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ANOMALY DETECTION FRAMEWORKS FOR IDENTIFYING ENERGY

THEFT AND METER IRREGULARITIES IN SMART GRIDS

ABSTRACT

Non-technical losses including electricity theft and anomalies in meter readings are

estimated to cost the utility providers losses of approximately $96 billion per annum

globally. Although the implementation of smart grids offers technical and social advantages,

the smart meters deployed in advanced metering infrastructure are susceptible to more

sophisticated types of malicious attack as compared to conventional mechanical meters. To

curb non-technical losses, utility providers are increasingly leveraging on real-time smart

metering to identify theft and meter irregularities. In the first part of this study, a linear

regression-based anomaly detection framework is put forward to study consumers’ energy

utilization behavior and evaluate their anomaly coefficients to detect the localities of the

compromised and defective smart meters. The main idea is to model the amount of stolen

energy at a smart meter as an anomaly coefficient. Specifically, a zero-anomaly coefficient

indicates a faithful meter while a non-zero one represents an anomalous/defective meter.

However, some of the predicted elements of anomaly coefficient vector might show

inaccurate values when energy theft/meter irregularities take place only during a certain

period in a day. Thus, categorical variable and detection coefficient are introduced in the

framework to identify the periods and localities of consumers’ malfeasance/faulty meters.

By investigating the anomaly coefficients and detection coefficients, non-technical losses

can be deduced whether they occur either all the time or only during a certain period in a day.

However, the linear regression-based framework assume that power line losses are known.

Therefore, in the second part of this study, the assumption of known power line losses is

relaxed, and a new anomaly detection framework is designed to take into consideration
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the impact caused by technical losses and measurement noise. Similarly, the goal is to

identify anomalous consumption patterns within the billing reports transmitted to utility

provider by evaluating consumers’ anomaly coefficients. To improve detection accuracy

and reduce false positives, metrics known as loss factor and error term are introduced.

Linear programming is utilized to solve for anomaly coefficients and loss factors by

minimizing the error terms. The linear programming-based anomaly detection framework

can still detect irregularities in meter readings regardless of whether non-technical losses

occur all the time or at varying rates during intermittent intervals in a day. In addition,

it can estimate the percentage of technical losses based on measurements at the data

collector and the knowledge of the distribution network. To evaluate the performance of

the proposed frameworks, a diverse set of non-technical loss attack functions is investigated

and generated such that the experiments are closely related to the possible real-world energy

fraud/meter irregularities scenarios. Subsequently, an advanced metering infrastructure

test rig is constructed in the laboratory to validate the reliability and performance of both

anomaly detection frameworks. Results from simulations and test rig show that both

anomaly detection frameworks can reveal the amount of under-reporting/over-reporting by

smart meters based on a small volume of consumers’ energy consumption data samples

regardless of the type of consumer, thereby reducing loss incurred due to non-technical

losses.

Keywords: anomaly detection, non-technical losses, AMI, linear regression, linear

programming.
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RANGKA KERJA PENGESANAN ANOMALI UNTUK MENGENALPASTI

KECURIAN TENAGA ELEKTRIK DAN PENYELEWENGANMETER DALAM

GRID PINTAR

ABSTRAK

Kehilangan tenaga bukan teknikal termasuk kecurian tenaga dan penyelewengan meter

dianggarkan telah menyebabkan pembekal utiliti di seluruh dunia mengalami kerugian

sebanyak $96 bilion setiap tahun. Walaupun pelaksanaan grid pintar menawarkan kelebihan

dari segi teknikal dan sosial, meter pintar yang digunakan dalam pemeteran infrastruktur

maju mudah terdedah kepada serangan dan pencerobohan rangkaian yang lebih canggih

berbanding dengan meter mekanikal konvensional. Untuk membendung kehilangan

tenaga bukan teknikal, pembekal utiliti menggunakan pemeteran pintar masa nyata

untuk mengenalpasti lokasi kecurian tenaga dan penyelewengan meter. Dalam fasa

pertama penyelidikan ini, rangka kerja pengesanan anomali berasaskan regresi linear

dikemukakan untuk mengkaji corak penggunaan tenaga pengguna dan menilai pekali

anomali mereka untuk mengenalpasti meter pintar yang dikompromi/rosak. Idea utama

adalah untuk memodelkan jumlah tenaga yang dicuri dari meter pintar sebagai pekali

anomali. Khususnya, pekali anomali sifarmenunjukkanmeter yang normalmanakala pekali

anomali yang bukan sifar mewakili meter yang dikompromi/rosak. Walau bagaimanapun,

beberapa elemen dalam vektor pekali anomali mungkin akan menunjukkan nilai yang

tidak tepat apabila kecurian tenaga/kerosakan meter hanya berlaku dalam tempoh tertentu

dalam sehari. Oleh itu, pembolehubah mutlak dan pekali pengesanan diperkenalkan dalam

rangka kerja tersebut untuk mengenalpasti tempoh dan lokasi kecurian tenaga/kerosakan

meter. Dengan merujuk kepada pekali anomali dan pekali pengesanan, kesimpulan

bahawa kehilangan tenaga bukan teknikal berlaku sama ada sepanjang masa atau hanya
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dalam tempoh tertentu dalam sehari boleh dibuat. Dalam penyelidikan ini, rangka kerja

yang berasaskan regresi linear mengandaikan bahawa nilai kehilangan tenaga secara

teknikal telah diketahui. Dalam fasa kedua penyelidikan ini, andaian tersebut dilonggarkan

dan sebuah rangka pengesanan anomali baharu dikemukakan untuk mengambil kira

kesan kehilangan tenaga secara teknikal dan ralat pengukuran dalam analisis pengesanan.

Seperti penyelidikan fasa pertama, matlamat penyelidikan adalah untuk mengenalpasti

corak anomali penggunaan tenaga dengan menilai pekali anomali pengguna. Untuk

meningkatkan ketepatan pengesanan dan mengurangkan positif palsu, faktor kehilangan

dan istilah ralat diperkenalkan. Pengaturcaraan linear digunakan untuk menyelesaikan

masalah pekali anomali dan faktor kehilangan dengan meminimumkan istilah ralat. Rangka

kerja pengesanan anomali berdasarkan pengaturcaraan linear masih dapat mengesan

penyelewengan meter tanpa mengira kehilangan tenaga bukan teknikal berlaku sama ada

sepanjang masa atau pada kadar yang berbeza dalam selang intermiten sepanjang sehari.

Rangka kerja pengesanan anomali itu juga dapat menganggarkan peratusan kehilangan

tenaga secara teknikal berdasarkan pengukuran di pengumpul data dan pengetahuan tentang

rangkaian pengedaran tenaga. Untuk menilai prestasi rangka kerja, pelbagai jenis fungsi

serangan kehilangan tenaga bukan teknikal telah dikaji agar eksperimen yang dijalani

berkait rapat dengan scenario kecurian tenaga/kerosakan meter yang sebenar. Sebuah rig

ujian pemeteran infrastruktur maju telah dibina di dalam makmal untuk mengesahkan

kebolehpercayaan dan prestasi rangka kerja pengesanan anomali. Keputusan dari simulasi

dan rig ujian menunjukkan bahawa rangka kerja tersebut dapat mendedahkan jumlah

tenaga yang tidak/terlebih dilaporkan berdasarkan sampel data yang kecil, tanpa mengira

jenis pengguna dan dapat mengurangkan kerugian akibat kehilangan tenaga bukan teknikal.

Kata kunci: pengesanan anomali, kehilangan tenaga bukan teknikal, AMI, regresi linear,

pengaturcaraan linear.
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constant (size of 45 consumers)................................................................ 128

xv

Univ
ers

ity
 of

 M
ala

ya



Figure 6.7: Value of loss factors, l̃ti obtained by ADF over 192 time intervals

(size of 45 consumers). ............................................................................. 128

Figure 6.8: Value of anomaly coefficients, ãti,n(E ADF) obtained by Enhanced
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Figure 6.10: Value of ãn(LR) obtained by LR-ETDM from hardware

experimentation (size of 3 consumers). .................................................. 134

Figure 6.11: Value of ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR)) obtained by
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the Irish Smart Energy Trial (size of 45 consumers) ................................. 146

Table 6.17: Comparison among varying ati,n, ãn(CV LR), (ãn(CV LR) + β̃n(CV LR))

and ãti,n(E ADF) obtained from hardware experimentation .......................... 150

Table 6.18: Comparison among varying ati,n, ãn(CV LR), (ãn(CV LR) + β̃n(CV LR))
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CHAPTER 1: INTRODUCTION

In this chapter, an overview of the thesis is presented. It includes the research problem

statements, objectives, scopes, limitations and contributions, under the general topic

of anomaly detection. Then, the structure of the thesis is briefly delineated to aid the

understanding of the presentation.

1.1 Motivation of Anomaly Detection

Non-technical losses (NTLs), which includes meter irregularities, non-payment by

consumers and errors in record-keeping, is a daunting problem in electric power systems

since the early days of energy billings. Interestingly, the main contributor of NTLs is

energy theft which causes severe impacts for both utility providers (UPs) and legitimate

consumers, resulting in a total of staggering $96 billion lost every year globally (Northeast

Group, 2017). Specifically, the latest estimate shows that UPs in the United States alone lost

billions of dollars in revenue annually (McDaniel & McLaughlin, 2009), while energy theft

in developing countries amounts to approximately half of the total energy delivered (Pedro,

2009). NTLs not only result in excessive energy usage which may cause detrimental

electrical system failures or power surges (Foster, 2017), they also indirectly encourage

fraudulent activities such as unauthorized growing of controlled drugs (Accenture, 2011).

UPs always amortize NTLs by rising energy charges on lawful consumers. Specifically,

the consumers being billed for legal consumption and regularly paying their bills are

unknowingly subsidizing the energy thieves who do not pay for electricity consumption.

As mentioned by Smith (2004); Pedro (2009); Refou, Alsafasfeh, and Alsoud (2015), the

amount of energy loss in the distribution grids varies between 7 and 50% of the total

supplied energy (subject to the characteristics of the distribution network and country),

which undeniably justifies the strong efforts that UPs and government are investing towards
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identifying and inspecting anomalous consumption trends to ultimately avoid significant

economic losses.

Today, the deployment of advanced metering infrastructure (AMI) in Smart Grids

(SGs) has become significantly crucial for mitigating NTLs and providing better power

quality, higher reliability, more accurate billing as well as lower utility costs. In spite of

these societal and technical advantages, AMI is still susceptible to more sophisticated

types of malicious attack. Specifically, Smart Meters (SMs) endowed in AMI enable

features such as remote update of firmware and automatic transmission of metering

data. Nevertheless, these functionalities indirectly create a "back door" for malicious

consumers. For example, an energy thief can easily obtain the root access of the SMs to

manipulate the energy consumption readings (McLaughlin, Podkuiko, & McDaniel, 2010).

Subsequently, the misinformation of energy usage might severely damage the electrical

power infrastructure when attacks are injected into the control systems. Considerable

energy fraud and incorrect usage information might also delude the UPs into making

wrong decisions about domestic/regional capacity and consumption. These inaccurate

information might conceal the upcoming problems or ongoing attacks from UPs. In

such a case, criminals or terrorists can easily misuse such facilities to launch massive

detrimental attacks on local or national infrastructure. All these security challenges

definitely hamper consumers’ trust in adopting SGs as privacy and safety of their data are

not guaranteed (Engel, 2013).

Therefore, implementing anomaly detection frameworks to detect energy theft and meter

irregularities in SGs is imperative to address NTLs. It is also important in establishing

consumers’ trust in adopting SGs to replace its antique predecessor.
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1.2 Problem Statements

To curb NTLs, UPs are gradually leveraging on data analytics and real-time smart

metering inAMI to detect localitieswith high probability of energy theft/meter irregularities.

In general, several issues have been brought to the researchers’ attention:

1. Most existing classification-based NTL detection schemes require long-term

measurement and monitoring before anomaly detection can be executed precisely.

The large sample size requirement naturally results in longer detection delay.

2. Some of the existing detection schemes are susceptible to contamination attacks.

In other words, an energy thief can simply deceive the learning machine to accept an

anomalous pattern as a normal through granular changes in data and data pollution.

3. Non-malicious factors can change the energy usage trend and hence might affect

the performance of some classification-based detection analysis.

4. Some of the detection schemes are highly dependent on the historical dataset. Lack

of a thorough dataset of attack samples limits the detection rate.

These issues might result in high false positive rate if they are not properly dealt with.

This in turn increases the overall operation costs of UPs.

1.3 Research Objectives

This thesis aims to address the aforementioned problem statements and reduce losses

incurred due to non-technical loss (NTL) activities.

The main objectives of this research are set out as follows:

1. To investigate and generate a diverse set of NTL attack functions such that it closely

relates to the possible real-world AMI energy thefts/meter irregularities scenarios.
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2. To design anomaly detection frameworks that can effectively detect the localities of

energy theft and meter irregularities in smart grids using linear regression and linear

programming techniques.

3. To evaluate the proposed anomaly detection frameworks using smart energy data

from the Irish Smart Energy Trial.

4. To design and build an AMI test rig in the laboratory to further validate the

reliability and performance of the entire anomaly detection framework in real smart

grid environment.

1.4 Research Scopes and Limitations

There are several scopes and restrictions that needed to be highlighted throughout the

research duration, in order to conduct research efficiently and achieve research objectives.

The scopes and restrictions are prescribed as follows:

1. Since energy theft samples in SGs are rare, the assessment of the proposed anomaly

detection frameworks is performed by simulating NTL attacks, whereby consumers’

benign readings in the smart energy dataset are modified.

2. This thesis focuses on the NTL detection in low voltage (LV) distribution network,

which include: residential, commercial and light industrial consumers by using the

half-hourly smart energy data from the Irish Smart Energy Trial as well as data from

the test rig.

3. The logistics of how an energy thief can modify the communication signals is not a

focus of this thesis. The goal is to identify malicious attacks under the assumption

that the energy thief has successfully compromised the integrity of Smart Meter

(SM) readings.

4. It is assumed that the data collector can be trusted (i.e., not tampered). This
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assumption is easily justified when the data collector is placed in a distribution

substation (DS) on the same premise as the operation center.

5. It is assumed that all consumers’ premises are equipped with a SM. Therefore, the

impact caused by consumers without a SM is not considered.

1.5 Research Contributions

The main contributions of this research are summarized as follows.

1. Advances the research in anomaly detection of detecting the localities of

under-reporting and over-reporting by SMs based on linear regression and linear

programming techniques for efficient detection and classification of NTL activities.

2. Reduces false positives and improves detection accuracy by taking into consideration

the impact caused by measurement noise and technical losses (TLs) on the detection

framework for more cost-effective anomaly detection.

3. Realizes greater flexibility, faster and enhanced practicality in the detection of energy

theft/defective meters based on a small volume of consumers’ energy consumption

data samples regardless of the types of consumer and the amount of technical losses

(TLs). The proposed framework can be scaled to accommodate anomaly detection

for more consumers.

1.6 Structure of Thesis

Generally, the structure of this thesis is divided into two categories, namely: (i) project

methodology and; (ii) research methodology. The project methodology consists of the

overall work completed for developing the anomaly detection frameworks. The following

subsections give a brief description of project and research methodologies of this thesis.
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1.6.1 Project Methodology

This thesis is proposed in an effort to minimize the losses and costs incurred due to

NTL events in the LV distribution network, which are estimated to be approximately 20%

throughout Peninsular Malaysia (Nagi, Yap, Tiong, Ahmed, & Mohamad, 2010). The

overall project methodology is shown in Figure 1.1.

The development of the anomaly detection frameworks, namely the Linear Regression

(LR)-based and Linear Programming (LP)-based anomaly detection frameworks, are the

main focuses of this research study. As illustrated in Figure 1.1, the procedures involved

in the development of the anomaly detection frameworks includes: Conduct extensive

literature review to investigate various types of NTL attack function used to defraud the

UPs including those schemes that are widely deployed in both SGs and conventional

power grids; investigate state-of-the-art schemes proposed for mitigating NTL events

and identifying malicious consumers; study the advantages, technologies and challenges

involved in the design and deployment of SGs; carry out data collection and load profile

inspection for detection of normal and malicious energy consumption behavior; design

anomaly coefficient and detection coefficient for classification of consumers (i.e., either

honest or anomalous); look into the impact caused by TLs and measurement noise/error

on the detection analysis; finally perform frameworks testing and validation to confirm the

reliability of the proposals.

1.6.2 Research Methodology

The research methodology is put forward in order to develop two intelligent anomaly

detection frameworks for detection of NTL events such as energy theft and meter

irregularities in SGs, as presented in Figure 1.2. The research methodology is embedded

within the project methodology shown in Figure 1.1.

In this thesis, the smart energy data from the Irish Smart Energy Trial (Commission for
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and Validation
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and Collection

Framework 
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AMI Test Rig Design 
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Preliminary Testing 
and Framework 

Analysis

Figure 1.1: Flow chart of the proposed project methodology for detection of NTL
events.
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Linear Programming-
based Anomaly 

Detection Framework

Consumers' and Data 
Collector's Energy 
Consumption Data

List of Suspicious 
Consumers/Smart 

Meters

Data Cleaning and
Preprocessing

AMI Test Rig Design 
and Experimentation

Figure 1.2: Flow chart of the proposed research methodology for detection of NTL
events.

Energy Regulation, 2009) is first used to study consumers’ energy consumption trend for

revealing the localities of potential energy frauds and faulty meters. The dataset consists of

30-minute energy consumption reports for both Irish commercial and residential premises

of different contracted power between 2009 and 2010. The data are transformed into

the required format for Multiple Linear Regression (MLR), by performing data cleaning

and preprocessing. Then, the detection and classification are undertaken by the proposed

LR-based anomaly detection framework, which is the intelligent “anomaly detection

engine”. The LR-based anomaly detection framework detect NTL events based on the
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energy balance analysis. Particularly, the proposed frameworks shortlist locations with

high probability of malicious activities according to the meter discrepancies at the DS and

model the amount of under-reporting/over-reporting by a SM as an anomaly coefficient. By

solving the anomaly coefficient of each consumer, the localities of the suspicious energy

thieves and malicious SMs can be detected.

Next, in the pursuit of higher detection rate and lower false positives, a LP-based

anomaly detection framework is designed. Apart from detecting the localities of fraudulent

consumers and malicious SMs, the LP-based anomaly detection framework achieves

significant improvement in detection rate and false positive reduction by looking into the

impact caused bymeasurement noise/error and TLs on the detection analysis. Moreover, the

proposed framework is also able to estimate the percentage of TLs based on measurements

at the data collector and the knowledge of the distribution network.

Nevertheless, the DS SM readings as well as real energy theft sample do not exist in

Malaysia because SGs are not fully deployed. Thus, an AMI test rig is designed and built

in the laboratory to evaluate the reliability and performance of the proposed anomaly

detection frameworks for identifying energy fraud and meter irregularities in real Smart

Grid (SG) environment. Finally, the list of suspicious consumers/SMs is used by the UPs

to plan for their NTL inspection activities.

1.6.3 Organization of the Thesis

The contents for each chapter, except for Chapter 1, are outlined briefly in this section.

Chapter 2 provides the preliminary studies of SGs, literature review on different types of

electricity loss, which include TLs and diverse types of NTL attack as well as existing

NTL detection schemes. In Chapter 3, a novel linear regression-based anomaly detection

framework is proposed to reveal energy theft and meter irregularities, regardless of whether

NTLs take place only during a certain period in a day or all the time. Chapter 4 puts

9

Univ
ers

ity
 of

 M
ala

ya



forward a linear programming-based anomaly detection framework, which takes into

consideration the effect of measurement noise/error and TLs on detection analysis to

reduce false positives and enhance detection accuracy. The proposed framework is then

improved so that it can detect intermittent metering defects/energy fraud. To further

validate the reliability and performance of the entire anomaly detection framework both in

simulation and real SG environment, Chapter 5 describes the data collection and test setup.

In Chapter 6, the performance of the proposed anomaly detection frameworks is assessed

and discussed in both constant-rate and varying-rate cheating/malfunctioning scenarios.

In addition, the strengths and weaknesses for each detection framework are investigated.

Chapter 7 draws some conclusions and suggests possible future research directions.
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CHAPTER 2: LITERATURE REVIEW

2.1 Overview

The chapter serves to provide a review of important aspects in SG and AMI, particularly

NTLs in SG environment. Firstly, fundamental studies on SGs and various aspects of

AMI, i.e., subsystems, applications, challenges and security issues arising from AMI, are

conducted in Section 2.2. In Section 2.3, consideration is given to the background and

theoretical concepts pertaining to electricity losses that UPs experience, which include

TLs and NTLs. Diverse types of NTL event, such as non-payment by consumers, meter

irregularities and energy theft are also identified and presented in Section 2.3.2. Also

considered are the diverse methods of energy theft that have commonly been exploited to

steal energy from the electrical power distribution system. Next, some background issues

concerning NTL detection schemes used in energy industry are reviewed in Section 2.4.

Finally, the problems faced by the surveyed literature are identified and discussed.

2.2 Smart Grid Fundamentals

In recent years, the antiquated electrical power infrastructure that supplies energy to

both residential and commercial premises is gradually being replaced with a set of digital

systems known as the SGs. SGs are the next-generation power grids in which the energy

management and distribution are upgraded by incorporating bi-directional information and

communication technology (ICT) and pervasive computing capabilities for better control,

efficiency, reliability and safety (Yan, Qian, Sharif, & Tipper, 2013). According to the

United States Department of Energy’s modern grid initiative (U.S. Department of Energy,

2008), SGs incorporate control methods, integrated communications and advanced sensing

technologies into the current electrical power infrastructure. These modernized grids

enhance consumers’ and UPs’ ability to monitor, control and forecast energy usage. As
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Figure 2.1: The future power grid: smart grid (Marris, 2008).

shown in Figure 2.1, SGs integrate microgrids, diverse distributed energy resource (DER)

such as solar, wind and energy storage system (ESS) into a smart self-healing grid system to

address existing energy management issues. In SGs, UPs encourage consumers to monitor

and control their energy consumption by introducing demand side management (DSM) as

incentive to promote a less fluctuating consumption pattern. In such a case, the consumers

are financially motivated to shift their energy load to off-peak periods, and thereby reducing

the fluctuation in the rate of energy consumption and peak-to-average ratio of the total

energy demand. Therefore, the government, academia and energy industry are propelled

to implement SGs to reduce greenhouse gas emissions, combat global warming and reach

national energy independence (McDaniel & McLaughlin, 2009). Section 2.2.1 introduces

the technologies of AMI, as the base of SGs, which is in charge of collecting information

and data from consumers and loads.

2.2.1 Overview of AMI

Deploying an AMI is an essential step in the modernization of power grid. AMI offers

an intelligent metering framework to fulfill one of the key initiatives of SGs– motivation
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and participation of the consumers (U.S. Department of Energy, 2008). AMI provides

consumers with the information to make better consumption decisions and a variety of

options to execute those decisions. On the other hand, AMI helps UPs improve consumer

service by refining asset management processes and utility operations based on the smart

metering data. AMI sends information of power-related events and consumers’ energy

consumption to both the consumers and UPs. Therefore, all parties can take part in the

billing and peak demand reduction as well as make informed decisions in SGs (McLaughlin,

Holbert, Fawaz, Berthier, & Zonouz, 2013). In short, AMI provides an important linkage

between the UPs, consumers, generation and storage resources through the integration of

numerous technologies such as integrated communications, smart metering, Home Area

Network (HAN), software interfaces with existing utility operations and data management

applications. In this thesis, only issues associated with utilization of AMI in electrical

power distribution system are discussed.

2.2.2 Subsystems of AMI

AMI is an advanced framework which includes smart devices (i.e., SMs, data collectors

and Internet of Things (IoT) devices), data collection platform (i.e., Meter DataManagement

Systems (MDMS) and head end) and different communication networks to integrate the

collected data into software platforms and hardware interfaces (Rashed Mohassel, Fung,

Mohammadi, & Raahemifar, 2014). In AMI, communication and electrical flows are

bi-directional and overlay each other (Fang, Misra, Xue, & Yang, 2012). The architecture

of electrical network and AMI in SG is presented in Figure 2.2.

2.2.2.1 Smart Devices

Smart devices comprise of state-of-the-art software and hardware which are capable of

collecting and measuring data at preset time stamp. These digitized devices are configured
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Figure 2.2: The architecture of AMI in smart grid.

by the system administrator to transmit data to various parties at predefined time intervals.

Since the communication flow in AMI is bi-directional, these IoT devices receive control

signals and act accordingly. Besides, the utility pricing information provided by the UPs

also allows the load controlling devices to regulate consumption based on consumers’

directives and criteria.

In the old days, conventional meters are used only for billing the energy consumed

by consumers. In recent years, SMs are introduced along with the deployment of SG to

enhance reliability and efficiency of future power systems with DER, as well as distributed

demand response (W. Wang & Lu, 2013). SM plays an important role in AMI. It is a

digitized energy meter that measures the energy consumption of a consumer regularly

at predefined intervals. As compared to conventional meter, it can read fine-grained

energy consumption information (i.e., values of voltage, current, frequency and phase

angle) and collaborates with the master SM (i.e., data collector) as well as head-end to

monitor power quality and securely communicate the data with other parties on a real-time
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Figure 2.3: The metering models of conventional power grid and smart grid.

basis. It can communicate and execute control commands both locally and remotely.

Aside from load controlling and monitoring, SM also collects diagnostic information

about the home appliances, distribution grid and power related events. SM is also able to

restrict the maximum energy consumption by connecting or disconnecting energy supply

to any consumer remotely. Data collected by SMs contain parameters such as energy

consumption values, time stamp of the data and a unique meter identifier (Depuru, Wang,

& Devabhaktuni, 2011). Figure 2.3 depicts the metering models of conventional power

grid and SG.

The key features of SM can be summarized as follows:

• Real-time data collection and measurement

• Remote control upgrade/operations

• Outage and failure event notifications

• Time-based pricing

• Power quality monitoring

• Net metering
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• Load scheduling for DSM

• Load limiting for demand response

• Energy theft/meter tampering detection via alarms and sensors

• Efficient energy consumption to improve environmental conditions

2.2.2.2 Communication Infrastructure

As shown in Figure 2.2, the AMI architecture consists of three types of network, namely

Home Area Network (HAN), Neighborhood Area Network (NAN) andWide Area Network

(WAN), which are further detailed below:

1. HAN: SMs, smart devices, generation, energy storage and plug-in hybrid electric

vehicle (PHEV) as well as controllers within the home premises are connected

together through HAN. Considering the high data rate and low power transmission

requirements, wireless technologies are the optimal solutions for HAN. These

technologies include ZigBee, 2.4 GHz WiFi, HomePlug and IEEE 802.11 wireless

networking protocol (U.S. Department of Energy, 2010).

2. NAN: The data collectors, SMs endowed in consumers’ premises and

communication networks form a Neighborhood Area Network (NAN). The

communication between data collectors and SMs in NAN vary depending on the

application scenarios, such as Power Line Carrier, RS485, GPRS/3G and ZigBee.

3. WAN: WAN is the transmission network which connects the data collectors to

the operation center. Certain networks are adopted for different areas with specific

conditions in WAN, such as Power Line Carrier, Ethernet and GPRS/3G.

After data collection, the data are sent to an operation center which contains a MDMS

and a head-end. The head-end is responsible for managing communication protocols,

collecting and storing metering data, communicating with devices and adapting Internet
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protocols. Meanwhile, the MDMS, which is the central module of the management system,

monitors the distribution system. Besides, MDMS is also in charge of data analysis,

maintenance and operation of the SGs.

2.2.3 Applications and Benefits of AMI

AMI not only offers benefits to consumers, but also to UPs and society (U.S. Department

of Energy, 2008).

Consumers

• Reduce electricity billings: AMI provides a vast amount of grid status and energy

usage information. With these information, consumers can make more informed

consumption decisions while UPs can make better decisions about service offerings

and system improvements. In such a case, AMI provides better power quality, higher

reliability and more accurate billing. All these features keep down utility costs, and

therefore paying prices for consumers.

UPs

UPs’ advantages fall into two major categories, operations and billing.

• Reduce operational and labor costs: SMs deployed inAMI enables functionalities

such as automatic metering data transmission and remote update of SM firmware.

Therefore, UPs do not have to send staff to read and maintain meters, thereby

reducing operational and labor costs. Besides, unwanted economic losses that are

caused by data errors during on-site meter reading can be prevented. Through remote

diagnostics, many customer service and maintenance issues can be resolved more

cost-effectively and quickly.

• Facilitate demand response and load control: AMI allows UPs to continuously

monitor aggregate grid load in order to offer consumers price signals that represent
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market prices (i.e., dynamic pricing). It also controls residential consumers’ loads

by directly manipulating the smart devices during load-constrained periods within

consumer-recommended thresholds (i.e., direct load control). Besides, it can

interrupt industrial/commercial consumers’ loads by directly controlling the utility

system operator during seasonal peaks (i.e., interruptible load). With dynamic

pricing, consumers are financially motivated to cut down loads during special peak

events or during on-peak periods of the day when energy rates are higher (i.e., critical

peak pricing). All these features are able to reduce peak demand, which in turn

reduces operation of peaking plants, defers the need for new generation, offers relief

during capacity-constrained periods and minimizes transmission congestion.

