

AUTOMATED INTRUSION PREVENTION MECHANISM IN

ENHANCING NETWORK SECURITY

HE XIAO DONG

FACULTY OF COMPUTER SCIENCE

UNIVERSITY OF MALAY

KUALA LUMPUR

MARCH 2008 Univ
ers

ity
 of

 M
ala

ya

 II

AUTOMATED INTRUSION PREVENTION MECHANISM IN

ENHANCING NETWORK SECURITY

HE XIAO DONG

DISSERTATION SUBMITTED IN FULFILLMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE

UNIVERSITY OF MALAY

KUALA LUMPUR

MARCH 2008

Univ
ers

ity
 of

 M
ala

ya

 I

ABSTRACT

Firewall, intrusion detection systems (IDS), and intrusion prevention system (IPS) are

important tools used to secure networks against hackers' attacks. Ironically, these malicious

attacks have brought more adverse impacts on the networks than before. At present, many

existing IDS AND IPS work independently without the exchange of information. Hence, this

deficit will lower the capability of these tools to protect increasingly vulnerable networks.

In this thesis, an automated intrusion prevention mechanism (AIPM) which comprises the

functionalities of IDS, IPS, and network devices is proposed to enhance network security.

AIPM is a mechanism that includes automated intrusion prevention function and automated

analysis of intrusion messages function. Additionally, the ability of automatically detecting and

analyzing network traffic allows AIPM to detect malicious attacks almost in real time.

Likewise, the ability of automatically analyzing intrusion messages and network configuration

enables AIPM to build a topological view and locate the source of a malicious attack. Results of

case studies show that AIPM imposes lower overhead than conventional method, which queries

all pre-defined routers to block every interface irrespective of where the attack is launched. On

the contrary, AIPM identifies the interface that is nearest to the source of the attack and sends a

single query to the associated router to block only that particular interface, only 1 connection

per attack is needed. AIPM can block malicious traffic in 2-5 seconds after an attack start

because less pre-defined information is needed, the conventional method, on the other hand,

needs about 5-10 seconds to finish block processing as more pre-defined information is needed.

In summary, AIPM which incorporates the functionalities of IDS AND IPS offers network

protection against potential malicious acts without incurring additional overheads as compare

to the conventional method.

Univ
ers

ity
 of

 M
ala

ya

 II

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my supervisor, Associate Professor Dr. Ling Teck

Chaw, for his enthusiasm, inspirations and guidance throughout my studies and research. This

entire research project would not be possible without his continuous support, guidance and

advice, and I am grateful for his confidence in me. He has critically challenged my old mode of

thinking and provided structure for the development of new ones. He has been crucial to my

intellectual development and I have good fortune to work under his supervision.

Second, I am grateful to everyone who has been working hard in the Network Research Lab.

All of them have helped me in one way or another during the course of the research. Especially

Mr. Lim Wei Chiang, I got many new ideas and suggestions from him when we discussed

together.

Finally, I would like to thank my parents; I cannot finish the thesis without their support and

love. Thanks.

Univ
ers

ity
 of

 M
ala

ya

 III

Table of Content

ABSTRACT .. I

ACKNOWLEDGEMENT .. II

TABLE OF CONTENT .. III

LIST OF FIGURES .. VII

LIST OF TABLES .. VIII

ABBREVIATIONS...XI

CHAPTER 1 INTRODUCTION... 1

1.1 MOTIVATIONS .. 2

1.2 OBJECTIVES OF THE RESEARCH ... 3

1.3 SCOPE .. 3

1.4 METHODOLOGY ... 4

1.5 THESIS ORGANIZATIONS .. 5

CHAPTER 2 LITERATURE REVIEW .. 7

2.1 INTRUSION DETECTION SYSTEM .. 7

2.2 INTRUSION DETECTION TECHNIQUES ... 9

2.2.1 Anomaly Detection .. 10

2.2.1.1 Genetic Algorithms in Anomaly Detection .. 12

2.2.1.2 Fuzzy Logic in Anomaly Detection ... 14

2.2.1.3 Predictive Pattern Generation in Anomaly Detection 18

2.2.1.4 Comparison of Anomaly Detection Approaches .. 19

2.2.2 Misuse Detection ... 20

2.2.2.1 Pattern/String Matching in Misuse Detection .. 20

Univ
ers

ity
 of

 M
ala

ya

 IV

2.2.2.2 State Transition in Misuse Detection ... 22

2.2.2.3 Model-Based Intrusion Detection in Misuse Detection 24

2.2.2.4 Comparison of Misuse Detection Approaches ... 25

2.3 ISSUES AND CHALLENGES IN CURRENT INTRUSION DETECTION 26

2.4 INTRUDER PREVENTION SYSTEM ... 27

2.5 ISSUES AND CHALLENGES IN CURRENT IPS ... 29

2.6 EXISTING OPEN SOURCE POPULAR IDS AND IPS ... 29

2.6.1 Snort .. 29

2.6.2 SnortSam ... 31

2.6.3 Snort-Inline .. 33

2.7 COMPARISON OF EXISTING IDS AND IPS ... 35

2.8 PROBLEMS ... 36

2.9 SUMMARY.. 37

CHAPTER 3 ANALYSIS AND DESIGN .. 38

3.1 ANALYSIS OF AIPM .. 38

3.2 DESIGN OF AIPM... 40

3.2.1 Key Components of AIPM .. 43

3.3 AIPM .. 50

3.3.1 Intrusion IP Is Private IP ... 54

3.3.2 Intrusion IP Is Inside Public IP .. 54

3.3.3 Intrusion IP Is Outside Public IP ... 55

3.4 SUMMARY.. 55

CHAPTER 4 SYSTEM DEVELOPMENT AND TESTING ... 56

4.1 DEVELOPMENT ENVIRONMENT .. 56

4.2 UNIT TEST ... 57

4.2.1 Unit Test 1 - Initial Information Processing .. 57

Univ
ers

ity
 of

 M
ala

ya

 V

4.2.1.1 CISCONATACLInit, ciscoconfparsefile and ciscoconfparseline 57

4.2.1.2 CISCONATACLParse ... 60

4.2.2 Unit Test 2 - Running-Config File Processing .. 61

4.2.2.1 CISCONATACLRunningDownload .. 62

4.2.2.2 CISCONATACLRunningParse and CISCONATACLRunningParseline 63

4.2.3 Unit Test 3 - Routing-Table File Processing ... 64

4.2.3.1 CISCONATACLRouteDownload .. 64

4.2.3.2 CISCONATACLRouteparse and CISCONATACLRouteparseline 65

4.2.4 Unit Test 4 - NAT/PAT Pool File Processing ... 66

4.2.4.1 CISCONATACLPoolDownload .. 67

4.2.4.2 CISCONATACLPoolParse and CISCONATACLPoolParseLine 68

4.2.5 Unit Test 5 - “Add ACL entry processing” ... 69

4.2.5.1 CISCONATACLCreateACL .. 69

4.2.5.2 CISCONATACLRunningModify .. 71

4.2.6 Unit Test 6 - Connection Processing ... 72

4.2.7 Unit Test 7 - ACL Checking.. 73

4.3 INTEGRATION TESTING .. 74

4.3.1 Integration Testing Case 1 - IP of Intruder Is Private IP ... 76

4.3.1.1 Situation One - No ACL Exists In Target Interface ... 76

4.3.1.2 Situation Two - An ACL Exists In Target Interface .. 78

4.3.2 Integration Testing Case 2--IP of Intruder Is Outside Public IP 80

4.3.2.1 Situation One-- No ACL Exists In Target Interface ... 81

4.3.2.2 Situation Two-- ACL Exist In Target Interface.. 82

4.3.3 Integration Testing Case Three--IP of Intruder Is Inside Public IP 83

4.3.3.1 Situation One - No ACL Exist In Target Interface ... 84

4.3.3.2 Situation Two - ACL Exist In Target Interface .. 85

Univ
ers

ity
 of

 M
ala

ya

 VI

4.4 RESPONDING TIME OF INTEGRATION TEST .. 86

4.5 CHAPTER SUMMARY .. 87

CHAPTER 5 CASE STUDY ... 88

5.1 CASE STUDY 1 ... 88

5.1.1 Case Study 1.1—Attack From Inside .. 89

5.1.2 Case Study 1.2—Attack From Outside ... 90

5.2 CASE STUDY 2 ... 92

5.2.1 Case Study 2.1—Attack From Inside To Inside .. 93

5.2.2 Case Study 2.2—Attack From Inside To Outside ... 94

5.2.3 Case Study 2.3—Attack from Outside to Inside ... 95

5.3 COMPARISON BETWEEN EXISTING IDS AND IPS AND AIPM ... 97

5.3.1 Advantages of AIPM ... 97

5.3.2 Features Comparison ... 98

5.4 SUMMARY.. 100

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 101

6.1 THESIS SUMMARY.. 101

6.2 PROBLEMS FACED IN DEVELOPMENT .. 102

6.3 THESIS CONTRIBUTION .. 105

6.4 SUGGESTION FOR FUTURE WORK .. 106

 Univ
ers

ity
 of

 M
ala

ya

 VII

LIST OF FIGURES

Figure 2-1 System Design for NIDS .. 12

Figure 2-2 System Architecture In the model of Aly et al. .. 16

Figure 2-3 Components of Snort .. 30

Figure 2-4 Process of Snort-Inline ... 34

Figure 3-1 Use Case Diagram of AIPM ... 39

Figure 3-2 Component Diagram of AIPM ... 40

Figure 3-3 Architecture of AIPM ... 41

Figure 3-4 Sample of Network Environment ... 43

Figure 3-5 Key Components in AIPM ... 46

Figure 3-6 Layers of AIPM .. 51

Figure 3-7 Active Diagram of CiscoNATACL Plug-In ... 52

Figure 4-1 Testing Environment of Unit Test 1 ... 58

Figure 4-2 Testing Environment of Unit Test 2 ... 61

Figure 4-3 Testing Environment of Unit Test 3 ... 64

Figure 4-4 Testing Environment of Unit Test 4 ... 67

Figure 4-5 Topology Used for the Test Cases in the Integration Testing 75

Figure 5-1 Network Environment of Case Study 1 .. 88

Figure 5-2 Network Environment of Case Study 2 .. 92

Figure 6-1 Key Components of AIPM ... 102

Figure 6-2 Sample of Command Tree of Cisco Router 2600 ... 103

Univ
ers

ity
 of

 M
ala

ya

 VIII

LIST OF TABLES

Table 2-1 Sample Attributes ... 17

Table 2-2 Comparison of Anomaly Detection Approaches ... 19

Table 2-3 Comparison of Misuse Detection Approaches ... 25

Table 2-4 Comparison of some Existing IDS and IPS ... 35

Table 4-1 Environment of Development .. 56

Table 4-2 Expected Output of Unit Test 1.1 .. 59

Table 4-3 Testing Result of Unit 1.1 .. 59

Table 4-4 Expected Output of Unit Test 1.2 .. 60

Table 4-5 Testing Result of Unit Test 1.2 .. 61

Table 4-6 Expected Result of Unit Test 2.1 ... 62

Table 4-7 Testing Result of Unit Test 2.1 .. 62

Table 4-8 Expected Result of Unit Test 2.2 ... 63

Table 4-9 Testing Results of Unit Test 2.2 ... 63

Table 4-10 Expected Result of Unit Test 3.1 ... 65

Table 4-11 Testing Result of Unit Test 3.1 .. 65

Table 4-12 Expected Result of Unit Test 3.2 ... 66

Table 4-13 Testing Result of Unit Test 3.2 .. 66

Table 4-14 Expected Result of Unit Test 4.1 ... 67

Table 4-15 Testing Result of Unit Test 4.1 .. 68

Table 4-16 Expect Result of Unit Test 4.2 ... 68

Table 4-17 Testing Result of Unit Test 4.2 .. 69

Table 4-18 Feeding Data for Unit Test 5.1 ... 69

Table 4-19 Expected Result of Unit Test 5.1 ... 69

Table 4-20 Testing Result of Unit Test 5.1 .. 70

Table 4-21 Feeding Data for Unit Test 4.3 ... 71

Univ
ers

ity
 of

 M
ala

ya

 IX

Table 4-22 Expected Result of Unit Test 4.3 ... 71

Table 4-23 Testing Result of Unit Test 4.3 .. 71

Table 4-24 Feeding Data for Unit Test 6 .. 72

Table 4-25 Expected Result of Unit Test 6 .. 72

Table 4-26 Testing Result of Unit Test 6 ... 73

Table 4-27 Feeding Data for Unit Test 7 .. 73

Table 4-28 Expected Result of Unit Test 7 .. 74

Table 4-29 Testing Result of Unit Test 7 ... 74

Table 4-30 General Configurations For Integration Testing. ... 75

Table 4-31 Expected Result of Integration Test Case 1.1 .. 77

Table 4-32 Testing Result of Integration Testing Of Case1.1 .. 77

Table 4-33 Result of Ping Command ... 78

Table 4-34 Types of ACL ... 79

Table 4-35 Expected Result of Integration Test Case 1.2 .. 79

Table 4-36 Testing Result of Integration Testing Case1.2 ... 80

Table 4-37 Result of Ping Command ... 80

Table 4-38 Expected Result of Integration Testing Case 2.1 ... 81

Table 4-39 Testing Result of Integration Testing Of Case 2.1 ... 81

Table 4-40 Result of Ping Command ... 81

Table 4-41 Expected Result of Integration Testing Case 2.2 ... 82

Table 4-42 Testing Result of Integration Testing Of Case 2.2 ... 82

Table 4-43 Result of Ping Command ... 83

Table 4-44 Expected Result of Integration Testing Case 3.1 ... 84

Table 4-45 Testing Result of Integration Testing 3.1 ... 84

Table 4-46 Result of Ping Command ... 85

Table 4-47 Expected Result of Integration Testing 3.2 .. 85

Univ
ers

ity
 of

 M
ala

ya

 X

Table 4-48 Testing Result of Integration Testing Case 3.2 .. 85

Table 4-49 Result of Ping Command ... 86

Table 4-50 Responding Time ... 87

Table 5-1 Expected Result of Case Study 1.1 .. 89

Table 5-2 Testing Result of Case Study 1.1 ... 89

Table 5-3 Result of Ping Command ... 90

Table 5-4 Expected Result of Case Study 1.2 .. 90

Table 5-5 Testing Result of Case Study 1.2 ... 91

Table 5-6 Result of Ping Command ... 91

Table 5-7 Expected Result of Case Study 2.1 .. 93

Table 5-8 Testing Result of Case Study 2.1 ... 93

Table 5-9 Result of Ping Command ... 94

Table 5-10 Expected Result of Case Study 2.2 .. 94

Table 5-11 Testing Result of Case Study 2.2 ... 95

Table 5-12 Result of Ping Command ... 95

Table 5-13 Expected Result of Case Study 2.3 .. 95

Table 5-14 Testing Result of Case Study 2.3 ... 96

Table 5-15 Result of Ping Command ... 96

Table 5-16 Comparison of Existing IDS AND IPS and AIPM .. 97

Table 5-17 Features Comparison of Different IDS AND IPS .. 99

Table 5-18 Comparison of Overhead ... 99

Table 6-1 Sample Routing Table .. 104

Univ
ers

ity
 of

 M
ala

ya

 XI

ABBREVIATIONS

 ACL Access Control List

AIPM Automated Intrusion Prevention Mechanism

 ANN Artificial Neural Networks

 ANNIDS Artificial Neural Networks Intrusion Detection System

DDoS Distributed Deny of Service

 ID Intrusion Detection

 IDS Intrusion Detection System

IDT Intrusion Detection Technology

 IPS Intrusion Prevention System

 IPT Intrusion Prevention Technology

 LAN Local Area Network

 NIDS Network Based Intrusion Detection System

 HIDS Host Based Intrusion Detection System

 NIPS Network Based Intrusion Prevention System

 HIPS Host Based Intrusion Prevention System

 IP Internet Protocol

 NAT Network Address Translation

 PAT Network Address Port Translation

 GA Genetic algorithms

 SSCR Snort+SnortSam+Cisco Router

WAN Wide Area Network

Univ
ers

ity
 of

 M
ala

ya

 1

Chapter 1 Introduction

This is an information-explosion era. Information can be accessed in various ways, such as

Internet, SMS, MMS, WAP, cable TV and etc. Additionally, the retrieving, processing,

disseminating and storing of information have become more complex than before. This

difficulty is because many enterprises and/or government institutes requires huge information

to make important decisions. Although the computer industry is still a young industry,

computers have made great progress in just a short period and are now used in all aspects of life

such as education, entertainment, retails and etc. As a result of rapid technological progress,

computer network is used wildly in almost every industry and organizations, such as in

business, education, government and etc. Computer networks play more and more important

role in current society and it completely change human’s life.

Today, the enterprise networks often open to mobile employees, suppliers, partners, and

customers. Thus, the accessibility, integrity, and confidentiality of the network have become

critical factors in supporting the enterprise business. The computer and network security

become more important than ever. Nevertheless, various threats and vulnerability can easily

arise from mis-configured hardware or software, poor network design, inherent technology

weaknesses, or end-user carelessness. For instance, on February 7, 2000, Yahoo’s Internet

portal was inaccessible for three hours because of a distributed deny of service (DDoS) attack.

Analysts estimated that during the three hours, Yahoo suffered a loss of e-commerce and

advertising revenue that amounted to about $500,000 USD (BBC, 2000). In addition, On

February 8, 2000, Amazon, CNN, and eBay were also attacked by DDoS attacks. (BBC, 2000)

These attacks caused them to either stop functioning completely or slowed them down

significantly. All these have led to a huge profit loss. Thus, how to protect the network from

Univ
ers

ity
 of

 M
ala

ya

 2

security threats is imperative to make secure communication possible.

1.1 Motivations

The development of the Internet has created an environment in which millions of computers

across the world are connected to each other. Furthermore, access to this network is fairly

ubiquitous and cheap, enabling any cyber-thieves in the world to target any computers,

regardless of their physical location. With rapidly growth of unauthorized activities on network,

network security is now more important than before. Traditional way to protect access to

internal networks is to deploy a firewall at there network perimeter to limit external access.

Unfortunately, attack threats have matured rapidly and are now sophisticated enough to deceit

firewall. As a result, important technologies in defense-in-deep, intrusion detection technology

(IDT) and intrusion prevention technology (IPT) are developed as traditional firewall

technology can no longer provide complete protection against intrusion.

Most of the current enterprise networks often use network address translation (NAT) and port

address translation (PAT) technologies to keep pace with the network growth. As a result, many

intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are unable to

identify attackers' real IP address. Furthermore, many existing IDS AND IPS are standalone

systems which do not communicate with other network devices, such as routers and switches. A

standalone IDS AND IPS may not be able to protect an increasingly vulnerable network. Based

on (FBI, 2006) report, there are about 70% attacks originated from internal, which means IDS

AND IPS should pay more attentions to detect and prevent internal attacks. However, many

current IDS AND IPS only focus on how to detect and prevent intrusion (e.g. Email spams,

DDoS etc.) from the external. Hence, an integrated IDS AND IPS that is able to indentify

whether NAT/PAT is deployed or the attacks stem from internal/external networks, will be an

Univ
ers

ity
 of

 M
ala

ya

 3

important tool to help secure the network.

1.2 Objectives of the Research

The objectives of the thesis are aligned as follows:

1. To review and study how existing IDS AND IPS and network devices enhance network

security

2. To compare and identify the strengths and shortages of existing IDS AND IPS.

3. To propose and develop an integrated IDS AND IPS mechanism to enhance network

security.

4. To set up pseudo real-time environments to validate and fine tune the functionalities of

the proposed mechanism.

1.3 Scope

In light of the objectives defined, the scope of the thesis is specified as below:

1. Review important roles and basic concepts of IDS and IPS as well as their

mechanisms that detect/prevent malicious traffic.

