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COMPLETION TIME DRIVEN HYPER-HEURISTIC APPROACH FOR

OPTIMISATION OF SCIENTIFIC WORKFLOW SCHEDULING IN CLOUD

ENVIRONMENT

ABSTRACT

Effective management of Scientific Workflow Scheduling (SWFS) processes in a cloud

environment remains a challenging task when dealing with large and complex Scientific

Workflow Applications (SWFAs). The cost optimisation of SWFS approaches is affected

by the inherent nature of SWFA as well as various types of scenarios that depend on

the number of available virtual machines and size of SWFA datasets. However, current

meta-heuristic based SWFS approaches lack the provision of satisfactory optimal solution,

considering limited computational resources (e.g., virtual machines), longer execution

time and high computational cost for a complex SWFA. Thus, the main objective of this

research is to propose a Completion Time Driven Hyper-Heuristic (CTDHH) approach for

cost optimisation of SWFS in a cloud environment. The first stage (i.e. formulation stage)

of the research methodology involves an in-depth analysis of different cost optimisation

perspectives of SWFS including aspects, parameters, challenges and approaches. The

second stage (i.e. approach development stage) is the development of the proposed

CTDHH approach, which includes two main parts, the cost optimisation model of SWFS

and the dynamic hyper-heuristic algorithm. The proposed approach enhances the native

random selection way of existing hyper-heuristic approaches by incorporating the best

computed workflow completion time to pick a suitable algorithm from the pool of low-

level heuristic algorithms after each run. The third and last stage (i.e. evaluation and

analysis stage) aims at evaluating the proposed approach by considering two different

experimental cloud environments: simulation-based environment and real-world based
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environment. The performance of the proposed approach is evaluated by comparing it

with four population-based approaches and an existing hyper-heuristic approach named

Hyper-Heuristic Scheduling Algorithm (HHSA). Based on the results of the experiments,

the proposed approach has proven to yield the most effective performance results for most

of the considered experimental scenarios.

Keywords: Scientific workflow, workflow scheduling, cost optimisation, hyper-heuristic,

cloud computing
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PENDEKATAN HYPER-HEURISTIK DIDORONG OLEHMASA

PENYELESAIAN UNTUK PENGOPTIMUMAN JADUALAN ALUR KERJA

SAINTIFIK DALAM PERSEKITARAN AWAN

ABSTRAK

Pengurusan proses Aliran Kerja Penjadualan Saintifik (SWFS) yang berkesan dalam

persekitaran awan masih merupakan suata cabaran apabila berurusan dengan Aplikasi

Aliran Kerja Saintifik (SWFAs) yang besar dan kompleks. Kos pengoptimuman pendekatan

SWFS dipengaruhi oleh sifat sedia ada SWFA serta pelbagai jenis senario yang bergantung

kepada bilangan mesin maya yang tersedia dan saiz set data SWFA. Walau bagaimanapun,

pendekatan SWFS berasaskan meta-heuristik yang sedia ada tidak mampu memperolehi

penyelesaian optimum yang memuaskan, memandangkan sumber pengiraan terhad (seperti

mesin maya), masa pelaksanaan yang lama dan kos pengiraan yang tinggi untuk SWFA

yang kompleks. Oleh yang demikian, matlamat utama penyelidikan ini adalah untuk

mencadangkan pendekatan Hyper-Heuristik didorong oleh Masa Penyelesaian (CTDHH)

bagi pengoptimuman kos SWFS dalam persekitaran awan. Tahap pertama (iaitu peringkat

penggubalan) metodologi penyelidikan melibatkan analisa mendalam mengenai perspektif

pengoptimuman kos SWFS yang berbeza termasuk aspek, parameter, cabaran dan pende-

katan. Peringkat kedua (iaitu peringkat pembangunan pendekatan) adalah pembangunan

pendekatan CTDHH yang dicadangkan, yang mana ia merangkumi dua bahagian utama,

model pengoptimuman kos SWFS dan algoritma hyper-heuristic dinamik. Pendekatan

yang dicadangkan meningkatkan cara pemilihan rawak asli pendekatan hyper-heuristik

yang sedia ada dengan memasukkan masa penyelesaian aliran kerja yang terbaik untuk

memilih algoritma yang sesuai dari kumpulan algoritma heuristik peringkat rendah se-

lepas setiap larian. Peringkat ketiga dan terakhir (iaitu peringkat penilaian dan analisis)
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bertujuan untuk menilai pendekatan yang dicadangkan dengan mempertimbangkan dua

persekitaran awan eksperimen yang berbeza: persekitaran yang berasaskan simulasi dan

persekitaran yang berdasarkan dunia sebenar. Prestasi pendekatan yang dicadangkan itu

telah dinilai dengan membandingkannya dengan empat pendekatan berasakan populasi dan

satu pendekatan hyper-hueristik yang bernama Algoritma Penjadualan Hyper-Heuristik

(HHSA). Berdasarkan hasil perbandingan eksperimen, pendekatan yang dicadangkan

terbukti menghasilkan keputusan prestasi yang paling berkesan untuk semua senario

eksperisen yang dipertimbangkan.
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CHAPTER 1: INTRODUCTION

Workflow applications have been widely used by organisations to automatically process

a set of tasks. Workflow automation brings along number of advantages to the employed

organisation such as less errors during task processing, faster task execution thanmanual task

management, and less cost in terms of execution time. In this research context, a workflow

can be defined as series of jobs and these jobs represent one or several computational tasks

based on their dependencies. These computational tasks can be any executable instances

(e.g., load sets, report sets, programs, and data) with different structures (e.g., process,

pipeline, data distribution, data aggregation, and data redistribution). In the literature,

workflow applications have been classified into two main categories: (i) Business Workflow

Application (BWFA), and (ii) Scientific Workflow Application (SWFA). The BWFA is

defined as the automation of a business process in whole or part during which documents,

information or tasks are passed from one participant to another for action, according

to a set of procedural rules (e.g., bank transactions and insurance claim applications)

(Wieczorek, Hoheisel, & Prodan, 2009; de Oliveira, Ocaña, Baião, & Mattoso, 2012;

Chandrakumar, 2013; X. Yang, Wallom, Waddington, Wang, & Blower, 2014; Poola,

Garg, Buyya, Yang, & Ramamohanarao, 2014). Conversely, SWFA, also known as data

and computational intensive scientific workflow application, mostly processes data flows

together with the tasks’ execution (Wieczorek et al., 2009; Ma, Gong, & Zou, 2009;

Malawski, Figiela, Bubak, Deelman, & Nabrzyski, 2014; Tolosana-Calasanz, BañAres,

Pham, & Rana, 2012; Kousalya, Balakrishnan, & Raj, 2017; Deldari, Naghibzadeh, &

Abrishami, 2017; J. Lin, Luo, Li, Gao, & Liu, 2017; Park, Mei, Nguyen, Chen, & Zhang,

2017). A SWFA includes input scripts (e.g., scientific program or data), which can be used

to produce, analyse and visualise the obtained results. Existing workflow applications
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that fall in the category of SWFA include earthquake prediction application, biomedical

application, and astrophysics application. SWFA has to deal with a large and complex

set of tasks. For example, weather-forecasting system is one of the prime applications of

SWFA that requires gathering of large-sized datasets (in the form of images) from satellites

to efficiently analyse the captured data for accurate weather prediction. Furthermore,

the SWFA can provide interactive tools to help scientists in better executing their own

workflows and visualise the results in a real time manner. At the same time, it simplifies the

process for scientists to reuse the same workflows and provides an easy-to-use environment

to track and share output results virtually. However, SWFAs requires extra powerful

processing resources to handle large and complex datasets and have been the subject of

attention of researchers and scientists from the last two decades to provide more efficient

solutions to handle such large and complex SWFAs.

One of the crucial challenges of SWFA is high data dependency which arises due

to precedence constraints that require execution of preceding task (e.g., task A) before

initiating dependent tasks (e.g., tasks B and C). In this case, the SWFA cannot start the

execution of tasks B and C until task A has been accomplished. This is due to the reason

that successful processing of considered tasks (B and C) relies on the resultant data as

produced by the task A. At the same time, the SWFA contains a number of executable tasks,

where each task may consume a large amount of data in order to be successfully executed

using available computational resources. Thus, a Workflow Management System (WfMS)

is required to effectively manage the submitted workflow tasks. A WfMS defines, manages,

and executes workflows on available computing resources, where the workflow execution

order is driven by a computer representation of the workflow logic. There are several stages

that need to be performed by the WfMS in order to accomplish the submitted workflow

tasks. Each stage of WfMS is responsible to process the submitted tasks based on different
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underlying techniques. For instance, the modeling stage can be done using Directed

Acyclic Graph (DAG) technique to highlight the precedence constraints of the submitted

workflow tasks. In comparison to the modeling stage, scheduling (also referred as a global

task scheduling) is considered as a core workflow processing stage of a WfMS. Scheduling

is aimed to automatically assign and manage the execution of dependent tasks on shared

resources through a scheduler. The purpose of scheduling the workflow tasks is to find

the most suitable allocation of workflow tasks to available computational resources. The

Scientific Workflow Scheduling (SWFS) mainly facilitates the computational processes

between dependent workflow tasks and available computational resources. The SWFS

process helps in mapping the dependent tasks to the available computational resources by

following user requirements. However, scheduling is known as an NP-complete problem

especially in the case of large and complex tasks, since there is no exact solution of the

given workflow tasks (Z. Wu, Liu, Ni, Yuan, & Yang, 2013; Bittencourt & Madeira, 2011;

Ramakrishnan, Chase, Gannon, Nurmi, & Wolski, 2011). Such type of NP-complete

problem (i.e. scheduling) needs to be optimised to seek out an approximate solution with

near polynomial time. Approximate solutions may exist using several methods as proposed

by different researchers.

After processing the workflow tasks in modeling and scheduling stages, the WfMS

needs to submit the scheduled tasks to the execution stage. The execution process of

WfMS can be applied using various computational environments. For instance, researchers

previously have used cluster computing, parallel computing and grid computing. After

the emergence of cloud computing, researchers have started migrating their WfMS to the

cloud computing environment as it offers more powerful, scalable, flexible, and virtualised

features. However, the cloud computing environment demands more efficient SWFS

approaches in order to handle several optimisation challenges including cost optimisation,
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security, load balancing, reliability, and Quality of Service (QoS). Cost optimisation of

SWFS could help in minimising the completion time and total computational cost. The

cost optimisation challenge remains as an important consideration, due to its direct impact

on both service consumers and service providers from different perspectives. The heuristic

approaches have been widely used for the cost optimisation challenge of SWFS, and mainly

used to efficiently determine the tasks’ order and schedule them according to the best

performance (Sakellariou, Zhao, Tsiakkouri, & Dikaiakos, 2007; Durillo, Prodan, & Fard,

2012). On the other hand, meta-heuristic methods are higher-level heuristic designed to

select a heuristic to provide a sufficiently good solution to an optimisation problem like cost

optimisation of SWFS. Meta-heuristic approaches (e.g., genetic algorithm) have also been

effectively used to achieve optimised performance compared to other heuristic methods,

but with some compromise on the computational time (Z. Wu et al., 2013; Abrishami &

Naghibzadeh, 2012; Saeid Abrishami, 2012; Alkhanak, Lee, Rezaei, & Parizi, 2016; L. Liu,

Zhang, Buyya, & Fan, 2017; Verma & Kaushal, 2017; Rodriguez & Buyya, 2017; Park

et al., 2017). However, current state-of-the-art meta-heuristic based SWFS approaches

lack the provision of satisfactory optimal solution within polynomial time, considering

limited computational resources (e.g., virtual machines), longer execution time and high

computational cost for a complex SWFA. Thus, there is a need to consider minimising

both completion time (makespan) and total computational cost to provide a satisfactory

cost-optimal solution. Cost optimisation performance of SWFS approaches is affected

by the inherent nature of SWFA as well as various types of scenarios that depend on

the number of available virtual machines and size of SWFA datasets. A large size of

SWFA datasets can cause a significant increase in the dependency among workflow tasks,

and this resultant tasks dependency ultimately increases the execution time required to

process the SWFA. The cost optimisation performance of existing SWFS approaches is
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still not satisfactory for all considered scenarios. Therefore, there is a need to propose

a dynamic hyper-heuristic approach that can effectively optimise the cost of SWFS for

all different scenarios. This can be done using hyper-heuristic approach by employing

different meta-heuristic algorithms in order to utilise their strengths for each scenario.

In the literature, several approaches have been proposed for the cost optimisation

challenge of SWFS by employing different types of approaches, e.g., heuristic, meta-

heuristic. Yet, current state-of-the-art SWFS approaches lack in providing a dynamic

cost optimisation solution for various types of scenarios that depend on the number of

available virtual machines and size of SWFA dataset. Therefore, there is a need to propose

a completion time driven hyper-heuristic approach for cost optimisation of SWFS by

employing the strengths of existing meta-heuristics algorithms.

1.1 Research Background and Motivation

The Scientific Workflow Scheduling (SWFS) problem has recently attained more

attention of researchers compared to the job scheduling. Job scheduling is a traditional way

of scheduling that handles dependency among the submitted jobs. In contrast, SWFS aims

at mapping and managing the execution of inter-dependent (i.e., precedence constraints)

tasks on shared resources for applications with high complexity (N. Kaur, Aulakh, &

Cheema, 2011). Therefore, SWFS approaches should be able to efficiently determine an

optimised solution for large and complex SWFAs by considering precedence constraints

between potential tasks. The SWFS problem is usually represented as a two-dimensional

array, where the first dimension is the set of jobs/tasks and the second dimension is a set of

available computational resources (e.g., VMs). Figure 1.1 illustrates an example of the

two-dimensional representation of SWFS, where each task must be executed in one VM at

the time. Also, it is important to consider the dependencies between the submitted tasks,

which can directly affect the execution order of the tasks.
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Figure 1.1: Two-dimensional representation of SWFS

The SWFS is required to manage the execution processes by facilitating the submitted

workflow tasks andmap these inter-dependent tasks to the available computational resources.

In order to complete the SWFS processes, three main stages should be considered (Figure

1.2): (i) SWFA stage, (ii) WfMS stage, and (iii) computational environment stage. Each of

the mentioned stages has to provide several specifications, such as user rules, format of the

input/output data, task dependencies, functional and non-functional user requirements, to

successfully accomplish the SWFS.
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Figure 1.2: Process flow of scientific workflow scheduling

The Scientific Workflow Application (SWFA) is the first stage where the users (i.e.

scientists) need to specify the nature of data. In other words, the SWFA receives user

preferences about the execution order of tasks to be executed in the computational

environment stage. The users’ preference includes the precedence constraints of tasks,

completion time and total computational cost. A number of inputs are required from

users to successfully perform the SWFS. The main inputs are, inter-dependent tasks (e.g.,

programs) associated with their input data (e.g., images), along with the scripts, catalogues,

and Application Program Interface (API) written using different programming languages

(e.g., XML, Python, C, Perl, and Java) to represent the dependencies of the submitted

workflow tasks. The expected outcome of SWFS (from the users’ view) is the statistical

and analysis data obtained from executing the workflow tasks. Thus, SWFA has several
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advantages to the users. For instance, it simplifies the process for scientists to reuse the

same workflows. Ultimately, SWFA enables the scientists with an easy-to-use environment

to track and virtually share the obtained results.

The Workflow Management System (WfMS) stage is the second stage of SWFS

processes. The information technology staff normally execute workflow tasks manually,

which requires prior knowledge regarding resource availability and the estimated starting

time for eachworkflow task (Dutta&VanderMeer, 2011; D.Yuan, Yang, Liu, &Chen, 2010;

Miu &Missier, 2012; J. Lin et al., 2017; Park et al., 2017). However, manual task execution

introduces many challenges including longer processing time, staff availability, impact

on quality due to the staff’s understandability, and high probability of failure occurrence.

Thus, it is of vital importance to automate and optimise the SWFS process in order to

achieve an efficient WfMS. Monitoring of tasks execution status (i.e. successful, failure,

hold) is an important outcome of WfMS to the users. The WfMS can be implemented for

different purposes including process management, process optimisation, system integration,

achieving flexibility, and improving maintainability. The input of WfMS stage is a set

of dependent tasks, available computational resources (heterogeneous or homogeneous

resources), and the functional and non-functional requirements.

The first stage of scheduling the workflow tasks is the modeling stage (Figure 1.2),

where the workflow application processes are redesigned based on workflow specifications

containing the task definitions, tasks structural representation (e.g., Directed Acyclic

Graph (DAG)), and user-defined QoS requirements. In contrast, the second stage is the

instantiation stage, where the WfMS selects and reserves a suitable cloud model (i.e.

private cloud, public cloud or hybrid cloud) based on the Service Level Agreement (SLA)

to execute the workflow tasks as well as satisfy the defined QoS requirements. The SLA is

a formal contract between the user (service consumer) and cloud service provider. The
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scheduler (i.e. workflow engine) plays a crucial role in SWFS by allocating the given

tasks to the available resources by considering their task dependencies. The scheduler

coordinates the data, controls flows according to the workflow specifications obtained from

the modeling stage, and employs the candidate computational resources that have been

reserved in the instantiation stage. The output of this stage is a set of clustered jobs where

each of these jobs represents as set dependent tasks. The clustered jobs are optimally

planned to be executed in the resource computational environment (cloud computing)

based on the SWFS algorithm (i.e. meta-heuristic).

The computational environment stage is responsible to execute the scheduled jobs.

For SWFAs, the users need to employ more powerful and scalable computational resources

to execute the large and complex SWFA tasks in an efficient manner. Cloud computing

is an emerging technology of parallel and distributed computing, which heavily depends

on the infrastructural support as provided by the grid computing. The SWFS in a cloud

computing environment can bring several advantages. For instance:

• Resource sharing: cloud computing offers advanced services by sharing resources

using the virtualisation notion with the help of internet technologies. Accordingly,

sharing resources would support real-time allocation to fully utilise the available

resources, while improving elasticity of cloud services. Thus, the SWFS in a cloud

computing environment needs to consider the virtualisation infrastructure (e.g.,

virtual services and virtual machines) to efficiently facilitate the computational

processes.

• Cost of resource usage: in view of the user’s requirements (i.e. pay-as-you-go

and on-demand services), cloud computing provides a flexible cost mechanism. In

comparison to cloud computing, the other parallel and distributed computational

environments (e.g., grid computing) follow a quota strategy to determine the
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accumulated cost of requested services (Foster, Zhao, Raicu, & Lu, 2008). Hence,

the other parallel and distributed computational environments have no flexible

costing mechanism as in cloud computing.

The main components of the computational environment stage is the virtualisation

technologies such as VMs, virtual server, virtual hosts, and virtual networks. These

virtualisation technologies have been used to manage and share the underlying physical

complements such as Central Processing Units (CPUs), memories, networks, and hard

disks. Based on the WfMS requirements, VMs can be created on the top of the virtual

server and hosts to provide a flexible sharing of the physical components with different

software architectures (e.g., operating system) and hardware specifications (e.g., Random

Access Memory (RAM) and CPU). Based on the WfMS requirements, each of these VMs

can have different rules. For instance, in HTCondor that uses High Throughput Computing

(HTC) to distribute the submitted tasks to available VMs, the Master VM has the main

rules to manage and submit the jobs to VM Workers (slaves). In a cloud computing

environment, VMs can have different formats based on the type of cloud computing models

including private cloud, public cloud and hybrid cloud. In a private cloud model, the

computational resources are configured, managed and owned by the users locally. Thus,

the users have the full control of the computational resources. On the other hand, the public

cloud model is used by the users to execute workflow tasks globally. To achieve this, there

is a need from users to negotiate directly with the cloud service providers (e.g., Amazon,

Google) based on the SLA. In comparison to private and public cloud models, the hybrid

cloud model can provide users a more flexible computational environment to execute their

workflow tasks based on their needs. For example, in a scenario where a private cloud is

unable to execute submitted workflow tasks within the requested completion time and total

computational cost, the WfMS can automatically utilise a public cloud to successfully
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complete the execution of the submitted workflow tasks.

One of the most challenging problems of SWFS in cloud computing is optimising

the cost of workflow execution (Saeid Abrishami, 2013; J. Yu & Buyya, 2006a; J. Li

et al., 2015). The cost optimisation challenge of SWFS in cloud computing requires

consideration of several aspects: inherent nature of SWFA as well as various types of

scenarios that depend on the number of available virtual machines and size of SWFA

datasets. However, considering all aspects of cost optimisation problem makes the SWFS

process more complicated and requires a high amount of computational resources to meet

the completion time (Rahman, Li, & Palit, 2011; Senna, Bittencourt, & Madeira, 2012;

Grandinetti, Pisacane, & Sheikhalishahi, 2013; Ma et al., 2009; Alkhanak et al., 2016;

L. Liu et al., 2017; Verma & Kaushal, 2017; Deldari et al., 2017; J. Lin et al., 2017; Park

et al., 2017). In the literature, cost optimisation approaches of SWFS have been proposed

aiming at minimising the total computational cost of SWFS (Z. Wu et al., 2013; Zheng

& Sakellariou, 2013; Sahar Adabi, 2014; Szabo, Sheng, Kroeger, Zhang, & Yu, 2014).

However, the state-of-the-art SWFS approaches require long completion time and total

computational cost to execute the given SWFA tasks. A dynamic hyper-heuristic approach

would provide a more optimal solution for the aforementioned problems (Alkhanak et al.,

2016; L. Liu et al., 2017; Verma & Kaushal, 2017; Rodriguez & Buyya, 2017; Kousalya

et al., 2017; P. I. Cowling & Chakhlevitch, 2007; Tsai, Huang, Chiang, Chiang, & Yang,

2014; Tsai, Song, & Chiang, n.d.).

1.2 Problem Statement

One of the most challenging processes of WfMS in a cloud computing environment

is to schedule the submitted SWFA tasks to the available computational resources, while

optimising the cost of executing the SWFA. The cost optimisation challenge of SWFS in

cloud requires consideration of the following three main perspectives:
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(i) There are strong inter-dependencies between the SWFA tasks. This computational-

intensiveness of tasks introduces more complexity to the scheduling processes, since

the data of the SWFA tasks needs to be transferred between the computational

resources (i.e. VMs) of cloud computing.

(ii) There are different sizes of SWFA datasets that need to be considered by the

scheduler, which significantly affect the execution time and execution cost. Thus,

the data-intensiveness needs to be considered while calculating the completion time

(makespan) and total cost of executing the tasks of SWFA on available resources (i.e.

VMs).

(iii) There are different numbers of computational resources (VMs) based on the

user requirements.

Accordingly, considering the abovementioned perspectives makes the SWFS process

more complicated and requires a great amount of computational resources in terms of

completion time and total computational cost.

Overall, the problem of this research can be stated as follows:

“Cost optimisation performance of SWFS approaches is affected by the inherent nature

of the SWFA as well as various types of scenarios that depend on the number of available

virtual machines and size of SWFA datasets. A large size of SWFA datasets can cause

a significant increase in the dependency among workflow tasks, and this resultant tasks

dependency ultimately increases the completion time required to process the SWFA. The

cost optimisation performance of existing SWFS approaches is still not satisfactory for all

considered scenarios. Therefore, there is a need to propose a dynamic hyper-heuristic

approach that can effectively optimise the cost of SWFS for all different scenarios.”
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1.3 Research Objectives

A large size of SWFA datasets can cause a significant increase in the dependency among

workflow tasks, and this resultant tasks dependency ultimately increases the completion

time required to process the SWFA in available resources. Ultimately, any delay in

completion time can negatively impact on cost optimisation of SWFS. Thus, the aim of

this research is to propose a completion time driven hyper-heuristic approach for cost

optimisation of SWFS in a cloud environment. Proposing such an approach can optimise

the completion time as well as the total computational cost by dynamically selecting the

most suitable meta-heuristic algorithm based on completion time performance of the

employed meta-heuristic algorithms.

To address this aim, a number of Research Objectives (ROs) have been formulated.

RO1: To analyse and investigate the main cost optimisation perspectives of SWFS in

cloud environment.

To achieve RO1, four Secondary Research Objectives (SROs) have been targeted:

SRO1.1: To identify the cost optimisation challenges of SWFS in the cloud

environment.

SRO1.2: To identify the cost optimisation aspects of SWFS in the cloud environ-

ment.

SRO1.3: To identify the cost optimisation parameters of SWFS in the cloud

environment.

SRO1.4: To identify the cost optimisation approaches of SWFS in the cloud

environment.

RO2: To develop a time driven hyper-heuristic approach for SWFS cost optimisation in

cloud environment.
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To address RO2, two SROs have been targeted to determine as follows:

SRO2.1: To model the SWFS cost optimisation problem of the proposed approach.

SRO2.2: To propose a dynamic hypermeta-heuristic algorithm for cost optimisation

of SWFS by employing several meta-heuristic algorithms.

RO3: To evaluate and validate the performance parameters of cost optimisation of the

proposed approach.

To address RO3, the following four SROs have been targeted:

SRO3.1: To evaluate the proposed approach using two different cloud experimental

environments, simulation-based and real-world based.

SRO3.2: To compare the proposed approach with the baseline approaches.

SRO3.3: To evaluate the proposed approach based on the considered scenarios

(number of VMs, size of SWFA datasets).

SRO3.4: To analyse the data that are collected from the simulation-based and

real-world based environments based on the completion time (makespan) and total

computational cost parameters.

1.4 Research Questions

The research questions are formulated in order to closely adhering to the research

objectives. In order to achieve the objectives of the research, the following Research

Questions (RQs) have been formulated:

RQ1: What are the key cost optimisation challenges of SWFS in the cloud environment?

Answering RQ1 would help researchers to understand the reported cost optimisation

challenges of SWFS in cloud computing. This helps in devising taxonomies, by identifying

the relationship between existing cost optimisation challenges of SWFS in cloud environ-

ment. This comprehensive study would ultimately provide a complete description and
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analysis of the cost optimisation challenges of SWFS in cloud computing. Furthermore,

answering RQ1 would help in identifying the relevant cost constraints, which can play an

important role in formulating the objective function and fitness function of the proposed

approach.

RQ2: What are the main cost optimisation aspects affecting the SWFS in the cloud

environment?

Answering RQ2 would help in identifying the important cost optimisation aspects of

SWFS problem. This would also help in understanding the overall classification of the

cost optimisation aspects to be considered in the proposed approach in this research.

RQ3: What are the key cost parameters of SWFS in cloud computing, and how these

parameters could affect the profitability of cost optimisation of SWFS?

