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 ABSTRACT 

Due to excellent mechanical and electrical properties, cross-linked polyethylene 

(XLPE) cables are commonly used in the power industry. However, cable joints are the 

weakest part of XLPE cables and are susceptible to insulation failures. Cable joint 

insulation breakup can cause large losses for power companies. It is therefore necessary 

to evaluate the consistency of the insulation for early detection of insulation failure. It is 

known that there is a link between the partial discharge (PD) and the quality of the 

insulation. PD analysis is an important tool for assessing the quality of insulation in cable 

joints. In this study, XLPE cable joints with artificial defects, which are commonly found 

on-site, were prepared. The input data from the PD measurement results were used to 

train k-nearest neighbor (KNN) algorithm to classify each type of defect in the cable joint 

samples. Discrete wavelet transform (DWT) was used to denoise the PD signals and 

denoised PD signals were used to identify different types of defect in cable joints. The 

extracted input features from the denoised signals were used to train the classifier. 

Classifications were also carried out using support vector machine (SVM) and artificial 

neural network (ANN) for comparison with KNN. The performance of each method was 

evaluated through its accuracy. From the comparison of the results obtained, it was found 

that the approach for partial discharge of cable joint defect signals using DWT method 

and classified by KNN yields the highest accuracy among all of the methods tested under 

different signal-to-noise ratios. 

Keywords: Partial Discharge Classification, Artificial Intelligence, Cable Insulation, 

Signal Processing Approaches, High Voltage (HV) 
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ABSTRAK 

Oleh kerana sifat mekanikal dan elektrikal yang sangat baik, kabel polietilena 

bersilang silang (XLPE) biasanya digunakan dalam industri tenaga. Walau 

bagaimanapun, sambungan kabel adalah bahagian kabel XLPE yang paling lemah dan 

terdedah kepada kerosakan penebat. Pecahan penebat sambungan kabel boleh 

menyebabkan kerugian besar bagi syarikat kuasa. Oleh itu, adalah perlu untuk menilai 

konsistensi penebat untuk pengesanan awal kegagalan penebat. Oleh itu, diketahui 

bahawa terdapat hubungan antara pelepasan separa (PD) dan kualiti penebat. Analisis PD 

adalah alat penting untuk menilai kualiti penebat pada sambungan kabel. Dalam kajian 

ini, sambungan kabel XLPE dengan kecacatan buatan, yang biasanya dijumpai di lokasi 

telah disediakan. Data input dari hasil pengukuran PD digunakan untuk melatih algoritma 

k-terdekat tetangga (KNN) untuk mengklasifikasikan setiap jenis kecacatan pada sampel 

sambungan kabel. Transformasi wavelet diskrit (DWT) digunakan untuk mengesahkan 

isyarat PD dan isyarat PD denoised digunakan untuk mengenal pasti pelbagai jenis 

kecacatan pada sambungan kabel. Pengekstrakan ciri data input yang diekstrak dari 

isyarat denoised digunakan untuk melatih pengkelasan. Klasifikasi juga dilakukan 

menggunakan mesin vektor sokongan (SVM) dan rangkaian neural buatan (ANN) untuk 

perbandingan dengan KNN. Prestasi setiap kaedah dinilai melalui ketepatannya. 

Daripada perbandingan hasil yang diperoleh, didapati bahawa pendekatan untuk 

pembebasan separa isyarat kecacatan sambungan kabel menggunakan kaedah DWT dan 

diklasifikasikan oleh KNN menghasilkan ketepatan tertinggi di antara semua kaedah yang 

diuji dengan nisbah isyarat-ke-bunyi yang berbeza. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

Electrical insulation is an important part of all the power equipment with high voltage. 

Failure will be disruptive to power generation and transmission companies in any part of 

the power system. Hence, daily insulation quality checks are extremely important. 

Lifetime function of large power system equipment, such as high voltage (HV) cables 

transformers and gas-insulated switchgear (GIS), is highly dependent on insulation 

efficiency. Devices of the power system will be permanently impaired in case of a 

breakdown of the insulation. Some part that has failure in the power equipment will 

impact transmission and power generation businesses. It is therefore important that the 

insulation quality of power system equipment is tested and inspected periodically. 

Analyzing failures reveals that insulation failure is the root cause for more than half of 

high voltage equipment damage [1]. Cross-linked polyethylene (XLPE) has balanced 

electrical, mechanical and thermal materials [2] and has been widely used for HV cables 

insulation [3]. Cable joints are generally known as dielectrically weaknesses for XLPE 

cables due to the existence of discontinuity of the insulation and the manmade design of 

their construction [4]. PD measurement is indeed a reliable method that has been globally 

recognized as an important research method with the ability to evaluate and analyze 

insulation systems with their quality throughout manufacturing and during operation [5]. 

Partial discharge (PD) is a type of breakdown that does not fully connect the electrodes. 

This can lead to serious insulation damage and considerably reduce the life span of high 

voltage equipment [6]. PD occurs if the local electric field is greater than the threshold 

value, causing a partial breakdown of the surrounding medium [7] PD has a transient 

nature and is characterized by pulsating currents with a duration of several nanoseconds 
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to few microseconds [8]. PD is recurring in nature [9] [10] and is Capable of transmitting 

across dielectric material. These could severely damage the insulation and reduce the life 

period of the HV equipment service [6]. It is also essential to analyze cable insulation, as 

cable processes need to be sustained and superseded in order to avoid unexpected failures. 

 

1.2 Problem Statement 

A number of researches on the classification of cross-linked polyethylene cable joint 

defect types have been carried out and have improved over the years. Nevertheless, the 

optimal approach always needs to be achieved. There is also a need for more detailed 

research into how various derived partial discharge signals have an effect on the 

classification accuracy of the cable joint defect types. 

In this research, define defect types in XLPE cable joint using k-nearest neighbor 

(KNN) was performed. The measurement of PD was performed on four XLPE cable 

joints with different artificial defects. The extraction of features from DWT signals has 

been used to generate data from the PD data to identify cable joints defects. Consequently, 

The result was evaluated between different extractions of features artificial intelligence 

approaches and current works. 

 

1.3 Objective 

1. To measure partial discharge (PD) through artificially designed joint defects of 

the cable 

2. To classify partial discharge types from cross-linked polyethylene (XLPE) cable 

joints using k-nearest neighbor (KNN)  

3. To compared of classifier performance between various artificial neural networks 

under different signal-to-noise ratios 
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1.4 Dissertation Structure 

Chapter 1 describes the overview of the work 's research, problem statement and 

objectives. This chapter presents most of these topics. Chapter 2 concentrates with the 

Partial Discharge (PD) principles. This chapter includes a literature review from previous 

PD phenomenon relevant fieldwork. Chapter 3 deals with the methodology of study used 

to meet the purpose of this research work. This includes developing the cross-linked 

polyethylene (XLPE) cable joints, setting up the PD measurement and applying the 

extraction method and classification. Chapter 4 discusses all the outcomes of 

measurement and classification which were carried out systematically in this research. 

This chapter also compares data between different techniques for the classification. 

Finally, Chapter 5 describes the conclusions for this research and the proposed future 

work.
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

This chapter begins with partial discharge (PD) details, PD types and cross-linked 

cable joints for polyethylene (XLPE). PD measurement techniques are further explained 

by the fact that it's one of the diagnostic tools used to identify defects in insulating power 

cables in order to avoid a complete collapse of the whole high voltage power grid. It also 

provides a detailed overview of previous PD classification studies. 

2.2 Cross linked Polyethylene (XLPE) Cable Joints 

Cross linked polyethylene (XLPE) has well balanced thermal, electrical and 

mechanical properties and is commonly used to insulate electrical cables [3]. Cable joints 

are needed to connect different XLPE cables. The installation of a cable joint can be a very 

complicated process involving high skilled, professional cable joints.  

In the power industry there are two different types of cable joints used in the heat 

shrink tube and cold-shrink tube cable joints. The termination of heat-shrink requires 

multiple instruments, including gas torches and flame retardants. Cold-shrink and heat-

shrink termination cables require a wide range of measurement methods. Heat-shrink 

needs very detailed ability since inaccurate shrinkage will lead to incomplete installation. 

Overheating would cause scorch and malfunction to the XLPE cable while heat shrinkage. 

