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ANTIOXIDANT AND ANTICHOLINESTERASE ACTIVITIES OF Ipomoea 

aquatica Forssk. AND Ipomoea reptans Poir 

ABSTRACT 

Ipomoea is the largest genus from the Convolvulaceae family and known to possess 

various phytochemical compounds. In this study, the antioxidant and anticholineseterase 

activities of I. aquatica and I. reptans were investigated. I. aquatica and I. reptans are 

green leafy vegetables and have been utilized for centuries across cultures in managing 

diseases including in treating neuronal disease such as Alzheimer’s disease (AD). In AD, 

improper cognitive function has been linked to irregular neuron transmission such as the 

aberrant activity of acetylcholinesterase enzyme and oxidative stress. Based on the 

experiments conducted, both plant extracts showed the presence of alkaloids, terpenoids, 

phenolic compounds and flavonoids. The DPPH scavenging assay showed the highest 

activity in I. aquatica leaf in methanolic extract (IA-LM) and I. aquatica stem in 

methanolic extract (IA-SM), indicating I. aquatica has greater scavenging and hydrogen 

donating ability compared to I. reptans. There was no correlation (R2 = −0.523, P < 0.05) 

found between DPPH assay and TPC assay, infering that the phenolic compounds present 

in both plant extracts did not contribute to the scavenging activity observed. The ferric 

reducing antioxidant power (FRAP) and ferrous ion, Fe2+ chelating assays showed a 

correlation with the TPC assay suggesting that the phenolic compounds have iron 

chelating abilities. However, both assays observed low values in all extract indicating that 

the phenolic compounds present have low reducing power and metal binding ability. The 

hydrogen peroxide, H2O2 scavenging assay displayed activities < 60 %. In the 

anticholinesterase assay, acetylcholinesterase (AChE) inhibitory activity was the highest 

in the chloroform extracts for both plant species, followed by methanol, distilled water 

and hexane extracts. A correlation with the TPC assay (R2 = 0.636, P < 0.05) showed that 

the phenolic compounds present in I. aquatica and I. reptans have anticholinesterase 
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activities. Therefore, it can be deduced that both I. aquatica and I. reptans have significant 

antioxidant and anticholinesterase activities.  

Keywords: antioxidant, anticholinesterase, I. aquatica, I. reptans, phenolic compounds 
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AKTIVITI ANTIOKSIDA DAN ANTIKOLINESTERASE BAGI Ipomoea 

aquatica Forssk. DAN Ipomoea reptans Poir 

ABSTRAK 

Ipomoea adalah merupakan genus terbesar daripada famili Convolvulaceae yang 

mempunyai banyak sebatian fotokimia yang berfaedah. Dalam kajian ini, kedua-dua 

aktiviti antioksida dan antikolinesterase bagi I. aquatica dan I. reptans dikenalpasti. I. 

aquatica dan I. reptans adalah merupakan sejenis sayuran berdaun hijau yang digunakan 

sebagai rawatan untuk pelbagai penyakit sejak dahulu lagi di seluruh dunia. Ini termasuk 

dalam mengubati penyakit saraf seperti penyakit Alzheimer. Penyakit Alzheimer 

berpunca daripada ketidakseimbangan dalam aktiviti enzim asetilkolinesterase and 

tekanan oksidatif yang mengakibatkan gangguan dalam daya kognitif pesakit. 

Berdasarkan eksperimen yang telah dilakukan, kesemua ekstrak I. aquatica dan I. reptans 

dilihat mempunyai alkaloid, terpenoid, sebatian fenol dan flavonoid. Ujian DPPH 

menunjukkan aktiviti yang paling tinggi dalam ekstrak daun I. aquatica di dalam metanol 

(IA-LM) and ekstrak batang I. aquatica di dalam metanol (IA-SM). Ini bermaksud I. 

aquatica adalah lebih baik dalam meneutralkan radikal DPPH dan dalam kebolehan 

menderma hidrogen berbanding I. reptans. Tiada korelasi antara ujian DPPH dan TPC 

(R2 = −0.523, P <0.05) menunjukkan sebatian fenol di dalam ekstrak bagi kedua-dua 

jenis tumbuhan tidak menyumbang kepada aktiviti yang dilihat dalam ujian DPPH. 

Korelasi antara ujian FRAP dan pengkelat Fe2+ bersama TPC mencadangkan bahawa 

sebatian fenol menyumbang kepada aktiviti FRAP dan daya pengkelat Fe2+. Namun, 

aktiviti kesemua ekstrak I. aquatica dan I. reptans untuk ujian-ujian ini didapati rendah. 

Ini menunjukkan sebatian fenol dalam I. aquatica dan I. reptans mempunyai daya 

pengekelat logam yang rendah. Ujian hidrogen peroksida, H2O2 menyaksikan aktiviti < 

60 % bagi semua ekstrak I. aquatica dan I. reptans. Ujian antikolinesterase mendedahkan 

aktiviti yang tertinggi dalam ekstrak kloroform bagi kedua-dua jenis tumbuhan, diikuti 
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oleh metanol, air suling dan heksana. Korelasi antara ujian tersebut dengan ujian TPC (R2 

= 0.636, P < 0.05) menunjukkan sebatian fenol dalam kedua-dua jenis tumbuhan 

mempunyai aktiviti antikolinesterase. Oleh itu, berdasarkan keputusan yang diperoleh, 

dapat disimpulkan bahawa kedua-dua I. aquatica dan I. reptans mempunyai aktiviti 

antioksida dan antikolinesterase. 

Kata kunci: antioksida, antikolinesterase, I. aquatica, I. reptans, sebatian fenol
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CHAPTER 1 : INTRODUCTION 

Ipomoea aquatica or commonly known as water spinach and Ipomoea reptans are 

green leafy plants belong to the Convolvulaceae family (Prasad et al., 2008). They can 

be found distributed across the world, primarily in the tropical and subtropical regions 

(Umar et al., 2007; Prasad et al., 2008). Having both plants rich in nutrients such as 

carbohydrates, amino acids, antioxidants and vitamins, I. aquatica especially, has been 

utilized for various purposes since thousands of years ago (Prasad et al., 2008). These 

include as food, in traditional medicine and recently in bioremediation. In some 

traditional medicine practices, I. aquatica has been used to treat jaundice, nervous 

debility, liver and eye diseases, high blood pressure and constipation (Alkiyumi et al., 

2012; Lawal et al., 2015; Malakar & Choudhury 2015; Dewanjee et al., 2015; The 

National Institutes of Health (NIH), 2016). Apart from that, recent studies have also 

discovered important bioactivity in I. aquatica which includes acetylcholinesterase 

inhibitory activity in the treatment of Alzheimer’s disease (AD) (Dzoyem & Eloff 2015; 

Raghunath et al., 2018; Chen et al., 2018). However, a limited knowledge is known about 

the bioactivity and the utilization of I. reptans especially in treating diseases compared to 

I. aquatica. I. aquatica and I. reptans are also relatively cheap and easy to grow, making 

them suitable candidates to be utilized for the development of natural drugs to treat 

diseases.  

AD is a disease associated with nervous debility, cognitive decline and memory 

impairment (Alzheimer's Association, 2015). Multiple causes have been implicated in the 

development of AD including oxidative stress and the deficiency in the cholinergic 

transmission in the brain (Dumont & Beal 2011; Hamulakova et al., 2016). Till date, the 

primary treatment for the disease relies heavily on the use of drugs such as 

acetylcholinesterase inhibitors (AChEIs). However, these drugs have been linked to 

numerous adverse side effects in patients (Mukherjee et al., 2007; Hansen et al., 2008; 
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Ali et al., 2015; Gawad et al., 2015; Greig 2015; Rang et al., 2016; Zhang et al., 2016). 

This urge for an immediate attention into searching for alternatives in developing a safe 

and viable drug in mediating the disease. 

Consequently, these have brought the attention on looking into natural products such 

as medicinal plants and herbs for the development of new drugs. Besides that, the low 

output of combinatorial chemistry and rational drug design and lack of access to 

conventional drugs have also pushed the interest in utilizing natural product for drug 

development (David et al., 2015).  

Provided the pronouced benefits and bioactivities in these plants and lack of research 

on the plants usage as drug candidates for the disease, this research can provide an 

additional insight and a better understanding on utilizing the plants for future prospects.   

 

Therefore, the research objectives of this study are: 

i. To determine the phytochemical constituents in I. aquatica and I. reptans. 

ii. To determine the total phenol and flavonoid contents in I. aquatica and I. reptans, 

and 

iii. To evaluate the antioxidant and anticholinesterase activities of I. aquatica and I. 

reptans 
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CHAPTER 2 : LITERATURE REVIEW 
 
2.1 Ipomoea  

Ipomoea is the largest genus within the Convolvulaceae (morning glory) family with 

over 600 – 700 identified species including Ipomoea aquatica Forssk. and I. reptans Poir. 

(Austin & Huáman, 1996; Prasad et al., 2008). The plant members of the species are 

twining or climbing woody or herbaceous plants, with usually heart-shaped leaves and 

large, showy, trumpet-shaped flowers of various colours including white, purple, blue, 

pink and red. (Galetto & Bernardello, 2004; Meira et al., 2012). They are known to be 

rich in nutrients and minerals such as carotenoids, chlorophylls, essential amino acids, 

alkaloids, calcium, Ca, iron, Fe and magnesium, Mg (Meira et al., 2012). Traditionally, 

this group of plant species has been used for nutritional, medicinal, ritual and also 

agricultural purposes (Meira et al., 2012).  

 
2.1.1 Ipomoea aquatica Forssk. and Ipomea reptans Poir 

I. aquatica and I. reptans are a close relative within the genus. Figure 2.1 describes 

the taxonomic hierarchy between both plants. 

 

Kingdom Plantae Plantae 

Phylum Tracheophyta Tracheophyta 

Class Magnoliopsida Magnoliopsida 

Order Solanales Solanales 

Family Convulvulaceae Convulvulaceae 

Genus Ipomoea Ipomoea 

Species Ipomoea aquatica Ipomoea reptans 

Figure 2.1 : Taxonomic hierarchy of I. aquatica and I. reptans (Knees & Patzelt, 2013) 

 
They can be found grown worldwide, usually in the tropical and subtropical regions 

including in countries such as Malaysia, Hongkong, Singapore, Indonesia, Cambodia, 

Laos, Vietnam, Africa, the United States of America, (USA) Central and South America 
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and Australia (Umar et al., 2007; Prasad et al., 2008; Dewanjee et al., 2017; CAB 

International, 2018). Figure 2.2 shows the worldwide distribution for I. aquatica. 

 

Figure 2.2 : The geographical distribution of I. aquatica (CAB International, 2019). The 
red dots represent the distribution of I. aquatica in the world. Reprinted permission from 
www.cabi.org./isc. 
 

I. aquatica and I. reptans, are aquatic or semi-aquatic, annual or perennial plants, 

grown wildly, on water surfaces such as rivers, freshwater lakes or ponds or on moist 

soils such as muddy banks (Prasad et al., 2008; Saha et al., 2008; Thi & Hwang, 2015; 

Lawal et al., 2015; Gad et al., 2017; Michigan State University, 2017). They are also 

commercially cultivated for consumption and can be eaten raw as salads, boiled, fried, 

steamed or pickled or made into fodder for animal consumptions (Malalavidhane et al., 

2000; Kim et al., 2008; Thi & Hwang, 2015).  

Morphologically, they differ slightly especially in the shape of the leaves and the 

colour of the flower. Figure 2.3 – 2.6 show the structure of I. aquatica and I. reptans 

including the flowers, leaves and seeds. I. aquatica has elliptic leaves, funnelform purple 

flower and trails above water surfaces (Austin, 2007; Prasad et al., 2008). On the contrary, 

I. reptans has ovate-oblong leaves with white flower and grows upright on moist soils 

(UMass Center for Agriculture, Food and the Environment, 2016). 
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Figure 2.3 : I. aquatica (Bingham, et 
al., 2019). Reprinted permission from 
www.zimbabweflora.co.zw. 

 

Figure 2.4 : I. aquatica seeds (Scher 
, 2018). Reprinted permission from 
idtools.org. 

 
 

Figure 2.5 : I. reptans. 

 
 
Figure 2.6 : I. reptans white flower.  

 

To accommodate the plants aquatic to semi-aquatic nature, both plants have hollow 

and smooth stems with rooting nodes, ‘labyrinth seeds’ and hairy fruit.  I. aquatica can 

grow up to 9 to 70 feet long at 4 inches per day which results in its hollow stems forming 

networks, producing long stem and less branches to support its structure (UMass Center 

for Agriculture, Food and the Environment, 2016; Michigan State University, 2017). The 

labyrinth seed provides buoyancy for the plant, aids in supporting the structure and 

enables them to float on water surfaces (Austin, 2007). The fruit is protected inside a 

spherical capsule which turns woody upon maturation (Michigan State University, 2017). 

Both plants can be cultivated through direct seed germination or easily propagated from 

the cuttings of the plant (Prasad et al., 2008; UMass Center for Agriculture, Food and the 

Environment, 2016). The optimal growth temperature for the cultivation is between 24°C 
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to 29 °C and requires more water compared to other crops (UMass Center for Agriculture, 

Food and the Environment, 2016).  

 However, in the USA, I. aquatica is considered as a noxious weed as it competes with 

the existent native plants. I. aquatica may form networks which cover water surfaces 

thereby shading the underneath submerged plant (UF / IFAS Center for Aquatic and 

Invasive Plants, 2018). This poses threats to the vulnerable native plants and affect the 

ecosystem.  

 

2.1.2 Phytochemical contents 

I. aquatica and I. reptans contain numerous nutrients. Shim (2012) recorded that  

I.aquatica contain significant amounts of phytochemical compounds such as phytosterol, 

phenolic compounds, vitamin E, amino acids, sugar, sugar alcohol and fatty acids. 

Phenolic compounds include tannins, flavonoids, saponins, carotenes, organic acids such 

as malic acid and citric acid, quercetin, luteolin and alkaloids (Prasad et al., 2008; Vasu 

et al., 2009; Yadav & Agarwala, 2011; Lawal et al., 2017). Umar et al. (2007) reported a 

substantial level of mineral elements in I. aquatica leaves such as potassium, K, sodium, 

Na, magnesium, Mg, calcium, Ca, iron, Fe and phosphorus, P. Nonetheless, I. aquatica 

has considerably low amount of copper, Cu, manganese, Mn and zinc, Zn  (Umar et al., 

2007).  

Similarly, Febriyono et al. (2017) and Jumaryatno et al. (2018) stated the presence of 

protein, carbohydrates, fatty acids, phenolic compounds, Ca, P, Fe, Na, vitamin A, 

vitamin B, vitamin C, 3-methoxy quercetin, 4-methoxy quercetin polyphenol, and 

anthocyanin in I. reptans. Another finding suggested the presence of α-tocopherol, b-

carotene and ferulic acid in I. reptans (Ismail et al., 2004).  

