passive controls.

The profile decreases with increasing value of A under active control but increases when

passive control is applied.
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Figure 7.5: Effect of magnetic parameter M on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.
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Figure 7.6: Effect of unsteadiness parameter A on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.

From Fig. 7.2 to Fig. 7.6, it is observed that near the wall, velocity seems to decrease

sharply before steadily increases and converges towards the particular value of r following

the defined boundary condition, resulting in a convex-like profile. Due to the chosen value

of r < 1 where the surface stretching velocity rate is higher than the external fluid velocity,

the resulting surface friction reacting in the opposite direction of the flow is stronger near

the wall hence it pulls down the velocity of the fluid as a whole. Combining the opposing
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force from other parameters involved, the velocity becomes even more slower before it

slowly recovers its speed as it moves away from the surface and weakens the opposing

force. In Fig. 7.7, the effects of thermal radiation parameter Rd towards temperature and
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Figure 7.7: Effect of thermal radiation parameter Rd on a) temperature and b) nanoparticle volume
fraction profiles.

nanoparticle volume fraction are displayed. Increasing the value of Rd will increase the

temperature as more heat is being emitted by the fluid. Interesting trends of profiles in

nanoparticle volume fraction can be seen between active control and passive control. As

value of Rd increases, nanoparticle volume fraction under active control decreases near

the surface but will eventually increases as it moves away from the wall. In case of passive

control of nanoparticles, the nanoparticle volume fraction will increase together with the

increasing value Rd. Fig. 7.8 illustrates the temperature and nanoparticle volume fraction

reactions towards increasing Prandtl number, Pr. It can be seen that both profiles are a

decreasing function of Pr as larger Pr renders the thermal diffusivity to be secondary to

momentum diffusivity. On the other hand, both temperature and nanoparticle volume
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fraction turn out to be increasing functions of thermophoresis parameter, Nt ( Fig. 7.9).

Higher Nt corresponds to higher temperature gradient which causes the nanoparticles to

be spread further in an attempt to escape to a cooler environment.
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Figure 7.8: Effect of Prandtl number Pr on a) temperature and b) nanoparticle volume fraction
profiles.

Temperature and nanoparticle volume fraction respond in opposite trend when Brownian

motion parameter, Nb is varied as shown in Fig.7.10. As Nb increases, temperature

too will increase but nanoparticle volume fraction will decrease. Increasing Nb leads

to more frequent clashing between the fluid particles and nanoparticles, producing heat

that subsequently gives rise to the temperature. At the same time, distance between

particles will increase thus it lowers the concentration of nanoparticles in the area.

Notice that, under passive control of nanoparticle, the temperatures are unaffected by

the increasing Nb making Nt a significant contributor towards temperature increment

in the presence of nanoparticle. In Fig.7.11, the effects of Lewis number, Le towards

temperature and nanoparticle volume fraction are displayed. Increasing Le will result in
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Figure 7.9: Effect of thermophoresis parameter Nt on a) temperature and b) nanoparticle volume
fraction profiles.
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Figure 7.10: Effect of Brownian motion parameter Nb on a) temperature and b) nanoparticle
volume fraction profiles.
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Figure 7.11: Effect of Lewis number Le on a) temperature and b) nanoparticle volume fraction
profiles.

decreasing temperature in passive control but shows a swaping trend under active control

of nanoparticles. Temperature is in increasing pattern near the surface but converts into a

decreasing pattern in the midway of distribution. Nanoparticle volume fraction on the other

hand is a decreasing function of Le in both active and passive controls of nanoparticle.

From the graphs, Le seems to have a bigger impact on nanoparticle volume fraction as

compared to the very minimal changes in temperature.

Comparing the results from Fig.7.2 to Fig.7.11 with the values from Table 7.2, it is found

that increasing velocity is paired with decreasing magnitude of skin friction coefficient

f ′′(0) and vice versa. The temperature under active control too is notably higher than

temperature under passive control. This finding is supported by the record in Table 7.2

and Table 7.3, that show higher heat transfer rate under passive control of nanoparticles in

which heat are distributed more quickly to the neighbouring areas causing drops in the

temperature under passive control. It is also noted that the nanoparticle volume fraction
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under passive control is in negative region near the wall. Similarly, the mass transfer rates

are also in negative values for passive control. This is due to the boundary condition

defined in (7.7) in which, according to Ishfaq et al. (2016) is a statement that translates to

the normal flux of nanoparticles being zero at the boundary when thermophoresis is taken

into account. Some other outcomes on the local Nusselt numbers and local Sherwood

numbers are highlighted in Fig.7.12 to Fig.7.14. As Nb is increasing, heat transfer rate

seems to be declining in active control but appears constant in passive control ( Fig. 7.12).

