
MULTI-OBJECTIVE FLOW MEASUREMENT IN
SOFTWARE-DEFINED NETWORKS (SDN) FOR

DATACENTER

HAMID TAHAEI

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2018

Univ
ers

ity
 of

 M
ala

ya

MULTI-OBJECTIVE FLOW MEASUREMENT
IN SOFTWARE-DEFINED NETWORKS (SDN)

FOR DATACENTER

HAMID TAHAEI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

KUALA LUMPUR

2018

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Hamid Tahaei

Matric No: WHA130058

Name of Degree: Doctor of Philosophy

Title of Thesis: Multi-objective Flow Measurement in Software-Defined Networks
(SDN) for Datacenter
Field of Study: Network & Security (Computer Science)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

MULTI-OBJECTIVE FLOW MEASUREMENT IN SOFTWARE-DEFINED

NETWORKS (SDN) FOR DATACENTER

ABSTRACT

Network traffic is growing exponentially due to the ever-increasing number of users,

datacentres, Internet of Things (IoT) devices, and cloud-like applications/services.

Network traffic monitoring and measurement has become a vital task and a crucial

requirement for Datacentre Networks (DCNs) due to providing fine-grained and timely-

based traffic flow information for network applications and management. Traditional

network monitoring and measurement techniques either impose extra overhead into the

network, or are inaccurate. In reducing the limitations in the traditional flow management

systems, the most recent measurement methods elevate the accuracy and alleviate cost

issues by applying an emerging technology known as Software-Defined Networking

(SDN). SDN has emerged as an evolutionary paradigm in Datacentre Networks (DCN).

It enables flexibility by separating the data from the control plane and centralising

network decision making, and offers innovation in the network through network

programmability. Despite the multitude of efforts proposed for traffic measurement in

SDN, current solutions still incur high cost and limitations. These costs are seen as a

multi-objective problem as it involves different overheads in the data and control plane

such as controller overhead, communication overhead, and message interaction overhead.

The problem is even more complex in different network deployments, “in-band and out-

of-band”. Furthermore, the distinguishing property of SDN is the centralised controller

architecture, which results in significant managerial benefits. Due to several scalability

and availability issues of a centralised model, such as a single point of failure and network

bottleneck, the controller has been made into a decentralised model that is physically

distributed. However, little effort has been devoted to measurement techniques in SDN

distributed controller architecture. Moreover, the imposed costs of flow measurement in

Univ
ers

ity
 of

 M
ala

ya

iv

distributed controller architecture are still an issue that remains unsolved. To address the

aforementioned problems, a multi-objective and cost-effective network traffic flow

measurement framework was proposed for DCNs. The proposed framework implements

SDN capabilities to provide a fine-grained and accurate flow measurement that

effectively minimises multi-objective costs for centralised and decentralised SDN

controllers in different network deployments. The proposed framework is rigorously

evaluated through several experiments, including emulation and simulation. The

verification of both experiments is made with current state-of-the-art algorithms. To

validate the simulation results, an available dataset from a public datacentre was used.

The simulation results were then verified using statistical modelling and t-tests. The

results obtained from the various experiments show the effectiveness of the proposed

framework and algorithm.

Keywords: traffic Measurement, software defined network measurement, network

monitoring, datacenter traffic measurement and monitoring.

Univ
ers

ity
 of

 M
ala

ya

v

PENGUKURAN ALIRAN PELBAGAI OBJEKTIF DALAM RANGKAIAN

PERISIAN YANG DITETAPKAN (SDN) BAGI PUSAT DATA

ABSTRAK

Jumlah trafik rangkaian meningkat dengan pesat disebabkan oleh peningkatan

bilangan pengguna, pusat-pusat data, peranti-peranti berhubung internet Internet of

Things (IOT), dan aplikasi perkhidmatan komputeran awan. Pemantauan dan pengukuran

trafik rangkaian menjadi keperluan penting kepada Rangkaian Pusat Data Datacentre

Networks (DCNs) dalam menyediakan maklumat aliran trafik yang baik dan tepat pada

masanya untuk pengurusan dan aplikasi rangkaian. Teknik pemantauan dan pengukuran

rangkaian sedia ada adalah kurang tepat atau menambah overhed ke dalam rangkaian.

Bagi mengurangkan batasan aliran sistem pengurusan sedia ada, kaedah pengukuran

terkini dapat menambah ketepatan dan mengurangkan masalah kos dengan menggunakan

teknologi baru yang dikenali sebagai Rangkaian Perisian yang Ditetapkan Software-

Defined Networking (SDN). SDN telah muncul sebagai evolusi paradigma kepada

Rangkaian Pusat Data (DCN). Ia memberi fleksibiliti dengan memisahkan data dari aras

kawalan dan memusatkan keputusan rangkaian serta menawarkan inovasi dalam

rangkaian melalui pemprograman rangkaian. Walaupun banyak usaha yang

mencadangkan penggunaan SDN terhadap pengukuran trafik, penyelesaian semasa masih

melaporkan adanya batasan terhadap kos. Masalah kos ini dilihat sebagai masalah

pelbagai objektif kerana ia melibatkan overhed yang berbeza dalam data dan aras kawalan

seperti pengawal overhed, komunikasi overhed, dan interaksi mesej overhed. Masalah ini

menjadi lebih rumit apabila pelaksanaan pada rangkaian yang berbeza seperti “in-band”

dan “out-of-band”. Tambahan pula, ciri-ciri yang membezakan SDN terletak pada seni

bina pengawalan berpusat yang memberi kelebihan kepada unit pengurusan. Oleh kerana

beberapa masalah skalabiliti dan ketersediaan pada model berpusat seperti satu titik

kegagalan dan kesesakan rangkaian, unit pengawalan telah direka menjadi model tidak

Univ
ers

ity
 of

 M
ala

ya

vi

berpusat yang teragih secara fizikal. Walau bagaimanapun, hanya sedikit usaha yang

memberi penumpuan terhadap teknik pengukuran dengan menggunakan seni bina

pengawalan teragih SDN. Selain itu, kos aliran pengukuran yang dikenakan dalam seni

bina pengawalan teragih masih merupakan masalah yang belum dapat diselesaikan.

Untuk menangani masalah tersebut, rangka kerja pengukuran aliran trafik rangkaian

berbilang objektif dan kos efektif dicadangkan untuk DCN. Rangka kerja yang

dicadangkan ini menggunakan keupayaan SDN untuk menyediakan pengukuran aliran

yang tepat dan berkesan mengurangkan kos berbilang objektif bagi pengawalan SDN

berpusat dan tidak berpusat di dalam rangkaian yang berlainan. Rangka kerja yang

dicadangkan dinilai dengan teliti melalui beberapa eksperimen, termasuk emulasi dan

simulasi. Pengesahan kedua-dua eksperimen dibuat dengan algoritma terkini. Untuk

mengesahkan keputusan simulasi, set data yang tersedia dari pusat data awam digunakan.

Keputusan simulasi kemudiannya disahkan menggunakan model statistik dan ujian-t.

Hasil yang diperoleh dari beberapa eksperimen menunjukkan keberkesanan kerangka

kerja dan algoritma yang dicadangkan.

Kata kunci: pengukuran aliran, pengukuran rangkaian perisian yang ditetapkan,

pemantauan rangkaian, pengukuran dan pemantauan pusat data trafik.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

It would have been impossible to finalise this thesis without the help of a number of

individuals. I would like to extend my appreciation to those who generously contributed

to this thesis.

Special gratitude goes to my supervisor, Associate Professor Dr Rosli Bin Salleh for

his invaluable support and excellent guidance throughout my Ph.D. Indeed, his constant

faith in my lab work made me eager to go ahead. Profound and special thanks go to my

co-supervisor Associate Professor Dr Nor Badrul Anuar Bin Juma'at, who provided me

with valuable assistance, technical support, and academic writing at all levels of the Ph.D.

journey. To me, he is more a mentor and a friend than a supervisor. I would also like to

extend my thanks to Dr Theophilus Benson from Duke University, North Carolina for his

constructive comments. I am also hugely appreciative to those who were directly or

indirectly involved in this research, particularly Babak Daghighi, Mohamad Habib Ur

Rahman, Salman Iqbal, Ibrahim Targio, Ahmad Firdaus Zainal Abidin, Mazrullhisham

Yusuf Mohd Zain, Rita Afriani Mohd Yusu, and Azrul Ahmad – your continuous support

and kindness shall not be forgotten; please accept my utmost appreciations to all of you.

My deepest and heartfelt thanks go to my parents and sister for their unconditional love,

devotion, and unbelievable support. They are the most important people in my world. No

words can express my feelings. Their sacrifices, care and encouragement made possible

for me to complete my journey.

Above all, I would like to thank God for his grace and blessing in allowing me to
complete this study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

 Abstract ... iii

 Abstrak ... v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xiii

List of Tables... xv

List of Symbols and Abbreviations ... xvii

List of Appendices ... xix

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 2

1.2 Motivation.. 4

1.3 Statement of the Problem... 5

1.4 Statement of the Objectives ... 7

1.5 Scope of the Research .. 7

1.6 Methodology .. 9

1.7 Layout of the Thesis .. 11

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Traditional Measurement and Monitoring Architecture .. 14

 Passive Measurement ... 15

 MIBs and SNMP Statistics .. 16

 Packet Monitoring ... 16

 Flow Monitoring ... 18

 Sampling .. 19

Univ
ers

ity
 of

 M
ala

ya

ix

 Active Measurement ... 21

 Passive Measurement vs Active Measurement .. 23

2.2 Overview of the SDN Architecture ... 26

 SDN Architecture ... 28

 Application Plane ... 28

 Northbound Interfaces (NBI) ... 29

 Control Plane .. 29

 Southbound Interfaces (SBI) .. 31

 Data Plane ... 31

2.3 Background in SDN network traffic measurement ... 32

2.4 State-of-the-art SDN Measurement Solution: A complete overview 35

 SDN Traffic Measurement Accuracy and overhead implications 38

 Wildcarding TCAM rules .. 38

 Single-flow Statistic Request (SSR) ... 40

 Combination of Active and Passive .. 41

 Push-based (Passive Measurement) .. 42

 Combination of SSR and PA ... 42

 SDN Traffic Measurement Accuracy and resources usage 45

 Sketch-based approach .. 46

 Resource allocation ... 47

 Wildcarding proactive rules .. 49

 SDN Traffic Measurement Accuracy in Real-time 50

 Port Mirroring with packet sequence number 50

 Sampling with packet sequence number 51

 Combination of SSR and Poling Link 51

2.5 Summary .. 53

Univ
ers

ity
 of

 M
ala

ya

x

CHAPTER 3: PROBLEM FORMULATION .. 55

3.1 Problem Definition .. 55

3.2 Overhead Aspect (Metrics) .. 58

 Communication overhead ... 58

 Message Interaction Overhead ... 61

 Controller Overhead ... 62

3.3 Synchronisation of Multiple Controller ... 64

3.4 Experimental Analysis ... 65

3.5 Summary .. 70

CHAPTER 4: MULTI-OBJECTIVE FLOW MEASUREMENT: FRAMEWORK .

 .. 71

4.1 Proposed approach for optimisation of costs ... 71

 Measurement Granularity ... 75

4.2 Architecture of the framework... 77

 Design of Layout .. 78

 Local Controller Design ... 79

4.3 Cost-Effective Multi-Objective Controller (CEMoC) ... 80

4.4 Summary .. 85

CHAPTER 5: PERFORMANCE EVALUATION .. 87

5.1 Evaluation Setup .. 87

 Experimental setup ... 88

 Experiment Tools ... 88

 Datasets .. 90

 Topology .. 91

 Performance Metrics (Parameters) ... 93

Univ
ers

ity
 of

 M
ala

ya

xi

 Comparison to the current State-of-the-art: Benchmarking Methods 93

5.2 Result and Discussion .. 94

 Experiment I: Single controller with out-of-band deployment 95

 Communication overhead ... 97

 Message Interaction Overhead .. 98

 Controller Overhead .. 99

 Experiment II: Multiple-controller (distributed controller) with in-band

deployment ... 100

 Communication Overhead ... 101

 Message Interaction Overhead .. 105

 Controller Overhead .. 107

 Accuracy in Multiple-controller (distributed controller) with in-

band deployment ... 109

 Experiment III: Simulation: multiple-controller with in-band deployment .

 ... 111

 Communication Overhead ... 112

 Message Interaction Overhead .. 113

 Controller Overhead .. 115

5.3 Statistical Modelling .. 117

 Communication Overhead .. 119

 Controller Overhead ... 120

5.4 Discussion .. 122

 Communication overhead ... 122

 Message interaction overhead .. 123

 Controller overhead .. 124

 Significance of Evaluation ... 125

Univ
ers

ity
 of

 M
ala

ya

xii

5.5 Summary .. 126

CHAPTER 6: CONCLUSION ... 127

6.1 Research questions and research objectives .. 127

6.2 Achievement of the Study ... 131

6.3 Limitations of the study ... 132

6.4 Suggestion for Future Work .. 134

REFERENCES .. 136

LIST OF PUBLICATION... 145

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF FIGURES

Figure 2.1: Example of passive network measurement schema 15

Figure 2.2: Example of active network measurement ... 23

Figure 2.3: SDN layer architecture ... 27

Figure 2.4: Structure of Flow Statistic Request (Pfaff et al., 2012) 33

Figure 2.5: OpenFlow Flow Match Table ... 34

Figure 2.6: Structure of Flow Reply Message (Pfaff et al., 2012) 34

Figure 2.7: Classification of SDN Monitoring and Measurement Challenges 37

Figure 2.8: Strategies adopted in the exiting proposed SDN monitoring/Measurement
methods .. 38

Figure 3.1: Request and reply message of SSR in out-of-band network deployment. ... 66

Figure 3.2: Request and reply message of SSR in out-of-band network deployment. ... 67

Figure 3.3: Request and reply message of SSR in-band network deployment. 68

Figure 3.4: Request and reply message in PA approach in out-of-band network
deployment. .. 69

Figure 4.1: The SELECT Group (Izard, 2016) ... 72

Figure 4.2: Pseudo-code of Construct Group and Mapping Flows to the Group 73

Figure 4.3: Wireshark file Including Request and Reply Captured Packets 74

Figure 4.4: Schema of system layout .. 78

Figure 4.5: Local Controller .. 80

Figure 4.6: Pseudo-code of Eager-greedy approach ... 84

Figure 4.7:Pseudo-code of Controller Selection ... 85

Figure 4.8: Entire Flow Process of the CEMoC ... 85

Figure 5.1: Synthetic Topology: Composed 1 pod consists of 2 edges and 2 aggregation
switches with one controller. .. 96

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 5.2: Communication overhead in single controller scenario with out-of-band
deployment ... 97

Figure 5.3: Message Interaction in single controller scenario with out-of-band
deployment. .. 98

Figure 5.4: Controller Overhead in single controller scenario with out-of-band
deployment. .. 99

Figure 5.5: Total Communication Overhead with four Controllers 102

Figure 5.6: Total Communication Overhead with three Controllers 102

Figure 5.7: Total Communication Overhead with two Controllers 103

Figure 5.8: Total Communication overhead with one Controllers 103

Figure 5.9: Average Growth Rate of Communication Overhead with Different Numbers
of Controllers.. 104

Figure 5.10: Message Interaction in 4 controllers ... 106

Figure 5.11: Controller Overhead in four Controller Scenarios 108

Figure 5.12: Actual measured flow utilisation captured by Wireshark, CEMoC and the
relative error. .. 109

Figure 5.13: Communication overhead with nine controllers 112

Figure 5.14: Total communication overhead with nine Controllers for 60 seconds 113

Figure 5.15: Message Interaction overhead with nine Controllers in 60 seconds. 114

Figure 5.16: Controller Overhead with nine controllers in 60 seconds 116

Figure 5.17: Total controller overhead with different numbers of controllers in 60
seconds. ... 116

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF TABLES

Table 2.1: Offered information by network measurement for different parties 14

Table 2.2: Difference between passive and active measurement 24

Table 2.3: The SDN Controller and Description .. 30

Table 2.4: Current traffic measurement method in SDN for the tradeoff between accuracy
and overhead implications ... 44

Table 2.5: Current traffic measurement method in SDN for the tradeoff between accuracy
and resource usage .. 49

Table 2.6: Current traffic measurement method in SDN for accuracy in real-time 52

Table 3.1: Notation of problem formulation ... 56

Table 3.2: Request Message Structure and Size for a Single Flow 59

Table 3.3: Reply Message Structure and Length .. 60

Table 3.4: MIPS assembly instruction language taken by CPU 64

Table 4.1: Request Message Structure and Length ... 74

Table 4.2: OpenFlow Match Fields and length ... 76

Table 5.1: Experiment specification details .. 96

Table 5.2: Specification of experiments.. 100

Table 5.3: The Growth Rate of Benchmarks in Different Flows and Controller Number
over CEMoC. .. 104

Table 5.4: The Average Growth rate in Compare with 4 controllers............................ 105

Table 5.5: Message Interaction with Different Number of Controller.......................... 106

Table 5.6: Controller Overhead with Different Number of Controller 108

Table 5.7: The Relation between error ratio on different controller number and delays.
 .. 111

Table 5.8: Maximum transferring delay of final UDP packet from each controller to the
coordinator. ... 111

Univ
ers

ity
 of

 M
ala

ya

xvi

Table 5.9: Total Message interaction overhead with different number of controller in 60
second times. ... 115

Table 5.10: Annotation in mean and variance equations. ... 119

Table 5.11: Paired t-test Two Sample for Means of communication overhead in CEMoC
 .. 119

Table 5.12: Unpaired t-test Two Samples Assuming Equal Variances of communication
overhead in CEMoC .. 120

Table 5.13: Paired t-test Two Sample for Means of controller overhead in CEMoC ... 121

Table 5.14: Unpaired t-test Two Samples Assuming Equal Variances of controller
overhead in CEMoC .. 121

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

CAM : Content-Addressable Memory

CDS : Congestion Detection System

CeMOC : Cost-Effective Multi-objective Controller

CPI : Cycles Per Instruction

CPU : Central Processing Unit

DCN : Datacenter Network

FEST : Flow Entry Statistics Trigger

HHH : Hierarchical Heavy Hitter

ID : Intrusion Decoder

IDC : International Data Corporation

IETF : Internet Engineering Task Force

IF : Instruction Fetch

IoT : Internet of Things

IP : Internet Protocol

ISP : Internet Service Provider

LB : Load Balancing

MIB : Management Information Base

MIPS : Million Instruction Per Second

NBI : Northbound Interfaces

NMS : Network Management System

OF : OpenFlow

PA : Polling All

PSAMP : Packet Sampling

QoE : Quality of experience

Univ
ers

ity
 of

 M
ala

ya

xviii

QoS : Quality of Service

RMON : Remote Network Monitoring

SDN Software Defined Networking

SNMP : Simple Network Management Protocol

SSR : Single Stat-Request

TCAM : Ternary Content Addressable Memory

TCP : Transmission Control Protocol

TE : Traffic Engineering

TM : Traffic Matrix

TPS : Transaction Per Second

UDP : User Datagram Protocol

WB : Write-Back

Univ
ers

ity
 of

 M
ala

ya

https://searchnetworking.techtarget.com/definition/protocol

xix

LIST OF APPENDICES

Appendix A: Problem Formulation (Experimental)……………………………... 148

Appendix B: Experiment Topology……………………………………………... 151

Appendix C: t Distribution (t-test)….…………………………………………... 152

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

With the rapid growth of datacentres and the continuous thrive of cloud-like services

and the Internet of Things (IoT), a traffic measurement system is seen as a necessary

requirement for Datacentre Networks (DCN).

Network traffic measurement is a demanding task, and an essential part of a Network

Management System (NMS). Network administrators are constantly striving to maintain

smooth operation of their networks. If a network were to be down, even for a short period

of time, productivity within a company would decline, and in the case of public service

departments, the ability to provide essential services would be compromised. Therefore,

in order to be proactive rather than reactive, administrators need to monitor traffic

movement and performance throughout the network and verify the correctness of states

within the network. In other words, the purpose of network traffic measurement is to

observe and qualify what is happening in the network traffic with different sizes of

magnifying glasses (Mohan et al., 2011).

Likewise, a DCN highly requires accurate measurements of traffic flows in order to

effectively monitor the traffic volume in real-time manner. Similarly, a per-flow traffic

measurement system can be used to monitor micro-details of every flow in different

network layers. Such a system is also known as a fine-grained monitoring system. The

fine-grained traffic measurement system in turn needs to include necessary tasks such as

Traffic Matrix (TM) estimation, elephant flow detection, and link utilisation to have

insight into the network traffic. These measurement tasks are utilized in a wide range of

applications, such as network planning, anomaly detection, billing, load-balancing, traffic

engineering and security (Chang et al., 2015).

Univ
ers

ity
 of

 M
ala

ya

2

The chapter is organised as follows. Section 1.1. presents the background of the study.

Section 1.2 explains the key motivation to carry out the study. In section 1.3, the research

gap and the statement of the problem are presented. Subsequently, the objectives of the

study and the scope are presented in section 1.4 and 1.5, respectively. Section 1.6

elaborates the methodology of the proposed research. The chapter concludes with

providing the thesis layout in section 1.7.

1.1 Background

Traditional flow measurement systems, such as NetFlow (Claise, 2004) and sFlow

(Phaal & Lavine, 2004), apply packet sampling approaches to collect information about

packets in the network and analyse this information to infer flow-level statistical

measurement. They have either a low accuracy or a high deployment cost; moreover they

are energy-intensive as they consume more resources (M. Yu et al., 2013). An example

of former problems is inaccurate measurement as the result of sampling, because of small

flows being missed or multiple monitoring nodes beside the SDN flow path sampling

similar packets (Jarschel et al., 2013). An example of the latter is the deployment of

NetFlow or a similar sampling-based approach, which requires setting up collectors and

analysers. Moreover, enabling NetFlow in the routers may degrade the packet forwarding

performance (Cantieni et al., 2006). Furthermore, NetFlow and similar tools such as

Sflow, Jflow, IPFIX, and PRTG are hardware-based features that need to be configured

to be set for each individual interface on the physical device (switch/router). However,

recent measurement methods alleviate the issues of traditional measurement systems such

as accuracy and cost, through applying the emerging technology known as Software-

Defined Networking (SDN).

The revolutionary SDN architecture has transformed the traditional network design to

a potentially flexible and well-managed next-generation of networks that address

Univ
ers

ity
 of

 M
ala

ya

3

problems such as traffic management, analysis, measurement and many others. SDN

architecture decouples network control and forwarding functions, enabling network

control to become directly programmable. It also abstracts the underlying infrastructure,

such as switches and routers, from applications and network services. Such abstraction

provides full visibility of network entities, including devices and traffic. In SDN, a central

controller collects flow statistics by either directly requesting or passively receiving them

from switches. In the direct request approach, which is known as pull-based, the

controller makes a request by sending a request packet to the switch, and then receives

flow information from the switch. In the passive approach known as push-based, the

controller receives flow information upon expiration of the corresponding flows’ entry

time-out. The statistics reach the central controller and are used by on-demand

applications in the network such as routing, load balancing and many others. This

eliminates the sophisticated process of sampling approach for flow level measurement

used in traditional methods. However, current methods that apply the push-based

approach are inefficient for timely-based flow measurement systems and incur inaccurate

flow measurement, as the controller only receives statistical information when a flow

entry timeout is reached (Chowdhury et al., 2014). Moreover, implementing the pull-

based approach imposes massive costs to the controller's channel bandwidth and

processing delay for a single SDN controller, as the SDN controller frequently sends

requests and receives replies (H. Xu et al., 2017).

According to the data from Stanford Computer Science and Electrical Engineering;

the study in (Naous et al., 2008), with 10 different DCNs, the number of active flows is

up to 10,000 with 5,500 active hosts and the average number of active flows at a switch

in any time of the second is at most 10,000 flows, respectively. Due to the large-scale

DCN traffic and infrastructure, current solutions that implement both of the

aforementioned approaches above are still insufficient to deliver on-demand requirements

Univ
ers

ity
 of

 M
ala

ya

4

of DCNs to satisfy a low-cost and timely-basis flow measurement system. The flows in

the examined DCNs are generally less than 10Kb in size, and the majority lasts less than

a few hundred milliseconds. In addition, new flows can arrive in a fast sequence (10μs)

of each other, resulting in a rapid arrival rates. Hence, with regard to this massive scale

of DCNs, there are still rooms in SDN that necessitate designing a scalable, cost-effective

and accurate timely-basis flow measurement for DCNs.

1.2 Motivation

According to a report by the SDxCentral (SDxCentral, 2016), the SDN market is

expected to grow from $1.5 billion in 2013 to $35.6bilion in 2018. Likewise, the

International Data Corporation (IDC) (IDC, 2016) recently forecasted that the control

layer/virtualization software market as a single segment of the overall SDN market is

expected to reach $2.4 billion in 2020. Moreover, the IDC expects that the control

layer/virtualization software and SDN applications will observe the fastest growth world-

wide, which will be worth approximately $5.9 billion in 2020. Furthermore, SDN is the

most rapidly involving landscape, and DCN (cloud computing) is the primary driver of

the vast rise in SDN, which expect a market worth more than $12.5 billion in 2020.

However, the market and industry observers are still struggling with understanding the

potential strength of SDN in traffic measurement, and are apprehensive about the

sophistication in a large-scale network.

Unlike traditional networks, the network intelligence is logically centralised in an SDN

controller that represents the core of the SDN architecture. Traffic measurement in SDN

is entirely dependent on the central controller, and that must always be well-managed for

two main reasons: (i) the centralised controller would always remain a hotspot

(bottleneck) if the traffic measurement system imposes extra overhead. Therefore, the

functionality of the centralised controller may overwhelm; (ii) the accuracy of the SDN

Univ
ers

ity
 of

 M
ala

ya

5

traffic measurement system would decrease significantly if the system was obliged to

reduce the overhead.

Despite the promising architecture of SDN and the simplicity offered by this

technology, a traffic measurement system was not considered as part of the initial design.

Currently there is no built-in traffic measurement system for a large-scale DCN. Recent

proposed approaches either present a general mechanism, which is insufficient for a

massive size of network with different configuration, or have limitations in terms of

identifying various costs imposed by their functionality.

1.3 Statement of the Problem

Next generation DCNs are characterised by their huge scale and the diversity of the

generated traffic. One of the crucial tasks and a fundamental requirement for managing

these large networks is an accurate per-flow-basis traffic measurement mechanism to

monitor traffic volume.

Traditional flow measurement methods in DCN have shown to be costly and

inaccurate (Su et al., 2015). Even in SDN, current solutions reported limitations based on

the different approaches they implement. For example, a pull-based approach is accurate

but imposes extra overheads (costs) in the network (Su et al., 2015). Several efforts have

been devoted to overcome different overheads imposed by the pull-based measurement

approach, such as those relating to the data and control plane. An example for data plane

overheads is communication, which is the amount of network traffic volume incurred by

the flow measurement, whereas the number of message interactions and the controller

overhead are considered control plane overheads. In contrast, the push-based approach is

light-weight in terms of overhead, however, it is incapable of guaranteeing the accuracy

(H. Xu et al., 2017). Therefore, the advantage of one approach is achieved at the expense

of the other. The situation becomes worse in in-band network deployment when

Univ
ers

ity
 of

 M
ala

ya

6

monitoring and routing traffic shares bandwidth along the same link. This results in a

delay of flow statistics to be reached at the central controller because normal network

traffic may disturb the flow statistics traffic.

In addition, the distinguishing property of SDN is the centralised controller

architecture, which results in significant managerial benefits. However, this property

represents a single point of failure. Moreover, like any other centralised system, a fully

physically SDN centralised controller is inadequate and introduces issues of scalability,

reliability and a performance bottleneck (Dixit et al., 2013). To overcome these obstacles,

industry and academia proposed decentralised (multiple) SDN controller designs by

which the central controller can be physically distributed but logically centralised (Xie et

al., 2015). However, applying a decentralised controller may result in several unexpected

performance degradations, such as accuracy, and various overheads in the network and

SDN controller. Furthermore, only one controller in the master mode is able to control

the switch(es) every time (Pfaff et al., 2012), therefore, selecting a controller for polling

switches has an extreme effect on measurement tasks in terms of the costs and accuracy

of statistical measurements. In addition, different deployment (i.e. out-of-band and in-

band network deployment) of such a scenario has major effects on several factors in the

network such as node-to-controller latencies, network availability and performance

metrics (Karakus & Durresi, 2017). Therefore, selecting a master controller among

multiple controllers fetching flow statistical information plays a vital role in the accuracy

of real-time monitoring as well as costs. Furthermore, the synchronisation of multiple

controllers in the network causes extra overhead and delay in transferring flow statistics,

which may lead the measurement system to being inaccurate or costly.

