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OPTIMAL CONTROL OF A RUMOR PROPAGATION MODEL WITH 

DIFFERENT PROPAGATION DEGREES IN SOCIAL NETWORK 

ABSTRACT 

Rumor is a social interaction of information, and its development is of great 

significance to human beings. In this paper, by studying the D-K model and a rumor 

model spreading with rumor latent period, deduces the rumor model with different 

propagation degrees of the spreaders. The two equilibrium points in the system are 

found through derivation. In real life, enterprises often ignore the reasonable planning of 

the cost of rumor control. By means of public education and media technology using by 

the authorities to debunk rumors, an optimal control problem is established. The 

Pontryagin’s maximum principle is combined with the Hamiltonian function. 

Bang-bang control enables the linear control set U to get the optimal solution in the 

nonlinear cost problem. MATLAB was used for simulation, and the visualization results 

of the rumor model were obtained. Finally, the research on rumor is summarized to 

optimize the cost of rumor control. 

Keywords: rumor model; equilibrium point; maximum principle; Bang-Bang control; 

simulation. 
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KAWALAN OPTIMUM MODEL PEMBIAKAN KHABAR ANGIN DENGAN 

PEMBIAKAN S DALAM RANGKAIAN SOSIAL 

ABSTRAK 

Khabar angin interaksi sosial maklumat, dan pembangunannya adalah besar kepada 

manusia. Dalam kertas ini, dengan mengkaji model D-K dan model khabar angin 

khabar angin yang tersebar dengan tempoh spacent, deduces model khabar angin 

dengan darjah pembiakan sppembaca. Kedua-dua titik snum dalam sistem dijumpai rhoi 

rheo. Dalam kehidupan sebenar, Syarikat sering mengabaikan perancangan yang 

munasabah kos kawalan khabar angin. Dengan cara pendidikan awam dan teknologi 

media dengan menggunakan pihak berkuasa untuk membuat khabar angin, masalah 

kawalan yang optimum ialah seicrin. Semua prinsip Pontyagin digabungkan dengan 

fungsi Hamiltonian. Letupan-letupan kawalan ke atas kawalan linear menetapkan anda 

untuk mendapatkan penyelesaian yang optimum di strus. MATLAB telah digunakan 

untuk simulasi, dan Sai res s model khabar angin oleh waswed. Akhirnya, kajian ke atas 

khabar angin adalah periuk untuk mengoptimumkan kos kawalan khabar angin. 

Kata kunci: model khabar angin; titik keseimbangan; prinsip maksimum; 

Letupan-letupan kawalan; Simulasi. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of study 

Rumors are thought to be 'brain sensations'. As a typical social phenomenon, rumors 

exist in every aspect of life. Especially in emergencies and various crises, the role of 

rumors should not be underestimated. Traditional rumors are spread from person to 

person. In the past 20 years, electronic information technology and Internet technology 

have made rapid development, and the existence form, propagation way and 

propagation means of rumors have undergone fundamental changes. The rapid 

development of the Internet does bring a lot of convenience to our life, but it also makes 

information spread quickly through the Internet. This includes a wealth of 

misinformation. From Facebook to Twitter, people share all kinds of false images. 

During the COVID-19 pandemic in 2020, rampant rumors forced countries to 

establish mechanisms to check and combat fake news, and even the World Health 

Organization had a regularly updated, fact-busting web page. Interestingly, in the face of 

false information, there is an unexpected "equality of all", even scholars and 

intellectuals with a solid academic foundation seem not to be immune to disinformation. 

During the epidemic, the news broke out in China that shuanghuanglian oral liquid 

could resist disease and inhibit bacteria, and had a preventive effect on COVID-19. 

After that, shuanghuanglian was sold out by all the major pharmacies in China during 

the period. We are well aware of the damage that disinformation can do to our society, 

but we still believe in it inescapably, even the so-called "smart people". 

What makes rumors such force majeure in the Internet Age. Part of the problem 
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stems from the nature of the rumors themselves. We are bombarded with information 

every day, so we often rely on our intuition to determine whether information is true or 

not. Disseminators of fake news often use some simple techniques to make information 

feel "real." This prevents us from using critical thinking to verify the authenticity of 

sources. Eryn Newman of The Australian National University has shown that attaching 

a picture to an article increases confidence in its accuracy, even if it is unrelated to the 

article's content. For example, a normal picture of a virus appears alongside the text of a 

new treatment. The picture does not prove the article itself, but it helps people visualize 

the general situation. So we see this "processing fluency" as a sign of being right. Even 

the simple repetition of a sentence, whether it's the same paragraph of text or multiple 

pieces of information, can increase "authenticity" by increasing familiarity. And people 

mistake that familiarity for authenticity. So the more we see in our news feeds, the more 

likely we are to think it's real, even if initially skeptical. 

As early as 1947, American psychologist Gordon Willard Allport believed that there 

are two basic conditions for rumor: first, the content of rumor must have some 

importance to the listener and the rumormonger. Secondly, the real thing must be 

covered up with some vagueness. Importance means that if a rumor has no significant 

impact on people's lives, people will be less inclined to spread it . Ambiguity means that 

the less easily a rumor can be seen, the harder it is to tell the truth, the easier it will 

spread, similar to the incubation period in epidemiology. The more difficult it is to catch 

the symptoms of an epidemic before it develops, the more harmful it is. After that, 

Allport and Bosman give a rumor determination formula: rumor = importance ×

ambiguity; Then, in 1953, Crosfield revised it, arguing that rumor = importance × 
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ambiguity × public critical power. As importance and ambiguity approach zero, rumors 

are no longer threatening. This surface, if people think a lot, can tell whether more 

information shared is true or false. As the saying goes, "Rumors stop with wise men." 

Therefore, rumors can be controlled. When rumors rapidly spread on social networks, 

we usually adopt two methods to control the spread of rumors: control the channels 

through which rumors are spread and the release of authoritative information by public 

authorities. However, these two methods both require high cost in daily life. Control the 

propagation channels means stop the rumor from reaching out to influential people. On 

the one hand, the official release of authoritative information means the invocation of a 

large number of social resources, such as network resources, human resources and 

media resources. On the other hand, this requires us to spend a lot of energy in 

cooperation and coordination with media companies. 

