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Abstract 

Surface flaws could occur as internal or external semi-elliptical cracks in cylinder or 

round bars along the axial or circumferential direction. Fracture analysis has been widely 

implemented to predict failure of cylinder bars and engineering components caused by 

preexisting small cracks so that precautionary measures could be taken to either prevent 

future crack propagation or to determine the remaining life of the components. In order 

to achieve this, the Stress Intensity Factors (SIFs) must be evaluated accurately for the 

different Modes of fracture and crack geometries. Many approaches and models have 

been proposed in the literatures to evaluate the SIFs of cracks based on finite element 

analysis. However, very little works has focused on using the Dual-Boundary Element 

Method (DBEM) which is a more reliable and robust tool to evaluate the SIFs for a wide 

range of cracks. In this research, a systematic study was undertaken to use DBEM-based 

software BEASY to analyze the SIFs of semi-elliptical surface cracks with different 

inclination angle in cylinder bar subjected to pure tension and pure torsion. The main 

parameters being considered in this work to evaluate the SIFs were the crack depth to 

cylinder diameter ratio (𝑎 𝑑⁄ ), the crack aspect ratio (𝑎 𝑐⁄ ), crack inclination angle (𝜃). 

Different mesh sizes have been implemented in order to achieve the optimum accuracy 

of the results obtained from the software. The results were validated as follows; firstly, 

the DBEM results obtained for each loading conditions were compared with available 

analytical solutions proposed by other researchers. In the second stage, the DBEM results 

were compared with other numerical works which have been reported in the literature. 

The general closed-form solutions were developed to evaluate the corresponding SIFs for 

Mode I, Mode II and Mode III fracture types. The solutions were obtained through a 

systematic curve fitting approach on the SIFs produced by BEASY. The solutions 

confirmed that Mode I fracture in the cylinder bar under pure tension was maximum when 
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the crack front was perpendicular to the load direction (crack inclination angle of 0o) and 

it was minimum when crack inclination angle was 45o. However, Mode II and Mode III 

fractures were negligible at the crack inclination angle of 0o and they reached to their 

maximum at an inclination angle of 45o. On the other hand, when the cylinder was 

subjected to pure torsion it was vice versa and Mode I fracture was negligible at the angle 

of 0o where Mode II and Mode III fractures were at their peak. This research has 

demonstrated the viability of using DBEM-based software BEASY to evaluate the SIFs 

of inclined semi-elliptical surface cracks in cylinder bar subjected to pure tension and 

pure torsion.   

Key words: stress intensity factor; surface crack; solid cylinder; closed-form solution; 

dual boundary element method 
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Abstrak 

Kelemahan permukaan boleh terjadi sebagai retakan semi-elips dalaman atau luaran di 

silinder atau bar bulat sepanjang arah paksi atau lilitan. Analisis keretakan telah 

dilaksanakan secara meluas untuk meramalkan kegagalan bar silinder dan komponen 

kejuruteraan yang disebabkan oleh retakan kecil yang telah wujud sebelum ini supaya 

langkah berjaga-jaga dapat diambil untuk sama ada mencegah penyebaran retak masa 

depan atau untuk menentukan jangka hayat komponen. Untuk mencapai matlamat ini, 

Faktor Intensiti Stres (SIFs) mesti dinilai dengan tepat untuk pelbagai mod retakan dan 

geometri retak. Banyak pendekatan dan model telah dicadangkan dalam literatur untuk 

menilai keretakan SIF berdasarkan analisis unsur finite. Walau bagaimanapun, tidak 

banyak kajian yang telah memberi tumpuan kepada menggunakan Kaedah Elemen 

Sempadan Sempadan (DBEM) yang merupakan alat yang lebih dipercayai dan mantap 

untuk menilai SIFs untuk pelbagai keretakan. Dalam kajian ini, kajian sistematik telah 

dijalankan untuk menggunakan perisian BEASY berasaskan DBEM untuk menganalisis 

SIF retak permukaan semi-elips dengan sudut kecenderungan yang berbeza di bar silinder 

yang menumpukan ketegangan tulen dan kilasan tulen. Parameter utama yang 

dipertimbangkan dalam kajian ini untuk menilai SIF ialah kedalaman retakan ke nisbah 

diameter silinder (𝑎 𝑑⁄ ), nisbah aspek retak (𝑎 𝑐⁄ ), sudut kecenderungan retak (𝜃). Saiz 

mesh yang berbeza telah dilaksanakan untuk mencapai hasil ketepatan optimum yang 

diperoleh daripada perisian. Keputusan telah disahkan sebagai berikut; Pertama, hasil 

DBEM yang diperolehi untuk setiap keadaan pemuatan dibandingkan dengan 

penyelesaian analisis yang tersedia yang dicadangkan oleh penyelidik lain. Di peringkat 

kedua, hasil DBEM dibandingkan dengan kerja-kerja statistik lain yang telah dilaporkan 

dalam kajian lepas. Penyelesaian bentuk tertutup umum telah dibangunkan untuk menilai 

SIF yang berkaitan untuk jenis retakan Mod I, Mod II dan Mod III. Penyelesaian 
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diperoleh melalui pendekatan pemasangan lengkung yang sistematik pada SIF yang 

dihasilkan oleh BEASY. Penyelesaiannya mengesahkan bahawa retakan Mod I di bar 

silinder di bawah ketegangan tulen adalah maksimum apabila retakan hadapan adalah 

perpendikular dengan arah beban (retak sudut kecondongan 0o) dan ia adalah minimum 

apabila sudut retak kecenderungan adalah 45o. Manakala, retakan Mod II dan Mod III 

adalah kecil di sudut retak kecenderungan 0o dan ia mencapai maksimum pada sudut 

kecondongan 45o. Sebaliknya, apabila silinder tertumpu kepada kilasan murni, 

sebaliknya dan retakan Mod I diabaikan pada sudut 0o di mana retakan Mod II dan Mod 

III berada di maksimum. Kajian ini telah menunjukkan daya maju menggunakan perisian 

Beasy berasaskan DBEM untuk menilai SIFs kecenderungan retakan permukaan semi-

elips dalam bar silinder yang ditumpukan kepada ketegangan tulen dan kilasan tulen.  

Kata kunci: tekanan faktor keamatan; retakan permukaan; silinder solid; penyelesaian 

bentuk tertutup; kaedah unsur sempadan dual. 
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𝜃   Crack face inclination 

𝜎0   Applied stress to the cylinder bar 

𝑠   Crack front arc-length 

𝐹𝐽𝑀   Boundary-correction factor for surface crack in the cylinder  

𝑓𝑆   Maximum value for SIFs 

𝑓𝜃   Inclination-correction factor 
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CHAPTER ONE: INTRODUCTION 

 

Fracture is a problem that society has faced for as long as there have been man-made 

structures. Due to this fast growing complex technology, this problem even got worse 

today than previous centuries. There are plenty of factors which can cause structural 

failure but from investigation on fallen structures, engineers found that microscopic 

cracks are the most common defect which lead to failure. It is evident that materials is 

never flawless and external loading or fatigue in service develops the flaw until becomes 

the critical crack size and finally lead to failure, the same as dislocation and impurities, 

etc (Kou & Burdekin, 2006).  

All engineering components and structures contain geometrical discontinuities-threaded 

connections, windows in aircraft fuselages, keyways in shafts, teeth of gear wheels, etc. 

The shape and size of these features are crucial due to their impact on the strength of the 

artifact. If these discontinuities may not be properly designed or perfectly assembled then 

sharp corners, grooves, nicks, voids, etc. will emerge which cause stress concentration 

and lead to structure failure.  

Moreover, damages like impact, fatigue, unexpected loads and so on usually happen in 

service. Since the maintenance of structures during their service may be poor or not 

proper, these damages can cause microscopic cracks and most of them are arrested inside 

the materials but it takes one run-way to destroy the whole structure (Beer & Johnston, 

1981).  

In order to avoid brittle fractures, relationship among stresses, cracks and fracture 

toughness is being analyzed. Systematic scientific rules were developed to characterize 

cracks and their effects to predict if and when the structure or their components containing 
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crack(s) may become unsafe during the service lives of the structure. This science is 

called fracture mechanics (Beer & Johnston, 1981; Zerbst et al., 2014).  

Fracture mechanics is a set of theories characterizing the behavior of solids or structures 

with geometrical discontinuity at the scale of the structure. The discontinuity 

characteristic may be in form of line discontinuities in two-dimensional media like plates 

or shells and surface discontinuities in three-dimensional media. Fracture mechanics has 

developed to a mature discipline in science and engineering, and completely changed our 

understandings about behavior of engineering materials. 

Conventional failure criteria have been evolved into strength failure of load-bearing 

structures which can be classified as ductile or brittle failures (Elices et al., 2017). When 

breakage of a structure is preceded by large deformation which occurs over a relatively 

long time and may be associated with yielding or plastic flow, it is considered as ductile 

failure. On the other hand, brittle failure is usually sudden and preceded by small 

deformation (Pineau et al., 2016).  

Based on this failure classification, fracture mechanics can be divided into Linear-Elastic 

Fracture Mechanics (LEFM) and Elastic-Plastic Fracture Mechanics (EPFM) (Beer & 

Johnston, 1981; Song et al., 2018). For brittle-elastic materials like high-strength steel, 

glass, ice, concrete, etc. LEFM give ideal results. However, for ductile materials like low-

carbon steel, stainless steel, certain aluminum alloys and polymers, EPFM is suited for 

failure evaluations.  

Cylindrical components have been used widely in engineering structures such as 

aerospace, offshore structures, vehicle motors, power transition shafts, etc. Under the 

action of mechanisms such as cyclic loading, propagation of fatigue cracks may occur. 

One result of this propagation could be the failure of the component. In the worst case, a 

catastrophic collapse of a whole structure is also possible. Consequently, prediction of 

the propagation of an existing or postulated crack becomes an important part of a safe 
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design and maintenance of a structure. To predict the crack propagation life and the 

residual life of structure, it is necessary to know the severity of the crack, especially in 

terms of the crack tip conditions. In fracture mechanics, this severity can be measured by 

several parameters, of which the most widely used is the stress intensity factors (SIF) 

which depends on the crack size, geometry of cracked member and mode of loading 

(Irwin, 1957; Fu et al., 2017). Therefore, with the stress intensity factor known, prediction 

of crack propagation can be done.  

The three-dimensional nature of this kind of cracks results in a stress intensity which is 

not only varying along the crack front but is also highly sensitive to the crack shape. 

Numerical techniques or approximations are often implemented to study the SIF for this 

problem (Newman & Raju, 1981; Chen, 2016A).  

SIF was introduced by Irwin (1957) based on his previous research on Westergaard’s 

(1939) work. He proposed SIFs as a description of the stress field ahead of crack front. 

Irwin has also shown that SIF is uniquely related to the energy release rate, proposed by 

Griffith (1920), so can be used to define fracture phenomenon (Erdogan, 1983). 

 

 

Figure 1-1: Three different crack modes in fracture mechanics (Beer & 
Johnston, 1981). 
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Three different crack modes in fracture mechanics are illustrated in Figure 1-1. Mode I 

or opening mode occurs when the crack is subject to tensile stresses normal to the crack 

plane. Displacement of the crack faces is perpendicular to the crack plane. Mode II or 

sliding mode results from in-plane shear loading in the crack plane. Displacement occurs 

in the plane and normal to the crack front. Mode III or tearing mode results from out-of-

plane shear loading (Lawn & Wilshaw, 1975; Rozumek et al., 2018). Fracture 

propagation is controlled by the stress intensity at the crack tip, computed using SIFs for 

each mode of propagation, and fracture toughness. If the stress intensity at the crack tip 

exceeds the fracture toughness, the fracture will propagate.  

A detailed assessment of crack behavior in a cylinder bar under repeated loadings is 

necessary, especially for long deep cracks. Solutions for stress intensity factors for 

surface cracks in cylinder are available in the literature for a wide range of cracks. 

Researchers have been evaluating SIFs of flaws in solid bodies by using different methods 

and practical solutions were proposed to predict stress intensity distributions along the 

crack front (Toribio et al., 1991; Livieri and Segala, 2016).  

Lebahn et al. (2013) evaluated SIFs of semielliptical surface crack on the round bar 

subjected to cyclic tension and bending. SIFs were obtained from crack propagation tests 

and solutions were validated both numerically and experimentally. Experimental results 

are also available from Freitas et al. (1995) and Fonte and Freitas (1994; 1997), where 

fatigue crack growth tests were carried out in round bars subjected to cyclic bending and 

steady torsion stresses. 

However, in doing an analysis of 3D crack problem, the complexities of the experimental 

setup is greatly concerned. Thus, a numerical analysis is always sought to reduce the 

experimental work. Raju and Newman (1986) evaluated the SIFs of a semi-elliptical 

crack using the three-dimensional finite element method. They proposed SIF closed-form 

solutions for cracks in plates and round bars.  
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Madia et al. (2011) reported SIF solutions of cracks in solid or hollow round bar subjected 

to mixed mode loading. They used FEM to evaluate SIFs in shafts and proposed imperial 

solutions for different crack sizes. Li et al. (2016) used a combined J-integral and Finite 

Element Method (FEM) to evaluate SIFs for inclined external surface cracks in 

pressurized pipes.  

Based on the literatures, many researchers evaluated cracks on round bar with only one 

inclination. However, in reality, cracks may occur at any different inclinations. A 

comprehensive empirical stress intensity factor solution for an inclined semi-elliptical 

surface crack in the cylinder under pure tension or pure torsion is not provided in the 

literature. The lack of this solution for such a critical components in mechanical 

structures, led to this research reported in this thesis to find a closed-form solutions of 

SIF of a semi-elliptical surface cracks with different inclinations in the round bar 

subjected to pure tension and pure torsion.   

As reported by Cisilino and Ortiz (2005), the Boundary Element Method (BEM) is found 

to be preferably suited for quantifying the conservation integrals. This is because the high 

accuracy of the displacements and stresses including their derivatives at the internal 

points can be obtained in BEM through their boundary integral representations, as 

opposed to other numerical techniques, like FEM.  

For three-dimensional analyses, the conservation integrals are usually used in their so-

called surface- or domain-independent form. While adopting the surface-independent 

form of conservation integrals, the integration can be carried out along a contour in a 

plane perpendicular to the crack front and also over the surface enclosed by the contour. 

A number of works on surface cracks by the boundary element method (BEM) have also 

been reported in literature. 

For examples, Mi and Aliabadi (1994; 1992) presented the dual boundary element method 

(DBEM) for evaluating general 3D crack problems. BEASY software is based on Dual-
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boundary element method (DBEM) which is developed by Mi and Aliabadi (1994) to 

treat the crack boundaries. The DBEM and in general BEM can be a faster and more 

reliable method than FEM. For example, if the same model is evaluated in both methods, 

DBEM needs less elements than FEM to model the crack and assess the SIF which means 

that it needs less computational time. On the other hand, singularity on the crack corners 

are well-treated in BEASY (Mi & Aliabadi, 1992; Guiggiani et al., 1991; Aliabadi et al., 

1985; Citarella et al., 2016). 

DBEM is excessively implemented by various researchers including Joseph et al.  (2014), 

Chandra et al. (2014) and Siow et al. (2016) to evaluate SIFs in different models. Results 

proved that this method and BEASY software are accurate and reliable to be implemented 

for stress intensity evaluations.  

In addition, in order to prove the accuracy of SIFs, obtained results from BEASY in this 

study have been compared and validated by popular analytical solutions such as He and 

Hutchinson (2000) and Newman and Raju (1981) and numerical solutions like He and 

Hutchinson (2000). 

 

 

The aim of this research was to develop a comprehensive closed-form solutions for Mode 

I, Mode II and Mode III stress intensity factors of a semi-elliptical surface cracks with 

different inclinations in a cylinder bar subjected to pure tension and pure torsion. To 

achieve this goal, followings are the objectives of the research: 

 To evaluate the Stress Intensity Factors (SIFs) of semi-elliptical surface crack 

with different inclinations in the cylinder bar under pure tension and pure torsion 

by using dual-boundary element method using the software of BEASY. 
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 To validate the DBEM results in this research by comparing them with available 

analytical and numerical solutions in the literature.   

 To develop a general set of closed-form solutions to evaluate the corresponding 

SIFs for Mode I, Mode II and Mode III of semi-elliptical surface crack by using 

the curve-fitting approaches. 

 

 

The thesis consists of six chapters. These can be summarized as follows: 

In chapter 1, introduction of fracture mechanics is briefly discussed and importance of 

SIFs evaluations in engineering components design is provided as well. In addition, 

objectives and outlines of present work are presented in this chapter. 

Literature review on fracture mechanics, general SIFs studies, different methods for SIFs 

evaluations and closed-form solution for SIFs are discussed in Chapter 2. A brief 

introduction on basic equations and DBEM in BEASY is given in this chapter as well.   

Research methodology used in this study is discussed in chapter 3. Modelling techniques, 

mesh evaluations in BEASY, variables and methods to derive the solution are main topics 

of this chapter. 

Results and discussions are provided in chapter 4. BEASY validation in each loading, 

collected data from SIF evaluations and proposed closed-form solutions to evaluate the 

corresponding SIFs for Mode I, Mode II and Mode III of semi-elliptical surface crack in 

the cylinder bar under pure tension and pure torsion are proposed in this chapter. 

Chapter 5 consists of conclusion and recommendations for further work.  
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2 CHAPTER TWO: LITERATURE REVIEW 

 

The cylindrical bars are often found in machine components and structures for various 

applications. Due to applied cyclic loads, material defects and improper manufacturing 

processes, the components may contain flaws such as surface cracks. Under cyclic 

loadings, a crack or flaw may propagate into a critical stage, leading to an undesirable 

shattering failure (Jia et al., 2016; Datta et al., 2018). Scheduled inspections shall be well 

planned and performed to ensure the safety of the component to be fit in service.  

In doing so, understanding of the crack behaviors in components is paramount important. 

In particularly, quantifying the severity of a surface flaw or crack is a part of 

developments of the fatigue life prediction. Linear elastic fracture mechanics (LEFM) 

approach has been widely adopted in engineering design process to particularly evaluate 

the crack behaviors (Beer & Johnston, 1981).  

The stress intensity factors are the quantitative values commonly used to evaluate the 

elastic stress-strain field in the vicinity of a crack front. Thus, the evaluation of the stress 

intensity factors has been a major task in LEFM since decades ago and becomes more 

essential, especially the possibility of the use of the data in a preliminary design stage 

(Song et al., 2018). 

SIF have been implemented as a key factor in various criteria and models of fracture and 

crack growth equations (Anderson et al., 1961; Fu et al., 2017). Fracture toughness which 

expresses the material’s resistance to brittle fracture is defined in terms of the SIF. In 

order to calculate the SIF, the crack problem has to be formulated as a boundary value 

problem of linear elasticity and solved in terms of displacement field and/or the stress 

field. The SIF can be subsequently obtained from Irwin’s expansion of stress field (or the 

displacement field) in the vicinity of a crack tip (Irwin, 1957).  
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The SIFs have been investigated by many researchers due to its importance in LEFM. 

Toribio et al. (1991) evaluated SIFs of a cracked bolt subjected to tension, bending and 

residual stresses. The stress intensity factor is obtained by using an energetic technique, 

the Stiffness Derivative Method, based on the computation of the energy release rate upon 

a virtual crack extension. Two modifications are introduced into the computation in order 

to improve the accuracy of the results. It is shown that the influence of residual stress on 

SIFs were negligible. Kim et al. (1998) evaluated SIFs for composites with an inter-

laminar crack subjected to normal loading. They applied Fourier integral transform 

method and a Fredholm integral equation of the first kind to evaluate Mode I SIFs for 

various crack ratios. Their finding were in agree with past findings in literature and 

confirmed that SIFs are influenced by number of layers and volume of fibers in each 

layer.  

Dong et al. (2003) presented stress intensity factors for notch cracks by using 

conventional finite element method approach. The estimation method is based on a 

separation of an actual notch stress state into two parts. One part is a far-field stress in the 

form of membrane and bending components that satisfy far-field equilibrium conditions, 

and the other is a self-equilibrating part that provides an effective measure of the notch 

stress state. Their solutions not only captured the singular characteristics as the notch tip 

is asymptotically approached, but also recovered the far-field (or nominal) stress state.  

Jiang et al. (2015) obtained SIFs of a crack in a thin pre-stressed layer. They studied the 

effects of tensile initial T-stress and compressive initial stress on SIFs by means of 

numerical calculations. It is confirmed that fracture toughness is increased by tensile 

initial T-stress and decreased when compressive pre-stress is applied.  

Chauhan et al. (2016) presented SIF solutions at the deepest points on hypocycloidal hole 

in anisotropic finite plate subjected to in-plane loading. Their method can predict SIFs or 
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infinite plate by considering large plate size. It is shown that the whole geometry, material 

properties, loading angle and plate size will significantly influence the values of SIFs. 

Mangalgiri et al. (1984) evaluated SIFs at the cracks emanating from circular holes in the 

rectangular plate under uniaxial tension along the edges. They used FEM approach to 

analyze the stress intensity factors. It is shown that non-linear behavior is arising due to 

varying contact at pin-hole interface with increasing load and it was treated by using a 

virtual crack closure concept of stress field at the crack tip. Lin and Smith (1999) studied 

on SIFs of two symmetric quarter-elliptical corner cracks in a plate subjected to remote 

tension. They used both quarter-point displacement and J-integral methods to calculate 

stress intensity factors on the cracks emanating from circular fastener holes in plates. 

Obtained results were compared with some other results found in the literature and their 

accuracy have been demonstrated in the study.  

Cirello et al. (2008) developed a numerical approach by combining of two hybrid finite 

element formulations to analyze the stress intensity factors in cracked perforated plates 

with a periodic distribution of holes and square representative volume elements. The 

accuracy of this method was proved by experimental measurements and conventional 

FEM calculations. As expected the results show a strong dependence of the SIF on the 

crack tip location with respect to the positions of the holes; in particular, the hole is a 

shield for the crack when the tip is located in front of its centroid.  

Moreira et al. (2009) proposed a calibration to the stress intensity factor in a cracked 

stiffened plate subjected to remote uniform traction by using three-dimensional finite 

element analyses. This method has been validated by FEM and DBEM results collected 

from literature. It is concluded that in a three-dimensional analysis, stress intensity factor 

has different values through the thickness. Thus, a two-dimensional stress intensity factor 

analysis is only an approximation of the exact solution. Moreover, a non-uniform stress 

intensity factor distribution through the thickness was obtained which justifies the non-
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straight crack front of advancing fatigue cracks in stiffened panels subjected to cyclic 

loading. 