Therefore, in order to address the absence of a fine-grained traffic measurement system

in a decentralised SDN controller scenario, and to overcome the primary challenge of the

Univ
ers

ity
 of

 M
ala

ya

7

flow measurement system (i.e. minimising different overheads while maintaining

accurate and near real-time flow measurement as a single problem which can be seen as

a multi-objective problem), it is imperative to design and develop a fine-grain cost-

effective multi-objective measurement system that supports near real-time flow

measurement with high accuracy.

1.4 Statement of the Objectives

The aim of this study is to propose a multi-objective framework for a near real-time

fine-grained flow measurement system that can be implemented in a fully centralised or

distributed SDN controller design. In order to achieve this aim, the following objectives

need to be taken into the consideration.

(a) To study the traditional network traffic measurement and monitoring approaches

and perform a gap analysis review on the state-of-the-art SDN techniques for

network traffic measurement and monitoring.

(b) To propose a comprehensive mathematical formulation and analysis on different

costs such as communication overhead, message interaction, and controller

overhead as a multi-objective problem in the context of network traffic flow

measurement.

(c) To propose a multi-objective flow measurement framework that effectively

minimises the costs and provides near real-time flow statistics in a fully

centralised and distributed SDN controller.

(d) To evaluate the performance of the proposed multi-objective framework against

similar existing state-of-the-art approaches in SDN.

1.5 Scope of the Research

Flow measurement systems are widely implemented in DCNs. For example, they are

used as input for other network applications such as Congestion Detection System (CDS),

Load Balancing (LB), Traffic Engineering (TE) and many others. Flow measurement

Univ
ers

ity
 of

 M
ala

ya

8

systems can also be used in different types of networks as well as ISPs, Enterprises,

Private Clouds and others. Existing flow measurement solutions mainly deal with the

costs and accuracy associated with the measurement of flow statistics. The costs are

defined as various overheads imposed by measuring flow statistics in the network and

controller. A research contribution highly depends on the defined aim and the predefined

target for implementation. This study focuses on traffic flow measurement in DCNs with

centralised and decentralised (multiple) controllers to provide inputs for the

aforementioned demands. The following presents the scope and limitation of this study:

• This study focuses on SDN flow measurement in DCN with the aim of minimising

multi-objective costs on a timely basis and with an approach that is close to real-time.

• The problem formulation of this study is carried out in out-of-band and in-band

network deployment. In out-of-band configuration, signalling requires a dedicated

network between the controllers and switches, whereas in in-band deployment,

transmission of the control and data message takes place in a shared network

bandwidth.

• The proposed framework is evaluated in different fat-tree topologies as fat-tree is the

most common and a standard topology for datacentre networks.

• The implemented SDN protocol in this study is OpenFlow version 1.3. Currently,

OpenFlow version 1.3 is the most prevalent and the de facto standard for the

commodity switches. However, the implementation and proposed system can be

implemented on further version of OpenFlow.

• The performance metric in this study is costs, which is defined as various overheads

caused by generating extra traffic and a calculation process to measure flow statistics.

Therefore, the metrics are different overheads such as 1) network overhead, which is

well-known as communication overhead, that is the traffic imposed by statistical

measurement; 2) message interaction overhead, which is the number of messages

Univ
ers

ity
 of

 M
ala

ya

9

required to traverse the network for measurement purpose; and 3) controller

overhead, which is the controller workload (CPU) imposed by a calculation of

statistics.

• The evaluation of the multiple-controller design takes place in the EC2 Amazon

cloud as the experiment required a large CPU and memory power.

• Due to the large scale of the evaluation and limited machine power, the evaluation of

the proposed framework with the real dataset is carried out through a trace-driven

simulator. However, sufficient statistical modelling is carried out to prove the

correctness of the outcomes.

• As the experiment is through emulation, different network latencies are artificially

generated for the accuracy-related evaluation.

1.6 Methodology

In setting out to achieve the stated goal of this study, the research methodology is

carried out in four phases, as shown in Figure 1.1.

First phase: Identifying the research gap. This stage is explored in Chapter 2, where it

starts by presenting information about traditional network traffic monitoring and

measurement approaches. It is then followed by presenting a comprehensive background

of SDN and an introduction of the original measurement approach proposed by

OpenFlow. The phase ends by investigating and categorising the current trends and

methods of traffic measurement systems in software-defined networking. The following

steps are involved in this phase: (i) investigating different categories of traffic

measurement, (ii) reviewing the current state-of-the-art SDN traffic measurement

approach, (iii) analysing the current solutions and observing their weaknesses and

strengths (gap analysis) (thereafter, the problem statements and research objectives are

defined), and (iv) collecting an appropriate network traffic dataset from a valid source.

Univ
ers

ity
 of

 M
ala

ya

10

Figure 1.1: Proposed Research Methodology

Second phase: Problem analysis and formulation. This phase is accomplished in

Chapter 3, where the problem is analysed, formulated and shown in mathematical

notation. Moreover, a mathematical analysis is performed to clarify the problem in

different network configurations. Finally, the phase presents a light-weight experiment to

reveal the problem experimentally and disclose it through Wireshark captured packets.

Third phase: Design and development. Chapter 4 elaborates on this phase by sketching

the initial solution and developing the final design. Firstly, the phase proposes a multi-

objective design for network flow measurement for the centralised SDN controller.

Secondly, a new design is presented to decentralised (multiple) SDN controller. Finally,

the two proposed designs are formed as a unified framework.

Univ
ers

ity
 of

 M
ala

ya

11

Fourth phase: Chapter 5 presents the implementation, evaluation, conclusion and

future work. This phase starts by implementing the proposed framework in the lab

environment; subsequently the large-scale implementation takes place on EC2 Amazon

cloud. This is followed by extensive experiments to evaluate the performance of the

proposed framework. The performance evaluation is based on several metrics against the

state-of-the-art solutions in SDN measurement. The findings from the simulation are

verified using extensive statistical tests. Finally, the conclusion is presented and future

works are highlighted.

1.7 Layout of the Thesis

This thesis comprises six chapters. Every chapter of the thesis is divided into three

sections; (i) introduction that indicates the objective of the chapter; (ii) body in which the

corresponding materials of the objective are described; and (iii) conclusion to summarise

and assess the objective to be achieved of the corresponding chapter with a linkage to the

next chapter. The remainder of the thesis is organised as follows.

Chapter 2 aims to review existing research in the field of traffic measurement and

monitoring systems. It begins with an overview of traditional models of traffic

measurement approaches, presenting their pros and cons. The chapter is followed by a

comprehensive overview of the SDN architecture, describing different layers and their

responsibilities. A brief background of the native approaches for traffic measurement

proposed by different OpenFlow specification versions is also presented. The chapter

ends with a comprehensive review and classification of existing efforts devoted to SDN

traffic measurement and monitoring.

Chapter 3 presents an analysis of the problem to show the impact of different

approaches on the traffic measurement outcome. The problem is analysed in

Univ
ers

ity
 of

 M
ala

ya

12

mathematical notation, and a light-weight mathematical analysis is performed to clarify

the problem.

Chapter 4 elaborates on the design of the proposed framework in different network

model deployments and SDN controller models. Besides, syntax algorithms and

flowchart diagram are illustrated to show a detailed process and the interaction between

the client and the proposed flow measurement framework.

Chapter 5 presents the implementation and evaluation of the proposed framework. It

first explains the experimental setup and the components involved in the extensive

experiments. It then explains the findings and compares the proposed framework to

similar state-of-the-art methods by means of a comprehensive analysis. Furthermore, a

statistical modelling test to verify the findings is presented. The chapter concludes with a

comprehensive discussion of the findings.

Chapter 6 discusses the outcomes of the study and how the objectives have been

achieved. Subsequently the limitations and delimitations of the proposed mechanism are

discussed. The chapter ends with suggestions for future research.

In addition, this thesis has several appendices that includes supportive tables and

figures pertaining to the formulations, experiment topologies, and finding verifications.

 Univ
ers

ity
 of

 M
ala

ya

13

CHAPTER 2: LITERATURE REVIEW

Network traffic measurement is a key stone of network management tasks (Yuan et

al., 2011). Various network management tasks benefit directly from a traffic measurement

system. These tasks vary from Traffic Engineering (TE), Load Balancing (LB) and

routing decision-making to security and anomaly detections. As such, understanding low-

level network transitions is critical for network operators and managers to identify how

well their networks are running and consequently what types of services can be offered

to the customers based on their network capacities. Therefore, observing and quantifying

what is happening in the network is the main purpose of a network measurement and

monitoring system, and can be referred to as network visibility. The visibility of a network

can be monitored with different size of magnifying glasses which is referred to as

granularity, by which all the microdetails of the traffic inside a network can be observed.

The granularity varies in accordance with the applied approach. For example, monitoring

flow-based network traffic is basically a coarse-grained measurement, which can be more

fine-grained by specifying a type of traffic flow.

This chapter aims to conduct a thorough discussion on the major representative

research in the area of network traffic measurement. It also provides a comprehensive

review on flow-based network traffic measurement approaches in SDN. The chapter starts

by giving a broad overview of network traffic monitoring/measurement implications, and

by introducing traditional measurement and monitoring methods for network traffic in

section 2.1. It then presents an overview of Software-Defined Network (SDN), and

introduces different layers and the architecture alongside the underlying fundamental

concept, to help readers gain an easy and smooth understanding of SDN. Section 2.3

continues with a light-weight overview of the original SDN measurement approaches

introduced by OpenFlow specification 1.3 and 1.5. In section 2.4, the chapter discusses

Univ
ers

ity
 of

 M
ala

ya

14

the state-of-the-art SDN measurement solution and the latest trends in flow-based

network traffic measurement in SDN in detail.

2.1 Traditional Measurement and Monitoring Architecture

The goal of measuring and monitoring traffic is to observe and quantify the interaction

and transaction in a network. In other words, it discloses what is happening in the

underlying traffic of the network by actively or passively gathering data related to the

traffic. This information offers supreme opportunities for both end-users and providers.

Table 2.1 describes the information offered to different parties through network

measurements (Mohan et al., 2011).

Table 2.1: Offered information by network measurement for different parties

 Goal Measure
Provider (e.g.,

DCN, ISP and

etc)

• Capacity planning

• Operations

• Value-added service (e.g., customer

reports)

• Usage-based billing

• performance tuning

• Planning

• Bandwidth utilisation

• Packet per second

• Round trip time (RTT)

• Packet loss

• Reachability

• Routing diagnosis

End-users • Monitor performance

• Plan upgrades

• Negotiate service contracts

• Optimise content delivery

• Usage policing

• Bandwidth availability

• Response time

• Packet loss

• Connection rate

• Service quality

• Host performance

Table 2.1 presents various tasks of a measurement system for two parties such as

provider and end-user, and describes the goal and measurement criteria for each party.

For example, transferring the maximum amount of data in the minimum time might be

Univ
ers

ity
 of

 M
ala

ya

15

interesting for providers. Usage billing is one of the most important aspects of a provider’s

career that emerge out from network traffic measurement. In addition, datacentre /ISP

providers might benefit from upgrading their plans and offers to customer (end-users).

From the end-users’ point of view, a persistent connection with full bandwidth might be

a crucial requirement.

Network measurement is broadly categorised into two main categories, namely passive

and active measurement. Below these two categories and their usage, along with the

advantages and disadvantages are described.

 Passive Measurement

Passive network measurement records the existing network traffic and analyses data

by using extra hardware and devices such as link splitters/hubs. This approach passively

listens to the network traffic in two ways, either by a) duplicating the traffic on each

link/interface (i.e. switch or router interface) and sending it to a collector or analyser, or

b) reading “switches/routers” buffer. Figure 2.1 shows an example of a passive network

measurement schema. Passive network measurements are commonly collected in four

ways: (1) polling management information base (MIB) data from routers, (2) packet

monitoring, (3) flow monitoring and (4) sampling.

Figure 2.1: Example of passive network measurement schema

Univ
ers

ity
 of

 M
ala

ya

16

 MIBs and SNMP Statistics

MIB is a database in which traffic statistics of the network are retained. The statistics

in MIB are coarse-grained and can be queried by routers. MIB-11 is a standardised

version of MIB that is available in most of the network elements. MIB-II offers traffic

statistics such as transmitted packets, byte counters at interface and counters of packets,

and bytes lost. However, these statistics are highly aggregated and cannot be considered

as fine-grained network statistics. SNMP (Case et al., 1990), a simple network

management protocol, is used for polling the routers for recovering (querying) these

information. However, to prevent performance degradation of network devices and any

impairs, the SNMP statistics are commonly polled every five minutes, although polling

SNMP from routers even in intervals of a few seconds is claimed to not impair routers’

performance (Case et al., 1990). Remote Network Monitoring (RMON) (Waldbusser,

2006), is another standardised protocol of MIB that was designed for remote monitoring.

Network devices such as routers can record and query traffic statistics and network

conditions using RMON by configuring a remote agent inside the devices. The remote

agent provides network traffic information and conditions such as captured packets,

events, filters, and raises alarms based on some predefined thresholds. However, the

implementations of RMON are shown to be limited to low speed interfaces, as its

adaptability and the various range of task makes it complex and unsuitable to continually

measure and export detailed traffic data.

 Packet Monitoring

Packet monitoring is accomplished by duplicating a stream of packets from the

interface(s) of the network devices. Thereafter, different processes such as selecting,

storing, analysing and/or exporting various information are performed on these duplicated

packets. There are three approaches to packet monitoring: (1) monitoring the duplicated

physical signal on a separated interface. Some hardware such as optical splitters can copy

Univ
ers

ity
 of

 M
ala

ya

17

signals on a medium and bring them to another interface to monitor the signals that carry

packets; (2) monitoring packets of the traffic on a shared medium; (3) attaching devices

for monitoring traffic packets that have been duplicated on a separate interface through a

router/switch.

However, the main shortcoming of packet monitoring is the resource constraint. Due

to the heavy traffic volume and full line rates of high speed links, monitoring packets

seem unsuitable with the current resources. A common solution to overcome this issue is

to restrict packet monitoring to some initial number of bytes in the packets to control data

bandwidth at the monitor (Micheel et al., 2001). This is reasonable solution, since the IP

header and other protocol header information is located at or near the start of the packet.

Even so, widespread continuous collection, transmission and storage of unreduced

packets have been infeasible for a number of years due to the immense volumes of data

relative to the capacity of the system to collect them. Collection of full packet header

traces is feasible only for limited durations. Instead, for applications that require

continuous monitoring over an extended period, it is common to perform analysis at or

near the monitor by forming flow records or other aggregate statistics, or more general

stream querying functionality (Iannaccone et al., 2004). Collection of packet IP and

transport headers is commonly performed using tcp-dump or its variant windump.

Depending on the traffic load and processing power at the measurement host, these tools

may also be able to capture parts of packet payload.

Several factors limit the deployment of packet monitoring e.g. equipment (devices),

availability and administrative cost. A more recent approach to packet monitoring is to

embed the passive measurement functionality within network elements such as routers

and switches. Once network elements are equipped with packet monitoring capabilities,

the measurement of packets can become ubiquitous. However, due to a lack of additional

Univ
ers

ity
 of

 M
ala

ya

18

computational resources for packet measurement, network elements such as routers and

switches may face restrictions in performing measurement analysis. To address these

restrictions, some form of data reduction is required, both in the selection of information

of packets and in the selection of packets to be reported on. As an example, some packet

sampling capabilities are becoming available on routers, such as InMon sFlow (Panchen

et al., 2001). Packet selection capabilities for network elements was standardised by

packet sampling (PSAMP) by the Working Group of the Internet Engineering Task Force

(IETF). The main goal of IETF is to standardise a set of packet selection capabilities that

are simple enough to be ubiquitously deployed, yet rich enough to support the need of

measurement-based network management system application.

 Flow Monitoring

A flow of network traffic is a set of packets with a common property, known as the

flow key, that is seen within a period of time. Many routers construct and export the

summary of statistics of the packet flows that pass through them. Ideally, a flow record is

assumed to be a summarising set of packets that arises in the network through some

higher-level transaction, for example, a remote terminal session or a Web-page download.

In practice, packets are formed as a flow depends on the algorithm used by the router to

assign a packet to a flow. Flow key is specified by fields from the different packet header

fields, such as the IP source and destination address and TCP/UDP port numbers. Flows

in which the key is specified by individual values of these fields are often called raw

flows, as opposed to aggregate flows in which the key is specified by a range of these

quantities. Flow statistics are created as follows. A well-known flow monitoring tool is

Netflow (Claise, 2004), that was originally developed by Cisco to provide a way to collect

statistics about individual IP flows in a data network. In NetFlow, each switch or router,

maintains a flow cache that tracks flow statistics for each flow, usually identified by 5-

tuple (source and destination IP address, source and destination TCP/UDP port, and IP

Univ
ers

ity
 of

 M
ala

ya

19

protocol number) and type of service. As each packet arrives, its header fields are checked

to see if it matches an existing entry in the flow cache. If it does, then the flow cache entry

is updated appropriately, i.e., by incrementing the packet and byte counts. If the flow is

not already present in the flow cache, a new entry in the flow cache is created. NetFlow

has four policies to decide when to send the flow record to a NetFlow collector: (1) when

a TCP packet is seen with a FIN or RST flag indicating flow completion, (2) when a flow

idle timeout expires, (3) when a hard timeout fires indicating that the flow has been

tracked for γ seconds regardless of whether it is still sending traffic, and (iv) when the

flow cache is full and an entry must be evicted. When any of these four conditions hold,

the switch sends a NetFlow record including flow statistics to a collector for further

analysis.

However, Implementing NetFlow in hardware requires a dedicated Content-

Addressable Memory (CAM) to track this information at line-rate. This hardware is not

found in all switches and support for NetFlow is chiefly found in Cisco products. Further,

NetFlow timeouts are specified at second granularity and in practice many

implementations do not allow for values less than 30 seconds (Suh et al., 2014).

 Sampling

Sampling is another way of passive measurement that can significantly reduce the

amount of data imposed by the measurement method. It can be used when a full analysis

of network traffic is not required. In this approach, a few packets are chosen as a sample

of a probabilistic traffic. However, since sampling is a probabilistic monitoring approach,

an error ratio is expected. As an example of sampling tool, Imon sFlow (Panchen et al.,

2001), (Phaal & Lavine, 2004) aims to provide fine-grained network measurements

without requiring per-flow state at switches. Instead it relies on two forms of sampling:

packet sampling and port counter sampling. For packet sampling, the switch captures one

Univ
ers

ity
 of

 M
ala

ya

20

out of every N packet on each input port. It then immediately forwards the sampled

packet’s header encapsulated with metadata to a central collector. The metadata include

the sampling rate, the switch ID, the timestamp at the time of capture, and forwarding

information such as input and output port numbers. It is worth mentioning here that N can

be configured per-port and needs not be the same for all ports.

The rate of samples produced by sFlow is not constant; it is equal to the packet rate on

the port divided by the sampling rate. Since the packet rate varies dramatically based on

network load and packet size, the rate of samples also varies. Note that a packet passing

through multiple switches is eligible to be sampled by every switch along the path. If a

flow passes through k switches, combining the samples from those switches gives an

effective factor of k increase in the sampling rate. From the gathered samples, the

collector can probabilistically infer a number of flow statistics, i.e., it can estimate the

number of packets and bytes in each flow by simply multiplying the number of sampled

bytes and packets by the sample rate, N (Phaal et al.). This approach is called simple

scaling and is an unbiased estimator for the actual number of bytes and packets sent by

the flow. The technique is also referred to as Maximum Likelihood Estimation (MLE) by

which it estimates the byte and packet counts of the flow.

This simple scaling approach has the limitation that it requires a large number of

samples to provide accurate estimates of the true flow byte and packet counts. The

expected relative error is inversely proportional to the square root of the number of

samples, s, gathered from that flow. In particular, the expected error in percent can be

estimated as shown in equation 2-1 (Phaal et al.).

Percent Error = ≤ 196 × √
1

𝑆
 2-1

Univ
ers

ity
 of

 M
ala

ya

21

An analysis of real datacentre workloads by Benson et al (Benson et al., 2010) found

that an average of 3,000 packets and 60 flows arrive at each top-of-rack switch in any

given 100ms window. This means the average flow has 50 packets in a 100ms window.

Even if all 50 packets from a given flow are sampled, it can only estimate the flow’s

actual rate with approximately 30% error. In practice with realistic sampling rates, even

this is optimistic. Using the maximum likelihood estimation approach, there are only two

ways to improve accuracy: (1) increase the sampling rate and/or (2) increase the sampling

period (Suh et al., 2014).

However, increasing the sampling rate is difficult. The sample rate peaks at between

300 and 350 samples per second. It is believed that this limit is a consequence of the

switch’s control CPU being overwhelmed. With a limit of 350 samples per second, the

expected number of samples for a given flow in a 100ms time window that samples from

60 flows is less than one. While newer switches may provide faster control CPUs, it seems

likely that it will be infeasible to get enough sFlow samples in a short period, i.e., 100 ms,

to provide an accurate estimate of the flow throughput for the foreseeable future (Suh et

al., 2014).

Also, Netflow introduced a new version called “Sampled NetFlow” (Cisco), mode that

produces NetFlow records based on sampling 1 in N packets that traverse a switch rather

than every packet. However, the samples are still applied to the records in the flow cache

and records are still sent according to the same policy. Thus, Sampled NetFlow incurs the

same coarse-grained timeouts that make NetFlow unsuitable for low-latency monitoring.

 Active Measurement

In active measurement, probe packets are continuously sent across network paths

through which the end-to-end performance properties of the network can be monitored.

In other words, this measurement approach generates additional traffic to monitor and

Univ
ers

ity
 of

 M
ala

ya

22

measure the network properties. Active measurement requires careful planning before

deployment in the network, as the bandwidth reserved for the probe packets is limited to

less than five percent of the path’s total capacity (Mohan et al., 2011). This is the case in

most continuous SLA-measurements, meaning the test traffic and customer traffic share

the same bandwidth. Therefore, the extra traffic generated by this approach may disturb

the normal network traffic and cause congestion/saturation and packet-loss in the

network. Active measurement is used for different ranges of network monitoring purposes

such as packet-loss, round trip time, one-way-delay, end-to-end connectivity and

available bandwidth detection.

However, since probes can be launched from any accessible host, this approach is well-

suited for end-to-end performance measurement. End-to-end packet loss can be inferred

from gaps in probe sequence numbers observed at the destination, while end-to-end delay

is determined by comparing time stamps placed in each probe by source and destination.

Packet content is of interest insofar as it influences performance characteristics such as

different treatment by routers of packets based on their IP header fields, i.e., the type of

service field. Figure 2.2 shows an example of active measurement schema.

Unlike passive measurement, active measurements do not require huge amounts of

storage space and they can be used to measure things that are infeasible by using passive

measurements. Also, when using active probing, there are no privacy issues since the data

used does not contain any private information. All active probe packets are artificial, i.e.

they are generated on demand and thus they usually contain only random bits as payload.

The example presented in Figure 2.2 shows how active probing can be used to measure

the response time of a web server. A measurement device or a software agent installed on

a normal PC sends web page requests across a network and records the response time.

Univ
ers

ity
 of

 M
ala

ya

23

The most well-known active measurement tools are probably traceroute and ping which

are built in to most operating systems.

Figure 2.2: Example of active network measurement

These tools such as ping and traceroute allow users to measure roundtrip performance

from a host without requiring privileged access to routers in the network interior.

Although ping and traceroute require the destination to respond to Internet Control

Message Protocol (ICMP) packets, an ability which may be administratively disabled.

Also, bulk throughput can be estimated using the treno tool (Matt Mathis, 1996), which

creates a probe stream that conforms to the dynamics of TCP (Duffield, 2004).

 Passive Measurement vs Active Measurement

Active and passive measurements produce different kinds of information and the

results do not necessarily correlate well. A more complete picture of the health of a

network can be gained by combining the results from both active and passive

measurements that is referred to as hybrid measurements. Table 2.2 shows the main

difference of active and passive measurement.

Univ
ers

ity
 of

 M
ala

ya

24

Table 2.2: Difference between passive and active measurement

 Active Measurement Passive Measurement
Capture points ✓

Generate additional traffic ✓
Accuracy ✓

Planning and deigning
before deployment

✓

Huge storage ✓
Same administration

domain and permission
 ✓

Extra hardware ✓
Extra software/agent ✓

As shown in table 2.2, passive measurement is bounded to the points in the network

for measurement purpose. Therefore, it is best suited to the situations where the capture

points can be freely selected. This is true in situations where the whole network is owned

and operated by a single organisation, i.e., corporate premises networks. This allows

traffic to be captured from any point along the path from the sender to the receiver. In

addition, passive measurements send captured traffic for further analysis to third party

devices which needs huge storage capacity. Moreover, extra hardware and agents are

required to infer and analyse the information captured by passive measurement. In

situations where it is infeasible to select capture points freely, active measurements must

be used. This is often the case when measuring delay performance of a VPN that is carried

over multiple ISPs.

Active measurements generate additional traffics by sending probes through the

networks. It can be made over a network path which are not controlled by the network

(Mohan et al., 2011). For example, the ping tool can be used from diverse network with

different administration domain and permission. On the other hand, passive measurement

requires the same administration domain and permission. When it comes to accuracy of

the measurements, passive methods are often more accurate. For example, packet loss can

Univ
ers

ity
 of

 M
ala

ya

25

be measured very accurately by monitoring router buffers along the network path. Also,

available bandwidth can be accurately measured by monitoring link usage on routers.

Also, there are a number of statistical challenges in sampling and analyzing network

measurements:

• The majority of available data already have been sampled during collection. For the

reasons described in the previous section, raw unsampled data are increasingly difficult

to come by, so it is natural to ask, what does the sampled data tells us about the original

network traffic?

• Implementations of sample designs may be limited by technology and resources.

Technological constraints may limit the ability to use the sample design that is ideal

from the purely statistical point of view. Equipment vendors may implement different

realisations that approximate the ideal. What are the ramifications for statistical

analysis and how do the results of analysis depend on the implementation details?

• Measurements themselves travel from the observation point (i.e., a router in the

network) through a number of subsystems to the eventual data repository, possibly

with some preprocessing or aggregation on the way. Each stage in the journey presents

an opportunity for sampling. At which stage is sampling best performed?

• Best choice of sample design depends on the traffic characteristics. Experimental

studies show that network traffic exhibits dependence and rate fluctuations over

multiple time scales, leading to heavy-tailed distributions for some traffic statistics.

Sample design needs to take account of such behavior, for example, to control

estimation variance.

• The best choice of sample design depends on the statistics needed by applications.

There is no general agreement on which set of traffic statistics is most useful for

network management. Whereas it is possible to optimise the sample design with

respect to estimation of a given set of statistics, the design may be suboptimal for

Univ
ers

ity
 of

 M
ala

ya

26

another set of statistics that could play an important role for some future application.

For this reason, analyzing the trade-offs between statistical efficiency and flexibility

is an important task for sample design.

In reducing the limitation in the traditional flow management systems mentioned

above, the most recent measurement methods elevate the accuracy and alleviate the cost

(overheads such as generating probes in active approach and traffic duplication in passive

approach) issues by applying the emerging technology known as Software Defined

Networking (SDN). In the next section, a comprehensive overview of SDN is given

followed by the State-of-the-art measurement in SDN.

2.2 Overview of the SDN Architecture

Software-Defined Networking (SDN), is a programming approach that supports

decoupling of the control and forwarding plane (Haleplidis et al., 2015). OpenFlow (OF)

(McKeown et al., 2008) is the first implementation of SDN; it was initiated in 2008 as a

project at Stanford University by Professor Nick McKeown who put forward the concept

of SDN (Haleplidis et al., 2015). In the same year, ACM SIGCOMM published a paper

titled "OpenFlow: Enabling Innovation in Campus Networks" (McKeown et al., 2008).

This paper introduced the concept of OpenFlow in detail. In December 2009, the first

version of OpenFlow specification 1.0 was released for use in commercial products. In

March 2011, Professor Nick McKeown et al. were again responsible for the inception and

establishment of the Open Networking Foundation (ONF), which focused on the

development of SDN architecture. In April 2012, ONF released a white paper on SDN

titled “Software-Defined Networking: The New Norm for Networks” (Fundation, 2012),

where the three-layer SDN architecture was introduced and gained widespread

recognition in industry and academia. Although SDN is not restricted to OpenFlow, other

control plane decoupling mechanisms existed before OpenFlow. OpenFlow is often

considered the standard communication protocol to configure and monitor switches in

Univ
ers

ity
 of

 M
ala

ya

27

SDNs. Figure 2.3 shows the SDN layer architecture. The ONF constitutes of six core

organisations, namely Google, Facebook, Verizon, Deutsche Telekom, Microsoft, and

Yahoo, and has currently reached more than 100 members with several versions of OF

being released under ONF such as 1.1, 1.2, 1.3, 1.4 and 1.5.