Nonetheless, it should also be noted that, different developmental stages of the plants, 

cutting frequencies, growth conditions and processing methods such as ways of cooking 
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and drying procedures, might affect the plants level of phytochemical contents and 

minerals (Chitsa et al., 2014, Sarkar et al., 2014; Lawal et al., 2015, Thi & Hwang, 2015).   

 

2.1.3 Applications 

The utilization of I. aquatica as traditional medicine has been documented back to 

3000 years ago across different cultures. This includes in treating jaundice and nervous 

debility (Ayurveda), constipation, liver diseases, mental problems, abscesses and diabetes 

(Tanzania) and intestinal problem (Somalia) (Saha et al., 2008; Malakar & Choudhury, 

2015). Current researches on the plant have also revealed numerous bioactivities such as 

hypoglycaemic ability in reducing blood glucose level, good diuretic and cytoprotective 

abilities against heavy metal liver poisoning, antiproliferative, antimutagen and 

antitumour, antimicrobial properties, nootropic ability and antidepressant and 

antiepileptic activities (Malalavidhane et al., 2000; 2001; Malalavidhane et al., 2003; 

Saha et al., 2008; Hamid et al., 2011; Alkiyumi et al., 2012; Dewanjee et al., 2015; Dua 

et al., 2015; Lawal et al., 2015; 2017; Malakar & Choudhury, 2015; Dewanjee et al., 

2017; El-Sawi et al., 2017).  

However, the scientific research on the application of I. reptans in treating diseases is 

limited compared to I. aquatica. Nevertheless, Hayati et al. (2017) and Jumaryatno et al. 

(2018) had showed that I. reptans has antidiabetic properties. I. reptans has also been 

shown to be able to sequester heavy metals, similar to I. aquatica (Herliana et al., 2018).  

Due to the plants capability to take up heavy metals and toxic compounds, I. aquatica 

and I. reptans have been considered for the use in phytoremediation. The plants are used 

as sequestering agents to take up heavy metals such as lead, Pb, Zn, and Cu from 

contaminated environment and as a biomonitoring agent to evaluate the safety of 

waterbodies (Chanu & Gupta, 2014; 2016; 2018; Ng et al., 2016; Rane et al., 2016; 

Herliana et al., 2018).  
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However, as the plants are widely consumed, cautions should be given especially to 

those intended for human consumption. A proper management on the plants’ farms and 

cultivation centres needs to be given to ensure the water used for irrigation is not 

contaminated with harmful substances. According to Saidin et al. (2018), I. aquatica and 

I. reptans collected from local market in Singapore showed pronounced level of heavy 

metals including Zn, Cu, Mn, Fe and nickel, Ni. In Bangkok, Thailand, seven I. aquatica 

cultivation sites intended for local food market consumption sampled were found to 

contain comparable amounts of Pb, methylmercury, total mercury, Hb, and cadmium, Cd 

(Göthberg et al., 2009). This poses a serious risk especially to infants and unborn babies 

as they are more susceptible to methylmercury poisoning (Göthberg et al., 2009). The 

effects could be detrimental such as central nervous system damage, cerebral palsy, 

blindness and growth problems (Heller, 2017) 

I. aquatica and I. reptans grown for phytoremediation in contaminated water such as 

wastewater should be handled with care to avoid human consumption. Control measures 

on the application of pesticides and fertilizers should be implemented to reduce the 

potential health risk and ensure safety upon human consumption of the plant (Saidin et 

al., 2018). 

 

2.2 Alzheimer’s disease (AD) 

Alzheimer’s disease is an age-related, irreversible, progressive developing 

neurodegenerative disease associated with the deficits in cognitive skills among older 

generation (Niedowicz et al.,  2011; Begum et al., 2015; Huang et al., 2016). Affecting 

people with the age of 65 years of age and above, the disease is putting a high burden on 

the health sector and economically, as the older population expands (Niedowicz et al.,  

2011). It is estimated that between 2018 and 2050, the cost for caring AD and dementia 

patients will be US$ 20.2 trillion (Alzheimer's Association, 2018). In 2016, about 47 
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million people live with dementia and is estimated to rise to >131 million by 2050 (Prince 

et al., 2016). East Asia has the highest prevalence of AD followed by Western Europe, 

South Asia and North America (Alzheimer's Research UK, 2018). Figure 2.7 shows the 

AD prevalence worldwide. 

 

Figure 2.7 : Alzheimer's disease prevalence worldwide (Alzheimer's Research UK, 
2018). Data adapted from Alzheimer’s Research UK. 

 
In AD, the areas of the brain that are involved in memory and cognitive learning such 

as the hippocampus, basal forebrain and cortex are primarily affected (Duan et al.,  2014). 

AD patients suffer from deficits in memory, language, problem solving and other 

cognitive skills which ultimately affect their ability to perform normal daily routines 

(Alzheimer's Association, 2015). AD is multifaceted and complex. Figure 2.8 

characterized the underlying pathologies in AD patients’ brain. 

 

0

2

4

6

8

10

12

North america Western
Europe

East Asia South Asia

Po
pu

la
tio

n 
(m

il)

Univ
ers

ity
 of

 M
ala

ya



 10 

 

Figure 2.8 : The hallmarks of AD (Crews & Masliah, 2010; Ahmad et al., 2015; Strac et 
al., 2015). Data collected from multiple resources. 

 

2.2.1 The Free Radical Hypothesis 

Age is a key risk factor in the onset of AD (Practicò, 2008). As the age progresses, 

free radicals build up and accumulate in the body. Free radical hypothesis of aging states 

that the accumulation of reactive oxygen species (ROS) with age can cause irreversible 

damage and death to cell components such as the nucleus, mitochondrial DNA, 

membranes and cytoplasmic proteins (Christen, 2000). Neuron is prone to oxidative 

damage as it is rich in polyunsaturated fatty acids which makes it susceptible to free 

radical attack and due to the highly oxygen-rich environment in the brain (Christen, 2000; 

Aliev et al., 2008). Besides that, certain areas of the brain which release neurotransmitters 

such as catecholamines are known to be predisposed to radical attack due to auto-

oxidation (Aliev et al., 2008). Fe, an essential component in carrying out metabolic 

processes, is also known to contribute to the formation of ROS through Fe-catalyzed 

formation of ROS (Aliev et al., 2008) 

Hallmarks of 
Alzheimer's 
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Accumulation of b-amyloid (Ab) plagues 
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hyperphosphorylated TAU proteins

Increased oxidative stress
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Subsequently, accumulation of ROS leads to oxidative stress (Jiang et al., 2016). 

Oxidative stress occurs due to the overproduction and uncontrolled production of ROS as 

a result from the inability of the body’s natural protective mechanism to neutralize these 

reactive metabolites (Ahmad et al., 2015; Jiang et al., 2016; Rang et al., 2016).  

Multiple researches conducted at cellular level, on animal AD models and AD patients 

have suggested the occurrence of oxidative modifications such as oxidation of nucleic 

acid, proteins, lipid and macromolecules (Nunomura et al., 2006; Feng & Wang, 2012). 

Consequently, this leads to the dysregulation and malfunctioning of mitochondria and 

increased in the ROS in the brain (Swerdlow & Kish, 2002; Wang et al., 2014; Cardoso 

et al., 2016; Gibson & Thakkar, 2017). Another hallmarks of AD, which is the deposition 

of Ab plague has also been found to induce inflammation which increased the ROS 

production and causing neuronal death (Smith et al., 2002; De Felice et al., 2007).  

 

2.2.2 The Cholinergic Hypothesis 

Another cause underlying the development of AD is due to the depletion of cholinergic 

transmission in the brain. The brain cholinergic system comprises of complicated network 

of neurons with series of projections into different parts of the brain (Pepeu & Giovannini, 

2017). They release acetylcholine (ACh) as neurotransmitter which may induce or alter 

the excitability of neurons and synaptic plasticity and transmission (Picciotto et al.,  

2012).  Univ
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Figure 2.9 : Projection of cholinergic transmission in the brain of normal and Alzheimer's 
brain. Blue line indicates normal projection of cholinergic transmission in parts of the 
brain. Red line indicates the degeneration in the cholinergic transmission in parts of the 
brain (Pepeu & Giovannini, 2017). Reprint permission from Elsevier. 

 
The cholinergic hypothesis of AD proposed that the cognitive impairment observed in 

AD patients is linked to the degeneration in the cholinergic neurons and depletion in the 

neurotransmission in the cerebral cortex and other brain areas (Francis et al., 1999). 

Figure 2.9 shows the areas of cholinergic transmission degeneration in the brain of AD 

patients. As ACh is involved in regulating memory processing and learning, 

abnormalities in the cholinergic transmission system have been associated with the onset 

of AD (Beninger et al., 1989; Hasselmo & Bower, 1993; Francis, 2005). Figure 2.10 

states the various factors that contribute to the impairment in the cholinergic transmission 

system in the brain.  

  

Figure 2.10 : The factors contributing to the abnormalities in the cholinergic transport 
system in the brain (Terry & Buccafusco, 2003; Racchi et al., 2004). Data collected from 
multiple resources. 
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2.2.3 Treatments 
 

In treating AD, only two classes of drug have been approved by the Food, Drugs and 

Therapeutics (FDA) which are the acetylcholinesterase inhibitors (AChEIs) and N-

methyl-D-aspartate (NMDA) receptor antagonists (Casey et al., 2010). However, these 

drugs do not treat the underlying pathologies surrounding the progression of AD but 

rather, serve as a palliative treatment in alleviating the symptoms in AD patients (Kumar 

et al., 2015). Hence, efforts have been done into looking for other potential therapies 

importantly, in utilizing natural sources as drugs.  

 

2.2.3.1 Antioxidants 

Provided the complex etiologies underlying the development of AD, it can be assumed 

that an antioxidant treatment alone does not suffice for the alleviation of the disease 

(Williams et al., 2011). However, it was revealed based on several epidemiological 

studies that diet rich in antioxidants could delay the cognitive deficits suffered by AD 

patients (Williams et al., 2011; Valls-Pedret et al., 2015). Williams et al. (2011) 

suggested that a multi-targeted approach involving the combination of antioxidants and 

drugs or other phytochemical compounds could be employed in treating AD patients.  

A few plants with high antioxidant activites have been shown to be potential sources 

for the treatment of AD. Fu et al. (2011) showed that three carotenoid; violaxanthine, 

lutein and b-carotene identified in I. aquatica showed high antioxidant activities. 

Sivaraman et al. (2016), revealed that the extract of I. aquatica improved cognitive 

behaviour, memory  and neurotransmitter levels in Alzheimer’s mice. 

Besides that, Curcuma longa (turmeric) which contains curcumin has been shown to 

have anticancer, antioxidant, antiamyloid and anti-inflammatory properties (Obulesu & 

Rao, 2011). Similarly, C. longa has also been utilized in Ayurveda and widely studied for 
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its application in the treatment of AD (Lim et al., 2001; Obulesu & Rao, 2011; Zhou et 

al., 2011; Wang et al., 2013). 

 

2.2.3.2 Acetylcholinesterase Inhibitor (AChEI) 

Acetylcholinesterase (AChE) is a type of cholinesterase enzyme involved in the 

termination of nerve impulse at cholinergic terminal in the central and peripheral nervous 

system (Colovic et al., 2013). It hydrolyses ACh into its constituents; acetate and choline, 

is highly specific and has a rapid catalytic activity (Dvir et al., 2010; Colovic et al., 2013). 

Figure 2.11 shows the cholinergic transport system at a neuronal junction.  

 

 
 

Figure 2.11 : The cholinergic transmission at a neuronal junction (Gauthier, 2002). 
Reprint permission from Joule Inc. 

 
Acetylcholinesterase inhibitor (AChEI) functions to increase the level of ACh in the 

cholinergic terminal by inhibiting the action of AChE. Consequently, neurotransmission 

in the nerve terminal is improved and cognitive functions are restored.  

Although AChEIs are widely used in treating AD, they are highly associated with 

adverse side effects among AD patients (Mukherjee et al., 2007). Table 2.1 describes the 

side effects associated with AChEI drugs. 
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Table 2.1 : Summary on the AChEI drugs. Data collected from multiple resources. 

Drugs Properties Side effects Types of 
AD Notes References 

Tacrine  Non-
selective. 
Pseudo-
irreversible 

Nausea, 
diarrhoea, 
hepatotoxicity, 
abdominal 
pain, sweating, 
convulsion 
 

Mild, 
moderate 

Withdrawn 
from the 
US market 

(Rang et al., 
2016; 
DrugBank, 
2018) 

Donepezil Noncompeti
tive, 
reversible, 
selective to 
CNS and 
AChE 

Diarrhoea, 
dizziness, 
vomiting, 
weight loss 

Mild, 
moderate, 

severe 

- (Hansen et 
al., 2008; 
Jelic & 
Darreh-
Shori, 2010; 
Greig, 2015; 
Rang et al., 
2016) 

Rivastigmine Noncompet-
itive, 
pseudo-
irreversible, 
selective to 
CNS  

Acute 
cholinergic 
syndrome 
upon 
excessive 
exposure, 
death, falling, 
diarrhoea, 
dizziness, 
vomiting, 
weight loss, 
somnolence, 
hypertension, 
nausea, 
application 
site pruritus 
 

Mild, 
moderate 

- (Hansen et 
al., 2008; 
Ali et al., 
2015; 
Gawad et 
al., 2015; 
Zhang et al., 
2016; Rang 
et al., 2016; 
Suzuki et 
al., 2017)  

Galantamine Competitive
, reversible, 
non-
selective, 
can bind to 
the 
allosteric 
sites of 
nicotinic 
receptors 

Diarrhoea, 
dizziness, 
vomiting, 
weight loss 

Mild, 
moderate 

- (Raskind et 
al., 2000; 
Hansen et 
al., 2008; 
Rang et al., 
2016; 
Drugbank, 
2018)  

 

Consequently, these have raised concerns and shifted the focus into searching for 

alternatives such as bioactive compounds from natural resources in developing a viable 
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and safe drug. Multiple studies have shown several bioactive compounds found in plants 

that have anticholinesterase activity. These include phytochemical compounds such as 

alkaloids, terpenoids, flavonoids, rosmarinic acid, huperzine A, caffeic acid, tiliroside, 

phloroglucinol, curcumin and resveratrol (Williams et al., 2011; Roseiro et al., 2012; 

Gülçin et al., 2016; Garcia et al., 2017).  Moreover, some of these plants have already 

been employed in traditional medicine to alleviate neurological diseases including I. 

aquatica. Dhanasekaran et al. (2015) displayed that I. aquatica in hydroalcholic extract 

exerted significant anticholinesterase activity. Through ligand docking studies, 

compounds such quercetin and chlorogenic acid present in I. aquatica were found to have 

a good affinity and binding score with AChE (Sivaraman et al., 2014). Following another 

research conducted, a trial on animal model suggested that I. aquatica lowered AChE 

levels in the brain and mediated Ab-induced cognitive and memory impairment 

(Sivaraman et al., 2016). Curcumin and resveratrol have also been seen to have anti‐

amyloidogenic properties in which they could lower the deposition of toxic Ab plagues 

(Kim et al., 2010). 
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CHAPTER 3 : MATERIALS AND METHODS 

3.1 Sample Collection 

Two species from the Ipomoea genus; I. aquatica and I. reptans were collected. Wild 

mature I. aquatica was collected at a clearing area next to the Kundang Lakes Country 

Club, Rawang, Selangor, Malaysia on February 2018 and mature I. reptans was bought 

from the Pasar Tani MAEPS Serdang, Seri Kembangan, Selangor. Both plants were 

collected and bought only once and were authenticated by Mr. Ghazali bin Sabda of 

Rimba Ilmu Botanical Garden, University of Malaya, Kuala Lumpur. The voucher 

specimens of I. aquatica and I. reptans plant samples were deposited in the Herbarium of 

University of Malaya, Kuala Lumpur with a voucher number of KLU 49890 and KLU 

49891 respectively.  