2. Review and study the access control list (ACL) technology in routers.

3. Review and study the NAT/PAT operation and implementation in routers.

4. Identify problems in the existing IDS and IPS.

5. Investigate and analyze configuration command sets in routers of different

model.

6. Review the technologies and basic concepts of router security

7. Analyze and understand some of the open source IDS AND IPS products.

Univ
ers

ity
 of

 M
ala

ya

 4

8. Analyze the routing table format of different type of routers.

9. Analyze the NAT/PAT pool format and update mechanisms.

10. Review and study the way to communicate with network devices in network

programming.

11. Design and develop the proposed mechanism while ensuring that the proposed

mechanism does fully satisfied the design objectives.

12. Set up testing environments, which includes unit test and integrated test.

13. Verify and validate the written code using several case studies.

14. Make sure the proposed mechanism has ability of automated analyze malicious

traffic and automated intrusion prevention. Ability of blocking interior attack

and exterior attack are also need to be tested.

1.4 Methodology

This research will begin with a literature review on the functionality of existing IDS AND IPS.

The intrusion detection technology (IDT) and IDS will be reviewed first, followed by reviewing

intrusion prevention technology (IPT) and IPS. Many new and traditional technology and

approaches of IDT/IPT will be studied in this part. Subsequently, a study of strengths and

weaknesses of current IDS AND IPS will then be performed.

In the analysis, design and development phase, a new prevention mechanism will be proposed

and developed to overcome some of the weaknesses Unified modeling language (UML) will be

used in this analysis and design phase, together with the use case diagram, the activity diagram,

and the component diagram. In development phase, each functions will be carefully designed

according result of analysis and design phase and written in ANSI C language.

Univ
ers

ity
 of

 M
ala

ya

 5

After finished analysis, design and development, a testing environment to validate the

functionalities of the proposed mechanism is then set up. Every small function will be divided

and be tested individually in unit testing. An integrated testing will be implemented after

successful unit testing. At the meanwhile, fine-tuning may be necessary throughout the testing

process in order to achieve optimal performance.

1.5 Thesis Organizations

This thesis report covers a total of six chapters.

Chapter one defines a general overview on the goals this research aims to achieve, and

describes the research methodology used in this work.

Chapter two provides general background on the concepts and strategies of IDS AND IPS.

Current intrusion detection technology and intrusion prevention technology are discussed and

analyzed; this is followed by the discussion of conventional intrusion detection system and

intrusion prevention system. The disadvantages of existing IDS AND IPS systems are also

discussed. After finished literature review, some major problems of current IDS AND IPS are

identified. The purpose of this research is to minimize or solve those problems.

Chapter three analyzes the purpose and main conception of this research. Object oriented

analyzes method and UML are used in this chapter. Then, the architecture and design of the

proposed system is presented. An analysis of proposed system and proposed mechanism is

discussed as well.

Chapter four provides an overview of system development. Unit and integration testing

Univ
ers

ity
 of

 M
ala

ya

 6

deployed in this work is also reported.

Chapter five describes two case studies which evaluate the proposed system in different

networks. Next, a comparison between existing IDS AND IPS and the proposed system are

presented. Results of case studies are analyzed and portrayed in tables to ease the evaluation of

the mechanisms concerned. Finally, advantages of the system and existing IDS AND IPS

systems are discussed in the end of this chapter.

Chapter six ends this thesis by summarizing the efforts and contributions made and by

discussing problems faced in the development phased. Additionally, some suggestions for

improvement are outlined to allow possible development of new ideas and realms on this

research.

Univ
ers

ity
 of

 M
ala

ya

 7

Chapter 2 Literature Review

Covering in this chapter are some background information on intrusion detection and intrusion

prevention. Current intrusion detection technology/system (IDT/IDS) are discussed first,

followed by current intrusion prevention technology/system (IPT/IPS). The issues and

challenges of current intrusion detection/prevention are also elaborated. Then, several

mechanisms used by existing popular IDS AND IPS together with their disadvantages are

pointed out. Finally, the chapter ends with some problems that this thesis attempts to solve.

2.1 Intrusion Detection System

McHugh et al. (2000) defined that intrusion detection system or IDS as software, hardware, or

combination of both for detecting intruder activities by using intrusion detection techniques.

IDS look for attack activities and signatures, which are specific patterns that usually indicate

malicious or suspicious intention.

Anderson (1980) grouped IDS into two basic categories based on the technology used. The first

category is signature-based or misused-based intrusion detection systems. Each type of

intrusion has unique signatures, like computer viruses, which can be detected by software. In

other words, signature is any distinctive characteristic that can be used to identify something.

Based upon a set of signatures and rules, the detection system is able to find and log suspicious

activity and generate alerts. The second category is anomaly detection systems. Anomaly-based

intrusion detection usually depends on packet anomalies present in protocol header parts.

In 2000, Caberera etc. divided IDS into another two primary categories. The first category is

Univ
ers

ity
 of

 M
ala

ya

 8

network-based intrusion detection systems (NIDS), another one is host-based intrusion

Detection Systems (HIDS). This is one common classification of IDS. This classification relies

on the way that data is collected by IDS, not how or where it is processed.

NIDS uses raw network packets as the data source, and network adapter in promiscuous mode

that listens and analyses all traffic in real-time as it travels across the network. Using NIDS has

following advantages: first, the ability of real time detection and response to intrusion; second,

the ability to detect unsuccessful attack attempts; third, operating system (OS) independence,

which means that NIDS can monitor intrusions on multiple platform (YueBin et al., 2003a).

NIDS involves looking at the packets on the network when network traffics pass by some

sensors. The sensors can only see the packets that happen to be carried on the network segment

it is attached to. Packets are considered to be of interest if they match a signature. Three primary

types of signatures are string signatures, port signatures, and header condition signatures.

Well-known, network-based IDS include AXENT, CyberSafe, ISS, Snort, and Shadow.

HIDS uses the software that continuously monitors system specific log in real-time, compared

to other solutions that run processes that check the logs periodically for new information and

changes. Some HIDS can also listen to port activity and be alert when specific ports are

accessed; this allows for some network type attack detection (Aurobindo, 1996). Using HIDS

has following advantages: first, cost saving without the need to buy new hardware; second, the

ability to detect and response almost in real time detection; third, the deployment of HIDS in

encrypting and switching environment (YueBin et al., 2003a).

In general, NIDS is the core, and is more important; HIDS is just a supplement. An efficient

intrusion detective capability will use both host- and network-based systems.

Univ
ers

ity
 of

 M
ala

ya

 9

2.2 Intrusion Detection Techniques

Intrusion detection is a set of mechanisms that aim at scanning system resources and detecting

the activity of intrusion (Cowan et al., 1998). The intrusion detection methods are used to

collect useful information from known attacks, and to find out if someone is trying to attack the

network or particular networks.

Amoroso (1999) define intrusion detection (ID) as:

“Process of identifying and responding malicious activities targeted at computing and

network resources”

More specifically it involves “monitoring and analyzing both user and system activities,

analyzing system configurations and vulnerabilities, assessing system and file integrity, being

able to recognize patterns typical of attacks, analyzing abnormal activity patterns, and tracking

user policy violations (Nilsen,2002).”

Anderson (1980), Denning and Neumann (1985), Denning (1987), and Sebring et al. (1988)

identified two major types of intrusion detection strategies. They are anomaly detection (e.g.

NIDES/STAT [Javits and Valdes 1993]) and misuse detection (e.g. NetSTAT [Vigna and

Kemmerer 1999]). Anomaly detection is based on the normal behavior of a user or a system;

any actions that significantly deviate from the normal behavior are considered intrusive. Misuse

detection detects attacks based on the characteristics of known attacks or system vulnerabilities;

any actions that conforms to the pattern of a known attack or vulnerability is considered

intrusive.

Univ
ers

ity
 of

 M
ala

ya

 10

2.2.1 Anomaly Detection

An Anomaly Detection is a method for detecting computer intrusions and misuse by monitoring

system activities and classifying them as either normal or anomalous. The classification is

based on heuristics or rules, rather than patterns or signatures. Anomaly Detection will detect

any types of misuse that fall out with normal system behaviors (Jagannathan et al., 1993). It is

different with signature-based systems, which can only detect attacks for which a signature has

been created previously. Overall, the primary strength of anomaly de tection is its ability to

recognize unknown attack method (Mchugh J. et al., 2000).

Steven et al. (1997) stated that there are two stages to the anomaly detection. In the first stage,

profiles or databases of normal behavior this processing is called as training phase for a learning

system) are created; in the second stage, databases are used to monitor system behavior for

significant deviations from normality (this processing is called as test phase or detecting phase).

As discussed previously, in order to identify malicious traffic, the system must be taught to

recognize normal system behaviors. This can be accomplished in several ways; the main

approaches are described below.

YueBin, Kobayashi et al. (2003b) stated that the first and popular approach is by using artificial

intelligence. Some IDS uses the artificial neural networks (ANN) learning technology; this kind

of IDS are called artificial neural networks intrusion detection system (ANNIDS). The idea is to

train the neural network to learn user’s action and command. A program can then tell the

network how to response to an external activity or can take corresponding activity on its own,

such as blocking intrusion IP, dropping packets, etc. After the training phase, the network tries

to match actual behaviors with the user profile, which already be created in the network. Any

Univ
ers

ity
 of

 M
ala

ya

dict://key.0895DFE8DB67F9409DB285590D870EDD/corresponding

 11

unmatched events imply the deviation of the user from the established profile (Aurobindo,

1996). ANNIDS does not need expert knowledge and it can find unknown intrusions because of

the advantage of neural network (Aly et al., 2005). However, this approach also has

disadvantages inherited from neural network. A major disadvantage is its complexity and

difficulty to define an appropriate knowledge representation.

Neural networks use several principles to make decision; these principles include

gradient-based training, genetic algorithms (GA), fuzzy logic, and Bayesian methods.

(Verwoerd et al, 2001).

Univ
ers

ity
 of

 M
ala

ya

 12

2.2.1.1 Genetic Algorithms in Anomaly Detection

Some approaches that apply the GA technology to IDS have been introduced in recent years.

For instance, Pillai et al. (2004) describes an approach to implement a NIDS using GA. The

network traffic sniffed is analyzed to create a data set first. The next step is to automatically

generate the rule set. The NIDS explained in this paper uses the data set to classify the

anomalous connections. This data set serves as the basis for the NIDS to detect intrusions.

Pillai et al. (2004) use the following system design to build a new NIDS.

Figure 2-1 System Design for NIDS

The network traffic used in the GA component (see Figure 2-1) is a pre-classified data set that

differentiates normal network connections from anomalous ones. This pre-classified data set is

manually created by analyzing the data that are captured by network sniffer. Based on the

traffic from a sniffer software (e.g. WinDump), the data set is created. The data set then covers

the necessary information to generate rules. These information include the source IP address,

the destination IP address, the source port, the destination port, the protocol used, and a field

that indicates whether the specific connection related to an intrusion or not. The data set will

include both normal and anomalous network connections. When a connection refers to an entry

in the dataset, the connection will be marked by the value true or false. If the connection is an

Univ
ers

ity
 of

 M
ala

ya

 13

intrusion, the value is truth, or false otherwise. These network connections in the dataset are

manually created by network administrators. The dataset is used to generate rules for the rule

set prior to training the GA. Once the GA is trained with the rules, more network connections

can be added to the dataset. This means that administrator have to update the dataset to add a

new connection or to discard a connection. As soon as the initial dataset is created, the next

action is to create the rule set. Rules will be generated in the rule set by analyzing the dataset.

The first part of the GA will act as a search algorithm. The purpose is to help the rules acquire

values that will be used in the fitness function later. The search algorithm will match the rules

with any anomalous connections that occur on the network to detect an intrusion. Each rule will

carry values for the intrusions that they have detected, and a value for a false alarm that the rule

produces. The initial values for the rule will be initialized to zero. The rules will acquire these

values when the search algorithm is executed. Once the rules have acquired the values, the

complete GA which includes the fitness function and mutation will be executed.

The second part of the GA is the fitness function. The fitness function determines whether a rule

is ‘good’, in other words, it detects intrusions, or whether the rule is ‘bad’, in other words, it

does not detect intrusions. The fitness function is calculated for each rule.

When an intrusion is indicated, the network sniffer will be executed to determine whether it is

an intrusion or a false alarm. The fitness function will assign a fitness value for each rule. The

fitness value will be a predefined value. The rules, which have acquired the required fitness

value, will be selected to form a new generation to produce new rules. When a rule acquires the

predefined value of “1”, the rule will be reproduced for producing a new generation of rules.

After a successive number of generations, if the rule still has not gained the value “1”, which

means it is unfit, the rule will be discarded.

Univ
ers

ity
 of

 M
ala

ya

 14

Subsequently, the GA will regenerate a new rule according the crossover of chromosomes. The

GA will provide the rule in codified form to the GA rule set. The NIDS using the GA, which

explained in paper of Pillai et al. (2004), produces new rules for each connection through

mutation. For instance, all connections, which are established from source to destination using

the specific protocol, are treated as an intrusion regardless of source ports it uses. This

mechanism increases the effectiveness of detecting intrusions for that specific connection.

The GA then continues to detect intrusions and produce new rules, storing ‘good’ rules in the

rule base and discarding ‘bad’ rules. Once in a while, the dataset will have to be updated for

new connections, and the rule set will also be updated. Additionally, the human factor is

important because a human input is still required to the dataset.

The rule set will initially contain the new generation of rules that the GA produces. Once the

GA has been trained, i.e. when it has supplied a ‘good’ set of rules for the corresponding dataset

to the rule base, the rules in the rule base will be supplied to the rule set. The rule set can then

start using these new produced rules to detect intrusions. Pillai et al. (2004) shows using GA in

this way can improve efficiency of detecting intrusion.

2.2.1.2 Fuzzy Logic in Anomaly Detection

Fuzzy logic is suitable for solving the intrusion detection problem because of two major

reasons. First, intrusion detection includes many quantitative features. The second reason is that

security itself includes fuzziness. After given a quantitative measurement, an interval can be

used to present a normal value. Then, any values falling outside the interval will be indicated as

anomalous to the same degree regardless of their distance to the interval. (Susan M. Bridges et

Univ
ers

ity
 of

 M
ala

ya

 15

al. 2000). Many researchers have already done some works in this field. Norbik et al. (2005)

proposed a dynamic model intelligent IDS which utilizes fuzzy logic along with the data

mining technique. Additionally, a new framework for implementing intrusion detection

systems using fuzzy logic is also proposed by Aly et al. (2005)

The dynamic model of intelligent IDS that is proposed by Norbik et al. (2005) is based on

specific AI approach for intrusion detection. The authors combined fuzzy logic with data

mining to provide efficient technique for anomaly-based intrusion detection. Neural networks

and fuzzy logic with network profiling, and simple data mining techniques to process network

data are investigated in this paper. The proposed system in this paper is a hybrid system, which

combines anomaly, misuse, and host-based detection technologies. Simple fuzzy rules

construct if-then rules that reflect common ways of describing security attacks. Suspicious

malicious traffic can be traced back to the source, and any package from that particular source

will be redirected back to them in future. Network traffic and system audit data are used as

inputs for both.

In the model of Norbik et al., the data processor and classifier summarize and tabulate the data

into categories. A kind of data mining is performed on the collected data in this stage. In the

next stage, the current data and historical-mined data is compared to create values, which reflect

how new data differ from the past observed data. According to the facts from the analyzer, the

decision that whether to activate the detection phase or not will be taken. If the detection phase

is activated, then an alert will be issued and tracer phase will be implemented. This phase will

trace back to the intruders original source location. The authors proposed a framework for

tracing the abnormal packets back to its original source. Once the intruder’s original location

has been identified and verified, all traffics from that particular host will be redirected to their

source in future.

Univ
ers

ity
 of

 M
ala

ya

 16

There are four steps in this model. Prior to any data analysis, attributes representing relevant

features of the input data (packets) must be established. The set of attributes that send to the

Data Analyzer is a subset of all possible attributes that contained in packet headers, packet

payloads, as well as aggregate information, such as statistics on the number and type of packets

or established TCP connections. After identifying data source and defining relevant attributes, a

Data Analyzer is implemented to compute configuration parameters that regulate operation of

the IDS. This module analyzes packets and computes aggregate information by grouping

packets. Then rules will be automatically generated. When trace back is requested, a query

message, which consists the packet, egress point and the time of receipt, is sent to all the Local

Data Managers (LDM). Subsequently, LDM responds with the partial attack graph and the

packet when it entered the region. The attack graph either terminates within the region managed

by the LDM, in which a source has been identified, or it contains nodes to the edges of the other

LDM network region.

Figure 2-2 System architecture in the model of Aly et al.

Aly et al. (2005) proposed a fuzzy data–mining algorithm to generate fuzzy rules for the

inference engine. The modular architecture is implemented using the Java Expert System Shell

Univ
ers

ity
 of

 M
ala

ya

 17

(Jess) and the FuzzyJess toolkit. The proposed system architecture (Figure 2-2) has two modes

of operation: rule–generation and detection.

When operating in the rule–generation mode, the system processes network data and uses a

fuzzy data mining algorithm to generate rules. The data mining algorithm produces a subset of

the rules and the rules are used as a model for the input data. In next stage, the detection mode

uses this rule subset for intrusion detection. The different components of the architecture are

described in the following.

The initial input of IDS includes packets and attributes. Attributes are represented by names,

which will be used as linguistic variables by Data Miner and the Fuzzy Inference Engine. Table

2-1 shows a typical sample of attributes.

Name Description
ICMP Number of ICMP packets received within a time frame
UDP Number of UDP packets received within a time frame
TCP Number of TCP packets received within a time frame
SYN Number of TCP SYN packets received within a time frame
FIN Number of TCP FIN packets received within a time frame

Table 2-1 Sample Attributes

Attributes name and describe the parts of the packets for which some analysis must be made.

They are stored in the following format: VARS = {attribute1, attribute2, ···, attributen} where

VARS = {ICMP, UDP, TCP, SYN, FIN} is a typical example of useful attributes. Data

analyzer module analyzes packets and generates aggregate information by grouping packets.

Packets can be placed in fixed size groups (n-group) or in groups of packets captured in a fixed

amount of time (t-group). Upon analyzing data and attributes, the Data Analyzer creates a file

where all configuration parameters are stored. The configuration Parameter values stored in the

file regulates operation of the Preprocessor, Data Mining algorithm, and Fuzzy Inference

Engine. The configuration file specifies how to normalize attribute values, associate attributes

Univ
ers

ity
 of

 M
ala

ya

 18

with a term set, and how to describe functions corresponding to the fuzzy membership

functions of each term. The Preprocessor is responsible for accepting raw packet data and

producing records for each n-group or t-group as specified by the configuration file. Both

rule–generation mode and detection mode will use this component. The data miner allows for

efficient, single–pass, record processing by partitioning data into hierarchical file. The

procedure is a deterministic algorithm that produces a set of output rules. The Rules are

expressed as a logic implication p → q, where p is called the antecedent of the rule and q is

called the consequence of the rule. p and q are both assumed to be in conjunctive normal form.

The main scientific merit of this architecture is its demonstrated ability. It works as a

hybrid–system using fuzzy logic rules, which produced by a data mining algorithm. Data

preprocessing and the use of fuzzy logic to describe attributes of interest can greatly reduce the

amount of data to be analyzed by the inference engine as the great amount of date to be

analyzed is the main bottleneck of many IDS in high–bandwidth network.

The advantages of using the ANN technology include three. First, this kind of IDS copes well

with noisy data. Second, the technology does not depend on any statistical assumption about the

nature of the underlying data. Third, it is easier to modify for new user communication.

However, this technology still faces some problems, such as false positives and false negatives,

and the opportunity exploited by the intruder to train the network during its learning phase.