Figure 2.3: SDN layer architecture

The OpenFlow concept is no longer just a research model that can remain within the

boundaries of academia, but has been rapidly moved to the production environment. In

April 2012, Google announced that its backbone network has been fully operational in

OpenFlow, with 10Gbps network links located in 12 data centres around the world. After

the implementation of SDN, the utilisation of the WAN lines has increased from 30% to

near saturation. Later in April 2013, big companies such as Cisco, IBM, Microsoft, Big

Switch, HP and Red Hat worked together to develop SDN applications and established

Univ
ers

ity
 of

 M
ala

ya

28

the OpenDaylight (Medved et al., 2014) controller, which is an industrial-grade open

source SDN controller.

 SDN Architecture

The SDN architecture (Bozakov & Sander, 2013) consists of three main components:

(1) SDN application plane in which all network applications are executed; (2) SDN

controller, which is called the control plane; and (3) SDN devices (switch, routers), which

refer to the data plane. The main feature of the SDN architecture is that the controller and

data layer are decoupled and abstracted from each other. In addition, programmability is

a key feature that enables users to develop their own applications at the application layer

using a northbound interface that provides a programmable API and high-level policy

applications and services. Moreover, the southbound interface provides standard APIs

that facilitate the communication between the controller and the switch via OpenFlow

protocol. The next section discusses the SDN architecture components in detail.

 Application Plane

The application plane is also known as application layer. It consists of various network

application services (Feamster et al., 2014) that run on top of the SDN controller. It

interacts with the controller through the northbound API interface. These application

services can be used to configure the flows to be forwarded based on the changes in the

network. For example, load balancing application distributes the traffic across multiple

servers or paths according to the current load status. SDN applications communicate with

the SDN controller via APIs to manipulate network information. These APIs depend on

the controller itself, i.e. on whether the controller provided reaches APIs that enable

developers to design their applications. Usually most of the open source and commercial

controllers provide REST-FUL-API (Zhou et al., 2014) that can easily be enabled to use

any language.

Univ
ers

ity
 of

 M
ala

ya

29

 Northbound Interfaces (NBI)

NBI (Zhou et al., 2014) is a layer that sits between the SDN controller and high-level

services and applications to enable an exchange of information between the controller

and network applications. Each controller provides an API interface to allow the user to

interact with the lower level details of network functions. For example, controllers such

as OpenDaylight, Floodlight, and Ryu define their own APIs that depend on the

programming language deployed to extend the controller functionalities, but most of them

provide REST-API. Therefore, the Open Networking Foundation (ONF) founded a NBI

working group that aims to develop standards for the interface that can be used by all

controllers. Recently a number of domain languages such as Frenetic and Pyretic have

been introduced to abstract the inner details of the controller and the switch.

 Control Plane

SDN controller is a network operating system (Clayman et al., 2016) that views a

comprehensive network topology and manages OpenFlow switch via a secure

communication channel. It is responsible for managing, controlling, and manipulating

flow tables (Kuźniar et al., 2015) in the switch. SDN controller communicates with two

interfaces, a southbound and a northbound interface. The northbound interface provides

programmable API that interacts with the application layer, while the southbound

interface communicates with the data layer via a secured channel. A programmable API

(Jarschel et al., 2014) provides an abstract view of the network and delivers specific

network functions in order to fulfil the network operator’s needs. Server messages are

interchanged between the controller and data layers via a southbound interface for

establishing a connection and retrieving information. For example, SDN Controller

manages the forwarding table for each switch based on the header of the packetin message

that is sent from the switch. The controller then replies to this message by sending

“PacketOut” that informs the switch on how to deal with this packet based on the network

Univ
ers

ity
 of

 M
ala

ya

30

policy. SDN supports two modes of deploying a controller, centralised mode whereas one

controller can manage the entire network, and distributed mode where two or more

controllers control the whole network. Each controller, called the domain controller, is

responsible for managing a number of switches and shares the network information with

the other controller. Another mode of distributed controller (Schmid & Suomela, 2013)

is the master/slave mode where the slave controller serves as a backup to the master

controller in case of any failure. Two metrics are taken into account when measuring a

controller’s performance: flow setup time and the number of flows per second that the

controller can handle. These metrics have a strong influence on the deployment of

additional SDN controllers. To date, different types of SDN (compatible) controllers have

been developed. Table 2.3 presents some popular SDN controllers with corresponding

brief descriptions.

Table 2.3: The SDN Controller and Description

SDN Controller Open
Source

Language Description

NOX (Gude et al.,
2008)

✓ C++, Python The first proposed introduced
controller for OpenFlow to support

fast-asynchronous IO.
POX (Mccauley,

2014)
✓ Python Propose better performance over

NOX.
Maestro (Ng et al.,

2010)
✓ Java Presents abstraction view of related

state of the network and group into
subset.

Floodlight
(BigSwitchNetworks,

2016)

✓ Java Manages OpenFlow and non-
OpenFlow protocols.

Beacon (Erickson,
2013)

✓ Java Presents a cross-platform and
modular based controller that

supports event-based and thread
operation.

OpenDayLight
(Medved et al., 2014)

✓ Java It deploys OSGi framework and
provide REST API having weak

consistency.

Univ
ers

ity
 of

 M
ala

ya

31

Table 2.3, continued

Trema (Khattak et
al., 2014)

✓ Ruby, C Presents a programming framework
that users can develop and test

OpenFlow controller on a laptop.
RouteFlow

(Nascimento et al.,
2011)

✓ C++ Presents virtualized IP routing over
OpenFlow hardware.

Ryu (Khondoker et
al., 2014)

✓ Python Supports different version of
OpenFlow and integrates with

open-stack, building virtual
network without VLAN

FlowVisor
(Sherwood et al.,

2009)

✓ C Special OpenFlow controller for
network virtualization

SNAC (Padhi et al.,
2006)

 C++ Based on NOX-0.4 to manage
network, configure devices, and

different event monitoring
Helios C Provides shell programming to

perform integrated experiments.
ONOS (Berde et al.,

2014)
✓ Java Building networks for service

providers with performance, scale-
out design and high availability.

 Southbound Interfaces (SBI)

SBI (Ros & Ruiz, 2014) enable the SDN controller to manipulate the behaviour of the

data plane and make changes according to real-time demands and needs. The main

function of SBI is to facilitate communication between a controller and a network switch

(both physical and virtual) so that the switch can discover network topology, define

network flows and implement requests relayed to it via Standard API. Several standards

are available such as DevoFlow, OF-Config and Cisco's OpFlex. Cisco OpFlex is the

most popular standardised southbound API for OpenFlow.

 Data Plane

The data layer consists of a set of networking equipment (such as switches, routers,

and middlebox), known as OpenFlow switches, which communicate to formulate a single

Univ
ers

ity
 of

 M
ala

ya

32

network. The OpenFlow switch is responsible for capturing, manipulating, and matching

packets against flow table entries. The main function of the SDN switch is to process the

transit traffic based on the controller’s policy, which decides what to do with packets

headed to an ingress interface. It manages a number of flow tables, and each flow entry

is associated with a set of instructions or actions that change a packet. When an incoming

packet matches the rule in the flow entry, an action is required. The action might be

forwarding a packet to a specified port or dropping the packet. OpenFlow involves two

types of actions: required and optional (Shahmir Shourmasti, 2013). A required action

must be supported in switches, whereas optional action is set based on the network

requirements and could be a query by an OpenFlow controller. In addition, the OpenFlow

switch supports multiple flow tables and a different group table that sometimes refers to

an OpenFlow pipeline (El-Azzab et al., 2011), in which a packet interacts with these flow

tables. There are two types of SDN switches, pure (OpenFlow-only) and hybrid

(OpenFlow-enabled) (Azodolmolky, 2013). Pure OpenFlow switches have no legacy

features or onboard control. These switches completely rely on the controller to forward

decisions. Hybrid switches support OpenFlow as well as traditional operation and

protocols. There are two approaches to manage flow tables in OpenFlow specification,

Proactive Flow (Lin et al., 2013) in which the controller sets up flows in advance, and

Reactive Flow (Dusi et al., 2014), where the controller responds to packetin events and

dynamically updates the flow table.

2.3 Background in SDN network traffic measurement

In OpenFlow, the monitoring task is accredited by the controller that is connected to

all switches via a secure channel interface called the southbound interface. The secure

channel is established over a TCP connection between the controller and the switch. The

controller accumulates the real-time flow statistics from the corresponding switches, and

combines the raw data to deliver interfaces for upper-layer applications. When a switch

Univ
ers

ity
 of

 M
ala

ya

33

receives the first packet of a new flow in the network, it first checks its flow table to find

a match for the flow. Then the flow is forwarded according to the corresponding flow

entry of the flow table. In the case of a table miss, when there is no match for a flow, the

switch forward the first packet header to the OpenFlow controller by a packet_in message.

The controller processes the packet header and takes further actions such as setting up the

routing path. The controller instructs the corresponding switches along the path to enable

a flow by a packet_out message. It is worth mentioning here that OpenFlow specification

version 1.0 proposes twelve fields to match. However, the newest specification, version

1.5.1 at the time of writing this thesis, introduces 44 match fields.

According to OpenFlow specification 1.0 (Pfaff et al., 2009), a naive approach to

obtain the flow statistics in the network is to query them from the switch through the

controller using a single stat-request called Single Flow Request (SSR). This approach is

also well-known as pull-based approach and widely used in the literature. This way, fine-

grained per-flow information about a predefined individual active flow is requested with

the “ofp_flow_stats_request” stats request type. Figure 2.4 shows the structure of a flow

statistic request.

Figure 2.4: Structure of Flow Statistic Request (Pfaff et al., 2012)

Univ
ers

ity
 of

 M
ala

ya

34

The predefined active flow is queried based on the exact match of several fields such

as input switch port, source/destination address, etc. In OpenFlow specification 1.0, there

are twelve flow match fields as shown in Figure 2.5. However, the number of flow match

fields in OpenFlow specification 1.3 (Pfaff et al., 2012) is forty. Flow information along

with its statistics is sent to the controller by the relative corresponding switch. Figure 2.6

shows the structure of a flow reply message. To query each active flow every time, two

messages are transferred in the network; one is a request message from controller to

switch and one is a reply message from switch to controller.

Figure 2.5: OpenFlow Flow Match Table

Figure 2.6: Structure of Flow Reply Message (Pfaff et al., 2012)

Another approach to receive flow statistics is to request all the active flows in the flow

table of a switch. This strategy can fall under the pull-based approach, as it queries flows

from the controller. In this approach, a request message is sent to the target switch without

specifying a particular match. In other words, the request message set the flow match as

Univ
ers

ity
 of

 M
ala

ya

35

a wildcard that as be defined by “ALL” in the flow match. Therefore, the reply message

contains all the active flows in the switch’s flow table. This approach is referred to in the

literature as polling all “PA”.

The third approach is known as push-based approach, in which the controller receives

reports and statistics of each active flow from devices. Each switch sends the statistics of

a flow to the controller whenever the flow’s time-out is reached, which means the flow

entry is expired. This approach reduces the overhead considerably as it eliminates the

needs for requesting each flow record, and thus saves on resource utilisation in devices

as well as on network overhead. However, the main drawback of the push-based approach

is that the controller is not sent flow reports and statistics before time-out entry. Therefore,

the approach is neither able to meet the requirements of a system for scheduling purposes,

nor those for timely-based monitoring and measurement.

In OpenFlow specification version 1.5 (Consortium, 2014), a new push-based approach

was introduced later to retrieve flow statistics by triggering one or several thresholds.

This approach was proposed to reduce the imposed overheads by polling flow entry from

switch. The mechanism relies on the predefined thresholds, by automatically sending

statistics to the controller whenever the thresholds are triggered. However, the approach

can neither be implemented as fine-grained nor as timely-based measurement. Also, it

can introduce more overheads if the predefined thresholds are too small, or miss timely-

based flow measurement for light-weight flows if the threshold is too big.

2.4 State-of-the-art SDN Measurement Solution: A complete overview

Next generation networks are characterised by their huge scale and the diversity of the

generated traffic. It is not an easy task to predict the needed traffic measurement

characteristics in such networks without sufficient measurement data about individual

components in each part of the network. As discussed in previous sections, traditional

Univ
ers

ity
 of

 M
ala

ya

36

traffic measurement implements two approaches, namely active and passive strategies for

monitoring/measurement purposes. However, these approaches are insufficient for next

generation networks, where the traffic changes dynamically and its volume increases

continuously. On this huge scale, the network management application can play a critical

role in avoiding unexpected dilemmas. Several SDN solutions have been introduced to

address the limitations and sophistications of traditional network traffic measurement

approaches mentioned earlier in section 2.2, by efficiently utilising the flexibility of SDN

to offer programmable interfaces to attain fine-grained measurements of network flows.

Existing works present solutions for traffic monitoring/measurement with different aims

such as (a) flow measurement, (b) delay measurement (Round Trip Time), (c) packet-

loss, (d) TM estimation, and (e) available bandwidth detection. These studies

implemented their proposed solution with various techniques such as Single flow Statistic

Request (SSR) known as per-flow polling, Polling All (PA) approach, which is also

known as per-switch polling request, the combination of SSR with PA, and wildcarding

rules and flow match. However, existing studies that either propose passive or active

measurement methods can be broadly categorised into three main streams.

These approaches mostly focus on flow-based for timely-based monitoring and

measurement in the network. This section presents a comprehensive overview of existing

SDN monitoring and measurement approaches. Figure 2.7 depicts the classification of

SDN monitoring and measurement approaches. Univ
ers

ity
 of

 M
ala

ya

37

Figure 2.7: Classification of SDN Monitoring and Measurement Challenges

The first branch targets the trade-off between accuracy and the overhead implications

of measurement approaches. Several techniques are used to overcome this problem, such

as traffic sampling, aggregation, intelligent queries, etc. The second branch concentrates

on finding a balance between accuracy and resource usage. Lastly, the third branch mainly

focuses on providing accurate traffic measurement in real-time for reactive/proactive

decision-making. To address the SDN monitoring/measurement challenges, existing

studies proposes various methods and strategy to tackle their objectives. The strategies

benefit from either an active or passive approach or a combination of both. Figure 2.8

depicts the strategies adopted in the existing proposed SDN monitoring/measurement

methods.

Univ
ers

ity
 of

 M
ala

ya

38

Figure 2.8: Strategies adopted in the exiting proposed SDN monitoring/Measurement

methods

 SDN Traffic Measurement Accuracy and overhead implications

Continuous monitoring of the network often introduces overhead, which needs to be

taken into consideration as a trade-off with traffic measurement accuracy. To balance the

accuracy of measurement and overhead implications, the proposed studies fall into five

main categories, namely wildcarding TCAM rules, Single flow Statistic Request (SSR),

Polling All (PA) approach, Push-based (passive) and a combination of SSR and PA.

 Wildcarding TCAM rules

(Jose et al., 2011) studied the measurement of a large-scale traffic aggregation in

commodity switches, by proposing a framework where switches match packets against a

small collection of wildcard rules available in Ternary Content Addressable Memory

SDN
Monitoring /

Measurement
Strategies

Wilcarding
TCAM Rules

SSR

PA

Combinatio
n of SSR &

PA

Push-based

Combinatio
n of Active
& Passive

Sketch-
based

Resource
Allocation

Wildcarding
Proactive

Rules

Port
Mirroring it

packet
sequence
number

Sampling
with packet
sequence
number

Combinatio
n of SSR &
Poling Link

Univ
ers

ity
 of

 M
ala

ya

39

(TCAM). This approach significantly reduces the overhead of the controller, because the

switch processing the packet identifies the matching rules locally and determines if it

needs to drop the packet or forward it. The framework was deployed in several campus

and backbone networks and evaluated using the Hierarchical Heavy Hitter (HHH)

program to understand the trade-off between accuracy and overhead. However, as

matching rules need to be frequently updated this causes extra overheads, which is a major

issue in this approach when the traffic scale is large. Although new and existing rules

require a separate controller, additional mechanisms need to be installed to discover and

monitor HHHs. Also, the framework requires an extra controller to read the flow counters

and install new rules. Furthermore, the framework measures the flows based on

wildcarding the layer three network addresses (IP) which is insufficient for fine-grained

measurement. iSTAMP (Malboubi et al., 2014) presents a fine-grained traffic flow

measurement, which applies a (de)aggregation (wildcarding matching rules with the

prefix keys) measurement mechanism. It dynamically partitions the TCAM entries to

allow fine-grained or coarse-grained measurement tasks of incoming flows. For example,

when direct per-flow measurement is required, TCAM is divided into two parts in which

one partition is used for aggregated flow measurement and another partition for de-

aggregation. The disaggregation mechanism is used for the so-called “most rewarding

flows” (defined as flows with the highest impact on the ultimate monitoring application

performance). Flows are “stamped” for direct measurement if they are deemed to be

important. iSTAMP uses an intelligent Multi-Armed Bandit (MAB) based algorithm to

process these two sets of measurements, which are then jointly processed to estimate the

size of all network flows using different optimisation techniques. iSTAMP seems to make

a good trade-off between the used measuring resources and accuracy, but it also faces

several issues. First, the priority and wildcard-based matching strategy used by SDN

switches implies that only the flows with a same prefix can be potentially aggregated by

Univ
ers

ity
 of

 M
ala

ya

40

one rule, but iSTAMP ignores the flow aggregation constraints, leading to infeasible

aggregated measurements. Second, to find out the most rewarding flows, it uses all of the

TCAM entries to measure all individual flows over multiple time intervals, which will

introduce non-negligible measurement costs.

 Single-flow Statistic Request (SSR)

OpenNetMon (Van Adrichem et al., 2014), defines if the end-to-end QoS parameters

are actually met for each flow in ISPs. It is a pull-based active measurement approach

where network flows are continuously monitored between predefined endpoints for

throughput, packet loss and delay using polling edge-switches. For throughput, it only

queries the last switch on the forwarding path with an adaptive frequency. The counter

returns the number of packets(s) of each flow in the sampling interval (T), and the

forwarding path throughput can be obtained as S/T. For packet loss, it polls the flow

counters on the ingress and egress switches for a given flow and calculates the difference.

For delay measurement, it uses the SDN controller to inject probe packets into the

network along a given path and then loop them back to the controller. Thus, able to

calculate the delay for the given path using the round-trip time between ingress and egress

switches. OpenNetMon uses an adaptive fetching mechanism to pull data from switches

where the rate of the queries increases when flow rates differ between samples and

decreases when flows stabilize. Using pulling-based approach guarantees the accuracy of

obtain results. However, OpenNetMon polls the switch for each and every active flow in

the network for different purposes which can impose extra overhead on the network as

well as the switches. OpenTM (Tootoonchian et al., 2010), proposes a traffic matrix

estimation system using a simple strategy for querying flow table counters. It works based

on keeping statistics for each active flow in the network. The information about active

flows are kept by the controller and pulled from the switches periodically and then

compared for accuracy. OpenTM is an active bull-based network-wide measurement

Univ
ers

ity
 of

 M
ala

ya

41

approach that at the end will introduce overhead in the process of periodically pulling

statistical information from switches across the network. It introduces five selection

algorithms to choose the switch for polling. (1) querying the last switch (2) querying

switches on the flow path uniformly random (3) round-robin query (4) non-uniform

random querying that tends to query switches closer to the destination with a higher

probability (5) Querying the least loaded switch. OpenTM showed that querying switches

closer to the destination with a higher probability has a better performance compared to

other switch selection strategies. However, it demonstrated that querying the last switches

results in the most accurate TM but it imposes substantial load on the edge switches.

Furthermore, OpenTM uses a combination of selection methods to select switches for

pulling information; this may lead to some measurement inaccuracy as investigated.

 Combination of Active and Passive

Payless (Chowdhury et al., 2014), an active monitoring framework for SDN which

implements pull and push-based approach at the same time. It focuses on the tradeoff

between accuracy and message interaction overhead. It provides a flexible RESTful API

for flow statistics collection at different aggregation levels. As the frequency of polling

the switches determines monitoring accuracy and network overhead, Payless is that it uses

an adaptive statistics collection algorithm to attain accurate information in real-time

without incurring significant network overhead. The adaptive algorithm is an elastic

polling regulator by which it set a higher polling frequency for flows that significantly

contribute to link utilisation, and it set a lower polling frequency for flows that do not

significantly contribute towards link utilisation at that moment. This, it polls the switch

more frequent when gets bigger and less frequent when flow does have a significant

change. Payless, uses Floodlight controller’s API to implement the proposed mechanism.

It has been shown through evaluation that Payless can indeed provide low overhead and

Univ
ers

ity
 of

 M
ala

ya

42

can achieve higher accuracy of statistics collection. But, the accuracy seems to increase

only at the expense of the overhead.

 Push-based (Passive Measurement)

FlowSense (C. Yu et al., 2013) uses passive measurement (push-based) to eliminate

the extra overhead imposed by the pull-based measurement approach in which the

network sends statistics about the flows instead of querying the switches on demand. The

approach utilises packetin and FlowRemoved messages, which are sent by switches to

the controller when a new flow comes in or upon the expiration of a flow entry (time-out

event). The FlowRemoved message is sent from switch(es) whenever a flow time-out is

reached. The FlowRemoved message contains statistical information about the flow, such

as packet/byte-count, matches etc. These capabilities are provided by OpenFlow to query

switches for the number of packets or bytes in flows matching a specific rule or traversing

a network link. Evaluation results show that FlowSense has a promising performance

compared to other approaches and can accomplish 90% of link utilisation in less than

three seconds. However, if the flow entry has a long time out, the propose method is

unable to generate a timely-based measurement related to the flow. Another drawback is

that the flows with proactive rule cannot be triggered for time-out events. Thus, proactive

flows cannot be measured by FlowSense. Furthermore, as wildcard rules limit the number

of FlowRemoved, many flows cannot be triggered if wildcarding is adopted. Rules that

are proactively installed by the operator without controller intervention are proactive

rules. These rules may have unlimited time-out.

 Combination of SSR and PA

FlowCover (Su et al., 2014), presents a low-cost flow monitoring scheme aimed at

reducing the network communication overhead imposed by the polling flow for timely-

based measurement. FlowCover pulls flow information from the switches using SSR

strategy for the new arriving flows and utiliaes PA for polling the aggregated existing

Univ
ers

ity
 of

 M
ala

ya

43

flows in a switch. An algorithm chooses the most cost-effective switches and removes

the covered flows, until all flows are covered. Later CeMon (Su et al., 2015), presented

an adaptive fine-grained polling scheme to avoiding unnecessary polling, which

increases the polling frequency by a variable if the difference in byte-count from two

previous intervals exceeds a predefined threshold. However, FlowCover and CeMon

may result in some degree of inaccuracy if the algorithm misses the SDN switches to

poll.

A study by (Megyesi et al., 2016) presents a bandwidth measurement system using

active measurement that applies the pull-based approach. The method polls the SDN

switches to attain flow statistics, and calculates the available bandwidth by subtracting

the path capacity from the total byte-count pertaining to the mentioned path. (Megyesi et

al., 2017) introduce a local timestamping mechanism to increase the accuracy of the

measurements by preventing measurement errors imposed by network jitter. However,

the proposed timestamping mechanism is an extra feature that is not a part of standard

OpenFlow features and unavailable in the commodity switches.

The authors in (Hongli Xu et al., 2017) and (H. Xu et al., 2017) argue that

implementing the PA approach may degrade the switch CPU utilisation. The study

presented a wildcard-based traffic flow measurement method with the aim of reducing

the bandwidth costs and processing delay associated with the polling switches. The

method applies an approximation algorithm to select the SDN switches, and polls the

flows that can be covered using wildcarding. In addition, it uses SSR for the rest of flows

that cannot be covered by wildcarding. The proposed method achieved a meaningful

reduction in bandwidth overhead and processing delay. However, the proposed method

lacks the ability to measure fine-grained flow specifications, as wildcard rules can only

Univ
ers

ity
 of

 M
ala

ya

44

be applied on the IP source/destination and input port of the SDN switches (Pfaff et al.,

2012).

(Yang & Yeung, 2017) propose a weighted switch selector algorithm to weight the

switches that are divided into two groups, “with and without lonely flows”. “Lonely flow”

is a flow that can only be found in one switch and can be polled with the SSR approach.

In practice, this can represent the local traffic among different IP subnets connecting to

the same edge switch/router. The switches with lonely flows will be considered first.

Afterwards, the controller polls the switches containing not-yet-covered flows, using the

PA approach. Therefore, since the “lonely flow” only passes from a single switch, the

statistic is not counted in the PA as it has already been covered, thus saving polling and

reducing network communication overhead. However, the method keeps a complex

algorithm running for each and every active flow in the network that might impose extra

overhead in the controller and a delay to identify “lonely flow” if there is a large scale of

flows in the network.

Table 2.4 summarises the discussed approaches of traffic measurement in SDN for the

trade-off between accuracy and overhead implications.

Table 2.4: Current traffic measurement method in SDN for the tradeoff between
accuracy and overhead implications

No Type Solution Objective Approach Target
Network

1 Active Jose et al Reducing overhead for
flow measurement

Pull-
based

Campus and
ISPs

2 Active OpenNetMon Accuracy in measuring
throughout, packet loss,

and delay

Pull-
based

ISPs

3 Active iSTAMP Reducing overhead for
fine-grained flow

measurement.

Pull-
based

Backbone
Network

4 Active OpenTM Accurate Traffic Matrix
estimation

Pull-
based

A synthetic
topology

Univ
ers

ity
 of

 M
ala

ya

45

Table 2.4, continued

5 Active
&

Passive

Payless Reducing message
interaction overhead and

increasing accuracy of traffic
flow measurement

Pull &
push-
based

A synthetic
topology

6 Active FlowSense Eliminate extra overhead of
measuring link utilisation

Pull-
based

Campus
Datacenter

7 Active FlowCover Reducing network
communication cost for
measuring traffic flow

Pull-
based

Campus
Datacenter

8 Active CeMon Reducing network
communication cost for

measuring traffic flow with
an adaptive fine-grained

polling

Pull-
based

Campus
Datacenter

9 Active (Megyesi et
al., 2016)

Accuracy in available
bandwidth measurement

Pull-
based

Synthetic
topology

10 Active (Megyesi et
al., 2017)

Accuracy in available
bandwidth measurement

with a local timestamping
mechanism

Pull-
based

Synthetic
topology

11 Active (Hongli Xu
et al., 2017)

Reducing switch CPU
overhead with partially

wildcarding

Pull-
based

Campus
Datacenter

12 Active (H. Xu et al.,
2017)

Reducing switch CPU
overhead with

approximation algorithm

Pull-
based

Campus
Datacenter

13 Active (Yang &
Yeung, 2017)

Reducing communication
overhead of flow

measurement

Pull-
based

Synthesis
topology

 SDN Traffic Measurement Accuracy and resources usage

Obtaining accuracy for monitoring/measurement and traffic estimation requires CPU

and memory constraint in the switch, which is a challenging problem (Liu et al., 2016).

The above measurement techniques were not concerned with resource usage and its effect

on measurement accuracy. This section presents the proposed works concerning resource

usage (network device overhead) and accuracy.

Univ
ers

ity
 of

 M
ala

ya

46

 Sketch-based approach

Sketches can be used for many measurement tasks such as heavy-hitter detection

(Bandi et al., 2007), traffic change detection (Schweller et al., 2004), flow size

distribution estimation (Kumar et al., 2004), global iceberg detection (Huang et al., 2009),

and fine-grained delay measurement (Schweller et al., 2004). Sketches are essentially

compact data structures used in streaming algorithms (Bar-Yossef et al., 2002) to store

summary information about the state of packets. Compared to flow-based counters,

sketches have two key properties: (a) low memory usage: The size of summary

information (sketch outputs) is significantly smaller than the input size. For example, the

bitmap (Estan et al., 2003) is a simple sketch that maintains an array of bits to count the

number of unique elements (e.g., IP source addresses); (b) provable trade-offs of memory

and accuracy: Sketches often provide a provable trade-off between memory and accuracy,

although the definition of accuracy depends on the actual sketch function (Cormode &

Muthukrishnan, 2005).