Large-scale studies of the rumor problem began in World War II, although their 

spread showed great similarities to infectious diseases. However, unlike a large number 

of studies on infectious disease models, researches on the dynamic mechanism of rumor 

propagation are very limited. Therefore, the study of complex network rumor 

propagation will have far-reaching significance in the coming decades. 

 

1.2 Problem Statement 

From the above, it can be seen that the spread of rumors is very complicated with 

various ways. Some rumors are made by people who are in trouble or who have made 

unsubstantiated statements without malice. This is largely due to their misunderstanding 

of something. However, there are also some rumors spread by people with ulterior 
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motives. Some are seeking their own selfish interests, some are grandstanding, and 

some are spreading malicious remarks for their own political purposes. What's more, it 

is for hurtful words. Seemingly reliable information seems to come from a real message. 

Moreover, because of the cognitive, psychological and stance bias of each person, the 

spread of rumors has different influences on each person. No matter for what reason, 

who is spreading rumors, whether intentionally or unintentionally, the spread of rumors 

is of great harm to social media. 

The harm of rumor is as follows: 

1. It will cause social shock, endanger the public security and harm the public 

interest. 

2. Disturb people's mind, psychological and behavior. 

3. Destroy the credibility of the government, damage the government image. 

Due to the destructive power of rumors that people try to control rumors in various 

ways. However, in the process of controlling rumors, there is little research on the cost 

of controlling rumors. Often an execution strategy requires a high execution cost, if the 

cost of disseminating the truth is reduced is a very necessary research problem. 

This paper will aim at the cost of rumor control, using a special control method, so as 

to achieve the purpose of minimizing the cost of rumor propagation control and Increase 

strategic returns. Meanwhile, based on the previous research, the rumor model is further 

complicated. Someone who spread the rumor will first in a latent period, thinking 

whether spreading the rumor or not. People who spread the rumor have different 

propagation degrees. 
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1.3 Objective 

The main objectives of this work: 

1. To analyze the D-K rumor model and ABCD-type model, and improve the 

models by adding in different degrees of rumor spreaders. 

2. To analyze the equilibrium points of the improved ABCDE-type model. 

3. To add proportional control variables, and analyze the property of the 

ABCDE-type model under the control. 

4. To optimize the benefit function of rumor control in the expected time by 

Bang-Bang control in order to minimize the cost of rumor control. 

 

1.4 Scope of study 

The scope of this work is to establish a rumor propagation model with propagation 

latency and different propagation degrees through the original model. Moreover, the 

control factors of intervention are added to the new model to obtain the cost and benefit 

of rumor propagation through investigation. The optimal control method can minimize 

the cost of rumor propagation and reduce the number of rumor propagation. 

 

 

 

 

 

CHAPTER 2: LITERATURE REVIEW 
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2.1  D-K Model 

As early as in the 1960s, Daley and Kendall put forward the mathematical model of 

rumor propagation in the form of published paper. The Later researchers named it D-K 

model. The model analyzes rumor propagation by means of stochastic process. The D-K 

model assumes a closed population of N(t), the population is assumed to be uniformly 

distributed. The closely related populations were divided into three kinds of people, they 

are ignorants, spreaders, and stiflers. A(t) stands for the population of ignorants at some 

time, which means people who haven't heard or been exposed to a rumor. B(t) stands for 

the number of spreaders at one time; it stands for those who have heard the rumor and 

are continually reading it to others. C(t) represent for the population of stiflers at some 

time. It means someone who has heard a rumor and confirmed that the rumor is not true 

and no longer spreads it. The A(t) + B(t) + C(t) = N(t). The model also assumes that 

propagation of the rumor occurs between ignorants and spreaders. When a ‘spreader’ 

contacts an ‘ignorant ’, the ‘ignorant’ person becomes infected and becomes a 

propagator. When two spreaders contact each other, they lose interest and become a 

‘stifler’. Stiflers are defined as no longer spread. 

Next, Cintron-Arias and Castillo-Chavez give the following deterministic version of 

the D-K model:  

0

0 0

0

( )
. . . . . .

( )

dA AB
a

dt N

dB AB B B C
a b

dt N N

dC B B C
b

dt N

①


 




 

 




 

 This model is good for explaining the D-K model, because it's a deterministic model. 
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But this model also has many disadvantages, such as no inflow or outflow of classes. In 

addition, the model ignores the influence of individual personality on rumor 

propagation. We assume that one ignorant will immediately become a propagator after 

being exposed to the rumor, ignoring the time to judge whether the rumor is true or false. 

The model also assumes that when you hear a rumor, you will spread it. It ignores the 

possibility of not wanting to spread. When the spreader becomes a stifler, even if the 

rumor is heard again, it will not be spread again. Although this model still has many 

shortcomings, it still has far-reaching significance for the advancement of rumor 

research. 

 

2.2  D-K Model with latent period 

An paper published by Liangan Huo, Tingting Lin, Chongjun Fan, ChenLiu and 

JunZhao in 2015 named ‘Optimal control of a rumor propagation model with latent 

period in emergency event’ propose a new model for us. This model is derived from the 

D-K model which has four different classes. Their model is more general than the D-K 

model. The model suggests that it takes time for people to consider , from hearing 

rumors to spreading them. Not everyone spreads rumors. Because different people have 

different personalities, they behave differently after hearing rumors. Some people 

believe that rumors are 'truth' and these people actively spread rumors. Others think that 

rumors are not credible and they choose not to spread rumors after thinking about it. 

The model also takes into account the effect of class inflow and outflow on the system, 

including the emigration population and the emigration population.  

The following is the detailed explain of the model： 
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The model is a result of ABCD type, which represents four different groups: the 

ignorant group, the latent group, the spreader group and the stifler group. Each 

population at time t is defined as A(t), B(t), C(t), D(t). Class A represents for those who 

have not been exposed to the rumor, which is called ‘ignorants’ ;Class C represents for 

those who is spreading the rumor, they are called ‘spreaders’; Class D is the population 

for someone who has been heard the rumor and no longer spreading it. They are called ’

stiflers‘. On this basis, a latent class B is added, which means that a person will enter an 

incubation period after hearing a rumor, consider the truth of the rumor, and decide 

whether to spread it. At time t the total population is defined as N (t).Then 

N(t)=A(t)+B(t)+C(t)+D(t). 

