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MODIFIED FINITE DIFFERENCE METHOD USING RANDOM SAMPLING FOR 
NONLINEAR EPIDEMIC MODELS 

 

ABSTRACT 

      In this thesis, new modified numerical simulation processes are proposed to solve social 

epidemic models in the form of nonlinear initial value problems (IVP) of ordinary 

differential equations with multiple random variable parameters. The variables of the 

systems are dependent on time  . The utilization of Monte Carlo (MC) simulation with 

central divided difference formula is repeated   times to simulate values of the variable 

parameters of the Spain weight reduction model as random sampling instead being limited 

as real values with respect to time. The mean of the   final solutions via this integrated 

technique, named in short as Mean Monte Carlo Finite Difference (MMCFD) method, 

represents the final solution of the system. The numerical outputs are tabulated, graphed and 

compared with previous statistical estimations for 2013, 2015 and 2030 respectively. The 

solutions of FD and MMCFD are found to be in good agreement with small standard 

deviation of mean and small measure of difference. In the social epidemic of cocaine abuse 

in Spain, the FD numerical method is integrated with Latin hypercube sampling (LHS) 

technique in every simulation to simulate random variable parameters for the stochastic-

deterministic model. The mean of final solutions of the FD iterations is known as Mean 

Latin Hypercube Finite Difference (MLHFD) solutions. The results obtained are compared 

with deterministic solutions of classical FD and homotopy analysis methods as relative to 

the previous statistical estimations from 1995 to 2015. Good agreement between the two is 

perceived with small errors. The MLHFD results are tabulated, graphed and discussed 

pertaining to the model's expected behavior until 2045. MMCFD and MLHFD are proposed 

for the first time in this thesis to calculate and to predict future behavior of the epidemic 

models considered. The results show the range for random distribution for the present 

numerical solutions obtained are in good agreement and approximation as compared to the 

existing randomized statistical estimations. 
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KAEDAH BEZA TERHINGGA TERUBAHSUAI MENGGUNAKAN  
PENSAMPELAN RAWAK BAGI MODEL EPIDEMIK TAK LINEAR 

 

ABSTRAK 

Dalam tesis ini, proses simulasi berangka terubahsuai yang baharu telah dicadangkan untuk 

menyelesaikan model wabak sosial dalam bentuk masalah nilai awal (MNA) tak linear bagi 

persamaan pembezaan biasa dengan parameter pemboleh ubah rawak berganda. Pemboleh 

ubah sistem bersandar kepada masa t. Penggunaan simulasi Monte Carlo (MC) dengan 

formula terbahagi berpusat diulang sebanyak n kali untuk mensimulasikan nilai parameter 

pemboleh ubah model pengurangan berat badan Spain sebagai pensampelan rawak dan 

bukan hanya terhad sebagai nilai sebenar bersandar kepada masa. Purata bagi n penyelesaian 

akhir melalui teknik bersepadu ini dinamakan sebagai kaedah Min Monte Carlo Beza 

Terhingga (MMCBT) yang mewakili penyelesaian akhir bagi sistem. Keputusan berangka 

dijadualkan, digrafkan dan dibandingkan dengan anggaran statistik terdahulu pada tahun 

2013, 2015 dan 2030. Penyelesaian BT dan MMCBT didapati konsisten dengan purata 

sisihan piawai kecil dan ukuran perbezaan kecil. Dalam wabak sosial penyalahgunaan 

kokain di Spain, kaedah berangka BT disepadukan dengan teknik pensampelan hiperkubus 

Latin (PHL) dalam setiap simulasi untuk mensimulasikan parameter pemboleh ubah rawak 

bagi model stokastik-deterministik tersebut. Purata penyelesaian akhir bagi lelaran BT 

dikenali sebagai penyelesaian Min Latin Hiperkubus Beza Terhingga (MLHBT). Keputusan 

yang diperoleh telah dibandingkan dengan penyelesaian kaedah deterministik BT klasik dan 

analisis homotopi sejajar dengan anggaran statistik terdahulu iaitu dari tahun 1995 hingga 

2015. Keputusan di antara keduanya didapati amat jitu dengan ralat kecil. Hasil keputusan 

MLHBT dijadualkan, digrafkan dan dibincangkan berhubung dengan jangkaan tingkah laku 

model sehingga 2045. MMCBT dan MLHBT telah dicadangkan buat pertama kalinya di 

dalam tesis ini untuk menghitung dan meramal tingkah laku masa depan bagi model-model 

wabak yang dipertimbangkan. Keputusan menunjukkan bahawa julat taburan rawak untuk 

penyelesaian berangka terkini yang diperolehi adalah konsisten dan mempunyai 

penghampiran yang baik jika dibandingkan dengan anggaran statistik rawak sedia ada. 

Univ
ers

ity
 of

 M
ala

ya



vii 
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1 

CHAPTER 1:  INTRODUCTION 

 
1.1  Introduction 

      Ordinary differential equation (ODE) is an equation for unknown functions of dependent 

variable and its derivatives. If the independent variable of ODE is in terms of a variety of 

time and does not appear explicitly, then the system is called an autonomous system or 

sometimes, a time-invariant system. The highest derivative is named the order of the 

differential equation (Teschl, 2012). Nonlinear autonomous systems of first-order ordinary 

differential equations for initial value problems are considered in this thesis for the public 

campaign effects on the weight loss and the cocaine abuse model in Spain. Other 

applications of the autonomous system are abundant in the behavioral studies of dynamical 

systems (Hirsch et al., 2012). 

      A mathematical model is a description of a natural phenomenon, either stochastic model 

or deterministic model. A stochastic model provides various outcomes which include one or 

more random variables solved by a stochastic method such as Monte Carlo simulation 

(Taylor & Karlin, 2014; Wilkinson, 2012; Ullah & Wolkenhauer, 2011). On the other hand, 

a deterministic model does not has a random variable, thus the solutions obtained are only 

unique for a given specific time. These models are solved by deterministic methods such as 

Runge-Kutta, finite-difference, finite volume, finite-element etc. (Lambert, 1991). The third 

kind of method is hybrid stochastic/ deterministic modelling approach which represents a 

stochastic-deterministic model. Stochastic-deterministic modelling is a mixed of 

deterministic and stochastic terms shown in one system as in Chemical Master Equation 

(CME) application (Mazza & Benaim, 2014; Menz, 2013). In the present thesis, the 

stochastic-deterministic models are considered to predict the overall behavior of the real 

epidemic models. The epidemic models are the wide application of nonlinear autonomous 

stochastic-deterministic models (Allman & Rhodes, 2004; Diekmann & Heesterbeek, 2008; 

Hethcote, 2000) which considered in this study. 
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      Most epidemic models can be represented by systems of ordinary differential equations 

depending on independent time  , where some of these systems are solved practically by 

using simulation approaches for randomness distribution of the parameters involved in such 

models (Brauer & Castillo-Chavez, 2001). Similarly, two modified approaches are firstly 

proposed in the present thesis namely, Mean Monte Carlo Finite Difference (MMCFD) and 

Mean Latin Hypercube Finite Difference (MLHFD) methods. These modified methods are 

the integration products between statistical simulation processes for random sampling with 

classical numerical iteration approach of finite difference (FD) formula. We can explain 

these concepts in a simple way, starting with a random variable which is a variable that 

carries a value determined by a chance event. In other words, it is a possible value of 

numerical outcomes of a random phenomenon (Tucker, 1998). Hence random sampling is a 

method of selecting a sample randomly from a statistical population in order to study the 

entire population when the random sample represents the population (Perros, 2009). There 

are many kinds of random sampling and the most common processes are random, 

systematic, stratified and cluster samplings.  

      In the current study, Monte Carlo (MC) simulation technique and Latin Hypercube 

Sampling (LHS) procedure are used to simulate parameters of the selected stochastic-

deterministic models for random sampling distribution. Monte Carlo (MC) is a form of 

sampling that refers to the traditional technique for using random numbers to sample from a 

probability distribution. It is considered as a simple type of random sampling (Dagpunar, 

2007). The second random sampling method is Latin hypercube sampling (LHS) which is a 

statistical method for generating a random sample of parameter values from a 

multidimensional distribution. It is considered as an extension of stratified sampling that 

divides a set or a population into several strata where the selection of a random sample is 

done from each stratum. LHS is faster and saves effort with the time (De Veaux et al., 

2012).  
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      On the other hand, finite difference (FD) method is one an established approximate 

method using to solve the differential equations numerically. In the present thesis, the first-

order autonomous initial value problems representing nonlinear systems of ordinary 

differential equations (ODEs) are solved numerically by integrating the FD method with the 

statistical simulation procedures of Monte Carlo (MC) and Latin hypercube sampling (LHS) 

to obtain random distributed solutions for the deterministic models with random parameters.  

 

1.2 Problem Statement 

Individual bad habit can be transmitted as a social epidemic within a big society due to 

consistent social contact and pressure. Such epidemics can be worsened without appropriate 

precautions and remedies. In order to control the spread of these epidemics, researchers 

embarked to represent them as mathematical models. These models can be written in the 

form of nonlinear systems of ordinary differential equations. The parameters of such models 

have random distribution in nature. Therefore the classical methods may not be always 

appropriate to solve these systems for future estimation due to insufficient data of 

deterministic approach. The importance of this study comes from the fact that some real 

models of nonlinear systems of ODEs consist of random variables that require solutions 

pertaining to randomness property. Since parameter estimation in random sampling 

distribution is considered, modified statistical-numerical methods can be explored especially 

when the high-dimensional parameter space is taken into consideration. On the other hand, 

these modified methods support the prediction interval for the solutions obtained whereas 

such concept is not appropriately accepted in conventional numerical deterministic 

approaches. 

     The statistical simulation technique itself may be appropriate for some reasons; through 

statistical simulation, we can get better understanding from detailed observation of the 

system and, to analyze the phenomenal changes and the effects of information under study. 

Sometimes, simulations can design an experiment for the complicated system or a new 
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system. The simulations can also be used to analyze a dynamic system with their real time 

(Rubinstein, 1981,  p. 9-10 ). 

 

1.3  Research Objectives 

This research embarks to fulfill the following objectives: 

 To introduce modified methods which combined statistical simulation techniques 

with an iterative numerical method that is finite difference method. 

 To apply the new modified methods for solving selected social epidemic models 

in the form of nonlinear systems of ordinary differential equations with random 

sampling distribution of the parameters.  

 To compare the numerical simulation results obtained from the new modified 

methods with possible and existing deterministic and non-deterministic solutions.  

 To analyze the numerical simulation results obtained graphically and tabularly 

towards the solutions of the epidemic models. 

 To estimate prediction intervals for random distribution of the numerical 

simulation solutions obtained.  

 

1.4 Scope of Research 

      Social epidemic models with random parameters are considered in our study. These 

models are normally treated as deterministic problems with a probability process that can be 

programmed in computers in order to save cost and time (Rubinstein, 1981). Random 

sampling process is used to predict unknown parameters in such models. Two existing 

social epidemic models in Spain are selected from literatures in order to demonstrate the 

applications of the newly proposed modified finite difference methods; weight loss due to 

public campaign for Mean Monte Carlo Finite Difference (MMCFD) method and cocaine 

abuse for Mean Latin Hypercube Finite Difference (MLHFD) method. Further stability 
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analysis on the epidemic models considered in this thesis is beyond the scope of the present 

study.  

 

1.5 Outline of Thesis 

      This research embarks on finding the alternative modified methods of statistical-

numerical approaches in order to supply numerical simulation solutions for some real 

deterministic nonlinear epidemic systems as well as to give prediction ranges of these 

solutions. This thesis is divided into four parts; introduction of the research, literature 

review and modified numerical simulation processes, analysis and solutions of selected 

social epidemic models using the modified numerical simulation processes and finally, the 

overall conclusion and suggestion of the thesis.  

      In Chapter 1, the preliminaries of this research are outlined briefly in the subsections of 

introduction, research objectives, problem statement and scope of research. Chapter 2 

provides a brief literature review ideas and concepts of ordinary differential equations, 

stochastic-deterministic models and their applications, epidemic models, numerical iteration 

methods with special emphasis on finite difference (FD) method, statistical simulation 

techniques of Monte Carlo (MC), Latin hypercube sampling (LHS) and the modified 

numerical simulation processes. 

      Next in Chapter 3, a new modified approach between Monte Carlo simulation and finite 

difference method, namely Mean Monte Carlo Finite Difference (MMCFD) method 

explained in Chapter 2, is applied to solve weight reduction model due to public campaign 

in Spain. The MMCFD results obtained are compared with present FD solutions and the 

existing statistical estimation from the literature. On the other hand, another modified 

approach between Latin hypercube sampling (LHS) simulation and finite difference (FD) 

method, namely Mean Latin Hypercube Finite Difference (MLHFD) method newly 

proposed and explained in Chapter 2, is applied in Chapter 4 to solve the cocaine abuse 
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model in Spain. The MLHFD results obtained are compared with present FD solutions and 

the results of HAM-Pade and statistical estimation by other researchers. 

      Finally, the overall findings and conclusion of the research are provided in Chapter 5. 

Recommendations to improve and to expand the research concerns for future works on this 

subject are also suggested in this last chapter. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1   Introduction 

      “Differential equation (DE) is an equation that describes how a state      changes.” 

(Logan, 2006, p. 2). The order of DE is the highest derivative in this equation (Logan, 

2006). DE has an important role in discrete mathematics that characterized various time   

continuous over a particular interval. The time change is denoted by    and time   in the 

current study is an independent variable. This time may happen in the past      (delay 

time), the current time   (present time) or the future time      (Giordano et al., 2003). “An 

ordinary differential equation (ODE) is an equation that involves one or more derivatives of 

an unknown function. A solution of the ODE is a specific function that satisfied the 

equation” (Cheney & Kincaid, 1999, p. 370). 

      The general form of an ordinary differential equation (ODE) with initial value can be 

written as follows:  

                                            (2.1) 
 

where y is a scalar function in d-dimensional space of ℝ, t is time while a, b and    are 

positive real constant values, (Lambert, 1991). Each system variable depends on 

independent time t and the parameters of the system are considered as random parameters 

depending on time t in the current study.  

      The focus of our study is on the initial value problem (IVP) for nonlinear autonomous 

system of first order differential equations. Autonomous system means the independent 

variable time t does not appear explicitly as follows (Logan, 2006): 

         (2.2) 
 

      The initial value problem (IVP) depends on initial conditions in solving the autonomous 

system (Logan, 2006). The first-order means the highest order of the equations is one. If 
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first order differential equations have exact solutions, then they are mostly solved by 

separation of variables (Vuldin, 2008). We can define the linear differential equations that 

satisfy the following concept. Suppose that  ,    and    are scalars (vectors or functions),   

is a linear function if it satisfies the following conditions (Vuldin, 2008):  

1. Additivity; 

                    , (2.3) 

2. Homogeneity;  

           , (2.4) 

where   is a constant value. Otherwise, the function   is nonlinear.  

 

2.2   Mathematical Modelling 

      A model is considered as “an object or concept that is used to represent something else.” 

(Meyer, 1984, p. 2). The mathematical model is sometimes defined as a collection of 

equations that describes the phenomenon in different fields such as science, biology, 

engineering, etc. (Logan, 2006).  The idea of mathematical models is that people are trying 

to describe some things in their real life or real problems in the world using mathematical 

formulae. The attempts of formatting the real problems are expressed in mathematical 

descriptions of functions, inequalities, differential equations, constants, variables, etc. 

Naturally, the areas of building mathematical models are in nature, mathematical biology, 

social sciences, physical, mechanics and so on (Meyer, 1984). The modelling of a system of 

differential equations starts from making formulations for the equations, then giving initial 

points and expressions so that the changes in time may be accommodated. 