Cold shrinking cable joints need no heat source and are more robust and less prone 

to technical mistake. Installation is also better without additional equipment and training. 

Once the support core is removed, the cold-shrink tube shrinks and forms a cable joint 

between the two XLPE ends. As the cold-shrink tube goes through thermal extensions 

and shrinkage, it is more versatile than the hot-shrink tube.  
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By linking all high voltage cables, two main measures must be taken. The conductive 

covering on the exterior side between both cables must then be immediately terminated 

and without creating ground concentration. It is suitable for the design of the cable 

terminals. Secondly, a loss of flexibility or resources between the cable displacement area 

as well as the cable conductors is prevented [11].  

2.3 Partial Discharge (PD) 

Early detection and diagnosis of high voltage ( HV) equipment is necessary to ensure 

the performance of the entire power system , especially for the diagnosis of voltage sag 

[12]. Partial discharge (PD) could be root cause of a sudden failure that impacts the insulation 

leading to a surface charge of the insulation, contributing to chemical and physical 

degradation and might cause an unpredictable breakdown [13]. Partial Discharge (PD) is an 

electrical discharge that happens when the HV components is normally protected due to the 

presence of cavities or contaminants, resulting in production process failure mechanical stress 

or aging process [9]. Therefore it is important to monitor the insulation that has been used in 

HV system so that preventive actions can be conducted at the right time [14].  

Damage to power cables is commonly attributed to mining activities [15]. Furthermore, 

the severe damage to the network cable electrical insulation causes damage to even more than 

quarter of the cable network. The AC and DC analysis is a study approach which has only 

been used for the power cable network for many years, but today the PD test is also a widely 

accepted method. Partial Discharge (PD) is one of the most important causes of deterioration 

of cable insulation process or training. Partial Discharge (PD) deteriorates the insulation and 

therefore can cause loss of energy. 

The cables and adapters establish good connections and terminations within the actual 

power cable network. The main function of a joints is to link both cables to each other 

while positioning the end point of the cable. PD faults usually occur in cable joints and 
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cable terminations themselves, as they are constantly built under imperfect conditions 

[16]. The XLPE cable joint loss rate is higher than a cable in the power systems leading 

to inadequate environmental conditions, inconsistent installation and degradation [17]. 

Throughout the installation of cable components, there are many factors to consider to 

avoid deterioration of the insulation. Demolishing cable joints needs a professional cable 

joints expert since this is an extremely complicated task. 

2.4 Partial Discharge Classification 

The thermal substances of the networks take many forms of gaseous, liquid or solid 

and it is understood that the high voltage (HV) network does not have full insulation. The 

impurities or pollutants thus gives the possibility of partial discharge (PD) and impacts 

the quality of an insulation. The insulation deteriorates and radiates outward to sustain 

PD phenomena. Deterioration affects the properties of the insulation due to electrical, 

mechanical and thermal stress. In HV technology, various forms of PD are present, such 

as surface, internal, and corona discharges. According to the [18] [19], internal or void 

discharge is severe and more volatile than surface discharge and corona discharge. 

2.4.1 Void Discharge  

     Void discharge happens when the closed amount in the insulation substance, 

including such liquid and solid, is insufficient. Common types of the faults contain 

void, gap or corrosion, particles or cracking. A certain partial discharge (PD) are 

normally caused by the production process or by power cable attachments along with 

other joints or terminations. 

The electrical current on the surface insulation is smaller than electrical field 

within the void throughout this element of PD. The nature of the defect transitions 

from non-conducting to operating during a PD event, resulting in a reduction of the 

applied voltage and within enclosure from higher to smaller during a very short time. 
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These allows its insulation quality to become corrosive as PD behaviors are 

performed over time, leading to a failure. Void Discharge is show in Figure 2.1 

 

 

 

 

Figure 2.1 Void Discharge 

 

 2.4.2 Corona Discharge 

 Corona discharge is also identified as a moving discharge once the 

ionization from the air in the outer conductor boosts to a certain vital value due 

to an electric field [20]. It will occur if the electric field at a sharp-points exceeds 

the air degradation level. There will be two different types, positive and 

negative, of the corona. Corona 's consequences are voltage drop in the power 

grid due to current flows off the current path, noise pollution, radio interference 

and separation depletion. This is not normally described to be a volatile 

discharge, but corona process is the same as other kinds in PD and may seem a 

violation of online measurement [13]. Corona Discharge is shown in Figure 2.2. 
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Figure 2.2 Corona Discharge 

 

2.4.3 Surface Discharge  

Discharge happening upon a surface of the thermal insulation particles is 

considered surface discharge, at which tangent surface area is high. This discharge 

bridges the difference in the source potential and the earth electrode through 

radiation exposure or leaks on the insulation sheet. The highest level isolation on 

HV cables or the end of the sizeable generator stator windings are instances of 

surface discharge in this field. Surface discharge is shown in Figure 2.3. 

 

 

 

Figure 2.3 Surface Discharge on Dielectric Material Surface 

 

2.5 Partial Discharge Analysis 

High voltage or current pulse applications are based on modern PD fault detection. 

The commercially available electrical pulse detection device can be used in high voltage 
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( HV) research facilities [21]. Pulse detection systems have their own benefits and 

drawbacks [22]. This approach benefits from high demand for businesses, the ability to 

identify PD values, automated measurement assisted by the use of two sensors, the ability 

to interpret the PD route for cable suppliers and the ability to utilize with PD location 

systems. Furthermore, the drawbacks of this approach are difficult measuring equipment 

and challenging to implement in the field, susceptibility to radio frequency (RF) noise in 

the absence of shielding, weaknesses of inductive construction and restricted coupling 

strength reduce the responsiveness of the capacitive system. 

Instrument technique uses acoustic devices to calibrate sound waves on the insulation 

surface. It is an important PD detection extraction method [22]. A benefits of this 

technique include electromagnetic protection against noise, nondestructive and 

nonintrusive, higher precision sensors, high frequency spectrum, no shielding design 

strong mechanical power high electrical conductivity resistance and more better than 

other sensors. Nevertheless, the drawbacks of these approach are the signals 

amplification, the temperature sensitivity of measurements is impaired, the PD level 

cannot be measured, the need for highly technical calibration and the limited ability to 

handle air insulation equipment [22] [23] [24] [25]. Electric pulse detector would still be 

a popular PD calculation method in industry. In this work the electrical pulse detector is 

used when it complies with the PD measuring method of IEC60270. 

2.6 Partial Discharge Classification Features 

Numerous studies related to a classification of partial discharge (PD) have been carried 

out previously. There are several classifiers analyzed in this section are Artificial Neural 

Network (ANN), Support Vector Machine (SVM), Convolutional Neural Network 

(CNN) and K-Nearest Neighbor (KNN). 

Univ
ers

ity
 of

 M
ala

ya



10 

2.6.1  Artificial Neural Network (ANN) 

Classification of previous work partial discharge (PD) was published in [26]. The 

researchers studied PD pattern recognition in 66 kV cross linked polyethylene 

(XLPE) cables and analyzed 38 kV AC through three layers of feed back propagation 

neural network (NN). A neural network has three output data "no PD" for a stable 

PD level, "alert" for a low PD level and "alarm" for a high PD level. Phase angle 

voltage, pulse count and discharge amplitude were the input data for the NN. A neural 

network had been trained utilizing 30 input data, achieving a classification precision 

of 90%. 

The artificial neural network (ANN) has been studied [27] for the identification 

of  PD process. The artificial defect was artificial to surface discharge, particle 

progression to the oil discharge, multipoint plane discharges in oil with gas bubbles, 

multipoint discharges in oil, point to plane discharges in oil and point to point 

discharges in oil with gas bubbles, and multipoint plane discharges into oil. The 

method of power spectrum distribution and the fourier transform have been used as 

input characteristics. Greater than 90% of the classification accuracy was achieved.  

PD behaviors determined from lab - based computational PD sources have been 

used to classify probabilistic neural network (PNN) [16]. Each input properties used 

were wavelet transform derived on different scales through wavelet packet 

conversion. The quality ratings for corona in liquid, surface air discharge, internal oil 

discharge and floating oil discharge is 97.5%, 92%, 100% and 99%. 