In an effort to find a happy zone between accuracy and resource usage using a sketch-

based approach, OpenSketch (M. Yu et al., 2013), a software-defined measurement

architecture, is proposed as an alternative to OpenFlow. OpenSketch uses a measurement

library in the control plane to automatically configure and manage resources for

measurement activities. The library makes it easier to customise and apply theoretical

algorithms to measure flows in commodity switch components. OpenSketch can be used

for several measurement activities including HHH measurement, traffic distribution and

link utilisation. The main barrier for OpenSketch as a marketable SDN traffic

measurement solution is the need for upgrading network nodes, which is a very expensive

undertaking. Furthermore, it is very rigorous and time consuming to standardise a new

protocol. OpenFlow has already taken off, is widely accepted as an industry standard in

datacentre environments and is increasingly implemented in commodity switches. With

Univ
ers

ity
 of

 M
ala

ya

47

OpenFlow gaining momentum, it will be adopted faster by ISPs and research

communities. In a similar vein, JOTA (Su et al., 2017) proposed a joint optimisation

algorithm to improve the performance of the task assignment by considering both the

estimation of resource usage in the application layer and the available resource in the task

assignment layer, it then calculates the task assignment problem as a mixed integer

nonlinear programming problem. It decomposes the nonlinear programming algorithm

into the resource compression stage and the task assignment stage. A two-stage heuristic

is proposed to efficiently produce the task assignment. Specifically, JOTA compresses

the resource usage in the first stage and relaxes one constraint to transform the problem

to a Multi-Resource Generalised Assignment Problem (MRGAP) in the second stage. It

then leverages an approximation algorithm to assign measurement tasks. However, due

to the sophisticated optimisations and assignment complexity, JOTA can only support

assigning tasks to one switch, and like any other sketch method it suffers from high

complexity.

 Resource allocation

 DREAM (Moshref et al., 2015) is a dynamic resource allocation measurement

framework that balances between user-specified level of accuracy and resource usage for

measurement activities. In DREAM, resources are not allocated before the execution of

the measurement task, but are dynamically deployed to achieve the desired level of

accuracy based on traffic characteristics. DREAM framework is tested using HHHs

programs show that DREAM can support more concurrent tasks with higher accuracy

than several other alternatives. Aligning measurement tasks between the host and the

network is also a major activity that in the end may reduce the overhead of an active

measurement approach. The work in (Dusi et al., 2014) argues that current controller

applications in SDN systems are designed to be proactive, which may require the switches

to accommodate a number of flow table entries that exceed the capabilities of their

Univ
ers

ity
 of

 M
ala

ya

48

TCAMs. While equipping SDN switches with more powerful TCAMs is a feasible option,

this may come at the expense of increasing operation and power consumption cost. The

study proposes that controllers should consume resources efficiently using a reactive

logic control approach. As in DREAM, the study suggests that resources must be

allocated and freed depending on the network load, the effective behavior of the flows,

their granularity and their inter-packet arrival time. The evaluation of the system shows

that such approach is promising to enhance the traffic measurement flexibilities without

extending the flow tables. Another algorithm called Baatdaat (Tso & Pezaros, 2013) uses

OpenFlow running on NetFPGA programmable switches, which permits real-time

dynamic flow scheduling in datacenters. The proposed algorithm can adapt to

instantaneous traffic bursts as well as to average link load by using spare DC network

capacity to mitigate the performance degradation of heavily utilized links. Experiments

show that Baatdaat can reduce network-wide maximum link utilisation by up to 18%

equal cost multipath (ECMP).

Finally, the proposed HONE platform (Sun et al., 2015) presents a uniform stack for a

diverse collection of measurements in SDN-based systems. HONE uses software agents

residing on hosts, and a module interacting with network devices. Since continuously

collecting statistical data about network flows is expensive, HONE offers two techniques

to process flow statistics: The first technique, known as lazy materialisation of the

measurement data, uses database-like tables for uniform abstract representation of

statistical data collected from hosts and network devices. The aim of this technique is to

minimize measurement overhead by allowing the controller and the host agents to analyze

queries of necessary statistics for multiple management tasks at appropriate frequencies.

The second technique offers data parallel streaming operators for programming the data-

analysis logic. The operators can also be used in a hierarchically fashion for aggregate

analysis among multiple hosts. Scalability is a main problem in deploying HONE as

Univ
ers

ity
 of

 M
ala

ya

49

software agents need to be installed in every host and then synchronized to populate the

statistical tables in a timely fashion to process meaningful queries.

 Wildcarding proactive rules

Flame (Han et al., 2016) is a flow level TM estimation to minimise the CPU and

TCAM utilisation on the switch. The authors argue that polling every single flow for

constructing the TM is unsalable due to the limitation in switch TCAM. Flame contains

a traffic estimation algorithm “Poisson Shot-Noise Process” to predict traffic behaviour

changes in the near future. It adopts a proactive Flow Rule instantiation which wildcards

the predicted future traffics and install them into the TCAM. The proposed method results

in a reduction in TCAM usage, however, due to implementing the wildcard approach, it

is insufficient for fine-grained measurement. Furthermore, timely-base TM estimation is

restricted to ten seconds.

Table 2.5 summarises the discussed approaches of traffic measurement in SDN for the

trade-off between accuracy and resource usage.

Table 2.5: Current traffic measurement method in SDN for the tradeoff
between accuracy and resource usage

No Type Solution Objective Approach Target
Network

1 Active OpenSketch A generic and
Accurate monitoring

framework that
support several
measurement

activities.

Sketch-based Synthesis
topology

2 Active JOTA Improving the
performance of the

task assignment

Sketch-based Synthesis
topology

3 Active Dream Accurate and low-cost
resource allocation

and Higher accuracy
for concurrent tasks

TCAM-Based Synthesis
topology

Univ
ers

ity
 of

 M
ala

ya

50

Table 2.5, continued

4 Active (Dusi et al.,
2014)

Reducing cost of
resource in

measurement tasks

TCAM-Based
& Proactive

rule installation

Synthesis
topology

5 Active Baatdaat Low-cost Scheduling
algorithm for real-

time for direct
measurement

A hardware-
assisted traffic
monitor that

measures link
utilisation on

the switches at
line-speed

Synthesis
topology

6 Active HONE minimize
measurement

overhead imposed by
multiple measurement

task

software agents
residing on
end-hosts

Synthesis
topology

7 Active Flame Minimize the CPU
and TCAM utilisation

for flow level TM
estimation

TCAM-Based University
datacenter

8 Passive PLANCK
Accurate and real-

time traffic
measurement

port mirroring
& packet
sequence
number

Fat-tree
datacenter

 SDN Traffic Measurement Accuracy in Real-time

Traffic measurement in SDN relies extensively on collecting statistical data about

network flows in real-time. With the increasing popularity of real-time services such as

voice and video, network monitoring has become a significant task in network operation.

The large amount of detailed statistics provided by the hosts may raise a scalability issue

for real-time analysis, specifically when the measured data are used for time sensitive

applications.

 Port Mirroring with packet sequence number

(Rasley et al., 2015) propose PLANCK, a software-defined measurement architecture,

which utilises the capability of port mirroring that exists in most commodity switches.

Univ
ers

ity
 of

 M
ala

ya

51

The extracted measurement statistics of the network flow is achieved in 280 microseconds

to 7 milliseconds on a 1 Gbps commodity switch and 275 microseconds to 4 milliseconds

on a 10 Gbps commodity switch. This is faster than in traditional networks by orders of

magnitude. Planck exploits the port mirror feature of switches. With this feature, network

packets on other ports are copied to a specified port connected to a collector. The collector

uses the TCP sequence numbers to estimate the flow rates. By collecting two distinct copy

packets of the same flow, the collector can compute the flow rate. Note that Planck uses

protocol-specific information (e.g. the TCP sequence number), which as such is not

suitable for flows that do not have sequence numbers. Thus, in comparison with the

proposed mechanism, Planck requires extra hardware resources and only works for traffic

for specific protocols.

 Sampling with packet sequence number

Using sampling-based SDN measurement methods, IBM research lab proposes

OpenSample (Suh et al., 2014), which leverages sFlow (Phaal & Lavine, 2004) packets

to provide near–real-time measurements of both network load and individual flows by

capturing packets from the network. OpenSample is a low-latency platform that uses TCP

sequence numbers from the captured headers to measure accurate flow statistics. Using

sampling for network monitoring allows OpenSample to have a 100-millisecond control

loop rather than the 1–5 second control loop of traditional polling-based approaches. It is

implemented with Floodlight OpenFlow controller and evaluated on a testbed comprised

of commodity switches. One of the main advantages of OpenSample is that it considers

any TCP flow, hence it can detect elephant flows (large and continuous flows), and

requires no modification to switches, making it highly marketable.

 Combination of SSR and Poling Link

(Chen et al., 2016) argue that there is a serious scalability issue for the Plank collector:

it reserves a single port on each switch for port mirroring, and reserved ports are

Univ
ers

ity
 of

 M
ala

ya

52

connected to the collector to analyse the traffic; hence, it is unclear how Planck can scale

to support large data centres. In addition, for OpenSample and Planck, they are unable to

detect traffic flow that does not have a sequence number in a packet. The author propose

a scalable load-aware low-latency two-tier measurement and control platform to detect

real-time congestion in the network. The first tier provides a scalable low-delay

congestion detection mechanism that can be used for large SDNs without additional costs,

using pulling port statistics. It provides a macro view of the network, that is the utilisation

of all links in the network by collecting packet-level link statistics. The second tier uses

flow-level statistics to deal with upcoming congestion. (Gangwal et al., 2017) also adopt

such as two-tier strategy for real-time link loss and link delay. However, none of the

frameworks are able to capture fine-grained flow traffic measurement, as polling port

statistics only provide packet and byte counts of the specific port (link) rather than a flow.

Table 2.6: Current traffic measurement method in SDN for accuracy in real-
time

No Type Solution Objective Approach Target
Network

22 Passive OpenSample Accurate Low-latency
traffic measurement

Sampling
& Packet
sequence
number

Synthesis
topology

23 Active (Chen et al.,
2016)

Accurate and Low-
latency congestion

detection

SSR &
Polling
Link

Synthesis
topology

24 Active (Gangwal et
al., 2017)

Accurate and for real-
time link loss and link

delay

SSR &
Polling
Link

Synthesis
topology

Table 2.6 summarises the discussed approaches of traffic measurement in SDN for

accuracy in real-time. It is worth mentioning here that several works such as network

monitoring, fault tolerance, and topology update, although beyond the scope of this thesis

because they are not specifically related to traffic measurement, are equally important for

Univ
ers

ity
 of

 M
ala

ya

53

the wider sense of network traffic SDN domain, and can be studied in (Hu et al., 2014)

and (Akyildiz et al., 2014).

2.5 Summary

This chapter presented a broad overview of network traffic monitoring and

measurement implications. Section 2.1 studied various aspects of traditional traffic

monitoring and measurement approaches, ranging from the capabilities of network

devices such as SNMP to packet/flow monitoring and sampling. It was concluded from

the literature reviews that traditional approaches for measuring network traffic are

insufficient in terms of accuracy. Although some of the approaches, such as packet/flow

sampling, solve the issues of overhead complications imposed by the active approach,

they still require extra hardware/software agents and collectors for analytical and

statistical calculation. In addition, the calculations mentioned, produce overhead in the

agent and analyser hosts and still cannot be accurate as basically sampling is a

probabilistic method to estimate the taken samples. In the second part in section 2.2, a

comprehensive overview of SDN was presented to familiarise the readers with the

flexibility of this emerging technology, elaborating on different layers of SDN

architecture and functionality. The section also demonstrated some of the well-known

control planes that are used for academic and commercial purposes. Section 2.3 presented

a light-weight background of SDN measurement and the detailed native approaches

offered by OpenFlow that perform monitoring/measurement. In section 2.4, a

comprehensive overview of state-of-the-art SDN measurement solutions was presented.

From the literature, it can be comprehended that next generation networks require timely-

based measurements that continuously measure traffic for any unexpected change in the

network. Network applications demand accurate and fine-grained measurement

frameworks that improve QoS constraints. However, accuracy in measuring flow level

network traffic comes with costs, such as resource usage and network overheads imposed

Univ
ers

ity
 of

 M
ala

ya

54

by the pull-based approach, which should be taken into consideration for scalability issues

in a large-scale network. In addition, many delay-sensitive applications in the network

demand low-latency measurement and real-time statistical monitoring about network

flows. As can be discovered from the literature, SDN measurement approaches lack a

comprehensive design that combines the benefits from different strategies and tackles

their challenges. However, exploiting the advantage of some strategies may disrupt the

performance of other strategies. For example, adopting a pull-based strategy can offer the

most accurate and real-time flow statistic measurement result, but at the expense of

overhead in the network and high usage of resources. Therefore, one major objective that

can be concluded from reviewing state-of-the-art approaches and analysing their

challenges, is to design a framework that is able to deal with the accuracy and multi-

objective cost with low latency results (in real-time). The next chapter clarifies the

problem and formulates the aforementioned challenge; it also presents experimental

proof.

Univ
ers

ity
 of

 M
ala

ya

55

CHAPTER 3: PROBLEM FORMULATION

The measurement task imposes overheads in different aspects that affect the control

plane and the data plane at the same time. The severity of the overheads may vary in

different network deployment models. This chapter aims to analyse the problem that was

highlighted in Chapter 1. It also conducts an in-depth investigation to show the impact of

flow measurement on different aspects of overheads. In addition, different network

deployment models such as out-of-band and in-band are formulated. This study focuses

on three imposed overheads, from which two were highlighted in the literature review,

namely communication and message interaction overheads imposed by pulling flow

statistics. It then introduces a new overhead that is generated by reading and calculating

the measured flows’ statistics.

The rest of the chapter is organised as follows. Section 3.1, introduces a preliminary

notation to formulate the problem. Section 3.2 explains the problem analysis in different

network deployment models for various aspects of overheads. This is followed by an

elaboration on the problem of synchronisation of multiple controllers in section 3.3.

Finally, section 3.4 shows a light-weight experiment for clarification of overhead aspects

imposed by different approaches for pulling flows.

3.1 Problem Definition

This section clarifies the problems and formulates them in out-of-band and in-band

network deployments. The formulation in this study is explained in a directed graph 𝐺 =

(𝑉, 𝐸) in which V devotes a set of switches V = {𝑣1, 𝑣2, … , 𝑣𝑛} and E represents the set

of links between switches and f = {F ∶ 𝑓𝑖 ∈ F , 0 < 𝑖 < 𝑚 } represents a subset of

flows where F = {𝑓1, 𝑓2, … , 𝑓𝑚} is the total current flows (universe) in the network and

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} a set of SDN controllers. Table 3.1 lists the notations of the

formulations used throughout thesis.

Univ
ers

ity
 of

 M
ala

ya

56

Table 3.1: Notation of problem formulation

Notation Description

𝐺 = (𝑉, 𝐸)
The target network with V as a set of switches and E as a set of

links.
F Universe flows in the network.
C A set of Controllers.
n Message (request/reply/controller-to-coordinator)
𝑙𝑟𝑞 The Length of request message (122 bytes).
𝑙𝑟𝑝 The length of reply message (82 bytes).
𝑙𝑠𝑓 The length of every entry in a file (136 bytes).
𝑙𝑢𝑑𝑝 Minimum length of UDP message (header and body 60 bytes).
𝜃 The number of instruction taken to fragment stat-reply file.
𝜆 The number of instruction taken to read stat-entry.
k Coordinator
ℎ𝛼𝛽 The number of hops (nodes) from switch 𝑣𝛼 to controller 𝑐𝛽

Traffic flow measurement imposes various overheads that are associated with

measuring flows and collecting their statistics. These overheads have multiple aspects

that affect the performance of the overall SDN network. The measurement task can affect

(1) the SDN control network, i.e. links that connect switches to the controllers, and (2)

the logically centralised controller.

The effect of flow measurement in the SDN control network is referred to as

communication overhead, which determines the size of traffic imposed by generating

flow stat-request messages and stat-reply messages in bytes. Furthermore, the logically

centralised controller can also be affected by the calculation of raw data. The raw data are

the flow statistics processed by the controller. This aspect has severe impact on the

functionality of the centralised controller if the raw data volume is too high. This overhead

is the so-called controller overhead, which determines the CPU utilisation of the

controller that has been allocated for the calculation of flow statistics. Last but not least

is the message interaction imposed by sending the flow stat-request message and

receiving the reply message. Although the message interaction overhead impacts the SDN

Univ
ers

ity
 of

 M
ala

ya

57

centralised controller, it is still considered as an individual measurement overhead, which

is different from the controller overhead. Unlike the controller overhead that shows the

utilisation of the controller’s CPU, the message interaction overhead turns the SDN

controller into a bottleneck for generating and sending packetout (stat-request) messages

and receiving packetin (stat-reply) messages from the switches.

As mentioned in the literature review, there are two native approaches in OpenFlow

for collecting timely-based flow statistics, namely (1) single stat-request (SSR), (2)

wildcarding all fields to collect all flows (polling all).

In order to collect flow statistics, SSR generates two messages in each time interval.

The number of the generated message is increased to four messages for two flows and

this increment continues in twice the number of flows. The main drawback of this

approach is the imposed overhead for generating a huge number of request and reply

message in the network, which also utilises the CPU cycle of network devices as well as

the SDN controller.

PA collects all the active flow statistics in a switch with only two messages, one

request and one reply message. This can significantly reduce the costs of message

interaction and communication, as well as the repeated reply headers for a high number

of flows. However, excessive use of the second approach causes flow statistics to overlap,

which imposes extra message interaction overheads and communication costs as well as

an overhead in the controller. Another drawback of PA is the lack of control on flow

queries, as it pulls all the active flows in the network regardless of actual need.

Univ
ers

ity
 of

 M
ala

ya

58

3.2 Overhead Aspect (Metrics)

The overheads mentioned above, i.e. communication, controller and message

interaction overheads in out-of-band and in-band network deployment, are formulated as

follows:

 Communication overhead

According to the OpenFlow specification 1.3 (Pfaff et al., 2012), the minimum length

of flow stat-request message, 𝑙𝑟𝑞 in wire is 122 bytes (Su et al., 2015). More specifically,

14 bytes for ethernet header (layer 2 header size), 52 bytes for IP and TCP headers (20

bytes IP and 32 bytes TCP header size) and 56 bytes for OpenFlow statistic (16 bytes

OpenFlow multipart message and 40 bytes OpenFlow match size). However, this length

increases by setting extra specifications of flow such as various fields in match. Table 3.1

explains the request message structure and size for a single flow. Figures 1 and 2 in

Appendix A depict the structure of the multipart message and the flow stat-request

message, respectively.

As can be seen in Table 3.2, the total length of empty flow stat-request is 122 bytes.

However, the match field is variable, and its length is extended according to a set of

matching fields. This study follows the flow match field from Cisco to define a network

flow as 5-tuple matching fields such as (1) IP protocol, (2) source and IP address, (3)

destination IP address, (4) source port address, and (5) destination port address. However,

the field “ethernet type” is a requirement to define IP protocol as a matching field in

OpenFlow (Pfaff et al., 2012). Therefore, similar to OpenTM (Tootoonchian et al., 2010),

this study defines “ethernet type” as a matching field. Figure 3 in Appendix A shows the

required fields for match fields with the description and length in bits. The total request

packet length in the SSR approach with the defined match fields above captured by

Univ
ers

ity
 of

 M
ala

ya

59

Wireshark is 162 bytes, whereas, the length of a request packet in the PA approach is 122

bytes as there is no defined field to match.

Table 3.2: Request Message Structure and Size for a Single Flow

Specification Size (byte)

Header
Ethernet 14

IP 20
TCP 32

OpenFlow Payload
Multipart request 16

Flow static request (variable match size) 40
Total 122

The reply message includes a header whose length 𝑙𝑟𝑝 for SSR and PA is 82 bytes and

162 bytes respectively. The length for each single flow entry 𝑙𝑠𝑓 stat is 144 bytes.

However, the reply message may split into multipart messages if the total size exceeds

64Kb, as the maximum size of a TCP packet in medium is 64Kb. In this case another

multipart reply message is created as a reply message that contains the remaining flow

statistics that could not be carried by a single reply message. Table 3.3 elaborates on the

reply message structure and length. Figures 4 and 5 capture the structure of the multipart

reply message and the stat-reply message for SSR in Appendix A. The length of the UDP

message (Zander et al., 2007) containing the aggregated statistic sent by every local

controller to the coordinator is 60 bytes, which is donated by 𝑙𝑢𝑑𝑝. Therefore, the total

communication overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) of SSR and PA for polling a set of arbitrary flows

𝑓 for each individual controller in out-of-band deployment is a linear function of 𝑓 as in

equation 3-1 and 3-2, respectively. The communication cost for SSR in out-of-band

network deployment comprises the length of generated messages in every time interval

that it equals the combination of the length of the request message and the header of reply

message and the length of UDP message multiplied by the number of controller as it is

shown in the equation 3-1. The communication cost of SSR in in-band network

Univ
ers

ity
 of

 M
ala

ya

60

deployment is calculated similar to the out-of-band deployment multiplied by the number

of hops from each switch to its corresponding controller. Therefore, SSR generates

minimum 2 messages for each flow at every time interval. However, this cost for PA in

out-of-band network deployment comprises the combination of length of the request

messages and the header of reply message and the length of all the requested flow entries

in every time interval. Whereas, the generated total length is multiplied by the number of

hopes in in-band network deployment. Equations 3-3 and 4-4 describe the linear

formulation formula of communication overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) of SSR and PA in in-band

deployment. A UDP packet may contain empty datagram (no data). However, the

minimum length in the wire over ethernet is 60 bytes. The minimum elements that

contribute to the length of an UDP packet are ethernet header, IPv4_header, and

UDP_header, which equals 14+20+8 = 42 bytes. However, as per by Linux host driver,

extra bytes are padded to the packet to fulfil the ethernet requirement of minimum packet

length.

Table 3.3: Reply Message Structure and Length

Specification Size (byte)

Header
Ethernet 14

IP 20
TCP 32

OpenFlow Payload

Multipart request 16

Flow Stat Entry List
SSR PA

0 80
Single Flow Statistic 144

Total 226 306

Univ
ers

ity
 of

 M
ala

ya

61

(a) Out-of-band

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ ∑(𝑙𝑟𝑞 𝑖 + 𝑙𝑟𝑝 𝑖 + 𝑙𝑠𝑓 𝑖 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐))

𝑓𝑖

,

∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉

3-1

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ (𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓𝑧) 𝑣 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐)
𝑓𝑧 ∈𝐹

,

∀𝑓𝑧 ∈ 𝐹 (0 ≤ 𝑧 ≤ |𝐹|), 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉
3-2

(b) In-band

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ ∑(𝑙𝑟𝑞 𝑖 + 𝑙𝑟𝑝 𝑖 + 𝑙𝑠𝑓 𝑖 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐))

𝑓𝑖

× ℎ𝛼𝛽 , ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉

3-3

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ (𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓𝑧) 𝑣 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐) × ℎ𝛼𝛽
𝑓𝑧 ∈𝐹

,

∀𝑓𝑧 ∈ 𝐹 (0 ≤ 𝑧 ≤ |𝐹|), 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉
3-4

 Message Interaction Overhead

As the number of flows in the network increases, polling their statistic counters

requires a symmetric growth with regard to the flow number. In other words, the more

flows there are in the network, the more messages are interacted between the controller

and switch(es). This makes the pull-based approach inefficient for continuous

measurement with high-granularity due to consuming too much of the switch-controller’s

bandwidth as well as switch CPU (Mogul et al., 2010). Moreover, Sünnen (Sünnen, 2011)

showed that when read-stats messages are sent too often, the switch’s CPU utilisation and

the number of spending messages increases. Thereby, given the network graph G with set

of flow f and a set of controllers 𝐶, the total number of message interaction for each

individual controller in SSR and PA can be found in a linear function of 𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓)

in equations 3-5 and 3-6, respectively, where 𝑛𝑟𝑞, 𝑛𝑟𝑝 and 𝑛𝑢𝑑𝑝 are

Univ
ers

ity
 of

 M
ala

ya

62

“ofp_flow_stats_request”, “ofp_flow_stats_reply”, and “udp for coordinator” messages,

respectively. Therefore, the total message interaction of SSR comprises the multiplication

of the number of requested flow and the combination of the total number of request

message and reply message and UDP message. Whereas, this overhead for PA equals the

multiplication of the number of switches and the combination of the total number of

request message and reply message and UDP message.

𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓) = ∑(𝑛𝑟𝑞𝑖
+ 𝑛𝑟𝑝𝑖

+ 𝑛𝑢𝑑𝑝𝑖
),

𝑓𝑖

 ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹

3-5

𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓) = ∑ ((𝑛𝑟𝑞𝑗
+ 𝑛𝑟𝑝𝑗

+ 𝑛𝑢𝑑𝑝𝑗
)

𝑣𝑗

, 𝑣𝑗 ∈ 𝑣, 𝑣 ⊆ 𝑉 3-6

Subject to:

𝜌 = {𝑚 | 𝑚: 𝑁}, 𝑝 = {
1, 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≤ 65536𝑏𝑦𝑡𝑒𝑠

𝑚 × 2 , 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) > 65536𝑏𝑦𝑡𝑒𝑠

3-7

where the condition stated in equation 3-7 defines a reply message is split into two

parts (two messages) if the length is greater than 65536bytes. The default packet size in

the network cannot be greater than 64Kb for efficient transfer of data in the network.

 Controller Overhead

The controller’s overhead implies the utilisation of the controller’s CPU, which is also

referred to as the computation overhead (Megyesi et al., 2017). It can be defined by the

numbers of instructions imposed by the execution, calculation and comparison of raw

data to process byte-count i.e., calculating the byte-count of each flow and subtracting it

from the previous count. The performance and throughput of CPU is measured from

different perspectives such as Cycles Per Instruction (CPI), Million Instruction Per

Univ
ers

ity
 of

 M
ala

ya

63

Second (MIPS), and Transaction Per Second (TPS). One cycle is the minimum time it

takes the CPU to execute any work. The clock cycle time or clock period is the length of

a cycle. The clock rate, or frequency, is the reciprocal of the cycle time. Thereby, the CPU

instruction rate is calculated by dividing the observed CPU cycle speed by the observed

CPI (Zhang et al., 2013). However, determining the exact number of instructions applied

by the CPU requires obtaining job information, i.e. calculation of statistic replies,

comprising multiple tasks, each of which consists of multiple threads, which is out of the

scope of this thesis. In addition, different CPU generations such as 32 or 64bit CPU

registers perform differently with various CPU instructions such as Instruction Fetch(IF),

Instruction Decoder(ID), Execution(EXE), Memory/IO(MEM), Write-Back(WB) each of

which consists of various instructions that increase the clock cycle time (Yi & Ding,

2009). Therefore, analysing and calculating CPU performance by number of instructions

is not rational in practice.

A simple criterion to observe the imposed overhead is to presume a constant value 𝜃

and 𝜆 indicating the number of instructions taken by the CPU for the fragmentation of the

stat-reply files (data transfer) and reading stat-entry (arithmetic, data transfer, logical,

conditional, and jump), respectively. According to (David Patterson, 2014), 𝜃 (reading

stat-file and put into memory) and 𝜆 (subtracting current flow count from the previous

one and put into memory) are equal to 2 and 6 instructions respectively. Table 3.4 shows

the MIPS assembly instruction language used by the CPU. Therefore, the controller

overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) in SSR, and PA analysing n-specific flows from set f in each

interval is formulated as a linear function of m in equation 3-8 and 3-9 respectively.

𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) = ∑(3𝜃𝑖+ 𝜆𝑖), ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹

𝑓𝑖

 3-8

Univ
ers

ity
 of

 M
ala

ya

64

𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) = ∑(3𝜃𝑗

𝑣𝑗

+ 𝜆𝑗), 𝑣𝑗 ∈ 𝑣, 𝑣 ⊆ 𝑉
3-9

Table 3.4: MIPS assembly instruction language taken by CPU. Adopted from
(David Patterson, 2014)

𝝀 𝜽
2 × Unconditional jump (Jump to target
address, For switch, procedure return)

Unconditional jump (For procedure
call)

Data transfer (Byte from memory to
register)

Data transfer (Byte from memory to
register)

Conditional branch (Compare less than)
Arithmetic (subtract)

Data transfer (Byte from register to
memory)

3.3 Synchronisation of Multiple Controller

Multiple controllers are required to share their collected flow statistics among each

other in order to construct an integrated and understandable statistic of flows. For

example, three controllers may be assigned to pulling a specific flow (i.e. TCP flows with

dsc port 8080) from several switches in different sides of a network. Each controller

receives the aforementioned flow statistic from their corresponding switches. Therefore,

the total result of the measurement in each interval is the sum of all statistics collected by

each controller in the same interval.

OpenFlow introduces a failover mechanism in specification version 1.2, in which

multiple controllers can connect to a switch with different roles such as Master, Slave,

and Equal. According to this mechanism, multiple controllers can request flow statistics

from a switch, however, the switch responds to each controller with a reply message. For

example, if there are four controllers and four switches, all controllers connect to all

switches. Therefore, to pull a specific flow (i.e. TCP dsc port 8080), 32 requests and reply

messages are generated in total, which can disrupt the functionality of switches due to

Univ
ers

ity
 of

 M
ala

ya

65

excessively pulling flows. In addition, all controllers pull the same flows, which results

in overlapping of the statistic collection and causes a massive overhead in the controller

for the calculation of identical raw data. Furthermore, the interaction of these messages

imposes excessive network communication overhead. Therefore, due to the huge

complexity of the mentioned OpenFlow failover mechanism, it is inapplicable for flow

measurement purposes in a large network with many flows.

