Lean Construction Systems & Tools
In Improving Operational Performance

Ng Jing Peng

Bachelor of Civil Engineering
The University of Birmingham
Birmingham, United Kingdom
2001

Submitted to
The Graduate School of Business
Faculty of Business and Accountancy
University of Malaya

In partial fulfilment of the requirements for the Degree of
Master of Business Administration

Oct 2010
Abstract

Construction contractors are continually searching for ways of eliminating waste and increasing profit with the continuous decline in profit margins and increased competition in construction projects. Although numerous approaches have been developed to improve efficiency and effectiveness of construction processes, lean construction techniques offer the promise to minimize, if not completely eliminate, non value-adding work.

Lean Construction is a philosophy based on the concepts of Lean Manufacturing. It is about managing and improving the construction process by eliminating waste and increasing profit to deliver what the customer needs.

Although construction organization have integrate some form of Lean System in day to day operation at macro level however knowledge is not fully conceptualize with Lean Construction still in the early stage of development.

This research was carry out to study the lean manufacturing principles and tools so that Lean Construction Systems and Tools are develop for better implementation in the near future in the local construction industry to improve operational performance in term of Time, Cost and Quality.
Acknowledgements

I would like to express my profound gratitude to my thesis supervisor, Prof. Madya Dr. Abdul Razak Ibrahim, for being an excellent mentor, flexible advisor and a supportive teacher.

I would like to express my appreciation to my friends who closely followed my progress and demonstrated interest and support for my work. Not to forget, my colleagues who had covered me on my job during critical times allowing my thesis fulfillment.

Last but not least, my parents, for their love and inspiration.
Table of Contents

Abstracts i
Acknowledgements ii
Table of Contents iii
List of Tables v
List of Figures v

1.0 Introduction
1.1 Introduction 1
1.2 Purpose of Study 3
1.3 Significance of Study 4
1.4 Research Problem 6
1.5 Research Objectives 7
1.6 Outline of Study 8

2.0 Literature Review
2.1 Introduction 9
2.2 A brief History of Waste Reduction Thinking 10
2.2.1 Pre-20th Century 10
2.2.2 20th Century 11
2.2.3 Ford starts the ball rolling 13
2.2.4 Toyota develops TPS 17
2.3 Types of Wastes 19
2.4 Lean Construction 23
2.5 Lean Construction Systems & Tools 31
2.5.1 Planning System (Last Planner System) 33
2.5.1.1 Master Schedule 34
2.5.1.2 Reverse Phase Scheduling 34
2.5.1.3 Six-Week Lookahead 35
2.5.1.4 Weekly Work Plan 36
2.5.1.5 Percent Plan Complete 36
2.5.2 Increased Visualization 37
2.5.3 Daily Huddle Meetings 37
2.5.4 First Run Studies 38
2.5.5 The 5s Process 39
2.5.6 Fail Safe for Quality & Safety 40
2.5.7 Design System (Design for Buildability / Detailed Engineering) 40
2.5.8 Procurement & Logistic System (Just-In-Time, JIT) 41
2.5.9 Enterprise Resource Planning System (ERP) 42

3.0 Research Methodology
3.1 Introduction 43
3.2 Research Questions 44
3.3 Research Hypotheses 45
3.4 Research Design 46
3.5 Research Model 48
3.6 Sampling Design 49
3.7 Data Collection Procedure 52
3.8 Data Analysis Technique 54

4.0 Research Results
4.1 Questionnaire Part 1 55
4.2 Questionnaire Part 2 62
4.3 Questionnaire Part 3 67

5.0 Conclusion & Recommendation
5.1 Conclusion Based on Findings 71
5.2 Evaluation on Research Objectives 72
5.3 Evaluation on Research Hypotheses 73
5.4 Recommendations Based on Findings 74
5.5 Recommendations for Further Research 75

6.0 Reference 77

7.0 Appendix (Questionnaire) 79
List of Tables

Table 5: Question 1 Descriptive Statistic 55
Table 6: Question 2 Descriptive Statistic 56
Table 7: Question 3 Descriptive Statistic Summary 57
Table 8: Question 4 Descriptive Statistic Summary 62
Table 9: Knowledge & Improvement Mean Response Summary 71
Table 10: Correlation between Knowledge & Improvement Mean Response Summary 71

List of Figures

Figure 1: Research Design Flow Chart 47
Figure 2: Research Model 48
Figure 3: Contractor Registration by Grade 1Q 2010 49
Figure 4: Contractor Registration by Grade & State 1Q 2010 50
Figure 5: Question 1 Response Summary 55
Figure 6: Question 2 Response Summary 56
Figure 7: Question 3 Response Summary 57
Figure 8: Question 4 Response Summary 62
Figure 9: Question 5 Respondent Age Group 67
Figure 10: Question 7 Respondent Education Level 67
Figure 11: Question 8 Respondent Years of Experience 68
Figure 12: Question 9 Respondent Job Position 68
Figure 13: Question 10 Respondent Department 68
Figure 14: Question 11 Respondent Company Size 69
Figure 15: Question 12 Respondent Company Trade 69