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A STUDY ON SOME GRAPHS ASSOCIATED WITH FINITE GROUPS

ABSTRACT

In this dissertation, we study properties of various graphs associated with finite groups

and investigate the extent to which these graphs determine the groups. Among the graphs

associated with finite groups that we consider here are conjugate graphs, order graphs and

generalised order graphs. For conjugate graphs and order graphs associated with certain

groups, we determine the number of complete components in the graphs and their clique

numbers. The main focus of this research is on generalised order graphs of finite groups.

By studying relationships between power graphs and generalised order graphs, we prove

that for a finite group, k-connectedness of its power graph implies k-connectedness of its

generalised order graph. We also prove that the generalised order graph and the power

graph associated with a finite cyclic group are isomorphic. In addition, we classify certain

classes of finite groups according to various graph properties of the associated generalised

order graphs. We also prove that the generalised order graph of a finite abelian group

is 3-connected and Hamiltonian. Along the way we also prove some number-theoretic

inequalities.

Keywords: finite groups, abelian groups, connected graphs, Hamiltonian graphs, power

graphs
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SUATU KAJIAN ATAS BEBERAPA GRAF TERSEKUTU DENGAN 
KUMPULAN TERHINGGA 

ABSTRAK 

Dalam disertasi ini, kami mengkaji sifat beberapa jenis graf yang tersekutu dengan 

kumpulan terhingga dan menyiasat tahap di mana graf tersebut dapat menentukan 

kumpulan berkaitan. Antara graf yang tersekutu dengan kumpulan terhingga yang 

dipertimbangkan adalah graf konjugat, graf peringkat dan graf peringkat teritlak. Bagi 

graf konjugat dan graf peringkat yang tersekutu dengan kumpulan tertentu, kami 

menentukan bilangan komponen lengkap dan nombor klik graf tersebut. Tumpuan utama 

dalam penyelidikan ini adalah pada graf peringkat teritlak bagi kumpulan terhingga. 

Dengan mengkaji hubungan di antara graf kuasa dengan graf peringkat teritlak, kami 

membuktikan bahawa bagi suatu kumpulan terhingga, k-keterkaitan graf kuasa 

mengimplikasikan k-keterkaitan graf peringkat teritlak. Kami membuktikan juga bahawa 

graf peringkat teritlak dan graf kuasa yang tersekutu dengan kumpulan kitaran terhingga 

adalah berisomorfik. Tambahan lagi, kami mengelaskan sesetengah kelas kumpulan 

terhingga mengikut beberapa sifat graf peringkat teritlak yang tersekutu. Kami 

membuktikan juga bahawa graf peringkat teritlak bagi suatu kumpulan abelan terhingga 

adalah 3-terkait dan Hamitonan. Dalam perjalanan ini, kami juga membuktikan beberapa 

ketaksamaan berunsur teori nombor.  

Kata kunci: kumpulan terhingga, kumpulan abelan, graf terkait, graf Hamiltonan, graf 
kuasa 
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CHAPTER 1 INTRODUCTION

1.1 Background of study

Associating a group with a graph and finding relationships between them is an area of

research that has generated much interest. Research on this subject aims at investigating

relationships between groups and graphs and at exploring applications of one to the other.

One of the earliest graphs associated with a group is the power graph. Let G be a

finite group. The power graph of G is the graph with the elements of G as its vertices and

there is an edge joining two distinct vertices in the power graph if one of the vertices is

a power of another. Other examples of graphs associated with groups are the conjugate

graphs, identity graphs and order graphs. Information on a group which can be gleaned

from the graphs associated with it provides a combinatorial way to study groups, thus

making more tools available for group theorists. Moreover, studying groups which share

the same corresponding graph-theoretic properties can lead to a classification of certain

types of groups.

The main objectives of this research are as follows:

(a) To determine characteristics of some graphs associated with groups,

(b) To investigate the extent to which the graphs associated with a group determine the

group.

Among the questions that are considered in this research are the following:

(a) What are properties of the conjugate graphs, order graphs and generalised order

graphs associated with finite groups?

(b) What are the information on a finite group that can be retrieved from the graphs

associated with it?
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1.2 Significance of the study

Associating a graph to a finite group has provided an avenue for studying groups

via graphs and vice versa. The main contributions of this work are some new findings

on properties of graphs associated with finite groups and classifications of finite groups

according to some associated graph properties. The process of obtaining these results

could possibly involve or lead to new methods of proving in finite groups as well as in

graph theory. All these play a role in the contribution of knowledge on groups and graphs.

1.3 Organisation of dissertation

In Chapter 2, we begin with some preliminaries on groups and graphs that will be use-

ful in this dissertation. This will be followed by a literature review on graphs associated

with groups and a brief description of the methodology employed in this research.

In Chapter 3, we consider two types of graphs associated with finite groups, namely,

the conjugate graphs and the order graphs. We present some properties of these graphs

and also give some explicit examples of the graphs associated with certain groups such as

the dihedral groups and the generalised quaternion groups.

In Chapter 4, we introduce the generalised order graphs of finite groups. We determine

some properties of these graphs and devote a section on the generalised order graphs of

finite p-groups. In the last section, we show how the power graph, conjugate graph, order

graph and generalised order graph are related to one another. We also present our findings

on relationships between power graphs and generalised order graphs of finite groups.

Chapter 5 contains the main results of this dissertation. We first discuss results on

k-connectedness of generalised order graphs of finite groups. We then prove the Hamil-

tonicity of the generalised order graphs of finite abelian groups. To prove the main result

on Hamiltonicity, we also prove a number-theoretic inequality involving the Euler totient

2
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function and the number of positive divisors of an integer. We also present some results

on connectivity, edge-connectivity and minimum degree of the generalised order graphs

of finite groups. We end the chapter with some results on dominating sets and domination

numbers of the generalised order graphs of finite groups.

Finally, in Chapter 6, we provide a summary of our findings and give a list of open

problems for possible future work.

Throughout this dissertation, for any element x in the group G, the phrase “the vertex

x” will be used to mean “the vertex associated with the element x in the group G”.

3
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CHAPTER 2 LITERATURE REVIEW AND SOME PRELIMINARIES

2.1 A brief overview

In this chapter, we first give some preliminaries on groups and graphs that will be use-

ful in this dissertation. This will be followed by a literature review on graphs associated

with finite groups. The review will focus on power graphs and conjugate graphs of finite

groups as these graphs and some related ones are studied in this dissertation. In the final

section we give a brief description of the methodology employed in this dissertation.

2.2 Some preliminaries

The work in this dissertation involves both group theory and graph theory. In this

section, we discuss some preliminaries that will be useful later on.

2.2.1 Groups

We first state, without proof, the following fundamental result on the order of the

product of two elements in a finite abelian group.

Proposition 2.2.1. Let G be a finite abelian group with elements x and y such that

gcd(o(x),o(y)) = 1. Then o(xy) = o(x)o(y) = lcm(o(x),o(y)).

We now prove the following:

Proposition 2.2.2. Let G be a finite abelian group of order pk1
1 . . . pkn

n , where the pi’s are

distinct prime numbers and the ki’s are positive integers, and let x,y ∈G. Then there exist

some positive integers a and b such that xayb has order lcm(o(x),o(y)).

4
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Proof. By factoring o(x) and o(y) into primes, we have o(x) = pe1
1 . . . pen

n and o(y) =

p f1
1 . . . p fn

n , where p1, . . . , pn are distinct primes and ei, fi are non-negative integers (i =

1, . . . ,n). We then have that

lcm(o(x),o(y)) = pmax(e1, f1)
1 . . . pmax(en, fn)

n . (2.1)

Let r = ∏
ei≥ fi

pei
i and s = ∏

ei< fi

p fi
i . Then lcm(o(x),o(y)) = rs and gcd(r,s) = 1. By

construction, r|o(x) and s|o(y). Then x
o(x)

r has order r and y
o(y)

s has order s. It follows by

Proposition 2.2.1 that x
o(x)

r y
o(y)

s has order rs = lcm(o(x),o(y)).

The following result is known as the Fundamental Theorem of Finitely Generated

Abelian Groups. It tells us that every finite abelian group may be written uniquely, up to

isomorphism, as a direct product of cyclic groups. The reader may refer to Humphreys

(1996, Corollary 14.11) for a proof of this result.

Theorem 2.2.1. Every finite abelian group G has a unique decomposition in the form

Cn1×Cn2×·· ·×Cnr ,

where ni is divisible by n j for j > i, nr ≥ 2, and n1n2 . . .nr = |G|.

Let G be a group and let x,y ∈G. We say that x and y are conjugate in G if there exists

g ∈ G such that y = g−1xg. The notation (x) is used to denote the set of all elements in G

which are conjugate to x, that is, (x) = {g−1xg|g ∈G}. It is known that when G is a finite

group, |(x)|= [G : CG(x)], where CG(x) is the centraliser of x in G.

5
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2.2.2 Graphs

In this research, we only consider finite simple graphs, which contain neither loops

nor multiple edges. By convention, given a graph G , the vertex set and the edge set of G

are denoted by V (G ) and E(G ), respectively.

A connected graph G is said to be k-connected if |V (G )|> k and G −X is connected

for every subset X ⊆V (G ) with |X |< k. The greatest integer k such that G is k-connected

is called the connectivity κ(G ) of G . Hence, G is disconnected or trivial if and only if

κ(G ) = 0. Similarly, if |E(G )|> l and G −F is connected for every set F ⊆ E(G ) with

|F | < l, then G is called l-edge-connected and the edge-connectivity, κ ′(G ), of G is the

greatest integer l such that G is l-edge-connected. The paths in a graph G are said to be

independent if none of them contain an inner vertex of another.

The following theorem gives a necessary and sufficient condition for a graph to be

k-connected.

Theorem 2.2.2. A graph G is k-connected if and only if G contains k independent paths

between any two vertices.

Proof. See for example Theorem 3.3.6 in Diestel (2017).

A graph G is called a regular graph if every vertex of G has the same degree. If

every pair of distinct vertices in G is connected by a unique edge, then G is said to be

a complete graph. The notation Kn is used to denote the complete graph on n vertices,

where n = |V (G )| ≥ 2. For convenience, we use K1 to denote the graph consisting of a

single isolated vertex. A component of G is a maximal connected subgraph of G , whereas

a clique of G is a complete subgraph of G . The clique number ω(G ) of G is the number

of vertices of the largest clique in G . If there is a vertex u of G with deg(u)≤ deg(v) for

every v ∈V (G ), then deg(u) is called the minimum degree of G , denoted by δ (G ).

6
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A Hamiltonian graph is a graph G which has a cycle traversing each vertex of G

exactly once. A necessary condition for a graph to be Hamiltonian is stated below.

Proposition 2.2.3. If a graph G is Hamiltonian, then G is 2-connected.

Proof. See for example Corollary 3.7 in Wallis (2007).

If a graph G has a circuit which traverses every edge of G exactly once, then G is said

to be Eulerian. To determine whether G is Eulerian or not, we have the following result:

Theorem 2.2.3. Let G be a connected graph. Then G is Eulerian if and only if every

vertex of G has even degree.

Proof. See for example Diestel (2017).

The chromatic number of G , denoted by χ(G ), is the smallest k such that G has k

colourings. If χ(H ) = ω(H ) for every induced subgraph H of G , then G is called a

perfect graph. The following result is known as the strong perfect graph theorem and has

been proven by Chudnovsky et al. (2006).