As mentioned earlier in Chapter 2, several papers propose different models of

multiple-controller deployment and applied synchronisation (the east-west bridge) among

the controllers. Each controller exchanges reachability and topology information between

the inter-domain controllers (Xie et al., 2015). However, when using the east-west bridge,

controllers can only share their network views, flow tables and status through complex

steps such as starting a TCP handshake and constant “Hello” and “Echo” request/reply

messages. Even if the east-west bridge approach can be applied on flow measurement

synchronisation, it is still costly in terms of overhead imposed for inter-controller

communication.

To the best of the researcher’s knowledge, there is no existing study that focuses on

the synchronisation of flow statistics on multiple SDN controllers.

3.4 Experimental Analysis

This section discusses findings from light-weight experiments investigating the impact

of the pulling flow for measurement purposes. The experiments were conducted in

Mininet (Mininet, 2015), and traffic was generated by D-ITG (Botta et al., 2012). Also,

Wireshark was employed to collect and generate messages for measurement purposes. A

linear topology was implemented, consisting of three switches of which each switch was

connected to one host. The OpenFow controller is connected to the first switch and D-

ITG server is connected to the last switch. Figure 3.1 depicts the topology of the

Univ
ers

ity
 of

 M
ala

ya

66

experiment. All the elements used in the experiment are comprehensively explained in

the experimental setup in section 5.1.1. Figure 3.2 and 3.3 show the captured request and

reply message for flow statistic collection, using SSR in out-of-band and in-band network

deployment, respectively.

Figure 3.3 shows the number of packets by pulling one switch along all paths using

SSR. It should be recalled that in out-of-band deployment switches are connected to the

controller via a separate dedicated network, whereas in in-band configuration, switches

connect to the controller through the same data plane network. Therefore, only two

packets, one with 124 bytes and one with 218 bytes, are captured from all the available

interfaces. However, the number of messages and their total length depend on the number

of links directly connected to the switch interface in in-band deployment as shown in

Figure 3.3. Therefore, if there are three switches along the path, the number of captured

packets and their total length are multiple to the number of switches, which is three in this

experiment. Figure 3.4 explains request and reply messages using the PA approach in out-

of-band deployment. Section 3.2.1 and Figure 3 in Appendix A refer to the length of

request and reply messages.

Figure 3.1: Request and reply message of SSR in out-of-band network
deployment.

Univ
ers

ity
 of

 M
ala

ya

67

Figure 3.2: Request and reply message of SSR in out-of-band network
deployment. Univ

ers
ity

 of
 M

ala
ya

68

Figure 3.3: Request and reply message of SSR in-band network deployment.

Univ
ers

ity
 of

 M
ala

ya

69

Figure 3.4: Request and reply message in PA approach in out-of-band network

deployment.

As can be seen in Figure 3.4, in the PA approach the request packet length is 122 bytes

as no match field is set. A request packet with no match field simply means all (pulling

all). In addition, the reply packet captured in Figure 3.5 reports the length of 306 bytes,

from which it includes144 bytes for every flow statistic (of_flow_stat_entry in the figure),

80 bytes for flow_stat_entry list (referred to figure), 16 bytes for multipart message, and

Univ
ers

ity
 of

 M
ala

ya

70

66 bytes for packet header consists of ethernet, IP and TCP header (14+20+32). However,

for every flow stat-entry (flows in the switch), 144 bytes are added to the packet length.

3.5 Summary

This chapter aimed to analyse the problem of pulling-based flow measurements and

the resulting impact on different types of overheads. It proves the impact of applying SSR

and PA in out-of-band and in-band network deployments for communication overhead.

The chapter illustrated the formulation of different overheads imposed by implementing

SSR and PA approaches in in-band and out-of-band network configurations.

Additionally, the chapter experimentally disclosed the captured packets from OpenFlow

approaches and showed the associated costs, i.e. communication overhead, with the

packet length and number of flows. It also elaborated on the problem of multiple-

controller synchronisation for flow measurement. The analysis was conducted in order to

identify the behaviour of various OpenFlow native approaches with different flow

numbers and network traffic patterns.

After disclosing and formulating the problem, the next stage is design and

development. The next chapter discusses the proposed framework, where two designs are

elaborated upon, namely for centralised and decentralised SDN controllers.

Univ
ers

ity
 of

 M
ala

ya

71

CHAPTER 4: MULTI-OBJECTIVE FLOW MEASUREMENT: FRAMEWORK

This chapter elaborates on the proposed multi-objective flow measurement method to

effectively minimise various costs that are associated with the measurement of flows in a

DCN, such as communication, message interaction, and controller overheads. The key

objective of this chapter is three-fold: (i) discussing the proposed solution to minimise

measurement costs, (ii) explaining the architecture of the proposed framework, (iii)

presenting the proposed method for the decentralised (multiple) SDN controller. The

remainder of this chapter is structured as follows:

Section 4.1 illustrates the proposed solution for the optimisation of different costs. It

elaborates the OpenFlow group table feature, which is adopted for flow measurement

purpose. It then introduces the fine-grained measurement specification feature for the

proposed flow measurement method. A comprehensive description of the system

framework is presented in section 4.2. Section 4.3 explains the building blocks of the

proposed multiple-controller design. The section also explains the mathematical

formulation for different costs caused by the proposed framework. In addition, the section

shows the process flow of the proposed architecture. Finally, the chapter is summarised

in section 4.4.

4.1 Proposed approach for optimisation of costs

This section presents a dynamic and multi-objective measurement approach that

effectively minimises the costs associated with measuring flows. It abstracts all the

demanded flows (flows to be measured) in the groups and sets the action of the groups to

the corresponding flows’ action. According to OpenFlow, flows are wildcarded either by

all fields (PA) or “some cases bitmasked” such as IP-scr, IP-desc and input port (Pfaff et

al., 2012).

Univ
ers

ity
 of

 M
ala

ya

72

The proposed approach adopts the group table introduced by (Pfaff et al., 2012) for

traffic engineering, load balancing and fast-failover purposes. A group can either have a

single or a list of action/bucket. There are four types of groups such as All, SELECT,

INDIRECT, and FAST-FAILOVER, each of which has specific features. Interested readers

are referred to (Pfaff et al., 2012) for detailed information. The proposed approach

implements the SELECT type in which each packet entering the group is sent to a single

bucket associated with its action. Thus, for a group in a switch, the proposed approach

defines all the potential output actions related to the flows. In such a case, all the incoming

flows or current flows are grouped without any intervention to the forwarding decision

and central policy enforcement. Therefore, the action of a flow entry is set to the action

or a list of actions for that group. The proposed approach then requests the group rather

than pulling a single (SSR) or all flows (PA). Figure 4.1 shows the SELECT group type

in OpenFlow 1.3. The pseudo code to construct group and mapping flows to the group is

shown in Figure 4.2.

Figure 4.1: The SELECT Group (Izard, 2016)

Adopting the OpeFlow’s group table to flow measurement, provides the feasibility to

aggregate a set of flows into one group. Therefore, such an approach significantly saves

number of requests and replies message, due to the measurement request and reply of the

Univ
ers

ity
 of

 M
ala

ya

73

group rather than each single flow. In this case, the optimal number of flows in every

interval is captured. Figure 4.3 depicts the Wireshark file including request and reply

captured packets. As can be seen in the figure, the total length of the request 𝑙𝑟𝑞 and reply

messages 𝑙𝑟𝑝 is 122 bytes (the same as the PA in Chapter 3) and 218 bytes respectively.

Algorithm 1 mapping flows to group table
Input: 𝑓 = {𝑥 | 𝑥 ⊆ 𝐹 } : set of flows, 𝐺 = (𝑉, 𝐸): the network, 𝛿 = 𝑚𝑎𝑡𝑐ℎ

1: c = create(Groupi) // creating group on the switch
2: for each 𝑥 ∈ 𝑓 do
3: if (isNew(x)) then // check if the flow is new
4: if (x[attribute] == 𝛿) then // check if the flow is matched
5: Groupi x
6: end if
7: end if
8: end for
9: return c

Figure 4.2: Pseudo-code of Construct Group and Mapping Flows to the Group

Table 4.1 shows the reply message structure and size for a single flow. However,

similar to PA, the reply message may split into multipart reply messages if the length

exceeds 64Kb in the medium. The optimal solution for communication costs, message

interaction and controller overhead (for each controller) in network G with an arbitrary

set of flows f is formulated in equation 4-1, 4-2, 4-3, respectively, in out-of-band network

deployment. The message interaction and controller overhead are the same in both in-

band and out-of-band deployment. However, the total communication costs are highly

dependent on the number of hops from the controller to the switch. Equation 4-4 shows

the formulation for optimal communication overhead in in-band deployment.

Univ
ers

ity
 of

 M
ala

ya

74

Figure 4.3: Wireshark file Including Request and Reply Captured Packets

Table 4.1: Request Message Structure and Length

Specification Size (byte)

Header
Ethernet 14

IP 20
TCP 32

OpenFlow Payload Multipart request 16
Single Flow Statistic 136

Total 218

Univ
ers

ity
 of

 M
ala

ya

75

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓𝑖 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐)
𝑓𝑖

, ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉

4-1

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑐) = 𝑛𝑟𝑞 + 𝑛𝑟𝑝 + 𝑛𝑢𝑑𝑝

Subject to:

𝜌 = {𝑚 | 𝑚: 𝑁}, 𝑝 = {
1, 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≤ 65536𝑏𝑦𝑡𝑒𝑠

𝑚 × 2 , 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) > 65536𝑏𝑦𝑡𝑒𝑠

4-3

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) = 3𝜃 + ∑ 𝜆𝑖
𝑓𝑖

, ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓

⊆ 𝐹
4-3

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓𝑖 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐) × ℎ𝛼𝛽
𝑓𝑖

, ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉
4-4

 Measurement Granularity

The granularity of the proposed solution is configured by setting the demanded

specifications in the request message. Basically, the SDN controller is able speak to the

switches by establishing a set of specifications in a request message. The switch then

speaks back to the controller by sending the reply message as a response to the given

specifications. This feature was adopted in the proposed solution by configuring a set of

specifications such as IP src/des, port src/des, as well as many other match fields in

different network layers. OpenFlow 1.3 present 40 fields to be used as match

specifications. Therefore, the proposed solution sets all the active flows with a specific

match (demanding granularities, for example UDP destination port 8080) to a group and

the group is then pulled to measure its flows. As such, fine-grained flow measurement

can be guaranteed when up to forth layer of OSI model (transport layer). However, the

Univ
ers

ity
 of

 M
ala

ya

76

more a request is fine-grained, the longer the request packet. The growth of the request

packet depends on the length of the field match. The granularity of the measurement was

set up to transport layer (UDP src/des). However, it is possible to simply modify it for

more specifications. Table 4-2 shows the OpenFlow match fields along with their sizes

in bits.

Table 4.2: OpenFlow Match Fields and length

Field Length Description
OXM_OF_IN_PORT 32 Ingress port. Numerical representation of

incoming port, starting at 1. This may be a
physical or switch-defined logical port.

OXM_OF_IN_PHY_PO
RT

32 Physical port. In ofp_packet_in messages,
underlying physical port when packet received

on a logical port.
OXM_OF_METADATA 64 Table metadata. Used to pass information

between tables.
OXM_OF_ETH_DST 48 Ethernet destination MAC address.
OXM_OF_ETH_SRC 48 Ethernet source MAC address.

OXM_OF_ETH_TYPE 16 Ethernet type of the OpenFlow packet payload,
after VLAN tags.

XM_OF_VLAN_VID 12+1 VLAN-ID from 802.1Q header. The CFI bit
indicate the presence of a valid VLAN-ID, see

below.
XM_OF_VLAN_PCP 3 VLAN-PCP from 802.1Q header.
OXM_OF_IP_DSCP 6 Diff Serv Code Point (DSCP). Part of the IPv4

ToS field or the IPv6 Traffic Class field.
OXM_OF_IP_ECN 2 ECN bits of the IP header. Part of the IPv4 ToS

field or the IPv6 Traffic Class field.
OXM_OF_IP_PROTO 8 IPv4 or IPv6 protocol number.
OXM_OF_IPV4_SRC 32 IPv4 source address. Can use subnet mask or

arbitrary bitmask
OXM_OF_IPV4_DST 32 IPv4 destination address. Can use subnet mask

or arbitrary bitmask
XM_OF_TCP_SRC 16 UDP source port
XM_OF_TCP_DST 16 TCP destination port
XM_OF_UDP_SRC 16 UDP source port
XM_OF_UDP_DST 16 UDP destination port

OXM_OF_SCTP_SRC 16 SCTP source port
OXM_OF_SCTP_DST 16 SCTP destination port

Univ
ers

ity
 of

 M
ala

ya

77

Table 4.2, continued

OXM_OF_ICMPV4_TYP
E

8 ICMP type

OXM_OF_ICMPV4_COD
E

8 ICMP code

OXM_OF_ARP_OP 16 ARP opcode
OXM_OF_ARP_SPA 32 Source IPv4 address in the ARP payload. Can

use subnet mask or arbitrary bitmask
OXM_OF_ARP_TPA 32 Target IPv4 address in the ARP payload. Can

use subnet mask or arbitrary bitmask
OXM_OF_ARP_SHA 48 Source Ethernet address in the ARP payload.
OXM_OF_ARP_THA 48 Target Ethernet address in the ARP payload.
OXM_OF_IPV6_SRC 128 IPv6 source address. Can use subnet mask or

arbitrary bitmask
OXM_OF_IPV6_DST 128 IPv6 destination address. Can use subnet mask

or arbitrary bitmask
OXM_OF_IPV6_FLABE

L
20 IPv6 ow label.

OXM_OF_ICMPV6_TYP
E

8 ICMPv6 type

OXM_OF_ICMPV6_COD
E

8 ICMPv6 code

OXM_OF_IPV6_ND_TA
RGET

128 The target address in an IPv6 Neighbor
Discovery message.

OXM_OF_IPV6_ND_SLL 48 The source link-layer address option in an IPv6
Neighbor Discovery message.

OXM_OF_IPV6_ND_TIL 48 The target link-layer address option in an IPv6
Neighbor Discovery message.

OXM_OF_MPLS_LABEL 20 The LABEL in the first MPLS shim header.
OXM_OF_MPLS_TC 3 The TC in the first MPLS shim header.

OXM_OF_MPLS_BOS 1 The BoS bit in the first MPLS shim header.
OXM_OF_PBB_ISID 24 The I-SID in the firrst PBB service instance tag.

OXM_OF_TUNNEL_ID 64 Metadata associated with a logical port.
OXM_OF_IPV6_EXTHD

R
9 IPv6 Extension Header pseudo-field.

4.2 Architecture of the framework

The architecture of the proposed framework consists of two stages: (a) a local

controller design that describes the entire schema in layout-like steps, and (b) a core

design that focuses on the design of the local controllers.

Univ
ers

ity
 of

 M
ala

ya

78

 Design of Layout

Figure 4.4 depicts the schema of the proposed system layout. It consists of three layers:

the OpenFlow network layer, the OpenFlow controller level, and a coordinator level on

top of all the controllers connecting to the switches.

(a) The OpenFlow network level consists of all the low-level network entities such as

hardware and software devices connected to the upper layer via the northbound

interface.

(b) The controller level is the heart of the proposed design, where statistics of flows

are collected by their associated local controller in any time interval, for example

every second. Each controller that is associated to a flow is set by the top layer to

request the flow statistics, and is responsible to collect, aggregate, and forward

them to the upper layer. The controller associated to a flow is able to track a flow

and instruct it. The upper layer mentioned above is the coordinator level, which

has access to all controllers and is able to instruct the controllers.

Figure 4.4: Schema of system layout

Univ
ers

ity
 of

 M
ala

ya

79

(c) The coordinator level is responsible to set controller(s) to request flow statistics

through Request Patch in an arbitrary fashion such as fixed or adaptive polling,

using Polling scheduler. The coordinator receives statistics from different

controllers by UDP Socket Listener and accumulates them to shape a traffic matrix

(TM) of demanded flows. This layer provides an east-west interface to interconnect

the controllers and bridge all the gathered statistics to accumulate the demanded

tasks. The east-west interface is often called east-west bridge where it is

responsible for implementing the function of efficient communication,

synchronisation and negotiation among multiple controllers (Xie et al., 2015).

 Local Controller Design

Figure 4.5 shows the architecture of a local controller. There are four steps to

accomplish the measurement task after a local controller receives a flow statistic request

from the coordinator using the “Request Dispatcher” module.

(a) Flow Tracker: The first step is tracking all the flows (current/new flows in the

controller domain) with a specific characteristic (user demands) that needs to be

monitored.

(b) Group Maker: The second step is grouping all the flows that were specified earlier

in the first step. This module utilises the “group table” feature in OpenFlow

specification 1.3. It then instructs the switch(s) to modify the associated TCAM

output group entry by sending a packet_out message to the switch(es).

(c) Query Maker: In the third step, switches are pulled with the exact match of the

created group in the previous step.

(d) Collector: All the statistics in each time interval are aggregated by this module and

sent to the top layer (coordinator). The process of sending aggregated stats is

performed by a simple UDP datagram socket. Section 5.2.2.4 explains the time

Univ
ers

ity
 of

 M
ala

ya

80

delay and latencies caused by the synchronisation process (UDP socket), as well

as its impact on accuracy of the measurement.

The proposed design is implemented as a northbound application on top of the

controllers. The coordinator can access multiple local controllers by a simple application

call. The proposed design can be implemented in various single and multiple-controller

scenarios such as clustered, distributed, and hierarchical. Furthermore, it is able to

accomplish almost all aspects of a monitoring system such as flow utilisation, measuring

available bandwidth, packet-loss, link and packet delay.

Figure 4.5: Local Controller

4.3 Cost-Effective Multi-Objective Controller (CEMoC)

Applying multiple controller may result in several unexpected performance

degradations such as accuracy and overhead. Each switch can be attached to only one

master controller, hereupon assignment of multi-controllers extremely effects on

Univ
ers

ity
 of

 M
ala

ya

81

overhead and accuracy. The assignment and re-assignment of controllers can be referred

to as switch selection where the switch(s) may be attached to different controllers in

different place. In addition, different deployment of such a scenario highly impacts

several factors in the network such as node-to-controller latencies, network availability

and performance metrics (Karakus & Durresi, 2017). Therefore, the controller (place of

controller) fetching flow statistic plays a vital role in the accuracy of real-time monitoring

as well as cost, especially in the in-band deployment. In addition to controller assignment,

different placement of the coordinator can cause extra cost as well as receiving

unsynchronized stats which lead to inaccuracy of results.

As it was mentioned earlier, the monitoring and routing traffic shares bandwidth along

the same path. Therefore, this deployment requires careful planning and precise

placement of controllers in the network. Thus, the number of network elements such as

switches, routers, and cables can highly effect on the communication costs as well as the

accuracy of result for real-time measurement purpose. Although, certain networking

factors such as propagation delay can negatively mutate statistical accuracy. Let donate

ℎ𝛼𝛽 as the number of hops from switch 𝑣𝛼 to controller 𝑐𝛽 and ℎ𝛽𝑘 as the number of hops

from the controller 𝑐 to the coordinator 𝑘. let 𝑤 is the cost of communication for polling

flows from a switch. let donate 𝑑 as the cost for each controller to be assigned on the

switch 𝛽 and 𝑞 is the cost of communication from the controllers to the coordinator

respectively. Given propagation delay µ𝛼𝛽 for each source-destination pair 𝑣(𝛼, 𝛽),

equation (4-5 to 4-8) describe the integer linear programing of the problem formulation

in in-band deployment.

The objective function given by equation 4-5 describes the problem formulation of costs,

which means selecting the most appropriate switch(s) to be polled (the switch that covers

most flows) by 𝑤, and the best controller(s) to be assigned given by 𝑑𝑐𝑘 on the switch(s)

Univ
ers

ity
 of

 M
ala

ya

82

for polling in terms of minimum communication, propagation delay and controller

overhead (costs). It also presents the communication between the coordinator and all the

controllers. Equation 4-6 refers to the constraint for selecting a switch in which at least

one switch is selected. Equation 4-7 explains the constraint for the controller to be

assigned to only one switch. Equation 4-8 forces selecting all the source-destination pairs

𝑣(𝛼, 𝛽) with the least propagation delay. The binary variable used in the formulation is

explained as follows:

• A binary variable 𝑥𝛽 represents whether to poll flow from switch 𝛽 or not, 1 if it

is polled

• A binary decision variable 𝑦𝑐𝑘𝛽
 represents whether a controller 𝑐𝑘 is assigned on

the node β nor not, 1 if it is assigned.

𝑤𝑖 = 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓 𝑖
𝑓𝑖

, 𝑓𝑖 ∈ 𝑓 , 𝑓 ⊆ 𝐹 (0 < 𝑖 < 𝑚)

𝑑𝑐𝑘 = 𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖𝛽
𝛽∈𝑉𝑐𝑘∈𝐶

, ∀𝑐𝑘 ∈ 𝐶, ∀𝛽 ∈ 𝑉

𝑐𝑜𝑐𝑐𝑘
= min ∑ (3𝜃 + ∑ 𝜆𝑖

𝑓𝑖
)

𝑐𝑘∈𝐶
 , ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, ∀𝑐𝑘 ∈ 𝐶

𝑞 = min ∑ ∑ 𝑙𝑢𝑑𝑝
 ℎ𝛽𝑘𝑐𝑘∈𝑐

, ∀𝛼, 𝛽 ∈ 𝑉

min∑ ∑ 𝑤𝛽𝑖 𝑖∈𝑓 𝑥𝛽𝑖
+ ∑ 𝑑𝑐𝑘𝛽

𝑦𝑐𝑘𝛽𝛽∈𝑉 + ∑ 𝑞𝛼𝛼∈|𝑉|𝛽∈𝑉 , 𝑥𝛽𝑖
, 𝑦𝛼, 𝑧𝛼 ∈

{0, 1}, ∀𝑐𝑘 ∈ 𝐶, ∀𝛼, 𝛽 ∈ 𝑉
4-5

Subject to:

∑ ∑ 𝑤𝛽𝑖
 𝑖∈𝑓

𝑥𝛽
𝛽∈|𝑉|

 ≥ 1, ∀𝛽 ∈ 𝑉 , 𝑞 ∈ {0,1}
4-6

Univ
ers

ity
 of

 M
ala

ya

83

∑ 𝑦𝑐𝑘𝛽
𝛽∈|𝑉|

 ≤ 1, ∀𝛽 ∈ 𝑉 , 𝑦 ∈ {0,1} 4-7

∑ µ𝛼𝛽 ≤ min{𝑣(𝛼, 𝛽)}
ℎ𝛼𝛽∈|𝑉|

, ∀𝛼, 𝛽 ∈ 𝑉 4-8

The minimisation problem defined above is a weighted set-cover problem that is

proven to be NP-hard and requires heuristics to approximate the performance. It should

be noted that propagation delay is computed for a link between two switches, as it is

determined by LLDP send/receive times minus the delay between both switches and the

controller. However, this delay does not cause a significant effect in datacentres as it is in

the order of microseconds.

The easiest way to solve the problem of weighted set-cover is to apply a brute force

search algorithm known as exhaustive search, which enumerates all possible candidates

for the solution and checks its correctness. Although the brute search algorithm is simple

and always finds the solution, its time complexity is 𝑂(2𝑚+𝑛), which is exponential to

the number of flows and switches 𝑚 𝑎𝑛𝑑 𝑛 respectively that is neither scalable for

datacentres nor for ISPs. Hence, the approximation technique is required for large-scale

networks.

To solve the problem above an eager-greedy algorithm was applied, which is an

approximation technique adopted from (Lim et al., 2014). This algorithm implements a

priority queue to alleviate time complexity to 𝑂(𝑚 log 𝑛). The algorithm selects the most

cost-effective switch(es) that covers all demanding flows based on their given weight

(𝑤𝑖). Figure 4.6 (Algorithm 2) shows the steps involved in the selection of switch(es). In

each iteration, it calculates the minimum associated weight (shortest path) for all

demanding flows in step 4. It then identifies the sets with the largest number of uncovered

items in step 6 and puts it in the output as a group in step 7. If the algorithm finds more

Univ
ers

ity
 of

 M
ala

ya

84

than one sub-covered set (step 5), it selects the subset with the least propagation delay in

step 6. Figure 7 shows the entire architecture of the CEMoC design.

This thesis also proposes an algorithm that assigns a controller to a switch for polling

purposes. It should be noted that only one controller can be assigned to a switch with the

master mode.

Algorithm 2 The Eager-greedy approach
Input:
Output:

𝑓: sets of flows, 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹; 𝑤: weight of polling set 𝑓.
𝐴: set of groups for polling 𝐴 = {𝑥 | 𝑥 ⊆ 𝐹 }

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

𝐴 {}
Covered {}
while covered ≠ 𝑓
 𝑗 calculate (min 𝑤𝑖𝑓)
 if (|𝑚𝑎𝑥𝑗𝜖[0..𝑚]{𝑓𝑗 − 𝐹}| > 1)
 𝑐 min µ𝛼𝛽(𝑚𝑎𝑥𝑗𝜖[0..𝑚]{𝑓𝑗 − 𝐹})
 𝐴 𝐴 ∪ 𝑐
 covered covered ∪ 𝑓𝑗
end while
return A

Figure 4.6: Pseudo-code of Eager-greedy approach

Figure 4.7 (Algorithm 3) illustrates the steps involved in the selection of the controller.

The main loop iterates for 𝑂(𝑛) time where 𝑛 = |𝐴| which is the number of polling set(s).

It then calculates the nearest controller with the least CPU load to the polling set

(switch(s)) in step 3 with the time complexity of 𝑂(𝑚2) where m=|C|, which is the

number of controllers. In case of finding more than 1 controller for a set, it selects the one

nearest to the coordinator’s location. Figure 4.8 illustrates the entire flow process of the

CEMoC. As shown Figure 4.8, algorithm 2 and 3 run only once upon a measurement

request to the coordinator. Then the coordinator signals the selected controllers and

polling set(switches) to be polled. The life line of controller(s) continues for the number

of iterations. Therefore, every controller sends stat requests and receives stat replies until

the user signals the termination of the process.

Univ
ers

ity
 of

 M
ala

ya

85

Algorithm 3 Controller selection
Input:

Output:

𝑐: sets of controllers, 𝑐 (0 < 𝑖 < 𝑛), 𝑐 ⊆ 𝐶; 𝐴: set of groups for
polling 𝐴 = {𝑥 | 𝑥 ⊆ 𝐹 }, ∀𝛼, 𝛽 ∈ 𝑉
𝐵: sets of controllers, 𝑐 (0 < 𝑖 < 𝑛), 𝑐 ⊆ 𝐶

1:
2:
3:
4:
5:
6:
7:
8:
9:

𝐵, n {}
foreach polling set in 𝐴
 𝑗 calculate (min 𝑐𝑜𝑐𝐴 𝑎𝑛𝑑 min ℎ𝐴𝛼𝛽)
 if (|𝑗𝐴| > 1)
 𝑛 calculate (min 𝑗𝐴𝛽𝑘)
 B 𝐵 ∪ 𝑛𝑗
 𝐴 𝐴 ∪ 𝑐
end foreach
return A

Figure 4.7:Pseudo-code of Controller Selection

Figure 4.8: Entire Flow Process of the CEMoC

4.4 Summary

This chapter proposed a cost-effective flow measurement framework aiming to

effectively minimise various costs such as communication, message interaction and

Univ
ers

ity
 of

 M
ala

ya

86

controller overheads that are associated with the measurement of flows in single and

multiple-controller scenarios in different network deployment models (out-of-band and

in-band). The chapter first elaborated on the proposed solution that aims to minimise the

costs of pulling flow statistics using grouping flows and pulling groups as the target rather

than flows. It described how the proposed solution can reduce the length of reply

messages using Select group requests, and further formulated the costs when applying the

proposed solution. Moreover, the architecture of the proposed framework is described in

two designs, namely the layout and the local controller design. The chapter explained that

requests are sent from the coordinator to the switch(es) and then reply messages are issued

from the switch(es) and sent to the controller. Finally, it proposed a multiple-controller

design and a controller selection algorithm that optimise the selection of the switches for

polling and the location of the coordinator.

The next chapter evaluates and validates the proposed framework through various

experiments to show its capability and effectiveness to fulfil the targeted objective.

