
MULTI-OBJECTIVE FLOW MEASUREMENT IN 
SOFTWARE-DEFINED NETWORKS (SDN) FOR 

DATACENTER 

 

 

 

 

HAMID TAHAEI 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 
 

 2018

Univ
ers

ity
 of

 M
ala

ya



MULTI-OBJECTIVE FLOW MEASUREMENT 
IN SOFTWARE-DEFINED NETWORKS (SDN) 

FOR DATACENTER 
 
 
 
 

HAMID TAHAEI 

 
 
 
 

THESIS SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 
FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 
 
 
 
 
 

2018 

Univ
ers

ity
 of

 M
ala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Hamid Tahaei   

Matric No: WHA130058

Name of Degree: Doctor of Philosophy 

Title of Thesis: Multi-objective Flow Measurement in Software-Defined Networks 
(SDN) for Datacenter 
Field of Study: Network & Security (Computer Science) 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 
(2) This Work is original; 
(3) Any use of any work in which copyright exists was done by way of fair dealing 

and for permitted purposes and any excerpt or extract from, or reference to or 
reproduction of any copyright work has been disclosed expressly and 
sufficiently and the title of the Work and its authorship have been 
acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that the 
making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every right in the copyright to this Work to the 
University of Malaya (“UM”), who henceforth shall be owner of the copyright 
in this Work and that any reproduction or use in any form or by any means 
whatsoever is prohibited without the written consent of UM having been first 
had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed any 
copyright whether intentionally or otherwise, I may be subject to legal action 
or any other action as may be determined by UM. 

Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

Witness’s Signature  Date: 

Name: 

Designation: 

Univ
ers

ity
 of

 M
ala

ya



iii 

MULTI-OBJECTIVE FLOW MEASUREMENT IN SOFTWARE-DEFINED 

NETWORKS (SDN) FOR DATACENTER 

ABSTRACT 

Network traffic is growing exponentially due to the ever-increasing number of users, 

datacentres, Internet of Things (IoT) devices, and cloud-like applications/services. 

Network traffic monitoring and measurement has become a vital task and a crucial 

requirement for Datacentre Networks (DCNs) due to providing fine-grained and timely-

based traffic flow information for network applications and management. Traditional 

network monitoring and measurement techniques either impose extra overhead into the 

network, or are inaccurate. In reducing the limitations in the traditional flow management 

systems, the most recent measurement methods elevate the accuracy and alleviate cost 

issues by applying an emerging technology known as Software-Defined Networking 

(SDN). SDN has emerged as an evolutionary paradigm in Datacentre Networks (DCN). 

It enables flexibility by separating the data from the control plane and centralising 

network decision making, and offers innovation in the network through network 

programmability. Despite the multitude of efforts proposed for traffic measurement in 

SDN, current solutions still incur high cost and limitations. These costs are seen as a 

multi-objective problem as it involves different overheads in the data and control plane 

such as controller overhead, communication overhead, and message interaction overhead. 

The problem is even more complex in different network deployments, “in-band and out-

of-band”. Furthermore, the distinguishing property of SDN is the centralised controller 

architecture, which results in significant managerial benefits. Due to several scalability 

and availability issues of a centralised model, such as a single point of failure and network 

bottleneck, the controller has been made into a decentralised model that is physically 

distributed. However, little effort has been devoted to measurement techniques in SDN 

distributed controller architecture. Moreover, the imposed costs of flow measurement in 
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distributed controller architecture are still an issue that remains unsolved. To address the 

aforementioned problems, a multi-objective and cost-effective network traffic flow 

measurement framework was proposed for DCNs. The proposed framework implements 

SDN capabilities to provide a fine-grained and accurate flow measurement that 

effectively minimises multi-objective costs for centralised and decentralised SDN 

controllers in different network deployments. The proposed framework is rigorously 

evaluated through several experiments, including emulation and simulation. The 

verification of both experiments is made with current state-of-the-art algorithms. To 

validate the simulation results, an available dataset from a public datacentre was used. 

The simulation results were then verified using statistical modelling and t-tests. The 

results obtained from the various experiments show the effectiveness of the proposed 

framework and algorithm.   

Keywords: traffic Measurement, software defined network measurement, network 

monitoring, datacenter traffic measurement and monitoring. 
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PENGUKURAN ALIRAN PELBAGAI OBJEKTIF DALAM RANGKAIAN 

PERISIAN YANG DITETAPKAN (SDN) BAGI PUSAT DATA 

ABSTRAK 

Jumlah trafik rangkaian meningkat dengan pesat disebabkan oleh peningkatan 

bilangan pengguna, pusat-pusat data, peranti-peranti berhubung internet Internet of 

Things (IOT), dan aplikasi perkhidmatan komputeran awan. Pemantauan dan pengukuran 

trafik rangkaian menjadi keperluan penting kepada Rangkaian Pusat Data Datacentre 

Networks (DCNs) dalam menyediakan maklumat aliran trafik yang baik dan tepat pada 

masanya untuk pengurusan dan aplikasi rangkaian. Teknik pemantauan dan pengukuran 

rangkaian sedia ada adalah kurang tepat atau menambah overhed ke dalam rangkaian. 

Bagi mengurangkan batasan aliran sistem pengurusan sedia ada, kaedah pengukuran 

terkini dapat menambah ketepatan dan mengurangkan masalah kos dengan menggunakan 

teknologi baru yang dikenali sebagai Rangkaian Perisian yang Ditetapkan Software-

Defined Networking (SDN). SDN telah muncul sebagai evolusi paradigma kepada 

Rangkaian Pusat Data (DCN). Ia memberi fleksibiliti dengan memisahkan data dari aras 

kawalan dan memusatkan keputusan rangkaian serta menawarkan inovasi dalam 

rangkaian melalui pemprograman rangkaian. Walaupun banyak usaha yang 

mencadangkan penggunaan SDN terhadap pengukuran trafik, penyelesaian semasa masih 

melaporkan adanya batasan terhadap kos. Masalah kos ini dilihat sebagai masalah 

pelbagai objektif kerana ia melibatkan overhed yang berbeza dalam data dan aras kawalan 

seperti pengawal overhed, komunikasi overhed, dan interaksi mesej overhed. Masalah ini 

menjadi lebih rumit apabila pelaksanaan pada rangkaian yang berbeza seperti “in-band” 

dan “out-of-band”. Tambahan pula, ciri-ciri yang membezakan SDN terletak pada seni 

bina pengawalan berpusat yang memberi kelebihan kepada unit pengurusan. Oleh kerana 

beberapa masalah skalabiliti dan ketersediaan pada model berpusat seperti satu titik 

kegagalan dan kesesakan rangkaian, unit pengawalan telah direka menjadi model tidak 
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berpusat yang teragih secara fizikal. Walau bagaimanapun, hanya sedikit usaha yang 

memberi penumpuan terhadap teknik pengukuran dengan menggunakan seni bina 

pengawalan teragih SDN. Selain itu, kos aliran pengukuran yang dikenakan dalam seni 

bina pengawalan teragih masih merupakan masalah yang belum dapat diselesaikan. 

Untuk menangani masalah tersebut, rangka kerja pengukuran aliran trafik rangkaian 

berbilang objektif dan kos efektif dicadangkan untuk DCN. Rangka kerja yang 

dicadangkan ini menggunakan keupayaan SDN untuk menyediakan pengukuran aliran 

yang tepat dan berkesan mengurangkan kos berbilang objektif bagi pengawalan SDN 

berpusat dan tidak berpusat di dalam rangkaian yang berlainan. Rangka kerja yang 

dicadangkan dinilai dengan teliti melalui beberapa eksperimen, termasuk emulasi dan 

simulasi. Pengesahan kedua-dua eksperimen dibuat dengan algoritma terkini. Untuk 

mengesahkan keputusan simulasi, set data yang tersedia dari pusat data awam digunakan. 

Keputusan simulasi kemudiannya disahkan menggunakan model statistik dan ujian-t. 

Hasil yang diperoleh dari beberapa eksperimen menunjukkan keberkesanan kerangka 

kerja dan algoritma yang dicadangkan. 

Kata kunci: pengukuran aliran, pengukuran rangkaian perisian yang ditetapkan, 

pemantauan rangkaian, pengukuran dan pemantauan pusat data trafik. 
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CHAPTER 1: INTRODUCTION 

With the rapid growth of datacentres and the continuous thrive of cloud-like services 

and the Internet of Things (IoT), a traffic measurement system is seen as a necessary 

requirement for Datacentre Networks (DCN). 

Network traffic measurement is a demanding task, and an essential part of a Network 

Management System (NMS). Network administrators are constantly striving to maintain 

smooth operation of their networks. If a network were to be down, even for a short period 

of time, productivity within a company would decline, and in the case of public service 

departments, the ability to provide essential services would be compromised. Therefore, 

in order to be proactive rather than reactive, administrators need to monitor traffic 

movement and performance throughout the network and verify the correctness of states 

within the network. In other words, the purpose of network traffic measurement is to 

observe and qualify what is happening in the network traffic with different sizes of 

magnifying glasses (Mohan et al., 2011). 

Likewise, a DCN highly requires accurate measurements of traffic flows in order to 

effectively monitor the traffic volume in real-time manner. Similarly, a per-flow traffic 

measurement system can be used to monitor micro-details of every flow in different 

network layers. Such a system is also known as a fine-grained monitoring system. The 

fine-grained traffic measurement system in turn needs to include necessary tasks such as 

Traffic Matrix (TM) estimation, elephant flow detection, and link utilisation to have 

insight into the network traffic. These measurement tasks are utilized in a wide range of 

applications, such as network planning, anomaly detection, billing, load-balancing, traffic 

engineering and security (Chang et al., 2015). 
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The chapter is organised as follows. Section 1.1. presents the background of the study. 

Section 1.2 explains the key motivation to carry out the study. In section 1.3, the research 

gap and the statement of the problem are presented. Subsequently, the objectives of the 

study and the scope are presented in section 1.4 and 1.5, respectively. Section 1.6 

elaborates the methodology of the proposed research. The chapter concludes with 

providing the thesis layout in section 1.7. 

1.1 Background 

Traditional flow measurement systems, such as NetFlow (Claise, 2004) and sFlow 

(Phaal & Lavine, 2004), apply packet sampling approaches to collect information about 

packets in the network and analyse this information to infer flow-level statistical 

measurement. They have either a low accuracy or a high deployment cost; moreover they 

are energy-intensive as they consume more resources (M. Yu et al., 2013). An example 

of former problems is inaccurate measurement as the result of sampling, because of small 

flows being missed or multiple monitoring nodes beside the SDN flow path sampling 

similar packets (Jarschel et al., 2013). An example of the latter is the deployment of 

NetFlow or a similar sampling-based approach, which requires setting up collectors and 

analysers. Moreover, enabling NetFlow in the routers may degrade the packet forwarding 

performance (Cantieni et al., 2006). Furthermore, NetFlow and similar tools such as 

Sflow, Jflow, IPFIX, and PRTG are hardware-based features that need to be configured 

to be set for each individual interface on the physical device (switch/router). However, 

recent measurement methods alleviate the issues of traditional measurement systems such 

as accuracy and cost, through applying the emerging technology known as Software-

Defined Networking (SDN). 

The revolutionary SDN architecture has transformed the traditional network design to 

a potentially flexible and well-managed next-generation of networks that address 

Univ
ers

ity
 of

 M
ala

ya



3 

problems such as traffic management, analysis, measurement and many others. SDN 

architecture decouples network control and forwarding functions, enabling network 

control to become directly programmable. It also abstracts the underlying infrastructure, 

such as switches and routers, from applications and network services. Such abstraction 

provides full visibility of network entities, including devices and traffic. In SDN, a central 

controller collects flow statistics by either directly requesting or passively receiving them 

from switches. In the direct request approach, which is known as pull-based, the 

controller makes a request by sending a request packet to the switch, and then receives 

flow information from the switch. In the passive approach known as push-based, the 

controller receives flow information upon expiration of the corresponding flows’ entry 

time-out. The statistics reach the central controller and are used by on-demand 

applications in the network such as routing, load balancing and many others. This 

eliminates the sophisticated process of sampling approach for flow level measurement 

used in traditional methods. However, current methods that apply the push-based 

approach are inefficient for timely-based flow measurement systems and incur inaccurate 

flow measurement, as the controller only receives statistical information when a flow 

entry timeout is reached (Chowdhury et al., 2014). Moreover, implementing the pull-

based approach imposes massive costs to the controller's channel bandwidth and 

processing delay for a single SDN controller, as the SDN controller frequently sends 

requests and receives replies (H. Xu et al., 2017). 

According to the data from Stanford Computer Science and Electrical Engineering; 

the study in (Naous et al., 2008), with 10 different DCNs, the number of active flows is 

up to 10,000 with 5,500 active hosts and the average number of active flows at a switch 

in any time of the second is at most 10,000 flows, respectively. Due to the large-scale 

DCN traffic and infrastructure, current solutions that implement both of the 

aforementioned approaches above are still insufficient to deliver on-demand requirements 
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of DCNs to satisfy a low-cost and timely-basis flow measurement system. The flows in 

the examined DCNs are generally less than 10Kb in size, and the majority lasts less than 

a few hundred milliseconds. In addition, new flows can arrive in a fast sequence (10μs) 

of each other, resulting in a rapid arrival rates. Hence, with regard to this massive scale 

of DCNs, there are still rooms in SDN that necessitate designing a scalable, cost-effective 

and accurate timely-basis flow measurement for DCNs. 

1.2 Motivation 

According to a report by the SDxCentral (SDxCentral, 2016), the SDN market is 

expected to grow from $1.5 billion in 2013 to $35.6bilion in 2018. Likewise, the 

International Data Corporation (IDC) (IDC, 2016) recently forecasted that the control 

layer/virtualization software market as a single segment of the overall SDN market is 

expected to reach $2.4 billion in 2020. Moreover, the IDC expects that the control 

layer/virtualization software and SDN applications will observe the fastest growth world-

wide, which will be worth approximately $5.9 billion in 2020. Furthermore, SDN is the 

most rapidly involving landscape, and DCN (cloud computing) is the primary driver of 

the vast rise in SDN, which expect a market worth more than $12.5 billion in 2020. 

However, the market and industry observers are still struggling with understanding the 

potential strength of SDN in traffic measurement, and are apprehensive about the 

sophistication in a large-scale network. 

Unlike traditional networks, the network intelligence is logically centralised in an SDN 

controller that represents the core of the SDN architecture. Traffic measurement in SDN 

is entirely dependent on the central controller, and that must always be well-managed for 

two main reasons: (i) the centralised controller would always remain a hotspot 

(bottleneck) if the traffic measurement system imposes extra overhead. Therefore, the 

functionality of the centralised controller may overwhelm; (ii) the accuracy of the SDN 
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traffic measurement system would decrease significantly if the system was obliged to 

reduce the overhead. 

Despite the promising architecture of SDN and the simplicity offered by this 

technology, a traffic measurement system was not considered as part of the initial design. 

Currently there is no built-in traffic measurement system for a large-scale DCN. Recent 

proposed approaches either present a general mechanism, which is insufficient for a 

massive size of network with different configuration, or have limitations in terms of 

identifying various costs imposed by their functionality. 

1.3 Statement of the Problem 

Next generation DCNs are characterised by their huge scale and the diversity of the 

generated traffic. One of the crucial tasks and a fundamental requirement for managing 

these large networks is an accurate per-flow-basis traffic measurement mechanism to 

monitor traffic volume. 

Traditional flow measurement methods in DCN have shown to be costly and 

inaccurate (Su et al., 2015). Even in SDN, current solutions reported limitations based on 

the different approaches they implement. For example, a pull-based approach is accurate 

but imposes extra overheads (costs) in the network (Su et al., 2015). Several efforts have 

been devoted to overcome different overheads imposed by the pull-based measurement 

approach, such as those relating to the data and control plane. An example for data plane 

overheads is communication, which is the amount of network traffic volume incurred by 

the flow measurement, whereas the number of message interactions and the controller 

overhead are considered control plane overheads. In contrast, the push-based approach is 

light-weight in terms of overhead, however, it is incapable of guaranteeing the accuracy 

(H. Xu et al., 2017). Therefore, the advantage of one approach is achieved at the expense 

of the other. The situation becomes worse in in-band network deployment when 
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monitoring and routing traffic shares bandwidth along the same link. This results in a 

delay of flow statistics to be reached at the central controller because normal network 

traffic may disturb the flow statistics traffic. 

In addition, the distinguishing property of SDN is the centralised controller 

architecture, which results in significant managerial benefits. However, this property 

represents a single point of failure. Moreover, like any other centralised system, a fully 

physically SDN centralised controller is inadequate and introduces issues of scalability, 

reliability and a performance bottleneck (Dixit et al., 2013). To overcome these obstacles, 

industry and academia proposed decentralised (multiple) SDN controller designs by 

which the central controller can be physically distributed but logically centralised (Xie et 

al., 2015). However, applying a decentralised controller may result in several unexpected 

performance degradations, such as accuracy, and various overheads in the network and 

SDN controller. Furthermore, only one controller in the master mode is able to control 

the switch(es) every time (Pfaff et al., 2012), therefore, selecting a controller for polling 

switches has an extreme effect on measurement tasks in terms of the costs and accuracy 

of statistical measurements. In addition, different deployment (i.e. out-of-band and in-

band network deployment) of such a scenario has major effects on several factors in the 

network such as node-to-controller latencies, network availability and performance 

metrics (Karakus & Durresi, 2017). Therefore, selecting a master controller among 

multiple controllers fetching flow statistical information plays a vital role in the accuracy 

of real-time monitoring as well as costs. Furthermore, the synchronisation of multiple 

controllers in the network causes extra overhead and delay in transferring flow statistics, 

which may lead the measurement system to being inaccurate or costly. 

Therefore, in order to address the absence of a fine-grained traffic measurement system 

in a decentralised SDN controller scenario, and to overcome the primary challenge of the 
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flow measurement system (i.e. minimising different overheads while maintaining 

accurate and near real-time flow measurement as a single problem which can be seen as 

a multi-objective problem), it is imperative to design and develop a fine-grain cost-

effective multi-objective measurement system that supports near real-time flow 

measurement with high accuracy. 

1.4 Statement of the Objectives 

The aim of this study is to propose a multi-objective framework for a near real-time 

fine-grained flow measurement system that can be implemented in a fully centralised or 

distributed SDN controller design. In order to achieve this aim, the following objectives 

need to be taken into the consideration. 

(a) To study the traditional network traffic measurement and monitoring approaches 

and perform a gap analysis review on the state-of-the-art SDN techniques for 

network traffic measurement and monitoring. 

(b) To propose a comprehensive mathematical formulation and analysis on different 

costs such as communication overhead, message interaction, and controller 

overhead as a multi-objective problem in the context of network traffic flow 

measurement. 

(c) To propose a multi-objective flow measurement framework that effectively 

minimises the costs and provides near real-time flow statistics in a fully 

centralised and distributed SDN controller. 

(d) To evaluate the performance of the proposed multi-objective framework against 

similar existing state-of-the-art approaches in SDN. 

1.5 Scope of the Research 

Flow measurement systems are widely implemented in DCNs. For example, they are 

used as input for other network applications such as Congestion Detection System (CDS), 

Load Balancing (LB), Traffic Engineering (TE) and many others. Flow measurement 
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systems can also be used in different types of networks as well as ISPs, Enterprises, 

Private Clouds and others. Existing flow measurement solutions mainly deal with the 

costs and accuracy associated with the measurement of flow statistics. The costs are 

defined as various overheads imposed by measuring flow statistics in the network and 

controller. A research contribution highly depends on the defined aim and the predefined 

target for implementation. This study focuses on traffic flow measurement in DCNs with 

centralised and decentralised (multiple) controllers to provide inputs for the 

aforementioned demands. The following presents the scope and limitation of this study: 

• This study focuses on SDN flow measurement in DCN with the aim of minimising 

multi-objective costs on a timely basis and with an approach that is close to real-time. 

• The problem formulation of this study is carried out in out-of-band and in-band 

network deployment. In out-of-band configuration, signalling requires a dedicated 

network between the controllers and switches, whereas in in-band deployment, 

transmission of the control and data message takes place in a shared network 

bandwidth. 

• The proposed framework is evaluated in different fat-tree topologies as fat-tree is the 

most common and a standard topology for datacentre networks.   

• The implemented SDN protocol in this study is OpenFlow version 1.3. Currently, 

OpenFlow version 1.3 is the most prevalent and the de facto standard for the 

commodity switches. However, the implementation and proposed system can be 

implemented on further version of OpenFlow.  

• The performance metric in this study is costs, which is defined as various overheads 

caused by generating extra traffic and a calculation process to measure flow statistics. 

Therefore, the metrics are different overheads such as 1) network overhead, which is 

well-known as communication overhead, that is the traffic imposed by statistical 

measurement; 2) message interaction overhead, which is the number of messages 
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required to traverse the network for measurement purpose; and 3) controller 

overhead, which is the controller workload (CPU) imposed by a calculation of 

statistics. 

• The evaluation of the multiple-controller design takes place in the EC2 Amazon 

cloud as the experiment required a large CPU and memory power. 

• Due to the large scale of the evaluation and limited machine power, the evaluation of 

the proposed framework with the real dataset is carried out through a trace-driven 

simulator. However, sufficient statistical modelling is carried out to prove the 

correctness of the outcomes. 

• As the experiment is through emulation, different network latencies are artificially 

generated for the accuracy-related evaluation. 

1.6 Methodology 

In setting out to achieve the stated goal of this study, the research methodology is 

carried out in four phases, as shown in Figure 1.1. 

 
First phase: Identifying the research gap. This stage is explored in Chapter 2, where it 

starts by presenting information about traditional network traffic monitoring and 

measurement approaches. It is then followed by presenting a comprehensive background 

of SDN and an introduction of the original measurement approach proposed by 

OpenFlow. The phase ends by investigating and categorising the current trends and 

methods of traffic measurement systems in software-defined networking. The following 

steps are involved in this phase: (i) investigating different categories of traffic 

measurement, (ii) reviewing the current state-of-the-art SDN traffic measurement 

approach, (iii) analysing the current solutions and observing their weaknesses and 

strengths (gap analysis) (thereafter, the problem statements and research objectives are 

defined), and (iv) collecting an appropriate network traffic dataset from a valid source. 
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Figure 1.1: Proposed Research Methodology 

Second phase: Problem analysis and formulation. This phase is accomplished in 

Chapter 3, where the problem is analysed, formulated and shown in mathematical 

notation. Moreover, a mathematical analysis is performed to clarify the problem in 

different network configurations. Finally, the phase presents a light-weight experiment to 

reveal the problem experimentally and disclose it through Wireshark captured packets. 

Third phase: Design and development. Chapter 4 elaborates on this phase by sketching 

the initial solution and developing the final design. Firstly, the phase proposes a multi-

objective design for network flow measurement for the centralised SDN controller. 

Secondly, a new design is presented to decentralised (multiple) SDN controller. Finally, 

the two proposed designs are formed as a unified framework. 
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Fourth phase: Chapter 5 presents the implementation, evaluation, conclusion and 

future work. This phase starts by implementing the proposed framework in the lab 

environment; subsequently the large-scale implementation takes place on EC2 Amazon 

cloud. This is followed by extensive experiments to evaluate the performance of the 

proposed framework. The performance evaluation is based on several metrics against the 

state-of-the-art solutions in SDN measurement. The findings from the simulation are 

verified using extensive statistical tests. Finally, the conclusion is presented and future 

works are highlighted. 

1.7 Layout of the Thesis 

This thesis comprises six chapters. Every chapter of the thesis is divided into three 

sections; (i) introduction that indicates the objective of the chapter; (ii) body in which the 

corresponding materials of the objective are described; and (iii) conclusion to summarise 

and assess the objective to be achieved of the corresponding chapter with a linkage to the 

next chapter. The remainder of the thesis is organised as follows. 

Chapter 2 aims to review existing research in the field of traffic measurement and 

monitoring systems. It begins with an overview of traditional models of traffic 

measurement approaches, presenting their pros and cons. The chapter is followed by a 

comprehensive overview of the SDN architecture, describing different layers and their 

responsibilities. A brief background of the native approaches for traffic measurement 

proposed by different OpenFlow specification versions is also presented. The chapter 

ends with a comprehensive review and classification of existing efforts devoted to SDN 

traffic measurement and monitoring. 

Chapter 3 presents an analysis of the problem to show the impact of different 

approaches on the traffic measurement outcome. The problem is analysed in 
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mathematical notation, and a light-weight mathematical analysis is performed to clarify 

the problem. 

