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SPECKLE-NOISE REDUCTION IN KNEE ARTICULAR CARTILAGE 

ULTRASOUND IMAGE USING ANISOTROPIC DIFFUSION 

ABSTRACT 

Knee arthritis is the most common type of arthritis which effects the people and may 

cause severe pain to the patient and can lead to joint effusion. Ultrasound (US) imaging 

is an appropriate and consistent substitute for other imaging techniques like magnetic 

resonance imaging or X-rays in the investigation or screening of knee injury. 

Nevertheless, one of the major problems in US images which make the analysis of these 

images hard is the presence of speckle noise. For the reduction of speckle noise, the 

performance of the anisotropic method is found much better over other approaches. In 

removing the speckle noise, mostly used methods diffuse the edges during the diffusion 

of the homogenous region of US images. Therefore, the very critical task is to preserve 

the edges during the diffusion process. In this research, a method based on Anisotropic 

Diffusion (AD) is proposed to reduce the speckle noise. The proposed variation in the AD 

method not only reduces the speckle noise but also preserves the edges and other 

important detail of images efficiently. Four gradient thresholds are proposed instead of 

one to have comprehensive information of all neighbouring pixels. A new diffusivity 

function is also proposed to preserve the edges by stopping diffusion abruptly nears edges. 

Four different evaluation metrics i.e. Peak Signal-to-Noise Ratio (PSNR), Structure 

Similarity Index Measurement (SSIM), Figure of Merit (FOM), and Equivalent Number 

of Looks (ENL) are used to evaluate the performance of the proposed method. Numerical 

results attained by simulations show that the proposed method reduces the speckle noise 

very effectively and preserves the edges as well.  

Keywords: Anisotropic Diffusion, Diffusivity function, Edge preservation, Speckle noise 
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PENGURANGAN KEBISIGAN BINTIK DALAM IMEJ ULTRABUNYI RAWAN 

ARTIKULAR LUTUT MENGGUNAKAN PENYEBARAN ANISOTROPIK 

ABSTRAK 

Arthritis lutut adalah jenis arthritis yang paling biasa yang memberi kesan kepada orang-

orang dan boleh menyebabkan kesakitan yang teruk kepada pesakit dan boleh 

menyebabkan pengaliran bersama. Pengimejan ultrabunyi (US) adalah pengganti yang 

sesuai dan konsisten bagi teknik-teknik pengimejan lain seperti pengimejan resonans 

magnetik atau sinar-X dalam penyiasatan atau penyaringan kecederaan lutut. Walau 

bagaimanapun, terdapat dua masalah utama dalam imej US yang menjadikan analisis 

imej-imej ini susah iaitu nisbah perbandingan rendah dan kehadiran hingar bintik. Untuk 

mengurangkan hingar bintik, prestasi kaedah anisotropik didapati jauh lebih baik 

berbanding pendekatan lain. Dalam mengasingkan kebisingan bintk, kebanyakan kaedah 

yang digunakan meresap pinggir semasa penyebaran wilayah homogen imej AS. Oleh 

itu, tugas yang sangat penting adalah untuk mengekalkan pinggir semasa proses 

penyebaran. Dalam penyelidikan ini, satu kaedah berdasarkan penyebaran anisotropik 

(AD) dicadangkan untuk mengurangkan hingar bintik. Variasi yang dicadangkan dalam 

kaedah AD bukan sahaja mengurangkan kebisingan tetapi juga memelihara pinggir dan 

maklumat penting lain dalam imej dengan efisien. Empat ambang kecerunan dicadangkan 

dan bukannya satu untuk mengandungi maklumat yang komprehensif mengenai semua 

piksel sebelah. Fungsi diffusivity baru juga dicadangkan supaya mengekalkan pinggir 

dengan menghentikan penyebaran tiba-tiba berhampiran pinggir. Empat tahap ujian 

metrik yang berbeza iaitu Nisbah Isyarat Dengan Hingar Puncak (PSNR), Pengukuran 

Indeks Persamaan Struktur (SSIM), Rajah Merit (FOM), dan Jumlah Kesamaan Setara 

(ENL) digunakan untuk menilai prestasi kaedah yang dicadangkan. Keputusan berangka 
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yang dicapai oleh simulasi menunjukkan bahawa kaedah yang dicadangkan dapat 

mengurangkan hingar bintik dengan berkesan sementara mengekalkan pinggir. 

Keywords: Penyebaran anisotropik, Fungsi penyebaran, Pemeliharaan pinggir , Hingar 

bintik 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Knee pain is a common complaint that affects people of all ages. The pain in knee 

joints is prominent in elderly people but young and children also suffer from this. There 

could be different reasons for the knee pain as joints in the knee are made up of bones, 

ligaments, cartilage and fluids. The pain may cause due to some injury, broken ligament 

or also due to torn cartilage. One of the most common problems in the knee is arthritis. 

Different arthritis is rheumatoid Arthritis, posttraumatic Arthritis and osteoarthritis. 

These knee injuries can also lead to disability and according to one survey, these will be 

the fourth-largest cause of disability in the world by 2020 (Gohal et al., 2018). 

To visualize these knee injuries and arthritis, different medical imaging systems are 

used. X-rays, Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and 

Ultrasound (US) are typically used for the examination (Hossain et al., 2014). Among 

these, MRI is very expensive and not suitable for implanted patients. While CT not only 

releases a high level of radiation but also has a constraint for detecting a fracture, 

meanwhile X-ray produces ionizing radiation and also lacks in the description of soft 

tissues (Faisal et al., 2015). Unquestionably, all the mentioned medical imaging methods 

have some drawbacks. 

Consequently, US imaging is considered as a valuable and useful approach for knee 

arthritis assessment, especially in terms of cost, safety, and ease of use. Despite having a 

lot of advantages, US images suffer from two main drawbacks, namely the presence of 

speckle noise, and having a low contrast ratio. Hossain et al. (2014) enhance the contrast 

of the US image and propose a method to detect the cartilage shape of the knee joint more 

accurately. The second main problem with the US image is speckles noise. The speckle 

noise is multiplicative noise and inherent property in US images (Tur, Chin, & Goodman, 

1982). Its presence is due to the superposition of acoustic echo and generates a 
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complicated interference pattern. This pattern is produced due to interferes with the US 

with the object of comparable size to sound wavelength. This speckle-noise disguises the 

relevant information of the patient in the image. Hence, it is very important to retain the 

important detail of the original image by lowering the effect of speckle noise.  

Among the different methods, the Anisotropic diffusion (AD) proposed by Perona & 

Malik (1990) have contributed significantly to speckle-noise reduction. The most 

important thing is to differentiate the gradient between edges and noise. By doing so, the 

edges detail of the US image can be preserved but most of the AD methods cannot handle 

this problem efficiently and during the suppression of speckle they also lose the edges 

information. 

The edges preservation during the speckle noise removal is still an open research area 

for researchers. It is highly beneficial to focus on further improving US knee joint 

cartilage images via the reduction of speckle noise. The main purpose of this research is 

to effectively preserve edges during diffusion for the speckle reduction of US images. 

Hence, a technique to apply to real US images is proposed and analysis of its performance 

over other existing methods is conducted. 

1.2 Problem Statement 

During the removal of speckle-noise using AD methods, the effectiveness of the method 

depends upon different factors like the strength to distinguish the gradient of edge from 

that of noise, the precision of the edge stopping function to stop the edge from over 

smoothing, and the ability to determine automatically the termination time of diffusion. 

It is noticed from the literature review that researchers have worked on AD methods to 

reduce the speckle noise, but these techniques mostly have limitations in edge 

preservation. The methods which perform better in edge preservation, but the diffusion 

functions still have limitation in terminating the diffusion process correctly.  
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Therefore, the proposed research aims to design a method which not only reduces the 

speckle noise but also preserves the edges effectively and automatically stops the 

diffusion when the desired results are obtained. To achieve the desired outcomes, the 

parameter settings of the AD filter is improved. Four gradient thresholds instead of one 

or two are included. It is also proposed that a conductance or diffusivity function which 

stops the diffusion near edges efficiently. Mean Absolute Error (MAE) is used as stopping 

criteria to control the number of iterations. The performance of the proposed approach is 

evaluated using four different evaluation metrics.  

1.3 Objectives 

1. To design and develop a technique for speckle noise removal from knee US images 

using anisotropic diffusion method. 

2. To investigate the efficiency of the proposed method for the edge preservation of US 

images during speckle noise removal. 

3. To compare and evaluate the performance of the proposed method with other methods 

for speckle noise removal. 

1.4 Scopes of the Research  

The scope of this study was to perform noise reduction and edge preservation from knee 

US images. The scope of this study includes but is not limited to: 

• Collecting the knee images of thirty healthy volunteers with acceptable resolution. 

• Simulating and testing the proposed algorithm using MATLAB software. 

• Implementing the other well-known algorithms for the removal of speckle noise. 

• Comparing other methods for benchmarking the proposed algorithm to ensure the 

better performance of the algorithm in terms of noise reduction and edge preservation. 
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1.5 Organization of the thesis 

This thesis is organized into five main chapters.  i) introduction; ii) literature review; iii) 

proposed methodology (iv) results and discussion and lastly v) conclusion and future 

recommendation. The contents of each section in the thesis are summarized as follows: 

Chapter 1: This chapter explains the background of the topic and the importance of 

knee US. It also describes the problem statement which provides a base for the objectives 

of this study. According to the objectives of the study, the scopes of the current thesis are 

also explained. 