 

3.2 Chemical and Reagents  

2,2- diphenyl-1-picrylhydrazyl (DPPH), 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), 5,5′-

Dithiobis(2-nitrobenzoic acid) (DTNB), acetylcholinesterase, acetylthiocholine iodide, 

anisaldehyde, berberine, bovine serum albumin V, ferrozine, folin-ciocalteu’s reagent, 

gallic acid, phenylalanine, potassium iodide, potassium phosphate monobasic, quercetin, 

sodium acetate, tannic acid, tris and vanillin were purchased from Sigma-Aldrich, USA. 

Ascorbic acid, aluminum chloride, disodium ethylenediaminetetraacetate dihydrate 

(EDTA) disodium salt, hexane, hydrogen peroxide, magnesium chloride, potassium 

phosphate dibasic, sodium carbonate and sodium hydroxide were bought from Systerm 

Chemicals, Malaysia. Iron (III) chloride, methanol and sodium chloride were obtained 

from R & M Chemicals, Malaysia. 95% ethanol, bismuth nitrate hydrochloric acid and 

sodium nitrite were purchased from Merck, Germany. Chloroform and glacial acetic acid 

were bought from Fisher Scientific, USA. Ferrous sulphate was obtained from 
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Friendemann Schmidt, Australia and sulphuric acid was purchased from HmbG GmbH, 

Germany.  

 

3.3 Apparatus  

UV-Vis Spectrophotometer-1700 (Shimadzu, Japan), microplate reader (Tecan 

Sunrise, Austria), Agilent 6200 series TOF/ 6500 series (Agilent, USA), Agilent’s Gas 

Chromatography with an MSD detector (Agilent, USA) 

 

3.4 Plant Extracts Preparation 

Both I. aquatica and I. reptans collected were washed and the leaves, stems, fruits, 

flowers and roots were separated. The plant parts were air dried at room temperature, 

under the shade for a week. After fully dried, the leaves and stems for both plants were 

ground using a blender into fine powder. The powdered plant parts were then subjected 

to chemical extraction with hexane, chloroform, methanol and distilled water in the order 

of increasing polarity consecutively. During each extraction, the extract was incubated in 

a water bath at 37 °C for 7 hours. Upon extraction, the filtrates were collected and 

concentrated up to 15 ml using rotary vacuum evaporator at 40 °C. Distilled water extracts 

were freeze dried at −100 °C. The extracts were then stored in air tight containers at 2 °C 

until further usage. A total of 16 different extracts were prepared as summarized in Table 
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Table 3.1 : The I. aquatica and I. reptans extracts prepared. 
 

Hexane extracts Chloroform extracts 

IA-LH : I. aquatica leaf  IA-LC : I. aquatica leaf  

IA-SH : I. aquatica stem  IA-SC : I. aquatica stem  

IR-LH : I. reptans leaf  IR-LC : I. reptans leaf  

IR-SH : I. reptans stem  

 

IR-SC : I. reptans stem  

Methanolic extracts Distilled water extracts 

IA-LM : I. aquatica leaf  IA-LD : I. aquatica leaf  

IA-SM : I. aquatica stem  IA-SD : I. aquatica stem  

IR-LM : I. reptans leaf  IR-LD : I. reptans leaf  

IR-SM : I. reptans stem  IR-SD : I. reptans stem  

 

After chemical extraction was done, yield of each extract was determined. Extracts 

were dried thoroughly to remove excess moisture and solvent to obtain its dry weight. 

Yield for the extracts were calculated based on the following formula and expressed in 

mg/g of plant. 

 

"#$%&	()*/*) =
./0123	45	678	/937:;3	(<1)

./0123	45	=>:?3	(1)
      (3.1) 

 

3.5 Phytochemical Compound Identification 

3.5.1 Thin Layer Chromatography (TLC) 

All extract was subjected to thin layer chromatography (TLC) for the identification of 

the phytochemical compounds present. The experiment was done according to the 

protocol described by Kagan and Flythe (2014) with some modifications. Two solvents 

were used; chloroform and 10 % methanol. 10 % methanol was prepared by mixing 
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methanol and chloroform in 1:9 by volume. The solvent was poured 0.5 cm deep into a 

tank. On the TLC plate (20 cm × 20 cm, thickness 1.5 mm, TLC Aluminium Silica Gel 

60F254 sheets), a baseline was drawn where each extract was spotted. The TLC plate was 

left inside the tank for a few minutes to allow the absorption of the solvent. Once the 

solvent had been absorbed by the TLC plate, the solvent front developed and observed 

bands were marked.  The developed plates were subjected to UV light at 254 nm and 

sprayed with different reagents to allow the visualization of phytochemical compounds. 

 

(a) Folin-Ciocalteu’s Reagent Test  

Folin-Ciocalteu’s reagent was sprayed onto the developed plate to detect the presence 

of phenol compounds. Blue coloured bands formed indicated the presence of phenol. 

 

(b) Vanillin-Sulphuric Acid Reagent Test  

Vanillin-sulphuric acid reagent was prepared according to Matysik et al. (2016) with 

several modifications. 1 g of vanillin, 100 ml of ethanol and 10 ml of concentrated 

sulphuric acid were mixed to make the reagent. The developed plate was then sprayed 

with the reagent and heated at 120 °C for 3-5 minutes. Pink coloured bands formed 

showed the presence of terpenoid. 

 

(c)  Dragendorff’s Reagent Test  

Dragendorff’s reagent was prepared by according to Mehrotra et al. (2011) with slight 

modifications. 1.7 g bismuth nitrate mixed 100 ml of distilled water and 16 g of potassium 

iodide dissolved in 40 ml of distilled water were prepared. 5 ml of bismuth nitrate 

solution, 5 ml of potassium iodide solution, 20 ml of acetic acid and 70 ml of distilled 

water were then mixed. The resulting reagent was then sprayed onto the developed plate 

to allow the observation of orange/ brown coloured bands for the presence of alkaloid. 
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Each band was then analyzed to determine their retention factor value, Rf. Rf allows 

the characterization of a compound based on the distance travelled by the spot compared 

to the distance travelled by the solvent. Determination of the Rf was done using the 

following formula (Nichols, 2018): 

 

Figure 3.1 : Calculation of the retention factor, Rf from the TLC plate.  

 
Retention	factor, R5 =

LMNOPQRS		OTPUSVVSW	XY	OZS	N[\O	(P)

LMNOPQRS	OTPUSVVSW	XY	OZS	N\VUSQO	(X)
    (3.2) 

 

3.5.2 Mass Spectrophotometry 

Both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-

mass spectrometry (GC-MS) were conducted to allow identification of the compounds 

present in I. aquatica and I. reptans extracts. Five extracts were selected for evaluation 

based on their performances in the antioxidant and anticholinesterase assays carried out. 

They were; (i) IA-LM, (ii) IR-LM, (iii) IA-LD, (iv) IA-SD and (v) IR-LD. 

 

3.5.2.1 Liquid Chromatography-Mass Spectrometry (LC-MS) 

Liquid chromatography-mass spectrometry (LC-MS) was carried based on the 

procedure described by Mauri et al. (2006) with minor modifications. Samples were sent 

to Centre for Natural Products Research and Drug Discovery (CENAR), University 
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Malaya, Kuala Lumpur for processing. Analysis of the samples were performed by using 

Agilent 6200 series TOF/ 6500 series in a C18 Hypersil column (100 mm × 3mm, 5 µm). 

The eluents used were methanol and water. The gradients were established at 0-1 min at 

30 % methanol, followed by 1-7 mins at 30 % to 45 % methanol and 7-5 mins at 45 % 

methanol. The flow rate was set at 0.55 ml/min with a volume of 50 µl of extract per 

injection. Gallic acid, tannic acid, quercetin and phenylalanine were used as standards. A 

negative ion scan mode at m/z 200-700 was used to detect the presence of compounds.  

 

3.5.2.2 Gas Chromatography-Mass Spectrometry (GC-MS)  

Gas chromatography-mass spectrometry (GC-MS) was performed according to Prasad 

et al. (2005). The separation was carried out at the Nanotechnology and Catalysis 

Research Centre (NANOCAT) University Malaya, Kuala Lumpur using Agilent’s Gas 

Chromatography with a MSD detector with DB624 capillary column (60 m × 320 mm × 

0.18 mm).  Argon gas was used as a carrier gas at a flow rate of 2 ml/min . Temperature 

was set at 120 °C  for 1 min, then increased and maintained up to 280 °C at a rate of 10 

°C/min. The temperature for injection was 250 °C, detection at 260 °C, inlet at 300 °C, 

interface at 280 °C, ion source at 230 °C and quadrupole at 150 °C. Total running time 

was 40 mins. Injection was done at 1 µL with a split ratio of 1:10.  
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3.6 Quantification of Phytochemical Compounds 

3.6.1 Total Phenol Contents (TPC)  

The total phenol content (TPC) of the extracts were determined by using Folin-

Ciocalteu’s reagent based on Alhakmani et al. (2014) with some modifications.  Gallic 

acid at various concentrations (100 – 1000 mg/l) were used to construct a standard  curve. 

20 µl of extract dissolved in ethanol was mixed with 100 µl of Folin-Ciocalteu’s reagent 

(diluted 10-fold with distilled water) in a 96-well plate and incubated for 5 minutes. Then, 

75 µl of sodium carbonate solution (75 mg/ml) was added to the mixtures. The mixtures 

were incubated in darkness at room temperature for 2 hours before being measured using 

a microplate reader (Tecan Sunrise, Austria) at 700 nm. All test was done in triplicates 

(n=3). The concentration for each extract was determined from the linear equation of the 

gallic acid standard curve. The TPC of the extract is calculated by using the following 

formula. 

 

] =
^_×`

<
          (3.3) 

 

Where C is TPC (mg GAE/g), C1 is the concentration of gallic acid (mg/ml), V is the 

volume of extract (ml) and m is the mass of plant extract (g). Results were expressed as 

mg gallic acid equivalent per g of dry extract (mg GAE/g).  

 

3.6.2 Total Flavonoid Contents (TFC)  

The total flavonoid content (TFC) was determined by using aluminum colorimetry 

method as described by Do et al. (2014) with minor modifications. Quercetin at various 

concentration (100 – 1000 mg/l) was used to generate the standard calibration curve. 50 

µl of extract dissolved in ethanol, 15 µl of sodium nitrite solution (5 % w/v) and 70 µl of 

distilled water were mixed in a 96-well plate and incubated at room temperature for 5 
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mins. 15 µl of aluminium chloride solution (10 % w/v) was added to the mixtures and 

incubated further for 6 mins at room temperature. 100 µl of sodium hydroxide solution 

(1 M) was then added and the absorbance readings for the mixtures were taken at 510 nm 

using a microplate reader (Tecan Sunrise, Austria). All test was done in triplicates (n=3). 

The concentration for each extract was determined from the linear equation of the 

quercetin standard curve. The TFC of the extract is calculated by using the following 

formula. 

 

] =
^_×`

<
          (3.3) 

 

Where C is TFC (mg QE/g), C1 is the concentration of quercetin (mg/ml), V is the 

volume of extract (ml) and m is the mass of plant extract (g). Results were expressed as 

mg quercetin equivalent per g of dry extract (mg QE/ g).  

 

3.7 Antioxidant Assays 

3.7.1 DPPH Radical Scavenging Activity Assay 

DPPH radical scavenging assay was carried out based on the protocol described by Do 

et al. (2014) with some modifications. A standard curve was constructed using ascorbic 

acid at different concentrations (6.25 – 800 µg/ml). Ascorbic acid was used as a positive 

control. 40 µl of extract dissolved in methanol at different concentrations (6.25 – 800 

µg/ml) and 200 µl of DPPH solution in ethanol (50 µM) were added in a 96-well plate 

and incubated in darkness at room temperature for 15 mins. Absorbance readings of the 

mixtures were taken using a microplate reader (Tecan Sunrise, Austria) at 517 nm. All 

test was carried out in triplicates (n=3). The half maximal inhibitory concentration (IC50) 

for the extracts were determined.  
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The percentage of radical inhibition of each extracts was determined by using the 

following formula: 

 

DPPH	radical	scavenging	activity	(%) =
klmnopmqrkstuvqw/sotnxtpx	

klmnopmq
× 100    (3.4) 

 

3.7.2 Ferric Reducing Antioxidant Power (FRAP) Assay 

Ferric reducing antioxidant power (FRAP) assay was done based on the methods 

described by Zengin et al. (2015) with slight changes. Ferrous sulfate at various 

concentrations (0.125 – 1.0  mM) were used to construct a standard curve. Ferrous sulfate 

was used as a positive control. FRAP reagent was prepared by mixing FeCl3 (20mM), 

TPTZ (10mM), and acetate buffer (0.3M, pH 3.6) in a 1:1:10 by volume. 20 µl of extract 

dissolved in methanol was mixed with 200 µl of FRAP reagent in a 96-well plate and 

incubated for 8 minutes at room temperature. The absorbance reading was carried out at 

595 nm using a microplate reader (Tecan Sunrise, Austria). All test was carried out in 

triplicates (n=3). FRAP value for each extract was determined from the linear equation 

of ferrous sulfate standard curve. Results were expressed as mmol of ferric ion, Fe3+ per 

g of dry extract (mmol Fe3+/ g). 