Chapter 4 elaborates on the design of the proposed framework in different network 

model deployments and SDN controller models. Besides, syntax algorithms and 

flowchart diagram are illustrated to show a detailed process and the interaction between 

the client and the proposed flow measurement framework. 

Chapter 5 presents the implementation and evaluation of the proposed framework. It 

first explains the experimental setup and the components involved in the extensive 

experiments. It then explains the findings and compares the proposed framework to 

similar state-of-the-art methods by means of a comprehensive analysis. Furthermore, a 

statistical modelling test to verify the findings is presented. The chapter concludes with a 

comprehensive discussion of the findings. 

Chapter 6 discusses the outcomes of the study and how the objectives have been 

achieved. Subsequently the limitations and delimitations of the proposed mechanism are 

discussed. The chapter ends with suggestions for future research. 

In addition, this thesis has several appendices that includes supportive tables and 

figures pertaining to the formulations, experiment topologies, and finding verifications. 

 Univ
ers

ity
 of

 M
ala

ya



13 

CHAPTER 2: LITERATURE REVIEW 

Network traffic measurement is a key stone of network management tasks (Yuan et 

al., 2011). Various network management tasks benefit directly from a traffic measurement 

system. These tasks vary from Traffic Engineering (TE), Load Balancing (LB) and 

routing decision-making to security and anomaly detections. As such, understanding low-

level network transitions is critical for network operators and managers to identify how 

well their networks are running and consequently what types of services can be offered 

to the customers based on their network capacities. Therefore, observing and quantifying 

what is happening in the network is the main purpose of a network measurement and 

monitoring system, and can be referred to as network visibility. The visibility of a network 

can be monitored with different size of magnifying glasses which is referred to as 

granularity, by which all the microdetails of the traffic inside a network can be observed. 

The granularity varies in accordance with the applied approach. For example, monitoring 

flow-based network traffic is basically a coarse-grained measurement, which can be more 

fine-grained by specifying a type of traffic flow. 

This chapter aims to conduct a thorough discussion on the major representative 

research in the area of network traffic measurement. It also provides a comprehensive 

review on flow-based network traffic measurement approaches in SDN. The chapter starts 

by giving a broad overview of network traffic monitoring/measurement implications, and 

by introducing traditional measurement and monitoring methods for network traffic in 

section 2.1. It then presents an overview of Software-Defined Network (SDN), and 

introduces different layers and the architecture alongside the underlying fundamental 

concept, to help readers gain an easy and smooth understanding of SDN. Section 2.3 

continues with a light-weight overview of the original SDN measurement approaches 

introduced by OpenFlow specification 1.3 and 1.5. In section 2.4, the chapter discusses 
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the state-of-the-art SDN measurement solution and the latest trends in flow-based 

network traffic measurement in SDN in detail. 

2.1 Traditional Measurement and Monitoring Architecture 

The goal of measuring and monitoring traffic is to observe and quantify the interaction 

and transaction in a network. In other words, it discloses what is happening in the 

underlying traffic of the network by actively or passively gathering data related to the 

traffic. This information offers supreme opportunities for both end-users and providers. 

Table 2.1 describes the information offered to different parties through network 

measurements (Mohan et al., 2011). 

Table 2.1: Offered information by network measurement for different parties 

 Goal Measure 
Provider (e.g., 

DCN, ISP and 

etc) 

• Capacity planning 

• Operations 

• Value-added service (e.g., customer 

reports) 

• Usage-based billing 

• performance tuning 

• Planning 

• Bandwidth utilisation 

• Packet per second 

• Round trip time (RTT) 

• Packet loss 

• Reachability 

• Routing diagnosis 

End-users • Monitor performance 

• Plan upgrades 

• Negotiate service contracts 

• Optimise content delivery 

• Usage policing 

• Bandwidth availability 

• Response time 

• Packet loss 

• Connection rate 

• Service quality 

• Host performance 

 

Table 2.1 presents various tasks of a measurement system for two parties such as 

provider and end-user, and describes the goal and measurement criteria for each party. 

For example, transferring the maximum amount of data in the minimum time might be 
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interesting for providers. Usage billing is one of the most important aspects of a provider’s 

career that emerge out from network traffic measurement. In addition, datacentre /ISP 

providers might benefit from upgrading their plans and offers to customer (end-users). 

From the end-users’ point of view, a persistent connection with full bandwidth might be 

a crucial requirement. 

Network measurement is broadly categorised into two main categories, namely passive 

and active measurement. Below these two categories and their usage, along with the 

advantages and disadvantages are described. 

 Passive Measurement 

Passive network measurement records the existing network traffic and analyses data 

by using extra hardware and devices such as link splitters/hubs. This approach passively 

listens to the network traffic in two ways, either by a) duplicating the traffic on each 

link/interface (i.e. switch or router interface) and sending it to a collector or analyser, or 

b) reading “switches/routers” buffer. Figure 2.1 shows an example of a passive network 

measurement schema. Passive network measurements are commonly collected in four 

ways: (1) polling management information base (MIB) data from routers, (2) packet 

monitoring, (3) flow monitoring and (4) sampling. 

 

Figure 2.1: Example of passive network measurement schema 
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 MIBs and SNMP Statistics 

MIB is a database in which traffic statistics of the network are retained. The statistics 

in MIB are coarse-grained and can be queried by routers. MIB-11 is a standardised 

version of MIB that is available in most of the network elements. MIB-II offers traffic 

statistics such as transmitted packets, byte counters at interface and counters of packets, 

and bytes lost. However, these statistics are highly aggregated and cannot be considered 

as fine-grained network statistics. SNMP (Case et al., 1990), a simple network 

management protocol, is used for polling the routers for recovering (querying) these 

information. However, to prevent performance degradation of network devices and any 

impairs, the SNMP statistics are commonly polled every five minutes, although polling 

SNMP from routers even in intervals of a few seconds is claimed to not impair routers’ 

performance (Case et al., 1990). Remote Network Monitoring (RMON) (Waldbusser, 

2006), is another standardised protocol of MIB that was designed for remote monitoring. 

Network devices such as routers can record and query traffic statistics and network 

conditions using RMON by configuring a remote agent inside the devices. The remote 

agent provides network traffic information and conditions such as captured packets, 

events, filters, and raises alarms based on some predefined thresholds. However, the 

implementations of RMON are shown to be limited to low speed interfaces, as its 

adaptability and the various range of task makes it complex and unsuitable to continually 

measure and export detailed traffic data. 

 Packet Monitoring 

Packet monitoring is accomplished by duplicating a stream of packets from the 

interface(s) of the network devices. Thereafter, different processes such as selecting, 

storing, analysing and/or exporting various information are performed on these duplicated 

packets. There are three approaches to packet monitoring: (1) monitoring the duplicated 

physical signal on a separated interface. Some hardware such as optical splitters can copy 
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signals on a medium and bring them to another interface to monitor the signals that carry 

packets; (2) monitoring packets of the traffic on a shared medium; (3) attaching devices 

for monitoring traffic packets that have been duplicated on a separate interface through a 

router/switch. 

However, the main shortcoming of packet monitoring is the resource constraint. Due 

to the heavy traffic volume and full line rates of high speed links, monitoring packets 

seem unsuitable with the current resources. A common solution to overcome this issue is 

to restrict packet monitoring to some initial number of bytes in the packets to control data 

bandwidth at the monitor (Micheel et al., 2001). This is reasonable solution, since the IP 

header and other protocol header information is located at or near the start of the packet. 

Even so, widespread continuous collection, transmission and storage of unreduced 

packets have been infeasible for a number of years due to the immense volumes of data 

relative to the capacity of the system to collect them. Collection of full packet header 

traces is feasible only for limited durations. Instead, for applications that require 

continuous monitoring over an extended period, it is common to perform analysis at or 

near the monitor by forming flow records or other aggregate statistics, or more general 

stream querying functionality (Iannaccone et al., 2004). Collection of packet IP and 

transport headers is commonly performed using tcp-dump or its variant windump. 

Depending on the traffic load and processing power at the measurement host, these tools 

may also be able to capture parts of packet payload. 

Several factors limit the deployment of packet monitoring e.g. equipment (devices), 

availability and administrative cost. A more recent approach to packet monitoring is to 

embed the passive measurement functionality within network elements such as routers 

and switches. Once network elements are equipped with packet monitoring capabilities, 

the measurement of packets can become ubiquitous. However, due to a lack of additional 
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computational resources for packet measurement, network elements such as routers and 

switches may face restrictions in performing measurement analysis. To address these 

restrictions, some form of data reduction is required, both in the selection of information 

of packets and in the selection of packets to be reported on. As an example, some packet 

sampling capabilities are becoming available on routers, such as InMon sFlow (Panchen 

et al., 2001). Packet selection capabilities for network elements was standardised by 

packet sampling (PSAMP) by the Working Group of the Internet Engineering Task Force 

(IETF). The main goal of IETF is to standardise a set of packet selection capabilities that 

are simple enough to be ubiquitously deployed, yet rich enough to support the need of 

measurement-based network management system application. 

 Flow Monitoring 

A flow of network traffic is a set of packets with a common property, known as the 

flow key, that is seen within a period of time. Many routers construct and export the 

summary of statistics of the packet flows that pass through them. Ideally, a flow record is 

assumed to be a summarising set of packets that arises in the network through some 

higher-level transaction, for example, a remote terminal session or a Web-page download. 

In practice, packets are formed as a flow depends on the algorithm used by the router to 

assign a packet to a flow. Flow key is specified by fields from the different packet header 

fields, such as the IP source and destination address and TCP/UDP port numbers. Flows 

in which the key is specified by individual values of these fields are often called raw 

flows, as opposed to aggregate flows in which the key is specified by a range of these 

quantities. Flow statistics are created as follows. A well-known flow monitoring tool is 

Netflow (Claise, 2004), that was originally developed by Cisco to provide a way to collect 

statistics about individual IP flows in a data network. In NetFlow, each switch or router, 

maintains a flow cache that tracks flow statistics for each flow, usually identified by 5-

tuple (source and destination IP address, source and destination TCP/UDP port, and IP 
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protocol number) and type of service. As each packet arrives, its header fields are checked 

to see if it matches an existing entry in the flow cache. If it does, then the flow cache entry 

is updated appropriately, i.e., by incrementing the packet and byte counts. If the flow is 

not already present in the flow cache, a new entry in the flow cache is created. NetFlow 

has four policies to decide when to send the flow record to a NetFlow collector: (1) when 

a TCP packet is seen with a FIN or RST flag indicating flow completion, (2) when a flow 

idle timeout expires, (3) when a hard timeout fires indicating that the flow has been 

tracked for γ seconds regardless of whether it is still sending traffic, and (iv) when the 

flow cache is full and an entry must be evicted. When any of these four conditions hold, 

the switch sends a NetFlow record including flow statistics to a collector for further 

analysis.  

However, Implementing NetFlow in hardware requires a dedicated Content-

Addressable Memory (CAM) to track this information at line-rate. This hardware is not 

found in all switches and support for NetFlow is chiefly found in Cisco products. Further, 

NetFlow timeouts are specified at second granularity and in practice many 

implementations do not allow for values less than 30 seconds (Suh et al., 2014).  

 Sampling 

Sampling is another way of passive measurement that can significantly reduce the 

amount of data imposed by the measurement method. It can be used when a full analysis 

of network traffic is not required. In this approach, a few packets are chosen as a sample 

of a probabilistic traffic. However, since sampling is a probabilistic monitoring approach, 

an error ratio is expected. As an example of sampling tool, Imon sFlow (Panchen et al., 

2001), (Phaal & Lavine, 2004) aims to provide fine-grained network measurements 

without requiring per-flow state at switches. Instead it relies on two forms of sampling: 

packet sampling and port counter sampling. For packet sampling, the switch captures one 

Univ
ers

ity
 of

 M
ala

ya



20 

out of every N packet on each input port. It then immediately forwards the sampled 

packet’s header encapsulated with metadata to a central collector. The metadata include 

the sampling rate, the switch ID, the timestamp at the time of capture, and forwarding 

information such as input and output port numbers. It is worth mentioning here that N can 

be configured per-port and needs not be the same for all ports. 

The rate of samples produced by sFlow is not constant; it is equal to the packet rate on 

the port divided by the sampling rate. Since the packet rate varies dramatically based on 

network load and packet size, the rate of samples also varies. Note that a packet passing 

through multiple switches is eligible to be sampled by every switch along the path. If a 

flow passes through k switches, combining the samples from those switches gives an 

effective factor of k increase in the sampling rate. From the gathered samples, the 

collector can probabilistically infer a number of flow statistics, i.e., it can estimate the 

number of packets and bytes in each flow by simply multiplying the number of sampled 

bytes and packets by the sample rate, N (Phaal et al.). This approach is called simple 

scaling and is an unbiased estimator for the actual number of bytes and packets sent by 

the flow. The technique is also referred to as Maximum Likelihood Estimation (MLE) by 

which it estimates the byte and packet counts of the flow. 

This simple scaling approach has the limitation that it requires a large number of 

samples to provide accurate estimates of the true flow byte and packet counts. The 

expected relative error is inversely proportional to the square root of the number of 

samples, s, gathered from that flow. In particular, the expected error in percent can be 

estimated as shown in equation 2-1 (Phaal et al.). 

Percent Error = ≤ 196 × √
1

𝑆
 2-1 
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An analysis of real datacentre workloads by Benson et al (Benson et al., 2010) found 

that an average of 3,000 packets and 60 flows arrive at each top-of-rack switch in any 

given 100ms window. This means the average flow has 50 packets in a 100ms window. 

Even if all 50 packets from a given flow are sampled, it can only estimate the flow’s 

actual rate with approximately 30% error. In practice with realistic sampling rates, even 

this is optimistic. Using the maximum likelihood estimation approach, there are only two 

ways to improve accuracy: (1) increase the sampling rate and/or (2) increase the sampling 

period (Suh et al., 2014).  

However, increasing the sampling rate is difficult. The sample rate peaks at between 

300 and 350 samples per second. It is believed that this limit is a consequence of the 

switch’s control CPU being overwhelmed. With a limit of 350 samples per second, the 

expected number of samples for a given flow in a 100ms time window that samples from 

60 flows is less than one. While newer switches may provide faster control CPUs, it seems 

likely that it will be infeasible to get enough sFlow samples in a short period, i.e., 100 ms, 

to provide an accurate estimate of the flow throughput for the foreseeable future (Suh et 

al., 2014). 

Also, Netflow introduced a new version called “Sampled NetFlow” (Cisco), mode that 

produces NetFlow records based on sampling 1 in N packets that traverse a switch rather 

than every packet. However, the samples are still applied to the records in the flow cache 

and records are still sent according to the same policy. Thus, Sampled NetFlow incurs the 

same coarse-grained timeouts that make NetFlow unsuitable for low-latency monitoring. 

 Active Measurement 

In active measurement, probe packets are continuously sent across network paths 

through which the end-to-end performance properties of the network can be monitored. 

In other words, this measurement approach generates additional traffic to monitor and 
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measure the network properties. Active measurement requires careful planning before 

deployment in the network, as the bandwidth reserved for the probe packets is limited to 

less than five percent of the path’s total capacity (Mohan et al., 2011). This is the case in 

most continuous SLA-measurements, meaning the test traffic and customer traffic share 

the same bandwidth. Therefore, the extra traffic generated by this approach may disturb 

the normal network traffic and cause congestion/saturation and packet-loss in the 

network. Active measurement is used for different ranges of network monitoring purposes 

such as packet-loss, round trip time, one-way-delay, end-to-end connectivity and 

available bandwidth detection. 

However, since probes can be launched from any accessible host, this approach is well-

suited for end-to-end performance measurement. End-to-end packet loss can be inferred 

from gaps in probe sequence numbers observed at the destination, while end-to-end delay 

is determined by comparing time stamps placed in each probe by source and destination. 

Packet content is of interest insofar as it influences performance characteristics such as 

different treatment by routers of packets based on their IP header fields, i.e., the type of 

service field.  Figure 2.2 shows an example of active measurement schema. 

Unlike passive measurement, active measurements do not require huge amounts of 

storage space and they can be used to measure things that are infeasible by using passive 

measurements. Also, when using active probing, there are no privacy issues since the data 

used does not contain any private information. All active probe packets are artificial, i.e. 

they are generated on demand and thus they usually contain only random bits as payload. 

The example presented in Figure 2.2 shows how active probing can be used to measure 

the response time of a web server. A measurement device or a software agent installed on 

a normal PC sends web page requests across a network and records the response time. 
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The most well-known active measurement tools are probably traceroute and ping which 

are built in to most operating systems.  

 

Figure 2.2: Example of active network measurement 

These tools such as ping and traceroute allow users to measure roundtrip performance 

from a host without requiring privileged access to routers in the network interior. 

Although ping and traceroute require the destination to respond to Internet Control 

Message Protocol (ICMP) packets, an ability which may be administratively disabled. 

Also, bulk throughput can be estimated using the treno tool (Matt Mathis, 1996), which 

creates a probe stream that conforms to the dynamics of TCP (Duffield, 2004). 

 Passive Measurement vs Active Measurement 

Active and passive measurements produce different kinds of information and the 

results do not necessarily correlate well. A more complete picture of the health of a 

network can be gained by combining the results from both active and passive 

measurements that is referred to as hybrid measurements. Table 2.2 shows the main 

difference of active and passive measurement. 
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Table 2.2: Difference between passive and active measurement 

 Active Measurement Passive Measurement 
Capture points  ✓ 

Generate additional traffic ✓  
Accuracy  ✓ 

Planning and deigning 
before deployment 

✓  

Huge storage  ✓ 
Same administration 

domain and permission 
 ✓ 

Extra hardware  ✓ 
Extra software/agent  ✓ 

 

As shown in table 2.2, passive measurement is bounded to the points in the network 

for measurement purpose. Therefore, it is best suited to the situations where the capture 

points can be freely selected. This is true in situations where the whole network is owned 

and operated by a single organisation, i.e., corporate premises networks. This allows 

traffic to be captured from any point along the path from the sender to the receiver. In 

addition, passive measurements send captured traffic for further analysis to third party 

devices which needs huge storage capacity. Moreover, extra hardware and agents are 

required to infer and analyse the information captured by passive measurement. In 

situations where it is infeasible to select capture points freely, active measurements must 

be used. This is often the case when measuring delay performance of a VPN that is carried 

over multiple ISPs. 

Active measurements generate additional traffics by sending probes through the 

networks. It can be made over a network path which are not controlled by the network 

(Mohan et al., 2011). For example, the ping tool can be used from diverse network with 

different administration domain and permission. On the other hand, passive measurement 

requires the same administration domain and permission. When it comes to accuracy of 

the measurements, passive methods are often more accurate. For example, packet loss can 
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be measured very accurately by monitoring router buffers along the network path. Also, 

available bandwidth can be accurately measured by monitoring link usage on routers. 

Also, there are a number of statistical challenges in sampling and analyzing network 

measurements: 

• The majority of available data already have been sampled during collection. For the 

reasons described in the previous section, raw unsampled data are increasingly difficult 

to come by, so it is natural to ask, what does the sampled data tells us about the original 

network traffic?  

• Implementations of sample designs may be limited by technology and resources. 

Technological constraints may limit the ability to use the sample design that is ideal 

from the purely statistical point of view. Equipment vendors may implement different 

realisations that approximate the ideal. What are the ramifications for statistical 

analysis and how do the results of analysis depend on the implementation details? 

• Measurements themselves travel from the observation point (i.e., a router in the 

network) through a number of subsystems to the eventual data repository, possibly 

with some preprocessing or aggregation on the way. Each stage in the journey presents 

an opportunity for sampling. At which stage is sampling best performed? 

• Best choice of sample design depends on the traffic characteristics. Experimental 

studies show that network traffic exhibits dependence and rate fluctuations over 

multiple time scales, leading to heavy-tailed distributions for some traffic statistics. 

Sample design needs to take account of such behavior, for example, to control 

estimation variance. 

• The best choice of sample design depends on the statistics needed by applications. 

There is no general agreement on which set of traffic statistics is most useful for 

network management. Whereas it is possible to optimise the sample design with 

respect to estimation of a given set of statistics, the design may be suboptimal for 
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another set of statistics that could play an important role for some future application. 

For this reason, analyzing the trade-offs between statistical efficiency and flexibility 

is an important task for sample design. 

In reducing the limitation in the traditional flow management systems mentioned 

above, the most recent measurement methods elevate the accuracy and alleviate the cost 

(overheads such as generating probes in active approach and traffic duplication in passive 

approach) issues by applying the emerging technology known as Software Defined 

Networking (SDN). In the next section, a comprehensive overview of SDN is given 

followed by the State-of-the-art measurement in SDN.  

2.2 Overview of the SDN Architecture 

Software-Defined Networking (SDN), is a programming approach that supports 

decoupling of the control and forwarding plane (Haleplidis et al., 2015). OpenFlow (OF) 

(McKeown et al., 2008) is the first implementation of SDN; it was initiated in 2008 as a 

project at Stanford University by Professor Nick McKeown who put forward the concept 

of SDN (Haleplidis et al., 2015). In the same year, ACM SIGCOMM published a paper 

titled "OpenFlow: Enabling Innovation in Campus Networks" (McKeown et al., 2008). 

This paper introduced the concept of OpenFlow in detail. In December 2009, the first 

version of OpenFlow specification 1.0 was released for use in commercial products. In 

March 2011, Professor Nick McKeown et al. were again responsible for the inception and 

establishment of the Open Networking Foundation (ONF), which focused on the 

development of SDN architecture. In April 2012, ONF released a white paper on SDN 

titled “Software-Defined Networking: The New Norm for Networks” (Fundation, 2012), 

where the three-layer SDN architecture was introduced and gained widespread 

recognition in industry and academia. Although SDN is not restricted to OpenFlow, other 

control plane decoupling mechanisms existed before OpenFlow. OpenFlow is often 

considered the standard communication protocol to configure and monitor switches in 
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SDNs. Figure 2.3 shows the SDN layer architecture. The ONF constitutes of six core 

organisations, namely Google, Facebook, Verizon, Deutsche Telekom, Microsoft, and 

Yahoo, and has currently reached more than 100 members with several versions of OF 

being released under ONF such as 1.1, 1.2, 1.3, 1.4 and 1.5. 

 

Figure 2.3: SDN layer architecture 
 

The OpenFlow concept is no longer just a research model that can remain within the 

boundaries of academia, but has been rapidly moved to the production environment. In 

April 2012, Google announced that its backbone network has been fully operational in 

OpenFlow, with 10Gbps network links located in 12 data centres around the world. After 

the implementation of SDN, the utilisation of the WAN lines has increased from 30% to 

near saturation. Later in April 2013, big companies such as Cisco, IBM, Microsoft, Big 

Switch, HP and Red Hat worked together to develop SDN applications and established 
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the OpenDaylight (Medved et al., 2014) controller, which is an industrial-grade open 

source SDN controller. 

 SDN Architecture 

The SDN architecture (Bozakov & Sander, 2013) consists of three main components: 

(1) SDN application plane in which all network applications are executed; (2) SDN 

controller, which is called the control plane; and (3) SDN devices (switch, routers), which 

refer to the data plane. The main feature of the SDN architecture is that the controller and 

data layer are decoupled and abstracted from each other. In addition, programmability is 

a key feature that enables users to develop their own applications at the application layer 

using a northbound interface that provides a programmable API and high-level policy 

applications and services. Moreover, the southbound interface provides standard APIs 

that facilitate the communication between the controller and the switch via OpenFlow 

protocol. The next section discusses the SDN architecture components in detail. 

 Application Plane 

The application plane is also known as application layer. It consists of various network 

application services (Feamster et al., 2014) that run on top of the SDN controller. It 

interacts with the controller through the northbound API interface. These application 

services can be used to configure the flows to be forwarded based on the changes in the 

network. For example, load balancing application distributes the traffic across multiple 

servers or paths according to the current load status. SDN applications communicate with 

the SDN controller via APIs to manipulate network information. These APIs depend on 

the controller itself, i.e.  on whether the controller provided reaches APIs that enable 

developers to design their applications. Usually most of the open source and commercial 

controllers provide REST-FUL-API (Zhou et al., 2014) that can easily be enabled to use 

any language. 
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 Northbound Interfaces (NBI) 

NBI (Zhou et al., 2014) is a layer that sits between the SDN controller and high-level 

services and applications to enable an exchange of information between the controller 

and network applications. Each controller provides an API interface to allow the user to 

interact with the lower level details of network functions. For example, controllers such 

as OpenDaylight, Floodlight, and Ryu define their own APIs that depend on the 

programming language deployed to extend the controller functionalities, but most of them 

provide REST-API. Therefore, the Open Networking Foundation (ONF) founded a NBI 

working group that aims to develop standards for the interface that can be used by all 

controllers. Recently a number of domain languages such as Frenetic and Pyretic have 

been introduced to abstract the inner details of the controller and the switch. 

