
APPLYING COVERT CHANNEL IN TCP FAST OPEN
(TFO)

MOHAMED AZRAN BIN AZIZ

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019

APPLYING COVERT CHANNEL IN TCP FAST OPEN
(TFO)

MOHAMED AZRAN BIN AZIZ

DISSERTATION SUBMITTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

KUALA LUMPUR

2019

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohamed Azran bin Aziz

Registration/Matric No: WGA140039

Name of Degree: Master of Computer Science

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Applying Covert Channel in TCP Fast Open (TFO)

Field of Study: Information Security

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

iii

APPLYING COVERT CHANNEL IN TCP FAST OPEN (TFO)

ABSTRACT

Covert channel is one of the techniques that is used in information hiding. It uses

communication channel as a medium for transmitting hidden information. There are two

main categories in covert channel namely storage covert channel and timing covert

channel. Storage covert channel basically manipulate existing data and/or encode hidden

messages within legitimate data. Whereas, timing covert channel intentionally manipulate

timing behaviour of resources e.g. delaying between packets to create codes. There are

many implementations of covert channel in TCP that use various fields in the TCP header

such as Sequence Number, Urgent Pointer and reserved fields. Techniques such as field

replacement, create intended delays and manipulating random values are used in

implementing covert channel in TCP. Moreover, covert channel implementations also

extended to optional fields such as Maximum Segment Size (MSS) and Timestamps.

From time to time these optional fields (TCP Options) get evolved (e.g. Quick-Start

Response - 2007, TCP Authentication Option – 2010 and TCP Fast Open -2014) and thus

more potential covert channel implementations can be discovered. TCP Fast Open (TFO)

is one of the latest TCP options that offers faster transmission performances between

nodes. It utilises up to 16 bytes in allocated options field in TCP header as its message

authentication code (MAC). Previous covert channel implementations cover various

fields in the TCP header but not TFO. The aim of this study is to introduce covert channel

in TFO by manipulating allocated options field in the TCP header known as TFO cookie.

Subsequent to this, observation on performances are investigated as to detect any changes

in semantic as well as syntax of TFO transactions. To conduct this study, tools are built

to manipulate incoming and outgoing packet transactions and create covert content in

allocated options field in TCP header. Further, performance test is conducted to observe

iv

any changes in transactions between implemented covert channel TFO and ordinary TFO.

The results of the tests show covert content is transferred successfully between receiver

and sender without breaking TFO transaction. Moreover, the results also show there are

no significance performance degradation when applying covert channel into TFO. These

results indicate that covert channel can be created in TFO and works normally as ordinary

TFO. On this basis, it would make covert channel in TFO as one of latest alternative

methods in implementation of covert channel in TCP.

Keywords: covert channel, TCP Fast Open, network steganography, network security,

information hiding

v

 PENERAPAN SALURAN TERSELINDUNG DIDALAM TCP FAST OPEN

(TFO)

ABSTRAK

Saluran terselindung adalah salah satu cara yang digunakan dalam

penyembunyian maklumat. Ia menggunakan saluran komunikasi sebagai medium untk

menghantar maklumat tersembunyi. Terdapat dua kategori utama di dalam saluran

terselindung iaitu saluran terselindung storan dan saluran terselindung bermasa. Saluran

terselindung storan biasanya memanipulasikan data yang sedia ada dan/atau mengedkod

masej tersembunyi di sebalik data yang sah. Manakala saluran terselindung bermasa

secara sengaja memanipulasikan perilaku masa sesuatu sumber sebagai contoh membuat

lengahan masa tertentu untuk penjanaan sesuatu kod. Terdapat banyak kaedah membuat

saluran terselindung di dalam TCP yang menggunakan pelbagai medan di dalam kepala

TCP seperti Sequence Number, Urgent Pointer dan lain-lain. Kaedah seperti penggantian

medan, pembinaan lengahan sengaja, manipulasi nilai rawak dan lain-lain digunakan

didalam pelaksanaan saluran terselindung di dalam TCP. Selain itu, saluran terselindung

juga meliputi beberapa opsyen TCP seperti di Maximum segment size (MSS) dan

Timestamps. Dari semasa ke semasa, opsyen TCP berkembang (contohnya Quick-Start

Response - 2007, TCP Authentication Option – 2010 and TCP Fast Open -2014) dan

oleh itu terdapat lebih banyak potensi dalam membina saluran terselindung untuk

diterokai. TCP Fast Open (TFO) adalah salah satu opsyen baru didalam TCP yang

memberi prestasi pantas di dalam transmisi paket. Ia menggunakan sehingga 16 bytes di

dalam medan opsyen diperuntukan dalam kepala TCP sebagai message authentication

code (MAC). Implemntasi saluran terselindung mencakupi pelbagai medan tetapi tidak

di dalam TFO. Tujuan utama kajian ini adalah untuk memperkenalkan saluran

tersembunyi ke atas TFO dengan cara memanipulasi medan opsyen yang dikenali sebagai

vi

kuki TFO. Lanjutan itu, pencerapan ke atas prestasi juga dikaji untuk melihat sebarang

perubahan dari segi semantik mahupun sintaks transaksi TFO. Bagi mengendali kajian

ini, satu alatan dibina bagi membuat manipulasi transaksi keluar masuk paket serta juga

membina maklumat terselindung di dalam medan opsyen di dalam kepala TCP.

Selanjutnya, ujian prestasi dilakukan bagi mencerap sebarang perubahan di dalam

transaksi antara TFO saluran terselindung dan TFO biasa. Hasil daripada ujian mendapati

maklumat terselindung berjaya dihantar di antara penghantar dan penerima tanpa

merosakkan transaksi TFO. Lanjutan itu, hasil juga menunjukan tiada pengurangan

prestasi secara signifikasi apabila saluran terselindung digunakan di dalam TFO. Ini

menunjukan saluran terselindung boleh dibina di dalam TFO dan berfungsi normal

sebagaimana TFO biasa. Di atas asas ini, ia menjadikan saluran terselindung di dalam

TFO sebagai salah satu alterntatif terkini dalam pelaksanaan saluran terselindung di

dalam TCP.

Kata Kunci: saluran terselindung, TCP Fast Open, steganografi rangkaian,

keselamatan rangkaian, penyembunyian maklumat

vii

ACKNOWLEDGEMENTS

Alhamdulillah, all praises be to Allah and salawat on prophet Muhammad. My

appreciation to my supervisor Associate Professor Dr. Ainuddin Wahid bin Abdul Wahab

and Associate Professor Dr. Rosli bin Salleh, my mother, my father, my family, my

lecturers, my gurus, my friends, open source developers and those who help me indirectly.

viii

TABLE OF CONTENTS

ABSTRACT .. III

ABSTRAK.. V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. XI

LIST OF TABLES .. XII

LIST OF SYMBOLS AND ABBREVIATIONS ... XIII

CHAPTER 1: INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation and Statement of Problem .. 4

1.3 Aims and Objectives .. 5

1.4 Scope of Study ... 6

1.5 Thesis Outline.. 6

 LITERATURE REVIEW ... 7

2.1 Covert Channel .. 7

2.1.1 Communication Model .. 8
2.1.2 Covert Channel Techniques ... 10
2.1.3 Wardens .. 12

2.2 Transmission Control Protocol (TCP) .. 14

2.2.1 Three-way handshake in TCP .. 17

2.3 TCP Fast Open (TFO).. 20

2.3.1 TFO Structure .. 22
2.3.2 TFO Implementations .. 23
2.3.3 TFO in Linux ... 24

2.4 Covert Channel in TCP .. 27

ix

2.5 Summary ... 29

 RESEARCH METHODOLGY AND DESIGN 30

3.1 Building Covert Communication Model .. 30

3.2 Create Assumptions ... 32

3.3 Prototyping .. 33

3.3.1 Designing Traffic Flow .. 34
3.3.2 Designing Covert Tool. .. 35

3.4 Testing Model.. 37

3.5 Summary ... 38

 IMPLEMENTATION .. 40

4.1 Creating Tools ... 40

4.2 Applying Tests .. 42

4.2.1 Deliverable Test and TFO Behavioural Test (Correctness Test) 43
4.2.2 Performance Test ... 44

4.3 Summary ... 46

 RESULTS AND DISCUSSIONS .. 47

5.1 Correctness Test .. 47

5.2 Performance Test ... 48

5.3 Discussion ... 53

5.4 Summary ... 54

 CONCLUSION AND FUTURE WORK.. 55

6.1 Introduction ... 55

6.2 Accomplishment of Objectives .. 55

6.3 Contributions ... 56

6.4 Future Work .. 57

x

REFERENCES ... 58

 TCP OPTION KIND NUMBER .. 62

 PERFORMANCE RESULTS .. 65

 MESSAGE RETRIEVAL AND TRAFFIC OBSERVATION 70

xi

LIST OF FIGURES

Figure 2-1: Categories in covert channel ... 8

Figure 2-2: TCP Header Format .. 14

Figure 2-3: Transition State in TCP (Stevens, W., Fenner, B., & Rudoff, A., 1999) 17

Figure 2-4: Example of three-way handshakes operation ... 20

Figure 2-5 : TFO connectivity ... 22

Figure 2-6:TFO structure with length size ... 23

Figure 2-7: TFO key is displayed and get changed in Linux environment.................... 25

Figure 2-8: Sample of TFO traffic, unknown-34 yields kind number 25

Figure 2-9: TFO cookie yields the size = 8 bytes ("Linux Kernel Documentation", 2017)
 ... 26

Figure 3-1: Covert Channel communication model in TFO ... 31

Figure 3-2: Traffic flow between interfaces ... 35

Figure 4-1: Network Diagram between web server and client 40

Figure 4-2: Example running iptables with Covert Channel tool.................................. 42

Figure 5-1: Client (host1) is successful retrieved message from web server (host0) 47

Figure 5-2: Covert Channel in TFO resumes normal TFO after TFO’s key is changed 48

Figure 5-3: Normal TFO after TFO's key is changed ... 48

Figure 5-4: Performance of Covert channel in TFO tend to align with TFO 52

xii

LIST OF TABLES

Table 1-1: TCP header Option Fields and Year published (Kay et al., 2017) 3

Table 2-1: Various Communication Models .. 9

Table 2-2: Covert Channel Techniques (Wendzel et al., 2015) 11

Table 2-3: TCP state descriptions (IBM Knowledge Center. (2017) 18

Table 2-4: List of TFO Applications ... 24

Table 2-5: TFO modes in Linux .. 27

Table 2-6: Covert Channel with covert content size .. 28

Table 5-1: Averages of Covert Channel TFO performances against TCP & TFO 49

Table 5-2: Covert Channel TFO performances against normal TFO 51

Table 5-4: Covert Channel in TFO overall results ... 53

Table 5-5: Comparison Covert Channel Payload Size ... 54

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

3DES : Triple Data Encryption Algorithm

AES : Advanced Encryption Standard

AW : Active Warden

BGP : Border Gateway Protocol

CC : Covert Channel

CPU : Central Processing Unit

CWR : Congestion Window Reduced

DF : Don’t Fragment

DNS : Domain Name Server

ECE : ECN- echo

ECN : Explicit Congestion Notification

FIN : Finish

IoT : Internet of Things

IP : Internet Protocol

IPsec : Internet Protocol Security

ISCSI : Internet Small Computer Systems Interface

ISN : Initial Sequence Number

MD5 : Message Digest algorithm 5

ms : Milliseconds

NAT : Network Address Translation

NIC : Network Interface Card

PDU : Protocol Data Unit

PSH : Acknowledgment

RFC : Request for Comments

xiv

RST : Reset

SDN : Software-defined Networking

SYN : Synchronise

SYN_RCVD : Synchronise received

SYN_SENT : Synchronise sent

TCP : Transmission Control Protocol

TFO : TCP Fast Open

URG : Urgent Pointer

VPN : Virtual Private Network

1

CHAPTER 1: INTRODUCTION

1.1 Background

Communication channel is an instrument to transmit data from one or several sources

to one or several destinations. In general, channels depend on standards or protocols that

consist of syntaxes that understood by both parties and bounded by communication

policies. These syntaxes comprise a form of format or structure of encapsulated data in

communication e.g. first 12-bit is reserved for the header.