Theorem 2.2.4. A graph G is perfect if and only if neither G nor its complement G

contains an odd cycle of length at least 5 as an induced subgraph.

If a graph G does not have overlapping edges, then G is called a planar graph. For

other notations and terminologies in graph theory, the reader may refer to Diestel (2017)

or Wallis (2007).

2.3 Literature review

Different types of graphs may be associated to a group. One of the earliest such

graphs is the power graph. The directed power graph was first introduced by Kelarev and

Quinn (2000). Given a finite group G, the directed power graph ~P(G) is a directed graph

7
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with the elements of G as its vertices and with all edges (u,v) such that u 6= v and v is

a power of u. The undirected power graph P(G) is the underlying undirected graph of

the directed power graph. The undirected power graphs for semigroups were the main

objects of study by Chakrabarty et al. (2009). For groups, the associated undirected

power graphs were the main focus in the papers by Cameron (2010), Cameron and Ghosh

(2011), Curtin et al. (2015) and Pourgholi et al. (2015). In the paper by Cameron (2010),

it was shown that two finite groups which have isomorphic undirected power graphs have

isomorphic directed power graphs. A consequence of this is that two finite groups which

have isomorphic undirected power graphs have the same number of elements of each

order. It was shown by Pourgholi et al. (2015) that the undirected power graph of a finite

group is Eulerian if and only if the group has odd order. It was also shown in the same

paper that the undirected power graph of a finite p-group G has a Hamiltonian cycle if

and only if |G| 6= 2 and G is cyclic. Let H be a finite group that is a simple group, a cyclic

group, a symmetric group, a dihedral group, or a generalised quaternion group. If K is

a finite group such that the undirected power graphs of H and K are isomorphic, then H

and K are isomorphic (see Mirzargar et al. (2012)).

Chakrabarty et al. (2009) proved that the power graph P(G) is always connected for

any finite group G. In the paper by Pourgholi et al. (2015), it was shown that the power

graph P(G) is 2-connected if and only if G is a cyclic group or a generalised quaternion

2-group. It was proved by Bubboloni et al. (2017) that the power graph of the alternating

group An is 2-connected if and only if either n = 3 or none of n,n−1,n−2, n
2 and n−1

2 is

a prime.

The punctured power graph P∗(G) of the finite group G is the graph with vertices

G\{1} where 1 is the identity element of G and with all edges (u,v) such that u 6= v and

v is a power of u or u is a power of v. These graphs first appeared in the work by Curtin

8
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and Pourgholi (2014). It was shown by Pourgholi et al. (2015) that the diameter of P∗(G)

is at most 2 if and only if G is nilpotent and every Sylow subgroup of G is either a cyclic

group or a generalised quaternion 2-group. It was also shown that if G is a finite group

and P∗(G) has diameter 3, then G is not simple. Another result proven by Pourgholi et

al. (2015) is that P∗(G) is Eulerian if and only if G is a cyclic 2-group or a generalised

quaternion 2-group.

Another type of graph associated with a finite group is the conjugate graph as defined

by Vasantha Kandasamy and Smarandache (2009). Given a finite group G, the conjugate

graph of G, denoted by ∇(G), is the graph with vertex set G and two distinct elements

x,y ∈ G are adjacent in ∇(G) if x and y are conjugate in G. It is clear that if G is a finite

abelian group, then every element in G is self-conjugate and hence, ∇(G) is an empty

graph.

There are various other types of graphs associated with finite groups in the literature.

Some examples are the identity graphs (Vasantha Kandasamy and Smarandache (2009)),

the non-cyclic graphs (Abdollahi and Hassanabadi (2007)), the cyclic graphs (Ma et al.

(2013)), the centre graphs (Balakrishnan et al. (2011)), the coprime graphs (Ma et al.

(2014)) and of course, the Cayley graphs which have a long history.

2.4 Methodology

There are three main components in the methodology employed in this research. The

first component involves preliminary background work where various advanced concepts

on abstract algebra and graph theory are studied together with relevant articles on graphs

associated with groups. Techniques used by other researchers are studied and noted for

possible applications or extensions to other cases. The second component involves iden-

tifying suitable graphs for further investigation. By analysing existing results and investi-
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gating some concrete examples of graphs associated with groups, some observations are

noted and conjectures are formulated. The third component is the most crucial one and

involves proving or disproving the conjectures. Various tools from group theory, graph

theory and number theory are used during this stage, as well as results obtained by other

researchers.
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CHAPTER 3 CONJUGATE GRAPHS AND ORDER GRAPHS OF FINITE

GROUPS

3.1 A brief overview

In this chapter, we study two types of graphs associated with finite groups, namely,

conjugate graphs and order graphs. We begin in Section 3.2 by presenting some proper-

ties of the conjugate graphs of finite groups. We also give some examples of the conjugate

graphs of some non-abelian groups such as the dihedral groups and the generalised quater-

nion groups. In Section 3.3, we define the order graphs of finite groups and present some

of their properties. It is also noted that the conjugate graph of a finite group is a subgraph

of its order graph. We end the section with some explicit examples of order graphs of

finite groups.

3.2 Conjugate graphs of finite groups

As defined in Section 2.3, the conjugate graph of the finite group G, denoted by ∇(G),

is the graph with vertex set G such that for any distinct elements x,y ∈ G, x and y are

adjacent in ∇(G) if x and y are conjugate in G. From the definition, it is clear that elements

in G which are conjugate with one another will be adjacent to one another in ∇(G) and

hence, form a complete component in ∇(G). In other words, the conjugate graph ∇(G)

is a disjoint union of complete components, where each of these components represents

a conjugacy class of G. The graph ∇(G) is therefore disconnected. Note that the identity

element 1 of G forms an isolated vertex itself in ∇(G). The following result gives the

number of isolated vertices in ∇(G).

Proposition 3.2.1. Let G be a finite group. Then the number of isolated vertices in ∇(G)

is equal to the order of the centre Z(G) of G.
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Proof. Note that a vertex z in ∇(G) is isolated if and only if the conjugacy class containing

z consists of z only. Then since

(z) = {z}⇔ g−1zg = z ∀g ∈ G

⇔ gz = zg ∀g ∈ G

⇔ z ∈ Z(G),

we have that the number of isolated vertices in ∇(G) is the same as the order of Z(G).

By Proposition 3.2.1, it is clear that if G is a finite abelian group, then its conjugate

graph ∇(G) only consists of isolated vertices, that is, ∇(G) is an empty graph.

Proposition 3.2.2. Let G1 and G2 be finite groups. If G1 and G2 are isomorphic, then

∇(G1) and ∇(G2) are isomorphic.

Proof. Let φ be an isomorphism from G1 onto G2 and let x,y ∈ G1. It may be shown

that x and y are conjugate in G1 if and only if φ(x) and φ(y) are conjugate in G2. It

follows that the conjugacy class structure of G1 (that is, the number of conjugacy classes

and the number of elements in each conjugacy class) is the same as that of G2. Thus

∇(G1)∼= ∇(G2).

The following result is straightforward from the definition of conjugate graphs.

Proposition 3.2.3. Let G be a finite group and let H be a subgroup of G. Then ∇(H) is a

subgraph of ∇(G).

Example 3.2.1. Let n≥ 3. Consider the alternating group An which is a normal subgroup

of the symmetric group Sn. By Proposition 3.2.3, ∇(An) is a subgraph of ∇(Sn). However,

the subgraph ∇(An) is not an induced one. This is because the permutations (1 2 3) and
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(1 3 2) are not conjugate in An although they are conjugate in Sn. Therefore, (1 2 3) and

(1 3 2) are not adjacent in ∇(An), but adjacent in ∇(Sn).

Theorem 3.2.1. Let G be a finite group. Then ∇(G) is perfect.

Proof. This is straightforward by Theorem 2.2.4 and the fact that ”conjugate” is a transi-

tive relation.

In the remainder of this section, we determine the structures of the conjugate graphs

of some finite non-abelian groups. We first state a result of Vasantha Kandasamy and

Smarandache (2009) as follows.

Proposition 3.2.4. Let G be the dihedral group,

Dn = 〈x,y : xn = 1 = y2,yxy−1 = x−1〉,

where n is even. Then ∇(G) is a disjoint union of complete graphs comprising of two

copies of K1, n−2
2 copies of K2 and two copies of Kn

2
. Furthermore, χ(∇(G))=ω(∇(G))=

n
2 .

Proof. This can be found in the proof of Theorem 2.17 in the book by Vasantha Kan-

dasamy and Smarandache (2009).

For n odd, we prove the following:

Proposition 3.2.5. Let G be the dihedral group,

Dn = 〈x,y : xn = 1 = y2,yxy−1 = x−1〉,

where n is odd. Then ∇(G) is a disjoint union of complete graphs comprising of one copy

of K1, n−1
2 copies of K2 and one copy of Kn. Furthermore, χ(∇(G) = ω(∇(G))) = n.
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Proof. By the relations in the presentation of G, we have that

G = {1,x,x2, . . . ,xn−1,y,xy, . . . ,xn−1y}.

Clearly (1) = {1} is a conjugacy class in G and this gives us a component K1 in ∇(G).

Note that for each i ∈ {1, . . . ,n−1}, we have CG(xi) = 〈x〉= {1,x, . . . ,xn−1}. Therefore

|(xi)|= [G : CG(xi)] = 2 for i ∈ {1, . . . ,n−1}. Since yxiy−1 = (yxy−1)i = (x−1)i = x−i =

xn−i for i ∈ {1, . . . , n−1
2 }, it follows that {x,xn−1}, {x2,xn−2}, . . . , {x n−1

2 ,x
n+1

2 } are conju-

gacy classes in G; thus giving us n−1
2 copies of K2 in ∇(G). Next, note that CG(y) = {1,y}.

Therefore |(y)| = [G : CG(y)] = n and hence, we must have (y) = {y,xy, . . . ,xn−1y}. The

conjugate graph of G is therefore a disjoint union of one copy of K1, n−1
2 copies of K2

and one copy of Kn. Since the largest clique of ∇(G) is Kn, we have that χ(∇(G)) =

ω(∇(G)) = n.

We next determine the conjugate graphs of generalised quaternion groups.

Proposition 3.2.6. Let G be the generalised quaternion group

Q2n = 〈x,y : x2n−1
= 1,x2n−2

= y2,yxy−1 = x−1〉

where n ≥ 3. Then ∇(G) is the union of two copies of K1, 2n−2− 1 copies of K2 and 2

copies of K2n−2 . Furthermore, χ(∇(G)) = ω(∇(G)) = 2n−2.

Proof. By the relations in the presentation of G, we have that

G = {1,x, . . . ,x2n−1−1,y,xy, . . . ,x2n−1−1y}.