      In general, to make a mathematical model, first, we assume simple assumptions about 

realistic problems in our life then we try to test these assumptions and to predict the model 

statistically. On the other hand, we try to formulate these hypotheses as a system of 
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mathematical equations and before solving these equations or a system of the equations 

approximately or numerically (Fulford et al., 1997). 

      Formulating real problems with mathematical language is called mathematical 

modelling. One benefit of mathematical modelling: it has the idealization for selecting 

suitable variables, parameters, formulas and other relevant assumptions and theories. 

Mathematics covers the area of theorems, analysis and processes for doing logical concepts 

and equations in real life. With mathematics, we can analyze the real problems numerically 

via the modelling by computer. In short, the mathematical models require understanding of 

all facets of the problem to obtain a good model for the problem. Then we develop and test 

the model. The simple process of the mathematical model in the differential equations can 

be written as below (Nagle et al., 2008): 

  

  
                         (2.5) 

 

      The first order differential equations have real applications in many aspects of the life 

such as fluid flow and clinical medicine (Nagle et al., 2008).  

      A mathematical modelling has either probabilistic or deterministic behavior. The model 

that has changing elements is a probabilistic model while if it has fixed elements, it is a 

deterministic model. The deterministic methods can give approximations for either 

deterministic or probabilistic behavior. The probabilistic methods such as Monte Carlo 

(MC) can also give an approximation for either probabilistic or deterministic behavior 

(Giordano et al., 2003, p. 219). 

      The classification of the mathematical modelling can be described in different ways: 

static and dynamic or deterministic and stochastic models. If there is a variation in time that 

appears clearly in a model, it means that the model is a dynamic model, like the changes that 

happen in Newton's law of motion, predator-prey model, etc. If the variation in time does 

not appear in the model it means that the model is static. The model that has fixed solutions 
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is a deterministic model, for instance, the models that are solved by numerical methods. 

However, the presence of randomness in at least one variable in a model indicates that it is a 

stochastic model, for example the epidemic models (Rubinstein, 1981, p. 4). 

      In some of the real complicated problems, the mathematical modelling cannot explain 

the observed behavior analytically and therefore the prediction of behavior becomes 

necessary for this situation. The modelling for the empirical model construction is called 

simulation modelling. The behavior of the model may be simulated directly. Then the 

alternative behavior by simulation may be investigated. A simulation modelling tries to 

verify the relationship between two or more variables by creating some ranges which are 

confidence intervals for particular distributions or empirical confidence intervals (prediction 

intervals). The widely simulation method is the Monte Carlo method (Giordano et al., 1997) 

which is considered in this study. Peng (2016) discussed some medical problems on lymph 

nodes of breast cancer using alternative statistical techniques and studied the effect of lymph 

nodes removed (LNR) on breast cancer patients.  

      Sometimes the linear differential equations are not consistent with the observed data in 

some real problems; in this case, the nonlinear models may be better than the real linear 

models. Some examples of nonlinear models are the logistic equation, restricted growth that 

becomes a nonlinear population growth model when the population has unbounded rising 

growth such as measles epidemics that transfer by spreading the virus quickly between 

individuals during one week (Fulford et al., 1997). Lee (2008) generated random samples 

from mixed Poisson distributions using an acceptance-rejection algorithm to solve the 

nonlinear system.  

      A stochastic model has various values in each time and has a population distribution for 

the parameters and variables of the mathematical models. Therefore it needs assumptions, 

theory and analytic study. The important part of the stochastic model is that it has a sample 

distribution which is an experimental structure and considered as an approximation of the 
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population distribution (Mooney & Swift, 1999). Kypraios et al. (2017) analyzed the 

stochastic epidemic models with approximate Bayesian Computation method. Stockdale et 

al. (2017) predicted stochastic epidemic model and used Markov chain Monte Carlo 

method. 

      A behavior of deterministic mathematical model that deals with discrete time is called 

discrete dynamical systems (Mooney & Swift, 1999). In our study, we are interested with 

discrete stochastic-deterministic dynamical systems for autonomous nonlinear real models.  

There are many areas of biological mathematical modelling such as: 

 Biochemistry: It deals with biochemical problems by applying for the computer 

programs in order to solve and to analyze the biochemical information. Therefore, it 

is also named the "computational biochemistry" (Elnashaie & Uhlig, 2007; Tsai, 

2002).   

 

 Biology: The design of the growing or declining of a population over time by 

mathematical language is known as biological study. This modelling is based on the 

population of animals, humans, disease, epidemic, microbiology, biomedical 

catalytic etc., for instance logistic equation in population growth, predator-prey 

model, epidemic models, infectious disease model (Allman & Rhodes, 2004; Brauer 

et al., 2001; De Vries et al., 2006; Ingalls, 2013; Murray, 2003; Shonkwiler & 

Herod, 2009; Мurray, 2002). 

 

 Biomechanical: This study deals with dynamic modelling of animals and human 

population using experimental data processing. The goal of such models is to study 

the motion that has started the population long time ago (Zinkovsky et al., 1996).  

 

 Biostatistics: This approach focuses on the application of statistics in biological 

areas to understand the statistical methods that can be applied in the medical and 
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health areas, such as medical and clinical research, health services research, biology 

lab experiments and many other biological matters (Lachin, 2011; Lee, 2010; 

Newman, 2001; Van Belle et al., 2004).  

 

 Epidemiology: This study focuses on biomedical sciences, epidemics, diseases, 

bacterial or viral growth, etc., to understand the dynamics of such models. Some of 

these models are stochastic models that have a stochastic term, consisting of 

differential equations with random model variables or with both random variables 

and random parameters (Chowell et al., 2009; Mazza & Benaim, 2014; Taylor & 

Karlin, 2014; Ullah & Wolkenhauer, 2011; Wilkinson, 2012). Other epidemic 

models are either deterministic models that consist of differential equations with 

missing randomness or stochastic-deterministic epidemic models that consist of 

differential equations with randomness in the model parameters. (Allen et al., 2008; 

Brauer et al., 2001; Chowell et al., 2009; Frauenthal, 1980; Krämer et al., 2010; Ma 

et al., 2009; Newman, 2001). 

 

2.3 Stability and Linearization  

      A nonlinear system can be defined as a problem that has “variables cannot be written as 

a linear sum of independent components" (Vuldin, 2008, p.1). In general, nonlinear systems 

are difficult and sometimes it is impossible to solve them because most of such problems are 

not more understood than the linear problems especially because the real-life physical 

problems are nonlinear problems that are difficult and highly complicated in format and 

modelling (Vuldin, 2008). 

      Most of the time, the nonlinear dynamics of the system of differential equations cannot 

be solved analytically because of the change of time in these models although with the aid 

of existing numerical methods. In this case, the graphical analysis can describe the 

behaviors of nonlinear system variables. The solutions of such systems are called solution 
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curve, path, trajectory or orbit of the system. The plane of the system is called a phase plane. 

The value which satisfies the system and makes the functions on the right side is equal to 

zero and then the derivatives of the system are equal to zero is called equilibrium point or 

steady state. The study of trajectory behavior if the trajectories converge to the equilibrium 

point; this connotation is the idea of stability. In the other words, the stability is the analysis 

of the trajectories if they are near to the equilibrium points. 

      The classifications of equilibrium points are local asymptotically stable, global 

asymptotically stable or instability. The study of stability depends on how far is the distance 

between the near trajectories and the equilibrium points with small perturbations (Logan, 

2006, p. 233). The equilibrium point is stable if any trajectory starts to approach a point and 

still approaches the same point in the future. The equilibrium point is asymptotically stable 

if any trajectory stable and starts approaching an equilibrium point and time   close to 

infinity, (Giordano et al., 2003). In other words, the system is local asymptotically stable 

means “the system will return to the original point overtime” (Logan, 2006, p. 34). While 

the global stability means “the system returns to the state for all perturbations” (Logan, 

2006, p. 34). An equilibrium point is not stable, if it is unstable or called semi-stable, which 

is not asymptotically stable. It means the orbits are moving away from the equilibrium point 

(Giordano et al., 2003; Logan, 2006; Nagle et al., 2008; La Salle, 1976). The study that 

treats the behavior of a nonlinear system of differential equations is called dynamical system 

study. 

      The important subject in the nonlinear dynamic system is the stability and how to find 

an approximation of linear system to nonlinear system models. This linear transformation in 

this process is called the linearization (Logan, 2006, p. 234). Linearization is a study of the 

nonlinear system behavior near equilibrium points by replacing the curve or surface of the 

nonlinear equations of the tangent line or the tangent plane (Mooney & Swift, 1999, p. 285). 

In order to understand the relationship between stability and linearization, the stability idea 

depends on studying the behavior of the trajectories near the equilibrium points. This 
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analysis is considered as a mirror to the nonlinear system by a linear system with small 

perturbations. It simulates the behavior of the nonlinear system using eigenvalues of the 

system in differential equations. That means the analysis of the linear system behavior with 

its properties corresponds to the analysis of the nonlinear system behavior with properties. 

The linearization of DE can be done by the eigenvalues of the linear system; this process is 

called locally stability (Logan, 2006, p. 234). Wang et al. (2017) determined the equilibrium 

points of the knowledge transmission model and evaluated the global asymptotic stability 

dealing with complex networks. 

 

2.4   Mathematical Model of Epidemic 

      A model which deals with an epidemic that spreads rapidly in a large size population is 

called an epidemic model. The epidemic models are stochastic-deterministic models that 

format as a system of the first order differential equations. The aim of the epidemic 

modelling study is to analyze the epidemic behavior either decays, grows or remains in the 

population with the time (Diekmann & Heesterbeek, 2008). The important tool for testing 

the stability of epidemic model's behavior is the basic reproduction number (  ).    is a 

threshold quantity and considered as a tool to determine whether an epidemic occurs or the 

disease simply dies out. This value determines the probability of the transmission of disease 

(Diekmann & Heesterbeek, 2008).  If    is less than one, it means that the disease may not 

become an infection during the infectious period, therefore the infection will fade away in 

the future. In case of    is more than one, there is an epidemic in the population. If    is 

equal to one, means that the disease becomes endemic, that is the disease remains in the 

population at a consistent rate, such that each infected individual transmits the disease to 

other susceptible individual (Allen et al., 2008; Brauer et al., 2001; Chowell et al., 2009; 

Diekmann & Heesterbeek, 2008; Frauenthal, 1980; Krämer et al., 2010; Ma et al., 2009; 

Newman, 2001). 
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      Recently, Chowell (2017) estimated epidemic model parameters using least-square 

fitting. Zarebski et al. (2017) analyzed a mathematical model of epidemics of seasonal 

influenza in Australia using the likelihood-based method. Kim et al. (2017) studied the 

optimal control strategies of influenza epidemic model in Korea. Levy et al. (2017) studied 

how to reduce the effect of Ebola virus outbreaks in Sudan through the health campaigns in 

the community. Kumar and Srivastava (2017) solved the problem of infectious disease by 

vaccination and treatment using optimal control approach. There are other researchers who 

analyzed the behavior of some mathematical epidemic models recently. Champredon et al. 

(2017) discussed Ebola synthetic epidemics. Gouvêa Jr (2017) used a new simulation 

method to estimate the mathematical model of Dengue for mosquito. Chowell (2017) 

discussed dynamic of epidemic outbreaks and estimated the parameters using fitting 

approach. The fitting data of a deterministic compartmental model for leprosy in Brazil have 

been evaluated (Blok et al., 2017). Song et al. (2017) analyzed the dynamics of infected 

diseases with time delay using nonlinear incidence rate where the latent period of disease 

stages was studied. Wang et al. (2017) established the relation between epidemic spread and 

the information efficiency for this epidemic using mobility patterns in complex networks 

and they noticed that the credibility of information can reduce infectious disease outbreak.     

      The epidemic populations are divided into separate classes according to the humans' 

vulnerability towards the disease; Susceptible (S), Exposed (E), Infectious (I), Recovered 

(R). Susceptible is the group of people with possibility of being infected, Exposed is the 

group of individuals who are infected but not yet infectious, Infectious are people who 

capable to spread the disease while Recovered are the individuals who have immunity from 

the disease and cannot infect others. The profile of a disease that can be represented by 

Susceptible-Exposed-Infectious-Recovered type is known as epidemic SEIR model. There 

are also others simple types of the disease models such as SIS (Susceptible-Infectious-

Susceptible) type and SIR (Susceptible-Infectious-Recovered) type. The preliminaries of 

SIS, SIR and SEIR dynamic models are outlined by Diekmann and Heesterbeek (2008) and 
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Logan (2006). Recently, Azizi et al (2017) analyzed SIS model of the spread of infectious 

diseases with mixing distributions. Zaman et al. (2017) suggested a SIR epidemic model for 

the optimal vaccination and treatment. Wang et al. (2017) analyzed the behavior of the 

SEIR model with random networks. Lee and Chowell (2017) examined the optimal control 

strategies for the flu-like epidemics with SIR model using various parameters.  

       A social epidemic can be understood as an outbreak of a bad habit that happens under 

social pressure or custom. Social epidemiological models have been analyzed by many 

researchers to better understand the dynamics of the complicated phenomena. Santonja et al. 

(2010) predicted the future behavior of alcohol consumption in the Spanish population by 

estimating the parameters of the model and by fitting the model to real data. Sánchez et al. 

(2011) studied the evolution of cocaine abuse in Spain and predicted a decrease of cocaine 

abuse in the future by using the sensitivity analysis approach. Guerrero et al. (2011) studied 

the effect of the smoke-free law on the evolution of smoking habits in Spain before and after 

applying this law during 2006 to 2009 and predicted the effect of this law on the growth of 

the smoking habit in the Spanish population. Santonja et al. (2012) analyzed the effects of 

public health campaigns in Spain to change the people lifestyle behavior, nutritional 

behavior and to promote physical exercises in order to reduce their excess weight. Maha et 

al. (2015) solved the initial value problem of ordinary differential equations representing the 

social epidemic model of excess weight loss in Valencia numerically using Runge-Kutta 

methods RK2, RK4, RK45 and RK78 methods. With respect to the stability study of the 

social epidemic model, the global asymptotical stability of the basic reproduction number of 

an alcohol model was derived and the numerical simulation results were discussed by Zhu 

and Zhu (2017).     

      The stability of the epidemic models was also evaluated in the recent year. An SIR 

model of nonlinear autonomous system of delay ODE was discussed by Akimenko (2017). 

The reproduction number was derived from the cholera model (Berge et al., 2017), the 

stability of the SIR of deterministic model for HIV/AIDS was analyzed, the random 
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parameters of the model were simulated using LHS by Simpson and Gumel (2017), the 

stability of the SIRS model for infectious diseases were determined (Agaba et al., 2017), the 

global asymptotic stability of nonlinear dynamics of epidemic models were evaluated by 

Liu et al. (2017). Moreover, the basic reproduction number of SEIAR malaria model was 

computed (Cai et al., 2017) while the SIVRS epidemic model with complex networks was 

proposed by Xu et al. (2017). 

 

2.5   Data Source 

      In this thesis, we consider secondary data as reported by Santonja et al. (2012) who 

studied the effects of public health campaigns towards the weight loss to demonstrate the 

application of our Mean Monte Carlo Finite Difference (MMCFD) method in Chapter 3. We 

also consider secondary data in Chapter 4 as reported by Sánchez et al. (2011) who studied 

cocaine abuse model in Spain to demonstrate application of our proposed Mean Latin 

Hypercube Finite Difference (MLHFD) method. We do not have access to the primary data 

source as captured by Santonja et al. (2012) and Sánchez et al. (2011) and based on APA 

citation style (DeCleene & Fogo, 2012) accepted by the University of Malaya Library, we 

may mention the primary data source only by giving citation to the secondary data source as 

available to us. 

