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MICROSCOPIC LATTICE METHOD FOR STUDYING INTRACELLULAR
REACTION-DIFFUSION KINETICS

ABSTRACT

Reaction and diffusion plays fundamental roles in many intracellular biochemical process.

Bottom-up modelling approaches provide a way to connect the microscopic reaction-

diffusion influenced by intracellular conditions to the macroscopic cellular behavior.

However, microscopic computational method that diffuses the molecule in the continuum,

such as the Brownian dynamics simulation, require long duration to simulate reaction-

diffusion up to the subcellular scale. In contrast, simulation scheme based on microscopic

lattice method (MLM) that represent each molecule explicitly as a random walker on lattice

voxels has a relatively low computational cost. Yet, the theory and consistency of MLM

have not been clarified in detail. In this work, we performed in-depth analysis on MLM

based on the Spatiocyte simulation scheme in solving diffusion-influenced reaction. We

construct the theoretical framework for MLM based on the Smoluchowski-Collins-Kimball

model for bimolecular reaction and the random walk theory. By matching the MLM

theory with the continuum-based theory, we obtain the expressions for determining the

simulation parameter. The MLM theory and the simulation result is then validated with

the continuum-based theory and simulation method. We also show that the run time

of MLM is an order of magnitude faster than continuum-based method for simulating

macromolecules diffusion at typical intracellular concentrations. We have performed

several case studies on reaction-diffusion process often encountered in the cell. Finally, we

discuss the applicability and limitation of MLM.

Keywords: reaction-diffusion, Monte Carlo simulation, random walk, spatial stochastic
simulation method, lattice-based method
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KAEDAH KEKISI MIKROSKOPIK UNTUK KAJIAN
TINDAKBALAS-RESAPAN DALAM SEL

ABSTRAK

Tindakbalas-resapan berperanan penting dalam banyak proses biokimia dalam sel. Pen-

dekatan bottom-up model membenarkan penyambungan tindakbalas-resapan dari skala

mikroskopik yang dipengaruhi oleh keadaan intra-sel ke skala sel. Walau bagaimanapun,

kaedah kiraan mikroskopik konvensional yang mengerakkan molekul di kontinum, seperti

simulasi dinamik Brownian, memerlukan masa yang lama untuk mensimulasikan sehingga

skala subselular. Sebaliknya, skim simulasi berdasarkan kaedah kekisi mikroskopik

(KKM), dimana molekul digerakkan secara rawak dalam kisi mikroskopik, mempunyai

kos pengiraan yang agak rendah. Walau bagaimanapun, teori dan konsistensi KKM belum

dijelaskan dan dianalisasi secara terperinci. Dalam kerja ini, kami menganalisasi kebolehan

KKM untuk mensimulasi tindakbalas yang dipengaruhi oleh resapan dengan memakai skim

Spatiocyte. Kami membina kerangka teori tindakbalas bimolekul untuk KKM mengikuti

model Smoluchowski-Collins-Kimball dan teori gerakan rawak. Dengan memadankan teo-

ri kinetik tindakbalas KKM dengan teori berasaskan kontinum, kita memperoleh ekspresi

untuk menentukan parameter KKM untuk simulasi. Teori dan simulasi KKM kemudian

disahkan dengan teori dan simulasi kontinum. Kami menunjukkan bahawa masa yang

diperlukan oleh KKM untuk simulasi adalah lebih cepat daripada kaedah konvensional

apabila kepekatan yang tipikal dalam sel diguna. Kami juga membentangkan kes kajian

mengenai beberapa sistem tindakbalas-resapan yang ditemui dalam sel. Akhirnya, kami

membincangkan applikasi dan had KKM.

Kata kunci: tindakbalas-resapan, Monte Carlo simulasi, gerakan rawak, kaedah simulasi
stokastik ruangan, kaedah kekisi
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CHAPTER 1: INTRODUCTION

1.1 Introduction and Motivation

Reaction and diffusion play fundamental roles in many intracellular biochemical

processes, such as cell polarity establishment (Halatek et al., 2018), symmetrical cell

division (Wettmann & Kruse, 2018), cell migration (Devreotes et al., 2017) and signal

transduction (Zhou & Hancock, 2018). Although the key elements underlying these

biochemical processes can be identified using conventional biological techniques, it is less

clear how individual element interacts dynamically to produce the observable macroscopic

behaviors. A model which either consist of mathematical formula or computational

calculation, provides a means to explain the experimental data quantitatively, and to

formulate and test hypotheses or to predict the behavior. Because of the broad spatio-

temporal scales in intracellular biochemical system, it is important to determine the

scales of interest and to neglect unnecessary details of the system in order to construct a

practical model (see Figures 1.1 and 1.2) (Phillips et al., 2012; Milo & Phillips, 2015).

In intracellular reaction-diffusion (RD) process that forms subcellular or cellular scale

spatio-temporal pattern, macromolecules, such as protein, are often the smallest unit of

interest (Halatek et al., 2018). In such cases, faster dynamics such as DNA synthesis and

movement of smaller molecules is typically not represented explicitly in the model.

Reaction and diffusion in the intracellular environment differ from in-vitro system in

several aspects. Due to the small number of some macromolecule ensemble, the number

fluctuation has non-negligible influence on the overall cellular behavior (Rao et al., 2002;

Bar-Even et al., 2006). For such cases, it is therefore inappropriate and insufficient to

use the notion of concentration together with deterministic description of the reaction

kinetics. Intracellular space is also spatially organized (Ryan & Shapiro, 2003) and
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Figure 1.1: Characteristic size of some biological entities in a cell. Adapted from (Milo & Phillips,
2015).

Figure 1.2: Characteristic time scale of some intracellular processes in a cell. Adapted from (Milo
& Phillips, 2015).

crowded (Ellis, 2001; Ellis & Minton, 2003). The geometrical and volume exclusion

effects has been reported to alter the transport behavior (Nicolau Jr et al., 2007; Dix &

Verkman, 2008; Höfling & Franosch, 2013) and the reaction kinetics of macromolecules

(Saxton & Jacobson, 1997; Melo & Martins, 2006; Kalay, 2012; Zhdanov & Höök, 2015;

Kerketta et al., 2016). Therefore, conventional description of the reaction and diffusion

that assume homogeneous environment is insufficient for intracellular system.

Taken all these into consideration, a spatial and stochastic model is necessary to reflect

the realistic intracellular environment into the RD process. A natural approach to achieve

this is by adopting the particle-based computational model. In the particle-based approach,

2
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molecules and the intracellular compartments are represented explicitly. Due to the highly

viscous intracellular environment, long-range interactions between macromolecules such

as hydrodynamical forces can be neglected to some extent. To probe the dynamics at

subcellular or cellular scale, reaction dynamics at smaller spatial scale and faster time scale

can be effectively integrated out. These eventually lead to the hard-sphere representation

of the macromolecule, where molecule size is described by the hydrodynamical radius,

whereas reaction is described by the intrinsic rate constant and the molecular binding

radius. These hard-sphere molecules undergo normal diffusion explicitly in the cellular

compartments that mainly consist of the cytosolic volume and the membrane surface.

Molecules undergo the unimolecular reaction (first order reaction), where species changes

to another distinct species with rate constant of dimension (1/T), or the bimolecular

reaction (second order reaction), where two reactants react upon collision with each other.

Bimolecular reaction can be classified into (i) the volume-volume reaction, where cytosolic

molecules react with each other; (ii) surface-surface reactions, where membrane-bound

molecules react with each other; and (iii) volume-surface reactions, where cytosolic

molecules react with the membrane or membrane-bound molecules.

Particle-based simulation method such as Brownian dynamics is as accurate as the

underlying physical model. To ensure accuracy in simulating diffusion, small time step

is required to resolve the molecule collision. However, the computational cost involved

increases with the number of molecules and the details incorporated. Brownian dynamics

is feasible for simulating subcellular scale phenomena but demanding for whole-cell

simulation. In this study, we focus on an alternative microscopic simulation method that is

computationally less costly. In this approach, molecules are propagated on uniform-sized

lattice instead of in the continuum. We refer this approach as the microscopic lattice method

(MLM), which is also known as the Monte Carlo lattice gas automata in some literature
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(Saxton, 2007). MLM also retain the important features of particle-based approach in

simulating RD process, while being computationally tractable.

1.2 Problem Statement and Objectives

MLMhas some advantage in the computational cost of simulating RD process. However,

realistic biological space does not arranged as fixed lattice structures. It is uncertain

whether the diffusion behavior on lattice can recapitulate the diffusion behavior in the

continuum. Furthermore, diffusion and reaction kinetics can be influenced by the lattice

arrangement as shown previously(Hughes, 1995; Saxton, 1987; Meinecke & Eriksson,

2016). Thus the accuracy of MLM compared to continuum particle-based methods

requires detailed examination. Notably, a consistent approach is needed to determine

MLM parameters such as voxel size and reaction probability that can replicate the reaction

kinetics in the continuum.

This research focuses on the study of reaction-diffusion processes in complex biological

system with the following objectives: (i) to determine the accuracy and consistency of

microscopic lattice method as a reaction-diffusion simulation method through theoretical

and numerical analysis; (ii) to derive the on-lattice reaction rate coefficient based on the

Smoluchowski-Collins-Kimball model for reaction-diffusion in 1D, 2D, and 3D spatial

dimensions; and (iii) to benchmark the performance and accuracy of Spatiocyte simulation

scheme before applying it to selected reaction-diffusion processes (Arjunan & Tomita,

2010).

1.3 Thesis Organization

This thesis consists of six chapters. In Chapter 2, we address the need for spatial

stochastic modeling approach to study the RD process in the cell. The continuum-based

and lattice-based spatial stochastic simulation methods are reviewed. We introduce the
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Smoluchowski-Collins-Kimball theory for the bimolecular reaction in different spatial

dimensions and the important concepts in random walk theory. We also discuss the concept

of anomalous diffusion and its occurrence in the cell.

Chapter 3 gives the description of the Spatiocyte scheme, which is the basis for

constructing the MLM theoretical framework. The main contribution of this thesis is the

lattice theory derived for MLM, which appears in the form of rebinding probability and

reaction rate coefficient. The lattice theory are derived separately for the activation-limited

and diffusion-influenced cases in 1D, 2D and 3D spatial dimensions. From the lattice

theory, we compare and match the MLM and continuum reaction-diffusion behaviors,

which allow us to determine the MLM parameters for accurate simulation.

In Chapter 4, we validate the accuracy of lattice theory with numerical simulation

and continuum-based theory. The accuracy of Spatiocyte in simulating irreversible and

reversible diffusion-influenced reaction is verified in 1D, 2D and 3D. The performance of

MLM in comparison to other well-known particle-based methods such as Smoldyn and

eGFRD is shown.

In Chapter 5, we applyMLM to study several biological reaction-diffusion process that in-

clude the production-degradation process and the dual phosphorylation-dephosphorylation

cycle. We show how diffusion influences the steady-state protein concentration and the

macroscopic response behavior of the MAPK cascade. We also study the reaction-diffusion

behavior in the presence of obstacles and discuss the validity of Smoluchowski-Collins-

Kimball model in such situation. Finally, we investigate the contribution of 2D reaction

pathway in surface reaction with typical intracellular condition.

In Chapter 6, we summarize this thesis and discuss the current limitations of MLM with

suggestions for future work.
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Novel contributions from this thesis are published in (Chew et al., 2018) for the 3D

reaction and in (Chew et al., 2019) for the 2D and 1D reactions. Some texts and figures in

this thesis are reproduced and adapted from these publications, with the permission of

AIP Publishing. Source and implementation codes used in this thesis can be found in the

online repository mentioned in the relevant chapters.
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CHAPTER 2: LITERATURE REVIEW AND BASIC CONCEPTS

We begin with the introduction of spatial stochastic modeling approach for intracellular

reaction-diffusion (RD) process and review the associated simulation methods. The

simulation methods are described based on their spatial representation, either in the

continuum or on lattice space. The MLM is highlighted and compared with other

lattice-based methods. Then, we introduce the bimolecular reaction theory based on the

well-known Smoluchowski-Collins-Kimball (SCK) model. Detailed expression of rate

coefficient according to the SCK model are given for 3D, 2D and 1D reaction. Useful

expressions of the continuum-based theory such as the survival probability are also defined.

We then introduce the basic terminologies and concepts of random walk theory required to

derive the lattice reaction theory. Finally, we introduce anomalous transport and its origin

in intracellular environment.

2.1 Spatial Stochastic Modeling Approach

Macroscopic modeling approaches that apply the rate (Edelstein-Keshet, 1988) or the

reaction-diffusion equation (Edelstein-Keshet, 1988; Murray, 2001) has been successful

in modeling many biochemical processes, when the molecules copies are abundant and

are well-mixed in the compartment. However, these approaches have several limitations.

For example, they cannot explicitly capture the effects of space at the microscopic scale

that arise from the interactions of finite-sized molecules (Almeida & Vaz, 1995; Melo

& Martins, 2006; Guigas & Weiss, 2016), the fast rebinding of reactants (Lagerholm &

Thompson, 1998; Takahashi et al., 2010; Loose et al., 2011; Mugler et al., 2012) and the

inhomogeneity in the medium such as lipid domains and membrane-associated cytoskeletal

structures (Almeida & Vaz, 1995; Kalay et al., 2012; Kalay, 2012; Zhdanov & Höök, 2015;

Kerketta et al., 2016).
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The spatial effects can alter the diffusion behavior and the reaction kinetics, leading to

different physiological outcomes. For example, clustering of membrane receptors changes

the response of signaling network (Mugler et al., 2012); fluctuation in protein copy number

promotes cell polarization in the absence of spatial cue (Pablo et al., 2018); rapid protein

rebinding affects spatiotemporal patterns (Loose et al., 2011) and amplifies noise during

ligand interactions (Kaizu et al., 2014). Therefore, a realistic RD model should consider

the spatial and stochastic aspects of the RD process (Howard & Rutenberg, 2003; Klann &

Koeppl, 2012; Engblom et al., 2017; Li & Holmes, 2018; Earnest et al., 2018; Smith &

Grima, 2018).

2.2 Continuum-based and Lattice-based Simulation Methods

Generally, in spatial stochastic simulation methods, space is represented by the contin-

uum or as a lattice. In the continuum particle-based method, each molecule is represented

as a point or a hard-body sphere that propagates in continuous space with Gaussian

distributed displacement (Stiles et al., 1998; Plimpton & Slepoy, 2005; van Zon & Wolde,

2005; Opplestrup et al., 2006; Sanford et al., 2006; Ridgway et al., 2008; Byrne et al.,

2010; Gruenert et al., 2010; Takahashi et al., 2010; Klann et al., 2012; Schöneberg &

Noé, 2013; Andrews, 2016; Michalski & Loew, 2016; Lehnert & Figge, 2017; Bittig &

Uhrmacher, 2017; Bashardanesh & Lötstedt, 2017; Donev et al., 2018; Sayyidmousavi &

Rohlf, 2018). These molecules react with each other via bimolecular reactions according

to the Smoluchowski-Collins-Kimball (SCK) model (Smoluchowski, 1917; Collins &

Kimball, 1949) or the Doi physical model (Doi, 1976; Erban & Chapman, 2009; Agbanusi

& Isaacson, 2014). In the SCK model, the reaction occurs either immediately or with a

probability of reflection when the distance between reactants equals to a predefined reaction

radius, whereas in the Doi model, the reaction occurs with a fixed probability per unit time

when the reactants are closer than the radius. Continuum-based SCK methods that support
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reactions on volume and surface compartments include Smoldyn (Andrews, 2009, 2016),

CDS (Byrne et al., 2010) and eGFRD (Sokolowski et al., 2019), while the Doi model is

adopted by MCell (Kerr et al., 2008), ReaDDy (Schöneberg & Noé, 2013; Hoffmann et al.,

2019) and SpringSaLaD (Michalski & Loew, 2016). Smoldyn also recently included the

option to support the Doi model. All of these methods except MCell can simulate volume

occupying molecules.

On the other hand, in lattice approaches, the average diffusion behavior is adopted

and the reactions follow either the simple first-order process, or the second-order process

when two reactive molecules meet on the same lattice voxel. Such approaches reduce the

computational cost even in crowded space and provide an efficient way to simulate large

numbers of molecules and reactions. Within lattice approaches, variation exists depending

on how each molecule is represented and reaction is modeled. In the well-established

reaction-diffusion master equation (RDME) models (Baras & Mansour, 1996; Hattne et al.,

2005; Drawert et al., 2012; Cowan et al., 2012; Hepburn et al., 2012; Roberts et al., 2013;

Drawert et al., 2016), space is discretized into lattice voxels called subvolumes. In each

subvolume, point-like molecules are assumed to be dilute and well-mixed. To obey the

well-mixed condition, there is a limit to the size of the subvolume (Hellander et al., 2012;

Hattne et al., 2005; Hellander et al., 2015), which in turn imposes a limit to the spatial

resolution. Diffusion of molecules across subvolumes is modeled as a first-order reaction

with a concentration dependent rate. Unimolecular and bimolecular reactions only occur

within each subvolume with a rate defined by the propensity function (Gillespie, 1976).

Compared to continuum particle-based schemes, RDME models RD from the mesoscopic

to the macroscopic scale but not at the microscopic scale. However, there have been several

efforts to overcome the well-mixed limit in RDME models and to bridge mesoscopic

and microscopic scales (Fange et al., 2010; Hellander et al., 2012, 2015; Isaacson, 2013;
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Gillespie et al., 2013).

Apart from the RDME lattice models, there is another class of schemes, which is

the MLM that represents molecules at single particle resolution (Torney & McConnell,

1983; Montalenti & Ferrando, 2000; Saxton, 2002; Berry, 2002; Schnell & Turner, 2004;

Grima & Schnell, 2006; Boulianne et al., 2008; Schmit et al., 2009; Arjunan & Tomita,

2010; Gillespie et al., 2014; Pitulice et al., 2014; Gomez & Klumpp, 2015). In most

of these schemes (Torney & McConnell, 1983; Saxton, 2002; Berry, 2002; Schnell &

Turner, 2004; Grima & Schnell, 2006; Boulianne et al., 2008; Arjunan & Tomita, 2010;

Gomez & Klumpp, 2015), the size of the voxel follows the molecule size, whereas in

the small-voxel tracking algorithm (SVTA) (Gillespie et al., 2014), a particle can occupy

multiple voxels, providing greater spatial resolution at the cost of higher computational

complexity. In MLM, a molecule hops into a neighbor voxel at a constant rate such that

normal diffusion is satisfied. Excluded volume arises naturally since the size of molecule

is directly reflected by the voxel size and occupancy in the lattice. Similar to RDME

models, unimolecular reaction is modeled as a first-order process. Bimolecular reactions

are coupled to molecular collisions in all of these schemes except GridCell (Boulianne

et al., 2008). In the collision-based reaction schemes, the steady-state reaction rate follows

the macroscopic effective reaction rate when the reaction is activation-limited.

Schemes based on the MLM attempt to reduce the cost of resolving molecular collisions

by discretizing the space into fine molecule-sized voxels. In the Spatiocyte simulation

scheme, a molecule only checks its destination voxel for occupancy before performing

a bimolecular reaction with the occupying molecule or moving into it if it is vacant

(Arjunan & Tomita, 2010). The reduced computational cost and the simplicity of MLM

implementation have promoted its applications, for example, in biological (Berry, 2002;

Schnell & Turner, 2004; Saxton, 2008; Arjunan & Tomita, 2010; Tsourkas & Raychaudhuri,
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2011; Shimo et al., 2015) and chemical (Lombardo & Bell, 1991; Imbihl & Ertl, 1995;

Lukkien et al., 1998) surface reactions.