 

3.7.3 Ferrous Ion (Fe2+) Chelating Activity Assay 

The extracts ability to chelate Fe2+ was performed based on the methods described by 

Tohma et al. (2017) with some modifications. EDTA.Na2 at different concentrations 

(12.5-100 µg/ml) were used to construct a standard calibration curve. EDTA.Na2 was 

used as a positive control. 100 µl of extract dissolved in methanol at various 

concentrations (12.5-100 µg/ml), 10 µl of FeCl2 (2 mM), 120 µl of distilled water and 

100 µl of ferrozine (5 mM) were mixed in a 96-well plate and incubated for 20 minutes 

at room temperature. The absorbance reading was taken for each extract at 562 nm using 
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a microplate reader (Tecan Sunrise, Austria). All test was done in triplicates (n=3). The 

half maximal inhibitory concentration (IC50) for each extract was determined. The 

chelating activity of each extract was calculated based on the following formula:  

 

	Fe|}	chelating	activity	(%) =
klmnopmqrkstuvqw/sotnxtpx	

klmnopmq
× 100   (3.5) 

 

3.7.4 Hydrogen Peroxide (H2O2) Scavenging Assay 

The ability of the extracts to scavenge hydrogen peroxide (H2O2) was carried out based 

on the protocol described by Al-Amiery et al. (2015) with some modifications. Ascorbic 

acid at different concentrations (6.25 – 100 µg/ml) were used to construct a standard 

calibration curve. Ascorbic acid was used as a positive control. 0.1 ml of extract dissolved 

in methanol at various concentrations (6.25 – 100 µg/ml), 0.3 ml of phosphate buffer (50 

mM) and 0.6 ml of H2O2 (2 mM) were mixed in a glass cuvette. The mixture was 

incubated for 10 minutes at room temperature. The absorbance reading was made at 230 

nm using UV-Vis spectrophotometer-1700 (Shimadzu, Japan). All test was done in 

triplicates (n=3). The half maximal inhibitory concentration (IC50) for each extract was 

determined. The H2O2 scavenging activity was calculated using the following formula: 

 

H|O|	scavenging	activity	(%) =
klmnopmqrkstuvqw/sotnxtpx	

klmnopmq
× 100   (3.6) 

 

3.8 Acetylcholinesterase Inhibitory Assay 

The ability for the extracts to inhibit the activity of cholinesterase enzyme was 

performed based on the method described by Machado et al. (2015) with slight 

modifications. Berberine at various concentration range (6.25 – 400 µg/ml) was used to 

construct a standard calibration curve. Berberine was used as a positive control. Two 

solutions were prepared. Solution A: Tris/ HCl buffer (50 mM, pH 8) with bovine albumin 
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fraction V (0.1%) and solution B: Tris/ HCl buffer (50 mM, pH 8) with NaCl (0.1 M) and 

MgCl2.6H20 (0.02 M). Ellman’s reagent was prepared by mixing DTNB in solution B (3 

µM). Extracts dissolved in methanol were diluted with Tris/ HCl buffer into various 

concentrations (6.25 – 400 µg/ml). To start the reaction, 25 µl of acetylthiocholine iodide 

(15 µM), 125 µl of Ellman’s reagent, 50 µl of solution A, 25 µl of extract and 25 µl of 

acetylcholinesterase (AChE) (0.20 U/ml) were added into a 96-well plate. The mixtures 

were incubated for 20 minutes at room temperature. The absorbance reading was made 

at 405 nm. All test was done in triplicates (n=3). The half maximal inhibitory 

concentration (IC50) for each extract was determined. The inhibitory activity of the extract 

determined by using the following formula: 

 

Anticholinesterase	activity	(%) =
klmnopmqrkstuvqw/sotnxtpx	

klmnopmq
× 100   (3.7) 

 

Figure 3.2 shows the summary of the methodology of the study. 

 

3.9 Statistical Analysis  

All result was expressed as the mean ± standard error (S.E.) for the seven independent 

experiments. Differences between extracts were analysed by one-way analysis of 

variance (ANOVA) followed by Duncan’s post hoc multiple comparison test at 5 % (P < 

0.05). SPSS 25.0 version, Chicago, IL, USA was used to perform the whole tests.  
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Figure 3.2 : The summary on the methodology of the study. 
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CHAPTER 4 : RESULTS  

4.1 Yield 

I. aquatica and I. reptans were first separated into leaves, stems, flowers and roots. 

These parts were dried and finely ground to allow easier extraction and separation of the 

phytochemical compounds present in the plant. The plants were extracted using various 

solvents of different polarity, gradually starting from a non-polar solvent to polar 

solvents. Hexane, chloroform, methanol and distilled water were used as solvents. Only 

the leaves and stems of both plant species were used for this study as they are the edible 

parts of the plants.  

Table 4.1 describes the yield for each of the extracts prepared in mg/g. From the table, 

it can be observed that the highest yield was obtained in the methanolic extracts for both 

I. aquatica and I. reptans. IR-SM (30.5 mg/g) had the highest yield, followed by IA-LM 

(21.0 mg/g) and IR-LM (19.7 mg/g). As methanol is polar and is effective at isolating 

phenolic compounds, more phenolic compounds could have been extracted in the 

methanolic extracts of both plants. Other extracts had lower yields (£ 10.0 mg/g). I. 

aquatica had a lower yield compared to I. reptans. 

 
Table 4.1 : The yield (mg/g) for all I. aquatica and I. reptans extract. 

Extract 
Yield (mg/g) of extract in different solvent 

Hexane Chloroform Methanol Distilled water 

IA-L 3.1 9.1 21.0 7.6 

IA-S 2.6 1.3 10.8 8.4 

IR-L 5.1 3.8 19.7 10.2 

IR-S 0.7 8.3 30.5 9.3 

IA-L : I. aquatica leaf      
IA-S : I. aquatica stem     
IR-L : I. reptans leaf   
IR-S : I. reptans stem      
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4.2 Thin Layer Chromatography 

Thin layer chromatography was done as an early investigation to detect the presence 

of active natural compounds present in the extracts. Upon administration of different 

reagents, the presence of phytochemical compounds can be observed. Table 4.2 – 4.33 

show the phytochemical compounds present in the I. aquatica and I. reptans extracts in 

both chloroform and 10 % methanol solvents.  

Observation under visible light for the all of the extracts of I. aquatica and I. reptans 

displayed green and yellow bands on the TLC plates while fluorescent red and blue bands 

were observed under the UV light. Some green and yellow bands fluoresced under the 

UV light.  

Staining with Folin-Ciocalteu’s reagent revealed dark-blue bands on a yellow-greenish 

background indicating the presence of phenol. Vanillin-sulphuric acid reagent produced 

pink, orange/ brown and green bands on a yellow background showing the presence of 

terpenoid, phenol, alkaloid and alcohol. Dragendorff’s reagent showed orange/brown and 

green bands on an orange background denoting the presence alkaloid and phenol.  

10 % methanol was found to be better at separating the phytochemical compounds 

present in both I. aquatica and I. reptans extracts. This indicates that a polar solvent is 

more suitable for the separation of phytochemical compounds in I. aquatica and I. 

reptans. 10 % methanol also has a higher eluting strength compared to chloroform, 

making it more effective in separating phytochemical compounds of varying polarities. 

10 % methanol was better at separating terpenoid and phenol. 

More phytochemical compounds were detected in non-polar extracts compared to 

polar extracts for both plant species in both solvents. This shows that most of the 

phytochemical present in both plant extracts were non-polar, making it very soluble in 

non-polar extracts.  

All reagents did not produce any visible stain in distilled water extracts. 
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Table 4.2 : Thin layer chromatography (TLC) profile for I. aquatica leaf hexane (IA-LH) extract with chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff’s 

I. aquatica leaf hexane  
(IA-LH) 1 0.06 Green (+) Red (+) - Pink (+++) - Terpenoids 

 2 0.07 Yellow (+) - Blue (+) - - Phenols 
 3 0.13 Yellow (+) Red (+) Blue (+) - - Phenols 
 4 0.17 Yellow (++) - Blue (++) - - Phenols 
 5 0.28 Green (+) Red (+++) - Pink (++) - Terpenoids 
 6 0.34 Green (+) Red (++) - - Brown (+) Alkaloids 
 7 0.42 - Red (++) - Pink (+) - Terpenoids 
 8 0.43 Green (+) - Blue (+) - - Phenols 
 9 0.46 Yellow (+) Red (++) - Brown (+++) Brown (++) Phenols 
 10 0.48 Yellow (+) Red (+++) Blue (+) - - Phenols 
 11 0.50 - Blue (+) - Orange (+) - Alkaloids 
 12 0.58 - Red (++) - Pink (+) - Terpenoids 
 13 0.58 Green (++) Red (+++) Blue (++) - - Phenols 
 14 0.68 Yellow (+) Red (++) Blue (++) - - Phenols 
 15 0.87 - - - Pink (++) - Terpenoids 
  16 0.88 Yellow (+++) Red (++) Blue (+++) Brown (+++) - Phenols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.3 : Thin layer chromatography (TLC) profile for I. aquatica stem hexane (IA-SH) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica stem hexane  
(IA-SH) 1 0.13 Yellow (+) Red (+) - Pink (+) - Terpenoids 

 2 0.21 Green (+) Red (++) - - - - 
 3 0.24 - Red (+) - - - - 
 4 0.33 - Red (+) - Brown (++) - Terpenoids 
 5 0.34 - Blue (++) - - - - 
 6 0.44 - Blue (+) - - - - 
 7 0.56 Green (+) Red (+++) - - - - 
 8 0.58 - Red (+) - - - - 
 9 0.71 - Red (+) - - - - 
 10 0.77 - Blue (+) - - - - 
 11 0.85 - Blue (+) - Pink (+) - Terpenoids 
  12 0.90 Yellow (+) - - Pink (+) - Terpenoids 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.4 : Thin layer chromatography (TLC) profile for I. reptans leaf hexane (IR-LH) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf hexane  
(IR-LH) 1 0.04 Green (++) Red (++) - Pink (+) - Terpenoids 

 2 0.08 Green (+) - - - - Chlorophyll 
 3 0.09 Yellow (++) Red (+++) - Pink (+) - Terpenoids 
 4 0.15 Green (+) Red (+++) - Pink (+) - Terpenoids 
 5 0.25 Yellow (+) Red (+) Blue (+) - - Phenols  
 6 0.25 Green (+) - - - - Chlorophyll 
 7 0.30 Green (+) - - - - Chlorophyll 
 8 0.33 - - - Brown (++) - Terpenoids 
 9 0.38 - Blue (+) - Pink (+) - Terpenoids 
 10 0.40 Yellow (+) Red (+) - Pink (+) - Terpenoids 
 11 0.48 Yellow (+) - - Pink (+) - Terpenoids 
 12 0.53 Yellow (+) Blue (++) - - - - 
 13 0.56 - Red (+) - Pink (+) - Terpenoids 
 14 0.69 - Red (+) - Pink (+) - Terpenoids 
 15 0.70 Yellow (+) - Blue (+) - - Phenols 
 16 0.79 - Blue (+) - Pink (+) - Terpenoids 
  17 0.89 Yellow (+++) - Blue (+++) - - Phenols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.5 : Thin layer chromatography (TLC) profile for I. reptans stem hexane (IR-SH) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem hexane  
(IR-SH) 1 0.09 Green (+) Red (+++) - Pink (+) - Terpenoids 

 2 0.12 Yellow (+) - - Pink (+) - Terpenoids 
 3 0.15 - Red (+) - Pink (+) - Terpenoids 
                                                            4 0.33 - - - Brown (++) - Terpenoids 
 5 0.42 - Blue (++) - - - - 
  6 0.90 Yellow (++) - - - Brown (++) Alkaloids 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.6 : Thin layer chromatograhy (TLC) profile for I. aquatica leaf chloroform (IA-LC) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-

sulphuric acid Dragendorff 

I. aquatica 
leaf 

chloroform 
(IA-LC) 

1 0.06 Green (+++) Red (+++) Blue (++) Green (+++) - Alcohols 
2 0.11 Green (+++) Red (+++) Blue (++) Green (+++) Green (+) Alcohols 
3 0.12 - - - Orange (+++) - Terpenoids 
4 0.13 Yellow (++) Red (++) Blue (++) Green (+++) Green (+++) Alcohols 
5 0.16 - - - Pink (++) - Terpenoids 
6 0.18 Green (++) Blue (++) - Green (+++) - Alcohols 
7 0.21 Green (+++) Red (++) Blue (++) Green (+++) - Alcohols 
8 0.22 Yellow (+++) Red (+++) - Pink (+) Green (++) Phenols 
9 0.26 Green (+) Red (++) Blue (+) - Brown (+) Phenols 
10 0.42 Yellow (+) Red (+) - - - - 
11 0.42 - Blue (++) - - - - 
12 0.43 Green (++) Red (+++) Blue (+++) - Brown (+++) Phenols 
13 0.48 Green (++) Red (+++) - - Green (+++) Phenols 
14 0.52 Yellow (+) - - - - Xanthophylls 
15 0.60 - Red (++) - - Green (+++) Phenols 
16 0.71 - Blue (++) - Pink (+) - Terpenoids 
17 0.72 Green (+++) Red (+++) - - Green (++) Phenols 
18 0.82 Yellow (+) Red (+) - Pink (+) Brown (+) Terpenoids 
19 0.83 Yellow (+++) Blue (+) Blue (++) Green (+++) - Alcohols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 

35 

Univ
ers

ity
 of

 M
ala

ya



 

Table 4.7 : Thin layer chromatography (TLC) profile for I. aquatica stem chloroform (IA-SC) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-

Ciocalteu 
Vanillin-

sulphuric acid Dragendorff 

I. aquatica 
stem 

chloroform 
(IA-SC)  

1 0.07 - Blue (++) Blue (+) Pink (+) - Phenols 
2 0.09 Yellow (+) Red (++) - Pink (+) - Terpenoids 
3 0.12 - - - Orange (+) - Terpenoids 
4 0.12 Yellow (+) Blue (+++) Blue (+) - - Phenols 
5 0.22 Yellow (+) - - - - Xanthophylls 
6 0.25 - Blue (+) - - - - 
7 0.30 Green (+) Red (++) Blue (+) Green (+) - Alcohols 
8 0.50 Green (++) Red (+++) Blue (++) - Brown (+) Phenols 
9 0.64 - Red (+) - - - - 
10 0.79 - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.8 : Thin layer chromatography (TLC) profile for I. reptans leaf chloroform (IR-LC) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-

Ciocalteu 
Vanillin-

sulphuric acid Dragendorff 

I. reptans 
leaf 

chloroform 
(IR-LC)  

1 0.09 Yellow (+) - - - - Xanthophyll 
2 0.11 - Blue (+) - - - - 
3 0.11 Yellow (+++) Red (+) Blue (++) Green (+++) - Alcohols 
4 0.12 - - - Orange (+) - Terpenoids 
5 0.13 - Red (+) - Green (+) - Alcohols 
6 0.14 Green (+) Red (++) Blue (+) Green (+++) - Alcohols 
7 0.15 Yellow (++) - - - Green (++) Alkaloids 
8 0.23 Green (+) Blue (+) - - - - 
9 0.27 Green (+) Red (+) Blue (+) - - Phenols 
10 0.29 Yellow (+) - - - - Xanthophyll 
11 0.35 - Red (+) - - - - 
12 0.35 Green (+) Red (++) - - - - 
13 0.41 Green (+) Red (++) - - - - 
14 0.46 Green (+) Red (++) Blue (+++) - - Phenols 
15 0.49 - Red (+) - - - - 
16 0.58 Green (+++) Red (++) - - Brown (++) Alkaloids 
17 0.63 - Red (+) - - - - 
18 0.73 - Red (+) - - - - 
19 0.87 Yellow (+) Blue (+) - - - - 
20 0.94 Yellow (+) Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.9 : Thin layer chromatography (TLC) profile for I. reptans stem chloroform (IR-SC) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem chloroform 
(IR-SC)  

1 0.03 - Red (++) - Pink (+) - Terpenoids 
2 0.04 - Blue (+) - Pink (+) - Terpenoids 
3 0.11 Yellow (+) Red (+) Blue (+) Green (+) - Alcohols 
4 0.12 - - - Orange (+) - Terpenoids 
5 0.14 - Red (+) - - - - 
6 0.18 Green (+) Red (+) Blue (+) - - Phenols 
7 0.19 Yellow (+) Red (+) - - - - 
8 0.21 - Red (++) - - - - 
9 0.35 Green (+) Red (+) - Green (++) - Alcohols 
10 0.38 Green (+) Red (+) - - - - 
11 0.43 Green (+) Red (+) Blue (++) - - Phenols 
12 0.70 Green (++) Red (+++) - - Brown (+) Alkaloids 
13 0.71 - Red (+) - - - - 
14 0.77 - Red (++) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.10 : Thin layer chromatography (TLC) profile for I. aquatica leaf methanol (IA-LM) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf methanol 
(IA-LM) 

1 0.04 - Red (+) - Brown (+) - Terpenoids 
2 0.06 - Blue (+) - - - - 
3 0.10 - Red (+) - Pink (+) - Terpenoids 
4 0.13 - Red (++) - - - - 
5 0.14 - Blue (+++) - - - - 
6 0.25 - Red (+) - - - - 
7 0.30 Green (+) Red (+++) - - - - 
8 0.40 - Blue (+) - - - - 
9 0.43 - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.11 : Thin layer chromatography (TLC) profile for I. aquatica stem methanol (IA-SM) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica stem methanol 
(IA-SM)  

1 0.07 - Blue (++) - - - - 
2 0.19 - Blue (+++) - - - - 
3 0.21 - Red (+) - - - - 
4 0.24 - Red (+) - - - - 
5 0.25 - Red (+) - - - - 
6 0.57 - Red (++) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.12 : Thin layer chromatography (TLC) profile for I. reptans leaf methanol (IR-LM) extract in chloroform solvent. 