      In Chapter 3 of this thesis, Santonja et al. (2012) studied the effects of public health 

campaigns towards weight loss as experienced by a Valencia community in Spain (24-65 

years old) from 2000 to 2005. The primary data needed to conduct this study was reported 

to be obtained from Valencian Department of Health (2000 and 2005a) by Santonja et al. 

(2012). The public health campaigns include healthy nutritional habits aided with physical 

activity as well as strategies to reduce weight among the overweight and obese 

subpopulations in the Spanish population based on the Valencian Health Plan (2005-2009) 

which is supplied by Valencian Department of Health (2005b) as cited by Santonja et al. 
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(2012).  Santonja et al. (2012) also reported that their model parameters were estimated by 

using the sources by Valencian Department of Health (2000) and (2005a) based on the 

health survey for the Valencian community in the year of 2000 and 2005.  

In Chapter 4 of this thesis, Sánchez et al. (2011) studied the cocaine abuse problem in       

Spain during a period of ten years (1995 - 2005). Sánchez et al. (2011) predicted the profiles 

of cocaine abuse subpopulations up to 2015. The primary data source was accessed by 

Sánchez et al. (2011) from the Spanish Health Ministry, National Drug Strategy 2000–2008 

and Official State Gazette in 2009. The classification of the subpopulations for the cocaine 

abuse problem was described by the Spanish Health Ministry in 2008 as cited by Sánchez et 

al. (2011). Spanish birth and death data were collected from Spanish Statistics Institute in 

2008 as reported by Sánchez et al. (2011). Moreover, the real data to reduce the cocaine 

abuse were supplied by the Drug National Observatory Reports in 2000 and 2007 as 

reported by Sánchez et al. (2011). 

 

2.6   Methodology 

      Most of the deterministic epidemic models can be represented as systems of ordinary 

differential equations depending on various times  . Some of these systems can be solved by 

using a simulation approach to introduce randomness in the parameters of such models. 

Commonly, Monte Carlo (MC) simulation technique and Latin hypercube sampling (LHS) 

procedure can be used to simulate the values of the parameters. In this study, two simulation 

methods with random sampling are integrated with a numerical deterministic approach. to 

solve the social epidemics problems; statistical simulation processes. We explain all these 

approaches in this section. 
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2.6.1   Random Number and Random Sampling 

      Random variable (RV) is a random value that has a probability distribution. It can be 

extended to a random sampling computerization. This process is called a simulation or a 

resampling and sometimes it is called Monte Carlo (Gentle, 2003). The simulation term 

originates from the Latin word „„simulare‟‟ and it generally means “the application of a 

model with the objective to derive strategies that help in solving a problem or to answer a 

question pertaining to a system.” (Velten, 2009, P. 7). The most common application of 

simulation is in stochastic processes. A simulation becomes necessary when difficulty exists 

in population resampling and when the mathematical analysis becomes intractable (Gentle, 

2003). Other reasons to do simulation are discussed by Rubinstein (1981, p. 9-10). In short, 

we need to apply simulation approach in order to obtain a random distribution of a variable 

studied.  

 

2.6.2   Monte Carlo (MC) Simulation Process 

      MC sampling refers to the traditional technique of using random or pseudorandom 

numbers to sample from a probability distribution (Rubinstein, 1981). MC method becomes 

a universal technique after the development of computers. Monte Carlo name is derived 

from the city in Principality of Monaco (Sobol, 1994). Using computer software, MC 

algorithm generates random numbers that have a probability density function that equal to 

one if the numbers are between 0 and 1, and equal to 0 elsewhere. These numbers are 

considered as random variables distributed uniformly on      . The random quality that is 

obtained by a simulation process is pseudo-random in nature (Rubinstein, 1981). These 

random numbers are called random number generators, pseudorandom or quasi-random 

(Rubinstein, 1981, p. 20).      

Univ
ers

ity
 of

 M
ala

ya



20 

      Naturally the computer produces independent random variables that have uniform 

distribution on       (Rubinstein, 1981). Direct sampling methods produce independent 

random variables (samples) that have other probability distributions. The usual direct 

sampling methods are the Box Muller algorithm for normal distribution and the mapping 

method (Graham & Talay, 2013). In the current study, we use direct sampling methods to 

produce the uniform distribution with a particular interval. We can generate pseudo random 

numbers by using MATLAB function RAND to generate random variables that have 

uniform distribution (Cheney & Kincaid, 1999). 

     MC simulation process generates uniform random numbers. The following MC 

procedure is used in our study (Carsey & Harden, 2014):  Firstly, we generate random 

numbers on the interval (0,1) such that each one of these random numbers is considered as a 

random variable that has uniform distribution on the interval (0,1) (standard uniform 

distribution). Then the inverse transform method is used to transform the random variables 

which have the standard uniform distribution, into random variables that have specific 

distribution (Cheney & Kincaid, 1999). The inverse transform method (inversion method) 

has the following formula:     

      Let    be a random variable that has a specific distribution and cumulative distribution 

function  . Suppose that     is the inverse of function   and suppose that ς is a continuous 

random variable that distributes uniformly on interval      , such that (Cheney & Kincaid, 

1999):    

              (      )        (2.6) 

Due to ς is a continuous random variable then  (      )    and by taking the     for 

      , the random variable   is equal to        and it has been written as: 

          (2.7) 
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      Box-Muller transformation is an example of a method that uses the inverse transform to 

convert two uniform random variables into normally distributed random variables. In this 

thesis,   is considered as a RV which has a uniform distribution on       where   and   are 

integer's numbers and represent lower and upper bounds.  

The probability density function of uniform distribution on       is  

     {
 

   
                 

                          

  (2.8) 

and the cumulative distribution function   of uniform distribution on       is  

     {

                     
   

   
                          

                      

 (2.9) 

 

Then the inverse of the uniform cumulative distribution function     has the following 

formula: 

                   (2.10) 

where ς has the standard uniform distribution (Rubinstein , 1981, p. 65). 

      Recently, Ndanguza et al. (2017) estimated the parameters of the Ebola epidemic model 

of a stochastic differential equation using Monte Carlo. Zhao et al. (2017) also simulated the 

unknown parameters by using the Monte Carlo process. Enduri and Jolad (2017) estimated 

the reproduction number of dengue epidemic and simulated the model parameters through 

Monte Carlo sampling method. A mathematical model from the stochastic differential 

equations are modelled by Yalim et al. (2017) where the authors discussed the noise of the 

model and used Monte Carlo simulations. 

 

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Normal_distribution


22 

2.6.3    Latin Hypercube Sampling (LHS) Technique 

      LHS is one of the most popular statistical methods to generate random samples. It is an 

extension of stratified sampling in multiple dimensions to generate better samples with 

uniform distribution written in the form of a matrix such that each column positions as a 

variable (parameter in our study) and each row as a sample. Prior to that, the sample that has 

a uniform distibution on       must be generated while the input random numbers, the 

number of dimensions (number of parameters in our study) and the sample size (number of 

simulations in the current study) must be determined (Dagpunar, 2007).  In the current 

work, the range (0,1) of each dimension (parameter) is divided into  -equal disjoint levels 

(sometimes called the stratum, stratification or bins) such that the number of parameter is 

equal to the number of dimension. Then each one of these parameters has  -equal intervals 

(strata) with the form        ⁄    ⁄   where           and   is the number of 

simulation's repetitions. That means, each sample from each stratification has uniform 

probability distribution on   ⁄ . Next, only one sample is selected randomly from each 

stratum (Liu & Yang et al., 2015). The basic idea of LHS random sampling is to transfer the 

generated random samples which have the       uniform distribution to strata of the 

cumulative probability distribution (CDF); by dividing the CDF into equal partitions then 

selecting just one random sample value from each partition of the CDF. Then the inverse of 

the CDF obtained from the inversion method is used to find a random variable that is 

distributed uniformly on the created interval in the current work. Finally, each parameter is 

considered as a random vector of the random variables which belong to the uniform 

distribution on the created interval (Dagpunar, 2007).   

 

      In general, to simulate model parameters using LHS technique, most samples used are 

those with uniform distribution. Recently Li et al. (2017) simulated the epidemiological 

parameters of Ebola outbreak in West Africa uses LHS.  Li et al. (2017) proposed a method 

to solve nonlinear dynamic systems with uncertain parameters using regression and 
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Chebyshev polynomials and simulated the model parameters by LHS. In the current study, 

we apply LHS technique in order to simulate the model parameters.  

 

2.6.4 The Difference between MC and LHS 

      Both MC and LHS techniques are unbiased estimation with some differences. LHS is an 

extension of stratified sampling for the multidimensional data distribution. It is a variance-

reduction technique and one of the most popular statistical methods for generating random 

samples of parameters' values from multiple dimensions. 

      Most of the sampling methods are varied in terms of how the simulation results are 

obtained and how long the simulation time is consumed. Monte Carlo (MC) simulation 

process refers to the traditional sampling technique using random numbers to sample from a 

particular probability distribution. Since MC is a pure randomness process in essence, the 

sample values may be found anywhere within the range of the input distribution and it can 

be inefficient. Apart from MC, LHS is a randomized stratified sampling for the input 

probability distributions where it evenly spreads the sample points into smaller domain and 

sample size of equal probability. Furthermore, the difference between MC and LHS is 

attributed to LHS experimental design which deals with characteristic of multilevel 

sampling written in the form of a matrix. MC is memoryless in approach such that the new 

values are generated without containing the previous account's sample. On the other hand, 

LHS is a memory system in approach such that it remembers in which row and column the 

selected sample was taken. The important point is that the LHS approach can give better 

simulation results than MC with the same number of repetition because it is faster to reach 

good representation of probability distribution than MC sampling (Gentle, 2003).   

      Furthermore, the difference between MC and LHS is attributed to LHS experimental 

design which deals with a characteristic of multilevel sampling written in the form of a 

matrix. MC is memoryless in approach such that the new values are generated without 
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containing the previous account's sample. On the other hand, LHS is a memory system in 

approach such that it remembers in which row and column the selected sample was taken. 

The important point is that the LHS approach can give better simulation results than MC 

with the same number of repetition because it is faster to reach good representation of 

probability distribution than MC sampling (Gentle, 2003). The Monte Carlo's sampling 

error is    √ ⁄   whereas the LHS sampling error is     ⁄  , in other words, with 

multidimensional systems, LHS converges faster than MC (Mainik, 2015).  

      The simulation methods are different in the number of simulations (length of the time), 

the quality and accuracy of results. Because MC is a random process (the sample can come 

from in anywhere in the range of the input distribution), therefore, MC needs to use a large 

number of repetitions to give more accurate simulation results. On the other hands, only a 

few numbers of repetitions for LHS is needed to obtain accurate results. That means LHS 

gives a good accuracy with less repetitions compare to  MC, for example if LHS get an 

accuracy with   simulations whereas MC need the    to get the same accuracy. Another 

comparison; with MC, random samples may be selected not in the close region to a model 

under study. While LHS is spread the sample values until the range of the simulated 

parameter is covered (Mainik, 2015).  

 

2.6.5   Numerical Finite Difference (FD) Method 

      The system of differential equations which have time-dependent coefficients can be 

solved numerically by finite difference method (FD). Sometimes it is called a method of 

lines that can be considered as a discretization method (Gustafsson, 2011). FD is a 

numerical method to solve initial value problem. The results of FD represent discrete 

numerical values that approximate the exact solution, (Logan, 2006). FD is an iteration 

process to solve differential equations (Fulford et al., 1997). It considered as an 

approximation of the derivative of the differential equation. 
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      There are three types of finite approximation methods; finite difference, finite volume 

and finite element. Finite difference (FD) method is the oldest numerical method to solve 

differential equations. It approximates the derivatives of differential equations and deals 

with the points where the solution domain is treated as a grid system (Ferziger et al., 2002, 

P. 35). Finite volume (FV) method deals with the integral form and approximates surface 

and volume integrals when the solution domain is subdivided into a limited number of 

neighboring volumes. The surface and volume integrals are approximated by appropriate 

quadrature formulae (Ferziger et al., 2002, p. 36). Finite element (FE) method has the most 

properties of the FV method. The domain is divided into a collection of discrete volumes of 

finite elements. The solution is approximated by a linear function (Ferziger et al., 2002,      

p. 36).  

      Yusof (2011) used the FD method to solve partial differential equations and applied it to 

the lithium-ion concentrations. Simulation technique for parameters was used to analyze the 

results of boundary value problem using t-test. 

      The general form of FD for an ordinary differential equation (ODE) with initial value 

Eq. (2.1) can be written as follows:   

     FD discrete the time   in       into m subintervals which is equal to endpoints      

  , for             where m is the maximum number of iterations and   
 

 
 is a step 

size.      

    The step size   = 1 (per day, week or year) is chosen here since we are solving the real 

social epidemic model estimated on a time basis. Therefore, Eq. (2.1) becomes: 

        (        )  (2.11) 

By using the central difference formula of FD, Eq. (2.2) becomes (Ferziger  et al., 2002): 
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                              (2.12) 

 

2.6.6   Derivative and Properties of Finite Difference (FD) Method 

      Any numerical method involves error. There are many kinds of numerical errors; the 

most common errors are the absolute error, relative error, and truncation error. Suppose that 

  and   are two values, one the exact value ( ) and the other approximate value ( ). The 

formula of absolute error is |   |, and relative error is |   |

| |
 (Cheney & Kincaid, 1999,     

p. 4).  

      Truncation error comes from cutting a part of the Taylor series approximation of a 

function. That means, the cutting terms of Taylor series approximation that approaches zero, 

is symbolized       of order   and named truncation error when    is the step size and   

is a positive integer value. The order error is affecting the accuracy. That means the 

numerical method that has higher error order is more accurate than the lower error order. 

Such as the best length of Euler (0.1), modified Euler (0.01) and Runge-Kutta (0.0001) 

methods. We can expect a truncation error during computer perform with determined length 

(Cheney & Kincaid, 1999; Logan, 2006; Giordano et al., 2003). Suppose that a step size h is 

a fixed positive number. Some of higher powers for approximations of a function using 

Taylor series, approach to zero. The error term of central FD is (Giordano et al., 2003): 

       
 

 
           (2.13) 

 

      We can explain the deriving of the central finite difference formula by using Taylor 

theorem as follows: 
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The expression of Taylor series of order   at   is  

                   
 

 
            

 

 
            

 

  
            (2.14) 

 

The approximate functions at       and       lead to  

                   
 

 
            

 

 
            (2.15) 

 

                   
 

 
            

 

 
            (2.16) 

 

We obtained by subtraction  

                      
 

  
            

 

  
              (2.17) 

 

The central finite difference formula with its truncation error can be written as  

       
 

  
[               

 

 
           (2.18) 

 

where   is a value in the interval of a function   and   

 
          is the error term (Cheney 

& Kincaid, 1999, p. 173).  

      To construct a formula of finite difference methods to solve differential equations, let 

first mention that in our study considers the function   in Eq. (2.1) is a nonlinear of  ,   is 

the step size,   is an integer and            . Suppose that 

    ,       ,         and           (2.19) 
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The first derivative form in calculus is given for the forward, backward and central 

difference schemes is given as   

  

  
    

   

{
 
 

 
 

           

 
 

           

 
 

             

  
 

         

{
 
 

 
 

       

 
 

       

 
 

         

  
 

 (2.20) 

 

Substitute the corresponding Equations (2.19) and (2.20) in Eq. (2.1) to obtain the finite 

difference schemes of Eq. (2.1); 

       

 
   , (2.21) 

       

 
   , (2.22) 

         

  
   . (2.23) 

 

The Equations expressions (2.21), (2.22) and (2.23) are called the respectively forward 

Euler, backward Euler and central finite difference schemes (Mickens, 1994, p. 2-3). 