• Monitor the health of the grid: The operation center closely monitors line

losses by area or time (i.e., month, quarter or year). The real-time monitoring and

measurement give UPs an overview of the line losses over the entire service area,

thereby allowing them to optimize the whole electrical power infrastructure.

• Improve outage management system: With smart metering, UPs can detect and

locate outage/failures events more promptly and accurately. Therefore, the repair

crews can be dispatched in a more timely and efficient way.

• Curtail NTLs: The SMs, data collector and head-end work jointly to analyze and

detect malicious attempts to steal energy. AMI is able to detect skeptical thefts on

the basis of historical data curves and metering reports, thereby reducing losses

incurred due to NTLs.

Society

• Promote a greener future: AMI is able to produce a greener environment by

improving efficiency in energy delivery and utilization. It can accelerate the use
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of distributed generation (DG), which also directly encourage the use of DER.

According to Siddiqui (2008), AMI-enabled distribution system would reduce

carbon dioxide emissions by up to 25%.

2.2.4 Security Issues and Challenges in AMI

In recent years, millions of homes and business premises in the United State alone have

been upgraded to SMs. In 2015, Tenaga Nasional Berhad (TNB) Malaysia has commenced

a RM2 million pilot project on SG development for more efficient energy supply and

delivery. 1,000 SMs were installed in both Malacca and Putrajaya throughout the one-year

period of the pilot project (Tenaga Nasional Berhad, 2017).

Although the motivation of SG involves HAN and energy management, the

implementations of AMI evolve around the installation of SMs. Subsequently, security

issues and challenges associated with AMI grow substantially as the number of SMs

increase drastically. In this thesis, security issues resulting from the implementation of the

new power infrastructure are looked into. Besides, initiatives which might help mitigating

susceptibility to these harmful impacts are also investigated.

2.2.4.1 Consumers’ Privacy

In SG, consumers are financially motivated to collaborate with the UPs to control their

energy consumption. However, their privacy is violated as they are required to share their

fine-grained information. Specifically, third parties can conduct consumers’ load profiling

with high accuracy by simply analyzing their fine-grained SM readings. These load profiles

not only reveal the types of electrical appliance used in consumers’ premises but also the

number of residents and their daily routines even in the presence of alarm system. Murrill,

Liu, and Thompson II (2012) demonstrated that most of the appliances in a premise can

be identified by analyzing only a 15-minute interval energy consumption data. These
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information are very valuable to third parties. For example, burglars can choose the most

vulnerable target by studying house owners’ daily routines and alarm information. On the

other hand, advertising companies may conduct unsolicited marketing based on consumers’

daily routines and appliances information while insurance firms may increase consumers’

premiums based on information extracted from load-profiles (S. A. Salinas & Li, 2015).

As for industrial consumers, their load profiles may contain proprietary information about

logistics and equipment used. These information provide a competitive advantage to other

companies that intend to gain insight into the processes or imitate the industrial operations.

All the aforementioned privacy issues have eroded consumers’ trust in the acceptance of

SG as the safety and privacy of their data are not protected. In view of the privacy issues,

the Dutch Parliament has rejected the implementation of SG in 2009 (Cuijpers & Koops,

2012). Therefore, a secure infrastructure to protect consumers’ privacy is imperative

in establishing consumers’ trust in adopting SG. To safeguard consumers’ from privacy

invasion, the government needs to establish a regulatory framework. Particularly, privacy

regulations and policies should identify the rules for how consumers’ data are collected, to

what parties the data are shared and the consequences of information abuse. In addition,

academia, government as well as energy industry must assess the security and reliability

of the smart devices in the laboratory and field more extensively.

2.2.4.2 The Billion-dollar Bug

Consumers’ theft in the electrical power distribution system is not something new.

According to Northeast Group (2017), the latest estimates indicate that energy theft costs

a staggering of $ 96 billions per year globally, with well over half of that happening in

the world’s emerging markets including India, Brazil and Russia. Since the early days of

energy billings, malicious consumers could attempt all kinds of methods such as physical

meter tampering to impede the energy flow calculation. The introduction of SM will
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definitely change the nature of energy theft. Specifically, the attacks would change from

crude physical system tampering to remote penetration and manipulation of smart devices.

These sophisticated attacks not only allow consumers to make subtle changes to their

energy consumption readings but also terrorists to mount large-scale attacks either on local

or national critical infrastructure (McDaniel & McLaughlin, 2009).

The SMs deployed in AMI are built from easily available software and commodity

hardware. However, such a heavy dependence on information networking naturally

surrenders the SMs to possible vulnerabilities associated with networking and

communication systems such as usage loggers, distributed denial-of-service attacks, meter

bots, SM root-kits, malware and viruses (McDaniel & McLaughlin, 2009). These

digitized meters are extremely appealing for hackers because the vulnerabilities can be

easily monetized. Specifically, a "hack" kit can be used by the energy thief to tamper a SM

to reduce energy billings. Once these hack kits are commercialized, each vulnerability

would result in a “billion-dollar bug” in the energy industry, whereby the costs incurred

would not only be measured in consumers’ theft but also in the prices of replacing millions

of malicious meters. Besides, the misuse of SMs could also severely harm the electrical

power infrastructure. Specifically, the usage misinformation not only might mislead UPs

to make incorrect decisions about the capacity and usage but also blind them to impending

problems/attacks.

The future of SG is highly dependent on the policies and regulations of respective

governments and UPs. Since these laws would assist UPs, consumers and vendors to

evaluate risk, theywould significantly encourage the adoption of SG. For a smooth transition

to a more environmentally sound and less costly power grid, the security problems that

AMI introduces should be anticipated and mitigated.

21

Univ
ers

ity
 of

 M
ala

ya



2.3 Electricity Losses in Electrical Distribution System

Electricity losses are the mismatch between amount of energy supplied and amount of

energy reported by the consumers (Nagi, 2009). Estimating energy losses in electrical

distribution system is one of the important scopes of distribution system performance.

Generally, electricity losses that severely affect the UPs can be attributed into two categories

namely: (i) technical losses (TLs) due to the distribution and transformation of energy, i.e.,

proportional to the squared of electrical current, and (ii) non-technical losses (NTLs) that

are associated to energy fraud as well as meter irregularities. Ideally, the energy supplied

to the service area should tally with the energy recorded. Nevertheless, in reality, these two

amounts never tally as electricity losses happen as an integral result of energy distribution

and transmission (Nizar, Dong, & Wang, 2008).

2.3.1 TLs

TLs in electrical distribution system refer to electricity losses resulting from the

energy dissipation or heating of electrical components (i.e., distribution transformer (DT)

windings, lines, cables and other measuring equipment) during energy transmission and

distribution (Pedro, 2009). TLs cost consumers higher paying price and contribute to

carbon emissions. TLs happen as a direct result of the physical characteristics of the

electrical equipment used in electrical distribution system. These losses depend on the

voltage and transformation levels and the length of the power lines as well as the design of

the power grid. These losses include DT losses (i.e., resistive losses and core losses in the

windings), resistive losses at the primary feeders, resistive losses in secondary networks,

losses due to loose jump wires, losses due to short circuit and earth fault as well as losses

in service mains and energy meters (Benedict, 1992).

Generally, TLs are contributed by three main sources (Congres International des

Reseaux Electriques de Distribution, 2017): (i) Load losses (variable losses) comprising
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of resistive and reactance loss components in the series impedances of the various system

elements, (ii) No-load losses (fixed losses) that are independent of the actual load served

by the power system (Dortolina & Nadira, 2005) and (iii) Losses due to network services.

1. Load losses: All conductors such as copper wires in overhead lines/cables, coils in

transformers, fuses, switch gear and metering equipment, have internal electrical

resistance. These resistances cause the conductors to generate heat when carrying

electrical current. Load losses are also known as ’variable losses’ as energy losses

arising from the dissipation of heat to the environment vary with the current flowing

through conductors in electrical distribution system. Specifically, load losses vary

in proportion to the squared of the current and conductor resistance. Sometimes,

these losses are also referred to as "copper losses", "ohmic losses", "resistive losses"

or "Joule losses". Besides, deteriorated conductors and loose connections between

network equipment might also be the source of this type of losses, as they can cause

the arising of heating spots owing to an increase in the resistance. Generally, load

losses contribute approximately two thirds to three quarters of the total power system

TLs (Vincenzo, Giordano and Georgios, Papaefthymiou, 2015).

2. No-load losses: Some electrical energy is dissipated by network equipment or

components (e.g., transformers) as a result of being connected to the network and

made energized. The system has losses because it is electrically energized even if no

energy is delivered to consumers. These losses are dissipated in the form of noise and

heat. Most of the no-load losses are usually due to the transformer core/iron losses

resulting from the flow of excitation current. These losses are known as "no-load

losses" or "fixed losses" because they are independent of the amount of electrical

energy the network supplies (Congres International des Reseaux Electriques de

Distribution, 2017). In essence, no-load losses depend on applied voltage. They
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do not change with current. Nonetheless, no-load losses are essentially fixed as the

applied voltage is typically stable when the network equipment is energized.

3. Losses due to network services/measuring devices: Apart from the equipment

responsible for the dissipation of energy as load and no-load losses, other equipment

connected to the distribution systemmay also consume energy. Losses can also occur

due to uncontracted consumption of network equipment and measuring devices

for protection. For instance, measuring elements and network control installed

along electrical lines or meters in consumers’ facilities are examples of uncontracted

consumption that also contribute to TLs.

In short, TLs in the electrical distribution system are fundamentally dependent on

electrical loading, network topology and system voltages. It is possible to control and

compute TLs, given the known quantities of loads. However, extensive load and network

data are required for higher accuracy in estimating the amount of TLs. A variety of

approaches has been designed to compute TLs in electrical distribution system (Nadira,

Benchluch, & Dortolina, 2003; Dortolina & Nadira, 2005; Au et al., 2008; Oliveira

& Padilha-Feltrin, 2009). The parameters commonly utilized to estimate the TLs in

distribution network are loss factor, load factor and load profiles/curves (Au & Tan, 2013).

In recent years, the enhancements in ICT and data acquisition also make the verification

and computation of TLs easier. For instance, Sahoo, Nikovski, Muso, and Tsuru (2015)

have designed a temperature-dependent predictive model which utilizes data from DT and

SMs to compute amount of TLs and detect localities of energy theft in a service area.

2.3.2 NTLs

The losses that take place independently of TLs in power systems are known as

NTLs (Nagi, 2009). Generally, NTLs occur due to external actions to the power system.
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NTLs might also happen due to the conditions and loads that have not been taken into

consideration in Technical Loss (TL) computations (Suriyamongkol, 2002). NTLs typically

relate to a number of ways to deliberately circumvent the UPs (Nagi, Yap, Tiong, Ahmed,

&Mohammad, 2008). It is usually more complicated to measure NTLs. Simply measuring

consumers’ energy consumption and total supplied energy by the UPs alone cannot

distinguish NTLs from TLs. As a result, additional types of measurement are required to

estimate the amount of TLs. The localities of NTL activities can be potentially detected

from the inconsistency between the total consumption and supply with the inclusion of the

estimated TLs (Sahoo et al., 2015).

NTLs might lead to detrimental effects on a number of aspects such as political stability,

finance and economy. NTLs, especially energy theft is always closely related to governance

indicators. Countries with political instability, ineffective accountability as well as massive

grafts and corruptions usually have higher levels of energy theft (Smith, 2004). Corruption

occurs when the utility personnel working for the UPs is bribed for allowing life-threatening

illegal power connections and falsifying the meter readings. The situation becomes more

severe when political leaders intervene in the legislation to ensure that supporters and

cronies are not penalized for carrying out NTL activities. UPs in some of the corrupted

countries were nearly bankrupt because fraudulent personnel continues to collect bribes

due to collusion between the government and energy industry. Besides, high NTLs also

threaten the financial sustainability of the UPs. Specifically, energy pilfering will definitely

lead to reduction in UPs’ energy revenue and therefore they are lacking of investment funds

to improve the electrical distribution system and capacity. As a result, the economic growth

is hampered by irregular and inadequate energy supply due to energy fraud. Effectively,

the costs of NTLs are passed down to the legitimate consumers and government. In other

words, the energy consumption of the energy thieves or non-payers is subsidized by the
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benign paying consumers, UPs and even the government. Therefore, the mitigation of

NTLs is crucial for electrical distribution system to ensure the efficiency of the distribution

network will be improved while the costs for the consumers, UPs and government will be

cut down.

The major causes of NTLs are listed as follows (Nizar, Zhao, & Dong, 2006):

• Non-payment by consumers

• Meter irregularities

• Energy theft

2.3.2.1 Non-payment by Consumers

All energy consumers will receive regular bills to pay for the energy they consume.

However, not everyone pays. The delinquency in paying utility bills tends to compound

upon itself. Consumers are less likely to pay if the bill collection system fails. Consequently,

a snowball effect happens, whereby the courts become backlogged while UPs take losses.

In such a case, it might result in a range of systemic problems that gradually hinder both

the economy and UPs’s operations (Krishnaswamy, 1999).

To mitigate the non-payment problems, most of the UPs, including TNB Malaysia cuts

power supply to the premises over unpaid bills and restores power after the consumers

settle the pending bills (Wafi, Aziz, Rahim, Amirhussain, & Norddin, 2013). Besides,

prepayment meters are also introduced in some countries to help consumers avoid getting

into debt with UPs. With the prepayment meter, consumers pay for their energy before

they consume it (Telles Esteves, Cyrino Oliveira, Antunes, & Souza, 2016).

2.3.2.2 Meter Irregularities

As mentioned earlier, NTLs could also happen due to meter irregularity. It commonly

takes place when the meter is unable to record the correct energy consumption. According

26

Univ
ers

ity
 of

 M
ala

ya



to Tenaga Nasional Berhad (2018), meter irregularities occur due to the factors as follows:

• Incorrect meter reading

• Incorrect application of a meter multiplying current transformer (CT) ratio

• Meter inaccuracy

• Malfunctioning of the meter/equipment breakdown

• Faulty installation

• Cross-connection of installation to different accounts

With the advent of AMI technologies, the UPs can now monitor millions of SMs in

real time to comprehensively identify and ameliorate NTL problems. For instance, they

can easily compute the under-reporting or over-reporting amount based on the consumer’s

fine-grained energy consumption record and history. Real-time data through advanced

grid sensors and smart metering can provide UPs with an overview of the power grids.

2.3.2.3 Energy Theft

Interestingly, meter irregularities and energy theft account for the major causes for the

aforementioned NTLs in Malaysia (Tenaga Nasional Berhad, 2006). NTLs have been

a daunting problem for the UPs in both developed and developing countries since the

beginning of energy billing. The latest estimates show that energy theft totals a staggering

$96 billion per year worldwide (Northeast Group, 2017). In United State alone, $6 billion

worth of electrical energy is stolen annually (Karaim, 2015). Meanwhile, UPs in India

experience losses of approximately $4.5 billion annually due to energy fraud (Ahmad,

Chen, Wang, & Guo, 2018). On the other hand, British Columbia Hydro in Canada suffers

$100 million every year due to energy stolen for marijuana grow operations (Meuse, 2016).

NTL detection becomes more challenging because energy thieves become increasingly

sophisticated in their tactics. Energy fraud is not only crippling UPs around the world, but
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also causing higher paying prices for consumers as well as necessitating costly government

subsidies. Therefore, the focus of this thesis is the detection of energy theft and meter

irregularities in SGs.

Various tactics have been exploited to under-report energy. At the consumer level, the

most popular technique is to tamper with meter in order to impede proper meter recording

or tap energy from a vacant premise. At the grid level, fraudulent consumers always

bypass energy meters by wiring heavily-loaded electrical appliances such as heater and

air-conditioner directly to the grid. Sometimes they connect the whole electrical system

to the feeder with an illegal DT. Meanwhile, at the utility level, inaccuracy in energy

billing can result in losses of profits. These inaccuracies can be either unintentional (i.e.,

meter irregularities as discussed in Section 2.3.2.2) or intentional (e.g., corrupted utility

personnel alters the billing record or meter switching with a vacant unit). To curb NTLs

from energy theft, TNB Malaysia has formed a special team to conduct physical checks at

meters (Tenaga Nasional Berhad, 2006). To improve the effectiveness, the team has been

equipped with more technicians as well the purchase of new transportation and equipment

to pursue suspected cases of energy fraud, which naturally leads to high utility costs.

Combating energy theft has been one of the key motivations to deploy AMI. In fact,

SMs are designed to identify and reveal tampering attempts. The additional features

of these modernized solid-state meters as discussed in Section 2.2.2.1 annihilate some

attacks that were common in conventional analog meters. Recall that, TNB also started

implementing the AMI pilot roll-out in 2015 with the installation of 1,000 SMs in Malacca

and Putrajaya (Tenaga Nasional Berhad, 2017). TNB is currently embarking on providing

more digitized and automated services not only to offer more values to the consumers but

also features such as equipment failure alarms and magnetic tamper detection for NTL

analysis.
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Nevertheless, the deployment of smart metering infrastructure with the addition of

smart devices and network communications to the electrical distribution system has also

introduced new attack techniques. Specifically, SMs are not fully tamper-proof (McLaughlin

et al., 2010). For example, an energy thief can easily obtain the root access of the SM to

interrupt the communication so that the automated meter alarms and power-related events

never reach the UPs. Moreover, the meter alarms are highly susceptible to false positives

and hence UPs have difficult task dealing with enormous data to distinguish the fraudulent

consumers from the honest consumers.

According to the energy theft techniques discussed in the literature (McLaughlin et al.,

2010, 2013; Jiang et al., 2014; Accenture, 2011; Y. Liu, Zhou, & Hu, 2018; Tellbach & Li,

2018), the existing energy theft activities are classified into three categories:

1. Physical attacks

2. Cyber attacks

3. Data attacks

Note that data attacks could also be realized through threats from the cyber and physical

attacks. The consumers’ consumption data may be compromised at three different stages,

namely while it is being recorded, during transmission to UPs or after it is stored (Xiao,

Xiao, & Du, 2013). All these attack techniques are presented in Table 2.1. The information

in the table will be utilized in Section 5.5 as an attack model for a complete coverage of

threats from various known energy theft techniques. Then, the energy thefts and meter

irregularities scenarios are simulated by tampering the benign SM readings in order to

evaluate the proposed anomaly detection frameworks in Chapter 6.
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Table 2.1: Types of attack in both conventional power grid and smart grid

Physical Attacks
Meter switching with an unit from abandoned, vacated or low-consumption premises
Neighborhood power diversion
Meter tampering

• Meter removal/disconnection
• Reverse the meter in the socket
• Turn back the number dial of electromechanical meters
• Place magnets on electromechanical meters
• Insert disc to halt rotating of the coil
• Damage the rotating coil of the meter
• Deposit a highly viscous fluid to damage meter
• Remote control switch/relay to control illegal tapping
• Modify CT ratio of the meter to impede energy consumption calculation
• Abuse optical port to gain root access to the SM

Partial wire bypass of the meter
Complete meter bypass by wiring heavily-loaded appliances directly to the grid
Direct tapping to the primary voltage grid/distribution feeder with an illegal DT
Bribe utility personnel for altering billing records
Unlawful calibration and indecorous regulation of meters

Cyber Attacks
Steal credentials to login to meters
Hack into the firmware of SMs remotely
Tamper with the meter storage for information (e.g., recorded total energy consumption,
audit logs and encryption key)
Compromise meter readings through network exploitation
Intercept the meter communications to alter energy consumption values
Flood the bandwidth of NAN
Exhaust memory/central processing unit (CPU)
Erase logged events
Interrupt the radio frequency (RF) communication
Inject forged values into communication between UPs and SMs
Modify traffic between UPs and SMs
Meter spoofing
RF jamming
Design and inject malware into SMs
Pricing attacks by manipulating the predictive pricing curve

Data Attacks
Report zero consumption
Stop energy consumption reporting
Report negative consumption (act as a DG)
Remove high-consumption appliances from measurement
Under-report the energy consumption by a fraction
Modify appliance load profile to hide heftier loads
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2.3.2.4 Methods of Energy Theft

Since the beginning of energy billing, a vast number of tactics are exploited by fraudulent

consumers to alter the meter and its inputs in order to pilfer energy. The common energy

theft methods are generally grouped into two major categories, namely (i) meter tampering

whereby energy thieves manipulate the internal structure of metering system and (ii)

line tampering whereby fraudulent consumers bypass the energy meter connection. The

methods of how the energy thieves can get into a position to manipulate the communication

signals (i.e., cyber attacks) is not the focus of this paper. Approaches to circumvent

encrypted communications in SGs protocols were recently presented in (Jovanovic &

Neves, 2015a). The methods used by the energy thieves to fabricate communication signals

were discussed in (McLaughlin et al., 2010, 2013; Jiang et al., 2014; Jovanovic & Neves,

2015b, 2015a). In this thesis, the goal is to identify attacks under the assumption that

the energy thieves have successfully compromised the integrity of meter consumption

readings. In this section, various common tactics exploited to commit energy theft for

LV and high voltage (HV) energy meters, recorded by TNB Malaysia (Nagi, 2009) and

Provincial Electricity Authority (PEA) Thailand (Millard & Emmerton, 2009) are detailed

as follows.

Low voltage meters (230V single phase)

In the past decades, conventional analog meter used by developing countries such as

Malaysia, Thailand, Vietnam and Indonesia can be easily tampered by breaking the meter

seals and gaining access to the components inside. As discussed in Section 2.2.2.1, SMs

are equipped with tamper-detection features and encrypted communication capabilities.

However, dependence on these functionalities alone is not adequate to guarantee total

protection against cyber adversaries who exploit communication vulnerabilities.

A vast number of methods deployed by energy thieves to steal electricity from both LV
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Figure 2.4: Direct tapping to power line.

energy meters and SMs are discussed in detail as below.

1. Directly connecting unregistered load to the power grid (Bypass the meter

entirely): The energy consumers from the LV network (i.e., domestic or Small

and Medium Enterprises (SME)) usually are connected to the LV 230V single-

phase/415V three-phase meter and equipment. Therefore, conducting electricity

pilfering by direct tapping to the power line is much easier and "safer" as compared

to climbing up HV line many stories up on steel masts. Technically, a ladder, a pair

of rubber gloves and all the necessary tools are what the energy thieves need in order

to perform direct tapping. Direct connection to the power line as shown in Figure 2.4

is the most widely-practised malicious method utilized by many shantytowns and

street vendors especially in both Malaysia and Thailand for electricity pilfering.

2. Meter tampering: Another popular method of energy theft is by breaking the

enclosure seal of the meter. Once the seal of the meter is damaged, energy thieves

could easily break into the meter inside the enclosure in order to tamper with the

meter. One of the ways is to turn back the number dials in the conventional analog

meter to reduce energy billings. However, this method is obviously not applicable for
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digital display meters. Apart from adjusting the number dials, fraudulent consumers

might attempt to modify the CT turns of the meter. Besides, the energy thieves

could also obstruct the axis and the rotor disk to influence the energy measurements.

For instance, fraudulent consumer might insert a thin film to halt the rotation of the

rotor disk or deposit highly vicious liquid to damage the meter. Another common

form of meter tampering is by placing magnet to slow down the rotation of the

disk to confuse the current sensing mechanism, leading to a falsified reduction in

measured consumption by 50% to 75% (Evanczuk, 2015). All the aforementioned

conventional meter tampering are shown in Figure 2.5. In recent years, electricity

poachers are using high-tech equipment and employing elaborated measures to

siphon off electricity. Particularly, remote control switch installed in energy meter

appears to be the latest preferred gadget used by consumers to steal energy. As

shown in Figure 2.6, a remote switching relay is used to bypass the meter to prevent

the energy consumption from being registered. With remote control, malicious

consumers are able to switch the "bypass switch" on and off whenever they wish.

The utility personnel would not be able to identify any irregularities easily when

such sophisticated methods, such as remote control switches, are deployed.

3. Circuit bypass/hidden switch: In addition, electricity poachers could also steal

energy by performing metering circuit bypass simply by connecting jumper wires

across the source and load of the meter as shown in Figure 2.7(b). The manner in

which meters are tampered with is becoming more and more sophisticated with

various advanced gadgets/wrings used to register low readings. A more advanced

way to pilfer energy is by installing a "hidden" switch (“Electricity Theft Uncovered

at Massage Parlour, Snooker Centre”, 2016). As shown in Figure 2.7(c), the meter

will operate normally when switch 1 is closed whenever meters were being monitored
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Figure 2.5: Conventional single-phase analog meter tampering.

Figure 2.6: Remote switching relay (“Beauty centre caught stealing electricity using
remote control switch”, 2014).
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Figure 2.7: Circuit bypass/hidden switch.

by UPs. However, the meter will be bypassed when switch 1 is opened while the

hidden switch is closed. This type of energy theft becomes even more difficult to be

detected if remote control devices are used to control the switches.
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High voltage meters (12kV or 24kV three-phase, three or four-wire primary)

Three-phase watt-hour meters are typically endowed in industrial consumers’ premises

to measure loads that consume high volume of energy and voltage. A technique known

as the "two watt-hour meters" connection is utilized in three-phase energy meter to

measure energy consumption. Since the loads consume high current and are connected

to HV, current and voltage sensing are performed by utilizing CTs and voltage taps,

respectively (Suriyamongkol, 2002). According to Tenaga Nasional Berhad (2006), energy

theft in commercial and industrial premises contributes the most to NTLs in Malaysia

due to the high volume of electricity consumed. Several varieties of tactics exploited by

fraudulent consumers to steal energy from HV meters are detailed as below:

1. Direct connection to the power line: As compared to LV networks, direct tapping

to the HV power line is more difficult as not many electricians would risk themselves

exposing to HV power lines without the assistance from UPs.

2. Meter tampering: Similar methods that are used to steal energy from LV meters

are applied.

3. Breaking control wires: Control wires are the secondary wires of the CT. The

industrial meters typically measure high currents for large loads. Thus, a step-down

CT is connected to reduce current level so that it is compatible with the components

in the meter. Electricity pilfering can be accomplished by breaking the insulation

of a control wire and connecting external taps to it, thereby causing the meter to

under-report energy consumption as the current measured by the meter is reduced.

The control wire tampering is shown in Figure 2.8.

4. Terminal/meter seal tampering: Since the terminal seals are located below the

meter, it is easy to break them. Once the terminal seals are broken, one of the control

wires is connected to ground so that at least one phase does not show voltage.
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Figure 2.8: Breaking control wires.

5. Breaking voltage taps: Energy meter reads the voltage of the load by using voltage

taps in the meter housing. When the voltage taps are shorted to ground, the meter

readings will be distorted (i.e., record lower voltage). Similarly, the meter would

record lower voltage if the line is connected to another voltage tap. Nevertheless,

most of the meters would not function properly or even would be damaged by voltage

tap tampering as the internal components must operate within rated conditions.

2.4 NTL Detection Schemes

A variety of energy theft detection strategies (i.e., Support Vector Machine (SVM),

load profiling, neural networks, state estimation, decision tree and etc.) (Viegas, Esteves,

Melício, Mendes, & Vieira, 2017) have been proposed recently to curb NTL activities. In

this thesis, the energy-theft detection schemes are classified into three categories, namely

state-based, game theory-based and classification-based schemes (Jiang et al., 2014).

However, only data oriented energy theft detection schemes are discussed. Particularly,

data oriented schemes are based on data analytics or machine learning. Only consumer

related data (e.g., energy consumption measurements and consumer type) are required for
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anomaly detection. Network oriented schemes which utilize power grid data (e.g., network

topology and network measurements) for theft detection (Messinis & Hatziargyriou, 2018)

are not the focus of this study.

2.4.1 State-based Detection

State-based detection scheme leverage on monitoring state to detect energy fraud in

power system by using specific equipment. The monitoring state can be obtained from

mutual inspection (Xiao et al., 2013), wireless sensor networks (McLaughlin et al., 2013),

control units (Selvapriya, 2014), radio-frequency identification (RFID) (Khoo & Cheng,

2011) and distribution transformers (Huang, Lo, & Lu, 2013; Sahoo et al., 2015).

Xiao et al. (2013) proposed three inspection schemes to identify anomalous SMs in a

neighborhood. Initially, they designed a basic scanning method, which requires linear time

to perform inspection. Then, they developed a binary tree-based method for inspection

when the malicious SMs to honest users ratio is high. Finally, an adaptive tree-based

method is employed to leverage on the benefits of both the scanning and binary tree schemes.

However, a shortcoming of the inspection schemes is the cost. Adding an additional meter

for each consumer or UPs will greatly increase the cost on management and hardware.