On the other hand, there are also alternate channels that are made to breach

communication policies without or least disrupt the whole communication system and

this type of channel known as a covert channel. Covert channel occurs when

communication mechanisms that appear out of context from standard or overt

communication channel mechanisms. These covert channel mechanisms are derived from

various factors such as design, architecture or nature of an overt communication system.

In other words, covert channel is communication mechanisms that seem unintentionally,

that never intended to be a valid communication channel and not supposed to be allowed

to communicate (Lampson, 1973).

At the early stage of covert channel discovery, covert channel was viewed as a security

flaw in a communication channel that can lead to data leakages or can be extended to

remote execution mechanisms. For instance, an incognito device that equipped with

embedded code and later on an attacker can activate by remotely to accomplish a

particular task (Clark & Levin, 2009). In the latest approaches, covert channel can be

combined with other data leakage technique such as side channel attack that can create a

catastrophe that is hard to resolve. For example, in the case of spectre and meltdown

attack, an exploited side effect in out-of-order execution on processors can create a side-

channel attack which privileged data can be collected. This unauthorised collected data

2

later is transferred by using covert channels to expose to the outside world. To utterly

annihilate the attack, it requires restructuring, reengineering and redesigning of the

processor itself and of course, this requires substantial efforts (Hamburg et al., 2018;

Kocher et al., 2018).

In contrast, some studies also showed covert channel could also be applied for security

application purposes. For example, in dubious and limited network capability

environment such as in ZigBee or personal area network, covert channel can be used to

send secret data between communicating parties on top of conventional cryptographic

approaches (Hussain et al., 2016).

Numerous studies have found multiple covert channels exist in various network

protocols. One of the undisputable protocols that globally used is Transmission Control

Protocol (TCP). Since the birth of the internet, TCP plays a significant role in global

internet traffic. This trend becomes more tremendous when more TCP based applications

are being introduced such as internet video, online gaming and mobile applications. In

fact, according to Cisco Visual Networking Index, by the year 2012, internet video traffic

alone will dominate 82 percent of all consumer internet traffic by 2021 (Cisco, 2017).

In TCP, most of the implementations of covert channel primarily are focusing on

mandatory fields in TCP header but less in TCP option fields (Mileva & Panajotov, 2014;

Kumar et al., 2011). The main purpose of TCP Option fields is to accommodate various

functionality that does not provide by ordinary TCP, and some of these options may

change the behaviour of regular TCP. From time to time, the usage of TCP Option fields

is expanding, for instance, since 2010, there are three new options were introduced

namely TCP Authentication Option (TCP-AO), Multipath TCP (MPTCP) and TCP Fast

Open Cookie (TFO) (Kay et al., 2017).

3

Table 1-1 shows TCP header option fields that have potential to be used widely in TCP

with their year published from Request for Comments (RFC). Among the latest TCP

options are TFO, MPTCP and TCP-AO. These three are based on RFC7413, RFC6824,

RFC5925 and at the year of 2014, 2013 and 2010 respectively with some of them are

currently pursuing to become a standard track. Moreover, these three TCP options have

the largest in terms of payload compared to other TCP options as shown in APPENDIX

A.

Table 1-1: TCP header Option Fields and Year published (Kay et al., 2017)
No. Field Name Year
1. Maximum Segment Size 1983
2. Window Scale 1988
3. SACK Permitted 1996
4. SACK 1996
5. Timestamps 1992
6. Quick-Start Response 2007
7. TCP-AO 2010
8. MPTCP 2013
9. TFO 2014

TCP-AO is a replacement for the obsoleted Message-Digest algorithm 5 (MD5)

signature option of RFC 2385 (TCP MD5). It specifies the use of stronger Message

Authentication Codes (MACs) and more secure compared to TCP MD5. In terms of

usage, TCP-AO is designed to replace TCP MD5 and targets for specific network

equipment such as for Border Gateway Protocol (BGP) router (Touch et al., 2010).

MPTCP allows devices to use multiple network interfaces that have different network

segments for a single TCP connection session. Thus, this benefits devices such as mobile

phone and cloud servers to use this option (Ford et al., 2013). However, MPTCP is only

supported by selected operating systems. According to D. (Murray et al., 2017), only

FreeBSD, Mac OSX and IOS operating system are integrated with the kernel. While, for

Linux, it needs an extra module in kernel to be compiled with. Even though the MPTCP

4

are growing, the current deployment of MPTCP also introduces new challenges that

require congestion control mechanisms which can assess and equitably share available

resources across multiple paths. (D. Murray et al., 2017).

TFO permits data to be sent at the initial stage of the three-way handshake. Thus, this

makes TFO saves one round trip time and can perform faster transmission as compared

to ordinary TCP (Cheng et al., 2014). In terms of implementations, TFO is supported by

many operating systems. According to (D. Murray et al., 2017) TFO is already supported

by Linux, FreeBSD, IOS, Android, Mac OSX and Microsoft Windows. However, not all

software on these operating systems supports TFO. For example, only Google Chrome

browser on Linux and Android are TFO capable but not to others (D. Murray et al., 2017).

Further, although both MPTCP and TFO relatively new, a survey conducted by (D.

Murray et al. 2017), TFO has more slightly higher tendency usage than MPTCP in terms

of network traffic trending. Therefore, the study is focusing on exploring covert channel

in TFO.

1.2 Motivation and Statement of Problem

Covert channel is one of the techniques in information hiding. Depends on purposes,

some viewed covert channel as security treats. In particular, covert channels can expose

sensitive data where it led to data breaches (Lampson, 1973). According to Cost of

Cybercrime Report (Accenture, 2018), the average number of data breaches is growing

27.4% each year, and about 21.2 million USD is estimated regarding cybercrime in the

United States alone.

 On the other hand, some studies showed a covert channel is useful when transferring

message securely in an untrusted ad-hoc network such as personal area networks (Hussain

et al., 2016). Whether covert channel is used for security threats or vice versa, the

5

importance of covert channel is unavoidable. Implementation of covert channels are also

found in latest trend technologies such as in Internet of Things (IoT), IPv6 and cloud

computing (Lewandowski et al., 2006; Hussain et al., 2016; Betz et al., 2017). Thus, the

tendencies of covert channel to expand in the latest technology is promising and should

cover various areas such as the latest options in TCP.

Moreover, TCP is core protocol in internet traffic. Samples internet traffic that done

by (D. Murray et al., 2017) showed 87.56% of internet traffic is made up from TCP. Thus,

these push factors have made TCP one of the preferred implementations of covert

channel.

Therefore, the introduction of covert channel to new TCP technologies such as TFO

can help to widen in creating more alternative in implementing covert channel. As yet, to

the best of the author knowledge, there is no covert channel implementations have been

done in TFO so far.

Hence, the primary research questions are “Can we implement covert channel in TFO?

If it can be implemented, does the covert channel implementation is keep intact with the

TFO objective which is performance for data transferring.”

1.3 Aims and Objectives

This study aims to introduce covert channel to TFO. To achieve this aim, the

primary objectives of this research as follows:

• To report covert channel and implementation TFO that used in practice;

• To implement covert channel in TFO; and

• To evaluate correctness and performance of covert channel in TFO.

6

1.4 Scope of Study

In this study, the approach is applied as much as possible that imitate as in a real-world

scenario. Thus, the study applies covert channel in TFO as in client-server in a web

environment that valid in practice. However, this only limited on one type of specific

traffic and does not represent all types of traffics. Further, some of the processes and test

require some assumptions that are unavoidable. In this study, list of assumptions will be

covered in Chapter 3.

1.5 Thesis Outline

This thesis comprises of five chapters which consist of:

• Chapter 1 presents the introduction of the study, background of covert

channels, problem statement, thesis objectives and the study scopes.

• Chapter 2 presents the literature review on covert channels, design concepts of

covert channel in general, covert channel in TCP protocol, understanding TCP

protocol and TFO.

• Chapter 3 presents the methodology and design of this study to achieve the

objectives.

• Chapter 4 presents the implementation and execution of covert channel tools.

It also introduces how tests were conducted.

• Chapter 5 presents discussion about the experiment results and outcome.

• Chapter 6 concludes the thesis by theoretical considerations and practical

implications of the method. Finally, the limitation of this research is discussed

and some future works are proposed.

7

 LITERATURE REVIEW

This chapter explains a literature review and studies the current approach in covert

channel as fundamental ideas which include how covert channel can be designed. This

followed by TCP as overview background subject based on RFC 793 before entering TFO

as the specific target for this study. In this section, it includes differences TCP and TFO

and also implementation TFO in Linux. Next section, is focusing on the previous

approaches covert channel in TCP which generally include on techniques and payload

sizes.

2.1 Covert Channel

U.S Department of Defense defines covert channel is “any communication channel

that can be exploited by a process to transfer information in a manner that violates the

system's security policy” (Latham, 1986) . Covert literally means hidden, whereas channel

means medium of communication. Thus, covert channel simply can be described as

hidden communication.

Covert channels are divided into two categories namely, storage covert channel and

timing covert channel. Storage covert channel manipulates storage to create covert

content (Gray, 1994). This may include payload, header and reserved fields in data that

are potential to create covert content. Whereas, timing covert channel manipulate timing

behaviour to create code that represents messages (Zander et al., 2007).

Further, covert channel also exists in cryptographic algorithm, where it exploits the

undetermined value such as random values in cryptographic algorithm. This sub category

is known as subliminal channel. Further, combining various techniques create hybrid

covert channel such as in (Mazurczyk et al., 2009; Simmons, 1993). The overall covert

channel can be illustrated as in Figure 2-1:

8

2.1.1 Communication Model

There are several types of communication model in covert channel. It can be described

using the famous prisoner problem that introduced by (Simmons, 1984). The problem is

about Bob and Alice were thrown into prison and wanted to escape. Wendy a warden

prisoner always monitors any communication between prisoners and Bob and Alice want

to communicate without her notice. Bob and Alice must communicate using innocuous

messages that contains hidden information to prevent Wendy’s doubt. Any messages

must go thru Wendy and each message can be read or modified by her.

Extending from this scenario, there are at least four type communication situations that

possible to create (Zander et al., 2007). Assume Bob and Alice are overt channel users

and Mallory and Mallet are covert channel users where Mallory and Mallet communicate

secretly using Alice and Bob communication without they notice. Mallet and Mallory are

covert channel implementer where they can Alice and Bob themselves or another person.

Table 2-1 showed various communication can be made in implementing cover channel.

The first one includes both Alice / Mallory and Bob / Mallet are located at the same site

respectively, where covert activity are being done at same location (at the same host).