      The numerical method is named implicit if the next step term like      appears on two 

sides of the formula (Nagle et al., 2008). The backward Euler method is an implicit scheme 

because the next step    appear on two sides and the scheme must be solved for   , 

(Mickens, 1994). We can derive from FD some iteration numerical methods to estimate the 

next step     of FD such as Euler of order      and Runge-Kutta RK4 method of order 

     . 

      Numerical instabilities of the discrete dynamic system of nonlinear differential 

equations can happen when the finite difference equations have not corresponding solutions 
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of the differential equations in the discrete model. In the other words, this case is an 

indicator that the difference schemes in the discrete model of differential equations do not 

have the ability to get a good mathematical modelling to the problem under study. The main 

reason of numerical instabilities is that the parameters of the model have space larger than 

the corresponding differential equations. In general, the numerical instabilities occur insure 

for all step sizes when the order of finite difference equations becomes larger than the order 

of differential equations because the higher order of the difference equations has general 

solutions more than the differential equations that corresponding them. Therefore the central 

finite difference scheme to solve first order differential equations has numerical instabilities 

because it is of order two (with two linearly independent solutions) that more than the order 

of differential equations. The second reason of numerical instabilities is if there are no 

restrictions on the step size that the discrete model requires, for example the forward Euler 

and Runge-Kutta methods have this case of numerical instabilities. As well the central finite 

difference scheme to solve first order autonomous differential equations of the discrete 

model may be having the numerical instabilities (Mickens, 1994, p.60-61). 

 

2.6.7   Numerical Simulation Methods 

      Numerical simulation methods obtain results by solving the system of differential 

equations using a numerical method and simulation processes. Previously, an inverse 

problem for nonlinear parabolic was solved by finite difference scheme jointed with Monte 

Carlo algorithm and the unknown diffusion coefficient was estimated using polynomial 

format (Farnoosh & Ebrahimi, 2010). Hosseini and Shahabian (2011) used a hybrid 

numerical method that consists of Galerkin finite element with Newmark finite difference 

methods and discussed the stochastic analysis. Finite difference method was integrated with 

Monte Carlo simulation process in order to predict the behavior of the dam (Rohaninejad & 

Zarghami, 2012), the random variables which were generated by Monte Carlo method in 
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this problem have a Gaussian distribution. In recent year, the elliptical partial differentials 

are  analyzed by the stochastic finite element method (Pryse & Adhikari, 2017). Nonlinear 

random differential equations were solved by generalized polynomial chaos method (Cortés 

et al., 2017).  Faes & Moens (2017) studied the uncertainty of the parameter in a spatial 

interval on a physical model using LHS and finite element.     

 

2.6.7.1   Mean Monte Carlo Finite Difference (MMCFD) Method 

      The Monte Carlo simulation with finite difference (FD) method is repeated   times to 

simulate values of the variable parameters as random sample. The mean of the   final 

solutions via this integrated technique, named in short as mean Monte Carlo finite difference 

(MMCFD) method, represents the final solution of the system. This method is proposed for 

the first time to calculate the numerical solution obtained for each subpopulation as a vector 

distribution. 

      In Chapter 3 there are three variables considered in the weight reduction model which are 

    ,      and     , while in Chapter 4 the variables for the cocaine abuse model are 

    ,     ,      and     . Therefore in Chapter 3,     and in Chapter 4,     where   

denotes the number of variables in a model. Hence the Monte Carlo finite difference 

solutions for one variable (   ) may appear as follows:     

(         )
   

 (
           

   
           

)

   

                        (2.24) 

 

where   is the maximum number of iterations as well as it is the number of weeks (in 

Chapter 3) or years (in Chapter 4) in each considered interval.   is the number of random 

sample space for model parameters and it also represents the maximum number of 

simulations. The numerical simulation results (          of Monte Carlo finite difference) 
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obtained for one variable of a system are presented in the above Eq. (2.24) for   simulations 

and   numerical iterations.  

Then, the numerical simulated solutions of Monte Carlo finite difference of a system for   

numerical iteration and for   simulation can also be written as:            

          (

                      
                      

 
                      

)  

(

 

            

            

 
            )

   (2.25) 

 

The Monte Carlo finite difference final solutions which correspond to the last numerical 

iteration   for   variables in a model with   simulations as represented in the last row of 

Eq. (2.24), can be written as:  

 

                                                             

          (

                     

   
                      

) ,                  (2.26) 

 

The mean of each column of the final solution in Eq. (2.26) represents solution of the 

system for each variable   that is displayed in the following terms: 

       ∑
          

 

 

   
                    (2.27) 

 

such that            are elements in Eq. (2.26), where   is the last numerical iteration,   is 

the number of simulations and   is the total number of variables in a model. Hence, the 

mean of Monte Carlo finite difference solutions (MMCFD solution) of a system, sol is 

given as: 

𝑙    

 Final 
solutions of 
variable_1 

 
𝑙  𝑘 

Final 
solutions of 
variable_k 
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     (                      )  (2.28) 
 

where   is the total number of variables in a model and      is an estimated solution of a 

system (the MMCFD solution of a system). The MMCFD method is fully executed using 

MATLAB software where the flow chart is presented in Figure 2.1 while the algorithm is 

given in Appendix A. 

 

MMCFD Procedure 

 

Figure 2.1: Flow chart of MMCFD method 

 

2.6.7.2   Mean Latin Hypercube Finite Difference (MLHFD) Method 

       Mean Latin Hypercube Finite Difference (MLHFD) method is a new modified 

numerical simulation technique proposed by integrating two methods of different natures 

together in this study a statistical simulation process with random sampling, LHS and a 

numerical deterministic approach, FD. The deterministic system under study depends on a 

continuous time that appears in the variables and parameters. MLHFD benefits from the 

Step 4 

Compute mean of the final solutions of the model from Step 3 that represents 
the mean of system solution 

Step 3 

Repeat Steps 1 & 2 n-times (i.e 100, 500, 1000, 3000, 5000) 

Step 2 
System is solved numerically by FD method and the last numerical iteration 

solution is taken to be the final solution 

Step 1 

Model parameters are simulated by MC method for the first time 
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deterministic system due to its random distribution properties in various model 

variables/parameters. Furthermore, the MLHFD numerical simulation process is more 

flexible to predict the range of solutions than the classic numerical methods which depend 

on a fixed time. The MLHFD method is fully executed using MATLAB software and the 

algorithm is presented as a flow chart in Figure 2.2 and the program in Appendix B. 

 

MLHFD Procedure 

 

Figure 2.2: Flow chart of MLHFD method 

 

2.6.8   Statistical Indicators 

      This study focuses on certain statistical indicators such as measure of difference | |, 

standard deviation of MC (    and percentile of distribution in order to compare between 

MMCFD or MLHFD results and the predicted results. For the purpose of comparison 

Step 5 

Compute the mean of  the n solutions in Step 4 (MLHFD solutions) 

Step 4 

Repeat Step 2 & 3 for n times 

Step 3 
The system is solved using FD method with m iterations and the last iteration become 

the final FD solution 

Step 2 
One value of each parameter is randomly selected and substituted into the 

system 

Step 1 

All parameters are simulated as LHS sample for n times at once 
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between numerical and statistical methods, we define a measure of difference | |, written as 

(Cheney & Kincaid, 1999): 

| |  |       |  (2.29) 

where solx  is a deterministic or numerical simulation value while px  is a predicted value. A 

small value of | | would indicate in the present work. 

      A standard deviation   is calculated as a special measuring of an error for the MMCFD 

method. The expression   √ ⁄   reduces the error with the square root of the sample size  , 

approximating to the standard deviation of the means,    which has the following formula:  

   
 

√ 
   (2.30) 

where   represents the number of simulations in the present computation and the sample 

size of the model random variables. Since the value of the standard deviation   of the 

population is not given, the variance of    defined as:  

  
  〈  〉  〈 〉   (2.31) 

is used in the current work with 

〈 〉  
 

 
∑          

 

   

  (2.32) 

and 

〈  〉  
 

 
∑ (          )

 
 

 

   
 (2.33) 

such that            are elements in Eq. (2.26),   is the last numerical iteration,                   

          number of simulations,           and   is the total number of variables in 

the model under study. For more details on   , please refer to Jacoboni and Lugli (1989).         
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In general, the best result is obtained when the standard deviation of the means    is the 

smallest. 

 

2.6.9   Range and Prediction Interval  

      Another statistical indicator to describe data (solution) is prediction interval. It is 

considered as description of the numerical simulation solutions obtained in present study. 

The proposed modified method is useful to determine prediction interval when random 

distribution of the numerical solution is necessary for estimation of real epidemiological 

models. Prediction interval is an interval contains upper and lower bounds for predicted 

values of the distribution for each subpopulation of a model. It can be obtained by using the 

    percentiles (  ) to give upper and lower limits. A percentile is a value inside a 

distribution that can divide ordered predicted values into two or more parts by drawing lines 

between these values. These predicted values belong to the vector distribution of random 

variables. As a consequence, the     percentile of the predicted values is inside a 

population. This percentile value is equal to or less than the number that required to 

calculate it when        . Suppose that   is the total number of predicted values in a 

distribution (random sample size). The index becomes               and represents 

the place for the     percentile value within the population distribution. All the predicted 

values are arranged from the smallest time value until the largest time value in the 

distribution, see (Wilcox, 2006; Patel, 1989).  

      In Chapter 3, for example 0.581503 is the upper limit (95th percentile of      at the end 

of 2015 for 5000 simulations) of predicted values in the population. It means 95% of 

predicted values for the population are equal to or less than 0.581503. The lower limit of 

this prediction interval is the 5th percentile. The median here is the 50th percentile of the 

predicted values. In other words, The 50th percentile is a data that splits the entire data 

distribution into two pieces such that 50% of the values lie in one piece and the other values 
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lie in the second piece, for more clarity, see (Wilcox, 2006). In summary, the predicted 

values are arranged from the smallest time value to the largest time value of the distribution. 

These percentiles are dependent on the size of the prediction interval. The prediction 

interval obtained takes into account the empirical 5% and 95% percentiles. (Wilcox, 2006).   
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CHAPTER 3: NUMERICAL SIMULATION TECHNIQUE FOR 
WEIGHT REDUCTION MODEL DUE TO PUBLIC HEALTH 

CAMPAIGNS IN SPAIN 

 

3.1 Introduction 

      Differential equation arises in formulation of many real life and industrial based 

dynamical relations that describe growth, transformation and change of specific dependent 

and independent mechanisms that may affect the whole system of inquisition. Generally, 

differential equations are categorized as ordinary differential equations (ODEs) or partial 

differential equations (PDEs). ODEs are differential equations with only one independent 

variable that reflected in the denominator expression, while PDEs have two or more 

independent variables in the system. There are three types of solutions for differential 

equations, which are exact, analytical, and numerical solutions. 

      Many researchers have conducted study on differential equations using vast choices of 

method. Since exact solutions do not exist for many complex models, closed form and 

analytical solutions are preferred as second choice alternative depending on the versatility, 

practicality and mathematical severity of the problems. Mohyud-Din et al. (2009) reviewed 

the applications of the analytical methods of He‟s and modified variational iterations, 

homotopy  perturbation, parameter expansion and exp-function to solve a wide class of 

nonlinear initial and boundary value problems. Further discussion on such methods is also 

studied in Ali et al. (2016), Mohyud-Din et al. (2012), and Ul Hassan and Mohyud Din 

(2016). On the other hand, numerical methods are favored by numerical scientists and 

engineers due to simpler algorithm and computer-handling operations on complex solutions, 

less time consumption, and when the exact or analytical solutions of certain models are not 

yet found. 
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      Finite difference (FD) method is one of established numerical methods to solve 

differential equations approximately. This method is widely applied in practical 

mathematical and physical modelling (Karris, 2007), numerical analysis/simulation and 

discrete domain problems throughout many fields of  science, engineering, social science, 

medicine and economics. Witnessing continuous demand and progress in these fields, many 

authors employed FD in their works including on ODEs. Rao and Chakravarthy (2013) 

presented FD method for singularly perturbed linear second-order differential difference 

equations of convection–diffusion type with a shift parameter when the shift is smaller or 

greater than a perturbation parameter. Moghaddam and Mostaghim (2013) used a new 

numerical method that depends on FD to provide feasible solution for boundary problem of 

delayed differential equations of fractional order. In 2014, linear second-order differential 

difference equation of convection–diffusion type with singularly perturbed boundary value 

problem is discussed, where a FD method is introduced with fitting parameter from the 

theory of singular perturbation (Rao & Chakravarthy, 2014). Others works on the FD 

method can be found in Liu and Chen (2014), Su et al. (2013) and Zhao (2013).  

      Monte Carlo (MC) method is an eminent statistical modelling method in applied 

mathematics to develop models of phenomena with unknown probabilistic property. 

Because of its simplicity and good statistical results, the MC method has become a 

widespread technique used for doubt quantity. Due to increasing demand of statistical 

modelling and fast development of technology, MC method is employed with 

multiprocessor computing system in order to simulate many independent statistical 

experiments at a time. This progress enables difficult problems of probabilistic nature to be 

solved using the MC method by direct simulation of the natural probability model as well as 

to solve deterministic problems that are represented as constructed probability processes. 

These processes are modelled, and the numerical solutions are framed in the form of 

statistical estimators of deterministic equations with either random coefficients or random 

boundary conditions or right sides random (Rubinstein, 1981). The MC method can also be 

Univ
ers

ity
 of

 M
ala

ya



39 

applied to solve problems in finance, science, engineering, economics, and actual 

mathematics. It can be used to generate random data in behavioral studies as well as to 

estimate numerical quantities via repeated sampling. Moreover, mathematical algorithms 

can be randomized using computers to carry out statistical sampling in optimization 

problems via the MC method. 

      There are many researchers who organized research in parameters estimation of ODEs 

with MC. Spigler and Zerbetto (2013) studied the oscillatory behavior of tension leg 

platform offshore structure using MC method, while De Souza et al. (2014) provided MC 

solution of ODEs from a first law analysis and calculated the stochastic moments. Licea et 

al. (2013) dealt with Riccati equation that has random coefficients and compared the 

solutions with MC method. Meanwhile Buezas et al. (2013) solved a nonlinear ODE using 

finite element method with MC simulation technique. Later, Leander et al. (2014) presented 

an article related to estimated parameters of ODEs that have experimental data for discrete 

time. It is demonstrated that transforming an ODE to a stochastic differential equation as an 

objective function eliminates problem of local minima. Rohaninejad and Zarghami (2012) 

predicted the behavior of impounded dams by employing MC with FD method, where the 

statistical test Kolmogorov–Smirnov is used to predict the dam behavior. Other applications 

of MC method are given in Abdulle and Blumenthal (2013), Dereich and Heidenreich 

(2011) and Kovtanyuk et al. (2012). 