Meanwhile, McLaughlin et al. (2013) designed an AMI Intrusion Detection System

(AMIDS). In AMIDS, information of malicious behaviors from three types of information

source, namely on-meter anti-tampering sensors, cyber-side network and host-based

intrusion detection systems, as well as power measurement-based anomalous consumption

detectors are collected, through non-intrusive load monitoring (NILM). However, the

adoption of NILM, which requires a high-sampling rate, discloses information about

time of use and type of appliance in consumers’ premises, hence violating consumers’

privacy (Sankar, Raj Rajagopalan, Mohajer, & Vincent Poor, 2013). In (Selvapriya, 2014),

consumers’ consumption data is compared with the feeder input level. Both individual and
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aggregated consumption are also compared against the feeder details. When the control

unit detects any consumption anomalies, the unit alerts the vigilance team by means of

Global System for Mobile communications (GSM) message. The utility personnel will

then rush to the spot and inspect the premise of the suspected energy fraud. Nevertheless,

their proposal can only detect a small region of energy theft but not the exact locality of

fraud. Khoo and Cheng (2011) proposed a system that incorporated RFID technology to

assist the UPs in ammeter inventory management and ameliorate energy theft. Although

RFID technology can be implemented to identify energy , UPs have to pay extra cost to

install the system. Thus, the authors adopted cost-benefit theory to examine the value

changes caused by the system and then derive a cost-benefit model. Meanwhile, Huang et

al. (2013) adopted the measure of overall fit of the estimated values to the pseudo feeder

bus injection measurements based on consumers’ aggregated meter data at the DT to

localize the energy consumption abnormalities. They utilized an analysis of variance to

create a list of suspected consumers and estimate the actual consumption based on the state

estimation results. Sahoo et al. (2015) designed a temperature dependent predictive model

which utilizes SM as well as DT data to estimate TLs and discover fraudulent energy

consumption without using the actual system topology information.

2.4.2 Game Theory-based Detection

In game theory-based detection schemes, the problem of energy fraud detection is

formulated as a game between the fraudulent consumers and the UPs (Cardenas, Amin,

Schwartz, Dong, & Sastry, 2012; Amin, Schwartz, Cardenas, & Shankar Sastry, 2015).

The goal of the energy thieves is to under-report electricity usage while minimizing the

likelihood to be detected. Meanwhile, the UPs intend to maximize the probability of

theft detection and minimize the operational cost in managing this anomaly detection

mechanism. Game theory-based approaches provide a new perspective into identifying
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and curbing NTLs. The game theory framework proposed by Amin et al. (2015) considers

two environments, i.e., perfect competition and unregulated monopoly. A comprehensive

game theory model is proposed to analyze the performance of diverse classical statistical

techniques for energy theft detection. However, impractical assumptions about the ways

fraud is carried out must be made. The studies provide precise detection capacity estimates

under the considered assumptions. Cardenas et al. (2012) formulated a game between the

energy thieves and UPs. Nash equilibrium of the game is found as the probability density

function that defenders and attackers must select before sending AMI measurements. Then,

a preliminary analysis of how to choose the maximum sampling interval for SMs in order

to safeguard the privacy of consumers while still being able to retain the load shaping

attributes of demand response programs. Nevertheless, the formulation of the utility

function for all players, i.e., energy thieves and UPs, as well as potential strategies, is still a

challenging issue.

2.4.3 Classification-based Detection

The key idea of this class of detection techniques is to differentiate abnormal energy

consumption patterns from all energy consumption patterns based on a testing dataset

containing samples of both the normal and attack classes (Jiang et al., 2014). Several

works reported applications of decision tree (Nizar, Dong, Zhao, & Zhang, 2007), Extreme

Learning Machine (ELM) (Nizar et al., 2008), rough set (Spirić, Stanković, Dočić, &

Popović, 2014), SVM (Nagi et al., 2010) and multi-class SVM (Jokar, Arianpoo, & Leung,

2016) to detect NTLs. Nizar et al. (2007) adopted Naïve Bayesian and decision tree to

determine the type of data which provides maximum accuracy with reference to NTL

analysis in the electricity distribution sector. In anotherwork, Nizar et al. (2008) investigated

the efficiency of SVM technique, ELM and online sequential ELM variant to identify the

anomalous consumption trend, which indicates energy fraud based on consumers’ load
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profile assessments. Spirić et al. (2014) utilized the rough set theory to identify electricity

fraud committed by energy thieves. Based on the amount of uninvoiced/lost electricity

due to fraud, they formed a list of suspected consumers. Meanwhile, Nagi et al. (2010)

proposed a data mining method together with SVM classifier to detect abnormal behaviors

using two-year historical consumption data. The long term trend in energy consumption

and computed average daily consumption of consumers were used to detect fraudulent

customers. On the other hand, Jokar et al. (2016) adopted multi-class SVM for detecting

various types of anomalies in electricity consumption. Aside from the SVM method,

other classification techniques, such as fuzzy classification (Dos Angelos, Saavedra,

Cortés, & de Souza, 2011) and neural networks (Muniz, Figueiredo, Vellasco, Chavez, &

Pacheco, 2009) are adopted to detect energy fraud. Dos Angelos et al. (2011) proposed

a fuzzy computational technique to classify energy consumption profiles. Particularly,

their proposal consists of two steps. A C-means-based fuzzy clustering is performed

to find consumers with similar consumption profiles in the first step. Secondly, fuzzy

classification is carried out using the fuzzy membership matrix and Euclidean distance to

the cluster centers. Finally, the distance measured are normalized and ordered, resulting in

a unitary index score. Therefore, the potential energy thieves with anomalous patterns

of energy consumption can be revealed with the highest scores among the index scores.

Muniz et al. (2009) proposed an intelligent system to improve the detection accuracy of

irregularities among low tension consumers. The proposal consists of two basic modules,

namely filtering and classification. Each module is comprised of an ensemble of five

neural networks. Then, each network has an output to classify the consumers into irregular

or normal. Besides, regression models such as the Auto-Regressive Integrated Moving

Average (ARIMA) (Krishna, Iyer, & Sanders, 2016) and Auto-Regressive Moving Average

(ARMA) (Mashima & Cárdenas, 2012) have been also adopted for forecasting a time series.
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Assuming that the forecasting model is trained with benign data, the use of ARIMA and

ARMA for NTL detection is according to the comparison between forecast and measured

values (Messinis & Hatziargyriou, 2018). A larger difference implies higher probability of

fraud. Both models are well-known for time series forecasting. Nevertheless, Krishna,

Iyer, and Sanders (2016) demonstrated that ARIMA outperforms ARMA for domestic

consumers. More recent work by Krishna, Lee, Weaver, Iyer, and Sanders (2016) explored

Kullback-Leibler Divergence (KLD) to detect sophisticated electricity theft attacks that

circumvent detectors. In their work, KLD is utilized to compare the distribution of a set of

measurements with a baseline which is obtained from the historical distribution. The goal

of their proposal is to detect a smart attack that disguise anomalous usage as a benign one

by fitting it to a legitimate ARIMA model. Thus, it can still identify energy frauds even

they are included in the training set. On the other hand, Jindal et al. (2016) designed a

decision tree and SVM-based classifiers for rigorous analysis of energy consumption data

to detect energy fraud. More specifically, their proposal can be considered as a two-level

data processing and analysis approach, since the data processed by decision tree is fed as an

input to the SVM classifier. The authors in Villar-Rodriguez, Del Ser, Oregi, Bilbao, and

Gil-Lopez (2017) designed a novel algorithm to detect energy consumption outliers in SGs

based on concepts from probabilistic data mining and time series analysis. The proposal is

able to accommodate time irregularities (i.e., shifts and warps) in the consumption habits

of the consumer by concentrating on the trend of the energy consumption rather than on

the temporal properties. In a recent work by Buzau, Tejedor-Aguilera, Cruz-Romero, and

Gomez-Exposito (2018), the authors proposed an methodology that utilized the auxiliary

databases and SM readings to formulate various characteristics of consumers’ consumption

behavior and also to provide additional information with regard to the geographical and

technological characteristics of the SM. These characteristics are then introduced into
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several supervised machine learning algorithms for model selection and evaluation.

Besides, it is crucial to preserve consumers’ privacy while detecting energy theft in

SGs as detailed in S. Salinas, Li, and Li (2013). In their paper, S. Salinas et al. (2013)

proposed a Lower-Upper Decomposition (LUD) algorithm to solve a linear system of

equations (LSE) for consumers’ honesty coefficients while ensuring consumers’ privacy.

In LUD, when the consumers steal energy at variable rates, the collector will obtain the

honesty coefficient vector and count the number of elements that are not equal to 1. Their

proposal can infer by statistics whether it is possible to have that many energy thieves in the

community. If it is unlikely for this event to happen, the collector will reduce the sampling

period and re-invoke the algorithms again, until the possibility of that event is high and

honesty coefficient does not change any more. However, their proposal does not consider

technical losses and it is restricted by the dimension of the consumers’ energy consumption

data (i.e., the data matrix must be a square matrix) due to the characteristic of LUD. In

order to meet the dimension requirements, S. Salinas et al. (2013) need to reduce/increase

the time granularity. Nevertheless, it might not be practical to reduce the sampling period

or increase the time granularity indefinitely due to the memory size of SM.

However, some of the classification-based detection methods are vulnerable to

contamination attacks. Specifically, an energy thief can deceive the learning machine to

accept a malicious trend as a normal one through granular changes in data and pollution

on the dataset. Besides, most of the machine learning-based detection approaches

typically require long term monitoring and measurements before theft detection can be

performed accurately. The large sample size requirement generally results in longer

detection delay (Jokar et al., 2016). In addition, most NTL detection schemes do not

consider TLs, which may prohibit their deployment for actual utilization.

To address some of the limitations of previous work, LR-based and LP-based detection

43

Univ
ers

ity
 of

 M
ala

ya



frameworks for identifying energy theft and meter irregularities which are not restricted

by the dimension of consumers’ power consumption data as well as its time granularity

are proposed in this thesis. The proposed detection frameworks are able to detect NTL

events regardless of whether they occur all the time or at varying rates during intermittent

periods in a day. In pursuit of higher detection rate and lower false positives, the impact

of TLs and measurement noise on the detection frameworks are taken into consideration.

A diverse set of NTL attack functions is investigated and evaluated on the proposed

detection frameworks to confirm the reliability of the proposals in real-world AMI energy

frauds/metering defects scenarios. No extra hardware costs will incur as UPs can directly

apply the proposed frameworks to detect the localities of defective and compromised SMs

wholly based on the collected energy consumption data. In such a case, the costs incurred

due to NTL events and false positives can be mitigated. This in turn reduces the overall

operation costs of UPs and paying prices for consumers.

2.5 Summary of Chapter

The goals of all UPs worldwide are to minimize operation costs and maximize revenues,

which usually require dealing with electricity losses such as TLs and NTLs. Energy theft,

which is the main contributor of NTLs must be ameliorated as these losses contribute to

the costs of energy, which is also passed to the benign paying consumers. Fortunately,

while the occurrences of NTLs have been increasing, the introduction of SG technologies

has brought about better methods to identify and analyze suspected energy fraud. The

SMs and smart devices are able to provide fine-grained data that can be leveraged by

data analytics and software to detect the localities of energy frauds and metering defects

accurately. Leveraging all these smart devices for revenue protection enable UPs to obtain

enormous payback benefits from their investment in SG deployment.

From all the existing solutions available which include Supervisory Control and
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Data Acquisition (SCADA) systems, NILM, SVM and on-site investigations, the current

approach is to utilize consumers’ fine-grained energy consumption data and data analytics

as a way of revealing energy fraud and meter irregularities. For this reason, a fraud

detection scheme similar to those implemented by energy industry and other businesses,

such a bank loan applications and credit card transactions is highly recommended for

deployment by UPs.

This chapter studied the fundamental of SGs and various aspects of AMI. The literature

and background related to electricity losses in electrical distribution system, including TL

and NTL activities were reviewed. In addition, various means of energy theft including

direct connections, meter tampering and speed reduction of the rotating disk in both LV

and HV energy meters were discussed. In the end, a comprehensive review of existing NTL

detection schemes, which include state-based, game-theory-based and classification-based

detection, was also presented.
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CHAPTER 3: LINEAR REGRESSION-BASED ANOMALY DETECTION
FRAMEWORK

3.1 Overview

This chapter presents in detail two anomaly detection schemes for identifying energy

theft and meter irregularities. As discussed in Chapter 2, UPs suffer tremendous losses

up to billions of dollars annually due to NTLs (Northeast Group, 2017). Therefore, it

is crucial to explore different approaches to mitigate NTLs due to electricity thefts and

inaccurate meters readings. To address NTLs, UPs such as British Columbia Hydro are

convincing consumers to install SM in their household so that UPs can leverage on the

energy consumption data collected from the AMI to identify possible defective meters

and abnormal consumers’ consumption patterns (Krishna, Lee, et al., 2016). In this

chapter, two linear regression-based detection schemes are designed to study consumers’

energy utilization behavior and their anomaly coefficients are evaluated to combat energy

theft caused by meter tampering and detect defective SMs. Any anomalies not following

the utilization trend may be indicative of energy thefts or metering defects. Categorical

variables and detection coefficients are also introduced in the framework to identify the

periods and localities of energy frauds as well as faulty SMs when NTLs only take place

during a certain period in a day.

3.2 Motivation

Most state-of-the-art SMs (Comed, 2017) are equipped with tamper-detection and

encrypted communication features. Nonetheless, dependence on these security

mechanisms alone is inadequate to ensure total defense against cyber-intrusions which

exploit communication and network vulnerabilities. Specifically, AMI can be exploited by

the energy thieves to perform a number of attacks for falsifying the energy utilization

statistics because SMs are vulnerable to more sophisticated types of NTL attack such as
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network-borne attacks. Consumers’ consumption data may be compromised at three

different stages, namely, during transmission to utility provider (UP), while it is being

recorded, or after it is stored (Xiao et al., 2013). Since the conventional methods for

mitigating NTLs impose high operational costs (e.g., on-site inspection where extensive

deployment of human resources is involved (Nizar, Dong, Jalaluddin, & Raffles, 2006)),

this research aims at reducing the operational costs of UP by detecting NTL activities

through deployment of AMI in SGs. In general, the existing NTL detection schemes are

vulnerable to contamination attacks/non-malicious factors and require large sample size

for detection analysis, thereby limiting the detection rate (Jokar et al., 2016). Therefore, an

anomaly detection framework that can efficiently detect energy theft attacks against AMI

has become significantly imperative for reducing costs and revenue losses incurred due to

NTLs. In this chapter, the goal is to detect NTL attacks under the assumption that the

energy thieves have successfully compromised the integrity of consumers’ consumption

readings.

3.3 Architecture of Smart Grid in Neighborhood Area Network

This section presents the communication and electrical network architectures considered

in this thesis. In AMI, the electrical and communication networks overlay each other and

all electrical and communication flows are bidirectional (Fang et al., 2012). According

to the surveys of SG (Li et al., 2010; Yan et al., 2013), the architecture of SG in a NAN

can be illustrated in Figure 3.1. Further details on Electrical Network and Communication

Network will be provided below.

3.3.1 Communication Network

The SMs installed in households, data collector, operation center and DS form a NAN. In

a NAN, UP relies on an operation center to monitor the DS and distribution networks. The
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Figure 3.1: The architecture of smart grid in neighborhood area network.

communication among the SMs and the data collector are conducted in a wireless manner

while the communications among the collector, operation center and DSare conducted

via wired medium such as power feeder line (J. Liu, Xiao, & Gao, 2014). In this study,

it is assumed that all consumers’ premises are endowed with a SM. Therefore, the effect

caused by consumers without a SM is not considered.

3.3.2 Electrical Network

Similar to the conventional electrical grid system, the power supply of SGs in a NAN

is usually serviced by the same UP. The UP builds a DS, which is also known as fuse

box (J. Liu et al., 2014) within every neighborhood. The DS acts like an ‘electricity router’

to distribute power to all the consumers in the neighborhood. A master SM, known as the

data collector is endowed inside the DS to measure the aggregated power supply from the

UP to all consumers at a utility selected interval (e.g., every 50 consumers per phase) in the

NAN (Accenture, 2011) at time interval ti, denoted by cti , but not the power consumption

of each consumer.

Therefore, in order to track the power consumption of each consumer n ∈ N =
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Figure 3.2: A radial electrical network topology in neighborhood area network.

{1, 2, · · · N}, UP installs a SM at each consumer’s household. The SM of consumer n

automatically records energy consumption as a function of time interval ti (subject to the

time granularity of the SM), denoted by pti,n and computes the consumption cost of each

household. Specifically, the SM reading is recorded at time stamp ti, where the interval is

ti − ti−1 (Han & Xiao, 2014).

Since most power distribution networks are radial in practice, only radial topology as

shown in Figure 3.2 is considered. In the NAN as illustrated in Figure 3.3, the leaf nodes

(i.e., consumers) are connected to the root node (i.e., DS). Besides, the losses (i.e., both

TLs (λ) and NTLs due to energy theft (θ) and faulty SMs (γ)) are also modeled as leaf

nodes. Since active power is additive, the total energy supplied by the root node to the

NAN should tally with the sum of electricity consumption reported by all the leaf nodes at

time interval (ti) (Rashed Mohassel et al., 2014). Thus, the following equation holds:

cti =

N∑
n=1

pti,n + λ + θ + γ, (3.1)

where λ denotes the TLs, while θ and γ indicate inaccurate meter readings due to energy

thefts and faulty SMs, respectively.

Therefore, if θ > 0 (i.e., energy theft exists) or γ < 0 (i.e., at least one SM is

malfunctioning), the discrepancy in meter reading at time interval ti, denoted by yti , is
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Figure 3.3: Illustration of a radial electrical network topology. Circle represents
the root node (i.e., distribution substation). Rectangles represent the leaf nodes (i.e.,
consumers and electricity losses).

computed as:

yti = cti −

N∑
n=1

pti,n = λ + θ + γ. (3.2)

3.4 LR Model for Detecting NTLs

In this section, the mathematical model for detecting energy theft andmeter irregularities

in a NAN is presented. Suppose that UP equips a SM at each household to record the

electricity consumption at some predefined time intervals. Meanwhile, a data collector is

installed inside the DS such that it can measure the aggregated power supply from the UP

to the service area.

Consider a service area consisting of N consumers. Recall that pti,n and cti denote the

near real-time energy consumption recorded by consumer n and data collector, respectively,

at time interval ti ∈ T = {t1, t2, · · · , tT }. Then, an anomaly coefficient, denoted by an is

further defined for each consumer such that an = 0 if consumer n is honest in reporting his

energy consumption. Therefore, (an + 1)pti,n gives the cumulative energy consumption

reported by consumer n at ti. As discussed in Section 3.3.2, the sum of electricity

consumption reported by all the consumers must agree with the total load consumption

measured by the collector at time interval ti (S. Salinas et al., 2013), the following equation
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can be formulated:

(a1 + 1)pti,1 + (a2 + 1)pti,2 + ... + (an + 1)pti,n = cti . (3.3)

Re-arranging which gives:

a1pti,1 + a2pti,2 + ... + anpti,n = cti −

N∑
n=1

pti,n. (3.4)

Similar to Equation (3.2), the right hand side of Equation (3.4) is the difference between

the total electricity supplied by the UP and the sum of energy consumption reported by all

consumers in the service area at time interval ti.

Note that the proposed LR model does not consider TLs (in which its percentage is

denoted by λ) in the SGs. TLs occur during power distribution and transmission, which

involve DS, transformers and line-related losses (Nizar, Zhao, & Dong, 2006). TLs might

also occur due to dynamic environment factors (e.g., temperature) and are caused by the

LV power lines as well as intrinsic inefficiencies in the transformers (S. Salinas et al.,

2013). Nonetheless, Sahoo et al. (2015) proposed a method to precisely compute TLs in

branches of distribution system. In their proposal, a specific circuit is assumed for each

branch. By applying the least square regression to the data from distribution transformers

and the current readings collected by smart or conventional power meters, the resistances

of the lines connecting the consumption points to the distribution transformers as well as

the non-ohmic losses are calculated. These parameters are then utilized to predict TLs

in future time intervals. Thus, once the TLs are calculated from Sahoo’s approach, the

proposed model can be adjusted accordingly by subtracting TLs from vector y as expressed

in Equation (3.2).

Themain goal is to find anomaly coefficient of consumer n (an) in the system of equations
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Table 3.1: Description of an

Scenario Description
an = 0 Consumer n is honest in energy consumption reporting
an > 0 Consumer n under-reports what was consumed
an < 0 The n-th SM over-reports what was consumed

from Equation (3.4) in order to evaluate the anomalous behavior of each consumer or

reliability of SM endowed in each household. In particular, there are three possibilities as

summarized in Table 3.1.

Suppose that the electricity consumption is sampled over T time intervals in a day. A

LSE for the detection of electricity theft and metering defects can be formulated as follows:



a1pt1,1 + a2pt1,2 + ... + aN pt1,N = yt1

...

a1ptT ,1 + a2ptT ,2 + ... + aN ptT ,N = ytT

(3.5)

The LSE can also be expressed in matrix-vector form:

Pa = y (3.6)

where

P =



pt1,1 pt1,2 . . . pt1,N

pt2,1 pt2,2 . . . pt2,N

...
...

. . .
...

ptT ,1 ptT ,2 . . . ptT ,N


,

a = [a1, a2, · · · , aN ]
′ and y = [yt1, yt2, · · · , ytT ]

′. (3.7)

Here, the ti-th row of P represents the data recorded by all N consumers at the ti-th
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time interval. On the other hand, the n-th column of P denotes the data measured by the

SM for consumer n over all ti. In this model, a is a column vector consisting of anomaly

coefficients a1, a2, · · · , aN .

The scenario is explained using a simple 2-consumer topology, namely consumer A

and consumer B, respectively. As mentioned previously, if there are no energy thefts or

defective SMs at ti, meter discrepancy at time interval ti (yti ) is equal to 0 in Equation (3.2).

Then, Equation (3.4) becomes aApti,A + aBpti,B = yti = 0 because the sum of consumption

readings of all consumers matches the total power supplied by the UP. In particular, both

aA and aB are 0 as the energy reporting of the consumers are truthful. However, yti , 0

implies that either the AMI is under attack or one or more of the SMs may be faulty at

ti. If consumer A is honest while consumer B reports less than what was consumed, then

aA = 0 and aB > 0. Similarly, aA > 0 and aB = 0 happen when consumer A cheats on the

SM readings while consumer B is honest.

3.5 Estimating Anomaly Coefficients using Linear Regression

In the following sections, two schemes are developed to solve the LSE for the anomaly

coefficients in Equation (3.6) using Linear Regression (LR). The objective is to enable the

data collector to reveal the localities of energy thieves and/or faulty SMs.

3.5.1 Multiple Linear Regression

A Linear Regression-based scheme for Detection of Energy Theft and Defective Smart

Meters, hereafter referred to as LR-ETDM, is first developed to detect energy thieves and

defective SMs. MLR is a modeling technique utilized to explicitly describe the relationship

between a continuous-valued response Yi and linear predictors pti,1, pti,2, · · · , pti,N . The

goal of regression analysis is to find a function that describes, as closely as possible,

the relationship between the variables so that the value of the dependent variables can
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be estimated using a range of independent variables (Amral, Ozveren, & King, 2007;

Schneider, Hommel, & Blettner, 2010). Here, yti as defined in Equation (3.2) is viewed as

the realization of a normally distributed random variable Yi ∼ N(dti, σ
2), where

dti = α +

N∑
n=1

anpti,n. (3.8)

Equation (3.8) defines a hyper-plane (Rodriguez, 2013), where the parameter α (i.e.,

known as intercept) represents the expected response when all the predictors are zero, i.e.,

pt1,1 = · · · = pti,n = 0. The parameter an represents the expected increment in the response

per unit change in pti,n when the other predictors are constant. In this study, α is set as 0

due to the assumption that the response is entirely dependent on the predictors.

An important characteristic of the linear regression-based model (i.e., Equation (3.8)) is

that it is additive (Rodriguez, 2013). Specifically, the effect of a predictor on the response is

always the same regardless of the values of the other predictors. The implicit assumptions

are:

1. The predictors are uncorrelated with each other. In other words, there is no

linear dependencies among the predictors. This assumption is reasonable so it does

not warrant changes to the model as expressed in Equation (3.8).

2. The coefficients an never change throughout the period of observation. This

assumption only holds true when the consumers cheat consistently throughout the

period of observation.

However, inconsistent cheating in energy reporting will lead to inaccurate energy fraud

and metering defects detection. Hence, it is possible for some of the dishonest consumers

to escape detection when their cheating behaviors change during the period of observation.

In this section, it is assumed that consumers steal energy or SMs are damaged all the time.
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This assumption may be unfeasible, and therefore later in Section 3.6, an enhanced model

which captures the changes of the estimated anomaly coefficients to identify the period of

energy fraud and/or metering defects will be introduced.

It has been shown in (Rodriguez, 2013) that the maximum likelihood estimate of the

coefficients a are those that minimize the residual sum of squares between yti and dti . If P

is of full column rank, then a is given by:

a = (P′P)−1P′y. (3.9)

3.5.2 Student’s t-statistic and Two-tailed p-value Approach

As mentioned in the previous section, Equation (3.9) is introduced to compute the

absolute value of all anomaly coefficients, a. However, there is no objective way to

determine whether the value of the computed anomaly coefficient is 0 or 1. In LR, the

purpose of t-statistic is to make inferences about each estimated anomaly coefficient an to

test the null hypotheses that it is equal to zero. In other words, it means that an is likely to

be 0 if its corresponding t-statistic is not significant, and vice versa.

For a hypothesis test on coefficient an, with


H0 : an = 0

H1 : an , 0
, (3.10)

the t-statistic for estimated an is computed as t = an
SE(an)

, which follows a t-distribution with

(m - p) degrees of freedom (Rodriguez, 2013; Studenmund, 2014). SE(an) is the standard

error of the estimated anomaly coefficient an, m denotes the number of observations and p

is the number of regression coefficients.

Each t-statistic tests for the significance of each an given other coefficients in the
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model. Meanwhile, p-value is a function of the t-statistic that is utilized for comparing

the probability of rejecting H0 when it is actually true. The p-value will be compared

against a threshold value, known as the significance level, under a two-tailed test. The

significance level of 5% or 1% are conventionally used as the cut-off between significant

and non-significant results (Artes, 1997), but in this study, the latter is chosen to reduce

the rate of false positives. If the p-value is smaller than a 1% significance level, it suggests

that the observed data are inconsistent with the assumption that the null hypothesis is true

and hence, the null hypothesis an = 0 must be rejected. It also implies that there is a

relationship between the independent variable and the dependent variable. In other words,

it indicates that the anomaly coefficient of consumer n, i.e., an, significantly contributes to

the value of the dependent variable (i.e., yti ) in the model.

3.5.3 LR-ETDM

In this section, the Linear Regression-based scheme for Detection of Energy Theft

and Defective Smart Meters (LR-ETDM) scheme is detailed. Here, a constant scenario

is assumed where the fraudulent consumers always steal energy and the defective SMs

always report more than what the corresponding consumers actually consumed.

The flow chart as shown in Figure 3.4 summarizes the LR-ETDM scheme. Assume that

the data collector labels the SM of all consumers in the service area of interest from 1 to N .

The n-th SM then transmits pti,n to the collector to allow the collector to collaboratively

compute yti , an, t-statistic and the corresponding p-value. The scheme commences by

computing the discrepancies between the total power supplied by the UP (i.e., measurement

of data collector at time interval ti (cti )) and the total energy consumption of all consumers

in the service area (i.e.,
∑N

n=1 pti,n) for time interval ti ∈ T. Then, a LSE consisting of

consumers’ reported load data, anomaly coefficients and the differences in reading is

formed as expressed by Equation (3.5). In this work, the fitlm function packaged in the
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Figure 3.4: Flow chart of the LR-ETDM scheme.

Statistics Toolbox of Matlab R2014b is used to solve for the estimated anomaly coefficients

an, standard errors, t-statistics and p-values. The indicator for the constant intercept in

the fit (i.e., α in Equation (3.8)) is configured as ‘false’ so that the response is entirely

dependent on the predictors P. Next, the an, t-statistics and corresponding p-values of

all consumers (i.e., ∀n ∈ N) are found using LR method. Based on the estimated an and
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p-values, the locations of energy frauds and faulty SMs can be pinpointed accurately.

For every consumer n ∈ N, if the p-value of the t-statistic of consumer n is less than

0.01, it is obvious that this coefficient is significant at the 1% significance level given the

other estimated anomaly coefficients in the model, and hence the null hypothesis an = 0

will be rejected. Specifically, when an energy fraud or metering defect has occurred at

household n, it is unlikely that an = 0. In such a case, the estimated anomaly coefficient of

the consumer n is further investigated. Obviously, if the predicted an > 0, it means that the

consumer n is reporting less than what he/she consumes. On the contrary, an < 0 indicates

that the SM of consumer n is reporting more than what he/she consumes. In other words,

the SM may be malfunctioning. Otherwise, if an = 0 or p-value of an > 0.01, consumer n

is honest and hence the SM is neither fraudulent nor faulty. Note that the collector invokes

LR-ETDM scheme at the end of each day after data collection has completed.

It is observed that LR-ETDM may not be numerically stable when the fraudulent

consumers do not steal energy constantly. Specifically, LR-ETDM may not detect all

energy thieves when fraudulent consumers only cheat during a particular period in a day.