Extract Band Rf 
Observations Remarks 

Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff  
I. reptans leaf methanol 

(IR-LM) 1 0.03 - Red (++) - - - - 

 2 0.06 - Blue (++) - - - - 
 3 0.08 - Red (+++) - - - - 
 4 0.12 - Red (+) - - - - 
 5 0.13 Green (+) Red (+++) - - - - 
 6 0.14 - Blue (+) - - - - 
 7 0.15 - Red (++) - - - - 
 8 0.24 Yellow (+) Red (+++) - - - - 
 9 0.24 Green (++) Red (+++) - - Brown (++) Alkaloids 
 10 0.25 - Red (+) - - - - 
 11 0.33 - Red (+) - - - - 
 12 0.37 Green (++) Red (+++) - - - - 
 13 0.38 - Red (+) - - - - 
  14 0.47 - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.13 : Thin layer chromatography (TLC) profile for I. reptans stem methanol (IR-SM) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem methanol 
(IR-SM)  

1 0.06 - Blue (+) - - - - 
2 0.11 - Red (+) - - - - 
3 0.14 - Red (+) - - - - 
4 0.15 - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.14 : Thin layer chromatography (TLC) profile for I. aquatica leaf distilled water (IA-LD) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf distilled water 
(IA-LD) 1 0.07 - Blue (+) - - - - 

  2 0.21 - Blue (+) - - - - 
 

Table 4.15 : Thin layer chromatography (TLC) profile for I. aquatica stem distilled water (IA-SD) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica stem distilled water 
(IA-SD) 1 0.09 - Blue (+) - - - - 

  2 0.18 - Blue (+++) - - - - 
Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.16 : Thin layer chromatography (TLC) profile for I. reptans leaf distilled water (IR-LD) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf distilled water 
(IR-LD) 1 0.07 - Blue (+) - - - - 

 

Table 4.17 : Thin layer chromatography (TLC) profile for I. reptans stem distilled water (IR-SD) extract in chloroform solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem distilled water 
(IR-SD) 1 0.12 - Blue (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.18 : Thin layer chromatography (TLC) profile for I. aquatica leaf hexane (IA-LH) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf hexane  
(IA-LH) 1 0.10 - Red (+) - Pink (++) - Terpenoids 

 2 0.15 - Blue (+) - Pink (++) - Terpenoids 
 3 0.16 Green (+) Blue (+) - - - - 
 4 0.20 - Red (+) - Pink (++) - Terpenoids 
 5 0.27 - Blue (+) - Orange (+) - Terpenoids 
 6 0.28 Green (+) Red (+++) - Orange (+) - Terpenoids 
 7 0.33 Green (+) Red (++) - Pink (+) Brown (+) Terpenoids 
 8 0.40 - Red (+) - Pink (++) - Terpenoids 
 9 0.45 Green (+) Blue (+) - - - - 
 10 0.46 Green (+) Red (+++) - Pink (+++) - Terpenoids 
 11 0.52 - Blue (+) - - - - 
 12 0.60 Green (+) - - - - Chlorophyll 
 13 0.60 Yellow (++) Red (+) Blue (+) - - - 
 14 0.64 - Red (+) - Pink (+++) - Terpenoids 
 15 0.68 Yellow (++) - - Pink (+++) - Terpenoids 
 16 0.72 Yellow (+) Blue (+) - - - - 
 17 0.74 - Red (+) - Pink (+++) - Terpenoids 
 18 0.82 Yellow (++) Red (++) Blue (+) Pink (+++) - Phenols 
 19 0.89 Yellow (+++) Red (+++) Blue (+++) Pink (++) Green (+++) Phenols 

  20 0.93 - blue (+++) - - - - 
Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.19 : Thin layer chromatography (TLC) profile for I. aquatica stem hexane (IA-SH) extract in 10 % methanol solvent. 

Extract Band Rf 
 Observations 

Remarks  Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 
I. aquatica stem hexane 

(IA-SH)  
1 0.21  - Blue (+) - Orange (+) - Terpenoids 
2 0.30  - Red (+) - Orange (+) Brown (+) Phenols 
3 0.31  - Blue (+) - Orange (+) Brown (+) Phenols  
4 0.37  - Blue (+) - - - - 
5 0.47  - Red (++) - Pink (++) - Terpenoids 
6 0.49  - Blue (+) - - - - 
7 0.62  - Blue (++) - Pink (++) - Terpenoids 
8 0.68  Yellow (+) - - - - Xanthophylls 
9 0.88  - Blue (++) - Pink (+) - Terpenoids 
10 0.92  Yellow (+) Red (++) - Pink (++) - Terpenoids 
11 0.93  - Blue (++) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.20 : Thin layer chromatography (TLC) profile for I. reptans leaf hexane (IR-LH) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf hexane 
(IR-LH) 

1 0.09 - Red (++) - - - - 
2 0.20 - Red (++) - - - - 
3 0.38 - Red (++) - Pink (+) - Terpenoids 
4 0.42 Green (+) Blue (+) - - - - 
5 0.43 - Red (+) - Pink (+) - Terpenoids 
6 0.49 - - - Pink (++) - Terpenoids 
7 0.55 Yellow (+) Red (+) - Pink (+) - Terpenoids 
8 0.62 - Red (+) - Pink (+) - Terpenoids 

 9 0.63 - Blue (+) - - - - 
 10 0.66 Yellow (+) - - Pink (+) - Terpenoids 
 11 0.74 - Red (+) - Pink (++) - Terpenoids 
 12 0.75 - - - Orange (++) - Terpenoids 
 13 0.82 Yellow (+) Red (+++) - - Brown (++) Alkaloids 
 14 0.86 Green (++) Red (+++) - Pink (++) - Terpenoids 
 15 0.89 Yellow (+++) Red (+++)  Blue (+++) Pink (+++) - Phenols 
  16 0.91 - blue (+++)  Blue (+++) - - Phenols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.21 : Thin layer chromatography (TLC) profile for I. reptans stem hexane (IR-SH) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem hexane 
(IR-SH) 1 0.65 Yellow (+) - - - - Xanthophylls 

 2 0.75 - - - Pink (+++) - Terpenoids 
 3 0.82 - Red (+) - - - - 
 4 0.87 - Blue (+) - Pink (+) - Terpenoids 
 5 0.89 - Red (+) - Pink (+) - Terpenoids 
  6 0.92 Yellow (+) blue (+++) - Pink (+) - Terpenoids 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.22 : Thin layer chromatography (TLC) profile for I. aquatica leaf chloroform (IA-LC) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf chloroform 
(IA-LC) 

1 0.14 - - - Orange (++) - Terpenoids 
2 0.15 Green (++) Red (+++) Blue (++) Brown (++) Brown (+) Phenols 
3 0.20 Green (+) Red (+++) Blue (++) Brown (+++) Green (+) Phenols 
4 0.23 Green (+) Red (+++) Blue (++) Brown (++) Brown (+) Phenols 

 5 0.32 Green (++) Red (+++) Blue (++) Brown (+++) Brown (+) Phenols 
 6 0.37 Green (++) Red (+++) Blue (++) Brown (+++) - Phenols 
 7 0.41 - Red (+) - Pink (+) - Terpenoids 
 8 0.42 Green (++) Red (+++) - - Brown (+) Alkaloids 
 9 0.45 Green (++) Red (+++) Blue (++) Brown (+++) ++ Phenols 
 10 0.58 - Blue (+++) Blue (+) Pink (+++) - Phenols 
 11 0.61 - Red (+) - - - - 
 12 0.61 Yellow (++)  Blue (+++) Blue (+++) Green (+++) Phenols 
 13 0.61 - Red (+) Blue (+) Brown (+++) - Phenols 
 14 0.76 Green (++) Red (+++) Blue (+) Green (+++) - Alcohols 
  15 0.85 Green (+++) Red (+++) Blue (+++) Green (+++) Green (+++) Alcohols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.23 : Thin layer chromatography (TLC) profile for I. aquatica stem chloroform (IA-SC) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica stem chloroform 
(IA-SC) 

1 0.17 - Blue (+) - - - - 
2 0.21 - - - Orange (++) - Terpenoids 
3 0.29 Green (+) Red (+++) Blue (+) Orange (+) - Terpenoids 
4 0.39 - Blue (+) - - - - 
5 0.42 - Red (++) - - - - 
6 0.44 - - - Brown (++) - Terpenoids 
7 0.44 Green (+) Red (+) - - - - 
8 0.54 - Blue (+++) - - - - 

 9 0.56 Green (+) Red (++) Blue (+) Brown (++) Brown (+) Phenols 
 10 0.62 - Blue (+++) - Pink (+) - Terpenoids 
 11 0.68 Yellow (+) - - Blue (+) - Alcohols 
 12 0.70 - Red (+) - - - - 
 13 0.81 - - - Brown (++) - Terpenoids 
  14 0.91 Green (+++) Red (+++) Blue (++) Green (++) Brown (++) Alcohols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.24 : Thin layer chromatography (TLC) profile for I. reptans leaf chloroform (IR-LC) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf chloroform 
(IR-LC) 

1 0.12 - Red (+) - - - - 
2 0.19 - Red (+) - Pink (++) - Terpenoids 
3 0.28 Green (+++) Red (++) Blue (+) - Brown (+) Phenols 
4 0.28 - Red (+) - Orange (+) - Terpenoids 
5 0.33 Yellow (+) - Blue (+) - - Phenols 
6 0.34 Green (+) Red (+) Blue (+) - - Phenols 

 7 0.39 Green (+) Red (+) Blue (++) - - Phenols 
 8 0.46 Green (++) Red (+++) Blue (+) Pink (++) Brown (++) Phenols 
 9 0.48 - Red (+) - Pink (+) - Terpenoids 
 10 0.49 Yellow (+) Red (+) Blue (+) - - Phenols 
 11 0.52 - Red (++) - - - - 
 12 0.55 Green (+) Red (+) - - - - 
 13 0.55 - Blue (++) - Pink (+) - Terpenoids 
 14 0.63 - Blue (++) - - - - 
 15 0.64 Yellow (++) - Blue (++) Blue (+++) Green (+) Phenols 
 16 0.66 - Red (++) - - - - 
 17 0.76 Yellow (+) Red (++) - Brown (+) - Terpenoids 
 18 0.76 - Red (++) - Pink (+) - Terpenoids 
 19 0.83 Green (+) - Blue (+) - - Phenols 
  20 0.91 Green (+++) Red (+++) Blue (+++) Green (+++) Brown (+++) Alcohols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.25 : Thin layer chromatography (TLC) profile for I. reptans stem chloroform (IR-SC) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem chloroform 
(IR-SC) 

1 0.26 - Red (++) - - - - 
2 0.29 - Blue (+) - - - - 
3 0.30 - - - Orange (+) - Terpenoids 

 4 0.30 - Blue (+) - - - - 
 5 0.44 - Red (++) - - - - 
 6 0.44 - Red (+) - - - - 
 7 0.52 - Blue (++) - - - - 
 8 0.54 Yellow (+) - - Pink (+) - Terpenoids 
 9 0.61 Green (+) - - - - Chlorophylls 
 10 0.62 - Blue (++) - Pink (+) - Terpenoids 
 11 0.67 Yellow (++) Red (++) - - - - 
 12 0.72 - Red (++) - - - - 
 13 0.81 - - - Orange (+) - Terpenoids 
 14 0.81 - Red (++) - - - - 
  15 0.92 Green (++) Red (+++) Blue (++) - Brown (++) Phenols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.26 : Thin layer chromatography (TLC) profile for I. aquatica leaf methanol (IA-LM) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations Remarks Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf methanol 
(IA-LM) 

1 0.07 - Red (+) - Pink (+) - Terpenoids 
2 0.07 - - Blue (+++) - - Phenols 
3 0.09 - Blue (+++) - Pink (+++) - Terpenoids 
4 0.10 Green (+) Blue (+) - - - - 
5 0.12 - Blue (+) - - - - 
6 0.16 Yellow (+) Blue (+) - - - - 

 7 0.24 - Red (+) - - - - 
 8 0.28 Yellow (++) Red (+) - - - - 
 9 0.36 Green (+) Red (++) - - - - 
 10 0.37 - Red (+) - - - - 
 11 0.43 - Blue (+) - - - - 
 12 0.47 Yellow (+) - - - - Xanthophylls 
 13 0.50 Green (+) Red (+++) - - - - 
 14 0.55 - Red (+) - - - - 
 15 0.55 - Blue (++) - - - - 
 16 0.57 - Blue (+) - - - - 
 17 0.59 - Blue (++) - - - - 
 18 0.61 Yellow (+) Red (+) - - - - 
 19 0.65 - Blue (++) - - - - 
 20 0.69 - Red (+) - Pink (+) - Terpenoids 
 21 0.85 - Red (+) - - - - 
 22 0.91 Green (++) Red (+++) - - - - 
  23 0.94 Yellow (++) Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.27 : Thin layer chromatography (TLC) profile for I. aquatica stem methanol (IA-SM) extract in 10 % methanol solvent. 