 Control Plane 

SDN controller is a network operating system (Clayman et al., 2016) that views a 

comprehensive network topology and manages OpenFlow switch via a secure 

communication channel. It is responsible for managing, controlling, and manipulating 

flow tables (Kuźniar et al., 2015) in the switch. SDN controller communicates with two 

interfaces, a southbound and a northbound interface. The northbound interface provides 

programmable API that interacts with the application layer, while the southbound 

interface communicates with the data layer via a secured channel. A programmable API 

(Jarschel et al., 2014) provides an abstract view of the network and delivers specific 

network functions in order to fulfil the network operator’s needs. Server messages are 

interchanged between the controller and data layers via a southbound interface for 

establishing a connection and retrieving information. For example, SDN Controller 

manages the forwarding table for each switch based on the header of the packetin message 

that is sent from the switch. The controller then replies to this message by sending 

“PacketOut” that informs the switch on how to deal with this packet based on the network 
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policy. SDN supports two modes of deploying a controller, centralised mode whereas one 

controller can manage the entire network, and distributed mode where two or more 

controllers control the whole network. Each controller, called the domain controller, is 

responsible for managing a number of switches and shares the network information with 

the other controller. Another mode of distributed controller (Schmid & Suomela, 2013) 

is the master/slave mode where the slave controller serves as a backup to the master 

controller in case of any failure. Two metrics are taken into account when measuring a 

controller’s performance: flow setup time and the number of flows per second that the 

controller can handle. These metrics have a strong influence on the deployment of 

additional SDN controllers. To date, different types of SDN (compatible) controllers have 

been developed. Table 2.3 presents some popular SDN controllers with corresponding 

brief descriptions. 

Table 2.3: The SDN Controller and Description 

SDN Controller Open 
Source 

Language Description 

NOX (Gude et al., 
2008) 

✓ C++, Python The first proposed introduced 
controller for OpenFlow to support 

fast-asynchronous IO.   
POX (Mccauley, 

2014) 
✓ Python Propose better performance over 

NOX.  
Maestro (Ng et al., 

2010) 
✓ Java Presents abstraction view of related 

state of the network and group into 
subset. 

Floodlight 
(BigSwitchNetworks, 

2016) 

✓ Java Manages OpenFlow and non-
OpenFlow protocols.  

Beacon (Erickson, 
2013) 

✓ Java Presents a cross-platform and 
modular based controller that 

supports event-based and thread 
operation. 

OpenDayLight 
(Medved et al., 2014) 

✓ Java It deploys OSGi framework and 
provide REST API having weak 

consistency. 
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Table 2.3, continued 

Trema (Khattak et 
al., 2014) 

✓ Ruby, C Presents a programming framework 
that users can develop and test 

OpenFlow controller on a laptop. 
RouteFlow 

(Nascimento et al., 
2011) 

✓ C++ Presents virtualized IP routing over 
OpenFlow hardware. 

Ryu (Khondoker et 
al., 2014) 

✓ Python Supports different version of 
OpenFlow and integrates with 

open-stack, building virtual 
network without VLAN 

FlowVisor 
(Sherwood et al., 

2009) 

✓ C Special OpenFlow controller for 
network virtualization 

SNAC (Padhi et al., 
2006) 

 C++ Based on NOX-0.4 to manage 
network, configure devices, and 

different event monitoring 
Helios  C Provides shell programming to 

perform integrated experiments. 
ONOS (Berde et al., 

2014) 
✓ Java Building networks for service 

providers with performance, scale-
out design and high availability.  

 

 Southbound Interfaces (SBI) 

SBI (Ros & Ruiz, 2014) enable the SDN controller to manipulate the behaviour of the 

data plane and make changes according to real-time demands and needs. The main 

function of SBI is to facilitate communication between a controller and a network switch 

(both physical and virtual) so that the switch can discover network topology, define 

network flows and implement requests relayed to it via Standard API. Several standards 

are available such as DevoFlow, OF-Config and Cisco's OpFlex. Cisco OpFlex is the 

most popular standardised southbound API for OpenFlow. 

 Data Plane 

The data layer consists of a set of networking equipment (such as switches, routers, 

and middlebox), known as OpenFlow switches, which communicate to formulate a single 
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network. The OpenFlow switch is responsible for capturing, manipulating, and matching 

packets against flow table entries. The main function of the SDN switch is to process the 

transit traffic based on the controller’s policy, which decides what to do with packets 

headed to an ingress interface. It manages a number of flow tables, and each flow entry 

is associated with a set of instructions or actions that change a packet. When an incoming 

packet matches the rule in the flow entry, an action is required. The action might be 

forwarding a packet to a specified port or dropping the packet. OpenFlow involves two 

types of actions: required and optional (Shahmir Shourmasti, 2013). A required action 

must be supported in switches, whereas optional action is set based on the network 

requirements and could be a query by an OpenFlow controller. In addition, the OpenFlow 

switch supports multiple flow tables and a different group table that sometimes refers to 

an OpenFlow pipeline (El-Azzab et al., 2011), in which a packet interacts with these flow 

tables. There are two types of SDN switches, pure (OpenFlow-only) and hybrid 

(OpenFlow-enabled) (Azodolmolky, 2013). Pure OpenFlow switches have no legacy 

features or onboard control. These switches completely rely on the controller to forward 

decisions. Hybrid switches support OpenFlow as well as traditional operation and 

protocols. There are two approaches to manage flow tables in OpenFlow specification, 

Proactive Flow (Lin et al., 2013) in which the controller sets up flows in advance, and 

Reactive Flow (Dusi et al., 2014), where the controller responds to packetin events and 

dynamically updates the flow table. 

2.3 Background in SDN network traffic measurement 

In OpenFlow, the monitoring task is accredited by the controller that is connected to 

all switches via a secure channel interface called the southbound interface. The secure 

channel is established over a TCP connection between the controller and the switch. The 

controller accumulates the real-time flow statistics from the corresponding switches, and 

combines the raw data to deliver interfaces for upper-layer applications. When a switch 
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receives the first packet of a new flow in the network, it first checks its flow table to find 

a match for the flow. Then the flow is forwarded according to the corresponding flow 

entry of the flow table. In the case of a table miss, when there is no match for a flow, the 

switch forward the first packet header to the OpenFlow controller by a packet_in message. 

The controller processes the packet header and takes further actions such as setting up the 

routing path. The controller instructs the corresponding switches along the path to enable 

a flow by a packet_out message. It is worth mentioning here that OpenFlow specification 

version 1.0 proposes twelve fields to match. However, the newest specification, version 

1.5.1 at the time of writing this thesis, introduces 44 match fields. 

According to OpenFlow specification 1.0 (Pfaff et al., 2009), a naive approach to 

obtain the flow statistics in the network is to query them from the switch through the 

controller using a single stat-request called Single Flow Request (SSR). This approach is 

also well-known as pull-based approach and widely used in the literature. This way, fine-

grained per-flow information about a predefined individual active flow is requested with 

the “ofp_flow_stats_request” stats request type. Figure 2.4 shows the structure of a flow 

statistic request. 

 

Figure 2.4: Structure of Flow Statistic Request (Pfaff et al., 2012) 
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The predefined active flow is queried based on the exact match of several fields such 

as input switch port, source/destination address, etc. In OpenFlow specification 1.0, there 

are twelve flow match fields as shown in Figure 2.5. However, the number of flow match 

fields in OpenFlow specification 1.3 (Pfaff et al., 2012) is forty. Flow information along 

with its statistics is sent to the controller by the relative corresponding switch. Figure 2.6 

shows the structure of a flow reply message. To query each active flow every time, two 

messages are transferred in the network; one is a request message from controller to 

switch and one is a reply message from switch to controller. 

 

Figure 2.5: OpenFlow Flow Match Table 

 

Figure 2.6: Structure of Flow Reply Message (Pfaff et al., 2012) 

Another approach to receive flow statistics is to request all the active flows in the flow 

table of a switch. This strategy can fall under the pull-based approach, as it queries flows 

from the controller. In this approach, a request message is sent to the target switch without 

specifying a particular match. In other words, the request message set the flow match as 
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a wildcard that as be defined by “ALL” in the flow match. Therefore, the reply message 

contains all the active flows in the switch’s flow table. This approach is referred to in the 

literature as polling all “PA”. 

The third approach is known as push-based approach, in which the controller receives 

reports and statistics of each active flow from devices. Each switch sends the statistics of 

a flow to the controller whenever the flow’s time-out is reached, which means the flow 

entry is expired. This approach reduces the overhead considerably as it eliminates the 

needs for requesting each flow record, and thus saves on resource utilisation in devices 

as well as on network overhead. However, the main drawback of the push-based approach 

is that the controller is not sent flow reports and statistics before time-out entry. Therefore, 

the approach is neither able to meet the requirements of a system for scheduling purposes, 

nor those for timely-based monitoring and measurement. 

In OpenFlow specification version 1.5 (Consortium, 2014), a new push-based approach 

was introduced later to retrieve flow statistics by triggering one or several thresholds. 

This approach was proposed to reduce the imposed overheads by polling flow entry from 

switch. The mechanism relies on the predefined thresholds, by automatically sending 

statistics to the controller whenever the thresholds are triggered. However, the approach 

can neither be implemented as fine-grained nor as timely-based measurement. Also, it 

can introduce more overheads if the predefined thresholds are too small, or miss timely-

based flow measurement for light-weight flows if the threshold is too big.  

2.4 State-of-the-art SDN Measurement Solution: A complete overview 

Next generation networks are characterised by their huge scale and the diversity of the 

generated traffic. It is not an easy task to predict the needed traffic measurement 

characteristics in such networks without sufficient measurement data about individual 

components in each part of the network. As discussed in previous sections, traditional 
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traffic measurement implements two approaches, namely active and passive strategies for 

monitoring/measurement purposes. However, these approaches are insufficient for next 

generation networks, where the traffic changes dynamically and its volume increases 

continuously. On this huge scale, the network management application can play a critical 

role in avoiding unexpected dilemmas. Several SDN solutions have been introduced to 

address the limitations and sophistications of traditional network traffic measurement 

approaches mentioned earlier in section 2.2, by efficiently utilising the flexibility of SDN 

to offer programmable interfaces to attain fine-grained measurements of network flows. 

Existing works present solutions for traffic monitoring/measurement with different aims 

such as (a) flow measurement, (b) delay measurement (Round Trip Time), (c) packet-

loss, (d) TM estimation, and (e) available bandwidth detection. These studies 

implemented their proposed solution with various techniques such as Single flow Statistic 

Request (SSR) known as per-flow polling, Polling All (PA) approach, which is also 

known as per-switch polling request, the combination of SSR with PA, and wildcarding 

rules and flow match. However, existing studies that either propose passive or active 

measurement methods can be broadly categorised into three main streams. 

These approaches mostly focus on flow-based for timely-based monitoring and 

measurement in the network. This section presents a comprehensive overview of existing 

SDN monitoring and measurement approaches. Figure 2.7 depicts the classification of 

SDN monitoring and measurement approaches. Univ
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Figure 2.7: Classification of SDN Monitoring and Measurement Challenges 

The first branch targets the trade-off between accuracy and the overhead implications 

of measurement approaches. Several techniques are used to overcome this problem, such 

as traffic sampling, aggregation, intelligent queries, etc. The second branch concentrates 

on finding a balance between accuracy and resource usage. Lastly, the third branch mainly 

focuses on providing accurate traffic measurement in real-time for reactive/proactive 

decision-making. To address the SDN monitoring/measurement challenges, existing 

studies proposes various methods and strategy to tackle their objectives. The strategies 

benefit from either an active or passive approach or a combination of both. Figure 2.8 

depicts the strategies adopted in the existing proposed SDN monitoring/measurement 

methods. 
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Figure 2.8: Strategies adopted in the exiting proposed SDN monitoring/Measurement 

methods 

 SDN Traffic Measurement Accuracy and overhead implications 

Continuous monitoring of the network often introduces overhead, which needs to be 

taken into consideration as a trade-off with traffic measurement accuracy. To balance the 

accuracy of measurement and overhead implications, the proposed studies fall into five 

main categories, namely wildcarding TCAM rules, Single flow Statistic Request (SSR), 

Polling All (PA) approach, Push-based (passive) and a combination of SSR and PA.  

 Wildcarding TCAM rules 

(Jose et al., 2011) studied the measurement of a large-scale traffic aggregation in 

commodity switches, by proposing a framework where switches match packets against a 

small collection of wildcard rules available in Ternary Content Addressable Memory 
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(TCAM). This approach significantly reduces the overhead of the controller, because the 

switch processing the packet identifies the matching rules locally and determines if it 

needs to drop the packet or forward it. The framework was deployed in several campus 

and backbone networks and evaluated using the Hierarchical Heavy Hitter (HHH) 

program to understand the trade-off between accuracy and overhead. However, as 

matching rules need to be frequently updated this causes extra overheads, which is a major 

issue in this approach when the traffic scale is large. Although new and existing rules 

require a separate controller, additional mechanisms need to be installed to discover and 

monitor HHHs. Also, the framework requires an extra controller to read the flow counters 

and install new rules. Furthermore, the framework measures the flows based on 

wildcarding the layer three network addresses (IP) which is insufficient for fine-grained 

measurement. iSTAMP (Malboubi et al., 2014) presents a fine-grained traffic flow 

measurement, which applies a (de)aggregation (wildcarding matching rules with the 

prefix keys) measurement mechanism. It dynamically partitions the TCAM entries to 

allow fine-grained or coarse-grained measurement tasks of incoming flows. For example, 

when direct per-flow measurement is required, TCAM is divided into two parts in which 

one partition is used for aggregated flow measurement and another partition for de-

aggregation. The disaggregation mechanism is used for the so-called “most rewarding 

flows” (defined as flows with the highest impact on the ultimate monitoring application 

performance). Flows are “stamped” for direct measurement if they are deemed to be 

important. iSTAMP uses an intelligent Multi-Armed Bandit (MAB) based algorithm to 

process these two sets of measurements, which are then jointly processed to estimate the 

size of all network flows using different optimisation techniques. iSTAMP seems to make 

a good trade-off between the used measuring resources and accuracy, but it also faces 

several issues. First, the priority and wildcard-based matching strategy used by SDN 

switches implies that only the flows with a same prefix can be potentially aggregated by 
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one rule, but iSTAMP ignores the flow aggregation constraints, leading to infeasible 

aggregated measurements. Second, to find out the most rewarding flows, it uses all of the 

TCAM entries to measure all individual flows over multiple time intervals, which will 

introduce non-negligible measurement costs. 

 Single-flow Statistic Request (SSR) 

OpenNetMon (Van Adrichem et al., 2014), defines if the end-to-end QoS parameters 

are actually met for each flow in ISPs. It is a pull-based active measurement approach 

where network flows are continuously monitored between predefined endpoints for 

throughput, packet loss and delay using polling edge-switches. For throughput, it only 

queries the last switch on the forwarding path with an adaptive frequency. The counter 

returns the number of packets(s) of each flow in the sampling interval (T), and the 

forwarding path throughput can be obtained as S/T. For packet loss, it polls the flow 

counters on the ingress and egress switches for a given flow and calculates the difference. 

For delay measurement, it uses the SDN controller to inject probe packets into the 

network along a given path and then loop them back to the controller. Thus, able to 

calculate the delay for the given path using the round-trip time between ingress and egress 

switches. OpenNetMon uses an adaptive fetching mechanism to pull data from switches 

where the rate of the queries increases when flow rates differ between samples and 

decreases when flows stabilize. Using pulling-based approach guarantees the accuracy of 

obtain results. However, OpenNetMon polls the switch for each and every active flow in 

the network for different purposes which can impose extra overhead on the network as 

well as the switches. OpenTM (Tootoonchian et al., 2010), proposes a traffic matrix 

estimation system using a simple strategy for querying flow table counters. It works based 

on keeping statistics for each active flow in the network. The information about active 

flows are kept by the controller and pulled from the switches periodically and then 

compared for accuracy. OpenTM is an active bull-based network-wide measurement 
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approach that at the end will introduce overhead in the process of periodically pulling 

statistical information from switches across the network. It introduces five selection 

algorithms to choose the switch for polling. (1) querying the last switch (2) querying 

switches on the flow path uniformly random (3) round-robin query (4) non-uniform 

random querying that tends to query switches closer to the destination with a higher 

probability (5) Querying the least loaded switch. OpenTM showed that querying switches 

closer to the destination with a higher probability has a better performance compared to 

other switch selection strategies. However, it demonstrated that querying the last switches 

results in the most accurate TM but it imposes substantial load on the edge switches.  

Furthermore, OpenTM uses a combination of selection methods to select switches for 

pulling information; this may lead to some measurement inaccuracy as investigated.  

 Combination of Active and Passive  

Payless (Chowdhury et al., 2014), an active monitoring framework for SDN which 

implements pull and push-based approach at the same time. It focuses on the tradeoff 

between accuracy and message interaction overhead. It provides a flexible RESTful API 

for flow statistics collection at different aggregation levels. As the frequency of polling 

the switches determines monitoring accuracy and network overhead, Payless is that it uses 

an adaptive statistics collection algorithm to attain accurate information in real-time 

without incurring significant network overhead. The adaptive algorithm is an elastic 

polling regulator by which it set a higher polling frequency for flows that significantly 

contribute to link utilisation, and it set a lower polling frequency for flows that do not 

significantly contribute towards link utilisation at that moment. This, it polls the switch 

more frequent when gets bigger and less frequent when flow does have a significant 

change. Payless, uses Floodlight controller’s API to implement the proposed mechanism. 

It has been shown through evaluation that Payless can indeed provide low overhead and 
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can achieve higher accuracy of statistics collection. But, the accuracy seems to increase 

only at the expense of the overhead. 

 Push-based (Passive Measurement) 

FlowSense (C. Yu et al., 2013) uses passive measurement (push-based) to eliminate 

the extra overhead imposed by the pull-based measurement approach in which the 

network sends statistics about the flows instead of querying the switches on demand. The 

approach utilises packetin and FlowRemoved messages, which are sent by switches to 

the controller when a new flow comes in or upon the expiration of a flow entry (time-out 

event). The FlowRemoved message is sent from switch(es) whenever a flow time-out is 

reached. The FlowRemoved message contains statistical information about the flow, such 

as packet/byte-count, matches etc. These capabilities are provided by OpenFlow to query 

switches for the number of packets or bytes in flows matching a specific rule or traversing 

a network link. Evaluation results show that FlowSense has a promising performance 

compared to other approaches and can accomplish 90% of link utilisation in less than 

three seconds. However, if the flow entry has a long time out, the propose method is 

unable to generate a timely-based measurement related to the flow. Another drawback is 

that the flows with proactive rule cannot be triggered for time-out events. Thus, proactive 

flows cannot be measured by FlowSense. Furthermore, as wildcard rules limit the number 

of FlowRemoved, many flows cannot be triggered if wildcarding is adopted. Rules that 

are proactively installed by the operator without controller intervention are proactive 

rules. These rules may have unlimited time-out. 

 Combination of SSR and PA 

FlowCover (Su et al., 2014), presents a low-cost flow monitoring scheme aimed at 

reducing the network communication overhead imposed by the polling flow for timely-

based measurement. FlowCover pulls flow information from the switches using SSR 

strategy for the new arriving flows and utiliaes PA for polling the aggregated existing 
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flows in a switch. An algorithm chooses the most cost-effective switches and removes 

the covered flows, until all flows are covered. Later CeMon (Su et al., 2015), presented 

an adaptive fine-grained polling scheme to avoiding unnecessary polling, which 

increases the polling frequency by a variable if the difference in byte-count from two 

previous intervals exceeds a predefined threshold. However, FlowCover and CeMon 

may result in some degree of inaccuracy if the algorithm misses the SDN switches to 

poll. 

A study by (Megyesi et al., 2016) presents a bandwidth measurement system using 

active measurement that applies the pull-based approach. The method polls the SDN 

switches to attain flow statistics, and calculates the available bandwidth by subtracting 

the path capacity from the total byte-count pertaining to the mentioned path. (Megyesi et 

al., 2017) introduce a local timestamping mechanism to increase the accuracy of the 

measurements by preventing measurement errors imposed by network jitter. However, 

the proposed timestamping mechanism is an extra feature that is not a part of standard 

OpenFlow features and unavailable in the commodity switches. 

The authors in (Hongli Xu et al., 2017) and (H. Xu et al., 2017) argue that 

implementing the PA approach may degrade the switch CPU utilisation. The study 

presented a wildcard-based traffic flow measurement method with the aim of reducing 

the bandwidth costs and processing delay associated with the polling switches. The 

method applies an approximation algorithm to select the SDN switches, and polls the 

flows that can be covered using wildcarding. In addition, it uses SSR for the rest of flows 

that cannot be covered by wildcarding. The proposed method achieved a meaningful 

reduction in bandwidth overhead and processing delay. However, the proposed method 

lacks the ability to measure fine-grained flow specifications, as wildcard rules can only 
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be applied on the IP source/destination and input port of the SDN switches (Pfaff et al., 

2012). 

(Yang & Yeung, 2017) propose a weighted switch selector algorithm to weight the 

switches that are divided into two groups, “with and without lonely flows”. “Lonely flow” 

is a flow that can only be found in one switch and can be polled with the SSR approach. 

In practice, this can represent the local traffic among different IP subnets connecting to 

the same edge switch/router. The switches with lonely flows will be considered first. 

Afterwards, the controller polls the switches containing not-yet-covered flows, using the 

PA approach. Therefore, since the “lonely flow” only passes from a single switch, the 

statistic is not counted in the PA as it has already been covered, thus saving polling and 

reducing network communication overhead. However, the method keeps a complex 

algorithm running for each and every active flow in the network that might impose extra 

overhead in the controller and a delay to identify “lonely flow” if there is a large scale of 

flows in the network. 

Table 2.4 summarises the discussed approaches of traffic measurement in SDN for the 

trade-off between accuracy and overhead implications. 

Table 2.4: Current traffic measurement method in SDN for the tradeoff between 
accuracy and overhead implications 

No Type Solution Objective Approach Target 
Network 

1 Active Jose et al Reducing overhead for 
flow measurement 

Pull-
based 

Campus and 
ISPs 

2 Active OpenNetMon Accuracy in measuring 
throughout, packet loss, 

and delay  

Pull-
based 

ISPs 

3 Active iSTAMP Reducing overhead for 
fine-grained flow 

measurement. 

Pull-
based 

Backbone 
Network 

4 Active OpenTM Accurate Traffic Matrix 
estimation 

Pull-
based 

A synthetic 
topology 
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Table 2.4, continued 

5 Active 
& 

Passive 

Payless Reducing message 
interaction overhead and 

increasing accuracy of traffic 
flow measurement 

Pull & 
push-
based 

A synthetic 
topology 

6 Active FlowSense Eliminate extra overhead of 
measuring link utilisation 

Pull-
based 

Campus 
Datacenter 

7 Active FlowCover Reducing network 
communication cost for 
measuring traffic flow 

Pull-
based 

Campus 
Datacenter 

8 Active CeMon Reducing network 
communication cost for 

measuring traffic flow with 
an adaptive fine-grained 

polling 

Pull-
based 

Campus 
Datacenter 

9 Active (Megyesi et 
al., 2016) 

Accuracy in available 
bandwidth measurement 

Pull-
based 

Synthetic 
topology 

10 Active (Megyesi et 
al., 2017) 

Accuracy in available 
bandwidth measurement 

with a local timestamping 
mechanism 

Pull-
based 

Synthetic 
topology 

11 Active (Hongli Xu 
et al., 2017)  

Reducing switch CPU 
overhead with partially 

wildcarding 

Pull-
based 

Campus 
Datacenter 

12 Active (H. Xu et al., 
2017) 

Reducing switch CPU 
overhead with 

approximation algorithm 

Pull-
based 

Campus 
Datacenter 

13 Active (Yang & 
Yeung, 2017) 

Reducing communication 
overhead of flow 

measurement 

Pull-
based 

Synthesis 
topology 

 

 SDN Traffic Measurement Accuracy and resources usage 

Obtaining accuracy for monitoring/measurement and traffic estimation requires CPU 

and memory constraint in the switch, which is a challenging problem (Liu et al., 2016). 