Whereas second approach, Mallory located at the middle of overt channel. In this case,

Mallory intercept every Alice communication sessions and injected covert content in

overt channel. Similarly, the third approach are the reverse of second approach where

Covert Channel

Timing covert channel Storage Covert Channel

Figure 2-1: Categories in covert channel

9

Mallet intercept Bob communication sessions and injected covert content in overt

channel. While fourth approach, Mallory and Mallet are both outside of Alice and Bob’s

location. In real word, it would be the covert channel users are located at network device

such as router and network proxies.

Table 2-1: Various Communication Models
No. Overt Sender Channel Overt Receiver

1.

2.

3.

4.

Bob Alice

Mallory Mallet

Bob Alice

Mallory Mallet

Bob Alice

Mallory Mallet

Bob Alice

Mallory Mallet

Overt channel

Overt channel

Overt channel

Overt channel

Covert channel

Covert channel

Covert channel

Covert channel

10

2.1.2 Covert Channel Techniques

According to (Wendzel et al., 2015) covert channel techniques can be generalised into

eleven common categories. Four of them, are belong to time covert channel and other fall

under storage covert channel. Some of these techniques may have hindrance on the

structure which can be categorised into three factors namely syntax, semantic and noise.

Syntax is about the structure format of PDU such as first 8 bytes field in structure are

reserved for header. While semantic is a logical of interpretation of the PDU. For

example, IP timestamp option is to measure catenet delays which if any misconfigured

value may lead into wrong interpretation and sometime would interrupt the whole

process. While noise is a form of overhead that occurs from unwanted condition such as

bit corruptions or packet loss which may disturb transaction. In conclusion, from all

patterns listed, only random value pattern is generally preserved syntax, semantic and

noiseless of channels. Table 2-2 explains the category techniques with their caveats

(Wendzel et al., 2015).

11

Table 2-2: Covert Channel Techniques (Wendzel et al., 2015)
 Technique Type Syntax

Sem
antic

N
oise

 Description Example

1 Size Modulation

Pattern

Storage Ö Size manipulation of a header

element or Protocol Data Unit

(PDU) to store covert content.

Manipulating padding

field’s size in IEEE 802.3

2 Sequence Pattern Storage Ö Order manipulation of header

or PDU to store covert content.

Manipulating options or

position or number of

options in DHCP option

3 Add Redundancy

Pattern

Storage Ö Additional area within header

element or PDU to store covert

content.

Adding additional fields in

HTTP headers.

4 PDU

Corruption/Loss

Pattern

Storage Ö Ö Corrupted PDU generation to

store covert content.

Transferring corrupted

frames in IEEE 802.11

5 Random Value

Pattern

Storage Covert content inserting in

random value of a header

element.

Manipulating identification

field in IP header

6 Value Modulation

Pattern

Storage Ö Ö Selects one of n values a

header element.

Manipulating Least

Significant Bit (LSB) into

the IPv4 timestamp option

7 Reserved/Unused

Pattern

Storage Ö Use reserved/unused to store

covert content.

Utilizing unused fields in

IPv4 or TCP

8 Inter-arrival Time

Pattern

Timing Ö Timing intervals manipulation

to encode covert content.

Creating delays into inter-

arrival times of SSH packets

9 Rate Timing Ö Data rate manipulation in

traffic flow to encode covert

content.

Sending specific commands

in serial communication port

to alter throughput

10 PDU Order Pattern Timing Ö Ö Artificial PDU order creation

to encode covert content.

Re-ordering of IPSec

Authentication header (AH)

packets

11 Re-Transmission

Pattern

Timing Ö Intentionally re-transmit PDU

to encode covert content.

Retransmitting intended

unacknowledged packets

12

Further, according to (Lewandowski, 2011) there are two essential requirements in

creating covert channel need to be considered. First, any covert channel transactions as

much as possible should comply with channel syntax. Any violation of the channel syntax

may result in channel failure or exposing the covert channel. For example, imbedding

covert content in reserved fields sometimes can be successful but in environment that

applies strict rules in firewall may discard the packet or can expose the content. Finally,

covert channel also should consider channel semantic. Ineffective of preserving the

semantic part may result anomaly situation or may amend the meaning of traffic. For

instance, applying covert channel in reserved field flags unproperly can change the packet

behaviour such as IP flags set into DF which may result the following packet can be

dropped. Thus, to increase reliability of covert channel requires channel syntax and

semantics knowledge deeply (Lewandowski, 2011).

2.1.3 Wardens

Extending from the Section 2.1.1, traditionally there are two types of wardens: passive

warden and active warden. Passive warden is passive way of detecting covert channel and

can be time consuming (Zawawi et al., 2012). It operates by monitoring traffic and create

alarm when it detects any suspicious activities. Numerous techniques such as statistical,

probabilistic and machine learning as described in (Murdoch et al., 2005; Tumoian et al.,

2005; Zhai et al., 2010) are used in passive warden. Some of these techniques requires

large samples of packets to analyse for instance, (Kumar et al., 2011) used 50 samples to

detect anomaly traffic pattern in their findings.

On the other hand, active wardens are actively preventing covert channel, these include

normalising packet operation such as dropping, correcting or modifying content in a

packet. In certain techniques, all inspections are assumed content hidden messages. In

13

other words, active warden is more on preventing rather than detecting as passive warden

does (Lewandowski et al., 2006).

(Fisk et al., 2002) introduced Minimal Requisite Fidelity (MRF) concept that try to

balance between end user needs and create distortion to covert communication. It

implemented various covert channel countermeasure techniques at inline at network level

in a system similar to a firewall, network proxy or intrusion prevention system. In fact, it

performs similarly to a covert channel by replacing noise as the hindrance. The idea of

this approach is to disturb suspicious covert area while maintaining semantics and syntax

of a structure. The principles of MRF can be described as follows:

1. Value correction on known values.

Any value must follow standard such as change all reserves bits to default value for

example: zero or recalculate checksum if the checksum is false.

2. Eliminate value on unknown values.

If the value is unknown for such as ID that uses random value. Replace with new value

and create bijective mapping to the source or simply drop it.

3. Scramble value between known and unknown values.

Applying noise to received value which may contents ambiguous area such as in least

significant bit or intended streaming in network traffic (Fisk et al., 2002). Extended work

for MRF, (Lewandowski et al., 2006) enhanced the method by adding information

surrounding network in in order to decrease the entropy present in IPv6 protocol fields.

Furthermore, some of these approaches are also found in other implementation but

for different purposes, for example OpenBSD’s pf is capable to detect invalid flag

14

combinations in order to remove ambiguities in packet (OpenBSD, 2005). Furthermore,

some studies in protecting from various network attacks are using similar concept for

example (Kreibich et al., 2001) presented packet normalisation in order to protect from

numerous attack such as stateholding attacks.

2.2 Transmission Control Protocol (TCP)

TCP protocol is a common protocol use in internet. It designed to be end-to-end

reliable protocol and works in multi-layer network. TCP protocol is based on RFC 793

(Postel, 1981) where it defines standards and protocol specifications. TCP comprises

header segment that contains information fields and data segment which carries user data.

Figure 2-2: TCP Header Format

TCP header encompass ten mandatory fields without padding and an option as shown

in Figure 2-2.

• Source Port: 16 bits

 Contains sender port number.

• Destination Port: 16 bits

 Contains receiver port number.

15

• Sequence number: 32 bits

Contains the sequence number of the sender. It starts with initial sequence number

where SYN in control bit is equals to 1.

• Acknowledgment Number: 32 bits

Contains the sequence number from the receiver. It gets increased when data get

transmitted.

• Data Offset: 4 bits

Contains TCP header size. The size can range from 20 bytes up to 40 bytes where it

calculated using word or bits value multiply by 4

• Reserved: 4 bits

Reserved flag bit for future use. RFC 3540 (Spring et al., 2003) occupied one bit make

it reduced into 3 bits left.

• Control Bits: 8 bits

Consists of 9 1-bits flags as follows:

a. CWR: 1 bit

b. ECE: 1 bit

c. URG: 1 bit

d. ACK: 1 bit

e. PSH: 1 bit

f. RST: 1 bit

g. SYN: 1 bit

h. FIN: 1 bit

i. Window: 16 bits

Contains the size usually in bytes of receive window size

16

• Checksum: 16 bits

Consists of checksum of source IP address, destination IP address, protocol number

and the length of TCP header including payload.

• Urgent Pointer: 16 bits

Contains byte position of data that should be process immediately.

• Options: 0 -320 bits (variable)

TCP option contains verities of options and each of them has specific purposes. The

list of TCP options is summarised in APPENDIX A. The define option in TCP option

is either in a single octet or multiple octets. In multiple octets, it consists of Option-

kind, Option-length and Option-data. Option-kind contents kind number that indicate

TCP option kind for example kind number two is belong to Maximum Segment Size.

Option-length is the size of payload in kind number for instance, the size of Maximum

Segment Size is four. Meanwhile Option-data is the payload of kind number itself

where its content information of TCP option operation such as timestamp value in

timestamp option in TCP. On the other hand, single octet only consists 1 byte that

currently applied to End of operation List and No-Operation. End of operation List has

been used to indicates the end of the option list. While No-Operation is used for filler

between options (Postel, 1981).

• Padding: (variable)

The padding is zero bits filler to ensure the size of TCP header to make it an even

multiple of 32 bits in TCP header especially when TCP header contains TCP options.

17

2.2.1 Three-way handshake in TCP

Based on RFC 793 (Postel, 1981), TCP is a connection-oriented protocol and uses

three-way handshake to establish connection. In general, TCP operates under three

processes which are open connections, close connections and established connection for

data transferring purposes in a pair of sockets. Each of the processes involving specific

or combination of the ACK, SYN, PSH, FIN and RST flags. The whole operations in

TCP are based on transition states that occur in socket as showed in Figure 2-3 and

described briefly in Table 2-3.

Figure 2-3: Transition State in TCP (Stevens, W., Fenner, B., & Rudoff, A.,

1999)

18

Table 2-3: TCP state descriptions (IBM Knowledge Center. (2017)

TCP Connection State Description

LISTEN Waiting for a connection request

SYN-SENT Waiting for an acknowledgment from the remote node after

having sent a connection request.

SYN-RCVD Received a connection request and sent an acknowledgment.

ESTABLISHED Data transfer phase of the connection.

FIN-WAIT-1 Waiting for an acknowledgment of the connection termination

request or for a simultaneous connection termination request

from the remote node.

FIN-WAIT-2 Waiting for a connection termination request from the remote

TCP after this node has sent its connection termination request.

CLOSE-WAIT The node has received a close request from the remote node and

at this state it waits for a connection termination request.

CLOSING Waiting for a connection termination request acknowledgment

from the remote node. This state is entered when this node

receives a close request from the local application, sends a

termination request to the remote node, and receives a

termination request before it receives the acknowledgment from

the remote node.

LAST-ACK Waiting for an acknowledgment of the connection termination

request previously sent to the remote node. This state is entered

when this node received a termination request before it sent its

termination request.

TIME-WAIT Waiting for enough time to pass to be sure the remote node

received the acknowledgment of its connection termination

request.

CLOSED Represents no connection state at all.

An example of full simple cycle of TCP states is shown in Figure 2-4 and can be

described as follows:

19

1. Initially, server is set to LISTEN state and client is under CLOSED state.

2. When client want to make connection, it sends request to server and create initial

sequence number as reference number that to be used later. The sequence number

field is filled up with the sequence number. During this stage, control flag for SYN is

set, other flags must be unset, TCP state for client = SYN_SENT, server

=SYN_RCVD and no data in data payload.