(Aurobindo, 1996)

2.2.1.3 Predictive Pattern Generation in Anomaly Detection

Another approach of anomaly detection is predictive pattern generation detection. The idea of

this approach is to define what normal usage of the system comprises by using a strict

Univ
ers

ity
 of

 M
ala

ya

 19

mathematical model, and to mark any deviation from this as intrusion (Aurobindo, 1996). This

is also called as strict anomaly detection. Rule-based sequential patterns can detect anomalous

activities that were difficult with traditional methods. The built systems using this model are

highly adaptive to changes because not good patterns are continuously eliminated. This

technology also faces the problem of false positives and false negatives which stem from strict

rules that may affect normal action.

2.2.1.4 Comparison of Anomaly Detection Approaches

 Genetic Algorithms Fuzzy Logic Predictive Pattern
Generation

Rate of false

positives and

false negatives

Lower

Low

High

Need Training? Yes Yes No

Efficiency Low Low High

Complexity High High Lower

Latency Long Long Short

Table 2-2 Comparison of Anomaly Detection Approaches

Table 2-2 shows the comparison of the aforementioned anomaly detection approaches.

Predictive pattern generation has higher rate of false positives and false negatives because it

does not include a training phase as in genetic algorithms and fuzzy logic. The lack of the

training phase, however, leads to better efficiency, less complexity, and shorter latency

compared to other anomaly detection approaches. On the other hand, genetic algorithms and

fuzzy logic which include a training phase to improve its capability of detecting intrusion

generates lower rate of false positives and false negatives. This advantage comes at the cost of

lower efficiency, higher complexity, and longer latency as compared to predictive pattern

generation.

Univ
ers

ity
 of

 M
ala

ya

 20

2.2.2 Misuse Detection

A Misuse Detection is a method for detecting attacks based on patterns/signature or weak spots

of system so that even variations of the same attack can be detected. This means that these

methods can only detect many or even all known attack patterns, but they are of little use for as

yet unknown attack methods.

The main problems that misuse detection system are how to write a good signature that

encompasses all possible variations of the pertinent attack, and how to write signatures that do

not also match non-intrusive activity (Aurobindo, 1996). Several methods of misuse detection,

including a new pattern/string matching model are used in this kind of IDS. Those major

approaches based on misuse IDS will be discussed below.

2.2.2.1 Pattern/String Matching in Misuse Detection

A popular technology is based on pattern or string matching. This approach encodes known

intrusion signatures as patterns that are then matched against the data. It attempts to match

incoming events to the patterns that represent intrusions scenarios (Aurobindo, 1996). For

example, the presence of "scripts/iisadmin" in a packet going to a web server may indicate an

intruder activity. Signatures may be present in different parts of a data packet depending upon

the type of the attack. For example, signatures can be found in the IP header, transport layer

header (TCP or UDP header) and/or application layer header, or payload. The problem of this

approach is that it can only detect attacks based on known unauthorized behaviors.

Univ
ers

ity
 of

 M
ala

ya

 21

Lower efficient string matching algorithm may make IDS to become a performance bottleneck

in network (YueBin et al., 2003b). Many researchers are trying to find/create higher efficient

string matching algorithm to increase the performance of IDS. Some new string matching

algorithms are already developed in recent years. YueBin et al. (2003b) proposed a new String

Matching Technology in their paper. The new algorithm is based on simplified

Boyer-Moore-Horspool algorithm. In this paper, Array NEXT in preprocessing stage is

redesigned. Novel generated rules are presented. Using these rules, a simple NEXT is

generated. These characteristics will be useful in all these applications.

The new string matching algorithm is described as follows;

Begin
1 For (each char ∈ t_str) do begin
2 If (each char ∈p_str)
3 do next[char]← n-j ;
4 If (each char p_str)
5 do next[char] ← n+1;

end for
6 If (n>m) do exit;
7 while (p<m) do begin
8 j←n-1;
9 i←p;
10 while (j>=0) and (t_str[i]=p_str[j]) do begin
11 j←j-1;
12 i←i-1;

end while
13 if (m-p>n)
14 do p←p+next[t_str[p+1]];
15 end while
end.

Where, t_str is the text string of length m. P_str is the pattern string of length n. next is an array.

i and j are pointers of text string and pattern string respectively. p is a work pointer of text

string.

This string matching algorithm can be divided into two parts: preprocessing stage and search

stage. Step 1 to 5 in the above algorithm is called as preprocessing stage. Step 6 to 14 is called

Univ
ers

ity
 of

 M
ala

ya

 22

as searching stage.

There are some distinctive points in the algorithm. First, the string matching algorithm is very

simple and easy to implement. The key part of the algorithm has only 14 steps. Second, the

algorithm is more effective than Boyer-Moore and Boyer-Moore-Horspool algorithm even it is

based on Boyer-Moore and Boyer-Moore-Horspool algorithm. Third, the algorithm designed a

novel and simple array NEXT. It makes the times of shift during string matching decreases;

2.2.2.2 State Transition in Misuse Detection

Another approach of misuse detection is based on state transition. The monitored system is

described as a state transition diagram. When data is analyzed, the system makes transitions

from one state to another. A transition takes place on some boolean condition beginning true. In

this approach, the initial node is in legal states, and the terminal node is in the final

compromised state. This approach is more robust in detecting unknown vulnerabilities because

the tradeoff of monitored system states is emphasized (YueBin et al. 2003a). However, this

approach also has several weaknesses. First, the attack patterns can only be specified on a

sequence of events, rather than more complex forms. Second, some intrusions behaviors may

not be detected because they are either not recorded or cannot be described by state transition

diagrams. Currently, state transition analysis technique is a new approach applied to intrusion

detection.

Brian et al. (2004) proposed a new state transition model for intrusion detection. The approach

proposed in the paper is based on characterizing intrusion attacks into sequences of

computation and communication processes. The state transition model proposed includes three

layers. These layers are the physical layer, the communication sequencing layer, and the state

Univ
ers

ity
 of

 M
ala

ya

 23

transition layer. The physical layer defines the components and devices which are necessary for

an attack include source/victim computers, software, ports, and routers. The communication

sequencing layer provides abstraction of all the computation and communication processes that

are executed through an attack scenario. The state transition layer describes the attack profile in

terms of states and transitions between the states. The start state is the inactive state on the

source machine, and there are three final states.

This paper demonstrates through a case study the applicability of a state transition model

approach for modeling both network and host information pertaining to intrusive activities. The

proposed approach requires profiling attack activities and victim responses as states and state

transitions. As such, the proposed approach is suitable for deployment in IDS. The approach

allows for matching the detected suspicious activity to victim states; thereby it permits

determination of the state transitions both forward (in the future) and reverse (into the past).

The IDS could then scan past network or host logs for evidence of specific activities that would

match with past states; and heighten scanning for expected attack vectors.

Brian et al. (2004) proposed a case study include source and victim machine in the paper. For

source machine, initially, the source machine is switched off and as a result, it is in the start

state, ‘Inactive’. When the source machine is switched on it goes to the ‘Active’ state. As the

LANguard program on the source machine is initiated, the source goes to the ‘Probe Active’

state. The attacker, then, inputs the victim’s IP address of to LANguard along with the port type

and port to be scanned; as a result, the source enters the ‘Probing’ state. Initially, the victim’s

machine is switched off in this part of the experiment before this probe attack is launched to

realize the ‘Probe Fail’ state on source. The authors use the ‘Probe Rcvd’ and ‘Probe Fail’ states

to indicate that the victim’s machine is turned off and is not active. Now, the victim’s machine

is turned on and the above TCP port scan actions are repeated. The ‘Probe Rcvd’and ‘Probe

Univ
ers

ity
 of

 M
ala

ya

 24

Successful’ state indicates that the victim has been successfully probed and the probe

information has been received. The source machine then goes to the ‘Decision’ state based

upon the probe information that has been received from victim’s machine. For victim machine,

the victim’s machine is initially either in the switched off state ‘Inactive’ or the switched on

state ‘Active’. The victim machine then goes to the ‘Probing’ State after a TCP SYN scan signal

from the source to the victim arrived. After the TCP port has been probed, the results are sent

back to source machine leading to the ‘Probe Snt’ state. Since TCP port on the victim’s machine

is open, it could be abused and is vulnerable which leads the victim to the ‘Insecured’ state.

2.2.2.3 Model-Based Intrusion Detection in Misuse Detection

The third approach of misuse-based IDS is model-based intrusion detection. It states that

certain scenarios are inferred by certain other observable activities. Once these activities are

monitored, it is possible to find attack by analyzing activities that infer a certain intrusion

scenario. This kind of system can predict the intruder’s next step based on the intrusion model.

These predictions can be used to verify an intrusion hypothesis, to take preventive measures, or

to determine which kind of data to look for next. The problem of such system is that the patterns

for intrusion scenarios must be easily recognized. Additionally, the patterns must not be

associated with other normal behavior. Which means it is difficult to define good patterns

(Aurobindo, 1996).

Timothy et al. (2005) argued in favor of the explicit inclusion of suspicion as a concrete concept

to be used in the analysis of audit data in order to guide the search for evidence of misuse. The

explicit concept of suspicion shows promise in assisting model-based IDS. The approach is

similar to that of a human forensic analyst, who first notices details that seem slightly odd, and

then investigates further and cross checks information in an attempt to build a consistent and

Univ
ers

ity
 of

 M
ala

ya

 25

clear explanation for the observed details. This paper uses deductive reasoning combined with

expert knowledge about system behavior, potential attacks and evidence, and patterns of

suspicion to link individual clues together in an automated way. A prototype implementation

that is based on these considerations is presented in the paper; it includes details of how to

represent suspicions and deductions, and how these structures are updated when new evidence

is discovered. Finally, this paper describes how the algorithm performs on a realistic example,

which automatically brought five discrete pieces of evidence together to create a unified and

coherent description of what is believed to have occurred.

The authors of this paper brought two new ideas: first, a deductive point of view, where clues

are identified, their consequences investigated, and supporting evidence may or may not be

found, and second, the inclusion of suspicion as an explicit concept that guides the search. The

authors have developed these ideas into a working prototype system. Additionally, this paper

also discusses deduction and modeling, including how uncertainty and suspicion figure into the

approach.

2.2.2.4 Comparison of Misuse Detection Approaches

 Pattern/String
Matching

State
Transition

Model-Based
Intrusion Detection

Efficiency Depends on
pattern/string

matching algorithm

Low Low

Rate of false
positives and false
negatives

Medium High High

Complexity Low High High
Latency Short Long Long

Table 2-3 Comparison of Misuse Detection Approaches

Table 2-3 depicts the comparison of misuse detection approaches. State transition and

Univ
ers

ity
 of

 M
ala

ya

 26

model-based intrusion detection approach has lower efficiency due to high complexity. The

efficiency of pattern/string matching depends solely on the algorithm. In comparison to

pattern/string matching, state transition and model-based intrusion detection approach has

higher rate of false positives and false negatives. Finally, latency of pattern/string matching

intrusion detection approach is the shortest among these approaches.

2.3 Issues and Challenges in Current Intrusion Detection

The goals of all IDS are higher detection rate and lower false positive rate. However, they are

serious challenges to the current IDS technologies. The main reason is the lack of sufficient and

efficient information available to IDS. Many current IDS use raw packets to analyze. However,

only using these raw data sources is not efficient for IDS to perform further analysis (Xinzhou

et al., 2002). IDS can improve the detection efficiency by integrating multiple and diverse

sources of information. This method can also help an IDS cross-check the analysis results and

improve accuracy. Additionally, many IDS, such as Snort, rely on signature matching

techniques, which can only detect those known attacks. As the network is growing, many new

attack methods have appeared. Therefore, using only misuse detection technique is insufficient

to resolve the problem; anomaly detection technology should be more widely applied. Another

challenge to current IDS is the sophistication of attack strategies and attack tools. Latest attacks

always try to evade being detected. For example, multi-staged attacks, such as DDoS, have

become one of the most difficult intrusions to detect, and they are also one of the most

dangerous threats to networks. These attacks can be distributed and coordinated by using attack

relays to achieve the end-goals. However, current IDS lack the ability to analyze the related

security events in multiple domains, hence cannot detect attacks effectively (Xinzhou et al.,

2002).

Univ
ers

ity
 of

 M
ala

ya

 27

2.4 Intruder Prevention System

Intrusion prevention technologies (IPT) are differentiated from intrusion detection technologies

(IDT) as IPT can respond to a detected threat by attempting to prevent it from succeeding

(Jakubet et al., 2006). IPT includes several active response techniques, which can be divided

into the following groups. The first group is based on the fact that IPS stops the attack itself, i.e.

the IPS can terminate the network connection or user session that is being used for the attack,

and block access to the target from the offending user account, IP address, or other attacker's

attribute. IPS can also block all access to the targeted host, service, application, or other

resource. The second group is based on the fact that IPS can change the security environment

(Jakubet et al.2006). The IPS could change the configuration of other security controls to

disrupt an attack. Common examples are reconfiguring a network device (e.g. firewall, router,

switch) to block access from the attacker or to the target, and to alter a host-based firewall on a

target to block incoming attacks. The last group is that IPS can change the content of attack.

Some IPS technologies can remove or replace malicious portions of an attack to make it benign.

An example is an IPS removing an infected file attachment from an e-mail and then permitting

the cleaned email to reach its recipient. Another example is an IPS that acts as a proxy and

normalizes incoming requests, which means that the proxy repackages the payloads of the

requests, discarding header information. This might cause certain attacks to be discarded as part

of the normalization process.

Nick et al. (2005) gave a definition of IPS as:

“An Intrusion Prevention System (IPS) is any device (hardware or software) that has the

ability to detect attacks, both known and unknown, and prevent the attack from being

successful. ”

Univ
ers

ity
 of

 M
ala

ya

 28

Like IDS, the IPS can also be divided to two categories: The first category is a host-based IPS

(HIPS); it provides a component that effectively integrates into host system. Another category

is a network-based IPS (NIPS); it provides a component that effectively integrates into the

overall network security framework.

Aurobindo (1996) stated some limitations of HIPS and NIPS. HIPS lacks complete coverage

and is subject to end-user tempering, and NIPS is difficult to be deployed to protect the network

effectively.

Many IPSs use packet filtering and IP blocking to block intrusion behavior. Packet filtering is a

technology that drops traffic containing malicious information. IP blocking uses access control

mechanism to block malicious host IP.

Detecting intrusions do not attempt to automatically prevent intrusion in the first place. If a

vulnerable system is successfully intruded by a malicious host, then IDS may detect and send

an alert about the intrusion but take no further steps to block packets from the attacker. Hence

the attacker can have full access and control of the target system until an administrator can

manually intervene. The time lag between successful compromise and such intervention may

be quite long (Xinyou et al., 2004). That is the reason of why automatically blocking attacks can

be an attractive capability if it could be done effectively. Active response is such technology. It

is the core idea of IPS. Active response is a mechanism that can dynamically reconfigure or

modify network access, sessions, and individual packets based on alerts generated from IDS.

The goal of active response is to automatically respond to a detected attack and minimize (or

ideally nullify) the damaging effects of attempted computer intrusions without requiring an

administrator.

Univ
ers

ity
 of

 M
ala

ya

 29

2.5 Issues and Challenges in Current IPS

The challenge of NIPS is its immense effort up-front to implement and refine. Refinement is

challenging with this type of tool since events and alerts have to be individually analyzed and in

many instances investigated prior to implementation of a white-list policy. On occasion, a lab

environment supported by multiple resources has to be set up. These resources include internal

network, security, OS, and application team members; not to mention external support

resources and consultants to collaborate on the intent of one event type, which may have

happened once or thousands of times.

2.6 Existing Open Source Popular IDS AND IPS

Many open-source IDS and IPS have been developed to secure the network infrastructure and

communication over the Internet. This section discusses three mechanisms of Snort, SnortSam,

and Snort-Inline – for their wide deployment.

2.6.1 Snort

Snort is perhaps the best known signature-based NIDS because Snort is open source and is

reasonably easy to modify or extend. Snort operates three main functions: first, it can serve as a

packet sniffer; second, it can serve as a packet logger; finally, it can serve as a NIDS. There are

also many add-on programs to Snort to provide different ways of recording and managing Snort

log files, fetching and maintaining current Snort rule sets, and alerting to let administrators

know when potentially malicious traffic has been found.

Univ
ers

ity
 of

 M
ala

ya

 30

Figure 2-3 shows how these components are arranged.

Figure 2-3 Components of Snort

Snort can logically be divided into many components. These components work together to

detect attacks and to generate output in required format. Major components of Snort are Packet

Decoder, Preprocessors, Detection Engine, Logging and Alerting System, and Output Modules.

First, traffic is acquired from the network link via the libpcap library. Once packets from

different network interface are received, the packet decoder module determines which protocol

is in use for a given packet and matches the data against allowable behavior for packets of their

protocol.

Packets are then sent through a set of preprocessors. Preprocessors are components that can be

used with Snort to arrange or modify data packets before the detection engine does some

operation to identify whether the packet is an intrusion. Packets are examined and manipulated

before being handed to the next module - detection engine. Functions of preprocessors in Snort

include defragment packets, decode HTTP URI, and re-assemble TCP streams, and etc.

Univ
ers

ity
 of

 M
ala

ya

 31

After the Preprocessors module finishes processing packets, the packets will be sent to the

detection engine module. The detection engine module is the most important component of

Snort. Its responsibility is to detect if any intrusion activity exists in a packet. The detection

engine employs Snort rules for this purpose. The rules are read into internal data structures or

chains where they are matched against all packets. If a packet matches any rule, appropriate

action is taken; otherwise the packet will be dropped.

Finally, after the rules have been matched against the data, the packet may be used to log the

activity or generate an alert according what the detection engine finds inside a packet

Output modules or plug-ins can do different operations depending on how an administrator

wants to save output generated by the logging and alerting system. Basically these modules

control the type of output generated by the logging and alerting system.

2.6.2 SnortSam

SnortSam (Frank, 2006) is an active response system that interacts with both commercial and

open source firewalls to block IP address at direction of a patched version of the Snort IDS

(Beale, 2004). ANSI C language is used in developing this IPS. The purpose of using SnortSam

is to create a firewall/IDS combined solution. In this solution, the firewall can be automatically

configured to block malicious traffic and intruder's IP addresses when an intruder activity is

detected. SnortSam supports flexible time specification for blocked addresses, which means

that an IP address can be blocked for period of seconds, minutes, hours, days, weeks, or even

years. Additionally, SnortSam can run as a daemon on the firewall host and accept commands

from a special output plug-in for the Snort IDS over an encrypted TCP session.

Univ
ers

ity
 of

 M
ala

ya

 32

SnortSam consists of two main parts. The first part is a Snort output plug-in that is installed on

the Snort sensor. It responses send block request to SnortSam intelligent agent. Another part is

an intelligent agent that runs on the firewall, or a host near the firewall. The intelligent agent

which is responsible for interaction with the firewall or other network device dynamically

blocks IP addresses that Snort has detected an attack. Snort communicates to the agent using the

output plug-in in a secure way.

The first part that running with Snort is a Snort output plug-in, named fwsam. In order to cause

Snort to send a block request to SnortSam agent, that agent has to be listed in Snort.conf file.

The statement for that is:

 output alert_fwsam: <SnortSam Station>:<port>/<password>

The rules must be modified for trigging by alert and sending block request to the SnortSam

agent. This is done by adding the following statement to the rules file.

Fwsam: who[how], time

 who: Can be: src, source, dst, dest, destination

 how: Optional. Can be: In, out, src, dest, either, both, this, conn,

 time: Duration of block in seconds. (Accepts 'days', 'months', 'weeks', 'years',

 'minutes', 'seconds', 'hours')

The second part is the SnortSam intelligent agent. When the SnortSam agent that runs on the

firewall or a host near the firewall receives a blocking request packet from Snort, it first verifies

that the request came from an authorized source. It then decrypts the request packet using

predefined key. If successful, which means that if the passwords or keys of the Snort sensor and

the SnortSam agent match, the agent accepts it as a valid request, or discards otherwise?