Answering RQ3 would help in identifying the relevant cost optimisation parameters,

which are beneficial to formulate the cost model of the proposed approach.

RQ4: What are the existing cost optimisation approaches for the SWFS problem?

Answering RQ4 would help in identifying the relevant cost optimisation approaches for

the SWFS problem. It also provides a clear understanding of strengths of the underlying

optimisation, and limitations for all considered and reviewed approaches, which ultimately

helps in selecting the most suitable approach for the identified problem of this research.

RQ5: How to model the cost optimisation problem of SWFS?

Answering RQ5 can help to understand the mapping and scheduling processes of

workflow tasks by considering the scheduling stages along with completion time and total

computational cost parameters.

RQ6: How to propose a dynamic hyper-heuristic algorithm for cost optimisation

challenge of SWFS?

Answering RQ6 would help to propose a dynamic algorithm for cost optimisation of
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SWFS that can achieve a satisfactory performance for all considered scenarios. This can

be done by employing different meta-heuristic algorithms in order to utilise their strengths

for each scenario.

RQ7: What are the key experimental cloud environments that need to be considered for

the evaluation of the proposed approach?

Answering RQ7 can help in choosing the most effective and accurate experimental

environment tools to evaluate the proposed approach in cloud computing.

RQ8: What are the most relevant baseline and existing hyper-heuristic approaches that

need to be considered to evaluate the proposed approach?

Answering RQ8 would help in determining the most relevant baseline and existing

hyper-heuristic approaches to be compared with the proposed approach in an efficient way.

RQ9: How to evaluate the computational-intensiveness and data-intensiveness of the

proposed approach?

Answering RQ9 can help to evaluate the performance of the proposed approach by

considering different scenarios based on the size of SWFA datasets and the number of

VMs.

RQ10: Would the proposed approach lead to results that are better than the considered

baseline and existing hyper-heuristic approaches?

Based on the completion time and total computational cost results, answering RQ10

would help to improve the behavior and performance of the proposed approach, compared

with the baseline and existing hyper-heuristic approaches.

The research questions are formulated in order to closely adhering to the research

objectives. Table 1.1 shows the relationships between the research objectives, the research

questions, and research methods.
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Table 1.1: Relationships between the research objectives, the research questions, and
research methods

Resaerch Questions Research Objectives Research Methdology
RQ1 SRO1.1

Literature ReviewRQ2 SRO1.2
RQ3 SRO1.3
RQ4 SRO1.4
RQ5 SRO2.1

Proposed Approach
RQ6 SRO2.2
RQ7 SRO3.1

Evaluation and AnalysisRQ8 SRO3.2
RQ9 SRO3.3
RQ10 SRO3.4

1.5 Proposed Solution

In this research, a dynamic hyper-heuristic solution is proposed by employing four

meta-heuristic algorithms for the cost optimisation problem of SWFS in a cloud computing

environment. The existing population-based meta-heuristics solutions have shown good

performance for the optimisation of the large search space problem. In contrast, single-

based meta-heuristic solutions do not exhaustively search within the scheduling problem

space, yet they use different underlying strategies to find the desired solution based on

defined fitness criteria. Therefore, the population-based meta-heuristic solution takes less

computational effort as compared to single-based solution while it can often find good

solutions. However, each of these approaches has their strengths and limitations, which

affect the SWFS processes.

The hybrid meta-heuristics uses the best features of two or more traditional meta-

heuristics (e.g., Genetic Algorithm, Ant Colony Optimiation) in each iteration to provide

a better optimal solution. Due to the complexity of hybrid meta-heurtstics method, it

might take a longer convergence time than the traditional meta-heuristics for each iteration.

To address this limitation, a completion time driven hyper-heuristic approach has been

proposed in this research. Ultimately, it helps in optimising the completion time and total
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computational cost of SWFS in cloud environment. The proposed approach contains

two main parts, the cost optimisation model of SWFS and the dynamic hyper-heuristic

algorithm. The cost optimisation model of SWFS can help to understand the mapping

and scheduling processes of workflow tasks by considering the scheduling stages along

with completion time and total computational cost parameters. While the proposed

hyper-heuristic algorithm is considered as a new advanced technique that is capable of

accelerating the run-time of a meta-heuristic algorithm. Hyper-heuristic solution is an

emerging class of meta-heuristic search-based approaches that are combined in such a

manner that allows utilising the maximum strengths of employed meta-heuristic to obtain

an optimal solution. There are only few works that have considered utilising hyper-heuristic

for SWFS, while hyper-heuristic can always find the most cost optimal solutions for

different scenarios. The proposed algorithm employs four well-known population-based

meta-heuristic algorithms, which act as Low Level Heuristic (LLH) algorithms (i.e., genetic

algorithm, particle swarm optimisation, invasive weed optimisation, and hybrid invasive

weed optimisation). In addition, the proposed algorithm enhances the native random

selection way of existing hyper-heuristic solutions by incorporating the best computed

workflow completion time to act as a high-level selector to pick a suitable algorithm from

the pool of LLH algorithms after each run. The main aim of the proposed approach is to

reduce the completion time and total computational cost to execute the SWFA. Based on the

lowest achieved completion time, the proposed algorithm dynamically guides the searching

processes to find an optimal solution by continuously sorting the computed time scores (i.e.

completion times of previous runs) of all the employed LLH algorithms for each considered

scenario and after every run. The computed time scores are listed in a scoreboard table.

Next, for each single run, the high-level selector adopts the LLH algorithm that has the

lowest computed time score for each scenario. The proposed dynamic hyper-heuristic
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algorithm continuously updates the scoreboard table by replacing the existing time score

with the lowest computed time score, which ultimately affects the total computational cost

value for that run. Finally, based on the scoreboard table, the proposed approach selects

the most appropriate LLH algorithm for the next run. Consequently, the mechanism of

the proposed completion time driven hyper-heuristic approach becomes more effective in

allowing to reuse and utilise the maximum strengths of the employed LLH algorithms in

searching for the optimal solution of the targeted cost optimisation problem.

1.6 Scope of the Research

According to Software Engineering Body of Knowledge (SWEBOK) (Bourque &

Fairley, 2014; Abran &Bourque, 2004) and international standard ISO/IEC TR 19759:2005

(Bourque & Fairley, 2014), there are five main stages in the development life-cycle of any

standard software, which include requirements engineering, software design, software

construction, software testing, and software maintenance. As discussed earlier, the main

aim of this research is to propose a completion time driven hyper meta-heuristic search-

based approach for cost-optimisation of SWFS in a cloud environment. Meta-heuristic is a

sub-branch from Software Design Strategies and Methods (SDSM) (Harman, Lakhotia,

Singer, White, & Yoo, 2013). The search-based method is one of the three main classes of

SDSM heuristic methods, formal methods, and prototyping methods. In order to solve

the cost optimiation problem of SWFS, it is required to adopt a hyper-heuristic approach,

since it can find different alternative (approximate) solutions in a polynomial time. The

search-based software engineering is one of the most popular methods that uses various

optimisation techniques to address optimisation problems in software engineering (Harman

et al., 2013). Figure 1.3 shows the scope of this research based on the SWEBOK guidelines

(Bourque & Fairley, 2014; Abran & Bourque, 2004), where the highlighted boxes specify

the general focus of this research.

19

Univ
ers

ity
 of

 M
ala

ya



Figure 1.3: The scope of this research

1.7 Significance of Research

The outcomes of this research will help academic researchers and practitioners working

in the area of SWFS in cloud computing environment. As previously mentioned, the main

aim of the research is:

“To propose a completion time driven hyper-heuristic approach for cost optimisation of

SWFS in a cloud environment”

Based on this aim, the following are main expected outcomes of this research:

- A completion time driven hyper-heuristic approach for cost optimisation of SWFS

in a cloud environment. The proposed approach helps in optimising the completion

time (makespan) and total computational cost of SWFS in cloud computing for all

considered scenarios. This will ultimately reduce the cost for service consumers

(i.e. scientists). At the same time, this reduced cost will increase the profitability for

service providers (i.e. cloud service providers) towards utilising all computational

resources to achieve a competitive advantage over other cloud service providers.

- The proposed approach has a direct impact on satisfying the functional QoS

requirements by reducing the response time for service consumers. Furthermore,
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it is expected that the proposed approach helps in saving energy and time of the

service providers, by wisely utilising the computational resources (VMs).

- The proposed approach provides an efficient platform to optimally schedule

workflow tasks by handling data-intensiveness and computational-intensiveness of

SWFA.

- Applications developed based on the proposed approach can result in cost and

time saving. This can improve the cloud computing services by providing more

economic services to cloud users by satisfying the functional QoS user requirement

for a number of potential SWFAs.

- Several benefits can be achieved from conducting the extensive literature review.

The outcome of this research would be helpful for the academic researchers in

providing clearer and complete understanding of the cost optimiation topic of SWFS

in cloud computing, by providing the following expected outcomes:

* Several taxonomies of cost optimiation for SWFS challenges, aspects,

parameters, and approaches.

* Correlation between the cost parameters and their profitability to service

consumers and services providers.

* Future opportunities in this field of research. This would open new doors

for high impact research that engenders innovative values through SWFS and

cloud computing.

1.8 Thesis Organisation

This section outlines the thesis organisation that provides an overview of the chapters

based on the defined research objectives of this work. Figure 1.4 illustrates the relationship
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between the thesis chapters as well as the correlation between the thesis chapters and their

associated research objectives and research questions. The following is a brief explanation

of each of the thesis chapters:

Chapter 1: Introduction This chapter provides a background information to the

research problem statement, research objectives and questions, proposed solution, scope of

the research, and significance of the research.

Chapter 2: Literature review This chapter discusses the conducted literature review

that supports this study. The literature review has helped in determining the accepted

cost optimisation criteria while developing the cost optimisation approach of SWFS.

Furthermore, based on the literature review, a completion time driven hyper-heuristic

approach is proposed for cost optimisation of SWFS in cloud computing.

Chapter 3: Research methodology This chapter provides an overview on the main

stages and activities that have been adopted in this research.

Chapter 4: Proposed approach This chapter discusses the proposed cost optimisation

model of SWFS as well as the proposed dynamic hyper-heuristic algorithm for cost

optimisation challenge of SFWS in cloud environment.

Chapter 5: Evaluation and analysis using simulation environment This chapter

provides significant details about experimental setup of the considered evaluation using

simulation environment. The analysis of the collected data from the simulation environment

is explicitly discussed in this chapter along with the obtained results.

Chapter 6: Evaluation and analysis using real-world environment This chapter

provides a comprehensive explanation about the real-world experimentation environment

that has been used as another way to evaluate the proposed approach. Similar to Chapter 5,

the analysis of the collected data from the real-world environment has been performed

along with the discussion of the extracted results.
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Chapter 7: Conclusion and future trends This chapter provides a summary of

the highlighted research objectives, limitations of research and future work that can be

expanded from this study.

Figure 1.4: Thesis organisation
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CHAPTER 2: LITERATURE REVIEW

The cost optimisation of Scientific Workflow Scheduling (SWFS) especially in cloud

computing remains an important challenge for both service consumers and service

providers. The current work analyses the cost optimisation problem for SWFS in cloud

computing. After careful selection of the relevant works in this field of study, the cost

optimisation aspects, parameters, challenges and approaches of SWFS have been identified,

while scheduling workflows in cloud computing. This chapter introduces three main

classifications (i.e. aspects, parameters and challenges) of cost optimisation SWFS,

which is one of the major contributions of this thesis. The proposed classifications

aim at providing a solid foundation for developing the proposed SWFS approach in

this study to meet the demands of future SWFAs. This study has classified the related

works according to the devised classifications and identified a correlation between cost

optimisation parameters and profitability of SWFS. Besides, the chapter presents the

relevant cost and time formulas, which are used to determine the cost optimisation model

of SWFS by considering a number of relevant time and cost parameters. Moreover,

the chapter provides several recommendations for developing a completion time driven

hyper-heuristic approach for cost optimisation of SWFS in cloud environment.

2.1 Cost Optimisation Aspects of SWFS

Several aspects need to be considered while scheduling the SWFA tasks. This section

presents a classification for aspects of cost optimisation SWFS approaches in cloud

computing. Figure 2.1 presents our classification of cost optimisation aspects of SWFS

based on eight main classes: computing environment, optimisation method, structural

representation, profitability, scheduling technique, workload type, optimisation criteria,

and QoS constraints.
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Figure 2.1: A classification of cost optimisation aspects of SWFS

In the following sub-sections, each aspect of the presented classification has been briefly

discussed.

2.1.1 Computing Environment

The cost of executing a SWFA is usually affected by the computational environment due

to the fact that it has direct impact on resource utilisation. For example, scientists should

select the computing environment based on their requirement which could be related to the

size of application, privacy of the used data and other QoS constraints (e.g. budget, and

deadline). Therefore, each computing environment has a different specification, which

ultimately affects the total computional cost of SWFS. In this section, three main computing

environments have been considered. The computing environments are: (i) private cloud,

(ii) public cloud, and (ii) hybrid cloud.

Private cloud: due to data privacy and limited budget constraints, most of the service

consumers select a private cloud. The operational cost is usually not taken into consideration

and the resources’ usage cost is also not measured (Bittencourt & Madeira, 2011; Senna et

al., 2012). The total computional cost of SWFS in the private cloud model can normally

be calculated by adding computation cost to communication cost.
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Public cloud: this computing type is usually selected when service consumers need

to execute a large SWFA, which can not be executed locally. The total computional cost

of SWFS includes the cost per time unit of using cloud resources (Ostermann, Prodan,

& Fahringer, 2010). The communication cost value of executing workflow in the public

cloud is normally assumed to be zero, because of the assumption that all resources are

built into the same computational infrastructure.

Hybrid cloud: this type of computing can give a flexible specification for the required

resources by service consumers. The scheduler is required to consider the load balancing

of submitted work in order to fully utilise the private and public clouds. However, this

model adds more complexity to the cost of the consumed services. Hence, the cost of

SWFS can be calculated by adding the SWFS cost in a private cloud to the SWFS cost

in a public cloud. Another hybrid cloud scenario is where the total computional cost

of SWFS is defined as data transfers from and to the cloud (Ramakrishnan et al., 2011;

Bittencourt, Madeira, & Da Fonseca, 2012). The available bandwidth into the connected

processing resources of the hybrid cloud affects the makespan (Malawski, Juve, Deelman,

& Nabrzyski, 2012; X. Liu et al., 2011, 2010; W.-n. Chen, Shi, & Zhang, 2009). Therefore,

the bandwidth cost for the hybrid cloud environment can be defined as the cost that the

service provider charges to service consumers per the amount of data transferred ($/GB).

Grid computing: this type of computing provides an optimal solution that can meet the

user’s requirements by providing scalable and flexible solutions for considered applications

(Z.Wu et al., 2013). The cloud based task scheduling differs from the grid based scheduling

in the following two ways:

• Resource sharing: cloud computing offers advanced services by sharing resources

using the virtualization notion with the help of internet technologies. Consequently,

it supports real-time allocation to fully utilize the available resources while improving
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elasticity of cloud services. Thus, the scheduler in a cloud workflow system needs to

consider the virtualization infrastructure (e.g., virtual services and virtual machines)

to efficiently facilitate the computational processes. In contrast, grid computing

allows allocating a large cluster of resources in a shared mode. Therefore, it supports

batch processing and resources will be available once they are released by other

users.

• Cost of resource usage: cloud computing provides a flexible costing mechanism

considering the user’s requirements (i.e. pay-as-you-go and on-demand services). On

the other hand, grid computing follows a quota strategy to determine the accumulated

cost of requested services (Foster et al., 2008). Therefore, grid computing has no

flexible costing mechanism as in cloud computing.

2.1.2 Optimisation Method

Optimisation method is considered one of the most important cost optimisation aspects

due to its direct impact on task-resource mapping processes. Several methods (i.e.,

rule-based, search-based, coverage-based) have been proposed in the literature to find an

optimal solution for the total computational cost of executing the SWFS in cloud computing

environment. Heuristic methods have been widely used for the scheduling problem. The

heuristic methods efficiently determine the tasks’ order and schedule them according to the

best performance (in terms of effectiveness and accuracy) (Sakellariou et al., 2007; Durillo

et al., 2012). On the other hand, meta-heuristic methods (e.g. genetic algorithm) have

also been effectively used to achieve improved performance compared to other heuristic

methods, but with some compromise on the execution time (Z. Wu et al., 2013; Abrishami

& Naghibzadeh, 2012; Saeid Abrishami, 2012).
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2.1.3 Structural Representation

Due to the complex nature of SWFAs, structural representation is the first stage of any

Workflow Management System (WfMS) that is used to simplify the submitted scientific

activities to the scheduler. Several types of structural representation methods have been

adopted in the literature to represent the tasks’ dependency (precedence constraints) of

SWFS: (i) Graph-based modeling methods: DAG (Stephanakis, Chochliouros, Caridakis,

& Kollias, 2013; Y. Yuan, Li, Wang, & Zhu, 2009, 2007; J. Li, Su, Cheng, Huang, &

Zhang, 2011; Y. Tao, Jin, & Shi, 2007; Arabnejad & Barbosa, 2014), Petri Nets (Van Hee,

2004; Y. Liu, Zhu, Chen, Li, & Deng, 2014), and (ii) Language-based modeling tools

(i.e., XML Process Definition Language (XPDL)) (Kwok & Ahmad, 1999). For each type

of these methods, there are cost parameter representations (e.g. computation cost, and

communication cost). For instance, the DAG based method is the most popular method

used in the state-of-the-art approaches to estimate the execution cost of different available

resources for every task, which represents the overall computational cost. In addition, the

time to communicate data between resources is given, which represents communication

cost (e.g., bytes to transmit).

2.1.4 Profitability

As shown in Figure 2.1, due to the importance of the cost optimisation of SWFS in

cloud computing for different WfMS users, in order to have a deeper understanding on the

proposed cost optimisation approaches, the reviewed state-of-the-art cost optimisation of

SWFS approaches have been classified into two groups with respect to profitability: (1)

approaches whose main goal is the service consumers’ profitability, and (2) approaches

whose primary goal is the service providers’ profitability (Z. Wu et al., 2013; Salehi &

Buyya, 2010; W.-N. Chen & Zhang, 2009; Y. Yuan, Li, & Wang, 2006; Malawski et al.,

2012; Jiang, Huang, Chang, Gu, & Shih, 2011). The service consumer represents a person
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or organisation (which could be a scientist or researcher) that uses the cloud computing

services (i.e. Infrastructure as a Service (IaaS), Software as a Service (SaaS) or Platform

as a Service (PaaS)) in order to execute the scientific application (Mell & Grance, 2009).

Conversely, the service provider represents a company or organisation (which could be any

cloud service provider) that offers cloud computing services to service consumers (persons

or organisations) with different QoS constraints and prices (Z. Wu et al., 2013; Abrishami

& Naghibzadeh, 2012; Saeid Abrishami, 2013).

When a cloud service consumer requests a service from the service provider, a vital

matter of reducing the leasing cost (for the service consumer) arises, while the contribution

to lower the overall execution cost of workflow (for the service provider) increases

(Ostermann et al., 2010; Szabo & Kroeger, 2012; Bhise & Mali, 2013; Szabo et al., 2014).

In contrast, for the service provider, the aim is to reduce the cost of leasing time of the

cloud resources (Bittencourt & Madeira, 2011; Pandey, Wu, Guru, & Buyya, 2010; K. Liu

et al., 2010; Y. Yang et al., 2008; Ostermann et al., 2010; W.-N. Chen & Zhang, 2009;

Saeid Abrishami, 2012). Therefore, time optimisation is profitable for the service provider

by reducing the cost of maintaining resources. Consequently, this gives an advantage to

cloud service consumers since it will reduce the cost of workflow execution (S. Kaur &

Verma, 2012).

2.1.5 Scheduling Technique

The scheduling technique represents the mechanism that the scheduler chooses to

schedule SWFA tasks that is strongly related to the cost of the utilised resources. Two types

of techniques have been adopted in state-of-the-art cost optimisation of SWFS approaches:

(i) static technique, and (ii) dynamic technique.

Static technique: Static technique requires the scheduler to know in advance the

characteristics of all the scientific tasks, including their sizes, service demands and
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estimated execution cost. Also, the static techniques are performed under two assumptions:

(i) the tasks arrive simultaneously to the resources, and (ii) the resource’s available time is

updated after each task is scheduled (Nargunam & Shajin, 2012; Arabnejad & Barbosa,

2014). The static technique can efficiently schedule large workflows on large data centers.

Another advantage is that it is easier to adapt a static technique based on the scheduler’s

perspective. Furthermore, it is more user friendly as the precomputed schedule allows

quoting a price for the computation. In addition, it allows the service consumers to choose

from multiple scheduling options according to the price and time constraints (Dutta &

VanderMeer, 2011; Deng, Kong, Song, Ren, & Yuan, 2011).

Dynamic technique: Dynamic technique is more flexible than static scalability where

scientific tasks are dynamically available (continuous stochastic stream) for scheduling.

However, it is more complex than the static scheduling technique since it needs to update

the system information on the fly (Nargunam & Shajin, 2012). The main advantage of

dynamic strategy is that it can be adopted when a task set or a resource set is heterogeneous.

For instance, not all tasks arrive simultaneously, or some resources are off-line at intervals

(Fida, 2008). The other advantage is that it considers only few required parameters in

advance. Due to the aforementioned advantages, the dynamic scalability is more suitable

for executing the on-demand workflow applications in cloud environments.

2.1.6 Workload Type

Two types of workload methods, which are predicted mode and unpredicted mode,

have been adopted in SWFS approaches based on their method of loading the tasks to the

scheduler in cloud computing. The workload type can affect estimation.

Predicted (batch mode): in predicted or batch mode (also referred as latter mode),

the tasks are first collected as a group of problems that are examined for scheduling at

prescheduled times (predefined moments). Thus, it is better to map the tasks for suitable
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resources depending on their characteristics (Nargunam & Shajin, 2012). This enables

the predicted mode to determine about the actual execution time for a larger number

of tasks (Dong, 2009). One of the main advantages of this mode is to maximise the

throughput while minimising the turnaround time (the time between task submission and

its completion) (Zheng, 2010).

Unpredicted (on-line mode): unpredicted or on-line mode (also referred as former

mode) where tasks are scheduled to a resource as soon as they arrive for execution and there

is no waiting for the next time interval on available resources at that moment (Nargunam

& Shajin, 2012; Dong, 2009). In this mode, each task is scheduled only once and hence

the scheduling result cannot be changed. Therefore, unpredicted mode is suitable for the

scheduling scenarios where the arrival rate is low (X. Lin &Wu, 2013; Dong, 2009; Zheng,

2010).

2.1.7 Optimisation Criteria

In order to propose an optimal solution for the SWFS problem, the total computional

cost of executing workflow tasks needs to be minimised. The reviewed SWFS approaches

can be classified into two main classes: (i) Single-objective optimisation based approaches,

and (ii) Multi-objective optimisation based approaches. In the literature, researchers have

mainly focused on optimising cost parameters only. Thus, the approaches which only

consider execution cost or time (but not both) are referred as Single-objective optimisation

based approaches, since they only target at optimising the cost of SWFS problem. Some

approaches have focused on minimising the execution cost (Abrishami & Naghibzadeh,

2012; Saeid Abrishami, 2013; H. Liu, Xu, & Miao, 2011; Genez, Bittencourt, & Madeira,

2012; Saeid Abrishami, 2012; Zeng & Wang, 2013; L. Zhao, Ren, Li, & Sakurai, 2012),

while other approaches have focused on the execution time (Nargunam & Shajin, 2012;

Ramakrishnan et al., 2011; Stevens et al., 2009; Tanaka & Tatebe, 2012; Chunlin & Layuan,
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2006). However, due to the rapid development of the provided computing services (e.g.,

pay-as-you-go, and on-demand), many other constraints (e.g. QoS constraints) should also

be considered to optimise the cost of SWFS. Due to the above-mentioned reasons, the

complexity of approaches has increased to a great extent, which ultimately demands to

handle the trade-offs between the cost and other affected constraints. Nevertheless, a group

of services may have the same requirements so they can complete similar tasks or activities

with different execution cost, execution time, availability and reliability (Y. Yuan et al.,

2006). These approaches are referred asMulti-objective optimisation based approaches.

Therefore, majority of the recent approaches have adopted hybrid and hyper techniques for

the heuristics and meta-heuristic methods to obtain an optimal solution.

2.1.8 QoS Constraints

QoS has amajor impact on SWFS in cloud computing, since the success of computational

tasks heavily depends on the desired QoS levels (Lingfang, Veeravalli, & Xiaorong, 2012;

Q. Wu et al., 2013; Saeid Abrishami, 2012; Topcuoglu, Hariri, & Wu, 2002). For

multi-objective problems, such as SWFS, there are several QoS constraints that must be

taken into consideration for a given service when designing an efficient WfMS in cloud

computing (Bittencourt & Madeira, 2011; Delavar & Aryan, 2012; Sakellariou & Zhao,

2004a; S. Zhang, Liu, Wang, & Zhang, 2013). The service providers must consider

satisfying the service consumers’ QoS requirements based on Service Level Agreement

(SLA). Therefore, for a scheduling process, the QoS has a direct effect on each stage of a

typical workflow instance.

In this section, the QoS constraints for each of the reviewed cost optimisation approaches

in Table 2.1 (as multi-objective optimisation criteria) have been identified. Furthermore,

we have considered another important QoS aspect, which is the way of handling the

QoS constraints in SWFS approaches. There are two methods to consider QoS for cost
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optimisation of SWFS approaches in cloud computing as shown in Figure 2.2.

Figure 2.2: Methods for considering QoS constraints

The first method is to allow the users to assign activity-level QoS constraints, and

then the overall QoS can be assessed by computing the QoS constraints of all individual

activities based on the specific QoS model. For example, a workflow reduction algorithm

can be employed to calculate the deadline for the entire workflow based on the desired

execution time of individual workflow activities (Saeid Abrishami, 2012; X. Liu, 2012).

The second method is to assign QoS constraints at workflow-level where users need

to define the overall workflow QoS requirements, and then the workflow system uses

automatic strategies to assign local and activity-level QoS constraints to the workflow

segments and individual activities. For example, a deadline assignment approach such

as Equal Slack and Equal Flexibility (Xu, Cui, Wang, & Bi, 2009)) can be applied to

determine the expected execution time of individual activities based on the deadline for

the entire workflow.