The centre Z(G) of G consists of the elements 1 and x2n−2
. Hence, the identity element

1 and x2n−2
form two conjugacy classes (1) = {1} and (x2n−2

) = {x2n−2} in G, respec-
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tively. This gives us two copies of K1 in ∇(G). Note that for each i ∈ {1, . . . ,2n−1− 1},

we have CG(xi) = 〈x〉 = {1,x, . . . ,x2n−1−1}. Therefore, |(xi)| = [G : CG(xi)] = 2 for i ∈

{1, . . . ,2n−1−1}. Since yxiy−1 = (yxy−1)i = (x−1)i = x−i = x2n−1−i for i∈ {1, . . . ,2n−2−

1}, it follows that {x,x2n−1−1}, {x2,x2n−1−2}, . . . , {x2n−2−1,x2n−2+1} are conjugacy classes

in G; thus giving us 2n−2 − 1 copies of K2 in ∇(G). We also note that for each i ∈

{1, . . . ,2n−1− 1}, CG(xiy) = 〈xiy〉 and each xiy ∈ G has order 4. Therefore |(xiy)| =

[G : CG(xiy)] = 2n−2. Let k be the number of conjugacy classes containing 2n−2 elements

each in G. By the class equation of G, we have that 2n = |G|= |Z(G)|+ ∑
g∈G,g/∈Z(G)

|(g)|=

2+(2n−2− 1)(2)+ k(2n−2). This give us k = 2. Therefore, the conjugate graph of G is

a disjoint union of two copies of K1, 2n−2− 1 copies of K2 and 2 copies of K2n−2 . The

second assertion follows from the fact that the largest clique of ∇(G) is K2n−2 .

We now consider the conjugate graphs of symmetric groups. First, we state a result

on the size of a conjugacy class in a symmetric group. The reader may refer to Herstein

(1975) for a proof of the following lemma.

Lemma 3.2.1. Let G be the symmetric group Sn where n ≥ 3. The size of a conjugacy

class corresponding to a cycle type with α j parts of length j (1≤ j ≤ n) is

n!

∏
j

jα j(α j!)
. (3.1)

Proposition 3.2.7. Let G be the symmetric group Sn, where n ≥ 3. Then the chromatic

number of ∇(G) is n!
n−1 , the number of (n−1)-cycles in G.

Proof. By Lemma 3.2.1, the number N of (n− 1)-cycles in G is n!
n−1 . By computation,

for 1 ≤ j ≤ n, if α j is the number of parts of size j in a partition of n, the inequality
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n−1≤∏
j

jα j(α j!) holds. Therefore,

N =
n!

n−1
≥ n!

∏
j

jα j(α j)!
. (3.2)

It follows by Lemma 3.2.1 that the maximum size of a conjugacy class of Sn is N = n!
n−1 .

That is, the component in ∇(G) corresponding to the conjugacy class comprising of all

the (n−1)-cycles is the largest complete component in ∇(G). Hence, at least N colours

are required for the colouring of the vertices of this component. For other components in

the graph, the colouring requires less than N colours. Thus χ(∇(G)) = N.

Proposition 3.2.8. Let G be the symmetric group Sn, where n ≥ 3. Then ∇(G) contains

an even number of complete components Kv, where v is odd.

Proof. By the class equation of G, we have that

|G|= ∑
v is odd

|V (Kv)|+ ∑
w is even

|V (Kw)|. (3.3)

Since |G| = n! is even, it follows by (3.3) that the number of complete components Kv,

where v is odd, must be even. This completes the proof.

In graph theory, it is well-known that the complete graph Kn on n vertices is non-

planar for n≥ 5 (see for example Corollary 4.2.11 in Diestel (2017)). Hence, we have the

following result.

Proposition 3.2.9. Let G be the symmetric group Sn, where n ≥ 4. Then ∇(G) is non-

planar.

Proof. If n = 4, then one of the conjugacy classes in G consists of all the 4-cycles and has

3! = 6 elements. It follows that the component associated to this class in ∇(G) is non-
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planar and so, ∇(G) is non-planar. Now suppose that n > 4. Note that S4 is a subgroup of

G. By Proposition 3.2.3, ∇(S4) is a subgraph of ∇(G). Therefore ∇(G) is non-planar.

3.3 Order graphs of finite groups

It is known that elements in the same conjugacy class of a finite group have the same

order. With this in mind, our study of the conjugate graphs of finite non-abelian groups

led us to consider order graphs which we define as follows:

Definition 3.3.1. Let G be a finite group. The order graph of G, denoted by ∆(G), is the

graph with vertex set G and for any distinct elements x,y ∈ G, x and y are adjacent in

∆(G) if x and y have the same order in G.

By Definition 3.3.1, any set comprising of elements of the same order in G forms a

complete component in ∆(G). Since the identity element of a group is its only element

of order 1, it is clear that the order graph of a finite group is disconnected. Moreover,

since conjugate elements in a finite group G have the same order, we have that ∇(G) is a

subgraph of ∆(G).

Remark 3.3.1. There have been other definitions of order graphs of finite groups in the

literature. For example, in the paper by Pasebani and Payrovi (2014), the order graph

T(G) of a finite group G is defined as the graph with non-trivial subgroups of G as vertices

such that two distinct vertices H and K are adjacent in T(G) if |H| divides |K| or |K|

divides |H|.

It is known that the order of an element x in a subgroup H of the group G is the same

as the order of x in G. We thus have the following:

Proposition 3.3.1. Let G be a finite group and let H be a subgroup of G. Then ∆(H) is

an induced subgraph of ∆(G).
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Example 3.3.1. Let n≥ 3. The order graph of the alternating group An of degree n is an

induced subgraph of the order graph of the symmetric group Sn of degree n.

We now consider the perfectness of order graphs.

Theorem 3.3.1. Let G be a finite group. Then ∆(G) is perfect.

Proof. This follows by Theorem 2.2.4 and the fact that if φ(a) = φ(b) and φ(b) = φ(c),

then φ(a) = φ(c) where φ is the Euler totient function.

The following result gives a relationship between the order of a finite group and the

number of complete components Kv, where v is odd, in the order graph associated with it.

Proposition 3.3.2. Let G be a finite group of even order. Then there are at least two

complete components Kv in ∆(G), where v is odd.

Proof. Clearly, the identity element 1 forms a component K1 on its own. Now we need

to show that there exists another component with an odd number of vertices in ∆(G). Let

|G| = n, where n is even. Then 2|n and it follows by Cauchy’s theorem that there is an

element g ∈ G of order 2. Hence, there is at least one involution in G. Now we claim that

the number of involutions in G is an odd number. We prove this claim by contradiction.

Let v be the number of involutions in G and suppose that v is even. Then there are

n− v−1 non-identity elements of G which are not involutions. Each x ∈ G which is not

an involution together with its inverse x−1 form a pair (x,x−1) of distinct elements. It

follows that the number of non-identity elements of G which are not involutions is even.

But this is a contradiction since n− v− 1 is odd. Therefore, v must be odd and we have

another component Kv with an odd number of vertices.

Corollary 3.3.1. Let G be a finite group. Then |G| is even if and only if the number of

involutions in G is an odd number.
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Proof. The necessity part of the proof follows from the proof of Proposition 3.3.2. For

the sufficiency, G has at least one involution, say x. Then since o(x) (= 2) divides |G|, it

follows that |G| is even.

For groups of odd order, we have the following:

Proposition 3.3.3. Let G be a finite group of odd order. Then every non-trivial complete

component of ∆(G) has an even number of vertices.

Proof. Note that G does not have any involution as |G| is odd. It follows that every

element g ∈G\{1} has an inverse g−1 6= g and both of them have the same order. Hence

the number of elements of the same order in G must be even. The assertion thus follows.

Proposition 3.3.2 implies that the order graph of a group of even order has at least

two complete components. For some specific groups, we are able to determine the exact

number of complete components as shown in the following results.

Proposition 3.3.4. If the group G is isomorphic to an elementary abelian p-group or a

non-abelian group of exponent p, then ∆(G) has only two complete components, namely

K1 and K|G|−1.

Proof. Since all non-trivial elements of G have order p, the corresponding vertices are

adjacent to each other in ∆(G) and hence, form a complete component K|G|−1. This

completes the proof.

Proposition 3.3.5. Let G be a finite cyclic group of order n. Then there is one complete

component Kφ(d) in ∆(G) for each divisor d of n.

Proof. We first claim that a cyclic group H of order d has φ(d) generators. Suppose that

H = 〈h〉. Then, hk generates H if and only if hkm = h for some positive integer m. This is
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equivalent to the congruence km≡ 1(mod d)which occurs if and only if k is a unit in Zn.

Thus there are φ(d) values of k in order for hk to be a generator of H. This proves our

claim.

Now, let g be a generator of G and let d be a divisor of n. Then g
n
d generates a

subgroup of G of order d. If gt ∈ G has order d, then gtd = 1 and so, n|td. It follows that

n
d |t. Hence, gt ∈ 〈g n

d 〉 and we have 〈gt〉= 〈g n
d 〉. Thus there is only one subgroup of G of

order d, say Hd . By our earlier claim, Hd has φ(d) elements of order d. Thus G has φ(d)

elements of order d for every divisor d of n. If follows by definition that ∆(G) has one

complete component Kφ(d) for each d.

As an application of Proposition 3.3.5, we have the following:

Corollary 3.3.2. Let n≥ 2 be an integer. The clique number of ∆(Cn) is φ(n).

Proof. Let n = pk1
1 . . . pkr

r , where p1, . . . , pr are distinct prime numbers and k1, . . . ,kr are

positive integers. Let d 6= 1 be a divisor of n. Then d = p j1
1 . . . p jr

r for some integer ji

where 0≤ ji ≤ ki (i = 1, . . . ,r). Clearly, |V (Kφ(d))|= φ(d)≤
r

∏
i=1

pki−1
i (pi−1) = φ(n) =

|V (Kφ(n))|. It follows by Proposition 3.3.5 that Kφ(n) is a maximum clique in ∆(Cn).

Therefore, the clique number of ∆(Cn) is φ(n).

For finite non-cyclic p-groups, we have the following:

Proposition 3.3.6. Let G be a non-cyclic group of order pn, n > 1. Then ∆(G) is the

disjoint union of K1 and complete components K(1), . . . ,K(n−1), where K(i) consists of the

vertices corresponding to the elements of order pi in G (i = 1, . . . ,n−1).

Proof. Since G has order pn, there exist elements of order pi for each i = 0,1, . . . ,n−

1. Elements of the same order form a complete component in ∆(G); hence, the result

follows.
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The following result tells us that the order graphs associated with two finite groups G1

and G2 are isomorphic if G1 and G2 are isomorphic.

Proposition 3.3.7. Let G1 and G2 be finite groups. If G1 and G2 are isomorphic, then

∆(G1) and ∆(G2) are isomorphic.

Proof. Let G1 and G2 be isomorphic. Then there exists an isomorphism φ : G1→G2 and

|G1| = |G2|. We wish to show that G1 has n elements of order d if and only if G2 has n

elements of order d. Since φ is one-to-one and onto, for any h ∈G2, there exists a unique

g ∈ G1 such that φ(g) = h. Thus it suffices to show that g ∈ G1 has order d if and only if

φ(g) ∈ G2 has order d.

Suppose that g ∈ G1 has order d. Then φ(g)d = φ(gd) = φ(1) = 1, that is, m divides

d where m = o(φ(g)). We also note that φ(gm) = φ(g)m = 1. Since φ(1) = 1 and φ

is one-to-one, it follows that gm = 1 and hence, d divides m. The equality d = m thus

follows. Now suppose that φ(g) ∈ G2 has order d and let m = o(g). Then 1 = φ(1) =

φ(gm) = φ(g)m and hence, d|m. We also note that φ(gd) = φ(g)d = 1. Since φ(1) = 1

and φ is one-to-one, it follows that gd = 1. Therefore m|d. Thus d = m as required.