2.3 Smoluchowski-Collins-Kimball Theory for Bimolecular Reaction

In this section, we review bimolecular reaction model based on the Smoluchowski-

Collins-Kimball (SCK) theory. Consider a many-body bimolecular reaction,

A + B −→ B, (2.1)

with A and B having radii rA and rB, and diffusion coefficients DA and DB, respectively.

Let us denote the fraction of A remaining in the system by the survival probability,

Sirr,A(t) = [A(t)]/[A(0)], where [ ] denotes the concentration. The survival probability of

A is provided in the rate equation (Szabo, 1989):

dSirr,A(t)
dt

= −[B]k(t)Sirr,A(t), (2.2)

where k(t) represents the time-dependent rate coefficient. The solution for the survival

probability requires the integration of the rate coefficient (Szabo, 1989):

Sirr,A(t, [B]) = exp
[
−[B]

∫ t

0
k(τ)dτ

]
. (2.3)

Smoluchowski derived the rate coefficient by incorporating molecular diffusion into the

reaction flux (Smoluchowski, 1917). In Smoluchowski model, A is made up of an immobile

molecule and is surrounded by multiple diffusing B molecules in which [B] � [A]. The

reaction is modeled by absorbing boundary condition, that is, A and B will react once the

distance between the pair is R = rA + rB. While the Smoluchowski model assumption of

perfect adsorption can describe the diffusion-limited reaction. Collins and Kimball (Collins
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& Kimball, 1949) extended the Smoluchowski theory to model both activation-limited

and diffusion-influenced reaction by assuming partial adsorption. This is achieved by

using a radiation boundary condition, in which a reaction will occur with an intrinsic

rate ka whenever the distance between a reactant pair is R = rA + rB. In this thesis, the

term, Smoluchowski-Collins-Kimball (SCK) model, refer to the model with the radiation

boundary condition.

According to the particle-pair formalism of SCK model (Noyes, 1954; Berg, 1978;

Naqvi et al., 1980; Tachiya, 1983), the time-dependent rate coefficient can be expressed as

the product of ka and S(t; R):

k(t) = kaS(t; R). (2.4)

Here, S(t; R) is the survival probability of an isolated reactant pair at time t given that

they were initially in contact. Additionally, let preb(R, t |R,0) denote the rebinding-time

probability distribution for a reactive particle-pair separated by distance R at time t, given

that the pair were initially in contact.

Note that the survival probability S(t; R) is the same as the probability that the first

rebinding event between an initially in-contact pair has not yet occurred at time t. Hence

we can rewrite Equation (2.4) as

k(t) = ka

[
1 −

∫ t

0
preb(R, τ |R,0)dτ

]
. (2.5)

The specific functional form of the rate coefficient depends on the spatial dimension and

will be treated separately in the following subsections.
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2.3.1 3D Reaction

In this section, we describe the rebinding probability distribution of a reactant pair and

the time-dependent rate coefficient of an irreversible reaction in 3D space.

2.3.1.1 Rebinding Probability Distribution

Let ka3D be the 3D intrinsic rate constant with dimensions L3T−1 and p(r, t; r0,0) be the

probability that the particle is at position r at time t given that it was at r0 at time t0 = 0.

The rebinding probability distribution for a reactive particle-pair separated by distance

R at time t, given that the pair were initially in contact is defined as (Equation (3.10) in

(Naqvi et al., 1980) and Equation (S27) in (Takahashi et al., 2010))

preb(R, t; R,0) = ka3Dp(R, t; R,0), (2.6)

where p(r, t; r0,0) is the Green’s function in the diffusion equation:

∂p(r, t; r0,0)
∂t

= D∇2p(r, t; r0,0), (2.7)

subjected to initial condition p(r,0) = δ(r − r0)/4πr2 and boundary conditions such that

p(r, t) → 0 as r →∞ and

4πR2D
∂p(r, t; r0,0)

∂r

����
r=R
= ka3Dp(R, t; r0,0). (2.8)

The latter condition is known as the radiation boundary condition. The Green’s function

p(r, t; r0,0) has been solved in (pp. 368 in (Carslaw & Jaeger, 1959)) to be

p(r, t; r0,0) =
1

8πrr0

1
√
πDt

[
exp [−(r − r0)

2/4Dt] + exp [−(r + r0 − 2R)2/4Dt]

−2B
√
πDt exp

[
B2Dt + B(r + r0 − 2R)

]
erfc

(
B
√

Dt
)]
,

(2.9)
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where B = (1 + ka3D/4πRD)/R. For r = r0 = R, we thus have

p(R, t; R,0) =
1

4πR2
1
√
πDt

[
1 − B

√
πDt exp

(
B2Dt

)
erfc

(
B
√

Dt
)]
. (2.10)

Finally by substituting Equation (2.10) into Equation (2.6), we obtain the rebinding

probability distribution

preb(R, t; R,0) =
(

ka3D

4πR3

) (
ka3D

4πRD
+ 1

) (
1
√
πτ
− exp(τ)erfc(

√
τ)

)
, (2.11)

where τ = tD(1 + ka3D/4πRD)2/R2.

2.3.1.2 Time-dependent Rate Coefficient

The time-dependent rate coefficient in 3D space is defined as (Collins & Kimball, 1949):

k3D(t) =
kDka3D

kD + ka3D

[
1 +

ka3D

kD
Φ

(
ka3D

kD

√
t
τ′

)]
. (2.12)

Here, kD = 4πRD is the collision rate, D = DA + DB, Φ(x) = exp(x2)erfc(x) and

τ′ = (1/D)(ka3DR/(ka3D + kD))
2. The rate coefficient in Equation (2.12) starts (t = 0) at

ka3D but decays rapidly to (Agmon & Szabo, 1990)

k3D(t) '
kDka3D

kD + ka3D

[
1 +

ka3D

ka3D + kD

R
√
πDt

]
, (2.13)

at long-time. Following Equation (2.13), the steady-state or the effective reaction rate

constant ke f f 3D is defined as (Noyes, 1961):

ke f f 3D B k3D(t →∞) =
ka3DkD

ka3D + kD
. (2.14)
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Alternatively, by taking the long-time limit of Equation (2.5), we have

ke f f 3D B k3D(t →∞) = ka3D

[
1 −

∫ ∞

0
preb(R, τ |R,0)dτ

]
, (2.15)

where the integrated term gives the total rebinding probability:

Preb =

∫ ∞

0
preb(R, t |R,0)dt =

1
1 + kD

ka3D

. (2.16)

Therefore, the effective rate constant in Equation (2.14) can also be written in terms of the

total rebinding probability:

ke f f 3D = ka3D(1 − Preb). (2.17)

The above relation was also described previously, but in the context of irreversible and

reversible rate constants (Andrews & Bray, 2004).

2.3.2 2D Reaction

In this section, we review the time-dependent rate coefficient for both the irreversible

and reversible reaction in 2D space.

2.3.2.1 Irreversible Reaction

The time-dependent rate coefficient for 2D association reaction with radiation boundary

condition is given in the Laplace form as (Szabo, 1989):

k2D(s) =
ka2D

s[1 + ka2Dg̃(s)]
. (2.18)
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Here, ka2D is the intrinsic rate constant with dimensions of length, L and time, T, given

as L2T−1, and g̃(s) is the Green’s function for 2D diffusion defined as (Popov & Agmon,

2002)

g̃(s) =
K0(s̃)

2πDs̃K1(s̃)
. (2.19)

K0 and K1 are the modified Bessel functions of the second kind, s̃ =
√

sR2/D, and

D = DA + DB. Equation (2.18) can thus be written as

k2D(s) = 2πDs̃
K1(s̃)

s[K0(s̃) + 2π s̃K1(s̃)/κ]
, (2.20)

with κ = ka2D/D. In the limit of small s̃, we can approximate the modified Bessel

functions:

s̃K1(s̃) ≈ 1 −
2 ln(s̃eγ/2) + 1

4
s̃2 +O(s̃4), (2.21)

and

K0(s̃) ≈ − ln(s̃eγ/2) −
2 ln(s̃eγ/2) + 1

4
s̃2 +O(s̃4), (2.22)

where γ = 0.5772156 is the Euler constant. Using these approximations, the asymptotic

expansion of Equation (2.20) can be expressed as:

lim
s→0

sk2D(s) =
4πD

−2 ln [R
√

s/D] + ln 4 + ln [exp 2(4π/κ − γ)]
+O(s)

=
4πD

ln [Cc/s]
+O(s)

(2.23)
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with Cc = 4D exp(4π/κ − 2γ)/R2. The corresponding long-time approximation is given

as (Ritchie & Sakakura, 1956):

k2D(t �
R2

D
) = 4πD(

1
ln(Cct)

−
γ

(ln(Cct))2
−

1.311
(ln(Cct))3

+
0.25

(ln(Cct))4

+O(t−1 ln(t)−2)),

(2.24)

where the relative error to the exact form is less than 1% at t = 100R2/D.

The slow logarithmic decay of k2D(t) originates from the modified Bessel function

and is fundamentally connected to the recurrence property of the random walk in 2D.

A random walker in 3D has an asymptotically finite chance to escape from the origin.

However, in the lower dimensions (1D and 2D), the return probability is unity, as described

by the Polya’s theorem. In the case of 2D, the first passage time of returning to the origin

exhibits slow logarithmic decay (Weiss & Rubin, 1982), which in turn causes the slow

decay in k2D(t). As a result, unlike in the 3D reaction, the long-time rate coefficient in 2D

does not converge to a constant term. This behavior have been observed in experimental

studies previously (Melo & Martins, 2006). The lack of an apparent steady-state and the

slow decay in the 2D reaction rate have prompted the use of time-dependent rate for the

purposes of modeling and analysis of experiments (Naqvi et al., 2000; Melo & Martins,

2006).

(a) Steady-state rate constant

Szabo (Szabo, 1989) provided an alternative way to define a steady-state rate constant by

coupling the irreversible bimolecular reaction with the production of A species. Following

this strategy, a steady-state expression can be defined in terms of the mean lifetime of A,
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τm (Szabo, 1989):

kss2D =
1
[B]τm

=

[
[B]

∫ ∞

0
S2D

irr,A(t)dt
]−1

=

[
[B]

∫ ∞

0
exp

(
−[B]

∫ t

0
k2D(τ)dτ

)
dt

]−1
.

(2.25)

kss2D can be evaluated using the mean-field self-consistency condition (Szabo, 1989):

kss2D = [sk̂2D(s)]s=kss2D[B]. (2.26)

Substituting the asymptotic form of k2D(s), as defined in Equation (2.23), into Equation

(2.26) yields

kss2D

2πD
≈

[
ln 2 − γ − ln[R

√
kss2D[B]/D] + 1/κ

]−1
. (2.27)

Rewriting some variables in terms of the molecule area fraction, φ = πR2[B] and taking

the small concentration limit, φ→ 0 gives the following approximation

kss2D

2πD
≈

[
ln 2 − γ − ln[

√
2φy] + 1/κ

]−1

≈

[
1
2

ln 2 − γ −
1
2

ln φ + 1/κ
]−1

.

(2.28)

Finally, fromEquation (2.28), we obtain the steady-state rate constant for radiation boundary

condition as

kss2D ≈
4πD

ln 2 − 2γ − ln φ + 4π/κ
. (2.29)
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Similar to the 3D effective rate constant in 1/kss3D = 1/ka2D + 1/(4πRD), the 2D steady-

state rate constant depends on the intrinsic rate ka2D and the relative diffusion coefficient

D. Interestingly, the 2D rate constant has the additional dependency on the concentration

of B. The steady-state constant given in Equation(2.29) is an extension of the solution

based on the absorbing boundary condition provided in Equation (4.10) of (Szabo, 1989).

2.3.2.2 Reversible Reaction

In the SCK model for 2D reversible reaction

A + B
ka2D



kd2D
AB, (2.30)

a bound pair A-B dissociates with the rate constant kd2D (T−1) into A and B, separated

at distance R. The survival probability of A, defined as Srev,A(t), can be calculated using

the first variant of the multiparticle kernel theory (MPK1) (Sung & Lee, 1999; Popov &

Agmon, 2001). Although the closed form solution for Srev,A(t) in 2D is not available, it

can be evaluated by numerically solving the normalized deviation defined as

Srev,A(t) − Srev,A(∞)

Srev,A(0) − Srev,A(∞)
= L−1

[
1

s + λF̃(s)

]
. (2.31)

Here, the term

F̃(s) =
kd2D

λ
F̂gem(s) +

[B]ka2D

λ
F̂irr(s; [B]′) (2.32)

is the diffusion factor function, Srev,A(∞) = kd2D/λ = 1/(1 + [B]ka2D/kd2D) is the

equilibrium value, λ = kd2D + [B]ka2D is the chemical kinetics relaxation rate constant,

and [B]′ = λ/ka2D is the modified concentration. F̂gem(s) = 1 + ka2Dĝ(s) contains the 2D
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Green’s function term ĝ(s) as given in Equation (2.19), whereas the function

F̂irr(s; c0) =
c0ka2D Ŝirr,A(s; c0)

1 − sŜirr,A(s; c0)
, (2.33)

uses the term Ŝirr,A(s; c0), which is the Laplace transform of the irreversible reaction

survival probability, S2D
irr,A(t; c0).

2.3.3 1D Volume-surface Adsorption

Before describing the rate for volume-surface adsorption, we first consider the 1D SCK

model, where a single immobile species B interacts with multiple mobile species A on

a filament according to Equation (2.1). Assuming species A can collide with species B

from both sides of B, and there is no self-interaction among A. The time-dependent rate

coefficient of this reaction with radiation boundary condition is given as (Szabo, 1989)

k1D(t) = ka1D exp(κ2Dt/4)erfc(κ
√

Dt/4), (2.34)

with κ = ka1D/D denoting the ratio between the intrinsic adsorption rate constant of

unit LT−1 and the relative diffusion coefficient D. At long time, Equation (2.34) behaves

asymptotically as

k1D(t →∞) ≈ 2
√

D
πt
+O(t−3/2). (2.35)

Next we consider a volume-surface adsorption system that involves an adsorbing plane

at x = 0 and bulk molecules at x > 0. Initially, the molecules of concentration c0 are

distributed uniformly in the bulk and are absent on the surface. For surface adsorption

process that follows the radiation boundary condition, the number of molecules adsorbed
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to the surface varies as (Equation (3.37) of (Cranket al. , 1979)):

Ns(t) =
c0S
κ

{
exp(κ2Dt)erfc(κ

√
Dt) − 1 + 2κ

√
Dt/π

}
, (2.36)

where S is the area of the plane. The corresponding adsorption rate is well-described by

the time-dependent adsorption rate coefficient ksa(t′):

dNs(t′)
dt

= ksa(t′)c0S. (2.37)

Note that the adsorption rate coefficient differs from the 1D SCK rate by a factor of two:

ksa(t′) = k1D(t)/2, because in the latter, it occurs on both sides of the plane. At long time,

the adsorption rate coefficient becomes

ksa(t →∞) ≈

√
D
πt
+O(t−3/2). (2.38)

As the bulk molecules are adsorbed to the surface, a spatial concentration gradient

develops in the bulk. The spatial-temporal concentration profile of the bulk molecules

C(x, t) follows Equation (3.35) of (Cranket al. , 1979):

C(x, t) = c0

[
erfc

x

2
√

Dt
− exp

(
ksa x

D
+

k2
sat
D

)
erfc

(
x

2
√

Dt
+ ksa

√
t
D

)]
. (2.39)

When adsorbed molecules can dissociate from the surface with a rate ksd (T−1), their

number varies according to (Equation (A.12) in (Andrews, 2009))

Ns(t) =
c0Sksat

[
c1 exp(c2

2)erfc(c2) − c1 + c2 exp(c2
1)erfc(c1) − c2

]
c1c2(c2 − c1)

, (2.40)
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where

c1 =
ksa −

√
k2

sa − 4Dksd

2
√

D

√
t, (2.41)

and

c2 =
ksa +

√
k2

sa − 4Dksd

2
√

D

√
t. (2.42)

2.4 RandomWalk Theory

This section introduces some terminology and definitions from random walk theory.

Useful expressions and theirs properties shown here will be used in next chapter.

2.4.1 Terminology

We consider random walk on infinite lattice where the walker hops to nearest neighbor

voxels at discrete time intervals. For n ∈ N, we define Pn(sa |sb) as the voxel occupation

probability from sb to sa, that is, the probability of being at voxel sa after n steps, given

that the walk started at voxel sb. Fn(sa |sb) is the first-passage time distribution from sb to

sa, that is the probability of arriving at sb for the first time on the nth step, given that the

walk started at site sa. We denote s0 as the origin voxel, s1 as the element of the set of

immediate neighboring voxels of s0, and s2 as the element of the set of the second nearest

neighbor voxels of s0.

Properties of the voxel occupation probability and the first-passage time distribution are

well described through the probability generating functions defined as

P(sa |sb; z) =
∞∑

n=0
Pn(sa |sb)zn, (2.43)
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and

F(sa |sb; z) =
∞∑

n=0
Fn(sa |sb)zn, (2.44)

respectively. The former function, also known as the Lattice Green’s function (Hughes,

1995), relates to latter via the relation (Equation (I.18) in (Montroll & Weiss, 1965)):

F(s0 |s0; z) = 1 −
1

P(s0 |s0; z)
. (2.45)

Another useful quantity is the probability to reach the origin for the jth time at the nth

step defined as (I.1.9 in (Montroll & Weiss, 1965)),

F j
n (s0 |s0) =

n∑
i=1

F j−1
n−i (s0 |s0)Fi(s0 |s0), for j ∈ Z+, (2.46)

where F1
n (s0 |s0) = Fn(s0 |s0). The generating function of F j

n (s0 |s0) satisfies the relation

(Equation (I.20) in (Montroll & Weiss, 1965)):

∞∑
n=0

F j
n (s0 |s0) zn = F(s0 |s0; z) j, (2.47)

2.4.2 Lattice Green’s Function

2.4.2.1 FCC Lattice

In our MLM scheme, we use hexagonal close-packed (HCP) lattice for 3D diffusion.