For instance, they only cheat during the peak hours. The inaccuracies are due to the

limiting factors of regression model. As discussed in Section 3.5.1, linear regression

explicitly assumes that the anomaly coefficients an do not change throughout the period of

observation (Chambers & Dinsmore, 2014). In other words, linear regression presumes

that if a consumer cheats, he/she cheats at the same rate throughout the day. Thus, some of

the dishonest consumers could stay undetected when they do not cheat all the time.

Therefore, in Section 3.6, the assumption of constant anomaly coefficients is removed

and an enhanced scheme is put forward to reveal the locations and periods (i.e., during

off-peak, on-peak of a day or whole day) of energy theft or device failure by introducing

categorical variables in linear regression.
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3.6 Estimating Varying Anomaly Coefficients using Categorical Variables

In LR-ETDM, it is assumed that the anomaly coefficients, a1, a2, · · · , aN are constant.

However, it is possible that the rate at which the fraudulent consumers steal electricity

is variable when they commit energy theft (S. Salinas et al., 2013). In SGs, time-of-use

(TOU) pricing scheme is also present in AMI. TOU scheme refers to a pricing scheme

in which energy costs more during peak load period, and vice versa. Specifically, TOU

scheme divides a day into several periods known as tariffs, typically off-peak and on-

peak (McLaughlin et al., 2010) tariffs. Therefore, consumers will be motivated to reduce

energy costs by shifting some energy-intensive loads to off-peak hours or tampering with

the SM readings during the peak demand period. It is observed that when dishonest

consumers attempt to falsify their energy consumption inconsistently, LR-ETDM gives an

anomaly coefficient vector where some of the predicted elements are showing inaccurate

values. To overcome the deficiency in the LR-ETDM scheme, another scheme, Categorical

Variable-Enhanced Linear Regression-based scheme for detection of Energy Theft and

Defective SmartMeters (CVLR-ETDM) is proposed, by introducing categorical variables

in linear regression through dummy coding to resolve the varying cheating problem.

3.6.1 Categorical Variables in Regression: Dummy Coding

Linear regression allows the inclusion of categorical independent variables known

as dummy variables through dummy coding. It is utilized when one wants to compare

other groups of the predictor variables with one specific group of predictor variables

(i.e., reference group) (Pedhazur, 1997). Dummy variables take the values of 0 or 1.

Specifically, the value of 0 and 1 imply the absence and presence of the attribute of the

category, respectively. It is necessary to create k − 1 dummy variables where k indicates

the number of categories of the predictor (Starkweather, 1997; Skrivanek, 2009).

In this study, the categorical variables, xi for i = 1, 2, · · · , N are included to categorize
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the time of fraud or metering defect of consumers 1, 2, · · · , N . The period of energy theft

or metering defect is grouped into two categories, namely off-peak (i.e., from 08:00 P.M.

to 07:59 A.M.) and on-peak (i.e., from 08:00 A.M. to 07:59 P.M.). As a dummy variable,

off-peak and on-peak are denoted by 0 and 1, respectively. In the regression equation, the

coefficient for the dummy variable would indicate how the on-peak attribute has an effect

on the dependent variable in reference to the off-peak attribute. The category which is

designated as 0 (i.e., off-peak) in the categorical variable is known as the reference group.

Consider a NAN consisting of N consumers. In the NAN, each energy thief commits

energy theft independently and randomly. Let x denotes the categorical variables in the

model. The period of energy theft or metering defect (i.e., off-peak and on-peak) can be

identified by defining another metric known as detection coefficient, β to the regression

equation as follows:



a1pt1,1 + ... + aN pt1,N + β1pt1,1x1 + ... + βN pt1,N xN = yt1

...

a1ptT ,1 + ... + aN ptT ,N + β1ptT ,1x1 + ... + βN ptT ,N xN = ytT ,

(3.11)

whereby βn indicates whether consumer n cheats inconsistently in a day for n = 1, 2, · · · , N .

Since the category ‘off-peak’ is the reference group, it is designated as 0 in the dummy

variable. Thus, a LSE is formed to identify random fraudulent consumers who cheat

during off-peak hours as follows:

a1pto,1 + ... + aN pto,N + β1pto,1 · 0 + ... + βN pto,N · 0 = yto, (3.12)

whereby pto,n denotes the energy consumption reported by consumer n during off-peak

hours at time interval to ∈ {08:00 P.M., 08:30 P.M., · · · , 07:30 A.M.}. Note that the time

granularity is 30 minutes. Thus, the following equation holds:
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a1pto,1 + ... + aN pto,N = yto, (3.13)

for ∀ to.

The LSE can also be expressed in matrix-vector form:

Poffa = yoff, (3.14)

which is similar to Equation (3.6). In Equation (3.14), a represents the vector of anomaly

coefficients of consumers during off-peak hours.

On the other hand, the group ‘on-peak’ is designated as 1 in the dummy variable. Thus,

another LSE is formed to detect consumers who perpetrate theft during on-peak hours or

faulty SMs as follows:

a1ptp,1 + ... + aN ptp,N + β1ptp,1 · 1 + ... + βN ptp,N · 1 = ytp, (3.15)

which can also be re-arranged as:

(a1 + β1)ptp,1 + ... + (aN + βN )ptp,N = ytp, (3.16)

whereby ptp,n denotes the energy consumption reported by consumer n during on-peak

hours at time interval tp ∈ {08:00 A.M., 08:30 A.M., · · · , 07:30 P.M.}.

In matrix form, the LSE for the ‘on-peak’ group can be expressed by:

Ppeak(a + β) = ypeak, (3.17)

where (a+β) denotes the anomaly coefficients of consumers during on-peak hours. a itself
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Table 3.2: Description of a, β and (a + β)

Scenario a β a + β Description
1 = 0 = 0 = 0 Honest
2 > 0 = 0 > 0 Cheating constantly
3 < 0 = 0 < 0 Faulty constantly
4 = 0 > 0 > 0 Cheating during on-peak
5 = 0 < 0 < 0 Faulty during on-peak
6 > 0 −a = 0 Cheating during off-peak
7 −β > 0 = 0 Faulty during off-peak

denotes the anomaly coefficients of consumers during off-peak period. The coefficient

for categorical variable, known as detection coefficient (i.e., β) would indicate how the

on-peak attribute has an impact on the dependent response y.

By applying Equation (3.9), the maximum likelihood estimator of the regression

coefficients are thus computed by:


a

β

 = ((P
aug)′Paug)−1

(Paug)′y (3.18)

where,

Paug =


Poff 0

Ppeak Ppeak

 . (3.19)

By investigating the estimated a and β, the dishonest consumers can be deduced

whether they are committing theft either all the time or only during a particular period

in a day. The following seven scenarios describe the operation of Equation (3.14) and

Equation (3.17) to identify cheating consumers or faulty SMs that occur constantly or

occasionally through dummy coding. The possible scenarios of each consumer (i.e., n = 1,

· · · , N) are summarized in Table 3.2.

• Scenario 1: Obviously, both a and β equal to 0 imply that each consumer is honest

in his/her energy reporting.
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• Scenario 2: When a is positive while β = 0, the sum of a and β is also positive.

β = 0 indicates that the anomaly coefficient is constant throughout the observed

period. Therefore, it can be concluded that the consumer is cheating on his/her

energy consumption in both off-peak and on-peak periods (all the time).

• Scenario 3: If a is negative and β = 0, the total of a and β is also negative. These

combinations imply that the SM in the consumer’s premise is out of order all the

time.

• Scenario 4: a = 0 and β is positive. The positive sum of a and β indicates that the

consumer is cheating only during on-peak period. a = 0 implies that there are no

cheating or device failure during off-peak hours. Positive β shows that there is a

status change from non-cheating during off-peak to cheating during on-peak.

• Scenario 5: Meanwhile, a = 0 and β < 0 show that SM is defective during on-peak

(i.e., a + β < 0).

• Scenario 6: a is positive while β = −a (negative). The resultant of a and β is equal

to 0. These combinations imply that the consumer is cheating on his/her energy

consumption only during off-peak period. He/she does not steal electricity during

on-peak because a + β = 0.

• Scenario 7: β is positive and a = −β. In such a case, a + β = 0, thereby indicating

that the SM is faulty during off-peak and is working fine during on-peak times.

Scenarios 5 and 7 are not realistic, but are included here for completeness of discussion.

3.6.2 CVLR-ETDM

The flow chart in Figure 3.5 shows the operations in Categorical Variable-enhanced

LR-ETDM (CVLR-ETDM). Categorical variables are incorporated in the regression model

as dummy variables prior to the invocation of CVLR-ETDM. In this work, there are two
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Figure 3.5: Flow chart of the CVLR-ETDM scheme.

time attributes (i.e., k = 2), namely off-peak and off-peak. Therefore, one dummy variable

(i.e., k − 1 = 1) is created for each consumer. In total, there are 2N coefficients (i.e.,

N anomaly coefficients and N dummy variables). Recall that, off-peak and on-peak are

designated by 0 and 1, respectively.

Next, the p-value of βn is verified to test the significance of the coefficient given the

other coefficients. If the p-value of βn is less than 0.01, it means that the t-statistic is

significant at the 1% level given the other coefficients. In other words, βn is non-zero
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(i.e., an is not constant) and thus consumer n or n-th SM has different cheating pattern

throughout the period of observation. In such a case, (peakTn = an + βn) is computed

to solve Equation (3.17) for determining the anomaly coefficient of consumer n during

on-peak hours. The outcome of peakTn > 0 and an = 0 indicates that SM reading of

consumer n is reporting less only during on-peak hours. If peakTn < 0 and an = 0, it

implies that the n-th SM is malfunctioning during on-peak period. When peakTn = 0 and

an < 0, the n-th SM is malfunctioning during off-peak hours. Otherwise, peakTn = 0 and

an > 0 indicate that consumer n steals energy during off-peak period.

On the other hand, the p-value of βn greater than 0.01 implies that an of consumer n

is constant. That is, consumer n cheats or n-th SM is faulty consistently throughout the

period of observation. In such a case, if an > 0, it shows that the consumer reports less in

his/her energy consumption reporting all the time. Otherwise, the n-th SM is out of order

when an < 0. Apart from that, an = 0 shows that consumer n is honest in reporting his/her

electricity consumption.

3.6.3 Differences of Data Involved for LR-ETDM and CVLR-ETDM

In this section, graphical illustrations to show the differences of data involved for the

computation of LR-ETDM (i.e., Equation (3.5)) and CVLR-ETDM (i.e., Equation (3.11))

are presented to elaborate each MLR-based anomaly detection scheme for the beneficial of

reader to understand the proposed LR-based schemes.

Consider a NAN consisting of N consumers. Suppose that the SM readings are sampled

overT time interval everyday. Let pti,n and cti denote the near real-time energy consumption

recorded by consumer n ∈ N = {1, 2, · · · , N} and collector, respectively, at time interval

ti ∈ T = {t1, t2, · · · , tT }. Anomaly coefficient, denoted by an, is defined for each consumer

n to assess the reliability of SM endowed in each household or honesty level of each

consumer in energy reporting. Recall that yti is the discrepancy between the total electricity
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supplied by the UP and the sum of energy consumption reported by all consumers in the

service area at time interval ti.

As initial work, the constant scenario is first considered whereby energy thieves never

stop cheating and/or defective meters are faulty all the time. Therefore, the rate and pattern

of cheating/malfunctioning remain the same throughout the period of observation. The

data involved to solve the LSE in Equation (3.5) for the detection of constant anomaly

coefficients using LR-ETDM is graphically represented in Figure 3.6. One-day half-hourly

metered energy consumption data (i.e., 48 data points, highlighted in blue) are extracted

for the detection of constant anomaly coefficients as long as the number of observations

is greater than the number of consumers in the service area (i.e., T > N). Here, the ti-th

row of the table in Figure 3.6 represents the data recorded by all N consumers and meter

discrepancy at the ti-th time interval. On the other hand, the n-th column and the last

column of the table in Figure 3.6 denote the data measured by the SM for consumer n and

the meter discrepancies, respectively, over all ti. For service area of larger size when the

number of consumers is more than the number of observations (i.e., N > T), the energy

consumption data are observed over longer period to improve the detection rate.

However, some of the energy thieves and/or defective meters evade detection when

NTLs occur only during a certain period in a day, as discussed in Section 3.6. Specifically,

LR-ETDM tends to produce an incorrect anomaly coefficient vector where some of the

predicted elements show inaccurate values when dishonest consumers attempt to falsify

their energy consumption inconsistently. To overcome the shortcoming of the LR-ETDM

scheme, a Categorical Variable-Enhanced LR-ETDM (CVLR-ETDM) is put forward to

solve varying anomaly coefficients. The data involved to solve the LSE in Equation (3.11)

for the detection of varying anomaly coefficients using CVLR-ETDM is illustrated in

Figure 3.6. In this work, categorical variable of consumer n (xn) is introduced to the
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Figure 3.6: Graphical illustration to show the data involved for the computation of
the LR-ETDM scheme.

framework to categorize the time of under-reporting/over-reporting by n-th SM into

two groups, namely off-peak (i.e., from 1st to 15th time intervals and from 40th to 48th

time intervals, highlighted in red) and on-peak (i.e., from 16th to 39th time intervals,

highlighted in orange). As shown in Figure 3.7, the categorical variables for off-peak

and on-peak are denoted by 0 and 1, respectively. Besides that, another metric known

as detection coefficient, βn is also defined to determine whether consumer n cheats on

energy reporting or the n-th SM is out of order inconsistently in a day. The change in

cheating/malfunctioning behavior may be quickly deduced from the detection coefficient

of consumer n (βn). Similar to LR-ETDM, one-day metered energy consumption data

are required for the detection analysis as long as the number of observations is more than

the number of consumers in the NAN. For service area of larger size, SM readings are

observed over longer period to increase the number of observations so as to mitigate the

effect of over-fitting (Tetko, Livingstone, & Luik, 1995).
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Figure 3.7: Graphical illustration to show the data involved for the computation of
the CVLR-ETDM scheme.

3.7 Summary of Chapter

This chapter puts forward two novel detection schemes, namely LR-ETDM and CVLR-

ETDM, to study consumers’ energy utilization behavior and evaluate their honestly level

in energy reporting, with the aim to reduce revenue losses and costs incurred due to

NTLs. The proposed schemes are based on MLR. Any non-zero anomaly coefficients

are indicative of energy thefts or metering defects. It is observed that LR-ETDM might

be unstable when there are inconsistent energy thefts and/or defective SMs. Therefore,

categorical variables are incorporated into MLR and CVLR-ETDM is developed so that

the framework can successfully detect consumers’ malfeasance and faulty SMs even when

there are inconsistent cheating/malfunctioning events.

To enhance detection accuracy and minimize false positives, more attention will be

devoted to handle the noise tolerance issue of the proposed schemes. Specifically, the

impact caused by TLs and measurement noise/error on the detection analysis will be taken

into consideration in the design of NTL detection scheme in the next chapter.
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CHAPTER 4: LINEAR PROGRAMMING-BASED ANOMALY DETECTION
FRAMEWORK

4.1 Overview

This chapter provides the methodology proposed for the LP-based anomaly detection

framework and implements the associated key algorithms to be used for improving detection

accuracy and reducing false positives. The first sub-chapter presents the rationale behind

the new proposed anomaly detection framework. The next sub-chapter investigates the

impact caused by TLs and measurement noise/error on the anomaly detection analysis.

Subsequently, an optimization framework which takes into account the impact caused

by TLs and measurement noise on the design of anomaly detection framework, which

includes the energy balance analysis and fraction of reported consumption computation

is presented. Next, the problem formulation is discussed, and the flow processes of the

proposed LP-based detection schemes are elaborated in the following sub-chapters. Lastly,

a summary is given to conclude the proposed anomaly detection schemes.

4.2 Motivation

Although there exist some intelligent schemes to study consumers’ energy consumption

behavior for NTL detection in smart grids such as (S. Salinas et al., 2013; Jokar et al.,

2016), their proposals did not consider the impact caused by TLs and measurement noise on

the energy theft detection. According to Sahoo et al. (2015), an effective way of detecting

NTLs in the distribution network is by correctly estimating TLs in the network. In the

previous work as discussed in Chapter 3, two energy theft detection schemes utilizing MLR

are proposed. However, these schemes assume that power line losses are known, which in

practice may be difficult to acquire. In the real world, calibration error and TLs should be

considered in the design of the anomaly detection frameworks. In error analysis, the energy

balance error is the sum of the errors from both DS and all the consumers’ meters. The
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consumers’ meter errors are usually small and tend to cancel each other out. However, the

meter errors of the DS, are larger and influence the overall energy balance error. According

to Accenture (2011), for DS consisting of 50 consumers, the energy balance error is usually

less than 240 watts (W) when there is no downstream energy. Any energy balance signal

greater than 240 W is therefore almost certainly not measurement error but legitimate

missing energy. In the pursuit of higher anomaly detection rate, the assumption of known

power line losses is relaxed and a new LP-based anomaly detection framework that can

overcome the deficiency of the previous work is proposed in this chapter. Particularly, the

impact caused by TLs and measurement noise/error on the detection analysis is taken into

account to enhance the detection rate and minimize false positives.

4.3 Impact of TLs and Measurement Noise/Error on NTL Detection Analysis

Generally, a substantial amount of energy is lost in the power grid due to both TLs

and NTLs. NTLs primarily relate to energy theft and meter irregularities. As discussed

in Section 2.3.2, energy theft includes a number of methods to deliberately defraud the

UPs. On the other hand, TLs comprise ohmic losses in power grid caused by the line

resistances, leaking due to imperfect isolation, conversion losses at the DT, etc (Xu, 2015).

The total of TLs varies significantly throughout the day, week, month and year as some

of the components of TLs are subject to the amount of power being delivered to the

consumers (Nikovski et al., 2013). Therefore, it is challenging to determine whether the

losses is either technical or non-technical (i.e., theft).

Ideally, the electrical energy generated by the UPs should be equal to the total energy

reported by all the consumers in a service area. However, in practice, these two amounts will

not tally because losses occur as an integral result of energy transmission and distribution.

The actual losses are the difference between outgoing energy recorded by the collector at

the DS and total energy billed to the consumers. The discrepancy between actual losses
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and expected losses would yield the extent of NTLs in the service area.

It might be possible to estimate the percentage of TLs accurately using load flow analysis

if all the parameters of the distribution network were known, including the order and

attachment points of all consumers, the line resistances between the attachment points,

connection topology and the instantaneous power consumption of every consumer (Navani,

Sharma, & Sapra, 2012). Nonetheless, in practice, full knowledge of these parameters

is not feasible. For instance, UPs only know the DT serving each consumer but not

the exact line resistances or the connection order. Besides that, the instantaneous power

consumed by each consumer at any time instant can be determined only by installing

detailed measurement device, which records fine-grained measurements such as phasor

measurement units (PMUs) at each consumer’s premise. However, installation of such

device would impose higher cost to the UPs, even far exceeding the cost incurred due to

energy theft.

Before the introduction of SG, UPs collect aggregated measurements, usually over

one-month with the conventional analogue meters. With the advancement of SM, UPs

are able to predict the percentage of TLs more accurately and detect NTLs with shorter

duration based on the near real-time measurements. Nonetheless, the fine-grained scale of

analysis will not improve the detection rate significantly when the presence of TLs and

measurement noise is ignored. Specifically, if the impact caused by TLs and measurement

noise on the analysis is ignored, higher accuracy of detection might not be expected for

the systematic long-term energy theft. In other words, the proposed anomaly detection

framework might wrongly accuses some of the honest consumers as fraudulent ones, results

in a significant number of false positives in detection. Thus, it is crucial to distinguish

TL from the NTL components to accurately detect energy thefts. In order to improve the

detection accuracy and reduce false positives, TLs as well as measurement noise/error
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must be taken into consideration and more advanced intelligent detection schemes are

needed in the design of anomaly detection framework.

4.4 LP Model for Detecting NTLs

In this section, the mathematical models for detecting energy frauds and defective SMs

in a NAN are presented.

4.4.1 Energy Balance Analysis

One of the theft detection feature of the state-of-the-art MDMS is the ability to estimate

TLs. TLs can be estimated by performing energy balance between the total power supplied

by the DS and the total energy consumed by all metered consumers. In MDMS, the total

of TLs, which is also known as the loss rate, is calculated as a percentage of the total

supplied power (Nikovski et al., 2013). If the loss rate exceeds a certain threshold (e.g.,

3%), energy theft is suspected and alarm will be triggered.

The problem of detecting NTLs in a branch of radial distribution network which consists

of a DT connected to a DS and a number of consumers connected to the secondary

side of the DT as shown in Figure 3.2 is studied. Consider a service area consisting of

N consumers. Let pti,n and cti denote the near real-time energy consumption recorded

by consumer n and data collector, respectively, at time interval ti ∈ T = {t1, t2, · · · , tT }.

Similar to the previous work in Chapter 3, an anomaly coefficient, denoted by an, is defined

for each consumer such that an = 0 if consumer n is truthful in reporting his energy

consumption. Any non-zero an is indicative of energy fraud or faulty SM. As discussed

in Chapter 3, since most power distribution networks are radial in practice, only radial

topology as shown in Figure 3.3 is considered. Recall that, the leaf nodes (i.e., consumers)

are connected to the root node (i.e., DS). Besides, the losses (i.e., both TLs and NTLs)

are also modeled as leaf nodes. As active power is additive, the total energy supplied by
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the root node to the NAN should equal the sum of electricity consumption reported by all

the leaf nodes at time interval ti (Rashed Mohassel et al., 2014). Therefore, the following

equation is formulated:

N∑
n=1

pti,n + λ + θ + γ = cti, (4.1)

where λ denotes the TLs, while θ and γ indicate inaccurate meter readings due to energy

thefts and faulty SMs, respectively.

Leveraging the loss rate computed by the MDMS, another metric known as the loss

factor, lti is introduced in Equation (4.1) to capture the amount of TLs, denoted by λ,

during each time interval. Here, λ is assumed to be proportional to cti with the proportion

coefficient lti . Specifically, the following equation holds:

λ = lticti . (4.2)

When TLs are taken into account, high accuracy of NTL detection due to electricity

pilfering and faulty SMs could be achieved even with the existence of sophisticated energy

theft.

Therefore, Equation (4.1) can also be mathematically formulated as:

(a1 + 1)pti,1 + (a2 + 1)pti,2 + ... + (aN + 1)pti,N + lticti = cti . (4.3)

Re-arranging which gives:

a1pti,1 + a2pti,2 + ... + aN pti,N + lticti = cti −

N∑
n=1

pti,n. (4.4)

As mentioned earlier, in the event there is neither energy fraud nor faulty meter, the total
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power supplied by UPs should be approximately the same as the sum of metered consumers’

energy consumption measured for every time interval in a NAN. Slight differences will

be due to TLs (e.g., un-metered loads, line losses, etc.) connected to DS, but these are

relatively small in comparison to the NTLs caused by energy diversion.

Therefore, with reference to Equation (4.1), for the scenario where θ > 0 (i.e., energy

theft exists) as well as γ < 0 (i.e., at least one SM is faulty), the discrepancy in meter

reading at time ti, denoted by yti , is computed as:

yti = cti −

N∑
n=1

pti,n = λ + θ + γ, (4.5)

where λ = lticti > 0 shows that TLs are present in the NAN, θ =
N∑

n=1
an>0

anpti,n indicates

energy theft and γ =
N∑

n=1
an<0

anpti,n represents defective meters.

Suppose that the electricity consumption is sampled over T time intervals within a day.

A LSE for the detection of electricity theft and defective meters can be formulated as

follows: 

a1pt1,1 + a2pt1,2 + ... + aN pt1,N + lt1ct1 = yt1

a1pt2,1 + a2pt2,2 + ... + aN pt2,N + lt2ct2 = yt2

...

a1ptT ,1 + a2ptT ,2 + ... + aN ptT ,N + ltT ctT = ytT

(4.6)

Similar to previous work, the goal is to find all an, n ∈ N = {1, 2, · · · , N} of the LSE

in Equation (4.6) for evaluating the anomalous behavior of each consumer or reliability

of SM endowed in each household. Indeed, there are three possibilities as described in

Table 3.1 of Chapter 3.
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4.4.2 Fraction of Reported Consumption

Besides detecting anomalies in the consumption patterns, the operation center is also

able to compute the fraction of reported consumption (i.e., amount of under-reporting/over-

reporting) of each consumer based on the computed anomaly coefficient. Recall that, the

sum of electricity consumption reported by all the consumers,
N∑

n=1
pti,n must agree with

the total load consumption measured by the collector at time interval, cti as discussed in

Equation (4.3). The computation for fraction of reported consumption is explained using

a one-consumer topology, namely the n-th consumer. For simplicity, it is assumed that

there is neither noise in the measurement nor TLs (i.e., lti = 0). Equation (4.3) becomes

(an + 1)pti,n = cti . Therefore, the fraction of reported consumption of the n-th consumer is

computed as follows:

1
an + 1

=
pti,n

cti
(4.7)

When the consumer is honest in energy reporting, the reported energy consumption

of the consumer will tally with the total energy supplied by the collector (i.e., pti,n = cti ).

Thus, 1
an+1 = 1. On the other hand, 1

an+1 < 1 when the consumer under-reports what was

consumed (i.e., pti,n < cti ). Similarly, 1
an+1 > 1 when the consumer over-reports his/her

energy consumption (i.e., pti,n > cti ).

Meanwhile, to compute the fraction of reported consumption of each consumer either

during off-peak period or on-peak hours using CVLR-ETDM, the detection coefficient

βn in Equation (4.3), as discussed in Chapter 3 is included. Without the presence of

measurement noise and TLs, Equation (4.3) becomes (an+ βn+1)pti,n = cti . Recall that, an

itself denotes the anomaly coefficient of consumer n during off-peak period while (an + βn)

denotes the anomaly coefficient of consumer n during on-peak hours. Therefore, the

fraction of reported energy usage for each consumer during off-peak period is calculated in
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a manner similar to Equation (4.7). On the other hand, the fraction of reported consumption

of consumer n during on-peak hours is computed as follows:

1
(an + βn) + 1

=
pti,n

cti
(4.8)

Based on the values of ( 1
an+1 × 100%) or ( 1

(an+βn)+1 × 100%), the operation center is

able to estimate the percentage of under-reporting or over-reporting by each SM. Therefore,

the operation center can easily detect fraudulent consumers and discover defective SMs

in the NAN by referring to the computed anomaly coefficient, detection coefficient and

fraction of reported consumption.

4.5 Problem Formulation

In this subsection, an Anomaly Detection Framework, hereinafter abbreviated as ADF,

is developed to identify potential energy thieves and faulty SMs in a NAN. In Sections 4.5.2

and 4.5.3, two schemes are presented to solve the LSE for the anomaly coefficients using

LP. LP is chosen instead of MLR as discussed in the previous work in Chapter 3 because

of the non-multicollinearity characteristic of MLR. In other words, MLR cannot be used

to solve the LSE in Equation (4.6) when the predictors are significantly correlated due to

the fact that cti ≈ pti,1 + pti,2 · · · + pti,N . When multicollinearity is present, MLR is unable

to estimate the coefficients accurately (Studenmund, 2014).

4.5.1 Linear Programming

LP, involves minimizing or maximizing a linear objective function subject to bounds,

linear equality, and inequality constraints (Boyd & Vandenberghe, 2004). It is useful in

energy, operations research, finance and other areas where relationships between variables

can be expressed linearly. Generally, LP is the mathematical problem of finding a vector x

that minimizes the function:
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minimize cTx

subject to Aineqx ≤ bineq,

Aeqx = beq,

lb < x < ub.

(4.9)

Here, Aineq ∈ Rmxn, bineq ∈ Rm, Aeq ∈ Rpxn, beq ∈ Rp and c ∈ Rn. The term cTx is

known as the objective function. The inequality Aineqx ≤ bineq and equality Aeqx = beq

are the linear constraints while lb and ub are the lower and upper bound constraints.

Linear programs are convex optimization problems, whereby a linear program can be

solved efficiently by different methods such as simplex methods, interior point methods

and active-set methods (Xu, 2015). Since an affine objective cTx can be maximized by

minimizing −cTx, a maximization problem with affine objective and constraint functions

is also referred to as a linear program. Generally, there is no closed form solution to

Equation (4.9). The feasible set of the LP problem in Equation (4.9) is a polyhedron, P

as illustrated in Figure 4.1. The objective cTx is linear. Therefore, its level curves are

hyper-planes orthogonal to c (i.e., shown as dashed lines) in the figure. The point x∗ is

optimal. It is the furthest point in P in the direction −c.

The following methods are widely used to solve LP problems (Boyd & Vandenberghe,

2004; Koberstein, 2008):

1. Dual-Simplex: The dual-simplex method is the most widely used algorithms for

LP in Matlab. It utilizes a systematic procedure to generate and test candidate vertex

solutions to a linear program.

2. Interior point: The interior point method is very useful for large-scale linear

programs that can be defined using sparse matrices or have structure. It utilizes a

primal-dual predictor-corrector algorithm, and;
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Figure 4.1: Geometric interpretation of a LP. The shaded region, which is a
polyhedron, is the feasible set P (Boyd & Vandenberghe, 2004).

