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ABSTRACT 

 The cement production ranks among the most energy intensive industrial 

processes, for which energy expenditure alone typically accounts for 30-40% of the 

production cost. It also contributes towards atmospheric pollution via the emission of 

major air pollutants such as nitrogen oxides, carbon monoxide and particulate matter, 

and greenhouse gas carbon dioxide. The goal of this study is to improve the efficiencies 

of a grate clinker cooling system through the optimization of its operational parameters, 

which consequently reduces the cost of thermal energy and the emissions of air 

pollutants and greenhouse gas. The study uses two approaches, i.e. the conventional 

energy analysis as well as the exergy analysis of the system’s operational parameters, 

i.e. mass flow rate of cooling air, cooling air temperature, mass flow rate of clinker and 

grate speed, through simulated air and clinker temperature profiles. It was found that 

the energy efficiency and the energy recovery efficiency can be increased by an 

average of 2.3% and 1.6% respectively, while the exergy efficiency and the exergy 

recovery efficiency by an average of 2.5% and 1.9% respectively, for every 5% 

optimization of the operational parameters of the system. The exhaust heat recovery 

alone contributes to 21.5% of energy recovery efficiency and 9.4% of exergy recovery 

efficiency. The cost benefit analyses suggest that decreasing the mass flow rate of 

clinker is the most beneficial way to improve the system’s efficiencies, with USD 0.196 

per tonne of clinker of cost saving, 6.1 months of payback period, an investment 

present value of USD 483,141.00, and a cost of USD 0.41/GJ energy conserved. 

Results from the emission reduction analysis also prove that decreasing the mass flow 

rate of clinker contributes the most towards emission reduction per unit clinker 

produced, i.e. 0.037 kg of NOx/tonne, 0.029 of CO/tonne, 0.002 kg of PM/tonne, and 

4.393 kg of CO2/tonne. 
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ABSTRAK 

 Proses pengeluaran semen merupakan di antara proses yang paling banyak 

menggunakan tenaga, di mana penggunaan tenaga sahaja merangkumi 30-40% kos 

pengeluaran. Proses tersebut juga menyumbang kepada pencemaran udara melalui 

pembebasan gas-gas pencemar seperti oksida-oksida nitrogen, karbon monoksida dan 

habuk, serta gas rumah hijau karbon dioksida. Tujuan kajian ini adalah untuk 

meningkatkan efisiensi-efisisensi penyejuk klinker jenis memayang melalui 

pengoptimalan parameter-parameter operasinya. Ianya akan menyumbang kepada 

pengurangan kos tenaga haba dan pembebasan gas-gas pencemar serta gas rumah hijau. 

Kajian ini menggunakan dua kaedah, iaitu analisis tenaga dan analisis eksergi bagi 

parameter-parameter operasi yang terpilih seperti kadar jirim udara penyejuk, suhu 

udara penyejuk, kadar jirim klinker, dan kelajuan memayang, berlatarkan profil suhu 

udara dan klinker yang disimulasikan. Kajian mendapati efisiensi-efisiensi prinsip 

pertama dapat ditingkatkan sebanyak 2.3% dan 1.6% secara purata, manakala efisiensi-

efisienci prinsip kedua sistem sebanyak 2.5% dan 1.9% secara purata, bagi setiap 5% 

pengoptimalan parameter-parameter operasi sistem. Penggunaan kembali tenaga haba 

yang terkandung di dalam udara ekzos secara puratanya menyumbangkan 21.5% dan 

9.4% daripada effisiensi-efisiensi prinsip pertama dan efisiensi-efisiensi prinsip kedua 

sistem. Analisis-analisis kos menunjukkan bahawa pengurangan kadar jirim klinker 

merupakan kaedah terbaik bagi meningkatkan efisiensi-efisiensi sistem, dengan 

pengurangan kos sebanyak USD 0.196 setiap ton klinker, 6.1 bulan bayaran balik 

pelaburan, USD 483,141.00 nilai pelaburan semasa, dan USD 0.41/GJ kos tenaga yang 

diselamatkan. Analisis pengurangan pembebasan gas pencemar juga menyarankan 

pengoptimalan kadar jirim klinker dapat mengurangkan 0.037 kg NOx, 0.029 kg CO, 

0.002 kg  PM, dan 4.393 kg  CO2 bagi setiap ton klinker dihasilkan. 
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