The above measurement techniques were not concerned with resource usage and its effect 

on measurement accuracy. This section presents the proposed works concerning resource 

usage (network device overhead) and accuracy. 
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 Sketch-based approach 

Sketches can be used for many measurement tasks such as heavy-hitter detection 

(Bandi et al., 2007), traffic change detection (Schweller et al., 2004), flow size 

distribution estimation (Kumar et al., 2004), global iceberg detection (Huang et al., 2009), 

and fine-grained delay measurement (Schweller et al., 2004). Sketches are essentially 

compact data structures used in streaming algorithms (Bar-Yossef et al., 2002) to store 

summary information about the state of packets. Compared to flow-based counters, 

sketches have two key properties: (a) low memory usage: The size of summary 

information (sketch outputs) is significantly smaller than the input size. For example, the 

bitmap (Estan et al., 2003) is a simple sketch that maintains an array of bits to count the 

number of unique elements (e.g., IP source addresses); (b) provable trade-offs of memory 

and accuracy: Sketches often provide a provable trade-off between memory and accuracy, 

although the definition of accuracy depends on the actual sketch function (Cormode & 

Muthukrishnan, 2005). 

In an effort to find a happy zone between accuracy and resource usage using a sketch-

based approach, OpenSketch (M. Yu et al., 2013), a software-defined measurement 

architecture, is proposed as an alternative to OpenFlow. OpenSketch uses a measurement 

library in the control plane to automatically configure and manage resources for 

measurement activities. The library makes it easier to customise and apply theoretical 

algorithms to measure flows in commodity switch components. OpenSketch can be used 

for several measurement activities including HHH measurement, traffic distribution and 

link utilisation. The main barrier for OpenSketch as a marketable SDN traffic 

measurement solution is the need for upgrading network nodes, which is a very expensive 

undertaking. Furthermore, it is very rigorous and time consuming to standardise a new 

protocol. OpenFlow has already taken off, is widely accepted as an industry standard in 

datacentre environments and is increasingly implemented in commodity switches. With 
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OpenFlow gaining momentum, it will be adopted faster by ISPs and research 

communities. In a similar vein, JOTA (Su et al., 2017) proposed a joint optimisation 

algorithm to improve the performance of the task assignment by considering both the 

estimation of resource usage in the application layer and the available resource in the task 

assignment layer, it then calculates the task assignment problem as a mixed integer 

nonlinear programming problem. It decomposes the nonlinear programming algorithm 

into the resource compression stage and the task assignment stage. A two-stage heuristic 

is proposed to efficiently produce the task assignment. Specifically, JOTA compresses 

the resource usage in the first stage and relaxes one constraint to transform the problem 

to a Multi-Resource Generalised Assignment Problem (MRGAP) in the second stage. It 

then leverages an approximation algorithm to assign measurement tasks. However, due 

to the sophisticated optimisations and assignment complexity, JOTA can only support 

assigning tasks to one switch, and like any other sketch method it suffers from high 

complexity. 

 Resource allocation 

 DREAM (Moshref et al., 2015) is a dynamic resource allocation measurement 

framework that balances between user-specified level of accuracy and resource usage for 

measurement activities. In DREAM, resources are not allocated before the execution of 

the measurement task, but are dynamically deployed to achieve the desired level of 

accuracy based on traffic characteristics. DREAM framework is tested using HHHs 

programs show that DREAM can support more concurrent tasks with higher accuracy 

than several other alternatives. Aligning measurement tasks between the host and the 

network is also a major activity that in the end may reduce the overhead of an active 

measurement approach. The work in (Dusi et al., 2014) argues that current controller 

applications in SDN systems are designed to be proactive, which may require the switches 

to accommodate a number of flow table entries that exceed the capabilities of their 
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TCAMs. While equipping SDN switches with more powerful TCAMs is a feasible option, 

this may come at the expense of increasing operation and power consumption cost. The 

study proposes that controllers should consume resources efficiently using a reactive 

logic control approach. As in DREAM, the study suggests that resources must be 

allocated and freed depending on the network load, the effective behavior of the flows, 

their granularity and their inter-packet arrival time. The evaluation of the system shows 

that such approach is promising to enhance the traffic measurement flexibilities without 

extending the flow tables. Another algorithm called Baatdaat (Tso & Pezaros, 2013) uses 

OpenFlow running on NetFPGA programmable switches, which permits real-time 

dynamic flow scheduling in datacenters. The proposed algorithm can adapt to 

instantaneous traffic bursts as well as to average link load by using spare DC network 

capacity to mitigate the performance degradation of heavily utilized links. Experiments 

show that Baatdaat can reduce network-wide maximum link utilisation by up to 18% 

equal cost multipath (ECMP). 

Finally, the proposed HONE platform (Sun et al., 2015) presents a uniform stack for a 

diverse collection of measurements in SDN-based systems. HONE uses software agents 

residing on hosts, and a module interacting with network devices. Since continuously 

collecting statistical data about network flows is expensive, HONE offers two techniques 

to process flow statistics: The first technique, known as lazy materialisation of the 

measurement data, uses database-like tables for uniform abstract representation of 

statistical data collected from hosts and network devices. The aim of this technique is to 

minimize measurement overhead by allowing the controller and the host agents to analyze 

queries of necessary statistics for multiple management tasks at appropriate frequencies. 

The second technique offers data parallel streaming operators for programming the data-

analysis logic. The operators can also be used in a hierarchically fashion for aggregate 

analysis among multiple hosts. Scalability is a main problem in deploying HONE as 
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software agents need to be installed in every host and then synchronized to populate the 

statistical tables in a timely fashion to process meaningful queries. 

 Wildcarding proactive rules 

Flame (Han et al., 2016) is a flow level TM estimation to minimise the CPU and 

TCAM utilisation on the switch. The authors argue that polling every single flow for 

constructing the TM is unsalable due to the limitation in switch TCAM. Flame contains 

a traffic estimation algorithm “Poisson Shot-Noise Process” to predict traffic behaviour 

changes in the near future. It adopts a proactive Flow Rule instantiation which wildcards 

the predicted future traffics and install them into the TCAM. The proposed method results 

in a reduction in TCAM usage, however, due to implementing the wildcard approach, it 

is insufficient for fine-grained measurement. Furthermore, timely-base TM estimation is 

restricted to ten seconds. 

Table 2.5 summarises the discussed approaches of traffic measurement in SDN for the 

trade-off between accuracy and resource usage. 

Table 2.5: Current traffic measurement method in SDN for the tradeoff 
between accuracy and resource usage 

No Type Solution Objective Approach Target 
Network 

1 Active OpenSketch A generic and 
Accurate monitoring 

framework that 
support several 
measurement 

activities. 

Sketch-based Synthesis 
topology 

2 Active JOTA Improving the 
performance of the 

task assignment 

Sketch-based Synthesis 
topology 

3 Active Dream Accurate and low-cost 
resource allocation 

and Higher accuracy 
for concurrent tasks 

TCAM-Based Synthesis 
topology 
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Table 2.5, continued 

4 Active (Dusi et al., 
2014) 

Reducing cost of 
resource in 

measurement tasks  

TCAM-Based 
& Proactive 

rule installation 

Synthesis 
topology 

5 Active Baatdaat Low-cost Scheduling 
algorithm for real-

time for direct 
measurement 

A hardware-
assisted traffic 
monitor that 

measures link 
utilisation on 

the switches at 
line-speed 

Synthesis 
topology 

6 Active HONE minimize 
measurement 

overhead imposed by 
multiple measurement 

task 

software agents 
residing on 
end-hosts 

Synthesis 
topology 

7 Active Flame Minimize the CPU 
and TCAM utilisation 

for flow level TM 
estimation 

TCAM-Based University 
datacenter 

8 Passive PLANCK 
Accurate and real-

time traffic 
measurement 

port mirroring 
& packet 
sequence 
number 

Fat-tree 
datacenter 

 

 SDN Traffic Measurement Accuracy in Real-time 

Traffic measurement in SDN relies extensively on collecting statistical data about 

network flows in real-time. With the increasing popularity of real-time services such as 

voice and video, network monitoring has become a significant task in network operation. 

The large amount of detailed statistics provided by the hosts may raise a scalability issue 

for real-time analysis, specifically when the measured data are used for time sensitive 

applications. 

 Port Mirroring with packet sequence number 

(Rasley et al., 2015) propose PLANCK, a software-defined measurement architecture, 

which utilises the capability of port mirroring that exists in most commodity switches. 
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The extracted measurement statistics of the network flow is achieved in 280 microseconds 

to 7 milliseconds on a 1 Gbps commodity switch and 275 microseconds to 4 milliseconds 

on a 10 Gbps commodity switch. This is faster than in traditional networks by orders of 

magnitude. Planck exploits the port mirror feature of switches. With this feature, network 

packets on other ports are copied to a specified port connected to a collector. The collector 

uses the TCP sequence numbers to estimate the flow rates. By collecting two distinct copy 

packets of the same flow, the collector can compute the flow rate. Note that Planck uses 

protocol-specific information (e.g. the TCP sequence number), which as such is not 

suitable for flows that do not have sequence numbers. Thus, in comparison with the 

proposed mechanism, Planck requires extra hardware resources and only works for traffic 

for specific protocols. 

 Sampling with packet sequence number 

Using sampling-based SDN measurement methods, IBM research lab proposes 

OpenSample (Suh et al., 2014), which leverages sFlow (Phaal & Lavine, 2004) packets 

to provide near–real-time measurements of both network load and individual flows by 

capturing packets from the network. OpenSample is a low-latency platform that uses TCP 

sequence numbers from the captured headers to measure accurate flow statistics. Using 

sampling for network monitoring allows OpenSample to have a 100-millisecond control 

loop rather than the 1–5 second control loop of traditional polling-based approaches. It is 

implemented with Floodlight OpenFlow controller and evaluated on a testbed comprised 

of commodity switches. One of the main advantages of OpenSample is that it considers 

any TCP flow, hence it can detect elephant flows (large and continuous flows), and 

requires no modification to switches, making it highly marketable.  

 Combination of SSR and Poling Link 

(Chen et al., 2016) argue that there is a serious scalability issue for the Plank collector: 

it reserves a single port on each switch for port mirroring, and reserved ports are 
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connected to the collector to analyse the traffic; hence, it is unclear how Planck can scale 

to support large data centres. In addition, for OpenSample and Planck, they are unable to 

detect traffic flow that does not have a sequence number in a packet. The author propose 

a scalable load-aware low-latency two-tier measurement and control platform to detect 

real-time congestion in the network. The first tier provides a scalable low-delay 

congestion detection mechanism that can be used for large SDNs without additional costs, 

using pulling port statistics. It provides a macro view of the network, that is the utilisation 

of all links in the network by collecting packet-level link statistics. The second tier uses 

flow-level statistics to deal with upcoming congestion. (Gangwal et al., 2017) also adopt 

such as two-tier strategy for real-time link loss and link delay. However, none of the 

frameworks are able to capture fine-grained flow traffic measurement, as polling port 

statistics only provide packet and byte counts of the specific port (link) rather than a flow. 

Table 2.6: Current traffic measurement method in SDN for accuracy in real-
time 

No Type Solution Objective Approach Target 
Network 

22 Passive OpenSample Accurate Low-latency 
traffic measurement 

Sampling 
& Packet 
sequence 
number 

Synthesis 
topology 

23 Active (Chen et al., 
2016) 

Accurate and Low-
latency congestion 

detection 

SSR & 
Polling 
Link 

Synthesis 
topology 

24 Active (Gangwal et 
al., 2017) 

Accurate and for real-
time link loss and link 

delay 

SSR & 
Polling 
Link 

Synthesis 
topology 

 

Table 2.6 summarises the discussed approaches of traffic measurement in SDN for 

accuracy in real-time. It is worth mentioning here that several works such as network 

monitoring, fault tolerance, and topology update, although beyond the scope of this thesis 

because they are not specifically related to traffic measurement, are equally important for 
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the wider sense of network traffic SDN domain, and can be studied in (Hu et al., 2014) 

and (Akyildiz et al., 2014). 

2.5 Summary 

This chapter presented a broad overview of network traffic monitoring and 

measurement implications. Section 2.1 studied various aspects of traditional traffic 

monitoring and measurement approaches, ranging from the capabilities of network 

devices such as SNMP to packet/flow monitoring and sampling. It was concluded from 

the literature reviews that traditional approaches for measuring network traffic are 

insufficient in terms of accuracy. Although some of the approaches, such as packet/flow 

sampling, solve the issues of overhead complications imposed by the active approach, 

they still require extra hardware/software agents and collectors for analytical and 

statistical calculation. In addition, the calculations mentioned, produce overhead in the 

agent and analyser hosts and still cannot be accurate as basically sampling is a 

probabilistic method to estimate the taken samples. In the second part in section 2.2, a 

comprehensive overview of SDN was presented to familiarise the readers with the 

flexibility of this emerging technology, elaborating on different layers of SDN 

architecture and functionality. The section also demonstrated some of the well-known 

control planes that are used for academic and commercial purposes. Section 2.3 presented 

a light-weight background of SDN measurement and the detailed native approaches 

offered by OpenFlow that perform monitoring/measurement. In section 2.4, a 

comprehensive overview of state-of-the-art SDN measurement solutions was presented. 

From the literature, it can be comprehended that next generation networks require timely-

based measurements that continuously measure traffic for any unexpected change in the 

network. Network applications demand accurate and fine-grained measurement 

frameworks that improve QoS constraints. However, accuracy in measuring flow level 

network traffic comes with costs, such as resource usage and network overheads imposed 
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by the pull-based approach, which should be taken into consideration for scalability issues 

in a large-scale network. In addition, many delay-sensitive applications in the network 

demand low-latency measurement and real-time statistical monitoring about network 

flows. As can be discovered from the literature, SDN measurement approaches lack a 

comprehensive design that combines the benefits from different strategies and tackles 

their challenges. However, exploiting the advantage of some strategies may disrupt the 

performance of other strategies. For example, adopting a pull-based strategy can offer the 

most accurate and real-time flow statistic measurement result, but at the expense of 

overhead in the network and high usage of resources. Therefore, one major objective that 

can be concluded from reviewing state-of-the-art approaches and analysing their 

challenges, is to design a framework that is able to deal with the accuracy and multi-

objective cost with low latency results (in real-time). The next chapter clarifies the 

problem and formulates the aforementioned challenge; it also presents experimental 

proof. 
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CHAPTER 3: PROBLEM FORMULATION 

The measurement task imposes overheads in different aspects that affect the control 

plane and the data plane at the same time. The severity of the overheads may vary in 

different network deployment models. This chapter aims to analyse the problem that was 

highlighted in Chapter 1. It also conducts an in-depth investigation to show the impact of 

flow measurement on different aspects of overheads. In addition, different network 

deployment models such as out-of-band and in-band are formulated. This study focuses 

on three imposed overheads, from which two were highlighted in the literature review, 

namely communication and message interaction overheads imposed by pulling flow 

statistics. It then introduces a new overhead that is generated by reading and calculating 

the measured flows’ statistics. 

The rest of the chapter is organised as follows. Section 3.1, introduces a preliminary 

notation to formulate the problem. Section 3.2 explains the problem analysis in different 

network deployment models for various aspects of overheads. This is followed by an 

elaboration on the problem of synchronisation of multiple controllers in section 3.3. 

Finally, section 3.4 shows a light-weight experiment for clarification of overhead aspects 

imposed by different approaches for pulling flows. 

3.1 Problem Definition 

This section clarifies the problems and formulates them in out-of-band and in-band 

network deployments. The formulation in this study is explained in a directed graph 𝐺 =

(𝑉, 𝐸) in which V devotes a set of switches V = {𝑣1, 𝑣2, … , 𝑣𝑛} and E represents the set 

of links between switches and f = {F ∶  𝑓𝑖 ∈  F , 0 < 𝑖 <  𝑚 } represents a subset of 

flows where F = {𝑓1, 𝑓2, … , 𝑓𝑚} is the total current flows (universe) in the network and 

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} a set of SDN controllers. Table 3.1 lists the notations of the 

formulations used throughout thesis. 
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Table 3.1: Notation of problem formulation 

Notation Description 

𝐺 = (𝑉, 𝐸) 
The target network with V as a set of switches and E as a set of 

links. 
F Universe flows in the network. 
C A set of Controllers. 
n Message (request/reply/controller-to-coordinator) 
𝑙𝑟𝑞 The Length of request message (122 bytes). 
𝑙𝑟𝑝 The length of reply message (82 bytes). 
𝑙𝑠𝑓 The length of every entry in a file (136 bytes). 
𝑙𝑢𝑑𝑝 Minimum length of UDP message (header and body 60 bytes). 
𝜃 The number of instruction taken to fragment stat-reply file. 
𝜆 The number of instruction taken to read stat-entry. 
k Coordinator 
ℎ𝛼𝛽 The number of hops (nodes) from switch 𝑣𝛼 to controller 𝑐𝛽 

 

Traffic flow measurement imposes various overheads that are associated with 

measuring flows and collecting their statistics. These overheads have multiple aspects 

that affect the performance of the overall SDN network. The measurement task can affect 

(1) the SDN control network, i.e. links that connect switches to the controllers, and (2) 

the logically centralised controller. 

The effect of flow measurement in the SDN control network is referred to as 

communication overhead, which determines the size of traffic imposed by generating 

flow stat-request messages and stat-reply messages in bytes. Furthermore, the logically 

centralised controller can also be affected by the calculation of raw data. The raw data are 

the flow statistics processed by the controller. This aspect has severe impact on the 

functionality of the centralised controller if the raw data volume is too high. This overhead 

is the so-called controller overhead, which determines the CPU utilisation of the 

controller that has been allocated for the calculation of flow statistics. Last but not least 

is the message interaction imposed by sending the flow stat-request message and 

receiving the reply message. Although the message interaction overhead impacts the SDN 
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centralised controller, it is still considered as an individual measurement overhead, which 

is different from the controller overhead. Unlike the controller overhead that shows the 

utilisation of the controller’s CPU, the message interaction overhead turns the SDN 

controller into a bottleneck for generating and sending packetout (stat-request) messages 

and receiving packetin (stat-reply) messages from the switches.     

As mentioned in the literature review, there are two native approaches in OpenFlow 

for collecting timely-based flow statistics, namely (1) single stat-request (SSR), (2) 

wildcarding all fields to collect all flows (polling all). 

In order to collect flow statistics, SSR generates two messages in each time interval. 

The number of the generated message is increased to four messages for two flows and 

this increment continues in twice the number of flows. The main drawback of this 

approach is the imposed overhead for generating a huge number of request and reply 

message in the network, which also utilises the CPU cycle of network devices as well as 

the SDN controller. 

PA collects all the active flow statistics in a switch with only two messages, one 

request and one reply message. This can significantly reduce the costs of message 

interaction and communication, as well as the repeated reply headers for a high number 

of flows. However, excessive use of the second approach causes flow statistics to overlap, 

which imposes extra message interaction overheads and communication costs as well as 

an overhead in the controller. Another drawback of PA is the lack of control on flow 

queries, as it pulls all the active flows in the network regardless of actual need. 
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3.2 Overhead Aspect (Metrics) 

The overheads mentioned above, i.e. communication, controller and message 

interaction overheads in out-of-band and in-band network deployment, are formulated as 

follows: 

 Communication overhead 

According to the OpenFlow specification 1.3 (Pfaff et al., 2012), the minimum length 

of flow stat-request message, 𝑙𝑟𝑞 in wire is 122 bytes (Su et al., 2015). More specifically, 

14 bytes for ethernet header (layer 2 header size), 52 bytes for IP and TCP headers (20 

bytes IP and 32 bytes TCP header size) and 56 bytes for OpenFlow statistic (16 bytes 

OpenFlow multipart message and 40 bytes OpenFlow match size). However, this length 

increases by setting extra specifications of flow such as various fields in match. Table 3.1 

explains the request message structure and size for a single flow. Figures 1 and 2 in 

Appendix A depict the structure of the multipart message and the flow stat-request 

message, respectively. 

As can be seen in Table 3.2, the total length of empty flow stat-request is 122 bytes. 

However, the match field is variable, and its length is extended according to a set of 

matching fields. This study follows the flow match field from Cisco to define a network 

flow as 5-tuple matching fields such as (1) IP protocol, (2) source and IP address, (3) 

destination IP address, (4) source port address, and (5) destination port address. However, 

the field “ethernet type” is a requirement to define IP protocol as a matching field in 

OpenFlow (Pfaff et al., 2012). Therefore, similar to OpenTM (Tootoonchian et al., 2010), 

this study defines “ethernet type” as a matching field. Figure 3 in Appendix A shows the 

required fields for match fields with the description and length in bits. The total request 

packet length in the SSR approach with the defined match fields above captured by 
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Wireshark is 162 bytes, whereas, the length of a request packet in the PA approach is 122 

bytes as there is no defined field to match. 

Table 3.2: Request Message Structure and Size for a Single Flow 

Specification Size (byte) 

Header 
Ethernet 14 

IP 20 
TCP 32 

OpenFlow Payload 
Multipart request 16 

Flow static request (variable match size) 40 
Total  122 

 

The reply message includes a header whose length 𝑙𝑟𝑝 for SSR and PA is 82 bytes and 

162 bytes respectively. The length for each single flow entry 𝑙𝑠𝑓 stat is 144 bytes. 

However, the reply message may split into multipart messages if the total size exceeds 

64Kb, as the maximum size of a TCP packet in medium is 64Kb. In this case another 

multipart reply message is created as a reply message that contains the remaining flow 

statistics that could not be carried by a single reply message. Table 3.3 elaborates on the 

reply message structure and length. Figures 4 and 5 capture the structure of the multipart 

reply message and the stat-reply message for SSR in Appendix A. The length of the UDP 

message (Zander et al., 2007) containing the aggregated statistic sent by every local 

controller to the coordinator is 60 bytes, which is donated by 𝑙𝑢𝑑𝑝. Therefore, the total 

communication overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) of SSR and PA for polling a set of arbitrary flows 

𝑓 for each individual controller in out-of-band deployment is a linear function of 𝑓 as in 

equation 3-1 and 3-2, respectively. The communication cost for SSR in out-of-band 

network deployment comprises the length of generated messages in every time interval 

that it equals the combination of the length of the request message and the header of reply 

message and the length of UDP message multiplied by the number of controller as it is 

shown in the equation 3-1. The communication cost of SSR in in-band network 
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deployment is calculated similar to the out-of-band deployment multiplied by the number 

of hops from each switch to its corresponding controller. Therefore, SSR generates 

minimum 2 messages for each flow at every time interval. However, this cost for PA in 

out-of-band network deployment comprises the combination of length of the request 

messages and the header of reply message and the length of all the requested flow entries 

in every time interval. Whereas, the generated total length is multiplied by the number of 

hopes in in-band network deployment. Equations 3-3 and 4-4 describe the linear 

formulation formula of communication overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) of SSR and PA in in-band 

deployment. A UDP packet may contain empty datagram (no data). However, the 

minimum length in the wire over ethernet is 60 bytes. The minimum elements that 

contribute to the length of an UDP packet are ethernet header, IPv4_header, and 

UDP_header, which equals 14+20+8 = 42 bytes. However, as per by Linux host driver, 

extra bytes are padded to the packet to fulfil the ethernet requirement of minimum packet 

length. 