Saimoto et al. (2010) proposed Mode I SIFs for for cracks initiated from a hole which is 

located in the center of a finite plate with applied tensile uniform stress was calculated by 

using the program of the versatile method of two-dimensional elastic problem by Body 

Force Method. It was investigated whether the stress intensity factors for cracks initiated 

with unsymmetrical lengths from both sides of the hole edges could be approximated to 

the stress intensity factor of a center-cracked plate with practical allowable accuracy. 

They concluded that, depending on crack length conditions the approximation of the 

stress intensity factor by using the center-cracked plate would have better results. 

Livieri and Segala (2012) calculated SIF solutions of elliptical crack in a finite plate. 

Results obtained numerically and evaluated analytically under mixed mode loading. They 

proved that existing cracks in a finite body can be replaced by an ellipse and calculation 

of equivalent J-integral on the edge of ellipse would be easier and more accurate. Zhao et 

al. (2012) introduced an analytical method for calculating the stress intensity factor of an 

infinite plate containing multiple hole-edge cracks by using approximate superposition 

method. They checked the reliability of their approach by comparing their results with 

available FEM ones. They used an equivalent crack in plate instead of multiple one and 

calculate the SIFs for that one. They concluded their approach would be faster and more 

reliable than available conventional ones. 

Kondo et al. (2014) investigated on generalized SIFs of sharp V-notched plates under 

transverse bending using developed Mindlin’s plate theory. They performed experiments 

on V-notched plate subjected to singular strain field around a crack and used strain gages 

to study the results. They have also analyzed the same model by Finite Element Method 

(FEM) and compared collected data from experiments with those obtained from FEM 
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which were in acceptable range. It was also shown that both experimental and numerical 

results were in agreement with the past numerical investigations.  

Uslu et al. (2014) reported SIFs of surface cracks in finite-thickness plates subjected to 

thermal or displacement-controlled loads. Same studies had been performed on hollow 

cylinders to assess SIFs subjected to thermal shock (Fillery & Hu, 2010; Nabavi & 

Ghajar, 2010). They proved that temperature changes do not influence on stress intensity 

factors. They also confirmed that SIFs of cracks subjected to thermal loadings are smaller 

than the same cracks under mechanical loadings. In other words, when the same thermal 

loads are applied to a cracked structure, it would yield higher fatigue crack growth lives 

than when there is no crack there. Chen (2015) used Reissner–Mindlin plate theory to 

investigate SIFs for cracks in plates subjected to both the bending stress singularities due 

to concentrated moments at boundaries and transverse shear stress singularities due to 

concentrated transverse shear forces at boundaries. The application of inverse Mellin 

transform gave the exact forms of singular stress fields near the corner, including the 

stress singularity orders and the generalized stress intensity factors. He used FEM results 

to validate hi approach and comparison proves that his approach was reliable.  

Weißgraeber et al. (2016) used closed-form analytical Finite Fracture Mechanics 

approach to study crack initiation at elliptical holes in plates under uniaxial tension. 

Comparison of proposed approach with other available numerical results in the literature 

indicated the accuracy of the solution. Employing this stress intensity factor and the 

closed-form solution of the stress field in the notched plate, a Finite Fracture Mechanics 

(FFM) solution to the problem of crack initiation is proposed. In this FFM solution two 

coupled stress and energy criteria are considered. Both only require a strength and a 

fracture toughness parameter for evaluation and no empiric length parameters are 

introduced. 
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Iida and Hasebe (2016) presented SIF solutions for an infinite thin plate with a rhombic 

hole subjected to bending. They proposed approximate expressions of the stress intensity 

factor using the stress distribution before the crack initiation. Stress intensity factors for 

short cracks can be obtained precisely by implementation of these expressions. The 

importance of their proposed solutions is they can give the stress distribution even before 

crack initiation. 

Dunn et al. (1997) presented closed form solutions for SIFs of cracked I-beams subjected 

to bending. They combined Herrmann and Sosa (1986), coupled with dimensional 

considerations and a finite element calibration approaches to extract expressions for SIFs. 

They measured fracture loads for cracked polymethyl methacrylate (PMMA) I-beams in 

four-point flexure. Their method was accurate and within 5% of FEM results. 

Cheng (1999) proposed Mode I SIF solutions of an edge-cracked beam with fixed ends. 

Their approach was independent to the loading since it involves only the concept of 

material strength. Their proposed solution was validated by previous numerical 

investigation in the literature. In addition, they studied sharp cracks close to beam ends 

and concluded that SIFs would greatly reduce for cracks which located close to the ends.  

Xie et al. (2007) studied SIFs of cracked multi-channel beams. They applied G*-integral 

theory in an extremely simple manner to the infinite boundary problem such as multi-

channel structures to generate closed-form SIF solutions for structural beams. Ghafoori 

and Motavalli (2011) presented an analytical method to calculate SIFs of cracked I-beams 

subjected to mixed mode bending and axial loading. Their solution was an extension to 

the Kienzler and Hermann (1986) and validated by experimental results. They applied an 

elementary beam theory estimation of strain energy release rate as the crack is widened 

into a fracture band and confirmed that their solution is more accurate than previous one.  

Cortinez and Dotti (2013) obtained general analytical Mode I SIFs solutions for thin-

walled beams. Their solution was an extension to a previous proposed solution by (Xie 
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et al., 1998) and claimed that their technique is more accurate other methods in the open 

literature up to that time. They studied the effect of wrapping effect, a very common 

feature in thin-walled beams on Mode I SIFs. Similar study on thin-walled composite 

beams have been performed by Dotti et al. (2013). Their solution was a correction to their 

previous proposed solution (Cortinez & Dotti, 2013) and they validated the accuracy of 

their formula by FEM and other available data in the literature. It was shown that 

approached derived for isotropic materials can be used without major problems for 

laminated composites thin-wall beams. 

Yin et al. (2017) studied SIFs for an L-shaped corner crack in steel members with 

rectangular hollow section subjected to tension and bending loading. They used  J-integral 

method based on finite element analysis to evaluate SIFs for L-shaped corner cracks with 

different combinations of flange and web crack lengths. It was found that the stress 

intensity factor at either crack tip is dependent not only on the crack length of the same 

side but also on the ratio of the flange and web crack lengths. The shorter side of the L-

shaped corner crack tends to have larger SIF value. 

Weili and Finnie (1989) evaluated SIFs for round bars and other simply closed cylindrical 

bodies with internal or external radial cracks. They used plane strain solutions to calculate 

stress intensity factors and their results were in agreement with numerical data in the 

literature. Peng et al. (2005) provide an assessment on a Mode I SIF solution of 

circumferential surface cracks in pressure vessels and pipes. They have implemented 

FEM to calculate the SIFs and validated their technique with both Newman’s and 

Bergman’s solutions. They have implemented FEM to calculate the SIFs and their 

solutions. Ricci and Viola (2006) studied on SIFs of cracked beams and bars subjected to 

a bending moment, shear forces and a torsion. They proposed an extension to an existing 

analytical solution from Kienzler and Herrman (1986). This method was based on an 

elementary beam theory estimation of the strain energy release as the crack is widened 
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into a fracture band. Moreover, they addressed the coupled bending-torsional vibration 

of cracked T-beams within the context of the dynamic stiffness matrix method of 

analyzing structures. 

Dao and Sellami (2012) studied SIFs of a circumferential semi-elliptical surface crack in 

a hollow cylinder under mixed mode bending and tensile loading. They believed that 

fatigue crack growth study must cover the final crack shape as well as the initial shape. 

Crack propagation during each cycle must be studied and their changes have to be 

considered in S-N curves. Tao et al. (2015) investigated on Mode I SIFs of a crack in a 

nanoscale cylindrical inhomogeneity subjected to remote load. Their findings show 

residual interface tension has negative effect on SIF and it is influenced by inhomogeneity 

radius in the specimen. Liu et al. (2016) evaluated SIFs of an axial crack in cylindrical 

shell experimentally using optical caustic method. They proved that increasing the shell 

thickness or decreasing the shell radius would result in a larger caustic spot at the crack 

tip. In addition, their results have been compared with other numerical results which 

shows the accuracy of their proposed method.  

Fu et al. (2017) determined stress intensity factors for mixed mode fracture induced by 

inclined external surface cracks in pipes under axial tension and bending, using a 

combined J integral and 3 dimensional finite element method. It was concluded that, for 

given wall thickness to internal radius ratio and crack depth to half crack length ratio, the 

absolute values of the influence coefficients of all three modes I, II and III stress intensity 

factors along the whole crack front increase with the increase of the relative depth for all 

inclination angles of the surface cracks. It is also found that the crack propagation angles 

in depth of the inclined cracks increases in magnitude along the whole crack front with 

the decrease of the crack inclination angle defined as the angle between the crack and 

pipe axial direction.  
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Dhakad et al. (2017) investegiated the fatigue crack growth behaviour of surface cracked 

piping, pressurized base straight component (PBSC) and pressurized base straight weld 

component (PBWC) are performed on the basis of the linear elastic fracture mechanics 

principles. It is concluded that the available open literature SIF solutions like ASM and 

Bergman for external surface cracked straight pipe case having the semi-elliptical crack 

profile predicts the fatigue life of the component when having constant crack depth 

profile.  

Gintalas et al. (2017) provided mid-wall stress intensity factor and normalized T-stress 

solutions for through-wall cracked pipes under bending for a range of crack sizes and 

pipe radius to wall thickness ratios by using an extensive series of finite element 

calculations. These solutions have been fitted by polynomial equations enabling their use 

for practical assessments for a range of crack sizes and pipe radius to thickness ratio. 

Mahbadi (2017) evaluated tress intensity factors of rotating solid disks or cylinders with 

a radial crack subjected to a uniform tension at their outer surface and a uniform 

temperature change through the body. The stress intensity factors are obtained applying 

an approximate method and using the proper geometric functions for combination of the 

thermomechanical stresses. Results showed good agreement with numerical data 

collected from literature.  

Rubio et al. (2017) proposed SIF expressions of an open crack with sickle shape, located 

at the central section of a shaft, as a function of the relative depth of the crack, the shape 

factor and the relative position on the crack front. They used a 3D numerical FEM 

analysis considering different elliptical geometries of the crack to determine SIFs along 

the crack front. Results have been validated by other numerical investigations in the 

literature. Finally, the sickle crack propagation has been analyzed using a developed 

algorithm based on the Paris Law and the expression for sickle cracks proposed. The 
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results obtained with the propagation method indicate that, regardless of the initial 

geometry, the sickle crack becomes straight with growth. 

 

 

 Experimental Evaluations  

Researchers executed many experimental investigations, theoretical studies and 

numerical analysis to obtain SIF solutions for surface cracks in a smooth round bar. He 

et al. (2016) developed an experimental procedure for accurate evaluation of mode I SIFs 

of a surface crack in the plate. They have studied the effect of non-singular displacement 

terms in the area close to crack tip and proved that their method is much more accurate 

than existing experimental methods. They suggested that this method can be applied to 

other structures subjected to different loadings. Deschenes et al. (2017) studied a new 

experimental method to evaluate the influence of welding residual stresses (RS) on 

fatigue crack propagation rate (FCPR) in mode I SIFs. They works led to the development 

of a novel specimen geometry, named CT-RES, in which RS are introduced by weld bead 

deposition far from the region in which fatigue crack propagation (FCP) occurs. As a 

consequence, the effect of factors influencing FCPR other than RS such as 

microstructural changes or plastic deformation, often introduced by welding processes, 

can be avoided.  

Chakraborti et al. (2017) introduced a robust technique for experimental determination of 

mode I stress intensity factor in orthotropic materials using only a single strain gage. The 

reliability of this method is established by theoretical foundation and finite element based 

analysis. They confirmed that accurate values of Mode I SIFs are achievable if strain gage 

locations are selected as per the criteria set by the proposed approach.  
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Kazarinov et al. (2017) presented experimental data on dynamic crack propagation in 

square PMMA plates of two types – 3.5 and 20 mm thick. Samples were loaded 

dynamically (mode I loading type) and crack tip position was registered using high speed 

camera. Explosion of a copper wire due to high electrical current was used to load faces 

of the initially prepared cracks. Mode I SIFs were obtained by application of caustics 

method. Thick samples demonstrated considerably higher values of final crack travel 

distance and higher crack velocity values. Additionally, it is shown that stress intensity 

factor were dependet on crack velocity. Saboori et al. (2017) conducted a series of fracture 

experiments on PMMA U-notched samples using an improved loading configuration, 

which was redesign of the apparatus recently presented for doing fracture tests under 

combination of tensile and out-of-plane shear loading. In order to assess the effect of 

notch tip radius, the tested specimens are fabricated with three different radii.  

Consequence of comparing the theoretical and experimental results for different notch tip 

radii reveals that both criteria are accurate enough to predict the fracture behavior of the 

U-notched engineering members subjected to mixed mode I/III loading. It is not found 

any considerable difference between the curves of fracture initiation angle and fracture 

resistance resulted from the PS and MS criteria. The criteria also show that the out-of-

plane fracture angle due to pure mode III loading is constant and independent of the notch 

tip radius. Gonzales et al. (2017) used Digital image correlation (DIC) techniques to 

obtain the SIF via experimental J-integral evaluations in an AISI 4340 steel disk-shaped 

compact-tension (DCT) specimen subjected to mode I loading conditions. The proposed 

analytical-experimental hybrid approach was then applied to investigate the influence of 

crack closure on SIF measurements under constant amplitude loading conditions, after 

and before the application of overloads. It was concluded that the use of linear-elastic 

equations to calculate the SIF values from the DIC measurements can lead to improper 
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conclusions if the effects of phenomena such as crack closure, crack tip blunting or 

residual strains are not taken in account in the analyses.  

Rozumek et al. (2017) investigated on experimental results of the crack path and 

description of fatigue crack growth in plane specimens made of S355 steel under tension 

and bending with torsion. Specimens with rectangular cross-sections and stress 

concentrator in the form of external one-sided sharp notch were used. They concluded 

that under mixed mode condition Mode I + Mode II the fatigue lifetime increase with the 

loading angle value due to decreasing of the Mode I. In addition, increasing in the angle 

of alpha - determining a ratio of the torsional moment to the bending moment – will lead 

to decrease of the fatigue life and for alpha equal to 45o a higher crack growth rate is 

observed for mode I, which goes into mode III domination.  

James and Anderson (1969) described a simple procedure of performing an 

experimentation to determine the stress intensity factor of an internally pressurized 

cylinder with a through-the-wall longitudinal crack for which no analytical solution was 

available. Experimental results are available from Freitas et al. (1995) and Fonte and 

Freitas (1994; 1997), where fatigue crack growth tests were carried out in round bars 

subjected to cyclic bending and steady torsion stresses. Lebahn et al. (2013) evaluated 

SIFs of semielliptical surface crack on the round bar subjected to cyclic tension and 

bending. SIFs were obtained from crack propagation tests and solutions were validated 

both numerically and experimentally. They proposed solutions for SIFs of elliptical and 

straight front cracks and proved that those solutions are in agreement with previous 

investigations. 

Stacker and sander (2017) evaluated fatigue life of a round bar under constant and 

variable amplitude loadings in the very high cycle fatigue regime. They compared 

collected data from experiments with three-dimensional FEM modelling and available 

analytical approaches in the literature. Fractographic investigations of the fracture 
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surfaces and the common crack initiating imperfections are performed by means of 

optical microscopy and scanning electron microscopy. The evaluation of the cyclic stress 

intensity factors on the basis of the inclusion size shows smaller values for increasing 

stress ratios. Also, with increasing number of cycles to failure the stress intensity factor 

range decrease. Roiko et al. (2017) studied growth of small cracks initiated from 

microscopic notches and loaded near the growth threshold in round bar under different 

stress ratios experimentally. The results of in-situ optical measurements during high cycle 

fatigue testing show that small cracks initiate and grow quickly after which there is a long 

period of slow growth until the large crack growth threshold is reached. The crack growth 

rate data from different loading ratios indicates that the positive portion of the stress 

amplitude or the maximum stress intensity factor can be used to compare crack growth 

rates. The test data also shows that increasing only the compressive stress portion of the 

loading will cause an arrested small crack to grow again.  

Ozturk et al. (2017) developed an experimentally calibrated and validated crystal 

plasticity finite element model with a probabilistic crack nucleation model for predicting 

dwell and cyclic fatigue crack nucleation in polycrystalline microstructures of titanium 

or Ti alloys. Experimental characterization of failed samples reveal that crack initiation 

on planes are highly inclined away from the stress axis. At higher peak stresses, time-

dependent load shedding mechanism dominates, introducing a significant dwell debit, 

while limited dependence on stress hold is observed at lower peak stresses.  

Campagnolo et al. (2017) evaluated the fatigue criterion based on the average value of 

the strain energy density (SED) to re-analyse some experimental results reported in the 

recent literature and obtained by fatigue testing notched bars under pure torsion and under 

torsion with superimposed static tension loadings. The tested specimens were 

characterized by different notch tip radii and were made of stainless and carbon steels. 

The fatigue crack initiation and propagation phases of each tested specimen were 
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monitored by adopting the electrical potential drop method. It has been observed that by 

adopting a definition of the crack initiation life in correspondence of an initiated crack 

depth about equal to the structural volume size, the SED-based syntheses could have been 

improved. 

Yang et al. (2017) investigated the effect of stress ratio on the very high cycle fatigue 

(VHCF) behaviors of titanium alloy by implementation of ultrasonic fatigue tests. Based 

on fractography and fracture mechanics, the fatigue failure process was congruously 

divided into four stages: (1) crack initiation induced by cleavage of primary α grains and 

its coalescence; (2) microstructure-sensitive slow crack propagation; (3) microstructure-

insensitive fast crack propagation; and (4) final fatigue failure. For surface crack 

initiation, less than 3% of the total fatigue life was consumed in fatigue crack propagation 

stage in the VHCF regime. Furthermore more than 95% of the total crack growth life 

contributed to microstructure-sensitive crack propagation stage in the HCF and VHCF 

regimes. The effect of the stress ratio on fatigue crack propagation life was not found. 

Li et al. (2017) performed axial loading tests with variable stress ratio to evaluate the very 

high cycle fatigue property of TC4 titanium alloy, and a life prediction approach 

associated with failure mechanism was proposed. The interior failure process is 

characterized as: (1) occurrence of slip lines or bands on partial α grains, (2) nucleation 

of micro-cracks within some α grains, (3) coalescence of micro-cracks and formation of 

granular bright facets, (4) stable macro-crack growth within fisheye (5) unstable crack 

growth outside fisheye and (6) momentary fracture. The fatigue life prediction method 

associated with crack nucleation and growth is valid on the basis of the good agreement 

between the predicted and experimental results, especially in the VHCF regime. 
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 Numerical Evaluations 

 Finite Element Method 

The analysis of 3D crack problem, the complexities of the experimental setup is of great 

concern. Thus, a numerical analysis is always considered to reduce the experimental 

work. Raju and Newman (1986) generated the SIFs of a semi-elliptical crack by using 

the three-dimensional finite element method and proposed a closed-form solution by 

implementation of curve-fitting approach on obtained data from FEM. Their solutions 

works for surface cracks in infinite body, corner cracks and embedded cracks accurately. 

These solutions are fundamental closed-form solutions for stress intensity factors in 

research history. These solutions are used, validated and modified by many researchers 

later.  

Carpinteri (1992A; 1992B) proposed SIF solutions for straight-front and semi-elliptical 

cracks in round bars under tension. He used FEM to produce SIFs and validated his results 

by comparing them with previous investigations such as Raju and Newman (1986). In his 

approach, he shifted the finite element midside nodes near the crack front to quarter-point 

positions. Levan and Royer (1993) reported the SIFs for transverse circular cracks in 

round bars subjected to tension, bending and twisting by using the boundary integral 

equation method. They proposed SIF solutions for Mode I, Mode II and Mode III SIFs 

along the crack front for a wide range of crack geometries. The reliability of their method 

was proven by comparing obtained results with analytical, experimental and numerical 

results available in the literature.  

Fonte et al. (1999A; 1999B) studied the behavior of surface flaws in a round bar subjected 

to bending and torsion loading. They used three-dimensional FEM approach to obtain the 

SIFs. They confirmed that in the round bar subjected to the bending only Mode I SIFs are 

non-zero. Firstly, they validated their model for Mode I with available results in the 

literature. Then they proceed to the torsional loading and found that Mode III SIFs are 
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maximum at the deepest point in the crack where Mode II SIFs are zero and Mode II SIFs 

are maximum where crack front intercepts the free surface. 

Rajaram et al. (2000) proposed a new method to obtain fracture mechanics singularity 

strength such as J-integral, SIFs, fatigue life, etc. by using CAD packages which can 

create complicated 3D models and “automatically” mesh them with tetrahedral elements. 

The created model in CAD can be analyzed in FEM for further evaluations. The 

practicality of the proposed method lies in its ability to obtain accurate results from rather 

irregular tetrahedral meshes readily obtained from commercially-available CAD 

packages possessing fairly good meshing capabilities. They applied their method to 

different 2D and 3D cracks in plates, prismatic and round bars and achieved to high 

accuracy in analysis.   

Shih and Chen (2002) proposed the dimensionless Mode I SIFs of an embedded elliptical 

crack in a round bar by introducing collapsed singular elements in the ANSYS finite 

element software. They also used curve-fitting approach on results obtained by FEM to 

formulate the SIFs of elliptical cracks. Their results showed that SIFs are positively 

influenced by crack depth ratio but crack aspect ratio has negative effect on them. Guo et 

al. (2003) evaluated SIFs of elliptical surface cracks in notched round bars under tension 

and proposed an empirical equation for the SIF of surface cracks in notched round bars. 

They used three-dimensional Finite Element Analysis (FEA) models to study SIFs at the 

crack front. They validated their results by comparing them with available numerical and 

experimental results in the literature. It is shown that SIFs are strongly affected by the 

theoretical stress concentration coefficient.  

Noda and Takase (2003) studied V-shaped notched round bar under tension, bending and 

torsion and introduced generalized SIFs  𝐾𝐼,𝜆1 , 𝐾𝐼𝐼,𝜆2 and 𝐾𝐼𝐼𝐼,𝜆3 by using the singular 

integral equation of the body force. They compared their results with Benthem-Koiter’s 

formula (Benthem & Koiter, 1973) and confirmed that their results is more accurate than 
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them. Dyja et al. (2004) studied experimentally and numerically rolling round 

reinforcement rod. They used FEM simulations of the process of rolling round helical-

ribbed rods to determine the specific Mode flow within the gap. They also did 

experimental study to validate their findings from FEM. Shin and Cai (2004) evaluated 

the SIFs of a semi-elliptical surface crack in a rod subjected to tension and pure bending 

for different crack aspect ratios by the experiments and numerical modeling using the 

ABAQUS FEA codes. They provided SIF solutions along the crack front in terms of 

crack aspect ratio, crack depth ratio and place ratio. They compared their results with 

other available results in the literature and concluded that their proposed SIF values at the 

deepest point on the crack are in good agreement with other results. However, SIF trends 

and values at the surface interception is a little bit different with other results due to 

singularity and stress intensity there.  