Here, we introduce some useful random walk properties on HCP lattice which will be used

latter on. Topologically speaking, the random walk properties on HCP lattice is the same

as on the face-centered cubic (FCC). The lattice Green’s function for the FCC lattice is
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given as (Equations(2.6)-(2.9) of (Joyce, 1998))

P(s0 |s0; z) =
[

2(1 + 3ξ2)

π(1 − ξ)(1 + 3ξ)

]2

K(k+)K(k−), (2.48)

k2
+ =

16ξ
(1 − ξ)(1 + 3ξ)3

, (2.49)

k2
− =

16ξ3

(1 − ξ)3(1 + 3ξ)
, (2.50)

ξ =
−1 +

√
1 + z/3

1 +
√

1 − z
, (2.51)

wherein K(k) is the complete elliptic integral of the first kind. The corresponding voxel

occupation probability is given as (Joyce, 1998)

Pn(s0 |s0) =
1

12n

n∑
j=0

(
n
j

)
(−4)n− j b j, for j ∈ N (2.52)

where

b j =

j∑
k=0

(
j
k

)2 (2k
k

) (
2 j − 2k

j − k

)
. (2.53)
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The first-passage time distribution is related to the voxel occupation probability recursively

via:

Fn(s0 |s0) = Pn(s0 |s0) −

n−1∑
j=1

Pn− j(s0 |s0)Fj(s0 |s0), for j ∈ Z+. (2.54)

2.4.2.2 Triangular Lattice

For 2D MLM, we focus on the triangular lattice where some useful random walk

quantities will be introduced. The voxel occupancy probability Pn(s0 |s0) for the triangular

lattice is given as (Guttmann, 2010; Hughes, 1995):

Pn(s0 |s0) =
1
6n

n∑
j=0

(
n
j

)
(−3)n− j b j, (2.55)

where

b j =

j∑
k=0

(
j
k

)2 (2k
k

)
. (2.56)

The corresponding probability generating function is

P(s0 |s0; z) =
6

πz
√

c
K(k′) (2.57)

where c = (a + 1)(b − 1),

a =
3
z
+ 1 −

√
3 +

6
z

and b =
3
z
+ 1 +

√
3 +

6
z
, (2.58)
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and K(k′) is the complete elliptic integral of the first kind with

k′ =

√
2(b − a)

c
. (2.59)

The asymptotic expansion of P(s0 |s0; z) in terms of the asymptotic form for K(z) is derived

as (see Equation (A.198) in (Hughes, 1995)):

P(s0 |s0; z) ≈

√
3

2π
ln[12(1 − z)−1]{1 +O(1 − z)}. (2.60)

2.4.2.3 One-dimensional Lattice

In 1D lattice, the generating function for the voxel occupancy probability from origin to

origin is defined as (Montroll & Weiss, 1965)

P(s0 |s0; z) =
1

√
1 − z2

. (2.61)

The corresponding first passage time distribution, obtained through Equation (2.45), is

given as

F(s0 |s0; z) = 1 −
√

1 − z2. (2.62)

2.5 Anomalous Diffusion

A molecule undergoing normal diffusion is characterized by the linear time-dependency

in the mean-square-displacement as described by the Einstein-Smoluchowski equation

〈r2(t)〉 = (2d)Dxt, where d is the spatial dimension and Dx is the diffusion coefficient. As

the intracellular medium is highly crowded with obstacles such as macromolecules and

cytoskeletal elements, the diffusion of macromolecules is highly obstructed. This could
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leads to anomalous diffusion where the mean-square-displacement scale with time as

〈r2(t)〉 ∝ tα, (2.63)

with 0 < α < 1 (Saxton, 2002; Vilaseca et al., 2011) . A generalized diffusion coefficient

function, Dφ(t), that depend on time and excluded volume φ, can describe the influence of

crowding on diffusion (Vilaseca et al., 2011). The mean-squared-displacement relationship

Equation (2.64) then follows

〈r2(t)〉 = (2d)Dφ(t)tα. (2.64)

In experimental studies, diffusion behavior inside a cell varies according to the

observation time window whereas the exponent α is system specific (Höfling & Franosch,

2013). This behavior can be understood through the theory of obstructed diffusion (Stauffer

& Aharony, 2014). For a macromolecule that diffuses in an uniformly dense medium,

diffusion is normal when the diffusion distance is smaller than the correlation length. As

the diffusion distance becomes comparable to the correlation length, diffusion becomes

anomalous. Diffusion becomes normal again when the distance is much larger than the

correlation length. As obstacle density approaches the percolation threshold, the transition

time from anomalous to normal diffusion diverges: diffusion is anomalous for all time.

This is because of the absence of a characteristic length scale in fractal medium (Stauffer

& Aharony, 2014). Reaction kinetics in such fractal medium has been shown to exhibit

non-classical kinetics (Kopelman, 1988; Berry, 2002; Schnell & Turner, 2004; Haugh,

2009).
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2.6 Summary

We have emphasized the necessity of having a spatial stochastic modeling approach

to capture the intracellular RD process. Several continuum and lattice-based spatial

stochastic simulation methods including the RDME, eGFRD, Smoldyn, and MLM are

introduced. We highlighted MLM as being more computational efficient than conventional

continuum-based method. In the subsequent chapters, we will compare the accuracy and

performance of MLM with the other simulation schemes. We have introduced the SCK

model for diffusion-influenced reaction in all spatial dimensions. SCK rate coefficients

defined in this chapter will be referred again for comparison with the lattice theory.

Important definitions and concepts from random walk theory such as the first passage time

are introduced. The SCK model and random walk theory serve as the basis for deriving

the lattice rate coefficient in the next chapter. We also described the anomalous transport

behavior due to obstacle hindrance, which we will revisit in Chapter 5.
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CHAPTER 3: METHODOLOGY

We begin by describing the Spatiocyte simulation scheme, which is the basis for

constructing the lattice theory. Significant theoretical contribution of this thesis including

the lattice rate coefficient and the rebinding probability are derived in this chapter. Because

of the different random walk behavior in 1D, 2D and 3D space, the lattice theory for each

spatial dimensions is derived separately. Comparison between the lattice and continuum

theory reveals their similarity in the steady-state and long-time asymptotic behavior. By

matching the lattice and continuum theory, we obtain the criteria for determining MLM

parameters to achieve consistent reaction kinetics behaviors. These criteria include the

voxel size and the reaction probability, which will be used in the validation and application

in later chapters.

3.1 Spatiocyte Simulation Scheme

Figure 3.1: A voxel on the HCP lattice has 12 nearest neighbor voxels. The distance between the
centers of two adjacent voxels is the voxel size l.

In the Spatiocyte scheme (see Algorithm 1) (Arjunan & Tomita, 2010), space is

discretized into HCP lattice because the arrangement allows the highest density of regular

sphere voxels in 3D space. The voxel has a diameter l and can be occupied by at most,
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a single molecule. At each diffusion time step td = l2/2dDx , where Dx is the diffusion

coefficient of molecule x and d is the spatial dimension, a molecule can hop to one of its

12 nearest neighbor voxels in 3D space or 6 nearest neighbor in 2D space (see Figure 3.1)

with the step acceptance probability Pw = 1. When the destination voxel is occupied by a

molecule belonging to a non-reactive species, the move will be rejected because of volume

exclusion. If the destination voxel contains a reactant molecule, the corresponding reaction

will occur with probability Pa; otherwise, if the reaction fails, the molecule will remain in

its original voxel. When a molecule species dissociates into two product molecules, the

pair will be placed side-by-side on the lattice. In volume-surface adsorption, a 3D species

will absorb to the surface with predefined probability upon collision with the surface voxel.

The acceptance probability is linked to the macroscopic variable via Pa = ∆N/Z .

Here ∆N is the microscopic change in the number of product molecules in step interval

td and Z is the expected number of collisions between A and B in the interval. For

diffusion-influenced reactions (ka � kD), the collision rate Z is reduced relative to the

production rate ∆N . The acceptance probability Pa = ∆N/Z would then have the issue of

exceeding unity when ∆N > Z . The Spatiocyte scheme overcomes this issue by reducing

the simulation interval by a factor of α to t′ = tdα. With the reduced interval, the effective

number of collisions in td , Z is increased. The step and reaction acceptance probabilities

are then decreased accordingly to Pw = α and P′a = Paα, respectively. Algorithm 1

describes how α is set. In summary, the Spatiocyte scheme operates with α = 1 when

Pa ≤ 1 (activation-limited case) and with α < 1 when Pa > 1 (diffusion-influenced case).

The MLM simulation scheme has been implemented in the Spatiocyte module of the

E-Cell4 software (Kaizu et al., 2018).
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Initialization:
tsim ←0, scheduler S ← {}
for each species x do

ρx =max{Paxy}, where xy denotes the pair of reactive species x and y;

S ← t′ = tdα, where α =
{

1/ρx, for ρx > 1
1, for ρx ≤ 1 ;

reaction acceptance probability P′axy = Paxyα;
step acceptance probability Pwx = α;

end
Main loop:
while S , {} and tsim < tend do

tsim ← τx = next event in S;
get species identity x;
get current voxel location s0;
reschedule next event, τx = τx + t′

for each molecule of species x do
choose a random target voxel s1 ∈ {nearest neighbor of s0};
if s1 is vacant then

draw rand;
if rand ≤ Pwx then walk succeeded, s0 ← s1;
else

walk rejected, s0 ← s0;
end

else if s1 contains reactant species y then
draw rand;
if rand ≤ P′axy then

reaction xy accepted, s0 ← s1
else

reaction failed and walk rejected, s0 ← s0
end

else
walk rejected, s0 ← s0;

end
end

end

Algorithm 1: Basic outline of the Spatiocyte algorithm for bimolecular reactions. tsim
is the current simulation time, tend-tsim is the simulation duration, Paxy is the reaction
acceptance probability for the reactive pair of species x and y, td = l2/2dDx is the
diffusion (hopping) time step of the current species x, l is the voxel size, Dx is the
diffusion coefficient of x, and rand is a random number drawn from the uniform
distribution with the interval [0,1).
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3.2 Lattice Theory for Bimolecular Reaction

We derive the lattice theory for bimolecular reaction based on the particle-pair formalism

of SCK model as defined in Equation (2.5). We start with the derivation of lattice initial

rate constant using the mass action assumption. Consider bimolecular reaction in Equation

(2.1) occurring on the lattice space. The number of reactions occurred in a simulation time

interval t′ is approximately

∆N = k′a[A][B]t
′ = number of reaction occurred on lattice, (3.1)

which give the expression for lattice initial rate constant

k′a =
∆N
[A][B]t′

. (3.2)

The discrete-space version of the time-dependent reaction rate coefficient in Equation

(2.5) is defined as (Torney & McConnell, 1983; Montroll, 1969)

km = k′a

[
1 −

m∑
n=0

Hn(s0 |s1)

]
, for m,n ∈ N, (3.3)

where m is the simulation step, related to the simulation time via the relation 2dDxt′ = ml2

andHn(s0 |s1) is the lattice analogue of the rebinding-time probability function preb(R, t |R,0)

in diffusion step n. At long-time, we have the lattice asymptotic rate coefficient defined as

k′(t →∞) = lim
m→∞

km = k′a

[
1 −

∞∑
n=0

Hn(s0 |s1)

]
, (3.4)

where the summation term corresponds to the total rebinding probability.
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To obtain the analytical expression for Hn(s0 |s1), we consider a reactive pair A and B,

which are initially in-contact by occupying adjacent voxels on the lattice. We are interested

in the rebinding-time probability distribution as a function of the diffusion step n. Without

losing generality, we can fix one of the molecules and diffuse the other with the relative

diffusion coefficient D. The rebinding-time probability distribution of A and B is related

to the arrival-time probability distribution of a random walker to the origin for the first

time, given that the walk started at one of the neighbor voxels of the origin with diffusion

coefficient D.

In the following sections, we derive the general expression for the rebinding-time proba-

bility distribution. Since the approaches for activation-limited and diffusion-influenced

schemes are different, we perform their derivations separately.

3.2.1 Rebinding-time Probability Distribution

3.2.1.1 Activation-limited Scheme

We first consider the rebinding-time probability distribution for the case Pa = 1. Let

Fn(s0 |s0) and Fn(s0 |s1) denote the first-passage time distributions to origin from origin and

s1, respectively. The two probabilities are related via

p(s0 → s1)Fn(s0 |s1) = Fn+1(s0 |s0), (3.5)

where p(s0 → s1) = 1 is the transition probability from s0 to s1 in a single step. This

implies that the trajectory we are interested in, which is from an in-contact situation (e.g.,

A at s1 and B at s0) to the rebinding situation (A hops to s0) in a single step, is equivalent to

the 2-step trajectory, s0 → s1 → s0. Therefore, the rebinding-time probability distribution

is fully described by Fn(s0 |s1) and is related to Fn(s0 |s0).
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For Pa < 1, the rebinding-time probability distribution is given by

Hn(s0 |s1) = PaF1
n+1(s0 |s0)+Pa(1−Pa)F2

n+2(s0 |s0)+Pa(1−Pa)
2F3

n+3(s0 |s0)+ ..., (3.6)

. Using Equation (2.46) we can obtain Hn(s0 |s1) recursively via

Hn(s0 |s1) = Pa

n∑
j=1

F j
n+ j(s0 |s0)(1 − Pa)

j−1, for j ∈ Z+, n ∈ N. (3.7)

The generating function of Hn(s0 |s1) is related to the generating function of Fn(s0 |s0):

H(s0 |s1; z) =
∞∑

n=0
Hn(s0 |s1)zn

= Pa

∞∑
n=0

∞∑
j=1

F j
n+ j(s0 |s0) (1 − Pa)

j−1zn

= Pa

∞∑
j=1
(1 − Pa)

j−1z− j
∞∑

n=0
F j

n+ j(s0 |s0) zn+ j

= Pa

∞∑
j=1
(1 − Pa)

j−1z− j
∞∑

n=0
F j

n (s0 |s0) zn

(3.8)

where in the last step we have
∑ j−1

k=1 F j
k (s0 |s0) zn = 0 since for all k such that k < j − 1,

the return probability is zero. Using property Equation (2.47), we finally obtain

H(s0 |s1; z) = Pa

∞∑
j=1
(1 − Pa)

j−1z− j F(s0 |s0; z) j

=
PaF(s0 |s0; z)

F(s0 |s0; z)(Pa − 1) + z
.

(3.9)

3.2.1.2 Diffusion-influenced Scheme

The diffusion-influenced scheme differs from the activation-limited scheme mainly by

the presence of non-unity step acceptance probability Pw = α. The diffusion step n is

therefore no longer the same as the simulation step. Specifically, a successful arrival at a
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new target voxel (or a successful reaction attempt with a reactant) after n = 1 step could

have had multiple k simulation steps in the past with hopping failures (or failed reaction

attempts). As a result, the actual simulation time corresponding to n steps is not a single

value nt′ = ntdα, but follows some distribution.

Eventually we want to obtain the long-time asymptotic of the rate coefficient, which

is independent of the transient time-dependent behavior. Hence, we parameterize the

rebinding-time according to the eventful step n (which will be incremented after a physical

movement or a reaction attempt), rather than the actual simulation step k. We begin

with the derivation of two useful return probability function and then proceed with the

rebinding-time probability distribution.

(a) Return probability Fn(s1 |s1)

We denote Pn(s |s0) as the voxel occupation transition probability from s0 to s. It is

related to Fn(s |s0) via the convolution relation ((Hughes, 1995), pp. 121)

Pn(s |s0) = δss0δn,0 +

n∑
j=1

Fj(s |s0)Pn− j(s |s), for n ∈ N. (3.10)

If a random walker started at s0, it must go through s1 before reaching the destination voxel

s, we then have

Pn(s |s0) = δss0δn,0 + δs0s1δn,1P1(s |s1) +

n∑
j=1

Fj(s1 |s0)Pn− j(s |s1). (3.11)

Note that Pn(s |s1) = Pn+1(s |s). Thus, with s0 = s1, we have

Pn+1(s |s) = δn1P2(s |s) +
n∑

j=1
Fj(s1 |s1)Pn− j+1(s |s). (3.12)
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Multiplying both sides with zn+1 gives

zn+1Pn+1(s |s) = δn1zn+1P2(s |s) +
n∑

j=1
z j Fj(s1 |s1)zn− j+1Pn− j+1(s |s). (3.13)

Taking the sum of both sides from n = 0 to infinity gives

P(s |s; z) − P0(s |s) = z2P2(s |s) + F(s1 |s1; z)[P(s |s; z) − P0(s |s)], (3.14)

where

P(s |s; z) =
∞∑

n=0
znPn(s |s), F(s1 |s1; z) =

∞∑
n=0

znFn(s1 |s1) and F0(s1 |s1) = 0. (3.15)

As such, we have

F(s1 |s1; z) = 1 −
z2P2(s |s)

P(s |s; z) − 1

= 1 −
z2P1(s0 |s1)

P(s0 |s0; z) − 1
.

(3.16)

The total return probability to s1 from s1 is

∞∑
n=0

Fn(s1 |s1) = lim
z→1−

F(s1 |s1; z)

= 1 −
P1(s0 |s1)

P(s0 |s0; 1−) − 1
.

(3.17)

Using relation Equation (2.45), we have

∞∑
n=0

Fn(s1 |s1) = 1 − (1/F(1) − 1)P1(s0 |s1). (3.18)
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(b) Return probability F̄n(s1 |s2)

If we increment the step count n for every successful step to a new voxel, then the

first-passage time distribution from s2 to s1 at step n is given by

F̄n(s1 |s2) =

∞∑
m=n

(
m − 1
n − 1

)
Pn
w(1 − Pw)

m−nFn(s1 |s2), for n ∈ Z+, (3.19)

where Pw = α, is the step acceptance probability. It can be shown that

F̄n(s1 |s2) = Pn
wFn(s1 |s2)

∞∑
m=n

(
m − 1
n − 1

)
(1 − Pw)

m−n

= Pn
wFn(s1 |s2)

1
Pn
w

= Fn(s1 |s2).

(3.20)

(c) Derivation of rebinding-time probability distribution

The rebinding-time probability distribution Gn(s0 |s1) is defined as

Gn+1(s0 |s1) = Sn(s1 |s1) p(s1 → s0), for n ∈ N (3.21)

where Sn(s1 |s1) is the in-contact probability of a reactive pair after n steps and p(s1 → s0)

is the transition probability from s1 to s0. The latter can be expressed as

p(s1 → s0) = PaαP1(s0 |s1)

∞∑
k=0
{[1 − P1(s0 |s1)](1 − Pw)}

k

=
PaαP1(s0 |s1)

1 − (1 − Pw)(1 − P1(s0 |s1))
,

(3.22)

where the nominator term accounts for the probability of hopping to s0 from s1 and

successfully reacting with the reactant located at s0 in one diffusion step, while the

denominator term comes from the infinite sum representing the total probability of
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unsuccessful escape to s ∈ {adjacent voxel of s1} \ s0 at the previous simulation step1.

When Pw = 1 and α = 1 as in the activation-limited case, the reaction probability becomes

p(s1 → s0) = PaP1(s0 |s1).

Next, we derive the generating functions of two first-passage time distributions Fn(s1 |s1)

and Fn(s1 |s2) that correspond to the current scheme. We start from

Fn+1(s1 |s1) =
∑

s

P1(s |s1)Fn(s1 |s), for n ∈ N

= P1(s0 |s1)δn,1 + P1(s1 |s1)δn,0 + P1(s2 |s1)Fn(s1 |s2),

(3.23)

where the first term on the right-hand side relates to the failed reaction attempt s1 → s0 →

s12, the second term describes the hop from s1 → s1, and the last term accounts for the

trajectory s1 → s2, which is continued by a series of n steps that have ended up in s1 again.

From Equation (3.23), we obtain the generating function of Fn(s1 |s1) as

F(s1 |s1; z) = z2P1(s0 |s1) + zP1(s1 |s1) + zP1(s2 |s1)F(s1 |s2; z). (3.24)

Thus we obtain

F(s1 |s2; z) =
F(s1 |s1; z) − z2P1(s0 |s1) − zP1(s1 |s1)

zP1(s2 |s1)
, (3.25)

where F(s1 |s1; z) is given in Equation (3.16).

Now, we define the probability that a particle is in-contact after n-step as:

Sn(s1 |s1) = γ1Sn−1(s1 |s1) +

n−1∑
m=0

γ2Sm(s1 |s1) F̄n−m−1(s1 |s2) + δn,0S0(s1 |s1),

for n ∈ N,

(3.26)

1 there are k simulation steps in between each diffusion step n
2 only s1 → s0 is considered as a diffusion step, whereas the rejection s0 → s1 is not
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where the first term accounts for the trajectories s1 → s0 → s1 and s1 → s1, the second

term represents the trajectories s1 → s2 → s1 and the last term accounts for the initial

condition. In detail, the coefficient

γ1 = [(1 − Paα)P1(s0 |s1) + PwP1(s1 |s1)]

∞∑
k=0
{[1 − P1(s0 |s1)](1 − Pw)}

k

=
(1 − Paα)P1(s0 |s1) + PwP1(s1 |s1)

1 − [1 − P1(s0 |s1)](1 − Pw)
,

(3.27)

accounts for the total probability of arrival at s1 from a rejected reaction attempt (first

sub-term) or from the adjacent neighbor s1 (second sub-term) given that there was no

successful escape to s ∈ {adjacent voxel of s1} \ s0 at the last simulation step k before the

arrival, while the coefficient

γ2 = PwP1(s2 |s1)

∞∑
k=0
{[1 − P1(s0 |s1)](1 − Pw)}

k

=
PwP1(s2 |s1)

1 − [1 − P1(s0 |s1)](1 − Pw)
,

(3.28)

accounts for the total probability of arriving at s2 from s1 given that there was no successful

escape to s ∈ {adjacent voxel of s1} \ s0 at the last simulation step k before the arrival,

and finally F̄n(s1 |s2) = Fn(s1 |s2) (as shown in Equation (3.20)) denotes the first-passage

time distribution of the scheme with step-acceptance probability Pw = α.