Table 3.3: Reply Message Structure and Length 

Specification Size (byte) 

Header 
Ethernet 14 

IP 20 
TCP 32 

OpenFlow Payload 

Multipart request 16 

Flow Stat Entry List 
SSR PA 

0 80 
Single Flow Statistic 144 

Total  226 306 
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(a) Out-of-band 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ ∑(𝑙𝑟𝑞 𝑖 + 𝑙𝑟𝑝 𝑖 + 𝑙𝑠𝑓 𝑖 +  (𝑙𝑢𝑑𝑝  ×  𝑣𝑘𝑐))

𝑓𝑖

,

∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉 

3-1 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ (𝑙𝑟𝑞 + 𝑙𝑟𝑝 +  ∑  𝑙𝑠𝑓𝑧 ) 𝑣 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐)
𝑓𝑧 ∈𝐹

,

∀𝑓𝑧 ∈ 𝐹 (0 ≤ 𝑧 ≤ |𝐹|), 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉 
3-2 

(b) In-band 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ ∑(𝑙𝑟𝑞 𝑖 + 𝑙𝑟𝑝 𝑖 + 𝑙𝑠𝑓 𝑖 +  (𝑙𝑢𝑑𝑝  ×  𝑣𝑘𝑐))

𝑓𝑖

× ℎ𝛼𝛽 , ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉 

3-3 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ (𝑙𝑟𝑞 +  𝑙𝑟𝑝 +  ∑  𝑙𝑠𝑓𝑧 ) 𝑣 + (𝑙𝑢𝑑𝑝 × 𝑣𝑘𝑐) × ℎ𝛼𝛽
𝑓𝑧 ∈𝐹

,

∀𝑓𝑧 ∈ 𝐹 (0 ≤ 𝑧 ≤ |𝐹|), 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉 
3-4 

 Message Interaction Overhead 

As the number of flows in the network increases, polling their statistic counters 

requires a symmetric growth with regard to the flow number. In other words, the more 

flows there are in the network, the more messages are interacted between the controller 

and switch(es). This makes the pull-based approach inefficient for continuous 

measurement with high-granularity due to consuming too much of the switch-controller’s 

bandwidth as well as switch CPU (Mogul et al., 2010). Moreover, Sünnen (Sünnen, 2011) 

showed that when read-stats messages are sent too often, the switch’s CPU utilisation and 

the number of spending messages increases. Thereby, given the network graph G with set 

of flow f and a set of controllers 𝐶, the total number of message interaction for each 

individual controller in SSR and PA can be found in a linear function of 𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓) 

in equations 3-5 and 3-6, respectively, where 𝑛𝑟𝑞, 𝑛𝑟𝑝 and 𝑛𝑢𝑑𝑝 are 
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“ofp_flow_stats_request”, “ofp_flow_stats_reply”, and “udp for coordinator” messages, 

respectively. Therefore, the total message interaction of SSR comprises the multiplication 

of the number of requested flow and the combination of the total number of request 

message and reply message and UDP message. Whereas, this overhead for PA equals the 

multiplication of the number of switches and the combination of the total number of 

request message and reply message and UDP message. 

𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓) =  ∑(𝑛𝑟𝑞𝑖
+  𝑛𝑟𝑝𝑖

+ 𝑛𝑢𝑑𝑝𝑖
),

𝑓𝑖

     ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹 

3-5 

𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑓) =  ∑ ((𝑛𝑟𝑞𝑗
+ 𝑛𝑟𝑝𝑗

+  𝑛𝑢𝑑𝑝𝑗
) 

𝑣𝑗 

,   𝑣𝑗 ∈ 𝑣, 𝑣 ⊆ 𝑉    3-6 

Subject to: 

𝜌 = {𝑚 | 𝑚: 𝑁}, 𝑝 =  {
1, 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≤ 65536𝑏𝑦𝑡𝑒𝑠

𝑚 × 2 , 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) > 65536𝑏𝑦𝑡𝑒𝑠  
 

3-7 

where the condition stated in equation 3-7 defines a reply message is split into two 

parts (two messages) if the length is greater than 65536bytes. The default packet size in 

the network cannot be greater than 64Kb for efficient transfer of data in the network. 

 Controller Overhead 

The controller’s overhead implies the utilisation of the controller’s CPU, which is also 

referred to as the computation overhead (Megyesi et al., 2017). It can be defined by the 

numbers of instructions imposed by the execution, calculation and comparison of raw 

data to process byte-count i.e., calculating the byte-count of each flow and subtracting it 

from the previous count. The performance and throughput of CPU is measured from 

different perspectives such as Cycles Per Instruction (CPI), Million Instruction Per 
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Second (MIPS), and Transaction Per Second (TPS). One cycle is the minimum time it 

takes the CPU to execute any work. The clock cycle time or clock period is the length of 

a cycle. The clock rate, or frequency, is the reciprocal of the cycle time. Thereby, the CPU 

instruction rate is calculated by dividing the observed CPU cycle speed by the observed 

CPI (Zhang et al., 2013). However, determining the exact number of instructions applied 

by the CPU requires obtaining job information, i.e. calculation of statistic replies, 

comprising multiple tasks, each of which consists of multiple threads, which is out of the 

scope of this thesis. In addition, different CPU generations such as 32 or 64bit CPU 

registers perform differently with various CPU instructions such as Instruction Fetch(IF), 

Instruction Decoder(ID), Execution(EXE), Memory/IO(MEM), Write-Back(WB) each of 

which consists of various instructions that increase the clock cycle time (Yi & Ding, 

2009). Therefore, analysing and calculating CPU performance by number of instructions 

is not rational in practice. 

A simple criterion to observe the imposed overhead is to presume a constant value 𝜃 

and 𝜆 indicating the number of instructions taken by the CPU for the fragmentation of the 

stat-reply files (data transfer) and reading stat-entry (arithmetic, data transfer, logical, 

conditional, and jump), respectively. According to (David Patterson, 2014), 𝜃 (reading 

stat-file and put into memory) and 𝜆 (subtracting current flow count from the previous 

one and put into memory) are equal to 2 and 6 instructions respectively. Table 3.4 shows 

the MIPS assembly instruction language used by the CPU. Therefore, the controller 

overhead 𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) in SSR, and PA analysing n-specific flows from set f in each 

interval is formulated as a linear function of m in equation 3-8 and 3-9 respectively.  

𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) =  ∑(3𝜃𝑖+ 𝜆𝑖), ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹

𝑓𝑖

 3-8 
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𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) = ∑(3𝜃𝑗  

𝑣𝑗

+ 𝜆𝑗), 𝑣𝑗 ∈ 𝑣, 𝑣 ⊆ 𝑉 
3-9 

Table 3.4: MIPS assembly instruction language taken by CPU. Adopted from 
(David Patterson, 2014) 

𝝀 𝜽 
2 × Unconditional jump (Jump to target 
address, For switch, procedure return) 

Unconditional jump (For procedure 
call) 

Data transfer (Byte from memory to 
register) 

Data transfer (Byte from memory to 
register) 

Conditional branch (Compare less than) 
Arithmetic (subtract) 

Data transfer (Byte from register to 
memory) 

 

3.3 Synchronisation of Multiple Controller  

Multiple controllers are required to share their collected flow statistics among each 

other in order to construct an integrated and understandable statistic of flows. For 

example, three controllers may be assigned to pulling a specific flow (i.e. TCP flows with 

dsc port 8080) from several switches in different sides of a network. Each controller 

receives the aforementioned flow statistic from their corresponding switches. Therefore, 

the total result of the measurement in each interval is the sum of all statistics collected by 

each controller in the same interval. 

OpenFlow introduces a failover mechanism in specification version 1.2, in which 

multiple controllers can connect to a switch with different roles such as Master, Slave, 

and Equal. According to this mechanism, multiple controllers can request flow statistics 

from a switch, however, the switch responds to each controller with a reply message. For 

example, if there are four controllers and four switches, all controllers connect to all 

switches. Therefore, to pull a specific flow (i.e. TCP dsc port 8080), 32 requests and reply 

messages are generated in total, which can disrupt the functionality of switches due to 
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excessively pulling flows. In addition, all controllers pull the same flows, which results 

in overlapping of the statistic collection and causes a massive overhead in the controller 

for the calculation of identical raw data. Furthermore, the interaction of these messages 

imposes excessive network communication overhead. Therefore, due to the huge 

complexity of the mentioned OpenFlow failover mechanism, it is inapplicable for flow 

measurement purposes in a large network with many flows. 

As mentioned earlier in Chapter 2, several papers propose different models of 

multiple-controller deployment and applied synchronisation (the east-west bridge) among 

the controllers. Each controller exchanges reachability and topology information between 

the inter-domain controllers (Xie et al., 2015). However, when using the east-west bridge, 

controllers can only share their network views, flow tables and status through complex 

steps such as starting a TCP handshake and constant “Hello” and “Echo” request/reply 

messages. Even if the east-west bridge approach can be applied on flow measurement 

synchronisation, it is still costly in terms of overhead imposed for inter-controller 

communication. 

To the best of the researcher’s knowledge, there is no existing study that focuses on 

the synchronisation of flow statistics on multiple SDN controllers.  

3.4 Experimental Analysis 

This section discusses findings from light-weight experiments investigating the impact 

of the pulling flow for measurement purposes. The experiments were conducted in 

Mininet (Mininet, 2015), and traffic was generated by D-ITG (Botta et al., 2012). Also, 

Wireshark was employed to collect and generate messages for measurement purposes. A 

linear topology was implemented, consisting of three switches of which each switch was 

connected to one host. The OpenFow controller is connected to the first switch and D-

ITG server is connected to the last switch. Figure 3.1 depicts the topology of the 
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experiment. All the elements used in the experiment are comprehensively explained in 

the experimental setup in section 5.1.1. Figure 3.2 and 3.3 show the captured request and 

reply message for flow statistic collection, using SSR in out-of-band and in-band network 

deployment, respectively. 

Figure 3.3 shows the number of packets by pulling one switch along all paths using 

SSR. It should be recalled that in out-of-band deployment switches are connected to the 

controller via a separate dedicated network, whereas in in-band configuration, switches 

connect to the controller through the same data plane network. Therefore, only two 

packets, one with 124 bytes and one with 218 bytes, are captured from all the available 

interfaces. However, the number of messages and their total length depend on the number 

of links directly connected to the switch interface in in-band deployment as shown in 

Figure 3.3. Therefore, if there are three switches along the path, the number of captured 

packets and their total length are multiple to the number of switches, which is three in this 

experiment. Figure 3.4 explains request and reply messages using the PA approach in out-

of-band deployment. Section 3.2.1 and Figure 3 in Appendix A refer to the length of 

request and reply messages. 

 

Figure 3.1: Request and reply message of SSR in out-of-band network 
deployment. 

Univ
ers

ity
 of

 M
ala

ya



67 

 

Figure 3.2: Request and reply message of SSR in out-of-band network 
deployment. Univ
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Figure 3.3: Request and reply message of SSR in-band network deployment. 
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Figure 3.4: Request and reply message in PA approach in out-of-band network 

deployment. 

As can be seen in Figure 3.4, in the PA approach the request packet length is 122 bytes 

as no match field is set. A request packet with no match field simply means all (pulling 

all). In addition, the reply packet captured in Figure 3.5 reports the length of 306 bytes, 

from which it includes144 bytes for every flow statistic (of_flow_stat_entry in the figure), 

80 bytes for flow_stat_entry list (referred to figure), 16 bytes for multipart message, and 
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66 bytes for packet header consists of ethernet, IP and TCP header (14+20+32). However, 

for every flow stat-entry (flows in the switch), 144 bytes are added to the packet length. 

3.5 Summary 

This chapter aimed to analyse the problem of pulling-based flow measurements and 

the resulting impact on different types of overheads. It proves the impact of applying SSR 

and PA in out-of-band and in-band network deployments for communication overhead. 

The chapter illustrated the formulation of different overheads imposed by implementing 

SSR and PA approaches in in-band and out-of-band network configurations. 

Additionally, the chapter experimentally disclosed the captured packets from OpenFlow 

approaches and showed the associated costs, i.e. communication overhead, with the 

packet length and number of flows. It also elaborated on the problem of multiple-

controller synchronisation for flow measurement. The analysis was conducted in order to 

identify the behaviour of various OpenFlow native approaches with different flow 

numbers and network traffic patterns. 

After disclosing and formulating the problem, the next stage is design and 

development. The next chapter discusses the proposed framework, where two designs are 

elaborated upon, namely for centralised and decentralised SDN controllers. 
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CHAPTER 4: MULTI-OBJECTIVE FLOW MEASUREMENT: FRAMEWORK 

This chapter elaborates on the proposed multi-objective flow measurement method to 

effectively minimise various costs that are associated with the measurement of flows in a 

DCN, such as communication, message interaction, and controller overheads. The key 

objective of this chapter is three-fold: (i) discussing the proposed solution to minimise 

measurement costs, (ii) explaining the architecture of the proposed framework, (iii) 

presenting the proposed method for the decentralised (multiple) SDN controller. The 

remainder of this chapter is structured as follows: 

Section 4.1 illustrates the proposed solution for the optimisation of different costs. It 

elaborates the OpenFlow group table feature, which is adopted for flow measurement 

purpose. It then introduces the fine-grained measurement specification feature for the 

proposed flow measurement method. A comprehensive description of the system 

framework is presented in section 4.2. Section 4.3 explains the building blocks of the 

proposed multiple-controller design. The section also explains the mathematical 

formulation for different costs caused by the proposed framework. In addition, the section 

shows the process flow of the proposed architecture. Finally, the chapter is summarised 

in section 4.4. 

4.1 Proposed approach for optimisation of costs  

This section presents a dynamic and multi-objective measurement approach that 

effectively minimises the costs associated with measuring flows. It abstracts all the 

demanded flows (flows to be measured) in the groups and sets the action of the groups to 

the corresponding flows’ action. According to OpenFlow, flows are wildcarded either by 

all fields (PA) or “some cases bitmasked” such as IP-scr, IP-desc and input port (Pfaff et 

al., 2012). 
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The proposed approach adopts the group table introduced by (Pfaff et al., 2012) for 

traffic engineering, load balancing and fast-failover purposes. A group can either have a 

single or a list of action/bucket. There are four types of groups such as All, SELECT, 

INDIRECT, and FAST-FAILOVER, each of which has specific features. Interested readers 

are referred to (Pfaff et al., 2012) for detailed information. The proposed approach 

implements the SELECT type in which each packet entering the group is sent to a single 

bucket associated with its action. Thus, for a group in a switch, the proposed approach 

defines all the potential output actions related to the flows. In such a case, all the incoming 

flows or current flows are grouped without any intervention to the forwarding decision 

and central policy enforcement. Therefore, the action of a flow entry is set to the action 

or a list of actions for that group. The proposed approach then requests the group rather 

than pulling a single (SSR) or all flows (PA). Figure 4.1 shows the SELECT group type 

in OpenFlow 1.3. The pseudo code to construct group and mapping flows to the group is 

shown in Figure 4.2. 

 

Figure 4.1: The SELECT Group (Izard, 2016) 

Adopting the OpeFlow’s group table to flow measurement, provides the feasibility to 

aggregate a set of flows into one group. Therefore, such an approach significantly saves 

number of requests and replies message, due to the measurement request and reply of the 
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group rather than each single flow. In this case, the optimal number of flows in every 

interval is captured. Figure 4.3 depicts the Wireshark file including request and reply 

captured packets. As can be seen in the figure, the total length of the request 𝑙𝑟𝑞 and reply 

messages 𝑙𝑟𝑝 is 122 bytes (the same as the PA in Chapter 3) and 218 bytes respectively.  

Algorithm 1 mapping flows to group table 
Input:  𝑓 = {𝑥 | 𝑥 ⊆ 𝐹 } : set of flows,  𝐺 = (𝑉, 𝐸): the network, 𝛿 = 𝑚𝑎𝑡𝑐ℎ 

1: c = create(Groupi)                // creating group on the switch 
2: for each 𝑥 ∈  𝑓 do 
3: if (isNew(x)) then                // check if the flow is new 
4: if (x[attribute] == 𝛿) then    // check if the flow is matched  
5: Groupi  x 
6: end if 
7: end if 
8: end for 
9: return c 

Figure 4.2: Pseudo-code of Construct Group and Mapping Flows to the Group 

Table 4.1 shows the reply message structure and size for a single flow. However, 

similar to PA, the reply message may split into multipart reply messages if the length 

exceeds 64Kb in the medium. The optimal solution for communication costs, message 

interaction and controller overhead (for each controller) in network G with an arbitrary 

set of flows f is formulated in equation 4-1, 4-2, 4-3, respectively, in out-of-band network 

deployment. The message interaction and controller overhead are the same in both in-

band and out-of-band deployment. However, the total communication costs are highly 

dependent on the number of hops from the controller to the switch. Equation 4-4 shows 

the formulation for optimal communication overhead in in-band deployment. 
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Figure 4.3: Wireshark file Including Request and Reply Captured Packets 

Table 4.1: Request Message Structure and Length 

Specification Size (byte) 

Header 
Ethernet 14 

IP 20 
TCP 32 

OpenFlow Payload Multipart request 16 
Single Flow Statistic 136 

Total  218 
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𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑  𝑙𝑠𝑓𝑖 + (𝑙𝑢𝑑𝑝 ×  𝑣𝑘𝑐)
𝑓𝑖 

, ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉 

4-1 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑐 ) =  𝑛𝑟𝑞 + 𝑛𝑟𝑝 + 𝑛𝑢𝑑𝑝   

Subject to: 

𝜌 = {𝑚 | 𝑚: 𝑁}, 𝑝 =  {
1, 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≤ 65536𝑏𝑦𝑡𝑒𝑠

𝑚 × 2 , 𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) > 65536𝑏𝑦𝑡𝑒𝑠
 

4-3 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑓) =  3𝜃 + ∑ 𝜆𝑖 
𝑓𝑖 

, ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓

⊆ 𝐹    
4-3 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐶𝑜𝑠𝑡𝑐𝑜𝑚(f) ≅ 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑  𝑙𝑠𝑓𝑖 + (𝑙𝑢𝑑𝑝 ×  𝑣𝑘𝑐) × ℎ𝛼𝛽
𝑓𝑖 

, ∀𝑓𝑖

∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, 𝑣𝑘𝑐 ∈ 𝑣, 𝑣 ⊆ 𝑉  
4-4 

 Measurement Granularity 

The granularity of the proposed solution is configured by setting the demanded 

specifications in the request message. Basically, the SDN controller is able speak to the 

switches by establishing a set of specifications in a request message. The switch then 

speaks back to the controller by sending the reply message as a response to the given 

specifications. This feature was adopted in the proposed solution by configuring a set of 

specifications such as IP src/des, port src/des, as well as many other match fields in 

different network layers. OpenFlow 1.3 present 40 fields to be used as match 

specifications. Therefore, the proposed solution sets all the active flows with a specific 

match (demanding granularities, for example UDP destination port 8080) to a group and 

the group is then pulled to measure its flows. As such, fine-grained flow measurement 

can be guaranteed when up to forth layer of OSI model (transport layer). However, the 
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more a request is fine-grained, the longer the request packet. The growth of the request 

packet depends on the length of the field match. The granularity of the measurement was 

set up to transport layer (UDP src/des). However, it is possible to simply modify it for 

more specifications. Table 4-2 shows the OpenFlow match fields along with their sizes 

in bits. 

Table 4.2: OpenFlow Match Fields and length 

Field Length  Description 
OXM_OF_IN_PORT 32 Ingress port. Numerical representation of 

incoming port, starting at 1. This may be a 
physical or switch-defined logical port. 

OXM_OF_IN_PHY_PO
RT 

32 Physical port. In ofp_packet_in messages, 
underlying physical port when packet received 

on a logical port. 
OXM_OF_METADATA 64 Table metadata. Used to pass information 

between tables. 
OXM_OF_ETH_DST 48 Ethernet destination MAC address. 
OXM_OF_ETH_SRC 48 Ethernet source MAC address. 

OXM_OF_ETH_TYPE 16 Ethernet type of the OpenFlow packet payload, 
after VLAN tags. 

XM_OF_VLAN_VID 12+1 VLAN-ID from 802.1Q header. The CFI bit 
indicate the presence of a valid VLAN-ID, see 

below. 
XM_OF_VLAN_PCP 3 VLAN-PCP from 802.1Q header. 
OXM_OF_IP_DSCP 6 Diff Serv Code Point (DSCP). Part of the IPv4 

ToS field or the IPv6 Traffic Class field. 
OXM_OF_IP_ECN 2 ECN bits of the IP header. Part of the IPv4 ToS 

field or the IPv6 Traffic Class field. 
OXM_OF_IP_PROTO 8 IPv4 or IPv6 protocol number. 
OXM_OF_IPV4_SRC 32 IPv4 source address. Can use subnet mask or 

arbitrary bitmask 
OXM_OF_IPV4_DST 32 IPv4 destination address. Can use subnet mask 

or arbitrary bitmask 
XM_OF_TCP_SRC 16 UDP source port 
XM_OF_TCP_DST 16 TCP destination port 
XM_OF_UDP_SRC 16 UDP source port 
XM_OF_UDP_DST 16 UDP destination port 

OXM_OF_SCTP_SRC 16 SCTP source port 
OXM_OF_SCTP_DST 16 SCTP destination port 
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Table 4.2, continued 

OXM_OF_ICMPV4_TYP
E 

8 ICMP type 

OXM_OF_ICMPV4_COD
E 

8 ICMP code 

OXM_OF_ARP_OP 16 ARP opcode 
OXM_OF_ARP_SPA 32 Source IPv4 address in the ARP payload. Can 

use subnet mask or arbitrary bitmask 
OXM_OF_ARP_TPA 32 Target IPv4 address in the ARP payload. Can 

use subnet mask or arbitrary bitmask 
OXM_OF_ARP_SHA 48 Source Ethernet address in the ARP payload. 
OXM_OF_ARP_THA 48 Target Ethernet address in the ARP payload. 
OXM_OF_IPV6_SRC 128 IPv6 source address. Can use subnet mask or 

arbitrary bitmask 
OXM_OF_IPV6_DST 128 IPv6 destination address. Can use subnet mask 

or arbitrary bitmask 
OXM_OF_IPV6_FLABE

L 
20 IPv6 ow label. 

OXM_OF_ICMPV6_TYP
E 

8 ICMPv6 type 

OXM_OF_ICMPV6_COD
E 

8 ICMPv6 code 

OXM_OF_IPV6_ND_TA
RGET 

128 The target address in an IPv6 Neighbor 
Discovery message. 

OXM_OF_IPV6_ND_SLL 48 The source link-layer address option in an IPv6 
Neighbor Discovery message. 

OXM_OF_IPV6_ND_TIL 48 The target link-layer address option in an IPv6 
Neighbor Discovery message. 

OXM_OF_MPLS_LABEL 20 The LABEL in the first MPLS shim header. 
OXM_OF_MPLS_TC 3 The TC in the first MPLS shim header. 

OXM_OF_MPLS_BOS 1 The BoS bit in the first MPLS shim header. 
OXM_OF_PBB_ISID 24 The I-SID in the firrst PBB service instance tag. 

OXM_OF_TUNNEL_ID 64 Metadata associated with a logical port. 
OXM_OF_IPV6_EXTHD

R 
9 IPv6 Extension Header pseudo-field. 

 

4.2 Architecture of the framework 

The architecture of the proposed framework consists of two stages: (a) a local 

controller design that describes the entire schema in layout-like steps, and (b) a core 

design that focuses on the design of the local controllers. 
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 Design of Layout 

Figure 4.4 depicts the schema of the proposed system layout. It consists of three layers: 

the OpenFlow network layer, the OpenFlow controller level, and a coordinator level on 

top of all the controllers connecting to the switches. 

(a) The OpenFlow network level consists of all the low-level network entities such as 

hardware and software devices connected to the upper layer via the northbound 

interface. 

(b) The controller level is the heart of the proposed design, where statistics of flows 

are collected by their associated local controller in any time interval, for example 

every second. Each controller that is associated to a flow is set by the top layer to 

request the flow statistics, and is responsible to collect, aggregate, and forward 

them to the upper layer. The controller associated to a flow is able to track a flow 

and instruct it. The upper layer mentioned above is the coordinator level, which 

has access to all controllers and is able to instruct the controllers.   

 

Figure 4.4: Schema of system layout 
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(c) The coordinator level is responsible to set controller(s) to request flow statistics 

through Request Patch in an arbitrary fashion such as fixed or adaptive polling, 

using Polling scheduler. The coordinator receives statistics from different 

controllers by UDP Socket Listener and accumulates them to shape a traffic matrix 

(TM) of demanded flows. This layer provides an east-west interface to interconnect 

the controllers and bridge all the gathered statistics to accumulate the demanded 

tasks. The east-west interface is often called east-west bridge where it is 

responsible for implementing the function of efficient communication, 

synchronisation and negotiation among multiple controllers (Xie et al., 2015).  

 Local Controller Design  

Figure 4.5 shows the architecture of a local controller. There are four steps to 

accomplish the measurement task after a local controller receives a flow statistic request 

from the coordinator using the “Request Dispatcher” module. 

(a) Flow Tracker: The first step is tracking all the flows (current/new flows in the 

controller domain) with a specific characteristic (user demands) that needs to be 

monitored. 

(b) Group Maker: The second step is grouping all the flows that were specified earlier 

in the first step. This module utilises the “group table” feature in OpenFlow 

specification 1.3. It then instructs the switch(s) to modify the associated TCAM 

output group entry by sending a packet_out message to the switch(es). 