Remark 3.3.2. The converse of Proposition 3.3.7 does not hold in general. As an exam-

ple, let G1 be the elementary abelian p-group and let G2 be the p-group of order p3 with

exponent p given by the presentation

〈x,y,z : xp = yp = zp = [x,z] = [y,z] = 1, [x,y] = z〉.

Then, by Proposition 3.3.4, ∆(G1) and ∆(G2) are isomorphic. However, since G2 is non-

abelian, these two groups cannot be isomorphic. This shows that two non-isomorphic

groups may have the same order graphs.
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We end this section by giving some explicit examples of order graphs of finite groups.

Example 3.3.2. Let G =Cp, the cyclic group of order p. The p−1 non-trivial elements

of G have order p. Thus, the order graph ∆(G) of G is the disjoint union of K1 and Kp−1.

Example 3.3.3. Let G = Cp×Cq where p and q are distinct prime numbers. Then G

has one element of order 1, p− 1 elements of order p, q− 1 elements of order q and

(p−1)(q−1) elements of order pq. Thus, the order graph ∆(G) of G is the disjoint union

K1∪Kp−1∪Kq−1∪K(p−1)(q−1).

Example 3.3.4. Let G be the dihedral group 〈a,b : a2n
= b2 = 1,ba = a−1b〉 where n ≥

2. It is clear that the identity element and b have orders 1 and 2, respectively. The

element a generates the subgroup 〈a〉 of order 2n. By Proposition 3.3.5, 〈a〉 has 2k−1

elements of order 2k for k = 1, . . . ,n. By induction, it may be shown that bak = a2n−kb

for k = 0,1, . . . ,2n−1. Then for any k ∈ {0,1, . . . ,2n−1}, we have (akb)2 = ak(bak)b =

aka2n−kb2 = 1. It follows that G has 2n+1 elements of order 2 and 2k−1 elements of order

2k for k = 2, . . . ,n. Thus, the order graph ∆(G) of G is the disjoint union K1 ∪K2n+1 ∪

K2∪K22 ∪·· ·∪K2n−1 .

Example 3.3.5. Let G be the generalised quaternion group 〈a,b : a2n−1
= 1,a2n−2

=

b2,ba = a2n−1−1b〉 where n ≥ 3. Clearly, the identity element and a2n−2
have orders 1

and 2, respectively. Note that the element a generates the subgroup 〈a〉 of order 2n−1. By

Proposition 3.3.5, 〈a〉 has φ(2i) = 2i−1 elements of order 2i for i = 1, . . . ,n−1. We now

determine the orders of b and bak for k = 1, . . . ,2n−1−1. By induction, it may be shown

that bak = a2n−1−kb for k = 1, . . . ,2n−1−1. Then for any k ∈ {1, . . . ,2n−1−1}, we have

(bak)2 = a2n−1−kb2ak = a2n−1−ka2n−2
ak = a2n−1

a2n−2
= a2n−2

. It follows that o(bak) = 4

for k = 1, . . . ,2n−1−1. We also have o(b) = 4. Therefore, there are 2+(2n−1−1)+1 =

2n−1+2 elements of order 4 in G. It follows that the order graph ∆(G) of G is the disjoint

union K1∪K1∪K2n−1+2∪K22 ∪K23 ∪·· ·∪K2n−2 .
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CHAPTER 4 GENERALISED ORDER GRAPHS OF FINITE GROUPS

4.1 Some background

In the previous chapter, we have seen that the conjugate graphs and order graphs of

finite groups are disconnected. The disconnectedness of these graphs tells us that they

are neither Eulerian nor Hamiltonian. This also somewhat limits the graph properties that

can be studied as many graph properties require that the graph be connected. This led

us to investigate another type of graph associated with a finite group which we call the

generalised order graph. This graph is defined as follows:

Definition 4.1.1. Let G be a finite group. The generalised order graph of G, denoted by

Γ(G), is the graph with vertex set G such that for any distinct elements x,y ∈ G, x and y

are adjacent in Γ(G) if o(x) | o(y) or o(y) | o(x).

For convenience, we shall refer to the generalised order graph of a finite group G as

the GO-graph of G. It is clear that ∇(G)≤ ∆(G)≤ Γ(G).

In Section 4.2, we present some properties of the GO-graphs of finite groups. We

then focus on the GO-graphs of finite p-groups in Section 4.3. In the final section of

this chapter, we discuss relationships between the GO-graphs and the undirected power

graphs of finite groups.

In the remainder of this dissertation, all power graphs are assumed to be undirected

power graphs.

23

Univ
ers

ity
 of

 M
ala

ya



4.2 Some general properties of GO-graphs

The following two results are straightforward by the definition of GO-graphs.

Proposition 4.2.1. Let G be a finite group and let H be a subgroup of G. Then Γ(H) is a

subgraph of Γ(G).

Proposition 4.2.2. Let G1 and G2 be finite groups. If G1 and G2 are isomorphic, then

Γ(G1) and Γ(G2) are isomorphic.

Remark 4.2.1. The converse of Proposition 4.2.2 does not hold in general. As an exam-

ple, let G1 be the cyclic group C27 and G2 be the group of order 27 with exponent 3 given

by the presentation

〈x,y,z : x3 = y3 = z3 = [x,z] = [y,z] = 1, [x,y] = z〉.

Both Γ(G1) and Γ(G2) are complete graphs K27 and so, Γ(G1)∼= Γ(G2). However, since

G1 is abelian but G2 is not abelian, G1 and G2 cannot be isomorphic with one another.

We will show later that the converse of Proposition 4.2.2 holds for finite abelian groups.

Proposition 4.2.3. Let G be a finite group with |G| ≥ 3. Then Γ(G) is a connected graph

of diameter at most 2. Furthermore, the girth of Γ(G) is 3.

Proof. The identity element 1 of G has order 1 and this order divides the order of every

other element in G. Hence, the vertex 1 is adjacent to all other vertices of Γ(G). The

graph Γ(G) is therefore connected. If G is a p-group, then every non-identity element of

G has as its order some power of p and so, it follows by definition that all the vertices of

Γ(G) are adjacent to each other. Hence, Γ(G) is complete. Therefore, diam(Γ(G)) = 1.

Suppose that G is not a p-group. Let x,y ∈ G. If o(x)|o(y) or o(y)|o(x), then x,y is

the shortest path connecting x and y in Γ(G) and so, d(x,y) = 1. Suppose that o(x) - o(y)
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and o(y) - o(x). Then the shortest path from x to y in Γ(G) is x,1,y and hence, d(x,y) = 2.

Thus diam(Γ(G)) = 2.

Now we prove the last assertion. If |G|= 3,4 or 5, then G is a p-group and so, Γ(G)

is a complete graph. Hence, Γ(G) contains a K3. Assume that |G| ≥ 6. Then there must

exist x ∈G such that x2 6= 1. It follows that x has an inverse x−1 and so, 1,x and x−1 form

K3 in Γ(G). Thus g(Γ(G)) = 3.

Proposition 4.2.3 tells us that Γ(G) contains a cycle of length 3 and hence, we have

the following corollary:

Corollary 4.2.1. Let G be a finite group with |G| ≥ 3. Then the GO-graph of G is not a

tree.

In the case when G is finite abelian, its GO-graph Γ(G) is in fact 3-connected and this

result will be proven in the next chapter. In graph theory, it is known that a connected

graph is Eulerian if and only if evey vertex in the graph has even degree. By using this

result, we are able to characterise the Eulerian GO-graphs of finite groups. Before that,

we need the following preliminary results.

Lemma 4.2.1. Let G be a finite group of even order. Then Γ(G) is not Eulerian.

Proof. Note that the identity element 1 of G is adjacent to every other vertex of Γ(G).

Since |G| = n is even, it follows that the degree of the vertex 1 is n− 1, which is odd.

Thus Γ(G) is not Eulerian.

Lemma 4.2.2. Let G be a finite group of odd order. Then Γ(G) is Eulerian.

Proof. Suppose |G|= n, where n is odd. Then, the degree of 1 in Γ(G) is n−1, which is

even. Let x ∈ G such that x 6= 1. Since n is odd, x2 6= 1 and hence, x 6= x−1. Then since

o(x) = o(x−1), it follows that x−1 is adjacent to x. Thus x is adjacent to 1 and x−1 in Γ(G).
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Now if y ∈ G\{1,x,x−1} is adjacent to x in Γ(G), so is y−1 as o(y) = o(y−1). If follows

that the degree of x in Γ(G) is even. Since every vertex in Γ(G) has even degree, we have

that Γ(G) is Eulerian.

By combining Lemmas 4.2.1 and 4.2.2, we have the following result:

Theorem 4.2.1. Let G be a finite group. Then Γ(G) is Eulerian if and only if |G| is odd.

4.3 Properties of GO-graphs of finite p-groups

The following result gives a necessary and sufficient condition for the GO-graph of a

finite group to be complete.

Theorem 4.3.1. Let G be a finite group. Then Γ(G) is complete if and only if G is a

p-group.

Proof. Assume that Γ(G) is complete and suppose that G is not a p-group. Then there ex-

ists another prime q which divides |G|. By Sylow’s Theorem, G has a Sylow p-subgroup

P and a Sylow q-subgroup Q. Let x ∈ P and y ∈ Q. Since gcd(p,q) = 1, x and y do not

have order dividing each other. Hence, x and y are not adjacent in Γ(G). This contradicts

the assumption that Γ(G) is complete. Thus G must be a p-group.

Conversely, suppose that G is a p-group so that every element of G has some power

of p as its order. By definition, all the vertices in Γ(G) are adjacent to each other. Thus

Γ(G) is a complete graph.

It is known that the graph G is the complete graph Kn if and only if G is simple and

(n−1)-regular. By using this fact and Theorem 4.3.1, we have the following:

Corollary 4.3.1. Let G be a finite group of order n. Then Γ(G) is (n−1)-regular if and

only if G is a p-group.
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As a consequence of Theorem 4.3.1, we also have other properties of GO-graphs of

finite p-groups as follows:

Corollary 4.3.2. Let G be a finite p-group, where p≥ 3. Then Γ(G) is Hamiltonian.

Proof. By Theorem 4.3.1, the graph Γ(G) is complete. Since a complete graph is Hamil-

tonian, it follows that Γ(G) is Hamiltonian.

Corollary 4.3.3. Let G be a finite p-group, where p≥ 5. Then Γ(G) is non-planar.

Proof. This follows by Theorem 4.3.1 and the fact that any graph which contains K5 as a

subgraph is non-planar (by Corollary 4.2.11 in Diestel (2017)).

Corollary 4.3.4. Let G be a finite group of order pn, where n≥ 1. Then χ(Γ(G))= pn−1.

Proof. This follows by Theorem 4.3.1 and the fact that χ(Km) = m−1.

Chakrabarty et al. (2009) showed that the power graph P(G) of G is complete if and

only if G is trivial or a cyclic p-group. Hence, we have the following corollary:

Corollary 4.3.5. Let G be a finite cyclic p-group. Then P(G) and Γ(G) coincide, and are

both complete.