Extract Band Rf 
 Observations 

Remarks  Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 
I. aquatica stem methanol 

(IA-SM) 
1 0.10  - Blue (+++) - Pink (+) - Terpenoids 
2 0.28  - Blue (+) - - - - 
3 0.57  - Blue (++) - - - - 
4 0.65  - Blue (+++) - - - - 
5 0.73  - Blue (+) - - - - 

 6 0.93  Green (+) Red (+++) - - - - 
  7 0.97  - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.28 : Thin layer chromatography (TLC) profile for I. reptans leaf methanol (IR-LM) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf methanol 
(IR-LM) 

1 0.05 - Blue (++) - Pink (++) - Terpenoids 
2 0.07 - Red (+) - - - - 
3 0.08 - Blue (++) - Pink (++) - Terpenoids 
4 0.12 - Red (+) - Pink (+) - Terpenoids 
5 0.15 - Blue (+) - - - - 
6 0.20 - Red (+) - - - - 
7 0.23 - Red (+) - - - - 
8 0.28 Green (+) Red (+++) - - - - 
9 0.39 - Red (++) - - - - 
10 0.40 - Blue (++) - - - - 

 11 0.43 Green (+) Red (+++) - - - - 
 12 0.51 - Blue (+) - - - - 
 13 0.56 - Red (+) - - - - 
 14 0.56 - Blue (+) - - - - 
 15 0.64 - Red (+) - - - - 
 16 0.66 - Red (+) - - - - 
 17 0.76 - Red (+) - - - - 
 18 0.84 - Red (+) - - - - 
  19 0.94 Green (++) Red (+++) Blue (+) - Brown (+) Phenols 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.29 : Thin layer chromatography (TLC) profile for I. reptans stem methanol (IR-SM) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem methanol 
(IR-SM) 

1 0.07 - Blue (+++) - - - - 
2 0.19 - - - Pink (+) - Terpenoids 
3 0.39 - Blue (+) - - - - 
4 0.49 - Blue (+) - - - - 
5 0.55 - Blue (+) - - - - 

  6 0.92 - Red (+) - - - - 
Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent
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Table 4.30 : Thin layer chromatography (TLC) profile for I. aquatica leaf distilled water (IA-LD) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica leaf distilled water 
(IA-LD)  

1 0.45 - Blue (+) - - - - 
2 0.52 - Blue (+) - - - - 

 
 

Table 4.31 : Thin layer chromatography (TLC) profile for I. aquatica stem distilled water (IA-SD) extract in 10 % methanol solvent. 

Extract Band 
Rf Observations 

Remarks 
 Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. aquatica stem distilled water 
(IA-SD) 

1 0.04 - Blue (++) - - - - 
2 0.48 - Blue (++) - - - - 
3 0.58 - Blue (+++) - - - - 
4 0.92 - Red (+) - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absent 
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Table 4.32 : Thin layer chromatography (TLC) profile for I. reptans leaf distilled water (IR-LD) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans leaf distilled water 
(IR-LD)  

1 0.07 - Blue (+++) - - - - 
2 0.97 - Red (+) - - - - 

 
 

Table 4.33 : Thin layer chromatography (TLC) profile for I. reptans stem distilled water (IR-SD) extract in 10 % methanol solvent. 

Extract Band Rf 
Observations 

Remarks 
Visible light UV light Folin-Ciocalteu Vanillin-sulphuric acid Dragendorff 

I. reptans stem distilled water 
(IR-SD) - - - - - - - - 

Colour intensity: (+) weak, (++) moderate, (+++) strong, (-) absen
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4.3 Mass Spectrometry 

4.3.1 Liquid Chromatography-Mass Spectrometry (LC-MS) 

The liquid chromatography-mass spectrometry (LC-MS) analysis was performed to 

detect the presence of quercetin, tannic acid, gallic acid and phenylalanine in the selected 

I. aquatica and I. reptans extracts. The extracts were run against these standards and the 

concentration of each compound detected was calculated. Table 4.34 describes the 

concentration of the compounds detected in each of the extract sample analysed.  

It can be seen that in all five extracts of I. aquatica and I. reptans, there were negligible 

traces of gallic acid. Varying amount of quercetin and phenylalanine detected in the I. 

aquatica and I. reptans extracts sent indicated that between plant species and parts of 

plant, there was a difference in the level of these compounds. Quercetin (13.36 mg/ml) 

and phenylalanine (25.95 mg/ml) were the highest in IA-LM. Higher level of quercetin 

and phenylalanine seen showed that methanol was more effective in extracting these 

compounds compared to distilled water. Methanol is known to be effective in dissolving 

sugar, amino acids, glycoside compounds and phenolic compounds with low and medium 

molecular weight and of medium polarity (Widyawati et al., 2014). Besides, methanol is 

amphiphilic thus it is better at extracting polar and non-polar compounds such as 

flavanoid and phenyalanine. 

The highest concentration of tannic acid (1.25 mg/ml) can be observed in IA-LD. The 

IA-LD had a higher concentration of quercetin (10.31 vs 1.46 mg/ml) and phenylalanine 

(20.01 vs 2.84 mg/ml) compared to IA-SD. This indicates that leaf extract in distilled 

water of I. aquatica had a higher level of quercetin and phenylalanine compared to the 

stem extract in distilled water of I. aquatica. IA-LM showed higher concentration of 

quercetin (13.36 vs 5.80 mg/ml) and phenylalanine (25.95 vs 11.25 mg/ml) compared to 

IR-LM while tannic acid remained similar in concentration. This shows that quercetin 
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and phenyalanine were higher in the methanolic leaf extract of I. aquatica compared to I. 

reptans. 

 

Table 4.34 : The compounds detected in the LC-MS for the selected I. aquatica and I. 
reptans extracts. N/A indicates a negligible concentration. 

Extract 
Concentration (mg/ml) 

Quercetin Tannic acid Gallic acid Phenylalanine 

IA-LM 13.36 0.68 N/A 25.95 

 IR-LM 5.80 0.68 N/A 11.25 

IA-LD 10.31 1.25 N/A 20.01 

 IA-SD 1.46 0.93 N/A 2.84 

IR-LD 7.44 0.17 N/A 14.44 

IA-LM : I. aquatica leaf extract in methanol  
IR-LM : I. reptans leaf extract in methanol  
IA-LD : I. aquatica leaf extract in distilled water 
IA-SD : I. aquatica stem extract in distilled water 
IR-LD : I. reptans leaf extract in distilled water 
 
 
4.3.2 Gas Chromatography-Mass Spectrometry (GC-MS) 

The gas chromatography-mass spectrometry (GC-MS) performed suggested the 

presence of phenolic compounds, alkaloids, terpenes, sterol, esters, polyols, organic acids 

and fatty acids in all IA-LM, IR-LM, IA-LD, IA-SD and IR-LD. Among these 

compounds, more alkaloids and ester were detected. A greater level of phytochemical 

compounds were observed in I. aquatica compared to I. reptans. The IA-LD was shown 

to have a lower level of phytochemical compounds compared to IA-SD. This indicates 

that the stem extract in distilled water of I. aquatica contains more phytochemical 

compounds compared to its leaf extract in distilled water. Table 4.35 - 4.39 show the 

suggested compounds present in the extracts tested.
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Table 4.35 : The suggested GC-MS result for I. aquatica leaf in methanolic (IA-LM) extract. 

Compound name Retention time  Area Area (%) Group 
11-Hexadecenoic acid, 15-methyl-, methyl ester  4.27 7959 1.99 Ester 
Benzyl propiolate  6.14 7904 1.97 Ester 
Cholest-8(14)-ene-3,15-diol, diacetate, (3.beta-hydroxy-5 alpha- 12.92 8019 2.00 Sterol 
Phenol, 2,4-bis(1,1-dimethylethyl)-  15.85 36071 9.01 Phenolic compound 
6-[(Z)-1-Butenyl]-1,4-cycloheptadiene  16.70 9699 2.42 Terpene 
Thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester 17.52 7857 1.96 Ester 
1- Benzazirene-1-carboxylic acid, 2,2,5a-trimethyl-1a-[3-oxo-1-butenyl] perhydro- 19.56 8089 2.02 Organic acid 
Silicic acid, diethyl bis(trimethylsilyl) ester  20.48 8167 2.04 Ester 
Phenol, 6-methyl-2-[(4-morpholinyl)methyl]-  21.25 7930 1.98 Phenolic compound 
3,4,5-Tris(trimethylsiloxy)-1-cyclohexene-1-carboxylic acid 22.63 9591 2.40 Organic acid 

 

Table 4.36 : The suggested GC-MS result for I. reptans leaf in methanolic (IR-LM) extract. 

Compound name Retention time Area Area (%) Group 
1,3-Propanediol, 2-methyl-2-propyl- 12.73 9538 3.16 Polyols 

1- Benzazirene-1-carboxylic acid, 2,2,5a-trimethyl-1a-[3-oxo-1-butenyl] perhydro- 14.77 7969 2.64 Ester 

Phenol, 2,5-bis(1,1-dimethylethyl)- 15.85 59172 19.63 Phenolic compound 

Silicic acid, diethyl bis(trimethylsilyl) ester 17.59 8628 2.86 Ester 

Methyl 3-(1-pyrrolo)thiophene-2-carboxylate 17.91 9414 3.12 Ester 
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Table 4.37 : The suggested GC-MS result for I. aquatica leaf in distilled water (IA-LD) extract. 

Compound name Retention time Area Area (%) Group 
Corydaldine                         3.18 22416 8.88 Alkaloid 
Ethyl 4-(N-(2-nitro)benzylidene)amino-benzoate  5.80 8257 3.27 Ester 
4-Hexenoic acid, 6-hydroxy-4-methyl-, methyl ester, (E)- 7.90 10313 4.09 Ester 
Phenol, 2,4-bis(1,1-dimethylethyl)-  15.85 30304 12.00 Phenolic compound 
1-Benzazirene-1-carboxylic acid, 2,2,5a-trimethyl-1a-[3-oxo-1-butenyl] perhydro-, methyl ester 17.00 8085 3.2 Organic acid 
Silicic acid, diethyl bis(trimethylsilyl) ester 18.73 11194 4.43 Ester 
3-Methylindole-2-carboxylic acid, 4,5,6,7-tetrahydro-, ethyl ester 18.78 12319 4.88 Ester 
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Table 4.38 : The suggested GC-MS results for I. aquatica stem in distilled water (IA-SD) extract. 

Compound name Retention time Area Area (%) Group 
7-Norcarancarbonic acid,methyl ester  9.109 8899 2.33 Ester 
Cholest-5-ene-3,20-diol, 3-acetate, (3.beta.,20R)-  11.727 7522 1.97 Polyol 
Carbonic acid, methyl phenyl ester  12.304 8864 2.33 Ester 
1,2,4-Benzenetricarboxylic acid, 4-dodecyl dimethyl ester 12.498 9010 2.36 Ester 
Bromopropylate  13.23 7471 1.96 Ester 
4-Dimethylamino-3,5-dinitrobenzoic acid  13.384 9107 2.39 Organic acid 
Phenol, 2,4-dichloro-6-nitro-  14.676 9012 2.36 Phenolic compound 
2-Nitro-4-(trifluoromethyl)phenol  16.653 7842 2.06 Phenol 
Anthranilic acid, N-methyl-, butyl ester  17.459 7508 1.97 Ester 
2-Nitro-4-(trifluoromethyl)phenol  17.722 19577 5.14 Phenolic compound 
Demecolcine  18.362 7379 1.94 Alkaloid 

 
Table 4.39 : The suggested GC-MS result for I. reptans leaf in distilled water (IR-LD) extract. 

Compound name Retention time Area Area (%) Group 
2-Chloroethyl oleate 7.92 13682 4.85 Ester 
Phenol, 3,5-bis(1,1-dimethylethyl)- 15.84 47000 16.64 Phenolic compound 
Phenol, 6-methyl-2-[(4-morpholinyl)methyl]- 16.01 8893 3.15 Phenolic compound 
Silicic acid, diethyl bis(trimethylsilyl) ester 19.83 9095 3.22 Ester 
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4.4 Total Phenol Content (TPC) and Total Flavonoid Content (TFC) 
 

The TPC was calculated based on the ascorbic acid standard curve generated, ! =

0.004& + 0.391, 	-. = 0.878 (Appendix B) and was expressed as mg GAE/g. TFC was 

obtained from the quercetin standard curve, ! = 0.001& + 0.028, 	-. = 0.959 

(Appendix C) and expressed as mg QE/g.  

Figure 4.1 and Figure 4.2 shows the TPC and TFC for all I. aquatica and I. reptans 

extract. A higher TPC and TFC can be observed in the non-polar extracts compared to 

the polar extracts for both plants. The highest TPC was observed in IR-LC (357.25 ± 3.88 

mg GAE/g) followed by IR-SH (206.12 ± 9.85 mg GAE/g). TFC was the highest in IR-

SH (3741.17 ± 214.14 mg QE/g) followed by IR-LC (3104.29 ± 135.48 mg QE/g). These 

indicate that the non-polar extracts of I. aquatica and I. reptans had a higher level of 

phenolic contents compared to the polar-extracts.  

 

Figure 4.1 : TPC for I. aquatica and I. reptans extracts. All data were expressed as mean 
±  S.E. (n=3). Asterisk (*) indicates that the TPC was too small to be observed on the 
graph. All data were expressed as mean ± S.E. (n=3). 
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Figure 4.2 : TFC for I. aquatica and I. reptans extracts. All data were expressed as mean 
± S.E. (n=3). Asterisk (*) indicates that the TFC was too small to be observed on the 
graph. All data were expressed as mean ± S.E. (n=3). 
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> 200 µg/ml and IA-SM (62.5 ± 1.4 %) with an IC50 at > 300 µg/ml. These two extracts 

showed significantly similar scavenging activity as ascorbic acid at 800µg/ml. These 

show that the I. aquatica methanolic extracts had a high scavenging activity. It also 

indicates that the I. aquatica methanolic extracts had a higher level of phytochemical 

compounds to scavenge the DPPH radical compared to other extracts. Both IA-LM and 

IA-SM showed similar scavenging activity (P < 0.05) against DPPH which indicates that 

plant parts have no significant differences in their DPPH radical scavenging activity. 

Distilled water extracts and chloroform extracts showed DPPH scavenging activity < 

50 %. All hexane extract and IR-S had negligible scavenging activity against DPPH.  

Lower scavenging activity seen in I. reptans extracts compared to I. aquatica extracts 

showed that I. aquatica has a better scavenging ability against DPPH. It also infers that 

both plants differ significantly in their phytochemical compounds content.   

 

 

Figure 4.3 : The DPPH scavenging assay for the extracts of I. aquatica and I reptans at 
800 µg/ml at 517 nm. All data were expressed as means ± S.E. (n=3). Means with differ 
lowercase letters (a, b, c, d, & e) are significantly different from each other (P < 0.05, 
using one-way ANOVA test followed by Duncan’s post hoc multiple comparison test). 
Means with asterisk (*) indicates the activity is negligible. 
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4.5.2 Ferric Reducing Antioxidant Power (FRAP) Assay 

Antioxidant reducing power of the I. aquatica and I. reptans extracts were measured 

as a change in the absorbance at 593 nm and were expressed as FRAP values. A colour 

change was also observed in the sample solutions, turning from colourless to blue or 

purple upon incubation with FRAP reagent and the extracts. Table 4.40 shows the FRAP 

values for the extracts expressed as mmol Fe2+/ g dry extract ± S.E. Ferrous sulphate was 

used to construct the standard reference curve at y = 0.2088x − 0.267, R. = 0.985 

where y is absorbance and x is concentration (Appendix G).  