Courtin et al. (2005) proposed SIF distribution by using the energetic method which 

consists in calculating the J-integral values on rings surrounding the crack tip in the FEM 

based-software ABAQUS. They compared their proposed method with the displacement 

extrapolation technique which requires orthogonal meshes and singular elements are not 

automatically accessible in all finite element codes for it. It is shown that the J-integral 

method shows some advantages compared to the displacement extrapolation one. First of 

all, this method may be applied automatically with the ABAQUS code. Then, the 

knowledge of the exact displacement field in the vicinity of the crack tip is not required, 

and the use of singular finite elements is not essential anymore. Besides, non-orthogonal 

meshes are without effect on the SIF calculations. The user has just to be sure that a 

convergent value is obtained on the different rings. 

Shahani and Habibi (2007) studied the problem of mixed mode fracture induced by a 

semi-elliptical circumferential crack lying at the outer surface of the cross-section of a 

hollow cylinder subjected to bending moment and torsion. Stress intensity factors in 
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mixed mode condition were determined using three-dimensional finite element modeling 

with 20 node-isoparametric elements and the singular form of these finite elements at the 

crack front. Results were proven to be reliable by comparing against available data in 

literature. However, when torsion is added to tension and bending moment, a non-

symmetrical distribution of stress intensity factor along the crack front is observed which 

can cause non-symmetric fatigue crack propagation. 

Madia et al. (2011) reported SIF solutions of cracks in solid or hollow round bar subjected 

to mixed mode loading using FEM approach. They proposed closed-form analytical as 

well as table geometry functions for various cracks on the solid or hollow axle body. 

Ismail et.al (2012) reported various SIF results for a surface crack in a round bar under 

tension, bending, torsion and mixed-mode loadings. They used FEM to obtain SIF for 

each single loading and mixed mode loading. Then, they proposed a solution for SIFs 

which can predict the combined SIF by using FEM results. However, they found some 

differences between two methods due to crack face interceptions and deformations. 

Predan et al. (2013) used FEM to evaluate SIFs for circumferential semi-elliptical surface 

cracks in a hollow cylinders under torsion. They proposed SIF solutions for Mode II and 

III by using polynomial approximation formulas. It is shown that Mode II is acquired 

higher values in shallow cracks than deep ones. It is also confirmed that higher values of 

SIFs were achieved at the interception points than other points along the crack front for 

fatigue crack growth in hollow cylinder under pure torsion. They confirmed that Mode II 

SIFs are dominant in crack propagation.  

Sodeifi and Hosseini (2015) studied the effect of three important parameters including 

the notch length and width and confining pressure on the mode I critical SIF using a thick-

walled hollow cylindrical marly specimen. A triaxial stress was applied on the specimen 

and the pressure required for the propagation of the artificial notches was measured. 

Three tests were conducted to investigate the effect of each parameter on the mode I 
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critical SIF. The experimental critical SIF was compared with the average critical SIF 

obtained from ABAQUS and ANSYS. It was found that the mode I critical SIF decreased 

with increasing in the notch width and increased with increasing in the notch length. The 

critical SIF nonlinearly increased with increasing in confining pressure. 

Zhao et al. (2016) studied dynamic SIFs of cracked rail shafts at high speed by a 3D 

explicit FEM model. Their results showed that static solutions of the crack face contact 

are different from dynamic ones and crack propagation is a dynamic phenomenon. In 

addition, during movement, vertical cracks are completely closed by bending loading 

which indicates the absence of Mode I SIFs along the crack front where Mode II and 

Mode III SIFs got increased. Findings showed that vertical crack in the absence of 

lubricant and lower traction efforts will probably not propagate. Li et al. (2016) used a 

combined J-integral and Finite Element Method (FEM) to evaluate SIFs for inclined 

external surface cracks in pressurized pipes subjected to mix mode loadings. Their results 

showed that increasing in crack inclination will lead to deacrease of Mode I SIFs. 

However, Mode II and Mode III will increase and reach to their maximum values at the 

angle of 45o. It is also found that the influence coefficients of all three modes increase 

with the increase of crack relative depth along the whole crack front.  

Isidoro and Martins (2016) used FEM and FEA together with LEFM concepts to 

investigate on SIFs of semi-elliptical surface crack on round bar subjected to bending and 

torsion. Results proved that when bending loading is dominant only Mode I SIF values 

are high in the component. However, in pure torsion, Mode II and Mode III values 

become dominant ay crack tip. Hashimoto et al. (2017A; 2017B) conducted the rolling 

contact fatigue (RCF) test by using a specimen with a small drilled hole. In the first step, 

they quantified the crack-growth threshold according to fracture mechanics principles by 

using the finite element method to analyze the Mode II stress intensity factor. Then they 

correlate the obtained values of Mode II SIFs with values of penny-shaped cracks in an 
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infinite body under uniform shear. It was concludeded that the crack-size dependency of 

the threshold SIF range, well-known for Mode I fatigue cracks, also exists for Mode II 

fatigue cracks, as produced after rolling contact. The values of the threshold SIF range 

obtained by the RCF tests were in good agreement with those obtained in the torsional 

fatigue tests under static compression. 

Pourheidar et al. (2018) evaluates SIFs for the semi-elliptical surface cracks, applicable 

in the geometrical transitions and axle body of railway axle by using FEM. The stress 

intensity factor were estimated applying analytical solutions for two different non-linear 

stress state (bending,press-fit). Comparing the results with finite element solutions 

revealed that Wang-Lambert weight function gives the best approximation where the 

maximum difference was found to be less than 5% for the deepest point and 8% for the 

surface point. The impact of stress intensity factor approximation in residual life time 

prediction were investigated through series of crack propagation simulations considering 

realistic load spectra and a comparison with the available experimental results in the 

literature.  

Zhang and Guo (2018) proposed a singular Voronoi cell finite element model (SVCFEM) 

for estimation of the mixed-mode stress intensity factors of crack tip. Formulation of a 

singular Voronoi cell finite element is based on a modified complementary energy 

principle. To satisfy the stress singularity at the crack tip, they enriched stress solution in 

assumed stress hybrid model. In addition to polynomial and reciprocal terms, singular 

stress terms of Williams’s expansion were added for elliptical crack to capture crack-tip 

stress concentrations. After obtaining the stress, SIFs of model I and model II were 

calculated using linear least-squares method. Comparisons of SVCFEM solution with 

analytical solution for crack are made to demonstrate the efficiency of SVCFEM.  
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 Boundary and Dual-Boundary Element Method  

As reported by Cisilino and Ortiz (2005), the BEM is found to be preferably suited for 

quantifying the conservation integrals. This is because the high accuracy of the 

displacements and stresses including their derivatives at the internal points can be 

obtained in BEM through their boundary integral representations, as opposed to other 

numerical techniques, like FEM. For three-dimensional analyses, the conservation 

integrals are usually used in their so-called surface- or domain-independent form. While 

adopting the surface-independent form of conservation integrals, the integration can be 

carried out along a contour in a plane perpendicular to the crack front and also over the 

surface enclosed by the contour. A number of works on surface cracks by the boundary 

element method (BEM) have also been reported in literature. 

For examples, Mi and Aliabadi (1994; 1992) presented the dual boundary element method 

(DBEM) for evaluating general 3D crack problems. BEASY (BEASY 10 Release 14) 

software is based on Dual-boundary element method (DBEM) which is developed by Mi 

and Aliabadi (1994) to treat the crack boundaries. This method is based on the 

displacement and the traction integral equations that can be written, respectively, as (Mi 

& Aliabadi, 1994): 

𝐶𝑖𝑗(𝐱
′)𝑢𝑗(𝐱

′) = ∫𝑈𝑖𝑗(𝐱
′, 𝐱)𝑡𝑗(𝐱)𝑑S

 

S

−∫𝑇𝑖𝑗(𝐱
′, 𝐱)𝑢𝑗(𝐱)𝑑S

 

S

      Eq. 2-1 
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= 𝑛𝑖(𝐱
′)∫𝐷𝑘𝑖𝑗(𝐱

′, 𝐱)𝑡𝑘(𝐱)𝑑Γ(𝐱)
 

S

      Eq. 2-2 

Where 𝐱 and 𝐱′ are boundary and source point, respectively. i and j represent Cartesian 

components, the coefficient 𝐶𝑖𝑗 is given by 𝛿𝑖𝑖 (Kronecker delta function) for a smooth 

boundary at 𝐱′,  𝑇𝑖𝑗(𝐱′, 𝐱) and 𝑈𝑖𝑗(𝐱′, 𝐱) denote the Kelvin traction and displacement 

fundamental solutions, respectively, 𝑆𝑘𝑖𝑗 and 𝐷𝑘𝑖𝑗  contains derivatives of 𝑇𝑖𝑗(𝐱′, 𝐱) and 

𝑈𝑖𝑗(𝐱
′, 𝐱), 𝑛𝑖 is the outward normal vector and S represents the domain surface.  
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These fundamental integrals in      Eq. 2-1 and      Eq. 2-2 are regularly provided for 𝑹 ≠

0(𝑹 = |𝐱 − 𝐱′|). Since these solutions are order of 1 𝑹⁄  in 𝑈𝑖𝑗, 1 𝑹2⁄  in 𝑇𝑖𝑗 and 𝐷𝑘𝑖𝑗 and 

1
𝑹3⁄  in 𝑆𝑘𝑖𝑗, they will exhibit singularities when the distance 𝑹 tends to zero. Accurate 

integration procedures for these singular integrals have been reported in References (Mi 

& Aliabadi, 1992; Guiggiani et al., 1991; Aliabadiet al., 1985).  

 Gao et al. (1992) studied SIFs of cracks in an elastic elliptic inclusion using 2D BEM. 

They used quadratic quarter-point crack-tip elements method to directly evaluate stress 

intensity factors of cracks which lie along the interface between dissimilar materials. 

They have also considered the effects of the mismatch of the shear modulus of the 

inclusion and that of the matrix in their presented results.  

Zamani and Sun (1993) obtained an analytical SIF solution at crack tip elements using 

BEM. In their approach they proposed an algorithm which employs singular crack tip 

elements where SIF appears as a degree of freedom. Their solution can predict SIF 

accurately along the crack front. Olsen (1994) used BEM to determine Mode I and Mode 

II SIFs. He utilized the conservation laws on the circular path around the crack tip and 

crack face to evaluate SIFs. In order to show the accuracy of the proposed method, they 

tested results numerically and confirmed that total computed energy release rate showed 

the highest accuracy where Mode I and Mode II SIFs were less accurate. However, 

calculate T-term in this method was not accurate.  

Guozhong et al. (1995) proposed SIFs of semi-elliptical surface cracks in plates and 

cylindrical pressure vessels using Hybrid BEM. Firstly, they used a hybrid boundary 

element method to model a three-dimensional linear elastic fracture analysis and 

extracted the first and the second kind of boundary integral equations. Then, they 

presented the discretization of boundary integral equations, the divisions of different 

boundary elements, and the procedures for the calculations of singular and hypersingular 
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integrals in detail. Finally, SIFs have been proposed for surface cracks in finite thickness 

plates and cylindrical pressure vessels. Results indicated high accuracy of proposed 

method for the analysis of surface cracks.  

Man et al. (1995) studied SIFs of symmetrical and non-symmetrical cracks emanating 

from lugs in the presence of contact stresses. They used BEM and special techniques to 

model the problem and solved it in a systematic way. The technique used based on an 

efficient boundary element contact analysis with iterative and fully incremental loading 

procedures. This technique is applicable to the solution of non-linear frictional contact 

problems in cracked structures. Obtained results are shown to be dependent on the 

coefficient of friction.  

Rigby and Aliabadi (1997) evaluated SIFs of cracks at attachment lugs using BEM and 

J-integral. In their study, they investigated on the single and two symmetrical corner 

elliptical cracks in the shanked lug. Results were in good agreement with available data 

in the literature. Wearing and Ahmadi-Brooghani (1999) evaluated SIFs of cracks in plate 

subjected to bending loading using BEM. Different combinations of boundary conditions, 

crack configurations and loading conditions were considered in their study to illustrate 

the effectiveness of BEM. To calculate the stress intensity factors, the J-integral method, 

the displacement extrapolation method, the quarter point approach and the stress 

extrapolation method were implemented and final results from each method have been 

compared with either FEM or analytical results available in the literature. Findings 

confirmed that proposed method showed good agreement in all cases. 

Matsumto et al. (2000) evaluated SIFs of biomaterial interface cracks based on interaction 

energy release rate and BEM sensitivity analysis. They proved that their method can give 

more accurate results with a coarse mesh than displacement extrapolation method used 

in BEM analysis to compute the SIF and the computation cost required for this method is 

small due to small differential extension of the crack. Dirgantara and Aliabadi (2002) 
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introduced stress intensity factor solutions for several crack configurations in plates 

subjected to internal pressure, and also combined bending and tension by using DBEM. 

SIFs were obtained by a crack surface displacement extrapolation technique and the J-

integral technique and several new results for edge crack and cracks emanating from a 

hole were also presented. 

Cisilino and Ortiz (2005) and Ortiz et al. (2006) extensively reported the computations 

of SIFs of three-dimensional crack problems using the BEM. They implemented bi-

quadratic variation approach to obtain SIFs. Their method gives better results at the 

deepest point on the crack than crack interception with free surface where this method 

fails.  

Mavrothanasis and Pavlou (2007) developed a suitable Green's function for the infinite 

elastic solid, containing internal penny-shaped crack and loaded by a singular co-axial 

tensile and radial ring-shaped source acting outside or on crack faces. The corresponding 

boundary integral equation (BIE) is solved by the BEM for the calculation of the mode-I 

stress intensity factor of cracked axisymmetric finite bodies under tension. The proposed 

technique has three advantages: (a) it does not require discretization of the crack surface, 

(b) it does not require multiregion modeling and (c) it reduces the 3-D discretization of 

the solid to 1-D, resulting in substantially reduced effort. Numerical results are derived 

for the case of a cylindrical bar with a central penny-shaped crack located in a plane 

normal to its axis, loaded by tensile force. The accuracy of the SIF results was guaranteed 

due to the fact that the singularity at the crack tip was included in the Green's function 

Purbolaksono et al. (2009) used DBEM to study SIFs of multiple semi-elliptical cracks 

in bi-material tubes under internal pressure. They proved that when Young’s modulus of 

the inner part is greater than of the outer part, SIFs for the internal surface cracks would 

be higher than those of free scale tubes. However, for external surface cracks it is vice 

versa. Barroso et al. (2012) studied generalized SIFs of corner cracks in multi-material 
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plates using BEM. They applied a simple least squares fitting approach to the numerical 

results obtained from BEM along the boundary edges in a multimaterial corner. The tool 

has been shown to be useful in the computation of generalized SIFs in complicated 

practical situations, as is the case of an adhesively bonded double-lap joint between 

aluminum and a unidirectional 0° CFRP laminate.  

Alatawi and Trevelyan (2014) introduced a method to evaluate SIFs for 2D problems by 

using Extended Boundary Element Method (XBEM). Their solutions give Mode I and II 

directly in contrary to BEM equations which need post-processing like J-integral for SIF 

calculations. Their results converge to the same values as those from the J-integral. They 

validated their solutions with numerical available data. Joseph et al. (2014) reported SIFs 

of a corner crack emanating from a pinhole in a cylinder subjected to cyclic tension. 

Results confirmed that smaller cracks show higher stress intensity factors and cracks at 

the pinhole edge tends to grow faster than those at cylinder edge.  

Chandra et al. (2014) studied SIFs and fatigue crack growth of a corner crack in the 

prismatic bar under combined cyclic torsion-tension loads. They confirmed that for larger 

cracks Mode II SIFs at crossed surface points have larger values but Mode I SIFs acquired 

less values. Initial crack aspect ratio of a/c ≠ 1 was evolving to a unity at a number of 

cycles before fracture. High values of Mode III SIFs observed at larger torsional loading 

for cracks with aspect ratio of a/c ≠ 1. Siow et al. (2016) studied SIFs of a corner crack 

in metallic prismatic bars subjected to multi-axial fatigue loading. They used DBEM to 

evaluate SIFs in prismatic bar under cyclic bending and torsional loading. Their findings 

indicate that corner cracks in prismatic bars tend to grow along their depth direction than 

their front direction. In addition, larger cracks acquire higher values of SIF due to higher 

stress concentrations at the sharp tip of crack ends.  

Cui et al. (2017) proposed contour integral approaches to calculate SIFs for two-

dimensional cracks. The proposed approaches are derived from the conservative J- and I-
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integrals, in which constant elements of the displacement discontinuity method (DDM) 

are employed. Two numerical examples, a horizontal straight crack and a slanted straight 

crack under uniaxial tension at infinity, were conducted to demonstrate the validation of 

the approaches. Numerical results confirm that highly accurate SIFs can be extracted by 

integral contours remote from crack tip and increasing the total number of DDM elements 

can improve accuracy significantly.  

Yan et al. (2017) established a novel boundary type meshless method called continuous–

discontinuous hybrid boundary node method in which the enriched discontinuous shape 

function is developed to solve linear elastic crack problems. Both single mode and mixed 

mode problems can be solved by this method. A number of examples are calculated by 

this method, and comparisons are made between the stress intensity factors obtained by 

this method and some published results in the literature to endorse the accuracy of this 

method. The numerical examples are shown that the present method is effective and can 

be widely applied in practical engineering.  

 

 Analytical and Closed-Form Solutions 

Analytical and Closed-form SIF solutions are also reported excessively in literature. One-

dimensional crack problems have already been evaluated excessively in analytical and 

numerical ways (Murakami, 1987), including cracks in anisotropic and orthotropic 

materials (see for example Arnold and Binienda, 1995 and Delale et al., 1991) and the 

interaction of multiple cracks (Tan et al, 1993). However, most factual cracks are in 

embedded shapes or surface breaking planar cracks and subjected to complex two-

dimensional stress fields. Unfortunately, for most planar cracks and applied loadings 

exact SIF-solutions cannot be obtained.  
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Since analytical solutions are the most general and ready to use in any engineering 

applications, they are likely the most wanted ones. An embedded circular crack in an 

infinite body was the first analytically evaluated crack. Sneddon (1946) has analyzed a 

simplified case of this problem when the load direction was parallel to the center of the 

crack. In order to solve the unknown crack opening displacement, the mixed boundary 

conditions in the crack plane can be transformed into a pair of dual integral equations. 

This set of equations can be analytically solved. The stress field and the displacement 

field can be obtained in the form of special integral representations when the crack 

opening displacement has been solved. 

Kassir and Sih (1975) developed Sneddon’s solution for the problem of a circular crack 

under arbitrary applied normal loading. The modified method was based on the Fourier 

expansion of the applied stress field, the unknown crack opening displacement and the 

SIF in polar coordinates. For each term of the SIF expansion, a set of dual integral 

equations was derived and analytically solved. Fabrikant (1989) investigated on another 

method for the circular crack problem. His method was based on a special integral 

representation of the distance between two arbitrary points and subsequent integral 

transforms. 

Analytical SIF-solutions for planar cracks with more complicated geometries have been 

derived only for certain special cases of the applied stress fields. The first contribution 

concerning the analysis of a stress field near an elliptical crack was made by Galin (1961) 

who derived the solution for a contact problem for a punch of elliptical cross-section 

acting against a semi-infinite elastic body. His solution was adopted later for an inverse 

problem of a pressurized crack which is presently known as Galin's theorem. It states that 

if an elliptical crack is opened up by the applied pressure in the form of a polynomial, the 

form of the crack opening displacement also includes a polynomial of the same type.  
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Sih and Kassir (1975), Kobayshi and Shah (1971), Nishioka and Atluri (1983) and Martin 

(1986) obtained SIF-solutions for an elliptical crack subjected to various polynomial 

stress fields. They used the same method based on the representation of the displacement 

field and the stress field around an elliptical crack by means of one harmonic function. 

This function satisfies the mixed boundary conditions in the plane of the crack and can 

be represented by a system of potential harmonic functions in ellipsoidal coordinates. If 

the applied pressure has the form of a polynomial, then the boundary condition in the 

crack domain can be transformed into the system of algebraic equations with unknown 

coefficients. The main difficulty of this method is the calculation of the derivatives in 

ellipsoidal coordinates. Also, this approach cannot be used for an arbitrary applied stress 

field.  

Martin in (1986) used the method of expansion of the applied stress field and the unknown 

crack opening displacement into the system of orthogonal Gegenbauer polynomials. The 

boundary condition in the crack domain is transformed into a system of linear algebraic 

equations. In general it is a system with an infinite number of equations, but it can be 

truncated in the case of a polynomial applied stress field. The SIF-solutions were obtained 

for constant, linear and quadratic stress fields.  

Pommier et al. (1999) obtained a set of Mode I SIF solutions of semi-elliptical surface 

crack subjected to various stress distributions. They used body force method (Nisitani & 

Murakami, 1974) to evaluate SIFs. The method allows the prediction of the crack shape 

and stress intensity factor during the growth of the crack. The stress intensity factor 

equations presented herein should be useful for correlating fatigue crack growth rates of 

«mechanically» short cracks.  

Guo et al. (2007) derived the stress intensity factor for a single edge crack originating 

from the T-plate weld toe from a general weight function form and two reference stress 

intensity factors. The weight function together with the stress distribution on the crack 
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plane was used to obtain the stress intensity factor solutions. The validity of the weight 

function for the T-plate was verified by the comparison with the numerical data available 

in the literature. Through these analyses, it has been demonstrated that for the padded 

plate geometries considered, the stress intensity factor for a cracked padded plate can be 

obtained using the weight function of a T-plate together with the actual stress distribution 

on the crack plane for the uncracked padded plate geometry.  

Lin and Pan (2008) introduced the theoretical framework and closed-form stress intensity 

factor solutions in terms of the structural stresses for spot welds under various types of 

loading conditions based on elasticity theories and fracture mechanics. The loading 

conditions of interest were the resultant loads on the inclusion with respect to the center 

of the inclusion in a finite or infinite plate and the surface tractions on the lateral surface 

of a finite or infinite plate. Based on the J integral for a strip model, closed-form analytical 

stress intensity factor solutions for spot welds joining two sheets of equal thickness are 

derived in terms of the structural stresses around a rigid inclusion in a plate under various 

types of loading conditions. 

Xu et al. (2010) found analytical solutions for SIFs and T-stresses near crack tip. They 

used Hamiltonian formalism in elasticity to investigate on edge-cracked cylinder under 

various loading conditions. They provided all three SIFs Modes and showed they are 

depend on the boundary conditions as well as the external loading directions. Numerical 

results were obtained to show the accuracy of the proposed method.  

Likeb et al. (2014) studied on a new pipe-ring specimen as ring for fracture toughness 

testing. The pipe-ring specimen with through thickness crack was subjected to bending 

loading. In this case the bending and share stresses occurred in critical pipe-ring sections. 