4.4 Relationships between power graphs and GO-graphs of finite groups

We have shown in the previous section that when G is a finite cyclic p-group, its power

graph and its GO-graph are isomorphic. This result led us to ask whether the isomorphism

P(G)∼= Γ(G) also holds for other classes of groups. In this section, we will consider this

question and look at how the power graphs and the GO-graphs of finite groups are related.

The following result is straightforward from the definition of a power graph and a GO-

graph.

Proposition 4.4.1. Let G be a finite group. Then P(G) is a subgraph of Γ(G).
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The following diagram illustrates how the conjugate graphs, order graphs, GO-graphs

and power graphs of finite groups are related to one another.

Figure 4.1: Relationship between various types of graphs

We now show how connectedness in power graphs is related to connectedness in GO-

graphs of finite groups.

Theorem 4.4.1. Let G be a finite group and let k≥ 1 be an integer. If P(G) is k-connected,

then Γ(G) is k-connected.

Proof. Suppose that Γ(G) is not k-connected. By Theorem 2.2.2, there exists two distinct

vertices x,y ∈ V (Γ(G)) such that the number of independent paths connecting x and y

in Γ(G) is less than k. Now since the power graph P(G) of G is a subgraph of Γ(G), it

follows that the number of independent paths connecting x and y in P(G) is also less than

k. Thus P(G) is not k-connected.

Example 4.4.1. It has been shown by Bubboloni et al. (2017) that P(An) is 2-connected

if and only if either n = 3 or none of n,n− 1,n− 2, n
2 and n−1

2 is a prime. Hence, by

Theorem 4.4.1, we have Γ(An) is 2-connected if either n = 3 or none of n,n−1,n−2, n
2

and n−1
2 is a prime. In particular, the smallest integer value of n which fulfills the second

restriction is 16.
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For a finite group G, let Γ∗(G) denote the punctured GO-graph of G, that is, the

subgraph of Γ(G) obtained after deleting the vertex 1. The following corollary is straight-

forward.

Corollary 4.4.1. Let G be a finite group. If P∗(G) is connected, then Γ∗(G) is connected.

We next show that Corollary 4.3.5 may be extended to finite cyclic groups. First, we

prove the following lemma.

Lemma 4.4.1. Let G be a finite cyclic group and let x,y be elements of G. Then x ∈ 〈y〉 if

and only if o(x)|o(y).

Proof. Suppose that x ∈ 〈y〉. Then, o(x) divides |〈y〉|= o(y).

Conversely, suppose that o(x)|o(y). If y is a generator of G, then it is clear that x∈ 〈y〉.

Assume that y is not a generator of G. Let o(x) = s and o(y) = t. Thus s and t are

positive integers with s, t < |G|. Since s|t, the number of elements of order s in 〈y〉 is

φ(s). Similarly, the number of elements of order s in G is also φ(s). Since 〈y〉 is a

subgroup of G, the elements of order s in both 〈y〉 and G must be the same. Thus x is in

〈y〉.

By Lemma 4.4.1, we have the following result:

Theorem 4.4.2. Let G be a finite cyclic group. Then P(G) and Γ(G) are isomorphic.

It was shown by Doostabadi et al. (2015) that the power graph of a finite group is

perfect. Since the power graph and the GO-graph of a finite cyclic group are isomorphic,

therefore the GO-graphs of finite cyclic groups are also perfect. A natural question to ask

is whether this holds for finite groups in general. We answer this in the affirmative in

the following theorem, the proof of which is motivated by the work of Doostabadi et al.

(2015).
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Theorem 4.4.3. Let G be a finite group. Then Γ(G) is perfect.

Proof. Since a complete graph is perfect, it follows by Theorem 4.3.1 that the GO-graph

of a finite p-group is perfect. We thus assume that G is not a p-group; hence, |G| ≥ 6.

We prove that Γ(G) is perfect by contradiction. Suppose that Γ(G) contains an odd cycle

C of length at least 5 as an induced subgraph. Let x,y be two distinct vertices which are

adjacent in the cycle C . If 1 is also in the same cycle, then x,y and 1 form a triangle as an

induced subgraph of C , which contradicts our assumption that C is a cycle. Thus, 1 is not

in C . Let a1,a2, . . . ,a2m−1,a2m = a1 be the cycle C , where m ≥ 3. Since all the vertices

of Γ(G) are adjacent to 1, we may replace one of the vertices of C with 1 to form another

cycle C ′ of equal length. The cycle C ′ is also an induced subgraph of Γ(G). However,

C ′ contains a triangle as an induced subgraph, which gives a contradiction again.

Now suppose that Γ(G) contains an odd cycle C of length at least 5 as an induced

subgraph. If C has length 5, then C also has length 5. By a similar argument as above,

we may replace one of the vertices in C with 1 to form another cycle C ′ of equal length.

But then C ′ would contain a triangle as an induced subgraph, which gives a contradiction.

If C has length at least 7, then the cycle C would contain a triangle, which contradicts our

assumption again. Thus neither Γ(G) nor Γ(G) contains an odd cycle of length at least 5

as an induced subgraph. It follows by Theorem 2.2.4 that Γ(G) is perfect.
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CHAPTER 5 CONNECTEDNESS AND HAMILTONICITY OF GENERALISED

ORDER GRAPHS OF FINITE GROUPS

5.1 A brief overview

In the previous chapter, we have shown in Proposition 4.2.3 that if G is a finite group

with |G| ≥ 3, then its GO-graph Γ(G) is connected. In Section 5.2 in this chapter, we

extend this result partially by showing that Γ(G) is 3-connected for the case when G is

abelian. As a consequence of this result and by Theorem 4.4.2, we may deduce that the

power graph of a finite cyclic group is 3-connected. In the case of non-abelian groups, we

will show in Section 5.3 that the GO-graph of a finite non-abelian group is not necessarily

3-connected.

In Section 5.5, we prove that the GO-graph of a finite abelian group contains a Hamil-

tonian cycle. The proof of this result makes use of a number-theoretic inequality involving

the Euler totient function and the number of positive divisors of an integer, which will be

proven in Section 5.4. We also prove in Section 5.5 that two finite abelian groups are

isomorphic if and only if their GO-graphs are isomorphic to one another.

Next, in Section 5.6, we consider other properties related to connectedness in the GO-

graphs of finite groups. In particular, we obtain some relations between the connectivity,

edge-connectivity and minimum degree of the GO-graphs of finite groups. We also de-

termine the minimum degree of the GO-graphs of various finite abelian groups. Finally,

in Section 5.7, we determine the domination number and some dominating sets of the

GO-graphs of finite abelian groups.
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5.2 On 3-connectedness of GO-graphs of finite abelian groups

In this section we prove the first main result in this chapter which is as follows:

Theorem 5.2.1. Let G be a finite abelian group with |G| ≥ 4. Then Γ(G) is 3-connected.

We first prove the following lemmas:

Lemma 5.2.1. Let G be a finite p-group with |G| ≥ 4. Then Γ(G) is 3-connected.

Proof. By Theorem 4.3.1, Γ(G) is the complete graph Kn, where n = |G|. Since Kn is

3-connected for n≥ 4, we have that Γ(G) is 3-connected.

Lemma 5.2.2. Let G be a finite abelian group with |G| ≥ 6 such that |G| has at least two

distinct prime divisors. Let x,y ∈ G such that o(x) = pm
1 and o(y) = pn

2 for some prime

numbers p1, p2 and positive integers m,n. Then there exist at least three independent

paths connecting x and y in Γ(G).

Proof. We consider three different cases.

Case 1: p1 > p2 > 2. It is clear that x,1,y is a path in Γ(G). Since G is abelian and

gcd(o(x),o(y)) = 1, we have that o(xy) = o(x)o(y) and hence, x,xy,y is a path connect-

ing x and y in Γ(G). Since p1 is odd, it follows that o(x2) = o(x) and hence, o(x2y) =

o(x2)o(y) = o(x)o(y). Thus, x,x2y,y is another path connecting x and y in Γ(G).

Case 2: p1 = p2 ≥ 2. In this case, the paths x,y and x,1,y are clearly two independent

paths between x and y in Γ(G). Since |G| is divisible by two distinct primes, there exists a

prime q with q 6= p1 such that q divides |G|. By Cauchy’s Theorem, there exists an element

z ∈ G of order q. Since G is abelian and gcd(p1,q) = 1, it follows that o(xz) = o(x)o(z)

and o(yz) = o(y)o(z). Therefore, x,xz,z,yz,y is a path connecting x and y in Γ(G).

Case 3: p1 > 2, p2 = 2 or p1 = 2, p2 > 2. It is clear that x,1,y is a path in Γ(G). Since

G is abelian and gcd(2, p) = 1 for any odd prime p, we have another path x,xy,y in Γ(G).
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Without loss of generality, assume that p1 > 2 and p2 = 2. Then, o(x2) = o(x) and hence,

x,x2y,y is another path connecting x and y in Γ(G).

In each of the above cases, we have shown the existence of three independent paths

connecting x and y in Γ(G). This completes the proof.

Lemma 5.2.3. Let G be a finite abelian group with |G| ≥ 6 such that |G| has at least two

distinct prime divisors. Let x,y ∈ G such that o(x) is a power of a prime and o(y) is di-

visible by at least two distinct prime numbers. Then there exist at least three independent

paths connecting x and y in Γ(G).

Proof. By Proposition 2.2.2, there exist positive integers a and b such that xayb has order

lcm(o(x),o(y)). Thus x,1,y and x,xayb,y are two independent paths in Γ(G). Hence, we

need to find a third path connecting x and y in Γ(G) which is independent from the other

two paths. We divide the remaining proof into two cases.

Case 1: Let o(x) = pk and o(y) = plr where p is a prime, k, l,r are positive integers with

r > 1 and gcd(p,r) = 1. Suppose first that 1≤ k≤ l. Then o(x) divides o(y) and we have

another path x,y connecting x and y in Γ(G). Now suppose that k > l ≥ 1. By Cauchy’s

Theorem, there exists u ∈ G with o(u) = p. Thus x,u,y is another path connecting x and

y in Γ(G).

Case 2: Let o(x) = pk where p is a prime and k is a positive integer, and let o(y) be co-

prime to p. Suppose first that p = 2 and k > 1 or p is odd. Take c to be a positive integer

such that c 6= a and o(xc) = pk. Then xcy 6= xayb and by Proposition 2.2.1, o(xcy) =

lcm(o(xc),o(y)) = lcm(o(x),o(y)). Thus x,xcy,y is a third path connecting x and y in

Γ(G). Now suppose that p = 2 and k = 1. Then y has odd order. Take d to be a positive

integer such that d 6= b and o(yd) = o(y). Then xyd 6= xayb and so, o(xyd) = o(x)o(yd) =

o(x)o(y). Thus x,xyd,y is a third path connecting x and y in Γ(G).

In both cases, we have three independent paths connecting x and y in Γ(G).
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Lemma 5.2.4. Let G be a finite abelian group with |G| ≥ 6 such that |G| has at least two

distinct prime divisors. Let x,y ∈ G such that o(x) and o(y) are each divisible by at least

two distinct prime numbers. Then there exist at least three independent paths connecting

x and y in Γ(G).