On the other hand, a curve pattern is observed on Nu under active control with increasing

values of Pr in Fig.7.13. Heat transfer rate increases till it reaches a critical point of Pr

where it starts declining. Similarly in opposite trend, as Rd increases, Sh will decrease

first before it reaches a point where it starts increasing together with the increasing Rd as

seen in Fig.7.14.
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Figure 7.12: Effect of Brownian motion parameter Nb with varied thermophoresis parameter Nt
on heat transfer rate −θ ′(0).
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Figure 7.13: Effect of Prandtl number Pr with varied Lewis number Le on heat transfer rate −θ ′(0)
under a) active control and b) passive control.

Table 7.2: Values of f ′′(0),−θ ′(0) and −φ′(0) for both active and passive controls.

r W e n A M f ′′(0) −θ′(0) −φ′(0)
active passive active passive

0.2 3.0 0.5 0.3 0.5 -2.19033 0.92176 2.39707 2.74201 -2.39707
0.5 -1.70397 0.92262 2.47324 2.87255 -2.47324
0.7 -1.23263 0.92522 2.53856 2.98124 -2.53856
1.0 -0.47035 0.93072 2.63589 3.14052 -2.63589
0.2 1.0 -1.42960 0.93015 2.47432 2.85994 -2.47432

2.0 -1.85975 0.92540 2.43107 2.79398 -2.43107
3.0 -2.19033 0.92176 2.39707 2.74201 -2.39707
4.0 -2.44601 0.91896 2.37124 2.70254 -2.37124

0.2 3.0 0.5 -2.19033 0.92176 2.39707 2.74201 -2.39707
1.0 -1.17062 0.93295 2.50027 2.89960 -2.50027
1.5 -0.85404 0.93494 2.54598 2.97456 -2.54598
2.0 -0.69777 0.93533 2.57156 3.01811 -2.57156
3.0 -0.53880 0.93528 2.59949 3.06689 -2.59949

0.2 3.0 0.5 0.0 -1.88777 0.69973 1.89715 2.28052 -1.89715
0.1 -1.99378 0.78130 2.07403 2.43939 -2.07403
0.2 -2.09415 0.85461 2.24034 2.59381 -2.24034
0.3 -2.19033 0.92176 2.39707 2.74201 -2.39707

0.2 3.0 0.5 0.3 0.0 -1.88446 0.92393 2.43420 2.80228 -2.43420
0.3 -1.99768 0.92316 2.42017 2.77940 -2.42017
0.5 -2.19033 0.92176 2.39707 2.74201 -2.39707
0.7 -2.46311 0.91957 2.36592 2.69213 -2.36592
1.0 -2.99685 0.91475 2.30578 2.60384 -2.30578
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Table 7.3: Values of Re−1/2
x Nux and Re−1/2

x Shx for both active and passive controls.

Rd Pr Nb N t Le
Re−1/2

x Nux Re−1/2
x Shx

active passive active passive
0.0 5.0 0.5 0.5 1.0 0.91624 2.72070 2.76051 -2.72070
0.2 0.92176 2.39707 2.74201 -2.39707
0.7 0.91497 1.90846 2.71444 -1.90846
1.0 0.90249 1.72341 2.70679 -1.72341
2.0 0.84625 1.34648 2.70341 -1.34648
3.0 0.78887 1.13510 2.71250 -1.13510
0.2 1.0 0.82258 1.01825 0.78481 -1.01825

3.0 0.99821 1.84862 1.86516 -1.84862
5.0 0.92176 2.81916 2.74201 -2.81916
7.0 0.82278 2.78608 3.45626 -2.78608

0.2 5.0 0.3 1.16812 2.39707 2.36554 -3.99512
0.5 0.92176 2.39707 2.74201 -2.39707
0.7 0.74163 2.39707 2.86424 -1.71219
0.9 0.60933 2.39707 2.91110 -1.33171

0.2 5.0 0.5 0.3 1.01254 2.45016 2.77696 -1.47010
0.5 0.92176 2.39707 2.74201 -2.39707
0.7 0.85212 2.34732 2.71862 -3.28625
0.9 0.79725 2.30090 2.69986 -4.14162