In order to ensure transferability between standard and proposed pipe-ring specimen the 

compendia for stress intensity factor and limit loads for pipe-ring specimens with 

different crack aspect ratio has been proposed. The results of stress intensity factor and 
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limits load are obtained by using finite element modelling in ABAQUS software. Results 

showed that three point bended pipe-ring specimen exhibit similar fracture behaviour 

with single notch bend specimen and the solution of SIF and limit load is possible to be 

normalized with standard one. 

Peng and Jones (2016) proposed a simple solution to calculate Mode I SIFs for through-

the-thickness flaws with an oblique elliptical crack front. They used finite element 

method to generate SIFs and compared obtained results from FEM to those collected from 

proposed approach which proves the accuracy of their method. It is claimed that their 

method is simple to use and will help researchers to calculate engineering estimates for 

fatigue and fracture related problems.  

Chapuliot (2016) presented the development of stress intensity factor compendia for 

defects in nozzle corners. For that purpose, a large set finite element modeling were 

performed in order to cover the geometries, the defect sizes, the loading situations where 

encountered by large nuclear components. Then, based on that set of finite element 

modeling, an approximate solution relying on a fit of the stress field along the bisector 

line of the nozzle corner was proposed. This solution allows determining accurately the 

mean and maximum stress intensity factor along the crack front for pressure loading and 

at the maximum of cold thermal shock loading. It was validated through a comparison to 

existing solutions or finite element modeling results. 

Paolo Livieri (2016) simplified a procedure to evaluate stress intensity factors of cracks 

by means of an equivalent hole. In this method, the crack would be replaced by an 

equivalent size hole and hoop stress on the free border will be evaluated. To prove the 

accuracy of this method, model have been studied experimentally and numerically which 

confirmed that the technique of the equivalent hole is applicable to both thick plates (and 

thin plates. This method can predict Mode I SIFs more accurate than Mode II.  
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Ribeiro and Hill (2016) provided a solution for 2D eigenstrain problem in the rectangular 

domain which can serve as a benchmark for validation of fracture mechanics analysis 

methods. This method can estimate the stress intensity factor due to residual stress in 

cracked components. They validated their method by comparing them with available 

analytical and numerical solutions. FEM Models are used to assess the validity of the 

principle of superposition, using crack face tractions, relative to the SIF calculation for 

this specific problem.  

Meneghetti et al. (2016) introduced a method to rapidly estimate the averaged the strain 

energy density (SED) the tip of cracks under in-plane mixed mode I + III loading by using 

the peak stress method (PSM) in FEM. the proposed approach has two advantages: 

Firstly, there is no need of mesh refinement in the close neighborhood of the points of 

singularity, so that coarse FE meshes can be adopted; Secondly, geometrical modeling 

the control volume in FE models is no longer necessary. The reliability of proposed 

method have been proven by comparing results with accurate values calculated directly 

from the FE strain energy by adopting very refined FE meshes.  

Hammond and Fawaz (2016) proposed a non-dimensional geometric correction factor for 

SIF calculations by using finite element analysis. Numerical results collected from 

literature for loaded single-edge cracked plates with rotationally free and constrained 

loaded edges typically used in fatigue crack growth experiments. Comparison between 

data collected from literature and those obtained by proposed method was satisfactory.  

Sung and pan (2017) proposed a new analytical solutions for structural stress and stress 

intensity factors of similar and dissimilar spot welds in lap-shear specimens. They studied 

a rigid inclusion in a finite square thin plate under counter bending, central bending, in-

plane shear and tension are developed. Their solution can predict SIFs on 

magnesium/steel spot welds in lap-shear specimens of equal thickness under pinned 
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loading conditions with less than 6% differences with computational results obtained 

from three-dimensional finite element analyses.  

Pachoud et al. (2017) studied SIF for axial semi-elliptical surface cracks and embedded 

elliptical cracks at longitudinal butt welded joints of steel liners by means of the finite 

element method. At first the applicability of published parametric equations for SIF of 

elliptical cracks in plates was validated. Then the influence of the weld shape was 

assessed through a systematic parametric study. It was shown that the weld profile has a 

significant influence on SIF for semi-elliptical surface cracks while it has no significant 

influence on SIF for embedded elliptical cracks within the studied range of relative crack 

depth. Finally, a new parametric equation was proposed to estimate the weld shape 

correction factor for semi-elliptical surface cracks. It was found that the weld shape has 

a major influence on small semi-elliptical surface cracks relative depth a/t, i.e., when they 

are located in the weld reinforcement region. It results in a mitigation of the SIF due to 

the local redistribution of major principal stresses. On the contrary, embedded elliptical 

cracks were not significantly affected by the weld shape within the relative crack sizes of 

interest for fatigue crack growth in the scope of LEFM. Finally, an empirical parametric 

equation was derived to estimate weld shape correction factors for SIF at the deepest 

point of axial semi-elliptical surface cracks at longitudinal butt welded joints of steel.  

Perl and Steiner (2017) evaluated distributions of the combined 3-D Stress Intensity 

Factor due to both internal pressure and autofrettage along the front of radial crack arrays 

emanating from the bore of an overstrained spherical pressure vessel. The 3-D analysis 

was performed using the finite element (FE) method employing singular elements along 

the crack front. A novel realistic autofrettage residual stress field incorporating the 

Bauschinger effect was applied to the vessel. The residual stress field was simulated using 

an equivalent temperature field in the FE analysis and numerous radial crack array 

configurations were analyzed. The results clearly demonstrated the favorable effect of 
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autofrettage which may considerably reduce the prevailing effective stress intensity 

factor, thus delaying crack initiation and slowing down crack growth rate, and hence, 

substantially prolonging the total fatigue life of the vessel. Furthermore, the results 

emphasized the importance of properly accounting for the Bauschinger effect including 

re-yielding, as well as the significance of the three dimensional analysis herein 

performed. 

Zhao et al. (2017) introduced the strain gradient and the internal length scales into the 

basic equations of mode III crack by the modified gradient elasticity (MGE). By using a 

complex function approach, the analytical solution of stress fields for mode III crack 

problem was derived within MGE. When the internal length scales vanish, the stress 

fields can be simplified to the stress fields of classical linear elastic fracture mechanics. 

Mokhtarishirazabad et al. (2017) proposed new methodology for evaluating overload 

effect in biaxial fatigue cracks by evaluation of mixed-mode (Mode I and Mode II) stress 

intensity factor and the COD for samples with and without overload cycle under biaxial 

loading. In this hybrid method experimental displacement data are fitted to analytical 

solutions based on Williams' series development so they can be used for studying the 

biaxial fatigue cracks. Hou et al. (2017) combined the XFEM and interaction integral 

methods to investigate the effects of confining pressure on SIFs and T-stress on CCBD 

specimens. Three Kind of CCBD specimens with different properties were studied, which 

were assumed as homogeneous and isotropic material, functionally graded material 

(FGM) and discontinuous material with a material interface, respectively. They 

confirmed that by increasing in confining pressure Mode I and Mode II will decrease but 

T-stress is increasing.  

Lan et al. (2017) obtained stress intensity factors of a crack by using a general finite 

element procedure based on the proportional crack opening displacements. They have 

tested this method on the nonsingular 3-node linear, 4-node linear, 8-node parabolic, 8-
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node axisymmetric elements and 8-node hexahedral solid elements. It is shown that the 

current method exhibits good element type adaptability and significantly less mesh 

dependency, and accurate results can be obtained effectively using rather coarse meshes. 

The accuracy of proposed method is proved by comparing results obtained from this 

approach by those collected from previous works in the literature.  

Gupta et al. (2017) studied on the accuracy and robustness of three stress intensity factor 

extraction methods for the Generalized/eXtended Finite Element Method (G/XFEM): the 

Cutoff Function Method (CFM), the Contour Integral Method (CIM), and the 

Displacement Correlation Method (DCM). It is shown that the DCM, with proper 

enrichment of the G/XFEM approximation, has an accuracy and robustness comparable 

to the CFM at a fraction of the computational cost.  

Imachi et al. (2018) evaluated mixed-mode dynamic stress intensity factors (DSIFs) for 

two-dimensional (2D) elastic cracked solids by employing ordinary state-based 

peridynamics (OSPD) theory. The interaction integral is adopted in the evaluation of the 

DSIFs. Since the displacement derivative cannot be evaluated in the standard OSPD 

theory, the derivative components in the interaction integral are derived based on the 

moving least-squares approximation (MLSA). In addition, the diffraction method is 

introduced in the MLSA to accurately evaluate the field variables around the crack. High 

accuracy and path-independent mixed-mode DSIFs are achieved by this present 

formulation and discretization. In general, the developed proposed approach offered high 

accuracy of the DSIFs and more importantly the path-independence of the DSIFs is 

obtained. The DSIFs evaluation can be adopted for dynamic crack propagation problems 

considering crack speed. 

Elfakhakhre et al. (2018) used complex potential method into singular integral equation 

to formulate SIFs of single and multiple curved cracks in an elastic half plane with free 

boundary condition. Gauss quadrature formulas have been implemented to sole the 
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singular integral equation numerically. It is shown that SIFs are influenced by the position 

of the cracks, the distance between the cracks, and the distance between the cracks and 

the boundary of the half plane. Moreover, when cracks are closer to each other or to the 

boundary, SIFs values increase.  

Shah and Kobayashi (1971), Kassir and Sih (1975) have solved the problems of a penny-

shaped crack and an elliptical crack near the boundary of a semi-infinite elastic solid 

using the alternating method. The main difficulty in using this method for a problem of 

an elliptical crack was that the first solution - the SIF and the stress field for an elliptical 

crack in an infinite body - was restricted by the case of a polynomial applied pressure. 

Therefore, Kobayashi and Shah (1973) and Kassir and Sih (1975) used the polynomial 

approximation of the correcting stress over the crack domain due to a free surface, which 

lead to the certain inaccuracy in results.  

 Sung et al. (1996) construct a model to evaluate the mode II SIF for the layered material 

with a center crack under an arbitrary shear crack surface loading. The mixed boundary 

value problem is formulated by the Fourier integral transform method and a Fredholm 

integral equation is derived. The integral equation is numerically solved and the effects 

of the mode II SIF on the ratio of the shear modulus between each layer, Poisson's ratio 

and crack length to layer thickness are analyzed.  

He and Hutchinson (2000) presented SIF solutions for Mode II and III for semi-circular 

and semi-elliptical surface cracks subjected to the remote shear stress. They studied the 

influence of Poisson’s ratio on SIFs and provided correction equations to an existing 

analytical solution (Kassir & Sih, 1966; Sih & Liebowitz, 1998; Tadaet al., 2000). They 

validated their findings with data collected from FEM generated by ABAQUS software. 

It is shown that their approach is more accurate than existing ones especially at the 

interception points where stress concentration is significantly influenced by singularity. 
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Atroshchenko et al. (2009)  introduced the boundary value problem of three-dimensional 

classical elasticity for an infinite body containing an elliptical crack. They applied the 

method of simultaneous dual integral equations for a problem of elliptical crack subjected 

to the arbitrary normal loading and stress intensity factor is obtained in the form of the 

Fourier series expansion. Results are compared with collected data from similar methods 

and it is proven that proposed approach is easier and more reliable than previous ones. 

Livieri and Segala (2016) presented an accurate approximation of the SIF for embedded 

elliptical cracks which lies in the longitudinal plane with its major axis inclined with 

respect to the radial direction in cylindrical and spherical vessels. A polynomial weight 

function of a planar flaw which is known as O-integral given by Oore and Burns (1980) 

have been implemented. For torsion loading of shafts with cracks (Mode II & Mode III), 

solutions are less common than for Mode I loading, due to difficulties in obtaining 

accurate analytical or numerical solutions. Chen (2016A) proposed a solution for SIFs of 

an embedded crack in an elliptical inclusion. He replaced a crack with slender ellipse and 

used available equations to evaluate stress concentrations on the ellipse. Results obtained 

by this method are compared with available data in literature to prove the accuracy of the 

approach.  

In different work, Chen (2016B) provided a solution for a crack embedded in thermal 

dissimilar elliptic inclusion using the same approach. He claimed that the stress intensity 

factor depends on (a) the geometry of the medium, (b) the elastic constants on different 

portions of the medium and (c) the temperature distribution on different portions of the 

medium. They studied crack propagation through calculation of propagation angle and 

tensile critical stress. It is found that crack inclination affects the initial propagation 

significantly but the influence of the ply angle of the outer sub laminates is negligible. It 

is shown that crack propagation is highly influenced by its size, place and inclination in 

the composite and composite material.  

Univ
ers

ity
 of

 M
ala

ya



44 

Noury and Eriksson (2017) employed the finite element method to gain an understanding 

of the behaviour of a cracked bridge roller bearing in service. The cracked roller is 

considered as a two-dimensional edge-cracked disk subjected to a radial compressive line 

load. The crack parameters Mode I and Mode II SIFs were calculated for the relevant 

load configuration and angle of disk rotation. The calculated data were also used to check 

the accuracy of approximate SIF solutions reported in previous works. It was found that 

Mode II dominates and that the Mode I and Mode II SIFs are strongly influenced by crack 

length ratio 𝑎/(2𝑅) and the angle of rotation 𝛼.  

Li and Wang (2018) obtained a solution for an inclined intera-laminar crack in the central 

layer of angle-ply composite subjected to a unidirectional tensile stress. Results showed 

that SIFs are primarily determined by the ply angle of the outer constraining sublaminates 

and the crack orientation angle when the thickness of the outer constraining sublaminates 

is more than twice that of the central layer. however, for a large crack when its tips are 

close to the interfaces, an inclined crack may corresponds to a minimum propagation 

stress in composites with a large ratio of the longitudinal modulus to the transverse 

modulus. 

Li et al. (2018A) proposed a method for estimating the stress intensity factors (SIFs) of 

kinked crack with finite kink length. This method is based on an estimation expression 

which is derived from the work of Cotterell and Rice (1980) from the stress field series 

of the original (unkinked) crack tip to the second order by using weight function. In order 

to increase the estimation accuracy for the kinked crack with finite kink length, the third 

order coefficients of the stress field series of the original crack tip are introduced into this 

expression and these parameters can be obtained by a fitting procedure. Application of 

this modified expression to the cases of singly-kinked, edge kinked and doubly-kinked 

cracks reveals a good approximation with the finite element (FE) results of SIFs and 

showed that the accuracy is increased.  
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In the different work, Li et al. (2018B) proposed a method to estimate the mode III stress 

intensity factor (SIF) of kinked crack under anti-plane load. The SIF of the kinked crack 

can be estimated by an expression derived from the stress field series of the original crack 

include first three order terms by the weight function (WF) method. The coefficients of 

the WFs were obtained by a fitting procedure based on the solutions of the weight 

function problem, which were solved by a conformal mapping method. The influence of 

the WFs in the estimation was evaluated as a function of the kink angle and the kink 

length ratio. The application to the case of a kinked crack shows good agreement with the 

analytical results. This method can be used to approximate the SIF result based on the 

analytical solution for the original crack. This approach is also suitable for studies of 

multi-kinked cracks or the process of fatigue crack growth. 

Anderson et al. (2018) evaluate stress intensity factors from the asymptotic displacement 

(or stress) fields at a crack front by using commercial FE-codes, also when approaches 

such as XFEM are employed. The proposed methodology can deal with multiaxial 

loading of curved crack fronts in three-dimensional bodies. In addition, it is shown that 

new approach found to perform better than the J-integral under compressive loading. It 

is demonstrated that results converge with respect to mesh size and that the method is 

capable of separating the SIFs also under mixed mode loading conditions. It is finally 

shown that the method provides reasonable results for a three-dimensional problem with 

a Hertzian contact load traversing a cracked rail head. This problem features both large 

compressive loading and a non-proportional multiaxial state of stress. 

Crack problems formulated and solved for an infinite elastic solid are based on the 

assumption that the crack is sufficiently far away from the boundaries of the body. 

However, in practical applications the effect of free boundaries may significantly affect 

the stress distribution near the crack front. In order to account for the free boundary effect, 

the alternating method can be used. The (Schwarz-Newmann) alternating method was 
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introduces by Kantorovich and Krylov (1964). The method includes the successive, 

iterative superposition of two solutions in order to satisfy the boundary conditions. The 

first solution is the stress intensity factor and the stress field in an infinite body, containing 

a crack. The second solution is for the stress field in a semi-infinite or finite body 

subjected to the stress field applied to the boundary plane. This solution for a semi-infinite 

body has been derived analytically (see for example, Love, 1929 and Kupradze, 1979). 

For finite bodies the stress field can be obtained numerically using the finite element 

method (see for example, Smith, 1976 and Nisioka and Atluri, 1983). 

A wide class of crack problems are problems of surface breaking planar cracks in semi-

infinite and finite bodies. Sih and Hartranft (1973) analyzed the problem of a semi-

circular crack in a semi-infinite body by the alternating method. The SIF and the stress 

field solutions were obtained in the integral form with Bessel kernels. The stress field 

solution in a semi-infinite body loaded on the boundary plane was taken from (Love, 

1929).  

Wang and Zhang (1999) investigated on closed-form SIF solutions of 3D cracks in finite 

body. They implemented the energy release rate method and combined with relevant 2D 

SIFs and obtained a new analytical solutions for Mode II and Mode III SIFs. They 

concluded that their method is relatively fast and can calculate SIFs within seconds. They 

established a Pythagorean Theorem to show the relationship among the three-dimensional 

crack surface displacements and the crack sliding displacements of longitudinal section 

and the crack tearing displacements of transversal sections in the vicinity of the crack 

front.  

Kastratovic et al. (2015) introduced a modification to an existing SIF solutions for two 

unequal cracks in an infinite body under remote uniform stress. The validation of the 

proposed solution was obtained by two different methods of FEM and Extended Finite 
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Element Method (X-FEM). The strength of new solution was its capability to evaluate 

multiple cracks in the thin plate subjected to uniform uniaxial tensile stress.  

Alizadeh and Saeidi (2018) provided SIFs for a semi-circular surface crack in arbitrary 

elastic finite and infinite bodies by using General Point Load Weight Function (GPLWF) 

concept. An explicit expression is derived to determine SIFs for semi-circular cracks 

subjected to uniform, linear, and nonlinear loads. They have evaluated their proposed 

solution in special cases like semi-circular cracks in a finite thickness plate subjected to 

complicated loadings, central and non-central semi-circular cracks in finite-length thick-

walled cylinders subjected to a uniform internal pressure, and central semi-circular cracks 

in an infinite-length thick-walled cylinder subjected to a non-uniform internal pressure 

are compared with the available results in the literature and those obtained through FEM 

and proved the accuracy of it.  

During last 40 years, several variational and potential methods which investigate on 

existence and uniqueness of crack problem solutions have been developed by many 

researchers  such as (Constanda, 1990), (Chudinovich & Constanda, 2002). Ciarlet (1988) 

proposed to use Sobolev spaces for the investigation of the displacement traction problem 

in three-dimensional linear elasticity. Kupradze (1979) has introduced a special form of 

elastic displacements by means of single-layer and double-layer potentials with unknown 

distributed densities. Stephan and Costabel (1987) transformed the variational Dirihlet 

and Neumann problems to a system of boundary equations and proved the existence, 

uniqueness and stability of solutions in a special weighted Sobolev space.  

Petroski and Achenbach (1978) employed a simple representation for the crack-face 

displacement to compute the weight function for stress intensity factors subjected to 

tensile loading. It is shown that crack face displacements given by the representation were 

in good agreement with analytical results and stress intensity factors computed from the 
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weight function agree well with those for edge cracks in half planes, radial cracks from 

circular holes, and radially cracked rings.  

Wu (1984) proposed general expressions of stress intensity factors for center cracks, 

collinear cracks and edge cracks in finite plates, with the cracks subjected to arbitrary 

stresses by using weight function methods. He studied the influences of finite dimension 

and boundary constraint and results proved that approximate weight functions were 

powerful, efficient and simple to use in determining stress intensity factors with very 

satisfactory accuracy for 2-D cracks in finite bodies under load or displacement control. 

Also Wu (1992) used weight function approach to obtain closed-form solution for stress 

intensity factors of various finite plane cracked bodies. In addition, he presented accurate 

crack face displacement expressions for center and edge cracks which used to derive 

analytical weight functions, whose accuracy was critically assessed using the related 

Green's functions. He proposed SIFs or a number of basic load cases including 

concentrated forces, polynomial as well as a band of linearly varying stress. He indicated 

that his proposed solutions were versatile, very cost-saving, easy-to-use, and accurate. 

Anderson and Glinka (2006) highlighted that the exact or closed-form solutions, for an 

example by the weight function method, would greatly reduce the need for finite element 

or boundary element models for the crack problems. They proposed Mode I stress 

intensity factor solutions for surface cracks in plates using weight function integration 

methods. Their approach can predict stress distribution (1) constant stress over each 

integration interval, (2) a piecewise linear representation, and (3) a piecewise quadratic 

fit. The quadratic method for treating the stress profile is the most efficient and accurate, 

but it is the most difficult to implement. A piecewise linear representation of the stress 

profile gives good results for a modest number of stress data points. The constant-stress 

approximation is considerably less accurate than the other two methods considered, and 

is not recommended. A number of analytical and closed-form solutions for the SIFs of a 
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surface crack have been reported in literature. The exact analytical solutions utilizing the 

weight function method for calculating the SIFs of a surface crack were also reported in 

(Moftakhar & Glinka, 1992; Shen & Glinka, 1991; Zheng et al., 1997; Shahani & Nabavi, 

2006). 

Freese and Baratta (2006) proposed stress intensity factors for several classic two-

dimensional linear elastic single edge-crack by using weight function approach. The 

model has been evaluated subjected to the three and four-point bend, pure bending, 

eccentrically loaded tension, and other boundary condition problems are extracted from 

the solution to the uniformly loaded single edge-cracked configuration. They confirmed 

that their approach is applicable and accurate by validating their results with available 

investigations in the literature.  

Bao et al. (2010) studied residual stress intensity factors in welded test samples by 

application of the weight function and finite element methods. Results obtained from both 

methods are compared with each other and FEM showed good accuracy on results. They 

indicated that for complicated geometries FEM can be implemented.  For cracks located 

in compressive residual stress field, external stress should be applied simultaneously to 

the residual stress field to make the crack surface completely open for calculating the total 

SIF. The residual SIF can then be found by the superposition principle.  

