ENERGY AND EXERGY EFFICIENT GRATE CLINKER COOLING SYSTEM

MUHAMMAD IRFAN BIN SHAHINUDDIN

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

JULY 2011

ENERGY AND EXERGY EFFICIENT GRATE CLINKER COOLING SYSTEM

MUHAMMAD IRFAN BIN SHAHINUDDIN

RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

JULY 2011

UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Muhammad Irfan bin Shahinuddin (I.C No: 850715-10-5043) Matric No: KGH090005

Name of Degree: Master in Mechanical Engineering by Coursework & Research Title of Dissertation: Energy and Exergy Efficient Grate Clinker Cooling System

Field of Study: Energy Efficiency

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Designation:

Name:

ACKNOWLEDGEMENT

The completion of this research report is not without the help or assistance received from other individual(s) or parties. I would therefore like to take this opportunity to express my sincerest of gratitude towards these helpful hands.

First and foremost, I would like to thank my supervisor, Assoc. Prof. Dr. Saidur Rahman for the aid and support given throughout the two semesters of preparing this dissertation.

Secondly, I would like to thank my university mates and friends for the information shared and the technical help provided, making learning a more meaningful experience along the way.

Lastly, I would like to thank my family for all the direct and indirect assistance given throughout the entire duration of undertaking this task.

ABSTRACT

The cement production ranks among the most energy intensive industrial processes, for which energy expenditure alone typically accounts for 30-40% of the production cost. It also contributes towards atmospheric pollution via the emission of major air pollutants such as nitrogen oxides, carbon monoxide and particulate matter, and greenhouse gas carbon dioxide. The goal of this study is to improve the efficiencies of a grate clinker cooling system through the optimization of its operational parameters, which consequently reduces the cost of thermal energy and the emissions of air pollutants and greenhouse gas. The study uses two approaches, i.e. the conventional energy analysis as well as the exergy analysis of the system's operational parameters, i.e. mass flow rate of cooling air, cooling air temperature, mass flow rate of clinker and grate speed, through simulated air and clinker temperature profiles. It was found that the energy efficiency and the energy recovery efficiency can be increased by an average of 2.3% and 1.6% respectively, while the exergy efficiency and the exergy recovery efficiency by an average of 2.5% and 1.9% respectively, for every 5% optimization of the operational parameters of the system. The exhaust heat recovery alone contributes to 21.5% of energy recovery efficiency and 9.4% of exergy recovery efficiency. The cost benefit analyses suggest that decreasing the mass flow rate of clinker is the most beneficial way to improve the system's efficiencies, with USD 0.196 per tonne of clinker of cost saving, 6.1 months of payback period, an investment present value of USD 483,141.00, and a cost of USD 0.41/GJ energy conserved. Results from the emission reduction analysis also prove that decreasing the mass flow rate of clinker contributes the most towards emission reduction per unit clinker produced, i.e. 0.037 kg of NO_x/tonne, 0.029 of CO/tonne, 0.002 kg of PM/tonne, and $4.393 \text{ kg of CO}_2/\text{tonne.}$