3. Server replies by sending its own first sequence number in sequence number field and

client’s sequence number + 1 in acknowledge number field. During this stage, control

flag for SYN and ACK is set, other flags must be unset, TCP state client =

ESTABLISHED, server =SYN_RCVD and no data in data payload.

4. Client replies by sending its own sequence number in sequence number field and

server’s sequence number + 1 in acknowledge number field. During this stage, control

flag for SYN and ACK is set, other flags must be unset, TCP state client =

ESTABLISHED, server = ESTABLISHED and no data in data payload. After this,

data start to exchange and uses PSH, ACK and SYN flags until the client send FIN

flag.

5. When client starts to send FIN flag and received by server, server will change to

CLOSE_WAIT state and it replies back ACK to the client.

6. Upon receive, client change the state to FIN_WAIT_2 and wait server to reply FIN

ACK packet. Once the client received FIN ACK from server, it changes to TIME-

WAIT and reply ACK to server. The purpose of having TIME-WAIT is to make sure

server has adequate time to receive the ACK packet and eventually client back to

CLOSED state as its initial state.

20

Figure 2-4: Example of three-way handshakes operation

2.3 TCP Fast Open (TFO)

(Radhakrishnan et al., 2011) introduced TFO as one of the TCP options in TCP

protocol. It aims to utilise data exchange in TCP by starting to send data at three-way

handshake stage. For this reason, TFO can create more efficient in data transferring; thus,

this can give faster transmission. In terms of implementation, RFC 7413 (Cheng et al.,

2014) defines on TFO specification and explanation in this section is based on RFC 7413.

Previously, Transactional Transmission Control Protocol or T/TCP was introduced by

21

(Braden, 1994) which it bypass three-way handshake in TCP. However, T/TCP does not

have flood protection mechanism which it cannot apply TCP SYN cookie, hence, this

will lead and prone to flood attack (Phrack Magazine, 1998). Due to this security factor,

T/TCP implementation was abandoned and it has been changed into historic status in

RFC (Duke et al., 2006).

Based on RFC 7413 (Cheng et al., 2014), TFO has similar aim as T/TCP but enhanced

with security features. It equipped with TFO cookie where it works like a credential and

contains unique value for each client IP addresses. TFO does not drop or reject packets,

if any invalid cookie the server will revert to normal TCP. This will mitigate resources

from exhaustion and diminishes amplification attack such as flood attack.

Another feature in TFO, it has pending requests threshold; wherein some occasions,

the server may be overloaded and unable serve requests. For instance, if the valid cookie

gets comprised from trojan attack, it still subject to defined limit on pending request. Once

the pending request exceeds the limit, the server temporarily disables TFO and uses

normal TCP. This will allow SYN flood countermeasure techniques take place such as

SYN cookies (Cheng et al., 2014).

TFO operates at three-way handshake stage as shown in Figure 2-5, in first connection

session, client creates a TCP request along TFO option with empty TFO cookie. Then the

server transfers TFO cookie to client as token and normal TCP proceed normally. After

that, in second connection the client sends request along with TFO cookie and data. Then,

upon receive, the server validates the cookie, if the cookie is valid, then the server replies

SYN-ACK where ACK is total of client’s SYN + 1 and size of received data. However,

in case of invalid cookie the ACK value is just client’s SYN + 1. In case of valid TFO,

instead of waiting ACK from the client, the server starts to send data while the client is

also replying request to server. Whereas in case of invalid TFO, the server must wait ACK

22

from the client and proceed to normal TCP. Finally, in both situations, at this stage the

transactions are resume as normal TCP transaction.

2.3.1 TFO Structure

RFC 7413 (Cheng et al., 2014) divides TFO structures into three compartments

namely, kind number which is equals to 32, length which indicates the length of TFO

segment and cookie as payload of the segment as shown in Figure 2-6. The length can be

various, it ranges from 2 up to 18 and must be even. Further, TFO operates in three-way

handshake stage, thus SYN flag must always be set and failure to comply TFO must be

ignored. The cookie size is calculated by length value subtracted by 2. TFO cookie as

suggested is a message authentication code (MAC) that comprise following properties

(Cheng et al., 2014):

Figure 2-5 : TFO connectivity

SYN + TFO cookie request

SYN-ACK + TFO cookie request

(regular TCP connection to request

cookie for future use

 SYN + TFO cookie request

SYN + ACK

 ACK

Validates client TFO cookie
+ accept connection + data is
made available to
application

More data packets sent to
client while handshake is
in progress

Data in the SYN packet
also ACKed by server

Proceed as normal TCP
connection

23

1. Only server can generate TFO cookie and cannot be produced by other parties.

2. As suggested, it generated by encrypting IP address with AES 128 and IP

address can be IPv4 or IPv6.

3. Upon verification, server reproduce the cookie and make comparison with

client’s IP address.

4. Encryption key can be changed manually or periodically by server or can be

expired as security consideration.

Figure 2-6:TFO structure with length size

2.3.2 TFO Implementations

There are many applications that TFO enable that cover many major aspects in internet

applications and operating system. Some of them are still in the beta mode and other can

be used in productions. Some of the list as shown in Table 2-4 .

K
IN

D
 N

o.

COOKIE

LEN
G

TH

1 byte 0, 4 to 16 bytes 1 byte

24

Table 2-4: List of TFO Applications
 Software Name Purposes References

1 Linux (starting
from 3.6)

Operating
System

Kerrisk, M. (2012)

2 FreeBSD Operating
System

Kelsey, P. (2018)

3 Windows Server
2016

Operating
System

Huitema, C. (2016)

4 IOS and Mac OS Operating
System

Prabhakar, L., & Cheshire, S. (2015)

5 Nginx Web Server /
HTTP proxy

Nginx (2017)

6 HaProxy TCP
Proxy/Load
Balancer

Tarreau, w. (2016)

7 Google Chrome Web Browser Chrome. (2017)

8 Bind DNS BIND. (2016)

9 Exim Mail Server Harris, J. (2016)

10 Juniper Network
Operating
System

Juniper. (2017)

The first implementation of TFO was based modification on Linux Operating

System and used chrome and Apache as client server software (Radhakrishnan et al.,

2011). Since this is the first implementation of TFO, the detail of the implementation is

in next section.

2.3.3 TFO in Linux

In Linux, it started with 3.6 kernel TFO for client (Kerrisk, 2012) and 3.7 version

(Vaughan-Nichols, 2012) for server. In this study, Linux kernel version 3.10 and

reference in (Linux Kernel Documentation, 2017) is used to conduct the study. There are

two components TFO in Linux, key configuration and mode options in TFO. The key

can be maintained (renew) via two methods, the first one by restarting the operating

system and the other manual key in via command line.

25

Figure 2-7: TFO key is displayed and get changed in Linux environment

By default, the key is using random values and it is stored in

/proc/sys/net/ipv4/tcp_fastopen_key. The TFO key also can be changed manually via

sysctl command and the key size must be in 16 bytes, which is equivalent to Advanced

Encryption Standard (AES) 128 bit key. The key format is 32-character hex strings,

broken into 4 blocks and separated by dashes as shown in Figure 2-7.

As general, creation TFO cookie can be described in Equation 2-1 . Although

according to RFC 7413 (Cheng et al., 2014) the TFO cookie size is not fixed, but it turns

out that in Linux the cookie is truncated to 64 bits. This can be confirmed thru observing

TFO cookie in network traffic such as in Figure 2-8 and snippet kernel’s source codes as

in Figure 2-9.

TFO Cookie = TRUNCATE(Ek(IPsrc , IPdst , PAD(0)),64) 2-1

where

Ek = Encrypt (AES 128)

IPsrc = Source IP Address

IPdst = Destination IP Address

 192.168.56.2.http > host1.46094: Flags [S.], cksum 0xb2c1 (correct), seq 1577046757, ack 3214008742, win 28960,
options [mss 1460,sackOK,TS val 366404188 ecr 358140,nop,wscale 7,unknown-34 0x4486ebf3e002d873,nop,nop], length
0
 0x0000: 4500 0048 0000 4000 3f06 495b c0a8 3802 E..H..@.?.I[..8.
 0x0010: c0a8 3902 0050 b40e 5dff d2e5 bf91 e1a6 ..9..P..].......
 0x0020: d012 7120 b2c1 0000 0204 05b4 0402 080a ..q.............
 0x0030: 15d6 e25c 0005 76fc 0103 0307 220a 4486 ...\..v.....".D.
 0x0040: ebf3 e002 d873 0101 s..

Figure 2-8: Sample of TFO traffic, unknown-34 yields kind number

followed by 16 hexadecimals of TFO cookie

26

 Although, in practise TFO cookie is reduce into 8 bytes, yet it is still remains one of

the largest content random values in contemporary TCP fields (Postel, 1981; Kay et al.,

2017). In Linux, there are five options in TFO that can be used as stated in Table 2-5.

From the table, TFO can be into two situations; for trusted environment such as in Internet

-- tcp.h --

/* TCP Fast Open */

#define TCP_FASTOPEN_COOKIE_MIN 4 /* Min Fast Open Cookie size
in bytes */

#define TCP_FASTOPEN_COOKIE_MAX 16 /* Max Fast Open Cookie size
in bytes */

#define TCP_FASTOPEN_COOKIE_SIZE 8 /* the size employed by this impl. */

--tcp_fastopen.c--

void tcp_fastopen_cookie_gen(__be32 addr, struct tcp_fastopen_cookie *foc)

{

 __be32 peer_addr[4] = { addr, 0, 0, 0 };

 struct tcp_fastopen_context *ctx;

 rcu_read_lock();

 ctx = rcu_dereference(tcp_fastopen_ctx);

 if (ctx) {

 crypto_cipher_encrypt_one(ctx->tfm,

 foc->val,

 (__u8 *)peer_addr);

 foc->len = TCP_FASTOPEN_COOKIE_SIZE;

 }

 rcu_read_unlock();

}

Figure 2-9: TFO cookie yields the size = 8 bytes ("Linux Kernel

Documentation", 2017)

27

Small Computer Systems Interface (ISCSI) or in internal communication among nodes

in cloud environment, option 0x4 and 0x200 can be used. And under normal

circumstances and according to RFC 7413 (Cheng et al., 2014) standard, option 0x1 and

0x2 should be used which it requires valid TFO cookie as authentication. These TFO

options is stored in /proc/sys/net/ipv4/tcp_fastopen and to set the value manually sysctl

command is used or it can be set in /etc/sysctl.conf as permanent configuration.

Table 2-5: TFO modes in Linux

 Value Meaning

1 0x1 Enables client-side support

2 0x2 Enables server-side support

3 0x4 Enables TFO at client side with or without TFO cookie

4 0x200 Enables TFO at server accept with or without TFO cookie

5 0x400 Enables all listeners to support TFO automatically in socket

2.4 Covert Channel in TCP

According to study done by (Mileva & Panajotov, 2014), there are 13 identified covert

channel techniques that have been identified in TCP. From there, 69.23% of the

approaches are categorised as storage covert channel and most of their approaches

channel utilised TCP header fields as its covert carrier such as shown in Table 2-6 with

additional from works from (Kumar et al., 2011, Efanov et al., 2017) . Further, 55.56%

from that, there are related to TCP sequence number such as ACK and initial sequence

number (ISN).