Chapter 2:  This chapter profoundly describes the literature review on speckle noise 

reduction. First, it gives an overview of different non-AD methods used for speckle noise 

removal. It also explains various AD methods and their performance in noise reduction 

and preserving the details of the edges. 

Chapter 3: In this chapter, the methodology used to remove the speckle noise while 

preserving the details of the edge is discussed in detail. The scaling of diffusivity function 

and its comparisons with another diffusivity function is explained. The four gradient 

thresholds and MAE as stopping criteria to stop iterations are utilized in methodology.  

Chapter 4: The comparison of the proposed model with other techniques is presented 

in this chapter. The performance of the proposed diffusivity function and the effect of 

four gradient thresholds are assessed. The overall performance of the proposed model is 

analyzed using subjective and four different objective evaluation metrics. 

Chapter 5: This chapter summarizes the thesis work and recommends a few 

suggestions for future work improvements. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Ultrasound is the most widely used imaging technique for the analysis of knee cartilage. 

However, the diagnostic use of US images becomes difficult due to the low image quality 

of the US. One of the main reasons for this low image quality is speckle noise. This 

chapter reviews the work related to the removal of speckle-noise from US images to have 

a better and improved image for analysis. 

2.2 Non-Anisotropic Diffusion Methods 

To reduce the speckle noise early filters originated mainly to reduce the noise in Synthetic 

Aperture Radar (SAR). The most applicable filters for this purpose are Lee (Lee, Grunes, 

& Mango, 1991), Frost (Frost, Stiles, Shanmugan, & Holtzman, 1982) and Kuan (Kuan, 

Sawchuk, Strand, & Chavel, 1987). These filters have almost the same formation with a 

slight change in model assumption and the derivatives. The pixel values of the output 

image are calculated by applying a filter window on the pixel and calculating some linear 

combinations of pixel intensity in the window. 

The balance in smoothing between homogenous regions and edges depends upon the 

coefficients of variation of the filter window. Frost (1982) attains a balance between 

homogenous and edges by forming an exponential shaped filter. This behaves as an 

identity filter and averaging filter on an adaptive basis. A few more filters also used the 

same approach of statistical filters (A. Lopes, Nezry, Touzi, & Laur, 1993; Armand 

Lopes, Touzi, & Nezry, 1990; Mandal, Satapathy, Sanyal, & Bhateja, 2017). 

An unsharp masking filter proposed by Dutt & Greenleaf (1996) which smoothes the 

images based on statistics of log-compressed images. This filter was unable to remove 

the speckle around the edges of the image. Loupas, McDicken, & Allan (1989)  proposed 

another filter named as an Adaptive Weighted Median Filter (AWMF) to replace the pixel 

value based on the traditional median filter. For replacement, the value of speckle must 
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be smaller than half of the filter window size. Nevertheless, its ability to reduce the 

speckle is extremely sensitive to a few empirically determined parameters, particularly if 

a small window is used for the filter. 

To overcome the shortcoming associated with statistical filters, the line segments 

technique is proposed in (Czerwinski, Jones, & O’Brien, 1999). They apply short line 

segments in different angular positions and choose the position and orientation of the line 

that is most probably characterizes the line in the ultrasound image. Still, this method 

suffers a compromise between speckle reduction and effective line improvement. 

However, this technique poses a trade-off between effective line enhancement and 

speckle reduction.  

Several researchers (Chen, Yin, Flynn, & Broschat, 2003; Huang, Chen, Wang, & 

Chen, 2003; Karaman, Karaman, Kutay, & Bozdagi, 1995) proposed a filter which is 

based on region growing spatial filtering technique. The method is grounded on the 

assumption that pixels belong to the same region or object if these pixels have a similar 

grey level and contextually connected to each other. By using this theory pixels are 

divided into different groups and spatial filtering is performed in each group using local 

statistics. The core problem in applying these approaches is how to plan suitable similarity 

criteria for the region growing.  

Although these non-AD based filters are referred to as edge-preserving, these filtering 

approaches have some major limitations. These filters do smooth in the homogenous 

region and stop smoothing near edges. Whenever there is an edge in the window of filter 

it will inhibit the smoothing. This process does not eliminate the speckle near edges. 

Secondly, the despeckle filters are not directional. Near an edge, all smoothing is 

disallowed while the correct method to remove speckle near edges that it must prevent 

smoothing in directions vertical to the edge and at the same time encouraging smoothing 

in directions parallel to the edge. Third, the thresholds used in the improved filters, even 
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though driven statistically, are temporary enhancements that only validate the deficiency 

of the window-based methods. The hard thresholds that are calculated by measuring the 

average of the neighborhood and identity filtering cause the problem that in extreme cases 

averaging filter leaves the sharp features unfiltered at noisy boundaries. On the other 

hand, identity filtering in extreme cases leads to blotching artifacts from averaging 

filtering. 

Different frequency-based methods are also used for despeckling US images. The most 

popular used procedure is wavelet-based methods. The multiplicative speckle noise is 

converted into additive noise when it is converted into a frequency domain. The wavelet 

coefficients are statistically modeled to remove the speckle noise (Amirmazlaghani & 

Amindavar, 2012). Penna & Mascarenhas (2019) used the Haar wavelet transform to 

remove the speckle noise from SAR images. As mostly the speckle follows gamma 

distribution, so they used stochastic distance for gamma distributions.  An exponential 

polynomial is used to describe the Haar coefficients.  

To remove the speckle noise using wavelet, the selection of threshold value is a very 

important step. Different Wavelet methods used various thresholding techniques. The 

thresholds coefficients are important as they not only play an important role in removing 

the noise coefficients but also used to recreate the image. By reviewing different 

thresholding methods, an adaptive thresholding technique is proposed to remove the noise 

efficiently from US images (Kulkarni & Madathil, 2019). The wavelet transform is faster 

and memory-efficient (Joel & Sivakumar, 2018). However, the performance of the 

wavelet becomes limited as speckle remains in low pass components and these never raise 

the signal to noise ratio as high compared to other methods (Joel & Sivakumar, 2018; 

Penna & Mascarenhas, 2019). 

Recently, deep learning-based algorithms are also proposed by different researchers 

for the removal of speckle-noise from the medical images (Ker, Wang, Rao, & Lim, 2017; 
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K. Zhang, Zuo, Chen, Meng, & Zhang, 2017). A deep learning technique like a 

Convolutional Neural Network (CNN) is one of the most used architectures to remove 

speckles from SAR images. U-net is modified for the desired purpose (Lattari et al., 

2019). The main obstacle in deep learning is that it requires a lot of labeled data for 

training which is not very much available in case of medical imaging. It also needs 

numerous tuning parameters for the training the model which makes it difficult to 

configure. Furthermore, most of the methods based on deep learning are considered for 

the removal of Gaussian noise and they cannot tackle speckle-noise very well (H. Yu, 

Ding, Zhang, & Wu, 2018). 

2.3 Anisotropic Diffusion Based Methods 

Nonlinear AD is a filtering technique based on Partial Differential Equations (PDE). It is 

used to remove the noise from the image by diffusion method and the smoothing of noise 

is characterized by linear and nonlinear diffusivity functions.  

2.3.1 Perona-Malik (PM) Model 

To remove the speckle noise from the images using AD,  Perona & Malik (1990) introduce 

a new definition of scale-space called PM model. This modified definition of the previous 

linear scale-space model that was proposed by Hummel (1987). The method does not 

perform the uniform smoothing all over the image instead, it performs the smoothing 

within the region of preferences and stops diffusion process across the boundaries. The 

main problem is how to know the location of boundaries before applying the diffusion 

process. This task needs an estimator function E (x, y, t) with the property that E (x, y, t) 

= 0 in the area of the image which is not boundary and E (x, y, t) adopt some positive 

value at each edge point. So, the simplest estimation of edge position in any image is a 

gradient of the image. The gradient is a vector quantity, so it not only tells the largest 

possible change in intensity of image but also the direction of change. In the image, it is 
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calculated by taking the derivatives in x and y-direction. Based on the above discussion, 

Perona and Malik suggested the following non-linear model for the reduction of speckle 

noise. 

{
𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣[𝑐(|𝛻𝐼|). 𝛻𝐼]

𝐼(𝑡 = 0) = 𝐼0

       (2.1)

    In Equation (2.1), I is the original image, div is the divergence operator. The 

estimator function is denoted by  𝛻 which is gradient operator. 𝑐(𝛻𝐼) is a function of the 

image gradient and it is known as diffusivity function/ stopping function/diffusion 

coefficient. The function c(.) is very important as the selection of this function will not 

only preserve but also sharpen the edges. Perona and Malik in their work proposed two 

types of diffusivity function. 