The transformation of the relationships between the classes is shown in the figure 

below: 

 

Figure 2.1: State diagram of ABCD Model 

As can be seen from the figure, the model is no longer a model of closed population. 

We assume that there are some people flowing into the model all the time, and there are 

some people flowing out from all classes, Λ(t) is a positive number indicating the 

number of people flowing into the system at time t, that is the population of 

immigration; The positive constant μ∈(0,1] is for emigration rate, then we can easily 
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get, the system tends to equilibrium when Λ(t)-μN(t)=0. In this model, the 

rumor-hierarchy changes only when someone is contacted with a spreader. When the 

ignorant and a spreader contact, we assume that the transmitter of rumors at a constant 

rate, an ignorant will enter an incubation period after hearing the rumor to judge the 

correctness of the rumor. Within a very small time interval (t, t+ Δt), β0
𝐴𝐶

𝑁
 ignorants 

will change their class to latent-group, where β0∈(0,1] is an positive value which 

represent the changing rate from ignorant-group. People in the latent-group need time to 

think about whether the rumor is true or not. Some people think the rumor is true, and 

they become transmitters. Some people think the rumor is false, they stop spreading the 

rumor and become the stifler. θ∈(0,1] indicating the rumor belief rate. α0∈(0,1] is an 

positive value which represent the changing rate from latent-group. When two spreaders 

contact each other, we assume that they will spread rumors to each other until both of 

them get tired, and eventually they both lose interest and become stiflers. When a 

spreader is contacted by a stifler, the stifler knows that the rumor is false, does not 

continue to spread the rumor and informs the spreader, thus the spreader eventually 

becomes the stifler. The conversion equation for the spreader group should be λ0
𝐶(𝐶+𝐷)

𝑁
, 

λ0 represent the changing rate from spreader-group. With the advent of the Internet era, 

media has become an efficient and effective way to refute rumors, and we can get 

relevant information through social media in many cases. Set γ0 as the media rate, some 

people will lose interest in rumors through media, the population is γ0C.  

Their ABCD model is an optimization of the D-K model. During the period, it is 

assumed that the propagation content of rumors is unchanged, that is, rumors will 

spread at any time and any place, then we can get the equation is the rumor system: 
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 
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 

   

However, their model also has shortcomings, that is, it does not consider the impact 

of the intensity of rumor propagation on the system. 

In our daily life, different people treat rumors in different ways. Some people will 

only say a few words after hearing a rumor, while others will spread the rumor to each 

other, depending on the character of the rumor monger. In addition, the importance of 

rumors to the parties involved is also different, which greatly affects the propagation 

intensity of the spreaders. In order to overcome it, when I build my own model, I further 

subdivide the process of spreaders into light disseminators and intense disseminators. 

Light disseminators are less harmful to the society, while intense rumor disseminators 

may cause panic and do more harm to the society. Therefore, these people must be 

strictly controlled. In chapter 3, I will specifically analyze and explain my model. 

 

2.3  Potragyin’s Maximum Principle 

The maximum principle of Pontryagin is also called the minimization principle of 

Pontryagin. The theory of optimal control is to find the optimal control signal from one 

state to another in the condition of limited input control. The theory was proposed in 

1956 by Lev Pontryagin, a Russian mathematician, and his students. This is a special 

case of The Euler-Lagrange equation in the variation method. 
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2.3.1 Euler-lagrange equation 

Variation method is a method of researching functional extremum. For example, the 

speed drop problem: how to design a slide to slide from the top to the bottom in the 

shortest time. These are the two points that are not on the same vertical plane, and they 

can form an infinite number of curves, one of these curves is the optimal solution. Due 

to the velocity is different from time to time. To analyze this problem, we can solve it 

through Euler-Lagrange equation: 

0. . . . . .
'

L d L

g dx g
③

 
 

   

It is the core of variation method, both fixed boundary and movable boundary cannot be 

separated from it. 

2.3.2 Pontragyin’s Maximum Principle 

In simple terms, this theorem means that in all possible controls, it is necessary to 

make the "control Hamiltonian" an extreme value and find an appropriate particular 

solution U* in all possible control sets U. This theorem states that the optimal control 

U* must satisfy the following conditions: 

* * *( x ( ) , ( ) , ( ) ) . . . . . .H t u t t const ant ④   

If the final time is unlimited, then: 

* * *( x ( ) , u ( ) , ( ) ) 0. . . . . .H t ⑤t t   

If the Maximum value principle of Pontriagin is satisfied on a certain trajectory, the 

principle must determine an optimal solution (a necessary condition). The 

Hamilton-Jacobi-Behrman equation provides sufficient and necessary conditions for the 

optimal solution, but this condition must be true in the whole state space. 
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2.3.3 Transversal conditions 

The establishment of transversal conditions is often a problem encountered in the 

optimal control problem. People study the optimal control problem because of the actual 

background of variation principle in many fields of society and nature. 

The society pursues the benefit, when the input is certain, hopes to produce the 

maximum or if you have a certain amount of output, you want the minimum input. 

When we use Pontryagin’s maximum principle to define a Hamiltonian function, the 

transversal condition must be considered if the boundary is not fixed. 

However, the constraint of transversal conditions is often related to the declaration of 

the actual problem. In some cases, the function of the state variable must be equal to 

zero or a fixed value at time T. 

By Pontryagin’s maximum principle , it is easy to derive the Hamiltonian formula: 

The objective function is 
0

( , , ) . . . . . .
T

V F t y u dt ⑥   

subject to f ( y( t ) , u( t ) ) , 0 t T. . . . . .
dy

d
⑦

t
    

 

Use the Lagrange multiplier, the constrained optimization problem can be 

transformed into unconstrained optimization problem by using Lagrange multiplier 

method, then: 

0
[ ( , , ) ( ( , , ) ) ] , ( ( , , ) ) 0. . . . . .

T

t t t t
L F t y u f t y u y dt f y ⑧t y u       

V=L, 

0
[ ( , , ) ( , , ) ] . . . . . .