Jing and Wu (2015) developed complex Taylor series expansion method for computing 

more accurate weight functions of arbitrary 2D crack geometry. They evaluated four 

different cracks (a) a periodic array of collinear cracks in an infinite sheet, (b) an edge 

crack in a finite with plate, (c) a single radial crack in a circular disc and (d) double 

cantilever beam specimen and it is confirmed that proposed approach accurately 

performed on each of them. They concluded the new approach and conventional weight 

function method are mutually complementary and the mix of them can be significantly 

effective for fracture and crack growth analyses. 
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Jin et al. (2016) calculated Mode-I stress intensity factor (SIF) for symmetrical radial 

cracks emanating from hollow cylinder in an infinite plane under complex nonlinear 

loadings by using weight function method. The validity of their proposed solutions was 

confirmed by comparing results obtained from their method by those collected from 

literature. They applied their method to evaluate SIFs of (1) horizontal fracture with non-

constant pressure inside it; (2) inclined fracture with constant pressure; and (3) inclined 

fracture with non-constant pressure. They concluded that their approach exhibits its 

advantages over other methodologies in solving SIFs of fractures emanating from 

borehole.  

Jin et al. (2017) applied the same weight function parameters to evaluate SIF for single 

radial cracks emanating from borehole in an infinite plane. The weight function based 

SIF is validated against available boundary collocation based SIF in the literature and 

they are in good agreement with each other. This time they applied their method to (1) 

horizontal and inclined cracks with different applied loadings on it; and (2) radial crack 

with only pressure loadings and calculate the SIFs.  

However, Wu et al. 2018 critically verified Jin et al.’s (2016; 2017) weight functions for 

or single and double edge cracks emanating from a circular hole in an infinite plate 

through comparisons of Green’s functions and stress intensity factors obtained by 

different weight function approaches. They concluded that proposed solution by Jin et al. 

is in disagreement with previous analytical solutions and their validation approach is not 

accepted since they merely compared SIFs for some load cases which is not sufficient to 

reveal the true quality of weight functions and can be misleading. The only way for 

accuracy evaluation of weight functions is through point-by-point examination of the 

corresponding Green functions.  

Sorensen and Smith (1976) analyzed the semi-elliptical crack in a plate under uniform 

tension using the alternating method. The stress field due to the free surface was 
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approximated by the polynomial of the third degree and Shah and Kobayashi's solution 

(1971) was used to obtain the corresponding SIF and the stress field. The polynomial 

representation of the applied stress field lead to certain underestimation of the SIF-

solution. Holdbrook and Dover (1979) proposed SIF solutions for semi-elliptical surface 

cracks in infinite width plate subjected to tension and bending. They considered the 

effects of free front area, finite area and finite second moment of area in their equations. 

It has been shown that using this new stress intensity factor solution it is possible to 

correlate fatigue crack growth data measured on surface cracked plate specimens with 

conventional through crack data. Scott and Thorpe (1981) combined curve fitting 

approach and best available solutions to obtain SIFs for cracks in plates subjected to 

tension or bending loadings. Several crack tip SIF solution have been proposed where did 

not agree with each other particularly. It was not confirmed which one was more accurate 

but they could give good prediction on fatigue crack growth calculations. 

Raju and Newman (1979) used the finite element method to calculate stress intensity 

factors for semi-elliptical cracks in finite thickness plates subjected to tension. Later they 

fitted their results for elliptical, semi-elliptical and quarter-elliptical cracks into an 

empirical equation (Newman & Raju, 1981) for the SIF as a function of the parametric 

angle, crack depth and length, plate thickness and width for tension and bending loads. 

Their solution is applicable to a wide range of crack and plate parameters and is widely 

used in engineering applications.  

Nishioka and Atluri (1983) used the alternating method with the finite element stress field 

solution for a problem of a semi-elliptical crack in a plate under remote tension and 

bending. A fifth degree polynomial was used to fit the stress field over the crack surface 

due to the free surface. That allowed to increase the accuracy of the results in comparison 

with previous works. Using the finite element solution for a stress field enables to analyze 

the finite bodies of an arbitrary shape. Isida et al. (1984) found SIF solutions by using 
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fitted polynomials in crack aspect ratio 𝑎/𝑐 and crack size ratio 𝑎/𝑡 to their results. Their 

solutions showed good accuracy with Newmwn-Raju’s (1981) over the range of 0.125 

≤ 𝑎/𝑐 ≤ 1.0, 0 ≤ 𝑎/𝑡 ≤ 0.8 but they only give values on Corner points on ellipse where 

crack meets the surface (CPE) or Deepest Point on Ellipse (DPE) unlike Newman-Raju’s 

which is able to provide all SIF values along the crack front.  

Carpinteri (1992B; 1994; 1996A; 1996B) presented SIFs for part-through cracks in round 

bars under cyclic combined axial and bending loading. He used FEM approach to 

calculate the SIFs and validated those results by Newman-Raju’s Method. Newman-

Raju’s solutions also verified by Hosseini and Mahmoud (1985; 1986) experimentally 

and they indicated that proposed solution by Newman-Raju is reliable. They performed 

different set of experimental tests on cracks with different aspect ratio to evaluate both 

SIFs and fatigue life of specimen under fatigue loadings.  

Lin and Smith (1999) presented SIFs and fatigue crack growth lives for crack plates by 

using a two degree of freedom methods. They showed that their results had good 

agreement with those obtained by Newman-Raju. However, they claimed that when crack 

depth is larger than 90% of the plate thickness Newman-Raju’s solution would not be 

accurate. In order to predict the accurate values of SIFs at any given aspect ratio, they 

proposed a correction to Newman-Raju’s approach.  

Sripichai and Pan (2012) introduced closed-form structural stress solutions with 

equivalent and numerical coefficients for a rigid inclusion in a square plate under opening 

and bending loading by using the results of three-dimensional finite element analyses. 

The results indicated that the computational mode I stress intensity factor solutions agree 

well with those based on the structural stress solutions. Next, accurate closed-form stress 

intensity factor solutions with fitting coefficients for spot welds in the square overlap 

parts of cross-tension specimens were presented. 
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Wang et al. (2012) proposed dimensionless stress intensity factors of cracked chevron 

notched Brazilian disc specimen is the coefficient in the crucial formula for calculating 

the fracture toughness. This method can be conveniently obtained by the analytical 

method based on the straight through crack assumption proposed by Munz et al. (1980). 

It is shown that obtained results from proposed solution is in agreement with results 

obtained by Munz et al. (1980) and it  was also explained physically through comparison 

of the load bearing capacity between CCNBD and the corresponding CSTBD specimen 

based on stress intensity factor concept. 

Dempsey and Mu (2014) determined a stress intensity factor weight function for edge-

cracked rectangular plate. They used crack opening displacement (COD) Green’s 

function to evaluate SIFs. The accuracy of the weight function that has been developed 

is assessed by treating the case of an edge crack in an infinite strip subjected to pure 

bending, an edge-cracked rectangular plate subjected to pure bending, and an edge-

cracked rectangular plate subjected to self-equilibrated concentrated loads at the crack 

mouth.  

Nagai et al. (2015) developed a solution for the stress intensity factor of a semi-elliptical 

surface crack in plates with high-aspect-ratio up to 8.0 subjected to a fifth-order-

polynomial stress distribution by using the influence function method. Their method 

advantage to other previous ones in the literature is no one had proposed solutions to 

cracks with aspect ratio higher than one since they are characterized as semicircular 

cracks. Their solution can predict crack propagation with high aspect ratio accurately 

which is crucial for work-life estimations.  

Okada et al. (2016) evaluated SIF solutions for semi-elliptical cracks with high aspect 

ratios in plate and thick wall cylinder. They used Virtual Crack Closure-Integral Method 

(VCCM) for SIFs evaluations. They compared their method with available analytical and 

FEM numerical data in the literature and confirmed that their approach is accurate. They 
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claimed their approach needs less time and effort to calculate SIFs. In addition, they 

established that maximum values of SIFs do not occur at the deepest point in cracks with 

higher aspect ratios. 

Seitl et al. (2017) introduced normalized stress intensity factors for three- and four-point 

bending specimens with a chevron notch by varying the chevron notch angle and length. 

The three- and two-dimensional models of bent chevron notched specimens in the 

software ANSYS were prepared by using possible symmetrical conditions. The 2D model 

was used with variable thicknesses of the layers representing the characteristic shape of 

the chevron notch (with the plane stress boundary condition). The numerically obtained 

results from the 2D and 3D solutions are compared with data from literature. The 

numerical study showed good concordance between 3D and the known literature data. 

This contribution also showed the influence of Poisson’s ratio on the SIF calculated from 

a 3D numerical model. This effect can be seen on both types (Plane strain and Plane 

stress) of 2D models. However, a 2D model with non-uniform thicknesses showed a 

major difference from the 3D solution. This effect should be taken into account in cases 

when the SIF value is calculated using a 3D numerical model.  

Kolitch et al. (2017) studied stress intensity factors of semi-elliptical surface cracks in 

plates under bending and tension loading. They used FEM to generate SIFs and proposed 

an approximate solutions by introducing a correction to Newman-Raju’s (1981) 

solutions. It is shown that new proposed solution show more accuracy than Newman-

Raju’s one in comparison with obtained FEM results. In addition, they claimed that their 

solution can predict SIFs even if the crack depth and width are close to the specimen 

thickness and width, respectively.  

He et al. (2018) developed a wide range of Mode I SIF solution for an eccentrically 

cracked middle tension specimen with clamped ends. In the derivation of the solution, an 

equivalent model was developed; weight functions for eccentric cracks in a finite-width 
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strip were utilized, with approximate closed-form and plate-end displacement solutions 

obtained. Good agreements between the approximate solutions and corresponding FEM 

results were observed over a wide range of eccentricities and crack lengths. 

Meshii and Watanabe (1998) studied on SIFs for an inner circumferential surface crack 

in the hollow cylindrical shell under bending and derived closed-form equations for SIFs 

and inclination angles at the cylinder edges. These equations can appropriately evaluate 

the effects of cylinder length and crack location on the stress intensity factor Solutions 

are compared and validated with FEM results and it is shown that the stress intensity 

factor increases as the cylinder length decreases, and as the crack gets near the cylinder 

edge.  

Predan et al. (2013) calculate the SIFs for the circumferential semi-elliptical surface 

cracks in a hollow cylinder’s cross section under torsion using a finite-element technique. 

The configuration of standard semi-elliptical surface cracks is described using the outer 

surface crack-lengths and the crack depths. They show that the magnitude of the Mode II 

SIFs near the free surface becomes more significant for stable crack-initiation than that 

of Mode III at any point along semi-elliptical crack.  

Zareei and Nabavi (2016) studied on Non-dimensional SIFs solution which gives SIFs at 

the deepest point of an internal circumferential semi-elliptical crack in the pipe under any 

arbitrary loading. They proposed a solution by using the weight function method which 

is validated by FEM and other available data in the literature. The closed-form expression 

was implemented to solve the stress intensity factor of the crack by representation of the 

stress distribution for the uncracked pipe using a nth-order polynomial to provide a more 

accurate fitting of highly non-linear stress distributions.  

Wang et al. (2017) evaluated SIFs sharp corrosion pits in pipes. They proposed a three-

dimensional FEM model and used domain integral method to derive SIFs. In addition, 

they developed an expression for maximum SIFs of corrosion pits in cast iron pipes by 
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evolutionary polynomial regression. It is shown that assuming corrosion pits as surface 

crack will result in an overestimation of the stress intensity factor, causing inaccurate 

prediction of risk of pipe failures imposed by pitting corrosion.  

Keprate et al. (2017) have proposed a computationally inexpensive adaptive Gaussian 

process regression model (AGPRM) which may be utilized as an alternative to FEM for 

prediction of SIF to assess fatigue degradation in offshore pipeline. SIF values were 

evaluated using FEM by carefully accounting for the discretization error emanating due 

to the finite mesh size in the FEM simulation. It is concluded that AGPRM method is 

much faster than FEM which SIF of 50 test points is reduced from 50 min (for FEM) to 

12 s with the help of the proposed AGPRM, thus making remnant fatigue life assessment 

less laborious and time consuming. 

Valiente (1980) obtained two different SIF solutions of a straight-fronted semi-elliptical 

surface crack in the cylinder bar subjected to tension. The first solution is derived by 

using the energy release rate on crack front and is applicable to the entire crack front as a 

whole.   

𝑌 =  (0.473 − 3.286 (
𝑎

𝐷
) + 14.797 (

𝑎

𝐷
)
2

)

1
2
((
𝑎

𝐷
) − (

𝑎

𝐷
)
2

)

1
4

 Eq. 2-3 

However, the second solution is based on virtual crack extension and uses the stiffness 

derivative technique to calculate the energy release rate and only gives the value at DPE.  

𝑌 =  1.4408 − 3.6364 (
𝑎

𝐷
) + 19.35 (

𝑎

𝐷
)
2

− 34.7849 (
𝑎

𝐷
)
3

+  36.8446 (
𝑎

𝐷
)
4

 Eq. 2-4 

Astiz (1986) also evaluated dimensionless SIF solutions of semi-elliptical surface cracks 

in the round bar under tensile loading using FEM. Crack configurations in Astiz’s work 

is provided in Figure. 2-1.   
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Figure. 2-1: Crack configurations in Astiz’s work (Astiz, 1986). 

 

For 𝑠/𝑠0  = 0 a polynomial fitting on the results has been performed and the following 

expression was proposed for dimensionless SIF 

𝑌 =  ∑∑𝐶𝑖𝑗 (
𝑎

𝐷
)
𝑖

(
𝑎

𝑐
)
𝑗

3

𝑗=0

4

𝑖=0
𝑖≠1

 Eq. 2-5 

Where the coefficients 𝐶𝑖𝑗 are presented in Table 2-1. 

 

 

Table 2-1: Coefficients 𝐶𝑖𝑗 in Astiz’s dimensionless SIFs. 

𝒊 𝒋 = 𝟎 𝒋 = 𝟏 𝒋 = 𝟐 𝒋 = 𝟑 

0 1.118 -0.171 -0.339 0.13 

2 1.405 5.902 -9.057 3.032 

3 3.891 -20.37 23.217 -7.555 

4 8.328 21.895 -36.992 12.676 

 

Shiratori et al. (1987) and Murakami et al (1987) present some solutions for semi-

elliptical surface cracks round bar subjected to tension and bending. Their method is 

based on the concept of choosing two referential two-dimensional problems and two 
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geometrically similar three-dimentional problems, the ratio of SIF in the in the three-

dimensional problem is approximately equal to that in the two-dimensional one. They 

applied their method to the surface cracks in the plate and collected the data. Then, 

obtained results where compared by available data in the literature. When it is confirmed 

that the approach is accurate they applied it on round bar. 

James and Milles (1988) reported SIF solution of straight-fronted semi-elliptical cracks 

in round bars under tensile loading by polynomial fitting on previous experimental 

(Daoud et al.,  1978; Bush, 1981) and numerical results (Daoud et al., 1978; Blackburn, 

1976; Salah el din & Lovegrove, 1981; Mattheck et al., 1984). The equation is valid for 

0.01 < 𝑎/𝐷 < 0.65. 

𝑌 = 0.926 − 1.771 (
𝑎

𝐷
) + 26.421 (

𝑎

𝐷
)
2

− 78.481 (
𝑎

𝐷
)
3

+ 87.911 (
𝑎

𝐷
)
4

 Eq. 2-6 

They also offered a solution for circular surface crack by using results from Forman and 

Shivakumar (1986). This equation is valid for 𝑎/𝐷 < 0.6 

 

𝑌 =

1.84
𝜋 [

tan (
𝜋𝑎
2𝐷)

(
𝜋𝑎
2𝐷)

]

0.5

cos (
𝜋𝑎
2𝐷)

(0.752 + 2.02
𝑎

𝐷
+ 0.37 (1 − sin (

𝜋𝑎

2𝐷
))
3

) 
Eq. 2-7 

 

Levan and Royer (1993) found a solution for round bars with transverse circular cracks 

by using the boundary integral equation method. Figure. 2-2 shows all parameters used 

in their equation and the parameter 𝛼 = (𝐵0𝐵/𝐵0𝐵1) shows the curvature of the crack 

front.  
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𝑌 =∑∑ ∑ 𝐶𝑖𝑗𝑘 (
𝑎

𝑅
)
𝑖

𝑘=0,2,4,6

3

𝑗=0

3

𝑖=0

𝛼𝑗 (
𝑠

𝑠𝑚
)
𝑘

 Eq. 2-8 

 

 

 

Figure. 2-2: Crack configurations in Levan and Royer’s work (Levan 
& Royer, 1993). 

 

 

Royer and Levan also (1994) also extracted 𝐾𝐼, 𝐾𝐼𝐼, 𝐾𝐼𝐼𝐼 SIFs for circular-fronted cracks 

in a round bar under tensile loading, bending and torsion. These factors are expressed in 

terms of the crack geometrical parameters and the abscissa on the crack front. The results 

will allow one to predict the mechanical behavior of the crack subject to combined loads. 

As it discussed before, Carpinteri (1992A; 1992B) proposed dimensionless SIF solution 

of straight-fronted semi-elliptical surface cracks in round bars. Values at point B in 

Figure. 2-3 are associated with those obtained at 𝜁/ℎ =  0.1, which is very close to the 

surface. Shih and Chen (2002) proposed a solution for SIF values at the crack center A 

and the crack end B by numerical fitting to results of Carpinteri’s work. 
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Figure. 2-3: Crack Configurations in Carpinteri’s work (Carpinteri, 
1992A; Carpinteri, 1992B). 
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Eq. 2-9 
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Eq. 2-10 

 

Lazzarin and Filippi (2006) proposed a generalized Mode I SIFs of sharp V-notches in 

round bars subjected to bending. Due to its nature, the new parameter might be useful in 

all cases where: (a) the effect of stress redistribution due to the notch root radius cannot 
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be neglected; (b) the root radius, in combination only with the maximum principal stress 

at the notch tip, is not large enough to control the fracture of brittle or quasi-brittle 

materials, nor the fatigue crack initiation phase. The accuracy of proposed method have 

been checked carefully against FEM results available in literature.  

Miura et al. (2008) derived approximate stress intensity factor expressions for axially 

through-wall cracked cylinder subjected to linear stress distribution and for 

circumferentially through-wall cracked cylinder subjected to bending. Considering that 

the cylindrical structures are often replaced with flat plates in the evaluation of actual 

components, the propriety of the replacement was also studied. They also studied the 

adequacy of the replacement of cracked cylinders with cracked plates. The replacement 

of semi-elliptical surface cracked cylinders with the semi-elliptical surface cracked plates 

was found to be generally acceptable, while the replacement of cylinders with an infinite 

axial or full-circumference surface cracks with the single-edge cracked plates brings 

about large conservatism in the case of thick cylinders with deep cracks. 

Malits (2009) presented exact solutions for calculating the SIFs of a circumferential edge 

crack in a solid cylinder using the dual Dini series equations and a Fredholm integral 

equation. His explicit equations for the stress intensity factors of different part-through 

cracks obtained by the curve fitting approaches on the FEM results which collected from 

literature (Raju & Newman, 1986; Shih & Chen, 2002; Shivakumar & Newman, 1991).  

Niasani et al. (2017) proposed closed-form thermo-elastic stress intensity factor for 

cracked cylinder subjected to thermomechanical loads using weight function method. 

This method would lessen the taken time for the analyses compared to other numerical 

methods such as FEM. Results show that while the load effect on cylinder subjected to 

thermal load lead to the crack growth in small aspect ratio, in cylinder subjected to 

mechanical loads, it would lead to the growth of crack in large aspect ratio. The results 

showed that, apart from load effects, the cylinders containing initial semi-circular crack 
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have the longest life among the cylinders containing initial semi-elliptical crack with the 

same initial depth.  

Ortega-Herrera et al. (2017) presented the development of a polynomial equation of 

second degree which allows to predict the value of the stress concentration factor on a 

flat bar with two notches under to axial load for different rations r/L (notch radio/distance 

between notches) y W/L (bar width/distance between notches). To obtain the mentioned 

equation, one hundred simulations were carried out on finite element software to 

determine maximum stress on the bar and then the stress concentration factor is 

calculated. The results estimated by the proposed equation for stress concentration factor 

are compared with the results presented by other authors; a good matching among these 

approaches is obtained.  

Yu et al. (2018) studied Elastic T-stress and stress intensity factor solutions for through-

wall-cracked pipes under internal pressures by three-dimensional (3D) finite element 

(FE) calculations. The distribution of normalized SIFs (mode I and mode II) and T-

stresses along the crack front for different crack lengths, crack orientations, thickness 

ratios and Poisson's ratios has been obtained in detail. Their FE results showed that the 

T-stresses increase with increasing Poisson's ratio and crack angle, respectively. The 

normalized Mode I increases while Mode II decreases with increasing Poisson's ratio, 

respectively. The normalized Mode I decreases with increasing crack angle, while Mode 

II increases with increasing crack angle from 0° to 45° and then decreases from 45° to 

90°. Finally, the empirical formulae of the three-parameter Mode I, Mode II and T-stress 

have been derived by fitting present FE results with the least-squares method for the 

convenience of engineering applications.  

Various solutions for stress intensity factors obtained from a variety of methods have also 

been presented in the compendiums or handbooks (Sih & Liebowitz, 1998; Tada et al., 
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2000; Sih & Kassir, 1975) and literatures (Yu et al., 2015; Dosiyev & Buranay, 2015; 

Shlyonnikov, 2016; Seifi, 2015). 

 

 

In summary, this chapter discussed that mechanical components that have a 

manufacturing discontinuity, defect or flaw which under tough working situation like 

cyclic loads they may turn into a crack. In other words, cracks may initiate in mechanical 

components as a result of material problem or boundary forces application on the 

components. Crack propagation during working life time will lead to a fracture or failure 

of the component. Thus, it is crucial for designers or engineers to study fatigue life or 

residual fatigue life of a component in the machine or mechanical structure. One the most 

significant tools to study crack propagation is stress intensity factor assessment along the 

crack front.  

It is shown that researchers have evaluated SIFs by using different approaches and can 

be classified as follows: 

 General SIF evaluation around the crack tip  

 SIF assessment of a crack in arbitrary component subjected to arbitrary loading 

 SIF evaluation of cracks in infinite body subjected to different loading 

 SIF calculation of cracks in plates under different loading 

 And finally SIF assessment of cracks in cylinder bar subjected to different 

loading  

Cylinder and round bars are common component in mechanical machines and play a 

crucial role in power transition. Many researchers studied crack initiation and propagation 

in cylinders subjected to different loadings as it is presented in this chapter. In addition, 
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plenty of analytical and closed-form solutions to predict SIFs of surface-flaws in cylinder 

bars have been provided.  

In order to evaluate SIFs, different approached have been implemented by researchers 

such as Numerical Method, Analytical Method and Experimental Method. Advantages 

and disadvantages of each method has been explained comprehensively. In this study, 

numerical approach has been used to evaluate the SIFs. Finite element method (FEM) 

and boundary element method (BEM and DBEM) are two most common numerical 

approach for fracture mechanic analysis but Dual-Boundary Element Method is 

implemented in this study. 