𝑐1(|𝛻𝐼|) =  𝑒−(|𝛻𝐼|/𝑘)2
        (2.2)

 and 

𝑐2(|𝛻𝐼|) =
1

1+ (
|𝛻𝐼|

𝑘
)

2        (2.3) 

In the Equations (2.2) and (2.3), the contact “k” is a gradient threshold. The value of k 

has an important role in discriminating the gradients produced by noise and edges. Its 

value can be fixed either manually or using the “noise estimator”. The value of k possesses 

the threshold role during diffusion. A large value of k values directs that the detected 

edges have large magnitude for the same soothing effect. But if the value of k is kept low, 

it will smoothen the weaker edges. Gradient magnitude |∇𝐼|  is the key value for detecting 

the edges in an image. If the value of |∇𝐼| >> k, then diffusivity function  𝑐(|∇𝐼|) → 0 

and out model turns into diffusion stopping and suppresses the diffusion. Conversely if  

|∇𝐼| >> k, then 𝑐(|∇𝐼|) → 0 then model encourages the diffusion as an isotropic diffusion 

and acts as a Gaussian filter. To select the gradient threshold automatically, PM used 

Canny’s noise estimator. The discretized form of the PM model is given in Equation (2.4). 
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𝐼𝑡+1(𝑠) = 𝐼𝑡(𝑠) +
𝜆

|𝜂𝑠|
∑ 𝑐(|𝛻𝐼𝑠,𝑝|)𝛻𝐼𝑠,𝑝𝑝𝜖𝜂𝑠

      (2.4)  

In Equation (2.4) ‘It (s)’ is discretely sampled image and ‘s’ symbolizes the pixel 

position in the discrete 2-D discrete grid. To get the optimum value the steps have to be 

repeated, so ‘t’ is iteration steps, ‘k’ is the gradient threshold parameter and c is the 

conductance function. Here, 𝜆𝜖(0,1) controls the diffusion rate, and 𝜂𝑠 means the 4 

neighborhoods spatial pixels of pixel s. Hence,𝜂𝑠 = 𝑁, 𝑆, 𝐸, 𝑊, where N, S, E, and W 

denotes the north, south, east, and west neighborhood of pixel s respectively and |𝜂𝑠| is 

equal to 4. Here the gradient operator 𝛻 indicates a scalar quantity which is the distance 

between the neighboring (p) and center pixel (s) in each direction. So, ∇Is,𝑝 can be 

represented as  

𝛻𝐼𝑠,𝑝 = 𝐼𝑡(𝑝) − 𝐼𝑡(𝑠),  𝑝𝜖𝜂𝑠 = 𝑁, 𝑆, 𝐸, 𝑊     (2.5)  

This technique is broadly used for image denoising, like in SAR images, Additive White 

Gaussian Noise contaminated images, and US images (L. Guo, Xu, Xu, & Jiang, 2015). 

An AD-based filter has been recently used for full polarimetric SAR image despeckling 

(Ma, Shen, Zhang, Yang, & Zhang, 2015).  

The PM model overcomes the disadvantages of linear smoothing. The main problem 

in using the linear smoothing was that it does not only blur the edges but also removes 

the important details during the removal of speckle noise. PM model solves this problem 

but still compromises between noise reduction and edge preservation (Xu et al., 2019). 

This method mainly has two main drawbacks. First, if the signal is affected by white 

noise, a very large oscillation of gradient ∇𝐼 is introduced by the PM model. This effect 

fails the conditional smoothing of the model since the model looks at these noises as edges 

and hence does not apply smoothing (Nageswari, Rajan, & Manivel, 2017). Before 

applying the diffusion equation, the PM model also recommends the integration of low 

pass filters to smooth images. Still, a new parameter must be involved for adjustment and 

adoption again, which must be avoided by introducing an anisotropic filter. The second 
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disadvantage is the type of diffusivity function used by the model. The diffusivity 

function  𝑐(𝑞) = 𝑒−𝑞or 𝑐(𝑞) = (1 + 𝑞2)−1 are based on no precise theory (Zhou, Guo, 

Zhang, & Wu, 2018). It should be examined to ensure that flow function qc(q) is 

incremental to ensure the existence and uniqueness of the diffusivity function (c), else the 

process becomes unstable. 

2.3.2 Speckle Reducing Anisotropic Diffusion 

Another method known as Speckle Reducing Anisotropic Diffusion (SRAD) was 

proposed by (Yongjian Yu & Acton, 2002). In this approach, they used statistical methods 

and used Lee and Frost filters (Frost et al., 1982) for removing the speckle in the 

homogenous region and preserving the edges. Lee filters based on the standard deviation 

of pixels values, designed for radar images to remove speckle noise and preserve the 

edges. Filter produced the enhanced data by using a linear speckle noise model and the 

Minimum Mean Square Error (MMSE). While Frost filter is a statistical filter that uses 

the local statistics of the sliding window to preserve the edges. The smoothness of the 

filter is controlled by the exponentially damped convolution filter. For removal of speckle 

noise, Yu and Acton used PDE of PM model and combine the PDE approach with the 

adaptive filters approach and proposed a new AD method for removal of speckle noise. 

Similarly, Choi & Jeong (2018) use the SRAD with a guided filter to remove the speckle 

noise. Even though these methods have a better ability to preserve edges compared with 

conventional AD methods, SRAD is often incompetent to yield a reasonable result in 

filtering US images (F. Guo et al., 2018).  

2.3.3 Laplacian Pyramid Nonlinear Diffusion 

The limitation of SARD overcomes by a method Laplacian Pyramid Nonlinear Diffusion 

(LPND) proposed by (F. Zhang, Yoo, Koh, & Kim, 2007). In this method, the laplacian 

pyramid is used. In the first step, image is transformed in the Laplacian pyramid domain 
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and reducing the image by applying a low pass filter followed by a subsampling image 

by a factor of 2. Then up sample the image by zero-padding and multiply by a factor of 

4. In this manner, different layers of the pyramid are generated. At the second step, the 

speckle noise at each layer of the Laplacian pyramid is suppressed by nonlinear diffusion 

filtering. This is a step where this method uses different denoising approach compare to 

other laplacian pyramid-based methods (Jain, Ray, & Bhavsar, 2019; Kunz, Eck, 

Fillbrandt, & Aach, 2003). The estimated gradient value is calculated using a gradient on 

a Gaussian lowpass-filtered and Equation (2.1) adopts the following shape. 

𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣[𝑐(|𝛻𝐺(𝜎) ∗ 𝐼|). 𝛻𝐼]        (2.6) 

where 𝜎 is the standard deviation of a Gaussian filter. The author suggests slight change 

is the diffusivity function of Equation (2.3) and also used the following function  

𝑐2(|𝛻𝐼|) = 𝑒− (|𝛻𝐼|2/2𝑘2)       (2.7) 

But no significant improvement is achieved, and he finally confines to the diffusivity 

function of Equation (2.2) and (2.3).  For estimating the threshold value k, the robust 

Median Absolute Deviation (MAD) estimator is used. However, if several key parameters 

are involved, this method suffers from high sensitivity and hence is not strong to reduce 

the speckle. 

For removal of speckle-noise from molecular images, Ling & Bovikm(2002) proposed 

a median filter base approach with AD. They named it anisotropic median-diffusion filter 

as they used the median filter with the PM model. The equation represents this model. 

𝐼𝑡+1(𝑠) =  𝑀𝑒𝑑𝑖𝑎𝑛 ( 𝐼𝑡+1(𝑠), 𝑊 )       (2.8)  

where W is a window of a median filter. The areas in the image with a small gradient 

are smoothened while the areas with large gradient are left unchanged. The large gradient 

value indicates that either there is edge or noise in the image so if the gradient value is 

largely due to noise spikes, this noise is removed by the median filter. Conversely, the 

median filter will not affect the image if the gradient is generated by edges. In this way 
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with every iteration step low noise is removed by diffusion and impulsive noise is 

smoothened by the median filter. These method works show very good results particularly 

for low-SNR molecular images and it does not consider the statistical characteristic of the 

speckle (Hou, Lv, & Chen, 2019). As a result, the robustness of the speckle reduction is 

degraded.  

2.3.4 Nonlinear Complex Diffusion 

Guy, Nir, & Yehoshua Y (2004) extend the nonlinear AD to a complex domain and 

introduce method Nonlinear Complex Diffusion (NCD). Optical coherence tomography 

images are used to analyze the method. The characteristics of forward and reverse 

diffusions are combined to overcome the drawbacks of the conventional PM model. In 

this model, a diffusion coefficient is a complex number and as the complex diffusion 

coefficient approaches to the real axis then the imaginary part of the equation serves as 

an edge detector.  

2.3.5 Oriented Speckle Reducing Anisotropic Diffusion 

Oriented Speckle Reducing Anisotropic Diffusion (OSRAD) was proposed by (Krissian, 

Westin, Kikinis, & Vosburgh (2007). In this technique, matrix anisotropic diffusion is 

added to standard scalar anisotropic diffusion. It uses the direction of the gradient and 

principal curvature direction for diffusion. This filter allows the strength of speckle 

adaptive diffusion to vary in the curvature and contour directions. The OSRAD filter 

performs almost like that of the SRAD filter. 

2.3.6 Detail Preserving Anisotropic Diffusion 

Aja-Fernandez & Alberola-Lopez (2006) proposed another filter Detail Preserving 

Anisotropic Diffusion (DPAD). This method based on the SRAD filter with a new 

diffusion function. The main focus was on statistics of signal and noise. In SRAD method 

diffusion and estimation of statistics are performed parallel while here these two 
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processes are split to gain more stable estimation. First, it calculates the variation 

coefficients of noise and signal and then chooses the diffusion process to apply. The 

proposed filter and SRAD perform equally as long as statistics are estimated properly 

which highlights that proper determination of diffusion function depends upon the correct 

estimation of statistics. Nevertheless, DPAD continues the diffusion when the number of 

iterations is large, leading to over smoothed images. 