We multiply Equation (3.26) with zn:

Sn(s1 |s1) zn = γ1zSn−1(s1 |s1) zn−1 + γ2z
n−1∑
m=0

Sm(s1 |s1) zmFn−m−1(s1 |s2)zn−m−1

+ δn,0S0(s1 |s1) zn,

(3.29)

and take the sum to infinity to obtain

S(s1 |s1; z) = γ1zS(s1 |s1; z) + γ2zS(s1 |s1; z)F(s1 |s2; z) + S0(s1 |s1). (3.30)
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After collecting the terms, we obtain the generating function of Sn(s1 |s1):

S(s1 |s1; z) =
S0(s1 |s1)

1 − γ1z − γ2zF(s1 |s2; z)
. (3.31)

Substituting Equations (3.22) and (3.31) into Equation (3.21) gives the rebinding-time

probability distribution:

Gn+1(s0 |s1) =
PaαP1(s0 |s1)

1 − [1 − P1(s0 |s1)](1 − Pw)
Sn(s1 |s1), for n ∈ N, (3.32)

with the corresponding probability generating function as

G(s0 |s1; z) =
PaαP1(s0 |s1)

1 − [1 − P1(s0 |s1)](1 − Pw)
S(s1 |s1; z). (3.33)

Now we have the general form of the lattice rebinding-time probability distribution, we

can obtain the dimension-specific expression as shown in following subsections.

3.2.2 3D Reaction

We begin with the derivation of lattice initial rate constant which according to Equation

(3.2), is defined as

k′a3D =
∆NV

NANBt′
. (3.34)

The number of reactions in a single step t′ is ∆N = ZP′a, where the average number of

encounter in a single step can be approximated as Z = NBNA/Nv. Here, Nv =
√

2V/l3 is

the total number of voxels in a compartment volume V , and P′a = Paα is the actual reaction

acceptance probability during the encounter.
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In the activation-limited scheme, we have t′ = td and P′a = Pa. Thus k′a3D is derived as

k′a3D =
P′al3
√

2t′

= 3
√

2PaDl,

(3.35)

Note that D is the sum of diffusion coefficients of the reacting pair, DA + DB.

Similary, for the diffusion-influenced scheme, where t′ = tdα and P′a = Paα, we have

k′a3D =
αPal3
√

2αtd

= 3
√

2PaDl .

(3.36)

Also note that the physical dimension of k′a3D satisfies cm3s−1.

The above derivation for HCP lattice can be generalized to other lattice arrangements:

k′a3D =
πPaDl
φl

, (3.37)

where φl is the packing fraction for the lattice (e.g. φl = π/6 for the simple cubic lattice).

Next we derive the total rebinding probability and the rate coefficient for the activation-

limited and diffusion-influenced schemes.

3.2.2.1 Activation-limited Case (ka3D � kD)

(a) Total rebinding probability and effective rate constant

The total rebinding probability of an in-contact pair on lattice is obtained by taking the

limit z → 1 in Equation (3.9) as:

Hreb = lim
z→1

H(s0 |s1; z) =
Pa

Pa +
1

F(1) − 1
, (3.38)
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where F(1) = F(s0 |s0; z = 1). It was shown previously that the probability generating

function of the HCP lattice is topologically equivalent to that of the face-centered cubic

(FCC) lattice (Ishioka & Koiwa, 1978). Therefore, we have F(1) ≈ 0.256318 ((Hughes,

1995), pp. 153) for HCP lattice.

The effective rate constant on lattice is obtained by substituting the initial rate constant

defined in Equation (3.35) and the total rebinding probability defined in Equation (3.38)

into Equation (3.4) as

k′e f f 3D = 3
√

2Dl
(

1
F(1)

− 1
)

Pa

Pa +
1

F(1) − 1
. (3.39)

(b) Long-time asymptotic behavior

The asymptotic behavior of the rebinding-time probability distribution Hn(s0 |s1) at large

n can be estimated directly from the generating function. First we expand the generating

function of the return probability Pn(s |s) for the HCP lattice around z = 1 up to the O(1− z)

term (see Equation (D.8b) in (Montroll & Weiss, 1965) and Equation (A.237) in (Hughes,

1995))

P(s |s; z) ≈ P(1) − c1
√

1 − z +O(1 − z), (3.40)

where P(1) = P(s |s; z = 1) ≈ 1.344661 and c1 = 33/2/2π. The corresponding expansion

of the generating function of Fn(s |s) is

F(s |s; z) = 1 −
1

P(s |s; z)

≈ 1 −
1

P(1) − c1
√

1 − z

≈ 1 −
1

P(1)
−

c1

P(1)2
√

1 − z,

(3.41)
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where we have ignored the term equal to or higher than O(1− z). Recall that the generating

function of the rebinding-time probability distribution for the activation-limited case:

H(s0 |s1; z) =
PaF(s0 |s0; z)

z + F(s0 |s0; z)(Pa − 1)

=
PaF(s0 |s0; z)

z[1 − F(s0 |s0; z)(1 − Pa)/z]
.

(3.42)

By the expansion of the denominator we have

H(s0 |s1; z) =
PaF(s0 |s0; z)

z

{
1 +
(1 − Pa)F(s0 |s0; z)

z
+

[
(1 − Pa)F(s0 |s0; z)

z

]2
+ ...

}
=

Pa

z

{
F(s0 |s0; z) +

(1 − Pa)

z
F(s0 |s0; z)2 +

[
(1 − Pa)

z

]2
F(s0 |s0; z)3 + ...

}
.

(3.43)

Substituting Equation (3.41) into H(s0 |s1; z) and collecting the leading terms gives

H(s0 |s1; z) ≈ w
√

1 − z +O(1 − z), (3.44)

with constant

w = −
c1Pa

zP(1)2

{
1 − 2

(Pa − 1)(P(1) − 1)
zP(1)

+ 3
[
(Pa − 1)(P(1) − 1)

zP(1)

]2
+ ...

}
= −

c1Pa

zP(1)2
∞∑

n=1
n(−1)n+1

[
(Pa − 1)(P(1) − 1)

zP(1)

]n−1

= −
c1Pa

zP(1)2

[
1 +
(Pa − 1)(P(1) − 1)

zP(1)

]−2

= −
c1Pa

z [1 + Pa(P(1) − 1) + P(1)(z − 1)]2

= −
c1Pa

[1 + Pa(P(1) − 1)]2
,

(3.45)

where we have substitute z with 1 in the last step. By means of singularity analysis of the

generating function (see Equation (2.3) of (Flajolet & Odlyzko, 1990)), the corresponding
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asymptotic behavior of Hn(s0 |s1) as n→∞ is therefore

Hn(s0 |s1) ≈ −
w

2
√
π

n−3/2 +O(n−5/2). (3.46)

To analyze the long-time asymptotic behavior of rate lattice rate coefficient, we start

with expression defined in Equation (3.4)

k3D
m = k′a3D

[
1 −

m∑
n=0

Hn(s0 |s1)

]
, for m,n ∈ N, (3.47)

which can be rewritten as

k3D
m = k′a3D

[
1 −

∞∑
n=0

Hn(s0 |s1) +

∞∑
n=m

Hn(s0 |s1)

]
. (3.48)

The first summation term is the total rebinding probability while the second term can be

evaluated using the Euler-Maclaurin formula:

∞∑
n=m

Hn(s0 |s1) ≈

∫ ∞

m
dn

w

2
√
π

n−3/2

≈
w
√
πm

≈
lw
√

6Dπt
,

(3.49)

where we have used the definition ml2 = 6Dt in the last step.

Now we have the asymptotic reaction rate as

lim
t→∞

k3D(t)′ ≈ k′a3D

[
1 − Hreb +

lw
√

6Dπt

]
. (3.50)
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After rearrangement we have

lim
t→∞

k′3D(t) ≈ k′a3D(1 − Hreb)

[
1 +

lw

(1 − Hreb)
√

6Dπt

]
≈ k′a3D(1 − Hreb)

[
1 +

c1Pal

(1 + (P(1) − 1)Pa)
√

6Dπt

]
.

(3.51)

Using the definition k′a3D(1 − Hreb) = k′e f f 3D, and applying the expressions for reaction

acceptance probability in Equation (3.35) and voxel size in Equation (3.95), we obtain the

long-time approximation as

lim
t→∞

k′3D(t) ≈ k′e f f 3D

[
1 +

ka3DR

(ka3D + kD)
√
πDt

]
. (3.52)

Note that the long-time asymptotic rate coefficient on lattice has the exact same form as

the continuum theory in Equation (2.13).

3.2.2.2 Diffusion-influenced Case (ka3D � kD)

(a) Total rebinding probability and effective rate constant

To derive the total rebinding probability for diffusion-influenced scheme, we use the

expression given in Equations (3.33) and (3.31). In the diffusion-influenced scheme of

Spatiocyte, we have P1(s0 |s1) = 1/12, P1(s1 |s1) = 4/12, P1(s2 |s1) = 7/12 and Pw = α.

Using these parameters, we have the following quantities:

γ1 =
(1 − Paα) + 4α

12 [1 − 11(1 − α)/12]
, (3.53)

γ2 =
7α

12 [1 − 11(1 − α)/12]
, (3.54)
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F(s1 |s2; z) =
F(s1 |s1; z) − z2/12 − 4z/12

7z/12
, (3.55)

F(s1 |s2; z = 1) =
F(s1 |s1; z = 1) − 1/12 − 4/12

7/12

=
8 − 1/F(1)

7
,

(3.56)

where we have used definition Equation (3.18) in Equation (3.56). Using Equation (3.56),

we obtain the limit of Equation (3.31) as:

S(s1 |s1; z = 1) =
[
1 −

(1 − Paα) + 4α
12 [1 − 11(1 − α)/12]

−
7α

12 [1 − 11(1 − α)/12]
F(s1 |s2; z = 1)

]−1

=

[
1 −

(1 − Paα) + 4α
12 [1 − 11(1 − α)/12]

−
7α

12 [1 − 11(1 − α)/12]
8 − 1/F(1)

7

]−1

=
12 [1 − 11(1 − α)/12]

Paα − α + α/F(1)
.

(3.57)

Finally, we substitute Equation (3.57) into Equation (3.33) to obtain

G(s0 |s1; 1) =
Paα/12

1 − 11(1 − α)/12
12 [1 − 11(1 − α)/12]

Paα − α + α/F(1)

=
Pa

Pa +
1

F(1) − 1

(3.58)

Therefore, we have the total rebinding probability as:

Greb = G(s0 |s1; z = 1) =
Pa

Pa +
1

F(1) − 1
. (3.59)

which is identical to Equation (3.38) in the activation-limited case.
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Similarly, by substituting Equation (3.59) into the summation term in Equation (3.4),

we get the effective rate constant for the diffusion-influenced case as

k′e f f 3D = k′a3D[1 − Greb],

= 3
√

2Dl
(

1
F(1)

− 1
)

Pa

Pa +
1

F(1) − 1
.

(3.60)

which also follows Equation (3.39). Henceforth, we adopt the same notations of the

effective reaction rate and total rebinding probability for both the activation-limited and

diffusion-influenced cases.

(b) Long-time asymptotic behavior

In the diffusion-influenced scenario, Spatiocyte uses a different approach for hopping

and reaction. Simulation progresses with a smaller time step t′ = tdα to resolve fast

reaction events. We show that as α becomes smaller, the reaction and hopping events occur

in a probabilistic manner that follows exponential time distribution. This property provides

us with an approximation to study the time-dependent behavior of the reaction kinetics.

Hopping time distribution Consider a single particle hopping on a completely

vacant lattice. Let Pw be the step acceptance probability for a particle heading to a vacant

voxel. The probability of successful hopping after m trials is

Ph(t = m) = Pw(1 − Pw)
m−1, for m ∈ Z+, (3.61)

The survival probability (no hopping) until mth trial is thus given as

Ph(t > m) =
∞∑
m

Pw(1 − Pw)
m−1

= (1 − Pw)
m−1.

(3.62)
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If we perform the trial every δ sec such that Pw = β1δ, where β1 = t−1
d is the average

hopping rate per second. The survival probability becomes

Ph(t > mδ) = Ph(t > t′)

= (1 − β1δ)
m−1,

(3.63)

where t′ = mδ. Similarly, we have

Ph(t > t′) = (1 − β1δ)
t ′

δ −1

=
(1 − β1δ)

t ′

δ

(1 − β1δ)
.

(3.64)

Taking the limit of small δ, we then have

lim
δ→0

Ph(t > t′) =
[
lim
δ→0
(1 − β1δ)

1/δ
] t ′

= exp(−β1t′).

(3.65)

Since Pw = α, when α is small enough, the hopping time distribution of a particle

approximates the exponential distribution

ψh(t) = exp(−β1t), (3.66)

with β1 = t−1
d .

Reaction time distribution Consider a reaction pair at an in-contact situation. The

survival probability that they are still at the in-contact situation after n steps is

Sn = (1 − Pr − Pe)
n, for n ∈ N, (3.67)
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where Pr = Paα/12 is the reaction probability and Pe = 11Pw/12 = 11α/12 is the

escape probability. Let the simulation trial performed at infinitesimal time δ, such that

t′ = nδ = tdα. The survival probability as a function of time is then

S(t′) = lim
δ→0

Sn

= lim
δ→0

[
1 −

α

12
(Pa + 11)

]n

= lim
δ→0

[
1 −

δ

td

(Pa + 11)
12

] t ′/δ

=

[
lim
δ→0
(1 − βδ)1/δ

] t ′

= exp(−βt′).

(3.68)

where β = (Pa + 11)/12td . Note that the survival probability in this form includes both

the probability of reaction and hopping events. Since the two events are independent of

each other, the survival probability can be split into two separate terms:

S(t′) = exp(−β1t′) exp
(
−

11β2t′

12

)
, (3.69)

where β1 = Pa/12td is the average reaction rate and β2 = 1/td is the average hopping rate.

Therefore, the survival probability of the reaction also follows the exponential function

ψr(t′) = exp(−β1t′). (3.70)

Time dependent survival probability In summary, the survival probability of the

reaction and hopping events are (from Equation (3.66) and Equation (3.70))

ψr(t) = exp(−β1t) , where β1 =
Pa

12td
,

ψh(t) = exp(−β2t) , where β2 =
1
td
.

(3.71)
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Thus, the survival probability after one step is

ψ(t) = ψr(t)ψh(t) = exp{−βt}, (3.72)

where β = β1 + β2. As a consequence, the survival probability of a reactive pair at short

time t after step n follows the Poisson distribution:

Sn(t) =
(βt)n

n!
exp(−βt), for n ∈ N, (3.73)

where S0(t) = exp(−βt).

Long-time rate coefficient Here, we study the time-dependent kinetics of the

diffusion-influenced scheme. We start with the definition of continuous rebinding-time

probability density, and use it to express the time-dependent rate coefficient. Denoting the

continuous rebinding-time probability density after (n + 1) steps as

Gn+1(t) = β1Sn(s1 |s1; t), for n ∈ N, (3.74)

where

Sn(s1 |s1; t) = δn,0S0(s1 |s1; t) +
∫ t

0
dt′

n∑
j=0

Sn− j(s1 |s1; t − t′)Fj(s1 |s1; t), (3.75)

is the survival time probability density of a particle that started and ended at s1 on the nth

step. The first term on the right-hand side of Equation (3.75) is the initial probability density

S0(s1 |s1; t) = exp(−βt), while the last term involves two convolutions: the continuous

time convolution and the discrete step convolution nested inside the time convolution.
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Fn(s1 |s1; t) is the first-passage time density at the nth step, defined as

Fn(s1 |s1; t) = Fn(s1 |s1)

[
δn,1β2 exp(−βt)

+(1 − δn,1)

∫ t

0
dt′β2 exp(−βt′)

βn
2(t − t′)n−1

(n − 1)!
exp(−β2(t − t′))

]
,

(3.76)

for n ∈ Z+. Intuitively, the first term describes the first-passage time distribution for single

step while the second term accounts for the convolution of the probability of time required

for the n − 1 steps after the first step.

The continuous rebinding-time probability density is related to the rate coefficient of

the particle-pair formalism through:

k′3D(t) = k′a3D

[
1 −

∫ t

0
dt′Gn+1(t′)

]
. (3.77)

We then take the Laplace transform of k′3D(t) which is easier to work with:

sk̂′3D(s) = k′a3D[1 − Ĝ(s)]. (3.78)

Note that Ĝ(s) is related to the rebinding-time and survival-time probability densities via:

Ĝ(s) =
∞∑

n=1
Ĝn(s1 |s1; s) = β1

∞∑
n=1

Ŝn(s1 |s1; s). (3.79)

The corresponding Laplace transform of Equation (3.75) is given as

Ŝn(s1 |s1; s) =
δn,0

s + β
+

n∑
j=0

Ŝn− j(s1 |s1; s)F̂j(s1 |s1; s), (3.80)
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where

F̂n(s1 |s1; s) = Fn(s1 |s1)
β2

s + β

[
δn,1 + (1 − δn,1)

(
β2

s + β2

)n]
. (3.81)

The infinite sum of Equations(3.80) and (3.81) are

∞∑
n=0

Ŝn(s1 |s1; s) =
1

s + β
+

∞∑
n=0

n∑
j=0

Ŝn− j(s1 |s1; s)F̂j(s1 |s1; s),

=
1

s + β
+

∞∑
n=0

Ŝn(s1 |s1; s)
∞∑

n=0
F̂n(s1 |s1; s),

=
1

s + β

[
1 −

∞∑
n=0

F̂n(s1 |s1; s)

]−1

,

(3.82)

∞∑
n=0

F̂n(s1 |s1; s) =
β2

s + β

[
F1(s1 |s1) +

∞∑
n=2

Fn(s1 |s1)

(
β2

s + β2

)n
]

=
β2

s + β

[
F1(s1 |s1)

s
s + β2

+

∞∑
n=0

Fn(s1 |s1)

(
β2

s + β2

)n
]

=
β2

s + β

[
F1(s1 |s1)

s
s + β2

+ F
(
s1 |s1; z =

β2
s + β2

)]
,

(3.83)

where F(s1 |s1; z) is the generating function,
∑∞

n=0 F(s1 |s1)zn is as defined in (3.16). Hence,

we have

∞∑
n=0

Ŝn(s1 |s1; s) = [s + β − sF1(s1 |s1)z − β2F(s1 |s1; z)]−1, (3.84)

where z = β2/(s + β2).

Substituting Equation (3.84) into Equation (3.79) and with the final value theorem,

we obtain the long-time behavior of k′3D(t) by taking the limit s→ 0 in Equation (3.78).

Assuming the asymptotic Laplace form of the rate coefficient on lattice ((Agmon & Szabo,
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1990) Equation (2.37a)):

sk̂′3D(s) ≈ k′e f f 3D(1 + a′e f f

√
s/D + ...). (3.85)

We then set s = 0 to obtain the effective lattice reaction rate constant:

k′e f f 3D = k′a3D[1 − Ĝ(0)]. (3.86)

Evaluating Ĝ(0) by referring to Equation (3.79), we then get

k′e f f 3D =
3
√

2PaDl
1 + Pa/(1/F(1) − 1)

, (3.87)

which is consistent with the activation-limited result in Equation (3.39).