Dual-Boundary Element Method (DBEM) based-software BEASY has been chosen to 

evaluate the SIFs of cracks in this research due to: 

 High accuracy of the displacements and stresses including their derivatives at 

the internal points 

 Less time and efforts are needed for simulations by DBEM than FEM 

 Singularity in crack tip and crack interceptions is accurately treated 

 Reliability of BEASY has been established by previous works in the literature  

 Obtained results in BEASY showed more consistency with analytical solutions 

than FEM while will be discussed in chapter four of this thesis 

The literature have shown that a comprehensive closed-form solution of the SIFs for 

Modes I, II and III of a semi-elliptical surface crack with different inclination angle in a 

solid cylinder under pure tension and pure torsion have yet to be developed.  
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3 CHAPTER THREE: METHODOLOGY  

 

This chapter will detail the methodology and techniques repeatedly used in this study to 

achieve the objectives. As it is discussed, to evaluate SIFs of semi-elliptical cracks in 

cylinder bars DBEM based-software BEASY has been chosen. BEASY’s Crack Growth 

Simulation tools provide engineers with the ability to quickly solve 3D fracture models 

in support of damage tolerance analysis and structural integrity assessment. Figure 3-1 is 

showing the approach adopted in this work to reach final solutions.  

 

Figure 3-1: Flowchart of applied Methodology in this study 

 

BEASY’s Fatigue Crack Growth Simulation technology is easy to use and industry 

proven. Accurate fracture mechanics solutions are available for predicting: 

 Stress Intensity Factors 

 Crack Growth Rates 

 Crack Growth Paths 

  Critical Crack Sizes 
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BEASY's Crack Growth Simulation software is based on advanced fracture mechanics 

principles and represents a radically improved approach to computational fracture 

analysis. BEASY's fracture simulation methodology provides more accurate solutions for 

those needing to make critical life extension decisions or to determine if an asset can 

continue to operate safely under existing service loading conditions (BEASY website). 

To reach the optimum results in BEASY, a crack is modelled in BEASY with three 

different mesh sizes of 1.25% , 5% and 10% of crack front arc length in torsion loading 

and 2.5% , 5% and 10% of crack front arc length in tension loading. Results obtained 

from BEASY are compared to each other and Root Mean Square Error (RMSE) is 

calculated respect to each distribution. Findings evidently confirmed that mesh sizes 

smaller than 5% of crack front arc length do not improve the accuracy of results 

considerably. 

Then to prove the validity of BEASY’s results, they have been compared with available 

analytical solutions in the literature (Newman-Raju’s approach (1981) for tension loading 

and He and Hutchinson (2000) in torsion loading). BEASY showed good agreement with 

mentioned methods. In addition, results obtained from BEASY have been compared with 

the same FEM data collected from He and Hutchinson (2000) to endorse the reliability 

of BEASY.  

In order to obtain Empirical Closed-Form SIF Solutions for an inclined semi-elliptical 

crack in cylindrical bar subjected to pure tension and pure torsion, a well-disciplined 

approach have been planned and implemented.  

Firstly, variables of solutions have been chosen based on their influence on SIFs. From 

the literature it is found that the most crucial parameter which is highly affected the SIF 

is crack aspect ratio(𝑎 𝑐⁄ ). So this parameter has been opted as a first variable in final 

solution.  
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In the cylinder subjected to pure tension five different values of 0.3333, 0.5, 1, 1.5 and 2 

have been chosen for crack aspect ratio. However, in the cylinder bar under pure torsion 

seven values of 0.3333, 0.5, 0.6, 0.75, 1, 1.5 and 2 have been opted due to more complicity 

of loading and boundary conditions.   

Second variable in this study is crack length ratio (𝑎 𝑑⁄ ) since solution would be 

applicable to cylinder bars at any dimension. To evaluate this study precisely, 2 sets of 

different assessment have been done.  

1- A cylinder with diameter of 10 mm is modelled and cracks with four different 

sizes of 2.5%, 5%, 7.5% and 10% of cylinder diameter has been modelled with 

given aspect ratios in each loading. 

2- Cracks with size of 2 mm and aspect ratio of 0.75, 1 and 1.5 are modelled in 

cylinders with diameters from 10mm to 100mm in each loading. 

And final parameter is crack inclination angle (𝜃) which has been chosen 0o (when crack 

front is normal to cylinder length), 22.5o, 45o, 67.5o and 90o.  

After data collection, the solutions are obtained through systematic curve fitting 

approaches on the SIFs produced by BEASY. 

 

 

The three-dimensional analysis is performed to evaluate SIFs of semi-elliptical surface 

cracks in the cylinder bar subjected to pure tension and pure torsion. The J-integral 

method is used to calculate the SIFs. Main parameters which being considered in this 

study are Crack size ratio(𝑎 𝑑⁄ ), Crack aspect ratio (𝑎 𝑐⁄ ) and Crack inclination angle 

(𝜃). Three distinct sets of simulations have been performed to study influences of each 

factor on SIFs, properly.  
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Figure 3-2: Schematic of specimen, (A) Semi-Elliptical crack on the 
cylinder bar under pure tension; (B) Semi-Elliptical crack on the 

cylinder bar under pure torsion; (C) Crack front.  

 

 

(A) 

(C) 

(B) 

Univ
ers

ity
 of

 M
ala

ya



69 

A cylinder bar with diameter of 𝑑 = 10 mm and length of  𝑑 = 40 mm is used in this 

study (except for that set of simulations performed to evaluate crack size ratio in which 

cylinders has different dimensions). Crack depth defines by 𝑎 and its half-length by 𝑐 at 

the surface where it is perpendicular to the 𝑎. Schematic of the cylinder and its surface 

crack modelled in BEASY is presented in Figure 3-2. The solid cylinder bar considered 

in this analysis was a 7000 series aluminum alloy having a yield stress of 500 MPa, 

modulus of elasticity of 70 GPa and Poisson’s ratio ν of 0.33. For a cylinder bar subjected 

to pure tension, uniform tension of 𝜎0 =100 MPa is applied to the cylinder as a tensile 

loading and the maximum shear stress of 𝜏0= 100 MPa is applied at the outer surface of 

the cylinder bar as depicted in Figure 3-2 and is within the elastic limit of the cylinder 

bar. In addition, a typical normal stress distribution on crack face is presented in 

Figure 3-2C to show that analysis is performed within LEFM and stress values do not 

exceed the yield stress and go to plasticity zone. 

  

 Mesh Evaluation in BEASY 

SIF evaluation in BEASY has two distinct stages. At the first stage of analysis, BEASY 

generally evaluate the model for stress and displacement distributions. Stress distribution 

for a solid cylinder bar subjected to pure tension and pure torsion are presented in 

Figure 3-3A & B, respectively. It can be seen that stress at the surface of cylinder is 

uniformly distributed.   

During the second stage, a crack is inserted on the surface of the analyzed model initially 

and then the updated model will be assessed for SIF values. Since mesh dimensions 

around crack front is highly sensitive and reaching to accurate results is dependent on 

perfect meshing in this region, BEASY employs 9-noded quadratic elements at crack 

front and 6-noded triangular elements for crack face and further area in crack vicinity 

(Figure 3-3). It can be seen that meshes near crack are fine and they get coarser by getting 

Univ
ers

ity
 of

 M
ala

ya



70 

further from crack. Boundary of fine and coarse meshes depends on ratio of crack size to 

the model dimension. The smaller the crack gets, the less distance from crack tip receive 

fine meshes.  

Schematic of meshed model and crack front is given in Figure 3-3. BEASY gives SIF 

distribution along the crack front based on crack arc length. However, presented results 

and proposed solutions in this paper are given based on parametric angle along the crack 

front. Coordinate system to define parametric angle for crack shapes less and higher than 

one are shown in Figure 3-3B and C, respectively. 
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Figure 3-3: Schematic of meshed model; (A) A solid cylinder bar 
under pure tension and its Von Mises normal stress distribution 

expressed in MPa; (B) A solid cylinder bar under pure torsion and its 
shear stress distribution expressed in MPa; (C) Typical Von Mises 

normal stress distribution on the crack face expressed in MPa. 
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Figure 3-4: Schematic of Meshed Model, (A) Meshing in the cracked 
solid cylinder; (B) Crack surface and its parametric angle for cracks 

with a/c ≤ 1; (C) Crack surface and its parametric angle for cracks with 
a/c ≥ 1. 

 

(A) 

(C) 

(B) 
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 Cylinder Bar under Pure Tension 

To evaluate the quality of meshes, a crack with size of 𝑎/𝑑 = 0.05 and shape of 𝑎/𝑐 = 1 

is modelled in the cylinder bar under pure tension with 3 different mesh sizes (ℎ) and 

SIFs were calculated. Mesh sizes have been chosen almost 10%, 5% and 2.5% of crack 

arc length (For a crack in this size, arc length is about 𝑠 = 1.519). Mode I SIF distributions 

for different mesh sizes are plotted in Figure 3-5A. It can be observed that when mesh 

size is less than 5%, accuracy does not change considerably. Another exploration on mesh 

evaluation is measurement of Root Mean-Square Error (RMSE) to have more precise 

study on mesh sizes. In order to measure RMSE value for different mesh sizes, Eq. 3-1 

and Eq. 3-2 have been implemented. RMSE values for Mode I is presented in 

Figure 3-5B. RMSE results evidently confirm that mesh sizes smaller than 5% of crack 

front arc length do not improve the accuracy of results considerable so that all mesh sizes 

to evaluate SIFs in the cylinder bar under pure tension have been chosen maximum 5% 

of crack front arc-length.  

log 𝑒 = ‖𝐾𝑖+1 − 𝐾𝑖‖
2
=
1

|𝑛|
∫ (𝐾𝑖+1 − 𝐾𝑖)

2
𝜋−𝜑0

𝜑0

𝑑𝜑 Eq. 3-1 

log 𝑒 ≅ √
∑ (𝐾𝑗

𝑖+1 − 𝐾𝑗
𝑖)
2𝑛

𝑗=1

𝑛
 Eq. 3-2 

 

 Cylinder bar under Pure Torsion 

For cylinder bar under pure torsion, a crack with size of 𝑎/𝑑 = 0.05 and shape of 𝑎/𝑐 = 

0.5 is modelled in the cylinder bar with 3 different mesh sizes (ℎ ) and SIFs were 

calculated. Mesh sizes have been chosen almost 10%, 5% and 1.25% of crack arc length 

(For a crack in this size, arc length is about 𝑠 = 2.2222). SIF distributions for different 

mesh sizes are plotted in Figure 3-6. 
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Figure 3-5: (A) SIF distributions for a crack with size of 𝑎/𝑑 = 0.05 and 
𝑎/𝑐 = 1 in the cylinder bar under pure tension with mesh sizes selected 
10%, 5% and 1.25% of its front arc length; (B) Measured RMSE from 

SIF distributions for respective mesh sizes. 

 

Results prove that Mode III is more affected than Mode II by mesh sizes. It can be 

observed that when mesh size is less than 5%, accuracy does not change for both Mode 

II & Mode III. RMSE values for Mode II and Mode III are also calculated and presented 

in Figure 3-7A & B, respectively. RMSE results evidently confirm that mesh sizes smaller 

than 5% of crack front arc length do not improve the accuracy of results considerable so 

that all mesh sizes in cylinder bar under pure torsion also have been chosen maximum 

5% of crack front arc-length. 

 

 

As it discussed, three variables are considered to study SIFs of a semi-elliptical surface 

crack in the cylinder bar under pure tension and pure torsion and an applicable solution 

proposed to predict SIF distribution on the crack front. These variables are crack size 

ratio(𝑎 𝑑⁄ ), crack aspect ratio(𝑎 𝑐⁄ ) and crack inclination angle(𝜃). To generate adequate 

amount of data to evaluate each variable properly, three sets of simulations have been 

designed.  
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Figure 3-6: SIF distributions for a crack with size of a/d = 0.05 and a/c = 
0.5 in the cylinder bar under pure torsion with mesh sizes selected 10%, 5% 

and 1.25% of its front arc length (A) Mode II; (B) Mode III. 
 

 

  

Figure 3-7: Measured RMSE from SIF distributions for mesh sizes 
selected 10%, 5% and 1.25% of crack front arc length with size of a/d = 

0.05 and a/c = 0.5 in the cylinder bar under pure torsion (A) Mode II; (B) 
Mode III. 

 

In the first set the same crack is modelled in different cylinders and extracted SIFs have 

been studied to check the crack size ratio and see when cylinders gets infinite body in 

accordance with the crack. For second set of simulations, cracks with different size and 

shape ratios modeled in the same cylinder and SIFs were evaluated. Finally, several cases 

from second set of simulations have remodeled with different inclination respected to 

load direction to study influence of inclinations on the SIF values.  
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Researchers adopted different methods from analytical to numerical approximations in 

order to derive acceptable solution for SIF evaluations. However, in this study a 

systematic cure-fitting is implemented to reach a decent versatile applicable solution. 

Proposed solution is composed of three distinct functions. Since maximum values of SIFs 

are crucial and more concerned in the fracture mechanics, the first function gives 

Maximum values of Mode II and Mode III SIFs. For Mode I SIFs, first function gives 

SIF values at 𝜑 = 𝜋/2 which acquires both the maximum (when crack aspect ratio is less 

than one) and the minimum (when crack aspect ratio is higher than one) value of SIF. To 

derive this function, mentioned values from first two sets of simulations are collected and 

a function fitted to the available data.  

Second function deals with inclination influences on SIFs and propose the ratio of first 

function at expected angle. This function is obtained from stress analysis on the crack 

face at different inclination except for Mode II which caused additional study on the crack 

shape.  

Last function gives SIF distribution on the crack front. To reach appropriate function, 

nature of each Mode and rate of changes on respective SIF distribution at the crack front 

were investigated and closest function to each Mode distribution were introduced.  

Two main characteristics of proposed solution which makes it different are nobility and 

versatility. Different studies have been done by different researchers on surface cracks in 

infinite body and cylinder bars but no one studied cracks with different inclinations in the 

cylinder bar under pure tension. No attempts has been done for SIF evaluations in the 

cylinder bar under pure torsion either. In addition, the proposed solution gives this 

opportunity to researchers to evaluate any part of function which is needed.     
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4 CHAPTER FOUR: RESULTS AND DISCUSSION 

 

In order to illustrate the accuracy of results obtained by BEASY, the SIFs of a semi-

elliptical crack for different crack sizes have been compared with the available analytical 

and numerical results collected from literature.  

 

 

 

Figure 4-1: (A) Semi-elliptical surface crack in finite plate; (B) 
Coordinate system used to define parametric angle. 

 

 

(A) 

(B) 
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 Reference Solution for Cylinder Bar under Pure Tension 

Newman-Raju (1981) proposed an empirical equation for the stress intensity factors of 

a semi-elliptical surface crack in a finite plate subjected to tension (Figure 4-1A). 𝐾𝐼 

will give Mode I SIFs at any point along the crack front in Eq. 4-1. 

𝐾𝐼 = 𝑆√𝜋
𝑎

𝑄
𝐹𝑠 (
𝑎

𝑐
,
𝑎

𝑡
,
𝑐

𝑏
, ∅) Eq. 4-1 

For 0 ≪ 𝑎
𝑐⁄ ≪ 2, 𝑐 𝑏⁄ < 0.5, 0 ≪ ∅ ≪ 𝜋 and 𝑎 𝑡⁄  satisfies                                     Eq. 4-2  

𝑎

𝑡
< 1.25 (

𝑎

𝑐
+ 0.6)    𝑓𝑜𝑟 0 ≪

𝑎

𝑐
≪ 0.2 

𝑎

𝑡
< 1                            𝑓𝑜𝑟 0.2 ≪

𝑎

𝑐
≪ ∞ 

                                    Eq. 4-2 

Where 

𝑄 = 1 + 1.464 (
𝑎

𝑐
)
1.65

        𝑓𝑜𝑟 
𝑎

𝑐
≪ 1 Eq. 4-3 

𝑄 = 1 + 1.464 (
𝑐

𝑎
)
1.65

        𝑓𝑜𝑟 
𝑎

𝑐
> 1 Eq. 4-4 

Function of 𝐹𝑠 accounts for the influence of crack shape (𝑎 𝑐⁄ ), crack size (𝑎 𝑡⁄ ), finite 

width (𝑐 𝑏⁄ ) and parametric angle 𝜑, and was chosen as 

𝐹𝑠 = [𝑀1 +𝑀2 (
𝑎

𝑡
)
2

+𝑀3 (
𝑎

𝑡
)
4

] 𝑔𝑓∅𝑓𝑤 Eq. 4-5 

For  𝑎 𝑐⁄ ≪ 1: 

𝑀1 = 1.13 − 0.09 (
𝑎

𝑐
) Eq. 4-6 

Univ
ers

ity
 of

 M
ala

ya



79 

𝑀2 = −0.54 +
0.89

0.2 + (
𝑎
𝑐)

 Eq. 4-7 

𝑀3 = 0.5 −
1

0.65 + (
𝑎
𝑐)
+ 14 (1 −

𝑎

𝑐
)
24

 Eq. 4-8 

𝑔 = 1 + [0.1 + 0.35 (
𝑎

𝑡
)
2

] (1 − sin∅)2 Eq. 4-9 

𝑓∅ = [(
𝑎

𝑐
)
2

cos2 ∅ + sin2 ∅]
1/4

     Eq. 4-10 

And for  𝑎 𝑐⁄ > 1: 

𝑀1 = √
𝑐

𝑎
(1 + 0.04

𝑎

𝑐
)                                       Eq. 4-11 

𝑀2 = 0.2 (
𝑐

𝑎
)
4

                                      Eq. 4-12 

𝑀3 = −0.11 (
𝑐

𝑎
)
4

                                     Eq. 4-13 

𝑔 = 1 + [0.1 + 0.35 (
𝑐

𝑎
) (
𝑎

𝑡
)
2

] (1 − sin∅)2                                     Eq. 4-14 

𝑓∅ = [(
𝑎

𝑐
)
2

cos2 ∅ + sin2 ∅]
1/4

                                     Eq. 4-15 

The finite width correction, 𝑓𝑤, can be used for all range of 𝑎 𝑐⁄  

𝑓𝑤 = [𝑠𝑒𝑐 (
𝜋𝑐

2𝑏
)√
𝑎

𝑡
]

1/2

    Eq. 4-16 
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 Comparison Results Obtained from BEASY with Analytical Solution 

Three different semi-elliptical surface cracks with depth of 𝑎/𝑡 = 0.025, 0.05 & 0.1 and 

shapes of 𝑎/𝑐 = 0.5 & 1 are modelled in the square bar subjected to pure tensile loading 

of 100 MPa in BEASY and results are compared with the same cracks evaluated in 

Eq. 4-1. To calculate the SIFs in BEASY, cracks are modelled in a square bar with 

dimensions of 10 𝑚𝑚 × 10 𝑚𝑚 and length of 𝐿 = 40 𝑚𝑚 made of Aluminum with the 

Modulus of elasticity 𝐸 = 70 GPa and Poisson’s ratio 𝜈 = 0.33. Schematic of the model 

is presented in Figure 4-2. 

 

Figure 4-2: Schematic of a semi-Elliptical crack on the square bar. 

 

Comparison of two methods for the stress intensity distributions are presented in 

Figure 4-3. It can be seen that both BEASY and analytical solution are in good agreement 

on maximum values of Mode I SIFs which are crucial in fracture mechanics. Univ
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Parametric angle along the crack front 𝜑/𝜋 
  

Figure 4-3: Mode I SIF distributions of semi-elliptical surface cracks 
on the square bar under pure tension calculated by BEASY and that 

obtained by analytical solution proposed by Newman and Raju (1981) 
(A) for 𝑎/𝑐=0.5; (B) for 𝑎/𝑐=1. 

 

 Comparison Results Obtained from BEASY with FEM Results  

A comparison between DBEM and Finite element Method (FEM) is executed to endorse 

the reliability of BEASY. SIFs obtained from BEASY are compared with those obtained 

by He and Hutchison (2000), who modeled a semi-elliptical surface crack in the infinite 

body with an aspect ratios of a/c = 0.5 and 1 using the finite element method (FEM). A 

semi-elliptical surface crack in the infinite body with shapes of 𝑎/𝑐 = 0.5 & 1 are modeled 

in ABAQUS and a general purpose Finite. Same cracks on the surface of cylinder under 

tensile loading at the angle of 45o where shear stress component on the crack front is 

maximum, are modeled in BEASY (in size of 𝑎/𝑑 =0.25). SIFs for each crack shape 

(𝑎 𝑐⁄ ) have been normalized by the corresponding maximum values for the same crack 

shape which happens at Corner Point on Ellipse (CPE) for Mode II and Deepest Point on 

Ellipse (DPE) for Mode III. Results are plotted in Figure 4-4. BEASY shows good 

agreement with FEM in both Mode II and Mode III. However, in Mode III, as it 

mentioned before values are insignificantly different in the range of small 𝜑 due to corner 

singularity. 
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(B) Parametric angle along the crack front 2𝜑/𝜋  

 

(A) Parametric angle along the crack front 2𝜑/𝜋  
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Figure 4-4: SIF distributions of semi-elliptical surface cracks modeled 
by DBEM in the cylinder bar under pure tension and obtained by FEM 
(He & Hutchinson, 2000) (A) Mode II for 𝑎/𝑐=0.5; (B) Mode III for 

𝑎/𝑐=0.5; (C) Mode II for 𝑎/𝑐=1; (D) Mode III for 𝑎/𝑐 =1. 

 

 Reference Solution for Cylinder Bar under Pure Torsion 

An analytical solution for similarly aligned and loaded elliptical crack in an infinite solid 

is given by He and Hutchison (He & Hutchinson, 2000).  

𝐾𝐼𝐼 = 𝐾𝐼𝐼
0 + 𝛿𝐾𝐼𝐼 

   Eq. 4-17  

𝐾𝐼𝐼𝐼 = 𝐾𝐼𝐼𝐼
0 + 𝛿𝐾𝐼𝐼𝐼 

Eq. 4-18  
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where 

𝐾𝐼𝐼
0 =

τ𝑥𝑧
𝑜 √𝜋𝑎𝑘2(𝑎 𝑐⁄ ) cos𝜑

𝐵[sin2𝜑 + (𝑎 𝑐⁄ )2 cos2 𝜑]1 4⁄
 

                          

Eq. 4-19 

𝐾𝐼𝐼𝐼
0 =

τ𝑥𝑧
𝑜 √𝜋𝑎𝑘2(1 − 𝜈) sin 𝜑

𝐵[sin2𝜑 + (𝑎 𝑐⁄ )2 cos2 𝜑]1 4⁄
 

 

Eq. 4-20 

𝑘2 = 1 − (𝑎 𝑐⁄ )2,   𝐵 = (𝑘2 − 𝜈)𝐸(𝑘) + 𝜈(𝑎 𝑐⁄ )2𝐾(𝑘)                         Eq. 4-21 

 

With elliptical integrals defined by 

𝐸(𝑘) =  ∫ √1 − 𝑘2 sin2 𝜑
𝜋 2⁄

0

𝑑𝜑 
Eq. 4-22 

𝐾(𝑘) =  ∫
𝑑𝜑

√1 − 𝑘2 sin2𝜑

𝜋 2⁄

0

 Eq. 4-23 

 

𝛿𝐾𝐼𝐼 and 𝛿𝐾𝐼𝐼𝐼 for different cases are provided in (He & Hutchinson, 2000). Some cases 

are presented in Table 4-1. 