2.1.9 Comparison of Existing SWFS Approaches

Table 2.1 provides a comparison of the SWFS approaches based on the defined aspects:

computing environment, optimisation method, structural representation, profitability,

scheduling technique, workload type, optimisation criteria and QoS constraints.

33

Univ
ers

ity
 of

 M
ala

ya



The cost optimisation aspects of SWFS (Table 2.1) can be classified based on the

computing environment aspects: (i) private cloud, (ii) public cloud, and (iii) hybrid cloud.

The cost optimisation of SWFS approaches, proposed in (Pandey et al., 2010; Y. Yang et

al., 2008; C. Lin & Lu, 2011), employed a private cloud environment to execute the given

workflow tasks. Similarly, public cloud and hybrid cloud models have been considered

by (Z. Wu et al., 2013; Bittencourt & Madeira, 2011; Abrishami & Naghibzadeh, 2012;

H. Liu et al., 2011; Genez et al., 2012) in their approaches to optimally solve the SWFS

problem respectively. In contrast, very few approaches proposed in (Ramakrishnan et al.,

2011; Q. Wu et al., 2013; Ostermann et al., 2010) focused on utilising the strengths of both

cloud computing environments to provide a more cost-effective solution for the SWFS

problem. As compared to private clouds, public clouds are more expensive in terms of

communication cost and execution time mainly due to the far-proximity of the resources.

On the other hand, considering a hybrid model offers a highly flexible scalability feature

due to the efficient utilisation of resources compared to standalone, public, and private

cloud models.
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The SWFS approaches can be categorised based on different aspects of optimisation

method such as heuristic (Ramakrishnan et al., 2011; Saeid Abrishami, 2012), clustering

(C. Lin & Lu, 2011), critical path (Q. Wu et al., 2013), fuzzy (Ostermann et al., 2010),

extended critical activity (Y. Yuan et al., 2006), holt-winter’s method (Afzal, Darlington,

& McGough, 2006), greedy (Nargunam & Shajin, 2012), market-driven (Y. Yang et al.,

2008), meta-heuristic (Z. Wu et al., 2013; Saeid Abrishami, 2013), mathematical modeling

(J. Yu, Buyya, & Tham, 2005)) and partitioning (Tanaka & Tatebe, 2012). Majority of the

SWFS approaches focused on employing heuristic and meta-heuristic as an optimisation

method. Meta-heuristic approaches achieved a better performance in terms of effectiveness

and accuracy at the cost of extended execution time compared to heuristic methods. The

structural representation parameter categorises SWFS approaches into network routing

(Stevens et al., 2009), DAG (Genez et al., 2012; Prodan & Wieczorek, 2010; Q. Wu et al.,

2013; Afzal et al., 2006), atomic task partitioner (Ranaldo & Zimeo, 2009), and just-in

time graph (Y. Yang et al., 2008). Majority of the state-of-the-art SWFS approaches used

DAG structural model to graphically visualise the dependency among the SWFS tasks,

especially focusing on the cost parameters (execution time, and communication time).

The existing scheduling techniques have been classified into three parameters including

static (Talukder, Kirley, & Buyya, 2009; H. Liu et al., 2011; Sakellariou et al., 2007),

dynamic (Q. Wu et al., 2013; W.-N. Chen & Zhang, 2009; X. Lin & Wu, 2013), and

static-dynamic (Z. Wu et al., 2013; Ranaldo & Zimeo, 2009; Afzal et al., 2006). Dynamic

scheduling is efficient for a cloud computing environment due to its ability to handle the

arriving tasks. The selection of workload type mainly depends on the tasks arrival rate

based on the defined suitability criterion between using predicted or unpredicted mode.

The workload types of SWFS approaches have been categorised into two modes, predicted

mode (J. Yu & Buyya, 2006b; Q. Wu et al., 2013; Ostermann et al., 2010; W.-N. Chen &
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Zhang, 2009; Y. Yuan et al., 2006; Sakellariou & Zhao, 2004b), and unpredicted mode

(Z. Wu et al., 2013; Pandey et al., 2010; Xu et al., 2009; H. Liu et al., 2011; Sakellariou et

al., 2007; C. Lin & Lu, 2011).

2.1.10 Discussion on Cost Optimisation Aspects

Computing environment: A large number of cost optimisation of SWFS systems (35%)

implemented or developed in the private cloud are used to present Software as a Service

(SaaS) issues. The advantage of utilising the SaaS cloud model for experimentation

purpose is that, SaaS does not require any details about the computational infrastructure

(Infrastructure as a Service) where the requests are being processed. Surprisingly, public

cloud has achieved less attention (22%) from researchers compared to other environments.

Moreover, it has been found that small number of models (9%) focused on minimising

execution cost in the hybrid cloud. This could be due to the difficulty of calculating the

total computional cost for these models owing to the heterogeneity of communication

aspects and load balance challenges among resources (i.e. resource allocation, resource

utilisation and resource migration). Therefore, it is of paramount importance to focus

on hybrid cloud for sharing the workflow management system’s workload. In contrast,

it might be possible in future to propose approaches that combine the private and public

(hybrid) cloud models to offer sufficient power for processing to accomplish workflow in a

specified execution timeframe.

Optimisation method: it has been found that heuristic (57%), market-oriented (10%),

and meta-heuristic (11%) approaches have attained major attention of researchers compared

to other optimisation methods. Heuristic approaches have the highest potential to compute

more accurate results. In contrast, market-oriented and meta-heuristic approaches are

mainly used to achieve better performance compared to the fast heuristic methods, but

with little compromise on execution time. Therefore, designing a hybrid approach (by
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integrating the features of existing heuristic and meta-heuristic search algorithms) can help

to improve the scalability challenge due to concurrent processing.

Structural representation: From studying the frequency of structural representations, it

can be clearly found that majority of the work (85%) have considered DAG or the modified

DAG model as the structural representation. The DAG is able to handle very complex cost

optimisation workflow applications in cloud computing systems. It shows the precedence

constraints relationship between the workflow tasks. However, only few approaches (15%)

that used different alternative structural representation methods have been adopted (i.e.

grid broker (6%), just in time (3%), atomic task partitioning (3%), and multiplier level

architecture (3%)). For future studies, there is a need to introduce a different kind of

method that is applicable to large-scale data (data-intensive) for SWFS.

Scheduling technique: From analysing the frequency of scalability aspects reported in

the literature, it can be clearly found that majority of the work targeted dynamic approaches

(77%). This is due to the fact that the dynamic method requires prior knowledge about

the parameters. In contrast, some work (23%) has focused on the static methods for cost

optimisation of SWFS approaches.

Workload type: The predicted (batch mode) type of workload remains a key focus

(62%) of researchers in the cost aspect of SWFS. In contrast, some work (38%) has

focused on considering the unpredicted (on-line mode) type of workload. This is due to

the ability that the batch mode offers to SWFS models by maximising the throughput of

the workload while minimising the turnaround time (the time between task submission

and task completion).

Optimisation criteria: Most of the reviewed approaches (91%) have focused on

multi-objective optimisation, while only (9%) approaches targeted single-objective based

optimisation. This is mainly due to the fact that SWFS contains multiple objectives and
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constraints in cloud computing environments.

2.2 Cost Optimisation Parameters of SWFS

This section critically analyses the devised classifications for cost optimisation parame-

ters of SWFS in cloud computing. A complete discussion on the sub-classification of cost

parameters including the monetary cost and temporal cost is presented in the following

sub-sections. Finally, the section provides the correlations between the surveyed cost

optimisation of SWFS approaches and the profitability by extracting their association with

cost optimisation parameters.

After analysing the cost optimisation parameters considered by researchers in the area

of SWFS in cloud computing, it is found that the classification of the cost optimisation

parameters is dependent on two types: (i) monetary cost parameters, and (ii) temporal cost

parameters, as shown in Figure 2.3.

Figure 2.3: A classification of cost optimisation parameters of SWFS

The scheduling approaches are supposed to estimate in advance whether a workflow will

be able to meet the requested constraints (e.g., deadline) or not (Ramakrishnan et al., 2011;

Hirales-Carbajal et al., 2012). However, the estimation process may be compromised due

to uncertainty in task estimations especially in the case of deadline-sensitive applications

(e.g., weather forecasting). Also, the resource providers find it hard to ensure the resource

availability due to the variability and complexity of the underlying resource characteristics
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and access policies. Researchers have considered three parameters to overcome the

aforementioned challenges: (i) Estimated Execution Time (EET); (ii) Estimated data

Transfer Time (ETT); and (iii) Estimated Finish Time (EFT) (Ramakrishnan et al., 2011;

Bittencourt et al., 2012; Choudhary, Kacker, Choudhury, & Vashisht, 2012; Tanaka &

Tatebe, 2012; K. Liu et al., 2010; Ostermann et al., 2010; Saeid Abrishami, 2012; Rezaei,

Chiew, Lee, & Shams Aliee, 2014). The scheduler needs to include these parameters in the

workflow definition to enhance the estimation process by considering the historical results.

Hence, it is crucial to recognise the parameters of the monetary cost and temporal cost,

and the inter-dependent parameters. The specific breakdown (sub-classifications) and

details on each of the monetary cost parameters are given in Section 2.2.1 and those of the

temporal cost parameters are presented in Section 2.2.2.

2.2.1 Monetary Cost Parameters

This section presents two main sub-sections including classification of monetary cost

parameters and monetary cost parameters from the profitability aspect.

2.2.1.1 Classification of Monetary Cost Parameters

This section provides details on the sub-classification of monetary cost optimisation

parameters as shown in Figure 2.4: (i) the estimated execution cost, (ii) the cost of service

offered by the service provider, (iii) computation cost, (iii) communication cost, (iv)

elasticity cost, and (v) cost of data storage.

Figure 2.4: Sub-classification of monetary cost optimisation parameters of SWFS
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Estimated execution cost: Estimated execution cost can be measured before the process

of workflow scheduling, and it assists the algorithm with decision making for scheduling

tasks and data with the help of the DAG graph partitioning of the workflow. The estimated

execution cost parameter covers two main elements: (i) the estimated computation cost,

and (ii) the estimated communication cost (Tanaka & Tatebe, 2012; de Oliveira, Viana,

Ogasawara, Ocaña, & Mattoso, 2013; Hirales-Carbajal et al., 2012; Verma & Kaushal,

2017). The estimated execution cost represents the cost of processing a task at the resource.

In contrast, the estimated communication cost refers to the cost of sending the required data

along the edges of DAG from one resource to another based on the tasks’ dependencies.

Cost of service provided: Cost of service provided represents the cost of the service

offered by the service provider as an external cost to fulfill a service request to the service

consumer, usually measured in dollars. Every service provider may have particular

strategies for task-level scheduling to optimally use the system’s running cost at its own

data center (Z. Wu et al., 2013; Deelman, Juve, Rynge, Voeckler, & Berriman, 2013;

Bittencourt & Madeira, 2013; Byun, Kee, Kim, & Maeng, 2011; Kousalya et al., 2017).

It is essential to reduce the total computional cost of application execution on the

resources offered by the cloud service providers such as GoGrid and Amazon (Pandey et

al., 2010). The total computional cost of service provided by the service provider can

be calculated based on the cost of the services used by the workflow scheduler (Prodan

& Wieczorek, 2010). Therefore, workflow execution cost is the sum of the cost of all

activities (Y. Yuan et al., 2006). Additionally, the cost of an application is defined by the

summation of the costs of all selected service instances (W.-N. Chen & Zhang, 2009).

Computation cost: Computation cost is defined as the cost of using computing resources

and is usually measured in dollars per hour. The cost of computation is generally the

user’s main concern (Sharif, Taheri, Zomaya, & Nepal, 2013; Lingfang et al., 2012; Yan,
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Luo, Hu, Li, & Zhang, 2013; Z. Wu, Ni, Gu, & Liu, 2010). The computation cost of

tasks on the host computer is inversely proportional to the time spent on computing these

tasks using the resources (Z. Wu et al., 2013; Pandey et al., 2010). For instance, the

computation cost of the public cloud is represented by the amount of money to be paid for

using the enterprise’s computation resources, which can be categorised based on different

computational specifications (Deelman et al., 2013; Pandey et al., 2010; Bhise & Mali,

2013; Byun et al., 2011).

The total computional cost of computing the workflow is also affected by the data size

(Pandey et al., 2010). Thus, decreasing the execution cost of running a workflow application

on the cloud system is one of the main reasons for lowering the total computional cost

(Genez et al., 2012; Z. Wu et al., 2013; Saeid Abrishami, 2013; Amandeep Verma, 2012).

Communication cost: Communication cost is defined as the cost of data transferred

to/from a data-storage resource, and is usually measured in dollars per megabyte of data.

Communication cost between resources as well as the dependency between tasks introduces

high communication cost, as data needs to be transferred from one resource to another

(Varalakshmi, Ramaswamy, Balasubramanian, & Vijaykumar, 2011; Y. Wang & Lu, 2013).

The communication cost is only applicable when two tasks have data dependency (Z. Wu

et al., 2010). This produces higher storage and transmission cost compared to the cost of

running the data (Pandey et al., 2010; J. Lin et al., 2017).

Nevertheless, the internal transfer of the data is free in many real clouds such as Amazon,

so the cost of data transfer is said to be zero in this model (Abrishami & Naghibzadeh,

2012; Saeid Abrishami, 2013). Hence, there is no charge for data transfers within the

same service provider’s region (Z. Wu et al., 2010). As such, there is a significant link

between the cost of data communication and data allocation. It is essential to schedule

the computational tasks near the data and comprehend the moving cost of the work in
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comparison to data movement (minimising the cost of communication). Also, data must

be distributed over many computers, and computations must be steered towards the best

place for execution in order to minimise communication cost (Genez et al., 2012; Foster et

al., 2008).

Elasticity cost: Elasticity in resources provisioning to the service consumer’s computing

environment is one of the most important features of a cloud system. The cloud system

is able to handle the execution of complex computational tasks, which require powerful

resources (e.g., machines and storages). Thus, the cloud computing system is suitable

to address the problems of large-scale SWFS applications (L. Mao, Yang, & Xu, 2013;

Bittencourt, Senna, & Madeira, 2010; Deldari et al., 2017).

In contrast, the elasticity of SWFS is bounded by the number of resources requested by

the scheduling algorithm (Bittencourt & Madeira, 2011). Therefore, the SWFS approaches

need to make full use of the resources’ elasticity by providing an efficient resource allocation

within the lowest cost when tasks are completed earlier than the predicted time. For

instance, in a hybrid cloud system, the service consumer is required to efficiently utilise

the usage of public cloud resources that can be aggregated to the private resources’ pool as

necessary (Genez et al., 2012; Byun et al., 2011).

Cost of data storage: Cloud Workflow Management System (WfMS) is required to

deliver on-demand storage services and processing power, due to the fact that the cloud

WfMS has to deal with data centers which can be clusters of commodity hardware (Genez

et al., 2012; Grossman, Gu, Sabala, & Zhang, 2009; D. Yuan et al., 2010; H. Yu, Bai,

& Marinescu, 2005; D. Yuan, Yang, Liu, Zhang, & Chen, 2012). Executing a large size

of SWFA application usually needs high performance computing resources as well as

massive storage (D. Yuan et al., 2012). The execution of a workflow task consists of

three phases, downloading of input data from the storage system, running the task, and
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transferring output data to the storage system (Byun et al., 2011). Therefore, for a cloud

WfMS storing all the data generated during workflow executions may cause a high storage

cost (D. Yuan et al., 2010; D. Yuan, Yang, Liu, & Chen, 2011). In order to reduce the total

computional cost of SWFS, the WfMS requires a strategy that can reduce the cost of the

cloud WfMS by automatically storing only appropriate data in the cloud storage (Genez et

al., 2012; D. Yuan et al., 2010, 2012; Broberg, Buyya, & Tari, 2009; Rodriguez & Buyya,

2017). Several strategies have been reported for cloud storage. For example, BigTable

includes Google File System (GFS), SimpleDB data cloud, and MapReduce infrastructure,

Amazon’s S3 storage cloud, EC2 compute cloud and Hadoop system.

2.2.1.2 Monetary Cost Parameters from Profitability Aspect

This section highlights the results related to the approaches that represent the rela-

tionships between profitability for the service consumers and the monetary models’ cost

parameters of cost optimisation scheduling as shown in Table 2.2.

From the service consumers’ profitability perspective (Table 2.2), some approaches

have considered the estimated execution cost as a strategy for planning the scheduling

before the scheduler allocates suitable resources based on their availability. Computation

cost and communication cost are frequently used during the scheduling process stage.

This shows that generally, the users of workflow applications are more concerned with the

amount of money they need to pay for the service. However, only few models considered

the cost of data storage in their approaches that is potentially due to the need for using a

private (locally) storage instead of using a storage that is provided by the service provider

(remotely). Therefore, the service provider needs to consider providing more flexible

storage services by keeping only appropriate data in the cloud. For elasticity cost, there

is a strong need for full use of the resource elasticity by providing an efficient resource

allocation within the lowest cost.
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Table 2.2: Monetary cost parameters from the service

consumers’ point of view

Approach Es
tim

at
ed

ex
ec
ut
io
n
co
st

C
os
to

fs
er
vi
ce

pr
ov
id
ed

C
om

pu
ta
tio

n
co
st

C
om

m
un

ic
at
io
n
co
st

El
as
tic

ity
co
st

C
os
to

f d
at
a
st
or
ag
e

(Y. Yang et al., 2008) x
(J. Yu et al., 2005) x x x x x

(Sakellariou et al., 2007) x x x
(Genez et al., 2012) x x x
(Z. Wu et al., 2013) x

(Abrishami & Naghibzadeh, 2012) x x
(Talukder et al., 2009) x x
(J. Yu & Buyya, 2006b) x x x

(W.-N. Chen & Zhang, 2009) x x
(Saeid Abrishami, 2012) x x x
(Genez et al., 2012) x

(J. Yu & Buyya, 2006a) x x x
(Shi, 2014) x x x x x

(Viana et al., 2011) x x
(Malawski et al., 2012) x x

(Zhu et al., 2012) x x x
(Szabo et al., 2014) x x x x

Table 2.3 indicates the relationship between the profitability for service providers and

the monetary cost parameters of cost optimisation scheduling. From the point of view

of service providers’ profitability (Table 2.3), it is evident that many approaches take the

estimated execution cost into consideration (Tanaka & Tatebe, 2012; Saeid Abrishami,

2012; J. Yu & Buyya, 2006a; Verma & Kaushal, 2017).

The purpose of this parameter is to measure the cost of the submitted workflow tasks

that is estimated by the scheduler before the process of SWFS execution starts. There is a

small number of scheduling approaches dedicated to the cost of service provided as service

profit. This signifies that customers find the cost of the service provided very important.

In addition, the computation and communication cost parameters are widely applied to the

service category as the principal parameters representative of monetary cost.

46

Univ
ers

ity
 of

 M
ala

ya



Table 2.3: Monetary cost parameters from the service

providers’ point of view

Approach Es
tim

at
ed

ex
ec
ut
io
n
co
st

C
os
to

fs
er
vi
ce

pr
ov
id
ed

C
om

pu
ta
tio

n
co
st

C
om

m
un

ic
at
io
n
co
st

El
as
tic

ity
co
st

C
os
to

f d
at
a
st
or
ag
e

(Pandey et al., 2010) x x x
(Q. Wu et al., 2013) x

(Ostermann et al., 2010) x
(C. Lin & Lu, 2011) x

(Sakellariou & Zhao, 2004b) x x
(Bittencourt & Madeira, 2011) x x x x
(Ramakrishnan et al., 2011) x x

(Stevens et al., 2009) x x x
(Saeid Abrishami, 2013) x x
(Tanaka & Tatebe, 2012) x x x

(Prodan & Wieczorek, 2010) x x
(Saeid Abrishami, 2012) x x x x
(J. Yu & Buyya, 2006a) x x x

(Shi, 2014) x x x x x
(Viana et al., 2011) x x x x

(Malawski et al., 2012) x x x
(X. Lin & Wu, 2013) x x x x
(Szabo et al., 2014) x x x x

2.2.2 Temporal Cost Parameters

This section discusses temporal cost parameters in terms of the profitability for the

service consumers and service providers. The literature review points out that in order to

achieve effective and efficient cost of processing the SWFA, the schedulers should minimise

the total time taken for execution (makespan) to reduce the total execution cost (Pandey et

al., 2010; J. Yu & Buyya, 2006b). However, the two aims (the cost of running a process

on a resource and the time expected for execution) are contradictorily related (Talukder

et al., 2009; J. Yu et al., 2005; Prodan & Wieczorek, 2010; J. Yu & Buyya, 2006a). In

addition, the time taken for execution and cost of execution are the two normal restrictions

in the pay-per-use model of cloud computing (Xue & Wu, 2012). Thus, faster resources

are more costly and vice versa with slower resources. As a result, the scheduler has to face

a time-cost tradeoff in choosing suitable resources. Besides, the cost of execution rises
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during longer delays, as the scheduler switches the balanced tasks to more costly services

to finish off the balance of execution within the subscribed deadline.

Besides, to calculate the cost of SWFS, it is significant to take into consideration all

the time intervals that each resource is utilising for task processing and data transmission

(Bittencourt & Madeira, 2011; J. Yu & Buyya, 2006b; Prodan & Wieczorek, 2010;

Rodriguez & Buyya, 2017).

2.2.2.1 Classification of Temporal Cost Parameters

This section categorises the temporal cost according to the scheduling stages (i.e.

pre-scheduling, during scheduling, and post-scheduling) as per needs of the scheduler.

From the sub-classification of cost optimisation parameters of temporal cost as depicted

in Figure 2.5, three scheduling stages are incorporated in the temporal cost: (i) pre-

scheduling, (ii) during scheduling, and (iii) post-scheduling (Abrishami & Naghibzadeh,

2012; Saeid Abrishami, 2013). The pre-scheduling stage covers several parameters

including the earliest start time (Bittencourt & Madeira, 2011; Ramakrishnan et al.,

2011; Bittencourt et al., 2012; Xue & Wu, 2012; Stevens et al., 2009; Saeid Abrishami,

2013), earliest finish time (Stevens et al., 2009; Saeid Abrishami, 2013), estimated data

transfer time (Saeid Abrishami, 2012), estimated execution time (Ranaldo & Zimeo,

2009; Saeid Abrishami, 2013, 2012), estimated finish time (Bittencourt & Madeira, 2011;

Bittencourt et al., 2012; Ranaldo & Zimeo, 2009), latest start time, and latest finish time

(Abrishami & Naghibzadeh, 2012; K. Liu et al., 2010; Saeid Abrishami, 2012; Tan, Sun,

Li, Lu, & Wang, 2013). However, the during-scheduling stage includes the computation

time, communication time, spare time, and ready time parameters. On the other hand,

the post-scheduling stage consists of the actual start time as well as actual finish time

parameters.

A- Pre-scheduling stage
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Figure 2.5: Sub-classification of temporal cost optimisation parameters of SWFS

The following are the main parameters that need to be calculated before the scheduling

process to ultimately help the scheduler with scheduling decisions by estimating the

temporal cost.

Earliest start time (EST): EST is defined as the earliest time to begin task computation,

regardless of the actual resource to process the task that can be decided on while scheduling

(Stevens et al., 2009; Saeid Abrishami, 2012). Nevertheless, it is impossible to exactly

measure EST in a heterogeneous environment, as a specific cloud’s computation time

of tasks differs within each resource (Saeid Abrishami, 2012; Verma & Kaushal, 2017).
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Every task has a period and should not be scheduled earlier than EST, and must end latest

by the Finish Time (Ramakrishnan et al., 2011). The EST of each unscheduled task is

described in the following equation (Abrishami & Naghibzadeh, 2012; Saeid Abrishami,

2013, 2012)):

EST (tentry) = 0 (2.1)

The task tentry refers to the beginning of the workflow.

EST (ti) = maxtp∈tiParents
{
EST (tp) + MET (tp) + TT (ep,i)

}
(2.2)

where the minimum execution time of a task ti, MET (ti), refers to the task’s execution

time on a resource r jεR which has the minimum ET (ti, r j ) among all the available

resources. ET denotes the estimated execution time of ti, and the tp is the parent task of

ti, and ep,i refers to the edge between the parent task node to the ti task node in DAG. TT

denotes the estimated data transfer time.

Earliest finish time (EFT): EFT for each unscheduled task is the earliest time the task’s

computation can finish (Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013). Thus,

it is essential to first calculate the EST, and then calculate the EFT for each task in the

workflow prior to assigning it to the fastest resource (Saeid Abrishami, 2013). EFT can be

calculated with the following equation :

EFT (ti) = EST (ti) + MET (ti) (2.3)

where the MET (ti) denotes the minimum execution time of a task ti.

Estimated data transfer time (TT): TT can be defined as the amount of data that needs
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to be transmitted along with the data latency and bandwidth between services, which can

be used to estimate the time it takes to transfer the required data. For instance, TT (ei, j ) is

defined as the data transfer time of the selected resource for ti and t j . Thus, TT represents

the transfer cost of sending the required data along ei, j from resource r (processing task ti)

to resource n (processing task t j) (Saeid Abrishami, 2012; Park et al., 2017).

Estimated execution time (ET): ET refers to the computation time for every task in each

resource according to the scheduler’s estimation after initiating a job request execution

(K. Liu et al., 2010; Saeid Abrishami, 2012). ET is usually influenced by a few parameters

(budget, total number of atomic tasks, tested configuration, and deadlines) (Ranaldo &

Zimeo, 2009). Additionally, the ET for every resource differs based on task size (Ranaldo

& Zimeo, 2009). An application is able to provide an estimated execution time according

to the available metadata of user requests, unlike resource services (J. Yu & Buyya, 2006b).

Estimated finish time (ESHT): ESHT refers to the estimated completion time of task

computation by a particular resource. Every task is scheduled to the resource with the

lowest cost and earliest ESHT (Nargunam & Shajin, 2012; Bittencourt et al., 2012). ESHT

can be calculated as follows (Bittencourt & Madeira, 2011)):

ESHT (ti, rk ) = EST (ti, rk ) + w(ti, rk ) (2.4)

ESHT (ti, rk ) represents the estimated finish time of task i in resource k, and, w(ti, rk )

represents the execution time of task i in resource k.

Latest start time (LST): LST represents the difference between the latest finish time and

estimated computation time of the task (Tan et al., 2013).

LST (ti) = LFT (ti) − Dti (2.5)
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where LST (ti) denotes the latest start time, LFT (ti) denotes the latest finish time, and

Dti is the estimated task duration.