From the table, the non-polar extracts had a higher FRAP values compared to polar 

extracts for both plant extracts. The highest FRAP was observed in IR-SH (2.60 ± 0.01 

mmol Fe2+/g) followed by IR-LC (0.83 ± 0.02 mmol Fe2+/g) and IA-SC (0.44 ± 0.07 

mmol Fe2+/g). Higher FRAP value indicates that the extract contains more antioxidants 

to reduce more ferric ion in the FRAP reagent.  As the non-polar extracts for both plants 

had higher FRAP values, more antioxidants were present in these extracts compared to 

the polar extracts.  

 

Table 4.40 : The FRAP value for I. aquatica and I. reptans extracts. All data were 
expressed as mean ± S.E. (n=3). 

Extracts 
FRAP value (mmol Fe2+/g) 

Hexane Chloroform Methanol Distilled water 

IA-L 0.42 ± 0.11 0.19 ± 0.06 0.08 ± 0.10 0.20 ± 0.08 

IA-S 0.14 ± 0.07 0.44 ± 0.07 0.09 ± 0.07 0.07 ± 0.11 

IR-L 0.21 ± 0.02 0.83 ± 0.02 0.39 ± 0.09 0.28 ± 0.06 

IR-S 2.60 ± 0.01 0.25 ± 0.02 0.06 ± 0.01 0.20 ± 0.01 

IA-L : I. aquatica leaf     
IA-S : I. aquatica stem   
IR-L : I. reptans leaf      
IR-S : I. reptans stem 
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4.5.3 Ferrous Ion (Fe2+) Chelating Activity Assay 

The ability of the extracts to chelate Fe2+ was measured through the changes in the 

absorbance reading at 562 nm. EDTA.Na2 was used as a standard with and IC50 at > 100 

µg/ml (Appendix H). A reduction in the red-coloured solution upon incubation with the 

extracts indicated chelating activity in the solution. Figure 4.4 displays the ability of each 

extract to chelate Fe2+ at 100 µg/ml.  

The Fe2+ chelating ability for all I. aquatica and I. reptans extract was found to be 

comparatively low (< 40 %). Only three extracts showed significant activity; IA-SD (39.7 

± 4.0 %), IR-LD (24.1 ± 1.0 %) and IR-SC (10.3 ± 1.0 %). Other extracts showed 

negligible activity against Fe2+ chelation. Low chelating activity in the I. aquatica and I. 

reptans extracts indicates that the antioxidants present in the extracts had low iron binding 

ability. Therefore, less Fe2+ were chelated by the antioxidants present in the extracts.  

 
Figure 4.4 : The inhibition of FeCl2 by different extracts of I. aquatica and I reptans.  
at 100 µg/ml at 562 nm. All data were expressed as means ± S.E. (n=3). Means with 
differ lowercase letters (a) are significantly different from each other (P < 0.05, using 
one-way ANOVA test followed by Duncan’s post hoc multiple comparison test). 
Means with asterisk (*) indicates the activity is negligible. 
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of  > 100 µg/ml (Appendix I). Figure 4.5 describes the H2O2 scavenging activity of all 

extract at 100 µg/ml.  

It was observed that IR-LH (55.5 ± 2.0 %) gave the highest H2O2 scavenging activity. 

The other extracts showed lower H2O2 scavenging activities (< 50 %) while IA-SC, IA-

SM and IR-SM produced no comparable activity against H2O2 scavenging. The leaf 

extracts of I. aquatica and I. reptans tend to have a higher scavenging ability in the non-

polar extracts. Conversely, the stem extracts of I. aquatica and I. reptans had a higher 

scavenging ability in the polar extracts. Since, the leaf and stem extracts of I. aquatica 

and I. reptans showed different scavenging activity in different solvent polarity, this 

indicates that different plant parts showed varied effectiveness in transforming H2O2 into 

water. This also denotes that different phytochemical compounds were involved in 

scavenging H2O2 in the leaf and stem extracts of I. aquatica and I. reptans. 

 
Figure 4.5 : The hydrogen peroxide, H2O2 scavenging activity by different extracts of I. 
aquatica and I. reptans at 100 µg/ml at 230 nm. All data were expressed as means ± S.E. 
(n=3). Means with differ lowercase letters (a, b, c, & d) are significantly different from 
each other (P < 0.05, using one-way ANOVA test followed by Duncan’s post (cont.)  hoc 
multiple comparison test). Means with asterisks (*) indicates that the scavenging activity 
is negligible. 
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4.6 Acetylcholinesterase Inhibitory Assay 

The capability to inhibit AChE was measured as a reduction in the absorbance at 410 

nm. Berberine was used as a standard with an IC50 of > 5 µg/ml (Appendix J). Figure 4.6 

– 4.9 showed the AChE inhibition by all extracts.  

It was observed that for both plant species, the chloroform extracts (70 – 100 %) 

showed the highest AChE inhibition followed by the methanolic extracts (< 30 %), the 

distilled water extracts (< 20 %) and the hexane extracts (< 20 %) for both I. aquatica 

and I. reptans. This indicates that the chloroform extracts of I. aquatica and I. reptans are 

the most effective at inhibiting AChE and the phytochemical compounds present in the 

chloroform extracts of both plants showed anticholinesterase properties. I. aquatica and 

I. reptans showed relatively similar inhibition against AChE. However, IR-SM observed 

a negligible activity against AChE inhibition.  

 

Figure 4.6 : The inhibition of I. aquatica and I. reptans hexane extracts on the activity 
of acetylcholinesterase measured at 410 nm. All data were expressed as means ± S.E. 
(n=3). 
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Figure 4.7 : The inhibition of I. aquatica and I. reptans chloroform extracts on the 
activity of acetylcholinesterase measured at 410 nm. All data were expressed as    means 
± S.E. (n=3). 

 

Figure 4.8 : The inhibition of I. aquatica and I. reptans methanolic extracts on the activity 
of acetylcholinesterase measured at 410 nm. All data were expressed as    means ± S.E. 
(n=3). 
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Figure 4.9 : The inhibition of I. aquatica and I. reptans distilled water extracts on the 
activity of acetylcholinesterase measured at 410 nm. All data were expressed as    means 
± S.E. (n=3). 
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Table 4.41 : The Pearson correlation coefficient test for all seven assays carried out. All 
data were expressed as means ± S.E. (n=3). 

Assay 
Pearson correlation (R2) 

TPC TFC DPPH FRAP Fe2+ 
chelating 

H2O2 
scavenging 

TPC  0.961**     
DPPH −0.523** −0.470**     
FRAP 0.751** 0.725** −0.737**    
Fe2+ chelating  0.622** 0.622** −0.431** 0.401**   
H2O2 scavenging  0.026 −0.021 −0.145 0.051 −0.045  
Cholinesterase 
inhibitory 0.636** 0.623** 0.021 0.177 0.257* 0.085 

** correlation is significant at the 0.05 level (1-tailed) 
* correlation is significant at the 0.01 level (1-tailed) 
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CHAPTER 5 : DISCUSSION 

5.1 Extraction of Plant Materials 

Extracting phytochemical contents requires several considerations to ensure a proper 

extraction. Various factors have been identified to influence the extraction process such 

as pre-treatment and extraction process, solvents, temperature and time (Mojzer et al., 

2016). For instance, different pre-treatment processes such as milling, grinding, drying 

or freeze-drying can affect the phytochemical contents during the extraction process. 

Drying has been found to cause plant samples to be exposed to Maillard reaction 

(Sulaiman et al., 2011). Maillard reaction or non-enzymatic browning produce 

compounds that enhance the antioxidant activity in the plant, consequently leading to 

overestimation of the polyphenolics and antioxidant activity of the plant (Sulaiman et al., 

2011; Phisut & Jiraporn, 2013). In the experiment, air-drying was chosen as it helped to 

preserve heat-labile compounds from degenerating (N, 2015). Grinding was carried out 

to ensure effective extraction and separation of compounds. Small particles improved 

surface area to volume ratio which provided more interactions between the compounds 

to be extracted and the solvent used, therefore enhancing the extraction process.  

The type of solvent used also influence the extraction yield as each compound has its 

own chemical profile such as its solubility in solvent (Altemimi et al., 2017). Polar 

solvents are effective in extracting polyphenols due to the strong hydrogen bond between 

the antioxidant polar sites and the solvent (Sultana et al., 2009; Thouri et al., 2017).  

In the experiment, the highest yield was seen in the methanolic extracts for both I. 

aquatica and I. reptans. Polar extracts were seen to be better at extracting phytochemical 

compounds in I. aquatica and I. reptans. Similar findings were observed in the extraction 

of Salacia chinensis root and Datura metel (Dhawan & Gupta 2017; Ngo et al., 2017). 

However, a higher yield in methanolic extracts could also be due to some low and high 

molecular weight phenolic compounds and highly soluble carbohydrates and proteins 
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being simultaneously extracted during the process (Prasad et al., 2005; Do et al.,2014). 

As can be seen in the TPC assay carried out, higher yield of the methanolic extracts of 

both plants had a lower level of TPC and lower antioxidant activites.  

 

5.2 Thin Layer Chromatography (TLC) Analysis 

Thin layer chromatography (TLC) was conducted to enable preliminary screening on 

the phytochemical compounds present in the I. aquatica and I. reptans extracts. It 

functions to separate sample fractions and allow the observation of chemical reactions 

progressions (Meyers & Meyers, 2008). Through treatments with reagents and the 

calculation of the Rf value, the nature of the phytochemical compounds can be 

characterised and identified. Polar compounds produce lower Rf  values in TLC assay as 

they travel up slowly across the TLC plate due to their strong adsorptivity. TLC is 

convenient, cheap, simple, produce rapid results and has high sensitivity and 

reproducibility (Santiago & Strobel, 2013).  

The effectiveness of the sample fractions separation can be manipulated by the 

mixtures of the solvents used during the process. Polar solvents exhibited greater eluting 

strength compared to the less polar solvent. Selecting an appropriate solvent will result in 

good selectivity in separating the sample mixtures. The TLC conducted for the I. aquatica 

and I. reptans extracts observed more separation of compounds in 10 % methanol as 

solvents. This indicates that 10 % methanol, a polar solvent, was better at separating the 

I. aquatica and I. reptans extracts compared to chloroform, which is non-polar solvent.   

Besides that, a greater amount of phytochemical compounds observed in non-polar 

extracts showed that the phytochemical compounds present are non-polar. For instance, 

terpene is known to be non-polar and very soluble in organic solvent such as hexane and 

chloroform (Jiang et al., 2016). It is made up of hydrocarbon chains and can undergo 

modifications to generate a more complex terpenoid (Jiang et al., 2016). Several studies 
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have shown the presence of terpenes in I. aquatica extracts (Shim, 2012; El-Sawi et al., 

2017).  

 

5.3 Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas 

Chromatography-Mass Spectrometry (GC-MS) Analyses 

Liquid Chromatography-Mass Spectrometry (LC-MS) is commonly used to detect 

non-volatile and thermally labile compounds. LC-MS comprises of an autosampler, a 

high-performance liquid chromatography (HPLC) system, an ionization source and a 

mass spectrometer (MS) (Korfmacher, 2005). Ionization source functions as an interface 

between the liquid phase in the HPLC system and the gas phase in the mass spectrometer 

(Korfmacher, 2005). There are multiple types of ionization source that are available such 

as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 

However, depending on the choice of the flow rates and mobile phase modifiers used, 

their performance may be restricted (Hanold et al., 2004). The mobile phase in LC-MS 

is liquid. Water and methanol or acetonitrile are the common eluents used as a mobile 

phase in LC-MS (Korfmacher, 2005).  

Quercetin, tannic acid and gallic acid are phenolic compounds usually found in plants. 

Phenylalanine is a type of amino acids that are important in many biological processes 

(Yoo et al., 2013). Flavonoids, various phenolic compounds and isoflavonoids are some 

of the phenylalanine-derived compounds involved in plant defense mechanism, 

ultraviolet (UV) protection and signalling (Yoo et al., 2013). The LC-MS conducted 

showed the presence of quercetin, phenylalanine and tannic acid in the extracts of both I. 

aquatica and I. reptans. Chu et al. (2000) and Lawal et al. (2017) documented the 

presence of various quercetin derivatives in I. aquatica. Men et al. (2010) and Doka et al. 

(2014) detected the presence of phenylalanine in I. aquatica.  
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Gas Chromatography-Mass Spectrometry (GC-MS) is usually used to detect volatile 

and semi-volatile compounds. Similar to LC-MS, the system involved a sampler, gas 

chromatography (GC) and detector, mass spectrophotometer (MS) (Hussain & Maqbool, 

2014). Coupling of the two system enables simultaneous identification of the structural 

information of multiple compounds with great precision (Sneddon et al., 2007). In GC-

MS, the mobile phase used involved a carrier gas such as helium, nitrogen or argon. 

Different carrier gas used will have a different effectivity in separating the compounds 

present. The carrier gas will push the sample through a capillary column which contains 

a stationary phase, usually in a solid form, to separate the compounds in the sample 

(Hussain & Maqbool, 2014). Different compounds move at a different rate (retention 

time) through the column thus separating the sample into compound fragments and this 

is detected by the MS (Hussain & Maqbool, 2014). MS detects the fragments through 

ionization in which they will be organized according to mass to form a fragmentation 

pattern (Hussain & Maqbool, 2014). Fragmentation pattern and retention time are 

characteristic to each compound (Hussain & Maqbool, 2014). This enables the precise 

identification of a compound in a sample (Sneddon et al., 2007). 

The GC-MS carried out suggested the presence phenolic compounds, alkaloids, 

terpenes, sterol, esters, polyols, organic acids and fatty acids in all five extracts of I. 

aquatica and I. reptans. Sterols are a component of the cell membranes and involved in 

multiple biological functions. For instance, sterols help in plant growth and responses to 

biotic and abiotic pressures (Ferrer et al., 2017). In plant, sterols can exist in free forms, 

as steryl esters, steryl glycosides and acyl steryl glycosides.   

Alkaloids are heterocyclic nitrogen compounds known to have numerous 

pharmacological properties such as antimicrobial and antioxidant activities (Tiong et al., 

2013; Marutescu et al. 2017). Alkaloids can be divided into multiple classes which 

include pyrrolidine, isoquinolone, quinoline, indole, imine, imidazole, peperidine and 

pyridine (Iriti & Faoro, 2009).  
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Polyols are reduced ketose and aldehyde forms of sugars found in plants (Noiraud et 

al., 2001). They are involved in the protection against biotic and abiotic stresses such as 

salt and photooxidative stress besides having antioxidant properties (Ehrenshaft, 2002).  

 

5.4 Total Phenol Content (TPC) and Total Flavanoid Content (TFC) Assays 

Analyses 

Folin-Ciocalteu’s assay was adopted in performing the total phenol content (TPC) 

assay. The process involves electron reduction reactions between phenolic compounds 

and Folin-Ciocalteu’s reagent under alkaline conditions. This resulted in colour changes 

of the reagent from yellow to blue solution (Sánchez-Rangel et al., 2013).  