The second order term of Equation (3.85) is evaluated by expanding sk̂′3D(s) around

s = 0:

lim
s→0

d
d
√

s
sk̂′3D(s) = lim

s→0

d
d
√

s
(−k′a3DĜ(s))

=
−k′a3Dβ1
√
β2

lim
q→0

d
dq

∞∑
n=0

Ŝn(s1 |s1; s)

= k′a3Dβ1
√
β2 [β − β2F(1)]−2 lim

q→0

d
dq

F(q)

=
2k′a3DPa
√
β2

[
1 +

Pa

1/F(1) − 1

]−2
lim
q→0

q
d
dz

P(s0 |s0; z),

(3.88)

where q =
√

s/β2 and z = 1/(q2 + 1). Thus, by comparing the terms we obtain

a′e f f =

√
D

k′e f f 3D

2k′a3DPab
√
β2

[Pa{P(s0 |s0; 1) − 1} + 1]−2

=

√
2/3bPal

1 + Pa/(1/F(1) − 1)
,

(3.89)
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where

b = lim
q→0

q
d
dz

P(s0 |s0; z) =
3
√

3
4π

. (3.90)

Applying the definitions of reaction acceptance probability (3.35) and voxel size (3.95),

we obtain

a′e f f =
ka3DR

ka3D + kD
. (3.91)

Note that the corresponding time domain form of Equation (3.85) is given as

k′3D(t) ≈ k′e f f 3D

[
1 + a′e f f

√
πDt + ...

]
. (3.92)

Hence, the long-time behavior of the lattice rate coefficient follows the same form as the

continuum theory in Equation (2.13):

k′3D(t) ≈ k′e f f 3D

[
1 +

ka3DR

(ka3D + kD)
√
πDt

]
. (3.93)

3.2.2.3 Comparison with Continuum-based Theory

Since the effective rate on lattice in Equation (3.60) has the same form as Equation

(2.17) of the continuum case, we can match the lattice-based and continuum-based theory

by equating the initial rate and total rebinding probability: k′a3D = ka3D and Greb = Preb.

With the matching in initial rate constants, we obtain the expression for the reaction

acceptance probability as

Pa =
ka3D

3
√

2Dl
. (3.94)
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By matching the total rebinding probability, Greb = Preb, the voxel size is found to be

about 2% greater than the molecule size:

l =
4πR

3
√

2( 1
F(1) − 1)

≈ 1.0209R. (3.95)

The Spatiocyte scheme is thus guaranteed to have the same effective rate and total

rebinding probability as the continuum framework provided that Equations (3.94) and

(3.95) are satisfied. In addition, the expression for lattice effective rate constant follows the

same form as in the continuum-based framework:

k′e f f 3D =
k′a3Dk′D

k′a3D + k′D
= k′DGreb,

Greb =
1

1 + k′D/k
′
a3D

,

(3.96)

where k′D = 3
√

2lD(1/F(1) − 1).

According to Equation (3.95), accurate matching of both the effective rate and the

total rebinding probability requires the voxel size to be larger than the molecule size.

Nonetheless, we can fix the voxel size to be the same as the molecule size, l = R. In this

case, it is still possible to match the lattice effective rate coefficient to the continuum-based

one by setting the reaction acceptance probability to

Pa = (1/F(1) − 1)

[
3
√

2(ka3D + kD)(1/F(1) − 1)
4πka3D

− 1

]−1

. (3.97)

However, this is done at the expense of losing accuracy in the total rebinding probability,

since Greb , Preb.
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3.2.2.4 Generalization for Other Lattice Arrangement

A more general expression for the voxel size of any regular lattice arrangement is given

as

l =
4φl

1
F(1) − 1

R. (3.98)

For example, for the simple cubic lattice we have the voxel length:

l =
4π/6
1

0.340537 − 1
R = 1.081515R, (3.99)

about 8% larger than the molecule size (F(1) for the simple cubic lattice is given in pp.

153 of (Hughes, 1995)).

3.2.2.5 Reversible Reaction

To model the reversible reaction A + B
ka3D



kd3D
C accurately, the local detailed balance

need to be obeyed. This can be achieved on lattice by choosing a lattice dissociation rate

constant k′d3D from the following equilibrium constant relation:

Keq =
k′a3D

k′d3D
=

ka3D

kd3D
. (3.100)

The MLM method can simulate the dissociation reaction as a first-order process with rate

k′d3D and place the dissociated pair of molecules at an in-contact condition.
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3.2.3 2D Reaction

We begin with the derivation of initial rate constant on 2D lattice. The number of

reactions occurred in interval t′ according to the continuum-based framework is given as

∆N =
k′a2DNANBt′

S
, (3.101)

where S is the surface area.

The number of reaction in a step interval t′ on lattice can be estimated as

∆N =
P′aNBNA

Nsv
, (3.102)

where Nsv = Sφl/(πl2/4) is the number of surface voxels and φl is the packing fraction for

the lattice, and P′a = Paα is the actual reaction probability during the encounter.

In the activation-limited scheme, we have t′ = td and P′a = Pa. Thus, we have

k′a2D =
PaS

td Nsv
,

=
πPaD
φl

.

(3.103)

Note that the physical unit of k′a2D is [L2T−1], consistent with the continuum rate constant.

For triangular lattice we have φl = π
√

3/6 and Nsv = 2S/(
√

3l2). Thus the lattice initial

rate is given as

k′a2D = 2
√

3PaD, (3.104)

valid for both the activation-limited and diffusion-influenced schemes.
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As for square lattice, we have φl = π/6, and the initial rate is

k′a2D = 6PaD. (3.105)

In homodimerization reaction A + A
k ′a
−−→ C, the number of reactions according to

continuum framework is

∆NC =
k′a2DNA(NA − 1)t′

S
, (3.106)

whereas on lattice we have

∆NC =
P′aNA(NA − 1)

2Nsv
. (3.107)

From these two equations, the lattice rate constant is derived as

k′a2D =
PaS

2td Nsv
,

=
πPaD

2d
,

(3.108)

which differs from Equation (3.103) by a factor of 2. As for the triangular lattice, the

lattice rate constant is given as

k′a2D =
√

3PaD, (3.109)

in which the relative diffusion coefficient D is defined as the sum of the two diffusion

coefficients DA.
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Now we derive the long-time rate coefficient for 2D lattice. The methods used is

generalized for any regular lattice arrangement, but we focus on the triangular lattice

since it is used to simulate surface-surface reactions in the Spatiocyte scheme. Similar to

the 3D case, the derivation for activation-limited (ka2D � D) and diffusion-influenced

(ka2D � D) reactions is treated separately.

3.2.3.1 Activation-limited Case (ka2D � D)

In the activation-limited scheme, we start the derivation with the generating function

for the rebinding-time probability distribution Hn(s0 |s1) defined in Equation (3.9). First

we obtain an expression for Equation (3.9) in term of P(s0 |s0; z):

H(s0 |s1; z) =
PaF(s0 |s0; z)

z + F(s0 |s0; z)(Pa − 1)

=
PaF(s0 |s0; z)

z[1 − F(s0 |s0; z)(1 − Pa)/z]

=
Pa

z

{
F(s0 |s0; z) +

(1 − Pa)

z
F(s0 |s0; z)2 +

[
(1 − Pa)

z

]2
F(s0 |s0; z)3 + ...

}
.

(3.110)

Write F(s0 |s0; z) = 1 − 1/P(s0 |s0; z) as 1 − x and q = 1 − Pa, we have

H(s0 |s1; z) =
Pa

z

{
1 − x +

q
z
(1 − x)2 +

[
q
z

]2
(1 − x)3 + ...

}
, (3.111)

in which regular z terms are neglected since z = 1.
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Finally, by rearranging the generating function in terms of x, we obtain

H(s0 |s1; z) = Pa
{
1 + q

[
1 + q + q2 + ...

]
− x

[
1 + 2q + 3q2 + ...

]
+x2q

[
1 + 3q + 6q2 + ...

]
+ ...

}
= Pa

{
1 +

q
1 − q

− x
∞∑

n=1
nqn−1 + x2q

∞∑
n=1

n(n + 1)
2!

qn−1 + ...

}
= Pa

{
1

1 − q
−

x
(q − 1)2

−
x2q
(q − 1)3

−
x3q2

(q − 1)4
− ...

}
= Pa

{
1

1 − q
−

x
(q − 1)2

1
1 − xq

q−1

}
= 1 −

x

Pa

[
1 + x(1−Pa)

Pa

] .

(3.112)

The generating function P(s0 |s0; z) for the triangular lattice in asymptotic form is given

in Equation (2.60) as

P(s0 |s0; z) ≈

√
3

2π
ln[12(1 − z)−1]{1 +O(1 − z)}. (3.113)

By substituting Equation (3.113) into Equation (3.112), we obtain the following approxi-

mated form:

H(s0 |s1; z) ≈ −
b1
Pa

{
ln

(
E

1 − z

)}−1
, (3.114)

where E = 12 exp {b1(1/Pa − 1)} and b1 = 2π/
√

3. We then apply singularity analysis

(Figure VI.4 of (Flajolet & Sedgewick, 2009)) on Equation (3.114) to obtain the large n

behavior:

Hn(s0 |s1) ≈
2π
√

3Pa

1
n

(
1

(ln En)2
−

2γ
(ln En)3

+
3γ2 − π2

2
(ln En)4

+ ...

)
. (3.115)
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Using Equation (3.115), we evaluate the discrete sum in Equation (3.3) using the Euler-

Mascheroni formula together with the definition of recurrence in 2D random walk:∑∞
n=0 Hn = 1. The solution in high order m terms is given by:

k2D
m =

2πk′a2D
√

3Pa

[
1

ln Em
−

γ

(ln Em)2
+
γ2 − π2

6
(ln Em)3

+ ...

]
. (3.116)

Finally, we apply the definition of initial rate for the triangular lattice and the relation

ml2 = 4Dt′ to obtain the time-dependent rate coefficient:

k′2D(t) = 4πD

[
1

ln Clt
−

γ

(ln Clt)2
+
γ2 − π2

6
(ln Clt)3

+ ...

]
, (3.117)

where Cl = 48D exp {b1(1/Pa − 1)} /l2 and l is the voxel size.

3.2.3.2 Diffusion-influenced Case (ka2D � D)

In the derivation of diffusion-influenced scheme, again we work with the Laplace form

for the rate coefficient:

k̂′2D(s) = k′a2D[1 − Ĝ(s)]/s, (3.118)

Here Ĝ(s) is the Laplace form of the rebinding-time probability density on lattice, defined

in Equation (3.79) as

Ĝ(s) = β1[s + β − sF1(s1 |s1)z − β2F(s1 |s1; z)]−1, (3.119)

where

F(s1 |s1; z) = 1 −
z2P1(s0 |s1)

P(s0 |s0; z) − 1
, (3.120)
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P1(s0 |s1) = 1/6, F1(s1 |s1) = 1/3, P1(s2 |s1) = 1/2, z = β2/(s + β2), β = β1 + β2,

β1 = Pa/6td and β2 = 1/td . td = l2/2dDx here refers to the average time interval needed

for a molecule with diffusion coefficient Dx to hop across one voxel. By applying the final

value theorem, we get the asymptotic form for Equation (3.78) as

lim
s→0

sk̂′2D(s) = k′a2D[1 − lim
s→0

Ĝ(s)]

= k′a2D

[
1 −

β1
lims→0[s + β − sF1(s1 |s1)z − β2F(s1 |s1; z)]

]
= k′a2D

[
1 −

(
1 +

β2
β1

lim
z→1

z2/6
P(s0 |s0; z) − 1

)−1]
.

(3.121)

Finally, by taking the small z expansion together with Equation (3.113), we obtain the

asymptotic rate coefficient expression:

lim
s→0

sk̂′2D(s) =
2πk′a2D

Pa
√

3

{
ln

[
12 exp{2π(1/Pa − 1)/

√
3}

1 − z

]}−1

=
4πD

ln
[
E(1 + 4D

l2s )

]
≈

4πD
ln(Cl/s)

.

(3.122)

3.2.3.3 Comparison with Continuum-based Theory

By comparing the lattice and continuum rate coefficient, we found that the asymptotic

expression in Equation (3.122) for the diffusion-influenced scheme is the same as its

continuum counterpart shown in Equation (2.23), while the time domain expression

in Equation (3.117) for the activation-limited scheme is consistent with the continuum

counterpart shown in Equation (2.24). To match the lattice and continuum rates, we need

to impose the equality Cl = Cc. It then implies that the reaction probability should be
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chosen as

Pa =

[
1 +
√

3
2π

(
ln( f 2/12) +

4πD
ka2D

− 2γ
)]−1

, (3.123)

where f = l/R denotes the ratio of voxel to the molecule size. Since probability Pa is

positive, it sets an additional constraint:

ln f +
2π
κ
> −

π
√

3
+

ln 12
2
+ γ = C1 (3.124)

To satisfy the last inequality, f = l/R has to be adapted according to the value of κ. Since

κ is always positive, we only need to set a lower bound expression for the voxel size:

ln f > C1 −
2π
κ
> C1,

f > exp(C1),

l > exp(C1)R ≈ 1.005887R.

(3.125)

In 3DMLM, accurate reaction kinetics requires the voxel size of HCP lattice to be larger

than the molecule by l ≈ 1.02086R. If an HCP lattice volume compartment is bounded by

a triangular lattice surface, the 3D voxel size condition would still satisfy Equation (3.125).

Therefore, all surface and volume voxels in the model can adopt the same HCP voxel size.

3.2.3.4 Generalization for Other Lattice Arrangements

The expression of MLM parameter derived for triangular lattice can be generalized

to other lattice arrangements that adopt the MLM scheme. In general, the variable Cl in

Equation (3.117) takes the form of

Cl = 4b2D exp {(1/Pa − 1)/b1} /l2, (3.126)
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where b1 and b2 are coefficients present in the highest order term of the generating function

P(s0 |s0; z):

P(s0 |s0; z) ≈ b1 ln
(

b2
1 − z

)
. (3.127)

On the other hand, the reaction probability has the following general form:

Pa =

[
1 + b1

(
ln(1/b2) +

4πD
ka2D

− 2γ
)]−1

. (3.128)

The expression for the probability has the following constraint on the voxel size:

l > exp
(
γ −

1
2b1
+

ln b2
2

)
R. (3.129)

Here as an example, we consider the square lattice, a popular lattice choice to simulate

surface reactions. The coefficients for square lattice are given as b1 = 1/π and b2 = 8

(Equation (A.187) in (Hughes, 1995)). The corresponding reaction probability is

Pa =

[
1 +

1
π

(
ln(1/8) +

4πD
ka2D

− 2γ
)]−1

, (3.130)

with the voxel size constrained by

l > 1.04722R. (3.131)

Therefore, to recapitulate the correct continuum rate, the voxel size in square lattice has

to be about 5% larger than the molecule size. This voxel size is substantially larger than

the 0.6% required by the triangular lattice. The different voxel size requirements reflect

the influence of lattice arrangement on the first-passage time behavior and emphasize the
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importance of choosing the right MLM parameters to generate accurate reaction kinetics.

3.2.3.5 Reversible Reaction

Accurate simulation of reversible reaction A + B
ka2D



kd2D
C according to the SCK model

needs to satisfy the local detailed balance. This is achieved in MLM by adopting a rate

constant k′d2D for the dissociation reaction such that the relation

k′a2D

k′d2D
=

ka2D

kd2D
, (3.132)

is satisfied.

3.2.4 1D Volume-surface Adsorption

We begin by formulating the 1D lattice rate coefficient according to the SCK model and

then apply the rate expression to the problem of volume-surface adsorption.

3.2.4.1 1D Reaction

Again, we start with the derivation of initial lattice rate constant on 1D space and

continue with the time-dependent lattice rate coefficient. To derive the initial lattice rate

constant, we consider the number of reactions in interval t′ according to the continuum

framework as

∆N =
k′a1DNANBt′

L
, (3.133)

where L denotes the length of the 1D system.

To be compatible with the continuum framework, we have the following assumptions

in the derivation of the lattice rate constant: (i) each voxel can accommodate more than

one molecule; (ii) molecules A are static whereas molecules B are mobile with relative
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diffusion coefficient D. Then the number of reactions occured in a simulation step on the

lattice is approximately

∆N =
PaNANB

NL
, (3.134)

where NL = L/l denotes the number of lattice voxels in length L. Finally, the initial lattice

rate constant is given by

k′a1D =
Pal
td
,

=
2DPa

l
,

(3.135)

with unit of [LT−1].

In 1D lattice, the generating function for the voxel occupancy probability from origin to

origin is defined as (Montroll & Weiss, 1965)

P(s0 |s0; z) =
1

√
1 − z2

. (3.136)

The corresponding first passage time distribution in generating function form is given by

F(s0 |s0; z) = 1 −
√

1 − z2. (3.137)

Substituting Equation (3.137) into Equation (3.9) yields the generating function for the

rebinding-time probability distribution

H(s0 |s1; z) ≈
−
√

2(1 − z)
Pa

, (3.138)

where we consider only the highest order term
√

1 − z in the limit of z → 1.
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The corresponding large n coefficient is obtained from the generating function according

to the rule given in Figure VI.4 of (Flajolet & Sedgewick, 2009) as:

Hn(s0 |s1) ≈
1

Pa
√

2πn3
. (3.139)

Applying Equation (3.139) to the Noyes’ rate formula in Equation (3.3), we obtain the

asymptotic form for the 1D rate coefficient:

k1D
m ≈ k′a1D

√
2

Pa
√
πm.

, (3.140)

Using the definitions of initial lattice rate constant and the 1D simulation step size

ml2 = 2Dt, we have the rate expression as a function of time:

k′1D(t →∞) ≈ 2
√

D
πt
. (3.141)

Note that Equation (3.141) shares the same time-dependent form as the continuum-based

theory given in Equation (2.35).

3.2.4.2 Adsorption

To derive the initial lattice rate for adsorption on lattice, we consider a cuboid compart-

ment with an adsorbing plane in the middle. Let molecules A diffuse in the bulk with

diffusion coefficient DA and adsorption occurs on both sides of the plane.

According to the continuum theory, the number of adsorbed molecules in time step t′ is

approximated by

∆Ns =
2k′saNAt′S

V
, (3.142)
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where Ns is the number of molecules adsorbed, NA is the initial number of molecule in the

bulk, S is the area of the plane and V is the volume of the cuboid compartment.

In the case of HCP lattice arrangement, the number of adsorption to the plane is

∆Ns = Pa
2Nsv

Nv

3
12

NA, (3.143)

where Nsv is the number of surface voxel (triangular lattice), Nv =
√

2V/l3 is the number

of volume voxel (HCP lattice) and Pa is the reaction probability. Note that 3/12 is the

probability that a molecule adjacent to the plane hops to the plane in one step and 2Ns/Nv

is the probability of a randomly distributed molecule A adjacent to the plane.

By equating these two expressions and solve for ksa, we obtain

k′sa =
Pal

2
√

6td
. (3.144)

Finally, with the diffusion time step definition td = l2/6DA, the initial lattice adsorption

rate constant is expressed as

k′sa =

√
3PaDA
√

2l
, (3.145)

where the unit is [LT−1].

To obtain the time-dependent rate coefficient for volume-surface adsorption, definitions

in Equation (3.145) and the 3D simulation step size relation nl2 = 6Dt are substituted into

Equation (3.140). The resulting adsorption rate coefficient is given as

k′sa(t →∞) ≈
1

2
√

2

√
D
πt
, (3.146)
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which shares the same long-time scaling behavior with the continuum-based theory in

Equation (2.38) up to the same order.