Latest finish time (LFT): LFT represents the latest time for finishing a computation task.

LFT is beneficial in calculating the required time for completing a workflow with respect

to the user’s determined deadline of a specific set of tasks (Abrishami & Naghibzadeh,

2012; Xue & Wu, 2012; Saeid Abrishami, 2013; K. Liu et al., 2010). Thus, the LFT is

an important algorithm component as it receives a workflow as the input and attempts to

seek the schedule that minimises cost, reduces the total computional cost of workflow and

completes the task before the LFT. LFT can be calculated using the following equation

(Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013)):

LFT (texit ) = DD (2.6)

where task texit refers to the ending of the workflow, and DD is the user-defined deadline.

LFT (ti) = mintc∈successors o f ti

{
LFT (ti) − ET (tc, SS(ti)) − TT (ei, j )

}
(2.7)

SS(ti) is defined as the resource selected for processing ti during scheduling. ET

denotes the estimated execution time and TT denotes the estimated data transfer time.

B- During scheduling stage

The following are the main parameters to be calculated during the scheduling process.

Computation time: The computation time represents the time that is required by the

computational resources to execute the workflow tasks. The main factor for every single

resource is deciding the execution cost of the task’s processing time (Deelman et al.,

2005). Thus, it is up to the users to select the most appropriate processing budget and time

(Y. Yuan et al., 2006). Workflow execution comprises the running time of the tasks and
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data transfer in and out of the computation resource (Deelman et al., 2005). Note that,

communication cost and computation cost are inversely proportional to communication

time and execution time, respectively (J. Yu & Buyya, 2006b).

Communication time: Data transfer from one computer source to another is time

consuming and the duration of time is dependent on the amount of data that needs to be

transferred between the corresponding tasks. Moreover, it is not dependent on the services

that execute them (Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013; Menasce &

Casalicchio, 2004). The time for data transmission is dependent on the selected services

and the service provider’s bandwidth (Saeid Abrishami, 2012). Nevertheless, the time for

data transfer between two arbitrary tasks is constant and not dependent on the selected

services (Abrishami & Naghibzadeh, 2012). Therefore, if all workflow tasks are scheduled

at the same instance, the time for data transfer between them becomes zero, but the time for

data transfer outside of the tasks should be still taken into consideration (Saeid Abrishami,

2013).

Spare time: Spare time (also referred as Application Spare Time) represents the time

difference between the expected finish time (makespan) of the initial schedule and the

deadline defined by the user for the whole workflow (Zheng, 2010; Byun et al., 2011). The

distribution scheme of the spare time affects the overall cost (Byun et al., 2011). In order

to guarantee the feasibility of the workflow execution when the actual execution time of

task changes to a certain extent from the predicted time, the spare time is assigned to each

workflow task based on its deadline. In the literature, two main approaches, including

critical-path-based allocation and recursive allocation have been proposed for spare time

allocation (Wieczorek, Hoheisel, & Prodan, 2008; H. Zhao & Sakellariou, 2007).

Ready time: Ready time is defined as the earliest time for the first task to be executed

and this task is computed based on the parent tasks (J. Yu et al., 2005). The following
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equation is used to calculate the ready time of task ti (J. Yu & Buyya, 2006a)):

readyTime(ti) = maxt j∈piendTime(t j ) (2.8)

where pi is the set of parent tasks of ti, and endTime (t j ) denotes the time required to

end the execution of task t j (deadline).

C- Post scheduling stage

The workflow manager examines the workflow by consulting the repository or database

containing the information linked to cost and performance records. The repository may

also contain historical information regarding the execution of past services requested by

SaaS clients and all their resource performance (Genez et al., 2012). Thus, the user’s input

on cost and time will be considered for scheduling the next time around to ensure user

satisfaction (Y. Yang et al., 2008). A major consideration in the execution of applications

that are performance-driven is effective scheduling, such as cost-driven and dynamic

workflow environments like a cloud (Amandeep Verma, 2012; J. Lin et al., 2017).

Performance estimation for resource services is derived by utilising current performance

estimation techniques, for instance, historical (Ranaldo & Zimeo, 2009; Bjorkqvist, Chen,

& Binder, 2012)) and empirical data (Abrishami & Naghibzadeh, 2012), and analytical

modeling (Saeid Abrishami, 2013)) to predict the time taken for task execution on each

discovered resource service (Bittencourt & Madeira, 2011; Abrishami & Naghibzadeh,

2012; Ranaldo & Zimeo, 2009; J. Yu et al., 2005; J. Yu & Buyya, 2006b; Ostermann et al.,

2010; Afzal et al., 2006; J. Yu & Buyya, 2006a; Verma & Kaushal, 2017). In addition, the

costs of communication and computation for workflows are calculated from historical data

of past filtered executions (Bittencourt & Madeira, 2011).

Start time (actual): Every task has four components: (i) serviceID, (ii) taskID, (iii)

54

Univ
ers

ity
 of

 M
ala

ya



endTime, and (iv) startTime. serviceID and taskID identify where each task is assigned

to which resources. startTime and endTime represent the allocated time frame on the

resource for task execution (Stevens et al., 2009; J. Yu & Buyya, 2006b; Sakellariou &

Zhao, 2004b). The entire workflow completes based on parallel and serial constraints

between the start and finish times (Y. Yuan et al., 2006).

Once all tasks are scheduled, each task has a start time that is measured using the

deadlines of the parent tasks in the workflow (Abrishami & Naghibzadeh, 2012). There

are two concepts of tasks’ start times in the scheduling algorithms. The first concept

is, supposing the start time is EST, which is calculated prior to the workflow being

scheduled; however, the real start time concept is calculated after scheduling the tasks

(Saeid Abrishami, 2013, 2012). It is helpful to compare the start time estimated statically

and the minimal spare time saved to determine rescheduling in the future (Sakellariou &

Zhao, 2004b).

Finish time (actual): This is the time actually used to complete task execution

(Sakellariou et al., 2007; Q. Wu et al., 2013; Sakellariou & Zhao, 2004b; Park et al., 2017).

2.2.2.2 Temporal Cost Parameters from Profitability Aspect

This section presents the results related to the relationship between the service consumers

of the cost optimisation approaches and their temporal cost parameters (Table 2.4).

From the point of view of service consumers’ profitability (Table 2.4), several approaches

focus on measuring pre-scheduling parameters due to the significance of determining the

estimated execution time, which is required to fulfil the customer’s QoS attributes (i.e.,

deadline and makespan). Similarly, the monetary cost category, with computation time and

communication time, is extensively used during the scheduling process stage. Also, several

approaches measure the pre-scheduling stage. This shows that workflow application users

are more concerned about the waiting duration needed for the service to be accomplished
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by resources. Only few approaches have considered the ready time and spare time.

Table 2.4: Temporal cost parameters from service con-

sumers’ point of view
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(Y. Yang et al., 2008) x
(J. Yu et al., 2005) x x x x x x

(Sakellariou et al., 2007) x x x
(Z. Wu et al., 2013) x x

(Abrishami & Naghibzadeh, 2012) x x x x x
(Talukder et al., 2009) x x
(J. Yu & Buyya, 2006b) x x x x

(W.-N. Chen & Zhang, 2009) x x
(Saeid Abrishami, 2012) x x x x x x x
(J. Yu & Buyya, 2006a) x x x x x

(Shi, 2014) x x x x x x
(Zhu et al., 2012) x x x x x x x x x
(Szabo et al., 2014) x x x

Table 2.5 shows the results related to the relationship between the service providers of

cost optimisation approaches and their temporal cost parameters.

Table 2.5: Temporal cost parameters from the service

providers’ point of view
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(Nargunam & Shajin, 2012) x x x
(Ranaldo & Zimeo, 2009) x x x x

(Q. Wu et al., 2013) x x x x
(Y. Yuan et al., 2006) x x
(C. Lin & Lu, 2011) x x x

(Sakellariou & Zhao, 2004b) x x x x x
(Bittencourt & Madeira, 2011) x x x
(Ramakrishnan et al., 2011) x x x x x x

(Stevens et al., 2009) x x x x x
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(Saeid Abrishami, 2013) x x x x x x
(Tanaka & Tatebe, 2012) x x x

(Afzal et al., 2006) x
(Saeid Abrishami, 2012) x x x x x x x
(J. Yu & Buyya, 2006a) x x x x x

(Shi, 2014) x x x x x x
(Viana et al., 2011) x x

(Malawski et al., 2012) x x x x x x x
(X. Lin & Wu, 2013) x x x x x x x x x x
(Szabo et al., 2014) x x x

From the point of view of service providers’ profitability (Table 2.5), most of the

approaches focus on calculating the pre-scheduling parameters. Therefore, it is crucial

for the service providers to identify the required execution time to schedule tasks to the

available resources. During the scheduling process stage, researchers have given more

attention to determine computation time and communication time parameters. Thus,

the service consumer is concerned about the waiting period required for resources to

accomplish the service. Similarly, in the service consumers’ category, there are not many

approaches that consider the ready time and spare time.

2.2.3 Discussion on Cost Optimisation Parameters

From analysing the monetary cost parameters from the point of view of service

consumers’ profitability and service providers’ profitability, surprisingly, few approaches

have considered the estimation of execution cost parameter. Yet, estimated execution cost

is one of the important challenges that requires the scheduler in handling the uncertainties

of the input of SWFS algorithms. The majority of the proposed approaches emphasise cost

in their approaches. This shows that there is a strong dependency between computation

cost, communication cost and the total monetary cost.

During the scheduling stage, several models consider the cost of a service offered by

service providers. This signifies that customers consider the cost of the service provider

highly important, which must be calculated as an external cost to fulfil a service request
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to the service consumers. Only few models consider the cost of data storage in their

approaches, which is potentially due to private resource usage instead of using a service

offered by service providers. A large amount of work is to be expected to optimise

data storage parameter due to recent focus on the big data challenge. Similarly, future

researchers can utilise the resource elasticity (which plays a strong role in cloud) by

providing an efficient resource allocation within the lowest cost.

From analysing the temporal cost parameters according to the point of view of service

consumers’ and service providers’ profitability, several approaches have focused on

measuring pre-scheduling parameters due to the significance of determining the estimated

execution time, which is required by the scheduler for handling the uncertainties of the

input challenge for SWFS algorithms. At the same time, it is very important for the

service providers to calculate the required execution time to schedule tasks to the available

resources.

As during the scheduling process stage, the computation time and communication time

parameters are extensively used. This shows that workflow application service consumers

are more concerned about the time needed for the service to be accomplished by resources.

This also highlights that there is a direct relationship between computation time and

communication time parameters. So, in order to examine cost performance of the cost

optimisation of SWFS algorithms, researchers should consider this relationship. From

the pre-scheduling stage, there are not many approaches that consider the ready time

and spare time. Thus, the scheduling approaches in the future study should adjust to the

aforementioned cost optimisation parameters for the execution time of workflow process

model.

Regarding the response time challenge in cloud, traditionally, cloud systems aim to

achieve better trade-off between performance (i.e. response time) and cost. The value of
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the response time (the duration of a service between calling and return) is specified in the

service level agreement. In most cases, the service consumers of workflow application

want fast response times regardless of cost, application owners want fast response times

without spending too much money, and service providers seek to reduce the cost of

running all applications within their service agreements, regardless of ownership (Dutta &

VanderMeer, 2011). Thus, the challenge faced by a service provider is how to minimise the

cost while maintaining the resource utilisation and low service response time (Bjorkqvist

et al., 2012; Garg, Buyya, & Siegel, 2010; Y. Yuan et al., 2007). SWFS approaches are

required to consider achieving the application’s submission time which is equal to the

application execution start time. For the aforementioned reasons, cloud service providers

usually use the auto-scaling mechanism to minimise the response time of customer requests

to improve the user experience (M. Mao & Humphrey, 2011; Y. Yuan et al., 2009).

2.3 Cost Optimisation Challenges of SWFS

Through an extensive literature review, the challenges of SWFS have been classified

into three main types (Figure 2.6): (i) QoS performance; (ii) system functionality; and (ii)

system architecture. The classification of these challenges is based on the WfMS issues

proposed by Liu (2012) (X. Liu, 2012) and the standard reference model of workflow

scheduling proposed by the Workflow Management Coalition (WfMC) (N. Kaur et al.,

2011; Coalition, 2005; Rodriguez & Buyya, 2017).
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Figure 2.6: The SWFS challenges

Thus, the relevant sub-taxonomies of each of the SWFS challenges regarding QoS

performance will be discussed in Section 2.3.1 based on the associations with SWFS

approaches. Also, the relevant sub-taxonomies of each of the SWFS challenges regarding

system functionality and system architecture will be discussed in Sections 2.3.2 and 2.3.3

respectively, based on the associated SWFS approaches.

This section critically analyses the devised taxonomies for SWFS challenges in cloud

computing environment. Firstly, it presents the sub-taxonomy of challenges. Then, it

depicts the correlation of these challenges with key aspects of WfMS in cloud computing.

Finally, it provides a grouping of reviewed models based on the profitability by extracting

its association with challenges.

2.3.1 Quality of Service (QoS) Challenges

The QoS constraints have a major effect on SWFS in cloud computing, since the success

of computation tasks is highly dependent on the desired QoS levels, which are: quality of

results, execution time, throughput, reliability, monetary cost, deadline, trust, and budget

(Ranaldo & Zimeo, 2009; X. Liu, 2011; T. Chen, Bahsoon, & Theodoropoulos, 2013).

In the literature, two major SWFS types have been devised (K. Liu et al., 2010; J. Yu &

Buyya, 2006b; Lingfang et al., 2012; Tilak & Patil, 2012; W.-J. Wang, Chang, Lo, &
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Lee, 2013): (i) Best effort-based scheduling – which attempts to minimise execution time

without considering other factors such as the monetary cost of accessing resources and

various users’ QoS satisfaction levels; and (ii) QoS constraint-based scheduling – which

attempts to maximise performance under QoS and other system performance constraints

such as execution cost, time minimisation under budget constraints, or cost minimisation

under deadline constraints. On the other hand, according to standard ISO 8402 (?, ?),

ISO/IEC 13236:1998, and UTI (ITU. Recommendation, n.d.), QoS may be defined in

terms of purpose of workflow service to be provided to consumers. Therefore, several QoS

constraints must be taken into consideration for a given service when designing an efficient

WfMS in a cloud computing environment (H. Liu et al., 2011; Varalakshmi et al., 2011;

Saeid Abrishami, 2012; Anbazhagan Mani, 2002). This section depicts the major QoS

performance challenges as depicted in Figure 2.7, considered by the reviewed approaches

with relevance to the generic QoS framework (X. Liu, 2012).

Figure 2.7: Sub-taxonomy of QoS performance challenges
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2.3.1.1 Types of QoS Challenges

In the literature, a number of QoS cost-based strategies for SWFAs have been proposed,

which are intended to provide maximum customer satisfaction. Figure 2.8 shows the

interaction between the QoS challenges and how these challenges affect the cost. The

following sub-section presents the reported QoS challenges for SWFS.

Figure 2.8: Interaction among QoS challenges

Budget: In the context of QoS, budget can be defined as the cost threshold that a user

wants to pay a service provider to avail the desired services (Saeid Abrishami, 2013; H. Liu

et al., 2011; Sakellariou et al., 2007). Budget is dependent on the deadline selected by

the user to offer maximum QoS at minimum cost (Z. Wu et al., 2010; Choudhary et al.,

2012; Ranaldo & Zimeo, 2009; Bjorkqvist et al., 2012; Tsai et al., 2014) (Figure 2.8).

Furthermore, the budget constraint of SWFS from the service providers’ view maps every

task onto a suitable service to minimise workflow execution time and complete it within

budget (J. Yu & Buyya, 2006b). Therefore, the overall goal of the scheduling process is

to achieve a schedule that offers a set of resources using the specified budget (J. Yu &
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Buyya, 2006b; Sakellariou et al., 2007). For instance, the task execution cost rises during

longer delays, as the scheduler switches the balance tasks to more costly services to finish

the execution balance within the subscribed deadline (Rahman et al., 2011; Sharif et al.,

2013; Yan et al., 2013; J. Yu et al., 2005; Gao, Ma, Zhang, Kong, & Wei, 2013; M. Mao &

Humphrey, 2011; Zheng & Sakellariou, 2013).

Deadline: The time required for all workflow computations is defined as the workflow

deadline (Grounds, Antonio, & Muehring, 2009; Xue &Wu, 2012; Saeid Abrishami, 2012;

Y. Yuan et al., 2009). In most cases, users only specify a deadline for the entire workflow

execution (J. Yu et al., 2005). Since there is a strong dependency between completion

time and the required resources, a trade-off is required between the estimated completion

time and required resources to judiciously perform the SWFS. For example, an earlier

completion time than specified by the user requires more resources (Xue & Wu, 2012;

Chunlin & Layuan, 2006; Saeid Abrishami, 2012). Thus, a deadline must be assigned

to each workflow, which should be equal to or greater than the scheduling makespan of

the same workflow (Abrishami & Naghibzadeh, 2012) (Figure 2.8). Consequently, if the

execution time of all tasks is lower than the deadline, the cost weight changes incrementally

till the execution time of all tasks meets the deadline (J. Yu et al., 2005; Tan et al., 2013;

Bittencourt & Madeira, 2011). Note that the execution time plays an important role in

determining the deadline value. Researchers (J. Yu & Buyya, 2006b) have determined the

overall deadline by dividing the tasks to their average computation and communication

time.

Reliability: Reliability is one of the main features of cloud computing that can manage

independent resource allocation (Bittencourt & Madeira, 2011). Reliability refers to

the probability that a task can successfully complete the assigned workflow (Chunlin &

Layuan, 2006). The user may require a specific level of reliability based on the assigned
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workflow, which ultimately reduces the chances of failure to complete that workflow. The

reliability preference shows that the tasks are scheduled to the resource instances with

higher reliability and can be measured on a scale from 0 to 1 according to the resource’s

degree of reliability (Varalakshmi et al., 2011). Therefore, the service reliability should

be considered, as highly unstable resources may take longer execution time (and cost)

compared with more reliable alternatives (Prodan & Wieczorek, 2010) (Figure 2.8).

Availability: WfMS availability can be increased by focusing on improving testability

and maintainability. In the SWFS process, the low cost of services may cause high

computation and shortage of resources for performing workflow execution. The waiting

time of resources (to become available) can create an unnecessary and critical delay

(Srinivasan, 2012; J. Yu et al., 2005). Unavailability negatively impacts the overall cost of

SWFS. In the literature, two main scenarios have been reported that highlight this impact:

(i) cost attached to communication delay, known as additive float cost; (ii) the CPU’s

availability at the end node’s computing element, which is known as the cost of bounded

integer (Stevens et al., 2009), and (iii) reliability of the resources that needs to be provided

by service providers (Manvi & Krishna Shyam, 2013; Albodour, James, & Yaacob, 2012))

(Figure 2.8).

Makespan: Makespan can be defined as the overall time to execute the whole workflow

by considering the finish time of the last completed task (Saeid Abrishami, 2012; Q. Wu

et al., 2013). Obviously any delay in the task’s execution time will have an effect on

the makespan of workflow application (Sakellariou & Zhao, 2004b). In a traditional

SWFS, users generally choose to minimise the workflow makespan of the tasks (Abrishami

& Naghibzadeh, 2012; Y. Yuan et al., 2006). Thus, the reported cloud-based SWFS

approaches focus on how to assign tasks to resources so that the precedence constraints

are retained while the makespan is minimised (Sakellariou & Zhao, 2004b). Hence, the
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major aim of makespan is to reduce the execution cost within a lower completion time

while meeting the users’ requirements effectively (Tanaka & Tatebe, 2012; Z. Wu et al.,

2010; Y. Yuan et al., 2006; J. Lin et al., 2017) (Figure 2.8).

Service Level Agreement (SLA): A legal document that considers the perspectives of

both service consumers and service providers to formally describe, and deliver the cloud

services is known as SLA (Genez et al., 2012; Saeid Abrishami, 2012). These perspectives

include explanations of QoS delivery performance guarantees. Therefore, the SLA is

related to all the QoS dimensions which must be mentioned by the service provider in

order to fulfill the service consumer’s requirement (X. Liu, 2012) (Figure 2.8). Similarly,

for SLA cloud services, consumers can negotiate with service providers on the desired

QoS and pricing by describing the required parameters for QoS on a pay-per-use basis

(Abrishami & Naghibzadeh, 2012). However, SLA usually defines cost penalties when the

terms for SLA are violated (e.g., a deadline is missed) (Grounds et al., 2009).

Security: Security in WFS process refers to the confidentiality of workflow tasks

execution and acts as a measure to determine the degree of trustworthiness of candidate

resources. By ensuring the security of potential resources certainly decreases the possibility

of being attacked and damaged to a great extent. Similarly, security is considered as

an important quality aspect of the cloud service that ensures their confidentiality by

authenticating the parties involved, encrypting messages, and providing access control.

Security plays an important role in distributed computing systems to ensure the QoS of

cloud workflow systems. However, security might need extra time and cost to achieve the

desired objective. Therefore, the scheduler considers QoS-cost tradeoffs between different

QoS parameters (e.g. availability, reliability, makespan, etc.) to optimally satisfy the QoS

requirements for both service providers and service consumers.
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2.3.1.2 QoS Challenges from WfMS in Cloud Computing

This section correlates two important aspects of cloud system (i.e., cloud system model

and service driven related aspect) on each of the QoS challenges of SWFS. It can be clearly

seen from Table 2.6 that all QoS performance challenges have been fully considered in

cloud system model and cloud service driven related aspects. Ultimately, it highlights the

crucial role of QoS in improving the performance of WfMS in cloud computing.

Table 2.6: Correlation between QoS performance chal-

lenges and WfMS in cloud computing

Challenges

System structure Service driven

SaaS PaaS IaaS Service consumer Service provider Utility Market-oriented
Budget x x x x x x
Deadline x x x x x x
Reliability x x x x x x
Availability x x x x x x
Makespan x x x x x x
SLA x x x x x x
Security x x x x x x

2.3.1.3 QoS Challenges form Profitability Aspect

Table 2.7 depicts different service consumer-related approaches with target QoS per-

formance challenges. From the service consumers’ profitability view (Table 2.7), users

normally provide the workflows along with more than one QoS constraint expectation for

computation purposes (Amandeep Verma, 2012). The customer pays more attention to the

workflow cost and time, which are necessary to complete the execution in a more optimal

manner (Y. Yuan et al., 2006).
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Table 2.7: QoS performance challenges from a service

consumer profitability view

QoS performance challenges
Pr
ofi

ta
bi
lit
y

Models B
ud
ge
t

D
ea
dl
in
e

Re
lia
bi
lit
y

Av
ai
la
bi
lit
y

M
ak
es
pa
n

SL
A

Se
cu
rit
y

Se
rv
ic
e
cu
sto

m
er

ap
pr
oa
ch
es

CTC (K. Liu et al., 2010) x x
Transaction Intensive Cost-constraint Algorithm (Y. Yang et al., 2008) x x
MDP (J. Yu et al., 2005) x
DAG-LOSS & DAG-GAIN (Sakellariou et al., 2007) x x
ILP (Genez et al., 2012) x
Cost Optimisation and Time Optimisation Scheduling Policies (Salehi & Buyya,

2010)

x x x

Market-oriented hierarchical scheduling strategy (Z. Wu et al., 2013) x
SC-PCP (Abrishami & Naghibzadeh, 2012) x x
MODE (Talukder et al., 2009) x x x
Pegasus framework (Deelman et al., 2005) x x
Genetic Algorithm (J. Yu & Buyya, 2006b) x x x x x
ACS (W.-N. Chen & Zhang, 2009) x x x x x
PCP (Saeid Abrishami, 2012) x x
Budget Constraint Based workflow scheduling (J. Yu & Buyya, 2006a) x x x
Time and Cost-constrained scheduling strategy (Ranaldo & Zimeo, 2009) x
BGQoS (Albodour et al., 2012) x x
TSWFS (Tan et al., 2013) x x x x

Table 2.7 indicates that a significant number of approaches focus on budget and deadline

mainly due to the adaptability of these challenges in SLA and market-oriented aspects

of cloud computing (Amandeep Verma, 2012). Although makespan generally depends

on the computation cost of SWFS and this fact makes makespan widely considered by

service consumers to determine the required speed of a cloud service. However, only two

approaches (J. Yu & Buyya, 2006b) specifically focus on resource availability challenges.

Similarly, three approaches (W.-N. Chen & Zhang, 2009; Tan et al., 2013; Albodour et al.,

2012; Deldari et al., 2017) determine reliability.

It is clear that the majority of reviewed approaches lack in considering reliability,

availability, and SLA for service consumer profitability. Consequently, future work needs

to consider these for providing enhanced quality solutions. To conclude, service consumers

require different cloud service types. For instance, some customers may need storage,

computational, high reliability, or low-cost cloud types of services.
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Table 2.8 shows the correlation results between various service providers and approaches

with targeted QoS performance challenges.

Table 2.8: QoS performance challenges from the service

provider’s profitability perspective

QoS performance challenges

Pr
ofi

ta
bi
lit
y

Model name B
ud
ge
t

D
ea
dl
in
e

Re
lia
bi
lit
y

Av
ai
la
bi
lit
y

M
ak
es
pa
n

SL
A

Se
cu
rit
y

Se
rv
ic
e
pr
ov
id
er

ap
pr
oa
ch
es

CMSA (Grounds et al., 2009) x x
HCOC & MDP (Bittencourt et al., 2012) x x
Time and Cost-constrained scheduling strategy (Ranaldo & Zimeo, 2009) x x x
PSO (Pandey et al., 2010) x
RDPSO (Z. Wu et al., 2010) x x
CPPS (Q. Wu et al., 2013) x
Dynamic Resource Provisioning Techniques (Ostermann et al., 2010) x
Time-Cost trade-off workflow scheduling algorithm (Y. Yuan et al., 2006) x x
SHEFT (C. Lin & Lu, 2011) x
Heuristic designing Scheduling framework (Menasce & Casalicchio, 2004) x x
BMCT (Sakellariou & Zhao, 2004a) x
Low-Cost Rescheduling Policy (Sakellariou & Zhao, 2004b) x
HCOC (Bittencourt & Madeira, 2011) x x
WORDS (Ramakrishnan et al., 2011) x x x x x
GHPSO (Xue & Wu, 2012) x
IC-PCPD2 & IC-PCP (Saeid Abrishami, 2013) x x
MCGP (Tanaka & Tatebe, 2012) x
MQMW (Xu et al., 2009) x
ACO (H. Liu et al., 2011) x x x x
DCA (Prodan & Wieczorek, 2010) x x
MQRS (Chunlin & Layuan, 2006) x x x x
MINLP (Afzal et al., 2006) x
PCP (Saeid Abrishami, 2012) x x
Budget Constraint Based workflow scheduling (J. Yu & Buyya, 2006a) x x

From a service provider’s profitability stance (Table 2.8), several approaches consider

the deadline and makespan challenges. Service providers use these challenges as stopping

criteria to determine after how long a workflow job must be completed. In most relevant

approaches, the deadline is considered to be a principal challenge. Researchers have

mentioned that the deadline, budget and makespan are important in the negotiation process

between service consumers and the service providers of WfMS in cloud computing.