The Radial Basis Probabilistic Neural Network (RBPNN) had been used in [28] 

to classify four kinds of partial discharge causes: corona oil, corona air, void and 

internal corona air. The functionality extraction were used in forward less square 

orthogonal. With RBPNN classification performance somewhere around 80% and 
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90%, PNN classification performance between 50 and 70% was achieved. 

Subsequently, the robust heteroscedastic probabilistic neural network (RHPNN) [28] 

were utilized to achieve classification accuracy of more than 90%. 

ANN was used in the proposed fractal function [29] for PD recognition pattern. 

Deficiency classifications were established for cross linked polyethylene (XLPE) 

cable joints, which included a healthy power cable, a long outer semiconductor layer, 

an artificial knife defect and a short outer semiconductor layer in XLPE insulation. 

The extension method achieved 81.7% of the accuracy rate and the BPNN method 

achieved 73.3% of the accuracy rate when 15% of the noise was added. Features of 

related inputs and classification techniques were used to determine the types of high 

voltage transformer defects in [29]. 

The RF antenna [30] was used to define PD to the thermal insulation polymer 

under various conditions. Four cases including the active corona, inactive corona, the 

surface discharge and the composite PD were examined. Frequency and statistical 

analysis attributes were used in the classification has been done using the artificial 

neural network (ANN). It is suggested approach was to successfully identify PD 

types with more than 96% accuracy of classification. 

As reported a redesign of artificial neural network known as ensemble neural 

network (ENN) for partial discharge (PD) performance patterns in [31]. A total of 

six partial discharge (PD) defects was developed at the research lab, that involves 

corona in oil, air surfaces, electromechanical constrained void or gap, air corona, 

polyethylene terephthalate (PET) single vortex and oil surface discharges. Frequent 

patterns were used as input and a precision classification of 95% was achieved. 
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In [32], using an ultra high frequency (UHF) PD to test sensor. PD signals is 

opposed by wavelet transform. Three kinds of PD patterns have been evaluated for 

deficiencies produced in laboratory conditions such as void moving metal, pressure 

and liquid metal. Features extracted and wavelet transform were used as input 

specifications for the ANN classifier and the precision of the classification obtained 

was 95%  when denoising was used and 75% without denoising. 

A phase resolved hybrid of PD data and moment resolved PD data [33] was 

developed to be used as an input features. A Dempster Shafer Proof Theory was used 

as the technique of data fusion. The following flaws, protrusion, degradation of the 

air, separator and free particles were used to create a GIS test sample. The 

classification of ANN was used as 82.94% for timeframe resolved PD data, 92% for 

the use of PD data resolved by process, and 97.25% in the use of fused data. 

The HV equipment was used to determine PD source in Artificial Neural Network 

(ANN) [34]. The ANN classification was based on nine waveform parameters for 

each PD case. The lab developed waveform parameters for four forms of artificial 

PD sources and three kinds of noise sources through three different types of sensors 

and about 90% of the results shows accuracy precision. 

2.6.2 Support Vector Machine (SVM) 

A support vector machine (SVM) has been used to study the performance of 

partial discharge (PD) sources depending on different features [35]. Methods of 

extraction used included wavelet decomposition, frequency spectrum, and phase - 

based detail. The PD sources producing PD signal types include internal discharge, 

surface discharge, and corona discharge. As a PD performance investigation study, 

a transformer bushing device has been used. The total accuracy shows a high 

accuracy of 98% for the limited frequency feature. 
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The PD classification is performed on a support vector machine (SVM) [36]. 

Cylindrical glass samples were collected using two parallel flat aluminum electrodes, 

and four PD designs. Input functions were used as increased order moments and 

entropy of the measured probability density. Diverse moments mixture was measured 

and 98% of the best grade accuracy was achieved with six times as results. 

A support vector machine (SVM) has been used in [37] to characterize PD 

behavior acquired from surface, corona and internal discharges. The functions of the 

input were extracted using the analog time frequency approach from the pulse wave. 

DC voltage was used to evaluate PD rather than AC voltage. The classification 

accuracy had never been specified, but various PD patterns were distinguished by the 

proposed method. 

SVM was used in [38] categorize PD behaviors for artificial defects, including 

corona discharge, surface discharge and internal discharge. As input function the 

average stage charge has been used. Only two out of sixty samples had been 

misclassified. 

A three-phase paper insulated lead (PILC) distribution cable experiment was 

investigated by [4] for the investigation of partial discharge (PD) of various faults. 

The three separate cable joint faults, including the ferrule bolt, void of the crutch and 

bottom, were examined. The input values used were statistical features mixed with 

the extracted features during the wavelet transformation. Classification performance 

was at 91%. 

A gas insulated switchgear (GIS) simulator [39] was developed in the research 

lab. Four common defects in isolation, gas hole, free moving object, metal needles 

and fixed metal particles are popular. The input properties were a combination of 
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statistical factors that interact taken from chaotic theory. The SVM has been used 

and the detection rate of 98% is obtained. 

A research on the behaviors of a gas insulated substation calculated partial 

discharge can be discovered in [40]. A data obtained at various SF6 gas volumes with 

a particle size and position were classified by a support vector machine. The 

statistical input feature has been used and 94% of the accuracy rate has been 

achieved. 

 The support vector machine has been classified as a gas insulated substation on 

partial discharge pattern  [41]. The PD forms in four groups which include an 

internal, corona, particles and surface discharges. Analytical techniques are used as 

a method of extraction and have more than 90% classification accuracy. 

2.6.3 Convolutional Neural Network (CNN) 

Partial discharge patterns recognition with deep convolutional neural 

networks proposed in [42]. The traditional pattern recognition methods of partial 

discharge also depend on much prior knowledge of the PD device and signal 

processing techniques to create suitable features. The output is therefore was not 

constant. Recent advances in deep neural networks, including more than one hidden 

layer, have shown a success in the recognition of speech, imaging and natural 

language processing. Deep neural networks are able to manage large data sets, a 

potential overall strategy because the processing of data accumulates increasingly. A 

deep-architected Convolutional Neural Network (CNN) has been developed formed 

automatically generalize innovative features to recognize ultra UHF GIS detection 

signals. The symmetrical signal frame classification of UHF measurements is derived 

by Fourier transform data collection. The spectral frames are then used to deeply 
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train the CNN. It was shown that the implemented method can significantly develop 

various PD forms. 

A novel approach of Transient Earth Voltage Detection (TEV) is presented 

for the convolutional neural network (CNN) [43] where it does not need a signal 

system prepared by humans and overcomes the detection problems caused by an 

incorrectly extracted features. The CNN model is intended to train and interpret the 

TEV signal perspective. Since its proposed process does not employ a sophisticated 

denotation method, it is based on an exceptional detection output that shows the 

effectiveness of the proposed technique of CNN based TEV detection. The TEV 

standard and GIS methods typically consist of four stages, i.e. data collection, 

filtering, extraction and pattern recognition. This methods produce functionality 

using statistical analysis or pulse waveform analysis, and then conduct recognition 

and extraction of features functions. Deep learning methods are developing rapidly 

and have a significant impacts on pattern recognition, because of their excellent 

recognition and extraction capabilities that significantly compensate for the low 

recognition performance of standard TEV methods. 

In [44], the PD detection is critical in order to detect faults in high voltage 

cable systems. A new approach used to identify PD pictures based on the 

Convolutional Deep Belief Network (CDBN) was introduced to increase the 

accuracy of the DC cross linked polyethylene (XLPE) insulation fault classification. 

Four cable defect forms XLPE was developed and tested with DC voltage. The image 

𝑞 − ∆𝑡 − 𝑛 is built on the basis of the PD measurements received by HFCT. The 

CDBN-diagnostic model is then constructed for high level detailed 𝑞 − ∆𝑡 − 𝑛 

images with Gaussian visible devices. Finally, there is the testing of CDBN 

classification, Deep Belief Network (DBN), SVM and BPNN. The experimental 
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results show approach is more effective in diagnosing the isolation defect with an 

accuracy of 93.8%. 