0.2 5.0 0.5 0.5 0.5 1.09897 2.45620 1.58049 -2.45620
1.0 0.92176 2.39707 2.74201 -2.39707
1.2 0.87922 2.37728 3.09904 -2.37728
1.5 0.82953 2.35069 3.57176 -2.35069
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Figure 7.14: Effect of thermal radiation parameter Rd with varied power law index n on mass
transfer rate −φ′(0) under a) active control and b) passive control.
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7.4 Concluding Remarks

The problem of a two-dimensional unsteady stagnation point flow of a MHD Carreau

nanofluid with thermal radiation is examined. The main observations of the study are

given below:

• Stagnation parameter r and power law index n increase the fluid velocity while

reducing the magnitude of skin friction coefficient at the same time.

• Both temperature and nanoparticle volume fraction are increasing function of

the local Weissenberg number We, magnetic parameter M and thermophoresis

parameter Nt.

• Unsteadiness parameter A has an opposite effect on active and passive controls for

nanoparticle volume fraction.

• Increasing values of Brownian motion Nb and thermophoresis Nt parameter will

reduce the heat transfer rate of the flow.

• Stagnation parameter r increases the heat transfer rate of the fluid.

• Magnetic parameter M decreases the heat transfer rate of the fluid.

• Thermal radiation Rd raises the fluid temperature and lowers the heat transfer rate.

• The heat transfer rate is higher under passive control of nanoparticles than the heat

transfer rate under active control of nanoparticles.
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CHAPTER 8: MIXED CONVECTION FLOW OF POWELL-EYRING
NANOFLUID NEAR A STAGNATION POINT ALONG A VERTICAL

STRETCHING SHEET WITH ACTIVE AND PASSIVE CONTROLS OF
NANOPARTICLES

8.1 Introduction

This chapter presented the model of a stagnation-point flow of Powell-Eyring nanofluid

flow. The model incorporated the effect of buoyancy forces towards the fluid flow on a

vertical surface as well as the effects of active and passive controls of nanoparticles.

8.2 Problem Formulation

Take into account a steady two-dimensional mixed convection stagnation point flow

of an incompressible Powell-Eyring nanofluid towards a vertical stretching surface. The

Cartesian coordinate system is chosen in such a way that the x−axis is along the vertical

linearly stretching surface at y = 0 and the fluid occupies the area y > 0. Near the surface,

velocity is assumed to be uw(x) = cx with temperature T = Tw. Depending on the fluid

environment setting, the fluid concentration is assumed to be constant C = Cw when

under active control surrounding but it will be depending on the temperature gradient

when it is put under passive control of nanoparticles. Velocity of the free stream flow

is defined as ue(x) = ax with ambient temperature and concentration of T∞ and C∞

respectively. With the above premises, the governing equations of the boundary layer flow

can be formulate with the continuity equation (3.2), energy equation (3.6) and nanoparticle

volume concentration equation (3.8) with the momentum equation given as (Hayat et al.,

2013):

u
∂u
∂x
+ v

∂u
∂y
= ue

due

dx
+

(
ν +

1
ρβè

)
∂2u
∂y2 −

1
2ρβè3

(
∂u
∂y

)2
∂2u
∂y2

+g [βT (T − T∞) + βC(C − C∞)]

(8.1)
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Figure 8.1: Geometry of the flow in Cartesian coordinate.

subject to velocity boundary conditions (3.37, 3.39), temperature boundary conditions

(3.40, 3.42) and the active and passive control of nanoparticle conditions (3.43, 3.44). In

the equation above, u and v are the velocity components along x− and y− axes respectively.

Here, a and c are positive constants, ν = µ/ρ is the kinematic viscosity, ρ si the fluid

density, β and è are the fluid parameters, g is the acceleration due to gravity, βT is the

thermal expansion coefficient, βC is the nanoparticle volumetric coefficient, T and C are

the fluid temperature and concentration. Applying the set of non-dimensional variables for

steady flow (3.48), the above model can then be transformed into a simplified non-linear

ordinary differential equation below: The resulting ordinary differential equations are:

(1 + ε) f ′′′ − ( f ′)2 + f f ′′′ + r2 − εδ( f ′′)2 f ′′′ + γ[θ + Nφ],

θ′′ + Pr
[

f θ′ + Nb θ′φ′ + Nt (θ′)2
]
= 0,

φ′′ + LePr f φ′ +
Nt
Nb

θ′′ = 0,

(8.2)
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subject to the corresponding boundary conditions:

f (0) = 0, f ′(0) = 1, θ(0) = 1,
Nb φ′(0) + Nt θ′(0) = 0, for passive control of φ,

φ(0) = 1, for active control of φ,

,

f ′(∞) = r, θ(∞) = 0, φ(∞) = 0,

(8.3)

where primes denote differentiation with respect to η. Here, r = a/c is the stagnation

parameter, Pr is the Prandtl number and Le is the Lewis number. Brownian motion

parameter Nb and thermophoresis parameter Nt are defined in (3.58) and (3.59) respectively.

The fluid parameters ε and δ, buoyancy parameter γ and buoyancy force ratio N are defined

as

ε =
1
µβè

, δ =
c3x2

2è2ν
,

N =
βC(C − C∞)
βT (T − T∞)

,

γ =
(Gr)x
(Rex)

2 =
gβT (T − T∞)x3/ν2

(uw(x)x/ν)2
,

(8.4)

where (Gr)x is the local Grashoff number and Rex is the local Reynolds number.

The physical quantities of practical interest are the local skin friction coefficient C fx

(3.62), the heat transfer rate or the local Nusselt number Nux (3.68) and the mass transfer

rate also known as local Sherwood number Shx (3.70), which can be simplified into the
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dimensionless form below:

C fx Re1/2
x = (1 + ε) f ′′(0) −

εδ

3
( f ′′(0))3 ,

Nux Re−1/2
x = −θ′(0),
Shx Re−1/2

x = −φ′(0), for active control of φ

Shx Re−1/2
x = Nt

Nbθ
′(0), for passive control of φ

(8.5)

The bvp4c function in MATLAB is utilized in solving the problem. First, the governing

nonlinear ODEs (8.2) with the boundary conditions (8.3) are rewritten as a system of seven

first-order ODEs:

x′1 = x2,

x′2 = x3,

x′3 =
(x2)

2 − x1x3 − r2 − γ[x4 + N x6]

1 + ε − εδ(x3)2
,

x′4 = x5,

x′5 = −Pr(x1x5 + Nbx5x7 + Nt(x5)
2,

x′6 = x7,

x′7 = −Le Pr x1x7 −
Nt
Nb

x′5,

(8.6)

with the boundary conditions

x1(0) = 0, x2(0) = 1, x4(0) = 1
Nbx7(0) + Ntx5(0) = 0, for passive control of φ.

x6(0) = 1, for active control of φ

x2(∞) = r, x4(∞) = 0, x6(∞) = 0

(8.7)
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Table 8.1: Comparison of results of Nusselt number, Nu for variation of thermophoresis parameter
Nt, when r = ε = δ = γ = N = 0,Pr = 3.97,Nb = 0.1 and Le = 10/Pr .

N t
Ishfaq et al. (2016) Current study

RK4 bvp4c
0.1 1.2764 1.27637
0.2 1.1836 1.18362
0.3 1.0957 1.09571
0.4 1.0131 1.01309
0.5 0.9361 0.93607

For calculation purpose, η → ∞ in this problem are set to η∞ = 10 and the numerical

solutions are evaluated at 100 equally spaced points with suitable initial guesses. The

relative tolerance are set to 1 × 10−12. To ensure the accuracy of our calculation and

method of choice, present results are compared with published results of others. Table 8.1

lists the compared values of −θ′(0) for various values of thermophoresis parameter Nt.

From the table, it is evident that the results are in good agreement with each other thus

validating the accuracy of current results.

8.3 Results and Discussion

This section provides analysis and discussion on the impact that parameters r, ε, δ, γ,N,

Nt,Nb, Le and Pr had on the fluid flow characteristics, specifically the velocity, temperature

and nanoparticle volume concentration. Values of particular parameters are varied and the

results are presented in graphical forms in Fig. 8.2 to Fig. 8.10. The physical properties of

interest; the skin friction coefficient f ′′(0), the heat transfer rate −θ′(0) or Nusselt number

Nu and the mass transfer rate −φ′(0) or Sherwood number Sh are calculated numerically

and recorded in tabular form (Table 8.2, 8.3). The parameters’ values used throughout this

section are r = 0.2, ε = 0.3, δ = 0.1, γ = 1,N = Nt = Nb = 0.5, Le = 1,Pr = 5 unless

stated otherwise.