Similarly, SLA is crucial to better manage the execution cost based on consumer decisions.

Consequently, these challenges offer “pay-as-you-go” and “on-demand” that directly affect

the economics of Cloud WfMS. Both availability and reliability challenges play a crucial
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role in improving user satisfaction. This can be done by keeping historical data (spending

extra storage cost) for each service request based on the user’s input on cost and time,

which can be useful in adjusting the QoS parameters for future task scheduling. However,

only few approaches are projected to solve these challenges.

2.3.2 System Functionality Challenges

A set of functional system components needs to be designed and developed to meet

system functionality requirements. The system functionality of workflow systems can be

classified into two major aspects: (i) the basic functional components; and (ii) resource

management components (Figure 2.9).

Figure 2.9: Sub-taxonomy of system functionality challenges
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2.3.2.1 Types of System Functionality Challenges

The following are two types of the relevant system functionality challenges for SWFS:

(i) basic functionality of SWFS challenges; and (ii) resource management challenges.

A-Basic functionality The basic functionality challenges of SWFS can be further

divided into two relevant groups: (i) time complexity; and (ii) rescheduling.

Time complexity:

The time complexity of an algorithm can be defined as the time required by the algorithm

to run the considered input, which usually represented as the length of iterations. The

time complexity of an algorithm is commonly expressed using big O notation, which

excludes coefficients and lower order terms. In this research context, the issue of task

mapping on distributed resources commonly falls under the heading of NP-complete

problem. For NP-complete problems, there is a correlation between problem size and

algorithm execution time. As the problem size increases, the algorithm execution time

also increases (Saeid Abrishami, 2013; J. Yu & Buyya, 2006b). Thus, the time complexity

of the algorithm needs to be computed to seek out a solution with polynomial time

complexity (which may not be optimal)(Abrishami & Naghibzadeh, 2012; Talukder et

al., 2009). One of the suitable algorithms is the Genetic Algorithm (GA), which offers a

dynamic search technique that requires a quality solution from an enormous search space in

polynomial time (Saeid Abrishami, 2013; J. Yu & Buyya, 2006b; S. Kaur & Verma, 2012;

Khajemohammadi, Fanian, & Gulliver, 2013; Rodriguez & Buyya, 2017). In addition, the

main assumption of calculating the time complexity of SWFS algorithms are:

- The size of the input is very large.

- The worst case scenario is always considered. However, there are several rules that need

to be considered while analysing an algorithm (Ambati, Ambati, & Mokhtar, 1991; Tsai et

al., 2014):
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- There is a need to drop the lower order terms.

- There is a need to drop the constant multiplier.

- The total running time equals the summation of the running times of all the fragmentations.

Traditionally, the estimated running time of heuristic is O(M log M), where M indicates

the number of sub-solutions of each solution of the problem (Tsai et al., 2014; Ambati et

al., 1991). The time complexity is different for each type of meta-heuristic (i.e. hybrid

meta-heuristic, or hyper meta-heuristic).

Rescheduling: The act of rescheduling is normally applied in the system to adjust

particular cloud service dynamics (J. Yu et al., 2005). At times, the service instance may be

unavailable or delayed, which causes execution failure of the subsequent service instances

to follow through. Thus, the unexpected tasks will delay the user’s deadline. For such

scenario, rescheduling would be needed to control the violation of contract completion

(W.-N. Chen & Zhang, 2009; K. Liu et al., 2010). Additionally, a key notion of the

selective rescheduling policy is to assess execution of an individual task and the actual

starting time of each task against the estimated starting time to make a proper rescheduling

decision (Sakellariou & Zhao, 2004b).

It is impossible to consider every task individually, because rescheduling of tasks to

available resources requires more communication time which consequently increases

the overall execution cost (Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013).

Therefore, rescheduling itself places extra workload on the processes of scheduling and

execution. This may be associated with the re-evaluation of scheduling cost and the transfer

of task cost across resources in conformance with the determined schedule (Sakellariou &

Zhao, 2004b).

B-Resources management There are four relevant resource management challenges of
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SWFS: (i) resource utilisation, (ii) resource allocation, (iii) Load balancing, and (iv) Task

estimation.

Resource utilisation: Several methods consider resource utilisation as one of the perfor-

mance criteria (Bittencourt & Madeira, 2011; Nargunam & Shajin, 2012). In addition,

resource utilisation also deals with the challenges of choosing computing resources in

various organisations (Ranaldo & Zimeo, 2009). A pool of processors can be provided

to workflow application users’ tasks according to the optimal task, time, and resource

utilisation method in accordance to the energy level to establish cloud computing perfor-

mance (Nargunam & Shajin, 2012). In order to achieve cost optimisation, it is essential to

offer effective resource utilisation by rendering SWFS application execution more afford-

able (Bittencourt & Madeira, 2011). Nevertheless, this individual optimisation criterion

may pose major limitations that can result in ineffective resource utilisation, unreliable

resource use or increasingmonetary costs (Prodan&Wieczorek, 2010; Deldari et al., 2017).

Resource allocation: Resource allocation deals with scheduling tasks and the required

resources while considering both resource availability and project time. Every resource

has three features, namely execution speed, resource ID, and execution cost (Z. Wu et al.,

2013).

The resource usage cost is an important factor that acts as an essential determinant in

resource selection decisions (Ramakrishnan et al., 2011). Each individual resource usage

must be taken into account to measure the direct costs of applications while considering

the processing cost of resource allocation (i.e. data storage cost, resource cost, resource

computation cost, I/O cost, resource wastage, required network resources, service provider

cost, etc.) (Z. Wu et al., 2013, 2010; Q. Tao, Chang, Yi, Gu, & Yu, 2009; Choudhary et al.,

2012; Menasce & Casalicchio, 2004). At the same time, the correct resource allocation for
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various services has an important function in balancing the QoS (number of processors,

duration) (Ramakrishnan et al., 2011; Afzal et al., 2006). It is evident (Ramakrishnan et

al., 2011) that there is a high correlation between execution time and overall execution

cost. Consider a scheduling situation that demands longer execution time due to the user

request of earlier start time. Therefore, it will increase the overall execution cost. As a

result, users will be charged with additional resource allocation time in this case even

though the resource may be idle (Ramakrishnan et al., 2011).

Load balancing: The physical facilities for providing cloud computing services are

distributed over multiple centers. The scheduler needs to allocate the workload to available

resources, while dynamically balancing the workload. Consequently, it helps in maximum

resource utilisation, which results in improving the overall system performance. However,

the scheduler also needs to consider all QoS constraints as requested by the cloud users.

In the literature, two types of load balancing approaches in cloud have been proposed to

satisfy the QoS constraints: (i) centralised; and (ii) distributed. Similarly, researchers have

categorised the scheduling approaches based on the system information in two classes: (i)

static; and (ii) dynamic. In static load balancing, a prior knowledge regarding the requested

tasks is required for workload allocation. Conversely, dynamic load balancing does not

require any prior knowledge. However, dynamic approaches have high overhead due to the

requirement of real time updates regarding system information.

Task estimation: The scheduling approaches are supposed to estimate in advancewhether

a workflow will be able to meet the requested constraints (e.g., deadline) or not. However,

the estimation processmay be compromised due to uncertainty in task estimations especially

in the case of deadline-sensitive applications (e.g., weather forecasting). Furthermore, the
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resource providers find it hard to ensure the resource availability due to the variability and

complexity of the underlying resource characteristics and access policies. Researchers have

considered three parameters to overcome the aforementioned challenges: (i) Estimated

Execution Time (EET); (ii) Estimated data Transfer Time (ETT); and (iii) Estimated Finish

Time (EFT). The scheduler needs to include these parameters in the workflow definition to

enhance the estimation process by considering the historical results.

2.3.2.2 System Functionality Challenges from WfMS in Cloud Computing

Table 2.9 links cloud system aspects (i.e. system structure and service-driven) with

each system functionality of SWFS challenges in cloud computing. In order to increase

profitability by meeting system functionality challenges, it is recommended that these

challenges must be considered from the service provider’s point of view, only. Keeping

this recommendation in mind, existing approaches have considered all system functionality

challenges as per the service provider’s view rather than service consumer.

Table 2.9: Correlation between system functionality chal-

lenges and WfMS

Challenges

System structure Service driven

SaaS PaaS IaaS Service

consumer

Service

provider

Market-

oriented
Time complexity x x N/A N/A x N/A
Rescheduling x x x N/A x N/A
Resource utilisation N/A x x N/A x N/A
Resource allocation N/A x x N/A x N/A
Load balancing N/A N/A x N/A x N/A
Task estimation N/A N/A x N/A x N/A

2.3.2.3 System Functionality Challenges from Profitability Aspect

Table 2.10 highlights the results related to service consumer-based approaches and

system functionality challenges in SWFS.
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Table 2.10: System functionality challenges from the ser-

vice consumer’s profitability view

System functionality challenges

Pr
ofi

ta
bi
lit
y

Model name

Basic functionality Resources management
Time complexity Rescheduling Resource

utilisa-

tion

Load

balanc-

ing

Resource

alloca-

tion

Task Es-

timation

Se
rv
ic
e
cu
sto

m
er

ap
pr
oa
ch
es

CTC (K. Liu et al., 2010) x x
MDP (J. Yu et al., 2005) x
DAG-LOSS & DAG-

GAIN (Sakellariou et al.,

2007)

x x

ILP (Genez et al., 2012) x
Cost Optimisation and

Time Optimisation

Scheduling Policies

(Salehi & Buyya, 2010)

x

Market-oriented hierarchi-

cal scheduling strategy

(Z. Wu et al., 2013)

x x x

SC-PCP (Abrishami &

Naghibzadeh, 2012)

x x

MODE (Talukder et al.,

2009)

x

Pegasus framework

(Deelman et al., 2005)

x x

Genetic Algorithm (J. Yu

& Buyya, 2006b)

x

ACS (W.-N. Chen &

Zhang, 2009)

x

PCP (Saeid Abrishami,

2012)

x

WORDS (Ramakrishnan

et al., 2011)

x

MCGP (Tanaka & Tatebe,

2012)

x

HCOC & MDP

(Bittencourt et al., 2012)

x

Budget Constraint Based

workflow scheduling (J. Yu

& Buyya, 2006a)

x

From the service consumer’s profitability view (Table 2.10), a large number of approaches

(Z. Wu et al., 2013; Abrishami & Naghibzadeh, 2012; Talukder et al., 2009; J. Yu & Buyya,
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2006b; Sakellariou et al., 2007; J. Yu & Buyya, 2006a; Tsai & Rodrigues, 2013) measure

the time complexity as a basic functionality of WfMS with the intention of determining a

solution within polynomial time by using meta-heuristic techniques. Recently, researchers

have been focusing on rescheduling challenges to avoid failure of cloud service instances

that would cause delays in user-defined deadlines. On the other hand, some models focus

on resource management challenges including: (i) resource utilisation (Sakellariou et al.,

2007; Salehi & Buyya, 2010); and (ii) resource allocation (Z. Wu et al., 2013; Deelman et

al., 2005). The resource management challenges are critical for both service providers and

service consumers. For the service provider’s point of view, these challenges require the

service consumers to manage the rented resources and their workload in order to make

efficient usage of resources.

Table 2.11 shows the association between the service provider-related approaches and

system functionality challenges in SWFS.

Table 2.11: System functionality of service provider’s

System functionality challenges

Pr
ofi

ta
bi
lit
y

Model name
Basic functionality Resources management

Time complexity Rescheduling Resource

utilisa-

tion

Load

balanc-

ing

Task Es-

timation

Resource

alloca-

tion

Se
rv
ic
e
pr
ov
id
er

ap
pr
oa
ch
es

HCOC & MDP

(Bittencourt et al., 2012)

x x x

Time and Cost-constrained

scheduling strategy

(Ranaldo & Zimeo, 2009)

x x

RDPSO (Z. Wu et al.,

2010)

x x

(Choudhary et al., 2012) x
Dynamic Resource Pro-

visioning Techniques

(Ostermann et al., 2010)

x x x

CMSA (Grounds et al.,

2009)

x x

Time-Cost trade-off work-

flow scheduling algorithm

(Y. Yuan et al., 2006)

x x x
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CAD (Hsu et al., 2011) x

CHPS (Nargunam & Sha-

jin, 2012)

x

SHEFT (C. Lin & Lu,

2011)

x x

Heuristic designing

Scheduling framework

(Menasce & Casalicchio,

2004)

x x

Low-Cost Rescheduling

Policy (Sakellariou &

Zhao, 2004b)

x x x

HCOC (Bittencourt &

Madeira, 2011)

x x x

WORDS (Ramakrishnan

et al., 2011)

x x x

IC-PCPD2 & IC-PCP

(Saeid Abrishami, 2013)

x x x x

DCA (Prodan & Wiec-

zorek, 2010)

x x x x

MINLP (Afzal et al., 2006) x x x
Budget Constraint Based

workflow scheduling (J. Yu

& Buyya, 2006a)

x x

From the service provider’s profitability stance (Table 2.11), Four approaches (Ostermann

et al., 2010; Sakellariou & Zhao, 2004b; Bittencourt et al., 2012; Saeid Abrishami, 2013)

are aimed at solving the rescheduling challenge affecting the communication cost of tasks

across resources. Similarly, some approaches focus on resource management challenges

to provide optimal solutions which can impact the QoS performance of the requested

services.

2.3.3 System Architecture Challenges

System architecture design is among the most important challenges in the software

development process. The system architecture dictates how the system components are

organised and how they interface with each other. Therefore, non-functional requirements

are not only influenced by individual system components, but also the system architecture.
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Figure 2.10 shows the sub-section presents the system architecture challenges for SWFS.

Figure 2.10: Sub-taxonomy of system architecture challenges

2.3.3.1 Types of System Architecture Challenges

The following are two types of the relevant system architecture challenges for SWFS:

(i) system intensiveness; and (ii) system hardware.

A-System IntensivenessWorkflow application intensiveness affects the system distribu-

tion challenges of SWFS in cloud computing environments with different criteria. There

are three main types of intensiveness challenges which will be discussed in the following.

Instance-Intensive: Cloud workflow systems need to handle intensive requests for

workflow applications, or in other words, WfMS in cloud computing are instance-intensive

(Z. Wu et al., 2013; Bittencourt & Madeira, 2013; K. Liu et al., 2010). The execution

time can be utilised to determine the estimated time to finish the workflow instance, which

would signify how many workflow instances can be completed in a given duration. Thus, a

more essential criterion for SWFS is instance-intensiveness compared to the execution time

of individual instances (K. Liu et al., 2010). Instance-intensiveness of cloud applications

requires new techniques for selecting both data and computation of the distributed resources
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so that the execution cost and time of workflow application can be efficiently utilised

(J. Yu & Buyya, 2006b). Instance-intensive applications are reflected in several particular

e-government and e-business applications.

Data-Intensive: Workflow application is usually defined as a special workflowof the data-

intensive type where the quantity and/or size of data are huge. Additionally, a good example

of a data-intensive workflow application is Weather Research and Forecasting (WRF). The

WRF model requires many stages involving data pre-processing and preparation, actual

model simulation, and a post-processing stage. The WfMS in cloud computing should have

good scalability to manage various application domains requested like the computation and

data-intensiveness of SWFA applications (astrophysics and weather forecasting) (Z. Wu

et al., 2013). Thus, data-intensiveness requires high-performance workflow systems in

which data-oriented task schedules are a critical issue aimed at maximising the throughput

of input and output in a particular workflow (Tanaka & Tatebe, 2012; Horiuchi & Taura,

2012). Every step may require intensive computation and/or include a large quantity of

data processing and transfer (Z. Wu et al., 2010; Q. Wu et al., 2013). However, conducting

successful scheduling of data-intensive applications in cloud computing environments is

normally a challenging task (Srinivasan, 2012; Szabo et al., 2014). Many of the cloud

applications are data-intensive with large datasets, resulting in a large number of workflow

instances, which leads to a high requirement for tasks to be optimally scheduled within

the cloud’s network devices (J. Yu et al., 2005; Sudha & Monica, 2012). Owing to this

fact, data transfer from one computed node to another requires longer execution time

(Pandey et al., 2010). Nevertheless, SWFAs normally entail processing a large quantity

of data and activities that are computationally intensive. Therefore, greater storage and

communication cost is required compared to the computation and execution cost of these

data. The execution cost of a large SWFA dataset normally consumes higher cost compared
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with a smaller SWFA dataset, this is due to the reason that the large SWFA dataset requires

longer execution time to complete the submitted SWFA tasks, which ultimately required

higher or more powerful computational resources (Ramakrishnan et al., 2011; Z. Wu et al.,

2010).

Communication-Intensive: Some models are considered communication-intensive

applications, which are unlike the instance-intensive applications. However, workflows

that are considered communication-intensive in cloud computing need a high amount of

computation on servers but may sometimes cause failures (Y. Yang et al., 2008; Stephanakis

et al., 2013; Koseoglu &Karasan, 2010). The Communication to Computation Ratio (CCR)

is calculated by determining the average communication cost divided by the computation

cost average in the target system (Delavar & Aryan, 2012; Amandeep Verma, 2012). The

variation between multiple workflows and communication-intensive workflows is that the

latter are multiple instances of one workflow, while multiple workflows are an integration

of various workflows (Tanaka & Tatebe, 2012; Bittencourt & Madeira, 2013).

Multiple workflows: Traditionally, the WFS process is performed for a single workflow.

After the emergence of cloud and grid computing paradigms, researchers have focused on

multiple workflows scheduling. The multiple workflows remain a crucial challenge since

it requires providing several services to multiple users at the same time. Furthermore, the

service provider has to consider multiple QoS constraints for each user. It is important

to differentiate between communication intensive and multiple workflows for better

understanding. The communication intensive workflows are multiple instances of the

same workflow, while multiple workflows are various types of workflows. In other words,

communication intensive workflows have the same structure and multiple workflows may

have completely different structures.

B-System hardware There is only one system hardware challenge with WfMS, that is,
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multicore awareness.

Multicore awareness: Multicore awareness can be described as the existence of a

computer system that provides super processing power via multiple cores. Such systems

must be given special attention when developing the scheduling algorithms for resource

selection (Bittencourt et al., 2012). Similarly, workflows are submitted by many clients to a

scheduler who assigns the requests to a memory-managed multicore machine in a cloud for

execution purposes (Nargunam & Shajin, 2012). Furthermore, every multicore machine in

the platform can perform requests from multiple services concurrently, as the machine

executes each request as an independent thread. The cost of hardware and surge of storage

capacity and computing power, together with the emergence of the multicore architectural

layout and modern super-computers comprising hundreds of thousands of cores, are some

of the key components contributing to the surging interest in cloud computing (Foster et

al., 2008; Byun et al., 2011). The multicore characteristic besides cost awareness can

provide makespan as low in cost as the user demands. As such, the user can control

the cost by manipulating the desired time for workflow execution based on preference

(Bittencourt & Madeira, 2011). Utilising multicore resources offers the benefit of reducing

communication cost as well as a way to minimise the makespan.

2.3.3.2 System Architecture Challenges from WfMS in Cloud Computing

Table 2.12 associates WfMS in cloud computing (i.e. system structure and service

driven) on each of the system architecture of SWFS challenges in cloud computing. It can

be concluded that the system architecture for WfMS in cloud computing should follow the

general architecture of cloud software, but at the same time, it also needs to be adapted

according to different system requirements.
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Table 2.12: Correlation between systemarchitecture chal-

lenges and WfMS

Challenges

Distributed system structure Service driven

SaaS PaaS IaaS Service

consumer

Service

provider

Market-

oriented
Instance-intensive x x N/A N/A x N/A
Communication-intensive x x x N/A x N/A
Data-intensive x x N/A N/A x N/A
Multiple workflows x x N/A N/A x N/A
Multicore awareness x x x N/A x N/A

2.3.3.3 System Architecture Challenges from Profitability Aspect
Table 2.13 depicts various service consumer-related approaches and targeted system

architecture challenges in SWFS.

Table 2.13: System architecture challenges from a service

consumer perspective

System architecture challenges

Pr
ofi

ta
bi
lit
y

Model name
Intensiveness System hardware

Instance-

intensive

Data-

intensive

Communication-

intensive

Multiple

workflows

Multicore

awareness

Se
rv
ic
e
co
ns
um

er

CTC (K. Liu et al., 2010) x
Transaction Intensive

Cost-constraint Algorithm

(Y. Yang et al., 2008)

x x x

(Choudhary et al., 2012) x
ILP (Genez et al., 2012) x x
Market-oriented hierarchi-

cal scheduling strategy

(Z. Wu et al., 2013)

x x x

BGQoS (Albodour et al.,

2012)

x x

ACS (W.-N. Chen &

Zhang, 2009)

x

From a service consumer’s profitability perspective (Table 2.13), the intensiveness-based

challenges have been applied for different components of WfMS in cloud computing archi-

tecture. The instance-intensive, data-intensive and communication-intensive challenges

significantly affect the system distribution of workflow application while considering

the service consumer’s requirements. For better resource utilisation, four approaches
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(Z. Wu et al., 2013; K. Liu et al., 2010; Y. Yang et al., 2008; Albodour et al., 2012) focus

on instance-intensive challenge while reducing the execution cost and time of workflow

application. On the other hand, some approaches (Z. Wu et al., 2013; Y. Yang et al.,

2008; Genez et al., 2012; W.-N. Chen & Zhang, 2009) consider communication and

data-intensiveness in workflow application to reduce the complexity of calculating the

required, extensive computational-in WfMS in cloud computing. However, only one

approach (Genez et al., 2012) considers the multicore awareness challenge of system

hardware. Multicore awareness challenge is an important concern for both service provider

and service consumer. Usually both service consumers and service providers are interested

to know the cost of rented multicore VMs. Therefore, future work should focus on

proposing an approach that efficiently solves multicore awareness challenge.

Table 2.14 shows the association results between the service provider-based approaches

and targeted system architecture challenges in SWFS.

Table 2.14: System architecture challenges from a service

provider perspective

System architecture challenges

Pr
ofi

ta
bi
lit
y

Model name
Intensiveness System hardware

Instance-

intensive

Data-

intensive

Communication-

intensive

Multiple

workflows

Multicore

awareness

Se
rv
ic
e
pr
ov
id
er

CMSA (Grounds et al.,

2009)

x

Time and Cost-constrained

scheduling strategy

(Ranaldo & Zimeo, 2009)

x

PSO (Pandey et al., 2010) x
CPPS (Q. Wu et al., 2013) x
SHEFT (C. Lin & Lu,

2011)

x

Heuristic designing

Scheduling framework

(Menasce & Casalicchio,

2004)

x

HCOC (Bittencourt &

Madeira, 2011)

x

MCGP (Tanaka & Tatebe,

2012)

x
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ACO (H. Liu et al., 2011) x
MQMW (Xu et al., 2009) x

From a service provider’s profitability view (Table 2.14), it is evident that the

intensiveness-related challenges play an important role in the system architecture of

cloud workflow. Thus, several approaches focusing on data-intensiveness for each system

in WfMS is required for large magnitude data computation and communication. However,

none of the service providers’ approaches measure the instance intensiveness of workflow

applications. One possible reason behind this deficiency is that this challenge is closer to

the service consumer than the service provider. Nonetheless, one approach (H. Liu et al.,

2011) considers communication intensiveness, whereas three approaches (Grounds et al.,

2009; Bittencourt & Madeira, 2011; Q. Wu et al., 2013) focus on the multicore awareness

challenge.

2.3.4 WfMS in Cloud Computing

This section classifies the key aspects of WfMS in cloud computing (i.e. cloud system

model, cloud service driven). These aspects are created based on the workflow reference

model proposed by the Workflow Management Coalition (WfMC) (Coalition, 2005). The

cloud system model contains three levels (Coalition, 2005; Ramakrishnan et al., 2011;

Abrishami & Naghibzadeh, 2012; Ranaldo & Zimeo, 2009; Z. Wu et al., 2010; Genez et

al., 2012) as follows:

(i) workflow application level that represents the development and management known

in cloud model as Software as a Service (SaaS): The capability provided to the consumer

is to use the provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin client interface, such as a web

browser (e.g., web-based email), or a program interface. The consumer does not manage or
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control the underlying cloud infrastructure including network, servers, operating systems,

storage, or even individual application capabilities, with the possible exception of limited

user-specific application configuration settings.

(ii) middleware level that represents the workflowmanagement enactment service known

in cloud model as Platform as a Service (PaaS): The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired applications created

using programming languages, libraries, services, and tools supported by the provider. The

consumer does not manage or control the underlying cloud infrastructure including network,

servers, operating systems, or storage, but has control over the deployed applications and

possibly configuration settings for the application-hosting environment.

(iii) Infrastructure level that represents the unified resources known in cloud model as

Infrastructure as a Service (IaaS): The capability provided to the consumer is to provision

processing, storage, networks, and other fundamental computing resources where the

consumer is able to deploy and run arbitrary software, which can include operating

systems and applications. The consumer does not manage or control the underlying cloud

infrastructure but has control over operating systems, storage, and deployed applications;

and possibly limited control of select networking components (e.g., host firewalls).

On the other hand, cloud driven services play a vital role in the WfMS focusing on

three main aspects including: service consumer, service provider, and market-oriented

(Z. Wu et al., 2013; Salehi & Buyya, 2010; W.-N. Chen & Zhang, 2009; Y. Yuan et al.,

2006; Malawski et al., 2012).