A DC XLPE cables based on convolutional neural network partial discharge 

pattern recognition is proposed in [45]. A self adapting pattern recognition method 

based on a convolutional neural network (CNN) is used to overcome the drawbacks 

of high random signal extraction feature in DC XLPE cables. CNN has a strong 

performance in image recognition, with convolutional architecture fast feature 

embedding (Caffe). There are four common insulation defects and PD signals for 

pattern recognition have been developed. The presence of network structure and 

optimization parameters on a training effect are examined in four distinct Caffe 

approaches. The modified Alexnet network can be used to determine patterns of 

partial discharges in DC XLPE cables as compared to Quick-CIFAR-10 and the 

original Alexnet network, with an accuracy of 91%. 

A differential partial discharge (PD) induced by different types of insulation 

defects in high voltage cables was used in [46] and known as convolutional neural 

network based deep learning methodology for recognition of high voltage partial 

discharge patterns. Most PD signals have quite comparable characteristics and are 

especially difficult to differentiate, even the most experienced engineers. A PD test 

is performed in a high voltage research lab for five forms of artificial defects on 

ethylene propylene rubbers to generate signals containing pd results. Then are 

collected 3500 transient PD pulses, followed by 33 PD classifications. The next step 

applies CNN to the results, defining the typical CNN architecture and the key factors 

affecting the accuracy of CNN pattern recognition. The discussed considerations 

include number of network layers, complex kernel size, activation mechanism, and 

the pooling process. It provides an overview of 3500 sets of PD samples, the CNN 
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based PD pattern recognition system. The performance of a CNN based architecture 

identification are 92.57% and two other traditional methods, i.e. 87.81% support 

vector machine (SVM) and 86.10% back propagation neural network (BPNN) have 

been contrasted to the proposed approach. A results showed that the proposed CNN 

method is more accurate than the SVM and BPNN methods for pattern recognition 

and that the new method is particularly effective in the case of highly similar signals 

relevant to industrial applications for PD form recognition. 

2.6.4  K Nearest Neighbor (KNN) 

Effective disturbance extraction is important for the safety and stability of the 

power system. In [47], the proposed new detection method is based on the k nearest 

Neighbor (KNN) application of the time series analysis methodology. The benefits 

of this method are that electrical calculations can be controlled using oscillations 

patterns and implemented in real times. The technique comprises two phases: off-

line and on-line detection. The offline process calculates the anomaly index series 

using kNN on the historical environmental data, and decides then the threshold for 

identification. The online stage then determines the anomaly index value of the 

currently measured data by readopting kNN and compares it to the threshold set to 

intercept disturbances. In order to meet the real - time specification, strategies are 

developed to recurrently measure kNN distance metrics and to automatically pick the 

smallest kth metric. Research studies carried out on simulation data from the Great 

Britain power system's reduced equivalent model and observations from an actual 

power system in Europe indicate the effectiveness of the proposed technique. 

K - nearest neighbor rule (KNN) and sparse representation (SR) algorithms 

are widely used in pattern recognition. In [48], two new neighbor classification 

methods are proposed in which the existing weighted voting methods are established 
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to render classification decisions on the basis of low SR coefficients. Since the sparse 

coefficients can represent the neighborhood structure of data, we assumption them 

to build classifier in the proposed techniques. One alternative method is called the 

coefficient weighted KNN classifier, which implements sparse coefficients for 

selecting KNNs from a query sample and then uses the coefficients corresponding to 

the neighbors selected as their classification values. The residual-weighted KNN 

classifier (RWKNN) is another new approach. In the RWKNN, the KNNs of a query 

sample are first defined by low coefficients and then a modern residual based 

weighted voting process is built for the KNN classification. The comprehensive 

studies are done on several UCI and KEEL sets of data, and the simulation results 

reveal that the methods proposed are running well. 

In [49] present a k - nearest neighbor (k - NN) approach to estimate defect 

locations for all forms of parallel fault lines utilizing single-terminal standard 

measure. Discrete Fourier Transform (DFT) is being used to preprocess signals and 

then the standard deviation of one pre-fault phase and one post-fault measurement 

cycle are used as inputs to the kNN algorithm. The obtained results through specific 

fault conditions show the significant accuracy of proposed scheme for estimating the 

fault positions. The specificity of the k - NN fault location scheme is not affected by 

changes in the fault type, including inter circuit faults, fault location, fault level, fault 

resistance and angle of load pre-fault. 

In [50], The research proposed a distributed storage and computation 

algorithm (D-kNN). The following advantages refer to the D-kNN algorithm. A 

classic supervised machine learning algorithm, the K nearest neighbor (kNN) 

algorithm is. It's commonly used for data collection and processing in cyber physical 

social systems (CPSS). In practical CPSS implementations, the regular linear kNN 
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algorithm fails to efficiently process massive data sets. Next, the definition of the k - 

nearest neighbor boundary is introduced and the k nearest neighbor check within the 

k nearest neighbors boundary will essentially reduce time complexity of the kNN. 

Furthermore, based on the k-neighbor cap, massive data sets are placed on distributed 

storage nodes beyond the central data storage. Consequently, the algorithm performs 

effective searches of k nearest neighbor by running distributed calculations at each 

storage nodes. Eventually, a series of experiments were carried out to check the 

efficiency of the D-kNN algorithm. The test results reveal that the D-kNN algorithm, 

based on distributed storage and computation, effectively improves the operating 

efficiency of the k nearest neighbor search. The algorithm can be deployed easily and 

flexibly in a cloud based computer environment to process massive data sets within 

CPSS. 

Industrial collected data have highly nonlinear or multidisciplinary qualities 

which do not comply with statistical data assumptions in the principal component 

analysis (PCA). PCA thus has a lower rate of detection of faults in process industries. 

Purpose of the above limitations of the PCA, In [51] mentioned a fault detection in 

the Tennessee Eastman Benchmark using principal component difference based on 

k-nearest neighbors (Diff-PCA). Initially, and each sample's nearest k neighbors set 

in the training data set and determine its mean vector. Second, use every sample and 

its corresponding mean vector to construct an augmented vector. Thirdly, using PCA 

to measure the load matrix and performance matrix. Then, calculate the overall 

scores using each sample's mean vector and the required PCA data imputation 

technique. Finally, create two new numbers, using the difference between the actual 

scores and the predicted scores to detect errors. In addition, this paper also proposes 

the fault diagnostic method based on contribution plots of monitored variables. 

Throughout Diff-PCA, the ability of difference will remove the effect of the 
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nonlinear and multidimensional system on detection of faults. In the meantime, the 

subspaces monitored by the two new statistics differ from that of  𝑇2 in PCA, and 

SPE. Throughout two numerical cases (nonlinear and multimode) and in the 

Tennessee Eastman (TE) processes, the effectiveness of the proposed strategy is 

implemented. The tests of fault location reveal that Diff-PCA exceeds standard PCA, 

kernel PCA, dynamic PCA, key component based k nearest neighbor rule and k 

nearest neighbor principle. 

Univ
ers

ity
 of

 M
ala

ya



21 

CHAPTER 3: METHODOLOGY 

 

3.1 Introduction 

This chapter sets out the framework for the planning phase involved in the design of 

this project. This contains an overview of the project from start to finish. Cable joint 

samples, described in detail for PD planning, PD measurement setup and PD 

classification. It also explains and illustrates the methods used to achieve this project. The 

training process has been repeated until good accuracy has been achieved. This section is 

meant to ensure that a project objectives are done to achieve. 

PD experiment were conducted in a HV enclosure cage to prevent some mistake 

occurring throughout the experimentation. The PD flowchart used in this study is shown 

in Figure 3.1. XLPE defect cable joint samples were planned and PD analyses were 

carried out. Component extraction is utilized to determine input features that is used as 

data input for classifiers. This same process is then repeated again until most excellent 

performance had been found. The experiment was conducted within below 9 kV of 

voltage. The PD calculation results are achieved by means of cable energy at less than 9 

kV. A total of 100 signals have been conducted for each sample at a range of 60 seconds. 

As for the four XLPE cable joints samples a total PD of 400 signals was therefore 

obtained. 
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      Figure 3.1  Overall work methodology 
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3.2 Preparation of XLPE Cable Joint Sample 

A four XLPE 11kV cable joints with developing various defects has been used in this 

research. From each sample, a cable length of 3 meters with a cable joint located in the 

centre was used. The XLPE cable joint sample lists are shown in Table 3.1. 