T

t t t
L F t y u f t y u y dt ⑨     

( , , , ) ( , , ) ( , , ) . . . . . .
t

Ht y u F t y u f t y u ⑩    

Use partial integral: 
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0 00
[ ( , , , ) ] . . . . . .

T

t t T T
V H t y u y dt y y       ⑪ 

We can use it to discuss about the transversal condition: 

1. Vertical line problem (Based on Chiang pp. 181-184) 

A horizontal ending point transversal condition can be consider as the T is fixed but 

the yT cannot be determined. For example, you deposit an asset in a bank and you want 

to withdraw it after three months, but you're not bound by any other conditions on the 

time you withdraw. When yt is free, in order to maximum the return on asset V, the 

shadow of yT must equal to 0. 

 

Figure 2.2: Vertical line condition 

So at the final moment T, if yT can take any value, then the edge value of a change in 

yT must be zero, so ∂V/∂yT =0, combine the Previous Hamiltonian formula we can get 

∂V/∂yT=-λT=0. 

2. Horizontal terminal line 

 

Figure 3.1: Horizontal terminal condition 

Let's say that in another situation, you put an asset in the bank, you don't limit how 
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long it can be withdrawn, but when you want to withdraw the asset, the asset has to be   

a certain state. This is a typical horizontal terminal problem where yT is fixed but T can 

choose any value. To solve this problem, let's apply the Hamiltonian formula. 

0 00
[ ( , , , ) ] . . . . . .

T

t t T T
V H t y u y dt y y       ⑪ 

Since T varies, we take the partial derivative with respect to T. 

[ ( , , , ) ] ( ) . . . . . .
T T T T T T T T T

V
H T y u y y y

T
   


   


⑫ 

As you can see from the graph, the derivative of yT is zero. We use it to solve the 

optimal control problem and check the result. Hamiltonian equation should also be 

equal to 0. 

 

2.4 Bang-Bang control 

Rod control was first proposed by Pontryagin and belongs to the optimal control 

theory. It is a common integrated control in engineering field. As a hysteresis control, 

Bang-Bang control is often used to solve the problem of follow-up system control. 

Compared with PID control, PIID control is simple and can achieve effective control 

even if the object model is not clear, but PID control has poor adaptability to model 

parameter change and interference. Bang-Bang control plays an important role in the 

follow-up system with large system deviation, which can increase the control force. 

Especially for the follow-up system with wide speed range, small static error and fast 

dynamic response, Bang-Bang control is a good choice. Bang-Bang control can be used 

in the research of soccer robot motion control, servo system and many other fields. 

Since their controllers are implemented by providing hysteresis, they are often used to 
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control devices with binary inputs, such as a thermostat that can only be fully on or 

completely off. 

Bang-Bang control can only be used to solve the control variable is a linear function, 

because Bang-Bang control is always the space state is divided into two areas, a region 

take the maximum control variables, a regional control variables take the minimum 

value, in the two areas of interface, control variable can take any value, we call it the 

'switch face "of the system. The main thing that determines Bang-Bang control is the 

selection of the switch surface. Bang-Bang control is often used for maximum speed 

control problems and minimum fuel economy systems. With the participation of 

Hamiltonian, the control variable jumps between the minimum and the maximum 

within the range of a restricted control variable, and the number of times the control 

variable jumps from the maximum to the minimum is finite. 

For example, when the follow-up system needs to carry out the turning motion, the 

regression with the maximum possible acceleration εm is required at a certain point, in 

which case the error |εm|<emax. When it reaches a certain point, it needs to decelerate 

with -εm, and when the speed is 0, the error is also 0, which needs to be done by 

Bang-Bang control. 

 

Figure 2.4: Bang-Bang Control Example 

2.5 ODE 45 
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Ode is a function of Matlab specifically designed to solve differential equations.The 

solver has two types: variable step and fixed step. Different types have different solvers, 

among which ODE45 solver is one of variable step size and runge-Kutta algorithm is 

adopted. Other variable step solvers using the same algorithm are ODE23. 

 

Figure 2.5: ODE simulation diagram in MATLAB 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

Rumors in social network are born in the virtual world, but due to the dissemination 

of mainstream media, rumors on the Internet reach more audiences. Although rumors 

abound on the Internet, people's control technology of rumors is not perfect. Like other 

technologies, the network technology itself is neutral, which will bring some negative 

effects while providing convenience and services for the society. As for the cost of 

rumor control technology, many enterprises ignore it. How to maximize the benefits 

brought by rumor control on the basis of effectively reducing rumor propagation is an 

issue that every enterprise should consider. Real-time optimization control can play an 

important role in rumor control systems that need timely response, high reliability and 

security requirements. In this chapter, we deduced a rumor model with disseminators of 

different propagation degrees through the accumulation of predecessors, and considered 

it in the propagation with latent period. The equilibrium points under this model are 

determined, and the rumor propagation control system within 10 days is analyzed by 

using the optimal control. At the same time, minimize the cost of rumor control to 

maximize the benefits of controlling rumor. 
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Figure 3.1: Project flow for rumor model research 

 

3.2 Real-time optimization (RTO) 

Real-time optimal strategy is used to study the system with strict requirements on 

response time. The performance of RTO varies according to the mathematical model 

established. RTO can ensure that a specific optimization is completed for a specific 

operating system within a certain time limit. 

In this case, the optimizations were targeted at conversion rates between spreaders 

with different spreading degrees and stiflers, and the conversion rates between people in 
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rumor incubation period and stiflers. In order to spread the truth, it is necessary to 

optimize the educational and media resources to control rumors at all times. However, 

the supply of resources is limited, and we cannot guarantee that sufficient resources can 

be provided at all times. 

 

3.3 ABCDE-type Model 

In the literature in Chapter 2, we have analyzed the existing models. The rumor 

propagation model with incubation period, published in 2015, takes into account the 

fact that people need to think about rumors based on the D-K model, that is, a new 

group B is considered to represent the population entering the incubation period of 

rumors. Adding both inflow and outflow classes increases the "liquidity" of the model, 

which is closer to the truth and greatly develops the D-K model. However, this model 

also has a shortcoming, that is, it ignores the influence of personality on individuals in 

the process of rumor propagation. After everyone hears the rumor and thinks about it, 

some people will choose to spread the rumor, while others decide not to spreading it. In 

that part of the spreaders, due to individual differences, the mode and intensity of 

spreaders will be different, so it is very necessary to subdivide the spreaders with 

different cases. In my model, disseminators are divided into two groups. One group is 

not affected by rumors, but only spreads rumors slightly. Others are strongly encouraged 

by rumors and firmly believe and spread them. Or the instigators and initiators of those 

rumors, they hope to get some benefits from the rumors, this part of the spreaders is 

more extreme, so the harm to the society is greater. These people must be strictly 

controlled in order to maintain the healthy development of public opinion. Further 
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discussions will be made in the following process. 