(i) Service consumer: By referring to NIST (SP 500-292.) definition, the cloud service

consumer can be defined as a principal stakeholder that uses the cloud computing services

(i.e. Software, Platform or Infrastructure as a Service). Thus, a cloud consumer represents

a person or organisation that maintains a business relationship with, and uses the service
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from, a cloud service provider. A cloud consumer plays an important role by browsing the

service catalog from a cloud provider, requests the appropriate service, sets up service

contracts with the cloud provider, and uses the service. The cloud consumer may be billed

for the service provisioned, and needs to arrange payments accordingly. In simple terms,

the consumer refers to an entity that utilises any given service to perform an action and

receive a result in return. For example, a customer opens a bank account. In this case, the

entity is the “customer”, the action is “open”, and the result is the “bank account”.

(ii) Service provider: By referring to NIST (SP 500-292) definition, the cloud service

provider can be defined as a company that offers some component of cloud computing –

typically Infrastructure as a Service (IaaS), Software as a Service (SaaS) or Platform as a

Service (PaaS) – to other businesses or individuals. The service provider offers several

services with different QoS (e.g., CPU type and memory size) and different prices for

each task of every workflow based on business service contracts (Z. Wu et al., 2013;

Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013; Verma & Kaushal, 2017). The

service provider charges the service consumers for using the service based on the amount

of allocated volume, and possibly for the number of I/O transactions from/to outside the

Cloud (Abrishami & Naghibzadeh, 2012).

(iii) Market-oriented: Market-oriented is one of the most important aspects which

differentiate a WfMS in cloud computing from its other counterparts in the business model

(Z. Wu et al., 2013). With the market-oriented business model in cloud computing envi-

ronments, resource managers should be able to meet the user specified QoS requirements

(mainly on makespan and cost) for individual workflow instances as well as minimise the

overall makespan and cost for multiple workflow instances running concurrently in WfMS

(Z. Wu et al., 2013; X. Liu, 2011).
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2.3.5 Discussion on Cost Optimisation Challenges

Cost optimisation challenges of SWFS have been affected by different workflow system

structure and service-driven aspects. Therefore, the devised taxonomy considers current

state-of-the-art challenges and SWFS profitability in cloud computing based on QoS

performance aspects, system functionality as well as system architecture.

From analysing the QoS performance challenges, it can be concluded that with respect to

the issues of workflow execution optimisation, the relevant determinants such as monetary

cost, temporal cost, security, and reliability need to be optimised (J. Yu & Buyya, 2006b;

Garg et al., 2010). Therefore, the overall performance can be assessed in several ways,

but mainly by the scheduling success rate. Similarly, the ability to satisfy the QoS of

many users is also a good indicator of determining system performance (Xu et al., 2009).

From the QoS constraints, scheduling should adjust to the workflow models’ constraints,

such as cost constraints of the utility workflow process model or time constraints for the

timed workflow process model, or both. In the context of QoS performance challenges,

researchers have mentioned that the deadline, budget and makespan are important for the

negotiation process between the service consumers and service providers of WfMS in

cloud computing. Thus, a number of approaches focus on budget, deadline and makespan,

mainly due to the adaptability of these challenges in Service Level Agreement (SLA) and

market-oriented aspects while determining the required cloud service speed. One of the

widespread system performance measures is the deadline, which has a significant effect on

algorithm performance.

There is a direct relationship between deadline and cost (i.e. the cost would be higher

for a fixed deadline). Thus, in order to examine cost performance with deadline-conscious

SWFS algorithms, users should reduce the cost of workflow execution. Consequently,

the workflow would be completed before the user’s stipulated deadline. Similarly, these
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challenges experienced by service provider profitability act as a stopping criterion to

determine how long the workflow job must be completed. On the other hand, both

availability and reliability challenges play a crucial role in improving user satisfaction.

This is done by keeping the historical data for each service request based on the user’s

input on cost and time, which can be useful to adjust the QoS constraints for future task

scheduling.

Figure 2.11 depicts the frequency of QoS challenges reported in the literature. From

Figure 2.11, it can be observed that Make-span challenge has attained major attention

(31%) of researchers compared to other challenges in this category. This is due to the fact

that these challenges are related to execution cost and execution time of SWFS, which is

highly considered by the service providers and demanded by the service consumers. In

contrast, less attention has been given to the other cost related challenges (i.n. security,

availability, reliability and SLA). Therefore, important execution cost and execution time

related QoS challenges have been focused.

Figure 2.11: The frequency of the QoS performance challenges

As a recommendation for the reported QoS performance challenges, the multi-criteria

based cost optimisation should be focused on providing optimal solutions to SWFS

problems (Yassa, Chelouah, Kadima, & Granado, 2013; B. Liu, Wu, Xu, Hu, & Cheng,
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2014; Grandinetti et al., 2013; Szabo & Kroeger, 2012). Also, researchers ought to give

more attention to hybrid approaches by combining the strengths of existing approaches

to provide more cost-effective solutions to SWFS problems. Since current state-of-the-

art approaches lack in considering reliability, availability, and response time as QoS

performance challenges, considering such quality attributes may have a positive impact on

the overall quality of the proposed approaches.

From analysing the system functionality challenges, it can be concluded that a large

number of approaches (J. Yu et al., 2005; Z. Wu et al., 2013; Abrishami & Naghibzadeh,

2012; Talukder et al., 2009; J. Yu & Buyya, 2006b; Sakellariou et al., 2007; J. Yu &

Buyya, 2006a) measure time complexity, which requires finding a high quality solution in

polynomial time from the available large search space. Also, researchers should concentrate

on rescheduling challenges that affect the communication cost of tasks across resources

to avoid failure of cloud service instances. On the other hand, some models focus on

resource management challenges to provide optimal solutions which can negatively impact

the QoS performance of the requested services. Resource utilisation greatly affects the

cost profitability which is a major concern for service providers. In the literature, it

has been found that multiple workflows pose a very important challenge. This type of

workflow has multiple possible instances between the workflows (Sharif et al., 2013; K. Liu

et al., 2010). The multiple workflows may have completely different structures while

transaction-intensive workflows have the same structure. However, only few scheduling

approaches have been developed for multiple workflows, which indicates more studies in

this area should be undertaken.

Figure 2.12 presents the frequency of system functionality challenges. The researcher

found that data-intensive challenge has attained major attention (37%) of researchers

compared to other challenges in this category. Similarly, multicore-awareness also
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achieved high attention (21%) compared to other system functionality challenges.

Figure 2.12: The frequency of the system functionality challenges

As a recommendation to the mentioned system functionality challenges, service-oriented

computing should be aimed at designing applications by adopting model-driven approaches,

and in particular, those using time-based composition of distributed and loosely coupled

services (e.g., Service Oriented Architecture) (Ranaldo & Zimeo, 2009; L. Zhao et al.,

2012). Therefore, service-oriented computing should be at the core of future research

since it is dynamically acquired and managed in SWFS.

By analysing the system architecture challenges, it is evident that the intensiveness-based

challenges affect workflow application system distribution while reducing execution cost

and time. Similarly, intensiveness-related challenges play an important role in the system

architecture of cloud workflow. Several approaches focus on data-intensiveness for each

system in WfMS. This requires large quantities of data computation and communication.

However, the SWFS in cloud computing is currently facing a major challenge in handling

data-intensive applications, especially the data locality of application (Foster et al., 2008).

On the other hand, none of the service providers’ approaches take into consideration the

instance-intensiveness of workflow application. One possible reason is that this challenge

is closer to the service consumer than the service provider. Similarly the multi-processor
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and multicore scheduling on a modern system has attracted an increasing amount of

consideration (Q. Wu et al., 2013).

Figure 2.13 shows the frequency of system architecture challenges as reported in the

literature. The time-complexity remains a key focus (28%) of researchers in this class of

SWFS challenges. In contrast, some work (18%) has focused on solving rescheduling

challenge.

Figure 2.13: The frequency of the system architecture challenges

As a recommendation to the mentioned system architecture challenges, Due to the

scale of workflow application (i.e. social application) expansion, requiring long SWFS

time to process, it is suggested to have more optimised solutions to handle this massive

growth (Z. Wu et al., 2013). Then again, SWFS systems must be given special attention

when developing scheduling algorithms for resource selection (Bittencourt et al., 2012).

With advances in multicore technology in the future, there are possibilities of strong

dependencies on the cost and performance of Infrastructure as a Service (IaaS), especially

the computing resources (Foster et al., 2008). However, only few approaches reflect on

the multicore awareness challenge of system hardware. This is mainly due to the fact that

system hardware specifications are not a concern of the service consumers.
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2.4 Cost Optimisation Approaches of SWFS

This section reviews relevant cost optimisation Scientific Workflow Scheduling (SWFS)

approaches in cloud computing. Table 2.15 presents the existing approaches, strengths of

the underlying optimisation, and limitations for all considered approaches.

Table 2.15: Cost optimisation SWFS approaches
Approach Strength of underlying optimisation Limitation

Market-oriented hierarchi-

cal scheduling strategy

(Z. Wu et al., 2013))

This strategy offers provisional exploration in market-

based cloud workflow structures. It assures suitable

QoS requirements are imposed by users while decreas-

ing the overall running cost of the workflow system.

Provisional exploration is offered

only in market-based cloud work-

flow structures. There is a need to

consider utility structure.
SaaS Cloud Partial

Critical Paths (SC-

PCP) (Abrishami &

Naghibzadeh, 2012))

The cost of workflow execution is reduced while

the user-determined deadline for the Software-as-a-

Service (SaaS) framework is met. Schedules work-

flow based on QoS using a PCP.

The IaaS and pricing for cloud pro-

cessing frameworks are not sup-

ported by this technique and data

transaction cost is unaffected.
Workflow Orchestrator for

Distributed Systems Archi-

tecture (Ramakrishnan et

al., 2011))

Extracts the disparities and encapsulates the QoS fea-

tures offered by the cloud structure. Allows competent

organisations at moderate cost for batch queue with or

without public resource management.

The authors found that this model

is deficient in enhancing sequential

resources possibly requiring higher

cost.
Compatibility of Hybrid

Processor Scheduler

(Nargunam & Shajin,

2012))

Execution cost is lower since resources are chosen

based on their energy levels and various forms of appli-

cations concerning high processing and storage space

demands are characterised.

This method is only applicable for

hybrid systems and is based on re-

sources. However, other perfor-

mance features, such as throughput,

are not considered.
Critical Path-based Pri-

ority Scheduling (CPPS)

(Q. Wu et al., 2013))

The approach outperforms the traditional fair-share

scheduling policy commonly adopted in real systems.

Deployed and executed a test bed network by adopting

an on-node scheduling policy, while improving the

workflow performance of the mapping scheme.

It was found that the CPPS model

fails to achieve optimised interac-

tion between task mapping and the

scheduling scheme.

Dynamic resource pro-

visioning techniques

(Ostermann et al., 2010))

Achieved a cost-effective execution of SWFAs by im-

plementing a just-in-time algorithm. This technique

uses a combination of cloud resources via dynamic

provisioning of cloud resources when cloud resources

are unavailable.

Each task is scheduled when it be-

comes ready by implementing a just-

in-time algorithm.

Ant Colony Optimisation

(ACO) (H. Liu et al.,

2011))

Improved cloud service performance in terms of relia-

bility, response time, cost, and security. ACO utilises

a default rate to explain the ratio of cloud system ser-

vice providers that break the SLAs of the SWFS.

The authors did not consider the ef-

fect of QoS constraints in SLA from

the users’ perspective.

Continued on next page
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Table 2.15 – continued from previous page
Approach Strength of underlying optimisation Limitation

Genetic Algorithmic (GA)

(J. Yu & Buyya, 2006b))

Monetary cost is reduced, and at the same time, user

budget constraints and execution time are reduced si-

multaneous with meeting the user deadline constraint.

Provided a dynamic search method by offering high-

quality solutions for a vast search area in polynomial

time by using the evolutionary principle.

The authors found that GA requires

a longer running time than other

heuristic techniques.

Budget constraint based

workflow scheduling (J. Yu

& Buyya, 2006a))

Presented a cost-based scheduling heuristic to min-

imise execution cost and timewhile meeting the user’s

budget. Thismethod adoptsGA tominimiseworkflow

execution cost within a certain deadline.

It was observed that this model sup-

ports only specific types of services

and does not consider duplication

of critical tasks to meet users’ QoS

requirements.
Transaction intensive

cost-constraint algorithm

(Y. Yang et al., 2008))

Aimed at minimising cost while meeting user-

determined deadlines. This algorithm offers a graph

of just-in-time cost relations during workflow execu-

tion by utilising intensive transaction settings as well

as considering the specified budget.

The authors mentioned that the ser-

vice provider’s performance is not

considered in this algorithm.

Multi-cost job routing and

scheduling (Stevens et al.,

2009))

An algorithm for polynomial complexity is provided.

Resource reservations are enhanced and the start time

for data transmission is identified as well as for task

completion.

The communication and computa-

tional parameters of monetary cost

are not completely considered.

Integer Linear Program-

ming (ILP) technique

(Genez et al., 2012))

ILP utilises two heuristic methods that are competent

when deadlines are substantial. Reduced themonetary

cost while addressing the deadline determined by the

cloud users in the SLA contract.

For manifold workflow scheduling,

the authors mentioned that this tech-

nique does not consider the mech-

anism’s fault tolerance in a similar

group of resources.
Multiple QoS of Multi-

Workflows (MQMW) (Xu

et al., 2009))

This model is used to minimise execution cost

while prominently enhancing scheduling success rates.

Scheduling success rates are prominently enhanced.

It is designed for several workflows with various QoS

requirements.

According to the authors, MQMW

is not applicable for other QoS

constraints such as execution time,

availability, etc.

Scalable-Heterogeneous-

Earliest-Finish-Time

algorithm (C. Lin & Lu,

2011))

Execution time optimisation is achieved while elastic

runtime scalability is attained. The authorsmentioned

that SHEFT is more flexible than other SWFS models

as it efficiently schedules on-demand size of a work-

flow along with allocated resources.

Apparently this algorithm is defi-

cient in indicating accurate runtime

prediction, which acts as a pre-

requisite of scheduling.

Particle Swarm Optimisa-

tion (PSO) (Pandey et al.,

2010))

It is for designing a heuristic that utilises PSO by

formulating a framework for task-resource mapping

to reduce the overall completion cost. PSO incurs

large amounts of data and execution cost.

The authors mentioned that the pro-

posed algorithm ignores the tempo-

ral cost of service providers.

Continued on next page
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Table 2.15 – continued from previous page
Approach Strength of underlying optimisation Limitation

Multi-Constraint Graph

Partitioning (MCGP)

(Tanaka & Tatebe, 2012))

Reduced the cost of communication while minimising

the workflow execution time. MCGP utilises the par-

titioning DAG graph that is applied for a complicated

Cloud workflow. The time elapsed for file size access

from remote nodes is decreased as well.

The MCGP method does not con-

sider the input/output files of each

job, which ultimately affect the dy-

namic changes of workflow applica-

tions.
Hybrid Cloud Optimised

Cost model (HCOC)

(Bittencourt & Madeira,

2011))

Improved SWFSbymaking use ofmulticore resources

and minimising the monetary cost within a deadline

while offering affordable makespans to users. HCOC

imparts sufficient processing power by determining

which resource ought to be leased from the public

cloud.

The authors mentioned that this

model does not consider the work-

flow execution time required by a

user in a single-level SLA contract.

Workflow-aware Pre-

processing Provisioning

Dynamic Scheduling

(WPPDS) (Shi, 2014))

An elastic resource provisioning and task scheduling

mechanism have been proposed to perform SWFAs

and submitted at unpredictable time in cloud. The

aim is to finish as many high-priority workflows as

possible by considering the budget and deadline as-

pects. The evaluation of this mechanism shows stable

performance with inaccurate parameters and task fail-

ure.

The approach should be tested

within a real SWFA environment

by considering the data communi-

cation cost and storage cost for exe-

cuting larger workflows in cloud.

SciCumulus (Viana et al.,

2011))

A parallel technique to define the number and types of

VMs and to design the parallel execution strategy for

a SWFA. Model a cost based approach to satisfy the

QoS and help determine an adequate configuration of

the environment according to restrictions imposed by

service consumers.

The approach is lacking in provid-

ing a comprehensive evaluation en-

vironment in order to test the total

execution cost and execution time.

Dynamic Provisioning

Dynamic Scheduling

(Malawski et al., 2012))

A series of adaptive scheduling algorithms for SWFAs

cloud-based have been proposed to provide a dynamic

dimensioning and vertical scaling during workflow ex-

ecution to complywith service consumers’ constraints.

This work represents good performance results by

bringing opportunities for modifying the number of

VMs.

Lack in considering the optimisa-

tion of the initial virtual machine al-

location. Also, this approach is un-

able to handle unpredictable work-

loads.

Continued on next page
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Table 2.15 – continued from previous page
Approach Strength of underlying optimisation Limitation

Cost-Effective Virtual Ma-

chine Allocation Algo-

rithm within Execution

Time Bound (Zhu et al.,

2012))

A two-step heuristic workflow mapping (scheduler)

has been used to maximise the resource utilisation

while minimising the overhead of the cloud. The de-

lay of workflow execution has also been considered to

calculate makespan and guarantee the user required

deadline, to reduce the overhead of start-up and shut-

down of a virtual machine.

The authors have taken the VM

launching’s overhead variation as a

key variable for designing resource

allocation algorithms only. How-

ever, there are several other con-

straints which should also be consid-

ered (e.g., the predication of work-

load, QoS requested by users)
Critical-Greedy (CG)

(X. Lin & Wu, 2013))

An algorithm (MED-CC) has been designed for work-

flow scheduling problem to minimise end-to-end de-

lay while meeting the budget constraint. Furthermore,

the authors have proposed aCritical-Greedy algorithm

using GAIN approach that only imposes rescheduling

process on dynamic critical tasks.

The reported experimental results

prove the performance benefits of

the approach but not completely

achieve the required cost optimisa-

tion.

SO-Routine and MO-

Routine algorithm (Szabo

et al., 2014))

Evolutionary approach based algorithm for multi-

objective optimisation has been proposed as a solution

to scheduling of SWF applications. Also, the authors

designed a novel representation of two independent

chromosomes, one for mapping and one for ordering.

This method is more time consum-

ing than other heuristic based ap-

proaches. The authors used only

two Amazon EC2-based clouds

which are not enough for evaluating

a multi-cloud challenge.

2.4.1 Existing Meta-heuristic Approaches for Cost Optimisation of SWFS

In the literature, there are several types of meta-heuristic combinations that have been

proposed for the scheduling problem. The most efficient technique is by hybridising

two or more algorithms into a single meta-heuristic algorithm (Figure 2.14). The hybrid

algorithms have shown a good performance for cost optimisation of SWFS problem by

leveraging strengths of the combined algorithms. The single meta-heuristic algorithms

are easy to implement in WfMS of cloud environment compared with hybrid meta-

heuristic algorithms; however, single meta-heuristic algorithms lack in obtaining optimal

or satisfactory results (Tsai et al., 2014). This is due to the fact that at each iteration of

the convergence process, single meta-heuristic algorithms take a longer execution time

to schedule the submitted SWFAs. Therefore, researchers have started to introduce the
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hyper-heuristic algorithm to find a more effective solution that can use “one and only one”

meta-heuristic algorithm at each iteration. The basic idea of the traditional hyper meta-

heuristic algorithm is to leverage and integrate the strengths of employed meta-heuristic

algorithms, by integrating them into a single algorithm (Tsai et al., n.d., 2014). Hyper

meta-heuristic proposed two levels of heuristic including High Level Heuristic (HLH) and

Low Level Heuristic (LLH). At each iteration, the selection operator of HLH is used to

choose one candidate meta-heuristic algorithm to be a scheduling algorithm from the LLH

pool of meta-heuristics. In this way, the hyper meta-heuristic algorithms can then provide

a high search diversity to increase the chance of finding more optimal solutions at later

iterations while minimizing the execution time.

Figure 2.14: Existing meta-heuristic approaches

2.5 Summary

Scientific Workflow Scheduling (SWFS) remained an active area of research since

emergence of cloud computing for SWFAs. One of the major aims of SWFS is to

reduce the completion time as well as the total computional cost of SWFS in cloud

computing especially for complex tasks like SWFA. The execution time must be taken into

consideration while scheduling SWFA tasks into the available computational resources.

Therefore, from the state-of-the-art cost optimisation of SWFS, it has been observed
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that several concepts have been considered to optimally schedule the SWFA tasks to

the available computational resources. In this chapter, the current aspects, parameters,

challenges and approaches of cost optimisation for SWFS in cloud computing environment

has been extensively reviewed.

From the detailed analyses, it has been observed that majority of cost optimisation of

SWFS approaches considered various aspects of SWFS: heuristic methods (57%), directed

acyclic graph (85%), dynamic technique (77%), and predicted workload (62%). Regarding

the QoS constraints, there is a variety of research focus such as privacy, response time,

reliability, and security. From the parameters aspect, most of the proposed approaches

have applied both temporal and monetary cost parameters during various stages of SWFS.

Researchers have paid more attention to profitability from the point of view of service

providers than the service consumers. Based on the extensive literature review, the cost

optimisation challenges of SWFS (i.e. QoS, system functionality, and system architecture)

has been identified. Moreover, to highlight the underlying association, the correlation

between cost-optimisation of SWFS challenges and other aspects of SWFS (i.e. WfMS in

cloud computing and cost-aware profitability) has been identified.

Several opportunities and recommendations have been suggested to assist in developing

an approach for cost optimisation. In the context of identified cost optimisation challenges,

some aspects got less attention than others of similar category. Similarly, designing a

hybrid and hyper approaches (by integrating the features of existing meta-heuristic search-

based algorithms) would certainly improve the scalability challenge due to concurrent

processing. Furthermore, it is evident from the observed trends related to SWFS that

researchers are mainly focusing on large-scale data-intensive applications for evaluation

purpose. Therefore, future research should focus on proposing more optimised approaches

by considering the strengths of heuristics and meta-heuristic methods.
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CHAPTER 3: RESEARCH METHODOLOGY

This chapter discusses the research methodology that has been adopted for this re-

search. Experts from academia have also been consulted to validate the devised research

methodology in order to meet the main objective of this research. Note that the key

objective is to propose an approach that can find an optimal solution by addressing the cost

optimisation challenge of SWFS. The proposed approach ultimately helps in meeting the

user’s requirements in executing the SWFA. To achieve the formulated research objectives,

three main stages have been followed: (i) formulation stage, (ii) approach development

stage, and (iii) evaluation and analysis stage. The first stage (i.e. formulation stage) involves

an in-depth analysis of different cost optimisation perspectives of SWFS based on the

synthesis of the conducted extensive literature review (described in Chapter 2). Note that

the conducted literature review reports relevant SWFS challenges, aspects, parameters,

and approaches.The second stage (i.e. approach development stage) defines the main

considered activities of the proposed time completion driven hyper-heuristic approach.

The proposed approach contains two main parts, the cost-optimisation model of SWFS

and the proposed dynamic hyper-heuristic algorithm. The cost-optimisation model helps

to understand the mapping and scheduling processes of workflow tasks by considering the

scheduling stages along-with completion time and total computational cost parameters.

While, the proposed hyper-heuristic algorithm is considered as a new advanced technique

that is capable of accelerating the run-time of the meta-heuristic algorithm by employing

four well-known population-based meta-heuristic algorithms, which act as Low Level

Heuristic (LLH) algorithms. The employed algorithms are: (i) Genetic Algorithm (GA),

(ii)Particle Swarm Optimisation (PSO), (iii) Invasive Weed Optimisation (IWO), and (iv)

Hybrid Invasive Weed Optimisation (HIWO). In addition, the proposed dynamic hyper-
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heuristic algorithm enhances the native random selection way of existing hyper-heuristic

algorithms by incorporating the best computed workflow completion time, which acts

as a high-level selector to pick a suitable algorithm from the pool of LLH algorithms

after each run. The main aim of the proposed completion time driven hyper-heuristic

approach is to reduce the completion time, and total computational cost to execute the

SWFA. At the last stage (i.e. evaluation and analysis stage), the research methodology

adopted to evaluate the proposed approach based on the guidelines of state-of-the-art cost

optimisation SWFS approaches have been discussed. Figure 3.1 provides a high-level view

of the considered stages including a number of activities to achieve each of the formulated

research objectives.
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Figure 3.1: High-level view of research methodology stages

The following sections provide detailed explanations for each of the defined stage of

adopted research methodology.

3.1 Formulation Stage

This section focuses on the main observations concluded from the conducted extensive

literature review as described in Chapter 2 that aims in achieving the first objective of
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this research. The classification and discussion of cost optimisation aspects, parameters,

challenges and approaches of SWFS help in providing comprehensive guidelines, and

recommendations for proposing a cost optimised SWFS approach (Figure 3.2).

Figure 3.2: The activity of formulation stage

3.1.1 Cost Optimisation Aspects of SWFS

From the cost optimisation aspects’ point of view, Figure 3.3 llustrates the main options

selected from analysing the specification of computing environment, optimisation method,

structural representation, scheduling technique, workload type, and QoS constraints. The

details about these aspects have been provided in Section 2.1.

Figure 3.3: Cost optimisation aspects

Computing environment: A large number of cost optimisation SWFS approaches are

implemented using private cloud. The Private cloud does not require any remote computa-
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tional infrastructure (Infrastructure as a Service) where the requested workflow tasks are

being processed. Therefore, the advantages of private cloud model for experimentation

purpose in this study has been utilised.

Optimisation method: Based on the adoption of optimisation methods as reported in

the literature, the heuristic and meta-heuristic approaches have gained major attention of

the researchers compared to other optimisation methods. In this research, hyper-heuristic

search based approach has been adopted since it has high potential to compute accurate

and optimised results. Furthermore, hyper-heuristic approaches are mainly used to achieve

better performance by integrating the features of existing meta-heuristic search-based

algorithms, which would certainly minimise the completion time (makespan), and total

computational cost challenges as a result of concurrent processing.

Structural representation: From in-depth analysis related to the adoption of structural

representations, it has been found that majority of work have considered Directed Acyclic

Graph (DAG) or the modified DAG model for structural representation. The proposed

approach in this study has adopted DAG structural representation due to the potential to

handle complex SWFAs in cloud computing systems. DAG provides means for defining

precedence constraints relationships between workflow tasks for different sizes and types

of SWFAs.

Scheduling technique: By analysing the scalability aspects reported in the literature, it

can be clearly found that most of the work targeted dynamic approaches. In this study, the

dynamic scheduling method has been adopted, since it requires no prior knowledge about

the considered execution time and execution cost parameters of SWFS cost optimisation

approaches.

Workload type: The predicted (batch mode) type of workload remains a key focus

of researchers in this cost aspect of SWFS approaches. In this research, the predicted
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workload type has been considered since it offers SWFS models with maximum throughput

of the workload, and minimised turnaround time (the time between task submission and

task completion).