      Obesity and overweight are excessive fats in one‟s body measured using a simple 

formula of body mass index (BMI). These abnormal body weights have been medically 

proven as major risks to modern population with known linkage to many death cases around 

the world due to cardiovascular diseases, such as stroke and heart disease, diabetes, 

musculoskeletal disorders especially osteoarthritis, and also due to colon, endometrial, and 

breast cancers. Based on statistics from the World Health Organization, the world obesity 

rate has increased by 200 percent since 1980 with 42-million children under five years old 

are obese or overweight in 2013 alone. Mainly caused by imbalance of daily nutritional 
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intake and lack of physical activities to burn extra calories taken, the excess weight 

continues to become a serious health problem, especially in the low- and middle-income 

countries exasperated by insufficient prevention strategies, law policies, and power 

enforcement by the corresponded governments. As much as the rate of excess weight is 

rising at worrying stage, the research and studies devoted to this issue also keep rising. 

      Santonja et al. (2012) studied the effects of a public campaign to reduce excess weight 

in a Spanish region within a community of Valencia that is caused by unhealthy lifestyles. A 

mathematical model is presented to track on the progression of excess weight loss 

influenced by prevention strategy of public health campaigns. The campaigns focus on 

overweight and/or obese individuals in order to reduce their weight. In Snyder (2007), the 

author reached to a conclusion that nutritional campaigns should be able to change feeding 

behavior. Christakis and Fowler (2007) investigated similar issue by assuming the excess 

weight (obesity and overweight) as a socially transmitted epidemic disease. Further studies 

on excess weight from diverse perspectives are conducted in Livingston et al. (2001); 

Navarro-Barrientos et al. (2011); and Thomas et al. (2014). 

      In the present study, FD method integrated with MC technique is considered to simulate 

coefficients of time   (week) of a nonlinear system of equations representing three Valencia 

community subpopulations based on BMI (Santonja et al. 2012). The system consists of 

three nonlinear ODEs with multiple coefficients/parameters that are described as random 

variables with probability distributions. The integrated method we named as mean Monte 

Carlo finite difference (MMCFD) method is used to simulate the parameters of the model 

(Santonja et al. 2012) and secondly to calculate the prediction interval for the numerical 

solution of every dependent variable of the system when the real-valued coefficients are 

provided previously.  

 

Univ
ers

ity
 of

 M
ala

ya



41 

      Because of random sampling and rounding errors, the solution must be supported by 

prediction interval based on percentile of variables distribution. In particular, we are using 

the 5th and 95th percentiles in the present work. This interval of numerical results is later 

compared with the interval of statistical predictions (Santonja et al. 2012) derived by Latin 

hypercube sampling (LHS) technique. In order to obtain empirical prediction intervals, this 

article leads to set up interval by using the percentiles from the simulated values. This 

prediction interval represents empirical prediction intervals. The MMCFD solutions are also 

compared with the results generated by the FD method via central divided difference 

formula. The MMCFD method shows better accuracy and convergence to the given 

predicted results than the FD method. Thus, it is expected that the MMCFD method has a 

potential in future estimations with probabilistic model. 

 

3.2 Mathematical Model 

      Consider the epidemiological model of a group of people in the Valencia community of 

Spain studied by Santonja et al. (2012) on the effects of public health campaigns towards 

the community weight loss. The selected group of adults at the age of 23 years old is 

divided into three subpopulations according to their BMI, which is calculated as BMI = 

weight/height2 (Santonja et al., 2012): 

 N – Subpopulation of individuals with normal weight (BMI < 25) 

 S – Subpopulation of individuals with overweight (25 ≤ BMI < 30) 

 O – Subpopulation of individuals with obesity (BMI ≥ 30) 

      The transition of individual weight is observed at the age of 24 years old in all 

subpopulations of  ,   and   which is a year prior to the public health campaign organized 

in 2000. The initial subpopulations of individuals at the age of 23 years old with normal 

weight, overweight and obesity are denoted by                ,           

      and                 (Santonja et al., 2012) respectively where   is a time 
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unit in week with       is the last week of the year 2000. The average subpopulation 

proportions are represented by the terms    ,     and     respectively. It is further 

assumed that when the individuals reach 65 years old, they will leave the system in all 

subpopulations. Due to unhealthy social lifestyle, the rate of transformation from normal 

weight subpopulations to overweight and obese subpopulations is nonlinearly modelled by 

            while the rate of transformation of individuals from overweight to obese 

subpopulation is a linear term modelled by    . Moreover, individuals in S transit to N at 

the rate of           while the individuals in   transit to S at the rate of      

    . The size of the   and   subpopulations are modelled by    and   respectively. 

Hence the transition model is presented as a nonlinear system of ODEs with respect to 

independent time variable,   (week) as follows (Santonja et al., 2012): 

 

                        (         )                 (3.1) 

                 (         )                       

               
(3.2) 

                                    (3.3) 

 

 

      Other parameters of the model (Santonja et al., 2012) are listed in Table 3.1 with further 

estimation details. This model is a system of ODEs with random variable solutions 

depending on time  . The model parameters are also random variables with estimated 

values. This is where the MMCFD method can be very useful to solve the stochastic model 

numerically. More details for data source are mentioned in section 2.5.  
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Table 3.1: Model parameters provided by Santonja et.al (2012) 
 

Parameters Remarks Parameters Remarks 

         Proportion of normal weight at 
23-year old in 2000. 

p =1/7 
(per week) 

Average overweight or obese 
individual needs to reduce a 
mean of 7 kg weight to transit 
to normal weight or overweight. 

    
        Proportion of overweight at 23-

year old in 2000. 
  Rate that overweight 

individuals turn into normal 
weight.  

    
         Proportion of obese at 23-year 

old in 2000 
         2% proportion of overweight 

population who do physical 
activity to reduce weight. 

    
   = 
0.0004578 

Average stay time in system of 
24-65 years old adults; 
  =1/2184        spent time 
of individuals in system (42 
years=2184 weeks). 

         4.2% proportion of overweight 
population who improve diet to 
reduce weight. 

    
  = 
0.00112 

Transmission rate that depends 
on unhealthy lifestyles due to 
social pressure.  

 
      

   

Rate at which obese individual 
become overweight. 

    
   = 
0.0003226 

Rate at which 24-65 years old 
overweight adults become obese 
due to their unhealthy lifestyles. 

   = 0.004 0.4% proportion of obese 
population who do physical 
activity in order to reduce 
weight. 

    
  ⁄  Average time an individual 

needs to return to      from 
     or     from      by diet 
and physical activity. 

   = 0.024 2.4% proportion of obese 
population who improve diet to 
reduce weight. 

 

3.3 Solution Approach 

Upon substitution of the Eq. (2.12) into the nonlinear system of ODEs (3.1)-(3.3) gives: 

 

         

  
                                    (3.4) 

 

         

  
                                    

              
(3.5) 

 

               
         

  
                           (3.6) 

 

      Where           and   is the number of numerical iterations.  
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All model parameters (Santonja et al., 2012) are simulated by MC method prior to 

numerical solutions of the system (3.4)-(3.6) by using FD method in MMCFD approach 

with the last numerical iteration represents the final solutions of the model corresponding to 

specific time interval (see Table 3.2).  

      After that, the parameters are re-simulated before they are used to solve the system by 

FD method again. This process is applied for 100, 500, 1000, 3000 and 5000 times. As a 

result, the system has 100-5000 final solutions that are used to calculate the average of 

them. This average is called in this thesis as “the MMCFD final solutions” (the mean of 

Monte Carlo finite difference final solutions) that represents the system solution. These 

mean values correspond to the average of the last iteration of Monte Carlo finite difference 

solutions in each repeated simulation cum the average of the last component of final 

solutions vector (the end values in the ordered random sample for     ,      and     ) are 

listed in Table 3.2. The flow chart of MMCFD procedure is further presented in Figure 2.1. 

      We compute the time   as a unit in week by using Wolfram Alpha program where the 

number of weeks from the beginning of 2001 to the end of 2013 is calculated as 678 weeks, 

from the beginning of 2001 to the end of 2015 is 782 weeks, and from the beginning of 

2001 to the end of 2030 is 1565 weeks. The number of weeks in each interval is the same 

number of iterations. Random predictions in 2013 and over the next few years in 2015 and 

2030 can be performed by assuming all model parameters to have uniform probability 

distributions on given prediction interval since these parameters are random variable 

sampling too. In this case, the outcome results are called as “numerical simulated solutions” 

by means of MMCFD method. Since we have previous results for this model that are 

estimated by a statistical method with estimated parameters (Santonja et al., 2012), then 

comparison between the present Monte Carlo finite difference final solutions with the 

predicted results (Santonja et al., 2012) can be conducted.  
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      All MMCFD computations are done in MATLAB environment. Some graphical results 

(for 5000 simulations and the number of numerical iterations is 678 weeks in 2013, 782 

weeks in 2015, 1565 weeks in 2030) are plotted using MagicPlot software while the box 

plots are drawn by using S-plus software. In recapitulation, MMCFD is beneficial to solve 

linear and nonlinear ODEs system for actual stochastic model that has multiple parameters 

as random variables and provides the system numerical simulated solutions whenever 

preliminary data of the model are given previously. All the statistical indicators explained in 

Chapter 2 and further discussed in the next section are showing good results with the present 

numerical simulated solutions of MMCFD method. 

 

3.4 Results and Discussion 

      In this section, existence of unique numerical solution by using MMCFD method is 

presented for the system (3.1)-(3.3) when constant parameters are considered (Santonja et 

al., 2012). Because of random variables are included as parameters in this model, the 

MMCFD method is suggested to generate new numerical simulated solutions for this model 

so that random variables sampling can be estimated by MC method through a stochastic 

process. Good inference is obtained when the results of all numerical simulated solutions of 

MMCFD (the mean of Monte Carlo finite difference final solutions) are proved to be closer 

results to statistical values (Santonja et al., 2012) than the FD numerical results with 

difference recurrence of simulations (100, 500, 1000, 3000 and 5000 simulations) in 2013, 

2015 and 2030 (see Table 3.2). Since different approaches (numerical and statistical) are 

employed and due to source of errors, the MMCFD numerical simulated solutions of the 

system (3.1)-(3.3) are expected to have a percentage of difference with statistical and FD 

results especially at the end of 2013, 2015 and 2030 for the subpopulations     ,      and 

     as clearly supported by Table 3.2, Table 3.3 and Figures 3.1- 3.3 respectively.  
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Table 3.2: Mean of MMCFD final solutions and measure of difference for the subpopulations 

 

      In Table 3.2, solutions of     ,      and      are tabulated in comparison with results 

from (Santonja et al., 2012), FD method and MMCFD method. The corresponding measure 

of difference between FD or MMCFD methods with respect to statistical predictions 

(Santonja et al., 2012), are also listed. In general, normal weight subpopulation,      of the 

Valencia community is expected to reduce as the year increases from 2000 (see Table 3.1; 

        ,         ,         ) to 2030 while the subpopulations of overweight      

and obese      are growing over the same period. It is observed that the measure of 

difference of the MMCFD method are consistently smaller than the measure of difference of 

the FD method in all years of 2013, 2015 and 2030 under various repeated simulations (100, 

500, 1000, 3000 and 5000 simulations). Although the current results depend on 5000 

simulations, in order to fit with estimations by Santonja et al. (2012), different numbers of 

repeated simulations are tested in Table 3.2 to find the best number of simulation that 

produces the closest results to the predicted values of Santonja et al. (2012). In general, the 

Subpopulation Method 2013 2015 2030 
Solutions | | Solutions | | Solutions | | 

     

Santonja et al. in 
2012 0.4350 - 0.4244 - 0.3658 - 

FD 0.573849 0.138849 0.555952 0.131552 0.445840 0.080040 

Pr
es

en
t r

es
ul

ts
 

M
M

C
FD

 100 Sim. 0.564445 0.129445 0.543390 0.118990 0.402395 0.036595 
500 Sim. 0.562819 0.127819 0.541705 0.117305 0.401929 0.036129 

1000 Sim. 0.563993 0.128993 0.543033 0.118633 0.403929 0.038129 
3000 Sim. 0.564385 0.129385 0.543536 0.119136 0.405434 0.039634 
5000 Sim. 0.564039 0.129039 0.543108 0.118708 0.404293 0.038493 

     

Santonja et al. in 
2012 0.3970 - 0.4004 - 0.4132 - 

FD 0.325999 0.071001 0.335716 0.064684 0.388068 0.025132 

Pr
es

en
t r

es
ul

ts
 

M
M

C
FD

 100 Sim. 0.329961 0.067039 0.341145 0.059255 0.404574 0.008626 
500 Sim. 0.331786 0.065214 0.343118 0.057282 0.406629 0.006571 

1000 Sim. 0.330428 0.066572 0.341593 0.058807 0.404404 0.008796 
3000 Sim. 0.329959 0.067041 0.341030 0.059370 0.403192 0.010008 
5000 Sim. 0.330336 0.066664 0.341476 0.058924 0.404109 0.009091 

     

Santonja et al. in 
2012 0.1680 - 0.1752 - 0.2210 - 

FD 0.100152 0.067848 0.108332 0.066868 0.166092 0.054908 

Pr
es

en
t r

es
ul

ts
 

M
M

C
FD

 100 Sim. 0.104405 0.063595 0.114111 0.061089 0.190559 0.030441 
500 Sim. 0.104078 0.063922 0.113681 0.061519 0.188752 0.032248 

1000 Sim. 0.104245 0.063755 0.113858 0.061342 0.188956 0.032044 
3000 Sim. 0.104368 0.063632 0.113973 0.061227 0.188750 0.032250 
5000 Sim. 0.104218 0.063782 0.113818 0.061382 0.188732 0.032268 

 (Sim.~simulation) 
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statistical behavior is random with MMCFD method and it is noted that MMCFD results are 

extremely convergent with regard to different number of simulations. It is observed that the 

mean of final solutions of both normal weight and overweight subpopulations for MMCFD 

is the most convergent to the predicted values (Santonja et al., 2012) in 500 simulations in 

all years of 2013, 2015 and 2030. However the MMCFD results of obese subpopulation in 

these years are the closest to the statistical values (Santonja et al., 2012) by using only 100 

simulations.  

      On the other hand, the absolute growth rate percentage at the end of  2013, 2015 and 

2030 as well as the absolute yearly average growth rate percentage as compared to the initial 

conditions of each subpopulation in the last week of 2000 (Santonja et al., 2012) are 

presented in Table 3.3. It is found that the normal weight and overweight subpopulations 

(     and     ) are decreasing at average rates of 1.6% (    ) and 2.2% (      per year by 

statistical prediction (Santonja et al., 2012), at 1.2%      ) and 1.8% (      by FD method 

and at 1.4%        and 2.1% (      by MMCFD method from the last week of 2000 until 

the end of 2030. Oppositely, the growth rate of obese subpopulation      is increasing over 

the 30 years. The average yearly increasing rate for the obese subpopulation is estimated at 

12.7%, 8.7% and 10.3% from (Santonja et al., 2012), FD and MMCFD solutions 

respectively. The statistical predictions by Santonja et al. (2012) produce the highest growth 

rates for all subpopulations and years; the FD method gives the minimum rates while the 

MMCFD method provides the intermediate rates between the two different approaches of 

statistical and numerical methods. 
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Table 3.3: Absolute growth rates and absolute average yearly growth rates of the subpopulations 

Subpop. 2000 
Initial Method 

|Growth| (%) |Average Growth| 
(%) 

2013 2015 2030 2013 2015 2030 

     0.704 

Santonja et 
al. in 2012 38.2 39.7 48.0 2.9 2.6 1.6 

FD 18.5 21.0 36.7 1.4 1.4 1.2 
MMCFD* 

5000 Sim. 19.9 22.9 42.6 1.5 1.5 1.4 

     0.250 

Santonja et 
al. in 2012 58.8 60.2 65.3 4.5 4.0 2.2 

FD 30.4 34.3 55.2 2.3 2.3 1.8 
MMCFD* 

5000 Sim. 32.1 36.6 61.6 2.5 2.4 2.1 

     0.046 

Santonja et 
al. in 2012 265.2 280.9 380.4 20.4 18.7 12.7 

FD 117.7 135.5 261.1 9.1 9.0 8.7 
MMCFD* 

5000 Sim. 126. 6 147.4 310.3 9.7 9.8 10.3 
 Note that * are the present results. 

 

      According to Figure 3.1, normal weight curves for both FD and MMCFD methods are 

gradually declining. The decrement of      is slightly higher in 2015 than in 2013. It is also 

noted that the normal weight subpopulations continue to fall until it approaches the 

predicted value (Santonja et al., 2012) at the end of 2030. This convinces the expectation 

that      will decrease in future. In general, the normal weight curves for MMCFD are 

decreasing significantly than the normal weight curves of FD from 2001 to 2030.  