In contrast to the 3D and 2D cases, the long-time expression for the 1D rate coefficient

does not depend on the reaction probability and the voxel size. Since the long-time rate

coefficient has the same form in both lattice and continuous spaces, we only need to match

the initial lattice rate constant k′sa with the adsorption rate constant ksa in continuum.

3.3 Summary

We have derived the theoretical framework for MLM based on the Spatiocyte simulation

scheme according to the SCK model. We described the difference in Spatiocyte scheme for

simulating activation-limited and diffusion-influenced reaction. Based on these schemes,

we have derived the general lattice theory for each case separately. The specific lattice

theory for 3D, 2D and 1D reaction are derived based on the general lattice theory. We

found that the lattice time-dependent rate coefficient and rebinding probability exhibit

consistent analytical form as the continuum-based theory. This has allowed us to compare

and match the lattice and continuum theory. From the matching of the two theories, we

obtained the expression to determine the MLM parameters for recapitulating the continuum

reaction-diffusion behavior. Particularly, we found that the voxel size is required to be

larger than the actual molecular size. Lattice theory derived in this chapter will be validated

in the next chapter. The MLM expression for simulation derived here will be used in the

remaining of this thesis.
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CHAPTER 4: RESULTS AND ANALYSIS

In this chapter, we validate the accuracy of lattice theory derived in Chapter 3 with

numerical simulation and the continuum-based theory as defined in Chapter 2. We also

verify the accuracy of Spatiocyte in simulating irreversible and reversible bimolecular

reaction in 1D, 2D and 3D space. The performance of Spatiocyte in simulating diffusion

and reaction is benchmarked against several particle-based simulation method introduced

in Chapter 2.

4.1 Validation of Lattice Theory

The theoretical expressions for the rebinding probability and rate coefficient derived in

Chapter 3 are validated with numerical simulation performed using Spatiocyte. Spatiocyte

is included in E-Cell System version 4 (Kaizu et al., 2018), an open-source biochemical

simulation environment that supports multiple algorithms, time scales and spatial repre-

sentations. The Python notebooks used to generate the simulation results reported here are

available at https://github.com/wxchew/MLM.

4.1.1 3D Reaction

4.1.1.1 Rebinding Probability

The theoretical rebinding-time probability distribution of a reactive pair initially

in-contact, Hn(s0 |s1) and Gn(s0 |s1), are validated against numerical results. In the

activation-limited case (ka3D/kD � 1), the expected first rebinding probability at nth step

is obtained using Equation. (3.7), whereas in the diffusion-influenced case (ka3D/kD ≥ 1),

the probability is calculated from the generating function G(s0 |s1; z) (defined in Equation

(3.33)) as

Gn(s0 |s1) =

[
1
n!

dn

dzn G(s0 |s1; z)
] ����

z=0
. (4.1)
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Table 4.1: Theoretical and simulated rebinding-time probabilities on lattice for activation-limited
and diffusion-influenced cases.

Hn(s0 |s1), Pa = 0.5 Gn(s0 |s1), P′
a = 2α, α = 1/2

n Theory Simulation Error (%) Theory Simulation Error (%)
1 0.0416666 0.0416586 0.019 0.1538461 0.1538326 0.009
2 0.0156250 0.0156228 0.014 0.0473373 0.0473431 0.012
3 0.0107784 0.0107779 0.005 0.0313306 0.0313317 0.004
4 0.0074297 0.0074274 0.031 0.0200584 0.0200534 0.026
5 0.0056802 0.0056773 0.049 0.0147588 0.0147496 0.062

Table (4.1) shows the simulated and the expected theoretical values for n ∈ [1,5] steps.

Simulation is performed with l = 0.01 µm, volume = (100 l)3 with periodic boundary, and

number of iterations = 1 × 109. The simulation results agree well with the expected values,

with discrepancies never exceeding 0.1%. Since the theoretical rebinding-time probability

distribution on lattice is validated by simulations, the analytical formulas for the total

rebinding probability derived from it, Equations (3.38) and (3.59) are therefore valid.

To illustrate the dependency of total rebinding probability on ka3D/kD, we obtained

the probability at various ka3D/kD up to n = 10. Table 4.2 shows the simulated and the

expected theoretical values for various ka3D/kD ratios. Simulation are performed with

l = 0.01 µm, D = 1 µm2/s, volume = (10000 l)3 with periodic boundary, number of

iteration = 1 × 109 and α = 1/Pa for the diffusion-influenced cases. Both simulated and

theoretical values coincide well, with discrepancies never exceeding 0.03%. Qualitatively,

the total rebinding probability increases with larger ka3D/kD values, consistent with the

continuum theory in Equation (2.16).

We then evaluated the rebinding-time probability distribution by recording the time

Table 4.2: Theoretical and simulated rebinding probabilities up to n = 10 steps with ka3D/kD
ratios ranging from the highly activation-limited case (ka3D/kD = 0.01) to the strongly diffusion-
influenced case (ka3D/kD = 100).

ka3D/kD 0.01 0.1 1 10 100
Lattice theory 0.0062657 0.05973879 0.397486 0.874154 0.985988
Simulation 0.0062672 0.05973410 0.397459 0.874126 0.986000
Discrepancy (%) 0.025 0.0078 0.0068 0.0032 0.0012
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Figure 4.1: The rebinding time of a reactive pair that is initially in-contact. The rebinding time is
sampled from simulations with ka3D/kD = 0.1, 1 and 100. Markers show the simulation results
of Spatiocyte while solid lines depict the analytical results from the continuum-based theory in
Equation (2.11). The vertical dashed line marks the characteristic diffusion time step, td.

taken for A and B to associate immediately after a dissociation event. We performed

the simulations for a large number of steps and independent runs. The simulation

parameters used are l = 0.01 µm, volume = (10000 l)3 with periodic boundary, runs =

104, DA = 1µm2s−1, DB = 0 and α = 1/Pa for the diffusion-influenced case. Figure

4.1 shows the average number of rebinding events per unit time at ka3D/kD = 0.1,1 and

100. Lines depicting the rebinding-time probability distribution of the continuum-based

theory according to Equation (2.11) are also shown as reference. It is clear that at times

larger than td , the time-dependent behavior of lattice simulations is consistent with the

continuum-based theory. The scaling behavior at long-time, preb(R, t |R,0)(t) ∝ t−3/2 is a

well-known characteristic of a 3D random walker returning to the origin (Pfluegl & Silbey,

1998). This result corroborate the asymptotic analysis performed in Subsection 3.2.2.1

paragraph (b).
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Note that in the diffusion-influenced case (ka3D/kD = 1 and 100), finer step intervals

generate rebindings at times smaller than the diffusion time step td , denoted by the vertical

dashed line in Figure 4.1. In this temporal regime, MLM behaves differently from the

continuum-based framework because the MLM reaction kinetics approximates the Poisson

process. This is consistent with the analysis done in Subsection 3.2.2.2 paragraph (b).

Despite the difference, the rebinding behavior correctly converges to the continuum-based

formalism for times larger than td .

4.1.1.2 Irreversible Reaction

In this subsection, we evaluate the accuracy of MLM in simulating bimolecular reaction

Equation (2.1) over various ka3D/kD regimes. We considered an immobile species A and

a diffusing species B that are uniformly distributed at initialization with concentrations [A]

and [B], respectively. Simulation is performed using Spatiocyte with expression derived

in previous chapters. The parameters used in the simulation are the following: volume

= (3.5 µm)3 with periodic boundary, R = 0.01 µm, l = 0.01 × 1.0209 µm, DA = 0,

DB = 1 µm2s−1, Na = Nb = 4000, duration = 0.05 s, runs = 3 × 104 and α = 1/Pa for the

diffusion-influenced case. We recorded the surviving fraction of A molecules at each time

step.

Figure 4.2 displays the survival probability of A and the expected theoretical curve

according to Equation (2.3). From the survival probability, we calculated the time-

dependent reaction rate coefficient using (Equation (2.1) in (Szabo, 1989))

k(t) = −
1

[B]Sirr,A(t)
dSirr,A(t)

dt
. (4.2)

We adopted the following discretization scheme for the time derivative to get the discrete
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Figure 4.2: Simulated and theoretical Survival probability of A in A + B −→ B with ka3D/kD =
0.1, 1 and 100.

rate coefficient:

kn+1 = −
Sn+2 − Sn

[B]Sn+1 (tn+2 − tn)
, for n ∈ Z+, (4.3)

where n is the index of the discretized SA and t. The boundary cases are computed as

k1 = −
S2 − S1

[B]S1 (t2 − t1)
, kN = −

SN − SN−1
[B]SN (tN − tN−1)

, (4.4)

where N denotes the final time step. The reaction rate coefficient obtained for various

ka3D/kD ratios are shown in Figure 4.3 along with their corresponding theoretical curves

from Equation (2.13).
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Figure 4.3: Simulated time-dependent rate coefficients of the reaction and the corresponding
long-time approximation of SCK theory in Equation (2.13) for 3D reaction A + B −→ B.

Recall that the long-time asymptotic variant of the SCK theory as shown in Equation

(2.13) has the form

k3D(t) ' C1

(
1 +

C2
√

t

)
, (4.5)

where C1 and C2 denote the steady-state rate constant and the time-dependent term,

respectively. We fitted Equation (4.5) to the numerical data, omitting early time points to

avoid non-steady-state effects. Standard deviation of simulated survival probability data

is then used as weight in the fitting procedure. The resulting C1 and C2 parameters after

fitting are listed in Table 4.3. The theoretical values correspond favorably to the estimated

steady-state reaction rate constants and are well within the standard error, thus validating

the lattice theory for the effective rate.
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Table 4.3: The steady-state rate constant C1 and the time-dependent term C2 of reaction (2.1) at
various ka3D/kD were obtained by fitting the simulated reaction rate coefficient with Equation
(4.5). Theoretical values from Equation (2.13) are listed for comparison.

ka3D/kD 0.1 1 100
Theoretical C1 (µm3s−1) 0.011424 0.062832 0.124420
Simulation 0.011423±0.0012 0.062848±0.0029 0.124459±0.0046
Discrepancy (%) 0.011 0.026 0.032
Theoretical C2 (s1/2) 0.00051 0.00282 0.00559
Simulation 0.00054±0.01 0.00279±0.0052 0.00563±0.004
Discrepancy (%) 5.5 1.04 0.77
m.s.e. of fit 3.4×10−7 2.2×10−6 4.2×10−6

The time-dependent terms are also in good agreement with the theory, especially in

the diffusion-limited case, with discrepancy less than 1%. This is consistent with the

asymptotic analysis result in Equations (3.52) and (3.93) In the activation-limited case

(ka3D/kD = 0.1), the fitted C2 had the largest deviation from theory because the standard

error was also the highest. The low number of data points contributed to the higher

standard error.

4.1.2 2D Reaction

4.1.2.1 Irreversible Reaction

In this section, we verify the accuracy of the lattice rate coefficient k′2D(t) with the

numerical simulation. We obtained the theoretical rate coefficient from the numerical

inverse Laplace transform of Equation (3.121). We simulated the reaction in Equation

(2.1) with Spatiocyte at both the activation-limited (κ = 0.01 · 4π) and the diffusion-limited

(κ = 100 · 4π) regimes. Simulations were performed with the following parameters:

Area = (6.5 × 6.5) µm2, R = 0.01 µm, l = 0.01 × 1.0209 µm, DA = 1, DB = 0 µm2s−1,

Na = Nb = 423, duration = 0.2 s, logging interval=10td . The number of surviving A is

logged and the discrete rate coefficient is calculated.
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Figure 4.4: Simulated lattice time-dependent rate coefficients (solid lines) compared with MLM
theory in Equation (3.121) (dashed lines) for surface-surface reaction A + B −→ B.

The simulated rate coefficients shown in Figure 4.4 agree with the theoretical values

from Equation (3.117) at the activation-limited (κ = 0.01 · 4π) and diffusion-limited

(κ = 100 · 4π) regimes for t � td . For better visualization of the time-dependent behavior

of the two extreme cases, the simulated and theoretical lines are normalized by the initial

theoretical value.

Next, we compared the simulated survival probability of the same reaction with the

continuum-based theory, where the values are numerically evaluated according to

S2D
irr,A(t, [B]) = exp

[
−[B]

∫ t

0
k2D(τ)dτ

]
. (4.6)

As shown in Figure 4.5, the simulated results overlap almost perfectly with the continuum-

based theory, thus, confirming the accuracy of MLM.
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Figure 4.5: Simulated lattice survival probability of A (points) compared with continuum SCK
theory in Equation (4.6) (solid lines) in surface-surface reaction A + B −→ B. Activation-limited
(κ = 0.01 · 4π) and diffusion-limited (κ = 100 · 4π) cases are indicated by the top and bottom lines
respectively.

In a previous 2D reaction study on homogeneous lattice (Grima & Schnell, 2006), the

diffusion-limited reaction kinetics follows k2D(t) ∼ ta, where a is a constant. The kinetics

of 2D activation-limited reaction on the other hand is generally described by the rate

constant of classical reaction kinetics. As demonstrated by the theoretical and simulated

lattice reaction kinetics in this work, k2D(t) of activation-limited reaction decays slowly

(κ = 0.04π in Figure 4.4). Therefore, up to a certain extent, the activation-limited k2D(t)

can be approximated by the classical kinetics rate constant. For diffusion-limited reaction,

however, the asymptotic logarithmic decay in k2D(t) is significantly more apparent. The

behavior at the intermediate time can be well-approximated by k2D(t) ∼ t−1/2, as shown

previously in (Naqvi et al., 2000). In a recent work (Yogurtcu & Johnson, 2015), the

logarithmic function of the asymptotic k2D(t) is further simplified to give an effective

formula k2D(t) ∼ tc, where c is a function of the intrinsic rate and the diffusion coefficient.
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The simplified form of the time-dependent rate can be relatively accurate and convenient

in describing 2D reaction kinetics. Nonetheless, care should be taken to ensure the

assumption, the observation time regime and the physical parameter range are satisfied.

4.1.2.2 Reversible Reaction

We perform numerical simulations to confirm the ability of MLM to correctly reproduce

the steady state and time-dependent behaviors in the reversible reaction. Association rates

in the activation-limited (κ = 0.01) and diffusion-limited (κ = 100) cases were used in the

simulation, while the dissociation rate kd2D is set to be 10 times larger than the association

rate. Detailed simulation parameters are kd2D = 10ka2D, surface area = (6.5 × 6.5) µm2

with periodic boundary, R = 0.01 µm, l = 0.01 × 1.0209 µm, DA = DC = 0 µm2s−1,

DB = 1 µm2s−1, Nb = 20,Nb = 401 and duration =10 s. Simulated result is compared

with the MPK1 theory in Equation (2.31), obtained by numerical Laplace transform. The

outcome shown in Figure 4.6 indicates good agreement between the simulation and theory

for time ranging from td until equilibrium.

Since reactions in MLM take place stochastically, we examine the steady-state distri-

bution of molecule number in the reversible homodimerization reaction, A + A
ka2D



kd2D
B,

with association and dissociation rates, ka2D = 0.001 µm2s−1 and kd2D = 1 s−1, respec-

tively. The simulation schemes of homodimerization and heterodimerization reactions

are identical except in their reaction probabilities, which differ by a factor of two. We

initialize the simulation with 169 A monomers in a compartment of unit volume with

voxel size l = 0.01. The steady-state distribution of the number of B dimers obtained

from the simulation is shown in Figure 4.7. The result of the simulation is consistent

with the analytical solution from the chemical master equation (Equation (43) in (Cianci

et al., 2016)). We then investigate the effects of volume exclusion on the steady-state

distribution by increasing the voxel size, while retaining the number of molecules and the
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Figure 4.6: Survival probability of A in the surface-surface reaction A+ B
ka2D



kd2D
C. Dashed curves

are the values calculated according to the MPK1 theory given in Equation (2.31), solid lines are
the simulation results of Spatiocyte. Association rates in the activation-limited (κ = 0.1) and
diffusion-limited (κ = 100) regimes are chosen.

compartment size. With l = 0.09, the steady-state distribution shifts to the right. This

result is qualitatively consistent with the crowding-influenced reaction as predicted by the

thermodynamic theory (Zhou et al., 2008) and the master equation (Cianci et al., 2016).

However, we note that the exact quantitative behavior simulated on a crowded lattice would

not necessarily agree with the continuum description in all conditions because of the

different degrees of molecule obstruction between continuum and lattice representations,

as demonstrated in (Meinecke & Eriksson, 2016). It would require further analysis to

exactly match the crowding-influenced on-lattice reaction kinetics with the continuum

behavior, which is beyond the scope of the current work.

80

Univ
ers

ity
 of

 M
ala

ya



5 10 15 20 25 30 35
Number of dimers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

pr
ob

ab
ilit

y

CME
l=0.01
l=0.09

Figure 4.7: Steady-state number distribution of dimers from a reversible homodimerization

reaction. The reaction is given by A + A
ka2D



kd2D
B, with ka2D = 0.001 µm2s−1 and kd2D = 1 s−1.

The histogram on the left is simulated at an uncrowded condition with voxel size l = 0.01 µm.
Dashed line is the analytical solution of the chemical master equation (CME). Histogram on the
right is obtained with the same parameters except with a larger voxel size, l = 0.09 µm, resulting
in a crowded compartment. The diffusion coefficient of A is 1 µm2s−1, the length of the square
compartment is 1 µm and the initial number of A is 169.

4.1.3 1D Volume-surface Adsorption

4.1.3.1 Irreversible and Reversible Reaction

To examine the accuracy of MLM in simulating the adsorption kinetics, we performed

Spatiocyte simulations using the derived expression for the reaction probability. We used

large number of cytosolic A molecules in a cuboid compartment with a cross sectional

area (1 µm)2 and length 4 µm. An adsorbing plane is placed in the middle of the cuboid

compartment, allowing adsorption from both sides of the surface. Other simulation used

are l = 0.01 µm, DA = 1 µm2s−1, and initial number of cytosolic molecule Na = 1000.

The number of adsorbed molecules at each time step is monitored.
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Figure 4.8(a) shows the time series of A on the adsorbing plane for irreversible

(adsorption-only) and reversible (adsorption and desorption) reactions. Simulated results

agree well with the expected values according to the continuum theories for the irreversible

reaction in Equation (2.36) and reversible reaction in Equation (2.40).

The goodfit can be seen at both strongly (ksa = 500 µms−1) andweakly (ksa = 50 µms−1)

adsorbing rates. To examine the spatial-temporal concentration profile, we counted the

number of cytosolic molecules near the adsorbing plane in the irreversible adsorption.

The resulting concentration profile along the axis perpendicular to the adsorbing plane

are shown in Figure 4.8(b). The simulation results coincide very well with the curves of

continuum-based theory in Equation (2.39).
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Figure 4.8: (a) Time series of adsorbed molecules simulated with irreversible (IA, triangle and
circle markers) and reversible (RA, plus and square markers) adsorptions. In each case, strong
(ksa = 500 µms−1) and weak (ksa = 50 µms−1) adsorption rates were tested. In the reversible
adsorption, the membrane dissociation rates are ksd = 62.5 and 6250 s−1, corresponding to
the association rates ksa = 50 and 500 µms−1, respectively. Solid and dashed lines represent
the continuum-based values according to the irreversible and reversible reaction formulas in
Equations (2.36) and (2.40), respectively. (b) The concentration profile of cytosolic A along the
axis perpendicular to the adsorbing surface at x = 0 for the given time points. The adsorption
is irreversible with the rate ksa = 50 µms−1. Theoretical lines shown are according to the
continuum-based theory in Equation (2.39).
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4.2 Performance of the Numerical Simulation

4.2.1 Diffusion

We compared the 3D diffusion performance of MLM using Spatiocyte (git 9757fb3)

and three other continuum particle-based simulation methods, Smoldyn (Andrews et al.,

2010) (version 2.55), eGFRD (Takahashi et al., 2010) (in E-Cell System version 4.1.4)

and fast Brownian dynamics (BD) (Smith & Grima, 2017) (C++ program example in

Spatiocyte git 9757fb3). Each model was simulated for a predefined run time, tr and the

resulting simulated time, ts was recorded. We calculated T , the run time in seconds for 10

s of simulated time with T = 10tr/ts. tr was set such that at least hundreds of simulation

steps have been completed. The resulting range of tr was between 1 hour to several days.