Subsequently, SnortSam will figure out the IP address of the host against the Snort rule.

Univ
ers

ity
 of

 M
ala

ya

 33

SnortSam then checks if this IP address is in a white-list. A white-list is a list of IP addresses

that will never be blocked. Then it checks if the duration of the block that the Snort sensor

requested should be overridden with default duration. Finally it sends a blocking request to the

firewall host it resides on or a network device (such as a router). This block can be performed

either by sending a packet to the OPSEC port for SAM (Suspicious Activity Monitor, port

18183), or by launching the SnortSam plug-in. (SnortSam, 2007)

2.6.3 Snort-Inline

Snort-Inline IPS is basically a modified version of Snort that accepts packets from IPTable and

IPFW via libipq (Linux) or diverts sockets (FreeBSD), instead of libpcap. It then uses new rule

types (drop, sdrop, reject) to tell IPTable/IPFW whether the packet should be dropped, rejected,

modified, or allowed to pass based on a Snort rule set. Think of this as an IPS that uses existing

IDS signatures to make decisions on packets that traverse Snort-Inline.

Figure 2-4 shows the mechanism of how packets are processed in Snort-Inline. First, Netfilter

queues packets to Snort-Inline in the user space with the help of the ip_queue kernel module

and libipq. Then, if a packet matches a Snort_Inline attack signature, it is tagged by libipq and

comes back to Netfilter where it is dropped.

NetFilter is a Linux kernel module available since the kernel version 2.4. It provides three main

functionalities, the first function is packet filtering - accepts or drops packets, the second is

NAT - changes the source or destination IP address of network packets and the last is packet

mangling - modifies packets.

Univ
ers

ity
 of

 M
ala

ya

 34

Figure 2-4 Process of Snort-Inline

There are three major modes of Snort-Inline; the first mode is drop mode, which a packet is

dropped if it matches an attack signature. Three options are available in this mode. The first is

drop, which drops a packet, sends a reset back to the host, and logs the event. The second mode

is sdrop, which drops a packet without sending a reset back to the host. The last mode is ignore,

which drops a packet, sends a reset back to the host, and does not log the event. Additionally,

there is a minor mode - replacing mode, in which a packet is modified if it matches an attack

Univ
ers

ity
 of

 M
ala

ya

 35

signature.

2.7 Comparison of Existing IDS and IPS

Table 2-4 depicts the comparison of existing IDS and IPS.

 Snort Snort-Inline Snort+SnortSam+Cisco
Router (SSCR)

Software Type IDS IPS IPS
Need runs in Gateway? No Yes No
Able to communicate with other
network security hardware?

No No Yes

Intelligent analyze captured
packages?

No No No

Support firewall? No Only IPTable
and IPFW

Yes

Intelligent block intruder’s IP? No No No
Support NAT/PAT? No No No
Need predefined ACL file? --- --- 1 file/router
Need predefined interface name? --- --- Yes
Need predefined ACL name? --- --- Yes
Connection when implement block --- --- 1 connection / router

Table 2-4 Comparison of some Existing IDS and IPS

For Snort, it is a passive system that detects a potential security breach, logs the information,

and signals an alert on the console and or the owner. However, Snort is just an intrusion

detector; it can only detect intruder’s action and trigger an alert. Snort has no any active

response features because Snort is not designed to sit inline with traffic flows and prevent

attacks in real-time, i.e. Snort is just an IDS, which lacks the active response feature. It cannot

be used as an IPS. System administrators must monitor the alerts and block attack manually.

For Snort-Inline, this IPS must run in gateway for performing block request since it can only

communicate with local firewall applications. Additionally, Snort-Inline only supports two

kinds of firewalls - IPTable and IPFW.

For SnortSam, the first disadvantage is that although SnortSam supports many firewalls and

Univ
ers

ity
 of

 M
ala

ya

 36

adds ACL to Cisco routers; it can only apply ACL to predefined interface. Secondly, SnortSam

cannot automatically decide what kind of ACL should be applied to which router or which

interface. SnortSam will try to add the block ACL to all predefined routers even if it is not

necessary. Additionally, SnortSam will send block request to every predefined firewall even the

attack packets are impossible to reach those firewalls. Finally, SnortSam cannot be applied to a

network with NAT/PAT technology as it cannot find real attacker's IP in such NAT/PAT

environment.

2.8 Problems

This section identifies major problems found in existing IDS AND IPS.

The most serious problem of IDS AND IPS is false positive (treats normal traffic as intrusion)

and false negative (fails to indicate intrusion action). Some approaches are already applied to

make detection more accurate, such as continuously rule-update, more accurate pattern/string

matching, multiple detection method applied, and applying neural network and fuzzy logic.

For IDS, detection efficiency is another problem. If IDS cannot process all data in almost

real-time, it is useless. Some researchers already provide many approaches/mechanisms to

increase efficiency in recent years. These include creating a more effective detection engine and

finding more effective detection method.

In addition, as many existing IDS AND IPS run with traditional software-based firewalls, they

almost never or seldom communicate with kernel network devices, such as switches and

routers. It is the main factor that affects efficiency. Because switches and routers are kernel

devices in the network environment, heavy useless malicious traffics can be decreased if

Univ
ers

ity
 of

 M
ala

ya

 37

intrusion traffics are blocked in the switches or routers.

The last problem of current IDS AND IPS is the lack of ability to detect and block intrusion

behaviors coming from internal. There are about 70% attacks originated from inside (FBI,

2006), which means IDS AND IPS should pay more attentions to detect and prevent internal

attacks.

So, this thesis will propose a new automated intrusion prevention mechanism to solve some of

the problems mentioned.

2.9 Summary

This chapter offers an understanding of IDT/IDS, and IPT/IPS. After reviewing current

IDT/IDS and IPT/IPS, some issues and challenges are found. Several problems and

disadvantages of existing IDS AND IPS are also discussed. Most IDS AND IPS in market is

running with traditional software-based firewalls, many of them almost never interact with

network devices such as switches and routers. This research will try to integrate software and

hardware to enhance network security and add intelligent features.

Univ
ers

ity
 of

 M
ala

ya

 38

CHAPTER 3 Analysis And Design

This chapter includes three sections. The first section analyzes the purpose and main conception

of this research and describes the architecture of the proposed automated intrusion prevention

mechanism (AIPM). The second section discusses the design and key components of AIPM.

The third section describes the mechanism.

3.1 Analysis of AIPM

The task of an intrusion prevention system (IPS) is to detect malicious traffic and block it.

Obviously, a typical IPS includes two main components. One is a network traffic sniffer, also

called IDS, which captures network traffic packets and identify whether it is malicious traffic.

Another is prevention processing, which makes decision and block malicious traffics.

The general conception on AIPM is described in the following. The target of this proposed

mechanism is to automatically monitor network and block malicious traffic in Cisco routers on

different network environments. This mechanism can be roughly divided to 3 steps. Firstly, the

network sniffer monitors network traffic and identifies whether it is an intrusion. An alarm will

be triggered when any malicious traffic is found and a block request to the prevention

processing component is sent. Additionally, information of the malicious traffic will also be

sent to the prevention processing component. Secondly, the prevention processing component

analyzes the information of malicious traffic and determines the first router that will establish

connection. This component then analyzes downloaded router's configuration after establishing

a connection and determining the correct router and interface. Finally, correspondent access list

will be added to the interface. Figure 3-1 depicts the use case diagram of AIPM.

Univ
ers

ity
 of

 M
ala

ya

 39

Figure 3-1 Use Case Diagram of AIPM

AIPM can be logically divided into three main components. The first component is the network

traffic sniffer which is in charge of monitoring network and identifying malicious behaviors.

The second component is prevention processing which analyzes intrusion message, determines

location that should be secured and implements prevention. The last component is connection

processing which establishes connections to target routers. Figure 3-2 depicts the three

components of AIPM.
Univ

ers
ity

 of
 M

ala
ya

 40

Figure 3-2 Component Diagram of AIPM

3.2 Design of AIPM

According to previous analysis, AIPM must include three functions. The first function is to

capture network packets. Snort is chosen to satisfy this function. The second function is to

receive block request. SnortSam is chosen to receive block request. The last function is to

implement prevention. A new plug-in will be developed in this work to satisfied this function.

Snort is selected to work as a packet sniffer for these four reasons. Firstly, Snort is perhaps the

best known open source intrusion detection system available. Snort is currently used in many

IDS situations, from small office and home networks to corporate and IT offices worldwide.

Secondly, Snort has been ported to a variety of platforms. Thirdly, many third-party

applications have been engineered around its use. Finally, Snort is actively maintained.

SnortSam is chosen in this work as an intelligent agent to receive block request because

SnortSam has the ability of communicating with Snort and receiving information of captured

Univ
ers

ity
 of

 M
ala

ya

 41

malicious traffic. Figure 3-3 shows the architecture of AIPM.

Figure 3-3 Architecture of AIPM

Apart from employing Snort and SnortSam, a new plug-in is developed to implement

prevention. The new plug-in is in charge of analysis, connection, and prevention. The plug-in

includes five functions. Firstly, the new plug-in downloads running-configure file and routing

table file from Cisco routers and intelligently analyzes it. Secondly, the new plug-in can run

well in almost all environment (include NAT/PAT and static/dynamic route or others

environment). Thirdly, the new plug-in minimizes the synchronization between IPS and

Security devices (Cisco routers), only less predefined information are needed. Fourthly, it

supports managing multiple interfaces (include sub-interfaces) in Cisco routers without any

predefined information. And fifthly, the new plug-in has the capability of automatically

determining the target router and target interface that ACL entry should be applied.

The new plug-in implements all prevention functions after receiving information of captured

malicious traffic packet from SnortSam. The main functions of this plug-in include

1. Initialize according configuration file

Univ
ers

ity
 of

 M
ala

ya

 42

a) Initialize according snortsam.conf file

b) Initialize according /etc/cisconatacl.conf file

2. Communicate with Cisco routers

a) Download running-config file

b) Download routing table file

c) Download NAT/PAT pool file

d) Apply new ACL to the target router by uploading modified running-config or sending

config commands to the router

3. Analyze downloaded configuration file

a) Analyze downloaded running-config file

b) Analyzed download routing table file

c) Analyzed download NAT/PAT pool file

4. Create new ACL entry

5. Check whether ACL exists in the target router

6. Modify downloaded running-config file

7. Implement block intruder action

Every function should be achieved in one or more functions in the development phase.

Univ
ers

ity
 of

 M
ala

ya

 43

Figure 3-4 Sample of Network Environment

Figure 3-4 shows a sample of network environment that AIPM runs. In particular, one intruder

starts the attack from an inside LAN, then the IDS catches the attack packets and finds its match

with an intrusion signature. If an attack is found in the network, an alert will be trigged to ask

the IPS to block the intruder’s IP in one of the routers.

There are three questions that need to be addressed, however. First, what is the real IP of the

attacker? Second, which router should be secured? Third, which interface should be secured?

Solving these three problems can be challenging due to different network environment.

3.2.1 Key Components of AIPM

The new plug-in, namely CiscoNATACL, includes these components:

1. CiscoNATACLInit:

➢ A component that initializes some arguments and parameters

Univ
ers

ity
 of

 M
ala

ya

 44

2. CiscoNATACLParse:

➢ A component that parses the CiscoNATACL statement in SnortSam.conf file

➢ Gets IP, telnet/enable password, name of ACL configuration file, and more

information of the router

3. CiscoNATACLBlock:

➢ A component that will be performed after SnortSam receives a block request

and tries to make a block IP action

➢ Enter point of the plug-in

4. CISCONATACLRunningDownload:

➢ A component that downloads running-configure file and routing table from

routers to the local TFTP direction

5. CiscoNATACLRunningParse:

➢ A component that opens downloaded running-configure file and routing table,

then reads the file line by line to memory

6. CiscoNATACLRunningParseLine:

➢ A component that parses a line content from downloaded running-configure file

➢ Analyzes the running-configure file and gets all information needed.

7. CiscoNATACLPoolDownload:

➢ A component that downloads the NAT pool from a router to the TFTP

direction.

8. CiscoNATACLPoolParse:

➢ A component that opens downloaded pool file and reads data line by line for

analyzing purposes

9. CiscoNATACLPoolParseLine:

➢ A component that parses a line content of downloaded pool file

➢ Compares the block IP with data from the NAT pool and decides the real block

Univ
ers

ity
 of

 M
ala

ya

 45

IP

10. CiscoNATACLRouteDownload:

➢ A component that downloads the IP route table record file from routers

11. CiscoNATACLRouteParse:

➢ A component that opens downloaded IP route table record file and reads data

line by line for analyzing purposes

12. CiscoNATACLRouteParseLine:

➢ A component that parses a line content of downloaded IP route table record file

➢ Compares the block IP with IP route records and finds the correct interface or

correct routers

13. CiscoNATACLCreateACL:

➢ A component that creates ACL entry and applies it to router if there is no any

ACLs exist in the correct interface

14. CiscoNATACLCheck:

➢ A component that checks whether the new ACL has already existed or applied

to the router before.

15. CiscoNATACLRunningModify:

➢ A component that handles modifying downloaded running-configure file by

adding new ACLs to the file

16. CiscoNATACLsendreceive:

➢ A component that handles communication with routers, such as

downloading/uploading the running-configure file, telnet and perform

commands

 17. GetIPFromPrefix

➢ A routine that gets IP addresses from the prefix form.

 18. cisconatconfparsefile

Univ
ers

ity
 of

 M
ala

ya

 46

➢ A routine that parses /etc/cisconatacl.conf file.

➢ Gets gateway router's information and tftp server information

 19. cisconatconfparseline

➢ A routine that parses a line of the /etc/cisconatacl.conf file

➢ Gets gateway router's information and TFTP server information

Figure 3-5 Key Components in AIPM

Figure 3-5 depicts the key components of AIPM and describes their relationships. These key

components can be roughly grouped into seven main parts.

The first main part is “Running-config file processing”. This part includes 3 components -

CISCONATACLRunningDownload, CISCONATACLRunningParse, and

Univ
ers

ity
 of

 M
ala

ya

 47

CISCONATACLRunningParseline. This part downloads and analyzes the running-config file

from Cisco routers. The downloading purposes are achieved by sending this command: “show

running-config | tee <tftp_ip_address>”, where <tftp_ip_address> is the IP address of the TFTP

server. Following is the sample code:

snprintf(msg, sizeof(msg)-1, " show running-config | tee %s", tftpAddressRun);
 if(CISCONATACLsendreceive(cisconataclsocket, msg, "#"))
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }

The second main part is “Routing-table file processing”. This part is composed with

CISCONATACLRouteDownload, CISCONATACLRouteParse, GetIPFromPrefix and

CISCONATACLRouteParseLine. This part downloads and analyzes the routing table file from

the Cisco router. The routing table is retrieved by this command: “show ip route | tee

<tftp_ip_address>”, where <tftp_ip_address> is the IP address of the TFTP server.

GetIPFromPrefix is a routine that gets the IP address from the prefix form. The sample code is

showed bellow.

snprintf(msg, sizeof(msg)-1, "show ip route | tee %s", tftpAddressRouting);
 if(CISCONATACLsendreceive(cisconataclsocket, msg, "#"))
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }

The third main part is “NAT/PAT Pool file processing”, which is composed of

CISCONATACLPoolDownload, CISCONATACLPoolParse and

CISCONATACLPoolParseLine. This part downloads and analyzes the NAT/PAT pool file

from the Cisco router. The NAT/PAT pool is downloaded from the Cisco router via this

Univ
ers

ity
 of

 M
ala

ya

 48

command: “show ip nat translate | tee <tftp_ip_address>”, where <tftp_ip_address> is the IP

address of the TFTP server.

snprintf(msg, sizeof(msg)-1, "show ip nat translate | tee %s", tftpAddressPool);
 if(CISCONATACLsendreceive(cisconataclsocket, msg, "#"))
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }

The fourth main part is “Initial information processing”, which includes CISCONATACLInit,

CISCONATACLParse, ciscoconfparsefile, and ciscoconfparseline to read and analyze AIPM

configurations. Initially, ciscoconfparsefile and ciscoconfparseline was not created in the

design phase; all information are predefined and stored in a MYSQL database. However, any

changes in the router’s configuration during running time will render the information in the

database to be outdated. Hence, ciscoconfparsefile and ciscoconfparseline are designed to

process less predefined information. This mechanism helps minimize the synchronization

between IDS AND IPS and Cisco routers.

The CISCONATACLParse function parses the IP address, telnet/enable password, ACL

configure file, etc. That information will be stored in a structure – CISCOACLDATA, which is

defined in plug-in.

 typedef struct _ciscoacldata /* List of ciscoacl routers */
 {
 struct in_addr ip;
 char username[CISCOACLPWLEN+2];
 char telnetpw[CISCOACLPWLEN+2];
 char enablepw[CISCOACLPWLEN+2];
 char aclfile[CISCOACLFILELEN+2];
 }CISCOACLDATA;

At the same time, the information is stored in a linked list

 typedef struct _ciscoaclrouter /*list of router information*/

Univ
ers

ity
 of

 M
ala

ya

 49

 {
 struct in_addr ip;
 char username[CISCONATACLPWLEN+2];
 char telnetpw[CISCONATACLPWLEN+2];
 char enablepw[CISCONATACLPWLEN+2];
 struct _ciscoaclrouter *next;
 } CISCOACLROUTER;

At the initialization phase, configure file “/etc/cisconatacl.conf” is read and parsed. Predefined

gateway router's information (IP address, telnet password etc.) and the TFTP server

information (Running-config file, pool file and routing file) are loaded and analyzed.

The fifth main part is “Add ACL processing”. This part includes CISCONATACLCreateACL

and CISCONATACLRunningModify. It is in charge of adding ACL entries to Cisco routers

with two methods. CISCONATACLCreateACL connects to Cisco router and sends a serial

config commands to create new ACLs to be applied to target router.

CISCONATACLRunningModify modifies the downloaded running-config file and adds new

ACLs in appropriate positions.

The sixth main part is “connection processing”, which consists of CISCONATACLsendreceive

to communicate with Cisco routers. All communication between IPS and Cisco routers must

call this function. Below is the sample code to establish a connection to a Cisco router.

/* do simple authentication with password */
printf("\ndo simple authentication with password");

 if(CISCONATACLsendreceive(cisconataclsocket, "", "Password: "))
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }
 if(CISCONATACLsendreceive(cisconataclsocket, cisconataclptr_temp->telnetpw, ">"))
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;

Univ
ers

ity
 of

 M
ala

ya

 50

 }
if(CISCONATACLsendreceive(cisconataclsocket, "enable", "Password: "))

 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }
 if(CISCONATACLsendreceive(cisconataclsocket, cisconataclptr_temp->enablepw, "#")
)
 {
 closesocket(cisconataclsocket);
 ErrorFlag=1;
 return;
 }
 /* A Telnet connection has been established */
 printf("\nalready connected to cisco router\n");

The last part is “prevention process”. This part includes CISCONATACLBlock and

CISCONATACLCheck. CISCONATACLBlock is in charge of preventing malicious traffic; it

is the core component in AIPM. CISCONATACLCheck is responsible for checking whether

the same ACL exists in the target interface.

3.3 AIPM

This section attempts to address these questions: “how to decide which router should be

secured?”, and “how to decide which interface should be secured?”