28

Table 2-6: Covert Channel with covert content size
 Paper/tool/Solutions Years TCP Fields /

behaviours

Payload size Type

1 Covert TCP 1997 ISN & ACK 64 Storage

2 Hintz 2002 Urgent pointer 16 Storage

3 Abad 2001 Header checksum 16 Storage

4 NUSHU 2004 ISN 32 Storage

5 Lantra 2005 ISN 32 Storage

6 Allix 2007 Reserved N packet 4 Storage

7 CLACK 2009 ACK 32 Storage

8 RSTEG 2010 Retransmission Max IP

segment

Storage

9 ACKLeaks 2011 ACK 32 Storage

10 Giffin et al. 2002 TCP Timestamp 1 Timing

11 Chakinala et al. 2005 Segment Reordering Log2 n! Timing

12 Cloak 2007 X TCP flows n Timing

13 TCP scripts 2008 TCP Bursts n Timing

14 Kumar et al. 2011 Maximum Segment

size (MSS) & ISN

n Storage

15. Efanov et al. 2017 Port 16 Storage

Note. Information no. 1 to 13 from (Mileva & Panajotov ,2014), for 14 from (Kumar et al., 2011) and 15 from (Efanov
et al., 2017).

The main of the function of TCP sequence number is to mitigate from off-path attacks

e.g. trust-relationship exploitation and denial-of-service attacks (F.Gont, 2012).

However, this will resulted ambiguous situations where sequence number is hard to

distinguish between encrypted value and genuine generated sequence number (Fisk, et al.

2002). As a result, many storage covert channel implementations are based on this

property.

29

From the survey, it indicates many implementations of covert channel in TCP header

have a tendency towards implementing on mandatory fields with some exception

implementation that use TCP options such as timestamp using weakness in Least

Significant Bits techniques and mixture between sequence number and Maximum

Segment size (MSS). Also, it is suggested, storage covert channel is preferable than time

covert channel as in (Mileva & Panajotov, 2014).

2.5 Summary

This chapter presented a various overview of covert channel, current TCP, TFO and covert

channel in TCP. Section 2.1 explains covert channels in generals, ranging from concepts to

attack against covert channel. Although implementations of a covert channel are varied and

depend on how syntax and semantic in overt channel works, the key philosophies in building

covert channel much more the same. Section 2.2 presented a comprehensive overview of TCP

to describe the structure and operation of the whole TCP process. In Section 2.3, explains the

state-of-art of TFO comprehensively, it comprises concepts, structures, differences as

compared to standard TCP and implementations. In particular, the study covered Linux as a

real-life TFO implementation that used in practice. It turns out that, some of the TFO

properties in Linux are different from RFC standard; in particular the size of TFO cookie is

truncate to 64 bits rather than 128 bits; as well as verities mode of using TFO cookie. Section

2.4 presented covert channels that have been implemented in TCP protocol. The Conclusion

of this section showed implementations of covert channels in TCP are have more

favourable to use storage type and make used random properties. Hence, theoretically it

is possible to apply the similar approach to TFO by using TFO cookie as covert career.

30

 RESEARCH METHODOLGY AND DESIGN

This chapter provides methods that describe activity of research in order to answer

research questions. The thesis is separated into four phases namely, building covert

communication model, create assumptions, prototyping and tests. Building covert

communication defines which communication model that used in the study. Next, create

assumptions explains components and factors that must be followed in order to make

prototype works. Then create prototype which resembles creating tools in environment.

Finally, designing the test in order to test the running tools and to get data collection.

3.1 Building Covert Communication Model

There are many types of covert communication models as mentioned in Section in 2.1,

in this study, again the thesis illustrates it by using the famous prison problem where Alice

is thrown to prison and the only person Alice can communicate is Bob. The

communication they can use are normal TCP communication only. Every session of

communication is filtered by warden. As security measurement, warden will inspect and

block anything that suspicious and implement known active warden techniques. Later, to

increase efficiencies, the prison department has implemented TFO in their network

communication.

At the same time Alice wants to send covert message to Mallory as a secret receiver

over TFO channel. Suppose, long before that, Alice and Mallory have an identical shared

key and they also have information that recently the department has implemented TFO in

the network. From here, a communication model can be designed as a conceptual flow so

that Alice and Mallory enable to communicate as follows:

31

Figure 3-1: Covert Channel communication model in TFO

1. Alice and Bob use normal TFO communication.

2. Suppose Mallory and Alice have secret communication.

3. Alice and Mallory already have secret key.

4. Alice request data from Bob and Bob replies.

5. Mallory intercept Bob’s packet and replace TFO cookie with encrypted secret

message using secret key.

6. Alice receive packet from Bob and proceed normal operation.

7. Alice extract message from TFO cookie using secret key

For implementation purposes, Alice and warden reside in the same location (node) as well

as Bob and Mallory.

32

3.2 Create Assumptions

In order to investigate and create a scenario case, assumptions must be made and must

in line with Section 3.1 and follow RFC 7413. Assumptions are carefully designed so

that it resembles real implementation scenario and do not disturb any existing process in

TFO. In this research assumptions are based on the following scenarios:

1. TFO runs without any blocking

To create overt channel all nodes and network traffic need to unblock any TFO activities

and traffic. It includes enabling TFO setting on both nodes and ensure there are no host

middlebox (e.g. firewall, Intrusion Prevention System and router) blocks. Further,

network environments that require TCP level packet modification such as NAT, reverse

proxy and VPN. need to be avoided in order to maintain transaction that carries TFO

properties work well. Thus, only the regular routed network is used to ensure TFO can be

transmitted without having any problems.

2. Fixed covert content size

Covert content size needs to be in fixed length, due to the content depends on TFO cookie

(covert carrier) size. Any changes in covert carrier (TFO cookie) size can lead to anomaly

structure in TFO syntax. Although in RFC 7413 stated TFO cookie can be range 6 to 18

bytes, in practice it fixed into 64-bit size TFO cookie (Cheng et al., 2014).

3. Node specification, bandwidth and latencies are uniformed

In order to create a stable environment, bandwidth and latencies are fixed to avoid

unbalanced results. Moreover, this also applies to the host’s specification namely, CPU

speed, memory capacity and NIC speed factors.

33

4. Covert content is fixed and one-time simplex communication

Covert carriers are embedded in TFO cookie and it uses the same TFO cookie that exists

in SYN-ACK state in TCP from server and SYN state from a client. In a typical situation,

TFO cookies are infrequently changed. Thus, creating non-static covert message would

lead to anomaly pattern in TFO cookie. However, if TFO cookie get changed due to some

occasion such as system reboot, intentionally change TFO cookie key, cookie expiry, etc.

the system must able to adapts to avoid any breaking semantics in TFO session.

5. Covert content is receivable within some period of times

For increment reliability of transferring message, it is appropriate to maintain the message

for some amount of time before it gets dissolved. It makes covert receivers do not require

to receive transactions exactly same time as covert sender send the covert message.

6. Covert receiver has adequate keys to extract covert content.

Covert receiver has sufficient requirements to do decryption and extract the message from

TFO cookie. Since TFO cookies might change from time to time, it is important extraction

process in aware and adapts the situation.

3.3 Prototyping

The main goal is to create confirmation against Section 3.1 , thus in this study, the

involved techniques consist of creating algorithm, creating covert channel and simulate

performance observation. Furthermore, in order to create the tools, TFO as overt channel

is configured and two nodes as data sink and data source are involved. For performance

simulation, the concept is based on setup that had been done in (Radhakrishnan et al.,

2011) delays or latencies in network are created to simulate various conditions. Thus, an

34

intermediate node is required to perform delay controller. In this study, the delays is set

to 0 millisecond, 5 milliseconds, 10 milliseconds and 15 milliseconds respectively in

order to create throttling in traffic.

For TFO adoption, this study uses Linux operating system to create nodes namely,

client, server and router. The software of both client and server are chosen based on TFO

supported that suitable to create web environment give near real life example scenario.

The following are software that used in the study:

• mget as web client,

• nginx as web server,

• Built in Linux function as router; and

• Other tools such as ip command, netstats and tcpdump as observer

In this case, the author uses page replicate the main page in http://ips.um.edu.my as

material for website in nginx and each runs mget fetch the content as downloaded files at

client side.

3.3.1 Designing Traffic Flow

From the packet traffic flow perspective, there are two types of traffics which handle any

incoming packet (inbound) and outgoing packet (outbound) as illustrated in Figure 3-2.

This to ensure that any incoming or outgoing are only filtered by specific states in the

packet.

35

Figure 3-2: Traffic flow between interfaces

Moreover, by concentrating specific traffic, the modification of the packet can create

minimum changes as the process should be fast to avoid anomaly pattern in latencies.

Coincidentally, in practise packet modifications are common; since there are many

implementations of modification in TCP/IP packet such as Network Address Translation

(NAT), Internet Protocol Security (IPsec) and Virtual Private Network (VPN).

3.3.2 Designing Covert Tool.

To apply covert channel, preservation of TFO syntax is very important. Hence,

bijective transformation is used to preserve any output/input data at data source level. To

achieve this, covert channel is implemented as middlebox or man-in-middle that can be

located at various places such as at host sender itself or at network service level such as

firewall, router, etc. For message hiding in covert content, TFO cookie is replaced with

encrypted 3DES message. A 3DES has 64 bits block size that perfectly match with the

size of TFO cookie.

Only TCP packets that contain SYN, SYN-ACK with TCP option 34 are involved and

taken out from packet. In outbound section, TFO cookies are replaced by ‘XORed’ 3DES

encrypted message with Initialisation Vector (IV) as stated in Equation 3-1.

C
overt channel

outbound

Inbound

IN
TER

FA
C

E

TC
P PR

O
TO

C
O

L

PR
O

C
ESS

36

!"#$%&'())*+(= -./01(message) ⊕ IV	 3-1

Any key changes against TFO cookie are addressed by using different IV. On the other

hand, in inbound section, contaminated TFO cookie is replace back with original TFO

cookie and send back to sender (server). The Pseudocode 3-1 for covert channel is shown

below:

OUTBOUND

Create IV[N];

For every SYN or SYN-ACK packet and TCP-OPTION== 34

N=0;

If length > 2

if connection not exist

Store TFO cookie

Replace TFO cookie with convert content = 3DES(message) Å IV[N];

Update checksum;

Else // If key changed

If connection is exit and previous cookie is not equal to current

cookie

Store TFO cookie

Replace cookie with convert content = 3DES(message) Å IV[N+1];

Update checksum;

End if

End if

End For

37

Pseudocode 3-1: Covert Channel in TFO

Further, to extract message TFO cookie, simply XOR with shared IV and decrypt the

output using 3DES as illustrated in Equation 3-2.

=$>>?@$ = A./01(!"#$%&'())*+(⊕ IV)	 3-2

3.4 Testing Model

In this section, tests are designed to create proof against statement in Section 1.3.