Table 3.1: Defects with XLPE Cable joint Samples 

Joint Cable Type of Defect 

C1 Insulation incision defect 

C2 Axial direction shift defect 

C3 Semiconductor layer tip defect 

C4 Metal particle on XLPE defect 

 

The incision insulation was caused by a shallow cut of the XLPE layer with a sharp 

knife. Impact on the axis of change was induced by using the angle of the cables from an 

off centre. Through creating a rough edge in the semiconductor the tip defect in the 

semiconductor layer is presented. The sprinkling metal particles on the XLPE layer 

formed metal particles on the XLPE fault. All faults were rendered in the construction of 

XLPE cable joint. The cable defect image is shown in Figure 3.2. 

  

 

 

(a)  Insulation incision defect   (b) Axial direct shift defect 
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(c) Semiconductor layer tip defect  (d) Metal particle on XLPE defect 

Figure 3.2 Type of Defects 

 

3.3 Measurement of partial discharge 

A Figure 3.3 shows a schematic diagram of the PD measurement system under AC 

voltage, and the actual measuring configuration in the HV laboratory is shown in Figure 

3.4. A measurement system includes a step up transformer, the HV source, the testing 

capacitor used to determine the operating voltage, the test components, the coupling 

condenser, the coupling panel, the PD detector and the PC-connected USB controller. The 

connecting device changes the voltage current. The PC was used to customize the PD 

detector settings and to store data. In this study, the Omicron released the Mtronix 

MPD600 was used for PD measurement. 
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Figure 3.3 Design of PD measurement on AC voltage 

It has an operating frequency ranging from 0.1 Hz to 2.5 Hz. This allows 

identification of a PD signal from 0 to 32 MHz, with a range of less than 2ns in the 

middle. This function is very precise pulse identification. The Mtronix MPD 600 

system is an excellent computer system for both site and laboratory PD measurement. 

Through measuring the current pulse increase between the two terminals of the 

test instrument, the MPD 600 analyses PD. In a test object, the coupling condenser 

transmits the loads to the test object to offset the voltage drop across the test object. It 

allows the circuit to travel through a current pulsation within the nanosecond scale, 

which generates a voltage pulse by the connector. This is the apparent charge, the 

cumulative number of payments exchanged. The total number of induced dipole 

moments of the actual load caused by the sudden change in the capacitance of the test 

subject and its interaction with the unit electrodes decide the magnitude [52]. In the 

case of PD, the measurement impedance or the linking tool senses a short term strain 

pulse. 

The USB controller manages data transfer among the PC and the PD detection 

system. A PD detection system transmits the effects of the standard measure to the 

USB controller through fiber optics. Implementing fiber optic cables delivers galvanic 
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insulation in between USB controller and the PD detector. Apart from moment of 

inertia reduces interference and improves the signal to noise ratio, thus improving 

system performance. After the USB control receives the data , the data is transmitted 

via a USB cable to the laptop. The consumer can then optimize and store the simulation 

results. 

 

 Figure 3.4 Installation of HV test PD measurements 

The HV supply was attached to the test object for each PD type. Each defect was 

tested with a certain voltage from the source (6kV, 7kV, 9kV and 11kV). Thus every 

defects was therefore tested triple time to achieve a PD behaviour. The step up 

transformer coupling condenser connector PD detector and coupling device was mounted 

on the computer and the PD signals were transmitted to the PD detector from the test 

device. 

The rise time of the signal was extracted from the obtained PD signals after 

discrete wavelet transform (DWT). This feature has been used as the input data for the k 

Test Object 

Step up Transformer 

Connector Measurement 

Connector Coupling 

PD connector & detector device 
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nearest neighbor (KNN), artificial neural network (ANN) and the support vector machine 

(SVM) to classify the defect types. To order to identify the best approach for the highest 

classification percentage precision, the outcomes of each procedure are contrasted. 

3.4 PD Signal Processing Approaches 

Current data will then be analysed using signal processing software to optimize the PD 

classification data. In order to remove noise and vibration, the signal processing attempts. 

This project uses the Signal Processing software to refine the Partial Discharge 

Classification (PD) analysis, and to analyse raw PD signal processing. This project 

processes raw PD signals using a multi-signal processing technique, which is DWT. 

3.4.1 Discrete Wavelet Transform (DWT) 

The DWT can provide data in both time and frequency domains. A Fourier 

transform use a wavelet transform, which can provide feedback on frequency 

and time. Wavelet analysis is similar to the Fourier analysis, which breaks down 

the signal into its component parts for investigation. The main issue is, the 

consequence frame resolution length limits the frequency. A wavelet transform 

is infrequently and efficiently designed so that the wavelet is a good method for 

examining a non stationary wavelet signal. Its irregular shape can indicate 

discontinuity or sudden shift. With their compact support characters, a 

temporary localization of the signal features can be allowed. 

Throughout every point of the wavelet transform, the discrete wavelet 

process includes a number of low pass and high pass filters. It can be considered 

as backpropagation of the same function, which provide accumulative details 

on one scale each approximation. At the end of the frequency range, the first 

stage will cover a broad frequency range and higher stages would hit the lower 

end of the frequency range with ever narrower bandwidths. The first measure 
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has the largest timestamp resolution and the lowest frequency resolution, 

whereas the other scales span longer intervals and smaller frequency bands. 

The discrete wavelet transform for signal x is measured through a series 

of filters. This research has utilized a discrete wavelet transform (DWT), a tool 

for de nosing a signal. [53]. It shall be specified where the discrete signal is φ(n), 

whereas j and k are integers, 

𝑊𝑗,𝑘 = ∑ 𝜑(𝑛)2(
𝑗

2
)𝜓(2−𝑗𝑛 − 𝑘)𝑛𝜖𝑧                         (3.1) 

Over hundred data signals for approximation and detailed coefficients, 

every defect shape was determined and extracted. The signal was deliberately 

noised. The signals collected were subsequently trained and tested again by 

KNN, SVM and ANN 

3.5 Classification of Partial Discharge 

3.5.1 K-Nearest Neighbor (kNN) 

K-nearest neighbor (kNN) [54] is a learning system based on instances or 

an algorithm that deferred all calculations to be easy to learn until classifying. The 

kNN algorithm concept is that if the sample has k most similar neighbors (i.e. the 

closest neighbors in the region of the characteristics) the significant number of 

samples belong to a certain category, then the sample is also in that classification. 

The voting method will usually be used in the classification process , i.e. the group 

mark that occurs most in the k samples is used as the prediction object, Figure 3.5 

indicates the nearest k nearest neighbor diagram, so the value k is specific and the 

samples are viewed differently. 
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Figure 3.5 k nearest neighbor diagram  

. 

In the regression function, the average method can be used, i.e. the average 

actual value of the survey outcome marks can be used as a projective measure, 

weighted average or weighted votes can be carried out also based on the distance 

of the closer sample. 

The schematic of the next k nearest neighbors in which k is an important 

parameter is shown in Figure 3.5. When k takes different values, the classification 

results are substantially different. The result of the sample decision is prismatic as 

illustrated in Figure 3.5. It is when k= 7 is a triangle, and when k= 11 is a prism 

of the results of the evaluation of the sample. The closest neighbors can be found 

significantly different when different distance methods are employed, which also 

results in a significantly different classification results. The closest k nearest 

neighbors may be located, given the distance calculation is accurate. 

Theoretical basis of the KNN classic is the closest nearest neighbor rule 

(NNR). [54]. Let x be the marking point and the point closest to x be y in the case 

of an example. A potential error that occur if y is given the same label as x, as 

seen in Equation (3.2), 
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𝑃∗ ≤ 𝑃 ≤ 𝑃∗ (2 −  
𝑐

𝑐 − 1 
𝑃∗)                                (3.2) 

where 𝑃∗ is the Bayes error rate, c is the number of classes, and P is the error rate 

of the nearest neighbor. The error rate of the closest neighbor is less than half the 

error rate of Bayes. Since the average task failure is small, the loss is twice small. 

If the data center number is very growing, the probability for x and y to be similar 

is very small. The next neighbor algorithm from equation is relatively simple, but 

does not surpass the Bayesian Optimal Classifier's error rate twice which can be 

referred to equation (3.2). 

3.5.2 Support Vector Machine (SVM) 

A SVM were first invented as an application principle by V. N. 

Vapnik [38] capable of solving complex pattern classification problems. 