Catté, Lions, Morel, & Coll (1992) demonstrated that the performance of the PM 

model is not efficient due to the proposed diffusivity functions of the model. The 

diffusivity function is inefficient in distinguishing the gradient generated by the noise and 

the image features in noisy images. This filter often blurs the images and amplifies the 

noise instead of preserving the edges and smoothing the noise. 

2.3.7 Catte_PM Model 

Diffusion Equation (2.9) was proposed by (Catté et al., 1992) to overcome the weaknesses 

of the PM model. The moderation of the PM model is named the Catte_PM diffusion 

model (Jinhua Yu, Tan, & Wang, 2010). 

{
𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣[𝑐(|𝛻(𝐺(𝜎) ∗ 𝐼)|). 𝛻𝐼]

𝐼(𝑡 = 0) = 𝐼0

       (2.9) 

where ‘G(.)’ represents the Gaussian kernel function, and ‘*’ is a convolution operator. 

In Equation (2.9), before applying the diffusivity function, the first image is convolved 

with the Gaussian kernel. This model is unresponsive to a noise having the value smaller 

than ′𝜎’ which improve the model performance as now the chance of noise to 

misinterpreted as the edge is reduced. The diffusivity function of the Catte_PM model is 

as follows. 

𝑐1(|𝛻𝐼|) = 𝑒𝑥 𝑝[−(|𝛻(𝐺(𝜎) ∗ 𝐼)|/𝑘)2]     (2.10) 

𝑐2(|𝛻𝐼|) = 
1

1+(|𝛻(𝐺(𝜎)∗𝐼)|/𝑘)2       (2.11) 
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Numerous diffusivity functions can be applied in AD methods which benefit in 

differentiating the filtering results (Black, Sapiro, Marimont, & Heeger, 1998). Therefore, 

to improve the performance of these techniques it is very significant to select a suitable 

diffusivity function. Furthermore, the function should be scaled in a way that edges are 

preserved effectively. The diffusivity function proposed by the PM model in Equation 

(2.2) gives high priority to wide regions over small regions. However, the second 

diffusivity function in Equation (2.3) gives higher priority to high contrast edges than to 

the edges with low contrast.  

Black et al  (1998) proposed a diffusivity function that generates sharp edges with 

a short time of convergence. The diffusivity function is defined as follows: 

𝑐3(𝛻𝐼) = {
1

2
[1 − (

𝛻(𝐺(𝜎)∗𝐼)

𝑘√2
)

2

]
2

,    𝑥 ≤ 𝑘√2

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,     (2.12)  

Two more diffusivity functions are proposed by (Kamalaveni, Rajalakshmi, & 

Narayanankutty, 2015; Jimin Yu, Zhai, & Yie, 2018) are represented in Equation (2.13) 

and (2.15).  

𝑐4(𝛻𝐼) =
1

1+(
𝛻𝐼

𝑘
)

𝛼(𝛻𝐼)        (2.13) 

Where, 

𝛼(𝛻𝐼) = 2 −
2

1+
𝛻𝐼

𝑘

                      (2.14) 

𝑐5(𝛻𝐼) = {1 − 𝑒𝑥𝑝 (
−3.31488 𝑥 𝑘8

𝛻𝐼8 )}      (2.15) 

The 𝑐4 and 𝑐5 diffusivity functions are also based on diffusivity functions proposed by 

the PM model.  

The flow function is used to characterize the total flow of generated brightness. It is 

defined in Equation (2.16). 

𝛹(𝑥) = 𝑐(𝑥)𝑥          (2.16) 
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where Ψ denotes the total generated brightness flow. The x=k is the location 

where maximum flow incurs. Black et al. compare the efficiency of the diffusivity 

functions by allowing the flow functions to three scaled c1, c2, and c3 to reach at the same 

maximum value at the same point (for example, x=0.2, as shown in Figure 2.1), hence 

signaling the same amount of brightness. The three revised diffusivity functions (c1, c2, 

c3) are as follows. 

𝑐1(𝑥) = 𝑒𝑥 𝑝 [− (
𝑥

𝑘√2
)

2

]       (2.17)  

𝑐2(𝑥) =
1

1+(
𝑥

𝑘
)

2         (2.18)  

𝑐3(𝑥) = {0.67 [1 − (
𝑥

𝑘√5
)

2

]
2

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑥 ≤ 𝑘√5      (2.19)  

In the Equations (2.17), (2.18) and (2.19) the notation ‘𝑥 = ∇𝐼′, and the gradient 

threshold is represented by ‘k’. 

 

Figure 2.1: Flow functions of all five diffusivity functions 

In Figure 2.1, the flow of the first two functions Ψ1 and Ψ2 is continuous and it 

smoothens the image. But if function Ψ3 decreases after threshold to stop diffusion, which 

avoids the edges of the image from being over smoothed and becoming blurred. If an 
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image having an edge threshold at x= 0.4 and analyze the behavior of all three diffusion 

functions, it can be seen from Figure 2.1 that the first two functions do not stop smoothing 

above x=0.4 yielding the image to be over smooth and blurred the edges. While the flow 

function Ψ3 considers it an edge and stop diffusion. The behavior of Ψ4 and Ψ5 is also 

very similar to Ψ3 and they do not also stop the diffusion exactly, but their values are very 

low near edges (e.g. x=0.4). 

Given that c3 prevents the edge from over smoothing by operating fast after a certain 

threshold, it is supported by scaling and comparison of function. Between the noise and 

edges, the point at x=0.4 is regarded as the threshold. Therefore, the gradient values higher 

or equal to x=0.4 are considered an outlier to stop diffusion, whereas those lower than 

x=0.4 smooth out the noise. In the comparison of the behavior of diffusivity functions, 

scaling of the flow function or diffusivity function is required to ensure that the values 

are zero at the exact point. For the flow function Ψ2, a gradual decrease is observed; 

therefore, it is extremely effective for smoothing speckle noise but is inefficient in edge 

preservation.  

The value of the gradient threshold also plays a vital role in effective edge detection. 

If the gradient threshold is overestimated, then the resultant image is over-smoothed. In 

addition, noise reduction ability is weakened due to the underestimation of the gradient 

threshold. Therefore, an optimum gradient threshold selection underpins the success in 

suppressing noise and preserving edges. As shown by Li & Chen (1994), the gradient 

threshold parameter must be a decreasing function of time to preserve edges beyond a 

predetermined threshold. In the PM model, only one gradient threshold is considered.  

Different improvements in the AD models have been introduced by various researchers 

grounded on the earlier mentioned model (L. Guo et al., 2015; Jain et al., 2019; Terebes, 

Borda, Germain, Malutan, & Ilea, 2016). Mostly these models proposed some 

improvement in the basic method. 
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2.4 Summary  

This chapter presents the methods and approaches used for reducing the speckle noise in 

images.  The literature review has described previously used various non-isotropic 

diffusion techniques for speckle noise removal. The introduction of the AD method by 

Perona and Malik brings new research in this field. This chapter gave a review of different 

methods like SRAD, NCD, and DPAD, etc. which are based on the PM model. These 

methods used different diffusion functions and suggest different improvements in the PM 

model. The literature review has provided the background for the proposed methodology. 
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CHAPTER 3: METHODOLOGY 

This chapter explains the proposed methodology to achieve the desired objectives. The 

diffusivity function, gradient thresholds and stopping criteria to stop the diffusion are 

discussed here. The evaluation matrices used for analyzing and comparing the 

performance of the proposed model with other models are also explained. 

3.1 Dataset Description 

The dataset of knee US images is obtained using an ultrasound machine ‘Aplio MX’, 

(manufacturer: Toshiba, State: Tochigi-Ken, Japan). Images of 30 different healthy 

volunteers were collected and professional sonographers performed the ultrasound 

scanning. The age group of twenty to thirty-five is focused on this study. The ratio of 

males and females 60% and 40%, respectively. The different sides like lateral and medial 

etc. of the knee joint were imaged to provide better observation of the cartilage of the 

knee joint. The 8MHz probe is used as the high-frequency probe can give better resolution 

of the image. The detection of smaller imaging particles is possible by using small 

wavelengths and hence high frequency. 

MATLAB R2018b (MathWorks, 2018b) is used as a software for this project. The 

image processing toolbox has been installed and utilized. The computer that runs the 

MATLAB code is a personal HP laptop equipped with Intel(R) Core i5 2.3 GH CPU and 

8 GB of memory. 

3.2 Diffusion Model 

The diffusion model used for the proposed method is 

{
𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣[𝑐(|𝛻(𝐺(𝜎) ∗ 𝐼)|). 𝛻𝐼]

𝐼(𝑡 = 0) = 𝐼0

      (3.1)  

Equation (3.1) was first presented by  (Jinhua Yu et al., 2010). Before calculating the 

gradient and passing it to the diffusivity function, the first image is convolved with the 
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Gaussian filter. This is done to remove the additive noise so that additive noise is not 

misinterpreted with the edges. It requires the value of the standard deviation ‘𝜎 ‘for the 

Gaussian filter. The window of different dimensions is used to find out the value of the 

standard deviation. The dimensions of 20×20 to 65×65 pixels are taken to automatically 

find out the standard deviation associated with the Gaussian noise present in the image. 

This window sizes are selected to have enough pixels to satisfy the statistical calculation. 

The standard deviation of the pixels of each block is calculated. From these calculated 

values, the block with most uniform pixels value is determined. The standard deviation 

of the most uniform block is taken as σ of the Gaussian filter. Determination of the size 

of the smoothing Gaussian filter by using σ is described in a study (Petrou & Petrou, 

2010). 