ABSTRAK

Proses pengeluaran semen merupakan di antara proses yang paling banyak menggunakan tenaga, di mana penggunaan tenaga sahaja merangkumi 30-40% kos pengeluaran. Proses tersebut juga menyumbang kepada pencemaran udara melalui pembebasan gas-gas pencemar seperti oksida-oksida nitrogen, karbon monoksida dan habuk, serta gas rumah hijau karbon dioksida. Tujuan kajian ini adalah untuk meningkatkan efisiensi-efisisensi penyejuk klinker jenis memayang melalui pengoptimalan parameter-parameter operasinya. Ianya akan menyumbang kepada pengurangan kos tenaga haba dan pembebasan gas-gas pencemar serta gas rumah hijau. Kajian ini menggunakan dua kaedah, iaitu analisis tenaga dan analisis eksergi bagi parameter-parameter operasi yang terpilih seperti kadar jirim udara penyejuk, suhu udara penyejuk, kadar jirim klinker, dan kelajuan memayang, berlatarkan profil suhu udara dan klinker yang disimulasikan. Kajian mendapati efisiensi-efisiensi prinsip pertama dapat ditingkatkan sebanyak 2.3% dan 1.6% secara purata, manakala efisiensiefisienci prinsip kedua sistem sebanyak 2.5% dan 1.9% secara purata, bagi setiap 5% pengoptimalan parameter-parameter operasi sistem. Penggunaan kembali tenaga haba yang terkandung di dalam udara ekzos secara puratanya menyumbangkan 21.5% dan 9.4% daripada effisiensi-efisiensi prinsip pertama dan efisiensi-efisiensi prinsip kedua sistem. Analisis-analisis kos menunjukkan bahawa pengurangan kadar jirim klinker merupakan kaedah terbaik bagi meningkatkan efisiensi-efisiensi sistem, dengan pengurangan kos sebanyak USD 0.196 setiap ton klinker, 6.1 bulan bayaran balik pelaburan, USD 483,141.00 nilai pelaburan semasa, dan USD 0.41/GJ kos tenaga yang diselamatkan. Analisis pengurangan pembebasan gas pencemar juga menyarankan pengoptimalan kadar jirim klinker dapat mengurangkan 0.037 kg NO_x, 0.029 kg CO, 0.002 kg PM, dan 4.393 kg CO₂ bagi setiap ton klinker dihasilkan.

v

TABLE OF CONTENTS

Page

ABSTRACT iv					
ABSTRAK v					
TABL	LE OF CONTENTS	vi			
LIST	OF FIGURES	X			
LIST	OF TABLES	xiii			
LIST	OF SYMBOLS & ABBREVIATIONS	xviii			
CHAI	PTER I: INTRODUCTION				
1.1	Introduction	1			
1.2	Motivation of Study	3			
1.3	Objectives	5			
1.4	Scope of Study	7			
1.5	Research Report Structure	8			
CHAI	PTER II: LITERATURE REVIEW				
2.1	Cement Industry and Cement Production Energy	10			
2.2	Air Pollutants and Greenhouse Gas Emissions from the Cement	11			
	Production Process				
2.3	Cement Process Description	13			
2.4	Clinker Cooler	14			
2.5	Energy Efficiency Improvement Opportunities for Grate Clinker Coolers	16			
2.6	Energy Analysis of the Grate Clinker Cooler	17			
2.7	Exergy and Entropy Production Analysis of the Grate Clinker Cooler	18			
2.8	Operational Parameters of the Grate Clinker Cooler	20			

CHAPTER III: METHODOLOGY

3.1	Energetic & Exergetic Analyses		23
	3.1.1	Energy & Exergy Analyses Data	24
	3.1.2	First Law Analysis of the Grate Clinker Cooler	26
	3.1.3	Second Law Analysis of the Grate Clinker Cooler	28
3.2	Cost E	Benefit	30
	3.2.1	Potential Energy & Cost Savings	30
	3.2.2	Payback Period	31
	3.2.3	Present Value	32
	3.2.4	Capital Recovery Factor	32
	3.2.5	Cost of Conserved Energy	32
3.3	Emiss	ion Reduction	33
CHAPTER IV: RESULTS & DISCUSSIONS			
4.1	Energ	y Analysis of the Base Case Clinker Cooler	34
	4.1.1	Mass Balance	34
	4.1.2	Energy Balance	35

	4.1.2	Energy Balance
4.2	Exerg	y Analysis of the Base Case Clinker Cooler
	4.2.1	Exergy Balance
4.3	Opera	tional Parameter: Mass Flow Rate of Cooling Air
	4.3.1	Change in First & Second Law Efficiencies of the
		Grate Clinker Cooling System

4.3.2Electrical Energy Requirement with Increment in46Mass Flow Rate of Cooling Air