3. Interior point-legacy: The interior point-legacy method is similar to interior point

method. However, interior point-legacy method is less robust, slower and consume

more memory.

4.5.2 Solving Constant Anomaly Coefficients using ADF

Here, a constant scenario where the dishonest consumers always steal energy throughout

the entire day is first assumed. Meanwhile, faulty SMs are assumed to always report

more than what the corresponding consumers actually consumed. That is, the rate and

pattern of cheating/malfunctioning remain the same throughout the period of observation.

A LP problem in minimizing the errors of LSE in Equation (4.6) is formulated to solve

the anomaly coefficients and loss factors. For this purpose, a new metric known as

the error term, denoted by Eti is introduced to each equation in Equation (4.6) for

ti ∈ T = {t1, t2, · · · , tT } to capture the random calibration error/measurement noise of the

equipment. An accurate and efficient detection of energy theft/metering irregularities can

be formulated in terms of minimizing the measurement error/noise at each time interval,

which can be expressed as the following optimization problem:
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minimize f =
T∑

i=1
|Eti |

subject to
N∑

n=1
anpti,n + lticti + Eti = yti, ∀ti ∈ T,

Eti, an unrestricted, ∀n ∈ N, ∀ti ∈ T.

(4.10)

The variable Eti is further expressed as the difference between two non-negative

variables, namely, (E+)ti and (E−)ti , and let Eti = (E
+)ti − (E

−)ti . Specifically, Eti is split

into (E+)ti and (E−)ti to capture the positive and negative calibration/measurement error,

respectively. Thus, for Eti < 0 at the optimal stage, then (E+)ti = 0 and (E−)ti > 0. On the

other hand, when Eti > 0 at the optimal stage, then (E+)ti > 0 and (E−)ti = 0. With Eti

replaced by (E+)ti − (E−)ti , the given LP problem is equivalent to the following:

minimize f =
T∑

i=1

( (
E+

)
ti
+ (E−)ti

)
subject to

N∑
n=1

anpti,n + lticti + (E
+)ti − (E

−)ti = yti, ∀ti ∈ T,

(4.11)

(E+)ti, (E
−)ti ≥ 0, ∀ti ∈ T, (4.12)

an unrestricted, ∀n ∈ N, (4.13)

lmin ≤ lti ≤ lmax, ∀ti ∈ T. (4.14)

In general, a lower f is preferred for higher accuracy in locating the potential energy

fraudsters and/or defective SMs. As discussed in Section 4.5.1, it can be solved in a

centralized fashion by using either the dual-simplex method or the interior point method,

which is packaged in the Optimization Toolbox of Matlab R2014b. Note that the design
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of the TL estimator is not the focus of this thesis. However, the range of TLs can be

estimated based on measurements at the collector and the knowledge of the distribution

network (Au et al., 2008; Sahoo et al., 2015; Oliveira & Padilha-Feltrin, 2009). For LV

network, TLs are primarily influenced by its load factor, loading, capacity and network

type (i.e., overhead or underground). According to Au et al. (2008), the average TLs of LV

network in Malaysia was reported to range from 0.59% to 3.23%. To show the viability

of the proposed framework in the presence of TLs, it is assumed that there are 3% − 5%

TLs in a NAN (i.e., lmin = 0.03, lmax = 0.05) as captured in the constraint expressed as

Equation (4.14). The values of lmin and lmax are configured based on the estimated range

of TLs in the NAN. The flow chart as shown in Figure 4.2 summarizes the Anomaly

Detection Framework (ADF) scheme.

Assume that the collector labels the SM of all consumers in the NAN of interest

from 1 to N . Before ADF is invoked, data cleaning is performed to filter out suspicious

SMs which do not have measurements, report a constant low value all the time or have

corrupted data. Correspondingly, the faulty or compromised SMs should be inspected and

replaced so that ADF can obtain a more accurate NTL detection analysis. The scheme

commences by computing the discrepancies between the total metered energy consumption

of all consumers in the service area and the total power supplied by the UPs for time

interval ti ∈ T as shown in Equation (4.5). Then, a LSE consisting of consumers’ reported

meter data, anomaly coefficients, loss factors, total supplied power and the differences

in reading is formed as expressed by Equation (4.6). The linprog function packaged

in the Optimization Toolbox of Matlab R2014b is deployed to solve the LP for anomaly

coefficients an, loss factors lti as well as error terms (E+)ti and (E−)ti .

In this subsection, it is assumed that either the fraudulent consumer always under-reports

his/her energy reporting or the faulty SM over-reports what was consumed bymore than 5%,
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Figure 4.2: Flow chart of the ADF scheme.
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respectively. In other words, consumers who have anomaly coefficients in [−0.05, 0.05]

are assumed to be honest (i.e., an ≈ 0). The slight differences between the exact and

computed anomaly coefficients are likely due to the calibration error/measurement noise.

The reliability of SM or anomalous behavior of each consumer is evaluated by solving an

for n ∈ N as discussed in Table 3.1. Subsequently, the collector will transmit the computed

consumers’ anomaly coefficient, an and percentage of TLs, lti, ∀ti ∈ T to the operation

center. Note that the collector invokes ADF at the end of each day. For service area

of larger size, consumers’ power consumption data are observed over longer period to

increase the detection accuracy.

4.5.3 Solving Varying Anomaly Coefficients using Enhanced ADF

As preliminary work in Section 4.5.2, the anomaly coefficients a1, a2, · · · , aN are

assumed to be constant under the ADF scheme. In other words, energy thieves steal energy

at the same rate and never stop cheating throughout the period of observation. However, it

is possible that the stealing rate varies over time (S. Salinas et al., 2013). Specifically, a

fraudulent consumer can manipulate the SM in such a way that they steal energy at different

rates during random periods. Consequently, some of the fraudulent consumers/faulty

meters stay undetected by ADF when electricity pilfering/meter irregularities occur only

during a certain period in a day.

To overcome the deficiency of the ADF scheme, the assumption of constant anomaly

coefficients is removed and an Enhanced ADF scheme is put forward to solve more diverse

and sophisticated attack types as discussed in the work by Jokar et al. (2016). In such a

case, the consumers’ reported consumption readings are analyzed over a longer period

(i.e., at least N days, where N is the size of the service area) to identify the locations and

periods of the consumers’ malfeasance and meter irregularities when NTLs take place all

the time and/or at varying rates during random intermittent periods in a day.
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Consider a service area consisting of N consumers. Suppose that the consumers’ SM

readings are sampled overT time intervals everyday for a period of D days. Let pd
ti,n and ati,n

denote the energy consumption recorded by consumer n on day d ∈ D = {1, 2, · · · ,D} and

the anomaly coefficient of consumer n, respectively, at time interval ti ∈ T = {t1, t2, · · · , tT }.

Meanwhile, let cd
ti and ld

ti denote the total energy supplied by the UPs and the loss factor at

time interval ti, respectively, on day d. Therefore, the meter discrepancy at time interval ti

on day d (yd
ti ) is computed as:

yd
ti = cd

ti −

N∑
n=1

pd
ti,n. (4.15)

Then, a LSE for the detection of varying anomaly coefficients can be formed as follows:



at1,1p1
t1,1 + at1,2p1

t1,2 + ... + at1,N p1
t1,N
+ l1

t1c1
t1 = y1

t1

at2,1p1
t2,1 + at2,2p1

t2,2 + ... + at2,N p1
t2,N
+ l1

t2c1
t2 = y1

t2

...

atT ,1p1
tT ,1 + atT ,2p1

tT ,2 + ... + atT ,N p1
tT ,N
+ l1

tT c1
tT = y1

tT

at1,1p2
t1,1 + at1,2p2

t1,2 + ... + at1,N p2
t1,N
+ l2

t1c2
t1 = y2

t1

at2,1p2
t2,1 + at2,2p2

t2,2 + ... + at2,N p2
t2,N
+ l2

t2c2
t2 = y2

t2

...

atT ,1pD
tT ,1 + atT ,2pD

tT ,2 + ... + atT ,N pD
tT ,N
+ lD

tT cD
tT = yD

tT

(4.16)

To detect the energy thieves who steal energy at varying rates, the consumers’ reported

SM readings will be analyzed over a longer period according to specific time slot ti until

the computed values converge. In other words, the reported SM readings are extracted

according to time interval ti ∈ T of each day. Consider a service area consisting of N

consumers and the consumers’ metered data are observed over a week (i.e., D = 7 days).
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The LSE is formulated according to time slot ti of each day as follows:



ati,1p1
ti,1 + ati,2p1

ti,2 + · · · + ati,N p1
ti,N
+ l1

tic
1
ti = y1

ti

ati,1p2
ti,1 + ati,2p2

ti,2 + · · · + ati,N p2
ti,N
+ l2

tic
2
ti = y2

ti

...

ati,1p7
ti,1 + ati,2p7

ti,2 + · · · + ati,N p7
ti,N
+ l7

tic
7
ti = y7

ti .

(4.17)

Thus, the varying anomaly coefficients can be determined more accurately by solving

the following objective function:

For each ti ∈ T,

minimize f =
D∑

d=1

( (
E+

)d
ti
+ (E−)dti

)
subject to

N∑
n=1

ati,npd
ti,n + ld

ti c
d
ti + (E

+)dti − (E
−)dti = yd

ti, ∀d ∈ D,

(4.18)

(E+)dti, (E
−)dti ≥ 0, ∀d ∈ D, (4.19)

ati,n unrestricted, ∀n ∈ N, (4.20)

lmin ≤ ld
ti ≤ lmax, ∀d ∈ D, (4.21)

where Ed
ti denotes the error term at time slot ti on day d. As discussed in previous

subsection, the error term at time slot ti on day d (Ed
ti ) is split into (E

+)dti and (E
−)dti to

estimate the positive and negative errors in measurement, respectively. Similarly, a lower

f is preferred for higher fraud detection accuracy. Based on the anomaly coefficient of

consumer n at time interval ti (ati,n) and loss factor at time interval ti on day d (ld
ti ), the
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Figure 4.3: Flow chart of the Enhanced ADF scheme.

collector can pinpoint the location and period of energy diversions and/or faulty SMs as

well as estimate the percentage of TLs. Flow chart in Figure 4.3 describes the operations

in the Enhanced ADF scheme.

Similar to ADF, the collector labels the SM of all consumers in the NAN of interest

from 1 to N . Before Enhanced ADF is invoked, data cleaning is performed to remove the

rows of missing/corrupted data. The removal of those missing/corrupted data rows will not
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affect the anomaly detection analysis as long the number of observations are greater than

the number of consumers in the service area. Correspondingly, the faulty or compromised

SMs are inspected and replaced so that the Enhanced ADF can obtain a more precise NTL

detection analysis. The scheme begins by forming a LSE according to time slot ti, followed

by computing the mismatches between the total supplied power and the sum of consumers’

reported energy consumption of each day. Subsequently, ati,n, ld
ti , (E

+)dti and (E
−)dti are

solved using Equations (4.18)-(4.21).

For every consumer n ∈ N, if the computed ati,n > 0.05, it indicates that consumer n

tampers his SM to under-report the SM readings during the ti-th time slot. Conversely,

ati,n < −0.05 indicates that the n-th SM is out of order and reports more than what was

consumed during the ti-th time slot. Otherwise, ati,n ∈ [−0.05, 0.05] implies that consumer

n is honest (i.e., ati,n ≈ 0), thereby the SM is neither fraudulent nor faulty during the

ti-th time interval. Finally, the collector will transmit the computed consumers’ anomaly

coefficient, ati,n and percentage of TLs of the d-th day, ld
ti respectively, at the ti-th time

interval to the operation center. In the enhanced framework, the collector invokes Enhanced

ADF after data collection has completed (i.e., at least N days, where N is the size of

the service area) to observe the cheating patterns of each consumer. In this thesis, it is

assumed that each dishonest consumer always attempts to steal energy when their load

demand is higher. However, if the dishonest consumer has different cheating patterns

during weekend/public holidays, the dataset during that period will be analyzed separately

by doing minor modification to the proposed Enhanced ADF.

As discussed earlier in Section 4.4.1, the proposed anomaly detection framework detects

NTLs based on the energy balance analysis. Specifically, the proposed framework shortlists

areas with high probability of NTLs according to the discrepancy of meter readings at the

DS and model the amount of stolen energy at a SM as an anomaly coefficient. However,
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the proposed framework cannot detect theft attack that evades the balance check. For

instance, an energy thief who compromises a neighbor’s SM or by physically tapping into

the neighbor’s electrical system to ensure that the consumption of at least one of his/her

neighbors is over-reported will escape from the anomaly detection. In such a case, the

innocent neighbor will pay for the energy thief’s electricity.

4.5.4 Differences of Data Involved for ADF and Enhanced ADF

In this section, graphical illustrations to show the differences of data involved for the

computation of ADF (i.e., Equation (4.6)) and Enhanced ADF (i.e., Equation (4.17)) are

presented to elaborate each scheme for the beneficial of reader to understand the proposed

LP-based schemes.

Consider a NAN consisting of N consumers. Suppose that the consumers’ SM readings

are sampled over T time intervals everyday for a period of D days. Recall that pd
ti,n denotes

the energy consumption recorded by consumer n on day d ∈ D at time interval ti ∈ T.

Meanwhile, cd
ti and ld

ti denote the total energy supplied by the UPs and the loss factor,

respectively, at time interval ti on day d. The discrepancy in meter reading at time slot ti

on day d is denoted by yd
ti .

As preliminary work, it is assumed that the fraudulent consumers never stop cheating and

the defective SMs are out of order all the time. In other words, the rate and cheating pattern

of under-reporting/over-reporting remain the same throughout the period of observation.

That is, the anomaly coefficient for each consumer an remain constant all the time. The

computation to solve the LSE in Equation (4.6) for the detection of constant anomaly

coefficients using the ADF scheme is illustrated in Figure 4.4. One-day half-hourly metered

energy consumption data (i.e., highlighted in blue) are required for the anomaly detection

analysis as long the number of observations is greater than the number of consumers (i.e.,

T > N) in the service area. For service area of larger size especially when number of
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Figure 4.4: Graphical illustration to show the data involved for the computation of
the ADF scheme.

consumers is greater than the number of observations (i.e., T < N), consumers’ power

consumption data are observed over longer period to increase the detection accuracy.

Nonetheless, it is observed that the ADF scheme may not be numerically stable when

some of the fraudulent consumers steal energy inconsistently. Specifically, ADF may

not detect all energy thieves when they cheat during random intervals in a day. In such

a case, the anomaly coefficient for each consumer at time interval ti, ati,n varies at each

time interval. To overcome the deficiency of the ADF scheme, an Enhanced ADF scheme

is put forward to reveal the locations and periods of intermittent energy theft or device

failure. The computation to solve LSE in Equation (4.17) for the detection of random and
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varying anomaly coefficients using the Enhanced ADF scheme is graphically represented

in Figure 4.5. In Enhanced ADF, the SM readings are analyzed over a longer period (i.e.,

at least N days, where N is the number of consumers in the service area) according to

specific time slot ti ∈ T of each day until the computed values converge. This is due to the

fact that observation of metered data over longer periods leads to addition in the number

of constraints that can improve the accuracy of the theft detection analysis. As shown in

Figure 4.5, the LSE highlighted in orange formulates the anomaly detection for the first

time interval ti of each day while the LSE highlighted in red shows the anomaly detection

for the T-th interval tT of each day. In such a case, the ati,n and ld
ti are solved according

to specific time interval of each day to detect more sophisticated NTL attacks such as

intermittent electricity pilfering and/or meter irregularities.

4.6 Summary of Chapter

This chapter puts forward two new anomaly detection schemes, namely ADF and

Enhanced ADF, which takes into consideration the impact caused by TLs and measurement

noise on NTL detection analysis, with the aim to improve the detection accuracy and

minimize the number of false positives. The two proposed schemes are based on LP. The

schemes shortlist service areas with high probability of theft according to the discrepancy

of meter readings at the DS and model the amount of stolen energy at a SM as an anomaly

coefficient. Similar to the previously proposed MLR-based energy theft detection schemes,

any non-zero anomaly coefficients are indicative of energy frauds or metering irregularities.

In addition, the proposed framework is also able to estimate the percentage of TLs based

on measurements at the data collector and the knowledge of the distribution network.

Nonetheless, it is observed that some of the energy thieves/defective meters stay undetected

by the ADF scheme when electricity pilfering/metering defects occur only during a certain

period in a day. To overcome the deficiency of the ADF scheme, the metered energy
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Figure 4.5: Graphical illustration to show the data involved for the computation of
the Enhanced ADF scheme.

consumption data are observed over long periods and an Enhanced ADF scheme is put

forward to solve more diverse and sophisticated attack types so that the proposed model can

still detect meter irregularities even when there are intermittent faulty equipment/cheating.

In order to assess the performance of both the LR-based and LP-based anomaly detection

frameworks, Matlab simulation and test rig-based experiments were performed. The data

collection and test setup will be presented in the next chapter.
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CHAPTER 5: DATA COLLECTION AND TEST SETUP

5.1 Overview

This chapter describes the data collection and test setup conducted prior the evaluation

of the proposed anomaly detection frameworks. Two types of smart metering data from

different sources are presented, whereby the details are elaborated in the subsections. The

first subsection discusses the smart metering data extracted from the Smart Metering

Electricity Trial, followed by the description of data extracted from the hardware

experimentation in the laboratory. Then, these data are preprocessed and transformed into

the required format for MLR and LP by performing data cleaning and preprocessing

before the invocation of the proposed detection frameworks. The test setup of the

proposed frameworks using Matlab is presented in the next section. The last section

discusses the attack model.

5.2 Data Collection

Data collection is one of the significant stages in this thesis. Notably, the data collection

for this research study is performed in two phases. In the first phase of data collection, the

smart energy data are extracted from the Irish Smart Energy Trial in this study. The smart

energy dataset consists of half-hourly energy consumption reports for both Irish residential

and commercial premises of different contracted power during 2009 and 2010.

Initially, it is assumed that TLs in power line transmission are trivial and hence ignored.

The data collector measurement is obtained by duly summing up the energy consumption

of all consumers in the service area at each time interval when there are no energy thefts

and defective SMs, viz., original untampered data. Since the real NTL data samples

and the SM readings measured by data collector are non-existent because SG is not fully

deployed in Malaysia, the NTL scenarios such as energy fraud and meter irregularities are
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realized by artificially tampering the SM readings in simulations, which will be discussed

in Section 5.5.

In the second phase of data collection, an AMI test rig is designed and built in the

laboratory to validate the reliability and performance of the proposed anomaly detection

frameworks in real SG environment. The detailed description of the test rig will be

discussed in Section 5.2.2. Similar data are recorded in comparison to the first phase

of data collection. Apart from the half-hourly consumers’ energy consumption data, the

SM readings of total energy supplied by the UP to the service area (i.e., data collector

measurement) are also collected from the test rig.

5.2.1 Smart Metering Data from the Irish Smart Energy Trial

As mentioned in previous section, the smart energy data from the Irish Smart Energy

Trial are extracted in this research study. The dataset is released by Commission for Energy

Regulation (2009) in January 2012. The dataset includes half-hourly energy consumption

reports of over 5000 Irish homes and small businesses during 2009 and 2010. The dataset

shows the maximum energy consumed during 30-minute interval (in kilowatt-hour (kWh))

are 10kWh and 30kWh for residential and commercial premises, respectively. Consumers

who agreed to participate in the energy trial had a SM installed in their premise. Therefore,

it is reasonable to assume that all data samples belong to honest consumers. The large

number and variety of consumers, long period of measurements and availability to the

public make this dataset an appropriate source for research in the area of data analytics.

Technically, the Irish Smart Energy Trial (Commission for Energy Regulation, 2009)

consists of four main components:

1. SM: The SMs used in the energy trial are single-phase meters. These meters provide

a range of functions including export, import and reactive power register readings,
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Table 5.1: Description of consumers’ energy consumption data extracted from the
Irish Smart Energy Trial

Column Column Title Description
1 ID Consumer’s Smart Meter ID
2 Five Digit Code Day Code (digits 1-3, whereby day 001 = 1st January 2009)

Time Code (digits 4-5, whereby 1-48 for each 30 minutes with 1= 00:00:00 – 00:29:59)
3 kWh Energy consumed by each consumer during 30 minute interval (in kWh)

half-hourly profiles and an embedded load-rated switch for remote operation. Besides

that, event and alarm indications such as meter error, meter cover open, contract

exceeded, over-voltage and etc. are also available on the meter.

2. NeighborhoodAreaNetwork (NAN): Data collectormanages the communications

processes in NAN. The data collector is connected to the three phases and neutral

of the LV side of the DT and communicates with each SM via Power Line Carrier

(PLC) communications over the phase and neutral.

3. Wide Area Network (WAN): The WAN communications between the data

collectors and head end are managed through the Vodafone network. General Packet

Radio Service (GPRS) modems are equipped in each data collector.

4. Head End System: The head end system is in charge of data collection. The head

end performs automatic reading of the data collected by the data collectors and

stores these data in the MDMS database.

The consumers’ SM data extracted from the Irish Smart Energy Trial consists of six

zipped files named ’File1.txt.zip’ to ’File6.txt.zip’, whereby each containing one data file.

Each data file consists of half-hourly metering reports for a 535 day for each consumer.

Each data file is arranged into three data columns as shown in Figure 5.1. Table 5.1 details

the consumers’ energy consumption data extracted from the Irish Smart Energy Trial.

Besides, another file named as “SME and Residential allocations” is also included to

describe the category and tariff of each consumer. These allocation data are arranged into
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Figure 5.1: The screen shot of consumers’ energy consumption data extracted from
the Irish Smart Energy Trial.

Table 5.2: Consumers’ allocation information extracted from the Irish Smart Energy
Trial

Column Column Title Description
1 ID Consumer’s Smart Meter ID
2 Code The category of each consumer

(i.e., 1= Residential, 2=SME and 3=others)
3 Residential Stimulus The stimulus code for residential consumers (refer to Figure 5.2 for details)
4 Residential Tariff The tariff category for residential consumers (refer to Figure 5.2 for details)
5 SME Allocation The stimulus for SME consumers (refer to Figure 5.2 for details)

five data columns as shown in Figure 5.2. Table 5.2 describes the consumers’ allocation

information extracted from the Irish Smart Energy Trial.

94

Univ
ers

ity
 of

 M
ala

ya



Figure 5.2: The screen shot of consumers’ allocation information extracted from the
Irish Smart Energy Trial.

5.2.2 Smart Metering Data from the Hardware Experimentation

In the second phase of data collection, an AMI test rig, consisting of three consumers,

an operation center and a DS as illustrated in Figure 5.3 is designed and constructed

in the laboratory as shown in Figure 5.4 to evaluate the performance of the proposed

anomaly detection frameworks in real SG environment. The schematic diagram of the

AMI test rig is designed as shown in Figure 5.5 so that each consumer can select different

loads at each time interval to simulate real-world load profiles. For safety purpose, a

rectangular-shape metal box known as the "load bank" shown in Figure 5.6 is designed

to place all the resistive loads. Each layer of resistive loads represents the load of each

consumer. Referring to the schematic diagram in Figure 5.5, three single-phase SMs are

used to record the energy consumption of each consumer. A master SM, known as the data

collector, is endowed in the DS to track the total power supplied by the UP (i.e., three-phase

power supply) to all three consumers at each time interval. Then, all the SMs as well as the

data collector are configured to send their energy consumption readings to the operation

center (i.e., Omron NJ101-1020 controller (Omron, 2017)) at half-hourly interval. The
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Figure 5.3: The design of an AMI test rig in the laboratory.

rand function packaged in Matlab R2014b is utilized to generate random load demand for

each consumer at every time interval. Subsequently, the randomly generated load demand

for each consumer is varied through the Miniature Circuit Breakers (MCBs) in the test

rig to simulate real-world load profiles. Polyvinyl chloride (PVC) insulated 10mm2 LV

distribution copper cables are used to connect the DS and consumers. The cable length

between two consumers and the cable length from the DS to the first consumer are 7m and

8.23m, respectively.

5.2.2.1 Phoenix Series 2 Single-phase Smart Meter

SM is one of the key components in AMI. Real-time recording and monitoring of

energy consumption can be made possible through the deployment of SMs. These digitized

devices are progressively deployed to replace its antiquated predecessors to measure and

monitor consumers’ energy consumption in SGs. Transmission Control Protocol/Internet

Protocol (TCP/IP) is utilized by these modernized meters to communicate with the UPs.

Besides, they also help in mitigating NTLs as any attempts at meter tampering will be

detected on the spot. Aside from collating information on power quality and recording

energy consumption, the firmware of SMs can also be upgraded automatically over the
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Figure 5.4: The hardware experimentation of the AMI test rig.

internet. Also, they can detect surges and outage events in consumers’ premises. Therefore,

the Phoenix Series 2 SM as shown in Figure 5.7, is rolled-out by TNB, Malaysia’s largest

UP, in the pilot SM project in Malacca and Putrajaya (Energy Commission, 2015). The

same SM model is used in the AMI test rig to track the energy consumption of each

consumer as well as to measure the aggregated power supply from the UP. It is a class 2

energy meter, mainly applicable for domestic with the current rating of 10A-100A.
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Figure 5.5: The schematic diagram of the AMI test rig.

Figure 5.6: The load bank which contains all the resistive loads.
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Figure 5.7: The Phoenix Series 2 smart meter.

Figure 5.8: Omron NJ101-1020 machine automation controller powered on by
Omron S82K-05024 power supply, serves as the operation center in the test rig.

5.2.2.2 Data Logger

In this thesis, Omron NJ101-1020 machine automation controller (Omron, 2017)

powered on by Omron S82K-05024 power supply as demonstrated in Figure 5.8, is used as

data logger to track the energy consumption data of each consumer as well as to record

the aggregated power supplied by the UP at the predefined time interval (i.e., 30 minutes

interval). The data logger acts as the operation center in the test rig.
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Figure 5.9: Configuration page to setup the Omron controller.

Figure 5.10: Network configuration page to setup the communications between
controller modules.

To program the data logging function of Omron controller, Sysmac Studio Automation

Software Version 1.21 is used. This software offers an integrated development environment

for Omron NJ-series controllers. Users can perform debugging and testing of logic, safety,

motion and vision sensors, integrate programming and achieve an advanced security

function with the user interface. Figures 5.9, 5.10 and 5.11 show the configuration and

programming pages of the software to setup the data logging function of the Omron

controller.
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Figure 5.11: Programming page to setup the function of each module.

Figure 5.12: Miniature circuit breakers are attached to a metal plate at the front
part of the load bank to prevent electrical shock.

5.2.2.3 Miniature Circuit Breaker

Miniature Circuit Breakers (MCBs) are usually used for short circuit or overload

protection in the distribution system. As mentioned in Section 5.2.2, the randomly

generated load demand for each consumer is varied through the MCBs in the test rig to

simulate real-world load profiles. For safety purpose, all the MCBs are attached to a metal

plate at the front part of the load bank as shown in Figure 5.12 to prevent electrical shock.
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5.3 Data Cleaning and Preprocessing

In data analytic, missing data or unusual patterns caused by unplanned events or the

failure of data is known as bad data (Y. Wang, Chen, Hong, & Kang, 2018). Meanwhile,

data cleaning is the process of identifying inaccurate, corrupted records and bad data from

a dataset, table, or database and then replacing or deleting the dirty or coarse data (Wu,

2013). In this work, data cleaning is performed to filter out suspicious SMs which report

a constant low value, do not have measurements (i.e., 0 kWh) throughout the periods of

observation or have corrupted data after data collection Ahmad et al. (2018); Dos Angelos et

al. (2011). Correspondingly, the malicious or defective SMs are inspected and replaced so

that the proposed anomaly detection frameworks can obtain a more accurate NTL detection

analysis. Subsequently, the energy consumption data are extracted and transformed into the

required format for MLR and LP, as discussed in Sections 3.6.3 and 4.5.4, by performing

data preprocessing. The collected data are represented by their 30-minute consumption

profiles. Figure 5.13 illustrates the half-hourly kWh energy consumption sample data

which are extracted and transformed into the required format for regression analysis,

whereby the energy consumption data for 15 consumers are represented by data columns B

through P. The aggregated power supplied by the UPs at each interval (i.e., data collector

measurement) is represented by data column Q. Data column A depicts the "Five Digit

Code" which represents the day and time interval. Recall that the day code is depicted

by the first 3 digits (e.g., day 001 = 1st January 2009) and the time code is represented

by the forth and fifth digits (e.g., 1-48 for each 30 minutes with 1= 00:00:00 – 00:29:59).

Meanwhile, Figure 5.14 presents the 30-minute kWh energy consumption sample data

that are extracted and transformed into the required format for optimization analysis.

These dataset has additional two data columns in comparison to the transformed data for

regression analysis, as illustrated in Figure 5.13. Specifically, two additional data columns

102

Univ
ers

ity
 of

 M
ala

ya



(i.e., data columns R and S) are added for capturing the positive and negative calibration

errors/noise of the equipment.