      It is clear that, MMCFD of normal weight subpopulation curves converge to the 

predicted values of (Santonja et al., 2012) faster than the FD curves for all 30 years 

especially at the end of 2030, (see Figure 3.1). 

      Based on Figure 3.2, there is a gradual growing of the overweight curves for both FD 

and MMCFD methods from 2001 until the end of 2030. The curves of       are higher in 

2015 than in 2013. Moreover, the overweight subpopulation curves significantly increase 

before they approach the predicted value (Santonja et al., 2012) at the end of 2030. In other 

words,      is expected to increase in the next years with the overweight curves of MMCFD 

method are higher rising than the FD curves from 2001 to the end of 2030. Obviously, the 
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overweight subpopulation curves of MMCFD method are closer to the predicted values 

(Santonja et al., 2012) than the FD curves in all years.  

         According to Figure 3.3, the obese curves are rising progressively in 2013. Also, the 

progress is more evidenced in 2015 as compared to 2013. Moreover,      is approaching 

the predicted value (Santonja et al., 2012) closely at the end of 2030. In conclusion,      is 

expected to increase in the next few years with the obese curves of MMCFD are 

consistently higher than the FD curves from 2001 to the end of 2030. Apparently, the obese 

subpopulation curves of MMCFD are closer to the predicted solutions (Santonja et al., 

2012) than the FD curves in all years. Even though all curves of normal weight, overweight 

and obese starting at the same initial points in the beginning of 2001, however only 

MMCFD solutions for all     ,      and      are closer to the given predicted points 

(Santonja et al., 2012) at the end of 2013, 2015 and 2030 as compared to the FD solutions.  
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Figure 3.1: Numerical solutions using FD and a sample solution of MMCFD of      with  
                            5000 simulations from 2001 to the end of: (a) 2013 (b) 2015 (c) 2030 
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Figure 3.2: Numerical solutions using FD and a sample solution of MMCFD of      with  
             5000 simulations from 2001 to the end of: (a) 2013 (b) 2015 (c) 2030 
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Figure 3.3: Numerical solutions using FD and a sample solution of MMCFD of      with  
             5000 simulations from 2001 to the end of: (a) 2013 (b) 2015 (c) 2030 
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      It can be concluded that the random error from simulation causes difference between FD 

and MMCFD results and the error increases with more iterations in the future as showed in 

Figures 3.1-3.3. On the other hand, the convergence between the present numerical 

simulated results and the given statistical predictions computed as in Eq.(2.30) corresponds 

to our expectation and agrees with the existing research (Santonja et al., 2012) for 

decreasing      and increasing      and      in the future. As a consequence, MMCFD 

numerical simulated solutions of the model are better approximation than FD numerical 

solutions towards the statistical predictions in all time intervals considered.  

      Based on Table 3.4, standard deviation of mean,    in equations (2.31)-(2.34) of 

MMCFD for all subpopulations until 2030 is so small. Therefore, this indicator signifies an 

acceptable error (see (Jacoboni & Lugli, 1989)) for present work. From 2001 until the end 

of 2030 at 5000 simulations, standard deviation of error for normal weight subpopulation is 

not more than 0.006730, while the standard deviation of error for the overweight individual 

drops to 0.005075. At the same time, the standard deviation of error for obese falls to 

0.003191. The important point to be addressed here is the MMCFD standard deviation of 

mean,    has a very low percentage of error as can be seen in Table 3.4. Finally,    

increases with years as a result of statistical simulation errors. 

 

Table 3.4: Standard deviation of mean of MMCFD using 5000 simulation for each subpopulation 
 

 

      The prediction intervals of MMCFD solutions     ,      and      are approaching the 

range of intervals by Santonja et al. (2012) with a percentage of error. This is due to the 

Subpopulation 
Standard 

Deviation of 
Mean 

2013 2015 2030 

        0.002987 0.003470 0.006730 
        0.002789 0.003171 0.005075 
        0.001008 0.001204 0.003191 
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difference in the sample size of model solutions, the method used to solve the differential 

equations and the difference in simulation technique to estimate parameters (see Table 4 

(Santonja et al., 2012) and Tables 3.5).  

      In general, many factors can cause significant errors in the present study. Firstly, 

modelling error might happen in the system (3.1)-(3.3) as given in (Santonja et al., 2012) 

where this system represents the epidemiological model on the effectiveness of public 

health campaigns towards body weight loss. This error comes from prediction and actual 

data. Secondly, the sampling and rounding errors come from simulation method to estimate 

model parameters that are later being transported to predictions.  The third source of the 

error is due to different simulation techniques to estimate model parameters. In the present 

work, the parameters are simulated by using the classical Monte Carlo process while 

Santonja et al. (2012) previously simulated the parameters by using Latin Hypercube 

Sampling (LHS) technique that is another type of Monte Carlo sampling. LHS is applied by 

Santonja et al. (2012) to generate 5000 different values of each model at the same time. 

Finally, the error comes from the type of distribution (uniform distribution) for parameters 

and solutions of the model (Santonja et al., 2012). Also, the numerical method is subjected 

to two common numerical errors; the round off error which losing of precision due to 

computer rounding of decimal quantities and data propagation error. Therefore, the error is 

not restricted and extends in all interval areas of the distribution.     

 

Table 3.5: Prediction interval (5th percentile, 95th percentile) for MMCFD solutions 
                              of     ,      and      using 5000 simulation at the end of 2013, 2015 and 2030 
 

Subpopulation 2013 2015 2030 

     (0.5297, 0.5970) (0.5030, 0.5815) (0.3226, 0.4806) 

     (0.2994, 0.3625) (0.3063, 0.3781) (0.3475, 0.4635) 

     (0.0931, 0.1162) (0.1004, 0.1283) (0.1542, 0.2291) 
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      Because of random errors (sampling and rounding errors) in the particular model, the 

solutions of     ,      and      can be given by prediction interval come from niform 

distributions in terms of random variables     ,      and     . The prediction interval 

consists of percentiles of final solutions for each model variable     ,      and      

running at 5000 evaluations, empirically at 5% and 95% percentiles. These percentiles are 

used to account 90% confidence interval that implies 90% of the predicted values inside this 

confidence interval. Consider prediction intervals of distributions for     ,      and      

contain a lower limit (5th percentile) and an upper limit (95th percentile). According to 

MMCFD method with 5000 simulations, the 95th percentile for      predicted values inside 

the population is variously distributed for different years (see Table 3.5 and Figures 3.4-

3.6). In recapitulation, we have chosen the 5th and 95th percentile because we want to get a 

90% confidence interval for our numerical simulated solutions as an alternative to the 90% 

confidence interval of statistical predictions given by Santonja et al. (2012). Although the 

5th and 95th percentiles are selected in the present work, we can also use other percentiles 

depending on the size of the confidence interval. 
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Figure 3.4: The 5th, 50th and 95th percentiles for MMCFD solutions of      with  

                      5000 simulations from 2001 to the end of : (a) 2013 (b) 2015 (c) 2030 
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Figure 3.5: The 5th, 50th and 95th percentiles for MMCFD solutions of       with 
                       5000 simulations from 2001 to the end of : (a) 2013 (b) 2015  (c) 2030 
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Figure 3.6: The 5th, 50th and 95th percentiles for MMCFD solutions of      with  

                       5000simulations from 2001 to the end of : (a) 2013 (b) 2015  (c) 2030 
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      Comparing between the present MMCFD results and the statistical prediction intervals 

(Santonja et al., 2012), Santonja et al. (2012) presented 90% confidence intervals for     , 

     and      as listed in Table 4 (Santonja et al., 2012, p. 37) which are taken from the 

empirical at 5th and 95th percentiles. The current MMCFD-prediction interval consists of 

percentiles of     ,      and      empirically at 5th and 95th percentiles too. Both 

prediction intervals of solutions to this model are obtained by using 5000 simulations of 

model parameters. It is clear that all MMCFD solutions in Table 3.2 and 3.6 with 5000 

simulations are inside the prediction intervals of percentile as presented in Table 3.5. In 

addition, the 50th percentile as the median for MMCFD solution distributions is close to the 

mean of these solutions as shown in all Figures 3.4 to 3.6 from 2001 to the end of 2013, 

2015, and 2030, respectively. 

 

Table 3.6: 50th percentile (median) of MMCFD results using 5000 simulations with the mean 

Subpopulation Percentile 2013 2015 2030 

     50th, Median 0.564596 0.543749 0.405707 
Mean 0.564039 0.543108 0.404293 

     50th, Median 0.329789 0.340697 0.403530 
Mean 0.330336 0.341476 0.404109 

     50th, Median 0.103911 0.113443 0.186972 
Mean 0.104218 0.113818 0.188732 

 

      Box plots analyzing the results of     ,      and      from 2001 to the end of 2030 are 

provided graphically in Figure 3.7. They show the central point (median), the extreme 

values (maximum and minimum values) and the outliers which are the points outside the 

boundaries. The box plots present the pattern of the numerical simulated solutions of the 

ODE system            and      throughout the 30 years.  

      Using 5000 simulations, the boxplot of      lays above in 2013, it declines slightly in 

2015, but it declines significantly in 2030 (with one outlier point at bottom). That means the 

subpopulation values of      take smaller values in the end of 2030 as compared to 2013 
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and 2015 (see median in Table 3.6). Therefore,      is a decreasing function in the future 

(see Figure 3.7 (a)).  

      Inversely, the boxplots of      and      are located at the bottom in 2013, then they rise 

slightly in 2015. There is a major hike for      and      in 2030 more than 2015. There is 

only one outlier value above the box for      in 2030 but more outliers are at the top part of 

the box for      in 2030. That means, the subpopulation values of      and      have 

greater values at the end of 2030 than in 2013 and 2015 (see median in Table 3.6). 

Therefore,      and      are both increasing functions in the future (see Figures 3.7 (b) and 

(c)). The statistical behaviors shown in Figures 3.1-3.3 and in Figure 3.7 confirmed 

that      will decrease while      and      will increase in the future. 
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Figure 3.7: Box plot along 30 years (2001- 2030) for MMCFD solutions  
                                        with 5000 simulations of: (a)      (b)      (c)      
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3.6 Conclusion    

      In this study, the Mean Monte Carlo Finite Difference (MMCFD) method is proposed 

for the first time to solve an epidemiology model explicating the effects of public health 

campaign on body weight loss in Spain. The MMCFD method is suggested to generate new 

numerical simulated solutions for this model so that random variables sampling can be 

estimated by MC method through a stochastic process. 

 

     Due to the similar nature of the MMCFD method and the statistical estimation method, it 

is found that the MMCFD method produced numerical simulated solutions of the model 

with better approximation towards previous statistical predictions as compared to the FD 

method in all time intervals considered. Through this work, it is shown that the MMCFD 

method is beneficial to generate random coefficient sampling for the nonlinear stochastic 

epidemic system. Besides, the MMCFD method is also promising to create agreement and 

estimation balance between a statistical method and a classical numerical method.     
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CHAPTER 4: MEAN LATIN HYPERCUBE FINITE SOLUTIONS 
 FOR COCAINE ABUSE IN SPAIN 

 

4.1   Introduction 

      Mathematical epidemic model is necessary to analyze the contributing mechanisms 

behind the nature of an infectious disease in order to control its spread and to predict 

probability for it to happen in future. An epidemic can be defined as a sudden outbreak of a 

disease that happens firstly to those who were exposed to the disease. The epidemic 

populations are divided into Susceptible (S), Exposed (E), Infectious (I), Recovered (R) as 

the mentioned in Chapter 2, section 2.4. The recent study of SEIR disease dynamics is 

examined by Jiang et al. (2016). Many types of epidemic models have been developed such 

as SIS, SIR and SEIR, with or without time delays, of which some of them have been 

discussed by Shu et al. (2012), Safi and Garba (2012), Guerrero et al. (2013), Witbooi 

(2013), Wang et al. (2014), De la Sen et al. (2015), Bai (2015) and Xu et al. (2015). Many 

researchers have provided numerical solutions of such time-dependent models. One of the 

common methods used is finite difference (FD) method (Gustafsson, 2011) while one of the 

common software applications is MATLAB (Shampine et al. 2003). 

      Latin hypercube sampling (LHS) is an extension of stratified sampling for the 

multidimensional data distribution. It is a variance-reduction technique statistical methods 

for generating random samples, (Gentle, 2003). The main approach of LHS that use in this 

Chapter can be outlined here briefly. Firstly the curve of the cumulative probability 

distribution (CDF) is divided into equal intervals which are uniform domains. Next, a 

random value is selected from each interval of the probability distribution. The difference 

between MC and LHS is mentioned in Chapter 2, section 2.5.4. Some preliminary concepts 

of simulation are provided by Dagpunar (2007).  

      Nakayama (2011) estimated confidence interval (CI) using FD formula by updating the 

simulation using LHS. Nakayama (2012) also developed the LHS to increase statistical 
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efficiency after the CI is simulated using FD method. Budgaga et al. (2016) modified the 

model simulation parameters by employing dimensionality reduction technique using LHS 

to forecast the simulation outcomes in real time. On the other hand, Pedro et al. (2016) 

employed the technique of Latin hypercube sampling to evaluate simulation of the basic 

reproduction number, 0R with 5000 sets of sample parameters for a mosquito population. 

      Sánchez et al. (2011) used the LHS stratified random sampling technique to estimate 

model parameters and to create the prediction interval for each parameter in the Spain 

cocaine abuse model. Later Guerrero and Vazquez-Leal (2014) solved this model by using 

the homotopy analysis method (HAM). Then, the model is further tackled analytically using 

HAM-Pade and multi-stage HAM-Pade approximations which are applied on the year 

intervals of [0, 50], [50, 150] and [150, ]. A network epidemiological mathematical model 

is studied by Santonja et al. (2010) for short-term evolution of the cocaine individual 

consumers. The sensitivity of the model parameters is examined. The increasing trends of 

cocaine abuse in Spain from majority of subpopulations are observed. Santonja et al. (2010) 

used LHS to generate variation of 5000 values for the parameters which have uniform 

probability distribution on the intervals [0, 0.085], [0.06, 0.2], [0.32, 0.72], [0, 4] and [0, 

0.19] respectively. The 90% confidence interval which is the mean value of 5000 

simulations is achieved for the cocaine abuse model. On the other hand, Monzó (2015) used 

LHS technique to predict the profile of each subpopulation of the cocaine consumers by 

95% confidence interval for few years until 2020.  