Essentially, AIPM is divided into 5 layers. Figure 3-6 depicts these layers. The first layer is

Initialize Layer, in which all necessary data are initialized and structured. IDS and IPS also

establish connections in this layer. The second layer is Capturing Layer, in which IDS (Snort in

AIPM) captures attacker’s packets. The third layer is Analysis and Determination Layer – the

most important layer in the whole system. This layer analyzes data retrieved from security

devices and determines the target router, the target interface, an ACL name, and so on. The

fourth layer is Blocking Layer. This layer implements a block request to target network security

Univ
ers

ity
 of

 M
ala

ya

 51

device. Connect Layer, the last layer, implements all network connections.

Figure 3-6 Layers of AIPM

Univ
ers

ity
 of

 M
ala

ya

 52

Figure 3-7 Active Diagram of CiscoNATACL Plug-In

Univ
ers

ity
 of

 M
ala

ya

 53

Figure 3-7 shows the active diagram of the CiscoNATACL plug-in. When SnortSam is started,

SnortSam opens and parses the configuration file—“SnortSam.conf”. As soon as the configure

line of CiscoNATACL is parsed, the CiscoNATACLParse function of the plug-in will be

called.

At the initialization phase, configure file “/etc/cisconatacl.conf” is read and parsed. Predefined

gateway router's information (IP address, telnet password, etc.) and TFTP server information

(Running-config file, pool file and routing file) are loaded and analyzed.

After all information are read and initialized, the plug-in is ready to receive blocking requests.

When SnortSam receives a block request from a valid Snort sensor, the function of

CiscoNATACLBlock will be called. A structure about block packet is passed to the plug-in at

the same time. The structure is defined in SnortSam.h file.

 Typedef struct _blockinfo /* Block info structure */
 {
 unsigned long sig_id; /* Snort Signature ID (for logging/presentation) */
 unsigned long blockip;/* IP to be blocked */
 unsigned long peerip; /* Peer IP (if connection) */
 time_t duration; /* Duration of block */
 time_t blocktime; /* Time when block started */
 unsigned short port; /* Port (if connection) */
 unsigned short proto; /* Protocol (if connection) */
 unsigned short mode; /* Blocking mode(src, dst, connection) */
 short block; /* block or unblock flag--this flag is dynamically changed */
 } BLOCKINFO;

Intrusion IP can be divided into three types: the first type is a private IP used in a LAN, the

second type is inside public IP which is used in a LAN, and the last type is outside public IP

which is used in the Internet. Following sections will discuss AIPM according to the type of

intrusion IP.

Univ
ers

ity
 of

 M
ala

ya

 54

3.3.1 Intrusion IP Is Private IP

When intrusion IP is a private IP, AIPM will connect to the router according to the

configuration in /etc/snortsam.conf and will download the routing table file from the connected

router. The downloaded routing table will be analyzed by AIPM to try to find a record of

directly connected router by comparing with the intrusion IP. If no such record exists, AIPM

will terminate. If a routing record matches the intrusion IP but it does not correspond to a

directly connected router, AIPM will try to connect to the next router and repeat the same

process until a match of directly connected router is found. When this match is found from a

router, AIPM will determine how to block intrusion by downloading the running-config file

and analyzing it. If there is no ACL exists at the target interface, AIPM will establish a

connection and send a command to add new ACLs. Otherwise, AIPM will modify the

downloaded running-config file and add an ACL entry. AIPM then establishes a connection to

the target router and send a command to clean the old ACL. Finally, AIPM uploads the

modified running-config file back to the target router.

3.3.2 Intrusion IP Is Inside Public IP

When intrusion IP is an inside public IP, AIPM will connect to the gateway router that is

already defined in /etc/cisconatacl.conf. This piece of information needs to be pre-defined as

AIPM does not know whether the IP is used in a LAN or WAN. AIPM will download the

routing table file from the gateway router and analyze it. If there is no record matched with

intrusion IP, AIPM is stopped. Otherwise, if the IP of the next hop is found and it matches with

the IP of a router that is defined in /etc/snortsam.conf, AIPM will connect to the target router

according the value of next hop. The NAT/PAT pool will be downloaded from the target router

for analysis purposes. If a matched IP is found from the pool, which means the intrusion IP

Univ
ers

ity
 of

 M
ala

ya

 55

belongs to NAT, then the intrusion IP is changed to a real IP. The subsequent process will

continue as that of the process when the intrusion IP is a private IP. If there is no matched record

in the NAT/PAT pool, AIPM will download routing the table file from the target router and

analyze it. If there is no matched record found, AIPM exits. Otherwise, if the matched record

corresponds to directly connected router, following processing is same with that when the

intrusion IP is a private IP, or AIPM will connect to another router according to the next hop

value. The previous process is repeated until a directly connected router is found.

3.3.3 Intrusion IP Is Outside Public IP

When the intrusion IP is an outside public IP, AIPM will connect to the gateway router that is

already defined in /etc/cisconatacl.conf. Again, AIPM will download the routing table file from

the gateway router and analyze it. For a matched record found, the value of next hop is not

defined in the configuration file since the intrusion IP is outside public IP. AIPM will establish

a new connection to the gateway router. Subsequent process will continue as that when the

intrusion IP is a private IP.

3.4 Summary

This chapter provides an overview of how the system is analyzed and how the system runs; a

detailed analysis of AIPM is covered too. The whole system is analyzed and developed in real

network environment. Building on top of the SnortSam and Snort, a new plug-in is added to

improve functions. AIPM integrates Snort, SnortSam, and network security devices to become

an IDS AND IPS.

Univ
ers

ity
 of

 M
ala

ya

 56

Chapter 4 System Development and Testing

This chapter describes key components of AIPM, followed by functions testing. Function

testing is important to ensure that the code and protocol requirements are implemented as

expected. The testing carried out herein is classified mainly into unit testing and integrating

testing. Unit testing verified the correctness of individual modular functions, while the

integration testing combines all functions to test the system as a whole.

4.1 Development Environment

Table 4-1 depicts development environment.

 Development Environment
Operating System GNU/Linux Slackware11.0
Programming Language ANSI C

Compiler GCC v4.12

Model of Cisco Router Cisco 2600 serials

Model of Cisco Switch Cisco 2950 serials

Computer Dell 2600 serials

RAM 512MB DDR

Table 4-1 Environment of Development

AIPM is developed by using ANSI C language in GNU/Linux operating system. A GNU/Linux

distribution - Slackware is chosen as the development platform. Five Cisco 2600 routers and

one Cisco switch are used in developing phase. All computers are Dell 2600 serials.

Univ
ers

ity
 of

 M
ala

ya

 57

4.2 Unit Test

The key components of AIPM are classified into seven main parts (see Section 3.2.1). These

parts were tested individually. All units run in individual programs are fed with necessary data

to test and compare with expected results. If the testing results match with expected results, the

components pass the unit test.

4.2.1 Unit Test 1 - Initial Information Processing

Unit Test 1 tests “Initial information processing” which includes four

components—CISCONATACLInit, CISCONATACLParse, ciscoconfparsefile, and

ciscoconfparseline. The responsibility of these components is to read and analyze information

in the system configuration file.

4.2.1.1 CISCONATACLInit, ciscoconfparsefile and ciscoconfparseline

CISCONATACLInit function is the first function called by the main() function of SnortSam

when it encounters a plug-in in the configuration file. The function returns either TRUE or

FALSE, indicating a successful or unsuccessful initialization. If the function returns FALSE,

SnortSam will disable the plug-in. The parameter is a pointer to the first element in the

device/parameter list configuration file. This function has two missions; the first mission is to

allocate memory for four link lists. The codes are showed below:

 RouterData=malloc(sizeof(CISCOACLROUTER));
 RouterData->next=NULL;
 CurrentRouter=malloc(sizeof(CISCOACLROUTER));
 CurrentRouter=RouterData;
 ACLData=malloc(sizeof(CISCOACL));
 ACLData->next=NULL;

Univ
ers

ity
 of

 M
ala

ya

 58

 CurrentACL=malloc(sizeof(CISCOACL));
 CurrentACL=ACLData;

The second is to process /etc/cisconatacl.conf file by calling function cisconatconfparsefile().

The cisconatacl.conf file includes some predefined information of the gateway router.

Figure 4-1 Testing Environment of Unit Test 1

Figure 4-1 shows the testing environment of Unit Test 1. In this test, CISCONATACLInit takes

responsibility for initializing data and calling cisconatconfparsefile to read /etc/cisconatacl.conf

file. Cisconatconfparseline take responsibility for analyzing /etc/cisconatacl.conf file. A sample

of the config file is showed below.

#Gateway router's information

 #sample:
 GatewayRouterIP 192.168.0.210
 GatewayRouterTelnetPW cisco
 GatewayRouterEnablePW cisco
 OutsidePublicInterfaceName f0.101

 #Tftp server information
 #Sample:
 tftpAddressRun tftp://202.185.109.170/run
 tftpAddressPool tftp://202.185.109.170/pool
 tftpAddressRouting tftp://202.185.109.170/routing
 Univ

ers
ity

 of
 M

ala
ya

 59

Table 4-2 depicts the expected output in this unit test.

Expected result
1. Successfully open and read config file
2. Successfully analyze config file and assign values to arguments
3. Print all information that receive from /etc/cisconatacl.conf, output should be same with
config file

Table 4-2 Expected Output of Unit Test 1.1

Testing result:
Initializing plugin 'cisconatacl'...
Parsing config file /etc/cisconatacl.conf...
the 1 loop
 buf=
 cfgfile=/etc/cisconatacl.conf
 line=1

the 2 loop
 buf=
 cfgfile=/etc/cisconatacl.conf
 line=2

the 3 loop
 buf=GatewayRouterIP 202.185.109.173
 cfgfile=/etc/cisconatacl.conf
 line=3
start call parseline function
Start parse line.......
the hole arg is: GatewayRouterIP 202.185.109.173
finishe 1 line parse
(…………overleap…………..)
>>>>>>>>>>>>>Start Gateway router's Information<<<<<<<<<<<<<<<<<
the Gateway's ip is 202.185.109.173
the GatewayRouterTelnetPW is cisco
the GatewayRouterEnablePW is cisco
the OutsidePublicInterfaceName is f0.101
the tftfAddressRun is tftp://202.185.109.170/run
the tftfAddressPool is tftp://202.185.109.170/pool
the tftfAddressRouting is tftp://202.185.109.170/routing
>>>>>>>>>>>>>>End Gateway router's Information<<<<<<<<<<<<<<<<<

Table 4-3 Testing Result of Unit 1.1

Table 4-3 shows the testing result, which verifies that the components has successfully

opened/read config file and analyzed the file, and successfully assigned values to arguments.

Since the output is same with that defined in config file, the unit test passed.

Univ
ers

ity
 of

 M
ala

ya

 60

4.2.1.2 CISCONATACLParse

The CISCONATACLParse component of “Initial Information Processing” parses

CiscoNATACL statements in the snortsam.conf file. One example is showed below.

cisconatacl 202.185.109.171 cisco1 cisco2
cisconatacl 202.185.109.172 cisco1 cisco2
cisconatacl 202.185.109.173 cisco1 cisco2

“cisconatacl” tells SnortSam to use the plug-in; 202.185.109.171 is the IP of the target router;

the string cisco1 is the telnet password; cisco2 is the enable password. This unit test used the

same environment as the previous unit test. The expected output is showed in Table 4-4.

Expected result:
1. Successfully link cisconatacl plug-in
2. Successfully read data from snortsam.conf
3. Output should be same with defined in snortsam.conf

Table 4-4 Expected Output of Unit Test 1.2

Testing result:
Parsing config file /etc/snortsam.conf...
Linking plugin 'cisconatacl'...
(…………overleap…………..)
Plugin Parsing...
the cisconataclip.s_addr arg is: -1418872374
the IP arg is: 202.185.109.171
the RouterData->telnetpw arg is: cisco1
the RouterData->enablepw arg is: cisco2
the RouterCounter is 1
Plugin Parsing...

the cisconataclip.s_addr arg is: -1402095158
the IP arg is: 202.185.109.172
the RouterData->telnetpw arg is: cisco1
the RouterData->enablepw arg is: cisco2
the RouterCounter is 2
Plugin Parsing...

the cisconataclip.s_addr arg is: -1385317942
the IP arg is: 202.185.109.173
the RouterData->telnetpw arg is: cisco1

Univ
ers

ity
 of

 M
ala

ya

 61

the RouterData->enablepw arg is: cisco2
the RouterCounter is 3

Table 4-5 Testing Result of Unit Test 1.2

Table 4-5 shows the test result of Unit Test 2. This result shows that the component has

successfully linked cisconatacl plug-in and read data from snortsam.conf. The output of the unit

test is the same with that defined in snortsam.conf; the unit test passed.

4.2.2 Unit Test 2 - Running-Config File Processing

“Running-config file processing” includes three functions:

CISCONATACLRunningDownload, CISCONATACLRunningParse, and

CISCONATACLRunningParseline. Testing of “Running-config file processing” will be

divided into two unit tests. One is to download running-config file -

CISCONATACLRunningDownload testing, another is to parse downloaded running-config

file — CISCONATACLRunningParse and CISCONATACLRunningParseline testing. Figure

4-2 shows the testing network environment.

Figure 4-2 Testing Environment of Unit Test 2

Univ
ers

ity
 of

 M
ala

ya

 62

4.2.2.1 CISCONATACLRunningDownload

This function establishes connections to target routers and downloads the respective

running-config file. The expected output of this unit test is showed in Table 4-6.

Expected result
1. Successfully connect to target router
2. Successfully download running-config file and save to target TFTP server

Table 4-6 Expected Result of Unit Test 2.1

Testing output:
==========Start download Running- config file==========
Finished creat and bind socket, then try to connect
Connected to=202.185.109.171
Connected to cisconatacl at 202.185.109.171.
do simple authentication with password

Receiving: --Password: --

Sending:cisco1

Receiving: -->--

Sending:enable

Receiving: --Password: --

Sending:cisco2

Receiving: --#--

already connected to cisco router

Sending:show running-config | tee tftp:// 202.185.109.170/run

Receiving: --#--

Table 4-7 Testing Result of Unit Test 2.1

The result of this unit testing output is showed in Table 4-7. It is shown that the function has

successfully connected to the target router and entered into the TFTP folder. A file named “run”

is found, in which the content of this file is identical to the running-config file in the target

router. This means that the function has successfully downloaded running-config file and saved

Univ
ers

ity
 of

 M
ala

ya

 63

the file to the target TFTP server. This unit test passed.

4.2.2.2 CISCONATACLRunningParse and CISCONATACLRunningParseline

These two functions open/read information from the downloaded running-config file and

analyze it. The testing environment is the same with the CISCONATACLRunningDownload

test. Table 4-8 shows the expected result. The feeding data is the downloaded running-config

file in the previous unit test.

Expected result:
1.Successfully open and read downloaded running- config file
2.Correctly analyze downloaded running-config file and assign values to arguments

Table 4-8 Expected Result of Unit Test 2.2

Testing result:
==========Parsing running-config file /tftpboot/run...==========
 (…………overleap…………..)
This is 10 loop
 buf=interface FastEthernet0
 cfgfile=/tftpboot/run
 line=39
start call parseline function
Start parse line.......
the whole arg is: interface FastEthernet0
finish 10 line parse
The correct interface name is : FastEthernet0
This is 11 loop
 buf=ip address 202.185.109.171 255.255.255.0
 cfgfile=/tftpboot/run
 line=41
start call parseline function
Start parse line.......
the whole arg is: ip address 202.185.109.171 255.255.255.0
finish 11 line parse
(…………overleap…………..)

Table 4-9 Testing Results of Unit Test 2.2

Table 4-9 shows the testing results - these functions have successfully opened/read downloaded

running-config file, analyzed data, and has assigned to arguments. This unit test passed.

Univ
ers

ity
 of

 M
ala

ya

 64

4.2.3 Unit Test 3 - Routing-Table File Processing

As in Unit Test 2, Unit Test 3 is also divided into to two unit tests: one is to download the

routing table file (CISCONATACLRouteDownload), and another is to analyze the downloaded

routing table file (CISCONATACLRouteparse and CISCONATACLRouteparseline). The

testing environment used in this unit test is showed in Figure 4-3.

Figure 4-3 Testing Environment of Unit Test 3

4.2.3.1 CISCONATACLRouteDownload

This function takes the responsibility for downloading the routing table file and saving it to a

TFTP server. The expected result is showed in Table 4-10.

Expected Result:
1.Successfully connect to target router

Univ
ers

ity
 of

 M
ala

ya

 65

2.Successfully download routing table file and save to target TFTP server
Table 4-10 Expected Result of Unit Test 3.1

Testing Result:
==========Start download Routing file==========
Connected to cisconatacl at 202.185.109.171.
do simple authentication with password
Receiving: --Password: --

Sending:cisco

Receiving: -->--

Sending:enable

Receiving: --Password: --

Sending:cisco

Receiving: --#--

already connected to cisco router

Sending:show ip route | tee tftp://202.185.109.170/routing

Receiving: --#--

Table 4-11 Testing Result of Unit Test 3.1

Table 4-11 shows the testing result of the CISCONATACLRouteDownload unit test, in which

the function has successfully connected to the target router, and has entered into the TFTP

folder to find a file named “routing”. The content of this file is the same as the output of the

“show ip route” command. This signifies that the unit test passed.

4.2.3.2 CISCONATACLRouteparse and CISCONATACLRouteparseline

CISCONATACLRouteparse and CISCONATACLRouteparseline open/read downloaded the

routing table file and analyze it. Table 4-12 shows the expected result of this unit test. The

feeding data is the downloaded routing table file in the previous unit test.

Univ
ers

ity
 of

 M
ala

ya

 66

Expect Result:
1.Successfully open and read downloaded running- config file
2.Correctly analyze downloaded running- config file and assign values to arguments

Table 4-12 Expected Result of Unit Test 3.2

Testing result:
==========Parsing Routing Table file /tftpboot/routing...==========
(…………overleap…………..)
the 4 Line
 buf=
 cfgfile=/tftpboot/routing
 line=4

the 5 Line
 buf=R 202.185.101.0/24 [120/1] via 202.185.109.172, 00:00:01,
FastEthernet0.101
 cfgfile=/tftpboot/routing
 line=5
start call parseline function
Start parse line.......
the whole arg is: R 202.185.101.0/24 [120/1] via 202.185.109.172, 00:00:01,
FastEthernet0.101
the ip is 202.185.101.0

submask is 255.255.255.0
Blockip is 16777215l
NextHop is 202.185.109.171

Found is 1

finished 5 line parse
(…………overleap…………..)

Table 4-13 Testing Result of Unit Test 3.2

Table 4-13 shows the testing result, that is, the two functions has successfully opened/read and

analyzed the downloaded routing table file. The testing result is the same with the expected

result, which means the unit test passed.

4.2.4 Unit Test 4 - NAT/PAT Pool File Processing

Unit Test 4 is similar to the previous unit test of “Running-config processing”. This unit test is

divided into to two unit tests, one is to download the NAT/PAT pool file

Univ
ers

ity
 of

 M
ala

ya

 67

(CISCONATACLPoolDownload), while another is to analyze the downloaded routing table

file (CISCONATACLPoolparse and CISCONATACLPoolparseline). The test environment is

showed below.

Figure 4-4 Testing Environment of Unit Test 4

4.2.4.1 CISCONATACLPoolDownload

CISCONATACLPoolDownload take the responsibility for downloading the NAT/PAT pool

file from the target router. Table 4-14 shows expected result.

Expected result:
1.Successfully connect to target router
2.Successfully download NAT/PAT pool file and save to target TFTP server

Table 4-14 Expected Result of Unit Test 4.1

Testing result:
Finished creat and bind socket, then try to connect
Connected to=202.185.109.171
Connected to cisconatacl at 202.185.109.171.
do simple authentication with password
Receiving: --Password: --

Sending:cisco1

Receiving: -->--

Sending:enable

Receiving: --Password: --

Univ
ers

ity
 of

 M
ala

ya

 68

Sending:cisco2

Receiving: --#--

already connected to cisco router

Sending:show ip nat translate | tee tftp:// 202.185.109.170/pool

Receiving: --#--

Table 4-15 Testing Result of Unit Test 4.1

Table 4-15 shows the testing result: the function has successfully connected to the target router,

and has entered into the TFTP folder to look for a file named “pool”. As the content of the file is

the same with the output command “show ip nat translate” command, the unit test succeeded.