3.3 Diffusivity Function  

As discussed earlier in Section 2.3.7, the smoothing ability of c2 is very good but it lacks 

in terms of stopping the diffusion near edges. The diffusivity functions c2 and c3 are 

compared in this work. In the proposed model, the scaling of c2 is performed. Scaling of 

the diffusivity function c2 is accomplished in a way that Ψ2 (flow function of c2) tends to 

be zero or becomes very small after a predetermined threshold level e.g. at x=0.4. 

Therefore, it stops diffusion above x=0.4 and diagnoses it as an edge. 

The basic concepts of digital image processing are utilized for choosing the scaling factor. 

When an image is represented digitally, usually 256 quantized levels are used to 

represents the image brightness. Therefore, for a digital image, digital 0 is equivalent to 

0.5

256
 =

1

512
 . Generally, image enhancement is measured based on subjective evaluation. 

The subjective evaluation is measured by a human directly. Considering the subjective 

recovery of the image, the perceived change in greyscale by the human eye is considered. 

The human eye cannot differentiate less than 2 to 3 levels in 256 greyscale levels of the 

image. Based on this human eye capability of distinguishing between only a few levels, 
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the numerical value of  
1

512
 𝑥 3 =

3

512
 is adopted which is approximately equals to 1 +

1

(12.17)2
 at which Ψ2 = 0. Giving the abovementioned statement, the conductance functions 

take the following shape. 

𝑐2(𝑥) =
1

1+(
12.17𝑥

𝑘
)

2        (3.2)  

In order to compare the two-diffusivity functions effectively, the c3 is scaled so that 

both functions have the same maximum value. The c3 diffusivity function is scaled and 

represented in Equation (3.3). 

𝑐3(𝑥) = {0.13 [1 − (
𝑥

𝑘√5
)

2

]
2

, 𝑥 ≤ 𝑘√5

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,     (3.3)  

 

Figure 3.1: Comparison of flow functions of proposed diffusivity function with 

c3 (Ψ2 and Ψ3)  

In Equations (3.2) and (3.3) 𝑥 = 𝛻𝐼 i.e. the gradient of image and k is the gradient 

threshold. When the value of flux goes to zero the part of the image is considered as edge 

and the diffusivity stops. This is demonstrated in Figure 3.1, when k =0.2 and x=k for the 

case of c2 the value of flow function c2(x) = 0.006 and xc2(x) is approximately zero. 

Therefore, the c2 function detects it as edge and stops the diffusivity. 
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However, when x<k, the diffusion continues and smoothens the US image to reduce 

the speckle noise. In c3, Ψ3 is not zero, and the diffusion continues until x≤k√𝟓; when 

x> 𝒌√𝟓, the diffusion stops, and it is considered as an edge or outlier. As shown in Figure 

3.1, the flow Ψ2 decreases more compared with Ψ3, resulting in sharp discontinuities. 

Here, Ψ3=0 when x=0.4. The value of Ψ2 is less than 0.006 at x=0.4. As a result, the value 

of Ψ2 can be assumed as zero at x=0.4 as observed in Figure 3.1. In fact, the value of Ψ2 

decreases rapidly and became zero before the value of x for which Ψ3 is zero. In Figure 

3.1, c2 diffusivity function can perform better compared with c3 (as c2 descends faster and 

becomes zero before c3 as shown in Figure 3.1). Therefore, diffusivity function c2 is used 

for the reduction of speckle noise during the preservation of edges. The proposed 

diffusivity function c2 is defined as 

𝑐2(|𝛻𝐼|) =
1

1+12.17∗(|𝛻(𝐺(𝜎)∗𝐼)|/𝑘)2      (3.4)  

3.4 Gradient Threshold 

The PM model only utilizes four neighboring directions North, South, East and West of 

central pixel to compute the diffusivity function. This computation of the diffusivity 

function is not comprehensive enough as it does not consider other directions like NE, 

WN, WS, and SE. In order to solve this problem, the neighboring eight directions must 

be used to compute the diffusivity as shown in Figure 3.2 (b). So, the proposed method 

has 𝜂𝑠 = {𝑁, 𝑆, 𝐸, 𝑊, 𝑁𝐸, 𝑊𝑁, 𝑊𝑆, 𝑆𝐸}, where SE, WS, WN, and NE are south-east, west-

south, west-north, and north-east neighborhood of the central pixel s, respectively. 

𝛻𝐼𝑠,𝑝 = 𝐼𝑡(𝑝) − 𝐼𝑡(𝑠), and 𝑝𝜖𝜂𝑠 = 𝑁, 𝑆, 𝐸, 𝑊, 𝑁𝐸, 𝑊𝑁, 𝑊𝑆, 𝑆𝐸  (3.5)  
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(a)

(b) 

Figure 3.2: (a) One gradient threshold using four neighboring pixels  (b) Four 

gradient thresholds using eight neighboring pixels 

C is the central pixel (a) calculating one gradient threshold from four pixels in four 

directions (b) calculating four thresholds from eight pixels in eight directions. The 

difference between the brightness of central pixel s and every neighbor pixel in eight 

directions is computed using Equation (3.5). 𝛻 is defined as the scalar distance among the 

neighboring pixels based on this, the idea of eight different threshold parameters evolves, 

where the estimation of each threshold parameter accomplishes by using their differences 

in the eight directions. In a statistical sense, for the entire region of an image, it can be 
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assumed that the absolute values of neighboring pixel differences of north and south 

direction are almost the same. Therefore, instead of considering two gradient thresholds 

for north and south, only one gradient threshold is considered.  This regulation is also 

valid for west, east, west-south, north-east, south-east and west-north. Therefore, for the 

proposed method, the parameters of the four gradient thresholds are estimated. These are  

𝐾𝑁𝑆, 𝐾𝐸𝑊, 𝐾𝑊𝑁𝑆𝐸 and 𝐾𝑁𝐸𝑊𝑆. Here, 𝐾𝑁𝑆, 𝐾𝐸𝑊, 𝐾𝑊𝑁𝑆𝐸 and 𝐾𝑁𝐸𝑊𝑆  refers to the estimated 

gradient threshold in North-south direction, east-west direction, west-north and south-

east direction, and north-east and west-south direction respectively.  

3.4.1 Algorithm to Calculate Gradient Threshold 

For the estimation of four gradient threshold parameters in each direction, the 

corresponding histogram of the absolute value of the gradient component is used. Knee 

algorithm is adopted to search the threshold between two populations. If the histogram 

has one peak and a long tail that fits with the straight lines, then the threshold can be 

estimated after the iterative process by observing the least square error.  In this study, the 

gradients have long tail due to edges and steeper distributions due to noise. Hence the 

knee algorithm is an appropriate technique to calculate the thresholds. The details on the 

knee algorithm were described by (Petrou & Petrou, 2010). To calculate the threshold, a 

straight line is plotted by connecting the peak of the histogram to the point n bin on the 

right side of the peak towards the tail. Another straight line is plotted from the last bin of 

the histogram to the point n bins away on the left side of the last bin towards the peak. 

The intersection of two lines is the first estimated threshold value. The peak will be on 

the left of the threshold, so all points form threshold till peak is fitted using the least 

square error. The first line of the second iteration is plotted using inliers. Similarly, 

moving from threshold to the right-side same process is repeated and the second line of 

the second iteration is plotted. The intersection gives the second estimated threshold. This 

process is repeated for a few iterations and the final threshold is achieved.  
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3.5 Discretized Form of the Model 

The discretized form using the eight gradient values is represented by Equation (3.6). 

𝐼𝑡 = 𝐼𝑡−1 +
1

𝜂𝑠
[𝑐(𝛻𝐼𝑁 , 𝐾𝑁𝑆)𝛻𝐼𝑁 + 𝑐(𝛻𝐼𝑆, 𝐾𝑁𝑆)𝛻𝐼𝑆 + 𝑐(𝛻𝐼𝐸 , 𝐾𝐸𝑊)𝛻𝐼𝐸 +

𝑐(𝛻𝐼𝑊, 𝐾𝐸𝑊)𝛻𝐼𝑊 + 𝑐(𝛻𝐼𝑊𝑁 , 𝐾𝑊𝑁𝑆𝐸)𝛻𝐼𝑊𝑁 + 𝑐(𝛻𝐼𝑆𝐸 , 𝐾𝑊𝑁𝑆𝐸)𝛻𝐼𝑆𝐸 +

𝑐(𝛻𝐼𝑊𝑆, 𝐾𝑁𝐸𝑊𝑆)𝛻𝐼𝑊𝑆 + 𝑐(𝛻𝐼𝑁𝐸 , 𝐾𝑁𝐸𝑊𝑆)𝛻𝐼𝑁𝐸]     (3.6)  

where 𝛻𝐼  represents the gradient values and gradient threshold is represented by 𝐾. As 

mentioned in Section 3.4 that instead of calculating eight gradient thresholds in eight 

directions, only four gradient thresholds are considered in NS, EW, WNSE and NEWS 

directions. Thus, Equation (3.6) can be written as follow.  