      Cocaine abuse is considered as a socially epidemiological model. Therefore, the growth 

of the cocaine abuse population must be monitored and analyzed closely. The importance of 

this study is due to real evolution of the prevalence of cocaine consumed and because the 

harmful effects of cocaine to one's health happen quickly. An individual who takes cocaine 

will eventually become more dependent on the cocaine over the time if no precaution is 

taken. Therefore, the study of the model is crucial to avoid the spread of the epidemic that 

leads to sickening addiction. The purpose of the current study is to predict the evolution of a 
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social cocaine abuse habit as an epidemic relative to the previous predictions by Sánchez et 

al. (2011). The numerical simulation solutions for the cocaine abuse in Spain are obtained 

by using a modified mean process that combines the numerical deterministic method FD 

and the statistical random sampling technique LHS. This modified approach simulates the 

model parameters by LHS technique before integration with FD iterations. The last iteration 

of the FD numerical result selected from each repetition is called as the final solution of FD. 

The mean of the FD final solutions of the current process is considered as the solution for 

this system. This approach is named in short as Mean Latin Hypercube Finite Difference 

(MLHFD) method. It is introduced to solve a set of nonlinear first order ordinary differential 

equations (ODEs) by using random sampling of equal probability distribution.  

      The current technique is an upgrade of the work by Mohammed et al. (2016) by 

modifying the Mean Monte Carlo Finite Difference (MMCFD) method to benefit from 

LHS. The stratified Latin hypercube sampling process allows faster random variation of the 

numerical simulation results to be obtained. That means, the simulated results produced are 

closer to the statistical values via fewer number of numerical FD iterations as compared to 

the previous MMCFD approach by Mohammed et al. (2016). Moreover, the advantage of 

the proposed MLHFD technique over the deterministic methods such as FD and HAM is 

that it has properties that can provide probability distribution of the randomized solutions 

for the nonlinear ODE system. The MLHFD process can be used in solving the 

epidemiological models to describe dynamics of disease and to explain future behavior of 

the system under search when the data needed for a particular interval of time are not 

sufficient to derive accurate deterministic solutions. This chapter is organized as follows: In 

Section 4.2, the application of SEIR epidemic model of the cocaine abuse problem in Spain 

is discussed. Subsequently in Section 4.3, the methodology approaches; finite difference 

(FD) method of the cocaine abuse model is presented. In the same section, the MLHFD 

method is explained. Next, the analysis and discussion of the numerical simulation results 
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obtained for the cocaine abuse model are done in Section 4.4. Finally, the overall conclusion 

of the study is provided in Section 4.5. 

 

4.2   SEIR Model of Cocaine Abuse  

      Cocaine abuse is considered as a socially transmitted disease. The probability of cocaine 

epidemic transmission depends on social contact or social peer pressure that usually 

influences the spread of such disease. This model was presented by Sánchez et al. (2011) 

with real data of the cocaine abuse in Spain in a period of time of ten years (1995 - 2005). It 

was applicated successfully for short term prediction up to 2015. The mathematical model 

of the cocaine abuse consists of four subpopulations represent the proportions of the total 

cocaine abuse population. It is described by the following nonlinear system of ordinary 

differential equations (Sánchez et al., 2011): 

 

        (      )        (              )          (4.1) 

                               (              )                 (4.2) 

                                               (4.3) 

                                               (4.4) 

where     ,     ,      and      are model variables depending on time  .  

Further descriptions and initial values of the cocaine abuse subpopulations are given in 

Table 4.1. Since the total size of constant population has been normalized to unity, the 

variables satisfy (Diekmann & Heesterbeek, 2008): 

                       (4.5) 

such that the equations (4.1)-(4.4) have the following region (Diekmann & Heesterbeek, 

2008): 
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  {            
                           }  (4.6) 

 

      The population assumes a constant; the birth rate which is equal to the death rate. Other 

model parameters that influence the spread of the cocaine abuse in Spain are also described 

in Table 4.2. The same values of the parameters by Sánchez et al. (2011) are used in the 

present work in order to imitate the behavior of the cocaine abuse but by using the MLHFD 

method up to 50 years prediction (1995 – 2045). More details for data source of the cocaine 

abuse model are mentioned in section 2.5.  

      Consider the cocaine abuse model as the SEIR model which has a latent duration and 

suppose the latent duration reflects the time before cocaine harmfully affects its consumers' 

health or before the consumers are causing harm to themselves due to excessive cocaine 

abuse etc. This latent duration can be shown in the subpopulations of Exposed (E) and 

Infectious (I). Similarly in the standard SEIR model,      (non-users) represents the 

proportion of individuals who are susceptible to cocaine abuse but do not use cocaine.      

(occasional users) represents the proportion of individuals who are taking cocaine every 

now and then but they may become cocaine addicts in the future if mixed with regular users 

or habitual users.      (regular users) represents the proportion of individuals who accepted 

usual cocaine abuse in their lives. At the same time, they are the same individuals who are 

infectious to      or     , yet this class does not suffer from damage to their health (this 

case is not addictive).      (habitual users) represents the proportion of individuals who are 

excessively addicted to cocaine and therefore they suffer from damage to their health. This 

class is considered as extremely cocaine-abused and typically they die or in some cases they 

transit back to the regular users, occasional users or non-users classes.  
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Table 4.1: Basic information on variables and real initial proportions values for the 
                  subpopulations of  the cocaine abuse model in Spain at the beginning of 

the year 1995 (Sánchez et al., 2011) 

 

 

Table 4.2: Parameters' descriptions and estimated proportions values (Sánchez et al., 2011) 

Parameters
of model 

Parameter 
values

         
Parameter description 

   0.01 birth /death rate 

   0.09614 transmission rate of cocaine abuse due to social pressure 

   0.0596 the rate at which an occasional user becomes a regular 
user 

   0.0579 the rate at which a regular user becomes a habitual user 

   0.0000456 the rate at which a habitual user leaves cocaine due to 
therapy course 

 

4.3   Methodology 

      Mean Latin Hypercube Finite Difference (MLHFD) method is a new modified 

numerical simulation technique proposed by integrating two methods of different natures 

together; a statistical simulation process with random sampling, LHS and a numerical 

deterministic approach, FD. The mean of the solutions resulting from the methods' 

integration process is taken as the alternative solution for the cocaine abuse model with 

Variables 
of model 

Classification 
variables Variables description Initial 

variables 
Initial 
values 

     Non-users the proportion of individuals who 
have never taken cocaine.    0.944 

     occasional 
users 

the proportion of individuals who take 
cocaine sometimes in their lives.    0.034 

     regular users the proportion of individuals who 
usually abuse cocaine in their lives.    0.018 

     habitual users 
the proportion of individuals who 
extremely abuse cocaine until they 
become addicted. 

   0.004 
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random variables/parameters.  All these approaches are discussed in Chapter 2 while the 

application of MLHFD method on the cocaine abuse model is explained in this section.  

      LHS process can be applied to simulate all parameters of the cocaine abuse model 

simultaneously. Each parameter is considered as a random vector of time-dependent random 

variables which have uniform distribution on a created interval that has the form                

                where   is the previously predicted value of the parameter (Sánchez et 

al., 2011) with 20% variation range. More details on this are given by Santonja et al. (2012). 

In our model, we consider five parameters that must be simulated by LHS. Finally, the 

random sample of each parameter has the number of LHS simulation values which are 

created by MATLAB software. LHS is presented with different sample sizes (100, 1000 and 

5000 repetitions) to estimate parameters for the initial value problem of the nonlinear real 

cocaine abuse model and to further solve it. In this chapter, the MLHFD method is fully 

executed using MATLAB software and the algorithm is presented as a flow chart in Figure 

2.2. Previously, the cocaine abuse model was solved by Santonja et al. (2010), Sánchez et 

al. (2011) and Monzó (2015) using the mathematical built-in code NDSolve[ ].  

      Applying FD method to the cocaine abuse model (4.1)-(4.4), the following expressions 

are firstly derived by using backward finite difference formula: 

 

     

 
                               (4.6) 

     

 
                           (4.7) 

     
 

                  (4.8) 

     

 
                 (4.9) 

 

After the first solutions n1, o1, r1 and h1 are obtained, the central difference formula as in Eq. 

(2.12) is employed to generate:  
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(4.10)

 
         

  
                           (4.11) 

         

  
                 (4.12) 

         

  
                             for             (4.13) 

where   is the number of FD numerical iterations. 

 

4.4   Results and Discussion  

      In this section, the predicted values are arranged from the smallest time value (in a year) 

until the largest time value of the distribution. In this study, the 5th and 95th percentiles are 

computed to get a 90% prediction interval for the MLHFD numerical simulated solutions. 

These percentiles are dependent on the size of the prediction interval. The prediction 

interval obtained takes into account the empirical 5% and 95% percentiles. The predicted 

values inside the prediction interval of all the subpopulations of non-users     , occasional 

users     , regular users      and habitual users      are obtained for 5000 repetitions. This 

is to match with the previous works by Santonja et al. (2010), Sánchez et al. (2011) and 

Monzó (2015) who estimated the cocaine abuse model parameters using stratified random 

sampling LHS technique for 5000 runs, while considering these parameters as unknown. 

Similarly these parameters are treated as random variables which have uniform distribution 

on the interval in the present work.  
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Table 4.3: Prediction intervals (5th percentile, 95th percentile) for MLHFD solutions 
of                 and      with the step size, w = 1 (yearly) 

 

 
 

      The present work is different from the previous research because each parameter of the 

model depends on the given initial values with 20% variation. In other words, the current 

work generates different interval for each parameter such that each MLHFD estimated 

parameter (as a random variable) has a uniform distribution on the generated interval in the 

form of                , where   is the predicted value of the parameter from Santonja 

et al. (2010), Sánchez et al. (2011) and Monzó (2015). They discussed sensitivity analysis of 

the cocaine abuse model using 90% confidence interval with 5000 mean realizations of the 

model estimation for each studied year from 1995 until 2013 and 2015. On the other hand, 

the present work considers the Mean Latin Hypercube Finite Difference (MLHFD) results 

with varying simulations of 100, 1000 and 5000 respectively as the solutions of the 

epidemic model. Prediction intervals (5th percentile, 95th percentile) of the obtained random 

distribution of the MLHFD results are computed as cocaine abuse prediction at 90% 

empirical confidence intervals from 1995 until 2045 yearly as shown in Table 4.3 where the 

mean and the 90% predicted values are inside the prediction intervals. 

 

Subpopulation (100 repetitions) (1000 repetitions) (5000 repetitions) 

From 1995 to 2015        

     (0.7120625, 0.8247000) (0.7106284, 0.8240017) (0.7100279, 0.8237870) 

     (0.0941251, 0.1709375) (0.0948229, 0.1765881) (0.0940196, 0.1772913) 

     (0.0439347, 0.0788158) (0.0443243, 0.0764917) (0.0447349, 0.0762423) 

     (0.0314621, 0.0461554) (0.0308476, 0.0456079) (0.0307725, 0.0452352) 

Subpopulation (100 repetitions) (1000 repetitions) (5000 repetitions) 

From 1995 to 2045        

     (0.1698301,0.4226823) (0.1658055,0.4196748) (0.1649787,0.4192537) 

     (0.2306565,0.3329301) (0.2362721,0.3331346) (0.2333103,0.3366635) 

     (0.1539181,0.2669994) (0.1531605,0.2591247) (0.1527628,0.2589150) 

     (0.1672605,0.3048938) (0.1667958,0.3051621) (0.1698970,0.3054480) 
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         In this section, the MLHFD solutions for the cocaine abuse model in Spain are 

analyzed and discussed. The previous solutions obtained via statistical estimation (Sánchez 

et al., 2011) and HAM-Pade approximation (Guerrero & Vazquez-Leal, 2014) are listed in 

Table 4.4 in comparison with the present FD and MLHFD results. Based on Table 4.4, the 

MLHFD results for all subpopulations non-users     , occasional users     , regular users 

     and habitual users      are the closest to the predicted values by Sánchez et al. (2011) 

at the end of 2015 for the year interval (0, 20) with the real step size w = 1 (yearly) as 

compared to w = 0.25 (quarter yearly), w = 0.5 (half yearly) and  w = 2 (every 2 years). It is 

found that by incorporating LHS simulation with numerical FD method gives advantage to 

MLHFD in reducing number of classical FD iterations for solution of this model. 

 

Table 4.4: Solutions for the cocaine abuse model at the end of 2015 

M
od

el
 

V
ar

ia
bl

es
 

Predicted 
Values 

(Sánchez et 
al., 2011) 

HAM-Pade 
(Guerrero & 

Vazquez-Leal, 
2014) 

Step 
Size, 

w (year) 
FD  

Present MLHFD Results 

100 
repetitions 

1000 
repetitions 

5000 
repetitions 

     0.785 0.7564470 

2 0.3949467 0.4336910 0.4338025 0.4338027 
1 0.7568123 0.7698149 0.7698045 0.7698022 

0.5 0.8779570 0.8820085 0.8820078 0.8820073 
0.25 0.9166647 0.9181969 0.9181976 0.9181975 

     0.125 0.1397084 

2 0.2820587 0.2700598 0.2703740 0.2705877 
1 0.1395866 0.1331838 0.1333245 0.1333881 

0.5 0.0728612 0.0706692 0.0706977 0.0707115 
0.25 0.0502798 0.0494117 0.0494171 0.0494203 

     0.055 0.0629923 

2 0.1693121 0.1583501 0.1579137 0.1577963 
1 0.0629128 0.0594605 0.0593218 0.0592785 

0.5 0.0322767 0.0312826 0.0312524 0.0312427 
0.25 0.0234631 0.0231212 0.0231149 0.0231126 

     0.035 0.0408056 

2 0.1536825 0.1378991 0.1379099 0.1378132 
1 0.0406883 0.0375408 0.0375492 0.0375312 

0.5 0.0169051 0.0160398 0.0160421 0.0160385 
0.25 0.0095924 0.0092703 0.0092704 0.0092696 

 

      For comparison purpose, the corresponding absolute approximate errors (|  |) of FD 

and MLHFD solutions are shown numerically in Table 4.5. |  | represents the absolute 

value of the difference between FD and MLHFD solutions with the predicted values by 

Sánchez et al. (2011) in the year interval (0, 20) from 1995 to 2015. The errors of MLHFD 
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solutions for all subpopulations with various simulation numbers (100, 1000 and 5000) are 

smaller than the errors of FD results across various step sizes (w = 0.25 (quarter yearly), w = 

0.5 (half yearly), w = 1 (yearly) and w = 2 (every 2 years)). Based on Tables 4.4-4.5, 

MLHFD results for non-users     , occasional users     , regular users      and habitual 

users      are closer to the predicted values by Sánchez et al. (2011) than the approximate 

HAM-Pade and numerical FD results for the system during the 20 years. From Figures 

4.1(a)-(c), all MLHFD curves of the non-users     , occasional users      and regular users 

     with 1000 and 5000 repetitions converge to the predicted values (Sánchez et al., 2011) 

faster than the HAM-Pade and FD curves from 1995 to 2015. 