(c) Query Maker: In the third step, switches are pulled with the exact match of the 

created group in the previous step. 

(d) Collector: All the statistics in each time interval are aggregated by this module and 

sent to the top layer (coordinator). The process of sending aggregated stats is 

performed by a simple UDP datagram socket. Section 5.2.2.4 explains the time 
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delay and latencies caused by the synchronisation process (UDP socket), as well 

as its impact on accuracy of the measurement. 

The proposed design is implemented as a northbound application on top of the 

controllers. The coordinator can access multiple local controllers by a simple application 

call. The proposed design can be implemented in various single and multiple-controller 

scenarios such as clustered, distributed, and hierarchical. Furthermore, it is able to 

accomplish almost all aspects of a monitoring system such as flow utilisation, measuring 

available bandwidth, packet-loss, link and packet delay. 

 

Figure 4.5: Local Controller 

4.3 Cost-Effective Multi-Objective Controller (CEMoC) 

Applying multiple controller may result in several unexpected performance 

degradations such as accuracy and overhead. Each switch can be attached to only one 

master controller, hereupon assignment of multi-controllers extremely effects on 
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overhead and accuracy. The assignment and re-assignment of controllers can be referred 

to as switch selection where the switch(s) may be attached to different controllers in 

different place.  In addition, different deployment of such a scenario highly impacts 

several factors in the network such as node-to-controller latencies, network availability 

and performance metrics (Karakus & Durresi, 2017). Therefore, the controller (place of 

controller) fetching flow statistic plays a vital role in the accuracy of real-time monitoring 

as well as cost, especially in the in-band deployment. In addition to controller assignment, 

different placement of the coordinator can cause extra cost as well as receiving 

unsynchronized stats which lead to inaccuracy of results.  

As it was mentioned earlier, the monitoring and routing traffic shares bandwidth along 

the same path. Therefore, this deployment requires careful planning and precise 

placement of controllers in the network. Thus, the number of network elements such as 

switches, routers, and cables can highly effect on the communication costs as well as the 

accuracy of result for real-time measurement purpose. Although, certain networking 

factors such as propagation delay can negatively mutate statistical accuracy. Let donate 

ℎ𝛼𝛽 as the number of hops from switch 𝑣𝛼 to controller 𝑐𝛽 and ℎ𝛽𝑘 as the number of hops 

from the controller 𝑐 to the coordinator 𝑘. let 𝑤 is the cost of communication for polling 

flows from a switch. let donate 𝑑 as the cost for each controller to be assigned on the 

switch 𝛽 and 𝑞 is the cost of communication from the controllers to the coordinator 

respectively. Given propagation delay µ𝛼𝛽 for each source-destination pair 𝑣(𝛼, 𝛽), 

equation (4-5 to 4-8) describe the integer linear programing of the problem formulation 

in in-band deployment.  

The objective function given by equation 4-5 describes the problem formulation of costs, 

which means selecting the most appropriate switch(s) to be polled (the switch that covers 

most flows) by 𝑤, and the best controller(s) to be assigned given by 𝑑𝑐𝑘 on the switch(s) 
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for polling in terms of minimum communication, propagation delay and controller 

overhead (costs). It also presents the communication between the coordinator and all the 

controllers. Equation 4-6 refers to the constraint for selecting a switch in which at least 

one switch is selected. Equation 4-7 explains the constraint for the controller to be 

assigned to only one switch. Equation 4-8 forces selecting all the source-destination pairs 

𝑣(𝛼, 𝛽) with the least propagation delay. The binary variable used in the formulation is 

explained as follows: 

• A binary variable 𝑥𝛽 represents whether to poll flow from switch 𝛽 or not, 1 if it 

is polled 

• A binary decision variable 𝑦𝑐𝑘𝛽
 represents whether a controller 𝑐𝑘 is assigned on 

the node β nor not, 1 if it is assigned. 

𝑤𝑖 = 𝑙𝑟𝑞 + 𝑙𝑟𝑝 + ∑ 𝑙𝑠𝑓 𝑖
𝑓𝑖

, 𝑓𝑖 ∈ 𝑓 , 𝑓 ⊆ 𝐹 (0 < 𝑖 < 𝑚)  

𝑑𝑐𝑘 = 𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖𝛽
𝛽∈𝑉𝑐𝑘∈𝐶

, ∀𝑐𝑘 ∈ 𝐶, ∀𝛽 ∈ 𝑉  

𝑐𝑜𝑐𝑐𝑘
= min ∑ (3𝜃 + ∑ 𝜆𝑖 

𝑓𝑖 
)

𝑐𝑘∈𝐶
 , ∀𝑓𝑖 ∈ 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹, ∀𝑐𝑘 ∈ 𝐶  

𝑞 = min ∑ ∑ 𝑙𝑢𝑑𝑝
 ℎ𝛽𝑘𝑐𝑘∈𝑐

,  ∀𝛼, 𝛽 ∈ 𝑉  

min∑ ∑ 𝑤𝛽𝑖 𝑖∈𝑓 𝑥𝛽𝑖
+ ∑ 𝑑𝑐𝑘𝛽

𝑦𝑐𝑘𝛽𝛽∈𝑉 + ∑ 𝑞𝛼𝛼∈|𝑉|𝛽∈𝑉 , 𝑥𝛽𝑖
, 𝑦𝛼, 𝑧𝛼 ∈

{0, 1}, ∀𝑐𝑘 ∈ 𝐶, ∀𝛼, 𝛽 ∈ 𝑉 
4-5 

Subject to: 

∑ ∑ 𝑤𝛽𝑖
 𝑖∈𝑓

𝑥𝛽
𝛽∈|𝑉|

 ≥ 1, ∀𝛽 ∈ 𝑉 , 𝑞 ∈ {0,1} 
4-6 
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∑ 𝑦𝑐𝑘𝛽
𝛽∈|𝑉|

 ≤ 1, ∀𝛽 ∈ 𝑉 , 𝑦 ∈ {0,1} 4-7 

∑ µ𝛼𝛽 ≤ min{𝑣(𝛼, 𝛽)}
ℎ𝛼𝛽∈|𝑉|

, ∀𝛼, 𝛽 ∈ 𝑉 4-8 

The minimisation problem defined above is a weighted set-cover problem that is 

proven to be NP-hard and requires heuristics to approximate the performance. It should 

be noted that propagation delay is computed for a link between two switches, as it is 

determined by LLDP send/receive times minus the delay between both switches and the 

controller. However, this delay does not cause a significant effect in datacentres as it is in 

the order of microseconds. 

The easiest way to solve the problem of weighted set-cover is to apply a brute force 

search algorithm known as exhaustive search, which enumerates all possible candidates 

for the solution and checks its correctness. Although the brute search algorithm is simple 

and always finds the solution, its time complexity is 𝑂(2𝑚+𝑛), which is exponential to 

the number of flows and switches 𝑚 𝑎𝑛𝑑 𝑛 respectively that is neither scalable for 

datacentres nor for ISPs. Hence, the approximation technique is required for large-scale 

networks. 

To solve the problem above an eager-greedy algorithm was applied, which is an 

approximation technique adopted from (Lim et al., 2014). This algorithm implements a 

priority queue to alleviate time complexity to 𝑂(𝑚 log 𝑛). The algorithm selects the most 

cost-effective switch(es) that covers all demanding flows based on their given weight 

(𝑤𝑖). Figure 4.6 (Algorithm 2) shows the steps involved in the selection of switch(es). In 

each iteration, it calculates the minimum associated weight (shortest path) for all 

demanding flows in step 4. It then identifies the sets with the largest number of uncovered 

items in step 6 and puts it in the output as a group in step 7. If the algorithm finds more 
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than one sub-covered set (step 5), it selects the subset with the least propagation delay in 

step 6. Figure 7 shows the entire architecture of the CEMoC design. 

This thesis also proposes an algorithm that assigns a controller to a switch for polling 

purposes. It should be noted that only one controller can be assigned to a switch with the 

master mode. 

Algorithm 2 The Eager-greedy approach   
Input: 
Output: 

𝑓: sets of flows, 𝑓 (0 < 𝑖 < 𝑚), 𝑓 ⊆ 𝐹; 𝑤: weight of polling set 𝑓. 
𝐴: set of groups for polling 𝐴 = {𝑥 | 𝑥 ⊆ 𝐹 } 
 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 

𝐴  {} 
Covered  {} 
while covered ≠ 𝑓 
 𝑗  calculate (min 𝑤𝑖𝑓)  
 if (|𝑚𝑎𝑥𝑗𝜖[0..𝑚]{𝑓𝑗 − 𝐹}| > 1) 
  𝑐  min µ𝛼𝛽(𝑚𝑎𝑥𝑗𝜖[0..𝑚]{𝑓𝑗 − 𝐹}) 
              𝐴  𝐴 ∪ 𝑐          
 covered  covered ∪ 𝑓𝑗 
end while 
return A 
 

Figure 4.6: Pseudo-code of Eager-greedy approach 
 

Figure 4.7 (Algorithm 3) illustrates the steps involved in the selection of the controller. 

The main loop iterates for 𝑂(𝑛) time where 𝑛 = |𝐴| which is the number of polling set(s). 

It then calculates the nearest controller with the least CPU load to the polling set 

(switch(s)) in step 3 with the time complexity of 𝑂(𝑚2) where m=|C|, which is the 

number of controllers. In case of finding more than 1 controller for a set, it selects the one 

nearest to the coordinator’s location. Figure 4.8 illustrates the entire flow process of the 

CEMoC. As shown Figure 4.8, algorithm 2 and 3 run only once upon a measurement 

request to the coordinator. Then the coordinator signals the selected controllers and 

polling set(switches) to be polled. The life line of controller(s) continues for the number 

of iterations. Therefore, every controller sends stat requests and receives stat replies until 

the user signals the termination of the process. 
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Algorithm 3 Controller selection   
Input: 
 
Output: 
 

𝑐: sets of controllers, 𝑐 (0 < 𝑖 < 𝑛), 𝑐 ⊆ 𝐶; 𝐴: set of groups for 
polling 𝐴 = {𝑥 | 𝑥 ⊆ 𝐹 }, ∀𝛼, 𝛽 ∈ 𝑉 
𝐵: sets of controllers, 𝑐 (0 < 𝑖 < 𝑛), 𝑐 ⊆ 𝐶 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

𝐵, n  {} 
foreach polling set in 𝐴  
 𝑗  calculate (min 𝑐𝑜𝑐𝐴  𝑎𝑛𝑑 min ℎ𝐴𝛼𝛽)  
 if (|𝑗𝐴| > 1) 
  𝑛  calculate (min 𝑗𝐴𝛽𝑘) 
 B  𝐵 ∪ 𝑛𝑗          
              𝐴  𝐴 ∪ 𝑐          
end foreach 
return A 

Figure 4.7:Pseudo-code of Controller Selection 
 

 

Figure 4.8: Entire Flow Process of the CEMoC 

4.4 Summary 

This chapter proposed a cost-effective flow measurement framework aiming to 

effectively minimise various costs such as communication, message interaction and 
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controller overheads that are associated with the measurement of flows in single and 

multiple-controller scenarios in different network deployment models (out-of-band and 

in-band). The chapter first elaborated on the proposed solution that aims to minimise the 

costs of pulling flow statistics using grouping flows and pulling groups as the target rather 

than flows. It described how the proposed solution can reduce the length of reply 

messages using Select group requests, and further formulated the costs when applying the 

proposed solution. Moreover, the architecture of the proposed framework is described in 

two designs, namely the layout and the local controller design. The chapter explained that 

requests are sent from the coordinator to the switch(es) and then reply messages are issued 

from the switch(es) and sent to the controller. Finally, it proposed a multiple-controller 

design and a controller selection algorithm that optimise the selection of the switches for 

polling and the location of the coordinator. 

The next chapter evaluates and validates the proposed framework through various 

experiments to show its capability and effectiveness to fulfil the targeted objective.  
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CHAPTER 5: PERFORMANCE EVALUATION 

One of the most important processes in conducting research is to evaluate the proposed 

design, in order to validate its outcome and highlight its feasibility and suitability. This 

chapter explains the systematic evaluation phases to accredit the evaluation and analysis 

of the performance. The chapter thoroughly elaborates on the different stages of 

performance evaluation to perform a realistic assessment of the proposed framework, and 

subsequently discusses the findings. The remaining chapter is outlined as follows: 

Section 5.1 explains the evaluation setup by introducing its environment, datasets, 

topologies and tools. Moreover, it presents the benchmarking methods, their objectives, 

and the reason for selecting these benchmarks. Section 5.2 introduces different 

experiments trough emulation and simulation. It then describes the findings from the 

experiments and compares them to the benchmarks. This is followed by a comprehensive 

analysis and discussion of the findings from the different experiments. Section 5.3 aims 

at the verification of our simulator with which the second experiment was performed. 

Section 5.4 offers a comprehensive discussion of all findings from the different 

experiments, including their pros and cons. Finally, section 5.5 provides concluding 

remarks for the whole chapter. 

5.1 Evaluation Setup 

This part comprehensively describes the experiment setup, the datasets used in the 

evaluations, the set of tools to exploit the findings or capture the data/results, and the data 

collection models. 

This study presents three evaluations through extensive experiments. To ensure the 

validity and reliability of the findings, the experiments were iterated 10 times. Findings 

from the first five iterations demonstrated a linear trend associated with an independent 
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variable such as number of flows. Thereby, to ensure the linearity of trends, all the 

experiments were repeated another five times, however, the findings demonstrated almost 

identical values with a negligible variation below 0.05 percent. The results and findings 

from the experiments are presented by averaging all iterations in every experiment. Some 

experiments share similar requirements or datasets while others require different 

specifications and datasets.  

 Experimental setup 

In order to evaluate the performance of the proposed model, three evaluations were 

conducted through emulation and simulation; the first two experiments employ 

emulation, and the last experiment is conducted via simulation. The environmental setup 

varies based on the experiments. For instance, experiment 1 uses a lab setup environment, 

while the second experiment is evaluated in Amazon EC2 due to the heavy workload and 

traffic dataset. The emulation of a real network is resource hungry and requires a huge 

memory and CPU capacity (Su et al., 2015), therefore the emulation was carried out with 

limited traffic in a Mininet emulator. Similar to previous works (Su et al., 2015; H. Xu et 

al., 2017), a large-scale experiment (experiment 3) was performed through simulation as 

the experiments only cares about the active flows, shape of the topology, the links, and 

their forwarding paths. Therefore, the large-scale experiment was carried out using a 

trace-driven simulator built only to simulate the event of flow arrival and expiration in 

the network. However, the accuracy-related experiment was only conducted by 

emulation, as simulation is incapable of emulate the real behaviour of a network such as 

delays or varied network latencies. 

 Experiment Tools 

a) The SDN controller in this study is Floodlight (BigSwitchNetworks, 2016). This 

thesis employs Floodlight controller because of its unique features and several 
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advantages over other SDN controllers. The following explains the reasons for 

choosing floodlight: 

i. Floodlight is an open source SDN controller that supports OpenFlow version 1.3. 

The controller can also be extended to support version 1.4 and 1.5 of OpenFlow 

through the experimenter. 

ii. Floodlight has been developed as a modular system that is highly flexible and can 

be simply extended and enhanced. 

iii. Floodlight supports northbound Full-REST API, which can be accessed through 

HTTP request. 

iv. Application are implemented as northbound API and placed on top of a logically 

centralised controller. Consequently, other network applications can use the API 

by a simple http request anytime and anywhere. 

v. Floodlight supports full state synchronisation, which allows several instances of 

it to be connected in a cluster or distributed manner (multiple-controller). 

b) The prototype of the proposed design was implemented as a northbound API module 

of a floodlight controller. 

c) This thesis employs Mininet version 2.2.1 for emulating the entire network and its 

characteristics such as links, topology, latencies and so on. Mininet was chosen 

because it is the most common emulator and is used in most research. Besides, 

Mininet is the most compatible network emulator to support OpenFlow version 1.3. 

Furthermore, it uses Linux containers to create a virtual network to emulate hosts, 

which allows the entire network to be emulated in a single computer. Therefore, the 

emulated network is isolated from other performance sensitive applications in the 

memory. Moreover, Mininet uses Open vSwitch (OVS) as a virtual switch to emulate 

the behaviour of the real switch. Open vSwitch version 2.5.2 (OpenvSwitch, 2017) 

which is the latest version at the time of conducting the experiments. 
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d) D-ITG (Botta et al., 2012) network traffic generator was employed to generate 

realistic network traffic with various patterns. D-ITG has been proven to perform in 

a more reliable and scalable way than other traffic generators (Megyesi et al., 2017). 

e) Wireshark was used to capture the real traffic volume of the original datasets and the 

traffic generated by the proposed model and other benchmarking methods. 

 Datasets 

One of the most important stages in the evaluation process is to validate the proposed 

model under a concrete and realistic workload. This evaluation applies three different 

types of traffic patterns as datasets. The rationale behind employing various datasets in 

the validation process is to understand the behaviour of the proposed framework and the 

benchmarking methods. It also shows how the models react with different traffic 

workloads and what types of model is suitable for datasets. The following presents the 

workloads employed in this research. 

a) Constant Bit Rate (CBR) 

In this model (Megyesi et al., 2016), all the hosts generate traffic flows in a uniformly 

random manner which is constantly increased in rate and size. All hosts generate new 

flows every second and send them over all other hosts. CBR is a reliable candidate to 

validate the costs because it constantly increases the distribution of flows in the network. 

Therefore, it simply discloses the variation of overhead changes generated by requesting 

flow statistics. Moreover, it demonstrates the relationship between flow numbers and 

overhead ratio among different methods. The first two experiments apply this dataset with 

different flow distribution ratios. The dataset is further explained in each experiment with 

more specifications. 
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b) Variable Bit Rate (VBR):  

It follows the traffic pattern introduced in (Megyesi et al., 2017) (shape and scale) for 

all generated flows in the network. VBR applies D-ITG pareto distribution for the packet 

's inter-departure time. Similar to (Megyesi et al., 2017), this evaluation uses 𝜑 =  1.75 

as the shape parameter for all flows, and a random scale parameter 𝛶 from the range 0.5ms 

to 1ms. This type of traffic pattern is suitable to stress the accuracy of flow statistics as it 

fluctuates highly and leaves numerous traffic spikes in the network. Therefore, the 

evaluation employs this workload to demonstrates the performance on the proposed 

model on accuracy and error ratio. This study employs VBR in experiment 2 for 

evaluation of the accuracy. 

c) Real dataset workload: 

A publicly available data packet trace collected from a university datacentre in 

(Benson et al., 2010). The evaluation applies a real dataset from a datacentre in the 

university of Wisconsin to realise the performance and suitability of the proposed 

framework under a real workload. The workload is employed for the large-scale 

evaluation in experiment 3. 

 Topology 

The evaluation of this study deploys different topologies to demonstrate that the 

proposed framework is a scenario-independent model, and thus can be applied to various 

conventional datacentre topologies. Furthermore, using various topologies, the evaluation 

validates the concreteness of findings and the proof of concept of the framework. The 

topologies are specified in more detail in every experiment. Below is a general description 

of the topologies applied in this research work: 
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a) Synthetic topology:  

This topology implements a single pod of the fat-tree topology model. The topology 

includes four switches that consist of two edges, and two aggregation switches of a 4-pod 

fat-tree, which is a common topology used in datacentres. The topology is used in the first 

experiment where the proposed model is evaluated on the single controller scenario with 

out-of-band network deployment. As out-of-band is the simplest network deployment 

model (i.e. switches are directly attached to the controller using the network control 

links), this topology aims to demonstrate the very pure behaviour of the proposed 

framework and benchmarks regardless of the sophistication of the network configuration 

and topology. 

b) k-pod fat-tree:  

This is a common topology deployed in many datacentres and is organised in a tree-

like structure. The k-pod fat-tree topology has the properties that make it suitable for data 

centre networks (Bari et al., 2013). Figure 1 in Appendix B depicts the schema of a k-pod 

fat-tree topology, k=4. 

c) 2-tier fat-tree:  

This study adopts this topology from a publicly available dataset that can be found in 

(Benson et al., 2010). The topology is a datacentre network located in the university of 

Wisconsin, USA. It employs a similar topology to a conventional 2-tier fat-tree type, 

which only uses core and edge switch in the network deployment. Interested readers are 

referred to (Bari et al., 2013). However, unlike the canonical 2-tier topology architecture 

that employs Top-of-Rack switches (each switch connects to a rack of 20-80 serves), this 

topology uses Middle-of-Rack switches that connect a row of 5 to 6 racks with the 

potential to connect from 120 to 180 servers. Figure 2 in Appendix B shows the schema 

of the 2-tier datacentre topology. 
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 Performance Metrics (Parameters) 

The performance of the proposed framework is evaluated with standard parameters of 

different overheads and accuracy. The term overheads herein refers to various overhead 

such as communication, message interaction and controller. 

In order to highlight the effectiveness of the proposed framework on different 

overheads and accuracy, the experiments aim to satisfy the following requirements: 

i. To explain the communication overhead and its relation to demanded flows and 

total number of flows in the network and compare them to the benchmark 

methods. 

ii. To highlight the message interaction overhead and the impact of different 

numbers of flows on this cost and compare them to benchmark methods. 

iii. To elaborate on the controller overhead in the proposed model and compare that 

to benchmark methods with different numbers of flows in the network. 

iv. To investigate the relationship between different overheads and the impact of flow 

increment or decrement in the links and switches. 

v. To observe the accuracy (error ratio) of flow measurement in comparison to the 

actual flow utilisation by the proposed framework and investigate the impact of 

controller number on the accuracy. 

 Comparison to the current State-of-the-art: Benchmarking Methods 

The performance evaluation and verification of the proposed method is carried out by 

current state-of-the-art pull-based per-flow measurement/monitoring methods described 

comprehensively in Chapter 2. The following elaborates on the benchmarking methods 

and the reason for choosing these benchmarks: 
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i. Single flow Stat-Request (SSR): The method is an OpenFlow native approach 

for obtaining flow statistic requests. Many pull-based studies have exploited 

SSR to measure network flows. Likewise, the evaluation also employs SSR 

because it directly discloses the relation between the required flow statistics 

and the different overheads. The method is also expected to generate high 

messaging and communication overheads. 

ii. Polling All-flow Stat-Request (PA): The approach polls all the current flow 

stats of a switch with one request and reply message and has been widely 

implemented in the literature. The aim of applying this method in the 

evaluation is to manifest the effectiveness of aggregating all flows within a 

single request. Also, it reveals the impact of flow distribution in the network 

on different overheads. The expected behaviour of this method is high 

overheads for the communication and controller that is seen as the side effects. 

However, it significantly decreases the message interaction overhead. 

iii. CeMon: The model is the most similar to the proposed framework in this study 

as it employs a combination of SSR and PA models. It is expected to have both 

the advantages and disadvantages of SSR and PA. 

5.2 Result and Discussion 

The section presents the results and analysis of the experiments (i.e. emulation and 

simulation) of the proposed framework. The main aim of this section is to expose the 

outstanding performance of the proposed model compared to the benchmarking methods. 

The section presents the findings and discussion for each experiment, within the 

corresponding performance metric of the experiment. The section also demonstrates 

different experiments with distinct objectives. Furthermore, it elaborates on a simulation 

experiment in which the dataset employed is a real datacentre workload. To validate the 

simulation results, the chapter is followed by a detailed performance analysis through 
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statistical modelling. At the end of the section, the evaluation result and findings are 

discussed. It should be noted that the emulation experiments on CBR traffic were iterated 

10 times; as such, no change was observed from the findings of different iteration in the 

first experiment. Also, no tangible changes were observed in the overheads. The variance 

of findings of different iterations reported, is below 0.05. However, findings from 

accuracy (error ration) in the second experiment are obtained through only one 

run/iteration as different iterations on VBR traffic cause different results. This is because, 

the network latency in each time of running the emulation is not a constant value. Also, 

the ration of traffic shape is a random scale parameter 𝛶 from the range 0.5ms to 1ms, as 

mentioned in the section 5.2.3. Findings of the proposed method from this study are 

labelled and shown as “Proposed method” in the experiment 1, whereas experiments 2 

and 3, label and depict the findings from the proposed method as “CeMOC”. This is 

because experiments 2 and 3, evaluate the decentralized (multiple) controller scenario.    