 

 Comparison Results from BEASY with Reference Solution 

Semi-elliptical surface cracks are modeled in the cylinder bar subjected to pure torsion of 

100 MPa in BEASY and results are compared with the same cracks evaluated in Eq. 4-

17 and Eq. 4-18. Comparison of two methods for the stress intensity distributions are 

presented in Figure 4-5. It can be seen that BEASY is in good agreement on both Mode 

II and Mode III SIFs with analytical solution. 
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Table 4-1: Polynominal approximations for the SIF corrections in    Eq. 4-17 & 
Eq. 4-18. 

𝒚 = 𝒄𝟎 + 𝒄𝟏 (
𝟐𝝋

𝝅
) + 𝒄𝟐 (

𝟐𝝋

𝝅
)
𝟐

+ 𝒄𝟑 (
𝟐𝝋

𝝅
)
𝟑

+ 𝒄𝟒 (
𝟐𝝋

𝝅
)
𝟒

+ 𝒄𝟓 (
𝟐𝝋

𝝅
)
𝟓

+ 𝒄𝟔 (
𝟐𝝋

𝝅
)
𝟔

+ 𝒄𝟕 (
𝟐𝝋

𝝅
)
𝟕

+ 𝒄𝟖 (
𝟐𝝋

𝝅
)
𝟖

 

𝒚 ≡ 𝒚𝑰𝑰 = 𝜹𝑲𝑰𝑰/(𝑲𝑰𝑰
𝟎 )

𝝋=𝟎
 or 𝒚 ≡ 𝒚𝑰𝑰𝑰 = 𝜹𝑲𝑰𝑰𝑰/(𝑲𝑰𝑰𝑰𝟎 )𝝋=𝝅/𝟐 

K 𝑐/𝑎 𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 𝒄𝟖 

𝒚𝑰𝑰 1 0.0153 -2.494 27.32 -143.5 421.1 -723.8 723.8 -3.897 87.34 

𝒚𝑰𝑰𝑰 1 0.5177 -4.421 22.59 -63.87 96.07 -71.99 21.13   

𝒚𝑰𝑰 1.5 -0.047 -0.331 1.041 -1.063 0.4011     

𝒚𝑰𝑰𝑰 1.5 0.3608 -2.528 10.62 -26.41 36.99 -26.72 7.715   

𝒚𝑰𝑰 2 0.0239 -1.019 3.102 -3.975 2.401 -0.532    

𝒚𝑰𝑰𝑰 2 0.3341 -2.406 8.369 -14.63 12.35 -3.991    

 

It is evident that when crack size is small and shape is high (where the crack in the 

cylinder bar is close to one in infinite body) BEASY shows more consistency on both 

mode II and Mode III SIFs. Mode II and Mode III SIF distributions of a crack with aspect 

ratio of 𝑎/𝑐=0.5 and different size ratios are plotted in Figure 4-5A & B, respectively. 

For Mode III, BEASY shows higher accuracy in smaller crack sizes. Graphs in Figure 4-

5C proves that Mode II SIFs of cracks with the same aspect ratios do not change 

considerably when their sizes increase.  However, Mode III as it mentioned before is 

more responsive to crack size changes (Figure 4-5D). The effect of the corner singularity 

is evident in the vicinity of CPE where the differences between results obtained by two 

methods are relatively small. 
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Parametric angle along the crack front 2𝜑/𝜋 (A) 

(C) Parametric angle along the crack front 2𝜑/𝜋 
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Figure 4-5: SIF distributions of semi-elliptical surface cracks on the 
cylinder bar under pure torsion calculated by BEASY and that 

obtained by analytical solution proposed by He and Hutchinson (2000) 
(A) Mode II for 𝑎/𝑐=0.5; (B) Mode III for 𝑎/𝑐=0.5; (C) Mode II for 

𝑎/𝑑=0.025; (D) Mode III for 𝑎/𝑑 =0.025. 
 

 Comparison Results from BEASY with Results from FEM 

Comparison of SIFs distributions for semi-elliptical surface crack in the cylinder bar 

subjected to pure torsion between DBEM and Finite element Method (FEM) are given in 

Figure 4-6. A semi-elliptical surface crack in the infinite body with shapes of 𝑎/𝑐 = 0.5 

& 1 are modeled in ABAQUS. A general purpose Finite element code was used for the 

analysis (He & Hutchinson, 2000). Same cracks on the surface of Cylinder under torsional 

loading are modeled in BEASY (in size of 𝑎/𝑑 =0.25). SIFs for each crack shape (𝑎 𝑐⁄ ) 

have been normalized by the corresponding maximum values for the same crack shape 

which happens at CPE for Mode II and DPE for Mode III. BEASY shows acceptable 
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agreement with FEM in both Mode II and Mode III. The highest difference is seen in 

Mode II where it was within 7%. Moreover, in Mode III values are different in the range 

of small 𝜑 where 𝐾𝐼𝐼𝐼 is relatively small. 

 
    

    

 

Figure 4-6: SIF distributions of semi-elliptical surface cracks modeled 
by DBEM in the cylinder bar under pure torsion and obtained by FEM 
(He & Hutchinson, 2000)  (A) Mode II for 𝑎/𝑐=0.5; (B) Mode III for 

𝑎/𝑐=0.5; (C) Mode II for 𝑎/𝑐=1; (D) Mode III for 𝑎/𝑐 =1.  
 

 

 Crack Size Evaluations 

First set of simulations are performed to investigate on influence of crack size ratio (𝑎 𝑑⁄ ) 

on SIF distributions. To evaluate crack size ratio, same crack with depth of  𝑎 = 2 𝑚𝑚 

and shapes of 𝑎 𝑐⁄ = 0.75, 1 & 1.5 are modelled in cylinders with different diameters 

(B) Parametric angle along the crack front 2𝜑/𝜋  
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which vary from 𝑑 = 10 mm to 𝑑 = 100 mm and fixed lengths of 𝐿 = 4𝑑 . Cylinder 

dimensions and respected crack ratios are given in Table 4-2. 

 

Table 4-2: Cylinder diameter and respected crack ratios used to study 
crack size 

𝒅(𝒎𝒎) 𝒂/𝒅 𝒂/𝒄 

10 0.2 0.75 

10 0.2 1 

10 0.2 1.5 

15 0.1333 0.75 

15 0.1333 1 

15 0.1333 1.5 

20 0.1 0.75 

20 0.1 1 

20 0.1 1.5 

25 0.08 0.75 

25 0.08 1 

25 0.08 1.5 

30 0.0667 0.75 

30 0.0667 1 

30 0.0667 1.5 

35 0.0571 0.75 
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Table 4-2: Cont’d. 

𝒅(𝒎𝒎) 𝒂/𝒅 𝒂/𝒄 

35 0.0571 1 

35 0.0571 1.5 

40 0.05 0.75 

40 0.05 1 

40 0.05 1.5 

45 0.0444 0.75 

45 0.0444 1 

45 0.0444 1.5 

50 0.04 0.75 

50 0.04 1 

50 0.04 1.5 

60 0.0333 0.75 

60 0.0333 1 

60 0.0333 1.5 

70 0.0286 0.75 

70 0.0286 1 

70 0.0286 1.5 

80 0.025 0.75 
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Table 4-2: Cont’d. 

𝒅(𝒎𝒎) 𝒂/𝒅 𝒂/𝒄 

80 0.025 1 

80 0.025 1.5 

90 0.0222 0.75 

90 0.0222 1 

90 0.0222 1.5 

100 0.02 0.75 

100 0.02 1 

100 0.02 1.5 

  

Figure 4-7 shows results for semi-elliptical surface cracks on the cylinder bar subjected 

to pure tension. It can be observed that cracks with higher size ratio receives higher values 

of SIF. However, when crack size ratio gets smaller than 0.1 Mode I SIFs do not change 

considerably. In other words, when cracks are relatively small in regards to cylinder sizes, 

cylinder turns into infinite solid body for those cracks so changing in crack size does not 

affect the Mode I SIF. It is evident that SIF values at 𝜑 = 𝜋/2 for a crack with depth of 

𝑎 = 2mm and ratio of 𝑎/𝑑 = 0.1 are within 2% difference with the lower crack size ratios 

(Figure 4-7D) so this crack size ratio has been chosen as maximum crack size for crack 

shape evaluation in the cylinder bar under pure tension. 

Same set of simulations have been performed on the cylinder with a semi-elliptical 

surface crack subjected to pure torsion. Results for Mode II SIFs are presented in 

Figure 4-8. Plots show that rate of changes in Mode II for crack ratios less than 𝑎/𝑑 = 

0.05 is small. Again as it mentioned before when cracks are relatively small in regards to 
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cylinder sizes, model is really close to the infinite solid body so changing in crack size 

does not affect the Mode II SIF, as well.  

   

  

Figure 4-7: Mode I SIF distributions for semi-elliptical surface cracks 
on the cylinder bar under pure tension (A) for 𝑎/𝑐=0.75; (B) for 

𝑎/𝑐=1; (C) for 𝑎/𝑐=1.5; (D) SIF values at 𝜑 = 𝜋/2. 

 

Results for Mode III SIFs of semi-elliptical surface cracks in the cylinder bar subjected 

to pure torsion are provided in Figure 4-9. As it mentioned before, Mode III is more 

sensitive than Mode II and rate of changes for Mode III is more considerable. Same 

graphs are plotted for Mode III SIF values at 𝜑 = 𝜋/2 where the maximum value for 

Mode III SIF occurs (Figure 4-9D). Despite Mode II, Mode III SIF, acquires less values 

of SIF at a higher size ratio as it expected. It is shown that Mode III is more sensitive to 

crack size changes than Mode II. Graphs in Figure 4-9D confirm that for sizes less than 

2-3% of cylinder diameter, Mode III is not considerably changed by changing in crack 

size. 

M
od

e 
I S

IF
s, 
𝐾
𝐼 

Parametric angle along the crack front 𝜑/𝜋 

M
od

e 
I S

IF
s, 
𝐾
𝐼 

Parametric angle along the crack front 𝜑/𝜋 

M
od

e 
I S

IF
s, 
𝐾
𝐼 

Parametric angle along the crack front 𝜑/𝜋 

M
od

e 
I S

IF
s a

t  
𝜑
=
𝜋
/2

 

(D) Crack size ratio 𝑎/𝑑 

(B) 

(C) 

(A) 

Univ
ers

ity
 of

 M
ala

ya



91 

  

  

Figure 4-8: Mode II SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure torsion (A) for 𝑎/𝑐=0.75; (B) 

for 𝑎/𝑐=1; (C) for 𝑎/𝑐=1.5;  (D) SIF values at 𝜑 = 𝜑0. 

 

 Crack Shape Evaluation 

In the second set of simulations, crack shape (𝑎/𝑐) is studied. Cylinder diameter is 

assumed 𝑑 = 10mm and its length 𝐿 = 40mm. In the cylinder subjected to pure tension, 

four different crack size and five crack shapes are considered. Total number of 

simulations have been done for this set is 20. Crack ratios for second set in the cylinder 

subjected to pure tension are given in Table 4-3 
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Figure 4-9: Mode III SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure torsion (A) for 𝑎/𝑐=0.75; (B) for 

𝑎/𝑐=1; (C) for 𝑎/𝑐=1.5; (D) SIF values at 𝜑 = 𝜋/2. 

. 

Table 4-3: Crack ratios used to study crack shape in the cylinder 
subjected to pure tension. 

𝒂/𝒅 𝒂/𝒄 

0.025 0.3333 

0.05 0.5 

0.075 1 

0.1 1.5 

 2 
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Figure 4-10: Mode I SIF distributions for semi-elliptical surface cracks 
on the cylinder bar under pure tension (A) for 𝑎/𝑑=0.025; (B) for 

𝑎/𝑑=0.1; (C) for 𝑎/𝑐=1/3; (D) for 𝑎/𝑐=2. 

SIF distributions for crack shape evaluations in the cylinder subjected to pure tension are 

presented in Figure 4-10. SIF distributions for a crack with the same size of 𝑎/𝑑=0.025 

and 𝑎/𝑑=0.1 for different crack shape are provided in Figure 4-10A & B, respectively. It 

can be seen that when crack shape is less than one maximum value of Mode I SIF along 

the crack front happens at DPE but for crack shapes higher than one CPE acquires the 

maximum. Influences of crack size ratio on Mode I SIF distributions presented in 

Figure 4-10C & D. Obviously, cracks with higher depths possess higher values of SIF.   

In the cylinder bar subjected to pure torsion, four different crack size and seven crack 

shapes are evaluated. Total number of simulations have been done for this set is 28. Crack 

ratios for second set in the cylinder subjected to pure torsion are given in Table 4-4. 

 

M
od

e 
I S

IF
s, 
𝐾
𝐼 

Parametric angle along the crack front 𝜑/𝜋 (A) 

M
od

e 
I S

IF
s, 
𝐾
𝐼 

Parametric angle along the crack front 𝜑/𝜋 (B) 

M
od

e 
I S

IF
s, 
𝐾
𝐼
 

Parametric angle along the crack front 𝜑/𝜋 (C) (D) 

M
od

e 
I S

IF
s, 
𝐾
𝐼
 

Parametric angle along the crack front 𝜑/𝜋 

Univ
ers

ity
 of

 M
ala

ya



94 

Table 4-4: Crack ratios used to study crack shape in the cylinder 
subjected to pure torsion. 

𝒂/𝒅 𝒂/𝒄 

0.025 0.3333 

0.05 0.5 

0.075 0.6 

0.1 0.75 

 1 

 1.5 

 2 

 

Figure 4-11 provide Mode II SIF distributions on the cylinder bar subjected to pure 

torsion. Rising in crack size values causes increasing in Mode II SIFs but crack shape has 

different influences on SIFs. Increasing in crack shape values leads to higher values of 

Mode II SIFs until crack shape reaches 𝑎/𝑐 = 0.75-1 but when crack shape values exceed 

this limit, Mode II SIF will decrease around the CPE. It can be seen that even after 𝑎/𝑐 

= 1 Mode II SIFs have higher values in the range of 𝜑 ≫ 0.08𝜋 but in the range of 𝜑0 ≪

𝜑 ≪ 0.08𝜋 values of Mode II SIFs get lower. This phenomenon is due to nature of Mode 

II SIFs. 
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Figure 4-11: Mode II SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure torsion (A) for 𝑎/𝑑=0.025; (B) 

for 𝑎/𝑑=0.1; (C) for 𝑎/𝑐=1/3; (D) for 𝑎/𝑐=2. 

 

Mode III SIF distributions for a cylinder bar subjected to pure torsion is presented in 

Figure 4-12. Like Mode I, Mode III SIFs show the same changes according to crack size 

alterations. Higher crack sizes leads to higher SIF values but increasing in crack shape 

causes decreasing in SIF values. It can be observed that for cracks with aspect ratio higher 

than one, minimum values for Mode III SIFs happens at 𝜑 ≅ 0.08𝜋 instead of 𝜑 = 𝜑0 

but differences in the range of 𝜑0 ≪ 𝜑 ≪ 0.08𝜋 is negligible.  
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Figure 4-12: Mode III SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure torsion (A) for 𝑎/𝑑=0.025; (B) 

for 𝑎/𝑑=0.1; (C) for 𝑎/𝑐=1/3; (D) for 𝑎/𝑐=2. 

 

 Crack Inclination Evaluation 

 Cylinder Bar Subjected to Pure Tension 

For cylinder bar under pure tension four different angle of 0o, 22.5o, 45o and 67.5o are 

chosen to study effects of crack inclinations on SIFs. Total number of simulations have 

been performed in this section is 60 since the angle of 0o is studied in crack shape 

evaluations. As expected, Mode I is maximum at 0𝑜  inclination due to pure tensile 

loading. Inclination alteration, as it discussed before, causes decrease in tension stress 

along the crack front until it gets to 90𝑜  where Mode I SIFs get negligible. So the 

maximum values of Mode I is observed at 0𝑜 it is negligible at 90𝑜. 
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Mode I SIF distributions for a crack with size of 𝑎/𝑑=0.025 and shape of 𝑎/𝑐=0.5 is 

presented in Figure 4-13 as an example. It can be seen that at the angle of 0o, Mode I SIFs 

have its maximum value and it decreases in value when inclination angle gets higher. 

  

 
 

 

 

 

 

 

 

Figure 4-13: Mode I SIF distributions for semi-elliptical surface cracks 
on the cylinder bar subjected to pure tension 𝑎/𝑑=0.025 and 𝑎/𝑐=0.5. 

 

At the angle of 0𝑜 Mode II and Mode III SIFs are negligible due to lack of shear stresses 

but crack inclination leads to torsion component on the crack front. Mode II and Mode 

III SIFs experience their peak at angle of 45o where tension transform to pure torsion on 

the crack face at that angle. Figure 4-14A provides Mode II SIF distribution for a crack 

with size of 𝑎/𝑑=0.025 and shape of 𝑎/𝑐=0.5. It can be seen that at the angle of 45o Mode 

II SIFs reaches its maximum value. Effects of crack aspect ratio on Mode II SIFs in the 

cylinder bar under pure tension provided in Figure 4-14B.  
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Figure 4-14: Mode II SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure tension (A) for 𝑎/𝑑=0.025 & 

𝑎/𝑐=0.5 ; (B) for 𝑎/𝑑=0.025 & 𝜃 = 45𝑜; (C) for 𝑎/𝑐=1/3 & 𝜃 = 45𝑜; 
(D) for 𝑎/𝑐=2 & 𝜃 = 45𝑜 . 

 

Same patterns for cracks with shapes less and higher than one can be observed here. 

Influences of crack size on the Mode II SIF distributions are shown for minimum and 

maximum crack aspect ratio in Figure 4-14C & D, respectively. Cracks with higher 

depths receive higher Mode II SIFs.  
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Figure 4-15: Mode III SIF distributions for semi-elliptical surface 
cracks on the cylinder bar under pure tension (A) when 𝑎/𝑑=0.025 & 
𝑎/𝑐=0.5 ; (B) when 𝑎/𝑑=0.025 & 𝜃 = 45𝑜; (C) when 𝑎/𝑐=1/3 & 𝜃 =

45𝑜; (D) when 𝑎/𝑐=2 & 𝜃 = 45𝑜 . 
 

Same plots are presented for Mode III SIFs in Figure 4-15. Like Mode II, Mode III 

experience its maximum value at the angle of 45𝑜. Graphs for a crack with a same size 

and different crack aspect ratio confirms that cracks with less aspect ratio holds higher 

values of Mode III SIFs (Figure 4-15B). Mode III SIFs also show the same reaction to 

the crack size alterations. It increases when crack size gets higher. 

 

 Cylinder Bar Subjected to Pure Torsion 

For cylinder bar under pure torsion five different angle of 0o, 22.5o, 45o, 67.5o and 90o are 

chosen to study effects of crack inclinations on SIFs. Total number of simulations have 
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been performed in this section is 48 since the angle of 0o is studied in crack shape 

evaluations and only 3 crack shapes of 0.75, 1 and 1.5 are chosen to evaluate. Despite 

Mode I, Mode II is maximum at 0𝑜 inclination due to pure torsional loading. Inclination 

alteration, as it discussed before, causes decrease in shear stress along the crack front it 

gets to 45𝑜 where it is negligible and it gains its maximum value again at the angle of 

90𝑜. Mode I SIF distributions for a crack with size of 𝑎/𝑑=0.025 and shape of 𝑎/𝑐=0.5 

is presented in Figure 4-16A as an example. At the angle of 0𝑜 mode I SIFs are negligible 

due to lack of tensile stresses but crack inclination leads to tension component on the 

crack front. Mode I SIFs experience their peak at angle of 45o where torsion transform to 

pure tension on the crack face at that angle (Figure 4-16A). Crack shape and crack size 

contribute the same influences on Mode I SIFs in the cylinder bar under pure torsion as 

in the cylinder bar under pure tension (Figure 4-16). 

 

Figure 4-17 provides Mode II SIF distribution for the same crack. It can be seen that 

maximum values of Mode II is observed at 0𝑜  and 90𝑜  with opposite sign and it is 

negligible at 45o. Same pattern can be seen in Mode III SIFs where absolute values at 

𝜑 =  𝜋/2  in the angle of 90𝑜 is a bit higher than the same one at 0𝑜. (Figure 4-18). 
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Figure 4-16: Mode I SIF distributions for semi-elliptical surface cracks on 
the cylinder bar under pure torsion (A) for 𝑎/𝑑=0.05 & 𝑎/𝑐=0.5 ; (B) for 
𝑎/𝑑=0.05 & 𝜃 = 45𝑜; (C) for 𝑎/𝑐=0.5 & 𝜃 = 45𝑜; (D) for 𝑎/𝑐=1. & 𝜃 =

45𝑜 . 
 

 
 

 

 

 

 
 

 

 

 

 
 

Figure 4-17: Mode II SIF distributions for semi-elliptical surface cracks 
on the cylinder bar subjected to pure torsion 𝑎/𝑑=0.025 and 𝑎/𝑐=0.5. 
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Figure 4-18: Mode III SIF distributions for semi-elliptical surface cracks 
on the cylinder bar subjected to pure torsion 𝑎/𝑑=0.025 and 𝑎/𝑐=0.5. 

 

 

 

 Cylinder Bar under Pure Tension 

Stress intensity factors for a semi-elliptical surface crack in the cylinder subjected to the 

pure tension can be obtained from Eq. 4-24 (This solution works for materials which have 

Poisson’s ratio close to  𝜈  ≈  0.3). This solution is obtained through curve fitting 

approaches on the results produced by BEASY software.   