In this model, all the people in the rumor model are divided into five groups, namely 

A (t), B(t), C(t), D(t) and E(t). Each group represents a crowd. I call this model 

ABCDE-type model. A is for someone who has not been touched by the rumor, which is 

called Ignorants. B represents the population that heard the rumor and went into the 

incubation period. C is for the population who is affected by a rumor and spreads it 

slightly,it is called mild spreaders. D is the population who believes in or fancies rumors, 

call it severe spreaders. Finally, those who had heard the rumor and stopped spreading it 

were represented by E. We call this group the stiflers’ group. The following diagram can 

be obtained: 

 

Figure 3.2: State diagram of ABCDE-type Model 

 

We assume that the total population of the system is N, N=A+B+C+D+E. The 

population of immigration at any time is Λ(t). We set the emigration rate of the 

population of the system at any given moment as μ(t), μ(t)∈(0,1]. We assume that 

rumors must be spread by contact with people who are in mild or severe case spreading 
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group. A person in the ignorant-group will enter a rumor spreading latent period when 

they are in contact with a mild spreader or severe spreader, thinking whether the rumor 

is the truth or not. In a very small time interval(t,t+ Δ t) ， there is the  

population 
𝑎0𝐴(𝑡+∆𝑡)[𝐶(𝑡+∆𝑡)+𝐷(𝑡+∆𝑡)]

𝑁(𝑡+∆𝑡)
−

𝑎0𝐴(𝑡)[𝐶(𝑡)+𝐷(𝑡)]

𝑁(𝑡)
 moving from the ignorant group 

to the latent-group. Where a0∈(0,1] is a positive value indicating the conversion rate of 

ignorants. When an ignorant first entered into the latent-group B, he  would go through 

a period of reflection. Some would consider the rumor to be false, so they would switch 

to the Stifler-group E and never spreading about it. Some people in the incubation 

period believe that the rumor is true, so they become spreaders. Under the influence of 

personality, some people become mild spreaders, while others become severe spreader, 

represented by b0θ1B and b0θ2B respectively. θ1 and θ2 are the conversion rates for 

becoming mild spreaders and severe spreaders, 0<θ1+θ2<1. The population converted 

between the latency group and the Stifler group are represented by b0(1-θ1-θ2)B, b0 is a 

positive value represent the conversion rate from latent-group. When two mild spreaders 

come into contact, we assume that both parties spread the rumor at a constant rate. The 

repetition over and over will make both mild spreaders more convinced of the "truth" of 

the rumor, and both of them will turn into severe spreaders. When a mild and a severe 

spreader contact, the severe spreader believe the rumors is trust without any doubt. 

Some severe spreaders are instigators, they hope the others can also believe the rumor 

without any doubt. Rumors will spread among them at a certain rate, makes the mild 

spreader over and over again to deepen the impression. The mild spreader believes of 

the rumor originally, which will make them more convinced that the rumor is "true", 

and eventually become a severe spreader. Thus the population transition relationship 
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between the mild-group and severe-group can be expressed as 
𝑐0𝐶(𝐶+𝐷)

𝑁
, c0∈(0,1] 

represent the changing rate from mild-group. A stifler is a person who has heard a rumor, 

knows it's not true, and stops spreading it. 

We assume that the system will not propagate twice, that is, a stifler will not believe 

the rumor even if he hears it again after confirming the rumor is not truth. Assume that 

rumor propagation will occur at any time and under any circumstances in this system, 

and the content of rumor propagation is constant in the whole process, so that stifler's 

relationship with others can be easily obtained. When a mild spreader is exposed to a 

stifler, the mild spreader spreads rumor to the stifler at a constant rate, but the stifler has 

determined whether the rumor is true or false and not spreading rumors any more. 

People who are mild spreader spread the rumor again and again to the stifler, and 

eventually become tired and stop spreading it, thus becoming a stifler. 
𝑐0𝐶𝐸

𝑁
 is the 

relationship between mild-spreader-group and stifler-group. Similarly, when a severe 

spreader contacts with a stifler, he will be informed of the truth of the rumor and 

converted to a stifler. The conversion relationship between them can be expressed as 

𝑑0𝐷𝐸

𝑁
 and d0 represents the conversion rate from severe-spreader group. 

When two severe spreaders come into contact, we assume that both spreaders 

transmit rumor at a constant rate. The repeated propagation makes both feel tired, and 

eventually they stop spreading the rumor and both become stiflers. The development of 

the Internet has brought about a huge change in the way of media. The emergence of 

digitalization has given birth to new media technology, especially its influence on 

rumors in social network cannot be ignored. We introduce a media rate e0. The spreaders 

will be influenced by the media when rumors spread in the social network. 
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Those mild and severe spreaders who read the news will be converted to stiflers, 

denoting the media-affected population in terms of e0C and e0D respectively. 

Then We can derive that the differential equation for the system is: 

0 0

0 1 0

0 0

0 2 0

0 0

0

0

1 2

0

0

0

( )
. . . . . .