Proof. It is clear that x,1,y is a path in Γ(G). By Proposition 2.2.2, there exist pos-

itive integers a and b such that xayb has order lcm(o(x),o(y)). Thus x,xayb,y is an-

other path connecting x and y in Γ(G). By the assumption, lcm(o(x),o(y)) 6= 2. There-

fore, (xayb)−1 6= xayb. Since o((xayb)−1) = o(xayb) = lcm(o(x),o(y)), we have that

x,(xayb)−1,y is a third path connecting x and y in Γ(G). This completes the proof.

Now we give the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. If G is a p-group with |G| ≥ 4, then the result follows by Lemma

5.2.1. Suppose that G is not a p-group. Then |G| ≥ 6 and the result follows by Lemmas

5.2.2, 5.2.3 and 5.2.4.

By Theorem 5.2.1 and the fact that the GO-graph of a finite cyclic group of order 3 is

2-connected, we have the following corollary:

Corollary 5.2.1. Let G be a finite abelian group with |G| ≥ 3. Then Γ(G) is 2-connected.

Since power graphs and GO-graphs of finite cyclic groups are isomorphic by Theo-

rem 4.4.2, we have the following corollary which enhances Theorem 2.1 in the work by

Pourgholi et al. (2015).

Corollary 5.2.2. Let G be a finite cyclic group with |G| ≥ 4. Then P(G) is 3-connected.

Remark 5.2.1. In general, the GO-graph of a finite abelian group of order at least 6 is

not 4-connected. As an example, let G be the cyclic group C6 = 〈x〉. Deleting the vertices

1,x,x5 disconnects Γ(G). Hence, Γ(G) is not 4-connected. Thus 3 is the best upper bound

k for the k-connectedness of GO-graphs of finite abelian groups. By Proposition 4.4.1,
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this upper bound also holds for P(G). We will discuss more about the upper bound of

k-connectedness of Γ(G) in Section 5.6.

5.3 Connectedness of GO-graphs of some finite non-abelian groups

The GO-graph of a finite non-abelian group is not necessarily 3-connected, as shown

in the following example:

Example 5.3.1. Let G be the symmetric group S3 = 〈x,y : x3 = y2 = 1,xy = yx−1〉. Then

Γ(G) is a union of the complete graphs K3 (which is formed by 1,x and x2) and K4 (which

is formed by 1,y,yx and yx2). These two subgraphs of Γ(G) have one common vertex,

namely 1. Hence, deleting the vertex 1 disconnects Γ(G). It follows that Γ(G) is not

2-connected and therefore, not 3-connected. Let H be the symmetric group Sn of degree

n, where n ≥ 3. Since G ≤ H, it follows that Γ(G) ≤ Γ(H). Thus the GO-graph of the

symmetric group of degree n≥ 3 is only 1-connected.

Unlike the symmetric group, there are some finite non-abelian groups which have

k-connected GO-graphs (k > 1), as shown in the following results.

Proposition 5.3.1. Let G be the dihedral group

D(n) = 〈a,b : an = 1 = b2,bab−1 = a−1〉,

where n≥ 4. Then Γ(G) is 3-connected if and only if n is even.

Proof. Suppose that Γ(G) is 3-connected. We prove that n is even by using contradiction.

Assume that n is odd. Note that G = 〈a〉 ∪ {b,ba, . . . ,ban−1}. Since 〈a〉 has order n, it

follows that 1 is the only element in this subgroup which has order dividing 2. Hence, 1

is the cut vertex of Γ(G), which implies that Γ(G) is only 1-connected; a contradiction.

Thus n is even.

35

Univ
ers

ity
 of

 M
ala

ya



Conversely, suppose that n is even. Let H be the subgroup 〈a〉 of G. Since H is

abelian, it forms a subgraph Γ(H) of Γ(G) which is 3-connected. Note that the elements

a and a−1 both have order n, which is even. We consider three distinct cases:

Case 1: Let x,y∈H. Since the subgraph Γ(H) is 3-connected, there are three independent

paths connecting them in Γ(G).

Case 2: Let x ∈H and y ∈ {bai : 0≤ i≤ n−1}. It is clear that x,1,y is a path connecting

x and y in Γ(G). If x 6= a and x 6= a−1, then x,a,y and x,a−1,y are two other independent

paths connecting x and y in Γ(G). Assume that x = a or x = a−1. Without loss of general-

ity, suppose that x = a. Then x,y and x,a−1,y are two other independent paths connecting

x and y in Γ(G).

Case 3: Let x,y ∈ {bai : 0 ≤ i ≤ n− 1}. It is clear that x,1,y is a path in Γ(G). Since

x and y both have order 2 in G, x,y is also a path in Γ(G). It follows by the assumption

n ≥ 4 that there is an element z ∈ {bai} \ {x,y}. Therefore, x,z,y is a third independent

path connecting x and y in Γ(G).

By all three cases above, Γ(G) is 3-connected.

Proposition 5.3.2. Let G be the alternating group An. If either n = 3 or none of n,n−

1,n−2, n
2 and n−1

2 is a prime, then Γ(G) is 2-connected .

Proof. Refer to Example 4.4.1.

5.4 A number-theoretic inequality

In this section, we prove the following number-theoretic inequality:

Theorem 5.4.1. For any integer n≥ 2, the inequality τ(n)< φ(n)+3 holds.

The inequality in Theorem 5.4.1 plays a key role in the proof of the Hamiltonicity of

the GO-graphs of finite abelian groups, which will be presented in the next section. In
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order to prove Theorem 5.4.1, we need some preliminary results. The first is a well-known

result in number theory that is given in Proposition 5.4.1. The notations φ(n) and τ(n)

are used to denote the Euler totient function of n and the number of positive divisors of n,

respectively. For a proof of the following result, the reader may refer to Burton (2011).

Proposition 5.4.1. If m and n are relatively prime positive integers, then τ(mn)= τ(m)τ(n)

and φ(mn) = φ(m)φ(n). For a prime p and positive integer k, τ(pk) = k+1 and φ(pk) =

pk−1(p−1).

We now consider relations between τ(n) and φ(n) in several cases.

Lemma 5.4.1. Let p be a prime and let k be a positive integer. Then the following hold:

(a) If k ∈ {1,2}, then τ(2k)≤ φ(2k)+1.

(b) If k ≥ 3, then τ(2k)≤ φ(2k).

(c) If p is odd, then τ(pk)≤ φ(pk).

Proof. It can be checked by hand that if k ∈ {1,2}, then τ(2k)≤ φ(2k)+1. Now let p be

any prime and suppose that τ(pt) = t+1≤ pt−1(p−1) = φ(pt) for some positive integer

t. Then

τ(pt+1) = (t +1)+1

≤ pt−1(p−1)+1

≤ pt−1(p−1)+ pt−1(p−1)2

= φ(pt+1).
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Thus, for a given prime p, if we can show that τ(pt) ≤ φ(pt), it follows by induction on

the exponent that τ(pk)≤ φ(pk) for all k > t. The proof follows since

τ(23) = 4 = φ(23)

and for any prime p≥ 3,

τ(p1) = 2 = (3−1)≤ (p−1) = φ(p1).

Lemma 5.4.2. Let p be an odd prime and let t and k be positive integers. Then the

following hold:

(a) If k ≥ 3, then τ(2k pt)≤ φ(2k pt).

(b) If k ∈ {1,2}, then τ(2k ·3) = φ(2k ·3)+2.

(c) If t ≥ 2, then τ(2k ·3t)≤ φ(2k ·3t).

(d) If p≥ 5, then τ(2k pt)≤ φ(2k pt).

Proof. If k ≥ 3, then the first assertion follows from Lemma 5.4.1 and Proposition 5.4.1

since τ(2k pt) = τ(2k)τ(pt)≤ φ(2k)φ(pt) = φ(2k pt). So suppose that k ∈ {1,2}. It can be

checked by hand that τ(2k ·3) = φ(2k ·3)+2. Now let p≥ 3 and suppose that τ(2k pm) =

(k+1)(m+1)≤ 2k−1 pm−1(p−1) = φ(2k pm) for some positive integer m. Then
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τ(2k pm+1) = (k+1)((m+1)+1)

= (k+1)(m+1)+(k+1)

≤ 2k−1 pm−1(p−1)+3

< 2k−1 pm−1(p−1)+2k−1 pm−1(p−1)2

= 2k−1 pm(p−1)

= φ(2k pm+1).

Thus, for a fixed odd prime p and m ∈ {1,2}, if we can show that τ(2k pm) = (k+1)(m+

1)≤ 2k−1 pm−1(p−1) = φ(2k pm), it follows by induction on exponent of p that τ(2k pt) =

(k+1)(t +1)≤ 2k−1 pt−1(p−1) = φ(2k pt) for all t > m. The proof follows since

τ(2 ·32) = 6 = φ(2 ·32) and τ(22 ·32) = 9≤ 12 = φ(22 ·32)

and for any prime p≥ 5,

τ(2 · p1) = 4 = (5−1)≤ (p−1) = φ(2 · p1)

and

τ(22 · p) = 6≤ 2(5−1)≤ 2(p−1) = φ(22 · p).
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We are now ready for the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. If n has only one prime divisor, then the theorem follows from

Lemma 5.4.1. If n has only odd prime divisors, then the theorem follows from Lemma

5.4.1 and Proposition 5.4.1. Now suppose that n is even and has exactly two distinct

prime divisors. Then we can write n = 2k pt for some odd prime p and positive integers

t and k. In this case, the theorem follows from Lemma 5.4.2. Lastly, suppose that the n

is even and has three or more distinct prime divisors. Then we can write n = 2k pk1
1 . . . pkr

r

where r ≥ 2 and p1 < · · · < pr are distinct odd primes and ki is a positive integer for

each 1≤ i≤ r. Since p1 and p2 are odd primes with p1 < p2, we know that p2 ≥ 5. Thus

τ(2k pk2
2 )≤ φ(2k pk2

2 ) by Lemma 5.4.2. Consequently, τ(n) = τ(2k pk2
2 ) ·τ(pk1

1 pk3
3 . . . pkr

r )≤

φ(2k pk2
2 ) ·φ(pk1

1 pk3
3 . . . pkr

r ) = φ(n).

5.5 Hamiltonicity of GO-graphs of finite abelian groups

In Section 5.2, we proved that the GO-graph of a finite abelian group is 3-connected.

It is commonly known in graph theory that a Hamiltonian graph is 2-connected. This

led us to ask whether the GO-graph of a finite abelian group is also Hamiltonian. In this

section, we show that the answer to this question is in the affirmative. We first prove the

following lemma.

Lemma 5.5.1. Let G be a finite abelian group with |G| ≥ 6 and let m be the largest

element order in G. Then o(g)|m for any g ∈ G.

Proof. Since G is abelian, it follows by Theorem 2.2.1 that G ∼= Cn1 × ·· ·×Cnr , where

n j|ni for j > i, nr ≥ 2 and n1 . . .nr = |G|. Hence, n1 is divisible by n j for j ≥ 2. We have

n1 ≥ 6 since |G| ≥ 6. We also note that for any x,y ∈ G with xy 6= 1,

o(xy) =
o(x)o(y)

gcd(o(x),o(y))
.
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Then since n j|ni for j > i, it follows that n1 = m and the order of g ∈ G divides n1.

Recall that a spanning path of a graph G is a path which passes through every vertex

of G . We are now ready for the second main result in this chapter, the proof of which

is motivated by a result on the Hamiltonicity of undirected power graphs of finite cyclic

groups in Chakrabarty et al. (2009, Theorem 4.13).