36

37

40

40

4.4	Opera	ational Parameter: Temperature of Cooling Air	49
	4.4.1	Change in First & Second Law Efficiencies of the	49
		Grate Clinker Cooling System	
	4.4.2	Heat Energy Requirement with Increment in Temperature of	52
		Cooling Air	
4.5	Opera	ational Parameter: Mass Flow Rate of Clinker	54
	4.5.1	Change in the First & Second Law Efficiencies of the	54
		Grate Clinker Cooling System	
	4.5.2	Energy Requirement with Decrement in Mass Flow	58
		Rate of Clinker	
4.6	Opera	ational Parameter: Grate Speed	61
	4.6.1	Change in First & Second Law Efficiencies of the	61
		Grate Clinker Cooling System	
	4.6.2	Energy Requirement with Increment in Grate Speed	69
4.7	Heat	Recovery of Exhaust Air	65
	4.7.1	Change in First & Second Law Efficiencies of the	67
		Grate Clinker Cooling System	
	4.7.2	Use of Exhaust Air Recovery to Pre-heat the Raw Materials	70
4.8	Poten	tial Energy & Cost Savings	72
4.9	Payba	ack Period	76
4.10	Present Value 79		79
4.11	Capit	al Recovery Factor	80
4.12	Cost	of Conserved Energy	82
4.13	Sumn	nary of the Cost Benefit Analyses	84
4.14	Emission Reduction 86		

CHAPTER V: CONCLUSIONS & RECOMMENDATIONS

5.1	Conclu	usions	90
5.2	Recon	nmendations	92
REFE	RENC	ES	94
APPE	NDICE	ES	97
Appen	dix A:	Mass Flow Rate of Cooling Air Energy & Exergy Analyses	98
Appen	dix B:	Cooling Air Temperature Energy & Exergy Analyses	103
Appen	dix C:	Mass Flow Rate of Clinker Energy & Exergy Analyses	107
Appen	dix D:	Grate Speed Energy & Exergy Analyses	113
Appen	dix E:	Heat Recovery of Exhaust Air Energy & Exergy Analyses	119
Appen	dix F:	Energy & Cost Saving Analyses	120
Appen	dix G:	Incremental Operations Cost Analyses	121
Appen	dix H:	Economic Analyses	123
Appen	dix I:	Emission Reduction Analysis	125

LIST OF FIGURES

Figure No.		Page
1.3	Objectives & methodologies	6
2.3	Flow diagram of typical dry process in cement production	14
2.4	Grate clinker cooler schematic	15
2.6	Energy flow diagram of the clinker cooling system	18
2.7	Exergy flow diagram of the clinker cooling system	19
3.1.2	Energy balance schematic of the grate clinker cooler	27
3.1.3	Exergy balance schematic of the grate clinker cooler	29
4.3.1 (a)	Variation of average caloric temperature of the clinker along the	40
	length of cooler at different mass flow rate of cooling air	
4.3.1 (b)	Variation of air temperature at freeboard region along the length	41
	of cooler at different mass flow rate of cooling air	
4.3.1 (c)	Variation in first law efficiencies of the grate clinker cooler with	43
	increment in mass flow rate of cooling air	
4.3.1 (d)	Variation in second law efficiencies of the grate clinker cooler	45
	with increment in mass flow rate of cooling air	
4.4.1 (a)	Effect of inlet temperature ratio on entropy production in the	49
	grate clinker cooler	
4.4.1 (b)	Variation in second law efficiencies of the grate clinker cooler	50
	with change in temperature of cooling air	
4.4.1 (c)	Variation in first law efficiencies of the grate clinker cooler with	51
	change in temperature of cooling air	
4.5.1 (a)	Variation of clinker temperature along the length of cooler at	54
	different mass flow rate of clinker	