𝐼𝑇+1(𝑠) = 𝐼𝑡(𝑠) +
1

|𝜂𝑠|
[∑ 𝑐(𝛻𝐼𝑆,𝑃, 𝐾𝑠,𝑝)𝛻𝐼𝑆,𝑃 + ∑ 𝑐(𝛻𝐼𝑠,𝑝, 𝐾𝑠,𝑝)𝛻𝐼𝑠,𝑝𝑝𝜖𝐸,𝑊 +𝑝𝜖𝑁,𝑆

∑ 𝑐(𝛻𝐼𝑠,𝑝, 𝐾𝑠,𝑝)𝛻𝐼𝑠,𝑝 + ∑ 𝑐(𝛻𝐼𝑠,𝑝, 𝐾𝑠,𝑝)𝛻𝐼𝑠,𝑝𝑝𝜖𝑊𝑁,𝑆𝐸𝑃𝜖𝑁𝐸,𝑊𝑆 ]    (3.7)  

In Equation (3.7) for the first, second, third, and fourth 𝒄(𝛁𝑰𝑺,𝑷), the estimated 

gradient thresholds are 𝐾𝑁𝑆, 𝐾𝐸𝑊, 𝐾𝑁𝐸𝑊𝑆, and 𝐾𝑊𝑁𝑆𝐸, respectively. Four gradient 

thresholds estimation provide more precise results in terms of edge preservation and noise 

reduction compared with one or two gradient threshold vectors in the continuous form. 

Given the variations in smoothing for each direction, results obtained from the experiment 

also exhibit good smoothing effects. In general, smoothing varies with different strengths 

in each direction. A high value of the K parameter is obtained in cases of a large difference 

in one direction compared with other directions. Hence, gradient threshold parameters 

also vary with the different strengths in each direction. In every iteration, the image 

quality and the values of the gradient threshold changes. 

3.6 Stopping Criteria  

The AD method is an iterative process and its performance also depends upon the number 

of iterations. It is very important to terminate the AD process after a certain number of 
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iterations. The diffusion process can automatically be terminated by selecting a proper 

criterion to terminate the diffusion. Automatic stopping is crucial because the resultant 

image is blurred out in case the number of iterations is overestimated. On the other side 

underestimation of the iteration number causes unsatisfactory noise suppression. Mean 

Absolute Error (MAE) is an efficient stopping condition, used in AD to automatically 

stop the diffusion between two successive diffusion iterations (F. Zhang et al., 2007). To 

follow this method, the exponential drop in the MAE value is checked constantly with 

the increment of the iteration numbers. The diffusion process is stopped when the MAE 

value is less than a specific threshold to signal between the two iterations. In the proposed 

method the MAE stopping criteria are used due to its effectiveness in US images. 

Equation (3.8) is used to compute the MAE value in each iteration. Diffusion is stopped 

when the value is small enough. 

𝑀𝐴𝐸(𝐼𝑡) =
1

𝑚×𝑛
× ∑ |𝐼𝑡

𝑖,𝑗
− 𝐼𝑡−1

𝑖,𝑗
|𝑚,𝑛

(𝑖,𝑗)=1 ,     (3.8) 

where 𝐼𝑡
𝑖,𝑗

 and 𝐼𝑡−1
𝑖,𝑗

 denote the filtered values of the pixel (i ,j) for time t and t-1, 

respectively. Here, n and m are the columns and rows of the diffused images, respectively. 

The edge information and tissue structure are characterized by the region of the diffused 

images. In cases of low and stable MAE values, the diffusion terminates to protect the 

diffused images from over smoothing. 

Table 3.1 represents all the parameters with their specified functions and algorithm name, 

used for the proposed model.  
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Table 3.1: Parameters and specifications of the proposed model 

Parameters Specifications 

Additive noise removal  Gaussian Filter  

Diffusivity function 1

1 + (
12.17x

k
)

2 

Number of gradients Eight gradients from all neighbor pixels of the center 

pixel 

Gradient Threshold Algorithm Knee algorithm 

Number of gradient thresholds Four (NS, EW, NEWS, WNSE) 

Stopping criteria Mean Absolute Error 

 

The flow of the proposed model is shown in Figure 3.3. It completely explains the whole 

methodology steps in sequence.  
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Figure 3.3: Flow chart of the proposed methodology 
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3.7 Evaluation Metrics 

For evaluating the performance of the proposed method, four different evolution matrices 

i.e. Peak Signal-to-noise Ratio (PSNR), Structure Similarity Index Measurement (SSIM), 

Figure of Merit (FOM), and Equivalent Number of Looks (ENL) are used.  

3.7.1 Peak Signal to Noise Ratio 

PSNR is the measure of the reduction of speckle-noise from noisy images (Tsiotsios & 

Petrou, 2013). The commonly used unit for PSNR is the decibel (dB). A high PSNR value 

indicates a larger amount of speckle noise reduction. For calculating the PSNR, another 

important parameter Mean Square Error (MSE) is to be measured first. This parameter 

calculates the square of the difference of pixels between two images and then takes the 

average of all differences.  The MSE is calculated using the Equation (3.9). 

𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ (𝐼𝑡(𝑖, 𝑗) − 𝐼0(𝑖, 𝑗))

2𝑀,𝑁
(𝑖,𝑗)=1      (3.9)  

In Equation (3.9), I0 denotes the original image, It represents the filtered image, M and 

N are the numbers of rows and columns in the image and (i,j) is the spatial location of the 

pixels. The MSE and PSNR have an inverse relation. If the value of MSE is high PSNR 

will be low and vice versa. After calculating the MSE numerical value, PSNR can be 

calculated using the following equation.  

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑚𝑎𝑥(𝐼0)2

𝑀𝑆𝐸
       (3.10)  

3.7.2 Structural Similarity Index Measure 

SSIM is a perceptual evaluation metric that computes the image quality of the image after 

applying any processing on the image. It measures that how much information a human 

visual system has adopted from a scene in an image. Here, structure, luminance, and 

contrast are considered for the measuring criteria. The metric is used for the measurement 

of the preservation ability of important details in US images. The equation of SSIM is   
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𝑆𝑆𝐼𝑀 = [𝑐(𝐼𝑡𝐼0)]𝛼 × [𝑙(𝐼𝑡𝐼0)]𝛽 × [𝑠(𝐼𝑡𝐼0)]𝛾     (3.11)  

where l(.) denotes the luminance comparison function, c(.) is the contrast 

comparison function, and s(.) is the structure comparison function. Here, α, β, and γ is 

used to indicate the relative importance of these three components. Generally, α=β=γ=1. 

The individual comparison of each measuring criteria is calculated using Equation (3.12). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2µ𝑥µ𝑦+𝑞1)(2𝜎𝑋𝑌+𝑞2)

(µ𝑥
2+µ𝑦

2 +𝑞1)(𝜎𝑥
2+𝜎𝑦

2+𝑞2)
       (3.12) 

where µ𝑥 and µ𝑦 represents the average value of pixel x and y, respectively. The 

variances of x and y are denoted by 𝜎𝑥
2 and 𝜎𝑦

2, respectively and 𝜎𝑋𝑌 represents the 

covariance of x and y. 𝑞1 and 𝑞2 are the constants used to stabilize the division with weak 

denominator. The range of SSIM value is 0 to 1, where 1 shows exactly similarity between 

images. So higher value represents that image details are preserved efficiently.  The 

comprehensive discussion about the parameters setting is explained in (Z. Wang, Bovik, 

Sheikh, & Simoncelli, 2004; Zhou Wang, Simoncelli, & Bovik, 2000; F. Zhang et al., 

2007).  

3.7.3 Figure of Merit 

FOM is a performance measure for comparing the images in terms of edge preservation. 

Equation (3.13) is used to calculate the FOM. 

𝐹𝑂𝑀 =
1

𝑚𝑎 𝑥 𝑁𝑟𝑒𝑎𝑙,𝑁𝑖𝑑𝑒𝑎𝑙
∑

1

1+𝑑𝑖
2𝑒

𝑁𝑟𝑒𝑎𝑙
𝑖=1        (3.13) 

Nideal is the total number of actual edge pixels i.e. those edge pixels found in the 

original image, and the number of detected edge pixels is Nreal. The di symbolizes the 

Euclidean distance between ith nearest ideal edge pixel and detected edge pixel. The 

constant e is scaling constant or scaling factor. The numerical value of the constant e is 

1/9 in literature. If the edge is localized but offset from the actual position, then the value 

of e can be adjusted for penalizing edge. The value of e used in the experiment is 1/9 

(University of tartu, 2014). FOM is described by (Yongjian Yu & Acton, 2002). FOM 
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varies from 0 to 1 and edge detection capability increases with the increase in the value 

of FOM. 

3.7.4 Equivalent Number of Look 

ENL is another significant metric for computing the ability of speckle-noise reduction (B. 

Wang, Chapron, Mercier, Garello, & He, 2011). A large value of ENL shows that the 

method has reduced the speckle noise efficiently from the US image. The size of the 

region of the image affects the value of ENL. Theoretically, a large area gives higher ENL 

value as compared to a small area by trading off the accuracy of readings. On approach 

to solving this is to divide the image into the 25×25-pixel region and calculate the ENL 

value of each region. The final value of ENL is determined by taking the average of ENL 

for all the small regions.  In this experiment, The ENL of every image is calculated by 

dividing them into the 25×25-pixel region. The final value can be calculated by using the 

following Equation (Gagnon & Jouan, 2004). 

𝐸𝑁𝐿 = (
𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)

2

       (3.14) 

3.8 Summary 

In this chapter, details of the proposed methodology to reduce the speckle noise and 

preserve edges are explained. Scaling of diffusivity function c2 is performed so that it can 

stop the diffusion efficiently near edges. In addition, the four gradient thresholds are 

proposed to preserve the edges from all directions. The process will stop based on the 

MAE value. The metrics used to evaluate the performance of the method are also 

discussed. 