Theorem 5.5.1. Let G be a finite abelian group of order n≥ 3. Then Γ(G) is Hamiltonian.

Proof. If n is a power of a prime p, then G is a p-group. By Corollay 4.3.2, Γ(G) is

Hamiltonian. Now suppose that n = pim, where m > 1, i≥ 1 and gcd(p,m) = 1. Hence,

n ≥ 6. Let n1 be the largest element order in G. By Lemma 5.5.1, the elements of order

n1 are adjacent to every other element of G in Γ(G). Let U be the set of elements of order

n1 in G and let C = U ∪{1}. It is clear that all the elements in C are adjacent to each

other in Γ(G).

Let d be a non-trivial divisor of n1 (that is, d 6= 1 and n1) and let Ud be the set of

elements of order d in G. Since the elements of Ud have the same order, they are adjacent

to each other in Γ(G) and so, form a clique in Γ(G). It is clear that all the vertices of this

clique are adjacent to every vertex of C . Now we have s such cliques in Γ(G), where s is

the number of non-trivial divisors of n1. Let C1, . . . ,Cs be these cliques. As mentioned in

the previous paragraph, every element x ∈G\C is adjacent to all elements of C in Γ(G).

Hence, x lies in one of the cliques Ci. It is clear that s = τ(n1)−2 and |C | ≥ φ(n1)+1.

By Theorem 5.4.1, we have that s < |C |.

Since Ci (i = 1, . . . ,s) is a clique, it has a spanning path, where the end vertices are

adjacent to every vertex of C . Thus a Hamiltonian cycle of Γ(G) can be constructed as

follows: Start from a vertex of C , then move to one of the cliques Ci. If |V (Ci)| > 1,

then traverse its spanning path and return to another vertex c of C . Otherwise, move

to the single vertex of Ci and then return to another vertex c of C . From this vertex
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c, move to traverse the spanning path of another clique C j (where j 6= i) and return to an

untraversed vertex of C . This process is repeated until all the Ci have been traversed. This

process of traversing the cliques will terminate at a vertex of C as s < |C |. Therefore a

Hamiltonian cycle is formed by traversing the remaining untraversed vertices (if any) of

C and returning to the starting vertex of C .

Remark 5.5.1. From the proof of the above result, it can be seen that for a finite abelian

group G of order n≥ 6, where n is a composite number, the GO-graph Γ(G) is (φ(n1)+

1)-connected, where n1 is the largest element order of G. In particular, Γ(G) is 3-

connected. If |G| = p, where p is a prime, then Γ(G) is complete and hence, (|G|− 1)-

connected. In particular, Γ(G) is 3-connected when |G| ≥ 5. This observation reinforces

the assertion in Theorem 5.2.1.

Remark 5.5.2. For a finite cyclic group G with |G| ≥ 4, we have by Theorem 4.4.2

and Remark 5.5.1 that P(G) ∼= Γ(G) is 3-connected. In particular, when |G| = n ≥ 6 is

composite, then P(G) is (φ(n)+1)-connected.

The following corollary is a straightforward consequence of Theorem 5.5.1.

Corollary 5.5.1. Let G be a finite cyclic group of order n≥ 3. Then Γ(G) is Hamiltonian.

By Corollary 5.5.1 and Theorem 4.4.2, we obtain the following corollary; thus giving

an alternative proof of Theorem 4.13 in Chakrabarty et al. (2009).

Corollary 5.5.2. Let G be a finite cyclic group of order n≥ 3. Then P(G) is Hamiltonian.

For a finite abelian group G, let nk(G) denote the number of elements of order k in

G where k is a divisor of |G|. We say that two finite groups G1 and G2 have the same

sequence of orders if |G1|= |G2| and nk(G1) = nk(G2) for each positive integer k which

divides |G|. It is known by a result of McHaffey (1965) that if the sequence of orders of
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two finite abelian groups are the same, then the groups are isomorphic. In other words,

a finite abelian group can be determined uniquely by the orders of its elements. We thus

have the following:

Theorem 5.5.2. Let G1 and G2 be any two finite abelian groups. Then G1 and G2 are

isomorphic if and only if Γ(G1) and Γ(G2) are isomorphic.

In general, the GO-graph of a finite group is not necessarily Hamiltonian. This is

illustrated in the example below.

Example 5.5.1. Let G be the dihedral group D3 = 〈a,b : a3 = b2 = 1,ab = ba−1〉. The

elements in the set {a,a2} have order 3, whereas all the elements in the set {b,ab,a2b}

have order 2. Thus any cycle which contains all vertices of the graph Γ(G) must traverse

the vertex 1 at least twice. Therefore Γ(G) is not Hamiltonian.

Remark 5.5.3. Theorem 5.5.2 does not hold for finite groups in general. We provide two

examples as follows:

1. Let G1 =C2×Q8 and G2 = 〈x,y : x4 = 1 = y4,y−1xy = x3〉. Then G1 and G2 each

have 1 identity element, 3 elements of order 2 and 12 elements of order 4. Thus

Γ(G1)∼= Γ(G2) although G1 � G2.

2. Let G1 = 〈x,y,z : x4 = 1 = y2 = z2,xy = yx,xz = zx,y−1zy = zx2〉 and G2 = 〈x,y,z :

x4 = 1 = y2 = z2,xz = zx,yz = zy,y−1xy = xz〉. Then G1 and G2 each have 1 identity

element, 7 elements of order 2 and 8 elements of order 4. Thus Γ(G1) ∼= Γ(G2)

although G1 � G2.
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5.6 Connectivity, edge-connectivity and minimum degree of GO-graphs of finite

groups

In Remark 5.5.1, it was stated that for a finite abelian group G with largest element

order n, its GO-graph Γ(G) is (φ(n)+1)-connected. Hence, it is of interest to determine

an upper bound of k such that Γ(G) is k-connected.

In the work by Whitney (1932), it was shown that the connectivity, the edge-connectivity

and the minimum degree of a finite simple graph G satisfy the inequality κ(G )≤ κ ′(G )≤

δ (G ). Besides, it was shown by Plesnı́k (1975) that any graph G with diameter at most 2

satisfies the equality κ ′(G ) = δ (G ). Hence, by Proposition 4.2.3, we have the following

result:

Proposition 5.6.1. Let G be a finite group. Then κ ′(Γ(G)) = δ (Γ(G)).

By Proposition 5.6.1, we may focus our attention on the minimum degree of Γ(G) to

determine an upper bound k of the k-connectedness of Γ(G). For the following result, the

reader may refer to West (1996).

Lemma 5.6.1. If a graph G is 3-regular, then κ(G ) = κ ′(G ).

By Theorem 4.3.1, the GO-graph Γ(G) of a p-group G is complete and so, Γ(G) is

3-regular if |G| ≥ 4. Therefore, we have the following corollary.

Corollary 5.6.1. Let G be a finite p-group of order |G| ≥ 4. Then

κ(Γ(G)) = κ
′(Γ(G)) = δ (Γ(G)).
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The following result provides a necessary and sufficient condition for δ (Γ(G)) to be

|G|−1.

Proposition 5.6.2. Let G be a finite group. Then δ (Γ(G)) = |G|−1 if and only if G is a

p-group.

Proof. This follows by Theorem 4.3.1.

We now give some results on the minimum degree of GO-graphs of some finite abelian

groups of composite order. In the remainder of this section, let C be as described in the

proof of Theorem 5.5.1. That is, C =U ∪{1}, where U is the set consisting of elements

with the largest element order in the group.

Theorem 5.6.1. Let G be a finite abelian group of order pik, where k > 1 and gcd(p,k) =

1. Then δ (Γ(G)) = |C |+δ (Γ(G)\C ).

Proof. By Lemma 5.5.1, it is clear that each vertex u of Γ(G) \C is adjacent to every

vertex of C . Moreover, each vertex c of C is adjacent to every other vertex of Γ(G).

Hence, deg(u) ≥ |C | and deg(c) = |G| − 1. Clearly, δ (Γ(G)) ≥ |C |. Let v be a vertex

of Γ(G) such that deg(v)= δ (Γ(G)). Then v must be a vertex in the subgraph Γ(G)\C .

Note that v has degree δ (Γ(G) \C ) in the subgraph Γ(G) \C . Since v is adjacent to all

vertices of C in Γ(G), therefore δ (Γ(G)) = deg(v) = δ (Γ(G)\C )+ |C |.

As a consequence of Theorem 5.6.1, we have the following:

Corollary 5.6.2. Let G be a finite cyclic group of order n, where n is a composite number.

Then δ (Γ(G)) = φ(n)+1+δ (Γ(G)\C ).

By Theorem 4.4.2, we know that P(G)∼= Γ(G) when G is a finite cyclic group. There-

fore we have the following immediate consequence of Corollary 5.6.2, thus giving an

alternative proof of Theorem 4.4(i) in the paper by Panda and Krishna (2018).

45

Univ
ers

ity
 of

 M
ala

ya



Corollary 5.6.3. Let G be a finite cyclic group of order n, where n is composite. Then

δ (P(G)) = φ(n)+1+δ (P(G)\C ).

Lemma 5.6.2. Let G = Cpq = 〈x|xpq = 1〉, where p and q are distinct primes. Then

Γ(G)\C is disconnected. Furthermore, Γ(G)\C has two disjoint cliques.

Proof. Since G has order pq, it follows that C = {1}∪{x ∈G : o(x) = pq}. By Cauchy’s

Theorem, G has elements of order p and elements of order q. Hence, G\C is the union of

two disjoint subsets, namely {y ∈ G : o(y) = p} and {z ∈ G : o(z) = q}. Then let y,z ∈ G

such that o(y) = p and o(z) = q. Since o(y) - o(z) and o(z) - o(y), the vertices y and z are

not adjacent in Γ(G). Thus the subgraph Γ(G)\C is disconnected. The last assertion is

clear.

Proposition 5.6.3. Let G = Cpq, where p and q are distinct primes and p > q. Then

δ (Γ(G)\C ) = q−2 = φ(q)−1.

Proof. By the proof of Lemma 5.6.2, Γ(G) \C = A∪B, where A = {x ∈ G : o(x) = p}

and B = {y ∈ G : o(y) = q} are two disjoint cliques. Since |A|= p−1 > q−1 = |B|, we

have δ (Γ(G)\C ) = q−2 = φ(q)−1.

By combining Corollary 5.6.2 and Proposition 5.6.3, we have

Corollary 5.6.4. Let G = Cpq, where p and q are distinct primes and p > q. Then

δ (Γ(G)) = φ(pq)+φ(q) = p(q−1).

We end this section by providing a result on the minimum degree of the GO-graph of

the abelian group Cp×Cp×Cq, where p > q.

Proposition 5.6.4. Let G be the group Cp×Cp×Cq, where p and q are two distinct odd

primes and p > q. Then δ (Γ(G)) = p2(q−1).
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Proof. By assumption, pq is the largest element order of G. Let C = {x ∈ G : o(x) =

pq}∪{1}. Note that every vertex of C is adjacent to all other vertices of Γ(G) and hence,

has degree |G| − 1. It follows that any vertex of minimum degree in Γ(G) has to be in

Γ(G)\C . Note that Γ(G)\C = A∪B, where A = {y : o(y) = p} and B = {z : o(z) = q}.