х

- 4.5.1 (b) Variation in first law efficiencies of the grate clinker cooler with 56 decrement in mass flow rate of clinker
- 4.5.1 (c) Variation in second law efficiencies of the grate clinker cooler 57 with decrement in mass flow rate of clinker
- 4.6.1 (a) Variation of air temperature along the length of cooler at different 61 grate speeds
- 4.6.1 (b) Variation in first law efficiencies of the grate clinker cooler at 62 different grate speeds
- 4.6.1 (c) Variation in second law efficiencies of the grate clinker cooler at 64 different grate speeds
- 4.7.1 (a) Variation in energy recovery efficiency of the grate clinker cooler 68 with varying operational parameters
- 4.7.1 (b) Variation in exergy recovery efficiency of the grate clinker cooler 69 with varying operational parameters
- 4.7.2 Energy balance of the grinding mill for the drying process of raw 71 materials
- 4.8 Energy saving contribution of the operational parameters 72
- 4.9 Payback period of the investment made for every 5% 77 optimization of the operational parameters of the grate clinker cooler
- 4.10 Present values of the investment made for every 5% optimization 79 of the operational parameters of the grate clinker cooler
- 4.12 Cost of conserved energy for every 5% optimization of the 82 operational parameters of the grate clinker cooler
- 4.14 (a) Average emission reduction for every 5% optimization of the 87 grate clinker cooler's operational parameters

xi

4.14 (b) Average CO₂ emission reduction for every 5% optimization of 88 the grate clinker cooler's operational parameters

LIST OF TABLES

Table No.		Page
2.1	Global energy consumption for cement production	11
2.2	Global carbon emission from cement production	12
2.3	Energy required by different process phases	13
2.7	Summary of results, discussions and conclusions of the grate	21
	clinker cooler computational modelling	
3.1.1	Summary of input and output data of the base case clinker cooler	25
3.1.2	Energy input & output of the clinker cooler	26
4.1.2	Energy analysis summary of the base case clinker cooler	35
4.2.1	Exergy analysis summary of the base case clinker cooler	38
4.3.2	Additional fan electrical energy requirement for every 5%	48
	increase in mass flow rate of cooling air	
4.5.2	Additional energy requirement for every 5% decrease in mass	60
	flow rate of clinker	
4.8 (a)	Energy saving summary for every 5% optimization of the	72
	operational parameters	
4.8 (b)	Cost saving summary for every 5% optimization of the	73
	operational parameters	
4.8 (c)	Energy and cost saving comparison between operational	74
	parameters of clinker cooler and the exhaust air heat recovery	
4.9	Summary of the costs incurred to optimize the operational	76
	parameters of the grate clinker cooler	
4.13	Summary of the cost benefit analyses	84

xiii

4.14	Average emission reduction for every 5% optimization of the	86
	grate clinker cooler's operational parameters	
A1 (a)	Base case clinker cooler	98
A1 (b)	5% increase in mass flow rate of cooling air	98
A1 ()	10% increase in mass flow rate of cooling air	0.0
A1 (c) A1 (d)	15% increase in mass flow rate of cooling air	98 98
A1 (e)	20% increase in mass flow rate of cooling air	99
A1 (f)	Energy efficiencies	99
A1 (g)	Average improvement in energy efficiencies	99
A1 (h)	Energy recovery efficiency with exhaust heat recovery	100
A1 (i)	Average energy saving	100
A2 (a)	Base case clinker cooler	101
A2 (b)	5% increase in mass flow rate of cooling air	101
A2 (c)	10% increase in mass flow rate of cooling air	101
A2 (d)	15% increase in mass flow rate of cooling air	101
A2 (e)	20% increase in mass flow rate of cooling air	102
A2 (f)	Exergy efficiencies	102
A2 (g)	Average improvement in exergy efficiencies	102
A2 (h)	Exergy recovery efficiency with exhaust heat recovery	102
B1 (a)	Base case clinker cooler	103
B1 (b)	5% decrease in cooling air temperature	103
B1 (c)	5% increase in cooling air temperature	103
B1 (d)	Energy efficiencies	104
B1 (e)	Average improvement in energy efficiencies	104
B1 (f)	Energy recovery efficiency with exhaust heat recovery	104
B1 (g)	Average energy saving	104