SVM is an algorithm of machine learning, which is based on the theory of 

statistical learning that can handle complex classification tasks. By using 

kernel methods, the SVM can be modified in different fields and tasks 

depending on the base algorithm and the kernel function classification. 

SVM is suitable for small sample size, high dimensionality and nonlinear 

difficulties with pattern recognition [38]. SVM transfers data to a higher 

dimension field through linear classification [9]. 

The SVM consists of a number of different principles, including 

linear learning machines, kernel functions, room functions, enhancement 

and numerical analysis. These concepts are implemented into the SVM 

method of training. SVM has been shown to exceed the learning algorithm 

in a wide range of areas [38]. SVM could be used to classify roles from 

the labeled training data collection. Every test data could be expressed 
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with a variable where its concept depends on a number of behaviors been 

using. its role is either divergence or preprocessing [38]. SVM has less 

parameters to modify, making it less dependent on empirical procedures 

[9]. 

The initial purpose of SVM was to deal with linear cases separating 

them. Not all practical matters, apparently are linearly separated. The 

standard SVM as a linear classifier are not functions in non-linear 

situations. A technology called a kernel to handle nonlinear problems with 

multiple linear classification was introduced to overcome this problem. 

Thus according pattern recognition principle, a smaller dimensional space 

and the inseparable non - linear form are transformed into a linear model 

by transforming this into a larger dimension. The use of the kernel form 

therefore prevents the measurement affliction [55]. 

Initially, The binary classification algorithm for SVM has been 

built to identify the input in only two groups [56]. Due to the fact that 

support vector machine utilises a hyperplane to separate data into two 

groups. In MATLAB you can do binary classifications using the 

commands "svmtrain" and "svmclassify." Multi level SVMs are needed if 

more than two classification classes are required [57] [58]. SVM is a multi 

level which carries out multiple SVMs. A sample group is listed as one 

class during multi-level SVM preparation, while the remaining samples as 

other classes. 

3.5.3 Artificial Neural Network (ANN) 

 As PD classification is unresponsive to minimal changes in data, 

ANN is feasible. If its input varies significantly from the feedback used 

Univ
ers

ity
 of

 M
ala

ya



32 

during the workout, ANN will make the correct decisions. Regarding PD 

classification, this is very important where the release patterns are 

generally different [59]. Artificial Neural Network (ANN) has strong 

generalization, stability, and versatility [60] for partial discharge (PD) 

classification. The ANN model, such as the transfer function, and the 

training algorithm are defined with in network architecture. 

 The neural network includes several computing layers with 

parallel basic elements modern deep learning nervous systems. An 

interface layer contains one or more input and output layer respectively. A 

layer are linked through neurons or nodes. The output of the previous layer 

is used for every layer. The first is an input layer, which basically 

recognizes the data topic to be evaluated. Thus every layer in the ANN 

was fully linked with the next layers. The second layer is the secret layer, 

without direct contact with the external layer. The third layer is called the 

output layer, which results in network performance based on the data 

entered over the first layer [61].  

 ANN has the most widely used learning mode with feed-back 

neural propagation network (BPNN). It is a controlled learning machine  
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training in a reverse process. It contains of one input layer and at least one 

hidden layer. It’s also found that any complex region of decision can be 

generated with two hidden layers [5]. The figure 3.6 shows a typical neural 

network architecture. A minimum of two input characteristics are needed 

in training for purposes of PD classification to avoid divergences [62]. 

 

                    Figure 3.6 Typical neural network architecture 

 

 The "patternnet" command in the three layer feed ANN has been 

developed in Matlab. This ANN consists of 15 neurons in the hidden layer. 

This value was chosen since with lowest training time it gives the highest 

accuracy. The command "train" was added to the ANN. The figure 3.7 

display a block diagram of the generated ANN. It was stated in the 

previous section that every data characteristics has been saved in “*.mat”. 

The “*.mat file” had been loaded into the ANN to be used for the purpose 

of use of this input function. The performance was specified manually in 

binary form with a value of 1 for each class in different columns. This 
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work contained four different defects, so 4 different product groups were 

identified. 

 

                           Figure 3.7 Artificial Neural Network of Feed Forward (ANN) 
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CHAPTER 4: DISCUSSIONS AND RESULTS 

 

4.1 Inrtroduction 

The results of four crosslinked cable defects (XLPE) using the partial release (PD) 

analysis are provided in this chapter. Analysis of PD can be used by identifying the state 

and form of defect to evaluate the insulation quality of the cables joint. The PD 

measurement results were obtained. As input to the K nearest neighbor (KNN), support 

vector software (SVM) and artificial neural network (ANN) classifiers with discrete 

wavelet transformation (DWT) implemented as signal processing techniques, abstraction 

features were used. At the end of this chapter will shows a review of the analysis and 

discussion of the studies. 

4.2 K Nearest Neighbor (KNN) 

For a clear PD measurement and additional noise, increasing PD signal was evaluated. 

The signal to noise ratio (SNR) of 10, 20, 40, 60, 70, 80, 90 and 100 dB was combined 

with noise. Following the extraction of the input signals by discrete Wavelet Transform 

(DWT), K Nearest Neighbour (KNN) trained and tested the signals to identify the types 

of defects. Table 4.1 to Table 4.1 shows accuracy checks using KNN in various SNRs. 
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Table 4.1: Accuracy (%) using KNN at SNR = 10 dB 

 

Table 4.2: Accuracy (%) using KNN at SNR = 20 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

5 96.67 100.00 100.00 100.00 99.17 

6 100.00 100.00 96.67 100.00 99.17 

7 100.00 100.00 100.00 100.00 100.00 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 96.67 100.00 99.17 

2 100.00 100.00 96.67 100.00 99.17 

3 96.67 100.00 100.00 100.00 99.17 

4 100.00 100.00 100.00 100.00 100.00 

5 96.67 100.00 100.00 100.00 99.17 

6 100.00 100.00 96.67 100.00 99.17 

7 100.00 100.00 100.00 100.00 100.00 

8 96.67 100.00 100.00 100.00 99.17 

9 100.00 100.00 100.00 100.00 100.00 

10 96.67 100.00 100.00 100.00 99.17 
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8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 96.67 100.00 100.00 100.00 99.17 

 

Table 4.3: Accuracy (%) using KNN at SNR = 30 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 96.67 100.00 99.17 

2 93.33 100.00 96.67 100.00 97.50 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 96.67 100.00 99.17 

5 96.67 100.00 100.00 100.00 99.17 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 96.67 100.00 99.17 

8 100.00 100.00 96.67 100.00 99.17 

9 100.00 100.00 93.33 100.00 98.33 

10 100.00 100.00 96.67 100.00 99.17 

 

Table 4.4: Accuracy (%) using KNN at SNR = 40 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 96.67 100.00 100.00 100.00 99.17 

3 100.00 100.00 96.67 100.00 99.17 
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4 100.00 100.00 96.67 100.00 99.17 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 96.67 100.00 100.00 100.00 99.17 

9 100.00 100.00 96.67 100.00 99.17 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.5: Accuracy (%) using KNN at SNR = 50 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 96.67 100.00 99.17 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 96.67 100.00 99.17 

4 100.00 100.00 96.67 100.00 99.17 

5 100.00 100.00 96.67 100.00 99.17 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 96.67 100.00 99.17 
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Table 4.6: Accuracy (%) using KNN at SNR = 60 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.7: Accuracy (%) using KNN at SNR = 70 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 
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9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.8: Accuracy (%) using KNN at SNR = 80 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.9: Accuracy (%) using KNN at SNR = 90 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

Univ
ers

ity
 of

 M
ala

ya



41 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.10: Accuracy (%) using KNN at SNR = 100 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 100.00 100.00 100.00 100.00 100.00 

5 100.00 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 100.00 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 
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4.3 Suppport Vector Machine (SVM) 

For a simple PD measurement and additional noise, every PD signal was analyzed. 

The noise-to-noise ratio (SNR) was 10, 20, 40, 60, 70, 80, 90 and 100 dB in accordance 

with the signals. After discrete transform wavelet signals were eliminated (DWT), they 

were trained and tested to identify types of deficiency by Support Vector Machine (SVM). 

Table 4.11 to Table 4.20 shows the results of accuracy utilizing SVM in different SNRs. 