All simulations were executed on the same server with Intel Xeon Platinum 8180 2.5 GHz

(max 3.80 GHz) CPU, 768 GB memory and Ubuntu 18.04 LTS operating system. The

performance benchmark models for all tested methods are included in Spatiocyte package

(http://spatiocyte.org) as examples.

When the molecules are represented as hard-spheres with volume exclusion, Spatiocyte

required shorter run times than Smoldyn in all cases (Figure 4.9(a)). Spatiocyte achieves

comparable or better performance than eGFRD in the typical concentration range of

cytoplasmic macromolecules (0.1 to 10 µM). For example at 6 µM in volume 30 µm3,

Spatiocyte is about 4.5 and 16 times faster than Smoldyn and eGFRD, respectively. In

contrast to eGFRD, Spatiocyte and Smoldyn execution times increase with the number of

molecules but not the molecular crowdedness (V = 30 µm3 vs. 3 µm3). The simulation

times of Spatiocyte scale almost linearly with the number of molecules (T ∝ N), which

is not apparent with Smoldyn and eGFRD. The drastic slowdown of eGFRD at higher

concentrations is caused by the shorter time steps required to resolve many molecular

interactions that take place in the densely occupied system (Takahashi et al., 2010).
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Figure 4.9: 3D diffusion performance of particle-based methods. Vertical axis, T shows the run
times to diffuse molecules with diffusion coefficient Dx = 1 µm2s−1 in volume V for 10 s. Bottom
horizontal axis, N represents the number of diffusing molecules, while the top axis shows the
corresponding concentration at V = 30 µm3. (a) Molecules are represented as hard-sphere particles
with radius r = l/2 = 2.5 nm. (b) Molecules are dimensionless point particles that can overlap
one another. Solid lines depict the ideal scaling for Spatiocyte. Vertical dashed lines indicate the
typical concentration range of proteins in the cytoplasm (0.1 to 10 µM).
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If molecules are represented as dimensionless point particles, higher diffusion perfor-

mance is expected since inter-molecular collisions can be ignored. Figure 4.9(b) shows the

run times of Spatiocyte, Smoldyn and fast BD when diffusing point particles with the same

simulation interval. eGFRD was not considered here since it only supports molecules

with physical volume. Spatiocyte and fast BD execution times showed an almost linear

scaling with the number of molecules. Although Smoldyn did not scale as well, it had the

fastest run times when the number of diffusing molecules was 30,000 or less. Spatiocyte

outperformed fast BD in all tests and is on average 2.5 times faster. As expected, the

simulation times of all three methods were not affected by the crowdedness in the volume

since molecular collisions are disregarded. On average, Spatiocyte takes about 2 times

longer to diffuse hard-sphere molecules than point particles.

4.2.2 Reaction

Recently, Andrews (Andrews, 2018) benchmarked the performance of Smoldyn, MCell

(Kerr et al., 2008), eGFRD, SpringSaLaD (Michalski & Loew, 2016) and ReaDDy

(Schöneberg & Noé, 2013) particle simulators when running the well-known Michaelis-

Menten enzymatic reaction. Smoldyn required the least amount of time to complete the

benchmark. Running the model on our hardware (see Figure 4.10 for specifications) with

the same 1 ms simulation interval, Spatiocyte took 113 s, whereas Smoldyn required 31

s. Since it would take too long for eGFRD to complete the simulation of the original

model (Andrews, 2018), we decreased the number of molecules, diffusion coefficients and

reaction rates. The execution times of Spatiocyte, Smoldyn and eGFRD when running the

model with the new parameters are presented in Figure 4.10. The simulators generated

almost identical results. Spatiocyte and Smoldyn had similar run times, whereas eGFRD

required about one to two orders of magnitude longer. Although Spatiocyte is about four

times slower than Smoldyn when executing the original model, both had very similar times
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with the new parameters. Our results indicate that the relative performance of Spatiocyte

and Smoldyn depends on the model parameters.
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Figure 4.10: Particle simulation performance of the Michaelis-Menten reaction. Original
benchmark model from (Andrews et al., 2010; Andrews, 2018) was modified with volume (V) =
90.9 µm3, diffusion coefficient (Dx) = 1 µm2s−1, k1 = 0.01 µm3s−1, k2 = k3 = 0.1 s−1. Molecule or
voxel radius (r), simulation or diffusion step interval (∆t) and run time (T) are as indicated. All
simulations were executed on the same workstation with Intel Xeon X5680 3.33 GHz CPU, 48 GB
memory and Ubuntu 16.04 LTS operating system.

4.3 Summary

We validated the lattice theory including the rebinding probability and reaction rate

coefficient as derived in Chapter 3 with numerical simulation. We compared the simulated

irreversible and reversible reaction kinetics with the continuum-based theory defined in

Chapter 2. We observed consistent behavior in time-dependent kinetics and steady-state

distribution between Spatiocyte’s simulation result and the continuum-based theory for all

spatial dimensions. In the performance comparison with selected particle-based simulation

methods, Spatiocyte outperformed under certain parameter ranges. To further examine
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the capability of MLM in simulating intracellular RD processes, we apply MLM with

the same Spatiocyte configuration used in this chapter to more complicated and realistic

scenario in next chapter.
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CHAPTER 5: APPLICATIONS

We have validated the accuracy and consistency of MLM in solving diffusion-influenced

bimolecular reaction in Chapter 4. In this chapter, we apply MLM to study several

biological-inspired models including the production-degradation process, previously

studied using lattice-based methods (Erban & Chapman, 2009; Sturrock, 2016; Cianci

et al., 2016), and the dual phosphorylation-dephosphorylation cycle of the mitogen-

activated protein kinase (MAPK) cascade (Chang & Karin, 2001; Ferrell & Bhatt, 1997;

Aoki et al., 2011), a common motif found in signal transduction systems but with a

response function that is highly sensitive to the binding kinetics. We study the influence

of diffusion on the steady-state and the overall response behavior in these reactions. In

order to investigate the influence of obstacle hindrance on diffusion and reaction, we

study the mean-squared-displacement and the reaction rate of reactant molecules in the

presence of immobile obstacles. We also investigate the contribution of 3D volume-surface

reaction, 2D surface-surface reaction and 1D volume-surface adsorption to the overall

surface reaction.

5.1 Production-degradation Process

Consider the production and degradation processes of protein A represented by a

zero-order production coupled with a second-order degradation:

∅
k1
−→A, A + B

k2
−→B. (5.1)

The concentration of A will go through an initial transient state before settling down at

a steady-state equilibrium, [A] = k1/(k2[B]) that is distributed according to the Poisson

distribution (Erban & Chapman, 2009).
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According to theory of diffusion-influenced reaction, the equilibrium concentration of

A is given as

[A] =
k1

kss3D[B]
, (5.2)

where kss3D is the steady-state rate constant given by (Equation (4.5) in (Agmon & Szabo,

1990))

kss3D ≈ kon3D

{
1 +

[
4π(Re f f )

3[B]
]1/2}

, (5.3)

with macroscopic rate constant kon3D = 4πDRe f f and the effective radius Re f f =

ka3DR/(ka3D + 4πRD) .

To confirm if MLM can recapitulate the production-degradation process correctly, we

simulated the processwith Spatiocyte and compared the outcomeswith eGFRDand thewell-

mixed model. Simulation are performed with following parameters: k1 = 0.1 µm−3s−1,

k2 = 0.02 µm3s−1, [B] = 1 µm−3, runs = 700, duration > 104 s to achieve steady-state,

and volume = 100 µm3 with periodic boundary. To generate the results of the well-mixed

model, we solved the rate equation using an ordinary differential equation (ODE) solver.

The time-series of A is shown in Figure 5.1, while the equilibrium values are provided

in Table 5.1. As evident from the figure and table, Spatiocyte results are all in good

agreement with both the well-mixed model and eGFRD.

Recently, the Spatiocyte scheme was reported to not only fail to reproduce the expected

equilibrium value of A but also generate different values depending on the voxel size

(Sturrock, 2016). In the report, the effective bimolecular rate k2 was used in the calculation

of reaction acceptance probability instead of the intrinsic reaction rate constant ka3D, which

inevitably caused the deviation from the well-mixed model (see first row of Table 5.1).
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Figure 5.1: Time-series profile of A in production-degradation process showing simulated result
with Spatiocyte (using intrinsic rate, ka3D), eGFRD and RDME. DA = DB = 0.1 µm2s−1, molecule
radius rA = rB = r ∈ {0.005,0.02,0.05} µm. Note that r represents half of the subvolume size
in RDME, and the actual molecule radius in Spatiocyte and eGFRD. For comparison, solid line
shows the well-mixed model.

Table 5.1: Equilibrium concentration of A in Equation (5.1) simulated with Spatiocyte and eGFRD
at different spatial discretizations. k2 is the effective rate, ka3D is the intrinsic rate, l is the voxel
size, K = 21/6L/l is the compartment length in number of voxels, while L denotes the actual length
(Sturrock, 2016). At l = 0.01, K = 521; at l = 0.04, K = 130; and at l = 0.1, K = 52. The
well-mixed equilibrium concentration is 5 µm−3. Discrepancy (%) from the well-mixed model is
shown in parenthesis.

Simulation scheme l = 0.01 l = 0.04 l = 0.1
Spatiocyte with k2 9.014 (80.28) 6.023 (20.46) 5.393 (7.86)
Spatiocyte with ka3D 5.009 (0.18) 4.984 (0.32) 4.990 (0.2)
eGFRD 4.968 (0.64) 4.975 (0.5) 4.950 (1)

As shown in Figure 5.1 and Table 5.1, there was no discrepancy when the intrinsic rate

ka3D was used to compute the reaction acceptance probability given in Equation (3.94).

The well-known relation between ka3D and k2 is given by Equation (2.14), wherein k2

is represented by ke f f . Furthermore, just as in the well-mixed and eGFRD models, the

resulting equilibrium concentration from Spatiocyte is also independent of the molecule

radius or spatial discretization. Conversely, the RDME method deviated substantially from
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the well-mixed result when the voxel size is small, which is expected (Fange et al., 2010;

Hellander et al., 2012; Isaacson, 2013).

The well-mixed model assumes the time scale of diffusion to be always shorter than

that of the reactions. As a result, molecules are expected to be uniformly distributed

at all times and reactions can take place independent of spatial localization. The well-

mixed assumption is valid when describing activation-limited reactions but when they

are diffusion-influenced, the position of molecules should be taken into account. We

therefore expected some disparity between the well-mixed model and MLM when the

production-degradation process is diffusion-influenced. In Figure 5.2, at smaller diffusion

coefficients (Dx = 0.01,0.02), the equilibrium concentrations are indeed lower with

Spatiocyte than with well-mixed model. Spatiocyte behavior is consistent with eGFRD,

which also accounts for molecule positions. RDME however, has the same outcomes as
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eGFRD (r=0.05)
RDME (r=0.05)

RDME (r=1)
RDMEm (r=0.05)
RDMEm (r=1.0)

Figure 5.2: Mean equilibrium concentration of A from Spatiocyte, eGFRD, RDME and RDME
with modified propensity (RDMEm) with DA = DB = Dx ∈ {0.01,0.02,0.1} µm2s−1. Solid and
dashed lines represent expected results according to the well-mixed model and the microscopic
theory respectively.
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Figure 5.3: Steady-state distribution of A from Spatiocyte and eGFRD with r = 0.05 µm and
DA = DB = Dx ∈ {0.1,0.02} µm2s−1. RDMEm simulated with r = 1 and D = 0.02 is also shown
for comparison. The frequency is normalized such that the sum over the bin is unity. Dotted line
represents the well-mixed model simulated using the Gillespie method.

the well-mixed model.

The reduction in equilibrium value when the diffusion coefficient is decreased was

previously described by the microscopic theory of Agmon and Szabo (Agmon & Szabo,

1990). In contrast to the SCK theory, Agmon and Szabo have considered the non-negligible

effect of B concentration on the effective reaction rate, especially when the reaction is

diffusion-influenced. The slow diffusion of molecules increases the effective contact radius,

resulting in higher effective annihilation rate as shown in Equation (5.3). The output of the

production-degradation process according to the microscopic theory is shown in Figure

5.2 as a dashed line that coincides with Spatiocyte and eGFRD, further verifying the

MLM theory. Given the same diffusion and macroscopic reaction rates, the change in the

Spatiocyte voxel size does not affect the equilibrium behavior (at r = 0.1 and r = 0.05 in

Figure 5.2) since the reaction acceptance probability, Pa is adjusted according to the voxel

size to obtain the correct macroscopic behavior.
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On the other hand, RDME shows large deviation from the expected values at slow

diffusion. The inability of conventional rate equation and RDME to correctly capture

diffusion-influenced reactions has previously been noted and worked on before (Erban &

Chapman, 2009; Fange et al., 2010; Hellander et al., 2012; Isaacson, 2013; Smith et al.,

2016). By incorporating the diffusion coefficient into the bimolecular reaction propensity

formula (Equation (26) in (Erban & Chapman, 2009)), the equilibrium concentration of

RDME shows a better agreement with the expected values (see RDMEm, r = 1.0 in Figure

5.2). However, when the reaction is diffusion-limited (Dx = 0.01,0.02), unlike MLM, the

subvolume size of RDMEm cannot reach the microsopic resolution, r = 0.05. This is

because the size is constrained by a critical value (Equation (25) in (Erban & Chapman,

2009)) that preserves the well-mixed condition. At Dx = 0.01 for example, the critical

subvolume size is about 13 times the molecule diameter, any size smaller is invalid.

We have also examined the fluctuation of A at equilibrium, as depicted in Figure 5.3.

At Dx = 0.1, the histogram of Spatiocyte matches the distribution curves of eGFRD and

the well-mixed model (Gillespie method (Gillespie, 1976)). At much reduced diffusion

coefficient (Dx = 0.02) however, both Spatiocyte and eGFRD shared similar distributions,

with the width becoming narrower and the mean value shifting to the left. With the modified

propensity function, RDMEm also exhibited similar distribution. The narrow width and

the shifted mean are consistent with the characteristics of the Poisson distribution.

It was reported that MLM would not be able to solve the first-order production-

degradation reaction ∅
k1


k2

A accurately because of its spatial discretization scheme

(Sturrock, 2016). When the number of total voxels in the compartment, Nv is less than

k1/k2, the equilibrium concentration deviates from the well-mixed model. This deviation

however, is a direct consequence of the volume exclusion property of MLM. Since each

voxel can only occupy a single molecule, there would be an insufficient number of vacant
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voxels to accommodate new molecules when the degradation rate is not sufficiently fast.

The maximum occupancy on HCP lattice simply reflects the maximum physical occupancy

of voxel-sized molecules in the compartment because the HCP arrangement packs the

highest density of sphere voxels (Szpiro, 2003). Just as in the cellular compartment, no

more molecules can be added into the system when the number of generated molecules

exceeds available free space. Moreover, since only about 34% of the cell volume is

occupied by macromolecules (Zimmerman & Trach, 1991), it is also an unlikely scenario

to fully occupy the voxels of HCP lattice with macromolecules. With the multi-algorithm

implementation of Spatiocyte (Arjunan & Takahashi, 2017), we can use the Gillespie’s

Next-Reaction method (Gibson & Bruck, 2000) to simulate small molecules that are in

large abundance and are homogeneously distributed. In this case, the equilibrium result is

independent of spatial discretization since the method assumes the well-mixed condition.

5.2 Dual Phosphorylation-dephosphorylation

In mean-field models, the spatio-temporal correlation of microscopic rebinding events

is not resolved explicitly because the correlation usually does not cause a significant impact

on the dynamics at the macroscopic scale. One case where the correlation does influence

the macroscopic response is the dual phosphorylation-dephosphorylation cycle of the

MAPK cascade (Chang & Karin, 2001; Ferrell & Bhatt, 1997; Aoki et al., 2011), shown in

Figure 5.4. The substrate MAPK (K in Figure 5.4) is phosphorylated in a two-step process

by the MAPK kinase (KK) and dephosphorylated by a phosphatase P. The phosphorylation

and dephosphorylation processes proceed according to the Michaelis-Menten kinetics and

exhibit distributive property (Ferrell & Bhatt, 1997), wherein the enzymes must unbind

from the substrate before they can rebind and modify the second site. Upon phosphorylation

or dephosphorylation, the respective enzymes are inactivated (denoted as KK* and P*),

and reactivated (KK or P) after some time τrel . When the reactivation time is short and the
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enzyme-substrate reaction is diffusion-limited, the newly dissociated enzyme and substrate

are close enough to rebind instead of escaping into the bulk. Processive behavior caused

by rebindings of the same enzyme results in higher overall phosphorylation rate than

the distributive case where the dissociated molecules can escape rebinding (Ferrell &

Bhatt, 1997; Aoki et al., 2011). Such microscopic spatio-temporal correlation has been

shown to change the response sensitivity of the phosphorylation state, which can cause

the subsequent removal of ultra-sensitivity or bi-stability in the system (Elf & Ehrenberg,

2004; Takahashi et al., 2010).

Rebinding events taking place within very short time scales are difficult to be captured

by RDME because of the fine spatial resolution required. To test whether MLM can

resolve such events faithfully, we use Spatiocyte to simulate the dual phosphorylation cycle

with the same parameters from (Takahashi et al., 2010). Simulation are performed with

parameters as following: molecule size l = 0.0025 × 1.0209 µm, diffusion coefficient Dx ,

[KK] + [P] = 60, duration = 200 s, volume = 1 µm3 with periodic boundary. Distributive

and processive models are represented by Equations (1-5) of (Takahashi et al., 2010), and

were solved using ODE solver. Figure 5.5 displays the steady-state response curves of

Spatiocyte and reference theoretical models. Note that since the reactivation time τrel

is equal to or less than the diffusion time step td (given in Figure 5.5), the molecules

can rebind soon after dissociation. The simulation result coincides very well with the

switch-like response curve of the distributive model at fast diffusion (Dx = 4 µm2s−1),

whereas at much slower diffusion (Dx = 0.06 µm2s−1), it converges to the graded response

curve of the processive model. The influence of diffusion on the response curve can be

understood through the rebinding events. When diffusion is slow, reactions become more

diffusion-limited and rebinding occurs at higher frequency. The ensuing processive-like

mechanism then leads to the loss of the switch-like response curve. Conversely, in the
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limit of fast diffusion as assumed in the mean-field model, a sharper switch-like response

curve is recovered because of fewer rebindings.

Figure 5.4: Reaction model showing MAPK (K) is first activated into Kp and then Kpp by
MAPKK (KK) in two phosphorylation steps. Kpp is also deactivated by phosphatase (P) in two
dephosphorylation steps to become K again. Enzymes KK and P become inactive immediately after
reacting with their respective substrates and then relax back to the active state after some delay τrel .