Figure 8.2 and Fig. 8.3 displayed the fluid profiles when stagnation parameter r and
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fluid parameter ε are varied. Both parameters seem to bring out the same outcome from

the fluid flow. The fluid velocity increase when r and ε increases. The fluid velocity under

active control is higher than the fluid velocity under passive control but both eventually

converge to a uniform velocity as the fluid moves away from the surface. As the velocity

increases, both fluid temperature and concentration are decreasing. Heat is being dispersed

quicker to the surrounding and particles are being spread out farther with the fluid flow. In

Fig. 8.5, the effect of another fluid parameter δ is shown. Compared to fluid parameter ε ,

fluid parameter δ does not seem to make significant impact towards the fluid profiles. A

very minimal changes can be seen in velocity where the velocity seems to be decreasing

with increasing values of δ while changes in temperature and concentration are non-visible.
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Figure 8.2: Impact of stagnation parameter r on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.

Influences of the mixed convection parameter γ and buoyancy ratio parameter N are

presented in Fig. 8.5 and Fig. 8.6. The outcomes are similar to those of varied r and ε .

Fluid velocity increases while temperature and nanoparticle volume concentration decrease

when the values of parameters γ and N increase. Here, γ > 0 represents assisting flow,

γ < 0 represents opposing flow and γ = 0 represents the flow when no buoyancy force is

present. In assisting flow, fluid velocity is higher in active control than velocity in passive
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Figure 8.3: Impact of fluid parameter ε on a) velocity, b) temperature and c) nanoparticle volume
fraction profiles.
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Figure 8.4: Impact of fluid parameter δ on a) velocity, b) temperature and c) nanoparticle volume
fraction profiles.
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control. The opposite is true for the opposing flow. Relatively, the mixed convection

parameter or the buoyancy parameter γ leaves a bigger impact towards the flow profile

than N .
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Figure 8.5: Impact of mixed convection parameter γ on a) velocity, b) temperature and c)
nanoparticle volume fraction profiles.
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Figure 8.6: Impact of buoyancy ratio parameter N on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.

The effects of nanoparticles can be seen through thermophoresis parameter Nt and

Brownian motion parameter Nb in Fig. 8.7 and Fig. 8.8. The parameter Nt has increasing

effects towards all the three fluid profiles. Thermophoresis represents the movement of
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particles due to temperature gradient. Increasing value of Nt means increasing movement

due to increasing temperature gradient. Concentration too will increase following the

movement of the particles. On the other hand, Brownian motion represents the motion of

particles due to their collision to each other. Increasing value of Nb will cause the fluid

velocity and nanoparticle volume concentration to decrease but as the collision produces

heat, the fluid temperature will increase. However, note that temperature under passive

control remains constant and is not affected by the changes in Nb.
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Figure 8.7: Impact of thermophoresis parameter Nt on a) velocity, b) temperature and c)
nanoparticle volume fraction profiles.

Last but not least are the influences of Lewis number Le and Pr towards the fluid profiles

as shown in Fig. 8.9 and Figure 8.10. Interesting results can be seen in temperature profile

between active and passive controls when Le is varied where the trend turns out to be

opposite of each other. Increasing Le will cause temperature to rise under passive control

but to decline under active control. Other than that, the fluid has a decreasing trend when

Le and Pr increases.

Table 8.2 and Table 8.3 listed the values of f ′′(0),−θ′(0) and −φ′(0) under both active

and passive controls. Magnitude of skin friction coefficient shows similar trend under

active control as well as passive control when γ,Nt and Pr are varied. It will increase
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Figure 8.8: Impact of Brownian motion parameter Nb on a) velocity, b) temperature and c)
nanoparticle volume fraction profiles.
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Figure 8.9: Impact of Lewis number Le on a) velocity, b) temperature and c) nanoparticle volume
fraction profiles.
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Figure 8.10: Impact of Prandtl number Pr on a) velocity, b) temperature and c) nanoparticle
volume fraction profiles.

with increasing γ under opposing flows but will decrease with increasing γ under assisting

flow. When there is no buoyancy force, the magnitude of f ′′(0) will remain the same

between active and passive controls. Other parameters will result in opposite trends of

f ′′(0) between active and passive control. Parameter r, γ,N and Pr will help in enhancing

the heat transfer rate of the fluid while parameters Nt,Nb and Le do the opposite. Varying

the fluid parameter ε will decrease the heat transfer under active control but will increase

the heat transfer under passive control. Meanwhile, fluid parameter δ has a very minimal

influence on heat and mass transfer of the fluid as the magnitude barely changes when