 

Table 4.11: Accuracy (%) using SVM at SNR = 10 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 100.00 0.00 0.00 50.00 

3 100.00 96.67 0.00 0.00 49.17 

4 100.00 100.00 0.00 0.00 50.00 

5 100.00 100.00 3.33 0.00 50.83 

6 100.00 96.67 0.00 0.00 49.17 

7 100.00 96.67 0.00 0.00 49.17 

8 100.00 96.67 0.00 0.00 49.17 

9 100.00 100.00 6.67 0.00 51.67 

10 100.00 96.67 0.00 0.00 49.17 
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Table 4.12: Accuracy (%) using SVM at SNR = 20 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 100.00 0.00 0.00 50.00 

3 100.00 96.67 0.00 0.00 49.17 

4 100.00 96.67 6.67 0.00 50.83 

5 100.00 90.00 3.33 0.00 48.33 

6 100.00 96.67 0.00 0.00 49.17 

7 100.00 93.33 0.00 0.00 48.33 

8 100.00 100.00 0.00 0.00 50.00 

9 100.00 100.00 0.00 0.00 50.00 

10 100.00 96.67 3.33 0.00 50.00 

 

Table 4.13: Accuracy (%) using SVM at SNR = 30 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 96.67 0.00 0.00 49.17 

3 100.00 100.00 3.33 0.00 50.83 

4 100.00 96.67 0.00 0.00 49.17 

5 100.00 100.00 3.33 0.00 50.83 

6 100.00 93.33 0.00 0.00 48.33 

7 100.00 100.00 0.00 0.00 50.00 
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8 100.00 100.00 0.00 0.00 50.00 

9 100.00 96.67 0.00 0.00 49.17 

10 100.00 100.00 6.67 0.00 51.67 

 

Table 4.14: Accuracy (%) using SVM at SNR = 40 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 93.33 0.00 0.00 48.33 

3 100.00 100.00 0.00 0.00 50.00 

4 100.00 100.00 0.00 0.00 50.00 

5 100.00 100.00 0.00 0.00 50.00 

6 100.00 100.00 0.00 0.00 50.00 

7 100.00 96.67 0.00 0.00 49.17 

8 100.00 100.00 0.00 0.00 50.00 

9 100.00 96.67 0.00 0.00 49.17 

10 100.00 100.00 0.00 0.00 50.00 

 

Table 4.15: Accuracy (%) using SVM at SNR = 50 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 100.00 0.00 0.00 50.00 

3 100.00 100.00 0.00 0.00 50.00 
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4 100.00 100.00 0.00 0.00 50.00 

5 100.00 100.00 0.00 0.00 50.00 

6 100.00 100.00 0.00 0.00 50.00 

7 100.00 100.00 0.00 0.00 50.00 

8 100.00 100.00 3.33 0.00 50.83 

9 100.00 100.00 0.00 0.00 50.00 

10 100.00 100.00 3.33 0.00 50.83 

 

Table 4.16: Accuracy (%) using SVM at SNR = 60 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00  50.00 

2 100.00 100.00 0.00 0.00  50.00 

3 100.00 100.00 0.00 0.00  50.00 

4 100.00 100.00 3.33 0.00  50.83 

5 100.00 100.00 0.00 0.00  50.00 

6 100.00 100.00 0.00 0.00  50.00 

7 100.00 100.00 0.00 0.00  50.00 

8 100.00 100.00 0.00 0.00  50.00 

9 100.00 100.00 0.00 0.00  50.00 

10 100.00 100.00 3.33 0.00  50.83 
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Table 4.17: Accuracy (%) using SVM at SNR = 70 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 0.00 0.00 50.00 

2 100.00 100.00 0.00 0.00 50.00 

3 100.00 100.00 3.33 0.00 50.83 

4 100.00 100.00 0.00 0.00 50.00 

5 100.00 100.00 0.00 0.00 50.00 

6 100.00 100.00 0.00 0.00 50.00 

7 100.00 100.00 0.00 0.00 50.00 

8 100.00 100.00 0.00 0.00 50.00 

9 100.00 100.00 3.33 0.00 50.83 

10 100.00 100.00 0.00 0.00 50.00 

 

Table 4.18: Accuracy (%) using SVM at SNR = 80 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 6.67 0.00 51.67 

2 100.00 100.00 6.67 0.00 51.67 

3 100.00 100.00 3.33 0.00 50.83 

4 100.00 100.00 3.33 0.00 50.83 

5 0.00 100.00 3.33 0.00 50.83 

6 100.00 100.00 0.00 0.00 50.00 

7 100.00 100.00 3.33 0.00 50.83 

8 100.00 100.00 3.33 0.00 50.83 
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9 100.00 100.00 6.67 0.00 51.67 

10 100.00 100.00 6.67 0.00 51.67 

 

Table 4.19: Accuracy (%) using SVM at SNR = 90 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 3.33 0.00 50.83 

2 100.00 100.00 0.00 0.00 50.00 

3 100.00 100.00 3.33 0.00 50.83 

4 100.00 100.00 3.33 0.00 50.83 

5 0.00 100.00 100.00 0.00 50.00 

6 100.00 100.00 6.67  0.00 51.67 

7 100.00 100.00 6.67  0.00 51.67 

8 100.00 100.00 6.67  0.00 51.67 

9 100.00 100.00 0.00 0.00 50.00 

10 100.00 100.00 0.00 0.00 50.00 

 

Table 4.20: Accuracy (%) using SVM at SNR = 100 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 3.33 0.00 50.83 

2 100.00 100.00 3.33 0.00 50.83 

3 100.00 100.00 3.33 0.00 50.83 
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4 100.00 100.00 3.33 0.00 50.83 

5 100.00 100.00 0.00 0.00 50.00 

6 100.00 100.00 3.33 0.00 50.83 

7 100.00 100.00 0.00 0.00 50.00 

8 100.00 100.00 6.67 0.00 51.67 

9 100.00 100.00 0.00 0.00 50.00 

10 100.00 100.00 6.67 0.00 51.67 

 

4.4 Artificial Neural Network (ANN) 

For a clear PD measurement and additional noise, increasing PD signal was analyzed. 

The signal to  noise ratio ( SNR) of 10, 20, 40, 60, 70, 80, 90 and 100 dB is coupled with 

the noise. The signals were trained and tested through artificial neural network (ANN), 

when they had been extracted via discrete wavelet transformation (DWT). The fault types 

were identified. Table 4.21 to Table 4.30 shows the accuracy outcomes using ANN under 

various SNRs. 

Table 4.21: Accuracy (%) using ANN at SNR = 10 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 100.00 100.00 0.00 50.00 

2 0.00 93.33 100.00 0.00 48.33 

3 0.00 96.67 100.00 0.00 49.17 

4 100.00 100.00 96.67 100.00 99.17 

5 100.00 100.00 100.00 100.00 100.00 
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6 0.00 100.00 100.00 0.00 50.00 

7 0.00 96.67 100.00     0.00 49.17 

8 0.00 93.33 100.00     0.00 48.33 

9 0.00 93.33 100.00     0.00 48.33 

10 0.00 100.00 100.00     0.00 50.00 

 

Table 4.22: Accuracy (%) using ANN at SNR = 20 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 100.00 100.00 0.00 50.00 

2 0.00 100.00 0.00 0.00 25.00 

3 0.00 93.33 100.00 0.00 48.33 

4 0.00 96.67  100.00 0.00 49.17 

5 0.00 96.67  100.00 0.00 49.17 

6 100.00 100.00 100.00 100.00 100.00 

7 0.00 96.67 100.00 0.00 49.17 

8 0.00 100.00 100.00 0.00 50.00 

9 0.00 100.00 100.00 0.00 50.00 

10 0.00 96.67 100.00 0.00 49.17 

 

Table 4.23: Accuracy (%) using ANN at SNR = 30 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 96.67 100.00 99.17 
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2 0.00 100.00 100.00 0.00 50.00 

3 0.00 96.67 100.00 0.00 49.17 

4 0.00 100.00 73.33 0.00 43.33 

5 0.00 93.33 100.00 0.00 43.33 

6 100.00 100.00 96.67 100.00 99.17 

7 0.00 100.00 100.00 0.00 50.00 

8 0.00 96.67 100.00 0.00 49.17 

9 0.00 100.00 0.00 0.00 25.00 

10 0.00 100.00 100.00 0.00 50.00 

 