( ) ( )

(

( ）

)
(1 ) ( )

( ）

a AC D
A

N

a AC D

dA

dt

dB

dt

c C C D c CEdC
b B e C C

dt N N

c C C D d D D EdD
b B e D D

dt N N

c CE d D D Ed

b B

E
b B e C D E

dt N

B

N

N

 

 

 















 

    

  

    

 

       













 

⑬ 

 

The range of all the parameters is listed as below: 

Table 3.1: Main parameters of ABCDE-type Model 

θ1∈(0,1] Probability of transition from latent period to a mild spreader 

θ2∈(0,1] Probability of transition from latent period to a severe spreader 

1-(θ1+θ2)∈(0,1] Probability of transition from latent period to a stifler. 

a0∈(0,1] The conversion rate from ignorant-group 

b0∈(0,1] The conversion rate from latent-group 

c0∈(0,1] The conversion rate from mild-spreader-group 

d0∈(0,1] The conversion rate from severe-spreader-group 

e0∈(0,1] The conversion rate from stifler-group 

Λ∈(0,+∞] The population of immigration in the system 

μ∈(0,1] The population rate of emigration in the system 
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3.4 Equilibrium point 

In an epidemic model, the population dynamics can be represented by 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑁, 

When t→+∞,the total population N→ 
𝛬

𝜇
. When N→ 

𝛬

𝑁
 , in other words, the system has 

reached its maximum population carrying capacity. Let's make a= 
𝐴

𝑁
, b= 

𝐵

𝑁
, c= 

𝐶

𝑁
, d= 

𝐷

𝑁
, 

e=
𝐸

𝑁
, a1= 

𝑎0

𝜇
, b1= 

𝑏0

𝜇
, c1= 

𝑐0

𝜇
, d1= 

𝑑0

𝜇
, e1=

𝑒0

𝜇
, τ=μt, then we can simplify the above 

differential equation: 

1

1

1 1 1 1 1

1 2 1 1 1

1 1 2

1

1 1 1

1 ( )

( )

. . . . . .( )

( ) ( )

(1 ) ( ) ( )

da
a a c d

d

db
a a c d

d

dc
b b c c c d c ce ec c

d

dd
b b c c c d d d d e ed d

d

de
b b c ce d

a

bb

d d e e c d

b

e
d











 



  




 



     



      



      




 

 

⑭ 

From the simplified system of differential equations, it can be seen that Λ, μ and N 

are removed. Where a, b, c, d, e are respectively represent the proportion rate in the 

rumor system. We can easily get a+b+c+d+e=1. Rewrite τ as t and substitute e in with 

the formula e=1-a-b-c-d, then can get the rumor subsystem: 

1

1 1

1 1 1 1

1 2 1 1 1

1 ( )

( )

. . . . . .

(1 )

( ) (1 )

da
a a c d a

dt

db
a a c d bb b

dt

dc
b b c c a b c d ec c

dt

dd
b b c c c d d d a b c ed d

dt






   




   

        


         


⑮   

The subsystem forms a four - dimensional space： 

A={(a,b,c,d)∈𝑅4+|0< a+b+c+d <1|} 

In order to get to the equilibrium point, all differential equations have to be equal to 
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zero: 

1

1 1

1 1 1 1 1

1 2 1 1 1

1 ( ) 0

( ) 0
. . . . . .

( ) (1 ) 0

( ) (1 ) 0

aa c d a

aa c d bb b

b b c c c d c c a b c d ec c

b b c c c d d d a b c ed d

⑴

⑵
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⑷
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
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         
         

⑯ 

 If I take ⑴+⑵,  get 1-a-b1b-b=0,  then convert the formula: a=1-(b1+1)b…….⑸, 

lug in the formula ⑸ into formulas ⑶ and ⑷, then: 

1 1 1 1 1 1

1 2 1 1 1 1

( ) [1 1 ( 1) ] 0
. . . . . .

( ) [1 1 ( 1) ] 0

b b c c c d c c b b b c d ec c
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
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

          
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Simplify the formula above then we can get: 

1 1 1 1 1 1

1 2 1 1 1 1

( ) ( ) 0
. . . . . .

( ) ( ) 0

b b c c c d c c bb c d ec c

b b

⑹
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
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⑱ 

Substitute formula ⑹ into ⑺ to solve c: 

1 1

1 1 1

. . . . . .
1

b b
c

e c
⑻

bb




 
⑲ 

By the rumor system definition, 1+e1+c1b1b>0 is always true. Let's put the equation

⑻ back into the equation ⑺: 
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The formula above is true when the denominator is not 0. Therefore, we can express 

each state variable of the rumor subsystem with an algebraic expression of b 
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It is easy to see that the system always passes a fixed point (1, 0, 0, 0). This point is 

called the rumor-free equilibrium (RFE) of the rumor system. In addition to a common 

equilibrium point RFE, there is a special equilibrium point which we call it 

rumor-endemic equilibrium (REE). 

Since the calculation of REE is very complicated, we use MATLAB to solve it: 

 

Figure 3.3: MATLAB calculation 

 

As can be seen from the figure, REE calculation results are very complicated, each 

solution has dozens of components, because the highest power of equation b is to the 

third power, so there are three solutions. But these three solutions have the same 

magnitude. We use b* to represent the particular solution to b, so b* can be written as 

𝑏∗ = 𝑋3, this also proves the uniqueness of REE, REE=(a*, b*, c*, d*). 

Since the rumor system is a very complex nonlinear time-varying system, it is 

difficult to prove the stability of the equilibrium point REE and RFE by lyapunov 

second method and Lasalle's invariability principle. The stability of the system can be 

verified by MATLAB simulation and visualization. 

First, we need to establish an optimal control problem. 

 

3.5 Bang-Bang Control 
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When rumors break out in social network, they often need some intervention. We call 

it control. Rumors cannot be created out of thin air. People believe rumors, which are 

related to their own quality and education level. American communication scholar 

Teachino once put forward the theory of "knowledge gap", that is, people with high 

socioeconomic status usually get information faster than those with low socioeconomic 

status. Thus, the more information mass media transmit, the greater the knowledge gap 

between the two. Rational analysis of rumors and improvement of population quality 

play a role in suppressing rumors.u1 is introduced as education rate to expand the model. 

Suppose that a person entering the incubation period, and gets educated, changes their 

conversion rate of becoming a stifler.  

At the same time, the development of new media is derived in the digital era, new 

media technology is used to officially refute rumors, resist the spread of rumors, and 

control the conversion rate between spreaders and stiflers. Set m=1-u2 as the media rate. 