δ increases and heat transfer remains stagnant under active control. Increasing value of

parameter r, ε, γ,N,Nt and Pr will contribute in improving the mass transfer rate of the

fluid. Interestingly, parameter Nb shows a more dynamic trend under active control for

skin friction coefficient and mass transfer rate. The result is highlighted in Fig. 8.11. With

small values of Nb, the trend of f ′′(0) seems to be increasing but at certain point it starts

to decline. On the other hand, −φ′(0) increases till Nb reaches a large enough number and

starts to decrease.
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Figure 8.11: Impact of Brownian motion parameter Nb with varied thermophoresis parameter Nt
on a) skin friction coefficient f ′′(0) and b) mass transfer rate −φ′(0).

Table 8.2: Values of f ′′(0),−θ ′(0) and −φ′(0) for parameter r, ε, δ, γ and N under active and
passive control.

r ε δ γ N
f ′′(0) −θ′(0) −φ′(0)

active passive active passive active passive
0.2 0.3 0.1 1 0.5 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
0.5 -0.1121 -0.3418 0.1628 1.3079 1.9985 -1.3079
1.0 0.4303 0.2151 0.1673 1.4104 2.1538 -1.4104
1.2 0.7128 0.5023 0.1698 1.4540 2.2185 -1.4540
0.2 0 -0.3009 -0.5904 0.1623 1.2478 1.9108 -1.2478

0.1 -0.3041 -0.5736 0.1622 1.2520 1.9144 -1.2520
0.3 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
0.5 -0.3074 -0.5198 0.1618 1.2656 1.9269 -1.2656
0.7 -0.3062 -0.4985 0.1617 1.2710 1.9321 -1.2710

0.2 0.3 0 -0.3073 -0.5438 0.1620 1.2595 1.9211 -1.2595
0.1 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
0.3 -0.3068 -0.5457 0.1620 1.2591 1.9209 -1.2591
0.5 -0.3065 -0.5469 0.1620 1.2589 1.9208 -1.2589
0.7 -0.3063 -0.5482 0.1620 1.2586 1.9207 -1.2586

0.2 0.3 0.1 -1 -1.4386 -1.1039 0.1479 1.1653 1.5966 -1.1653
-0.5 -1.0936 -0.9507 0.1524 1.1939 1.7275 -1.1939
0 -0.8081 -0.8081 0.1561 1.2184 1.8077 -1.2184
0.5 -0.5493 -0.6733 0.1592 1.2399 1.8695 -1.2399
1 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594

0.2 0.3 0.1 1 0.0 -0.4274 -0.5383 0.1608 1.2560 1.8975 -1.2560
0.5 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
1 -0.1899 -0.5513 0.1631 1.2625 1.9429 -1.2625
2 0.0371 -0.5666 0.1652 1.2684 1.9829 -1.2684
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Table 8.3: Values of f ′′(0),−θ ′(0) and −φ′(0) for parameter Nt,Nb, Le and Pr under active and
passive control.

N t Nb Le Pr
f ′′(0) −θ′(0) −φ′(0)

active passive active passive active passive
0.1 0.5 1 5 -0.3700 -0.5772 0.3120 1.5658 1.7157 -0.3132
0.3 -0.3364 -0.5615 0.2212 1.4090 1.8154 -0.8454
0.5 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
0.7 -0.2815 -0.5263 0.1225 1.1202 2.0193 -1.5683
0.5 0.1 -0.2593 -0.5750 0.5876 1.2712 1.4680 -6.3558

0.3 -0.3156 -0.5489 0.3172 1.2615 1.9149 -2.1025
0.5 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
0.7 -0.2931 -0.5426 0.0785 1.2584 1.8860 -0.8989

0.5 0.5 1 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
2 -0.3449 -0.5255 0.1135 1.1013 2.7166 -1.1013
3 -0.3653 -0.5162 0.0963 1.0159 3.3040 -1.0159
4 -0.3788 -0.5107 0.0873 0.9614 3.7925 -0.9614

0.5 0.5 1 1 -0.1451 -0.4212 0.4777 0.6640 0.5283 -0.6640
3 -0.2693 -0.5142 0.3335 1.0731 1.3429 -1.0731
5 -0.3071 -0.5445 0.1620 1.2594 1.9210 -1.2594
7 -0.3258 -0.5567 0.0697 1.3396 2.3250 -1.3396

8.4 Concluding Remarks

The model of a steady two-dimensional stagnation point flow of a Powell-Eyring

nanofluid with mixed convection under actively and passively controlled nanoparticles is

examined. The main observations of the study are listed below:

• Stagnation parameter r has bigger impact towards heat transfer rate under passive

control of nanoparticle.