Total flavanoid content (TFC) quantification was performed based on the aluminium 

colorimetric assay which utilizes the formation of complexes between aluminium 

chloride with the keto- or hydroxyl groups of flavonoids under acidic conditions 

(Bhaigyabati et al.,  2014).  

The TPC and TFC assays for I. aquatica and I. reptans revealed that non-polar extracts 

had significantly higher phenolic and flavonoid contents compared to the other extracts. 

Similarly, the TLC assay performed showed more phenolic compounds in non-polar 

extracts compared to polar extracts of both plants. The LC-MS test done on five polar 

extracts also saw no to minimal traces of gallic acid and tannic acid and considerable 

level of quercetin in all five I. aquatica and I. reptans polar extracts sent, signifying low 

phenolic compounds level in these extracts.   

A strong correlation was seen between the TPC and TFC (R2 = 0.961, P < 0.05) assays 

for both plant extracts.  

Nonetheless, the TFC was seen to be at a higher level compared to the TPC for both I. 

aquatica and I. reptans extracts. Flavonoid is one of the types of phenolic compounds. 

Univ
ers

ity
 of

 M
ala

ya



 79 

The TPC level should be higher compared to the TFC level. An alternative is to replace 

quercetin with catechin as standard in the TFC assay (Singh et al., 2015).  

 

5.5 Antioxidant Analysis of Plant Extracts 

There are multiple antioxidant assays available that can be used in antioxidant analysis. 

Each assay operates differently and depending on their usage, these assays can provide 

useful information on the antioxidant properties of the samples to be examined. Although 

a single assay can be employed, a combination of several assays may help in delivering 

a comprehensive understanding on the antioxidant profile of a sample (Genskowsky et 

al., 2016). All four antioxidant assays were chosen to provide information on the 

antioxidant activities of I. aquatica and I. reptans in targeting free radicals forming 

agents.  

 

5.5.1 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay Analysis 

2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay is a type of test used to determine the 

antioxidant ability of individual phenolics, food and biological samples (Gülçin, 2012). 

It utilizes the reduction of the DPPH radical – a stable organic nitrogen radical with deep 

purple colour, in alcoholic solution by an antioxidant into diphenyl-picrylhydrazine 

which is yellow in colour (Gülçin, 2012). This indicates the hydrogen donating ability of 

the extracts and is measured by the change in absorbance of a sample by using a 

spectrometer (Rangasamy & Namasivayam, 2014).  

A negative correlation between TPC and DPPH assays (R2 = −0.532, P < 0.05) 

obtained showed that phenolic compounds did not contribute to the scavenging activity 

of the extracts. The higher TPC level in chloroform extracts of I. aquatica and I. reptans 

were observed to have a low DPPH scavenging activity. Other phytochemical compounds 

might be responsible for the high scavenging activity displayed in the methanolic extracts 
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such as amino acids. The LC-MS conducted observed a considerable amount of 

phenylalanine in the methanolic and distilled water extracts of both plants. Undertaking 

a phenylalanine content assay could be done to determine whether phenylalanine does 

contribute to the radical scavenging activity of these extracts. Meda et al. (2005) 

conducted a study on Burkina Fasan honey and found out that proline contributed strongly 

to the high radical scavenging activity observed. Similar result was seen in rapeseed 

protein hydrolysates in which high amino acid contents correlates with high antioxidant 

activity seen (Wang et al., 2016).  

Besides that, the polar extracts of I. aquatica and I. reptans were observed to have a 

better scavenging activity compared to the non-polar extracts. This indicates that the 

phytochemical compounds present in polar extracts of both plants have a higher hydrogen 

donating ability compared to those in non-polar extracts. Similar result was obtained in a 

previous study done on I. aquatica by Prasad et al. (2005).  

No significant differences (P < 0.05) were observed in the DPPH scavenging activities 

of I. aquatica leaf and stem methanolic extracts which indicates they have similar 

scavenging ability. Nonetheless, Huang et al. (2005) saw differences in the radical 

scavenging activity between I. aquatica plant parts. The highest radical scavenging 

activity was observed in the ethanolic stem extract of I. aquatica compared to its leaf 

extracts (68.3 ± 0.7 % vs 63.9 ± 0.1 %). However, the extraction process, geographical 

locations and growth conditions might influence the differences in the phytochemical 

contents found in plants. Nevertheless, limited research has been done on the effects of 

these factors on I. aquatica and I. reptans.  

 

5.5.2 Ferric Reducing Antioxidant Power (FRAP) Assay Analysis 

Ferric Reducing Antioxidant Power (FRAP) assay defines an antioxidant reducing 

power through its ability to donate electrons and reduce ferric ion, Fe3+ to ferrous ion, 
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Fe2+ and is expressed as a FRAP value (Chen et al., 2010; Benzie & Devaki, 2017). It 

provides a “quantitative correlation between the antioxidant capabilities and the redox 

potentials for reductant antioxidants” (Cheng & Li, 2004). 

Reduction of Fe3+ to Fe2+ produces a blue-coloured complex, ferrous-tripyridyltriazine 

which can be measured by the change in absorbance at 593 nm (Benzie & Strain, 1996; 

Md. Irshad et al., 2012). The FRAP assay is quick, simple and rapid (Benzie & Devaki, 

2017). 

A positive correlation with TPC assay (R2 = 0.725, P < 0.05) indicates that the 

antioxidant reducing power in the extracts were contributed by the phenolic compounds. 

Higher FRAP values obtained in the non-polar extracts for both I. aquatica and I. reptans 

correlate with the high TPC observed in the extracts. A higher level of phenolic 

compounds in the non-polar I. aquatica and I. reptans extracts enabled more reduction of 

Fe3+ to Fe2+ through the donation of electrons, thereby forming more ferrous-

tripyridyltriazine complex in the solution. This increased the absorbances for both plant 

extracts which were translated into higher FRAP values.  

A negative correlation with DPPH assay (R2 = −	0.737, P < 0.05) means that the 

antioxidants involved in the activity of both assays were different significantly. 

 

5.5.3 Fe2+ Chelating Assay Analysis 

Iron is inevitably important in carrying out and maintaining a proper cell metabolism. 

Almost all cell directly or indirectly implicated in the cellular iron metabolism involving 

redox-reaction machinery (Bresgen & Eckl, 2015). Without appropriate regulation, this 

cellular machinery can be compromised, generate ROS and induce cellular damages 

(Galaris & Pantopoulos, 2008, Dixon & Stockwell, 2013). For instance, iron-catalyzed 

ROS is linked to cell necrosis, accumulation of intracellular ROS and lipid peroxidation 

(Gammella et al., 2016). Antioxidants help in maintaining a proper level of ROS by acting 
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as iron chelators. They function through binding with the freely available iron in the body 

thereby forming stable complexes that can be passed out of the body through faeces or 

urine (Adjimani & Prince Asare, 2015). Consequently, this reduces the formation of ROS 

and prevent oxidative stress.  

In Fe2+ chelating activity assay, the ability of antioxidant to chelate Fe2+ was measured. 

Ferrozine will react with ferrous chloride, FeCl2, forming red colour complexes (Md 

Yusof et al., 2013). Chelation of Fe2+ by antioxidants can be observed through 

decolorization of the red colour solution and can be measured using a spectrometer.  

Positive correlations observed between Fe2+ chelating assay and the TPC (R2 = 0.622, 

P < 0.05) and FRAP assay (R2 = 0.401, P < 0.05) show that the chelating activities seen 

were due to the action of the phenolic compounds present in the extracts of I. aquatica 

and I. reptans.  

Low chelating activities of Fe2+ by the all extract of I. aquatica and I. reptans denote 

that the phenolic compounds present in the extracts had low iron binding ability. This can 

be attributed to several factors. For instance, the antioxidant acitivity of a phenolic 

compound can be influenced by the number, position and binding site of the hydroxyl 

group and type of substituents on the aromatic ring (Andjelković et al., 2006). Adjimani 

and Prince Asare (2015) found that phenolic compounds such as the 2,3-

dihydroxybenzoic acid (DHBA) and caffeic acid had low iron binding ability owing to 

the structures bearing catechol groups. Previous studies showed that fractionated 

methanol extract of I. aquatica contained dihydroxybenzoic acid pentoside and di‐

pentoside and caffeic acid moeities (Lawal et al., 2016; Gad et al., 2017). However, 

Huang et al. (2005) reported that methanolic I. aquatica extracts had showed 

Fe2+chelating activity. 
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5.5.4 Hydrogen Peroxide Assay Analysis 

Hydrogen peroxide, H2O2 is a type of ROS that is “stable, diffusible and a non-radical 

oxidant” (Gough & Cotter, 2011). In low amount, H2O2 serve to regulate body 

metabolism and ensure proper functioning (Gough & Cotter, 2011). However, if not 

properly regulated, the molecule can oxidize numerous cellular components, inducing 

cell injuries and imposing damages to the DNA and lipid structures (Gough & Cotter, 

2011). H2O2 scavenging assay measures the ability of antioxidants to transform H2O2 into 

water, H2O through the donation of hydrogen atoms or electrons thereby reducing the 

concentration of H2O2 in the solution (Adjimani & Prince Asare, 2015). This is then 

scored by measuring the reduction in the absorbance of the sample at 230 nm.  

No correlations seen between H2O2 scavenging assay and TPC and DPPH assays 

indicate that the antioxidants that contributed to the H2O2 scavenging activity were 

different.  

The leaf and stem extracts of I. aquatica and I. reptans were shown to have different 

scavenging activities against H2O2. The leaf extracts were more effective in scavenging 

H2O2 in non-polar extracts while stem extracts had higher H2O2 scavenging activities in 

polar extracts for both plants. However, Dhanasekaran et al. (2015) observed differently 

in which the hydroalcoholic leaf extracts of I. aquatica had a higher H2O2 scavenging 

activity, attributed to the high TPC seen in the extract. This could be attributed to the 

geographical locations and growth conditions that might influence the differences in the 

phytochemical contents found in plants. 

 

5.6 Anticholinesterase Assay Analysis  

Acetylcholinesterase (AChE) enzyme belongs to the one of the two types of 

cholinesterase enzymes. In AD, overexpression of this enzyme has been found to be one 

of the main pathologies underlying the development of the disease. Hence targeting the 
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system by inhibiting the action of the enzyme may help in restoring the normal 

functioning of the mechanism. AChE inhibitory assay or Ellman assay is a cheap and 

convenient method in diagnosing, therapeutic monitoring and in vitro kinetic 

investigation for the interaction between compounds and AChE enzyme (Worek et al., 

2012).  The assay employs the coupling of reaction between the hydrolyzation of 

acetylthiocholine by AChE into thiocholine and the reaction between thiocholine and 

5,5′-Dithiobis (2-nitrobenzoic acid) (DTNB) to form a yellow complex (Ellman et 

al.,1961). The reduction in the yellow complex formed indicates the ability of a 

compound to inhibit the action of AChE enzyme and can be measured by the reduction 

in the absorbance. 

Berberine is an alkaloid which belongs to protoberberine group (Wang et al., 2018). It 

can be found in many types of plant including Hydrastis canadensis and Coptis chinensis 

(Wang et al., 2018). Berberine is capable of inhibiting the action of AChE by inducing a 

conformational change in the structure of the enzyme therefore halting the activity of the 

enzyme (Xiang et al., 2009). Research has been done in optimizing berberine into 

potential AD drug due to its low cytotoxicity, high efficacy and low adverse side effects 

(Xiang et al., 2009)..    

Based on the assay, a correlation with the TPC assay (R2 = 0.636, P < 0.05) showed 

that the phenolic compounds present in the extracts of both plants displayed AChE 

inhibitory properties. A higher TPC level in the chloroform extracts for both I. aquatica 

and I. reptans was shown to exhibit higher AChE inhibitions. On the contrary, a low TPC 

level in the polar extracts for both plant species had a lower AChE inhibition. These show 

that AChE inhibition was influenced by the level of the phenolic compounds and that the 

phenolic compounds present had anticholinesterase activities. Dhanasekaran et al. (2015) 

revealed that a higher TPC level observed in hyroalcoholic extract of I. aquatica 

correlates with a higher inhibition against AChE activity.  
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A few phenolic compounds have been known to show anti-AChE activity such as 

hydroxyphenylpyruvic acid, caffeic acid, gallic acid, chlorogenic acid, quercetin and rutin 

(Szwajgier, 2015). These compounds particularly flavonoids, inhibit the action of AChE 

by forming hydrogen bonds between one of the aromatic rings bearing the OH groups 

with one of the amino acid residues in the active site of the enzyme (Roseiro et al., 2012; 

Ademosun et al., 2016).  This blocks the entry of other molecules into the enzyme active 

site thereby hindering the activity of the enzyme. In silico study demonstrated that 

chlorogenic acid and quercetin isolated from the hydroalcoholic extract of I. aquatica had 

considerable anti-AChE activity and was comparable to the activity of donepezil 

(Sivaraman et al., 2014). The low concentration of quercetin (< 13.4 mg/ml) obtained 

through the LC-MS conducted in the polar extracts of I. aquatica and I. reptans could 

justify for the low AChE inhibition seen in these extracts. Moreover, phenolic compounds 

have variable efficiencies in inhibiting the action of AChE.  Oboh et al. (2013) showed 

that caffeic acid had a greater inhibition against AChE than chlorogenic acid. Quercetin 

was found to be more effective in inhibiting the activity of AChE compared to rutin 

(Ademosun et al.,  2016).  
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CHAPTER 6 : CONCLUSION 

I. aquatica and its relative, I. reptans were found to contain numerous nutrients and 

antioxidants such as terpenoids, phenolic compounds, flavonoid, alkaloid, polyols, 

organic acid, sterols and amino acids. However, I. aquatica was seen to have a higher 

antioxidant activity compared to I. reptans. Among all extracts, chloroform extracts for 

both I. aquatica and I. reptans showed the highest antioxidant activity except for in DPPH 

and hydrogen peroxide scavenging assays. This high antioxidant activity correlates with 

the high level of TPC observed in the chloroform extracts for both plant species. 

Nonetheless, other antioxidants and compounds such as alkaloids and amino acids might 

play a role in contributing to the scavenging activities seen in the DPPH and hydrogen 

peroxide assays. Further investigation can be done to determine whether the compounds 

display scavenging activities against DPPH radical and hydrogen peroxide. A correlation 

between TPC and acetylcholinesterase inhibition suggests phenolic compounds present 

in I. aquatica and I. reptans do possess anticholinesterase activities and are influenced by 

the level of the phenolic compounds present. Further optimization can be carried out to 

determine the active compounds that is responsible for the anticholinesterase activity 

seen. Therefore, good acetylcholinesterase inhibition in I. aquatica and I. reptans extracts 

suggest that the plants can be a potential source to be optimized into acetylcholinesterase 

inhibitor drug to treat Alzheimer’s disease.  Besides that, since there is a limited scientific 

information on the bioactivity of I. reptans, this research can help on elucidating the 

properties of the plant. 
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