There are two types of tests namely, deliverable test & TFO behavioural test and

performance test. Deliverable test & TFO behavioural test is to create proof that covert

channel is workable and comply with preserving TFO syntax. Deliverable test is about

get secret message via encrypted TFO cookie and behavioural test is about condition or

situation that might occurred in TFO. In general, there are two situations that normal

setting TFO can be fall under, first when TFO cookie is valid then proceed TFO

transaction and lastly when TFO cookie is invalid resend new TFO cookie and proceed

TFO transaction on next transaction. Thus, there are two main objectives that can be

defined:

1. Successful retrieval covert content in covert channel mode.

2. No anomaly traffic in TFO transaction.

INBOUND

For every SYN or SYN-ACK packet and TCP-OPTION== 34

If length > 2

Replace cookie with TFO cookie

Update checksum;

38

Meanwhile, performance test is to validate that implemented solution can get cope

with semantic of TFO. Performance test is to observe implementation of covert channel

that would impact to performance. The scope of performance test is to recreate situations

that have similar concepts as explained in Section 3.3.

Moving forward, further analysis to resolve the following questions.

1. Performances relations between covert channel in TFO and normal TCP.

2. Performances relations between covert channel in TFO and normal TFO.

 From there, in order to produce relationship from above questions, the null hypothesis

can be created as follows:

• Hypothesis 1 (null hypothesis): There are no differences in performance between

covert channel in TFO, normal TFO and TCP.

• Hypothesis 1 (alternative hypothesis): There are differences in performance

between covert channel in TFO, normal TFO and TCP.

As general in order to support the study, the thesis should proof to accept alternatives

hypothesis 1.

3.5 Summary

This chapter discussed methods that involving four stages namely, building covert

communication model, create assumptions, prototyping and tests. Building covert

communication model which apply the famous concept of the prison’s problem with

adaptation on TFO environment. Next, create assumptions explains that consideration

that needed in order to get covert channel and TFO works, this includes consideration on

both part either on covert channel or TFO limitation that can distract the whole process

in this study.

39

On create prototype section there are two elements involved which are designing

traffic flow and designing covert content. Traffic flow describes on how the data is

divided into inbound and outbound and their purposes. While designing covert content

involve how covert content can be created base on behaviour of TFO. In this part,

explanation deeply and proposed pseudocodes are included. On the final section, testing

model presents how it reflex to research problems and produce detail hypothesis.

40

 IMPLEMENTATION

This chapter discusses the implementation and its execution according to its main

concept and ideas. It divided into two main group, creating tools and applying test.

Creating tools explain how the tool can be deployed and it includes creating environment

that use real situation application. Lastly, applying test explain the procedure to execute

works.

4.1 Creating Tools

A. Groundwork Setup
In order to create groundwork setup, identified nodes are set with specific IP

addresses. Further, to add supplementary realistic environment, the setup is divided into

two network segments namely 192.168.57.0/24 and 192.168.56.0/24. A router acts as

gateway to link both segments. In addition, the router also acts as traffic engineering tool

which supplies intended network latencies. The full diagram is shown as in the Figure

4-1.

Figure 4-1: Network Diagram between web server and client

In order to reduce implementation complexity, web server, router and client are run in

virtual environment and have identical specification as follows:

41

1. CPU: x86 4-core CPU 2.20GHz

2. Memory: 1024 MB

3. Drive Space: 30 GB

4. Operating System: CentOS 7.2

5. Kernel Version: 3.10.0

B. Building and execute tools
Since the server is the covert message source, the tool is run on the server side (web

server). In this study, development tools language is chosen as follows:

• C/C++ with libnetfilter_queue, libnftnl to intercept and manipulate TCP

packet

• C/C++ with openssl to encrypt and decrypt secret message.

• iptables utility to filter desire packet.

The main reason C/C++ is selected because it is the core language in user space in

Linux environment. It also produces relatively high-performance on native application.

libnetfilter_queue and libnftnl are libraries software used as packet filtering framework

known as netfilter. The main functions of netfilter are to manage and administering

queued network packet before or after reach Linux kernel. Netfiler also provides user

space utility program such as iptables and nftables that give similar functions but with

less flexibility compared to libnetfilter_queue and libnftnl in terms of manipulating

packet. On the other hand, openssl is a software library that provide secure

communication and encryption tools. It builds on C language and assembly language and

runs on many platforms such as Unix-like platform and Microsoft windows.

42

For implementing the tools, the study uses iptables acts as middle-man between

network interface and kernel in host. From here, iptables filters out TCP packets that

contain SYN or SYN-ACK with TCP option 34 only to capture TFO cookies. On the

inbound traffic, it captures SYN packet only that has option 34. While on the outbound

traffic, it captures any packet that has option 34 since first SYN packet that carry TFO

cookie also contains ACK packet from previous received packet from the client. Figure

4-2 showed a configuration of iptables and covert channel tool (NFQUEUE) that used to

capture targeted packets. Note that INPUT indicates the inbound traffic while OUTPUT

indicates the outbound traffic.

4.2 Applying Tests

Tests are divided base on covert message deliverable, syntax and semantic of TFO

transaction. There are three set of tests as follows:

• TFO Deliverable Test - To ensure covert message is transferred successfully.

• TFO Behavioural Test - To test communication syntax in TFO. As discussed

early, there are possibilities TFO cookie might change.

• TFO Performance Test – To ensure TFO objective or semantic of TFO is

preserved.

The first two tests are categorised into correctness test due the tests are related to

deliverable and syntax of the TFO transaction. While performance test is to assess the

nature (semantic) of TFO transaction.

iptables -I INPUT -p tcp --syn --tcp-option 34 -j NFQUEUE --queue-num 0

iptables -I OUTPUT -p tcp --tcp-option 34 -j NFQUEUE --queue-num 0

Figure 4-2: Example running iptables with Covert Channel tool

43

4.2.1 Deliverable Test and TFO Behavioural Test (Correctness Test)

In order to implement the tool, observation must be made on TFO traffic to create

baseline and as comparison against covert channel mode. TFO traffic are captured and

get through on two conditions namely, initial normal traffic TFO and changed TFO

cookie key. The process of normal TFO with and without changed key comprises as

follows:

1. When first TFO established

• TFO sends request with no data in TFO payload.

• Upon received, TFO payload filled with 64 bits TFO cookie.

2. Subsequence TFO connectivity

• TFO sends request with 64 bits TFO cookie in TFO payload.

• Upon received, no data in TFO payload TFO payload.

3. Subsequence TFO connectivity with different key at server

• TFO sends request with 64 bits TFO cookie in TFO payload.

• Upon received, TFO payload filled with new 64 bits TFO cookie.

• For next subsequence TFO connectivity, it uses new 64 bits TFO cookie and

proceed same as number two process.

The scenarios start with ordinary TFO traffic that involve normal transaction TFO

starts with at first session client requests TFO cookie and server replies with TFO cookie,

on second session client uses TFO cookie and proceed as normal transaction in TFO. On

third session, unlike normal TFO traffic, the client uses expired TFO cookie and the server

replies with new TFO cookie and proceed as normal TFO transaction. In terms of

observations, all TCP states are recorded.

44

On covert channel part, identical situations are repeated but with running implemented

covert channel tool. The procedure of running deliverable test & TFO behavioural test

are shown below:

1. Run web server service (nginx)

2. Execute covert channel tool (if applicable).

3. Run mget client to fetch content from website.

4. Observe the output via netstat and ip command.

4.2.2 Performance Test

The tests are basically loop test performance between web client and web server. It

uses use same setup as deliverable test & TFO behavioural test in order to keep

persistency across the tests. In terms of creating comparisons, there are three modes which

consist of normal TCP, normal TFO and covert channel TFO. Although the main target

here is to find likeness between covert channel in TFO and normal TFO; normal TCP is

also included as control element between two modes of TFO’s.

 To ensure all test are non-bias, the tests are conducted using the same nodes without

modification according to the mode as mentioned before. In order to create high

reliabilities, 99 loops test are conducted via running python script to create sampling.

Moreover, each of tests are rebooted to ensure there are no caching process in operating

system. Finally, each of completed tests are recorded for analysis. Below is the procedure

when conducting the performance test:

1. All nodes (client, server and router) are rebooted when perform each cycle.

2. Run web server service (nginx).

3. Run performance script which loop mget client to fetch content from website.

4. Capture the output.

45

From the captured output, means or averages with difference percentages are collected.

Further to proof performance are equal or unequal the thesis uses T-Test with actual

population is unknown. The significance level a in this study is set to 0.05 and equal

variance is assumed due to same data points in this study. The following are the elaborated

hypothesis from 3.4 with means equations.

Hypothesis 1 (null hypothesis): There are no differences in performance between

covert channel in TFO and TCP

BC = DE −	DG = C 4-1

Where:

HI = TCP means

HJ = Covert channel TFO means

Hypothesis 1 (alternative hypothesis): There are differences in performance between

covert channel in TFO and TCP

BK = DE −	DG ≠ C 4-2

Where:

HI = Average of TCP

HJ = Covert channel TFO means

46

Hypothesis 2 (null hypothesis): There are no differences in performance between covert

channel in TFO and TFO

BC = DE −	DG = C 4-3

Where:

HI = Average of TFO

HJ = Average of covert channel TFO

Hypothesis 2 (alternative hypothesis): There are differences in performance between

covert channel in TFO and TFO

BK = DE −	DG ≠ C 4-4

Where:

HI = Average of TFO

HJ = Average of covert channel TFO

4.3 Summary

This chapter discussed the implementation and its execution according to its main

concept and ideas. On the first section, it explains about creating tool comprises of

background which includes network environment, nodes that involved web server, router

and client. Then on specific part of building tool, programming languages that are used

and some command utilities are explained. On applying test part, it consists of procedures

that must be followed in order to capture the data. Command line utilities are used to

endorse and confirm the output data. Further, statistical tests are deployed to confirm

hypothesis.

47

 RESULTS AND DISCUSSIONS

There are two main output results that produced from implementation which

consist of correctness test and performance test. Correctness test is to test covert content

retrieval while observing any variations on TFO behaviours. Performance test is an

observation of performance changes during covert channel implementation.

5.1 Correctness Test

Deliverable tests consist of capabilities test to retrieve (covert channel) without

disturb or change TFO behaviours. The study makes used normal setting of TFO which

applies two conditions as follows:

1. When received TFO cookie is not equal to previous, then resume as normal TCP.

2. When received TFO cookie is equal to previous, then starts TFO operations.

Figure 5-1: Client (host1) is successful retrieved message from web server (host0)

Detail results can be found in APPENDIX C where it showed the detail traffic and

covert content retrieval in TFO. Only SYN_SENT, ESTABLISHED and SYN_RCVD

states are involved where it targeted on TFO cookie movement. Meanwhile, on key

changing part, it uses script key generator to test in four different situations which apply

to covert channel TFO. However, only one-time key changed are observed since the key

changing is not very common due to it occurs only on specific occasion such as system

48

restart or intentionally setting. Figure 5-1 showed covert channel mode, message is

successful retrieved and resume as normal TFO after the key is changed as in Figure 5-2

and Figure 5-3.

Figure 5-2: Covert Channel in TFO resumes normal TFO after TFO’s key is
changed

Figure 5-3: Normal TFO after TFO's key is changed

As overall, the results indicate that:

1. The message has transferred successfully.

2. No anomaly (key changing) is observed when applying covert channel in TFO.

5.2 Performance Test

The performance of covert channel in TFO is determined by comparing its means

value against means of normal TCP and normal TFO. The setups are described as in 4.2

where it based on (Radhakrishnan et al., 2011) with different set of latencies and

instruments. Each of tests are bounded by added network latencies namely, 0, 5, 10, 15

and 20 milliseconds (ms) and run into 99 times each. Table 5-1 showed the result of covert

channel TFO performance against normal TCP and normal TFO.