U1 and U2 are used as the control variables to obtain the governing equation of the 

system: 

1

1 1 1 1 2 1 1 1 2

1 1 1 1 2

1 2 1 1 2

1 1 1 2 1 1 2

1 ( )

( ) (1 )

. . . . . .( ) (1 )

( ) ( ) (1 )

(1 ) ( ) (1 ) ( )

da
a a c d a

dt

db
a a c d b b b b u b b b

dt

dc
b b c c c d c ce u c c

dt

dd
b b c c c d d d d e u d d

dt

de
u b b c ce d d d e u c d e

dt

   





 


   




       



      



       



         


㉓ 

Both u1 and u2 are proportional control. 

Different intervention amounts will change the equilibrium point of the system. A 
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successful scheme is considered to control rumor propagation with the minimum cost. 

Suppose that a control scheme is optimal and its cost-benefit function should meet:  

1 2 0 1 2 1 20
( ( ) , ( ) ) [ ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) ] . . . . . .

t f

t
Wu t u t B at e t B c t d t B u t u t dt      ㉔ 

B0 represents the weight coefficient of the population of the ignorant-group and the 

stifler-group. B1 represents the weight coefficient of the population of the 

mild-spreader-group and the severe-spreader-group. B2 represents the weight coefficient 

of control. 

To minimize the cost of rumor control, the revenue function must be maximized: 

max 1 2 1 2 1 2
( ( ) , ( ) ) max[ ( ( ) , ( ) | ( ) , ( t ) U] . . . . . .W u t u t Wu t u t u t u  ㉕

 

In this way, we turn the extremum problem of the revenue function into the problem 

of finding the optimal solution of the control set U with respect to time T, and thus an 

optimal control problem is established. 

The adjoint function is introduced by using the Pontryagin maximum principle. 

The problem of maximizing the objective function of the system function is 

transformed into finding the specific solution of the Hamiltonian or Lagrangian function 

on the control set. Bang-Bang control optimizes control by pushing the value of the 

control variable to either the upper or lower boundary. The Hamiltonian should be:  

       

 

   

     

       

0 1 2 1 2 1 1 1

2 1 1 1 1 1 2 1 1 1 2
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4 1 2 1 1 2

5 1 1 2 1 1 1 2
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1 . . . .1 .

H B a e B c d B u u aac aad a

aac aad b b b b u b b b

b b c c c d c ce u c

b b c c c d d d d e u d

c ce d d d e u c d u b b e
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 

  

 
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 
 



         
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      

         


 

 
  ㉖

 

In the Bang-Bang control, 
1 2 1 2

{ ( ) , ( ) | ( ) , ( ) }u t u t u t u t U is linear with the slope.  

A system of differential equations for the boundary solutions of
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1 2 1 2
{ ( ) , ( ) | ( ) , ( ) }u t u t u t u t U  can be listed: 

2 5 2 1 1 2

1

2 3 5 4 5

2

( ) (1 ) 0
u

. . . . . .

( ) ( ) 0

H
B b b

H
B c d

u

   

   


      



       



㉗ 

For the optimal control solution u1
*(t), u2

*(t), the relationship of its adjoint variables 

to the Hamiltonian should be satisfied: 

1 0 1 2 1 1 2 1 1

2 2 3 1 1 2 4 1 2 2 5 1 1 1 2 2

3 1 1 2 1 3 4 1 3 5 1 2 3

4 1 1 2 1 3 4 1 4 5
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㉘ 

Next, we will analyze the transversal conditions of the system, and it can be easily 

analyzed that the system’s transversal condition satisfies the vertical line problem. 

The system will reach a new equilibrium after going through the control process, and 

the numerical value of each group of the rumor model will remain unchanged when 

reaching the new stability. In other words, the value of each state variable does not 

change as it reaches the new steady state, but the time to reach system stability is free 

and varies. So ∂W/∂aT=-λT=0, ∂W/∂bT=-λT=0, ∂W/∂cT=-λT=0, ∂W/∂dT=-λT=0, 

∂W/∂eT=-λT=0. 

Finally, to explain how to use Bang-Bang control to find the solution that controls U1, 

U2, we need to use optimization techniques. 

1 2 1 2
{ ( ) , ( ) | ( ) , ( ) }u t u t u t u t U

 

Since u1 and u2 are linearly related to the system function, we can determine the 
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value of the control quantity by taking the positive and negative of the partial derivative 

of the Hamiltonian with respect to the control quantity. u1 and u2 are proportional 

controls, and range from 0 to 1. then get the following two conditions: 

1. 
𝜕𝐻

𝜕𝑢
> 0, u=umax 

u1
*(t) =u1max; u2*(t) =u2max. 

 

Figure 3.4: Bang-Bang control principle diagram (1) 

 

2. 
𝜕𝐻

𝜕𝑢
< 0, u=umin 

u1*(t) =u1min; u2*(t) =u2min 

 

Figure 3.5: Bang-Bang control principle diagram (2) 
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CHAPTER 4: RESULT AND DISCUSSION 

4.1 Matlab simulation without control involved 

4.1.1 Parameters use in simulation 

Table 4.1: Parameters of ABCDE-type Model without control 

a0∈(0,1] The conversion rate from ignorant-group 

b0∈(0,1] The conversion rate from latent-group 

c0∈(0,1] The conversion rate from mild-spreader-group 

d0∈(0,1] The conversion rate from severe-spreader-group 

e0∈(0,1] The conversion rate from stifler-group 

μ∈(0,1] The population rate of emigration in the system 

θ1∈(0,1] Probability of transition from latent period to a mild spreader 

θ2∈(0,1] Probability of transition from latent period to a severe spreader 

 

4.1.2 Result and analysis 

The ABCDE-type rumor propagation model is researched without Bang-Bang 

control in 10 days. Under the setting of different parameters, the natural changes of each 

group over time are shown as follows: 
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 (a)                                (b) 

  

(c)                               (d)            

 

               (e) 

Figure 4.1: Simulation result of ABCDE Model without control (1) 

 

a0=0.1,b0=0.2,c0=0.5,d0=0.05,e0=0.03,μ=0.1,θ1=0.4, θ2=0.3. 
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The basic regeneration R0<1, even no control involved, rumors will eventually 

disappear. Finally, touch the point of RFE (1, 0, 0, 0, 0). 

 

  

(a) (b) 

  

              (c)                                  (d) 

 

               (e) 
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Figure 4.2: Simulation result of ABCDE Model without control (2) 

 

a0=0.9, b0=0.5, c0=0.2,d0=0.15,e0=0.05,μ=0.1,θ1=0.4,θ2=0.3. 