 Experiment I: Single controller with out-of-band deployment 

This section aims to discuss the experimental evaluation of the proposed model in out-

of-band network deployment with a single controller. The experiment comparatively 

investigates the relationship between overhead factors and flow number, by means of 

applying the proposed model to the synthetic topology and comparing the results with the 

benchmark methods. The objective of this experiment is to measure the utilisation of all 

flows passing through the link pi shown in Figure 5.1. 

The experiment was conducted in a lab environment on a server with Intel(R) Xeon(R) 

E3-1270 processor 3.50Ghz and 16GB RAM. Figure 5.1 shows the synthetic topology 

used in this experiment. The experiment employs the CBR dataset as workload, with the 

maximum universe flow F=2000, the initial number of arbitrary flow passing through 

path 𝑝𝑖 is f = 10, and the initial flows’ number in the node v is 100 with the increase ration 
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of 66%,40%,28%, and 20% in the next 4 iterations. CBR is a valid traffic pattern that 

demonstrates a constant increase ratio by which it effectively discloses the incurred 

variation associated with the increment ratio. Controller C1 polls the switch that is 

directly attached to it. To observe the effectiveness of the proposed method in a single 

controller, the obtained results are compared to two native OpenFlow polling methods 

namely SSR and PA and a similar work CeMon. The flows are generated in a uniformly 

random fashion using D-ITG. Table 5.1 shows the summary of the specifications in this 

experiment. 

 

Figure 5.1: Synthetic Topology: Composed 1 pod consists of 2 edges and 2 
aggregation switches with one controller. 

Table 5.1: Experiment specification details 

Specification Details 
SDN emulator Mininet v. 2.1 

Switch type Open vSwitch(OVS) v. 2.5.2 
Traffic generator D-ITG 

Traffic Type Randomized TCP/UDP 
Synthetic network topology 1 Pod of k-pod fat-tree k = 4 

Number of flows in pi 10, 20, 30, 40, 50 
Number of flows in the switch 100, 200, 300, 400, 500 

 

This evaluation concentrates on out-out-band network deployment with a single 

controller. The results of this evaluation are shown in the average of 10 times iteration. 

All findings from this experiment are analysed and discussed in this section. 

node v 

Aggregation switches 

Edge switches 
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 Communication overhead 

Figure 5.2 shows the communication overhead in a single controller scenario with out-

of-band deployment.  

 

Figure 5.2: Communication overhead in single controller scenario with out-of-
band deployment 

 
In general, the results obtained from this experiment indicate a notable reduction over 

all the compared methods. In particular, the proposed solution reported 82% reduction 

against SSR. It also saves up to 161% compared to both PA and CeMon methods. 

Basically, applying the ‘polling all’ approach can reduce the communication overhead 

that is strongly associated with the total number of flows in the switch, which is ten times 

bigger than the actual demanded flows. As can be seen, the sharp rise in PA and CeMon 

has a direct correlation to the total number of flows in the switch in every interval. This 

behaviour occurs in all methods that fully or partially apply the polling all strategy in 

their design. CeMon implements a combination of the polling all and single flow request 

approaches, in which it pulls all flow statistics in the previous intervals (already covered 

flows) and utilises single requests for new flows in the current interval. However, this 

strategy is highly scenario-dependent, which is either suitable for those networks with 

small rates of new flow arrival or multiple switch selection for polling. According to the 
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observed finding, it can be concluded that the reduction ratio in this metric (reducing the 

overhead) will be better in a network with a higher number of flows.  

 Message Interaction Overhead 

Figure 5.3 shows the message interaction overhead in single controller scenario with 

out-of-band deployment. 

The results obtained from the message interaction overhead demonstrate that the 

proposed method and CeMon archive the optimal result, which is found in the PA 

approach for message interaction costs. The costs for PA, CeMon and the proposed 

method remain constant and proportionally increase with the number of controllers. As 

there is only one controller in this case study, the proposed method generates three 

messages (request, reply and synchronised message) for every interval PA. CeMon also 

achieves the optimal number of message interactions as a result of applying “polling all 

approach”. However, similar to communication costs, the result is highly dependent on 

the scenario and environmental factors such as the number of selected switches to poll or 

the arrival of new flows. SSR reported the worst approach in this overhead as it generates 

three messages for each flow. 

Figure 5.3: Message Interaction in single controller scenario with out-of-band 
deployment. 
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 Controller Overhead 

Figure 5.4 shows the controller overhead in single controller scenario with out-of-band 

deployment. 

As observed in the graph, the proposed method achieves the least controller overhead 

as it only processes statistics associated with the demand flows (those flows that 

contribute to the utilisation of pi). CeMon and PA reported the highest overhead with an 

explicit increase of the number of flows. This is because these two methods send all the 

current flows in the switch to be processed in the controller. SSR are distinctively superior 

to CeMon and PA as a result of sending less flows to be processed. This reduction in flow 

numbers is due to polling less flow statistics. Thus, the fewer flow statistics to poll, the 

less overhead to be generated. 

 

Figure 5.4: Controller Overhead in single controller scenario with out-of-band 
deployment. 

 
However, it is observed that the proposed method significantly saves the overhead by 

63% over SSR as a result of reporting the precise flow statistic as demanded. From the 

observation, it can be inferred that the number of message interactions and flows has an 
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explicit relationship to the controller overhead, and that the controller overhead increases 

according to the increasing message interaction overheads and number of flows. 

Therefore, similar to the communication overhead, the controller overhead is expected to 

save more in comparison to other methods when the number of flows in the network 

increases. 

 Experiment II: Multiple-controller (distributed controller) with in-band 

deployment 

This section aims to discuss the experimental evaluation of the proposed model in in-

band network deployment with a decentralised (multiple) SDN controller. It explores the 

effects of multiple SDN controller on various overhead factors and accuracy. The 

objective of the experiment is to measure all UDP flow traffic with a specific destination 

port number (i.e. 3660) in the datacentre network.  

Table 5.2: Specification of the experiment 

Spec Type 
Host vCPU 16 

Host Memory 64Gb 
Host OS Ubuntu 16.04 Server 

Mininet version 2.2.0 
OVS version 2.5.2 

Floodlight version 1.2 
Traffic Generator D-ITG version 2.8.1 

Traffic Type CBR 
 

Network 
Topology 

Number of Host Switches Number of Flow 

Fat-tree k-pod 
(k=4) 

16 Edge Aggregation Core 240, 480, 720, 
960, 1200, 1440 8 8 4 

 

As the scale of the experiment is large and requires high computation and memory 

capacity, it was conducted in an Amazon EC2 m4.4.xlarge instance with the Ubuntu 16.04 

Server. The topology employed is k-4 fat-tree (shown in Figure 2, Appendix B) with CBR 
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workload. Additionally, a VBR dataset was employed to carry out the examination of 

accuracy performance metrics. All hosts generate VBR traffic to others. The detailed 

specification of the experiment is shown in Table 5.2. The findings of the proposed 

method for multiple SDN controller are labelled in CEMoC as presented in section 4.2. 

 Communication Overhead 

Figures 5.5-5.8 show the communication overhead with different numbers of 

controllers. Obviously, the CEMoC is constantly superior to all other methods with 

different numbers of flows. A linear increase is observed in all methods as the numbers 

of flows grow. However. CEMoC reported the lowest communication overhead by 

maximum 410Kbps when the flow number is 1440. The finding shows that CEMoC saves 

up to 97% and 138% in comparison to PA and SSR, respectively. However, the findings 

demonstrate that the increment rate of communication overheads varies with different 

numbers of controllers. As can be seen in Figures 5.5, 5.6, 5.7 and 5.8, SSR, PA, and 

CEMoC stand out as the worst and the best methods in a descending order. However, 

CeMon reports different behaviour as it gradually decreased communication overhead 

when the number of controller decreases. Figure 5.9 explains the average growth ratio of 

communication overhead for each method over CEMoC; SSR and PA show a constant 

growth rate, whereas CeMon demonstrates the least increment rate with 51% in single 

controller mode, and the biggest change when there are four controllers in the network. 

This is because CeMon selects both core and edge switches to use polling all approach 

and applying single flow request respectively. 
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Figure 5.5: Total Communication Overhead with four Controllers 

 
Figure 5.6: Total Communication Overhead with three Controllers 
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Figure 5.7: Total Communication Overhead with two Controllers   

 

Figure 5.8: Total Communication overhead with one Controllers   
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Figure 5.9: Average Growth Rate of Communication Overhead with Different 

Numbers of Controllers 

Table 5.3: The Growth Rate of Benchmarks with Different Flows and 
Controller Numbers over CEMoC. 

Benchmark              

        Flows 

Growth rate in 4 controllers [%] 

240 480 720 960 1200 1440 
SSR 130 136 139 140 140 141 

CeMon 109 113 114 115 116 116 
PA 94 97 98 98 99 99 

 Growth rate in 3 controllers [%] 
SSR 131 137 139 140 141 141 

CeMon 78 81 82 83 83 83 
PA 95 97 98 99 99 99 

 Growth rate in 2 controllers [%] 
SSR 132 137 139 140 141 141 

CeMon 60 63 64 64 65 65 
PA 95 98 98 99 99 99 

 Growth rate in 1 controller [%] 
SSR 132 137 139 140 141 141 

CeMon 48 51 52 52 53 53 
PA 95 98 98 99 99 99 

 
 
In addition, the number of paths from the controller to the switches is increased as 

more switches are attached indirectly through in-band data paths. Thus, more switches to 

poll results in more flow statistics to communicate. Table 5.3 also illustrates the growth 
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rate of our benchmarks in different flows and controller numbers over CEMoC. It 

indicates that there is a slight but steady growth of SSR and PA over CEMoC when the 

number of controllers increases. However, CeMon reports a decrease in the 

communication overhead when the number of controller decreases. It is also observed 

that the overhead in all methods grows when the number of controller drops from four to 

one. Table 5.4 explains the average growth rate in comparison to four controllers. As can 

be seen, CeMon reports the lowest growth rate by 17%, 33% and 50% in comparison to 

four controllers. However, other methods result in a higher growth rate, i.e., 37%, 75%, 

112 %.   

Table 5.4: The Average Growth rate in Comparison to four controllers 

Number of 
controllers 

             Method 

Growth rate [%] 

3 2 1 
SSR 37 75 112 

CeMon 17 33 50 
PA 37 75 112 

CEMoC 37 74 111 
 

 Message Interaction Overhead 

The evaluation compares CEMoC’s message interaction caused by polling switches to 

SSR, PA, and CeMon with different flow numbers. Figure 5.10 shows message 

interaction with four controllers, where CEMoC and PA achieved the most efficient 

number of message interactions in all of the iterations. However, PA sacrifices other 

overheads such as communication and controller overhead at the expense of low message 

interaction. This is because PA aggregates the whole flow stats in the switch in only one 

message. The efficient number of message interaction, is constant (a fix number), can be 

found in the methods that only apply polling all flows. This strategy prevents excessive 

sending and receiving messages from controllers and switches. CeMon is in third place 

as it can reduce almost half of the iterations using polling all from core switches. SSR 
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demonstrates the highest number of interactions as a result of polling switches for every 

individual flow. In total, CEMoC reduces this overhead by up to 28% and 143% over 

CeMon and SSR, respectively. Table 5.5 shows the result of message interaction with 

different numbers of controllers. It is observed that methods that apply single polling for 

every individual flow do not change with different numbers of controllers. However, 

CEMoC and PA, which apply polling all flows, achieve a slight decrease when the 

number of controllers is reduced. 

 
 

Figure 5.10: Message Interaction in 4 controllers 

Table 5.5: Message Interaction with Different Numbers of Controllers 

Benchmarks      

            Flows 

Number of Message Interaction 

240 480 720 960 1200 1440 
 Message Interaction in 3 Controllers  

SSR 483 963 1443 1923 2403 2883 
CeMon 107 203 299 395 491 587 

PA 19 19 19 19 19 19 
CEMoC 19 19 19 19 19 19 

 Message Interaction in 2 Controllers  
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PA 18 18 18 18 18 18 
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Table 5.5, Continued 

CEMoC 18 18 18 18 18 18 

 Message Interaction in 1 Controller  
SSR 481 961 1441 1921 2401 2881 

CeMon 105 201 297 393 489 585 
PA 17 17 17 17 17 17 

CEMoC 17 17 17 17 17 17 
 

 Controller Overhead 

Figure 5.11 explains the total overhead of four controllers with different flow numbers. 

It is observed that the controller overheads of all methods are linearly increased at the 

expense of flow growth. Thus, the more flows are counted, the more overhead is 

impressed. Unlike PA and CeMon, which report all the flow stats for calculation, CEMoC 

only reports the required statistics, which contributes to the utilisation of UDP flows. As 

a result, there are averages of 99%, and 126% of reduction in the controller overhead by 

CEMoC over PA. However, SSR reports the flow stats in the same way as CEMoC. The 

difference between SSR over CEMoC is that SSR generates and reads a massive number 

of files with regard to the number of flows, as every flow is placed in one file. 

Nevertheless, as CEMoC aggregates only required stats in one file, there is only one file 

to read. CEMoC saves up to 65% of controller overhead over SSR. It is also observed 

that the total controller overhead is reduced by less than 0.01% on average when the 

number of controllers is decreased. Table 5.6 reports the total controller overhead with 

different numbers of controller. As can be seen in the table, there is a negligible reduction 

in overhead when the number of controllers drops to one. 
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Figure 5.11: Controller Overhead in four Controller Scenarios 

 
Table 5.6: Controller Overhead with Different Numbers of Controllers 

Benchmarks 

        Flows 

Overhead in different flow number 
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 Controller overhead in 3 Controllers  
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CEMoC 1475 2915 4355 5795 7235 8675 

 Controller overhead in 2 Controllers  
SSR 2402 4802 7202 9602 12002 14402 
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CEMoC 1474 2914 4354 5794 7234 8674 

 Controller overhead in 1 Controller  
SSR 2401 4801 7201 9601 12001 14401 

CeMon 3282 6546 9810 13074 16338 19602 
PA 2913 5793 8673 11553 14433 17313 

CEMoC 1473 2913 4353 5793 7233 8673 
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 Accuracy in Multiple-controller (distributed controller) with in-band 

deployment 

Unlike statistical estimation models or sampling methods used in traditional networks, 

accuracy mainly corresponds to time. Basically, due to network latency and the sequential 

creation of messages in the controller, synchronising poll requests are infeasible for all 

the switches in a network. Also, the exact moment of reading flow counters in the 

switches is unknown (Megyesi et al., 2017). As a consequence, estimating flow utilisation 

may be limited by a negligible error rate. This problem is also referred to as Accuracy 

limitation for lack of synchronisation, which can be more sophisticated when dealing with 

in-band deployment where statistic request and result traverse through the network’s data 

plane paths. The experiment conveyed a 360-second experiment with a VBR traffic 

pattern to highlight the observed error and the impact of different controller numbers on 

accuracy.  

 

Figure 5.12: Actual measured flow utilisation captured by Wireshark, CEMoC 
and the relative error.    

Figure 5.12 shows the actual measured flow utilisation captured by Wireshark, 

CEMoC and the relative error with four controllers and no extra delay. It can be observed 

that the flow utilisation captured by CEMoC is very close to the actual one. In fact, 

CeMon reports a maximum absolute error and standard deviation of 9.49% and 1.98%, 
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respectively. Artificial delays were introduced in the network to understand the impact of 

different numbers of controllers on the accuracy of flow statistical measurements. 

 Table 5.7 illustrates the relation between error ratio with different number of 

controller and delays. It can be observed that the error ratio increases in different number 

of controllers when the delay increases. Thus, the more delay is introduced, the bigger 

the error ratio. However, based on Table 5.7 it is concluded that the number of controllers 

has a direct relationship to the error ratio, by which the error ratio for all delays decreases 

when the number of controllers increases and vice versa. 

In order to construct a full traffic matrix for collecting all flow stats from all 

controllers, all controllers send the counted flow bytes (stats) and aggregate them into a 

UDP file. The controllers then send UDP files to the coordinator. It should be recalled 

that all transmissions in in-band deployment take place through the data plan network 

links. Therefore, in the worst case a packet in a fat-tree topology may go through five 

switches and links, each of which may impose different delay to the packet, until it 

reaches the coordinator. 

Table 5.8 shows the maximum transferring delay of the final UDP packet from each 

controller to the coordinator. Therefore, in the worst case, CEMoC is able to record flow 

utilisation without overlapping in the next intervals. However, the corresponding flow 

entry was proactively installed to the switches to transfer the UPD packet from the 

controllers to the coordinator. A static flow entry from controllers to coordinator was set 

in every switch in the network to eliminate the delay introduced in Table 5.8. 
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Table 5.7: The Relation between error ratio on different controller numbers and 
delays. 

Error 

               Delay [ms] 

Error [%] 

0 5 10 15 100 
 Relative Error with 4 Controllers 

Max Absolute Error 9.48E-02 9.46E-02 9.43E-02 9.36E-02 9.00E-02 
  
 Relative Error with 3 Controllers 

Max Absolute Error 9.48E-02 9.44E-02 1.01E-01 1.62E-01 4.64E-01 
 Relative Error with 2 Controllers 

Max Absolute Error 9.47E-02 9.43E-02 1.17E-01 1.95E-01 5.86E-01 
 Relative Error with 1 Controllers 

Max Absolute Error 9.46E-02 1.00E-01 1.32E-01 2.28E-01 7.08E-01 
 
 

Table 5.8: Maximum transferring delay of final UDP packet from each controller 
to the coordinator.  

Network Delay [ms] 0 5 10 15 100 
Controller to Coordinator [ms]  14.2 39.7 68.9 159.4 606.6 

 

 Experiment III: Simulation: multiple-controller with in-band deployment 

This experiment aims to evaluate the performance of the proposed framework in in-band 

network deployment, under a real dataset workload and the 2-tire fat-tree topology 

presented in section 5.1.3 and 5.1.4 respectively. Due to the large scale of the experiment 

(more than 100,000 flows; the flows’ interarrival time is between 4ms and 40ms for 80% 

of the flows) the experiment was conducted in a trace-driven simulator. The experiment 

only simulates the event of flow arrival and expiration in the network, and only focuses 

on various overheads, as the evaluation of accuracy requires real specifications and 

behaviours of the network, i.e. jitter and different latencies. The observed findings of 

CeMon (Su et al., 2015) were advertently omitted, because the dataset only provides edge 

switches. Therefore, due to the identical behaviour of PA and CeMon when using only 

edge switch(es), the finding from PA represents the CeMon as well. In this simulation, 

the minimum and maximum number of controllers is set to one and nine respectively. For 
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better understanding, the findings of the experiment are first depicted with nine 

controllers. Then the section summarises the findings from different numbers of 

controllers and illustrates them as the total overhead in a 60-second trace. The following 

elaborates the performance evaluation of the proposed framework with multiple 

controllers and in-band network deployment. 

 Communication Overhead 

Figure 5.13 explains the simulation results of communication overhead with nine 

controllers. Findings from the simulation experiment confirm the results observed in other 

experiments. It is observed that CEMoC steadily achieved the best performance in terms 

of decreasing communication overhead in all experiments. However, SSR and PA change 

places in several points of time. Findings show that PA achieves better performance than 

SSR whenever the total number of flows is twice the number of demanded flows. This 

behaviour of PA can be found in the seconds 15, 19 and 31 onward of the time axe.  

 

Figure 5.13: Communication overhead with nine controllers 

Findings also show a meaningful decrease when the number of controllers increases. 

Figure 5.14 explains the total communication overhead with different numbers of 
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controllers for 60 seconds. As can be seen, there is a sharp fall in all methods when the 

number of controllers reaches two. This is because all the edge switches in the second 

pod (i.e. nine edge switches in this topology) send their stats by an extra inter-pod link. 

This extra inter-pod link decreases the communication overhead by roughly 9%. The 

depression declines steadily to the end (9th controller). In Figure 5.14 it can be observed 

that in particular CEMoC outperforms PA and SSR by 153% and 140%, respectively. 

 

Figure 5.14: Total communication overhead with nine Controllers for 60 seconds 

 Message Interaction Overhead 

Figure 5.15 depicts the message interaction overhead from the 60-second trace of the 

experiment. Findings from this section confirm the experiments via emulation in the 

earlier section and our problem formulation in Chapter 3. As witnessed in Figure 5.15, 

CEMoC achieves the optimal number of message interactions by an average of 45 

messages per second. PA reports a near optimal number, however, it causes abnormalities 

in several periods in the time line (i.e. 0s-6s, 8s, and 10s). This behaviour is related to the 

multipart OpenFlow message, as comprehensively explained in Chapter 3. It should be 

recalled that the length of the TCP packet in the wire medium cannot exceed 64K. 

Therefore, PA shows message number three times more (3x more) than CEMoC in the 
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mentioned time periods, as a result of exceeding packet size from the standard predefined 

value 64Kb. Through examining and tracing with Wireshark, it was observed that 

whenever the number of flow entries exceeds 453, the reply packet is divided into two or 

more messages. SSR results in the highest number of messages by generating three 

messages for every single flow in a second. In addition, similar to the emulations, findings 

from the simulation show the increase of message interaction at the expense of controller 

numbers in which the number of messages is increased when the number of controllers is 

increased.  

 

Figure 5.15: Message Interaction overhead with nine Controllers in 60 seconds. 

Table 5.9 reports the message interaction overhead with different numbers of 

controllers in 60 seconds. According to the table, CEMoC and PA show the biggest 

change, while SSR achieves the smallest change with 0.029%. However, the standard 

deviation of changes for all methods uses the identical ratio (i.e. 164.31), that indicates 

that the same changes ratio to the proportion of total number of message for each method. 

It means, the ratio of changes among SSR, PA, and CEMoC are exacly the same, though, 

the average of difference is different. In simple words, different numbers of controllers 
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make no difference to the change ratios. In total, the proposed method showed a 6% and 

63% reduction in message interaction overhead over PA and SSR, respectively.   

Table 5.9: Total Message interaction overhead with different numbers of 
controllers in 60 seconds. 

Number of Controller Method  
SSR PA CEMoC 

1 205476 2220 2220 
2 205536 2280 2280 
3 205596 2340 2340 
4 205656 2400 2400 
5 205716 2460 2460 
6 205776 2520 2520 
7 205836 2580 2580 
8 205896 2640 2640 
9 205956 2700 2700 

Average of difference 0.029% 2.32% 2.50% 

STD of changes 164.31 164.31 164.31 

 

 Controller Overhead 

Similar to the emulation findings in the controller overhead, the findings from the 

simulation demonstrated similar results and behaviour. CEMoC could save overheads up 

to 65% and 154% as compared to SSR and PA, respectively. Figure 5.16 plots the 

controller overhead in 60 seconds with nine controllers. It is observed that the overhead 

trends of all methods remained the same during 60 seconds. As can be seen, CEMoC and 

SSR stay in a close range of each other until the end of the experiment. However, PA 

starts and finishes the journey relatively far from other methods mentioned above. This 

is because PA transfers a huge amount of statistics in a message (every time), which is 

the total active flows at the moment, and this vast information needs to be processed; 

CEMoC and SSR transfer only the demanded flows to be processed. The observed results 

also confirm the finding from the emulation in which there is a negligible reduction in 
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overhead when the number of controllers reduces. Figure 5.17 depicts the total overhead 

during 60 seconds.  

 

Figure 5.16: Controller Overhead with nine controllers in 60 seconds 

 

Figure 5.17: Total controller overhead with different numbers of controllers in 60 

seconds. 
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5.3 Statistical Modelling 

This section seeks to verify the findings collected from the simulation experiment. To 

address this objective, the section applies a statistical analysis model to approximate the 

correlation coefficient of the samples (the findings from the emulation and simulation) 

and the significance of the differences or similarities. A t-test is used as the statistical 

analysis modelling tool to determine the significance of the differences. To reach the aim 

of this section, a t-test with equal variances was chosen due to the samples’ limitation (n 

< 30) where n is the number of the population in each sample. The main aim of the t-test 

is to either accept or reject a given hypothesis (i.e. “There is statistically a significant 

difference between two sets”) by a probability value 0 ≤ 𝑝 ≤ 1, a confidence level = 95% 

and a significance level 𝛼 ≤ 0.05 which is the most widely used and considered to be 

“small enough” (Zar, 2013). Therefore, the given H0 is accepted if the probability p is less 

than the significant level 𝛼. Another supportive approach that determines whether to 

accept or reject the H0 is through calculating the t-value and comparing it to the critical 

value. Thus, if the t-value is higher than the critical one, the H0 is rejected. The employed 

critical value in our t-test for paired and unpaired analysis are 2.570 and 2.228, 

respectively. A full list of the critical values of the t-distribution is shown in Appendix C, 

Table 1. For more simplicity and clarity, the section only presents the test findings from 

CEMoC. The difference between the emulation result and the simulation on the message 

interaction overhead is the absolute zero value. This is because the findings from the 

emulator report the exact amount as simulation. Therefore, the findings of the t-test on 

message overheads are not depicted, as the t-test generates errors when the subtraction of 

means and score is zero (i.e. error: division by zero). The test findings for other 

benchmarking methods are shown in Appendix C. 