Table 4.24: Accuracy (%) using ANN at SNR = 40 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 100.00 100.00 0.00 50.00 

2 100.00 100.00 100.00 100.00 100.00 

3 0.00 100.00 100.00 0.00 50.00 

4 100.00 100.00 96.67 100.00 99.17 

5 0.00 100.00 96.67 0.00 49.17 

6 100.00 100.00 96.67 100.00 99.17 

7 0.00 100.00 0.00 0.00 25.00 

8 0.00 100.00 100.00 0.00 50.00 

9 0.00 100.00 100.00 0.00 50.00 

10 0.00 93.33 100.00 0.00 48.33 
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Table 4.25: Accuracy (%) using ANN at SNR = 50 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 0.00 100.00 100.00 0.00 50.00 

3 100.00 96.67 100.00 100.00 99.17 

4 0.00  100.00 100.00 0.00 50.00 

5 0.00  100.00 100.00 0.00 50.00 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 100.00 

9 56.67 100.00 86.67 100.00 85.83 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.26: Accuracy (%) using ANN at SNR = 60 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 100.00 100.00 100.00 100.00 100.00 

2 0.00 100.00 100.00 0.00 50.00 

3 96.67 100.00 100.00 100.00 99.17 

4 100.00 100.00 100.00 100.00 100.00 

5 96.67 100.00 100.00 100.00 99.17 

6 0.00  100.00 100.00 0.00  50.00 

7 0.00  100.00 100.00 0.00  50.00 

8 0.00  100.00 100.00 0.00  50.00 
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9 0.00  100.00 100.00 0.00  50.00 

10 100.00 100.00 100.00 100.00 100.00 

 

Table 4.27: Accuracy (%) using ANN at SNR = 70 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 100.00 100.00 0.00 50.00 

2 100.00 100.00 100.00 100.00 100.00 

3 100.00 100.00 100.00 100.00 100.00 

4 0.00  100.00 100.00 0.00  50.00 

5 0.00  100.00 100.00 0.00  50.00 

6 0.00  100.00 100.00 0.00  50.00 

7 0.00  100.00 100.00 0.00  50.00 

8 0.00  100.00 100.00 0.00  50.00 

9 0.00  100.00 100.00 0.00  50.00 

10 0.00  100.00 100.00 0.00  50.00 

 

Table 4.28: Accuracy (%) using ANN at SNR = 80 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 96.67 100.00 96.67 49.17 

2 93.33 100.00 100.00 100.00 98.33 

3 100.00 100.00 100.00 100.00 100.00 

4 0.00  100.00 100.00 0.00 50.00 
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5 0.00  100.00 100.00 0.00 50.00 

6 0.00  100.00 100.00 0.00 50.00 

7 0.00 100.00 100.00 0.00 50.00 

8 96.67 100.00 100.00 100.00 99.17 

9 100.00 100.00 100.00 100.00 100.00 

10 0.00 100.00 100.00 0.00 50.00 

 

Table 4.29: Accuracy (%) using ANN at SNR = 90 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00 100.00 100.00 0.00 50.00 

2 0.00 100.00 100.00 0.00 50.00 

3 0.00 100.00 100.00 0.00 50.00 

4 0.00 100.00 100.00 0.00 50.00 

5 0.00 100.00 100.00 0.00 50.00 

6 0.00 96.67 100.00 0.00 49.17 

7 100.00 100.00 100.00 100.00 100.00 

8 0.00 100.00 100.00 0.00 50.00 

9 0.00 100.00 100.00 0.00 50.00 

10 100.00 100.00 100.00 100.00 100.00 
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Table 4.30: Accuracy (%) using ANN at SNR = 100 dB 

Run 

Defects 

Overall 

C1 C2 C3 C4 

1 0.00  100.00 100.00 0.00 50.00 

2 0.00  100.00 100.00 0.00 50.00 

3 80.00 100.00 100.00 100.00 95.00 

4 0.00  100.00 100.00 0.00 50.00 

5 0.00  100.00 100.00 0.00 50.00 

6 90.00 100.00 100.00 100.00 97.50 

7 100.00 100.00 100.00 100.00 100.00 

8 0.00  100.00 100.00 0.00 50.00 

9 0.00  100.00 100.00 0.00 50.00 

10 100.00 100.00 100.00 100.00 100.00 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



55 

4.5 PD Signals After DWT 

Figure 4.1 to Figure 4.4 shows a clear Input signal and a distorted PD signal 

accompanying DWT for C1 defect (insulation incision defect), C2 defect (axial path shift 

defect), C3 (semiconductor layer tip defect) and C4 (metal particle on XLPE defect). 

 

(a) 

 

(b) 

Figure 4.1 (a) Clean PD signal and (b) noisy PD signal after DWT for defect C1 

(insulation incision defect) 
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(a) 

 

(b) 

Figure 4.2: (a) Clean PD signal and (b) noisy PD signal after DWT for defect C2 

(axial path shift defect) 
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 (a) 

 

(b) 

Figure 4.3: (a) Clean PD signal and (b) noisy PD signal after DWT for defect C3 

(semiconductor layer tip defect) 

 

Univ
ers

ity
 of

 M
ala

ya



58 

 

 (a) 

 

       (b) 

Figure 4.4: (a) Clean PD signal and (b) noisy PD signal after DWT for defect C4 

(Metal particle on XLPE defect) 
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4.6 Classification Results  

A contrast with DWT as the signal processing system under a particular signal to noise 

ratio (SNR) is shown in Table 4.31. The approaches used in the previous work are ANN 

and SVM [62] while using KNN is the method proposed in this work. Every procedure 

was repeated for 10 times using training and testing data taken randomly and the accuracy 

rate has been obtained. Through this table, it has been shown that KNN provides the 

highest performance of defect classification on  XLPE cables, where 100 percent for SNR 

from 60 dB to 100 dB and 99.42 percent for SNR at 10 dB, 99.75 percent for 20 dB, 99.08 

percent for 30 dB and 99.58 percent for 50 dB. The exactness of the defect type evaluation 

for the three methods is greater in the higher SNR. It can also be seen that KNN achieves 

greater accuracy in signals at various levels of noise relative to SVM and ANN, which in 

turn declines specifically at higher levels of noise. 

 

Table 4.31: Comparison of accuracy (%) between different classifiers 

 

 

Classifier 

Accuracy (%) 

Signal to Noise Ratio (SNR) (dB) 

10 20 30 40 50 60 70 80 90 100 

KNN 99.42 99.75 99.08 99.58 99.58   100.00 100.00   100.00 100.00 100.00 

SVM 49.83 49.58 49.92 49.67 50.17 50.17 50.17 51.08 50.75 50.75 

ANN 59.25 52.00 56.33 62.08 83.50 74.83 60.00 69.67 59.92 69.25 Univ
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CHAPTER 5: RECOMMENDATIONS AND CONCLUSIONS 

 

5.1 Conclusions 

A successful classification of defect types in cable joints of KNN with cross link 

polyethylene (XLPE) has been achieved. The obtained PD inputs were collected with 

discrete signal transform (DWT) methods. This designs were effectively used for the 

purpose of defining defect types in XLPE cable connectors for k nearest neighbor (KNN), 

the support vectors (SVM) and artificial neural networks (ANN). 

To assess the correct approach with the greatest accuracy, the same outcomes from the 

different approaches were contrasted with each other. The results show that the extracted 

input characteristic from the discrete wavelet transform (DWT) signals, classified using 

the K Nearest Neighbor classifier (KNN), was able to classify the defect types with the 

greatest precision. A contrast of the SVM and ANN reveals also that the data obtained 

from this work are higher as the results are more accurate. 

The extraction of PD signals from the DWT technology and the KNN training can 

therefore be considered as an appropriate tool for classifying fault forms in XLPE cable 

connections that can assist in cable joint maintenance and detection. 
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5.2 Recommendations on future work 

Following are the initial work that can be carried throughout this research: 

I. Develop a PD classifier that is capable of modeling data sequence so that 

each sample can be presumed to be based on the previous ones used with 

convolutional layers to expand the effective pixel neighborhood 

II. Test with other signal processing methods 

III. Classify using other classifiers 
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