Both the detection schemes commence by computing the mismatches between the

total metered energy consumption of all consumers in the service area and the total

power supplied by the UPs at each time interval. Then, the detection and estimation are

undertaken by the proposed LR-based and LP-based anomaly detection frameworks. Based

on the regression and optimization results from Matlab, the UPs can easily identify the

positions of energy fraud and meter irregularities. The test setup of the anomaly detection

frameworks using Matlab will be discussed in the next section.

5.4 Test Setup

In this thesis, Matlab R2014b (MathWorks, 2017) is used for developing the anomaly

detection frameworks. Matlab combines design processes with a programming language

which expresses arrays and matrices directly and a desktop environment tuned for iterative

analysis. After preprocessing the consumers’ energy consumption data extracted from

the Irish Smart Energy Trial into the required format, the fitlm function packaged in the

Statistics Toolbox of Matlab R2014b is used to solve for the estimated anomaly coefficients

an in Equation (3.5) using MLR. The indicator for the constant intercept in the fit (i.e.,

α in Equation (3.8)) is configured as ‘false’ so that the response is fully dependent on

the predictors P. Next, the an, t-statistics and p-values of all consumers (i.e., ∀n ∈ N)

are retrieved from the LR analysis. Based on the estimated an and its corresponding

p-value, the locations of consistent energy frauds and/or faulty SMs can be pinpointed

accurately. Nonetheless, the proposed LR-ETDM scheme might be unstable when there are

inconsistent energy thefts and/or defective SMs. To overcome the deficiency of LR-ETDM,

CVLR-ETDM is put forward by incorporating detection coefficients and categorical

variables into MLR so that the scheme can successfully detect consumers’ malfeasance
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and faulty meters even when there are varying cheating trends/meter irregularities, either

during off-peak or on-peak period.

For the LP-based anomaly detection framework, the linprog function built in the

Optimization Toolbox of Matlab R2014b is used to solve for an and lti in Equation (4.11),

and both ati,n and ld
ti in Equation (4.18) by using either the dual-simplex method (Koberstein,

2008) or the interior point method (Boyd & Vandenberghe, 2004) of LP based on the

fine-grained consumers’ metered energy consumption readings. Similar to the LR-based

energy theft detection framework, any non-zero anomaly coefficients are indicative of

energy frauds or metering irregularities. Aside from detecting NTL events, the proposed

framework is also able to estimate the percentage of TLs through loss factor based on

measurements at the data collector and the knowledge of the distribution network. Besides

that, the proposed detection framework is also capable of detecting under-reporting/over-

reporting by SMs even when there are intermittent cheating and/or faulty equipment, and

not restricted to detection during off-peak and on-peak periods only.

Furthermore, an AMI test rig is built to validate the performance and reliability of the

proposed anomaly detection frameworks in real SG environment. A series of tests are

conducted on the energy consumption data collected from the test rig. The test results

obtained are correlated with Matlab simulation results in order to confirm the performance

and reliability of the proposed anomaly detection frameworks in real world.

5.5 Attack Model

In this thesis, it is assumed that adversaries are the fraudulent consumers who

compromise their SMs to fabricate energy readings to reduce their billings. Their goal is

to under-report energy consumption and make monetary profit at the expense of the UPs.

As discussed in Section 2.3.2, there are various known techniques for stealing energy

from the power grids. Recall that these energy fraud techniques, including those that
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are widely implemented in both conventional power grids and SGs, may be grouped into

three categories, namely physical attacks, cyber attacks and data attacks as discussed

in (McLaughlin et al., 2013). Note that data attacks could also be realized through threats

from the cyber and physical attacks.

In the attack model, it is assumed that the SMs are in one of the three states, namely,

honest, compromised or faulty. Suppose the SMs are configured to record benign half-

hourly meter readings P∗n = {p∗t1,n, p∗t2,n, · · · , p∗t48,n}, for time interval ti = t1, t2, · · · , t48

(i.e., 48 data points in a day). In this thesis, the energy frauds or meter irregularities are

simulated by tampering the benign SM readings P∗n, as the real NTL data samples are

non-existent in Malaysia because SG is not fully implemented. Let pti,n denote the energy

consumption recorded by the n-th SM after the application of one of the state functions

in Table 5.3. The possible states of the n-th SM, where n ∈ N = {1, 2, · · · , N} and the

corresponding types of energy fraud, are summarized in Table 5.3.

Particularly, the consumer is honest in s1 as he/she reports the actual meter readings. In

s2, the SM readings are scaled by a constant percentage (i.e., constant rate). In other words,

the fraudulent consumer either reports a fraction of his/her consumed energy consistently

(e.g., ν ∈ (0, 0.95)) or the SM over-reports the consumption readings all the time (e.g.,

ν ∈ (1.05, 2.5]). In s3, the energy thief pilfers energy only during certain periods in a day.

For instance, the fraudulent commercial consumer reports 40% of the actual consumed

data during operation hours (i.e., δti = 0.4) and reports the actual consumption data at

night (i.e., δti = 1). Using the state function in s4, the SM sends zero reading or does not

have measurements (i.e., ηti = 0) only during certain periods in a day. Last but not least, s5

reports the average of SM readings over the day. In this thesis, without loss of generality,

faulty SMs are assumed to always report more than what the corresponding consumers

actually consumed (i.e., ν ∈ (1.05, 2.5]).
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5.6 Summary of Chapter

This chapter reviews the data collection and test setup applied in this research study. The

introduction starts off by discussing the smart metering data extracted from SM electricity

trial database released by Sustainable Energy Authority of Ireland. In the next section, the

hardware experimentation setup to collect real-world smart metering data was discussed.

In the subsection of hardware experimentation, the software used to program the data

logger and descriptions of the components in the test rig, were discussed in detail. Then,

the test setup of the anomaly detection frameworks in Matlab was presented. In the last

part of the chapter, the attack model which consists of a diverse set of NTL attack functions

is generated and described such that it closely resemble the real-world energy fraud/meter

irregularities scenarios in AMI.

In part to evaluate the performance and validate the reliability of both the LR-based and

LP-based anomaly detection frameworks, simulation and hardware experimentation-based

experiments were conducted. The hardware experimentation results obtained are correlated

with Matlab simulation results in order to confirm the reliability of the proposed anomaly

detection frameworks in real world. The frameworks validation results will be evaluated

and discussed in detail in the next chapter.
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CHAPTER 6: RESULTS AND DISCUSSIONS

6.1 Overview

In this chapter, the framework validation results are presented and evaluated. First of all,

the metric used to evaluate the NTL detection frameworks is presented. Then, frameworks

validation through data obtained from the Irish Smart Energy Trial Database released

by Commission for Energy Regulation (2009) are described, whereby the regression and

optimization results obtained from Matlab are discussed and evaluated in Section 6.3.

Besides, more data are also extracted to study how the proposed frameworks scale with

the number of consumers. Apart from scalability of the proposed frameworks, the impact

caused by TLs and measurement noise on detection rate improvement is also investigated.

In Section 6.4, frameworks validation through hardware experimentation is conducted.

An AMI test rig is built in the laboratory to assess the performance and validate the

reliability of the proposed frameworks in real SG environment. Next, a table is presented

to functionally compare the proposed anomaly detection frameworks with existing NTL

detection schemes, whereby the performance of the proposals are compared with the

most recent and state-of-the-art energy theft detection schemes discussed in Section 2.4.

Subsequently in Section 6.7, performance comparison studies are performed to study the

strengths and weaknesses of the two proposed anomaly detection frameworks. Finally, a

summary is given in Section 6.8 to conclude the proposed anomaly detection frameworks

which were put forward in Chapters 3 and 4.

6.2 Performance Metric

For NTL detection, the goal is to increase the detection rate in order to discover as many

NTL occurrences as possible, while reducing the number of false positives in order to

minimize the number of costly onsite inspections. In order the evaluate the NTL detection
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model using a single performance measure, the detection rate DR, which is also known as

sensitivity is computed as:

DR =
TP

TP + FN
× 100%, (6.1)

whereby TP denotes the number of true positives and FN represents the number of false

negatives.

6.3 Frameworks Validation Through Data from the Irish Smart Energy Trial

In this section, MLR and optimization analyses are presented to assess the performance

of the proposed anomaly detection frameworks through data extracted from the Smart

Meter Electricity Trial Database. According to Jokar et al. (2016) and Sahoo et al.

(2015), real-world SG energy theft samples rarely, or do not, exist because SG is not fully

implemented. As a result, the smart energy data from the Irish Smart Meter Electricity

Trial denoted by Pd
n = {pd

t1,n, pd
t2,n, · · · , pd

t48,n
}, for time ti ∈ T = {t1, t2, · · · , t48} on day

d ∈ D = {1, 2, · · · ,D} for consumer n ∈ N = {1, 2, · · · , N}, are extracted from the

Irish Smart Energy Trial (Commission for Energy Regulation, 2009) in this study. Then,

different types of malicious scenario as discussed in Section 5.5 are generated based on

the extracted benign trial dataset.

Two series of simulations in Matlab R2014b are conducted to evaluate the performance

of the proposed LR-based and LP-based anomaly detection schemes. Specifically, two

scenarios are considered, namely, fraudulent consumers steal at a fixed rate (constant

anomaly coefficient) and varying rate (varying anomaly coefficient). Since the dataset

released by Commission for Energy Regulation (2009) contains only consumers’ energy

consumption data, the collector measurement cti is obtained by duly summing up the

energy consumption of all consumers in the service area at time interval ti when there are
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no energy thefts and defective SMs, viz., original untampered data. According to Nagi,

Mohammad, Yap, Tiong, and Ahmed (2008); Nagi (2009), the NTLs faced by UPs in

developing countries such as India, Pakistan, Bangladesh, Lebanon and Malaysia amount

to an average of between 20% to 30%. Therefore, taking the worst case, it is assumed

that approximately 30% of the consumers in the NAN are stealing energy and/or SMs are

reporting more on their energy usage. In other words, 30% of the consumers and/or SMs

in the NAN have a non-zero anomaly coefficient. In the simulations, service area of sizes

15 and 45 energy consumers are considered. The minimum time of anomaly is subject to

the time granularity of the SM (i.e., one slot = 30 minutes).

6.3.1 Simulation for LR-based Detection Framework

As discussed previously in Section 3.4, both the LR-based anomaly detection schemes

(i.e., LR-ETDM and CVLR-ETDM) do not consider TLs in the SGs. According to Sahoo

et al. (2015), TLs can be computed by observing the data from DT and the current readings

collected by conventional analog or smart power meters. Therefore, once the TLs are

calculated, the proposed framework can be adjusted accordingly by subtracting TLs from

vector y as expressed in Equation (3.2).

6.3.1.1 Simulation: LR-ETDM

Here, it is assumed that the fraudulent consumers steal energy all the time and never

stop cheating (i.e., case s2 as discussed in the attack model, where ν ∈ (0, 0.95)). At the

same time, some of the SMs had malfunctioned throughout the period of observations (i.e.,

case s2, where ν ∈ (1.05, 2.5]). Therefore, the rates of cheating as well as reporting more

(due to malfunctioning) do not change and hence the anomaly coefficients are constant.

Here, one-day half-hourly energy data (i.e., 48 data points) are extracted from the Irish

Smart Energy Trial for the theft detection analyses. The constant cheating/malfunctioning
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Table 6.1: Comparison between constant an and ãn(LR) obtained by LR-ETDM for
the size of 15 consumers

Consumer n Description an
1

1 + an
ãn(LR) p-valueã(LR)

1
1 + ãn(LR)

1 Under-report by 50% 1 0.50 1 1.6011e-180 0.50
4 Over-report by 30% −0.2308 1.30 −0.2308 6.6226e-170 1.30
7 Under-report by 50% 1 0.50 1 2.7614e-176 0.50
11 Over-report by 50% −0.3333 1.50 −0.3333 1.1096e-187 1.50
13 Under-report by 60% 1.5 0.40 1.5 4.5576e-185 0.40
15 Under-report by 50% 1 0.50 1 2.9711e-185 0.50

Others Honest 0 1 0 > 0.01 1

scenario for the size of 15 consumers is setup as shown in Table 6.1. The values of

an represent the exact state of each SM (i.e., honest, compromised or faulty) from the

dataset. For instance, when consumer 1 under-reports what was consumed by 50% (i.e.,

consumes 1kWh but reports 0.5kWh, the meter discrepancy yti = 0.5kWh), therefore

a1 =
yti

pti,1
= 0.5

0.5 = 1. As discussed in Section 4.4.2, the fraction of reported consumption

of the consumer is computed as 1
1+an
=

pti,n
cti

. Thus, the fraction of reported consumption of

consumer 1 is pti,1
cti
= 0.5

1.0 = 0.50. Meanwhile, consumer 4 over-reports energy consumption

by 30% (i.e., consumes 1kWh but reports 1.3kWh, the meter discrepancy yti = −0.3kWh).

In such a case, a4 =
yti

pti,4
= −0.3

1.3 = −0.2308 and the fraction of reported consumption of

consumer 4 is pti,4
cti
= 1.3

1.0 = 1.30. The other consumers who have an = 0 are honest because

they report the actual energy consumption (i.e., consumes 0.5kWh and reports 0.5kWh,

the meter discrepancy yti =0kWh). In such a case, an =
yti

pti,n
= 0

0.5 = 0 and the fraction of

reported consumption of the consumer n is pti,n
cti
= 0.5

0.5 = 1.

The values of ãn(LR) in Table 6.1 are the computed values obtained by LR-ETDM.

Figure 6.1 depicts the computed values ãn(LR). As shown in Figure 6.1, the proposed

LR-ETDM scheme performs well for each of the cases, i.e., when there are 15 and 45

consumers in the service area. In particular, in the case of 15 consumers, it is observed

from Table 6.1 that there are six consumers who have p-values less than 0.01, which
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implies that these consumers might have anomaly coefficients not equal to 0. Therefore,

these suspected consumers are shortlisted for further investigation. It is obvious from

Figure 6.1(a) that they have non-zero anomaly coefficients. Particularly, there are four

energy thieves (i.e., consumers 1, 7, 13 and 15) who only report fraction of their energy

consumption (i.e., ãn(LR) > 0). Meanwhile, two SMs (i.e., the 4-th and 11-th) are out

of order as the meters report more than what the consumers actually consumed (i.e.,

ãn(LR) < 0). Furthermore, the nine honest consumers who have p-valueã(LR) > 0.01

and therefore ãn(LR) = 0 can also be identified easily. Based on these results, the data

collector can effectively detect all the energy thieves as well as the malicious SMs, then

computes how much less or more they have paid in their monthly bills by 1
1+ãn(LR)

. For

example, the 11-th SM has ã11(LR) = −0.3333 and the fraction of reported consumption

of consumer 11 is 1
1+ã11(LR)

= 1
1+(−0.3333) = 1.50. Therefore, the 11-th SM is classified

as malfunctioning for reporting 50% more than what was consumed. On a different

note, consumer 13 has ã13(LR) = 1.5 and the fraction of reported usage of consumer

13 is 1
1+ã13(LR)

= 1
1+1.5 = 0.40. Thus, consumer 13 is classified as energy thief for only

reporting 40% of what was consumed. Other consumers who have p-valueã(LR) > 0.01 are

classified as honest because they have a zero anomaly coefficient (i.e., fraction of reported

consumption 1
1+ãn(LR)

= 1
1+0 = 1).

In order to study how MLR estimation scales with the number of consumers in the

neighborhood, a NAN of 45 consumers is considered. Similar result is observed in

Figure 6.1(b) for the case of 45 consumers, which is setup as shown in Table 6.2. By

isolating the consumers who have p-values less than 1% significance level and anomaly

coefficients not equal to 0, all the energy thieves and defective SMs in the NAN can be

recognized effectively.

A detection rate of 100% was achieved by LR-ETDM for the experiment setup as
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Figure 6.1: Value of ãn(LR) obtained by LR-ETDM when an is constant for the sizes
of (a) 15 consumers and (b) 45 consumers.

presented in both Tables 6.1 and 6.2 when an is constant and TLs are non-existent. In other

words, all fraudulent consumers/metering defects are correctly detected by LR-ETDM as

anomalies from the total true anomalous consumers.

Besides, simulation is also conducted by using LR-ETDM when some fraudulent

consumers are cheating inconsistently and some of them are stealing energy constantly

which is setup as shown in Table 6.3. Specifically, some of the untruthful consumers are

pilfering energy all the time and some of them are cheating on their energy consumption
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Table 6.2: Comparison between constant an and ãn(LR) obtained by LR-ETDM for
the size of 45 consumers

Consumer n Description an
1

1 + an
ãn(LR) p-valueã(LR)

1
1 + ãn(LR)

1 Over-report by 50% −0.3333 1.50 −0.3333 6.4345e-12 1.50
3 Under-report by 40% 0.6667 0.60 0.6667 3.7043e-13 0.60
7 Under-report by 20% 0.2500 0.80 0.2500 1.6617e-11 0.80
8 Under-report by 15% 0.1765 0.85 0.1765 3.4275e-11 0.85
10 Under-report by 15% 0.1765 0.85 0.1765 2.0045e-11 0.85
13 Over-report by 20% −0.1667 1.20 −0.1667 8.8398e-12 1.20
17 Under-report by 25% 0.3333 0.75 0.3333 1.1502e-12 0.75
19 Over-report by 10% −0.0909 1.10 −0.0909 1.9837e-11 1.10
22 Under-report by 10% 0.1111 0.90 0.1111 1.586e-11 0.90
25 Under-report by 20% 0.2500 0.80 0.2500 1.1088e-12 0.80
28 Over-report by 20% −0.1667 1.20 −0.1667 7.6755e-12 1.20
30 Under-report by 15% 0.1765 0.85 0.1765 1.0358e-10 0.85
32 Under-report by 25% 0.3333 0.75 0.3333 1.0618e-14 0.75
34 Over-report by 10% −0.0909 1.10 −0.0909 1.9761e-14 1.10
36 Under-report by 40% 0.6667 0.60 0.6667 1.7027e-15 0.60
39 Under-report by 25% 0.3333 0.75 0.3333 1.174e-14 0.75
42 Under-report by 15% 0.1765 0.85 0.1765 3.2694e-15 0.85
44 Under-report by 20% 0.2500 0.8 0.2500 5.5398e-15 0.80

Others Honest 0 1 0 > 0.01 1.00

only during a certain period in a day. The values of ãn(LR) obtained by LR-ETDM are

presented in Figure 6.2. As discussed in Chapter 3, LR-ETDM becomes unstable under

this scenario. Based on the estimated anomaly coefficients and corresponding p-values,

LR-ETDM finds five cheating consumers and a faulty SM only. But, in reality, there are

five energy thieves and two faulty SMs. However, LR-ETDM accuses the honest consumer

10 and 14 wrongly as they have p-valueã(LR) < 0.01 and ãn(LR) > 0. Meanwhile, consumer

4, 7 and 13 are left unidentified because their p-valueã(LR) > 0.01 and ãn(LR) = 0.

The inaccuracies are due to the limiting factors of regression model. LR explicitly

assumes that the anomaly coefficients an do not change throughout the period of

observation (Chambers & Dinsmore, 2014). In other words, LR presumes that if an

energy thief cheats, he/she cheats at the same rate throughout the day. Thus, some of the

fraudulent consumers could evade detection when they do not cheat all the time. To
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Table 6.3: Comparison between varying an and ãn(LR) obtained by LR-ETDM for
the size of 15 consumers

Consumer n Description Affected Time Slot an
1

1 + an
ãn(LR) p-valueã(LR)

1
1 + ãn(LR)

1 Under-report by 40% All the time 0.6667 0.60 1.3182 8.7257e-06 0.43
4 Over-report by 30% All the time −0.2307 1.30 *0 0.15968 1
7 Under-report by 50% On-peak (From t16 to t39) 1 0.50 *0 0.024895 1
8 Under-report by 40% All the time 0.6667 0.60 0.7232 0.0081053 0.58
10 Honest All the time 0 1 *0.4660 0.00043485 0.68
11 Over-report by 50% On-peak (From t16 to t39) −0.3333 1.5 −0.3093 2.3554e-07 1.45
13 Under-report by 60% All the time 1.50 0.4 *0 0.41787 1
14 Honest All the time 0 1 *0.4507 0.00045457 0.69
15 Under-report by 15% All the time 0.1765 0.85 0.4507 4.7724e-05 0.69

Others Honest All the Time 0 1 0 > 0.01 1
* False Positive
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ã
n
(L

R
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 energy thieves and 1 defective SM found

Figure 6.2: Value of ãn(LR) obtained by LR-ETDM when an is varying (size of 15
consumers).

overcome the deficiency of LR-ETDM, categorical variables are introduced in the LR

model to accurately reveal the locations and periods (i.e., during off-peak, on-peak periods

of a day or whole day) of energy theft or device failure. The simulation results for the

varying cheating/malfunctioning scenarios will be discussed in the next section.

6.3.1.2 Simulation: CVLR-ETDM

In this section, simulations are conducted for the situation when energy thieves

under-report what was consumed and/or SMs over-report the energy consumption all the

time/during a certain time (i.e., cases s2, s3 and s4 in the attack model). In other words, the
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rates of under-reporting as well as over-reporting change and hence the anomaly coefficients

are varying. The goal is to verify the viability of the proposed CVLR-ETDM in handling

the constant/varying cheating and malfunctioning problems. In the simulations, each

consumer commits energy theft during off-peak, on-peak or all the time. The consumers’

power consumption data are observed over two days to increase the number of observations

to mitigate the effect of over-fitting (Tetko et al., 1995).

The varying cheating/malfunctioning scenario for the size of 15 consumers is setup

as shown in Table 6.4. Here, values of an and βn are exact settings from the dataset.

Recall that an itself denotes the anomaly coefficients of consumers during off-peak period

while (an + βn) denotes the anomaly coefficients of consumers during on-peak hours. For

instance, consumer 1 under-reports what was consumed by 20% only during off-peak period

(i.e., consumes 1kWh but reports 0.8kWh, meter discrepancy yti = 0.2kWh). Therefore,

a1 =
yti

pti,1
= 0.2

0.8 = 0.25 and (a1 + β1) = 0. On the other hand, consumer 3 under-reports

what was consumed by 30% all the time (i.e., consumes 1kWh but reports 0.7kWh, meter

discrepancy yti = 0.3kWh). Hence, a3 =
yti

pti,3
= 0.3

0.7 = 0.4286 and (a3 + β3) = 0.4286.

Meanwhile, consumer 6 under-reports energy consumption by 25% only during on-peak

period (i.e., consumes 1kWh but reports 0.75kWh, meter discrepancy yti = 0.25kWh). In

such a case, a6 = 0 and (a6 + β6) =
yti

pti,6
= 0.25

0.75 = 0.3333.

The values of ãn(CV LR) and β̃n(CV LR) in Table 6.4 are the computed coefficients obtained

by CVLR-ETDM. Figure 6.3 depicts the computed values ãn(CV LR) and (ãn(CV LR) +

β̃n(CV LR)). In the figure, black bar represents off-peak period ãn(CV LR) (i.e., varying

anomaly coefficient) and white bar represents on-peak period (ãn(CV LR) + β̃n(CV LR)) (i.e.,

varying anomaly coefficient). If black bar and white bar co-appear (i.e., constant anomaly

coefficient), it implies that the energy frauds occur or defective meters exist all the time.

Results in Figure 6.3(a) suggest that there are five dishonest consumers and a faulty SM in
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the service area of 15 consumers. It can be seen from Table 6.4 that p-values of β̃1(CV LR),

β̃6(CV LR), β̃12(CV LR) and β̃15(CV LR) are less than a 1% significance level, indicating that

consumers 1, 6, 12 and 15 are likely to have β̃n(CV LR) , 0. Recall that a non-zero

β̃n(CV LR) implies that consumer n has different cheating patterns throughout the period of

observations (i.e., varying anomaly coefficient). In particular, consumer 1 and consumer 15

steal energy (i.e., ãn(CV LR) > 0 and ãn(CV LR) + β̃n(CV LR) = 0, where β̃n(CV LR) = −ãn(CV LR))

only during off-peak period (i.e., black bar appears) while consumer 6 and consumer 12

pilfer energy (i.e., ãn(CV LR) = 0 and ãn(CV LR) + β̃n(CV LR) > 0) only during on-peak period

(i.e., white bar appears). On the other hand, it is observed that p-values of both β̃3(CV LR)

and β̃9(CV LR) are greater than 0.01, indicating that both consumer 3 and consumer 9 have

β̃n(CV LR) = 0 and hence they do not change their cheating behaviors. In other words,

either the consumer is stealing or the SM is defective all the time when his/her ãn(CV LR) is

non-zero. Specifically, consumer 3 is stealing energy all the time (i.e., black and white bars

co-appear, ãn(CV LR) > 0, ãn(CV LR) + β̃n(CV LR) > 0) on both off-peak and on-peak periods.

The 9-th SM is out of order all the time (i.e., black and white bars co-appear, ãn(CV LR) < 0,

ãn(CV LR) + β̃n(CV LR) < 0).

Generally, data collector is placed on the DS at a utility selected interval, such as every

50 consumers per phase. In order to study the scalability of CVLR-ETDM, a NAN of 45

consumers is considered. Similar result is obtained for the case of 45 consumers, where the

varying cheating/malfunctioning scenario is setup as shown in Table 6.5. The results are

presented in Figure 6.3(b). Based on these findings, the data collector can calculate how

much less/more the consumers have paid by analyzing the value of the anomaly coefficients

and detection coefficients of the consumers as discussed in Section 4.4.2. However, the

computation for fraction of reported consumption of each consumer is omitted from

Tables 6.4 and 6.5 due to space constraints.
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Figure 6.3: Value of ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR)) obtained by CVLR-ETDM
when a is varying for the sizes of (a) 15 consumers and (b) 45 consumers.
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Meanwhile, when a fraudulent consumer n attempts to send zero readings all the time

or during a certain period in the day, the p-value of the an will show not a number (NaN)

in the Matlab regression analysis. In such a case, the SM of the dishonest consumer n

should be inspected and replaced before the proposed LR-based schemes are re-invoked to

obtain a more accurate regression analysis.

Similarly, a detection rate of 100% was achieved by CVLR-ETDM for the experiment

setup as shown in Tables 6.4 and 6.5 when an is varying and TLs are non-existent i.e., all

the dishonest consumers/metering defects are identified accurately by CVLR-ETDM as

anomalies from the total true anomalous consumers.

6.3.2 Simulation for LP-based Detection Framework

In the LR-based anomaly detection framework, TLs in the SG are not considered.

Specifically, the LR-based framework assumes that the power line losses are known, which

in practice may be difficult to acquire. In the pursuit of higher anomaly detection rate

and lower false positives, the assumption of known power line losses is relaxed and a new

LP-based anomaly detection framework that can overcome the deficiency of the LR-based

anomaly detection framework is proposed. Particularly, the impact caused by TLs and

measurement noise/error on the detection analysis is taken into account in the design of

anomaly detection framework. Recall that, loss factor and error term are introduced for

capturing the percentage of TLs and amount of measurement noise, respectively, in the

service area.

According to Au et al. (2008), the average TLs of LV network in Malaysia was reported

to range from 0.59% to 3.23%, subject to percentage loading of the LV network. Besides,

according to Accenture (2011), normal line losses should be in the 0.5 to 4 percent range

when there is no energy diversion. To show the viability of the proposed framework in

estimating the amount of TLs, an evaluation environment with 3% − 5% of TLs is created,
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i.e.,

cd
ti ←

(
N∑

n=1
pd∗

ti,n

)
÷ µ, µ ∈ [0.95, 0.97], ∀ti ∈ T, ∀d ∈ D, (6.2)

whereby randomized µ are generated for each time period ti which lead to different injected

TLs values.

Note that state-of-the-art SMs record very accurate measurements, where the errors are

usually modeled by white uncorrelated noise with zero mean and standard

deviation (S. A. Salinas & Li, 2015). Therefore, to further validate the proposed

framework, the errors of measurement are included as below:

yd
ti = cd

ti −

N∑
n=1

pd
ti,n + ed

ti, (6.3)

where ed
ti is the white uncorrelated noise with zero mean and standard deviation of 0.01 at

time interval ti on day d.

6.3.2.1 Simulation: ADF

In this section, the performance of ADF when energy thieves steal electricity at a

constant rate continuously (i.e., s2 ∈ (0, 0.95)) and/or SMs are out of order all the time

(i.e., s2 ∈ (1.05, 2.5]) is evaluated. The constant cheating/malfunctioning scenario for the

size of 15 consumers is setup as shown in Table 6.6. Here, one-day half-hourly energy data

(i.e., 48 data points) are extracted from the Irish Smart Energy Trial for the theft detection

analysis. The values of an represent the exact state of each SM (i.e., honest, compromised

or defective) from the dataset, whereas ãn(ADF) denotes the computed anomaly coefficients

obtained by ADF.