By computation, we have |A|= |Cp×Cp|−1 = p2−1 and |B|= |Cq|−1 = q−1. Since

p > q, it is clear that any vertex of minimum degree in Γ(G) must be in B. Thus

δ (Γ(G)) = (|B|−1)+ |C |

= (|B|−1)+(|G|− |A|− |B|)

= |G|− |A|−1

= p2q− p2

= p2(q−1).

5.7 Dominating sets of GO-graphs of finite groups

We first give the definitions of dominating set and domination number of a graph G as in

West (1996).

Definition 5.7.1. Let G be a graph. A set S ⊆ V (G ) is a dominating set if every vertex

g ∈ V (G ) not in S has a neighbour in S. The domination number γ(G ) is the minimum

size of a dominating set in G .

Example 5.7.1. The complete graph Kn with n vertices has domination number γ(Kn)= 1.

The following result is clear.

Proposition 5.7.1. Let G be a finite group. Then γ(Γ(G)) = 1.
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Proof. The identity element 1 is adjacent to all other elements of G in Γ(G). Hence, the

vertex 1 forms a dominating set of Γ(G). Thus γ(Γ(G)) = 1.

Since the GO-graph of a finite group has the set {1} as a dominating set, it seems

natural to ask about dominating sets of the punctured generalised order graph Γ∗(G) of

G, that is, the subgraph of Γ(G) obtained by deleting the vertex 1.

Theorem 5.7.1. Let G be a finite abelian group of order |G| ≥ 3. Then γ(Γ∗(G)) = 1.

Proof. If G is a p-group, then Γ(G) is complete. It follows that Γ∗(G) is also complete

and so, γ(Γ∗(G)) = 1. Now we assume that G is not a p-group. Then |G| ≥ 6. Let x ∈ G

such that o(x) is the largest element order of G. By Lemma 5.5.1, for any g∈G, o(g)|o(x).

It follows that g is adjacent to x in Γ∗(G) for any g ∈ G. Thus {x} is a dominating set of

Γ∗(G) and hence, γ(Γ∗(G)) = 1.

The following corollary is straightforward.

Corollary 5.7.1. Let G be a finite cyclic group of order |G| ≥ 3. Then γ(Γ∗(G)) = 1.

We have the following result which relates domination number and connectedness of

a graph.

Theorem 5.7.2. Let G be a finite group of order |G| ≥ 3. If γ(Γ∗(G)) = 1, then Γ(G) is

2-connected.

Proof. If |G|= 3, then G is a cyclic group and Γ(G) is clearly 2-connected. Now suppose

that |G| > 3. In the graph Γ(G), the vertex 1 is adjacent to all other vertices. Since

γ(Γ∗(G)) = 1, there exists g ∈G\{1} such that {g} is a dominating set of Γ∗(G). Hence,

all vertices of Γ∗(G) are adjacent to g. Let x,y be two distinct vertices of Γ(G). We

consider 4 distinct cases:

Case 1: Let x = 1 and y = g. Then there are two independent paths connecting x and y in

the graph Γ(G), these are x,y and x,a,y, where a ∈ G\{1,g}.
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Case 2: Let x = 1 and y ∈ G \ {1,g}. Then x,y and x,g,y are two independent paths in

Γ(G) which connect x and y.

Case 3: Let x = g and y ∈ G \ {1,g}. Then x,y and x,1,y are two independent paths in

Γ(G) which connect x and y.

Case 4: Let x,y ∈G\{1,g}. Then x,1,y and x,g,y are two independent paths connecting

x and y in Γ(G).

By Cases 1 to 4, the assertion follows.

Example 5.7.2. We have shown in Example 5.3.1 that the GO-graph of Sn (n≥ 3) is not

2-connected. Therefore, γ(Γ∗(Sn))> 1 for n≥ 3.

We now give some results on domination numbers of punctured GO-graphs of some

finite non-abelian groups.

Proposition 5.7.2. Let G be the dihedral group Dn = 〈a,b : an = 1 = b2,ab = ba−1〉.

Then

(a) n is even if and only if γ(Γ∗(G)) = 1;

(b) n is odd if and only if γ(Γ∗(G)) = 2.

Proof. (a) Assume that n is even. Then the element a∈G generates the normal subgroup

〈a〉 of even order. Let g be a non-identity element of 〈a〉\{a}. Since the order of an

element of a finite group divides the order of that group, we have o(g)|o(a). Hence,

g is adjacent to a in Γ∗(G). All elements of the set {bai : 0≤ i≤ n−1} have order

2 and so, bai is also adjacent to a in Γ∗(G). Thus {a} is a dominating set of Γ∗(G)

and hence, γ(Γ∗(G)) = 1.

Conversely, suppose that γ(Γ∗(G)) = 1. Assume to the contrary that n is odd. Then

none of the elements of 〈a〉 would be adjacent to any of the elements in the set

{bai : 0≤ i≤ n−1} in Γ∗(G). Therefore, any dominating set of Γ∗(G) must contain
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at least one element of the form ai and at least one element of the form ba j, which

is a contradiction. Thus n is even.

(b) Suppose that n is odd. It is clear then that none of the elements of 〈a〉 is adjacent

to any of the elements in the set {bai : 0 ≤ i ≤ n− 1} in Γ∗(G). Therefore, any

dominating set of Γ∗(G) must contain at least one element of the form ai and at

least one element of the form ba j. Thus γ(Γ∗(G)) = 2.

Conversely, assume that γ(Γ∗(G)) = 2. If n is even, then it follows by part (a) that

γ(Γ∗(G)) = 1; a contradiction. Thus n must be odd.

We have a similar result for dicyclic groups.

Proposition 5.7.3. Let G be the dicyclic group Qn = 〈a,b : a2n = 1,an = b2,ab = ba−1〉,

for n≥ 2. Then

(a) n is even if and only if γ(Γ∗(G)) = 1;

(b) n is odd if and only if γ(Γ∗(G)) = 2.

Proof. (a) Assume that n = 2k for some positive integer k. Then the element a ∈ G

has order 2n = 4k and so, generates the normal subgroup 〈a〉 of even order. It is

clear that g ∈ 〈a〉 \ {a} is adjacent to a in Γ∗(G). All elements of the set {bai : 0≤

i ≤ n− 1} have order 4 and so, bai is also adjacent to a in Γ∗(G). Thus {a} is a

dominating set of Γ∗(G) and γ(Γ∗(G)) = 1.

Conversely, suppose that γ(Γ∗(G)) = 1. Assume that n is odd. Then none of the

elements of 〈a〉 would be adjacent to any of the elements in the set {bai : 0 ≤ i ≤

n− 1} in Γ∗(G). Therefore, any dominating set of Γ∗(G) must contain at least

one element of the form ai and at least one element of the form ba j, which is a

contradiction. Thus n is even.
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(b) Suppose that n is odd. Then none of the elements of 〈a〉 would be adjacent to any of

the elements in the set {bai : 0≤ i≤ n−1} in Γ∗(G). Therefore, any dominating set

of Γ∗(G) must contain at least one element of the form ai and at least one element

of the form ba j. Thus γ(Γ∗(G)) = 2.

Conversely, assume that γ(Γ∗(G)) = 2. If n is even, then it follows by part (a) that

γ(Γ∗(G)) = 1; a contradiction. Thus n must be odd.

In general, it is not an easy task to find a dominating set of the punctured GO-graph

of a finite non-abelian group. However, we are able to determine the size of a minimal

dominating set as follows:

Theorem 5.7.3. Let G be a finite group of order pk1
1 . . . pkr

r , where p1, . . . , pr are distinct

prime numbers and k1, . . . ,kr are positive integers. Then Γ∗(G) has a dominating set of

size r which is minimal with respect to set inclusion.

Proof. By Cauchy’s Theorem, for each prime pi, there is an element xi ∈ G such that

o(xi) = pi. Let D = {x1, . . . ,xr} and let y ∈ G \ {1} such that y 6∈ D. Since o(y) divides

|G|, it follows that o(y) is divisible by at least one of the pi’s. Hence, y is adjacent to

some xi ∈ D. Thus D is a dominating set of Γ∗(G). We prove the minimality of D by

contradiction. Assume that D′ ( D is also a dominating set of Γ∗(G). Then there exists

x j ∈ D \D′ which is adjacent to some xk ∈ D′ in Γ∗(G). But this implies that p j|pk or

pk|p j; a contradiction. Therefore D is minimal with respect to set inclusion.

The following corollary is a straightforward consequence of Theorem 5.7.3.

Corollary 5.7.2. Let G be a finite group of order pk1
1 . . . pkr

r , where p1, . . . , pr are distinct

prime numbers and k1, . . . ,kr are positive integers. Then γ(Γ∗(G))≤ r.
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CHAPTER 6 CONCLUSION

6.1 Summary

In this dissertation, we associate different types of graphs to a finite group with the

aim of finding relationships between groups and graphs, and at advancing knowledge of

one to the other.

Given a finite group G, there are three main graphs associated with G that are consid-

ered in this dissertation, namely, the conjugate graph ∇(G), the order graph ∆(G) and the

generalised order graph Γ(G). These graphs satisfy the subgraph relation ∇(G)≤ ∆(G)≤

Γ(G).

We begin by investigating properties of the conjugate graphs of finite groups. Among

others, we show that ∇(G) is perfect when G is a finite group. For abelian groups, the

conjugate graphs are just empty graphs. In the non-abelian case, we determine the con-

jugate graphs of the dihedral and generalised quaternion groups, and also obtain some

properties of the conjugate graph of the symmetric group Sn. As conjugate elements of

a finite group have the same order, our investigation on conjugate graphs led us to study

order graphs of finite groups. We show that order graphs of finite groups are also perfect.

We also show that if G is a finite group of even order, then there are at least two complete

components Kv in ∆(G), where v is odd. On the other hand, if G has odd order, then

every complete component of ∆(G) other than K1 has an even number of vertices. We

also obtain the structures of order graphs for cyclic groups and various p-groups.

The main focus in this dissertation is on the generalised order graph (GO-graph) of a

finite group. Given a finite group G, we prove that the GO-graph Γ(G) is Eulerian if and

only if |G| is odd, and that Γ(G) is complete if and only if G is a p-group. It is also shown

that the GO-graph and the power graph of a finite cyclic group are isomorphic. Moreover,
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just like the conjugate and order graphs, we show that Γ(G) is a perfect graph when G is

a finite group. Among the main results obtained on properties of GO-graphs is that the

GO-graph of a finite abelian group of order at least 4 is 3-connected. Another main result

is that the GO-graph of a finite abelian group of order at least 3 is Hamiltonian. In order

to prove this result, we first obtained a number-theoretic inequality involving the Euler

totient function and the number of positive divisors of an integer.

6.2 Some open problems

We end this chapter with some open problems related to the work in this dissertation.

1. Determine the structure of the conjugate graph of the alternating group An, where

n≥ 4.

2. Let G be a group of order n. Is the clique number of ∆(G) the largest when G is the

cyclic group Cn?

3. Let G be a group of order n. Is the clique number of Γ(G) the largest when G is the

cyclic group Cn?

4. Let G be a finite group. Determine an upper bound k for the k-connectedness of

Γ(G).

5. Determine the finite groups which have planar GO-graphs.
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