Profitability: Based on the reviewed approaches, the profitability aspect of both service

consumer and service provider should be consider in order to minimise the execution

time and execution cost of SWFS in cloud computing. Therefore, by reducing the cost

of maintaining resources, cost optimisation would be profitable for the service provider.

Consequently, this provides an extra advantage for cloud service consumers since it would

reduce the cost of workflow execution.

QoS constraints: Quality of Service (QoS) has a major impact on SWFS in cloud

computing, since the success of execution of SWFA tasks heavily depends on the desired

QoS levels. For the SWFS problem in cloud computing, there are several QoS constraints

that must be taken into account for a given service when designing an efficient WfMS.

This study has considered another important QoS aspect, the mechanism of handling the

QoS constraints in SWFS approaches. The adopted method allows the users to assign

activity-level QoS constraints, and then the overall QoS can be assessed by computing the

QoS constraints of all individual activities based on the specific QoS model.

3.1.2 Cost Optimisation Parameters of SWFS

From the cost optimisation parameters’ point of view, Figure 3.4 shows the options

selected from analysing the two types of cost parameters: (i) monetary cost, and (ii)

temporal cost. The details on about the monetary and temporal cost parameters have been

explained in Section 2.2.
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Figure 3.4: Cost optimisation parameters

By analysing the monetary cost parameters, it has been observed that the total monetary

cost is based on the strong dependency between computation cost, and communication cost.

This research has focused on the computation cost, since communication cost has a marginal

impact due to the adoption of private cloud (where all the SWFA tasks are executed on the

same computational environment). The storage cost is assumed to be of minimal value

because of the usage of private (local) resources instead of renting the computational space

from service providers (public). In contrast, by analysing the temporal cost parameters,

it has been found that several approaches have considered measuring pre-scheduling

parameters for their significance in determining estimated execution time, which requires

the scheduler to handle the uncertainties challenges of SWFS algorithms. For instance,

the scheduler requires to check that whether the submitted SWFS tasks are schedulable

or not. The scheduler would make decisions based on a set of attributes: (i) number of

available processors, (ii) list of available processors, (iii) currently used processors, (iv)

name of processors, (v) name of computational site (VMs), and (vi) estimated execution

time. Furthermore, historical data plays an important role in supporting the scheduler

to optimally schedule the submitted SWFS tasks based on the availability of existing
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computational resources. Therefore, there is a need to consider historical data in order to

check the estimated execution time. Section 4.1.3.1 of Chapter 4 defines all the utilised

parameters in the SWFS cost optimisation model.

3.1.3 Cost Optimisation Challenges of SWFS

From the cost optimisation challenges’ point of view, cost optimisation challenges

of SWFS have been affected by different workflow system structure and service-driven

aspects. Figure 3.5 shows the options selected from the analysis of three main categories

of challenges: QoS performance, system functionality, and system architecture aspects.

Complete details on these aspects have been explained in Section 2.3.

Figure 3.5: Cost optimisation challenges

By analysing the QoS performance challenges, it can be concluded that with respect

to the QoS constraints of workflow execution processes, scheduling should adjust to the

workflow model’s constraints, such as cost constraints of the utility workflow process

model or time constraints for the timed workflow process model, or both. Similarly, QoS

performance challenges have direct effect on the completion time (makespan) and total

computational cost, which are important for negotiating the process between the service

consumers and service providers. It is evident that the majority of the work targeted
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the makespan and total cost challenges. This is due to the fact that these challenges are

related to SWFS execution time and execution cost, which are highly considered by service

providers and also demanded by service consumers. This study mainly focuses on cost

optimisation of SWFS by considering completion time and total computational cost as the

QoS constraints.

By analysing the system functionality challenges, it can be concluded that a large

number of approaches measuring time complexity requires finding a high quality solution

in polynomial time from the available large search space. Therefore, this study considers

measuring time complexity of the proposed SWFS cost optimisation approach. Additionally,

this study also considers another important system functionality challenge, i.e. data-

intensive and computational-intensive challenges. The data-intensive and computational-

intensive challenges for scheduling SWFAs in cloud computing have received a major

attention of researchers compared to other reported challenges in this category. This is

mainly due to their correlation with the degree of data-intensiveness and scalability of the

proposed approach.

By analysing the system architecture challenges, it is evident that the intensiveness-

based challenges affect system distribution of WfMS while reducing execution time and

execution cost. Similarly, intensiveness-related challenges play a vital role in the system

architecture of WfMS in cloud computing environment. Several approaches focused

on data-intensiveness for each system in WfMS. This requires large quantities of data

computation and communication. However, the SWFS in cloud computing is currently

facing a major challenge while handling only data-intensive applications, especially the data

locality of application. Thus, this application ultimately needs more optimised solutions to

handle this massive growth of SWFS data.

This study considers different sizes and types of SWFAs (e.g., Montage, Cybershake,
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Inspiral, and Sipht) to evaluate the data-intensive and computational intensive challenges

of the proposed approach.

3.1.4 Cost Optimisation Approaches of SWFS

The meta-heuristic search-based approaches from different perspectives (Chapter 2)

has been discussed. The first perspective is about the types of meta-heuristic approach

that have been proposed in the literature. The second perspective is about the strengths

and limitations of each type of meta-heuristic approach and how the approach in this

work has overcome these limitations. By analysing the meta-heuristic approaches, it

has been observed that several types of meta-heuristic approach have been proposed

for cost optimisation problem of SWFA in cloud computing environments as shown in

Figure 3.6. The development of single-based solutions for cost optimisation problem of

SWFS can introduce several strengths: (i) they can find a quick and acceptable scheduling

solutions, (ii) they are easy and simple to be implemented in WfMS, and (iii) they can be

integrated with other population-based approaches to obtain better solutions. However,

the major limitation of a single-based solution is that it usually can not produce optimal

solutions for problems that have a large search space, comparing with the result obtained by

population-based solutions. This issue is also called local optima, which happens when the

algorithm can not guarantee that a globally optimal solution can be found on the feasible

search space of the scheduling problems.
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Figure 3.6: Meta-heuristic approaches

In addition, the traditional population-based meta-heuristic solutions have shown good

performance for the optimisation problem having a large search space. This is because

the traditional meta-heuristics do not exhaustively search the scheduling problem space.

They used different underlying strategies to find the desired solution based on defined

fitness criteria. Therefore, population-based (e.g., random-guided solutions) take less

computational effort than single-based solutions and they can often find good solutions.

However, each type of solutions has some strengths and limitations, which affects the

scheduling operation of SWFS.

In contrast, the hybrid meta-heuristic used the best features of two or more traditional

meta-heuristic meta-heuristic in each iteration to provide a better optimal solution compared

to the traditional heuristics. However, in some cases and due to the complexity of hybrid

meta-heuristic method, it might take a longer convergence time than the traditional meta-

heuristic at each iteration process. Furthermore, the hybrid approaches could require a

longer scheduling time. This study focuses on enhancing the existing hyper-heuristic

approaches to optimise the makespan and total computational cost for cost optimisation

problem of SWFS in cloud computing. The hyper-heuristic is an emerging class of
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meta-heuristic search-based approaches that are combined in such a manner that allows

utilising the maximum strengths of employed meta-heuristic algorithms to obtain an

optimal solution. In most cases, hyper-heuristic approaches lead to the most optimised

results. Furthermore, designing a hyper-heuristic algorithm by integrating the features

of existing meta-heuristic search algorithms will certainly improve the cost optimisation

challenge due to concurrent processing. However, there are few related works, which

have considered enhancing of hyper-heuristic for cost optimisation of SWFS in cloud

environments.

As an addition to the above mentioned details, there are also several important points

that have been concluded from studying the strength of underlying techniques and the

limitations of other approaches for cost optimisation of SWFS. The complete details about

these points have been described in Section 2.4. These points have helped in proposing an

approach for cost optimisation of SWFS in cloud computing environment.

3.2 Approach Development Stage

The guidelines and recommendations expressed in the formulation stage have helped

in desinging and developing a cost optimisation SWFS approach. In this study, two

main activities have been conducted to develop the proposed completion time driven

hyper-heuristic approach, and the outcome defined in this study are: (i) a cost optimisation

model of SWFS, (ii) the proposed dynamic hyper-heuristic algorithm for cost optimisation

of SWFS in cloud environment. Complete details of the proposed approach will be

presented in Chapter 4.

3.2.1 Cost Optimisation Model of SWFS

The cost optimisation model of SWFS mainly aims at mapping and managing the

execution processes of the submitted dependent workflow tasks (also referred as precedence
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constraints) of SWFA. The cost optimisation model schedules the submitted tasks on the

targeted shared computational resources (VMs), while optimising the completion time

and total computational cost. The standard cost optimisation model contains three main

components: (i) scientific workflow application (type and size of SWFA), (ii) targeted

computing environment (number of VMs), and (iii) cost optimisation criteria. There are

three main categories of users that can utilise and manage the SWFS cost optimisation

model: (i) service consumers (e.g., scientists in this research context) represent the users of

the SWFA, (ii) service providers (i.e. cloud service provider) that offer the SWFS system

with virtualised computational resources (i.e. private, public or hybrid), and (iii) system

developers (i.e. system administrator) responsible for designing the WfMS based on the

requirements of service consumers. The complete detail about each component of the cost

optimisation model of SWFS has been provided in Chapter 4.

3.2.2 Proposed Dynamic Hyper-heuristic Algorithm

In this research, a dynamic hyper-heuristic algorithm for cost optimisation problem

of SWFS in cloud computing environment has been proposed. The proposed algorithm

employs four well-known population-based meta-heuristic algorithms, which act as Low

Level Heuristic (LLH) algorithms (i.e., genetic algorithm, particle swarm optimisation,

invasive weed optimisation, and hybrid invasive weed optimisation). In addition, the

proposed algorithm enhances the native random selection way of existing hyper-heuristic

algorithms by incorporating the best computed workflow completion time to, which

act a high-level selector to pick a suitable algorithm from the pool of LLH algorithms

after each run. The main aim of the proposed dynamic hyper-heuristic algorithm is to

reduce the completion time and total computational cost to execute the SWFA. Based

on the lowest achieved completion time, the proposed algorithm dynamically guides the

searching processes to find an optimal solution. To achieve this, The proposed algorithm
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continuously sorts the computed time scores (i.e. completion times of previous runs)

of all LLH algorithms for each run of the considered scenarios. The computed time

scores are listed in a scoreboard table. Next, for each single run, the high-level selector

adopts the LLH algorithm that has the lowest computed time score for each scenario. The

proposed dynamic hyper-heuristic algorithm continuously updates the scoreboard table by

replacing the existing time score with the lowest computed time score, which ultimately

affects the total computational cost value for that run. Finally, based on the scoreboard

table, the proposed algorithm selects the most appropriate LLH algorithm for the next run.

Consequently, the mechanism of the proposed dynamic hyper-heuristic algorithm becomes

more effective in allowing to reuse and utilise the maximum strengths of the employed

LLH algorithms. Ultimately, it helps in searching the optimal solution of the targeted cost

optimisation problem. A complete detail of the proposed approach is provided in Section

4.2 of Chapter 4.

3.3 Evaluation and Analysis Stage

In this section, a methodology has been presented that is adopted to evaluate the

proposed approach based on the guidelines of state-of-the-art cost optimisation approaches

of SWFS.

3.3.1 Comparison of Existing Experimental Tools

In order to assess the quality of the proposed completion time driven hyper-heuristic

approach for cost optimisation of SWFS in a cloud environment, several steps have been

followed to study the most relevant approaches to identify the attributes and corresponding

parameters from selected studies, also to extract the parameters’ values from each defined

attribute, as well as to construct a comparative table.
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The following are the main perspectives that have been considered while analysing the

existing experimental tools:

• Types of existing experimental cloud environments have been adopted in the

reviewed studies.

• Number of computational resources have been utilised in the reviewed studies.

• Types of computational resources have been used to conduct the experiment.

• Types of SWFAs have been executed.

• The average size of the considered SWFA data sets has been considered.

After that, several attributes and the corresponding parameters from the reported studies

have been identified. In total, six attributes were extracted: (i) name of the used tool

environment, (ii) type of environment, (iii) number of computational resources, (iv)

type of resource (based on Amazon instance specifications as a standard (Amazon EC2

instance types, 2015), (v) type of SWFA, and (vi) size of SWFA tasks. The researchers

have considered a variety of computational resources, such as VMs, servers, and super

computers, depending upon the selected tool environments and computational environment.

Furthermore, a varying set of parameters for each extracted attribute have been identified.

For instance, regarding the type of tool environment’s attribute, two main parameters,

including real-world experiment and simulation, have been used to develop these studies.

Similarly, three scales for SWFA task attribute (i.e. small (<100 tasks), medium (100-

1000 tasks), and large (>1000 tasks)) have been defined. Subsequently, a comparative

table tomap the attributes and corresponding parameters (see Table 3.1) has been developed.
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Table 3.1 presents the comparison results of reviewed approaches. It can be clearly

seen that researchers have mainly considered simulation based environment compared

to the real-world based environment. Availability of tools justifies this trend, since

standard dataset in terms of open source (simulation) is easily available compared to

the real-world experimentation. Regarding the number of resources’ attributes, several

types and specifications were utilised due to the need for heterogeneous computational

resources. It is evident that the majority of the cost optimisation SWFS approaches used

a large size of computational resources due to the nature of some SWFAs. As for the

type of SWFA, several types have been used such as Montage, CyberShake, Inspiral, and

SIPHT (Pegasus workflow repository-Workflow Generator, 2015). Moreover, most of the

considered SWFAs have used different types of tasks dependencies (e.g., process, pipeline,

data distribution, data aggregation, or data redistribution). Not all the approaches have

considered the three scales of tasks (i.e. small, medium, large). Therefore, to effectively

measure the data-intensiveness and computational-intensiveness performance of cost

optimisation SWFS approaches, it is important to consider the different sizes of SWFA

tasks.

3.3.2 Experimentation Setup of the Proposed Approach

By analysing the existing experimental tools environment (Section 3.3.1), it has been

found that there is a need to consider different experimental environments. As a result,

it helps in developing and evaluating the performance of any cost optimisation approach

of SWFS in cloud computing environment. In this thesis, two different experimental

cloud environments have been considered: (i) a simulation-based environment using

WorkflowSim, (ii) and a real-world based environment using Pegasusworkflowmanagement

system.
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3.3.2.1 Simulation Based Environment

The first type of evaluation for the proposed approach is conducted through a Work-

flowSim simulator by setting it up on a eclipse editor. TheWorkflowSim simulator has been

used to develop and evaluate the proposed completion time driven hyper-heuristic approach

for cost optimisation of SWFS in a cloud environment. WorkflowSim simulator used the

data collected from executing the actual SWFA to generate synthetic workflows resembling

those which are used by real-world scientific applications. Simulation-based environment

helped in clearly understanding the scheduling process. At the same time, it facilitates by

easily determining different scenarios (e.g., number of VMs, size of SWFA) to completely

investigate the performance of the proposed approach. WorkflowSim simulator is an

open-access programming tool for developing and simulating the cloud based workflow

systems by supporting a parallel and distributed infrastructure. WorkflowSim simulator

has the required CloudSim techniques that support the execution of workloads in cloud

computing infrastructures and services. CloudSim classes and packages have been used to

read the task values for the workload traces. A complete detail on the evaluation of the

proposed approach in the simulation environment is provided in Chapter 5.

3.3.2.2 Real-world Based Environment

Workflow Management System (WfMS) in cloud computing must have the ability

to handle the requests from different application domains of SWFAs. In this study, the

Pegasus WfMS has been utilized as the second type of environment for evaluating the

proposed approach. The HTCondor and Pegasus WfMS are used to represent and manage

the complex dependent tasks and related data files of SWFAs. Pegasus has a number of

features that contribute to its usability and effectiveness including portability, reusability,

reliability, scalability, performance, data management, and error recovery.

A complete detail on the evaluation of the proposed approach in this real-world test-bed
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environment is provided in Chapter 6.

3.3.3 Baseline Approaches

As it has been explained earlier in this chapter (Section 3.1.4). This study focused

on comparing the proposed completion time driven hyper-heuristic approach of SWFS

with the most relevant population-based algorithms (i.e. GA, PSO, IWO, HIWO) and an

existing hyper-heuristic approach named Hyper-Heuristic Scheduling Algorithm (HHSA)to

effectively and efficiently evaluate the performance.

In the simulation environment (WorkflowSim), to comprehensively evaluate the pro-

posed approach with the existing cost optimisation problem of SWFS algorithms, the

populationbased algorithms have been considered GA, PSO, IWO, HIWO and HHSA, as

comparison baseline approaches. This is mainly due to the reason that these approaches

achieved significant results in the previously conducted studies (i.e. GA (J. Yu & Buyya,

2006b, 2006a; X. Liu, 2011), PSO (Q. Tao et al., 2009; Jing et al., 2013; Pandey et al.,

2010; B. Liu et al., 2014; Z. Wu et al., 2010; Netjinda, Sirinaovakul, & Achalakul, 2012),

IWO, (K. Li, Li, Xu, & Xie, n.d.; Sharma, Nayak, Krishnanand, & Rout, n.d.; X. Zhang,

Niu, Cui, & Wang, n.d.; Sang & Pan, n.d.). In Appendix A, more details about each of

these baseline and HHSA approaches has been provided.

In the real-world environment, the proposed approach has also been compared with

other baseline approaches (i.e. GA, PSO, IWO, HIWO and HHSA) in Pegasus SWfS to

comprehensively evaluate the proposed approach with the existing algorithms. Note that

current algorithms have been already developed for cost optimisation problem of SWFS in

cloud environment.
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3.3.4 Scientific Workflow Application Datasets

The proposed approach has been evaluated based on different types of SWFA datasets

namely Montage, Cybershake, Inspiral, and Sipht. These applications have been selected

since they have been extensively used in the prior work (Juve et al., 2013; W. Chen, da

Silva, Deelman, & Sakellariou, 2015; W. Chen, Ferreira da Silva, Deelman, & Fahringer,

2015; Jrad, Tao, Brandic, & Streit, 2014; W. Chen, Da Silva, Deelman, & Sakellariou,

2013). Moreover, Chen et. al. (W. Chen, da Silva, et al., 2015) has regarded that these

SWFAs act as standard datasets to evaluate the performance of the existing approaches.

Furthermore, these applications have different sizes that allow measuring the scalability of

data-intensive applications. Moreover, they consider the computational-intensive of the

SWFA tasks, which can be measured by the number of compositions in their structure.

The following URL link contains the real-world Montage datasets:

https://drive.google.com/file/d/0B1X3lOeJffFIM00xeHVqREtCbDg/view?usp=sharing

For more details about each of the used scientific workflow application datasets, please

refer to Section 5.3, Section 6.3, and Appendix B.

3.3.5 Statistical Analysis

The proposed completion time driven hyper-heuristic approach for cost optimisation of

SWFS in a cloud environment has been implemented using two types of cloud environments

which are WorkflowSim (simulator) and Pegasus WfMS (real-world test-bed). In the

simulation-based environment, the collected data from executing each of the four scientific

workflow datasets (i.e. Epigenomics, Inspiral, Montage, Sipht) using three different sizes

of SWFA datasets. In contrast, in the real world-based computational environment, real

SWFAs have been used to evaluate the proposed approach. All the collected data have

been saved in Microsoft Excel sheets. After that, the collected data has been imported into

IBM SPSS statistics tools version 24. Then, four statistical methods were performed in
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this research in order to perform a complete analysis of the collected data. The descriptive

analysis test is particularly useful to get a general observation of the data collected. Four

main values have been chosen for the completion time (makespan) and total computational

cost, which are standard deviation, mean value, maximum value (represents the worst

value), and minimum value (represents the best value).

To measure the significance improvement of the result, there is a need to statistically

investigate the normality tests to determine whether it is normal or not (Wohlin et al.,

2012). There are couple of different ways to determine the distribution of the data for

the result data of completion time and total computational cost. Furthermore, in order to

decide whether the data is paired or unpaired, the normality test of the results has been

conducted. The Skewness and Kurtosis values help to investigate the normality distribution

of the data. If the Skewness and Kurtosis values are between range of -2 and 2, then the

result data is considered as normally distributed. The other two important normality tests

are Kolmogorov-Smirnov and Shapiro-Wilk tests, which have been widely considered by

researchers to confirm the normality distribution. The p-value of Shapiro-Wilk has to be

greater than 0.05, which specifies that the results data are normally distributed.

3.4 Summary

In this chapter, a broad overview of the defined research methodology stages (i.e.

formulation stage, approach development stage, and evaluation and analysis stage) has been

provided. In the formulation stage, an in-depth analysis by conducting extensive literature

review from different cost optimisation perspectives of SWFS (i.e. aspects, parameters,

challenges, and approaches) has been provided. The results from in-depth studying

and analysing the targeted perspectives have guided towards the approach development

stage as well as the evaluation and analysis stage. In the approach development stage,

a cost optimisation model as well as the dynamic hyper-heuristic algorithm have been
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comprehensively defined which would be used in the proposed approach. In the evaluation

and analysis stage, five major activities have been conducted to evaluate the proposed

completion time driven hyper-heuristic approach for cost optimisation of SWFS in a cloud

environment. The activities are: (i) the comparison of existing experimental environments,

(ii) the experimentation setup of the proposed approach, (iii) the selection of baseline

approaches, (iv) the consideration of the scientific workflow application datasets, and (v)

the execution of statistical analysis for the collected data.
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CHAPTER 4: PROPOSED APPROACH

In this chapter, the proposed approach is presented to successfully accomplish the

second stage of the defined research methodology. The proposed approach aims at the

most challenging problem with Scientific Workflow Scheduling (SWFS), which is the cost

optimisation of SWFS in a cloud computing environment. The cost optimisation challenge

of SWFS in cloud computing requires considering several scenarios that depend on the

number of available virtual machines and size of SWFA datasets. Current state-of-the-art

SWFS approaches lack in achieving satisfactory cost optimisation performance for all

considered scenarios. Therefore, there is a need to propose a completion time driven

hyper-heuristic approach that can effectively optimise the cost of SWFS for all considered

scenarios. The proposed approach contains two main parts, the cost optimisation model of

SWFS and the dynamic hyper-heuristic algorithm (Figure 4.1).

The cost optimisation model of SWFS can help to understand the mapping and

scheduling processes of workflow tasks by considering the scheduling stages along with

completion time and total computational cost parameters. Three standard stages of SWFS

cost optimisation model are defined in this chapter. The first stage concerns about the

SWFAs, while the second stage concerns about the targeted computing environment.

Finally, the third stage concerns about formulates the cost optimisation criteria.
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Figure 4.1: Completion Time Driven Hyper-Heuristic approach

After defining the SWFS cost optimisation model, the proposed dynamic hyper-heuristic

algorithm for the cost optimisation challenge of SWFS in cloud environment has been

presented. The proposed algorithm is considered as a new advanced technique that is

capable of reducing the run-time of a meta-heuristic algorithm. The proposed dynamic

hyper-heuristic algorithm contains four parts, where these parts represent the four main

stages of the proposed algorithm.

4.1 Cost Optimisation Model of Scientific Workflow Scheduling

The cost optimisation model of SWFS mainly aims at mapping and managing the

execution processes of the submitted dependent workflow tasks (also referred as precedence

constraints) of SWFA. It then schedules the submitted SWFA tasks on the targeted shared

computational resources, while optimising the completion time and the total computational
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cost. The standard cost optimisation model contains three main stages: (i) scientific

workflow application, (ii) targeted computational environment, and (iii) cost optimisation

criteria.

Figure 4.2: Cost optimisation model of SWFS

As shown in Figure 4.2, there are three main categories of users that can utilise and

manage the cost optimisation model: (i) service consumers (i.e. scientists in this research

context) represent the users of the SWFA, (ii) service providers (i.e. cloud service providers)

that offer the SWFS system with virtualised computational resources (i.e. private, public or
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hybrid), and (iii) system developers (i.e. system administrators) responsible for designing

and maintaining the WfMS based on the requirements of service consumers. In the

following sections, a complete detail about each component of the cost optimisation model

of SWFS will be provided.

4.1.1 Scientific Workflow Application

The SWFA is also known as data and computational intensive scientific workflow

application, whichmostly processes data flows together with the tasks execution (Wieczorek

et al., 2009; Ma et al., 2009; Malawski et al., 2014; Tolosana-Calasanz et al., 2012). The

SWFA consists of multiple tasks, which are necessary to complete a particular submitted

workflow. The components of these tasks can be any executable instances (e.g., load

sets, report sets, programs, and data) with different structural dependencies (e.g., process,

pipeline, data distribution, data aggregation, and data redistribution). The SWFA includes

various input scripts (e.g., scientific program along with their dependent data), which can

be used to produce, analyse and visualise the obtained results (Figure 4.2). Moreover, the

SWFA has to deal with a large size of data and complex workflow tasks (e.g., earthquake

prediction applications, biomedical applications, and astrophysics applications). The

output of SWFA provides interactive tools that help service consumers in better executing

their own workflows, and also visualising the results in a real time manner. At the

same time, the SWFA simplifies the execution processes for scientists to reuse the same

workflows. Furthermore, the SWFA provides an easy-to-use environment to track and share

output results virtually. However, high dependency between the workflow tasks remains

a prominent challenge of SWFA, which arises due to the tasks precedence constraints.

Thus, SWFAs require extra powerful computational resources to efficiently determine an

optimal SWFS solution for large data and complex tasks. Due to the complex nature of

SWFA, the structural representation plays an important role to simplify the submitted
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workflow tasks of SWFA. Thus, it is important to perform the modeling for the submitted

tasks along with their precedence constraints using standard notations. In the literature,

several types of structural representation methods have been adopted to represent the tasks’

dependency of SWFA. One of the commonly used structural representation method is a

Direct Acyclic Graph (DAG) that can handle SWFA tasks with high complexity. The DAG

is beneficial to highlight the estimated execution cost of different available resources based

on the historical data of WfMS. In addition, the communication time between resources is

also represented using DAG (Z. Wu et al., 2013; Pandey et al., 2010; Talukder et al., 2009;

Lombardi & Di Pietro, 2011; X. Liu et al., 2011). The DAG is represented by a graph (G)

as formulated in Eq. 4.1.

G = (T, E) (4.1)

where T (vertex) is a set of tasks and E (edges) is a set of directed edges between the

tasks.