Univ
ers

ity
 of

 M
ala

ya

87

CHAPTER 5: PERFORMANCE EVALUATION

One of the most important processes in conducting research is to evaluate the proposed

design, in order to validate its outcome and highlight its feasibility and suitability. This

chapter explains the systematic evaluation phases to accredit the evaluation and analysis

of the performance. The chapter thoroughly elaborates on the different stages of

performance evaluation to perform a realistic assessment of the proposed framework, and

subsequently discusses the findings. The remaining chapter is outlined as follows:

Section 5.1 explains the evaluation setup by introducing its environment, datasets,

topologies and tools. Moreover, it presents the benchmarking methods, their objectives,

and the reason for selecting these benchmarks. Section 5.2 introduces different

experiments trough emulation and simulation. It then describes the findings from the

experiments and compares them to the benchmarks. This is followed by a comprehensive

analysis and discussion of the findings from the different experiments. Section 5.3 aims

at the verification of our simulator with which the second experiment was performed.

Section 5.4 offers a comprehensive discussion of all findings from the different

experiments, including their pros and cons. Finally, section 5.5 provides concluding

remarks for the whole chapter.

5.1 Evaluation Setup

This part comprehensively describes the experiment setup, the datasets used in the

evaluations, the set of tools to exploit the findings or capture the data/results, and the data

collection models.

This study presents three evaluations through extensive experiments. To ensure the

validity and reliability of the findings, the experiments were iterated 10 times. Findings

from the first five iterations demonstrated a linear trend associated with an independent

Univ
ers

ity
 of

 M
ala

ya

88

variable such as number of flows. Thereby, to ensure the linearity of trends, all the

experiments were repeated another five times, however, the findings demonstrated almost

identical values with a negligible variation below 0.05 percent. The results and findings

from the experiments are presented by averaging all iterations in every experiment. Some

experiments share similar requirements or datasets while others require different

specifications and datasets.

 Experimental setup

In order to evaluate the performance of the proposed model, three evaluations were

conducted through emulation and simulation; the first two experiments employ

emulation, and the last experiment is conducted via simulation. The environmental setup

varies based on the experiments. For instance, experiment 1 uses a lab setup environment,

while the second experiment is evaluated in Amazon EC2 due to the heavy workload and

traffic dataset. The emulation of a real network is resource hungry and requires a huge

memory and CPU capacity (Su et al., 2015), therefore the emulation was carried out with

limited traffic in a Mininet emulator. Similar to previous works (Su et al., 2015; H. Xu et

al., 2017), a large-scale experiment (experiment 3) was performed through simulation as

the experiments only cares about the active flows, shape of the topology, the links, and

their forwarding paths. Therefore, the large-scale experiment was carried out using a

trace-driven simulator built only to simulate the event of flow arrival and expiration in

the network. However, the accuracy-related experiment was only conducted by

emulation, as simulation is incapable of emulate the real behaviour of a network such as

delays or varied network latencies.

 Experiment Tools

a) The SDN controller in this study is Floodlight (BigSwitchNetworks, 2016). This

thesis employs Floodlight controller because of its unique features and several

Univ
ers

ity
 of

 M
ala

ya

89

advantages over other SDN controllers. The following explains the reasons for

choosing floodlight:

i. Floodlight is an open source SDN controller that supports OpenFlow version 1.3.

The controller can also be extended to support version 1.4 and 1.5 of OpenFlow

through the experimenter.

ii. Floodlight has been developed as a modular system that is highly flexible and can

be simply extended and enhanced.

iii. Floodlight supports northbound Full-REST API, which can be accessed through

HTTP request.

iv. Application are implemented as northbound API and placed on top of a logically

centralised controller. Consequently, other network applications can use the API

by a simple http request anytime and anywhere.

v. Floodlight supports full state synchronisation, which allows several instances of

it to be connected in a cluster or distributed manner (multiple-controller).

b) The prototype of the proposed design was implemented as a northbound API module

of a floodlight controller.

c) This thesis employs Mininet version 2.2.1 for emulating the entire network and its

characteristics such as links, topology, latencies and so on. Mininet was chosen

because it is the most common emulator and is used in most research. Besides,

Mininet is the most compatible network emulator to support OpenFlow version 1.3.

Furthermore, it uses Linux containers to create a virtual network to emulate hosts,

which allows the entire network to be emulated in a single computer. Therefore, the

emulated network is isolated from other performance sensitive applications in the

memory. Moreover, Mininet uses Open vSwitch (OVS) as a virtual switch to emulate

the behaviour of the real switch. Open vSwitch version 2.5.2 (OpenvSwitch, 2017)

which is the latest version at the time of conducting the experiments.

Univ
ers

ity
 of

 M
ala

ya

90

d) D-ITG (Botta et al., 2012) network traffic generator was employed to generate

realistic network traffic with various patterns. D-ITG has been proven to perform in

a more reliable and scalable way than other traffic generators (Megyesi et al., 2017).

e) Wireshark was used to capture the real traffic volume of the original datasets and the

traffic generated by the proposed model and other benchmarking methods.

 Datasets

One of the most important stages in the evaluation process is to validate the proposed

model under a concrete and realistic workload. This evaluation applies three different

types of traffic patterns as datasets. The rationale behind employing various datasets in

the validation process is to understand the behaviour of the proposed framework and the

benchmarking methods. It also shows how the models react with different traffic

workloads and what types of model is suitable for datasets. The following presents the

workloads employed in this research.

a) Constant Bit Rate (CBR)

In this model (Megyesi et al., 2016), all the hosts generate traffic flows in a uniformly

random manner which is constantly increased in rate and size. All hosts generate new

flows every second and send them over all other hosts. CBR is a reliable candidate to

validate the costs because it constantly increases the distribution of flows in the network.

Therefore, it simply discloses the variation of overhead changes generated by requesting

flow statistics. Moreover, it demonstrates the relationship between flow numbers and

overhead ratio among different methods. The first two experiments apply this dataset with

different flow distribution ratios. The dataset is further explained in each experiment with

more specifications.

Univ
ers

ity
 of

 M
ala

ya

91

b) Variable Bit Rate (VBR):

It follows the traffic pattern introduced in (Megyesi et al., 2017) (shape and scale) for

all generated flows in the network. VBR applies D-ITG pareto distribution for the packet

's inter-departure time. Similar to (Megyesi et al., 2017), this evaluation uses 𝜑 = 1.75

as the shape parameter for all flows, and a random scale parameter 𝛶 from the range 0.5ms

to 1ms. This type of traffic pattern is suitable to stress the accuracy of flow statistics as it

fluctuates highly and leaves numerous traffic spikes in the network. Therefore, the

evaluation employs this workload to demonstrates the performance on the proposed

model on accuracy and error ratio. This study employs VBR in experiment 2 for

evaluation of the accuracy.

c) Real dataset workload:

A publicly available data packet trace collected from a university datacentre in

(Benson et al., 2010). The evaluation applies a real dataset from a datacentre in the

university of Wisconsin to realise the performance and suitability of the proposed

framework under a real workload. The workload is employed for the large-scale

evaluation in experiment 3.

 Topology

The evaluation of this study deploys different topologies to demonstrate that the

proposed framework is a scenario-independent model, and thus can be applied to various

conventional datacentre topologies. Furthermore, using various topologies, the evaluation

validates the concreteness of findings and the proof of concept of the framework. The

topologies are specified in more detail in every experiment. Below is a general description

of the topologies applied in this research work:

Univ
ers

ity
 of

 M
ala

ya

92

a) Synthetic topology:

This topology implements a single pod of the fat-tree topology model. The topology

includes four switches that consist of two edges, and two aggregation switches of a 4-pod

fat-tree, which is a common topology used in datacentres. The topology is used in the first

experiment where the proposed model is evaluated on the single controller scenario with

out-of-band network deployment. As out-of-band is the simplest network deployment

model (i.e. switches are directly attached to the controller using the network control

links), this topology aims to demonstrate the very pure behaviour of the proposed

framework and benchmarks regardless of the sophistication of the network configuration

and topology.

b) k-pod fat-tree:

This is a common topology deployed in many datacentres and is organised in a tree-

like structure. The k-pod fat-tree topology has the properties that make it suitable for data

centre networks (Bari et al., 2013). Figure 1 in Appendix B depicts the schema of a k-pod

fat-tree topology, k=4.

c) 2-tier fat-tree:

This study adopts this topology from a publicly available dataset that can be found in

(Benson et al., 2010). The topology is a datacentre network located in the university of

Wisconsin, USA. It employs a similar topology to a conventional 2-tier fat-tree type,

which only uses core and edge switch in the network deployment. Interested readers are

referred to (Bari et al., 2013). However, unlike the canonical 2-tier topology architecture

that employs Top-of-Rack switches (each switch connects to a rack of 20-80 serves), this

topology uses Middle-of-Rack switches that connect a row of 5 to 6 racks with the

potential to connect from 120 to 180 servers. Figure 2 in Appendix B shows the schema

of the 2-tier datacentre topology.

Univ
ers

ity
 of

 M
ala

ya

93

 Performance Metrics (Parameters)

The performance of the proposed framework is evaluated with standard parameters of

different overheads and accuracy. The term overheads herein refers to various overhead

such as communication, message interaction and controller.

In order to highlight the effectiveness of the proposed framework on different

overheads and accuracy, the experiments aim to satisfy the following requirements:

i. To explain the communication overhead and its relation to demanded flows and

total number of flows in the network and compare them to the benchmark

methods.

ii. To highlight the message interaction overhead and the impact of different

numbers of flows on this cost and compare them to benchmark methods.

iii. To elaborate on the controller overhead in the proposed model and compare that

to benchmark methods with different numbers of flows in the network.

iv. To investigate the relationship between different overheads and the impact of flow

increment or decrement in the links and switches.

v. To observe the accuracy (error ratio) of flow measurement in comparison to the

actual flow utilisation by the proposed framework and investigate the impact of

controller number on the accuracy.

 Comparison to the current State-of-the-art: Benchmarking Methods

The performance evaluation and verification of the proposed method is carried out by

current state-of-the-art pull-based per-flow measurement/monitoring methods described

comprehensively in Chapter 2. The following elaborates on the benchmarking methods

and the reason for choosing these benchmarks:

Univ
ers

ity
 of

 M
ala

ya

94

i. Single flow Stat-Request (SSR): The method is an OpenFlow native approach

for obtaining flow statistic requests. Many pull-based studies have exploited

SSR to measure network flows. Likewise, the evaluation also employs SSR

because it directly discloses the relation between the required flow statistics

and the different overheads. The method is also expected to generate high

messaging and communication overheads.

ii. Polling All-flow Stat-Request (PA): The approach polls all the current flow

stats of a switch with one request and reply message and has been widely

implemented in the literature. The aim of applying this method in the

evaluation is to manifest the effectiveness of aggregating all flows within a

single request. Also, it reveals the impact of flow distribution in the network

on different overheads. The expected behaviour of this method is high

overheads for the communication and controller that is seen as the side effects.

However, it significantly decreases the message interaction overhead.

iii. CeMon: The model is the most similar to the proposed framework in this study

as it employs a combination of SSR and PA models. It is expected to have both

the advantages and disadvantages of SSR and PA.

5.2 Result and Discussion

The section presents the results and analysis of the experiments (i.e. emulation and

simulation) of the proposed framework. The main aim of this section is to expose the

outstanding performance of the proposed model compared to the benchmarking methods.

The section presents the findings and discussion for each experiment, within the

corresponding performance metric of the experiment. The section also demonstrates

different experiments with distinct objectives. Furthermore, it elaborates on a simulation

experiment in which the dataset employed is a real datacentre workload. To validate the

simulation results, the chapter is followed by a detailed performance analysis through

Univ
ers

ity
 of

 M
ala

ya

95

statistical modelling. At the end of the section, the evaluation result and findings are

discussed. It should be noted that the emulation experiments on CBR traffic were iterated

10 times; as such, no change was observed from the findings of different iteration in the

first experiment. Also, no tangible changes were observed in the overheads. The variance

of findings of different iterations reported, is below 0.05. However, findings from

accuracy (error ration) in the second experiment are obtained through only one

run/iteration as different iterations on VBR traffic cause different results. This is because,

the network latency in each time of running the emulation is not a constant value. Also,

the ration of traffic shape is a random scale parameter 𝛶 from the range 0.5ms to 1ms, as

mentioned in the section 5.2.3. Findings of the proposed method from this study are

labelled and shown as “Proposed method” in the experiment 1, whereas experiments 2

and 3, label and depict the findings from the proposed method as “CeMOC”. This is

because experiments 2 and 3, evaluate the decentralized (multiple) controller scenario.

 Experiment I: Single controller with out-of-band deployment

This section aims to discuss the experimental evaluation of the proposed model in out-

of-band network deployment with a single controller. The experiment comparatively

investigates the relationship between overhead factors and flow number, by means of

applying the proposed model to the synthetic topology and comparing the results with the

benchmark methods. The objective of this experiment is to measure the utilisation of all

flows passing through the link pi shown in Figure 5.1.

The experiment was conducted in a lab environment on a server with Intel(R) Xeon(R)

E3-1270 processor 3.50Ghz and 16GB RAM. Figure 5.1 shows the synthetic topology

used in this experiment. The experiment employs the CBR dataset as workload, with the

maximum universe flow F=2000, the initial number of arbitrary flow passing through

path 𝑝𝑖 is f = 10, and the initial flows’ number in the node v is 100 with the increase ration

Univ
ers

ity
 of

 M
ala

ya

96

of 66%,40%,28%, and 20% in the next 4 iterations. CBR is a valid traffic pattern that

demonstrates a constant increase ratio by which it effectively discloses the incurred

variation associated with the increment ratio. Controller C1 polls the switch that is

directly attached to it. To observe the effectiveness of the proposed method in a single

controller, the obtained results are compared to two native OpenFlow polling methods

namely SSR and PA and a similar work CeMon. The flows are generated in a uniformly

random fashion using D-ITG. Table 5.1 shows the summary of the specifications in this

experiment.

Figure 5.1: Synthetic Topology: Composed 1 pod consists of 2 edges and 2
aggregation switches with one controller.

Table 5.1: Experiment specification details

Specification Details
SDN emulator Mininet v. 2.1

Switch type Open vSwitch(OVS) v. 2.5.2
Traffic generator D-ITG

Traffic Type Randomized TCP/UDP
Synthetic network topology 1 Pod of k-pod fat-tree k = 4

Number of flows in pi 10, 20, 30, 40, 50
Number of flows in the switch 100, 200, 300, 400, 500

This evaluation concentrates on out-out-band network deployment with a single

controller. The results of this evaluation are shown in the average of 10 times iteration.

All findings from this experiment are analysed and discussed in this section.

node v

Aggregation switches

Edge switches

Univ
ers

ity
 of

 M
ala

ya

97

 Communication overhead

Figure 5.2 shows the communication overhead in a single controller scenario with out-

of-band deployment.

Figure 5.2: Communication overhead in single controller scenario with out-of-
band deployment

In general, the results obtained from this experiment indicate a notable reduction over

all the compared methods. In particular, the proposed solution reported 82% reduction

against SSR. It also saves up to 161% compared to both PA and CeMon methods.

Basically, applying the ‘polling all’ approach can reduce the communication overhead

that is strongly associated with the total number of flows in the switch, which is ten times

bigger than the actual demanded flows. As can be seen, the sharp rise in PA and CeMon

has a direct correlation to the total number of flows in the switch in every interval. This

behaviour occurs in all methods that fully or partially apply the polling all strategy in

their design. CeMon implements a combination of the polling all and single flow request

approaches, in which it pulls all flow statistics in the previous intervals (already covered

flows) and utilises single requests for new flows in the current interval. However, this

strategy is highly scenario-dependent, which is either suitable for those networks with

small rates of new flow arrival or multiple switch selection for polling. According to the

3.79
7.58

11.37
15.16

18.95
14.34

28.40

42.46

56.53

70.59

1.53
2.86 4.18 5.51

6.84

0

10

20

30

40

50

60

70

80

10 20 30 40 50

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

bp
s)

Number of Flows

SSR

CeMon

PA

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

98

observed finding, it can be concluded that the reduction ratio in this metric (reducing the

overhead) will be better in a network with a higher number of flows.

 Message Interaction Overhead

Figure 5.3 shows the message interaction overhead in single controller scenario with

out-of-band deployment.

The results obtained from the message interaction overhead demonstrate that the

proposed method and CeMon archive the optimal result, which is found in the PA

approach for message interaction costs. The costs for PA, CeMon and the proposed

method remain constant and proportionally increase with the number of controllers. As

there is only one controller in this case study, the proposed method generates three

messages (request, reply and synchronised message) for every interval PA. CeMon also

achieves the optimal number of message interactions as a result of applying “polling all

approach”. However, similar to communication costs, the result is highly dependent on

the scenario and environmental factors such as the number of selected switches to poll or

the arrival of new flows. SSR reported the worst approach in this overhead as it generates

three messages for each flow.

Figure 5.3: Message Interaction in single controller scenario with out-of-band
deployment.

10 20 30 40 50
SSR 30 60 90 120 150
CeMon 3 3 3 3 3
Proposed Method 3 3 3 3 3
PA 3 3 3 3 3

0
20
40
60
80

100
120
140
160

N
um

be
r o

f M
es

sa
ge

Number of Flows

Univ
ers

ity
 of

 M
ala

ya

99

 Controller Overhead

Figure 5.4 shows the controller overhead in single controller scenario with out-of-band

deployment.

As observed in the graph, the proposed method achieves the least controller overhead

as it only processes statistics associated with the demand flows (those flows that

contribute to the utilisation of pi). CeMon and PA reported the highest overhead with an

explicit increase of the number of flows. This is because these two methods send all the

current flows in the switch to be processed in the controller. SSR are distinctively superior

to CeMon and PA as a result of sending less flows to be processed. This reduction in flow

numbers is due to polling less flow statistics. Thus, the fewer flow statistics to poll, the

less overhead to be generated.

Figure 5.4: Controller Overhead in single controller scenario with out-of-band
deployment.

However, it is observed that the proposed method significantly saves the overhead by

63% over SSR as a result of reporting the precise flow statistic as demanded. From the

observation, it can be inferred that the number of message interactions and flows has an

120
240

360
480

600602

1202

1802

2402

3002

66 126 186 246 306

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50

C
on

tro
lle

r O
ve

rh
ea

d
(M

IP
S)

Number of Flows

SSR

CeMon

PA

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

100

explicit relationship to the controller overhead, and that the controller overhead increases

according to the increasing message interaction overheads and number of flows.

Therefore, similar to the communication overhead, the controller overhead is expected to

save more in comparison to other methods when the number of flows in the network

increases.

 Experiment II: Multiple-controller (distributed controller) with in-band

deployment

This section aims to discuss the experimental evaluation of the proposed model in in-

band network deployment with a decentralised (multiple) SDN controller. It explores the

effects of multiple SDN controller on various overhead factors and accuracy. The

objective of the experiment is to measure all UDP flow traffic with a specific destination

port number (i.e. 3660) in the datacentre network.

Table 5.2: Specification of the experiment

Spec Type
Host vCPU 16

Host Memory 64Gb
Host OS Ubuntu 16.04 Server

Mininet version 2.2.0
OVS version 2.5.2

Floodlight version 1.2
Traffic Generator D-ITG version 2.8.1

Traffic Type CBR

Network
Topology

Number of Host Switches Number of Flow

Fat-tree k-pod
(k=4)

16 Edge Aggregation Core 240, 480, 720,
960, 1200, 1440 8 8 4

As the scale of the experiment is large and requires high computation and memory

capacity, it was conducted in an Amazon EC2 m4.4.xlarge instance with the Ubuntu 16.04

Server. The topology employed is k-4 fat-tree (shown in Figure 2, Appendix B) with CBR

Univ
ers

ity
 of

 M
ala

ya

101

workload. Additionally, a VBR dataset was employed to carry out the examination of

accuracy performance metrics. All hosts generate VBR traffic to others. The detailed

specification of the experiment is shown in Table 5.2. The findings of the proposed

method for multiple SDN controller are labelled in CEMoC as presented in section 4.2.

 Communication Overhead

Figures 5.5-5.8 show the communication overhead with different numbers of

controllers. Obviously, the CEMoC is constantly superior to all other methods with

different numbers of flows. A linear increase is observed in all methods as the numbers

of flows grow. However. CEMoC reported the lowest communication overhead by

maximum 410Kbps when the flow number is 1440. The finding shows that CEMoC saves

up to 97% and 138% in comparison to PA and SSR, respectively. However, the findings

demonstrate that the increment rate of communication overheads varies with different

numbers of controllers. As can be seen in Figures 5.5, 5.6, 5.7 and 5.8, SSR, PA, and

CEMoC stand out as the worst and the best methods in a descending order. However,

CeMon reports different behaviour as it gradually decreased communication overhead

when the number of controller decreases. Figure 5.9 explains the average growth ratio of

communication overhead for each method over CEMoC; SSR and PA show a constant

growth rate, whereas CeMon demonstrates the least increment rate with 51% in single

controller mode, and the biggest change when there are four controllers in the network.

This is because CeMon selects both core and edge switches to use polling all approach

and applying single flow request respectively.

Univ
ers

ity
 of

 M
ala

ya

102

Figure 5.5: Total Communication Overhead with four Controllers

Figure 5.6: Total Communication Overhead with three Controllers

169.14
337.14

505.14

673.14

841.14

1009.14

153.76

303.90

454.04

604.19

754.33

904.48

142.68

280.92

419.16

557.40

695.64

833.88

73.56

142.68

211.80

280.92

350.04

419.16

70

170

270

370

470

570

670

770

870

970

1070

240 480 720 960 1200 1440

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

b)
Th

ou
sa

nd
s

Number of Flows

SSR

CeMon

PA

CEMoC

231.78

462.78

693.78

924.78

1155.78

1386.78

178.60

353.94

529.28

704.63

879.97

1,055.32

195.39

385.47

575.55

765.63

955.71

1,145.79

100.35

195.39

290.43

385.47

480.51

575.55

70

270

470

670

870

1070

1270

1470

240 480 720 960 1200 1440

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

b)
Th

ou
sa

nd
s

Number of Flows

SSR

CeMon

PA

CEMoC

Univ
ers

ity
 of

 M
ala

ya

103

Figure 5.7: Total Communication Overhead with two Controllers

Figure 5.8: Total Communication overhead with one Controllers

231.78

462.78

693.78

924.78

1,155.78

1,386.78

178.60

353.94

529.28

704.63

879.97

1,055.32

195.39
385.47

575.55

765.63

955.71

1,145.79

100.35
195.39

290.43

385.47

480.51

575.55

70

330

590

850

1110

1370

1630

240 480 720 960 1200 1440

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

b)
Th

ou
sa

nd
s

Number of Flows

SSR

CeMon

PA

CEMoC

357.06

714.06

1071.06

1428.06

1785.06

2142.06

228.28

454.02

679.76

905.51

1,131.25

1,357.00

300.82

594.58

888.34

1,182.10

1,475.86

1,769.62

153.94
300.82

447.70
594.58

741.46
888.34

70

330

590

850

1110

1370

1630

1890

2150

2410

240 480 720 960 1200 1440

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

b)
Th

ou
sa

nd
s

Number of Flows

SSR

CeMon

PA

CEMoC

Univ
ers

ity
 of

 M
ala

ya

104

Figure 5.9: Average Growth Rate of Communication Overhead with Different

Numbers of Controllers

Table 5.3: The Growth Rate of Benchmarks with Different Flows and
Controller Numbers over CEMoC.

Benchmark

 Flows

Growth rate in 4 controllers [%]

240 480 720 960 1200 1440
SSR 130 136 139 140 140 141

CeMon 109 113 114 115 116 116
PA 94 97 98 98 99 99

 Growth rate in 3 controllers [%]
SSR 131 137 139 140 141 141

CeMon 78 81 82 83 83 83
PA 95 97 98 99 99 99

 Growth rate in 2 controllers [%]
SSR 132 137 139 140 141 141

CeMon 60 63 64 64 65 65
PA 95 98 98 99 99 99

 Growth rate in 1 controller [%]
SSR 132 137 139 140 141 141

CeMon 48 51 52 52 53 53
PA 95 98 98 99 99 99

In addition, the number of paths from the controller to the switches is increased as

more switches are attached indirectly through in-band data paths. Thus, more switches to

poll results in more flow statistics to communicate. Table 5.3 also illustrates the growth

51%

63%

82%

114%

40%

60%

80%

100%

120%

140%

160%

1 2 3 4

G
ro

w
th

 R
at

e
of

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Number of controller

SSR - CeMOC CeMon - CeMOC PA - CeMOC

Univ
ers

ity
 of

 M
ala

ya

105

rate of our benchmarks in different flows and controller numbers over CEMoC. It

indicates that there is a slight but steady growth of SSR and PA over CEMoC when the

number of controllers increases. However, CeMon reports a decrease in the

communication overhead when the number of controller decreases. It is also observed

that the overhead in all methods grows when the number of controller drops from four to

one. Table 5.4 explains the average growth rate in comparison to four controllers. As can

be seen, CeMon reports the lowest growth rate by 17%, 33% and 50% in comparison to

four controllers. However, other methods result in a higher growth rate, i.e., 37%, 75%,

112 %.

Table 5.4: The Average Growth rate in Comparison to four controllers

Number of
controllers

 Method

Growth rate [%]

3 2 1
SSR 37 75 112

CeMon 17 33 50
PA 37 75 112

CEMoC 37 74 111

 Message Interaction Overhead

The evaluation compares CEMoC’s message interaction caused by polling switches to

SSR, PA, and CeMon with different flow numbers. Figure 5.10 shows message

interaction with four controllers, where CEMoC and PA achieved the most efficient

number of message interactions in all of the iterations. However, PA sacrifices other

overheads such as communication and controller overhead at the expense of low message

interaction. This is because PA aggregates the whole flow stats in the switch in only one

message. The efficient number of message interaction, is constant (a fix number), can be

found in the methods that only apply polling all flows. This strategy prevents excessive

sending and receiving messages from controllers and switches. CeMon is in third place

as it can reduce almost half of the iterations using polling all from core switches. SSR

Univ
ers

ity
 of

 M
ala

ya

106

demonstrates the highest number of interactions as a result of polling switches for every

individual flow. In total, CEMoC reduces this overhead by up to 28% and 143% over

CeMon and SSR, respectively. Table 5.5 shows the result of message interaction with

different numbers of controllers. It is observed that methods that apply single polling for

every individual flow do not change with different numbers of controllers. However,

CEMoC and PA, which apply polling all flows, achieve a slight decrease when the

number of controllers is reduced.

Figure 5.10: Message Interaction in 4 controllers

Table 5.5: Message Interaction with Different Numbers of Controllers

Benchmarks

 Flows

Number of Message Interaction

240 480 720 960 1200 1440
 Message Interaction in 3 Controllers

SSR 483 963 1443 1923 2403 2883
CeMon 107 203 299 395 491 587

PA 19 19 19 19 19 19
CEMoC 19 19 19 19 19 19

 Message Interaction in 2 Controllers
SSR 482 962 1442 1922 2402 2882

CeMon 106 202 298 394 490 586
PA 18 18 18 18 18 18

20 20 20 20 20 20

484
964

1444 1924 2404 2884

120
216

312 408 528 624

1

4

16

64

256

1024

4096

240 480 720 960 1200 1440

N
um

be
r o

f M
es

sa
ge

Number of Flows

PA CEMoC SSR CeMon

Univ
ers

ity
 of

 M
ala

ya

107

Table 5.5, Continued

CEMoC 18 18 18 18 18 18

 Message Interaction in 1 Controller
SSR 481 961 1441 1921 2401 2881

CeMon 105 201 297 393 489 585
PA 17 17 17 17 17 17

CEMoC 17 17 17 17 17 17

 Controller Overhead

Figure 5.11 explains the total overhead of four controllers with different flow numbers.

It is observed that the controller overheads of all methods are linearly increased at the

expense of flow growth. Thus, the more flows are counted, the more overhead is

impressed. Unlike PA and CeMon, which report all the flow stats for calculation, CEMoC

only reports the required statistics, which contributes to the utilisation of UDP flows. As

a result, there are averages of 99%, and 126% of reduction in the controller overhead by

CEMoC over PA. However, SSR reports the flow stats in the same way as CEMoC. The

difference between SSR over CEMoC is that SSR generates and reads a massive number

of files with regard to the number of flows, as every flow is placed in one file.