• The effect of fluid parameter ε is higher than δ towards the flow.

• Assisting flow has a higher rate of heat and mass transfer compared to opposing

flow.

• Both Brownian parameter, Nb and thermophoresis parameter Nt lower the heat

transfer rate of the fluid.

• The heat transfer rate is higher under passive control of nanoparticles than the heat

transfer rate under active control of nanoparticles.
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CHAPTER 9: SUMMARY AND FUTURE RESEARCH

9.1 Summary and Contribution

The aim of this thesis is to provide a better understanding of the stagnation-point flow of

some non-Newtonian nanofluids under various stream conditions. The research emphasizes

on the study of flow and heat mass transfer of nanofluids under active and passive controls

of nanoparticles. For the purpose of this study, existing model of some non-Newtonian

nanofluid are extended to incorporate stagnation-point flow and other various stream and

boundary conditions. The extended model of considered non-Newtonian nanofluids are as

follows:

• A steady stagnation-point flow of Maxwell nanofluid with slip velocity.

• A steady stagnation-point flow of Williamson nanofluid over a stretching/shrinking

surface.

• A steady stagnation-point flow of second grade nanofluid with augmented boundary

condition.

• An unsteady stagnation-point flow of MHD Carreau nanofluid with thermal

radiation.

• A steady mixed convection stagnation-point flow of Powell-Eyring nanofluid over a

vertical stretching surface.

The governing partial differential equations for all the models are simplified into systems

of ordinary differential equations (ODEs) using similarity transformation. The Maxwell,

Williamson, Carreau and Powell-Eyring models are then solved using bvp4c function by

MATLAB. Their system of ODEs are first reduced into nonlinear first order ODEs subject

to their corresponding boundary conditions. Shooting method is employed to obtain the

initial conditions for each model. Due to the nature of the second grade fluid model, the
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BVPh2.0 package in Mathematica is used to solve the problem instead. It is based on

homotopy analysis method for boundary value problems. All numerical calculations are

first validated either by comparing results with other published papers or by performing

a convergence analysis. The obtained results are then presented in graphical and tabular

forms.

The main findings of the research are listed according to chapters as below:

In Chapter 4, the effect of slip velocity in stagnation point flow of Maxwell nanofluid is

studied. It is found that the slip parameter causes the reduced skin friction coefficient, heat

and mass transfer to decline. In the absence of elasticity parameter Maxwell (i.e Newtonian

fluid), the heat transfer performance is better than those of Maxwell fluid. Both slip and

elasticity parameter increase the fluid temperature and nanoparticle volume concentration

with the slip parameter showing a bigger influence towards the fluid compared to the

Maxwell parameter.

In Chapter 5, the flow characteristic of stagnation point flow of Williamson nanofluid is

studied over a stretching and shrinking surface. The Schmidt number, Sc and diffusivity

ratio, Nbt are proven to have major influence on nanoparticle volume concentration while

at the same time having little to no effect on the fluid temperature. The heat transfer rate of

Williamson is found to be more susceptible to parameter value changes when under active

control of nanoparticles. Also, shrinking surface have higher skin friction coefficient and

lower heat transfer rate if compared to stretching surface.

In Chapter 6, the stagnation point flow of second-grade nanofluid is studied using an

augmented boundary condition. The results show that second-grade nanofluid flow has

a higher velocity but lower temperature and nanoparticle volume concentration when

compared to a Newtonian fluid. The fluid behaves in the same trend under active and

passive controls except for Lewis number when it is varied and the temperature behaves
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in opposite trend midway. It can also be seen that the nanoparticle volume fraction only

increases when parameter Nt is varied and decreases with other parameters’ variation.

In Chapter 7, the unsteady flow of MHD Carreau nanofluid near a stagnation point is

studied while taking into consideration the effect of thermal radiation. The unsteadiness

parameter will cause the Carreau nanoparticle volume concentration to decrease under

active control but to increase under passive control. Higher values of power law index

give a better heat transfer performance. It is also found that both magnetic parameter and

thermal radiation help to increase the fluid temperature but will decrease the heat and mass

transfer rate of the fluid.