 

Univ
ers

ity
 of

 M
ala

ya



32 

CHAPTER 4: RESULTS 

4.1 Introduction 

This chapter presents the results of the proposed anisotropic diffusion method for speckle 

noise removal. First, the effect of introducing four gradient thresholds in the model and 

its simulated results are presented. Then, the performance of the proposed model and 

gives numerical results of evaluation matrices are stated. Four different evaluation 

matrices PSNR, SSIM, FOM, and ENL are used to analyze the proposed method.  

4.2 Diffusivity Function 

First, the results of the proposed diffusivity function are analyzed. For this purpose, a 

simulated image is utilized to assess the ability of noise removal of the proposed c2 

diffusivity function. Both c2 and c3 diffusivity functions are used to remove noise from 

the simulated image and results are shown in Figure 4.1. The original image is shown in 

Figure 4.1 (a). Different level of speckle-noise is added in images to observe the 

performance of c2 over c3 at multiple noise levels. Figure 4.1(b) from top to bottom 

represents the simulated noisy images having different levels of speckle noise. The top 

figure contains a very large amount of noise (= 0.1), the middle part has a variance of 

0.05 while the bottom has the least noise level (= 0.02). The proposed model is applied 

to all simulated noisy images. Figure 4.1(c) and (d) show the output image using c3 and 

c2 diffusivity functions respectively. It is clear from the figures that c2 reduce the speckle 

noise much better than c3 function at different noise levels.  
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                   (a)            (b)                  (c)                          (d) 

Figure 4.1: (a) Original image (b) Simulated images with a high, medium and 

low variance of noise (c) Performance of proposed method using c3 (d) 

Performance of proposed method using c2 

4.3 Gradient Threshold 

As mentioned in Section 3.4 that four gradient thresholds are proposed for the reduction 

of speckle noise and preservation of edges. Seismic images are used for AD filtering with 

one, two, and four gradient thresholds to show the advantages of using four gradient 

thresholds over one or two. The reason for using the seismic image is that the visual 

perception for edge preservation of these images is better than US images. Hence, for 

analyzing the edge preservation capability of four gradient thresholds, seismic image is 

used. Figure 4.2 (a) represents the noisy seismic image, and Figure 4.2 (b), (c) and (d) 
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represent the output images of AD filtering by using one, two and four gradient 

thresholds, respectively. If the lines in Figure 4.2 (a) and (b) are compared, the middle 

lines which are very week edges are considerably blurred. While these lines are prominent 

in Figure 4.2 (d). This phenomenon can also observe in other places in the images. It is 

clear from Figure 4.2 that the edge preservation in using four gradient thresholds is better 

than using one or two gradient thresholds. The threshold value between true edge and 

noise is overestimated by selecting one or two gradient threshold which leads to 

degradation of the image edge. From these observations, it is inferred that the proposed 

technique is better than other techniques in preserving edge while reducing the speckle 

noise of the US image because it uses four gradient thresholds instead of one. 

  

       (a)            (b)  

  

       (c)                                 (d) 

Figure 4.2: (a) Noisy seismic image. Output image of the filter using (b) one, (c) 

two, and (d) four gradient thresholds 
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The number of iterations plays an important role in determining the gradient threshold 

values. As the performance of the method is good if the gradient threshold value is 

decreasing the function of a number of iterations. The drop in gradient threshold values 

using one, two and four gradient thresholds are represented in Figure 4.3. In the case of 

only one gradient threshold is calculated for the entire process, the value of the threshold 

is very high. Thus, it performs high smoothing in homogenous regions and did not 

consider diagonal edges very much. The value of two gradient thresholds is lower 

compared to one as the value of KNS and KEW is less than K. Four gradient thresholds are 

calculated and only one among the four is shown in Figure 4.3. The gradient threshold 

estimated for KWNSE in every iteration is observed and it has very low values compared to 

KNS, KWE, and K. This is because most edges of the image shown in Figure 4.2 are oriented 

in the direction from WS to NE. A large distance in that direction would result in high K 

values.  

 

Figure 4.3: one (K), two (KNS, KEW), and one example from four (KWNSE) 

gradient threshold. 

4.4 Qualitative Analysis 

Figure 4.4 (a) shows the medial side of the knee joint cartilage of the original US image. 

The images after filtering through different methods are shown in Figure 4.4 (b) to (h). 
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Figure 4.4 (b) is the outcome after filtering the image through the PM model. The noise 

removal is not very significant and also the edges become a blur. The output of the LPND 

filter is shown in Figure 4.4 (c). This output has better noise removal ability compare to 

PM model but still, edges are not well preserved. The NCD method has almost the same 

noise removal ability as LPND but this method preserves the edges better compare to 

LPND and PM model as shown in Figure 4.4 (d). The performance of SRAD and OSRAD 

are equally in terms of noise removal but OSRAD improved the SRAD in terms of edge 

preservation as depicted in Figure 4.4 (e) and Figure 4.4 (f). The DPAD method has an 

edge in noise removal over all previously mentioned techniques but edge preservation 

ability is almost the same as OSRAD. The output result of DPAD is represented in Figure 

4.4 (f). The wavelet method has a deficiency in removing the noise components at the 

low level that is why is SNR never raises too much as shown in Figure 4.4 (h).  In all the 

above methods either the edge, preservation ability is degraded due to over-smoothening 

which indicates that the gradient threshold is overestimated or the right side of ‘V’ shape 

cartilage is blurry and unclear. The resultant image after applying the proposed AD 

method is represented in Figure 4.4 (i). It can be noticed that in the output image of the 

proposed method “V” shape cartilage layer is significantly clear. Therefore, with the help 

of four gradient thresholds and diffusivity function, speckle noise is reduced during the 

edge preservation of US images. 

Similarly, Figure 4.5 (a) represents the original US image of the knee joint of the lateral 

side. Figure 4.5 (b) to (h) are the output of the PM model, LPND, NCD, SRAD, OSRAD, 

DPAD and wavelet methods respectively. The image in Figure 4.5 (i) is the output of the 

proposed method g four gradient thresholds. The layer of reversed “U” shape cartilage is 

clear. From the resultant image in Figure 4.5 (i), the preservation of edge and reduction 

of the speckle-noise ability of the proposed method is clear. 
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f)  

Figure 4.4: Medial Side of US image of knee joint cartilage (a) Original Image. 

AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 

OSRAD  
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                                 (g)            (h) 

 

 

(i) 

 

Figure 4.4, continued: AD filtered images by using (g) DPAD (h) Wavelet 

 (i) proposed Model 
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                                 (a)            (b) 

  

                                 (c)            (d) 

   

                                 (e)            (f) 

Figure 4.5: Lateral Side of US image of knee joint cartilage (a) Original Image. 

AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 

OSRAD 
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                                 (g)            (h) 

 

 

(i) 

Figure 4.5, continued: AD filtered images by using (g) DPAD (h) Wavelet 

 (i) proposed Model 

Among the thirty images, Figure 4.6 to Figure 4.11 shows the few samples of different 

views of the knee US. This is clear from all images that the proposed model not only 

removes the speckle-noise but also preserves the edges. 
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                                  (a)          (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.6: Third example of US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 

OSRAD 
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                                 (g)            (h) 

 

 

(i) 

Figure 4.6, continued: AD filtered images by using (g) DPAD (h) Wavelet 

 (i) proposed Model 
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.7: Fourth example of US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 

OSRAD 
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                                 (g)            (h) 

 

 

(i) 

 

Figure 4.7, continued: AD filtered images by using (g) DPAD (h) Wavelet 

 (i) proposed Model 
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

    Figure 4.8: Fifth example of US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM method (c) LPND (d) NCD (e) SRAD 

(f) OSRAD  
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                                 (g)            (h) 

 

 

(i) 

 

 Figure 4.8, continued: AD filtered images by using (g) DPAD (h) Wavelet 

(i) proposed Model 
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.9: Sixth example of US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM model (c) LPND (d) NCD (e)SRAD (f) 
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                                 (g)            (h) 

 

 

(i) 

Figure 4.9, continued: AD filtered images by using (g) DPAD (h) Wavelet 

(i) proposed Model   
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.10: Seventh example of US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 

OSRAD 
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                                 (g)            (h) 

 

 

(i) 

 

Figure 4.10, continued: AD filtered images by using (g) DPAD (h) Wavelet 

(i) proposed Model   
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                                 (a)            (b) 

  

                                 (c)            (d) 

  

                                 (e)            (f) 

Figure 4.11: Eight example of the US image of knee joint cartilage (a) Original 

Image. AD filtered images by using (b) PM model (c) LPND (d) NCD (e) SRAD (f) 
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                                 (g)            (h) 

 

(i) 

 

Figure 4.11, continued: AD filtered images by using (g) DPAD (h) Wavelet 

 (i) proposed Model  
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4.5 Quantitative Analysis 

For quantitative analysis, four different matrices PSNR, SSIM, FOM, and ENL are used 

as described in Section 3.7 First, the results of the proposed model are presented and then 

the comparison of the proposed model with other methods is also described.  

4.5.1 Results of Proposed Model  

The performance of the proposed model is evaluated using all thirty images of healthy 

volunteers. The PSNR values of all data are shown in Figure 4.12. The highest value 

attain is 33.814 and the lowest value of PSNR using proposed model is 32.989. None of 

other method have even highest value in this range. This depicts that proposed technique 

raise the PSNR very well by removing the speckle noise.  