Nevertheless, as CEMoC aggregates only required stats in one file, there is only one file

to read. CEMoC saves up to 65% of controller overhead over SSR. It is also observed

that the total controller overhead is reduced by less than 0.01% on average when the

number of controllers is decreased. Table 5.6 reports the total controller overhead with

different numbers of controller. As can be seen in the table, there is a negligible reduction

in overhead when the number of controllers drops to one.
Univ

ers
ity

 of
 M

ala
ya

108

Figure 5.11: Controller Overhead in four Controller Scenarios

Table 5.6: Controller Overhead with Different Numbers of Controllers

Benchmarks

 Flows

Overhead in different flow number

240 480 720 960 1200 1440
 Controller overhead in 3 Controllers

SSR 2403 4803 7203 9603 12003 14403
CeMon 3286 6550 9814 13078 16342 19606

PA 2915 5795 8675 11555 14435 17315
CEMoC 1475 2915 4355 5795 7235 8675

 Controller overhead in 2 Controllers
SSR 2402 4802 7202 9602 12002 14402

CeMon 3284 6548 9812 13076 16340 19604
PA 2914 5794 8674 11554 14434 17314

CEMoC 1474 2914 4354 5794 7234 8674

 Controller overhead in 1 Controller
SSR 2401 4801 7201 9601 12001 14401

CeMon 3282 6546 9810 13074 16338 19602
PA 2913 5793 8673 11553 14433 17313

CEMoC 1473 2913 4353 5793 7233 8673

2.40

4.80

7.20

9.60

12.00

14.40

3.29

6.55

9.82

13.08

16.34

19.61

2.92

5.80

8.68

11.56

14.44

17.32

1.476 2.916
4.356

5.796
7.236

8.676

0

5

10

15

20

25

240 480 720 960 1200 1440

C
on

tro
lle

r O
ve

rh
ea

d
(m

ip
s)

Th
ou

sa
nd

s

Number of Flows

SSR

CeMon

PA

CEMoC

Univ
ers

ity
 of

 M
ala

ya

109

 Accuracy in Multiple-controller (distributed controller) with in-band

deployment

Unlike statistical estimation models or sampling methods used in traditional networks,

accuracy mainly corresponds to time. Basically, due to network latency and the sequential

creation of messages in the controller, synchronising poll requests are infeasible for all

the switches in a network. Also, the exact moment of reading flow counters in the

switches is unknown (Megyesi et al., 2017). As a consequence, estimating flow utilisation

may be limited by a negligible error rate. This problem is also referred to as Accuracy

limitation for lack of synchronisation, which can be more sophisticated when dealing with

in-band deployment where statistic request and result traverse through the network’s data

plane paths. The experiment conveyed a 360-second experiment with a VBR traffic

pattern to highlight the observed error and the impact of different controller numbers on

accuracy.

Figure 5.12: Actual measured flow utilisation captured by Wireshark, CEMoC
and the relative error.

Figure 5.12 shows the actual measured flow utilisation captured by Wireshark,

CEMoC and the relative error with four controllers and no extra delay. It can be observed

that the flow utilisation captured by CEMoC is very close to the actual one. In fact,

CeMon reports a maximum absolute error and standard deviation of 9.49% and 1.98%,

-12
-10
-8
-6
-4
-2
0
2
4
6
8
10

30

40

50

60

70

80

90

100

110

120

130

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

Er
ro

 [
%

]

Fl
ow

 U
til

iz
at

io
n

[M
bp

s]

Time [s]

Actual Traffic CeMOC Error [%]

Univ
ers

ity
 of

 M
ala

ya

110

respectively. Artificial delays were introduced in the network to understand the impact of

different numbers of controllers on the accuracy of flow statistical measurements.

 Table 5.7 illustrates the relation between error ratio with different number of

controller and delays. It can be observed that the error ratio increases in different number

of controllers when the delay increases. Thus, the more delay is introduced, the bigger

the error ratio. However, based on Table 5.7 it is concluded that the number of controllers

has a direct relationship to the error ratio, by which the error ratio for all delays decreases

when the number of controllers increases and vice versa.

In order to construct a full traffic matrix for collecting all flow stats from all

controllers, all controllers send the counted flow bytes (stats) and aggregate them into a

UDP file. The controllers then send UDP files to the coordinator. It should be recalled

that all transmissions in in-band deployment take place through the data plan network

links. Therefore, in the worst case a packet in a fat-tree topology may go through five

switches and links, each of which may impose different delay to the packet, until it

reaches the coordinator.

Table 5.8 shows the maximum transferring delay of the final UDP packet from each

controller to the coordinator. Therefore, in the worst case, CEMoC is able to record flow

utilisation without overlapping in the next intervals. However, the corresponding flow

entry was proactively installed to the switches to transfer the UPD packet from the

controllers to the coordinator. A static flow entry from controllers to coordinator was set

in every switch in the network to eliminate the delay introduced in Table 5.8.

Univ
ers

ity
 of

 M
ala

ya

111

Table 5.7: The Relation between error ratio on different controller numbers and
delays.

Error

 Delay [ms]

Error [%]

0 5 10 15 100
 Relative Error with 4 Controllers

Max Absolute Error 9.48E-02 9.46E-02 9.43E-02 9.36E-02 9.00E-02

 Relative Error with 3 Controllers

Max Absolute Error 9.48E-02 9.44E-02 1.01E-01 1.62E-01 4.64E-01
 Relative Error with 2 Controllers

Max Absolute Error 9.47E-02 9.43E-02 1.17E-01 1.95E-01 5.86E-01
 Relative Error with 1 Controllers

Max Absolute Error 9.46E-02 1.00E-01 1.32E-01 2.28E-01 7.08E-01

Table 5.8: Maximum transferring delay of final UDP packet from each controller
to the coordinator.

Network Delay [ms] 0 5 10 15 100
Controller to Coordinator [ms] 14.2 39.7 68.9 159.4 606.6

 Experiment III: Simulation: multiple-controller with in-band deployment

This experiment aims to evaluate the performance of the proposed framework in in-band

network deployment, under a real dataset workload and the 2-tire fat-tree topology

presented in section 5.1.3 and 5.1.4 respectively. Due to the large scale of the experiment

(more than 100,000 flows; the flows’ interarrival time is between 4ms and 40ms for 80%

of the flows) the experiment was conducted in a trace-driven simulator. The experiment

only simulates the event of flow arrival and expiration in the network, and only focuses

on various overheads, as the evaluation of accuracy requires real specifications and

behaviours of the network, i.e. jitter and different latencies. The observed findings of

CeMon (Su et al., 2015) were advertently omitted, because the dataset only provides edge

switches. Therefore, due to the identical behaviour of PA and CeMon when using only

edge switch(es), the finding from PA represents the CeMon as well. In this simulation,

the minimum and maximum number of controllers is set to one and nine respectively. For

Univ
ers

ity
 of

 M
ala

ya

112

better understanding, the findings of the experiment are first depicted with nine

controllers. Then the section summarises the findings from different numbers of

controllers and illustrates them as the total overhead in a 60-second trace. The following

elaborates the performance evaluation of the proposed framework with multiple

controllers and in-band network deployment.

 Communication Overhead

Figure 5.13 explains the simulation results of communication overhead with nine

controllers. Findings from the simulation experiment confirm the results observed in other

experiments. It is observed that CEMoC steadily achieved the best performance in terms

of decreasing communication overhead in all experiments. However, SSR and PA change

places in several points of time. Findings show that PA achieves better performance than

SSR whenever the total number of flows is twice the number of demanded flows. This

behaviour of PA can be found in the seconds 15, 19 and 31 onward of the time axe.

Figure 5.13: Communication overhead with nine controllers

Findings also show a meaningful decrease when the number of controllers increases.

Figure 5.14 explains the total communication overhead with different numbers of

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

bp
s)

Time (s)

SSR

PA

CeMOC

Univ
ers

ity
 of

 M
ala

ya

113

controllers for 60 seconds. As can be seen, there is a sharp fall in all methods when the

number of controllers reaches two. This is because all the edge switches in the second

pod (i.e. nine edge switches in this topology) send their stats by an extra inter-pod link.

This extra inter-pod link decreases the communication overhead by roughly 9%. The

depression declines steadily to the end (9th controller). In Figure 5.14 it can be observed

that in particular CEMoC outperforms PA and SSR by 153% and 140%, respectively.

Figure 5.14: Total communication overhead with nine Controllers for 60 seconds

 Message Interaction Overhead

Figure 5.15 depicts the message interaction overhead from the 60-second trace of the

experiment. Findings from this section confirm the experiments via emulation in the

earlier section and our problem formulation in Chapter 3. As witnessed in Figure 5.15,

CEMoC achieves the optimal number of message interactions by an average of 45

messages per second. PA reports a near optimal number, however, it causes abnormalities

in several periods in the time line (i.e. 0s-6s, 8s, and 10s). This behaviour is related to the

multipart OpenFlow message, as comprehensively explained in Chapter 3. It should be

recalled that the length of the TCP packet in the wire medium cannot exceed 64K.

Therefore, PA shows message number three times more (3x more) than CEMoC in the

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9

C
om

m
un

ic
at

io
n

C
os

t (
K

bp
s)

Number of Controller
SSR PA CeMOC

Univ
ers

ity
 of

 M
ala

ya

114

mentioned time periods, as a result of exceeding packet size from the standard predefined

value 64Kb. Through examining and tracing with Wireshark, it was observed that

whenever the number of flow entries exceeds 453, the reply packet is divided into two or

more messages. SSR results in the highest number of messages by generating three

messages for every single flow in a second. In addition, similar to the emulations, findings

from the simulation show the increase of message interaction at the expense of controller

numbers in which the number of messages is increased when the number of controllers is

increased.

Figure 5.15: Message Interaction overhead with nine Controllers in 60 seconds.

Table 5.9 reports the message interaction overhead with different numbers of

controllers in 60 seconds. According to the table, CEMoC and PA show the biggest

change, while SSR achieves the smallest change with 0.029%. However, the standard

deviation of changes for all methods uses the identical ratio (i.e. 164.31), that indicates

that the same changes ratio to the proportion of total number of message for each method.

It means, the ratio of changes among SSR, PA, and CEMoC are exacly the same, though,

the average of difference is different. In simple words, different numbers of controllers

30

120

480

1920

7680

30720

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

M
es

sa
ge

 O
ve

rh
ea

d

Time (s)

PA

CeMOC

SSR

Univ
ers

ity
 of

 M
ala

ya

115

make no difference to the change ratios. In total, the proposed method showed a 6% and

63% reduction in message interaction overhead over PA and SSR, respectively.

Table 5.9: Total Message interaction overhead with different numbers of
controllers in 60 seconds.

Number of Controller Method
SSR PA CEMoC

1 205476 2220 2220
2 205536 2280 2280
3 205596 2340 2340
4 205656 2400 2400
5 205716 2460 2460
6 205776 2520 2520
7 205836 2580 2580
8 205896 2640 2640
9 205956 2700 2700

Average of difference 0.029% 2.32% 2.50%

STD of changes 164.31 164.31 164.31

 Controller Overhead

Similar to the emulation findings in the controller overhead, the findings from the

simulation demonstrated similar results and behaviour. CEMoC could save overheads up

to 65% and 154% as compared to SSR and PA, respectively. Figure 5.16 plots the

controller overhead in 60 seconds with nine controllers. It is observed that the overhead

trends of all methods remained the same during 60 seconds. As can be seen, CEMoC and

SSR stay in a close range of each other until the end of the experiment. However, PA

starts and finishes the journey relatively far from other methods mentioned above. This

is because PA transfers a huge amount of statistics in a message (every time), which is

the total active flows at the moment, and this vast information needs to be processed;

CEMoC and SSR transfer only the demanded flows to be processed. The observed results

also confirm the finding from the emulation in which there is a negligible reduction in

Univ
ers

ity
 of

 M
ala

ya

116

overhead when the number of controllers reduces. Figure 5.17 depicts the total overhead

during 60 seconds.

Figure 5.16: Controller Overhead with nine controllers in 60 seconds

Figure 5.17: Total controller overhead with different numbers of controllers in 60

seconds.

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

C
on

tro
lle

r O
ve

rh
ea

d
(m

ip
s)

Time (s)

PA

CeMOC

SSR

0

100

200

300

400

500

600

700

800

SSR PA CeMOC

C
on

tro
lle

r O
ve

rh
ea

d
(m

ip
s)

Method
Univ

ers
ity

 of
 M

ala
ya

117

5.3 Statistical Modelling

This section seeks to verify the findings collected from the simulation experiment. To

address this objective, the section applies a statistical analysis model to approximate the

correlation coefficient of the samples (the findings from the emulation and simulation)

and the significance of the differences or similarities. A t-test is used as the statistical

analysis modelling tool to determine the significance of the differences. To reach the aim

of this section, a t-test with equal variances was chosen due to the samples’ limitation (n

< 30) where n is the number of the population in each sample. The main aim of the t-test

is to either accept or reject a given hypothesis (i.e. “There is statistically a significant

difference between two sets”) by a probability value 0 ≤ 𝑝 ≤ 1, a confidence level = 95%

and a significance level 𝛼 ≤ 0.05 which is the most widely used and considered to be

“small enough” (Zar, 2013). Therefore, the given H0 is accepted if the probability p is less

than the significant level 𝛼. Another supportive approach that determines whether to

accept or reject the H0 is through calculating the t-value and comparing it to the critical

value. Thus, if the t-value is higher than the critical one, the H0 is rejected. The employed

critical value in our t-test for paired and unpaired analysis are 2.570 and 2.228,

respectively. A full list of the critical values of the t-distribution is shown in Appendix C,

Table 1. For more simplicity and clarity, the section only presents the test findings from

CEMoC. The difference between the emulation result and the simulation on the message

interaction overhead is the absolute zero value. This is because the findings from the

emulator report the exact amount as simulation. Therefore, the findings of the t-test on

message overheads are not depicted, as the t-test generates errors when the subtraction of

means and score is zero (i.e. error: division by zero). The test findings for other

benchmarking methods are shown in Appendix C.

To verify the correctness of the findings from the simulation, the same input (section

5.2.2, experiment 2) with the given topology and dataset workload (i.e. 4-pod fat-tree and

Univ
ers

ity
 of

 M
ala

ya

118

CBR respectively) was given to the simulator. Thereafter, t-test was used to analyse the

two population means and testing the difference between the samples. In the t-test, two

means (average) are compared and the possibility of differences in two populations is

distinguished. It also notes the significance of the differences. In other words, the t-test

defines if the differences could have occurred by chance. Therefore, the findings from the

simulator and the emulation were analysed to confirm the correctness of the simulator.

To calculate the t-value on the paired and unpaired test, assuming equal variances and

Pearson-correlation ratio (r), equation 5.1, 5.2 and 5.3 are used respectively:

t =
(∑ 𝐷)/𝑁

√∑ 𝐷2−(
(∑ 𝐷)2

𝑁)

(𝑁−1)(𝑁)

 5.1

t = 𝑥1− 𝑥2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 5.2

r = 𝑁 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑥𝑦)

√[𝑁 ∑ 𝑥2− ∑ 𝑥2][𝑁 ∑ 𝑦2− ∑ 𝑦2]

 5.3

where t measures the size of the difference relative to the variation in the sample data.

In other words, it calculates the difference represented in the units of standard error. r is

the Pearson-correlation that measures the correlation between sets of data and defines

how well they are related. Table 5.10 explains the annotations used in mean and variance

equations. Equations 5.4 and 5.5 show the equations of mean and variance respectively:

𝑥 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 5.4

Univ
ers

ity
 of

 M
ala

ya

http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen

119

𝑠2 =
∑(𝑋𝑖− 𝑥)2

𝑁
 5.5

Table 5.10: Annotation in mean and variance equations.

 Annotation Definition
t T-Value
r Pearson Correlation
D difference between matched scores
N number of samples inside the set/number of pair of scores

∑ 𝑥 Sum of x scores

∑ 𝑦 Sum of y scores

𝑥 Mean of the set
𝑠2 Variance of the set

 Communication Overhead

Tables 5.11 and 5.12 explain the analysis of the emulation and simulation findings for

communication overhead of CEMoC in the paired and unpaired t-test.

Table 5.11: Paired t-test Two Sample for Means of communication overhead in
CEMoC

 Simulation Emulation
Mean 246356 246116
Variance 16721510400 16677796147

Observations 6 6

Pearson Correlation 0.99

Hypothesized Mean Difference 0

Degree of freedom 5

t Stat 1.076

P(T<=t) one-tail 0.092

t Critical one-tail 2.015

P(T<=t) two-tail 0.102

t Critical two-tail 2.570

As can be seen in Table 5.11, the t-stat is smaller than the t-critical two-tail value

(1.076 < 2.507). It also reports that the two-tail p-value (0.102) is not less than 𝛼 = 0.05.

Univ
ers

ity
 of

 M
ala

ya

120

Thus, the test fails to reject the null hypothesis (H0). It is concluded that data from two

populations support H0. Therefore, there is no statistically significant difference found

between the two given sets (i.e. emulation and simulation). Moreover, the correlation

value (r) exposes a strong positive relation (0.978) between the two sets.

Table 5.12: Unpaired t-test Two Samples Assuming Equal Variances of
communication overhead in CEMoC

 Simulation Emulation
Mean 246356 246116
Variance 16721510400 16677796147
Observations 6 6
Pooled Variance 16699653274

Hypothesized Mean Difference 0

Degree of freedom 10

t Stat 0.003

P(T<=t) one-tail 0.498

t Critical one-tail 1.812

P(T<=t) two-tail 0.997

t Critical two-tail 2.228

Additionally, the findings from the unpaired t-test in Table 5.12 support the H0 as the

t-stat by 0.003 is smaller than t-critical two-tail value by 2.228. Moreover, the p-value by

0.997 is much higher than the 𝛼 = 0.05. It is therefore concluded that the data from

emulation and simulation are considered equal.

 Controller Overhead

Tables 5.13 and 5.14 explain the analysis of the emulation and simulation findings for

communication overhead of CEMoC in the paired and unpaired t-test.

A similar analysis in communication overhead in section 5.3.1 and 5.3.2 was used to

reject the H0 for this overhead as well.

If t-stat is smaller than the two-tail value, the H0 is not accepted. As can be seen in the

paired test, -0.925 is less than 2.570, and in the unpaired test 0.925 is less than 2.228.

Univ
ers

ity
 of

 M
ala

ya

121

Table 5.13: Paired t-test Two Sample for Means of controller overhead in
CEMoC

Simulation Emulation

Mean 4996 5071
Variance 6881280 7238626.8
Observations 6 6
Pearson Correlation 0.99

Hypothesized Mean Difference 0

Degree of freedom 5

t Stat -0.925

P(T<=t) one-tail 0.198568395

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.397

t Critical two-tail 2.570

Table 5.14: Unpaired t-test Two Samples Assuming Equal Variances of

controller overhead in CEMoC

 Simulation Emulation
Mean 4996 5071
Variance 6881280 7238626.8
Observations 6 6
Pooled Variance 7059953.4

Hypothesized Mean Difference 0

Degree of freedom 10

t Stat -0.048

P(T<=t) one-tail 0.480

t Critical one-tail 1.812

P(T<=t) two-tail 0.961

t Critical two-tail 2.228

If the two-tail p-value is no less than 𝛼 (0.05), it is concluded that data from two

populations support H0. The findings report the two-tail p-value in the paired test is 0.397,

which is greater than 0.05. In the unpaired test it is 0.961, which is not less than 0.05 as

well.

The correlation value reports a positive large value (0.981), which defines a strong and

positive relationship between two sets.

Univ
ers

ity
 of

 M
ala

ya

122

Therefore, it is concluded that there is no statistically significant difference found

between the two given sets, i.e. emulation and simulation.

5.4 Discussion

This section provides a discussion of the results and findings from the extensive

experiments in the previous sections. All findings are discussed and divided into three

overhead categories (i.e. communication, message interaction and controller

overhead).

 Communication overhead

The findings from experiment 1, 2, and 3 were compared on different deployment

models such as out-of-band and in-band. The results showed a significant improvement

of the proposed method (CEMoC) over all benchmarking methods. Regardless of network

deployment, the findings from the experiments show a linear increase in all of the

methods in the proportion of flow numbers in the switch, in which the overhead increases

when the flow numbers increase. CEMoC achieved the best performance as it only

requests demanded flow statistics. From the experiments it can be observed that PA and

CeMon report the same overhead due to requesting all the active flows in the switch.

 The experiments in in-band deployment model were replicated with different numbers

of controllers. A meaningful improvement on overhead from CEMoC was observed when

the number of controller increases. PA performed consistently in both experiment 1 and

2, in which it imposed the highest overheads of all methods.

The results from the simulation in a real dataset confirm the findings from

experiment 2 where CEMoC achieves the best savings in communication overhead.

However, it shows that PA and SSR can perform in a competitive way, with PA

performing better than SSR when the total number of flows in a switch is less than the

Univ
ers

ity
 of

 M
ala

ya

123

number of actual demanded flow times to 2 (total number of flow in switch < (actual

demanded flow x2)).

 Message interaction overhead

The message interaction overhead in the network was also evaluated under different

experiments. The findings from in-band deployment showed that the proposed method

exposes the optimal overhead of message interaction on the network. Although CEMoC

achieves the same number of message interactions as PA, this confirms that other methods

are unable to overcome the proposed method on this overhead. CeMon also performed

like CEMoC and PA in this experiment. It was also observed that the overhead of CEMoC

remains the same in any arbitrary flow number. In general, the proposed method showed

a 63% reduction over CeMon.

In addition, results from the out-of-band deployment model describe same behaviour.

However, CeMon emerged as a suboptimal method when there is more than one switch

for pulling purposes. The proposed method showed the optimal number of message

interactions for all flows, which is the same as the PA result. However, all methods

showed that their overheads increase when the number of controllers increases. The

relation of message interaction overhead to the number of flow has a contrary behaviour

to the communication overhead, where an increase of the number of controller cases a

decrease in the communication overhead.

The results from experiment 3 also confirm the findings from previous experiments

where the overhead of message interaction in the network is increased at the expense

of increasing the number of controllers. It is observed that CeMoC outperforms PA

when the number of messages in a switch is high. As PA requests all messages in a

switch, it revealed suboptimalitywhen the number of flow increases and causes the

Univ
ers

ity
 of

 M
ala

ya

124

reply packets divides to multiple packets. However, CeMoC results in the same

message number when the number of flows is relatively low.

 Controller overhead

Similar to all other overheads, different experiments were evaluated for the overhead

of controllers as well. In out-of-band deployment (experiment 1), the proposed method

reported the highest saving in this overhead. However, similar to communication

overhead and message interaction, PA and CeMon show the same overhead.

In the in-band deployment model (experiment 2 and 3) where multiple controllers were

employed, the proposed method showed a significant saving over all other benchmarking

methods. In total CEMoC performs up to 65% better than SSR. However, the most

significant achievement is the comparison of the proposed method with CeMon and PA,

in which CEMoC outperforms the two mentioned methods by 99% and 126%,

respectively. Moreover, the evaluation of the controller overhead was followed by

comparing the methods with different numbers of controllers; here it showed a negligible

decrease in the total overhead when the number of controllers increases. However, the

findings of multiple controllers show the total overhead on all controllers, where the

overhead is divided by the number of controllers to observe the overhead on each

individual controller.

In addition, the result of the flow measurement from our proposed method in in-

band deployment was captured and shown with different controller numbers and

various imposed delays in the network. It was observed that the error ratio increases

as the number of controllers decreases. This is due to the number of links and switches

in the network. With four controllers in the network, there will be fewer links and

statistics for a switch to reach the corresponding controller. Therefore, the lower the

Univ
ers

ity
 of

 M
ala

ya

125

number of controllers, the more links and switches the statistics go through. The

situation deteriorates when the imposed delay is extended.

 Significance of Evaluation

Beside the main findings, the following lessons can be inferred through evaluation of

the performance in the simulation and emulation, and the analysis and comparison of the

network with different deployment models (i.e., out-of-band and in-band):

• The in-band deployment network model is costly in comparison to the out-of-

band model in terms of the generated overhead by the pulling of statistics of

flows.

• Employing multiple controllers in out-of-band deployment does not have any

impact on the generated overhead.

• Employing multiple controllers can significantly decrease the communication

costs as well as the controller overhead in in-band deployment.

• Using multiple controllers in the network distributes message interaction

among all controllers. However, in total, it increases a negligible overhead on

message interaction in the network.

• Implementing multiple controllers distributes the load on several controllers,

and hence significantly minimises the overhead on each controller. However,

the total overhead is increased by a negligible cost.

• Different network deployment models leave no impact on the overhead

imposed on the controller(s).

• Accuracy of flow statistical measurement is improved when employing

multiple controllers in in-band and out-of-band network deployment.

Univ
ers

ity
 of

 M
ala

ya

126

5.5 Summary

This chapter presented the performance evaluation of the experiments (i.e. emulation

and simulation) of the proposed framework with their corresponding counterparts. The

aim of elaborating the evaluation in different experiments is to explore the unique

objective and significant findings from each experiment. The chapter comprehensively

explained the evaluation setup accompanied by its relative components (i.e. dataset,

topology, performance metrics, and benchmarking methods). It also conducted three

experiments and performed evaluations to demonstrate the outperformance of the

proposed method compared to the state-of-the-art methods, and discussed the findings

and results inside each performance metric. Finally, the chapter performed and explained

a statistical analysis test through paired and unpaired t-tests for verification and validation

of the results from our simulator.

Univ
ers

ity
 of

 M
ala

ya

127

CHAPTER 6: CONCLUSION

This chapter is the epilogue of the research carried out in this study. It summarises the

main findings and the attained research objectives, and highlights the significance of the

proposed method. The chapter also explains the limitations of this study and suggests

future extensions. The chapter is organised as follows:

Section 6.1 discusses the reappraisal of the main findings and research objectives.

Section 6.2 highlights the contribution and achievement of the study. Section 6.3 presents

the limitation of the study. Section 6.4 explains the future directions and possible

extensions.

6.1 Research questions and research objectives

Next generation networks are characterised by their huge scale and the diversity of the

generated traffic. In such networks, various real-time (latency-sensitive) and offline

applications require information on the current state of network traffic and its behaviour.

This necessary requirement cannot be accomplished without enough measurement of data

about individual flows in each part of the network. The main motivation of this thesis is

to address the problems of network traffic flow measurement systems in SDN due to

demanding features for other network applications. In addition, due to the various

implications of measurement systems such as different overheads, accuracy, and being

real-time in SDN, these implications can potentially be seen as a unified multi-objective

framework.

This study aimed to achieve a multi-objective network flow measurement system that

effectively minimises multi-objective costs such as communication, message interaction,

and controller overheads in near real-time, with high accuracy in both centralised and

decentralised controller scenarios in DCN. Section 1.4 details the four research objectives

Univ
ers

ity
 of

 M
ala

ya

128

of this study. Therefore, this section aims to answer the following questions: a) RQ1:

What existing flow measurement systems for networks are there? b) RQ2: How can the

behaviour of SDN flow measurements be formulated? c) RQ3: How can a flow

measurement system be developed in a near real-time and cost-effective manner? d) RQ4:

what is the effectiveness of the proposed framework when compared to existing

approaches?

Objective 1: To study the traditional network traffic measurement and monitoring

approaches and perform a gap analysis review on the state-of-the-art SDN

techniques for network traffic measurement and monitoring.

The first objective is provided to answer RQ1 of this study. To accomplish this

objective, a thorough discussion was first conducted on major representative research in

the area of network traffic measurement. The objective was to broadly review network

traffic monitoring/measurement implications and introduce traditional measurement and

monitoring methods for network traffic. Two major approaches were presented for

measurement/monitoring purposes, namely the active and passive approach, which are

able to accomplish different monitoring tasks. An overview of SDN was presented to

introduced different layers and the architecture alongside the underlying fundamental

concept, to help readers gain an easy and smooth understanding of SDN. Moreover, a

light-weight overview of the original SDN measurement approaches was introduced to

OpenFlow specifications, namely SSR, PA, push-based, and trigger-based. Finally, the

study discussed the state-of-the-art SDN measurement solution and the latest trends in

flow-based network traffic measurement in SDN in detail.

Objective 2: To propose a comprehensive mathematical formulation and analysis on

different costs such as communication overhead, message interaction, and controller

Univ
ers

ity
 of

 M
ala

ya

129

overhead as a multi-objective problem in the context of network traffic flow

measurement.

This objective aimed to address RQ2 to provide a clear understanding of various costs

associated with the measurement of flow, both on the data and control plane side.

Basically, the measurement task imposes overheads on different aspects. These aspects

affect the control plane and data plane at the same time. The severity of overheads may

vary in different network deployment models. In addition, the objective aimed to analyse

the problem that was highlighted in Chapters 1 and 2, and to conduct an in-depth

investigation to show the impact of flow measurement on different aspects of overhead.

In addition, different network deployment models such as out-of-band and in-band were

formulated. This objective focused on three imposed overheads, of which two were

highlighted in the literature review, the communication and message interaction

overheads imposed by pulling flow statistics. It then introduced a new overhead, which

is generated by reading and calculating the measured flows statistics. Finally, a

mathematical explanation was formulated for in-band and out-of-band network

deployments.