4.2.4.2 CISCONATACLPoolParse and CISCONATACLPoolParseLine

These two functions handle the operation of opening/reading the downloaded NAT/PAT pool

file and analyzing it. Table 4-16 shows the expected result of these two functions. The feeding

data is taken from the downloaded NAT/PAT pool file in the previous unit test.

Expect Result:
1.Successfully open and read downloaded NAT/PAT pool file
2.Correctly analyze downloaded NAT/PAT pool file and assign values to arguments

Table 4-16 Expect Result of Unit Test 4.2

Testing result:
==========Parsing running-config file /tftpboot/pool...==========
 (…………overleap…………..)
This is 2 loop
 buf= --- 202.185.110.1 202.185.109.170 --- ---
 cfgfile=/tftpboot/run
 line=2
start call parseline function
Start parse line.......
the whole arg is: --- 202.185.110.1 202.185.109.170 --- ---
the inside global ip is 202.185.110.1
the inside local ip is 202.185.109.170

Univ
ers

ity
 of

 M
ala

ya

 69

finish 2 line parse
(…………overleap…………..)

Table 4-17 Testing Result of Unit Test 4.2

As can be seen in Table 4-17 which shows the testing result of this unit test, the unit test

succeeded; these two functions has successfully opened/read downloaded NAT/PAT pool file

and has correctly analyzed it.

4.2.5 Unit Test 5 - “Add ACL entry processing”

This unit includes two functions testing of CISCONATACLCreateACL and

CISCONATACLRunningModify. The unit test will use the testing environment shows in

Figure 4-4.

4.2.5.1 CISCONATACLCreateACL

This function creates a new ACL at the target interface when there is no any ACL at the target

interface. Table 4-18 shows the data fed to this function, whereas Table 4-19 shows the

expected result.

Feeding Data:
Intruder's IP: 192.168.1.2
Target Interface: FastEthernet0

Table 4-18 Feeding Data for Unit Test 5.1

Expected result
1. Successfully connect to target router
2. Correctly add ACL entry in target interface

Table 4-19 Expected Result of Unit Test 5.1

Univ
ers

ity
 of

 M
ala

ya

 70

Testing result:
Connected to cisconatacl at 202.185.109.171
do simple authentication with password

Receiving: --Password: --

Sending:cisco

Receiving: -->--

Sending:enable

Receiving: --Password: --

Sending:cisco

Receiving: --#--

Sending:config t

Receiving: --#--

Sending:ip access-list extended CiscoNATACLFastEthernet0

Receiving: --#--

Sending:deny ip host 192.168.1.2 any

Receiving: --#--

Sending:permit ip any any

Receiving: --#--

Sending:exit

Receiving: --#--

Sending:int FastEthernet0

Receiving: --#--

Sending:ip access-group CiscoNATACLFastEthernet0 in

Receiving: --#--

Sending:exit

Receiving: --#--

Table 4-20 Testing Result of Unit Test 5.1

Univ
ers

ity
 of

 M
ala

ya

 71

Table 4-20 shows testing result of this unit test. The function has successfully connected to the

target router and correctly added an ACL entry to the target interface. The ACL named

CiscoNATACLFastEthernet0 is found in the target router after running of this function. This

unit test is successful.

4.2.5.2 CISCONATACLRunningModify

This function is responsible for adding a new ACL entry by modifying the downloaded

running-config file and updating it to the target router when there are ACLs exist at the target

interface. Table 4-21 shows the feeding data to the function, and Table 4-22 shows the expected

result.

Feeding data:
Intruder's IP: 192.168.1.2
Target Interface: FastEthernet0
Existing ACL name: denytest
Existing ACL entry: deny ip host 192.168.1.5 any
 permit ip any any

Table 4-21 Feeding Data for Unit Test 4.3

Expected result
1. Successfully open/read downloaded running-config file
2. Correctly add new ACL entry to correct position.

Table 4-22 Expected Result of Unit Test 4.3

Testing result:
>>>>>>>>>>>>START TO MODIFT RUNNING-CONFIG FILE<<<<<<<<<<<<<<<<<<
InsertFileLineIndex=78
Already insert message
msg is copy tftp://202.185.109.170/run running-config

Table 4-23 Testing Result of Unit Test 4.3

The testing result is shown in Table 4-23. After finish running this function, a new ACL entry

“deny ip host 192.168.1.2 any” has been added to the top of denytest ACL. The new ACL will

Univ
ers

ity
 of

 M
ala

ya

 72

be

 ip access-list extended denytest
 deny ip host 192.168.1.2 any
 deny ip host 192.168.1.5 any
 permit ip any any

Obviously, the testing result matches with the expected result. This function has successfully

opened/read the downloaded running-config file, and intelligently added new ACL entries to

the correct position. This unit test is successful.

4.2.6 Unit Test 6 - Connection Processing

This unit test includes only one function - CISCONATACLsendreceive. This function sets up

connections between IPS and Cisco routers. The testing environment is showed in Figure 4-6.

Table 4-24 shows the corresponding feeding data.

Feeding Data:
IP of Target router: 202.185.109.171
telnet password:cisco1
enable password: cisco2
tftp server:202.185.109.170
sent Command: show running-config | tee tftp://202.185.109.170/run

Table 4-24 Feeding Data for Unit Test 6

Expected Result:
1. Successfully connect to target router
2. Successfully run command in router
3.Successfully receive data send from router

Table 4-25 Expected Result of Unit Test 6

Testing result:
Connected to cisconatacl at 202.185.109.171

do simple authentication with password
Receiving: --Password: --

Univ
ers

ity
 of

 M
ala

ya

 73

Sending:cisco1

Receiving: -->--

Sending:enable

Receiving: --Password: --

Sending:cisco2

Receiving: --#--

Sending:config t

Receiving: --#--

already connected to cisco router
Sending:show running-config | tee tftp://202.185.109.170/run
Receiving: --#--

Table 4-26 Testing Result of Unit Test 6

The testing result is showed in Table 4-26. After running this function, a downloaded file

named “run” is found in the TFTP directory. The file “run” is sent by a Cisco router and is

received via this function. The testing result shows that this function has successfully connected

to the Cisco router by using the Telnet protocol, and has successfully received data sent from

the Cisco router by the run command. This unit test is successful.

4.2.7 Unit Test 7 - ACL Checking

Unit Test 7 tests CISCONATACLCheck, with the feeding data showed in Table 4-27 and the

expected result showed in Table 4-28.

Feeding Data
Checked ACL entry: deny ip host 192.168.0.2 any
Running- config-1 include this ACL entry
Running- config-1 does not include this ACL entry

Table 4-27 Feeding Data for Unit Test 7

Univ
ers

ity
 of

 M
ala

ya

 74

Excepted result
1. return Present=0 when check running-config-1 file
2. return Present=1 when checn running-config-2 file

Table 4-28 Expected Result of Unit Test 7

Testing result of checking running-config-1
>>>>>>>>>>>>>Start checking<<<<<<<<<<
CheckedACL=deny ip host 192.168.0.2 any
Checkedfile= running-config-1
Present =0
>>>>>>>>>>>>>End checking<<<<<<<<<<

Testing result of checking running-config-2
>>>>>>>>>>>>>Start checking<<<<<<<<<<
CheckedACL=deny ip host 192.168.0.2 any
Checkedfile= running-config-2
Present =1
>>>>>>>>>>>>>End checking<<<<<<<<<<

Table 4-29 Testing Result of Unit Test 7

The testing result of this unit test 7 is showed in Table 4-29. The match of the testing results and

the expected result signifies that the unit test is successful.

4.3 Integration Testing

Following the unit testing, integration testing is of paramount importance. If the interaction

among most of individual functions is not controlled properly, unexpected results behind the

scenes could easily lead to catastrophes in the running phase. In this section, the integration test

cases embrace three situations: (i) the IP address of the intruder belongs to a private IP, (ii) the

IP belongs to an outside public IP, (iii) the IP belongs to an inside public IP. Figure 4-5 depicts

the topology used in each of the test case.

Univ
ers

ity
 of

 M
ala

ya

 75

Figure 4-5 Topology Used for the Test Cases in the Integration Testing

Table 4-30 shows the general configuration for the test cases.

Snortsam.conf /etc/cisconatacl.conf

#cisconatacl <ip> <telentpw> <enablepw>
cisconatacl 202.185.109.1 cisco cisco
cisconatacl 202.185.109.2 cisco cisco
cisconatacl 202.185.109.3 cisco cisco

#Gateway router's information
GatewayRouterIP 202.185.109.3
GatewayRouterTelnetPW cisco
GatewayRouterEnablePW cisco
OutsidePublicInterfaceName f0.101
#Tftp server information
tftpAddressRun tftp://202.185.109.170/run
tftpAddressPool tftp://202.185.109.170/pool
tftpAddressRouting
tftp://202.185.109.170/routing

Table 4-30 General Configurations For Integration Testing.

Univ
ers

ity
 of

 M
ala

ya

 76

4.3.1 Integration Testing Case 1 - IP of Intruder Is Private IP

In Case 1, the attacker (IP is 192.168.0.5) starts an attack from an inside private IP. The IDS

(Snort) detects the attack signature and triggers an alert which sends a block request to the IPS

(SnortSam). The IPS then calls the block plug-in to process this block request. In this testing,

only the CISCONATACL plug-in is used. The plug-in will identify the type of attacker's IP.

Because it is private IP in this case, the routines about processing private IP will be called.

At this point, there are two possible situations. First, there is no ACL exists at the target

interface; second, the ACL that the direction is “in” exists in the target interface but the

attacker's IP is not blocked.

These situations will be discussed in detail in following sub-sections.

4.3.1.1 Situation One - No ACL Exists In Target Interface

In this situation, there is no ACL exists at the target interface of the target router.

After receiving a block request, AIPM will try to find the correct router by analyzing the

downloaded routing table file and try to find the correct interface by analyzing the downloaded

running-config file. Then, a new ACL will be created since there is no ACL with the direction

“in” exists at the target interface; the name of the new ACL is “CiscoNATACL+<interface

name>”. For example, if the target interface is “FastEthernet0/0.101”, then the name of the

ACL will be CiscoNATACLFastethEthernet0/0.101.

Univ
ers

ity
 of

 M
ala

ya

 77

After connecting to the correct router, a serial command will be sent to the router to implement

this block. Table 4-31 depicts the expected result; Table 4-32 shows the change of

running-config file in the target router.

Expected result
1.ACL named CiscoNATACLFastethEthernet0/0.101 will be created
2.“deny ip host 192.168.0.5 any” will be added to the ACL

Table 4-31 Expected Result of Integration Test Case 1.1

Before blocked After blocked
(.................overleap....................)
!
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.1
255.255.255.0
 duplex auto
 speed auto
!
.........
!
!
!
!
line con 0
 transport preferred all
 transport output all
(.................overleap....................)
end

(.................overleap....................)
!
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
 ip access-group CiscoNATACLFastEthernet0/0 in
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.1 255.255.255.0
 duplex auto
 speed auto
!
.........
!
!
!
ip access-list extended
CiscoNATACLFastEthernet0/0
 deny ip host 192.168.0.5 any
 permit ip any any
!
(.................overleap....................)
End

Table 4-32 Testing Result of Integration Testing Of Case1.1
 Univ

ers
ity

 of
 M

ala
ya

 78

Table 4-33 depicts the result of the ping command.

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.045ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.046ms
From 192.168.0.1 icmp_seq=3 Destination Host Unreachable
From 192.168.0.1 icmp_seq=4 Destination Host Unreachable

Table 4-33 Result of Ping Command

Obviously, the attacker's IP has been blocked successfully at the target router. Since the testing

result matches with the expected result, this integration test is successful.

4.3.1.2 Situation Two - An ACL Exists In Target Interface

In this situation, an ACL with the direction “in” exists at the target interface in the target router.

Again, AIPM will try to find an appropriate router. In this case, however, the block request

cannot be implemented by simply sending an “add new ACL” command to the router. More

steps should be taken. The first step is to get the existing ACL’s name when parsing the

downloaded running-config file. The second step is to read the ACL content from the

running-config file. Note that there are two types of ACLs in Cisco routers - extend ACL and

standard ACL. AIPM has to process these two types of ACL because the format is not the same.

Table 4-34 demonstrates the two examples.

Type Contents
Extended ACL ip access-list extended what

 deny ip host 1.1.1.1 any
 deny ip host 1.1.1.2 any
 permit ip any any

Univ
ers

ity
 of

 M
ala

ya

 79

Standard ACL access-list 102 deny ip host 10.0.0.1 any
 access-list 12 deny host 3.3.3.3
Table 4-34 Types of ACL

After parsing the ACL content, the line number that correspond to an ACL matched with the

previously found ACL name is recorded for further process. After retrieving the information of

the correct router, correct interface, ACL name, and the location in running-config file, the next

step is to modify the downloaded running-config file by adding new ACLs in the right location

and uploading it to the router. Before uploading the file, however, the current ACL in the router

must be erased first to avoid unexpected behavior. AIPM achieves this goal by sending some

commands to router. After uploading the modified running-config file to the router, the block

request should be implemented successfully. Table 4-35 depicts the expected result and Table

4-36 shows the change of running-config file in the target router.

Expected Result:
1. Add ACL entry “deny ip host 192.168.0.5 any” to running-config file

Table 4-35 Expected Result of Integration Test Case 1.2

Before blocked After blocked
................overleap....................)
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
 ip access-group TEST in
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.3 255.255.255.0
 duplex auto
 speed auto
!
(.................overleap....................)
!
ip access-list extended TEST
 deny ip host 192.168.0.15 any
deny ip host 192.168.0.25 any
permit ip any any
!
(.................overleap....................)

(.................overleap....................)
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
 ip access-group TEST in
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.1 255.255.255.0
 duplex auto
 speed auto
!
(.................overleap....................)
!
ip access-list extended TEST
deny ip host 192.168.0.5 any
 deny ip host 192.168.0.15 any
 deny ip host 192.168.0.25 any
permit ip any any
!

Univ
ers

ity
 of

 M
ala

ya

 80

End (.................overleap....................)
end

Table 4-36 Testing Result of Integration Testing Case1.2

Table 4-37 depicts the result of the ping command.

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.047ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.045ms
64 bytes from 202.185.109.170: icmp_sep=3 ttl=64 time=0.045ms
From 192.168.0.1 icmp_seq=4 Destination Host Unreachable
From 192.168.0.1 icmp_seq=5 Destination Host Unreachable

Table 4-37 Result of Ping Command

Obviously, the block request has been applied successfully at the target router. Thus, this

integration test is successful.

4.3.2 Integration Testing Case 2--IP of Intruder Is Outside Public IP

In case three, the attacker (IP is 202.102.3.3) initiates an attack from an outside public IP. Once

AIPM finds out that the captured attacker's IP belongs to a public IP, it directly connects to the

gateway router as pre-defined in /etc/cisconatacl.conf. After identifying that the IP is outside

public IP, a new block of ACL is applied to the outside public interface. If there is an ACL with

direction “in” exists at the outside public interface, the system will download the

running-config file, add a new ACL entry, and upload it to the gateway router. If there is no

such ACL exists, the system will connect to the gateway router and create a new ACL based on

the name of the outside public interface. For instance, if the interface name is FastEthernet0/1, a

new ACL named CiscoACLFastEthernet0 is then created and applied to the outside public

interface of the gateway router.

Univ
ers

ity
 of

 M
ala

ya

 81

As in the previous test case, this integration testing case also embraces two situations.

4.3.2.1 Situation One-- No ACL Exists In Target Interface

Table 4-38 depicts the expected result in this situation.

Expected result
1. ACL named CiscoNATACLFastethEthernet0/0.101 will be created
2. “deny ip host 202.102.3.3 any” will be added to the ACL

Table 4-38 Expected Result of Integration Testing Case 2.1

Before blocked After blocked
(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.110.2 255.255.255.0
duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.3 255.255.255.0
 duplex auto
 speed auto
!
(.................overleap....................)
!

(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.110.2 255.255.255.0
ip access-group
CiscoNATACLFastEthernet0/0 in
 duplex auto
 speed auto
!
iend nterface FastEthernet0/1
 ip address 202.185.109.3 255.255.255.0
 duplex auto
 speed auto
(.................overleap....................)
ip access-list extended
CiscoNATACLFastEthernet0/0
 deny ip host 202.102.3.3 any
 permit ip any any

 Table 4-39 Testing Result of Integration Testing Of Case 2.1

Table 4-40 depicts the result of the ping command.

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.047ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.045ms
From 202.1585.110.2 icmp_seq=3 Destination Host Unreachable
From 202.1585.110.2 icmp_seq=4 Destination Host Unreachable

Table 4-40 Result of Ping Command

T

a

b

l

e

4

-

3

7

Univ
ers

ity
 of

 M
ala

ya

 82

As can be observed in Table 4-40, the block request has been applied successfully at the target

router. So, this integration test is successful.

4.3.2.2 Situation Two-- ACL Exist In Target Interface

Table 4-41 shows the expected result in this integration testing.

Expected result
1. Add ACL entry “deny ip host 192.168.0.5 any” to running config file

Table 4-41 Expected Result of Integration Testing Case 2.2

Table 4-42 shows a sample that changes the running-config file in the target router. In this

sample, an extended ACL named TEST has already existed at the target interface.

Before block After Block
(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.110.2 255.255.255.0
ip access-group TEST in
duplex auto

 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.3 255.255.255.0
 duplex auto
 speed auto
(.................overleap....................)
!
ip access-list extended TEST
 deny ip host 205.10.25.8 any
deny ip host 207.231.25.9 any
permit ip any any

!
(.................overleap....................)
!
End

(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.110.2 255.255.255.0
ip access-group TEST in

 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.3 255.255.255.0
 duplex auto
 speed auto
(.................overleap....................)
!
ip access-list extended TEST

deny ip host 202.102.3.3 any
deny ip host 205.10.25.8 any
deny ip host 207.231.25.9 any
permit ip any any

!
(.................overleap....................)
!
End

Table 4-42 Testing Result of Integration Testing Of Case 2.2

Univ
ers

ity
 of

 M
ala

ya

 83

Table 4-43 depicts the result of the ping command.

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.048ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.046ms
64 bytes from 202.185.109.170: icmp_sep=3 ttl=64 time=0.045ms
From 202.1585.110.2 icmp_seq=4 Destination Host Unreachable
From 202.1585.110.2 icmp_seq=5 Destination Host Unreachable

Table 4-43 Result of Ping Command

The testing result reveals that the block request has been applied successfully at the target

router; this integration test is successful.

4.3.3 Integration Testing Case Three--IP of Intruder Is Inside Public IP

In case two, the attacker (IP is 202.185.107.50) starts an attack from an inside public IP. Once

AIPM has identified that the captured attacker's IP belongs to a public IP, it will first connect to

the gateway router. Obviously, the target router (R2) is not the first router to connect;

CISCONATACL plug-in has to find the target router by analyzing the downloaded routing

table file of the gateway router (R3 in this testing environment).

Because AIPM does not know which public IP is inside public IP (there is no any predefined),

two possibilities emerge: one is inside public IP, and another is outside public IP. AIPM must

know how to identify types of the IP. This problem can be solved by comparing the routing

table since NAT/PAT is only applied when the inside network is trying to access the outside

network. If a match is found in the routing table downloaded from the gateway router, the attack

comes from inside; otherwise, the attack comes from outside.