 
Table 4.5: Absolute approximate error, |  | for FD and MLHFD solutions as relative 

the predicted values (Sánchez et al., 2011) at the end of 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Model 
variables 

Step size, 
w (year) FD (|  |) 

Present MLHFD Results (|  |) 
100 

repetitions 
1000 

repetitions 
5000 

repetitions 

     

2 0.3900533 0.3513090 0.3511975 0.3511973 
1 0.0281877 0.0151851 0.0151955 0.0151978 

0.5 0.0929570 0.0970085 0.0970078 0.0970073 
0.25 0.1316647 0.1331969 0.1331976 0.1331975 

     

2 0.1570587 0.1450598 0.1453740 0.1455877 
1 0.0145866 0.0081838 0.0083245 0.0083881 

0.5 0.0521388 0.0543308 0.0543023 0.0542885 
0.25 0.0747202 0.0755883 0.0755829 0.0755797 

     

2 0.1143121 0.1033501 0.1029137 0.1027963 
1 0.0079128 0.0044605 0.0043218 0.0042785 

0.5 0.0227233 0.0237174 0.0237476 0.0237573 
0.25 0.0315370 0.0318788 0.0318851 0.0318874 

     

2 0.1186825 0.1028991 0.1029099 0.1028132 
1 0.0056883 0.0025408 0.0025492 0.0025312 

0.5 0.0180949 0.0189602 0.0189579 0.0189615 
0.25 0.0254076 0.0257298 0.0257296 0.0257304 Univ
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Figure 4.1: Variation of solutions between statistical predictions (Sánchez et al., 2011), 
HAM-Pade (Guerrero & Vazquez-Leal, 2014), FD and MLHFD 
 (100, 1000 and 5000 repetitions) from 1995 to 2015 yearly 
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Figure 4.1, continued Variation of solutions between statistical predictions (Sánchez et al., 2011), 
                                 HAM-Pade (Guerrero & Vazquez-Leal, 2014), FD and  MLHFD (100, 1000 

and 5000 repetitions) from 1995 to 2015 yearly 
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      The MLHFD results of the cocaine abuse model using 100, 1000 and 5000 repetitions 

with the step size, w = 1 (yearly) are demonstrated in Figure 4.1 for 20 years and in Figure 

4.2 for 50 years respectively. It appears that all non-users      curves for HAM-Pade, FD 

and MLHFD methods are gradually declining in both Figures 4.1 and 4.2. Oppositely, the 

curves of occasional users     , regular users      and habitual users      for all methods 

are significantly rising in these figures. Except in Figure 4.1(d), all HAM-Pade and FD 

curves lie in between MLHFD graphs from 1995 to 2015 or 2045.  

      FD method is used to find the deterministic solution of the epidemic system numerically 

when the model parameters are constants while MLHFD method is used when random 

distribution in the model becomes necessary such that the parameters are treated as random 

variables. The advantage of MLHFD method over FD method is that it can reduce the 

number of numerical iterations of FD. Previous statistical estimations by Sánchez et al. 

(2011) were conducted from the year 1995 to 2015 while HAM-Pade deterministic solutions 

by Guerrero & Vazquez-Leal (2014) described the cocaine abuse model from 1995 to 2045. 

      Hence, the present study also predicted the behavior of the epidemic for 50 years as 

demonstrated in Figure 4.2. These present results of MLHFD provide alternative estimations 

to the model when random distribution of the parameters is taken into account. Additionally, 

the obtained MLHFD numerical simulation results at the end of 2045 are listed together 

with other deterministic solutions in Table 4.6.   
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Table 4.6 Solutions for the cocaine abuse model at the end of 2045 

M
od

el
 

va
ri

ab
le

s HAM-Pade 
(Guerrero & 

Vazquez-
Leal, 2014) 

Step 
size, 

w 
(year) 

FD 

Present MLHFD Results 

100 
repetitions 

1000 
repetitions 

5000 
repetitions 

     0.2547923 

2 0.0997666 0.1226348 0.1229011 0.1229287 
1 0.2549121 0.2773194 0.2774777 0.2774819 

0.5 0.6732753 0.6796014 0.6795964 0.6795933 
0.25 0.8533917 0.8552158 0.8552127 0.8552119 

     0.2877409 

2 0.1792473 0.1007323 0.1006916 0.1004725 
1 0.2881075 0.2828697 0.2830872 0.2832937 

0.5 0.1813977 0.1787472 0.1789779 0.1790881 
0.25 0.0868917 0.0860935 0.0861456 0.0861698 

     0.2111729 

2 0.0912135 0.2559868 0.2580461 0.2592917 
1 0.2111649 0.2055668 0.2051807 0.2051177 

0.5 0.0856571 0.0841173 0.0838788 0.0838054 
0.25 0.0381966 0.0377096 0.0376565 0.0376397 

     0.2461309 

2 0.6297725 0.5206461 0.5183611 0.5173071 
1 0.2458156 0.2342441 0.2342544 0.2341068 

0.5 0.0596706 0.0575342 0.0575469 0.0575132 
0.25 0.0215200 0.0209811 0.0209852 0.0209787 

 

 

 

 

 

 

 

 

 Univ
ers

ity
 of

 M
ala

ya



78 

 

 

 

 
Figure 4.2: Variation of solutions between HAM-Pade (Guerrero & Vazquez-Leal, 2014),  

 FD and MLHFD (100, 1000 and 5000 repetitions) from 1995 to 2045 yearly 
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Figure 4.2, continued: Variation of solutions between HAM-Pade (Guerrer & VazquezLeal, 2014)  
                                       FD and MLHFD (100, 1000 and 5000 repetitions) from 1995 to 2045 yearly 
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     The overall MLHFD results for the cocaine abuse model are summarized graphically in 

Figure 4.3 in the year interval (0, 50) from 1995 with the step size w = 1 (yearly) for all 

subpopulations; non-users     , occasional users     , regular users      and habitual users 

     using 5000 repetitions. The proportion of non-user individuals      is expected to 

decrease tremendously suggesting that healthy population in Spain will decay in future due 

to cocaine abuse epidemic. On the other hand, the habitual users      who abuse extra 

cocaine until they become addicted, are expected to increase yearly during the 50 years. 

Similar increasing trends are expected to happen to the profiles of occasional users      and 

regular users     . The proposed MLHFD numerical simulation method is suitable to 

predict the range of solutions of such real model with random variables/parameters than the 

classic numerical FD and approximate HAM-Pade methods which are deterministic in 

nature. 

 

Figure 4.3: MLHFD numerical simulation results using 5000 repetitions from  
 1995 to 2045 with the step size, w = 1 (yearly) 

 

4.5   Conclusion 

      Cocaine abuse model has been studied in order to understand and to analyze the 

behavior of the social epidemic dynamics. A modified method that combined the statistical 

Latin hypercube sampling (LHS) technique with the numerical finite difference (FD) 

method is proposed to solve the nonlinear system of ordinary differential equations. Named 
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as Mean Latin Hypercube Finite Difference (MLHFD), this method is an upgrade of Mean 

Monte Carlo Finite Difference (MMCFD) method proposed by the same authors last year. 

These methods improved the existing statistical/numerical process by integrating each 

statistical simulation together with the last finite difference iteration in each simulation and 

finally taking the mean solution for the selected number of simulations/iterations as the final 

solution of the method. The advantage of MLHFD over MMCFD is that it produces faster 

simulation via LHS random group sampling distribution. In this work, the MLHFD results 

are tabulated together with the results of FD, HAM-Pade and the previous statistical 

estimations for the cocaine abuse model. The advantage of MLHFD over FD and HAM-

Pade deterministic solutions is due to the random distribution provided by LHS for the real 

epidemic model. Using random distribution properties, the upper and lower boundaries of 

the predicted range for the cocaine abuse solutions can be determined by MLHFD method. 

It is found that FD, HAM-Pade and previous statistical estimation lie within the 90% 

prediction interval of the MLHFD solutions. Since FD and HAM-Pade are deterministic in 

nature while the previous statistical estimation is random, therefore the MLHFD solutions 

are always closer to the previous statistical predictions as compared to other deterministic 

solutions. The optimum solutions of MLHFD are achieved when the step size is based on 

annual unit (w = 1) at 5000 simulations for 20 years prediction as relative to the previous 

statistical estimations. In all computations done, it is found that the rate of cocaine non-users 

will decline while the number of occasional, regular and habitual users of cocaine in Spain 

will gradually increase in the future. Furthermore, the statistical estimations and the 

deterministic results by the previous researchers are found to be within the MLHFD 

prediction intervals for all the years and for all the subpopulations considered. 
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CHAPTER 5: CONCLUSION AND SUGGESTION 

 

5.1 Conclusions  

        In this thesis, modified finite difference methods for random sampling of social 

epidemic models are proposed. The importance of the current study and the research 

objectives have been clarified in Chapter 1. The problem statement which highlighted why 

this study is necessary has been provided. The scope of the research and the outline of thesis 

have also been displayed. The important role of simulation technique has been explained for 

solving the deterministic epidemic models with random parameters. Several preliminary 

concepts have been explained on ordinary differential equations, mathematical models, 

random sampling approach, simple MC statistical simulation process, stratified simulation 

technique of LHS, numerical FD method and the current proposed modified numerical 

simulation techniques of Mean Monte Carlo Finite Difference (MMCFD) and Mean Latin 

Hypercube Finite Difference (MLHFD) have been reviewed in Chapter 2.  

      The first modified finite difference method is proposed to solve an epidemiological 

model explicating the effects of public health campaign on body weight loss in Spain. The 

application of this method is carefully demonstrated in Chapter 3. The modified statistical-

numerical method for solving the social epidemic model discussed earlier by Santonja et al. 

(2012) is named as Mean Monte Carlo Finite Difference (MMCFD) method. The proposed 

MMCFD method is a modified numerical simulation method that combined the statistical 

Monte Carlo (MC) technique with the numerical finite difference (FD) method. It is found 

that MMCFD method produced closer approximated solutions towards previous statistical 

prediction by Santonja et al. (2012) as compared to the deterministic FD method in all time 

intervals considered. Therefore MMCFD method is promising to create alternative 

estimation value between statistical and numerical methods. The MMCFD is also suggested 

as an alternative modified numerical simulation method to create prediction interval for 
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random distributions of the social epidemic solutions for the weight reduction model due to 

public campaign in Spain. From the results in Chapter 3, the curves of the normal weight 

subpopulation,       obtained from both FD and MMCFD methods are gradually declining. 

In general, the      curves for MMCFD are decreasing significantly than the      curves 

of FD from 2001 to 2030. Oppositely the curves for overweight and obesity subpopulations 

(     and     ) using MMCFD method are rising higher than the FD curves throughout the 

30 years. Moreover, the overweight and the obesity curves are expected to increase in the 

future. MMCFD method produced faster and closer approximate solutions towards the 

previous statistical prediction by Santonja et al. (2012) as compared to FD method in all 

time intervals and for all subpopulations considered. The Mean Monte Carlo Finite 

Difference (MMCFD) method is promising to create alternative estimation value between 

the Monte Carlo (MC) statistical technique and the numerical finite difference (FD) method. 

      The second modified finite difference method is proposed in Chapter 4.  This time, this 

method is applied to solve a cocaine abuse problem in Spain. This modified statistical-

numerical method for solving the cocaine abuse model is named as Mean Latin Hypercube 

Sampling Finite Difference (MLHFD) method. The proposed MLHFD method is a modified 

numerical simulation method that combined the statistical Latin hypercube sampling (LHS) 

technique with the numerical finite difference (FD) method. From the results obtained in 

Chapter 4, MLHFD method produced closer approximated solutions towards previous 

statistical prediction (Sánchez et al., 2011) as compared to FD and HAM-Pade (Guerrero & 

Vazquez-Leal, 2014) methods in all time intervals considered due to randomization in the 

results variation which enables MLHFD to predict the range of results distribution of the 

model. It can be concluded that MLHFD method is promising to create alternative 

estimation value between statistical and numerical methods. Furthermore MLHFD is 

suggested as alternative modified numerical simulation methods to create prediction interval 

for random distribution of the cocaine abuse model solutions. 
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        In overall conclusion, MMCFD and MLHFD techniques are modified approaches 

between statistical simulation and numerical finite difference approach. MMCFD and 

MLHFD are considered as better numerical simulation processes than numerical FD method 

with respect to the closest results to the existing statistical estimations under study. MLHFD 

method is fast and saves effort with time when dealing with the real models that have 

statistical probability. MMCFD and MLHFD processes are flexible to solve the nonlinear 

systems of the ODEs with random parameters. From this thesis, it can be shown that these 

techniques are the best compliment techniques between statistical and numerical approaches 

to solve such real stochastic-deterministic models. Hence, the applications of the present 

modified finite difference methods on the selected social epidemic models have been 

demonstrated sufficiently. The growth of social habits as epidemics can also be analyzed 

closely in the studied models of weight loss and cocaine abuse problems in Spain. The 

proposed modified methods of Mean Monte Carlo Finite Difference (MMCFD) and Mean 

Latin Hypercube Finite Difference (MLHFD) are beneficial to predict ranges for obtaining 

numerical simulation results when random distribution of the numerical solutions are 

necessary for estimation of real epidemiological models. 

 

5.2 Suggestions 

      The current study deals with modification of the standard finite difference (FD) method. 

These methods can be applied on solving several differential equations such as decay 

equations, logistic differential equation, harmonic oscillator, Burgers' equation, 

unidirectional wave equation, etc. One of the future progress from the current study is the 

proposal of modified nonstandard finite difference (NFD) method on these previously 

mentioned equations (Martín-Vaquero et al., 2017; Mickens, 1994). We can study the 

properties of numerical standard finite difference method by using nonstandard finite 

difference method. The NFD method is related to numerical instabilities and it can be any 

discrete scheme of a system of DEs based on some rules (Mickens, 2005, p. 4). The 

numerical instabilities can happen when the order of the finite difference rule is greater than 
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the order of the DE (Mickens, 1994, p. 60). The general idea of numerical instabilities is to 

construct a discrete model that has a solution such that this solution has the same qualitative 

properties correspond to the differential equations for all step sizes by deleting the 

elementary numerical instabilities (Mickens, 1994, p. 14). Recently, some researchers 

solved the DEs by using the NFD method (Arenas et al., 2008; Jódar et al., 2008; Garba et 

al., 2011; Anguelov et al., 2014; Garba et al., 2015; Arenas et al., 2016; Martín-Vaquero et 

al., 2017; Wood et al., 2017; Xu et al., 2017). 

 

      MMCFD and MLHFD methods are suggested to solve more nonlinear IVP systems of 

ODEs representing other social epidemic models such as alcohol consumption (Santonja et 

al., 2010; Zhu & Zhu, 2017), anti-drug (Fierro et al., 2015; Goldstein et al., 2016) and 

smoking habit (Sikander et al., 2017; Haq et al., 2017). The MMCFD and MLHFD methods 

can also be applied to solve autonomous system of delay differential equations. The time 

delay in the latent interval can reduce the infected diseases. In a recent study, the latent 

period of disease steps was studied with time delay (Song et al., 2017). Another suggestion 

that can be discussed with the MMCFD and MLHFD methods includes the application of 

these techniques on higher order IVP for nonlinear autonomous system of ODEs, partial 

DEs and fractional ODEs that have random variables (Haq et al., 2017). 

 

      Stability analysis can be done to discuss the epidemic model behavior by deriving the 

basic reproduction number    of the epidemic models.    is conventionally used to test the 

stability of the epidemic models, whether the disease becomes endemic, decays, grows or 

remains in the population. The recent study of stability for epidemic models is given by 

Enduri and Jolad (2017). Other direction of study than can be explored is related to the 

information that can reduce infectious disease outbreak and deals with complicated 

networks. Wang et al. (2017) established such relation between epidemic spread and the 

information of complex networks using mobility patterns. 
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      Apart from that, RK numerical iteration methods with different orders such as RK2, 

RK4, RK45 and RK78 can be considered to be merged with MC or LHS simulation 

techniques as new modified finite difference methods to solve deterministic models with 

random parameters (Mohammed et al., 2015). Additionally, other stratified simulation 

processes can be used to improve the MMCFD or MLHFD methods such as Discrete Latin 

Hypercube Sampling (DLHS) (Maschio & Schiozer, 2016) and Combined Multiple-LHS 

(CM-LHS) (Nakayama, 2011). Finally, the idea of optimization to select the best number of 

statistical simulation repetition can be incorporated with numerical method so that the 

generated numerical simulation results from the modified finite difference methods may 

produce closer solutions to existing statistical estimation considered under the future study. 
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