In Chapter 8, the mixed convection stagnation point flow of Powell-Eyring nanofluid is

studied. The existence of buoyancy forces affects the skin friction coefficient of the flow.

The flow under passive control of nanoparticle possess a higher skin friction coefficient

as compared to those under active control of nanoparticle. When there is no buoyancy,

the skin friction coefficient will remain the same under both active and passive controls.

Meanwhile, assisting flow is found to have a higher rate of heat and mass transfer if

compared to opposing flow in Powell-Eyring nanofluid.

Common results are found from these different models. First, the stagnation parameter

increases the heat transfer rate of all the non-Newtonian nanofluids flows studied, regardless

of the different conditions the flows are in. In some cases, the stagnation parameter has a

bigger impact towards the heat transfer rate when under passive control of nanoparticles.

Secondly, it is recorded that the heat transfer performance is better in magnitude wise under

passive control environment. Subsequently, it is shown that the temperature distribution in

passive control model is lower or equal than the temperature distribution in active control

model.

Heat transfer rate under passive control of nanoparticle remains stagnant when Brownian
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motion parameter is varied. This can be seen in the model of Maxwell, second grade fluid

and Carreau model. However, this is not true in Powell-Eyring model due to the effect

of combined buoyancy forces. It is also important to note that increasing the value of

Brownian motion parameter and thermophoresis parameter decreases the heat transfer rate

in both active and passive environment. Zargartalebi et al. (2015) mention in their work

that the dispersion of nanoparticles in a base fluid leads to augmentation of the thermal

conductivity and the dynamic viscosity of the mixture. At the same time, it also alters the

other thermo-physical properties of the nanofluids and thus may cause an increase or a

decrease in the heat transfer coefficient of a nanofluid with respect to the base fluid. In the

Williamson model, the Brownian and thermophoresis diffusivity ratio are defined instead

and these parameters help to increase the heat transfer.

9.2 Future Research

It is believed that the research on nanofluids will continue to mount researchers’ interest

due to its many applications in various industries that appear very promising. The current

research presented the models of some stagnation-point flows of non-Newtonian nanofluids

based on Buongiorno’s model (Buongiorno, 2006). From the results, there are some

outcomes that called for further investigations and improvements.

In this thesis, it is found that the stagnation parameter increases the heat transfer rate

for all the non-Newtonian nanofluids flows studied. However, the value of stagnation

parameter r considered throughout the thesis is r < 1 where the velocity near the wall is

bigger than the ambient velocity. It would be appropriate to study for the cases when r = 1

where the stretching velocity is equal to the uniform velocity of the fluid stream and r > 1

where the velocity of the fluid away from the surface is much higher than the velocity in

the boundary layer.

Results also show that the representative term for nanoparticles, that is the Brownian
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motion parameter Nb and thermophoresis Nt decrease the heat transfer rate of the studied

nanofluid models. However, in Williamson model where Brownian and thermophoresis

diffusivity ratio are defined, enhancement of the heat transfer are recorded. This shows

how important the combination of model and parameters used defined as this will affect

the outcome. Zargartalebi et al. (2015) mention that in most studies, the Brownian motion

parameter and thermophoresis parameter are assumed much larger than their practical

values where most researchers adopted the values in order of 10−1 while they should be in

the order of 10−6 and lower. With such values, the contribution of nanoparticles in the heat

transfer equation may be disrupted but the ratio of thermophoresis and Brownian motion

parameters may remain significant.

It is also important to note that the non-Newtonian models used in the thesis might be

more more suitable in investigating the flows of the nanofluids as it focused on the slip

mechanism, Brownian motion and thermophoresis. A different model that emphasizes on

the fluid dynamic viscosity and thermal conductivity are better suited to study the heat and

mass transfer characteristics. For comparison purpose, it will be interesting to apply other

nanofluid model instead of Buongiornos’ such as the model proposed by Tiwari and Das

(2007) and Khanafer, Vafai, and Lightstone (2003) that highlights the volumetric fraction of

nanoparticles. In whichever case, modelling of nanofluids still has enough room for much

more improvements. A better representation of the flow and the nanofluid characteristics

will definitely helps to maximize the use of nanofluids in practical applications.
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