After finding the target router, the proposed plug-in checks whether it is defined in

Univ
ers

ity
 of

 M
ala

ya

 84

SnortSam.conf file. If it is already defined, then the corresponding arguments (telnet/enable

password) are read. Next, AIPM will connect to the target router according to this information.

Since there are two possibilities, AIPM must identify if the captured IP belongs to a host or a

pool. The pool is checked fist; if a matched record is found, the record is replace with the block

IP; otherwise, the system will check the routing table. Subsequent process is similar to that in

Case One.

4.3.3.1 Situation One - No ACL Exist In Target Interface

Table 4-44 depicts the expected result in this situation.

Expected Result
1. ACL named CiscoNATACLFastethEthernet0/0 will be created
2. deny ip host 202.185.107.50 any” will be added to the ACL

Table 4-44 Expected Result of Integration Testing Case 3.1

Table 4-45 shows testing result of integration testing case 3.1.

Before block After Block
.(.................overleap....................)
interface FastEthernet0/0
ip address 202.185.107.2 255.255.255.0
duplex auto
 speed auto
!
(.................overleap....................)
!
end

(.................overleap....................)
interface FastEthernet0/0
ip address 202.185.107.2 255.255.255.0
ip access-group CiscoNATACLFastethEthernet0/0
in
duplex auto
speed auto
(.................overleap....................)
!
ip access-list extended
CiscoNATACLFastethEthernet0/0
deny ip host 202.185.107.50 any
permit ip any any
!
(.................overleap....................)
end

Table 4-45 Testing Result of Integration Testing 3.1

Table 4-46 depicts the result of the ping command.

Univ
ers

ity
 of

 M
ala

ya

 85

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.048ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.049ms
From 202.185.107.2 icmp_seq=3 Destination Host Unreachable
From 202.185.107.2 icmp_seq=4 Destination Host Unreachable

Table 4-46 Result of Ping Command

The ping result suggests that the block request has been applied successfully at the target router.

Therefore, this integration test is successful.

4.3.3.2 Situation Two - ACL Exist In Target Interface

Table 4-47 shows the expected result, and Table 4-48 shows the changes made in the

running-config file of the target router. In this case, the extended ACL named TEST has already

exist at the target interface.

Expected result:
1. Add ACL entry “deny ip host 202.185.107.50 any” to TEST access-list

Table 4-47 Expected Result of Integration Testing 3.2

Before block After Block
.(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.107.2 255.255.255.0
ip access-group TEST in
duplex auto

 speed auto
(.................overleap....................)
!
ip access-list extended TEST
 deny ip host 192.168.0.15 any
deny ip host 192.168.0.25 any
permit ip any any

!
(.................overleap....................)

(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.107.2 255.255.255.0
ip access-group TEST in

 duplex auto
 speed auto
(.................overleap....................)
!
ip access-list extended TEST
 deny ip host 202.185.107.50 any
 deny ip host 192.168.0.15 any
deny ip host 192.168.0.25 any
permit ip any any

(.................overleap....................)

Table 4-48 Testing Result of Integration Testing Case 3.2

Univ
ers

ity
 of

 M
ala

ya

 86

Table 4-49 depicts the result of the ping command.

[root:/]ping 202.185.109.170
PING 202.185.109.170(202.185.109.170) 56(84) bytes of data.
64 bytes from 202.185.109.170: icmp_sep=1 ttl=64 time=0.048ms
64 bytes from 202.185.109.170: icmp_sep=2 ttl=64 time=0.046ms
64 bytes from 202.185.109.170: icmp_sep=3 ttl=64 time=0.049ms
From 202.185.107.2 icmp_seq=4 Destination Host Unreachable
From 202.185.107.2 icmp_seq=5 Destination Host Unreachable

Table 4-49 Result of Ping Command

Again, the ping result shows that the block request has been applied successfully at the target

router; this integration test is successful.

4.4 Responding Time of Integration Test

All testing are successful in this integration testing environment. Table 4-50 shows the

responding time after an attack is fired.

Testing
Number

Testing
number
of times

Condition
1

Condition
2

Private IP Inside Public
IP

Outside
Public IP

1 20 Without
ACL
Exist

Without
NAT/PAT

Average 2sec
(after 2
packages
transmitted)

Average 3sec
(after 3
packages
transmitted)

Average 3sec
(after 3
packages
transmitted)

2 20 Without
ACL
Exist

With
NAT/PAT

Average 3sec
(after 3
packages
transmitted)

Average 4sec
(after 4
packages
transmitted)

Average 3sec
(after 3
packages
transmitted)

3 20 With
ACL
Exist

Without
NAT/PAT

Average 6sec
(after 6
packages
transmitted)

Average 9sec
(after 10
packages
transmitted)

Average 8sec
(after 8
packages
transmitted)

4 20 With
ACL
Exist

With
NAT/PAT

Average 6sec
(after 7
packages

Average
10sec (after
11 packages

Average 9sec
(after 10
packages

Univ
ers

ity
 of

 M
ala

ya

 87

transmitted) transmitted) transmitted)
Table 4-50 Responding Time

Table 4-50 shows that the responding time increases when an ACL exists at a target interface or

when the NAT/PAT technology is applied in a target router. That is because AIPM has

additional workload: erasing old ACL entries, modifying downloaded running-config files,

uploading modified running-config file to the target router when an ACL has already existed at

the target interface, and downloading and analyzing the NAT pool file when the NAT/PAT

technology is applied at the target router.

In this test, the processes of cleaning old ACL entries, and downloading and modifying the

running-config file are fairly fast, but uploading the modified running-config file to the target

router to apply the new running-config file takes longer time (i.e. 4-6 seconds). On the other

hand, downloading and analyzing the NAT pool file takes about 1-2 seconds. Future work will

focus on solving reducing the time needed.

4.5 Chapter Summary

This chapter provides an overview of system and development. Key components of AIPM have

been discussed. Unit and integration testing are also discussed in this chapter. All tests are

successful. System testing of AIPM will be discussed in the next chapter. Univ
ers

ity
 of

 M
ala

ya

 88

Chapter 5 Case Study

This chapter describes two case studies, which AIPM runs on different typical business

networks. The first case involves a network environment of small business, whilst the second is

in an environment of a big company or college/university.

5.1 Case Study 1

Figure 5-1 Network Environment of Case Study 1

Figure 5-1 shows the network environment of Case Study 1. In this environment, LAN

connects to the Internet through a router (R1). There are two possible intruders: one coming

from inside, and another one from outside. The IP of an inside intruder is set as

192.168.0.10/24; the IP of an outside intruder is set as 222.200.200.2/24. This network

environment is a typical network design mostly used by small business.

Univ
ers

ity
 of

 M
ala

ya

 89

5.1.1 Case Study 1.1—Attack From Inside

One possibility is that the inside intruder fired an attack. Table 5-1 depicts the expected result of

this case study.

Expected Result:
1. Inside intruder’s IP is blocked in Router R1.

Table 5-1 Expected Result of Case Study 1.1

Table 5-2 shows comparison of running-config file before and after the block request is

implemented.

Before blocked After blocked
(.................overleap....................)
interface FastEthernet0/0
ip address 192.168.0.1 255.255.255.0
duplex auto
speed auto

!
interface FastEthernet0/1
 ip address 202.185.109.3
255.255.255.0
 duplex auto
 speed auto
!
!
!
(.................overleap....................)
end

(.................overleap....................)
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
 ip access-group CiscoNATACLFastEthernet0/0 in
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.1 255.255.255.0
 duplex auto
 speed auto
!
(.................overleap....................)
!
ip access-list extended
CiscoNATACLFastEthernet0/0
deny ip host 192.168.0.10 any
permit ip any any

!
(.................overleap....................)
end

Table 5-2 Testing Result of Case Study 1.1

Table 5-3 depicts the result of the ping command. Note that IP of the IDS AND IPS server is

192.168.0.200.

Univ
ers

ity
 of

 M
ala

ya

 90

[root:/]ping 192.168.0.200
PING 192.168.0.200 (192.168.0.200) 56(84) bytes of data.
64 bytes from 192.168.0.200: icmp_sep=1 ttl=64 time=0.048ms
64 bytes from 192.168.0.200: icmp_sep=2 ttl=64 time=0.046ms
From 192.168.0.1 icmp_seq=3 Destination Host Unreachable
From 192.168.0.1 icmp_seq=4 Destination Host Unreachable

Table 5-3 Result of Ping Command

Hence, it can be inferred that the block request has been applied successfully at the target

router.

5.1.2 Case Study 1.2—Attack From Outside

Since most networks of small businesses connect to the Internet,, the ability of defend outside

attack is very important. As such, Case Study 1.2 will test AIPM on this ability. Table 5-4 is the

expected result of this case study.

Expected Result:
1. Outside intruder’s IP is blocked at interface that connect to internet

Table 5-4 Expected Result of Case Study 1.2

Table 5-5 shows comparison of running-config file before and after the block request is

implemented.

Before blocked After blocked
(.................overleap....................)
interface FastEthernet0/0
ip address 192.168.0.1 255.255.255.0
duplex auto
speed auto

!
interface FastEthernet0/1
 ip address 202.185.109.3
255.255.255.0
 duplex auto
 speed auto
!

(.................overleap....................)
interface FastEthernet0/0
 ip address 192.168.0.1 255.255.255.0
duplex auto

 speed auto
!
interface FastEthernet0/1
 ip address 202.185.109.1 255.255.255.0
ip access-group CiscoNATACLFastEthernet0/1 in
 duplex auto
 speed auto
!

Univ
ers

ity
 of

 M
ala

ya

 91

!
!
(.................overleap....................)
end

(.................overleap....................)
!
ip access-list extended
CiscoNATACLFastEthernet0/1
deny ip host 222.200.200.2 any
permit ip any any

!
(.................overleap....................)
end

Table 5-5 Testing Result of Case Study 1.2

Table 5-6 depicts the result of the ping command checking the accessibility to the IDS AND

IPS server.

[root:/]ping 192.168.0.200
PING 192.168.0.200 (192.168.0.200) 56(84) bytes of data.
64 bytes from 192.168.0.200: icmp_sep=1 ttl=64 time=0.046ms
64 bytes from 192.168.0.200: icmp_sep=2 ttl=64 time=0.049ms
From 202.185.109.1 icmp_seq=3 Destination Host Unreachable
From 202.185.109.1 icmp_seq=4 Destination Host Unreachable

Table 5-6 Result of Ping Command

The testing result shows that the malicious traffics from the intruder have been blocked. So, the

result matches with the expected result.

Univ
ers

ity
 of

 M
ala

ya

 92

5.2 Case Study 2

Figure 5-2 Network Environment of Case Study 2

In Case Study 2, the network environment used is typical for a big company or

college/university (See Figure 5-2). There are several application servers running in the

company network. A firewall to protect the network against malicious traffic from the Internet

is also deployed. Besides, NAT/PAT is configured in R2 and R3 and is only applied when the

traffic destination is the Internet. Further, both static routes and dynamic routing protocols are

set. Three kinds of attack are modeled in this case study, that is, attack coming from inside to

inside, inside to outside, and outside to inside.

Univ
ers

ity
 of

 M
ala

ya

 93

5.2.1 Case Study 2.1—Attack From Inside To Inside

In this case study, an intrusion of attack comes from inside to inside: Attacker 1 trying to attack

Host 1. Table 5-7 shows the expected result.

Expected Result
1. ACL CiscoNATACLFastEthernet0/0 is created in R2
2. 10.0.0.25 is blocked at f0/0 in R2

Table 5-7 Expected Result of Case Study 2.1

Table 5-8 shows the comparison of running-config file before and after the block request is

sent.

Before blocked After blocked
(.................overleap....................)
interface FastEthernet0/0
ip address 10.0.0.1 255.255.0.0
ip nat inside
duplex auto
speed auto

!
interface FastEthernet0/1
 ip address 202.185.0.2 255.255.255.0
 ip nat outside
 duplex auto
 speed auto
!
!
!
(.................overleap....................)
!
end

(.................overleap....................)
interface FastEthernet0/0
 ip address 10.0.0.1 255.255.0.0
 ip nat inside
ip access-group
CiscoNATACLFastEthernet0/0 in

duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 202.185.0.2 255.255.255.0
ip nat outside
duplex auto
 speed auto
!
(.................overleap....................)
!
ip access-list extended
CiscoNATACLFastEthernet0/0
deny ip host 10.0.0.25 any
permit ip any any

!
(.................overleap....................)
end

Table 5-8 Testing Result of Case Study 2.1

Table 5-9 depicts the result of the ping command. Note that the IP of IDS AND IPS server is

Univ
ers

ity
 of

 M
ala

ya

 94

202.185.0.170. As can be seen in this table, the block request has been successfully applied at

the target router (R2), and the malicious traffics from Attacker 1 have been blocked.

[root:/]ping 202.185.0.170
PING 202.185.0.170 (202.185.0.170) 56(84) bytes of data.
64 bytes from 202.185.0.170: icmp_sep=1 ttl=64 time=0.046ms
64 bytes from 202.185.0.170: icmp_sep=2 ttl=64 time=0.047ms
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Table 5-9 Result of Ping Command

5.2.2 Case Study 2.2—Attack From Inside To Outside

This case study involves an intrusion of attack coming from inside to outside when Host 1

attempts to attack an Internet host (e.g. a HTTP server - www.google.com). Table 5-10 shows

the expected result.

Expected Result
1. ACL CiscoNATACLFastEthernet0/2 be created in R3
2. 192.168.0.25 is blocked at f0/2 in R3

Table 5-10 Expected Result of Case Study 2.2

Table 5-11 shows comparison of running-config file before and after the block request is

implemented.

Before blocked After blocked
(.................overleap....................)
interface FastEthernet0/0
ip address 202.185.0.1 255.255.0.0
ip nat inside
duplex auto
speed auto

!
interface FastEthernet0/1
 ip address 202.185.0.3 255.255.255.0
ip nat outside
 duplex auto
 speed auto
!

(.................overleap....................)
interface FastEthernet0/0
 ip address 202.185.0.1 255.255.0.0

ip nat inside
duplex auto

 speed auto
!
interface FastEthernet0/1
 ip address 202.185.0.3 255.255.255.0
ip nat outside
duplex auto
 speed auto
!

Univ
ers

ity
 of

 M
ala

ya

 95

interface FastEthernet0/2
ip address 192.168.0.1 255.255.0.0
ip nat inside
duplex auto
speed auto

!
!
(.................overleap....................)
!
end

interface FastEthernet0/2
ip address 192.168.0.1 255.255.0.0
ip nat inside

ip access-group
CiscoNATACLFastEthernet0/2 in

duplex auto
speed auto

!
(.................overleap....................)
!
ip access-list extended
CiscoNATACLFastEthernet0/2
deny ip host 192.168.0.25 any
permit ip any any

!
(…..............overleap….................)
end

Table 5-11 Testing Result of Case Study 2.2

As in Case Study 2.1, the block request has been applied successfully at the target router (R3);

Table 5-12 depicts the result of the ping command.

[root:/]ping www.google.com
PING www.1.google.com (72.14.205.104) 56(84) bytes of data.
64 bytes from qb-in-f104.google.com (72.14.205.104): icmp_sep=1 ttl=64 time=264ms
64 bytes from qb-in-f104.google.com (72.14.205.104): icmp_sep=2 ttl=64 time=267ms
From 192.168.0.1 icmp_seq=3 Destination Host Unreachable
From 192.168.0.1 icmp_seq=4 Destination Host Unreachable

Table 5-12 Result of Ping Command

5.2.3 Case Study 2.3—Attack from Outside to Inside

Lastly, in this case study, AIPM tries to protect the company’s FTP server against an intrusion

of attack coming from outside (Attacker 3). Table 5-13 shows the expected result.

Expected Result
1. ACL CiscoNATACLFastEthernet0/1 be created in R1
2. 205.0.2.25 is blocked at f0/1 in R1

Table 5-13 Expected Result of Case Study 2.3

Univ
ers

ity
 of

 M
ala

ya

http://www.1.google.com/

 96

Table 5-14 shows comparison of running-config file before and after the block request is

issued.

Before blocked After blocked
(…..............overleap….................)
interface FastEthernet0/0
ip address 202.185.0.1 255.255.0.0
duplex auto
speed auto

!
interface FastEthernet0/1
 ip address 202.185.1.1 255.255.255.0
duplex auto

 speed auto
!
(…..............overleap….................)
!
end

(…..............overleap….................)
interface FastEthernet0/0
 ip address 202.185.0.1 255.255.0.0
duplex auto

 speed auto
!
interface FastEthernet0/1
 ip address 202.185.1.1 255.255.255.0
ip access-group CiscoNATACLFastEthernet0/1 in
duplex auto
 speed auto
(…..............overleap….................)
ip access-list extended
CiscoNATACLFastEthernet0/1
deny ip host 205.0.2.25 any
permit ip any any

(…..............overleap….................)
end

Table 5-14 Testing Result of Case Study 2.3

Likewise, the ping result in Table 5-15 shows that the block request has been applied

successfully at the target router (R1); any type of traffic coming from Attack 3 will be dropped

by R1.

[root:/]ping 202.185.109.170
PING 202.185.109.170 (202.185.109.170) 56(84) bytes of data.
64 bytes 202.185.109.170: icmp_sep=1 ttl=64 time=0.088ms
64 bytes 202.185.109.170: icmp_sep=2 ttl=64 time=0.089ms
From 202.185.109.170 icmp_seq=3 Destination Host Unreachable
From 202.185.109.170 icmp_seq=4 Destination Host Unreachable

Table 5-15 Result of Ping Command

Univ
ers

ity
 of

 M
ala

ya

 97

5.3 Comparison between Existing IDS AND IPS and AIPM

 Snort Snort-Inline SnortSam AIPM
Platform based Windows/Linux Linux/Unix

based
Windows/Linux/
Unix based

Linux/Unix
based

Language Gnu C Gnu C Gnu C Gnu C
Ability to
communicate
with security
hardware

Not support Not support Partly support Support

Prevention
method

-- -- Simple Complex and
intelligent

Ability to
communicate
with Firewall

Not support IPTable/IPFW yes no

License catalog GUN license GUN license GUN license GUN license
System catalog IDS IPS IPS IPS

Table 5-16 Comparison of Existing IDS AND IPS and AIPM

Shown in Table 5-16 is a brief overview of comparison between some existing IDS AND IPS

and AIPM. In this work, SnortSam is almost comparable with AIPM except that SnortSam only

partly supports communication with security hardware. SnortSam requires much predefined

information for communicating with security hardware and only supports simple prevention

processing. On the other hand, AIPM can support communication with security hardware and

requires only few predefined information. Additionally, AIPM comprises the prevention

feature that can be adopted in an NAT/PAT environment.

5.3.1 Advantages of AIPM

Different IDS AND IPS products have different advantages. While inheriting all advantages of

Snort and SnortSam, AIPM comprises other new features. The most important advantage of

AIPM is the ability to automatically analyze the network environment information without any

manual intervention and the ability to defend intrusion accordingly. This proposed IPS system

obtains the network information by downloading running-config files, route table files, and

Univ
ers

ity
 of

 M
ala

ya

 98

NAT pool files from Cisco routers. After analyzing these files, AIPM determines the IP of the

intruder, and makes a decision on which router’s interface to block, and applies ACL if

necessary.

The second important advantage of AIPM is the ability to find the real intruder's IP even if the

NAT/PAT technology has been deployed. Many IDS AND IPS systems can only capture

intruder's packages without identifying whether the IP is real IP or not. AIPM overcomes this

weakness by analyzing the downloaded NAT/PAT pool file.

Last but not least, AIPM integrates advantages of Snort and SnortSam into a single IPS, while

possesses the ability to decide which Cisco router to send a block request. In other words,

AIPM works as both network security software and hardware. Meanwhile, since these software

and hardware are independent, an IPS administrator can maintain and/or upgrade these

software/hardware separately without affecting the network operation.