The basic regeneration R0>1, the spread of rumors will eventually stabilize at a fixed 

value, finally touch the point of REE. The spread of rumors will remain at a constant 

level. In this case, rumors do not automatically disappear over time. 

 

4.2 Matlab simulation with Bang-Bang control 

4.2.1 Parameters use in Bang-Bang control. 

Table 4.2: Parameters of ABCDE-type Model in control 

d0∈(0,1] The conversion rate from ignorant-group 

a0∈(0,1] The conversion rate from latent-group 

c0∈(0,1] The conversion rate from mild-spreader-group 

d0∈(0,1] The conversion rate from severe-spreader-group 

e0∈(0,1] The conversion rate from stifler-group 

μ∈(0,1] The population rate of emigration in the system 

θ1∈(0,1] Probability of transition from latent period to a mild spreader 

θ2∈(0,1] Probability of transition from latent period to a severe spreader 

B0>0 the weight coefficient of the population of the ignorant-group 

and the stifler-group 

B1>0 the weight coefficient of the population of the 

mild-spreader-group and the severe-spreader-group 
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B2>0 the weight coefficient of control 

u1∈(0,1] Educational control coefficient 

Table 4.2 continued: Parameters of ABCDE-type Model in control 

m=(1-u2) ∈(0,1] Media technology control coefficient 

 

4.2.2 Result and analysis 

  

(a)                                  (b)  

  

              (c)                                  (d) 

Figure 4.3: Simulation result of ABCDE Model in Bang-Bang control 
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(e) 

Figure 4.3 continued: Simulation result of ABCDE Model in Bang-Bang control 

 

B0=1,B1=0.3,B2=0.1,a0=0.9,b0=0.5,c0=0.2,d0=0.15,e0=0.05,μ=0.1,θ1=0.4,θ2=0.3. 

On the previous basis, public education and media technology are used to control the 

rumor, education control the conversion population from latent-group while the media 

technology change the process of spreaders into stiflers. Compared with Figure 4.1, the 

same system parameters were selected here and any equilibrium position can be selected 

for comparison. At the end of the graph line, in the 10th day, the states of each group of 

the system were analyzed in the following table: 

Table 4.3: Comparison of simulation result  

 ingorants latent period mild severe stifler 

without control 0.408 0.09867 0.07936 0.08184 0.3321 

under control 0.492 0.0847 0.0595 0.05526 0.3086 

comparison 0.84↑ 0.01383↓ 0.01974↓ 0.02658↓ 0.0235↓ 

It can be seen from the table that, with the addition of control variables, on the tenth 
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day, the population of ignorants increase and the population of spreaders and Stiflers 

decrease. 

Steady state error of the system： 

[ (0. 492+0. 0847+0. 0595+0. 05526+0. 3086) 1] 100% 0. 06%    

Control of the system: 

Figure 4.4: Bang-Bang control of public education case (1) 

10

1 20
[ ( ) 0. 3( ) 0. 1( ) ]W a e c d u u dt     
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Figure 4.5: Bang-Bang control of media technology by official case (1) 

 

Bang-Bang control is adopted to minimize the optimal solution of rumor control cost, 

as shown in the figure above. The conversion times（10 days）u1 jumps between the 

upper and lower bounds in finite times while u2 is always zero (Media rate is always 1). 

 

10

1 20
[ 0. 2( ) 0. 1( ) 0. 03( ) ]W a e c d u u dt        

 

 

Figure 4.6: Bang-Bang control of public education case (2) 
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Figure 4.7: Bang-Bang control of media technology by official case (2) 

 

B0=0.2,B1=0.1,B2=-0.03,a0=0.9,b0=0.5,c0=0.2,d0=0.15,e0=0.05,μ=0.1,θ1=0.4,θ2=

0. 

The weight coefficient of cost-benefit function is different, even if the same system 

and the same control, the bang-bang optimal solution will be different. 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



41 

 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1   Conclusion 

Rumors are the result of human interaction, and they can have a greater impact on social 

networks. The rational utilization of social resources can effectively reduce the harm 

brought by the spread of online rumors. By optimizing the rumor benefit function, we 

achieve the goal of minimizing the expenditure. 

Through the D-K model with latent period, we improved the ABCD-type model by 

considering the personality of different rumor spreaders, a rumor model that contains 

the spreading latent period and spreaders with different propagation degrees was 

established. Due to the different personalities of different spreaders, the rumor was 

spreading in mild or in severe. We assumed that the content of the rumor is constant in 

the process of spreading. A person who has already experienced the rumor latent period 

will enter into different spreading groups, due to his own personality to choose whether 

to become a mild spreader or a severe spreader. 

On this basis, the equilibrium point of the system is found through formula derivation, it 

is obviously illustrated that the system contains two different equilibrium points, REE 

and RFE. They are a certain point and a unique point respectively. 

It is found that public education and media technology by official are two very effective 

ways to suppress rumor propagation. Therefore, we intervened the rumor system by 

adding proportional control variable. In the process of controlling the rumor spreading, 

the rationalization use of rumor resources is always ignored. By establishing the rumor 

control benefit function, an optimization problem is formed. In order to minimize the 
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cost of rumor control, we must maximize the benefits of rumor control with limited 

resources. The maximum principle of Pontriagin is applied to obtain the optimal 

solution of the linear control set with Bang-Bang control in the Hamiltonian function. 

This kind of optimization method can be applied not only to rumor control, but also to 

similar problems in other fields. At the same time, in the process of Matlab simulation, 

the thought of iterative solving of optimal problems is also worth of reference for other 

optimization problems. 

 

5.2  Research prospect 

1. In my model, it is assumed that a person stops spreading rumors after becoming a 

stifler, but in fact, sometimes there will be secondary rumor spreading, which should be 

considered in future studies. 

2. When using media technology to refute rumors, the difference in media 

technology control between mild and severe cases is not taken into account. 

3. No scientific theory is used to judge the stability of the system equilibrium point. 

4. The ABCDE-type rumor model is also universal, but sometimes rumors are 

generated in specific groups of people. In the future, special analysis will be carried out 

on special models. 
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