Figure 6.4 depicts the computed ãn(ADF) for the service area consisting of 15 consumers.
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Table 6.6: Comparison between constant an and ãn(ADF) obtained by ADF for the
size of 15 consumers

Consumer n Type of Consumer Description an
1

1 + an
ãn(ADF)

1
1+ãn(ADF)

1 Residential Under-report by 40% 0.67 0.60 0.8315 0.55
2 Commercial Honest 0 1 0.01 ≈ 0 1
3 Residential Honest 0 1 0.03 ≈ 0 1
4 Commercial Over-report by 30% −0.23 1.30 −0.23 1.30
5 Commercial Honest 0 1 −0.02 ≈ 0 1
6 Residential Honest 0 1 0.01 ≈ 0 1
7 Commercial Under-report by 50% 1 0.50 1.02 0.50
8 Commercial Honest 0 1 0 1
9 Residential Honest 0 1 0.01 ≈ 0 1
10 Commercial Honest 0 1 −0.03 ≈ 0 1
11 Residential Honest 0 1 0 1
12 Commercial Honest 0 1 0 1
13 Residential Over-report by 50% −0.33 1.50 −0.39 1.64
14 Residential Honest 0 1 0.01 ≈ 0 1
15 Commercial Under-report by 60% 1.50 0.40 1.37 0.42

Results of ãn(ADF) in Table 6.6 and Figure 6.4 suggest that there are five anomalous

consumers with ãn(ADF) not in [−0.05, 0.05]. Recall that, consumers who have anomaly

coefficients in [−0.05, 0.05] are assumed to be honest (i.e., ãn(ADF) ≈ 0). Specifically,

consumers 1, 7 and 15 pilfer energy all the time (since ãn(ADF) > 0.05) while the 4-th and

13-th SMs are faulty (since ãn(ADF) < −0.05). Subsequently, the collector can compute the

fraction of reported consumption by 1
1+ãn(ADF)

based on the computed anomaly coefficients

as shown in Table 6.6. For instance, it can be seen that consumer 1 reports approximately

55% of what was consumed since 1
1+0.8315 ≈ 0.55, while the 4-th SM over-reports what

was consumed by 30% since 1
1+(−0.23) ≈ 1.3. Meanwhile, the second consumer has

1
1+0 = 1, which classifies him as honest. Note that, the slight differences between an and

the computed ãn(ADF) in Table 6.6 are likely due to the injected measurement noise in

Equation (6.3).

Meanwhile, Figure 6.5 depicts the values of the actual amount of TLs, lti and the

computed loss factors, l̃ti obtained by ADF over 48 time intervals in a day. The results in

Figure 6.5 suggest that ADF is able to predict the percentage of TLs of each time interval
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Figure 6.4: Value of anomaly coefficients, ãn(ADF) obtained by ADF when an is
constant (size of 15 consumers).
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Figure 6.5: Value of loss factors, l̃ti obtained by ADF over 48 time intervals (size of
15 consumers).

up to 98% accuracy (i.e., except the 37-th time slot, with a deviation of 1%) even the

amount of TLs are injected randomly as shown in Equation (6.2).

In order to study how the proposed framework scales with the number of consumers,

a service area of 45 consumers is considered. The simulation for the scenario of 45

consumers can be setup in a similar manner, and the detailed descriptions are presented

126

Univ
ers

ity
 of

 M
ala

ya



Table 6.7: Comparison between constant an and ãn(ADF) obtained by ADF for the
size of 45 consumers

Consumer n Type of Consumer Description an
1

1 + an
ãn(ADF)

1
1 + ãn(ADF)

1 Commercial Over-report by 90% −0.47 1.9 -0.48 1.92
8 Residential Under-report by 50% 1.00 0.50 0.99 0.50
10 Commercial Under-report by 40% 0.67 0.60 0.66 0.60
19 Commercial Under-report by 50% 1.00 0.50 1.00 0.50
22 Commercial Under-report by 70% 2.33 0.30 2.35 0.30
27 Commercial Under-report by 40% 0.67 0.60 0.67 0.60
32 Commercial Under-report by 50% 1.00 0.50 1.00 0.50
34 Residential Under-report by 30% 0.43 0.70 0.42 0.70
38 Residential Under-report by 40% 0.67 0.60 0.66 0.60
42 Commercial Under-report by 60% 1.50 0.40 1.51 0.40

Others - Honest 0 1 0 1

in Table 6.7. Four-day half-hourly energy consumption data (i.e., 192 data points) are

extracted from the Irish Smart Energy Trial for the detection analysis. The metered

consumption data are observed over a longer period for service area consisting of more

consumers so that the proposed framework produces more accurate detection and avoids

false positives. This is because observation of metered data over longer periods leads to

addition in the number of constraints that can improve the accuracy of the NTL detection

analysis. Figures 6.6 and 6.7 show corresponding results for the case of 45 consumers. The

collector can detect all the faulty and/or compromised SMs and estimate the percentages

of TLs correctly based on these results. Results from both service areas of 15 and 45

consumers suggest that ADF can detect the localities of energy fraud and metering defects

regardless of the type of consumer and contracted power.

The results suggest that a detection rate of 100% was achieved by ADF for the constant

cheating/malfunctioning scenarios as shown in both Tables 6.6 and 6.7 even in the presence

of TLs and measurement noise.

127

Univ
ers

ity
 of

 M
ala

ya



Consumer n

A
n
om

al
y
C
o
effi

ci
en
t,
ã
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Figure 6.6: Value of anomaly coefficients, ãn(ADF) obtained by ADF when an is
constant (size of 45 consumers).
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Figure 6.7: Value of loss factors, l̃ti obtained by ADF over 192 time intervals (size of
45 consumers).

6.3.2.2 Simulation: Enhanced ADF

In this section, the case where there are energy fraudsters who only cheat on their

energy reporting during an intermittent period of the day is considered. The varying

cheating/malfunctioning scenario for the size of 15 consumers is setup as shown in

Table 6.8. Thirty-day energy consumption data (i.e., D = 30) are extracted for solving the
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varying cheating problems. Here, the values of ati,n represent the exact state of each SM

(i.e., honest, compromised or defective) from the dataset at each time interval ti. In the

simulation setup, consumer 1 under-reports what was consumed by 60% (i.e., consumes 1

kWh but reports 0.4kWh, the meter discrepancy yd
ti = 0.6 kWh) only during time interval

ti = {t20, t21, · · · , t37}. Therefore, ati,1 =
ydti

pdti,n
= 0.6

0.4 = 1.50 while fraction of reported

consumption of consumer 1 is
pd
ti,1

cdti
= 0.4

1.0 = 0.40 during the affected time slots where

ti = {t20, t21, · · · , t37}. On the other hand, consumer 15 over-reports what was consumed

by 50% (i.e., consumes 1 kWh but reports 1.5kWh, the meter discrepancy yd
ti = −0.5

kWh) all the time. In such a case, at1,15 =
ydti

pdti,n
= −0.5

1.5 = −0.33 while fraction of reported

consumption of consumer 15 is
pd
ti,15

cdti
= 1.5

1.0 = 1.50 all the time where ti = {t1, t2, · · · , t48}.

The values of ãti,n(E ADF) in Table 6.8 are the average values of the computed ãti,n(E ADF)

during the affected time slots, whenever ãti,n(E ADF) < [−0.05, 0.05]. Again, recall that

consumers who have anomaly coefficients in [−0.05, 0.05] are assumed to be honest (i.e.,

ãti,n(E ADF) ≈ 0). Figure 6.8 depicts the values of ãti,n(E ADF) obtained by Enhanced ADF

for the size of 15 consumers. It is observed that there are four dishonest consumers and a

faulty SM. Specifically, consumers 4 and 11 compromise SMs to steal energy all the time

(since ãti,n(E ADF) > 0.05, ∀ti ∈ T) while the 15-th SM is faulty all the time (since

ãti,15(E ADF) < −0.05, ∀ti ∈ T). Meanwhile, consumer 1 tampers SM to under-report

energy consumption from the 20-th to 37-th time slots (since

ãt20,1(E ADF), ãt21,1(E ADF), · · · , ãt37,1(E ADF) > 0.05), and consumer 10 only steals electricity

from the 18-th to 36-th time slots (since

ãt18,10(E ADF), ãt19,10(E ADF), · · · , ãt36,10(E ADF) > 0.05) of the day. The other consumers are

classified as honest as their ãti,n(E ADF) are approximately 0. Again, the slight differences

between ati,n and the computed ãti,n(ADF) in Table 6.8 are caused by the injected

measurement noise in Equation (6.3). As discussed earlier, the collector can also compute
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Table 6.8: Comparison between varying ati,n and ãti,n(E ADF) obtained by Enhanced
ADF for the size of 15 consumers

Consumer n Type of Consumer Description Affected Time Slot, ti ati,n
1

1 + ati,n
ãti,n(E ADF)

1
1+ãti,n(EADF)

1 Commercial Under-report by 60% From t20 to t37 1.50 0.40 1.45 0.41
4 Commercial Under-report by 50% All the time 1 0.50 0.97 0.51
10 Commercial Under-report by 50% From t18 to t36 1 0.50 1.02 0.50
11 Residential Under-report by 40% All the time 0.67 0.60 0.65 0.61
15 Residential Over-report by 50% All the time −0.33 1.50 −0.32 1.47

Others - Honest All the time 0 1 0 1
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Figure 6.8: Value of anomaly coefficients, ãti,n(E ADF) obtained by Enhanced ADF
when ati,n is varying (size of 15 consumers). Only anomalous cases are plotted.

the fraction of reported energy usage based on the computed ãti,n(E ADF) during the

affected time slots, as shown in Table 6.8.

To evaluate the scalability of Enhanced ADF, a NAN of 45 consumers is considered.

The simulation for the case of 45 consumers is setup in a similar manner, and the detailed

descriptions are presented in Table 6.9. Similar results are observed in Table 6.9 and

Figure 6.9. Here, 150-day energy consumption data (i.e., D = 150) are observed for

solving the varying cheating problems in a larger service area. The results suggest that the

proposed Enhanced ADF is able to detect energy thieves even if the anomalous consumers

attempt to steal energy at intermittent periods. For instance, it can be seen from Figure 6.9
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Table 6.9: Comparison between varying ati,n and ãti,n(E ADF) obtained by Enhanced
ADF for the size of 45 consumers

Consumer n Type of Consumer Description Affected Time Slot, ti ati,n
1

1 + ati,n
ãti,n(E ADF)

1
1+ãti,n(EADF)

1 Commercial Under-report by 50% From t19 to t34 1 0.50 1.13 0.47
7 Residential Under-report by 70% From t21 to t31 2.33 0.30 2.27 0.31
9 Commercial Under-report by 70% From t19 to t37 2.33 0.30 2.28 0.30
10 Commercial Under-report by 50% All the time 1 0.50 1.03 0.49
19 Commercial Under-report by 60% All the time 1.50 0.40 1.52 0.40
22 Commercial Under-report by 40% From t17 to t40 0.67 0.60 0.67 0.60
23 Commercial Under-report by 40% From t4 to t21 0.67 0.60 0.72 0.58
25 Commercial Over-report by 80% All the time −0.44 1.80 −0.29 1.40
27 Commercial Under-report by 50% From t15 to t35 1 0.50 1.10 0.48

32 Commercial Under-report by 60% From t15 to t19 1.50 0.40 1.58 0.39
Under-report by 50% From t35 to t39 1 0.50 1.06 0.49

35 Commercial Under-report by 50% All the time 1 0.50 0.96 0.51
41 Commercial Over-report by 150% All the time −0.60 2.50 −0.39 1.64

Others - Honest All the time 0 1 0 1

that consumer 32 under-reports his energy consumption by 60% from 15-th to 19-th (since

ãt15,32(E ADF), ãt16,32(E ADF), · · · , ãt19,32(E ADF) > 0.05, with ãti,n(E ADF) = 1.58) and reports

his SM readings 50% less from 35-th to 39-th (since

ãt35,32(E ADF), ãt36,32(E ADF) · · · , ãt39,32(E ADF) > 0.05, with ãti,n(E ADF) = 1.06) time intervals.

The results in Table 6.9 also show that Enhanced ADF is capable of revealing the amount

of energy theft/loss (i.e., 1
1+ãti,n(EADF)

) based on a small volume of consumers’ power

consumption data samples regardless of the presence of TLs/noise.

The results suggest that a detection rate of 100% was achieved by Enhanced ADF for

the varying cheating/malfunctioning scenarios as setup in Tables 6.8 and 6.9 even in the

presence of TLs and measurement noise.

6.4 Frameworks Validation Through AMI Test Rig

Since real-world SG energy theft samples and collector readings rarely, or do not,

exist, regression and optimization analysis are first performed using the dataset released

by Commission for Energy Regulation (2009) as discussed in Section 6.3. However,

the dataset contains only consumers’ energy consumption data. Therefore, the collector

measurement cti is obtained by duly summing up the energy consumption of all consumers
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Figure 6.9: Value of anomaly coefficients, ãti,n(E ADF) obtained by Enhanced ADF
when ati,n is varying (size of 45 consumers). Only anomalous cases are plotted.

in the service area at time interval ti when there are no energy thefts and defective SMs.

In this section, frameworks validation through AMI test rig, which consists of a DS and

three consumers is conducted to validate the reliability and performance of the proposed

LR-based and LP-based anomaly detection frameworks in real SG environment. The power

line losses and the measurement noise/error of the equipment are taken into consideration

in the hardware experimentation.

Similarly, two series of hardware experimentation which consist of both constant and

varying scenarios are conducted on the 3-consumer test rig built in the laboratory. The

hardware installation of the test rig is detailed in Section 5.2.2. Again, it is assumed that

30% of the consumers and/or SMs in the NAN have a non-zero anomaly coefficient. The

minimum time of anomaly is subject to the time granularity of the SM (i.e., one slot = 30

minutes).
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6.4.1 Hardware Experimentation for LR-based Detection Framework

Recall that both the proposed LR-based detection schemes (i.e., LR-ETDM and CVLR-

ETDM) do not consider the impact caused by TLs and measurement noise on the NTL

detection analysis. In this section, the impact caused by real-world TLs and measurement

noise on the performance of LR-based detection schemes are investigated and evaluated.

6.4.1.1 Hardware Experimentation: LR-ETDM

The constant cheating/malfunctioning scenario for the test rig is setup as shown in

Table 6.10. In particular, fraudulent consumers steal energy all the time and never stop

cheating while some of the SMs had malfunctioned throughout the period of observations

(i.e., case s2 in the attack model). In Table 6.10, an are exact settings from the test rig,

whereas, ãn(LR) are estimated values obtained by LR-ETDM.

Figure 6.10 depicts the estimated values of ãn(LR) obtained from hardware

experimentation. It can be observed from Table 6.10 that the p-values of all three anomaly

coefficients (i.e., ã1(LR), ã2(LR) and ã3(LR)) are smaller than a 1% significance level. Thus,

all three coefficients are shortlisted for further investigation. It is quite obvious from

Figure 6.10 that consumer 2 is an energy thief (since ã2(LR) > 0) and the third SM is faulty

(since ã3(LR) < 0). Then, based on these anomaly coefficients, the collector can compute

the fraction of reported usage by 1
1+ãn(LR)

. Consumer 2 only reports 40% of his/her energy

consumption since 1
1+1.5046 ≈ 0.40, while consumer 3 over-reports what was consumed by

50% since 1
1+(−0.3291) ≈ 1.50. On the other hand, consumer 1 is classified as honest

because 1
1+0 ≈ 1.

The TLs in the test rig is approximately 0.15%, which might cause slight differences

between the exact and estimated coefficients in Table 6.10. LR-ETDM is able to achieve a

detection rate of 100% when the amounts of both TLs and measurement error in the test

rig are insignificant.
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Table 6.10: Comparison between an and ãn(LR) obtained by LR-ETDM from
hardware experimentation

Consumer n Description an
1

1+an
ãn(LR) p-valueã

1
1+ãn(LR)

1 Honest 0.00 1 0.0045≈ 0 0.0004 1
2 Under-report by 60% 1.50 0.40 1.5046 8.1259E-97 0.40
3 Over-report by 50% −0.3333 1.50 −0.3291 2.2084E-87 1.50
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Figure 6.10: Value of ãn(LR) obtained by LR-ETDM from hardware experimentation
(size of 3 consumers).

6.4.1.2 Hardware Experimentation: CVLR-ETDM

Meanwhile, hardware experimentation is also conducted for the scenarios when energy

thieves cheat on their energy reporting all the time/only during a certain period in a day

(i.e., cases s2, s3 and s4 in the attack model). The varying cheating/malfunctioning scenario

for the test rig is setup as shown in Table 6.11. In the table, an and βn are exact settings

from the test rig, whereas, ãn(CV LR) and β̃n(CV LR) are the estimated coefficients obtained by

CVLR-ETDM. Recall that an itself denotes the anomaly coefficients of consumers during

off-peak period while (an + βn) denotes the anomaly coefficients of consumers during

on-peak hours.

Figure 6.11 depicts the values of ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR)) obtained from
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Table 6.11: Comparison between an & βn and ãn(CV LR) & β̃n(CV LR) obtained by
CVLR-ETDM from hardware experimentation

Consumer n Description Affected Time Slot an βn (an + βn) ãn(CV LR) p-valueã β̃n(CV LR) p-valueβ̃ (ãn(CV LR) + β̃n(CV LR))

1 Under-report by 60% All the time 1.50 0.00 1.50 1.4870 1.9532E-72 0.0126≈ 0 0.0997 1.4996
2 Under-report by 50% On-peak 0.00 1.00 1.00 0.0020 ≈ 0 0.2283 1.0076 2.1266E-71 1.0096
3 Honest All the time 0.00 0.00 0.00 0.0044≈ 0 0.0141 -0.0030≈ 0 0.3663 0.0015≈ 0
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Figure 6.11: Value of ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR)) obtained by CVLR-ETDM
from hardware experimentation (size of 3 consumers).

hardware experimentation. Results in Figure 6.11 suggest that there are two dishonest

consumers. In particular, since ã1(CV LR) > 0 and ã1(CV LR) + β̃1(CV LR) > 0 (i.e., black and

white bars co-appear), consumer 1 is classified as energy thief for stealing energy all the time.

Meanwhile, consumer 2 reports less than what was consumed only during on-peak period

because ã2(CV LR) = 0 and ã2(CV LR)+ β̃2(CV LR) > 0 (i.e., only white bar appears). Consumer

3 is always honest in energy reporting (since ã3(CV LR) = 0, ã3(CV LR) + β̃3(CV LR) = 0).

Similarly, the collector can compute the percentage of under-reporting/over-reporting

based on the estimated ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR)), as discussed in Section 4.4.2.

However, the computation for fraction of reported consumption of each consumer is

omitted from Table 6.11 due to space constraints.

It can be seen from Table 6.11 that p-value of ã1(CV LR) is less than a 1% significance
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level, implying consumer 1 is unlikely to be honest (i.e., ã1(CV LR) , 0). Meanwhile,

p-values of both β̃1(CV LR) and β̃3(CV LR) are greater than 0.01, indicating that both consumer

1 and consumer 3 have β̃n(CV LR) = 0 and hence do not change the cheating behaviors.

Specifically, consumer 1 under-reports energy consumption all the time and consumer 3 is

always honest. On the other hand, the p-value of β̃2(CV LR) is less than 0.01, indicating that

consumer 2 is likely to have β̃2(CV LR) , 0. A non-zero β̃n(CV LR) implies that the consumer

has different cheating patterns throughout the period of observations. In such a case,

consumer 2 only cheats during on-peak hours.

Similarly, the slight differences between the exact and estimated coefficients in Table 6.11

are possibly caused by the TLs/calibration errors in the test rig (i.e., only 0.15%). The

experimentation result in Table 6.11 shows that CVLR-ETDM can attain a detection rate

of 100% when the amounts of both TLs and measurement error are negligible.

6.4.2 Hardware Experimentation for LP-based Detection Framework

In pursuit of higher detection rate and lower false positives, metrics known as the loss

factor and error term are introduced in the proposed LP-based anomaly detection framework

to estimate the amount of TLs and capture the measurement noise, respectively in the

distribution lines and transformers. The anomaly detection framework is then enhanced to

detect consumers’ malfeasance and faulty meters even when there are intermittent cheating

and faulty equipment, improving its robustness. In this section, the performance and

reliability of the LP-based framework are evaluated and validated in the presence of TLs

and measurement noise of equipment in real SG environment.

6.4.2.1 Hardware Experimentation: ADF

Here, the constant cheating/malfunctioning scenario for the test rig which is setup as

shown in Table 6.12 is considered. One-day half-hourly energy data from the test rig are
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Table 6.12: Comparison between constant an and ãn(ADF) obtained by ADF from
hardware experimentation

Consumer n Description an
1

1 + an
ãn(ADF)

1
1 + ãn(ADF)

1 Honest 0 1 −0.0079 ≈ 0 1
2 Under-report by 60% 1.5000 0.40 1.5000 0.40
3 Over-report by 50% −0.3333 1.50 −0.3301 1.49

extracted for the theft detection analysis. The values of an represent the exact state of each

SM (i.e., honest, compromised or defective) from the test rig, whereas ãn(ADF) denotes the

computed anomaly coefficients obtained by ADF from the hardware experimentation.

Figure 6.12 depicts the estimated ãn(ADF) under constant scenario. Results of ãn(ADF)

in Table 6.12 and Figure 6.12 suggest that the second consumer always under-reports

what was consumed (since ã2(ADF) > 0.05) while the third SM over-reports the energy

consumption (since ã3(ADF) < −0.05) all the time. Since ã1(ADF) ≈ 0, consumer 1 is

classified as honest. Based on the computed fraction of reported usage of each consumer

in Table 6.12, it can be inferred that the second consumer only reports 40% of what was

consumed and the third consumer over-reports what was consumed by 50%.

The TLs in the test rig is approximately 0%, which might cause inconsiderable

differences between the exact and estimated anomaly coefficients. It is observed from

Table 6.12 that the detection rate of ADF is 100% when the amounts of both TLs and

measurement noise are trivial.

6.4.2.2 Hardware Experimentation: Enhanced ADF

Subsequently, the varying cheating/malfunctioning scenario for the test rig which is

setup as shown in Table 6.13 is considered. Four-day energy consumption data (i.e., D = 4)

are extracted for solving the varying cheating problems. Here, the values of ati,n represent

the exact state of each SM (i.e., honest, compromised or defective) from the test rig at each
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Figure 6.12: Value of anomaly coefficients ãn(ADF) obtained by ADF from hardware
experimentation (size of 3 consumers).

time interval ti, whereas the values of ãti,n(E ADF) are the average values of the estimated

ãti,n(E ADF) during the affected time slots, whenever ãti,n(E ADF) < [−0.05, 0.05].

Figure 6.13 depicts the estimated ãti,n(E ADF) under varying scenario. As shown in

Figure 6.13, it is observed that there are two consumers who have non-zero anomaly

coefficients. In particular, since ãt17,1(E ADF), ãt18,1(E ADF), · · · , ãt35,1(E ADF) > 0.05, with

ãti,n(E ADF) = 0.9942, the first consumer is classified as energy thief for stealing energy

from the 17-th to the 35-th time slot. Meanwhile, the third energy thief under-reports what

was consumed from 1-st to 15-th time slot (since

ãt1,3(E ADF), ãt2,3(E ADF), · · · , ãt15,3(E ADF) > 0.05, with ãti,n(E ADF) = 2.3558) and from 27-th

to 41-st time slot (since ãt27,3(E ADF), ãt28,3(E ADF), · · · , ãt41,3(E ADF) > 0.05, with

ãti,n(E ADF) = 2.3468). The second consumer is honest in energy reporting because the

estimated anomaly coefficient is zero. Similarly, the UPs can compute how much

more/less the consumers have paid based on their computed fraction of reported

consumption (i.e., 1
1+ãti,n(EADF)

).

As mentioned earlier in Section 6.4.2.1, the TLs in the test rig is very small (i.e.,
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Table 6.13: Comparison between varying ati,n and ãti,n(E ADF) obtained by Enhanced
ADF from hardware experimentation

Consumer n Description Affected Time Slot, ti ati,n
1

1 + ati,n
ãti,n(E ADF)

1
1+ãti,n(EADF)

1 Under-report by 50% From t17 to t35 1 0.50 0.9942 0.50
2 Honest All the time 0 1 0 1

3 Under-report by 70% From t1 to t15 2.33 0.30 2.3558 0.30
Under-report by 70% From t27 to t41 2.33 0.30 2.3468 0.30
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Figure 6.13: Value of anomaly coefficients ãti,n(E ADF) obtained by Enhanced ADF
from hardware experimentation (size of 3 consumers).

approximately 0%). The slight differences between the exact and estimated anomaly

coefficients in Table 6.13 are likely due to TLs/measurement error. The results from

Table 6.13 also suggest that the detection rate of Enhanced ADF is 100% when the amounts

of both TLs and measurement error are nearly 0%.

6.5 Functional Comparison among NTL Detection Schemes

It is worth noting that both simulation-based and hardware experimentation-based

comparative analyses between the proposed frameworks (i.e., LR-based and LP-based

anomaly detection frameworks) and existing work are not made because they amounts to

an unfair comparison. This is because some Artificial Intelligence (AI)-based energy theft

detection schemes are susceptible to contamination attack and require large amount of
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training data (i.e., months and years) which might cause longer detection delay and limit

the accuracy of the theft detection. Most of the other detection schemes will not perform

satisfactorily with the smaller data sample size used for the proposed frameworks. In

contrast, the proposed frameworks are not only robust against contamination attack but also

able to reveal the amount of energy theft/loss based on a small volume of consumers’ energy

consumption data samples regardless of TLs/noise. Unlike some existing work such as the

LUD-based energy theft detection scheme (S. Salinas et al., 2013), the proposed anomaly

detection frameworks are not limited by the dimension of consumers’ energy consumption

data and they can still successfully identify all the fraudulent consumers and defective

SMs in the NAN. Therefore, Table 6.14 functionally compares the proposed anomaly

detection frameworks with existing NTL detection schemes, whereby the performance

of the proposals is compared with the most recent and best results from existing energy

theft detection schemes discussed in Section 2.4. It is observed that the detection rate of

classification-based schemes (i.e., SVM (Nagi et al., 2010) and ELM techniques (Nizar et

al., 2008)) are approximately 60% − 70%. On the other hand, detection schemes adopting

rough set theory (Spirić et al., 2014), Naïve Bayesian & Decision Tree (Nizar et al., 2007),

LUD (S. Salinas et al., 2013), multi-class SVM (Jokar et al., 2016), LR (Yip et al., 2017))

and LP models (Yip, Tan, Tan, Gan, & Wong, 2018) yield higher detection rates, i.e.,

∼ 100%. Although false positive rate captures how many honest consumers are wrongly

classified as fraudulent ones by mistake (Jiang et al., 2014), only a few schemes such

as (Nagi et al., 2010; Jokar et al., 2016) and (Krishna, Lee, et al., 2016) reported the

quantitative false positive rate. In addition, most NTL detection schemes do not consider

TLs, which may prohibit their deployment for actual utilization. In contrast, to make

the proposed framework more practical, the loss factor and error term are introduced

in the LP-based detection framework to estimate the percentage of TLs and capture the
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Table 6.14: Comparison among energy theft detection schemes

Category Scheme Technique in Use Detection Rate
(%)

False Positive
(%)

Consider
TLs

Detect
Over-reporting

by SM

Conventional
Power
Grids

Ref. (Nagi et al., 2010) SVM 60 13.57 7 7

Ref. (Nizar et al., 2008) ELM & Online Sequential-ELM 70 - 7 7

Ref. (Nizar et al., 2007) Naïve Bayesian & Decision Tree 99 - 7 7

Ref. (Dos Angelos et al., 2011) Fuzzy Clustering & Classification 80 - 7 7

Ref. (Spirić et al., 2014) Rough Set Theory 93 - 7 7

Smart
Grids

Ref. (S. Salinas et al., 2013) LUD 100 - 7 3

Ref. (Jokar et al., 2016) Multi-class SVM 94 11 7 7

Ref. (Krishna, Lee, et al., 2016) Kullback-Leibler Divergence 82 0 7 7

LR-ETDM & CVLR-ETDM Linear Regression 100 0 7 3

ADF & Enhanced ADF Linear Programming 100 0 3 3

measurement noise, respectively. Despite the introduction of these terms, the proposed

framework is still able to correctly detect pilfering of electricity and defective SMs. In

addition to detecting SMs that under-report (i.e., energy theft), LUDmodel (S. Salinas et al.,

2013) and the proposed models (i.e., LR-ETDM & CVLR-ETDM and ADF & Enhanced

ADF) are able to identify SMs which over-report the energy consumption. Furthermore,

the LP-based detection framework outperforms the LR-based detectors in handling NTLs

because the energy thefts/meter irregularities can be detected regardless of whether they

occur all the time or at varying rates during intermittent periods in a day. Consumers’

anomaly coefficient at each time slot is evaluated separately and hence Enhanced ADF is

still able to accurately detect pilfering of electricity and defective SMs even though NTLs

take place at irregular intervals. Therefore, the proposed LP-based anomaly detection

framework is more robust.