B2 (a)	Base case clinker cooler	105
B2 (b)	7.4% increase in exergy destruction with every 5% decrease in	105
	cooling air temperature	
B2 (c)	7.4% decrease in exergy destruction with every 5% increase in	105
	cooling air temperature	
B2 (d)	Exergy efficiencies	106
B2 (e)	Average improvement in exergy efficiencies	106
B2 (f)	Exergy recovery efficiency with exhaust heat recovery	106
C1 (a)	Base case clinker cooler	106
C1 (b)	5% decrease in mass flow rate of clinker	107
C1 (c)	10% decrease in mass flow rate of clinker	107
C1 (d)	15% decrease in mass flow rate of clinker	108
C1 (e)	20% decrease in mass flow rate of clinker	108
C1 (f)	Energy efficiencies	108
C1 (g)	Average improvement in energy efficiencies	108
C1 (h)	Energy recovery efficiencies with exhaust heat recovery	109
C1 (i)	Average energy saving	109
C2 (a)	Base case clinker cooler	110
C2 (b)	5% decrease in mass flow rate of clinker	110
C2 (c)	10% decrease in mass flow rate of clinker	110
C2 (d)	15% decrease in mass flow rate of clinker	111
C2 (e)	20% decrease in mass flow rate of clinker	111
C2 (f)	Exergy efficiencies	112
C2 (g)	Average improvement in exergy efficiencies	112
D1 (a)	Base case clinker cooler	113
D1 (b)	9.1% increment in grate speed	113

D1 (c)	18.2% increment in grate speed	113
D1 (d)	27.3% increment in grate speed	114
D1 (e)	36.4% increment in grate speed	114
D1 (f)	Energy efficiencies	114
D1 (g)	Average improvement in energy efficiencies	114
D1 (h)	Energy recovery efficiencies with exhaust heat recovery	115
D1 (i)	Average energy saving	115
D2 (a)	Base case clinker cooler	116
D2 (b)	9.1% increment in grate speed	116
D2 (c)	18.2% increment in grate speed	116
D2 (d)	27.3% increment in grate speed	117
D2 (e)	36.4% increment in grate speed	117
D2 (f)	Exergy efficiencies	117
D2 (g)	Average improvement in exergy efficiencies	118
E1	Varying mass flow rate of cooling air	118
E2	Varying temperature of cooling air	119
E3	Varying mass flow rate of clinker	119
E4	Varying grate speed	119
F1	Energy saving	120
F2	Cost saving	120
F3	Exhaust air recovery	120
G1	Cooling air mass flow rate upgrades	121
G2	Clinker mass flow rate upgrades	121
G3	Fan power consumption	122
H1	Monthly cash flow	123
H2	Economic appraisal	123

H3	Investment costs	123
H4	Energy cost	123
H5	Cost of conserved energy	124
H6	Cost estimation	124
I1	Average emission rate	125
I2	Average emission reduction	125

LIST OF SYMBOLS & ABBREVIATIONS

Symbols/ Abbreviation	Meaning
А	Annual Net Cash Flow
ACC	Annualized Capital Cost
С	Specific Heat
CCE	Cost of Conserved Energy
ck	Clinker
cmh	Cubic Meter per Hour
СО	Carbon Monoxide
CO_2	Carbon Dioxide
CRF	Capital Recovery Factor
CS	Cost Saving
°C	Degree Celcius
D _f	Specific Drive Force of Cooler
d	Discount Factor
EM	Emission
EC	Energy Cost
ES	Energy Saving
Ė	Rate of Energy
Ėx	Rate of Exergy
ē	Specific Exergy
F	Force
G _a	Grate Surface Area
IC	Incremental Cost
IIC	Initial Investment Cost
İ	Rate of Irreversibility
kg	Kilogram

	7711
kN	Kilo Newton
kWh	Kilowatt Hour
L _m	Life Span of Upgrade
lit	Liter
mm	Millimeter
m ²	Square Meter
m ³	Cubic Meter
'n	Mass Flow Rate
mbar	Millibar
MJ	Mega Joule
Ν	Strokes per Minute
No.	Number
NO _x	Nitrogen Oxides
Р	Pressure
Р	Power
PE	Percentage of Electricity
РЈ	Petajoule
PM	Particulate Matter
PV	Present Value
Ż	Rate of Heat
S	Stroke Length
SPP	Simple Payback Period
Т	Torque
Т	Temperature
Tg	Teragram
ton	Tonne
USD	United States Dollars
VSD	Variable Speed Drive

 \dot{W} Rate of Work η Efficiency ψ Flow Exergy π Phi Σ Summation