Objective 3: To propose a multi-objective flow measurement framework that

effectively minimises the costs and provides near real-time flow statistics in fully

centralised and distributed SDN controllers.

This objective addressed RQ3. It was achieved by designing a multi-objective

framework that effectively reduces different overheads in the data and control plane. The

framework leverages the OpenFlow protocol to provide a real-time active traffic flow

measurement. Since the proposed framework adopts the OpenFlow group table feature,

it is able to optimally define the demanding flows in every switch, and poll the switch to

Univ
ers

ity
 of

 M
ala

ya

130

read demanding flows statistics. In addition, the framework was designed based on

polling edge switches, therefore, it generates a near real-time measurement of flows.

Moreover, it implemented a pulling-based approach which has been proven to be more

accurate as compared to push-based and passive approaches. Finally, the approximation

algorithm eager-greedy was adopted to reduce the complexity of the optimisation

problem of weighted set-cover and the complexity imposed by the brute forced algorithm.

The approximation algorithm assigns a weight for every switch in order to find the

switches with the lowest communication costs to the location of the controller and the

coordinator. It also takes delays into consideration for setting the weight of the switches.

Objective 3: To evaluate the performance of the proposed multi-objective

framework against similar existing state-of-the-art approaches in SDN.

This objective provided the answer to RQ4 by presenting and discussing the result of

the performance evaluation of the proposed framework in detail. First, the evaluation

setup was demonstrated, which consists of a detailed description of the performance

metrics, benchmarking methods, datasets, and topologies. Second, three experiments

were performed, whereby the obtained results from implementing the framework

exhibited a linear and consistent trend. The first two experiments were conducted in an

emulated environment with artificial datasets, as the emulation limits the machine power

and capacity to perform the experiments with a real dataset. Findings from both

emulations showed a linear increase associated with the flow number. Also, it was proven

that the overheads increase in in-band deployment in relation to the number of flows. In

addition, it was understood that deploying multiple controllers affects the overheads,

whereby an increased number of controllers reduces the communication overhead and

increases the message interaction overhead. The last experiment was performed through

a simulator using a real dataset. In addition, a comprehensive discussion exposed the

Univ
ers

ity
 of

 M
ala

ya

131

outperformance of the proposed framework in comparison to other state-of-the-art work.

The findings from this experiment confirm the results obtained in previous experiments.

The findings from all experiments confirm the linearity and consistency of the trend.

Third, the study highlighted statistical modelling for verification of the achieved results

from the simulation experiment. Linear regression was performed on all metrics derived

from the cost factors and compared to prove the identicality with the emulation results

using the t-test. The t-test result showed a significant similarity between the result

obtained from the emulation and the result achieved from the simulator. Finally, a

thorough discussion of all the experiments and results along with the significance and

lessons learnt was presented.

6.2 Achievement of the Study

This study proposed a multi-objective network flow measurement framework in SDN

suitable for datacentre networks. In detail, the main achievements of this study are as

follows:

i. The major strategies used in the design of traffic measurement and monitoring,

namely active and passive approaches, were explored to identify the underlying

common concepts and mechanisms of traffic measurement/monitoring.

Moreover, a comparison between the mechanisms mentioned above was made.

ii. A comprehensive review of the existing solutions and taxonomy of the

approaches in SDN network traffic measurement and monitoring was

presented. This review can be used as a comprehensive tutorial for fellow

researchers who are interested in this topic.

iii. A comprehensive problem formulation and analysis for cost-effective flow

measurement in SDN for in-band and out-of-band network deployment was

Univ
ers

ity
 of

 M
ala

ya

132

performed. This is the first comprehensive mathematical formulation for flow

measurement costs to date.

iv. A fine-grain cost-effective framework in SDN was proposed for DCNs, which

measures network traffic flow in near real-time manner. The extended

proposed framework was presented for a decentralised (multiple) controller

scenario. To the best of the researcher’s knowledge, this work was the first

attempt to design a traffic measurement system for a decentralised controller

scenario.

v. Several rigorous evaluations of the proposed framework were performed in an

emulation environment and simulation. The emulation was done through

Floodlight, a popular java-based SDN controller, to emulate the SDN setting

Mininet was employed.

vi. A precise and trusted simulator was designed and developed for the purpose of

evaluation on a large network scale with the real dataset. The simulator was

tested using statistical modelling/testing and proved to be promising.

vii. Finally, a large public network traffic dataset was adopted from a university

datacentre and converted to excel (.xsl). This dataset can be used by fellow

researchers who are interested in implementing a real dataset and evaluating

their proposed work in simulators.

6.3 Limitations of the study

Individual research typically encounters some limitations in different stages of the

project. Several limitations were faced during the implementation and evaluation of this

study, and some avenues that may have been of interest are explored in this section to

provide future researchers with some lessons and suggestions, in order to enable them to

better manage their work. The limitations of the study can be summarised as follows:

Univ
ers

ity
 of

 M
ala

ya

133

(a) Implementation of a real DCN. The study employs OVS (open vSwitch) to emulate

the behaviour of an SDN switch. As no such switch was available, the

implementation phase was conducted in an emulated environment. Although the

emulation is realistic and very close to real environment behaviour, it still cannot be

considered identical.

(b) End-host shortage. Due to lack of machines in the lab environment, the study

emulates end-hosts connected to the OVS by Linux kernel using Mininet emulator.

In addition, the capacity of virtual links was limited due to hardware limitations, as

virtual links in Linux consume RAM for emulation purposes.

(c) Lack of machine power. Due to the limitation in machine power and hardware

restrictions such as CPU and RAM for large-scale implementation in experiment 2,

the study implements the proposed framework in an instance of Amazon EC2.

(d) Experimental evaluation. The evaluation of the performance metrics is carried out

through emulations. However, mathematical calculations were used for calculating

CPU utilisation (controller overhead), as the CPU workload and instructions (i.e. I/O

and calculation) cannot be separately reported for each thread and task. Although

there are a number of benchmark tools to report CPU utilisation, they cannot report

on each individual thread with separated workloads.

(e) One of the main objectives of the study was to minimise the costs of flow

measurement. However, the study did not address the related costs (overhead)

in the network device as the cost comprises different elements and overheads

in the device such as TCAM, CAM, CPU, and Buffer which is out of scope of

this research. In addition, measuring the overhead on the switch requires the

real device to evaluate its performance. However, this study was implemented

in mininet that is an emulation tool to emulate the behaviour of the network.

Univ
ers

ity
 of

 M
ala

ya

134

6.4 Suggestion for Future Work

Although this study achieved all its defined objectives, it offers a few directions and

suggestions for future research. This section presents possible future research directions

that can be pursued to extend SDN measurements and monitoring systems.

(a) QoE and QoS-based IoT traffic monitoring. As an emerging global internet-based

information architecture, the Internet of Things offers a dynamic global network

infrastructure by embedding intelligence into the environment. This new concept

connects everyday objects (Gubbi et al., 2013), every time and everywhere. Today,

with the ever-increasing volume of data and network traffic, Quality of Experience

(QoE) and Quality of Service (QoS) are the crucial desires in the eyes of internet

service providers (ISP) and datacentres (Robitza et al., 2017). Quality monitoring

and real-time measurements can play a vital role in the first step of providing high-

quality services. In addition, the optimal selection and composition of services is a

crucial requirement for ensuring QoS from the users’ perspective (White et al., 2017).

Real-time monitoring and measurement can be a solution with a high potential to

guarantee this vital requirement.

(b) A real-time measurement and monitoring framework for the reduction of energy

consumption in edge. With the ever-increasing IoT devices and edge services, the

volume of traffic in the edge is increasing exponentially. This massive volume of

traffic requires pervasive and cost-effective monitoring in real-time, as analytical

tasks and applications can be performed on the edge nodes, which can also help to

decrease the energy consumption of datacentres (Patel & Pandya, 2017).

(c) An accurate and real-time DDOS detection and mitigation framework. A sudden

massive amount of traffic targeted to a single node has a catastrophic impact.

Associated service(s) or nodes can also become partially or totally unavailable

(Rebecchi et al., 2017). An accurate and real-time monitoring capability offered by

Univ
ers

ity
 of

 M
ala

ya

135

SDN can effectively detect suspicious traffic (flow/packet-level) and potentially

mitigate the attack. Moreover, by employing the real-time monitoring features

offered by SDN, sophisticated anomalies can be effectively detected in the entire

network (Lee et al., 2017)

Univ
ers

ity
 of

 M
ala

ya

136

REFERENCES

Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2014). A roadmap for traffic
engineering in SDN-OpenFlow networks. Computer Networks, 71, 1-30.

Azodolmolky, S. (2013). Software Defined Networking with OpenFlow: Packt Publishing
Ltd.

Bandi, N., Metwally, A., Agrawal, D., & El Abbadi, A. (2007). Fast data stream
algorithms using associative memories. Paper presented at the Proceedings of the
2007 ACM SIGMOD international conference on Management of data.

Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D., & Trevisan, L. (2002). Counting
distinct elements in a data stream. Paper presented at the International Workshop
on Randomization and Approximation Techniques in Computer Science.

Bari, M. F., Boutaba, R., Esteves, R., Granville, L. Z., Podlesny, M., Rabbani, M. G., . .
. Zhani, M. F. (2013). Data center network virtualization: A survey. IEEE
Communications Surveys & Tutorials, 15(2), 909-928.

Benson, T., Akella, A., & Maltz, D. A. (2010). Network traffic characteristics of data
centers in the wild. Paper presented at the Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., . . . Parulkar, G.
(2014). ONOS: towards an open, distributed SDN OS. Paper presented at the
Proceedings of the third workshop on Hot topics in software defined networking,
Chicago, Illinois, USA.

BigSwitchNetworks. (2016). Floodlight v1.2. from
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/24805419/
Floodlight+v1.2

Botta, A., Dainotti, A., & Pescapé, A. (2012). A tool for the generation of realistic
network workload for emerging networking scenarios. Computer Networks,
56(15), 3531-3547.

Cantieni, G. R., Iannaccone, G., Barakat, C., Diot, C., & Thiran, P. (2006). Reformulating
the monitor placement problem: Optimal network-wide sampling. Paper presented
at the Proceedings of the 2006 ACM CoNEXT conference.

Chang, C.-W., Huang, G., Lin, B., & Chuah, C.-N. (2015). Leisure: Load-balanced
network-wide traffic measurement and monitor placement. IEEE Transactions on
Parallel and Distributed Systems, 26(4), 1059-1070.

Univ
ers

ity
 of

 M
ala

ya

137

Chen, M.-H., Tien, Y.-C., Huang, Y.-T., Chung, I.-H., & Chou, C.-F. (2016). A low-
latency two-tier measurement and control platform for commodity SDN. IEEE
Communications Magazine, 54(9), 98-104.

Chowdhury, S. R., Bari, M. F., Ahmed, R., & Boutaba, R. (2014). Payless: A low cost
network monitoring framework for software defined networks. Paper presented at
the 2014 IEEE Network Operations and Management Symposium (NOMS).

Cisco. Sampled NetFlow [Cisco IOS Software Releases 12.0 S]. from
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html

Claise, B. (2004). Cisco systems NetFlow services export version 9.

Clayman, S., Mamatas, L., & Galis, A. (2016). Efficient management solutions for
software-defined infrastructures. Paper presented at the Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP.

Consortium, O. S. (2014). OpenFlow Switch Specification Version 1.5.0 (Protocol
version 0x06): OpenFlow Networking Foundation.

Cormode, G., & Muthukrishnan, S. (2005). An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1), 58-75.

David Patterson, J. H. (2014). Computer Organization and Design MIPS Edition: The
Hardware/Software Interface (5th ed., pp. 800). USA: Elsevier.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T. V., & Kompella, R. (2013). Towards an
elastic distributed SDN controller. SIGCOMM Comput. Commun. Rev., 43(4), 7-
12.

Duffield, N. (2004). Sampling for Passive Internet Measurement: A Review. JSTOR,
19(3).

Dusi, M., Bifulco, R., Gringoli, F., & Schneider, F. (2014). Reactive logic in software-
defined networking: Measuring flow-table requirements. Paper presented at the
Wireless Communications and Mobile Computing Conference (IWCMC), 2014
International.

El-Azzab, M., Bedhiaf, I. L., Lemieux, Y., & Cherkaoui, O. (2011). Slices isolator for a
virtualized OpenFlow node. Paper presented at the Network Cloud Computing
and Applications (NCCA), 2011 First International Symposium on.

Univ
ers

ity
 of

 M
ala

ya

http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html

138

Erickson, D. (2013). The beacon openflow controller. Paper presented at the Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software defined
networking.

Estan, C., Varghese, G., & Fisk, M. (2003). Bitmap algorithms for counting active flows
on high speed links. Paper presented at the Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement.

Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: an intellectual history
of programmable networks. ACM SIGCOMM Computer Communication Review,
44(2), 87-98.

Fundation, O. N. (2012). Software-defined networking: The new norm for networks. ONF
White Paper, 2, 2.6-6.1.

Gangwal, A., Conti, M., & Gaur, M. S. (2017). Panorama: Real-time bird's eye view of
an OpenFlow network. Paper presented at the Networking, Sensing and Control
(ICNSC), 2017 IEEE 14th International Conference on.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A
vision, architectural elements, and future directions. Future generation computer
systems, 29(7), 1645-1660.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker, S.
(2008). NOX: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review, 38(3), 105-110.

Haleplidis, E., Pentikousis, K., Denazis, S., Salim, J. H., Meyer, D., & Koufopavlou, O.
(2015). Software-defined networking (SDN): Layers and architecture
terminology.

Han, Y., Jeong, T., Yoo, J.-H., & Hong, J. W.-K. (2016). FLAME: Flow level traffic
matrix estimation using poisson shot-noise process for SDN. Paper presented at
the NetSoft Conference and Workshops (NetSoft), 2016 IEEE.

Hu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and openflow:
From concept to implementation. IEEE Communications Surveys & Tutorials,
16(4), 2181-2206.

Huang, G., Lall, A., Chuah, C.-N., & Xu, J. (2009). Uncovering global icebergs in
distributed monitors. Paper presented at the Quality of Service, 2009. IWQoS.
17th International Workshop on.

Univ
ers

ity
 of

 M
ala

ya

139

Iannaccone, G., Diot, C., McAuley, D., Moore, A., Pratt, I., & Rizzo, L. (2004). The
CoMo white paper. Intel Research Cambridge, Tech. Rep. IRCTR-04-017,
September.

IDC. (2016). IDC members., from
https://www/idc.com/getdoc.jsp?containerId=prUS41005016

Izard, R. (2016). Fast-Failover OpenFlow Groups. from
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/How+to+Work+
with+Fast-Failover+OpenFlow+Groups

Jarschel, M., Zinner, T., Höhn, T., & Tran-Gia, P. (2013). On the accuracy of leveraging
SDN for passive network measurements. Paper presented at the
Telecommunication Networks and Applications Conference (ATNAC), 2013
Australasian.

Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P., & Kellerer, W. (2014). Interfaces,
attributes, and use cases: A compass for SDN. IEEE Communications Magazine,
52(6), 210-217.

Jose, L., Yu, M., & Rexford, J. (2011). Online Measurement of Large Traffic Aggregates
on Commodity Switches. Paper presented at the Hot-ICE.

Karakus, M., & Durresi, A. (2017). A survey: Control plane scalability issues and
approaches in Software-Defined Networking (SDN). Computer Networks, 112,
279-293.

Khattak, Z. K., Awais, M., & Iqbal, A. (2014). Performance evaluation of OpenDaylight
SDN controller. Paper presented at the Parallel and Distributed Systems
(ICPADS), 2014 20th IEEE International Conference on.

Khondoker, R., Zaalouk, A., Marx, R., & Bayarou, K. (2014). Feature-based comparison
and selection of Software Defined Networking (SDN) controllers. Paper presented
at the Computer Applications and Information Systems (WCCAIS), 2014 World
Congress on.

Kumar, A., Sung, M., Xu, J. J., & Wang, J. (2004). Data streaming algorithms for
efficient and accurate estimation of flow size distribution. Paper presented at the
ACM SIGMETRICS Performance Evaluation Review.

Kuźniar, M., Perešíni, P., & Kostić, D. (2015). What you need to know about sdn flow
tables. Paper presented at the International Conference on Passive and Active
Network Measurement.

Univ
ers

ity
 of

 M
ala

ya

140

Lee, S., Kim, J., Shin, S., Porras, P., & Yegneswaran, V. (2017). Athena: A Framework
for Scalable Anomaly Detection in Software-Defined Networks. Paper presented
at the Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP
International Conference on.

Lim, C. L., Moffat, A., & Wirth, A. (2014). Lazy and eager approaches for the set cover
problem. Paper presented at the Proceedings of the Thirty-Seventh Australasian
Computer Science Conference - Volume 147, Auckland, New Zealand.

Lin, P., Hart, J., Krishnaswamy, U., Murakami, T., Kobayashi, M., Al-Shabibi, A., . . .
Bi, J. (2013). Seamless interworking of SDN and IP. Paper presented at the ACM
SIGCOMM Computer Communication Review.

Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., & Braverman, V. (2016). One Sketch to
Rule Them All: Rethinking Network Flow Monitoring with UnivMon. Paper
presented at the Proceedings of the 2016 ACM SIGCOMM Conference,
Florianopolis, Brazil.

Malboubi, M., Wang, L., Chuah, C.-N., & Sharma, P. (2014). Intelligent sdn based traffic
(de) aggregation and measurement paradigm (istamp). Paper presented at the
IEEE INFOCOM 2014-IEEE Conference on Computer Communications.

Matt Mathis, J. M. (1996). Diagnosing Internet Congestion with a Transport Layer
Performance Tool. from http://www.isoc.org/inet96/proceedings/d3/d3_2.htm

Mccauley, J. (2014). Pox: A python-based openflow controller.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., . .
. Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 38(2), 69-74.

Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014, 19-19 June 2014). OpenDaylight:
Towards a Model-Driven SDN Controller architecture. Paper presented at the
Proceeding of IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks 2014.

Megyesi, P., Botta, A., Aceto, G., Pescapé, A., & Molnár, S. (2017). Challenges and
solution for measuring available bandwidth in software defined networks.
Computer Communications, 99(Supplement C), 48-61.

Megyesi, P., Botta, A., Aceto, G., Pescapè, A., & Molnár, S. (2016). Available bandwidth
measurement in software defined networks. Paper presented at the Proceedings of
the 31st Annual ACM Symposium on Applied Computing.

Univ
ers

ity
 of

 M
ala

ya

http://www.isoc.org/inet96/proceedings/d3/d3_2.htm

141

Micheel, J., Braun, H.-W., & Graham, I. (2001). Storage and bandwidth requirements for
passive Internet header traces. Paper presented at the Workshop on Network-
Related Data Management, in conjunction with ACM SIGMOD/PODS.

Mininet. (2015). Mininet version 2.2.1. http://mininet.org/overview/ (Version 2.2.1).
Retrieved from http://mininet.org/overview/

Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., Curtis, A. R., & Banerjee, S.
(2010). DevoFlow: cost-effective flow management for high performance
enterprise networks. Paper presented at the Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, Monterey, California.

Mohan, V., Reddy, Y. J., & Kalpana, K. (2011). Active and passive network
measurements: a survey. International Journal of Computer Science and
Information Technologies, 2(4), 1372-1385.

Moshref, M., Yu, M., Govindan, R., & Vahdat, A. (2015). DREAM: dynamic resource
allocation for software-defined measurement. ACM SIGCOMM Computer
Communication Review, 44(4), 419-430.

Naous, J., Erickson, D., Covington, G. A., Appenzeller, G., & McKeown, N. (2008).
Implementing an OpenFlow switch on the NetFPGA platform. Paper presented at
the Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems.

Nascimento, M. R., Rothenberg, C. E., Salvador, M. R., Corrêa, C. N., de Lucena, S. C.,
& Magalhães, M. F. (2011). Virtual routers as a service: the routeflow approach
leveraging software-defined networks. Paper presented at the Proceedings of the
6th International Conference on Future Internet Technologies.

Ng, E., Cai, Z., & Cox, A. (2010). Maestro: A system for scalable openflow control. Rice
University, Houston, TX, USA, TSEN Maestro-Techn. Rep, TR10-08.

OpenvSwitch. (2017). Open vSwitch version 2.5.5. Retrieved 17 Feb, 2017, from
http://openvswitch.org/releases/NEWS-2.5.2

Padhi, R., Unnikrishnan, N., Wang, X., & Balakrishnan, S. (2006). A single network
adaptive critic (SNAC) architecture for optimal control synthesis for a class of
nonlinear systems. Neural Networks, 19(10), 1648-1660.

Panchen, S., Phaal, P., & McKee, N. (2001). InMon corporation's sFlow: A method for
monitoring traffic in switched and routed networks.

Univ
ers

ity
 of

 M
ala

ya

http://mininet.org/overview/
http://mininet.org/overview/
http://openvswitch.org/releases/NEWS-2.5.2

142

Patel, M., & Pandya, A. (2017). Edge Computing: Design a Framework for Monitoring
Performance between Datacenters and Devices of Edge Networks.

Pfaff, B., Lantz, B., & Heller, B. (2009). OpenFlow Switch Specification Version 1.0. 0:
December.

Pfaff, B., Lantz, B., & Heller, B. (2012). OpenFlow Switch Specification Version 1.3. 0:
OpenFlow Networking Foundation.

Phaal, P., & Lavine, M. (2004). sflow version 5. Specification. sFlow. org.

Phaal, P., Panchen, S., & sFlow.org. Packet sampling basics. from
http://www.sflow.org/packetSamplingBasics/index.htm

Rasley, J., Stephens, B., Dixon, C., Rozner, E., Felter, W., Agarwal, K., . . . Fonseca, R.
(2015). Planck: Millisecond-scale monitoring and control for commodity
networks. ACM SIGCOMM Computer Communication Review, 44(4), 407-418.

Rebecchi, F., Boite, J., Nardin, P.-A., Bouet, M., & Conan, V. (2017). Traffic monitoring
and DDoS detection using stateful SDN. Paper presented at the Network
Softwarization (NetSoft), 2017 IEEE Conference on.

Robitza, W., Ahmad, A., Kara, P. A., Atzori, L., Martini, M. G., Raake, A., & Sun, L.
(2017). Challenges of future multimedia QoE monitoring for internet service
providers. Multimedia Tools and Applications, 1-24.

Ros, F. J., & Ruiz, P. M. (2014). Five nines of southbound reliability in software-defined
networks. Paper presented at the Proceedings of the third workshop on Hot topics
in software defined networking.

Schmid, S., & Suomela, J. (2013). Exploiting locality in distributed SDN control. Paper
presented at the Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking.

Schweller, R., Gupta, A., Parsons, E., & Chen, Y. (2004). Reversible sketches for efficient
and accurate change detection over network data streams. Paper presented at the
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement.

SDxCentral. (2016). SDNCentral Exclusive: SDN Market Size Expected to Reach $35B
by 2018. from https://www.sdxcentral.com/articles/announcements/sdn-market-
sizing/2013/04/

Univ
ers

ity
 of

 M
ala

ya

http://www.sflow.org/packetSamplingBasics/index.htm
http://www.sdxcentral.com/articles/announcements/sdn-market-sizing/2013/04/
http://www.sdxcentral.com/articles/announcements/sdn-market-sizing/2013/04/

143

Shahmir Shourmasti, K. (2013). Stochastic switching using openflow. Institutt for
telematikk.

Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., &
Parulkar, G. (2009). Flowvisor: A network virtualization layer. OpenFlow Switch
Consortium, Tech. Rep, 1, 132.

Su, Z., Wang, T., & Hamdi, M. (2017). JOTA: Joint optimization for the task assignment
of sketch-based measurement. Computer Communications, 102, 17-27.

Su, Z., Wang, T., Xia, Y., & Hamdi, M. (2014). FlowCover: Low-cost flow monitoring
scheme in software defined networks. Paper presented at the Global
Communications Conference (GLOBECOM), 2014 IEEE.

Su, Z., Wang, T., Xia, Y., & Hamdi, M. (2015). CeMon: A cost-effective flow monitoring
system in software defined networks. Computer Networks, 92, 101-115.

Suh, J., Kwon, T. T., Dixon, C., Felter, W., & Carter, J. (2014). OpenSample: A low-
latency, sampling-based measurement platform for commodity SDN. Paper
presented at the Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on.

Sun, P., Yu, M., Freedman, M. J., Rexford, J., & Walker, D. (2015). Hone: Joint host-
network traffic management in software-defined networks. Journal of Network
and Systems Management, 23(2), 374-399.

Sünnen, D. (2011). Performance evaluation of openFlow switches. Swiss Federal
Institute of Technology Zurich.

Tootoonchian, A., Ghobadi, M., & Ganjali, Y. (2010). OpenTM: traffic matrix estimator
for OpenFlow networks. Paper presented at the International Conference on
Passive and Active Network Measurement.

Tso, F. P., & Pezaros, D. P. (2013). Baatdaat: Measurement-based flow scheduling for
cloud data centers. Paper presented at the Computers and Communications
(ISCC), 2013 IEEE Symposium on.

Van Adrichem, N. L., Doerr, C., & Kuipers, F. A. (2014). Opennetmon: Network
monitoring in openflow software-defined networks. Paper presented at the 2014
IEEE Network Operations and Management Symposium (NOMS).

White, G., Palade, A., Cabrera, C., & Clarke, S. (2017). Quantitative evaluation of qos
prediction in iot. Paper presented at the Dependable Systems and Networks
Workshop (DSN-W), 2017 47th Annual IEEE/IFIP International Conference on.

Univ
ers

ity
 of

 M
ala

ya

144

Xie, J., Guo, D., Hu, Z., Qu, T., & Lv, P. (2015). Control plane of software defined
networks: A survey. Computer Communications, 67(Supplement C), 1-10.

Xu, H., Yu, Z., Qian, C., Li, X.-Y., & Liu, Z. (2017). Minimizing flow statistics collection
cost of SDN using wildcard requests. Paper presented at the INFOCOM 2017-
IEEE Conference on Computer Communications, IEEE.

Xu, H., Yu, Z., Qian, C., Li, X. Y., & Huang, Z. L. a. L. (2017). Minimizing Flow
Statistics Collection Cost Using Wildcard-Based Requests in SDNs. IEEE/ACM
Transactions on Networking, PP(99), 1-15.

Yang, Z., & Yeung, K. L. (2017). An efficient flow monitoring scheme for SDN networks.
Paper presented at the Electrical and Computer Engineering (CCECE), 2017 IEEE
30th Canadian Conference on.

Yi, K., & Ding, Y. H. (2009, 25-26 April 2009). 32-bit RISC CPU Based on MIPS
Instruction Fetch Module Design. Paper presented at the 2009 International Joint
Conference on Artificial Intelligence.

Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., & Madhyastha, H. V. (2013).
Flowsense: Monitoring network utilization with zero measurement cost. Paper
presented at the International Conference on Passive and Active Network
Measurement.

Yu, M., Jose, L., & Miao, R. (2013). Software Defined Traffic Measurement with
OpenSketch. Paper presented at the Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13).

Yuan, L., Chuah, C.-N., & Mohapatra, P. (2011). ProgME: towards programmable
network measurement. IEEE/ACM Trans. Netw., 19(1), 115-128.

Zander, S., Armitage, G., & Branch, P. (2007). A survey of covert channels and
countermeasures in computer network protocols. IEEE Communications Surveys
& Tutorials, 9(3), 44-57.

Zar, J. H. (2013). Biostatistical Analysis (5th ed.). New Jersey, USA: Pearson.

Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., & Wilkes, J. (2013). CPI 2:
CPU performance isolation for shared compute clusters. Paper presented at the
Proceedings of the 8th ACM European Conference on Computer Systems.

Zhou, W., Li, L., Luo, M., & Chou, W. (2014). REST API design patterns for SDN
northbound API. Paper presented at the Advanced Information Networking and
Applications Workshops (WAINA), 2014 28th International Conference on.

Univ
ers

ity
 of

 M
ala

ya

145

 LIST OF PUBLICATION

Journal Papers:

Paper 1:

Tahaei, H., Salleh, R., Khan, S., Izard, R., Choo, K.-K. R., & Anuar, N. B. (2017). A
multi-objective software defined network traffic measurement. Measurement, 95, 317-
327. (ISI Indexed Q1, Impact Factor 2.359)

Paper 2:

Tahaei, H., Salleh, R. B., Ab Razak, M. F., Ko, K., & Anuar, N. B. (2018). Cost Effective
Network Flow Measurement for Software Defined Networks: A Distributed Controller
Scenario. IEEE Access, 6, 5182-5198. (ISI Indexed Q1, Impact Factor 3.244)

Univ
ers

ity
 of

 M
ala

ya