The parameter ranges examined so far have a stable steady-state as demonstrated by the

response curves in Figure 5.5. When the total concentration of the substrate is increased

five-fold, the mean-field theory generates hysteresis, shown by the dotted and dash-dotted

lines. The dotted line represents the response when initialized with [Kpp]/[K]total = 1,

whereas the dash-dotted line has the initial condition [Kpp]/[K]total = 0. MLM produced

similar responses when the diffusion is fast (Dx = 4) (diamond markers in Figure 5.5).

However, as diffusion slowed down to Dx = 0.06, the bistability is lost (triangle markers).

Bistable states appear when the diffusion is fast and the substrate concentration relative

to enzyme is high. For example, at the initial state when almost all substrates are in the
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Figure 5.5: Fraction of Kpp in response to MAPKK/phosphatase ratio at steady-state. Circle
and square markers denote simulation result using Spatiocyte with Dx = 4 µm2s−1 and Dx =

0.06 µm2s−1, respectively. Dashed and solid lines represent distributive and processive mechanism
models, respectively. Cross and plus markers show the results from the original Spatiocyte scheme,
wherein the voxel and molecule sizes are exactly the same. We used a short reactivation time,
τrel = 1 µs, relative to td (for comparison td ≈ 1 µs when Dx = 4 µm2s−1, td ≈ 70 µs when
Dx = 0.06 µm2s−1) with the total number of substrates, Ktotal = 120. Hysteresis responses from
mean-field distributive model with five-fold substrate concentration (Ktotal = 600) are indicated
by dotted and dash-dotted lines with initial conditions [Kpp]/[K]total = 1 and [Kpp]/[K]total = 0,
respectively. Diamond and triangle markers represent Spatiocyte responses with five-fold substrate
concentration at the indicated diffusion coefficient, Dx .

unphosphorylated form, most kinase will be bound to the substrates rapidly. Hence, a

substrate that has been phosphorylated once is more likely to be dephosphorylated by

free phosphatase than to be phosphorylated the second time by scarce and fast diffusing

kinase. The inverse situation where all substrates are in the phosphorylated form would

also respond similarly to phosphatase. On the other hand, when diffusion is slow, the

kinase activity becomes processive because of the high rebinding probability. As a result,

molecules are more likely to be phosphorylated or dephosphorylated consecutively before

they could be disrupted by antagonistic enzymes from the bulk. This example highlights

how local spatio-temporal correlation can change the binding behavior and results in a
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different global response than the one predicted by the mean-field model.

As a side remark, in the original Spatiocyte scheme (Arjunan & Tomita, 2010), the voxel

adopts the size of the diffusing molecules. However, as we found in Section 3.2.2.3, the

voxel needs to be about 2% larger than the molecule size for the total rebinding probability

and the effective rate constant to be exactly the same as in the continuum-based theory.

Despite the 2% difference in voxel sizes, both new and original schemes displayed very

good fit with the expected dual phosphorylation cycle response curves in Figure 5.5. To be

fully consistent with the continuum-based theory however, the size should be set according

to Equation (3.95). The voxel size is not hard-coded to be the same as the molecule size

and can be easily specified in the Spatiocyte model file (Arjunan & Takahashi, 2017).

5.3 Bimolecular Reaction with Volume Exclusion

Anomalous diffusion due to excluded volume has been shown to generate non-classical

reaction kinetics on 2D (Berry, 2002; Schnell & Turner, 2004) and 3D lattices (Pitulice

et al., 2014). Here, we use MLM on HCP lattice to examine the effects of volume exclusion

on the bimolecular reaction E + S −→ ∅ in the presence of uniformly distributed immobile

obstacles. E and S have the radius 5 nm and diffusion coefficient, D0 = 1 µm2s−1, where

D0 is the diffusion coefficient in non-crowded dilute condition. Bimolecular intrinsic

reaction rate constant ka3D = 10kD is chosen such that the reaction is diffusion-limited.

Excluded volume is quantified by the lattice occupancy of the obstacles, φ = No/Nv,

where No and Nv are the numbers of obstacles and total voxels, respectively. Simulation is

carried out in a periodic cubic compartment with length L = 1 µm for a duration of 1000td .

Reactants have dilute concentrations, [S] = 5[E] = 0.001Nv and are placed randomly at

the beginning of simulation.
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We first consider the effects of immobile obstacles on diffusing molecules. We calculate

the time-dependent diffusion coefficient from the mean-squared displacement of simulated

particle trajectories. The time-dependent diffusion coefficient in Figure 5.6 indicates that

the diffusion is anomalous at short times and normal at long times. The crossover time

from anomalous to normal diffusion depends on the volume occupancy. The reduced

long-time diffusion coefficient is well-described by (Saxton, 1989; Vilaseca et al., 2011),

D′ = D0(1 − φ/φp), (5.4)

where φp ≈ 0.77 is the percolation threshold for HCP lattice. We confirmed that the

long-time diffusion coefficients obtained for φ in Figure 5.6 (dashed lines) are consistent

with D′ in Equation (5.4).
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Figure 5.6: Time-dependent diffusion coefficient of tracer molecules in the presence of immobile
obstacles at volume occupancy, φ. The diffusion coefficient at a time point is determined from the
mean-squared displacement of simulated particle trajectories. Dashed lines denote the diffusion
coefficient at long-time as predicted by D′ = D0(1 − φ/φp).
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Figure 5.7: Survival probability of E in reaction E + S −→ ∅ at various volume occupancy φ.

Figure 5.7 shows that the survival probability of E decays slower when the volume

occupancy, φ is increased. From the survival probability, we can calculate the rate

coefficient according to Equation (4.3) to obtain the kinetics. We replaced the constant

concentration term [B] in Equation (4.3) with the time varying term [E](t) in the equation.

For the dilute case (φ = 0) in Figure 5.8, there is a good agreement for the simulated k(t)

with the SCK rate coefficient in Equation (2.12). As φ increases to 0.3 and 0.5, the overall

reaction rate decreases, and thus progressively diverges from the SCK rate. Despite the

discrepancy, the rates can still conform to the SCK theory when the long-time diffusion

coefficient in Equation (5.4) is used.

As the volume occupancy approaches the percolation threshold (Figure 5.8, φ = 0.7), the

kinetics begins to deviate from the SCK theory. The deviation is strongest at φ = 0.8, which

is beyond the percolation threshold. Note that at lower volume occupany (φ = 0.3,0.5), the

anomalous to normal diffusion crossover time in Figure 5.6 is faster than the observation

time in Figure 5.8. Here, the kinetics is well described by the long-time effective diffusion
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Figure 5.8: Time-dependent reaction rates (dashed lines) at various volume occupancy φ. Solid
lines represent SCK theory with the long-time diffusion coefficient calculated in Figure 5.6.

coefficient. However, when the crossover time is comparable to the observation time

because of the increased volume occupancy (Figure 5.6, φ = 0.7), the effects of anomalous

diffusion is visible in the kinetics (Figure 5.8, φ = 0.7). At above the percolation threshold

(φ = 0.8), anomalous diffusion does not crossover to normal diffusion. As a result, the

long-time diffusion coefficient eventually decays to zero. In these highly crowded cases,

the SCK theory fails to describe the kinetics.

Grima and Schnell (Grima & Schnell, 2006) have shown that reaction kinetics, either

classical or non-classical, is not determined by the heterogeneity of the accessible space

but rather by the reaction probability and the initial condition. In the SCK model, reaction

follows classical kinetics when it is activation-limited (ka3D/kD � 1) but non-classical

kinetics is observed when it is diffusion-influenced (ka3D/kD � 1). The non-classical

behavior in the latter is well-described by Equation (2.12) using microscopic parameters.

The corresponding long-time behavior up to the second order term scales according to
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Equation (2.13), which has the same general form of the Zip-Mandelbrot equation proposed

by Schnell and Turner (Schnell & Turner, 2004; Pitulice et al., 2014). The Zip-Mandelbrot

equation is valid for long-time kinetics whereas the SCK rate in Equation (2.12) describes

the kinetics for all time ranges.

Here, we have studied the kinetics of bimolecular reaction in the presence of immobile

obstacles with MLM. When the total volume occupied by obstacles is much smaller than

the percolation threshold and the observation time scale is longer than the anomalous to

normal diffusion crossover time, the kinetics is still reproducible with the SCK theory

and Equation (5.4). However, it deviates from the theory when the volume occupancy

nears or crosses the percolation threshold, wherein anomalous diffusion dominates and the

diffusion coefficient approaches zero at the long-time limit. Therefore, to better describe

the non-classical kinetics analytically, we should incorporate the anomalous diffusion

induced by fractal medium into the theory either phenomenologically (Kopelman, 1988;

Schnell & Turner, 2004; Pitulice et al., 2014) or by extending the SCK model using a

generalized diffusion equation (Barzykin & Tachiya, 1993; Sung et al., 2001).

5.4 Surface Reaction Pathways

A cytosolic molecule can react with a membrane-bound reactant via two possible

pathways: it can either perform 3D diffusion in the cytoplasm and then directly react with

the membrane-bound reactant exposed to the cytosol or it can bind first to the membrane

and then perform 2D diffusion before reacting with the reactant. Both of these pathways

are often adopted simultaneously in the cell. Previous works have investigated how each

pathway contributes to the overall process (Adam & Delbrück, 1968; Berg & Purcell,

1977; Axelrod & Wang, 1994; Kholodenko et al., 2000). Here we apply the Spatiocyte

scheme with the derived MLM expressions to simulate surface reactions comprising all

dimensions. We study the contribution of each pathway to the overall reaction rate under
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the influence of different diffusivity and reactivity.

We consider a cuboid compartment of dimension H × L × L, depicting the cytoplasmic

volume. The top surface of the cuboid is reflective, whereas the bottom surface represents

an absorbing lipid membrane. Each of these surfaces has the area L × L. Within the

system, there are two elementary species, A and B, with radius r = 0.005 µm. Ac denotes

the cytosolic state of A that diffuses freely in the bulk at a rate of Dc. Ac can reversibly

associate with the membrane to become Am:

Ac
ksa


ksd

Am. (5.5)

The ratio of the membrane association constant over the dissociation constant is the

equilibrium constant, ksa/ksd = Keq. Upon the adsorption onto the membrane, Am

performs 2D diffusion at a rate of Dm. On the membrane, B molecules are initialized to be

immobile and randomly distributed with concentration [B]0.

A can react with B via the 3D pathway:

Ac + B
ka3D
−−−→ AB, (5.6)

or the 2D pathway:

Am + B
ka2D


kr

AB. (5.7)

ka{2D,3D} denotes the intrinsic association rate constants for 2D and 3D reactions, whereas

kr represents the dissociation rate constant.
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To quantify the dominance of the 2D pathway, we measured the fraction of the 2D

equilibrium rate in the total reaction rate, as in (Axelrod & Wang, 1994):

f2D =
kon2D

kon2D + kon3D
=

1
1 + kon3D/kon2D

. (5.8)

kon{2D,3D} represents the macroscopic effective rates for the 2D and 3D association reac-

tions. The kon3D/kon2D ratio is calculated using the simulated equilibrium concentrations

according to the formula

kon3D

kon2D
=

1
[Ac]eq

(
kr[AB]eq

ka2D[B]eq
− [Am]eq

)
, (5.9)

which is derived by solving the rate equations for Equations (5.7) and (5.6) at equilibrium.

We examined the dominance of the 2D pathway with changes in Dc/Dm, [B]0, and

the association reaction probability, Pa{2D,3D} for the 2D and 3D pathways. We fixed

other variables such as the sizes of the system and molecule, kr , Keq, ka2D/kr , and the

initial concentration [Ac]. We used the typical cytosolic rate for Dc (10 µm2s−1) with

Dc/Dm ratio ranging from 1 to 1000. Keq = 0.15 µm, [Ac] = 5 µM , ka2D/kr = 0.001 µm2

and ksd = 10 s−1 are within the biologically realistic values (Fulbright & Axelrod, 1993;

Tolentino et al., 2008). The simulation compartment size is L = 1 µm with H = 2L and

voxel size l = 0.01 × 1.0209 µm.

From the simulation results in Figure 5.9, we can observe the overall decreasing trend

of f2D as the ratio Dc/Dm increases. The actual value of f2D depends on the reaction

probability and the concentration of reactant, [B]0,. When the association reaction is

diffusion-limited (Pa2D = Pa3D = 1) and the reactant concentration is low ([B]0=100

µm−2), f2D becomes more than 50% for Dc/Dm values between 1 and 30. When Dc/Dm

is larger than 30, the 3D pathway becomes dominant. At very high [B]0=500 µm−2,
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Figure 5.9: Contribution of 2D reaction pathway as indicated by the fraction f2D plotted against
Dc/Dm ratio for different values of reaction probability Pa = Pa2D = Pa3D and concentration of
membrane-associated reactant [B] (unit µm−2).

the 3D pathway is dominant for all ratios of Dc/Dm. When the association reaction

is activation-limited (Pa2D = Pa3D = 0.01), f2D is larger than 50% for Dc/Dm ratio in

between 1-30, and is less than 50% for higher ratio of Dc/Dm. Unlike the diffusion-limited

case, f2D for activation-limited reaction is less sensitive to changes in reactant concentration

[B]0.

In typical intracellular environment, membrane-associated molecule diffuses 10-100×

slower than the cytosolic molecule. In such regime, our simulation result implies the

following: the 2D reaction pathway dominates the overall reaction provided that the

concentration of membrane-associated reactant is sparse, the species diffusion on the

membrane is fast and the reaction is activation-limited. On the other hand, 3D reaction

pathway becomes dominant when the diffusion of membrane species is extremely slow or

when the membrane-associated reactant is highly abundant and the reaction probability

upon collision is high.
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5.5 Summary

We have appliedMLM to study selected reaction-diffusion process typically encountered

in intracellular system. In the protein production-degradation process, we found that

diffusion has a non-negligible influence on the mean concentration and distribution at

equilibrium. In the case of dual phosphorylation-dephosphorylation cycle, diffusion affects

the rebinding behavior between the substrate and enzyme, which can lead to changes in the

overall steady-state response. When diffusion is highly obstructed by immobile obstacles,

we found that diffusion becomes anomalous, for time regime that depends on the obstacle

concentration. The obstructed diffusion alters the reaction kinetics of bimolecular reaction,

deviated from the SCK description. For surface reaction in typical intracellular condition,

we found that the dominance of 2D and 3D reaction pathways in the overall reaction is

highly influenced by the concentration of membrane-associated reactant, the diffusivity on

the membrane and also the reactivity. Overall, we show that MLM is able to reflect the

microscopic nature of intracellular RD processes.

107

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 6: DISCUSSION AND CONCLUSIONS

6.1 Summary and Overall Discussion

Realisticmodeling of intracellular RDprocess requires the consideration of the stochastic,

multi-compartmental and finite molecular size characteristics of the system. The main

advantage of MLM as a reaction-diffusion simulation method is its ability to capture

these characteristic without incurring high computational cost. In this work, we have

successfully established the accuracy and consistency of MLM in simulating RD process.

We have derived the on-lattice reaction rate coefficient for diffusion-influenced reaction in

1D, 2D, and 3D spatial dimensions. The accuracy and performance of Spatiocyte, a MLM

simulation scheme, has been benchmarked with continuum-based theory and particle-based

simulation method. We have also applied MLM to study several biological reaction-

diffusion process and observed interesting behavior that arose from the microscopic nature

of the underlying process.

In the analysis of lattice theory, we have shown that MLM exhibit the same long-time

behavior as the continuum-based theory for 3D volume-volume and volume-surface

reaction, 2D surface-surface reaction and 1D volume-surface adsorption. By matching the

lattice and continuum theoretical expression for the lattice effective rate constant, total

rebinding probability, and long-time rate coefficient, we obtained the reaction probability

formula in terms of the physical and lattice parameters. We also found that the 3D voxel

size should be larger than the molecule size by about 2% in the case of HCP lattice to be

quantitatively consistent with continuum reaction kinetics. On the other hand, 2D voxel

size should be larger than the molecule at least by about 0.6% for the triangular lattice

and by 5% for the square lattice. The constraint in 2D meets the minimum voxel size

requirement of the corresponding lattice arrangement in 3D. If the voxel size is exactly the
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same as the molecule, the simulated time-dependent reaction kinetics will deviate from the

expected behavior in continuum. Such deviations should be carefully considered especially

when simulating reactions containing nonlinear terms.

Aside from theoretical analysis, we have validated the accuracy ofMLMusing numerical

simulation as well. Spatiocyte exhibit asymptotic time-dependent behavior that agrees

with the SCK theory for both activation- and diffusion-limited bimolecular reaction in

all spatial dimensions. In the case of 1D volume-surface adsorption, the spatiotemporal

behavior of MLM agrees with the continuum description when the correct expression for

reaction probability was used. Performance study of Spatiocyte show that it only takes

minutes for the Spatiocyte algorithm to simulate thousands of molecules with a time step

of µs for a duration of seconds on a single CPU core. Apart from simple bimolecular

reaction, we have applied MLM in several application studies in which MLM displayed

good consistencies with eGFRD, a particle-based simulator.

MLM can be easily implemented in practice, for example, Spatiocyte scheme only

takes physical parameters comprising the molecule size, diffusion coefficient and intrinsic

reaction rate as input, and generates time-series outputs such as molecule copy number

and trajectory. These outputs can be compared directly with experimental measurement

such as those obtained from single molecule microscopy. At present, Spatiocyte supports

surface reaction with various geometries at the cellular scale. It has been used to study

the influence of microscopic effects on cellular behavior. This include the formation

of a high density ring over the entire cell membrane as a result of transient membrane

association and rebinding of proteins in bacteria (Arjunan & Tomita, 2010), the clustering

of proteins on the red blood cell membrane from oxidative stress (Shimo et al., 2015) and

the oligomerization of receptors and its influence on ligand binding kinetics (Watabe et al.,

2018). As the spatiotemporal resolution of imaging technique advances (Hell et al., 2015),
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time-dependent reaction kinetics and molecular trajectories will become more accessible.

The high resolution experimental data coupled with efficient microscopic simulation

technique such as MLM, provide a complementary way to postulate and investigate the

mechanism underlying biological RD processes.

6.2 Limitations of MLM

MLM captures the effects of excluded volume naturally but comparing on-lattice

behavior with the continuum one is not straightforward since the influence of volume

exclusion and the resulting reaction kinetics vary according to the lattice arrangement

(Grima & Schnell, 2006; Meinecke & Eriksson, 2016). Moreover, since all diffusing

species in this work have the same molecule size, it is not possible to replicate the effects

of relative size of interacting molecules. To minimize such lattice artifacts and to better

approximate the volume exclusion in the continuum, we can improve the size representation

of each molecule on lattice by occupying multiple voxels as in the SVTA approach or

by employing a hybridized on- and off-lattice approach. Higher spatial resolution for

representing molecule would generate a more realistic diffusion behavior in a crowded

environment. Alternatively, we can introduce a density-dependent hopping rate as adopted

by two previous RDME methods (Grima & Schnell, 2007; Cianci et al., 2017).

6.3 Suggestions for Future Work

Realistic simulation of intracellular reaction-diffusion processes should also incorporate

the influence of inter-molecular potentials such as van der Waals and hydrodynamic forces.

By employing contact interactions on lattice as proposed by Fernando et al. (Fernando

et al., 2010) or the SVTA approach with interaction potentials (Gillespie et al., 2014), it

may be possible to incorporate the above forces in MLM. In conclusion, the theoretical

framework presented in this work serves as a building block for further development and
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integration of MLM-based algorithms. For future research, MLM could act as a bridge for

connecting the microscopic simulation method such as Brownian and molecular dynamics

with the macroscopic method such as the reaction-diffusion or rate equation description.

With that, a multi-scale simulation framework can be established.
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