𝐾0 = 𝜎0√
𝜋𝑎

𝑄
 𝐹𝐽𝑀 (

𝑎

𝑑
,
𝑎

𝑐
,
𝑐

𝑟
, 𝜃, 𝜑) Eq. 4-24 

0.02 ≪ 𝑎
𝑑⁄ ≪ 0.2, 0.33 ≪ 𝑎

𝑐⁄ ≪ 2, 𝑐 𝑟⁄ < 0.7 and 𝜑0 ≪ 𝜑 ≪ 𝜋 − 𝜑0    
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𝑄 is shape factor for an ellipse and given as 

 

𝑄 = 1 + 1.464 (
𝑎

𝑐
)
1.65

        𝑓𝑜𝑟 
𝑎

𝑐
≪ 1 

 
Eq. 4-25 

𝑄 = 1 + 1.464 (
𝑐

𝑎
)
1.65

        𝑓𝑜𝑟 
𝑎

𝑐
> 1 

 
Eq. 4-26 

The function 𝐹𝐽𝑀  accounts for influence of crack shape(𝑎 𝑐⁄ ), crack size(𝑎 𝑑⁄ ), crack 

inclination (𝜃) and parametric angle(𝜑), and is chosen as 

 

𝐹𝐽𝑀 = 𝑓𝑆 𝑓𝜃𝑔 Eq. 4-27 

To achieve a reliable and practical approximation on available results, each function has 

been evaluated separately. Function 𝑓𝑆 stands for normalized SIF values at 𝜑 = 𝜋 2⁄  for 

Mode I and Mode III SIFs. As it discussed before, maximum or minimum values for 

Mode I SIF happens at the 𝜑 = 𝜋 2⁄  and for Mode III this is the point which always 

acquires the maximum value of SIF.  

However, for Mode II SIF, there is no single positon along the crack front where the 

maximum occurs due to corner singularity. In Mode II SIFs, maximum values of SIF at 

𝜑0 ≪ 𝜑 ≪ 0.08𝜋 according to the crack aspect ratio. Normalized values of maximum 

Mode II SIF are collected in each case and used to determine the function 𝑓𝑆 for Mode II. 

Function 𝑓𝑆 for Mode I, Mode II and Mode III in the cylinder bar under pure tension can 

be written, respectively, as 

 

𝑓𝑠,𝐼 = 1.353 + 0.022(
𝑎
𝑑⁄ ) + 1.774(

𝑎
𝑑⁄ )

2

+ 1.157 sin(−1.142(𝑎 𝑐⁄ )) 

          +(0.8613 sin(1.478(𝑎 𝑐⁄ )))
2
 

Eq. 4-28 
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𝑓𝑠,𝐼𝐼 = 0.1878 − 0.3766 (
𝑎

𝑑
) (
𝑎

𝑐
) + 4.068 (

𝑎

𝑑
)
2

+ 1.772 sin (−0.845 (
𝑎

𝑐
)) 

            + (1.062 sin (0.8393 (
𝑎

𝑐
)))

3

 

Eq. 4-29 

𝑓𝑠,𝐼𝐼𝐼 = 1.547 + 0.4245 (
𝑎

𝑑
) − 3.21 (

𝑎

𝑑
)
2

− 1.046𝑒0.1412(
𝑎
𝑐⁄ ) 

            + (0.2783 sin (1.872 (
𝑎

𝑐
)))

2

 

Eq. 4-30 

The function 𝑓𝜃  accounts for influence of crack inclination 𝜃  on the SIFs. Since 

inclination leads to stress equilibrium modification on the crack face and arising new 

stress components. Inclination for a crack modelled in the cylinder bar prompts different 

𝜑0 which means same crack with same size and ratio has different crack front arc length 

in different inclination. 

The function 𝑓𝜃 for Mode I, Mode II and Mode III SIFs in the cylinder bar under pure 

tension proposed as: 

𝑓𝜃,𝐼 = (cos 𝜃)
2 

 

      Eq. 4-31 

𝑓𝜃,𝐼𝐼 = 1.023𝑒
−0.01205(𝑎 𝑐⁄ ) − 0.5477𝑒−3.697(

𝑎
𝑐⁄ ) × sin(2𝜃) 

             +(0.03936𝑒−2.714(
𝑎
𝑐⁄ ) − 1.039𝑒−5.694(

𝑎
𝑐⁄ )) × (cos(2𝜃) − 1) 

   Eq. 4-32 

  

𝑓𝜃,𝐼𝐼𝐼 = sin(2𝜃)     Eq. 4-33 

 

Last function in the solution is fine-tuning curve-fitting 𝑔  function. Few factors 

considered to derive the function 𝑔. The nature of each Mode and their distributions along 

the crack front in different crack size and ratio are studied to obtain a proper curve-fitting 

function. These function can be written as    
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𝑔𝐼 = 𝑝𝐼 + (1 − 𝑞𝐼 sin𝜑)
2          Eq. 4-34 

𝑔𝐼𝐼 = 𝑝𝐼𝐼 cos𝜑 + 𝑞𝐼𝐼 sin 2𝜑          Eq. 4-35 

𝑔𝐼𝐼𝐼 = 1 − (𝑝𝐼𝐼𝐼 cos𝜑 + 𝑞𝐼𝐼𝐼 sin 2𝜑)
2
 Eq. 4-36 

𝑝 and 𝑞 are functions of crack aspect ratio and crack size ratio and presented in Table 4-5. 

Table 4-5: Polynominal approximation formula for Eq. 4-34 - Eq. 4-36 
and their coefficients.   

 

It is evident that parametric angle 𝜑 for cracks in infinite solid body start from zero and 

goes to 𝜋 but as it mentioned before in the cylinder bar since it has curvature parametric 

angle does not have the same range. In the cylinder bar parametric angle is 𝜑0 ≤ 𝜑 ≤

𝜋 − 𝜑0 and 𝜑0 can be calculated by  

𝜑0 = tan
−1 (

𝑎

√4𝑟2 − 𝑎2
) if    𝑎 = 𝑐  &  𝜃 = 0  Eq. 4-37 

Else  

𝜑0 =
|

|
tan−1

(

 
 
 cos(𝜃)(√𝑎2𝑟𝜃

4
+ 𝑐4𝑟2 − 𝑎2𝑐2𝑟𝜃

2
− 𝑎𝑟𝜃

2)

√𝑎 (2𝑟2√𝑎2𝑟𝜃
4
+ 𝑐4𝑟2 − 𝑎2𝑐2𝑟𝜃

2
+ 𝑎3𝑟𝜃

2
− 𝑎𝑐2𝑟2 − 2𝑎𝑟2𝑟𝜃

2
)
)

 
 
 

|

|
 Eq. 4-38 

Where 𝑟𝜃 = 𝑟 cos(𝜃)⁄  and 𝑟 = 𝑑/2. 
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However, in practical cases like existing cracks on the components it is impossible to 

define parameter c. According to Figure 4-19, it is easier to measure a and 𝑐′. In this case 

Equations   Eq. 4-45 and   Eq. 4-46 should be implemented to calculate 𝜑0  and c, 

respectively. 

𝛽 = cos−1 (
𝑐′

𝑟𝜃
)                                      Eq. 4-39 

𝑎′ = 𝑟(1 − sin 𝛽) Eq. 4-40 

𝜑0 = sin
−1 (

𝑎′

𝑎
) 

Eq. 4-41 

𝑐 =
𝑐′

cos𝜑0
 

Eq. 4-42 

 

 

Figure 4-19: Schematic diagram of a semi-elliptical surface crack in a 
solid cylinder bar at any inclination . 
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Crack size ratio 𝑎/𝑑 
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 Evaluations of Crack Size Ratio 

 

Figure 4-20 shows Mode I SIF values at DPE for a crack with same aspect ratio on 

different cylinders under pure tension. All results are normalized by 𝜏0√𝜋𝑎/𝑄 factor. 

Proposed solution shows good agreement in Mode I and differences between BEASY 

and solution do not exceed 3%.   

 

      

 

Figure 4-20: Normalized SIF values at 𝜑 =  𝜋/2  for Mode I SIFs in 
the cylinder bar under pure tension. 

 

 Evaluations of Crack Aspect Ratio 

Normalized Mode I SIFs for a semi-elliptical surface crack with size of 𝑎/𝑑 = 0.025 & 

0.1 are plotted in Figure 4-21A & B. Results for a semi-elliptical surface crack with 

size of 𝑎/𝑐  = 1/3 & 2 are plotted in Figure 4-21C & D. clearly solution shows 

acceptable accuracy in Mode I in all ranges. 
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.  

  

Figure 4-21: Normalized Mode I SIF distributions for semi-elliptical 
surface crack on the cylinder under tension (A) for 𝑎/𝑑 = 0.025; (B) 

for 𝑎/𝑑 = 0.1; (C) for 𝑎/𝑐 = 1/3; (D) for 𝑎/𝑐 = 2. 
 

 Evaluations of Crack Inclination Angle 

Typical normalized Mode I SIFs for a semi-elliptical surface crack with size of 𝑎/𝑑 = 

0.05 and crack shape of 𝑎/𝑐  = 0.5 at different inclination angle is plotted in 

Figure 4-22. It can be seen that proposed solution shows good consistency with BEASY 

at different angles. Figure 4-23 provides results for Mode II SIFs in the cylinder bar 

under pure tension along with proposed solution. Solution shows good accuracy in 

different crack sizes, shapes and inclinations and the differences are within 5%.   
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Figure 4-22: Normalized Mode I SIF distributions for semi-elliptical 
surface crack with size of 𝑎/𝑑 = 0.05 & 𝑎/𝑐 = 0.5 on the cylinder bar 

under pure tension.  

 

      

      

Figure 4-23: Normalized Mode II SIF distributions for semi-elliptical 
surface crack on the cylinder under tension (A) for 𝑎/𝑑 = 0.05 & 𝑎/𝑐 
= 0.5; (B) for 𝑎/𝑑 = 0.05 & 𝜃 = 45𝑜; (C) for 𝑎/𝑐 = 1/3 & 𝜃 = 45𝑜; 

(D) for 𝑎/𝑐 = 2 & 𝜃 = 45𝑜 . 
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Same verification for Mode III SIFs in the cylinder bar under pure tension is presented in 

Figure 4-24. Solution also exhibits high accuracy in all different crack ratios and 

inclinations. 

 

      

      

Figure 4-24: Normalized Mode III SIF distributions for semi-elliptical 
surface crack on the cylinder under tension (A) for 𝑎/𝑑 = 0.05 & 𝑎/𝑐 
= 0.5; (B) for 𝑎/𝑑 = 0.05 & 𝜃 = 45𝑜; (C) for 𝑎/𝑐 = 1/3 & 𝜃 = 45𝑜; 

(D) for 𝑎/𝑐 = 2 & 𝜃 = 45𝑜 . 
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 Cylinder bar under Pure Torsion 

Stress intensity factors for a semi-elliptical surface crack in the cylinder subjected to the 

pure torsion can be obtained from Eq. 4-43 (This solution works for ductile materials 

which have Poisson’s ratio close to  𝜈 ≈ 0.3). This solution is obtained through curve 

fitting approaches on the results produced by BEASY software.   

 

𝐾0 = 𝜏0√
𝜋𝑎

𝑄
 𝐹𝐽𝑀 (

𝑎

𝑑
,
𝑎

𝑐
,
𝑐

𝑟
, 𝜃, 𝜑) Eq. 4-43 

0.02 ≪ 𝑎
𝑑⁄ ≪ 0.2, 0.33 ≪ 𝑎

𝑐⁄ ≪ 2, 𝑐 𝑟⁄ < 0.7 and 𝜑0 ≪ 𝜑 ≪ 𝜋 − 𝜑0   when   𝜃 = 0 

0.02 ≪ 𝑎
𝑑⁄ ≪ 0.2, 0.5 ≪ 𝑎

𝑐⁄ ≪ 2, 𝑐 𝑟⁄ < 0.7 and 𝜑0 ≪ 𝜑 ≪ 𝜋 − 𝜑0     when   𝜃 > 0 

𝑄 can be obtained by Eq. 4-25 and Eq. 4-26.  

Function 𝑓𝑆 for Mode I, Mode II and Mode III in the cylinder bar under pure torsion can 

be written, respectively, as 

𝑓𝑠,𝐼 = 0.8876 + 0.1288𝑒
0.1623(𝑎 𝑑⁄ ) + 0.1335𝑒−20.72(

𝑎
𝑑⁄ )   

           −0.005913𝑒2.86(
𝑎
𝑐⁄ ) 

  Eq. 4-44 

  

𝑓𝑠,𝐼𝐼 = −0.6591 + 0.3114 (
𝑎

𝑑
) − 4.974 (

𝑎

𝑑
)
2

+ 3.986 (
𝑎

𝑑
)
3

 

            −0.5521 sin (1.386 (
𝑎

𝑐
)) + (−0.3238 sin (4.193 (

𝑎

𝑐
)))

2

 

            + (0.5895 sin (5.028 (
𝑎

𝑐
)))

3

 

  Eq. 4-45  

𝑓𝑠,𝐼𝐼𝐼 = 0.3633 − 1.187 (
𝑎

𝑑
) + 0.8775 (

𝑎

𝑑
)
2

− 0.9186 (
𝑎

𝑑
)
3

 

             +0.4616𝑒−0.3482(
𝑎
𝑐⁄ ) + 0.1853 sin (2.479 (

𝑎

𝑐
))  

             + (−0.2319 sin (4.652 (
𝑎

𝑐
)))

2

 

  Eq. 4-46 
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The function 𝑓𝜃 for Mode I, Mode II and Mode III SIFs in the cylinder bar under pure 

torsion proposed as 

𝑓𝜃,𝐼  = sin(2𝜃) 

 

   Eq. 4-47 

𝑓𝜃,𝐼𝐼 = (0.4366𝑒
−5.654(𝑎 𝑐⁄ ) + 0.9955𝑒−0.00078(

𝑎
𝑐⁄ )) cos(2𝜃) − 7.552𝑒−3.989(

𝑎
𝑐⁄ ) 

              +7.16𝑒−3.918(
𝑎
𝑐⁄ ) 

   Eq. 4-48 

  

𝑓𝜃,𝐼𝐼𝐼 = cos(2𝜃)    Eq. 4-49 

Function 𝑔 for Mode I, Mode II and Mode III SIFs in the cylinder bar under pure torsion 

proposed as 

𝑔𝐼 = 𝑝𝐼 + (1 − 𝑞𝐼 sin𝜑)
2  Eq. 4-50 

𝑔𝐼𝐼 = 𝑝𝐼𝐼 cos𝜑 + 𝑞𝐼𝐼 sin 2𝜑  Eq. 4-51 

𝑔𝐼𝐼𝐼 = 1 − (𝑝𝐼𝐼𝐼 cos𝜑 + 𝑞𝐼𝐼𝐼 sin 2𝜑)
2
  Eq. 4-52 

 

𝑝 and 𝑞 are functions of crack aspect ratio and crack size ratio and presented in Table 4-6. 

Table 4-6: Polynominal approximation formula for  Eq. 4-50 -  Eq. 4-52 
and their coefficients.   
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Crack size ratio 𝑎/𝑑 (A) (B) Crack size ratio 𝑎/𝑑 
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 Evaluations of Crack Size Ratio  

Normalized maximum SIF values for Mode II and Mode III are presented in Figure 4-25A 

& B, respectively along the proposed solution. Maximum differences between results and 

solution is observed at crack sizes 20% of cylinder diameter which is within 7-8%. 

 

  

Figure 4-25: Normalized SIF values at (A) 𝜑 = 𝜑0 for Mode II; (B) 𝜑 =
 𝜋/2 Mode III. 

 

 

 Evaluations of Crack Aspect Ratio  

Verifications of solution for Mode II and Mode III SIFs in the cylinder bar under pure 

torsion are provided in Figure 4-26 and Figure 4-27, respectively. Solution exhibits 

consistency on both Mode II and Mode III SIFs. Maximum differences are observed in 

Mode III SIFs which is within 5%. 
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.  

  

Figure 4-26: Normalized Mode II SIF distributions for semi-
elliptical surface crack on the cylinder under torsion (A) for 𝑎/𝑑 = 

0.025; (B) for 𝑎/𝑑 = 0.1; (C) for 𝑎/𝑐 = 1/3; (D) for 𝑎/𝑐 = 2. 
 

 

 Evaluations of Crack Inclination Angle  

Results for different inclinations in the cylinder bar under pure torsion are shown in 

Figure 4-28A & B for Mode II and Mode III SIFs, respectively, along with proposed 

solution. The solution shows consistency in all inclination angles as it expected.  Same 

verification for Mode I SIFs in the cylinder bar under pure torsion is shown in 

Figure 4-29, as well.  
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.  

  

Figure 4-27: Normalized Mode III SIF distributions for semi-elliptical 
surface crack on the cylinder under torsion (A) for 𝑎/𝑑 = 0.025; (B) 

for 𝑎/𝑑 = 0.1; (C) for 𝑎/𝑐 = 1/3; (D) for 𝑎/𝑐 = 2. 
 

    

Figure 4-28: Normalized SIF distributions for semi-elliptical surface 
crack on the cylinder bar under pure torsion (A) Mode II for 𝑎/𝑑 = 0.05 

& 𝑎/𝑐 = 0.5; (B) Mode III for 𝑎/𝑑 = 0.05 & 𝑎/𝑐 = 0.5. 
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.  

  

Figure 4-29: Normalized Mode I SIF distributions for semi-elliptical 
surface crack on the cylinder under torsion (A) for 𝑎/𝑑 = 0.05 & 𝑎/𝑐 

= 0.5; (B) for 𝑎/𝑑 = 0.1 & 𝜃 = 45𝑜; (C) for 𝑎/𝑐 = 0.5 & 𝜃 = 45𝑜; (D) 
for 𝑎/𝑐 = 1.5 & 𝜃 = 45𝑜 . 

 

 

 

As it is mentioned in previous chapters, the aim of this work was achieve a comprehensive 

closed-form solutions which can predict stress intensity factor distribution along the crack 

front of an inclined semi-elliptical surface crack in the solid cylinder subjected to pure 

tension and pure torsion. To reach this goal, three main parameter of crack aspect size 

ratio, crack aspect ratio and crack inclination angle have been considered as variables of 

proposed solution. A distinct set of simulations has been performed to study the influence 

of each variable properly and a DBEM based-software BEASY is implemented to 

generate the SIFs.  
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Results obtained from BEASY, separately compared with different analytical solutions 

in the literature for each loading and findings proved the reliability of BEASY.  

Raw collected data from BEASY showed that crack size ratio has positive effect on all 

SIF in regards to fracture Modes or boundary conditions. However, crack aspect ratio 

shows complicated influences on each fracture Modes. In Mode I, when aspect ratio 

increases, SIF distribution along the crack front will change significantly. The maximum 

values of Mode I SIFs happens at DPE for cracks with aspect ratio less than one. 

However, when aspect ratio increases to higher than one, maximum values of Mode I 

SIFs occurs at the CPE. For Mode II, SIF will increase when crack aspect ratio increases, 

until it reaches one and after that increasing in crack aspect ratio does not highly affected 

the maximum values of SIF. On the other hand, increasing in crack aspect ratio will lead 

to decrease in Mode III SIF values.  

Changes in crack inclination angle causes arising of new fracture mode which were 

negligible at the crack inclination angle of 0o. For instance, in cylinder bar under pure 

tension, the only non-zero SIF is Mode I SIF. However, by increasing in crack inclination 

angle the value of Mode I SIF is decreasing and Mode II and Mode III which were 

negligible start increasing. On the other hand, in cylinder bar under pure torsion, Mode I 

is zero at the angle of 0o and it will increase when inclination angle increases. After 

collecting data from BEASY, results have been processed in MATLAB according to 

changes on each parameter precisely and solutions have been extracted by curve-fitting 

approach.  

Proposed solution can predict SIF distribution at any point along the crack front for any 

arbitrary crack in any arbitrary solid cylinder only by measuring three distinct parameter. 

This method is comparatively faster than any other FEM or DBEM -based numerical 

methods and can be solved in few seconds without need of machines or computers. 
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5 CHAPTER FIVE: CONCLUSION AND FURTHER WORK 

 

Mode I, Mode II and Mode III SIFs of semi-elliptical cracks in the cylinder bar under 

pure tension and pure torsion have been evaluated by using DBEM based software of 

BEASY. In the cylinder subjected to pure tension, Mode I SIFs were at maximum at the 

crack inclination of 0o and it was negligible at 45o. On the other hand, Mode II and Mode 

III, acquired their minimum absolute values at the crack inclination angle of 0o and 

maximum values at 45o. However, in the cylinder bar subjected to pure torsion, Mode I 

was negligible at the angle of 0o and 90o and possessed the maximum value at the angle 

of 45o. Mode II and Mode III, were maximum where Mode I was negligible and minimum 

at the crack inclination angle of 45o. Mode III SIF was strongly affected by both crack 

size and crack shape alterations and even at small crack sizes, the differences were 

considerable. However, at small crack size ratios (𝑎/𝑑 ≤ 0.1), Mode I and Mode II, 

showed slight changes according to crack size changes. Crack aspect ratio exhibited 

distinctive influences on Mode I, Mode II and Mode III SIFs. In Mode I SIF, maximum 

value occured at DPE when crack aspect ratio is less than one but it moves to CPE for 

ratios higher than one. Mode II, showed different reaction to aspect ratio changes. It got 

higher until aspect ratio reached one and after that it decreased. Mode III declined when 

aspect ratio got lower but after ratio of one rate of reduction was higher. Effects of aspect 

ratio on SIF distributions along the crack front was evident on Mode II and Mode III SIFs 

when crack aspect ratio was higher than one. Closed-form solutions to predict Mode I, 

Mode II and Mode III SIFs in cylinder bar under pure tension and pure torsion for cracks 

with different sizes, shapes and inclinations were derived from collected data. Proposed 

solution showed good agreement with collected results from BEASY and the deviation 
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did not exceed 5% except for high crack inclinations angle (𝜃 ≥ 60o) in Mode II SIFs 

which was 7-8%. 

 

 

1- In order to gain the solution, research went through plenty of analytical and 

mathematical works. In the cylinder bar under pure tension, reference solution 

was Newman-Raju’s (1981). Since that solution (Equation 4-1) is applicable for 

cracks in infinite plate, it needs some Modifications. On the other hand, solutions 

seemed to be inaccurate compared to other investigations in the literature have 

been done afterwards. So introducing a correction factor to their solution can be 

an acceptable research study. 

2- Apart from that, during this study some investigations have been done on width 

correction factor (Equation 4-16). To evaluate width factor same crack is 

modelled on the prismatic bars with different geometries. Geometry changed from 

square to cylinder in 6-7 stages and changes on SIFs have been studied. Research 

on this section can be titled as a “new width correction factor for cylinder bars”. 

3- Cracks in this study were considered semi-elliptical which in reality they may 

have jagged edges instead of smooth flat line. Mathematical approached like 

interpolation can be applied to proposed solution and find more accurate results 

for jagged crack fronts. 
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This research has resulted in the following two ISI publications: 

1- Empirical solutions for stress intensity factors of a surface crack in a solid cylinder 

under pure torsion. Engineering Fracture Mechanics, 193, 122-136. (2018)  

 

2- Analysis of surface cracks in cylinder bars using dual boundary element method. 

Engineering Analysis with Boundary Elements, 93, 112-123. (2018) 
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