 

Figure 4.12: PSNR values of all thirty images using the proposed model 

SSIM values of thirty images are presented in Figure 4.13. The model has very good 

values for SSIM. The values range from 0.860 to 0.896 which infers that perceptual 

quality of image is also enhanced.  
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Figure 4.13: SSIM Values of thirty images using the proposed model 

The edge detection ability of the model is measured using the FOM. The minimum 

value of FOM attain is 0.731 and a maximum of 0.811 as presented in Figure 4.14. The 

FOM values of all images are in very good range which shows that proposed method has 

the very good ability to preserve the edges.   

 

Figure 4.14: FOM values of thirty images using the proposed model 
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Speckle noise reduction of the proposed model is measured by ENL. Figure 4.15 

shows the ENL values of all thirty images using the proposed model. The lowest value of 

ENL attain is 30.654 and this is higher than ENL value of any other model. This also 

enforce the argument that proposed model removes the noise efficiently.  

 

Figure 4.15: ENL values of thirty images using the proposed model 

 

4.5.2 Quantitative Comparison of Proposed Model with other Methods 

Using the same four quantitative metrics, PSNR, SSIM, FOM, and ENL, performance 

comparison of the proposed model with eight other models is evaluated. PM model, 

SRAD, NCD, OSRAD, DPAD, LPND, wavelet-based, and fuzzy logic-based models are 

analyzed and compared with the proposed method. All thirty images are used for the 

analysis. 

    First, the mean square error of all thirty images is calculated. From MSE the PSNR of 

all data is measured. Figure 4.16 shows the mean values of PSNR of all different methods. 

It is depicted from the figure that the proposed methods reduce the noise better compare 
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to all other techniques. This infers that the proposed model is better in removing the 

speckle noise. 

 

Figure 4.16: PSNR values of the proposed model and PM model 

Figure 4.17 shows the mean values of FOM of eight different models and the proposed 

methods. The FOM measures the ability of edges preservations. The graphs clearly show 

that the proposed method preserves the edges efficiently.  

 

Figure 4.17: FOM values of proposed model and PM model 

SSIM is a perceptual measure of human capability. Figure 4.18 is the mean values of 

SSIM of all methods. The mean SSIM value of the proposed model is 0.873, which is the 

best value among all others. Although the SSIM value of SRAD is close enough to the 

proposed model but we can compare the overall performance of the proposed technique 
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by comparing the results of other evaluation metrices. The PSNR and FOM values of 

proposed model are much better than SRAD, this describes the better performance of 

proposed model.  

Figure 4.18: SSIM values of proposed Model and PM model 

Similarly, the comparison of mean ENL values of proposed and other eight models is 

shown in Figure 4.19. It is also shown that the proposed model performs better in terms 

of noise removal. The performance of proposed model and ENL very similar but PSNR 

values of these two models illustrate that overall noise removal ability of proposed model 

is better than SRAD.  

 

Figure 4.19: ENL values of proposed model and PM model 
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Table 4.1 shows all the statistics of four evaluation metrics. The 30 ultrasound images 

are filtered to remove speckle noise using seven different methods and the proposed 

technique. The evaluations matrices are applied on all thirty images and the output values 

are stored. The minimum and maximum of PSNR, SSIM, FOM, and ENL from thirty 

images are mentioned in the table. To evaluate the noise reduction ability of the models, 

PSNR and ENL matrices are used. The proposed model has a value of 33.503 and 31.290 

for PSNR and ENL respectively. These are the highest values among all other methods 

which depict that the proposed model has removed the speckle noise very well and its 

performance is finest among all other methods. Similarly, the SSIM value of the proposed 

method infers that the perceptual visualization of the output image by the proposed model 

is very good. Furthermore, edge preservation ability is analyzed by FOM. The proposed 

model attains the highest value 0.873 value for FOM. It confirms that the proposed 

method also preserves the edges efficiently. So, the mean and standard deviation show 

that the proposed method outperforms the other models not only in terms of noise 

reduction but also in edge preservation.  
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Table 4.1: Mean value for PSNR, SSIM, FOM, and ENL with standard deviations. 

 
 

Evaluation 

Metric 

PSNR SSIM FOM ENL 

Method Mean ±SD 

 

Lower 

Limit 

Upper 

Limit 

Mean ±SD 

 

Lower 

Limit 

Upper 

Limit 

Mean ±SD 

 

Lower 

Limit 

Upper 

Limit 

Mean ±SD 

 

Lower 

Limit 

Upper 

Limit 

PM 23.300± 

0.976 

22.410 24.029 0.747± 

0.054 

0.699 0.787 0.450± 

0.041 

0.401 

 

0.480 21.501± 

0.612 

20.189 22.345 

LPND 25.576± 

0.609 

24.981 26.123 0.822± 

0.027 

0.797 0.850 0.491± 

0.023 

0.459 0.512 26.451 ± 

0.761 

24.991 27.309 

NCD 25.502± 

0.810 

24.543 25.994 0.862± 

0.017 

0.820 0.889 0.671± 

0.031 

0.529 0.591 25.512± 

0.490 

24.346 26.231 

SRAD 27.598± 

0.581 

26.891 28.276 0.866± 

0.014 

0.839 0.891 0.554± 

0.013 

0.536 0.581 28.910± 

0.308 

27.981 29.222 

OSRAD 27.715± 

0.395 

27.019 28.298 0.833± 

0.015 

0.802 0.859 0.668± 

0.010 

0.654 0.680 27.651± 

0.771 

26.815 28.107 

DPAD 28.510± 

1.105 

27.149 29.831 0.840± 

0.028 

0.815 0.855 0.631± 

0.033 

0.593 0.667 26.721± 

0.892 

25.123 27.709 

Wavelet 26.407± 

0.347 

25.946 27.154 0.814± 

0.022 

0.821 0.852 0.661± 

0.019 

0.687 0.734 26.710± 

0.761 

26.221 27.410 

Proposed 33.503± 

0.2592 

32.989 33.814 0.873± 

0.0063 

0.860 0.896 0.767± 

0.0239 

0.731 0.811 31.290± 

0.384 

30.654 32.007 
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4.6 Summary 

In this chapter, the efficiency of the proposed model is presented. The comparison of the 

proposed and previously used diffusivity function is assessed using simulated images. 

Edge preservation of the model using one, two, and four gradient thresholds is measured 

using seismic images which depicts that four gradient thresholds better preserves the 

edges. The performance of the overall model is compared with the eighth other models 

using four different metrics. From the qualitative and quantitative results, it can be 

concluded that the proposed filtering method performs outstandingly in reducing the 

speckle noise in US images of knee articular cartilage.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

In this study, a despeckling method based on AD for the knee US images is proposed. All 

steps of AD methods are studied and proposed a robust and efficient algorithm to remove 

the speckle noise. The proposed new algorithm is coded in MATLAB R2018a software.   

The database of knee US images of thirty healthy volunteers is collected for this 

research. Images are passed through the Gaussian filter to remove the additive gaussian 

noise. This is done to ensure that Gaussian noise is removed before the calculation of the 

image gradient as the diffusion in the AD method is based on the gradient value of the 

image. The performance of the method is enhanced by calculating the gradient in eight 

neighborhood directions. Unlike the previous studies which use one or two thresholds, 

here four gradient thresholds are measured in NS, EW, NWES and NSWE directions. 

Thresholds in four different directions provide more flexibility in the diffusion process 

and image is diffused differently in each direction depending upon the threshold value. 

These thresholds are calculated using a knee algorithm using these eight gradients. 

While removing the noise diffusion rate and to stop the diffusion across the boundaries 

in the image are the main tasks. These tasks are performed by a diffusivity function. A 

diffusivity function is proposed which not only performs diffusion but also preserves the 

edges efficiently. Diffusivity functions are the functions of threshold values so using four 

thresholds, four different values of diffusivity functions are obtained. These four values 

diffusivity functions perform and stop the diffusion differently in each direction. 

The diffusion process is an iterative process that is to be performed several times to 

remove the speckle noise and get the desired speckle free image. The number of iterations 

depends upon the noise level and image type. Therefore, using the fixed number of 

iterations cannot give better results and are not robust. To automatically stop the diffusion, 

MAE is used. After each iteration, the MAE value of the image is calculated and is 

compared with the predefined threshold. If the value of MAE is larger than the threshold, 
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the diffusion process is continued while diffusion is stopped when MAE is less than a 

threshold. In this way the diffusion is automatically is stopped and hence makes the 

process more robust. 

The performance of the proposed method is evaluated using both quantitative and 

qualitative analyses. The performance of the proposed diffusivity function is analyzed 

using the simulated images while the effect of using four gradient thresholds is shown by 

seismic images. The overall performance of the proposed method is evaluated using knee 

US images. Four different evaluation metrics PSNR, SSIM, FOM, and ENL are used. 

Numerical results depict that proposed methods perform better not only in noise removal 

but also in edge preservation. 

In the future, research work will be focused on the processing time of the proposed 

model. Although the method performs very well by calculating four gradients and 

performing different diffusion in each different direction, but this process takes more time 

as compared to other methods. If the gradient is very low in any direction, the calculation 

of the gradient threshold and diffusivity in that direction can be skipped. This approach 

can save time by not calculating and performing diffusivity in that direction. Research 

can be done to find out the appropriate low value of gradient, based on some theoretical 

ground to exempt the process in that particular direction. 
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