5.3.2 Features Comparison

 Snort Snort-Inline Snort+SnortSam+Cisco
Router (SSCR)

AIPM

Software Type IDS IPS IPS IPS
Need runs in Gateway? No Yes No No
Able to communicate
with other network
security hardware?

No No Yes Yes

Intelligent analyze
captured packages?

No No No Yes

Support firewall? No Yes Yes Yes
Intelligent block
intruder’s IP?

No No No Yes

Support NAT/PAT? No No No Yes
Need predefined ACL
file?

--- --- 1 file/router No need

Need predefined interface
name?

--- --- Yes No need

Univ
ers

ity
 of

 M
ala

ya

 99

Need predefined ACL
name?

--- --- Yes No need

Connection when
implement block

--- --- 1 connection / router 1 connection
only

Table 5-17 Features Comparison of Different IDS AND IPS

Table 5-17 shows a comparison among different IDS AND IPS including Snort, Snort-Inline,

“Snort+SnortSam+Cisco Router” (SSCR) and AIPM. The most similar system with the

proposed AIPM is SSCR. In comparison to AIPM, SSCR does not have the ability to analyze

captured packages. Thus, SSCR fails to get the real IP of an intruder when the NAT/PAT

technology is used. In addition, SSCR requires the information of predefined ACL

configuration, which means that all ACL configuration of the router must be known before

establishing a connection to the router. If the ACL configuration is changed by an

administrator, the predefined ACL file must be manually edited again. Also, SSCR requires the

predefine interface’s name which is difficult to be changed during running time, whereas AIPM

does not need the predefined interface’s name; all arguments can be retrieved during running

time.

The most interesting feature of AIPM is its ability to decide which router’s interface to block.

On the other hand, SSCR will block the IP in every router even if the malicious traffic does not

pass through the router. In fact, if there are predefined M routers, SSCR will need to establish M

connections. M-1 connections are considered unnecessary. Evidently, additional overhead as

much as (M-1)/M% will incur when SSCR has to communicate with all routers. To sum up,

Table 5-13 shows the comparison of overhead of these two systems.

 SSCR AIPM
Number of Connections M for M routers 1
Total overhead M for M routers 1 for M routers
Connections Wasted (M-1)/M% 0%

Table 5-18 Comparison of Overhead

Univ
ers

ity
 of

 M
ala

ya

 100

5.4 Summary

This chapter offers two system testing cases of AIPM. These successful system testing prove

that AIPM can run well in various typical business network. Next, the advantages of AIPM are

discussed by comparing AIPM with others IDS AND IPS systems.

Univ
ers

ity
 of

 M
ala

ya

 101

Chapter 6 Conclusion and Future Work

This final chapter summarized the research undertaking. A brief discussion on the thesis

contribution is then presented. Some suggestions for future research end the thesis to allow

possible development of new ideas and realms.

6.1 Thesis Summary

IDS AND IPS is popular network security tools. Many new technologies such as artificial

intelligence have been applied to IDS AND IPS. Nevertheless, some problem may still occur.

In particular, false positive and false negatives may happen in IDS, and IPS may not be able to

block an attack after being detected by an IDS.

This thesis attempts to propose a method to minimize or avoid the problem of current IDS AND

IPS. Many IDS AND IPS are single applications, which means that the systems are developed

in one program. AIPM, however, is divided into two parts; one part is IDS, which is Snort,

while another is IPS which is built on top of SnortSam. This architecture gains advantages of

both Snort and SnortSam.

After some current IDS AND IPS are reviewed, a system, namely, AIPM, to enhance network

security by integrating IDS AND IPS and routers is proposed and developed. AIPM has been

tested in several network environments; all testing are successful.

Concluding the work accomplished, the objectives (as defined in Chapter 1) have been

achieved. Several intruder patterns in network security are studied, and many mechanisms of

Univ
ers

ity
 of

 M
ala

ya

 102

IDS AND IPS and network devices enhance network security are analyzed. Targeting on some

of the weaknesses, another achieved objective is the development of CISCONATACL to make

blocking decision and perform blocking as accordance.

As a final remark, the implementation of AIPM is a success of this research. The final testing

results further imply that the accomplishment is worthwhile in making a contribution to the

research community.

6.2 Problems Faced In Development

Figure 6-1 Key Components of AIPM

Figure 6-1 shows the key components of AIPM and describes the relationships among these

components. 19 key components have been designed and written in the development phase.

Univ
ers

ity
 of

 M
ala

ya

 103

These key components are described in Chapter 4. There are many problems faced when

analyzing, designing and developing these components.

The first problem faced is when developing part one - “Running-config file processing”.

Because there are different format of the running-config file in different routers, the designed

part must be able to analyze almost all kinds of running-config files. For example, when the

program reads the word “IP” from a downloaded running-config file, it must identify whether

the next word is an IP address since the possible words can be DHCP, pool, or A.B.C.D. Figure

6-2 depicts a sample of command tree of Cisco router 2600. In order to embrace as much

commands set as possible, this work has collected and analyzed about 30 running-config file

samples.

Figure 6-2 Sample of Command Tree of Cisco Router 2600

The second problem faced is the development of part two -“Routing-table file processing”.

Similar to the previous problem mentioned, this part also encounters the difficulty of reading

different format of routing tables form different routers. Table 6-1 shows a sample routing

table. From the table, we can see that there are different format even for same type of routing

records.

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

Univ
ers

ity
 of

 M
ala

ya

 104

 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route

 Gateway of last resort is 202.185.109.171 to network 0.0.0.0

 C 202.185.109.0/24 is directly connected, Loopback0
 R 192.168.3.0/24 [120/2] via 192.168.1.2, 00:00:17, FastEthernet0/0
 O 6.0.0.0/8 [110/74] via 5.0.0.2, 00:00:49, Serial2
 O E2 192.168.10.0/24 [110/100] via 192.168.1.4, 00:26:50, Fddi0/0
 O 192.168.33.3/32 [110/2] via 192.168.1.3, 00:26:50, Fddi0/0
 R 192.168.66.0/24 [120/10] via 192.168.1.3, 00:00:06, Fddi0/0
 R* 0.0.0.0/0 [120/10] via 192.168.1.3, 00:00:06, Fddi0/0

 I 192.168.90.0/24 [100/1110] via 192.168.1.5, 00:01:08, Fddi0/0

 i L1 192.168.22.0/24 [115/20] via 192.168.1.2, Fddi0/0
 i L1 194.10.1.0/24 via 55.55.55.1
 i UD 12.2.41.23/32 via 55.55.55.1

 D 192.168.33.0/24 [90/156160] via 192.168.1.3, 01:26:38, Fddi0
 D*EX 0.0.0.0/0 [170/2198016] via 192.168.1.3, 01:26:36, Fddi0

 S 200.1.1.0/24 via 126.0.0.1
 S* 200.1.1.0/24 via 126.0.0.1

Table 6-1 Sample Routing Table

Another problem faced is when developing part five - “Add ACL processing”. In the early

development phase, new ACL can be added to target router but the sequence is incorrect. For

example, if the orginal ACL in a downloaded running-config file is

ip access-list extended TESTACL

 deny ip host 192.168.0.1 any

 permit ip any any

then after adding a new ACL entry –“deny ip host 192.168.0.2 any” to the correct position of

the downloaded running-config file and uploading it to the target router, the whole ACL in the

target router becomes

ip access-list extended TESTACL
 deny ip host 192.168.0.1 any

Univ
ers

ity
 of

 M
ala

ya

 105

 permit ip any any
 deny ip host 192.168.0.2 any

Obviously, the new ACL entry will never be matched. Since the Cisco router will read the

uploaded running-config file and apply the configuration, the sequence of the ACL in the

uploaded file should have been correct. However, it was not the case. After checking the Cisco

website and testing many times, the solution is found: the clean old ACL command must be run

before the uploading the modified running-config file back to the router.

6.3 Thesis Contribution

The most important contribution of this thesis is the proposal of mechanism integrating

software (Snort and SnortSam) and network devices (Cisco routers) to enhance network

security. This new mechanism minimizes synchronization between software and hardware

since almost all information except the predefined information of gateway can be obtained in

running time.

The new mechanism can be applied in various network environments even the NAT/PAT

technology is running. The main aim of IDS is to detect intrusion and identify intruder.

However, if the NAT/PAT technology is applied in a network, typical IDS will not be able to

get the real IP of the intruder. This is because the IP address retrieved belongs to the NAT/PAT

pool, causing the IDS to trigger a false alert. AIPM solves this problem by parsing the content

of downloaded NAT/PAT pool file and by comparing the IP block with the data from the

NAT/PAT pool to decide the real IP block.

The last contribution is that this work proves the possibility of integrating IDS AND IPS with

network devices to enhance network security. AIPM includes three parts: IDS (Snort chosen in

Univ
ers

ity
 of

 M
ala

ya

 106

this thesis) that detects intrusion actions; IPS (SnortSam chosen) that blocks malicious

intrusion, and network devices (Cisco routers) which resides closest to the attacker. AIPM

integrates them and runs as a single IPS.

6.4 Suggestion for Future Work

As indicated in Chapter 5, although AIPM has some added functionalities, there are still some

drawbacks that need to be solved.

First, AIPM only blocks malicious traffic at the network layer (i.e. blocking IP addresses in

routers). Therefore, future work should include the ability to block malicious traffic at the data

link layer (i.e. blocking MAC addresses in switches).

Second, AIPM uses the TELNET (TELecommunication NETwork) protocol to establish

connections between IPS and network devices. As TELNET does not encrypt any data sent

over the connection (including passwords), future work may consider deploying other security

protocol, such as the SSH (Secure Shell) protocol, to establish secure connections.

Third, the gateway information must be predefined in AIPM for blocking outside intrusion. To

increase flexibility, this predefinition should be removed without affecting the system’s overall

functionalities.

Finally, current AIPM does not remove blocked IP automatically; future work will try to add

the feature of maximum blocking time in order to remove the blocked entry after a defined

expired duration.

Univ
ers

ity
 of

 M
ala

ya

 107

REFERENCE:

1. Aly El–Semary, Janica Edmonds, Jes´us Gonzalez and Mauricio Papa,, 2005, “Annids:
Intrusion Detection System Based On Artificial Neural Network”, In Proceedings of
international Conference on Fuzzy Systems

2. Amoroso E., lnlrusion Dctection, 1999, “An Introduction To Lnlcmet Suwcillance.

Correlation. Traps, Tracc Back, And Response”

3. “An Introduction to Intrusion Detection” ,2007,

http://www.acm.org/crossroads/xrds2-4/intrus.html

4. Anderson, J. P., 1980, “Computer security threat monitoring and surveillance”

5. Andrew Mason, 2004, “Network Security and Virtual Private Network Technologies”.

6. Aurobindo Sundaram, Dorothy Denning, 1996, “An Intrusion Detection Model,”

7. Balajinath, B., Raghavan, S.V., 2000, “Intrusion Detection Through Learning Behaviour

Model”

8. BBC news, 2007, http://news.bbc.co.uk

9. Bojarczuk C.E., Lopes H.S. y Freitas A.A., 1999, “Discovering comprehensible

classification rules using genetic programming: a case study in medical domain”.
Proceedings Genetic and Evolutionary Computation Conference GECCO99, 1999.

10. Brian J. d'Auriol and Kishore Surapaneni, 2004, “A State Transition Model Case Study for

Intrusion Detection Systems”, In Proceedings Of The 2004 International Conference On
Security And Management (SAM'04), 2004, Pages: 186-192

11. Chittur, A., 2001, “Model Generation For An Intrusion Detection System Using Genetic

Algorithms”

12. Cowan C. et al., 1998, “Stackguard: automatic adaptive detection and prevention of
buffer-overflow attacks”, In USENIX Security Symposium, pages 63–77, 1998.

13. Crosbie,M., And Spafford, G., 1995, “Applying Genetic Programming to Intrusion

Detection”

14. Chittur, A., 2001, “Model Generation for an Intrusion Detection System Using Genetic
Algorithms”

15. Caberera, J.B.D., Ravichandran, B., and Mebra, R.K., 2000, “Statistical Traffic Modeling

for Network Intrusion Detection”, In Proceeding of Modeling, Analysis and Simulation of
Computer and Telecommunication Systems conference, 2000

16. Denning, D. E., 1987, “An intrusion detection model. IEEE Trans”

17. Denning, D. E. and Eumann, P. G., 1985. “Requirements and model for IDES: A real-time

intrusion detection system”

Univ
ers

ity
 of

 M
ala

ya

http://www.acm.org/crossroads/xrds2-4/intrus.html
http://news.bbc.co.uk/

 108

18. Earl Carter, Jonathan Hogue, 2006, “Intrusion Prevention Fundamentals”, Published by

Cisco Press

19. Edward Kern, 2004, “Artificial Intelligence In Network Security”

20. FBI 2006 IC3 Annual Report, 2006,

http://www.ic3.gov/media/annualreport/2006_IC3Report.pdf

21. Fogel, D.B. 1998, “Evolutionary Computation; Second Edition”, IEEE Press, 1998.

22. Frank Knobbe., 2006, http://www.SnortSam.net

23. Gomez J., Gonzalez F., and Dasgupta D., 2002, “Complete Expression Trees for Evolving
Fuzzy Classifier Systems with Genetic Algorithms”, In Proceedings of the Evolutionary
Computation Conference GECCO02, 2002

24. Intrusion Prevention Systems (IPS), 2004

http://www.nss.co.uk/WhitePapers/intrusion_prevention_systems.htm

25. Ishibuchi H. y Nakashima T., 2000, “Linguistic rule extraction by genetic-based machine
learning”. In Proceedings of Genetic and Evolutionary Computation Conference
GECCO00, 2000.

26. Jonatan G., Dipankar D., 2002, “Evolving Fuzzy Classifiers for Intrusion Detection”, In

Proceedings of the 2002 IEEE Workshop on Information Assurance

27. Jakub Botwicz, Piotr Buciak, and Piotr Sapiecha, 2006, “Building Dependable Intrusion
Prevention Systems”

28. Jonathon T. Giffin Somesh Jha Barton P. Miller, 2004, “On Effective Model-Based

Intrusion Detection”

29. Jagannathan R., Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham, Caveh Jalali, Hal
Javitz, Perter Nrumann, Ann Tamaru, and Alfonso Valdes, 1993, “System design
document: Next-generation intrusion detection expert system (NIDES)”

30. Karen Kent, Peter Mell, 2006, “Guide to Intrusion Detection and Prevention (IDP)

Systems ”

31. Lianying Zhou, Feogyu Liu, 2003, “Research on Computer Network Security Based on
Pattern Recognition”

32. Liu J. y Kwok J., 2000, “An extended genetic rule induction algorithm”. In Proceedings of

the Congress on Evolutionary Computation Conference, 2000.

33. Liu Yan-Heng, Tian Da-Xin and Wang Ai-Min WANG, 2003, “ANNIDS: Intrusion
Detection System Based On Artificial Neural Network”, In Proceedings of the Second
International Conference on Machine Learning and Cybernetics, 2003

34. Matt Bishop., 2003, “What is computer security”, Published by THE IEEE COMPUTER

SOCIETY

Univ
ers

ity
 of

 M
ala

ya

http://www.ic3.gov/media/annualreport/2006_IC3Report.pdf
http://www.snortsam.net/
http://www.nss.co.uk/WhitePapers/intrusion_prevention_systems.htm

 109

35. Mukkamale S., Hanoshi G. Sung A., 2002, “Intrusion Detection Using Neural Networks

And Support Vector Machines, Appears In: Neural Networks”, In Proceedings of the 2002
International Joint Conference on Search Security on TechTarget.com

36. McHugh, J. Christie, A. Allen, J. , 2000, “Defending Yourself: The Role Of Intrusion

Detection Systems”

37. Mohamad R. Neilforoshan, 2004, “Network Security Architecture”, In Proceedings Of
Ccsc: South Central Conference, 2004

38. Nick Ierace, Cesar Urrutia, and Richard Bassett, 2005, “Intrusion Prevention Systems”,

39. Norbik B. I., Bharanidhran S., 2005, “Artificial Intelligence Techniques Applied To

Intrusion Detection”, In Proceedings Of IEEE Indicon 2005 conference, 2005

40. Odd Nilsen, 2002, “Protection Of Information Assets”

41. Peng N., Yun C., Douglas S. Reeves, and Ddingbang X, 2004, “Techniques And Tools For
Analyzing Intrusion Alerts”, Published in ACM Transactions On Information And System
Security, Vol. 7, No. 2, May 2004, Pages 274–318.

42. Pillai M. M., Eloff J. H.P. and Venter H. S., 2004, “An Approach to Implement a Network

Intrusion Detection System using Genetic Algorithms”, In Proceedings of SAICSIT 2004,
Pages 221 – 228

43. Rehman, R.U., 2003, “Intrusion Detection Systems with Snort: Advanced IDS Techniques

with Snort, Apache, MySQL, PHP, and ACID”, Published by Prentice Hall PTR, Inc.

44. Robert Drum,2006, IDS AND IPS PLACEMENT FOR NETWORK PROTECTION

45. Sebring, M. M., Shellhouse, E., Hanna, M. E., AND Whitehurst, R. A., 1988, “Expert
systems in intrusion detection: A case study”. In Proceedings of the 11th National
Computer Security Conference, Pages: 74–81.

46. Sinclair, C., Pierce, L., And Matzner; S., 2004, “An application of machine learning to

Network Intrusion Detection”

47. Shan Zheng, Chen Peng, Xu Ying, Xu Ke, 2001, “A Network State Based Intrusion
Detection Model”

48. Steven A. Hofmeyr, Stephanie Forrest, Anil Somayaji, 1997, “Lightweight Intrusion

Detection for Networked Operating Systems”

49. Snort project term, 2007. “Snort manual”, http://www.Snort.org/docs

50. Susan M. Bridges, Rayford B. Vaughn, 2000, “Intrusion detection via fuzzy data mining”,
In Proceedings of The 12th Annual Canadian Information Technology Security Symposium
2005.

51. Susan M. Bridges, 2000, “fuzzy data mining and genetic algorithms applied to intrusion

detection”, Proceedings of the 23rd National Information Systems Security Conference.

Univ
ers

ity
 of

 M
ala

ya

http://www.snort.org/docs

 110

52. Timothy Hollebeek and Rand Waltzman, 2005, “The Role of Suspicion in Model-based

Intrusion Detection”, In Proceedings of the 2005 workshop on New security paradigms,

53. Verwoerd T., and Hunt, R., 2001, “Intrusion Detection Techniques and Approaches”

54. Vidar Ajaxon Grønland , 2006, “Building IDS rules by means of a honeypot”

55. Wang Jing-xin, Wang Zhi-ying, Dai Kui, 2003, “A Network Intrusion Detection System
based on the Artificial Neural Networks”

56. Wei Li, 2003, “Using Genetic Algorithm for Network Intrusion Detection”,

http://www.security.cse.msstate.edu/ docs/Publications/wli/DOECSG2004.pdf

57. Xinyou Zhang, Chengzhong Li, and Weibin Zhen, 2004, “Intrusion prevention system
design”

58. Xinzhou Q, Wenke L., Lundy L. Jocio B.D. Cabrera , 2002, “Integrating Intrusion

Detection and Network Management”

59. Yuebin Bai, Hidetsune Kobayashi, , 2003a, “intrusion detection system: technology and
development”, Proceedings of the 17th International Conference on Advanced
Information Networking and Applications, page(s): 710-715

60. Yuebin Bai, Hidetsune Kobayashi, 2003b,” New String Matching Technology for Network

Security”, Proceedings of the 17th International Conference on Advanced Information
Networking and Applications, page(s): 198 – 201

Univ
ers

ity
 of

 M
ala

ya