6.6 Impact of Distributed Energy Resources on the Frameworks

In recent years, many countries have been actively encouraging the adoption of renewable

energy/DER to replace fossil fuels. For example, in Malaysia, the DER (i.e., solar panels,

wind turbines and etc.) feedings method can be grouped under two categories, namely

direct feed and indirect feed, respectively (Abu, H. A., Saharuddin, S., Hussein, Z. F.,

Malathy, B., Busrah, A. M., & Devaraju, P., 2013). The connection of direct feed and

indirect feed are shown in Figures 6.14 and 6.15, respectively.
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Figure 6.14: Connection to power grid (direct).
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Figure 6.15: Connection to power grid (indirect).

Figure 6.16: Modified IEEE 13-node test feeder
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For direct feeding, the generated energy is fed directly to power grid, as shown in

Figure 6.14. A generation meter/export meter will record the amount of energy generated

and fed into the power grid. UPs will pay the owner of DER based on the reading from

generation meter. Meanwhile, for indirect feeding, the SM will perform a net metering

function which allows renewable power generated to be used at the home/building before

any excess energy is fed back into the grid, as illustrated in Figure 6.15. The bi-directional

SM can measure how much energy is flowing in the opposite direction, back into the grid.

Indirect connection is allowed for special case and requires additional verification and

supplementary agreement with the UPs.

UPs incorporating DER have to plan for new connections and business model to achieve

accurate control and forecasting needed for grid reliability and security. Therefore, a

slight modification can be done on Equation (3.1) to take into account the impact of DER

on the frameworks. In this work, the focus is on the detection of under-reporting and

over-reporting of consumers’ SM (i.e., import meter), thereby it is assumed that the DER

generation measurements recorded by the generation meter are not manipulated. The

detection of malicious consumers who over-report the energy they generate for financial

gain may be considered in a future work. According to the modified IEEE 13-node test

feeder as shown in Figure 6.16 (IEEE Power & Energy Society, 1992), the total energy

supplied by the UP to the NAN (cti ) and the total energy generated by all the consumers at

time interval ti (gti ) (i.e., root node) should tally with the sum of electricity consumption

reported by all the consumers (i.e., leaf nodes) as discussed in Section 3.3.2. Therefore,

the following equation is formulated:

cti + gti =

N∑
n=1

pti,n + λ + θ + γ, (6.4)

where λ denotes the TLs, while θ and γ represent the inaccurate meter readings due to
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Table 6.15: Comparison among constant an, ãn(LR) and ãn(ADF) obtained from
hardware experimentation

Consumer n Description an
1

1 + an
ãn(LR)

1
1 + ãn(LR)

ãn(ADF)
1

1 + ãn(ADF)
1 Over-report by 50% -0.3333 1.50 -0.3366 1.51 -0.3386 1.51
2 Honest 0 1 0.0018 ≈ 0 1 0 1
3 Under-report by 60% 1.50 0.40 1.5167 0.40 1.5119 0.40

energy frauds and defective SMs, respectively.

6.7 Strengths and Weaknesses of the Proposed Frameworks

LR-based and LP-based anomaly detection frameworks are put forward to study

consumers’ energy consumption behavior for detecting the localities of metering defects

as well as energy thefts. In this section, comparison studies are performed on the proposed

anomaly detection frameworks in real SG environment. To investigate the scalability of

both proposed frameworks, data are also extracted from the Irish Smart Energy Trial in the

performance comparison studies.

6.7.1 Constant Anomaly Coefficients

Here, the performance of LR-ETDM and ADF where the dishonest consumers always

under-report their energy consumption (i.e., case s2 of attack model where ν ∈ (0, 0.95))

and/or defective SMs over-report what was consumed (i.e., case s2 where ν ∈ (1.05, 2.5])

throughout the entire day are compared. The constant under-reporting/over-reporting

scenario for the size of three consumers of the test rig is setup as shown in Table 6.15. Daily

half-hourly smart energy data (i.e., 48 data points) from the AMI test rig are extracted for

the anomaly detection analysis. Values of an depict the exact state of each SM (i.e., honest,

compromised or faulty) from the dataset, whereas, ãn(LR) and ãn(ADF) are the anomaly

coefficients obtained by the LR-ETDM and ADF, respectively.

Figure 6.17 depicts the values of ãn(LR) and ãn(ADF) when an is constant for the size of
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Figure 6.17: Values of anomaly coefficients obtained by LR-ETDM and ADF from
the test rig when an is constant (size of 3 consumers).

three consumers. It can be observed from Table 6.15 and Figure 6.17 that the first SM is

out of order as ã1 < −0.05 while the third consumer is an energy thief since ã3 > 0.05.

Consumer 2 is classified as honest as ã2 = 0. The results also suggest that both ãn(LR) and

ãn(ADF) achieve detection rate of 100% and show similar results when the service area is

small and the amounts of both TLs and measurement error are negligible.

To study how the proposed frameworks scale with the number of consumers in the event

of TLs and measurement noise being present, a NAN of 45 consumers is considered. The

simulation for the case of 45 consumers is setup in a similar mean as shown in Table 6.16.

Four-day half-hourly smart energy data (i.e., 192 data points) from the Irish Smart Energy

Trial (Commission for Energy Regulation, 2009) are extracted for the detection analysis.

As mentioned earlier, the average TLs of LV network in Malaysia was reported to

range from 0.59% to 3.23%. To show the viability of the proposed anomaly detection

frameworks in estimating the amount of TLs, an evaluation environment with 3% − 5% of

TLs is created, as presented in Equation (6.2). Recall that, the state-of-the-art SMs measure

very accurate measurements, where the errors are usually modeled by white uncorrelated
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Table 6.16: Comparison among constant an, ãn(LR) and ãn(ADF) obtained from the
Irish Smart Energy Trial (size of 45 consumers)

Consumer n Description an
1

1 + an
ãn(LR)

1
1 + ãn(LR)

ãn(ADF)
1

1 + ãn(ADF)
1 Over-report by 70% −0.4117 1.7 −0.3275 1.49 −0.4181 1.72
7 Over-report by 50% −0.3333 1.50 −0.2750 1.38 −0.3144 1.46
10 Under-report by 60% 1.5000 0.40 1.5533 0.39 1.5013 0.40
17 Under-report by 25% 0.3333 0.75 0.4142 0.71 0.3193 0.76
19 Honest 0 1 *0.0920 0.92 0 1
22 Under-report by 70% 2.3333 0.30 2.5132 0.28 2.3381 0.30
24 Honest 0 1 *0.1331 0.88 0 1
27 Under-report by 70% 2.3333 0.30 2.4003 0.29 2.3064 0.30
31 Over-report by 100% −0.5000 2.00 −0.4647 1.87 −0.4985 1.99
32 Honest 0 1 0.0501 ≈ 0 1 0 1
34 Honest 0 1 *0.0988 0.91 0 1
35 Under-report by 65% 1.8571 0.35 2.0233 0.33 1.8549 0.35
38 Under-report by 50% 1 0.50 1.1801 0.46 1.0344 0.49
41 Over-report by 50% −0.3333 1.50 *0 1 −0.2545 1.34
42 Under-report by 30% 0.4285 0.70 0.3491 0.74 0.3885 0.72
45 Under-report by 30% 0.4285 0.70 0.5508 0.64 0.4454 0.69

Others Honest 0 1 - - - -
* False Positive
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Figure 6.18: Values of anomaly coefficients obtained by LR-ETDM and ADF from
the Irish Smart Energy Trial when an is constant (size of 45 consumers).

noise with standard deviation and zero mean (S. A. Salinas & Li, 2015). Thus, to further

validate the proposed frameworks, the measurement errors are also considered as shown in

Equation (6.3).

As shown in Table 6.16 and Figure 6.18, LR-ETDM tends to produce inaccurate anomaly

coefficient vector in the presence of TLs and measurement noise. Specifically, some of
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the honest consumers are accused wrongly as fraudulent consumers (i.e., consumers 19,

24 and 34) while consumer 41 who over-reports his/her energy consumption is classified

incorrectly as normal. As discussed earlier, any SMs who have anomaly coefficients in

[−0.05, 0.05] are assumed to be truthful in energy reporting (i.e., ãn ≈ 0). Therefore,

consumer 32 is identified as honest. In contrast, ADF produces more accurate anomaly

coefficients and is able to detect all anomalous consumers and faulty SMs successfully

after taking into consideration the impact caused by TLs and measurement noise.

Then, based on the computed anomaly coefficients, the operation center can compute

the fraction of reported energy usage of each consumer by 1
1+ã as shown in Tables 6.15

and 6.16.

6.7.2 Varying Anomaly Coefficients

Besides, performance comparison between CVLR-ETDM and Enhanced ADF for the

case where there are anomalous fraudsters who cheat on their energy reporting (i.e., case

s3 of attack model where ν ∈ (0, 0.95) or case s4) and/or defective SMs over-report what

was consumed (i.e., case s3 where ν ∈ (1.05, 2.5]) only during off-peak/on-peak periods

is also conducted. The varying under-reporting/over-reporting scenario for the hardware

experimentation (size of 3 consumers) is setup as shown in Table 6.17.

Here, values of ati,n are exact settings from the dataset, whereas, ãn(CV LR) and β̃n(CV LR)

are the estimated values obtained by the CVLR-ETDM. Values of ãti,n(E ADF) are the average

values of the computed ãti,n(E ADF) obtained by Enhanced ADF during the affected time

slots, whenever ãti,n(E ADF) < [−0.05, 0.05]. One-day and four-day energy consumption data

are extracted for solving the varying cheating problems using CVLR-ETDM and Enhanced

ADF, respectively. Four-day metered data are needed in Enhanced ADF as it requires at

least N days data for detection analysis (i.e., N is the number of consumers in the service

area). Figures 6.19(a) and 6.19(b) depict the values of ãn(CV LR) and (ãn(CV LR) + β̃n(CV LR))
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obtained by CVLR-ETDM as well as the values of ãti,n(E ADF) obtained by Enhanced ADF,

respectively, for the hardware experimentation which is setup as shown in Table 6.17.

As shown in Figures 6.19(a) and 6.19(b), it is obvious that consumer 1 over-reports

his/her energy consumption all the time. Particularly, ã1(CV LR) < −0.05,

(ã1(CV LR) + β̃1(CV LR)) < −0.05 while (ãt1,1(E ADF), ãt2,1(E ADF), · · · , ãt48,1(E ADF) < −0.05,

where ãti,1(E ADF) = −0.3371). On the other hand, consumer 2 under-reports what was

consumed only during on-peak period (i.e., ã2(CV LR) = 0, (ã2(CV LR) + β̃2(CV LR)) > 0.05

while (ãt16,2(E ADF), ãt17,2(E ADF), · · · , ãt39,2(E ADF) > 0.05, where ãti,2(E ADF) = 1.5001)).

Consumer 3 is identified as honest as ã3(CV LR) = 0, (ã3(CV LR) + β̃3(CV LR)) = 0 while

(ãt1,3(E ADF), ãt2,3(E ADF), · · · , ãt48,3(E ADF) = 0). Similarly, both CVLR-ETDM and

Enhanced ADF produce almost the same results when the amounts of both TLs and

measurement error are negligible.

To assess the scalability of the proposed anomaly detection frameworks under varying

cheating/malfunctioning scenario in the presence of TLs and measurement noise, a NAN

of 45 consumers is considered. Five-month half-hourly smart energy data (i.e., D = 150)

from the Irish Smart Energy Trial (Commission for Energy Regulation, 2009) are extracted

for the detection analysis. The varying cheating/malfunctioning simulation for the scenario

of 45 consumers in the presence of TLs and noise is setup as shown in Table 6.18.

By referring to the results from Figures 6.20(a) and 6.20(b), it can be inferred that

there are eleven fraudulent consumers and a defective SM. Specifically, consumers 1,

19 and 42 steal energy all the time (i.e., ãn(CV LR) > 0.05, (ãn(CV LR) + β̃n(CV LR)) >

0.05 while (ãt1,n(E ADF), ãt2,n(E ADF), · · · , ãt48,n(E ADF) > 0.05). Consumer 37 always over-

reports what was consumed (i.e., ã37(CV LR) < −0.05, (ã37(CV LR) + β̃37(CV LR)) < −0.05

while (ãt1,37(E ADF), ãt2,37(E ADF), · · · , ãt48,37(E ADF) < −0.05). Meanwhile, consumer 8

under-reports what was consumed only during off-peak period (i.e., ã8(CV LR) > 0.05,
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(ã8(CV LR) + β̃8(CV LR)) = 0, while (ãt1,8(E ADF), ãt2,8(E ADF), · · · , ãt15,8(E ADF) > 0.05 and

ãt40,8(E ADF), ãt41,8(E ADF), · · · , ãt48,8(E ADF) > 0.05). As shown in Figure 6.20(a), it is

observed that all the honest consumers do not have ãn = 0 or (ãn + β̃n) = 0. The slight

errors are due to the injected TLs and noise in Equation (6.3). Meanwhile, as presented in

Table 6.18, the combination of ã4(CV LR) ≈ 0 and (ã4(CV LR) + β̃4(CV LR)) = 0.10 indicates

that consumer 4 steals energy only during on-peak period. In addition, the combination of

ã38(CV LR) > 0 and (ã38(CV LR) + β̃38(CV LR)) > 0 indicates that consumer 38 steals energy

all the time. However, in actual experimentation, consumer 4 is honest and consumer 38

under-reports what was consumed only during off-peak period. These results suggest that

CVLR-ETDM becomes unstable in the presence of TLs and calibration noise in larger

service area. On the contrary, Enhanced ADF is capable of identifying the anomalous and

faulty SMs accurately under this scenario. As mentioned previously, the operation center

can calculate the fraction of reported energy usage of each consumer by 1
1+a or 1

1+(a+β) (i.e.,

whenever ãn ≈ 0) as shown in Tables 6.17 and 6.18 based on the computed coefficients.
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Figure 6.19: Values of anomaly coefficients obtained byCVLR-ETDMandEnhanced
ADF from the test rig when ati,n is varying (size of 3 consumers)
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6.7.3 Performance Comparison Between LR-based and LP-based Anomaly
Detection Frameworks

Table 6.19 shows the performance comparison between LR-ETDMandADF in detecting

the constant cheating/malfunctioning under different scenarios on the same dataset. It can

be observed from Table 6.19 that the detection rates (DR) of both LR-ETDM and ADF are

100% when the percentage of TLs is negligible (i.e., case 1) or when TLs are non-existent

(i.e., case 2). The results also suggest that the detection of both schemes becomes more

accurate when the consumers’ energy consumption data are observed over longer periods.

This is due to the fact that observation of metered data over an extended period of time

results in addition in the number of constraints which can enhance the accuracy of the theft

detection analysis. false positives (FP) is an important metric which indicates how many

honest consumers are classified into malicious ones by mistake. Although LR-ETDM

achieves higher detection accuracy when the metered data are observed over longer times,

the number of FP increases because the impact caused by TLs and noise on the detection

analysis is not considered in the framework. On the contrary, the number of FP decreases

in ADF when consumers’ energy consumption data are observed over more days. In ADF,

loss factor and error term capture the percentage of TLs and calibration errors at each

time interval, respectively. Therefore, it provides a more robust detection as compared to

LR-ETDM.

On the other hand, Table 6.20 demonstrates the comparison studies between CVLR-

ETDM and Enhanced ADF in detecting the varying cheating/equipment malfunctioning

under different scenarios on the same data sample. Similarly, detection rates of both

CVLR-ETDM and Enhanced ADF are 100% when the amount of TLs is small (i.e., cases 9

and 10) or when TLs are non-existent (i.e., cases 11 and 18). It can be seen from Table 6.20

that Enhanced ADF requires more observation data (i.e., at least N days, where N is the
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Table 6.19: Performance comparison between LR-ETDM and ADF

Scenario No. of Consumers No. of Days In the Presence
of TLs

LR-ETDM ADF
DR (%) No. of FP DR (%) No. of FP

1 3 (test rig) 1 < 1% 100 0 100 0
2 45 1 7 100 0 100 0
3 45 1 3 16.67 0 66.67 18
4 45 2 3 83.33 2 91.67 9
5 45 3 3 91.67 2 91.67 7
6 45 4 3 91.67 3 100 0
7 45 5 3 91.67 3 100 0
8 45 6 3 100 4 100 0

DR: detection rate; FP: false positives

Table 6.20: Performance comparison between CVLR-ETDM and Enhanced ADF

Scenario No. of Consumers No. of Days In the Presence
of TLs

CVLR-ETDM Enhanced ADF
DR (%) No. of FP DR (%) No. of FP

9 3 (test rig) 1 < 1% 100 0 - -
10 3 (test rig) 4 < 1% 100 0 100 0
11 45 2 7 100 0 - -
12 45 2 3 8.33 0 - -
13 45 3 3 75 0 - -
14 45 4 3 75 0 - -
15 45 5 3 75 2 - -
16 45 6 3 83.33 3 - -
17 45 30 3 100 0 - -
18 45 45 7 100 0 100 0
19 45 45 3 100 0 91.67 1
20 45 60 3 100 1 100 0
21 45 90 3 100 1 100 0
22 45 150 3 100 1 100 0

DR: detection rate; FP: false positives

number of consumers in the service area) as compared to CVLR-ETDM to achieve higher

detection rate (DR) and lower FP. The table also suggests that both frameworks obtain

higher DR when the metered data are observed over longer periods. However, the number

of FP increases over time in CVLR-ETDM as the effect of TLs is not considered. On

the other hand, the number of FP reduces over time in Enhanced ADF as loss factor and

error term capture the percentage of TLs and noise in the system, respectively, thereby

improving the DR.

Although LR-ETDM and CVLR-ETDM are able to detect the energy thieves and faulty

SMs more accurately when the metered data are observed over an extended period of
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Table 6.21: Summary of the proposed frameworks

Scheme Technique
In Use

Detect
Constant
Cheating/

Malfunctioning
(all the time)

Detect
Varying
Cheating/

Malfunctioning
(off-peak/
on-peak/

all the time)

Detect
Intermittent
Cheating/

Malfunctioning
(irregular time

intervals)

Consider
TLs Highlights

LR-ETDM MLR 3 7 7 7 Require
less

metered
data

CVLR-ETDM
MLR with
Categorical
Variables

3 3
Can be

achieved with
minor modification

7

ADF LP 3 7 7 3 Higher DR

Enhanced ADF LP 3 3 3 3
Higher DR &
able to detect

intermittent NTLs

time, the number of FP increases. Therefore, it is important to take into account TLs

and measurement noise/error in the design of anomaly detection framework to improve

the robustness and accuracy of NTL detection analysis. Besides identifying theft and

irregularities in meter readings during specific off-peak/on-peak periods, the proposed LP-

based Enhanced ADF can still detect meter irregularities even if there are intermittent NTLs.

In other words, Enhanced ADF is not restricted to NTL detection during off-peak/on-peak

periods only. The results are detailed in Sections 6.3.2.2 and 6.4.2.2.

6.8 Summary of Chapter

In this chapter, the performance and reliability of the proposed LR-based and LP-based

frameworks in Chapter 3 and 4, respectively, are evaluated and discussed. Particularly, the

discussion focuses mainly on validating the achievement of the objectives of this thesis.

Performance comparison studies are conducted to study the strengths and weaknesses of

the two proposed anomaly detection frameworks in order to determine which framework

to be deployed subject to the availability of data and type of NTL event.

Table 6.21 shows a summary of all the proposed schemes. LR-ETDM and CVLR-

ETDM which adopted MLR do not consider TLs in the NTL detection analysis, hence

the detection rate is lower as compared to the LP-based ADF and Enhanced ADF in the

156

Univ
ers

ity
 of

 M
ala

ya



presence of TLs. LP is chosen instead of MLR in ADF and Enhanced ADF because of the

non-multicollinearity characteristic of MLR. MLR is unable to estimate the coefficients

accurately when multicollinearity is present (Studenmund, 2014). In other words, when

the predictors are significantly correlated due to the fact that cti ≈ pti,1 + pti,2 + · · · + pti,N ,

MLR cannot be adopted to solve the LSE in Equations (4.11) and (4.18). The LR-based

anomaly detection schemes require less metered data as compared to LP-based ones to

detect constant and varying NTL activities. However, to detect more sophisticated and

intermittent NTLs such as irregular partial meter bypass, metered data are observed over

longer periods as more data samples are required for detection analysis in Enhanced ADF.

Therefore, specific detection framework is selected based on the data availability and type

of NTL.
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CHAPTER 7: CONCLUSION

Energy theft is a daunting global problem that results in high utility costs and increased

costs to benign paying consumers, as well as a range of safety issues. In recent years, SM

and other Internet-based software in SG have increased the chances for energy theft, yet

the UPs are still incapable of identifying the sophisticated attacks that target the metering

infrastructure. Therefore, anomaly detection framework that identify consumers’ energy

consumption patterns that are indicative of NTL activities is necessary to thwart electricity

pilfering from SM. In this concluding chapter, the key findings of the preceding chapters

are summarized and several interesting future research directions are suggested.

7.1 Summary of Key Findings

The work in this thesis has achieved the objectives outlined in Section 1.3 by putting

forward two anomaly detection frameworks using regression and optimization analyses.

Firstly, a metric known as anomaly coefficient is proposed to model the amount of stolen

energy at each SM in order to detect the localities of under-reporting and over-reporting by

malicious SMs, i.e., a LR-based scheme for Detection of Energy Theft and Defective Smart

Meters (LR-ETDM) is put forward in Chapter 3 to detect constant-rate under-reporting and

over-reporting by SMs. However, it is shown that varying-rate cheating/malfunctioning

in energy reporting might cause some of the fraudulent consumers to escape detection

when their cheating behaviors change within the period of observations. To overcome

the deficiency of LR-ETDM, Categorical Variable-Enhanced LR-ETDM (CVLR-ETDM)

is proposed to resolve the varying-rate cheating/malfunctioning problem. Categorical

variables are introduced in linear regression to categorize the period of energy fraud and

meter irregularities. In addition, another metric referred to as the detection coefficient is

also introduced to capture the changes of the anomaly coefficients in order to detect the
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period of NTL activities. The simulation and hardware experimentation results show that

the suspected consumer can be deduced whether he/she is committing theft either all the

time or only during a particular period in a day by investigating the estimated anomaly

coefficient and detection coefficient of each consumer.

In the LR-based detection framework, the work in this thesis assumes that power line

losses are known, which in practice may be difficult to obtain. In pursuit of higher DR

and lower FP, a LP-based anomaly detection framework, known as ADF, is designed in

Chapter 4 to take into consideration TLs and calibration error of the equipment for more

accurate and efficient anomaly detection. A metric referred to as loss factor is introduced

to estimate the percentage of TLs in the service area. Furthermore, another variable known

as the error term is also designed to approximate the random calibration noise/error of

the measuring equipment. Then, in order to detect fraudulent consumers’ intermittent

and more sophisticated malicious behaviors, an Enhanced ADF scheme is put forward.

In Enhanced ADF, consumers’ reported SM readings are analyzed over a longer period

according to specific time slot. As a result of separating consumers’ anomaly coefficient

evaluation according to time slot, the results indicate that Enhanced ADF is able to detect

the localities of malicious events even when there are intermittent cheating and/or faulty

equipment, and not restricted to detection during off-peak and on-peak periods only.

A diverse set of NTL attack functions is investigated and generated such that the

experiments are closely related to the possible real-world energy fraud/meter irregularities

scenarios. From the simulation and hardware experimentation results in Chapter 6, it has

been established that ADF outperforms LR-ETDMby a considerable margin in the presence

of TLs, i.e., less FP and higher DR in detecting constant under-reporting and over-reporting

by SMs, suggesting that the impact caused by TLs and measurement noise at the anomaly

detection analysis may be substantial. The detection accuracy might be affected if the

159

Univ
ers

ity
 of

 M
ala

ya



amounts of both TLs and measurement error are not accounted for in the detection analysis.

Similarly, results also suggested that Enhanced ADF outperforms CVLR-ETDM with the

presence of TLs, as loss factor and error term capture the percentage of TLs and noise in

the system, respectively, thereby improving the detection accuracy. However, sample size

versus accuracy trade-off is observed in the Enhanced ADF scheme as it requires more

observation data as compared to CVLR-ETDM. Due to this trade-off, it is observed that

Enhanced ADF may no longer be beneficial for NTL detection when the data sample size

is less than the number of consumers in the service area. In short, LR-based anomaly

detection framework is able to identify the positions of energy thieves and faulty SMs

without requiring large volume of data samples. On the other hand, LP-based framework

is more robust as compared to LR-based because the former is capable of detecting more

sophisticated types of energy theft/meter irregularities accurately even in the presence

of TLs/calibration error. Consequently, the selection of the specific detection framework

is based on the data availability and type of NTL. The results also indicate that the two

proposed frameworks are able to realize faster, greater flexibility and improved practicality

in the detection of energy theft/meter irregularities based on a small volume of consumers’

energy consumption data samples. Moreover, both proposed frameworks can be extended

easily to accommodate more consumers for anomaly detection. They are more robust

as compared to most existing detection schemes due to the advantages of regression and

optimization analyses.

Overall, the studies in Chapter 3 through Chapter 6 have demonstrated how the detection

rate of the proposed frameworks is influenced by certain factors (i.e., technical losses

and measurement noise of equipment), how categorical variables are able to improve

the detection rate of CVLR-ETDM, how to detect intermittent NTL events by separating

consumers’ anomaly coefficient evaluation according to time slot and how multiple linear
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regression estimation and optimization analyses scale with the number of consumers in the

neighborhood.

The research conducted in this thesis are of great practical significance in assisting

utility providers to reduce costs incurred due to NTLs and meter irregularities in smart grid

environment. No extra hardware costs will incur as utility providers can directly apply the

proposed frameworks to detect the localities of defective and compromised smart meters

entirely based on the collected energy consumption data. Particularly, all the frameworks

proposed in this dissertation involve the study of consumers’ energy consumption behavior

to detect the amount of stolen/over-reported energy at the smart meters with respect to

the discrepancies of meter readings (i.e., energy balance analysis). This in turn reduces

the overall operation costs of utility providers and paying prices for consumers. The

advantages and limitations of the frameworks will be discussed in the next section.

7.2 Advantages and Limitations

The outcome of this research has the following advantages. The proposed frameworks

outperform existing work because linear regression and linear programming analyses are:

1. Protected against contamination attacks. Unlike most state-of-the-art

classification-based detection scheme (i.e., SVM and ELM), polluted dataset and

granular changes in data may not affect the detection rate as the proposed

frameworks do not require training using historical data.

2. Robust against non-malicious factors such as seasonality, appliance and

residential changes. The proposed frameworks are free from influences by

non-malicious factors as they are not trained by historical data.

3. Not restricted by the dimension of consumers’ power consumption data. Both

proposed anomaly detection frameworks can successfully identify all the malicious
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and defective SMs in the NAN regardless of the dimension of the metered energy

consumption data.

4. Able to reveal the amount of energy theft/loss based on a small volume of

consumers’ power consumption data samples regardless of TLs, measurement

noise/errors and the type of consumer.

5. Able to detect the localities of anomalous and compromised smart meters

entirely based on collected smart meter readings without incurring extra

hardware and software costs.

Although promising results are attained, the proposed frameworks in this thesis still

pose several shortcomings:

1. The proposed anomaly detection frameworks detect NTLs based on the energy

balance analysis. Hence, the frameworks are unable to detect energy theft attack

that evades the balance check. For instance, an energy thief who compromises a

neighbor’s SM to ensure that the consumption of at least one of his/her neighbors is

over-reported may escape from the anomaly detection (Y. Liu et al., 2018). In such a

case, the innocent neighbor would be required to pay for the stolen energy charges.

2. Considering the dynamic pricing (i.e., TOU) in SGs, energy theft is also possible

by changing the order of SM readings without altering the average. Energy thieves

who change the order of meter readings may escape from detection. In the proposals,

a linear relationship is assumed between the dependent variable (i.e., mismatch of

meter readings yti ) and the independent variables (i.e., SM readings pti,n). When the

order of meter readings are changed, the relationship between the variables becomes

non-linear and hence the detection becomes unpredictable.
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7.3 Future Works

All the frameworks proposed in this dissertation involve the study of consumers’ energy

consumption behavior to detect the amount of stolen/over-reported energy at the SMs with

respect to the discrepancies of meter readings. As a result, these frameworks are unable to

detect NTL events when fraudulent consumers change the order of the meter readings. In

addition, energy theft that evades energy balance check may stay undetected. As a future

research direction, techniques such as state estimation, Kalman filter can be applied to

detect these cleverly-crafted electricity theft attacks that circumvent detectors.

Furthermore, the work in this thesis assumes that the DER generation measurements

recorded by the generation meter in the microgrid are genuine and not manipulated.

Therefore, the detection of malicious consumers who over-report the energy they generate

for financial gain (i.e., feed-in tariff theft) can be considered as future work.

Last but not least, as discussed in Section 2.2.4.1, most existing energy theft detection

schemes require the collection of fine-grained energy consumption data, e.g., consumers’

load profiles, which would constitute a potential privacy threat to the consumers (McDaniel

& McLaughlin, 2009). Although deploying SG has immense benefits, several privacy

concerns arise. As future work, the proposed anomaly detection frameworks can be

improved to encrypt consumers’ SM meter readings while still being able to identify the

locations of malicious and defective SMs.
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