To verify the correctness of the findings from the simulation, the same input (section 

5.2.2, experiment 2) with the given topology and dataset workload (i.e. 4-pod fat-tree and 
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CBR respectively) was given to the simulator. Thereafter, t-test was used to analyse the 

two population means and testing the difference between the samples. In the t-test, two 

means (average) are compared and the possibility of differences in two populations is 

distinguished. It also notes the significance of the differences. In other words, the t-test 

defines if the differences could have occurred by chance. Therefore, the findings from the 

simulator and the emulation were analysed to confirm the correctness of the simulator. 

To calculate the t-value on the paired and unpaired test, assuming equal variances and 

Pearson-correlation ratio (r), equation 5.1, 5.2 and 5.3 are used respectively: 

t = 
(∑ 𝐷)/𝑁

√∑ 𝐷2−(
(∑ 𝐷)2

𝑁 )

(𝑁−1)(𝑁)

        5.1 

t = 𝑥1− 𝑥2

√
𝑠1

2

𝑛1
+ 

𝑠2
2

𝑛2

        5.2 

r = 𝑁 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑥𝑦)

√[𝑁 ∑ 𝑥2− ∑ 𝑥2][𝑁 ∑ 𝑦2− ∑ 𝑦2]

        5.3 

where t measures the size of the difference relative to the variation in the sample data. 

In other words, it calculates the difference represented in the units of standard error. r is 

the Pearson-correlation that measures the correlation between sets of data and defines 

how well they are related. Table 5.10 explains the annotations used in mean and variance 

equations. Equations 5.4 and 5.5 show the equations of mean and variance respectively: 

𝑥 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
        5.4 
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𝑠2 =
∑(𝑋𝑖− 𝑥)2

𝑁
        5.5 

Table 5.10: Annotation in mean and variance equations. 

 Annotation Definition 
t T-Value 
r Pearson Correlation 
D difference between matched scores 
N number of samples inside the set/number of pair of scores 

∑ 𝑥 Sum of x scores 

∑ 𝑦 Sum of y scores 

𝑥 Mean of the set 
𝑠2 Variance of the set 

 

 Communication Overhead 

Tables 5.11 and 5.12 explain the analysis of the emulation and simulation findings for 

communication overhead of CEMoC in the paired and unpaired t-test. 

Table 5.11: Paired t-test Two Sample for Means of communication overhead in 
CEMoC 

  Simulation Emulation 
Mean 246356 246116 
Variance 16721510400 16677796147 

Observations 6 6 

Pearson Correlation 0.99 
 

Hypothesized Mean Difference 0 
 

Degree of freedom 5 
 

t Stat 1.076 
 

P(T<=t) one-tail 0.092 
 

t Critical one-tail 2.015 
 

P(T<=t) two-tail 0.102 
 

t Critical two-tail 2.570   

 
As can be seen in Table 5.11, the t-stat is smaller than the t-critical two-tail value 

(1.076 < 2.507). It also reports that the two-tail p-value (0.102) is not less than 𝛼 = 0.05. 
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Thus, the test fails to reject the null hypothesis (H0). It is concluded that data from two 

populations support H0. Therefore, there is no statistically significant difference found 

between the two given sets (i.e. emulation and simulation). Moreover, the correlation 

value (r) exposes a strong positive relation (0.978) between the two sets. 

Table 5.12: Unpaired t-test Two Samples Assuming Equal Variances of 
communication overhead in CEMoC 

  Simulation Emulation 
Mean 246356 246116 
Variance 16721510400 16677796147 
Observations 6 6 
Pooled Variance 16699653274 

 

Hypothesized Mean Difference 0 
 

Degree of freedom 10 
 

t Stat 0.003 
 

P(T<=t) one-tail 0.498 
 

t Critical one-tail 1.812 
 

P(T<=t) two-tail 0.997 
 

t Critical two-tail 2.228   
 

Additionally, the findings from the unpaired t-test in Table 5.12 support the H0 as the 

t-stat by 0.003 is smaller than t-critical two-tail value by 2.228. Moreover, the p-value by 

0.997 is much higher than the 𝛼 =  0.05. It is therefore concluded that the data from 

emulation and simulation are considered equal.  

 Controller Overhead 

Tables 5.13 and 5.14 explain the analysis of the emulation and simulation findings for 

communication overhead of CEMoC in the paired and unpaired t-test. 

A similar analysis in communication overhead in section 5.3.1 and 5.3.2 was used to 

reject the H0 for this overhead as well.  

If t-stat is smaller than the two-tail value, the H0 is not accepted. As can be seen in the 

paired test, -0.925 is less than 2.570, and in the unpaired test 0.925 is less than 2.228. 
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Table 5.13: Paired t-test Two Sample for Means of controller overhead in 
CEMoC 

 
Simulation Emulation 

Mean 4996 5071 
Variance 6881280 7238626.8 
Observations 6 6 
Pearson Correlation 0.99 

 

Hypothesized Mean Difference 0 
 

Degree of freedom 5 
 

t Stat -0.925 
 

P(T<=t) one-tail 0.198568395 
 

t Critical one-tail 2.015048373 
 

P(T<=t) two-tail 0.397 
 

t Critical two-tail 2.570   

 
Table 5.14: Unpaired t-test Two Samples Assuming Equal Variances of 

controller overhead in CEMoC 

  Simulation Emulation 
Mean 4996 5071 
Variance 6881280 7238626.8 
Observations 6 6 
Pooled Variance 7059953.4 

 

Hypothesized Mean Difference 0 
 

Degree of freedom 10 
 

t Stat -0.048 
 

P(T<=t) one-tail 0.480 
 

t Critical one-tail 1.812 
 

P(T<=t) two-tail 0.961 
 

t Critical two-tail 2.228   
 

If the two-tail p-value is no less than 𝛼 (0.05), it is concluded that data from two 

populations support H0. The findings report the two-tail p-value in the paired test is 0.397, 

which is greater than 0.05. In the unpaired test it is 0.961, which is not less than 0.05 as 

well. 

The correlation value reports a positive large value (0.981), which defines a strong and 

positive relationship between two sets. 
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Therefore, it is concluded that there is no statistically significant difference found 

between the two given sets, i.e. emulation and simulation.  

5.4 Discussion 

This section provides a discussion of the results and findings from the extensive 

experiments in the previous sections. All findings are discussed and divided into three 

overhead categories (i.e. communication, message interaction and controller 

overhead).  

 Communication overhead 

The findings from experiment 1, 2, and 3 were compared on different deployment 

models such as out-of-band and in-band. The results showed a significant improvement 

of the proposed method (CEMoC) over all benchmarking methods. Regardless of network 

deployment, the findings from the experiments show a linear increase in all of the 

methods in the proportion of flow numbers in the switch, in which the overhead increases 

when the flow numbers increase. CEMoC achieved the best performance as it only 

requests demanded flow statistics. From the experiments it can be observed that PA and 

CeMon report the same overhead due to requesting all the active flows in the switch. 

 The experiments in in-band deployment model were replicated with different numbers 

of controllers. A meaningful improvement on overhead from CEMoC was observed when 

the number of controller increases. PA performed consistently in both experiment 1 and 

2, in which it imposed the highest overheads of all methods. 

The results from the simulation in a real dataset confirm the findings from 

experiment 2 where CEMoC achieves the best savings in communication overhead. 

However, it shows that PA and SSR can perform in a competitive way, with PA 

performing better than SSR when the total number of flows in a switch is less than the 
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number of actual demanded flow times to 2 (total number of flow in switch < (actual 

demanded flow x2)). 

 Message interaction overhead 

The message interaction overhead in the network was also evaluated under different 

experiments. The findings from in-band deployment showed that the proposed method 

exposes the optimal overhead of message interaction on the network. Although CEMoC 

achieves the same number of message interactions as PA, this confirms that other methods 

are unable to overcome the proposed method on this overhead. CeMon also performed 

like CEMoC and PA in this experiment. It was also observed that the overhead of CEMoC 

remains the same in any arbitrary flow number. In general, the proposed method showed 

a 63% reduction over CeMon. 

In addition, results from the out-of-band deployment model describe same behaviour. 

However, CeMon emerged as a suboptimal method when there is more than one switch 

for pulling purposes. The proposed method showed the optimal number of message 

interactions for all flows, which is the same as the PA result. However, all methods 

showed that their overheads increase when the number of controllers increases. The 

relation of message interaction overhead to the number of flow has a contrary behaviour 

to the communication overhead, where an increase of the number of controller cases a 

decrease in the communication overhead.  

The results from experiment 3 also confirm the findings from previous experiments 

where the overhead of message interaction in the network is increased at the expense 

of increasing the number of controllers. It is observed that CeMoC outperforms PA 

when the number of messages in a switch is high. As PA requests all messages in a 

switch, it revealed suboptimalitywhen the number of flow increases and causes the 
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reply packets divides to multiple packets. However, CeMoC results in the same 

message number when the number of flows is relatively low. 

 Controller overhead 

Similar to all other overheads, different experiments were evaluated for the overhead 

of controllers as well. In out-of-band deployment (experiment 1), the proposed method 

reported the highest saving in this overhead. However, similar to communication 

overhead and message interaction, PA and CeMon show the same overhead. 

In the in-band deployment model (experiment 2 and 3) where multiple controllers were 

employed, the proposed method showed a significant saving over all other benchmarking 

methods. In total CEMoC performs up to 65% better than SSR. However, the most 

significant achievement is the comparison of the proposed method with CeMon and PA, 

in which CEMoC outperforms the two mentioned methods by 99% and 126%, 

respectively. Moreover, the evaluation of the controller overhead was followed by 

comparing the methods with different numbers of controllers; here it showed a negligible 

decrease in the total overhead when the number of controllers increases. However, the 

findings of multiple controllers show the total overhead on all controllers, where the 

overhead is divided by the number of controllers to observe the overhead on each 

individual controller. 

In addition, the result of the flow measurement from our proposed method in in-

band deployment was captured and shown with different controller numbers and 

various imposed delays in the network. It was observed that the error ratio increases 

as the number of controllers decreases. This is due to the number of links and switches 

in the network. With four controllers in the network, there will be fewer links and 

statistics for a switch to reach the corresponding controller. Therefore, the lower the 
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number of controllers, the more links and switches the statistics go through. The 

situation deteriorates when the imposed delay is extended.    

 Significance of Evaluation   

Beside the main findings, the following lessons can be inferred through evaluation of 

the performance in the simulation and emulation, and the analysis and comparison of the 

network with different deployment models (i.e., out-of-band and in-band): 

• The in-band deployment network model is costly in comparison to the out-of-

band model in terms of the generated overhead by the pulling of statistics of 

flows. 

• Employing multiple controllers in out-of-band deployment does not have any 

impact on the generated overhead. 

• Employing multiple controllers can significantly decrease the communication 

costs as well as the controller overhead in in-band deployment. 

• Using multiple controllers in the network distributes message interaction 

among all controllers. However, in total, it increases a negligible overhead on 

message interaction in the network. 

• Implementing multiple controllers distributes the load on several controllers, 

and hence significantly minimises the overhead on each controller. However, 

the total overhead is increased by a negligible cost. 

• Different network deployment models leave no impact on the overhead 

imposed on the controller(s). 

• Accuracy of flow statistical measurement is improved when employing 

multiple controllers in in-band and out-of-band network deployment. 
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5.5 Summary 

This chapter presented the performance evaluation of the experiments (i.e. emulation 

and simulation) of the proposed framework with their corresponding counterparts. The 

aim of elaborating the evaluation in different experiments is to explore the unique 

objective and significant findings from each experiment. The chapter comprehensively 

explained the evaluation setup accompanied by its relative components (i.e. dataset, 

topology, performance metrics, and benchmarking methods). It also conducted three 

experiments and performed evaluations to demonstrate the outperformance of the 

proposed method compared to the state-of-the-art methods, and discussed the findings 

and results inside each performance metric. Finally, the chapter performed and explained 

a statistical analysis test through paired and unpaired t-tests for verification and validation 

of the results from our simulator. 
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CHAPTER 6: CONCLUSION 

This chapter is the epilogue of the research carried out in this study. It summarises the 

main findings and the attained research objectives, and highlights the significance of the 

proposed method. The chapter also explains the limitations of this study and suggests 

future extensions. The chapter is organised as follows: 

Section 6.1 discusses the reappraisal of the main findings and research objectives. 

Section 6.2 highlights the contribution and achievement of the study. Section 6.3 presents 

the limitation of the study. Section 6.4 explains the future directions and possible 

extensions. 

6.1 Research questions and research objectives 

Next generation networks are characterised by their huge scale and the diversity of the 

generated traffic. In such networks, various real-time (latency-sensitive) and offline 

applications require information on the current state of network traffic and its behaviour. 

This necessary requirement cannot be accomplished without enough measurement of data 

about individual flows in each part of the network. The main motivation of this thesis is 

to address the problems of network traffic flow measurement systems in SDN due to 

demanding features for other network applications. In addition, due to the various 

implications of measurement systems such as different overheads, accuracy, and being 

real-time in SDN, these implications can potentially be seen as a unified multi-objective 

framework. 

This study aimed to achieve a multi-objective network flow measurement system that 

effectively minimises multi-objective costs such as communication, message interaction, 

and controller overheads in near real-time, with high accuracy in both centralised and 

decentralised controller scenarios in DCN. Section 1.4 details the four research objectives 

Univ
ers

ity
 of

 M
ala

ya



128 

of this study. Therefore, this section aims to answer the following questions: a) RQ1: 

What existing flow measurement systems for networks are there? b) RQ2: How can the 

behaviour of SDN flow measurements be formulated? c) RQ3: How can a flow 

measurement system be developed in a near real-time and cost-effective manner? d) RQ4: 

what is the effectiveness of the proposed framework when compared to existing 

approaches? 

 

Objective 1: To study the traditional network traffic measurement and monitoring 

approaches and perform a gap analysis review on the state-of-the-art SDN 

techniques for network traffic measurement and monitoring. 

The first objective is provided to answer RQ1 of this study. To accomplish this 

objective, a thorough discussion was first conducted on major representative research in 

the area of network traffic measurement. The objective was to broadly review network 

traffic monitoring/measurement implications and introduce traditional measurement and 

monitoring methods for network traffic. Two major approaches were presented for 

measurement/monitoring purposes, namely the active and passive approach, which are 

able to accomplish different monitoring tasks. An overview of SDN was presented to 

introduced different layers and the architecture alongside the underlying fundamental 

concept, to help readers gain an easy and smooth understanding of SDN. Moreover, a 

light-weight overview of the original SDN measurement approaches was introduced to 

OpenFlow specifications, namely SSR, PA, push-based, and trigger-based. Finally, the 

study discussed the state-of-the-art SDN measurement solution and the latest trends in 

flow-based network traffic measurement in SDN in detail. 

 

Objective 2: To propose a comprehensive mathematical formulation and analysis on 

different costs such as communication overhead, message interaction, and controller 
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overhead as a multi-objective problem in the context of network traffic flow 

measurement. 

This objective aimed to address RQ2 to provide a clear understanding of various costs 

associated with the measurement of flow, both on the data and control plane side. 

Basically, the measurement task imposes overheads on different aspects. These aspects 

affect the control plane and data plane at the same time. The severity of overheads may 

vary in different network deployment models. In addition, the objective aimed to analyse 

the problem that was highlighted in Chapters 1 and 2, and to conduct an in-depth 

investigation to show the impact of flow measurement on different aspects of overhead. 

In addition, different network deployment models such as out-of-band and in-band were 

formulated. This objective focused on three imposed overheads, of which two were 

highlighted in the literature review, the communication and message interaction 

overheads imposed by pulling flow statistics. It then introduced a new overhead, which 

is generated by reading and calculating the measured flows statistics. Finally, a 

mathematical explanation was formulated for in-band and out-of-band network 

deployments. 

 

Objective 3: To propose a multi-objective flow measurement framework that 

effectively minimises the costs and provides near real-time flow statistics in fully 

centralised and distributed SDN controllers. 

This objective addressed RQ3. It was achieved by designing a multi-objective 

framework that effectively reduces different overheads in the data and control plane. The 

framework leverages the OpenFlow protocol to provide a real-time active traffic flow 

measurement. Since the proposed framework adopts the OpenFlow group table feature, 

it is able to optimally define the demanding flows in every switch, and poll the switch to 
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read demanding flows statistics. In addition, the framework was designed based on 

polling edge switches, therefore, it generates a near real-time measurement of flows. 

Moreover, it implemented a pulling-based approach which has been proven to be more 

accurate as compared to push-based and passive approaches. Finally, the approximation 

algorithm eager-greedy was adopted to reduce the complexity of the optimisation 

problem of weighted set-cover and the complexity imposed by the brute forced algorithm. 

The approximation algorithm assigns a weight for every switch in order to find the 

switches with the lowest communication costs to the location of the controller and the 

coordinator. It also takes delays into consideration for setting the weight of the switches. 

 

Objective 3: To evaluate the performance of the proposed multi-objective 

framework against similar existing state-of-the-art approaches in SDN. 

This objective provided the answer to RQ4 by presenting and discussing the result of 

the performance evaluation of the proposed framework in detail. First, the evaluation 

setup was demonstrated, which consists of a detailed description of the performance 

metrics, benchmarking methods, datasets, and topologies. Second, three experiments 

were performed, whereby the obtained results from implementing the framework 

exhibited a linear and consistent trend. The first two experiments were conducted in an 

emulated environment with artificial datasets, as the emulation limits the machine power 

and capacity to perform the experiments with a real dataset. Findings from both 

emulations showed a linear increase associated with the flow number. Also, it was proven 

that the overheads increase in in-band deployment in relation to the number of flows. In 

addition, it was understood that deploying multiple controllers affects the overheads, 

whereby an increased number of controllers reduces the communication overhead and 

increases the message interaction overhead. The last experiment was performed through 

a simulator using a real dataset. In addition, a comprehensive discussion exposed the 
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outperformance of the proposed framework in comparison to other state-of-the-art work. 

The findings from this experiment confirm the results obtained in previous experiments. 

The findings from all experiments confirm the linearity and consistency of the trend. 

Third, the study highlighted statistical modelling for verification of the achieved results 

from the simulation experiment. Linear regression was performed on all metrics derived 

from the cost factors and compared to prove the identicality with the emulation results 

using the t-test. The t-test result showed a significant similarity between the result 

obtained from the emulation and the result achieved from the simulator. Finally, a 

thorough discussion of all the experiments and results along with the significance and 

lessons learnt was presented.   

6.2 Achievement of the Study 

This study proposed a multi-objective network flow measurement framework in SDN 

suitable for datacentre networks. In detail, the main achievements of this study are as 

follows: 

i. The major strategies used in the design of traffic measurement and monitoring, 

namely active and passive approaches, were explored to identify the underlying 

common concepts and mechanisms of traffic measurement/monitoring. 

Moreover, a comparison between the mechanisms mentioned above was made. 

ii. A comprehensive review of the existing solutions and taxonomy of the 

approaches in SDN network traffic measurement and monitoring was 

presented. This review can be used as a comprehensive tutorial for fellow 

researchers who are interested in this topic. 

iii. A comprehensive problem formulation and analysis for cost-effective flow 

measurement in SDN for in-band and out-of-band network deployment was 
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performed. This is the first comprehensive mathematical formulation for flow 

measurement costs to date. 

iv. A fine-grain cost-effective framework in SDN was proposed for DCNs, which 

measures network traffic flow in near real-time manner. The extended 

proposed framework was presented for a decentralised (multiple) controller 

scenario. To the best of the researcher’s knowledge, this work was the first 

attempt to design a traffic measurement system for a decentralised controller 

scenario. 

v. Several rigorous evaluations of the proposed framework were performed in an 

emulation environment and simulation. The emulation was done through 

Floodlight, a popular java-based SDN controller, to emulate the SDN setting 

Mininet was employed. 

vi. A precise and trusted simulator was designed and developed for the purpose of 

evaluation on a large network scale with the real dataset. The simulator was 

tested using statistical modelling/testing and proved to be promising. 

vii. Finally, a large public network traffic dataset was adopted from a university 

datacentre and converted to excel (.xsl). This dataset can be used by fellow 

researchers who are interested in implementing a real dataset and evaluating 

their proposed work in simulators. 

6.3 Limitations of the study 

Individual research typically encounters some limitations in different stages of the 

project. Several limitations were faced during the implementation and evaluation of this 

study, and some avenues that may have been of interest are explored in this section to 

provide future researchers with some lessons and suggestions, in order to enable them to 

better manage their work. The limitations of the study can be summarised as follows: 
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(a) Implementation of a real DCN. The study employs OVS (open vSwitch) to emulate 

the behaviour of an SDN switch. As no such switch was available, the 

implementation phase was conducted in an emulated environment. Although the 

emulation is realistic and very close to real environment behaviour, it still cannot be 

considered identical. 

(b) End-host shortage. Due to lack of machines in the lab environment, the study 

emulates end-hosts connected to the OVS by Linux kernel using Mininet emulator. 

In addition, the capacity of virtual links was limited due to hardware limitations, as 

virtual links in Linux consume RAM for emulation purposes. 

(c) Lack of machine power. Due to the limitation in machine power and hardware 

restrictions such as CPU and RAM for large-scale implementation in experiment 2, 

the study implements the proposed framework in an instance of Amazon EC2. 

(d) Experimental evaluation. The evaluation of the performance metrics is carried out 

through emulations. However, mathematical calculations were used for calculating 

CPU utilisation (controller overhead), as the CPU workload and instructions (i.e. I/O 

and calculation) cannot be separately reported for each thread and task. Although 

there are a number of benchmark tools to report CPU utilisation, they cannot report 

on each individual thread with separated workloads. 

(e) One of the main objectives of the study was to minimise the costs of flow 

measurement. However, the study did not address the related costs (overhead) 

in the network device as the cost comprises different elements and overheads 

in the device such as TCAM, CAM, CPU, and Buffer which is out of scope of 

this research. In addition, measuring the overhead on the switch requires the 

real device to evaluate its performance. However, this study was implemented 

in mininet that is an emulation tool to emulate the behaviour of the network.  
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6.4 Suggestion for Future Work 

Although this study achieved all its defined objectives, it offers a few directions and 

suggestions for future research. This section presents possible future research directions 

that can be pursued to extend SDN measurements and monitoring systems. 

(a) QoE and QoS-based IoT traffic monitoring. As an emerging global internet-based 

information architecture, the Internet of Things offers a dynamic global network 

infrastructure by embedding intelligence into the environment. This new concept 

connects everyday objects (Gubbi et al., 2013), every time and everywhere. Today, 

with the ever-increasing volume of data and network traffic, Quality of Experience 

(QoE) and Quality of Service (QoS) are the crucial desires in the eyes of internet 

service providers (ISP) and datacentres (Robitza et al., 2017). Quality monitoring 

and real-time measurements can play a vital role in the first step of providing high-

quality services. In addition, the optimal selection and composition of services is a 

crucial requirement for ensuring QoS from the users’ perspective (White et al., 2017). 

Real-time monitoring and measurement can be a solution with a high potential to 

guarantee this vital requirement. 

(b) A real-time measurement and monitoring framework for the reduction of energy 

consumption in edge. With the ever-increasing IoT devices and edge services, the 

volume of traffic in the edge is increasing exponentially. This massive volume of 

traffic requires pervasive and cost-effective monitoring in real-time, as analytical 

tasks and applications can be performed on the edge nodes, which can also help to 

decrease the energy consumption of datacentres (Patel & Pandya, 2017). 

(c) An accurate and real-time DDOS detection and mitigation framework. A sudden 

massive amount of traffic targeted to a single node has a catastrophic impact. 

Associated service(s) or nodes can also become partially or totally unavailable 

(Rebecchi et al., 2017). An accurate and real-time monitoring capability offered by 
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SDN can effectively detect suspicious traffic (flow/packet-level) and potentially 

mitigate the attack. Moreover, by employing the real-time monitoring features 

offered by SDN, sophisticated anomalies can be effectively detected in the entire 

network (Lee et al., 2017)  
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