49

Table 5-1: Averages of Covert Channel TFO performances against TCP & TFO
Modes 0 ms 5 ms 10 ms 15 ms 20 ms

TCP
Average (ms) 6.45733 22.99211 39.52326 53.88282 69.69715

Std. Deviation 0.00918 0.00363 0.00642 0.00693 0.01336

TFO

Average(ms) 5.54876 18.05402 28.12153 38.51943 49.51002

Std. Deviation 0.00493 0.00426 0.00464 0.00560 0.00819

TCP (%) 14.07037 21.47734 28.84814 28.51260 28.96407

P-value 0.19515 0.0000 0.0000 0.0000 0.0000

CC_TFO

Average(ms) 5.65176 18.75157 28.32758 38.82142 48.19316

Std. Deviation 0.00698 0.01285 0.00389 0.00682 0.00824

TCP (%) 12.47522 18.44346 28.32682 27.95214 30.85348

P-value 0.24561 0.00088 0.0000 0.0000 0.0000

In this test, CC_TFO is used to represents Covert Channel TFO. From the results, at 0

ms, all performances have dissimilarity between 0.34% up to 14.07. Both CC_TFO and

TFO indicate dissimilarity 12.47% and 14.07% respectively. However, although

dissimilarities on both TFO indicated above 10%, but from hypothesis test perspective,

there was no significant difference in the scores for TCP (Mean=6.45733, Standard

Deviation=0.00918), TFO (Mean=5.54876, Standard Deviation =0.00493), CC_TFO

(Mean=5.65176, Standard Deviation =0.00698) conditions; TFO p-value = 0.19515 and

CC_TFO p-value = 0.24561. These results suggest that at 0 ms TFO and CC_TFO do not

have an effect on performance compared to normal TCP. Specifically, the results suggest

that at 0ms, all performances in the tests have no significant performances.

At 5 ms, all performances have dissimilarity between -4.35% up to 21.48% where

CC_TFO and TFO indicate dissimilarity 18.44% and 21.48% respectively. Further it

indicates, there were significant differences in the scores for both TFO (Mean=18.05402,

50

Standard Deviation =0.00426) and CC_TFO (Mean=18.75157, Standard Deviation

=0.01285) conditions; TFO p-value = 0.0000 and CC_TFO p-value = 0.00088. These

results suggest that at 5 ms TFO and CC_TFO do have an effect on performance

compared to normal TCP. Specifically, the results suggest that at 5 ms, both TFO and

CC_TFO have strong significant performances.

At 10 ms, all performances have dissimilarity between -1.65 up to 28.85% where

CC_TFO and TFO indicate dissimilarity 28.33% and 28.85% respectively. Further it

indicates, there were significant differences in the scores for both TFO (Mean=28.12153,

Standard Deviation =0.00464) and CC_TFO (Mean=28.32758, Standard Deviation

=0.00389) conditions; TFO p-value = 0.0000 and CC_TFO p-value = 0.0000. These

results suggest that at 10 ms TFO and CC_TFO do have an effect on performance

compared to normal TCP. Specifically, the results suggest that at 10 ms, both TFO and

CC_TFO have strong significant performances.

At 15 ms, all performances have dissimilarity between -8.82 up to 28.51% where

CC_TFO and TFO indicate dissimilarity 27.95% and 28.51% respectively. Further it

indicates, there were significant differences in the scores for both TFO (Mean=38.51943,

Standard Deviation =0.00560 and CC_TFO (Mean=38.82142, Standard Deviation

=0.00682) conditions; TFO p-value = 0.0000 and CC_TFO p-value = 0.0000. These

results suggest that at 15 ms TFO and CC_TFO do have an effect on performance

compared to normal TCP. Specifically, the results suggest that at 15 ms, both TFO and

CC_TFO have strong significant performances.

At 20 ms, all performances have dissimilarity between -0.59 up to 30.85% where

CC_TFO and TFO indicate dissimilarity 30.85% and 28.96% respectively. Further it

indicates, there were significant differences in the scores for both TFO (Mean=49.51002,

Standard Deviation =0.00819) and CC_TFO (Mean=48.19316, Standard Deviation

51

=0.00824) conditions; TFO p-value = 0.0000 and CC_TFO p-value = 0.0000. These

results suggest that at 20 ms TFO and CC_TFO do have an effect on performance

compared to normal TCP. Specifically, the results suggest that at 20 ms, both TFO and

CC_TFO have strong significant performances.

Moreover, the study further up to determine either CC_TFO has significant

performance differences against TFO. Table 5-2 showed an extension from Table 5-1

where the percentage differences and P-Values between TFO and CC_TFO are

calculated.

Table 5-2: Covert Channel TFO performances against normal TFO
Modes 0 ms 5 ms 10 ms 15 ms 20 ms

TFO Average(ms) 5.54876 18.05402 28.12153 38.51943 49.51002

Std. Deviation 0.00493 0.00426 0.00464 0.00560 0.00819

CC_TFO Average(ms) 5.65176 18.75157 28.32758 38.82142 48.19316

Std. Deviation 0.00698 0.01285 0.00389 0.00682 0.00824

TFO (%) -1.85634 -3.86370 -0.73268 -0.78401 2.65979

P-value 0.44882 0.30305 0.32859 0.33453 0.08390

The results indicate CC_TFO percentage values at 0 ms, 5 ms, 10 ms, 15 ms and 20

ms were -1.86%, -3.86%, -0.73%, -0.78% and 2.66%, respectively, against mean values

of TFO. These relative small values are supported by hypothesis test that showed there

were no significant differences in all scores for TFO (Latencies= 0ms, Mean=5.54876,

Standard Deviation =0.00493), (Latencies= 5 ms, Mean=18.05402, Standard Deviation

=0.00426), (Latencies= 10 ms, Mean=28.12153, Standard Deviation =0.00464),

(Latencies = 15 ms, Mean=38.51943, Standard Deviation =0.00560) & (Latencies =

20ms, Mean=49.51002, Standard Deviation =0.00819) and CC_TFO (Latencies= 0 ms,

Mean=5.65176, Standard Deviation=0.00698) conditions; CC_TFO p-value = 0.44882),

52

CC_TFO (Latencies= 5 ms, Mean=18.75157, Standard Deviation=0.01285) conditions;

CC_TFO p-value = 0.30305), CC_TFO (Latencies= 10 ms, Mean=28.32758, Standard

Deviation=0.00389) conditions; CC_TFO p-value = 0.32859), CC_TFO (Latencies= 15

ms, Mean=38.82142, Standard Deviation=0.00682) conditions; CC_TFO p-value =

0.33453) & CC_TFO (Latencies= 20 ms, Mean=48.19316, Standard Deviation=0.00824)

conditions; CC_TFO p-value = 0.08390) respectively. The full details are described in

APPENDIX B.

Figure 5-4: Performance of Covert channel in TFO tend to align with TFO

To illustrate trending, Figure 5-4 shows how network latencies patterns effect

performances. The graph indicates when higher network latencies are applied, TFO-CC

is aligned with TFO but not TCP. This showed there is only small overhead impact when

implementing covert channels.

0.000000000

10.000000000

20.000000000

30.000000000

40.000000000

50.000000000

60.000000000

70.000000000

80.000000000

0 5 10 15 20

TO
TA

L T
IM

E
(m

s)

LATENCIES (ms)

cc_tfo

tcp

tfo

53

As overall, the results indicate that:

1. At 0 ms, TCP, CC_TFO and TFO have no significant performance dissimilarities.

2. Other than 0 ms, only TFO and CC_TFO showed significant performance

dissimilarities against TCP.

3. For TFO and CC_TFO have no significant performance dissimilarities at all

network latencies.

5.3 Discussion

The study found that covert contents are successful implemented in TFO. Packet from

web server (sender) equipped with covert channel tool modifies TFO cookie to create

covert content is successful transferred. On receiver part, the web client is successfully

retrieved hidden information. Moreover, during the test, no errors or unsuccessfully

transmission are found during the sessions.

Thus, this indicates both activities are aligned with the same procedures as normal

TFO session that summarised in Table 5-3.

Table 5-3: Covert Channel in TFO overall results

Tools Deliverable
Test

Behavioural
Test

Performance Covert
message.

Covert
Channel

Ö Ö Similar as TFO Retrieved

Further, four simulation performances are tested in different environments consist of

normal TCP, normal TFO, TFO with covert channel. Certainly, implementation of covert

channel gives no implication differences in terms of performance. Thus, overhead of

creating covert channel is minimal.

54

Moreover, having these results and extension from Table 2-6. Covert channel in TFO

provides one of the largest payloads as shown in Table 5-4.

Table 5-4: Comparison Covert Channel Payload Size
 TCP Fields Papers/tool/Solution Payload size Type
1 ISN & ACK Covert TCP 64 Storage
2 Urgent pointer Hintz 16 Storage
3 Header checksum Abad 16 Storage
4 ISN NUSHU, Lantra 32 Storage
6 Reserved N packet Allix 4 Storage
7 ACK CLACK, ACKLeaks 32 Storage
8 Retransmission RSTEG Max IP segment Storage

10 TCP Timestamp Giffin et al. 1 Timing
11 Segment Reordering Chakinala et al. Log2 n! Timing
12 X TCP flows Cloak n Timing
13 TCP Bursts TCP scripts n Timing
14 Maximum Segment

size (MSS) & ISN
Kumar et al. n Storage

15 Port Efanov et al. 16 Storage
16 TFO Covert Channel in

TFO
64 Storage

Note. Information no. 1 to 13 from (Mileva & Panajotov, 2014), for 14 from (Kumar et al., 2011) and 15 from (Efanov
et al., 2017).

5.4 Summary

This chapter discussed the output results of the implementation which consist of

correctness test and performance test. All the features as described from previous chapter

were implemented to collect the output results and suit the tests. Further, the collected

data is discussed and described in the last section of the chapter. The analysis shows that

the covert channel is successful implement in TFO and maintain the regular properties.

The performance and behavioural of TFO with covert channel identically with the

ordinary TFO.

55

 CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter presents the conclusion of the study. It discusses the achievement of the

study objectives, and the contributions made. There are also recommendations for future

work to be considered.

6.2 Accomplishment of Objectives

A covert channel is one of the techniques to transfer message secretly without having

to use ordinary procedures for data transferring. This study aims to introduce covert

channel in TFO by hiding message in TFO cookie. Section 1.3 points out three objectives

of this study. Thus, this section aims to answer the following questions:

Q1) Does covert channel in TFO can be implemented

Q2) Does the covert channel implementation is keep intact with the TFO objective

which is performance for data transferring.

Objective 1: To report covert channel and implementation of TFO in practice.

This objective provides a clear understanding of TFO and covert channel fundamental. It

explains preliminary parts that required in Q1 before covert channel implementation can

be conducted. In order to achieve this objective, a detail discussion about TFO and covert

channel in literature review is conducted, it also includes on how TFO works in practice

by using Linux operating system as an example. Moreover, it also gives us information

about of syntax and semantic of TFO that becomes the essential factor in building covert

channel.

56

Objective 2: To implement covert channel in TFO

This objective aims to address Q1. It was initiated by creating covert communication

concept that is illustrated in communication model. Then assumption factors must be

included in order to create a scenario case. Further, the thesis uses prototyping approach

to interpret scenario case. It consists of selecting suitable resources namely software,

nodes, tools, along with traffic flow simulation and implementation of covert tool. The

covert tool was tested and successfully send a hidden message between nodes.

Objective 3: To evaluate correctness and performance of covert channel covert

channel in TFO

This objective aims to address Q2 by testing what have done in the previous objective.

The tests consist of behavioural test and performance test that based on syntax and

semantic in TFO communication. The Behavioural test is a test that when TFO key is

changed and the effects against covert channel. Meanwhile, the performance test is a

compression speed test against normal TFO. It uses T Test to measure the similarities.

The findings of all tests confirmed that covert channel in TFO maintains as regular TFO

properties.

6.3 Contributions

The introduction of covert channel in TFO creates new covert channel application in

TCP. It can be recapped into three points.

1. New technique of creating covert channel.

This new approach in creating covert channel in TCP would widen on domain knowledge

and create an alternative to existing approaches.

57

2. Efficient and Practicality in usage

The proposed implementation showed it aligned with TFO objective whereby

performance and behavioural of TFO with covert channel confirmed to have identical

results with ordinary TFO.

3. Offer large covert content payload

In this study, the usage of 64 bits covert payload always can be benefits in terms of

transferring message.

6.4 Future Work

The proposed implementation and simulation are work only in IPv4 environment.

Having latest trend different environment such as in IPv6, Zigbee and in Software-defined

Networking (SDN) may create different scenarios and outcomes. Moreover, the

equipment that used in this study are based on ordinary client server environment, thus

the usage of Internet of Thing (IoT) or wireless sensor network devices should be

considered in order to keep intact with latest real-approach application.

58

REFERENCES

Accenture. (2018). 2017 Cost of Cyber Crime Study. Retrieved 28 Aug, 2018 from
https://www.accenture.com/my-en/insight-cost-of-cybercrime-2017

BIND. (2016). Release Notes for BIND Version 9.11.0. Retrieved 28 Aug, 2018, from
https://ftp.isc.org/isc/bind9/9.11.0/RELEASE-NOTES-bind-9.11.0.html

Braden, R. (1994). T/TCP--TCP extensions for transactions functional specification (No.
RFC 1644).

Betz, J., Westhoff, D., & Müller, G. (2017). Survey on covert channels in virtual machines
and cloud computing. Transactions on Emerging Telecommunications
Technologies, 28(6), e3134.

Cheng, Y., Chu, J., Radhakrishnan, S., & Jain, A. (2014). TCP fast open (No. RFC 7413).

Cisco System, Inc. (2017). The Zettabyte Era: Trends and Analysis. Retrieved 28 Aug,
2018, from https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

Clark, W. K., & Levin, P. L. (2009). Securing the information highway. Foreign Aff., 88,
2.

Chrome. (2017). Chrome - Chrome Performance Tweaks and Text Enhancements.
Retrieved 28 Aug, 2018 from
https://wiki.mikejung.biz/Chrome#Enable_Chrome_TCP_Fast_Open_.28Linux_
.2F_Android_Only.29

Duke, M., Braden, R., Eddy, W., Blanton, E., & Zimmermann, A. (2015). A roadmap for
transmission control protocol (TCP) specification documents (No. RFC 7414).

Efanov, D., & Roschin, P. (2017). The Port-in-Use Covert Channel Attack. In First
International Early Research Career Enhancement School on Biologically
Inspired Cognitive Architectures (pp. 239-244). Springer, Cham.

Fisk, G., Fisk, M., Papadopoulos, C., & Neil, J. (2002). Eliminating Steganography in
Internet Traffic with Active Wardens Information Hiding (pp. 18-35): Springer
Berlin Heidelberg.

Ford, A., Raiciu, C., Handley, M., & Bonaventure, O. (2013). TCP extensions for
multipath operation with multiple addresses (No. RFC 6824).

Gont, F., & Bellovin, S. (2012). Defending against sequence number attacks (No. RFC
6528).

Gray III, J. W. (1994). Countermeasures and tradeoffs for a class of covert timing
channels. Hong Kong University of Science and Technology Technical report.
Harris, J. (2016). Exim 4.88 released. Retrieved 28 Aug, 2018, from
https://lists.exim.org/lurker/message/20161225.101705.4bbe7ae8.en.html

59

Huitema C. (2016). Building a faster and more secure web with TCP Fast Open, TLS
False Start, and TLS 1.3. Retrieved
https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-
secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/

Hussain, I., Negi, M. C., & Pandey, N. (2018). Security in ZigBee Using Steganography
for IoT Communications. In System Performance and Management Analytics (pp.
217-227). Springer, Singapore.

IBM Knowledge Center. (2017). TCP Connection Status. Retrieved 28 Aug, 2018, from
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zo
s.v2r1.halu101/constatus.htm

Juniper. (2017). Configuring TFO - TechLibrary - Juniper Networks . Retrieved 28 Aug,
2018, from
https://www.juniper.net/documentation/en_US/junos/topics/task/configuration/tf
o-configuring.html

Kay, J., Scott, K., Bridges, M., Knowles, S., Bellovin, S., Subramaniam, S., & Sukonnik,
V. (2016). Transmission Control Protocol (TCP) Parameters. Retrieved from
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

Kelsey, P. (2018). [base] Revision 330001. Retrieved from
https://svnweb.freebsd.org/base?view=revision&revision=330001

Kerrisk, M. (2012). TCP Fast Open: expediting web services. Retrieved 28 Aug, 2018,
from https://lwn.net/Articles/508865/

Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., ... & Yarom, Y.
(2018). Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203.

Kreibich, C., Handley, M., & Paxson, V. (2001). Network intrusion detection: Evasion,
traffic normalization, and end-to-end protocol semantics. In Proc. USENIX
Security Symposium (Vol. 2001)

Kumar, V. S., Dutta, T., Sur, A., & Nandi, S. (2011). Secure network steganographic
scheme exploiting TCP sequence numbers. In International Conference on
Network Security and Applications (pp. 281-291). Springer, Berlin, Heidelberg.

Lampson, B. W. (1973). A note on the confinement problem. Communications of the
ACM, 16(10), 613-615. doi:10.1145/362375.362389

Latham, D. C. (1986). Department of defense trusted computer system evaluation criteria.
Department of Defense. Retrieved 28 Aug, 2018 from
http://www.iwar.org.uk/comsec/resources/standards/rainbow/5200.28-STD.html

Lewandowski, G., Lucena, N. B., & Chapin, S. J. (2006). Analyzing Network-Aware
Active Wardens in IPv6 Information Hiding (pp. 58-77): Springer Berlin
Heidelberg.

60

Lewandowski, G. (2011). Network-aware Active Wardens in IPv6 (Doctoral
dissertation).

Linux Kernel Documentation. (2017). Retrieved 28 Aug, 2018 from
https://www.kernel.org/doc/

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., ... & Yarom, Y.
(2018, August). Meltdown: Reading Kernel Memory from User Space. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). USENIX}
Association.

Martins, D., & Guyennet, H. (2010). Steganography in {MAC} Layers of 802.15. 4
Protocol for securing Wireless Sensor Networks. In IWNS 2010, 2nd IEEE Int.
Workshop on Network Steganography.

Mazurczyk, W., Smolarczyk, M., & Szczypiorski, K. (2009). Hiding information in
retransmissions. arXiv preprint arXiv:0905.0363.

Mileva, A., & Panajotov, B. (2014). Covert channels in TCP/IP protocol stack - extended
version. Open Computer Science, 4(2). doi:10.2478/s13537-014-0205-6

Murray, D., Koziniec, T., Zander, S., Dixon, M., & Koutsakis, P. (2017). An analysis of
changing enterprise network traffic characteristics. In Communications (APCC),
2017 23rd Asia-Pacific Conference on (pp. 1-6). IEEE.

Murdoch, S. J., & Lewis, S. (2005). Embedding covert channels into TCP/IP. In
International Workshop on Information Hiding (pp. 247-261). Springer, Berlin,
Heidelberg.

Nginx. (2016). Module ngx_http_core_module. Retrieved 28 Aug, 2018 from
http://nginx.org/en/docs/http/ngx_http_core_module.html

OpenBSD. (2005). PF: Scrub (Packet Normalization). Retrieved 28 Aug, 2018, from
http://ftp.tuwien.ac.at/.vhost/www.openbsd.org/www/faq/pf/scrub.html

Postel, J. (1981). TRANSMISSION CONTROL PROTOCOL. Retrieved 28 Aug, 2018,
from https://tools.ietf.org/html/rfc793

Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., & Raghavan, B. (2011, December). TCP
fast open. In Proceedings of the Seventh Conference on emerging Networking
Experiments and Technologies (p. 21). ACM.

Simmons, G. J. (1984). The prisoners’ problem and the subliminal channel. In Advances
in Cryptology (pp. 51-67). Springer, Boston, MA.

Simmons, G. J. (1993). Subliminal communication is easy using the DSA. In Workshop
on the Theory and Application of of Cryptographic Techniques (pp. 218-232).
Springer, Berlin, Heidelberg.

Spring, N., Wetherall, D., & Ely, D. (2003). Robust explicit congestion notification
(ECN) signaling with nonces (No. RFC 3540).

61

Stevens, W., Fenner, B., & Rudoff, A. (1999). UNIX network programming. Boston:
Addison-Wesley/Prentice-Hall.

Wendzel, S., Zander, S., Fechner, B., & Herdin, C. (2015). Pattern-based survey and
categorization of network covert channel techniques. ACM Computing Surveys
(CSUR), 47(3), 50.

Phrack Magazine. (1998) T/TCP Vulnerabilities. Retrieved 28 Aug, 2018 from
http://phrack.org/issues/53/6.html.

Prabhakar, L., & Cheshire, S. (2015) Your App and Next Generation Networks.
Retrieved 28 Aug, 2018, from
https://developer.apple.com/videos/play/wwdc2015/719/.

Tarreau, W,. (2016). HAProxy Configuration Manual. Retrieved 28 Aug, 2018 from
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#5.1-tfo.

Touch, J., Mankin, A., & Bonica, R. (2010). The TCP authentication option (No. RFC
5925).

Tumoian, E., & Anikeev, M. (2005). Network based detection of passive covert channels
in TCP/IP. In Local Computer Networks, 2005. 30th Anniversary. The IEEE
Conference on (pp. 802-809). IEEE.

Vaughan-Nichols, S. J. (2012). Linux 3.7 arrives, ARM developers rejoice. Linux and
Open Source. Retrieved 28 Aug, 2018 from https://www.zdnet.com/article/linux-
3-7-arrives-arm-developers-rejoice/

Zawawi, M. N., Mahmod, R., Udzir, N., Ahmad, F., & Desa, J. M. (2012). Active warden
as the main hindrance for steganography information retrieval. Paper presented
at the 2012 International Conference on Information Retrieval & Knowledge
Management. Retrieved 28 Aug, 2018 from
http://dx.doi.org/10.1109/infrkm.2012.6204989

Zander, S., Armitage, G., & Branch, P. (2007). Covert channels and countermeasures in
computer network protocols [reprinted from ieee communications surveys and
tutorials]. IEEE Communications Magazine, 45(12), 136-142.

Zhai, J., Liu, G., & Dai, Y. (2010). A Covert Channel Detection Algorithm Based on TCP
Markov Model. Paper presented at the 2010 International Conference on
Multimedia Information Networking and Security. Retrieved 28 Aug, 2018 from
http://dx.doi.org/10.1109/mines.2010.190