T = {t0, . . . , tn} (4.2)

E = {e1, . . . , em} (4.3)

Note that there is data dependency between tasks in E. For instance, if there is a directed

edge eti,t j (i.e. eti,t j ∈ E) connecting ti and t j (denoted as ti → i j) then ti is considered as a

parent and t j as a child. Note that a child task cannot be executed until all of its parent

task(s) have been executed successfully. Therefore, the input data of task j depends on the
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produced data by parent task i. The complete path from t0 to tn can be represented in Eq.

4.4.

(t0 → t1, (t1 → t2, . . . , (tn−2 → tn−1, (tn−1 → tn) (4.4)

4.1.2 Targeted Computing Environment

In order to execute the workflow tasks in a cloud computing environment, it requires the

mapping between the submitted tasks to the available set of heterogeneous/homogeneous

computational resources. In the context of cloud computing, the computational resources

are commonly referred as a set of Virtual Machines (VMs) as defined in Eq. 4.5.

V M = {V M0, ...,V Mk } (4.5)

where V Mk is a single virtual machine (i.e. V Mk ∈ V M) having different specifications

in terms of processor speed, memory capacity, and hard disk space. Moreover, each virtual

machine could be created and distributed on different virtual host locations. Note that each

VM specification has different computational cost and communication cost between the

available VMs.

In order to clarify the SWFS process, Figure 4.3 illustrates a DAG structure with 13

tasks (i.e. from vertex 0 to vertex 12), which are represented as nodes running on a set of

VMs. The entry task usually holds an input file (f.in) and the exit task produces the output

file (f.out. The number associated with each edge (i.e. represented using an edge weight)

is the time required to transfer the data from parent node to child node. For instance, the
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edge weight between vertex ‘o’ and vertex ‘1’ represents that 17 seconds (based on the

SWFA type) are required to transfer the dependent data to any of the available VMs.

Figure 4.3: Topology of DAG

By doing this, each parent task generates output data (e.g., processed images) after the

execution is completed and the child task(s) consumed the generated output data. Table

4.1, shows an example of the estimated execution time of each task based on the historical

data.

Figure 4.4: Representation of VMs dependencies

Figure 4.4 shows an example of the dependencies and the estimated communication time
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Table 4.1: Example of the estimated execution time on VMs

Task V M0 V M1 V M2

0 8 40 23
1 8 43 15
2 12 22 27
3 35 16 12
4 3 12 16
5 26 4 23
6 23 21 16
7 22 9 17
8 5 11 15
9 14 20 34
10 8 18 11
11 19 29 7
12 13 33 3

Table 4.2: Example of estimated communication time between VMs

Connected VMs Estimated Communication Time
V M0 and V M1 12
V M0 and V M2 19
V M1 and V M2 35

(in Sec.) between each pair of the VMs that are interconnected using various bandwidths

as illustrated in a tabular format using Table 4.2.

4.1.3 Cost Optimisation Criteria

From the literature, it has been found that some work has focused on minimising the

execution time (Nargunam & Shajin, 2012; Ramakrishnan et al., 2011; Stevens et al., 2009;

Tanaka & Tatebe, 2012), while other work aimed at reducing the total computational cost

(Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013; H. Liu et al., 2011; Genez et

al., 2012) for processing SWFA in cloud computing environment. The approaches that

consider either execution time or execution cost (but not both) are commonly referred

as single-objective optimisation based approaches. Due to the rapid development of

the provided cloud computing services (e.g., pay-as-you-go, on-demand), many other
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constraints (e.g., QoS constraints) should also be considered while optimising the cost of

SWFS. The total computational cost of the submitted SWFA tasks is directly proportional

to the time spent on computing the given tasks using the available computational resources.

Due to the consideration of rapid development, the complexity of the existing approaches

has increased to a great extent, which ultimately demands to carefully handle the trade-offs

between the cost and other affected constraints (e.g., execution time). Nevertheless,

a group of cloud services may have different specifications so they can complete the

submitted workflow tasks with different execution time and execution cost based on the

user requirements. For instance, the total computational cost is the amount of money to be

paid for using the cloud computational resources (i.e. VMs). The computational cost can

be categorised based on VMs specification (e.g., speed of CPU, size of memory and size

hard disk). Moreover, each category (i.e. small, medium, large) of VM has a different

price.

In order to propose a cost optimal solution for the SWFS problem, the completion

time (makespan) and total computational cost of workflow tasks need to be minimised

(Talukder et al., 2009). The cost optimisation of SWFS can be achieved by simultaneously

minimising the execution time and execution cost. Thus, there is a need to consider

applying Pareto-optimal solution method (Stephanakis et al., 2013; Yassa et al., 2013;

Talukder, Kirley, & Buyya, 2007; Duan, Prodan, & Li, 2012; Durillo, Nae, & Prodan,

n.d.). The underlying concept of Pareto-optimal method is to consider many solutions

in the feasible region rather than focusing on a single solution. Based on the nature of

optimisation problem, there are two types of objective, which are minimising or maximising

the optimisation problem. In this research, minimizing completion time (makespan) of the

submitted workflow tasks and total execution cost of workflow tasks has been considered

as an optimization problem.
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In this study, the standard SWFS cost optimisation model has been followed, which

is based on the defined time and cost parameters as presented in Chapter 2 (Section 2.2).

As shown in Figure 4.5, the cost parameters has been classified into three categories (i.e.

pre-scheduling, during scheduling and post-scheduling).

Figure 4.5: The considered cost-optimisation parameters

Pre-Scheduling Stage: In this scheduling stage, the scheduler requires to check whether

the submitted SWFS tasks are schedulable or not. The scheduler makes a decision based

on a set of attributes: (i) number of available processors, (ii) list of available processors,

(iii) currently used processors, (iv) names of processors, (v) name of computational site,

and (vi) estimated execution time. The historical data plays an important role in supporting

the scheduler to optimally schedule the submitted SWFS tasks based on the availability of

existing computational resources. Therefore, there is a need to consider the historical data

in order to check the estimated execution time.

A computational cost matrix (w) of size t × VM is used to assign a particular task (ti)

to the available virtual machine (V Mk) by determining each estimated cost weight (wi, j).

Additionally, at pre-scheduling stage, the submitted workflow tasks are labeled with the
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average computational cost. The average computation cost of a task ti is defined by Eq.

4.6 (Poola et al., 2014):

wi =

V M∑
j=1

wi, j/V Mj (4.6)

Similarly, the communication cost matrix (∝) of size VM × VM represents the stored

data’s transfer rates between virtual machines (datai, j). The communication startup costs

of virtual machines are given in a VM-dimensional vector (L. The communication cost (c)

of an edge (i,j) representing the data transfer rate from task ti (scheduled on V Mm) to task

t j (scheduled on V Mn), is defined as (Arabnejad & Barbosa, 2014):

ci, j = Lm +
datai, j

∝m,n
(4.7)

Consider a scenario in which both tasks ti and t j are scheduled on the same virtual

machine. The value of communication cost (ci, j) becomes zero, since the inter-processor

communication cost inside the VM is negligible, which can be ignored. The average

communication cost of an edge (i,j) is defined as follows (Arabnejad & Barbosa, 2014):

c′i, j = L′m +
datai, j

∝′m,n
(4.8)

where ∝′ is the average transfer rate among the virtual machines reside at the host site,

and the L′ is the average communication startup time. It is worth to mention that the

average value has been considered by many researches in this area of research to support
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the heuristic decision (S. Abrishami&Naghibzadeh (2012); M. E. D. H. Abrishami Saeid

Naghibzadeh (2013)).

As already discussed in Section 2.2, based on the historical data and to efficiently

start the scheduling processes, it is necessary to consider the Earliest Start Time (EST)

and Earliest Finish Time (EFT) of the execution processes. The EST is defined as the

earliest time to initiate the task execution on available VM (Stevens et al. (2009); S.

Abrishami et al. (2012)). Nevertheless, it is impossible to exactly measure the EST in a

heterogeneous environment, as a specific cloud’s computation time of tasks differs within

each virtual machine (S. Abrishami et al. (2012)). Every task has an estimated time period

and should not be scheduled earlier than the EST, and must end latest by the Finish Time

(Ramakrishnan et al. (2011)). The EST of each unscheduled task is already described in

Eq. 2.1 and Eq. 2.2 in Chapter 2. In contrast, the EFT of each unscheduled task is the

earliest time the task’s execution can finish (S. Abrishami&Naghibzadeh (2012); M. E.

D. H. Abrishami Saeid Naghibzadeh (2013)). Thus, it is essential to first calculate the

EST, and then calculate the EFT for each task in the workflow prior to assign the SWFS

tasks to the fastest and available computational resource (M. E. D. H. Abrishami Saeid

Naghibzadeh (2013)). The EFT can be calculated using the Eq. 2.3 in Chapter 2.

During Scheduling Stage: It is of vital importance to check the ready time parameter

in this scheduling stage. The ready time is the time by which all the data needed by the

tasks has reached (after the parent(s) node has/have been executed) to the scheduled virtual

machine (computational site). Therefore, ready time is defined as the earliest time for

the first task to be executed and the first task is chosen based on the parent tasks (J. Yu

& Buyya, 2005). Eq. 2.8 in Chapter 2 is used to calculate the ready time of task ti.

Additionally, the Estimated start Time (ET) is also considered as a minimum available

time of the computational site.
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Post-Scheduling Stage: After a task ti is scheduled on a virtual machine V Mk , the EST

of this execution is equal to the actual start time while the EFT of the execution is equal to

the actual finish time of ti. The time between the startTime and endTime represents the

allocated time frame on the virtual machine for task execution (Stevens et al. (2009); J.

Yu & Buyya (2006b); Sakellariou & Zhao (2004b)). The completion time of the entire

workflow is based on parallel and serial constraints between the startTime and endTime (Y.

Yuan et al. (2006)).

Once the submitted tasks are scheduled, the start time of the parent task will be used as

a deadline for other dependent tasks (S. Abrishami & Naghibzadeh (2012)). There are two

scenarios of tasks’ start times in the scheduling algorithms. The first scenario is that the

start time is EST, which is calculated prior to the workflow being scheduled. In contrast,

the second scenario considers that the real start time is calculated after scheduling the

tasks (M. E. D. H. Abrishami Saeid Naghibzadeh (2013); S. Abrishami et al. (2012)).

The actual finish time represents the time that has been used to complete the execution

of submitted workflow task (Sakellariou et al. (2007); Q. Wu et al. (2013); Sakellariou

& Zhao (2004b)). In other words, after all the tasks are scheduled, the scheduling length

(completion time) is represented as the actual finish time of the exit texit . If there are

multiple exit tasks, the completion time of the scheduling (makespan) is considered as the

maximum actual time of the exit task.

4.1.3.1 Cost Optimisation Parameters

The main goal of this research is to optimise the execution time and execution cost by

minimising the completion time (makespan) and total computational cost of SWFA in cloud

computing. The required execution time and execution cost of the available computational

resources are related to each other. Consider a scenario which contains a number of VMs

having different specifications (heterogeneous), and each of the VMs requires different
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execution time and execution cost to execute the same set of workflow tasks. Therefore,

the scheduler should choose the VM that takes a longer time but with cheaper cost, or

the scheduler should choose the VM that takes a shorter time but incurs more expensive

cost. Figure 4.6 shows an example of the inversely proportional relationship between the

execution time and execution cost of VMs with different specifications.

Figure 4.6: Correlation between the execution time and execution cost

Based on the discussed cost and time parameters, the main goal of the SWFS cost

optimisation model in this research context is to minimise the completion time (makespan)

and the total execution cost of the submitted SWFA. Thus, in order to propose an optimal

solution for the SWFS problem, the total cost and time of executing workflow tasks needs

to be minimised. However, there is no single optimal solution but rather a set of potential

solutions for each considered scenario. Therefore, this research focuses on optimising two

critical cost parameters of SWFS in a cloud computing environment, computational cost

and completion time.

Completion Time (makespan): Makespan (M) can be defined as the overall completion

time to execute the entire workflow by considering the finish time of the last completed

task. Generally, any delay in task execution time can negatively impact on the makespan of

workflow application. In the case of traditional workflow scheduling, the users generally

choose to minimise the workflow makespan. Thus, the reported cloud-based SWFS
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approaches focus on how to assign tasks to resources so that the precedence constraints are

retained while the makespan is minimised. Hence, the major aim of makespan is to reduce

the execution cost within a lower completion time while meeting the user’s requirements

effectively. This parameter is important due to its relevancy to QoS. The makespan of the

workflow is computed as follows (Poola et al., 2014):

M = texit − ST (4.9)

where ST is the Submission Time of the workflow and texit is the finish time of the exit

node.

Total Computational Cost (TCC): The computational cost of a SWFA remains a main

concern of the user(s). The computational cost of workflow tasks is directly proportional

to the time spent on computing workflow tasks using the available cloud resources (Jing

et al., 2013). For instance, the computational cost of the public cloud is represented by

the amount of money to be paid for using the enterprise’s computation resources, and the

computational resources (VM) are categorised by a range of computing resource costs.

Therefore, the total execution cost is calculated by summing the price of all VMs of

different types used in the workflow execution. The price of each VM is calculated based

on its type and time duration. The time duration (completion time) is calculated based

on the number of hours a particular VM executes from its instantiation to termination.

Moreover, to execute the entire workflow, multiple VMs of different types can be used. The

total computational cost of SWFA can be calculated as follows (Abrishami & Naghibzadeh,

2012; Saeid Abrishami, 2013):
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TCC =
∑

[Acual endTime − Acual startTime] × prices o f utilised V Ms (4.10)

4.1.3.2 Assumptions of SWFS Cost Optimisation Model

In order to correctly perform the functionalities of the SWFS cost optimisation model,

the following are the main assumptions that have been considered in the proposed approach:

• The task dependencies of the considered SWFA should be modeled in DAG.

• The average computational time of a task running on a particular virtual machine

should be known prior (historical data) to start the scheduling process.

• The data communication cost between tasks if scheduled on different sites is

assumed to be constant.

• Once a task is running on a VM, then that VM cannot be occupied by any other

task.

• The task executions of a given SWFA are assumed to be non-preemptive.

4.2 Dynamic Hyper-Heuristic Algorithm (DHHA)

The Dynamic Hyper-Heuristic Algorithm (DHHA) is the main part of the proposed

Completion Time Driven Hyper-Heuristic (CTDHH) approach. A hyper-heuristic is a

search methodology or learning mechanism for selecting existing heuristics in order to

solve computationally intensive problems. More details about the comparison between the

heuristic approaches can be found in Section 2.4.1. A hyper-heuristic operates on a large

search space using a set of heuristic or meta-heuristic components rather than independently

finding solutions. The originality of a hyper-heuristic algorithm is related to Operation

Research in terms of machine learning method, which is utilized to find optimal or near
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optimal solutions for computational-intensive search problems (i.e. real-world problems

of NP-complete type) (Burke, Kendall, et al., 2005). Usually a hyper-heuristic algorithm

considers selecting a list of different heuristic components (or heuristic algorithms) to

efficiently optimise the given problem. As shown in Figure 4.7, the hyper-heuristic

algorithm contains two separated levels, where the first level is High Level Heuristic (HLH)

(i.e. the strategy) and the second level consists of the employed Low Level Heuristic (LLH)

algorithms. In this study, the employed LLH algorithms of the proposed hyper-heuristic

algorithm are considered as perturbative meta-heuristic, which operates on complete

solutions. DHHA employs four well-known population-based meta-heuristic algorithms

including, genetic algorithm, particle swarm optimisation, invasive weed optimisation, and

hybrid invasive weed optimisation. The employed algorithms act as LLH algorithms in this

research context. To provide a high level of abstraction to the hyper-heuristic algorithm, it

has been assumed that there is a barrier (i.e. domain barrier) between the HLH and LLH

(Glover & Kochenberger, 2006). The domain barrier is utilized to allow the flow of cost

optimisation criteria from the LLH to HLH, which helps in evaluating the performance of

candidate solutions generated by the employed meta-heuristic LLH algorithms.
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Figure 4.7: Dynamic Hyper-Heuristic Algorithm (DHHA)

The main purpose of HLH strategy is to intelligently guide the search process based

on the performance of the employed meta-heuristic LLH algorithms (Burke et al., 2009;

P. Cowling, Kendall, & Soubeiga, 2000). The proposed dynamic hyper-heuristic algorithm

adopts a novel online learning mechanism, which is based on the feedback from the search

space (i.e. by applying a LLH algorithms) while solving the targeted optimisation problem.

This learning mechanism is far better than the existing hyper-heuristic algorithms that

use a random LLH algorithm selection mechanism, since feedback provides a complete

detail of each LLH algorithm. Moreover, the online learning mechanism of the proposed

hyper-heuristic algorithm can dynamically guide the search process’ decisions by selecting

suitable employed LLH algorithms. Several initial solutions are generated by the employed

meta-heuristic LLH algorithms and the HLH strategy decides which of these LLH

algorithms will be selected for the next iteration. The HLH strategy employs the Selector

Operator (DHHA_SO) and Approval Operator (DHHA_AO) to dynamically select the
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most suitable candidate meta-heuristic algorithm from the employed LLH algorithms;

thus, it ultimately helps to successfully make a good use of the employed LLH algorithms

(Hussin, 2005). The HLH strategy decision can be done using the DHHA_SO to choose

the most suitable meta-heuristic LLH algorithm based on the computed Time Score (TS),

which ultimately is applied on the current solution. After that the DHHA_AO will decide

whether to employ the same LLH algorithm again or employ another LLH algorithm.

Thus, the newly defined operators can enhance the learning ability of the HLH strategy for

each iteration of the proposed algorithm.

The proposed dynamic hyper-heuristic approach uses several successive stages, starting

from generating the initial solutions (i.e. beginning stage) till the termination criteria (i.e.

last stage). More details of each stage of the proposed dynamic hyper-heuristic algorithm

are discussed in the following sections. Note that each of these stages contains a number

of steps. Algorithm 1 shows the main steps of the proposed dynamic hyper-heuristic

algorithm.

4.2.1 Stage 1: Initial Stage (Steps 1-7)

As it has been mentioned in the cost optimisation model of SWFS, the main three

inputs to the proposed algorithms are: (i) list of SWFA tasks (Section 4.1.1), (ii) list of

VMs (Section 4.1.2), and (iii) the cost optimisation criteria (Section 4.1.3). As shown

in Algorithm 1, the first step of the initial stage of the proposed DHHA is running each

of the four employed meta-heuristic algorithms (i.e. genetic algorithm, particle swarm

optimisation, invasive weed optimisation, and hybrid invasive weed optimisation). In other

words, the proposed algorithm run each (h) of the employed LLH algorithms (H) to schedule

the submitted SWFA tasks based on the available VMs for five times for each particular

scenario. The underlying reason of running each of the LLH algorithms for five times is

that the proposed algorithm does not take long initialization time, which might ultimately
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Algorithm 1 Dynamic Hyper-Heuristic Algorithm
Input: DHH A_SO(H) and DHH A_AO(H) where H is the set of the employed Low

Level Heuristic algorithms
{The input for H are: Set of workflow tasks, Set of available VMs, Cost optimisation
criteria}

Output: The most optimal solution for cost optimisation of SWFS
1: Initialization
2: for 1 to 5 do
3: Run h,∀h ∈ H
4: end for
5: Get the AV_M for the 5 runs
{Where AV_M representing the T S value}

6: for 1 to 30 do
7: Sort the T S based on the completion time of h

{from the lowest to the highest based on the Scoreboard table}
8: loop
9: Apply DHH A_SO(h), ∀ h ∈ H
10: Choose the h with the lowest ST from the scoreboard table

{Based on the smallest T S value in scoreboard table}
11: Execute the chosen h
12: Apply DHH A_AO(h), ∀ h ∈ H
13: Examine the results based on the DHH A_AO(h) formula
14: Approve h based on the results
15: Update T S order in "Scoreboard Table" and update no. of runs in "Run Table"
16: end loop
17: end for
18: Terminate the algorithm

{Till termination criteria are satisfied, which is the maximum number of runs = 30}

affect the overall completion time of the whole processes of the proposed algorithm. At

each run of the meta-heuristic algorithms, the proposed DHHA considers three scheduling

stages, which are considered as the LLH of the proposed algorithm. Section 4.1.3 provides

the details of all the scheduling stages along with the cost optimisation criteria that have

been considered for scheduling each of the LLH algorithms.

As previously mentioned, there are a different number of tasks (formula 4.2) and a

different number of VMs (formula 4.5) for each type of the considered scenarios. It is worth

to mention that the number of submitted workflow tasks is directly affected by the size of

SWFA datasets. In other words, if the number of submitted SWFA tasks increases, then

the WfMS will be required to compute a larger size of datasets, which ultimately increases
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Table 4.3: Example of the nine considered scenarios

Scenario No. of Tasks No. of VMs
1 30 2
2 30 4
3 30 8
4 100 2
5 100 4
6 100 8
7 1000 2
8 1000 4
9 1000 8

the overall completion time. Thus, the number of workflow tasks is affected by the type of

considered SWFA, which ultimately affects the dependencies and complexity between the

workflow tasks. In this research, to effectively evaluate the computational-intensiveness

and data-intensiveness of the proposed algorithm, nine different types of scenarios have

been considered, where each scenario contains a different number of workflow tasks and a

different number of VMs. Table 4.3 shows an example of the information (i.e. number of

tasks and number of VMs) for the nine considered scenarios.

After successfully running each of the employed LLH algorithms for five times for

all the considered scenarios, the next step of this stage is calculating the completion

time (makespan) values (M) based on formula 4.9. The underlying intention about

the completion time calculation is to provide information about the performance of the

employed LLH algorithms in order to offer an online learning mechanism. Thus, the

computed completion time directs the HLH strategy during the searching processes for

the most optimised scheduling solution by selecting the most suitable LLH for the next

run. The next step is to calculate the Average Value (AV_M) of completion time for all

employed LLH algorithms for five runs of the targeted scenarios. The results of the average

completion time value of each scenario will be considered as the computed Time Score

(TS), which will be stored in a database table called as “scoreboard table”. The time score
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attribute of the scoreboard table is sorted based on the value of average completion time

for each meta-heuristic algorithm and for each scenario. In this way, the best time score

value is computed, which is always the overall minimum completion time value.

4.2.2 Stage 2: Selection Stage (Steps 8-11)

The DHHA_SO of the HLH strategy are based on the computed TS of the employed

meta-heuristic LLH algorithms. As shown in Algorithm 1, the DHHA_SO operator

chooses the most optimal computed time score for the considered scenarios, which

depends on the number of available VMs and size of SWFA datasets. At each iteration,

DHHA runs the selected LLH to schedule the submitted workflow tasks based on the

considered scenario. The performances of the attained time score will ultimately be used by

DHHA_SO to determine which LLH algorithm will be selected for the next iteration. The

scoreboard table contains the time score and scenario details of each run of the employed

meta-heuristic LLHs (i.e. algorithm name, problem size, available VMs, time score).

In this way, at each run the proposed DHHA algorithm usea the high-level DHHA_SO

to choose the LLH algorithm with the Lowest Time Score (T SLowest (h)) among other

employed LLHs (H) for that specific scenario. Eq. 4.11 represents the defined DHHA_SO

of the proposed algorithm.

DHH A_SO(h) = T SLowest (h),T SLowest (h) ∈ T SList (h) (4.11)

The next step in the selection stage is to execute the chosen LLH (h) by following three

scheduling stages that have been described in detail in Section 4.1.3 along with the cost

optimisation criteria in Section 4.2.3. Once the selected LLH(h) is successfully executed,

the proposed algorithm automatically updates TS value based on the calculated completion
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time value TS(h).

For example, for scenario 4, if the IWO meta-heuristic algorithm (i.e. one of the

employedLLHalgorithm) attained the lowest average completion time comparingwith other

employed LLH algorithms (i.e. Genetic Algorithm (GA), Particle Swarm Optimisation

(PSO), Hybrid Invasive Weed Optimisation (HIWO)), then the average completion time of

IWO will be at the top of TS(h) attribute of the scoreboard table, and IWO will be chosen

by DHHA_SO(h) for the next iteration.

4.2.3 Stage 3: Approval Stage (Steps 12-14)

As shown in Algorithm 1, for each single run, the DHHA_AO accepts the LLH

algorithm that has the lowest computed time score, and updates the scoreboard and “run”

table. The run table contains the run details of each run (i.e. number of runs) of an

employed LLH algorithm. The proposed dynamic hyper-heuristic algorithm continuously

updates the scoreboard table by replacing the existing time score with the lowest computed

time score, which ultimately affects the total computational cost value for that run. Based

on the scoreboard table, the proposed DHHA selects the most appropriate LLH algorithm

for the next run.

After successfully running the LLH algorithm, the proposed DHHA compares the

new completion time value with the best time score using DHHA_AO. DHHA_AO is

represented by threshold T value, which is based on two values, including Existing Time

Score (ETS) and New Time Score (NTS). ETS is the current TS value in the scoreboard

table and NTS is the newly achieved completion time after successfully running the LLH

algorithm.

Based on comparison results between ETS and NTS values, the DHHA_AO can decide

the desired TS value. It is worth to mention that, the original idea of calculating the TS

value was by adding the ETS value to NTS value and then divide the result by constant
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number (i.e., 2) to get the average. Thus, based on conducted experiments that has been

done, it has been found that if the value of ETS or NTS multiplied by a constant number

(i.e., 3) and then divide the result by a constant number (i.e., 4), then would help to improve

the average value of TS. Ultimately, this can also assist the proposed DHHA algorithm to

choose the most appropriate LLH algorithm for the next iteration. Eq. 4.12 represents

the DHHA_AO of the proposed algorithm. Choosing the constant number (i.e., 3) and

constant number (i.e., 4) in Eq. 4.12, it has been derived from the conducted experiments.

ApprovalOperator (DHH A_AO) =




NT S(h) ≤ ET S(h) then T S = (ET S(h)∗3)+NT S(h)
4

NT S(h) > ET S(h) then T S = ET S(h)+(NT S(h)∗3)
4

(4.12)

It can be observed from Eq. 4.12 that, if the new completion time (NTS) value is less

than or equal the existing time score (ETS) value, then the updated time score gives more

value to ETS, by multiply ETS with constant number (i.e., 3) constant number (i.e., 3) and

then divide it by constant number (i.e., 4) to get the TS value.

In contrast, if the new completion time (NTS) value is greater than the existing time

score (ETS) value then the updated time score gives more value to NTS by multiply NTS

with constant number (i.e., 3) and then divide it by constant number (i.e., 4) to get the TS

value. In this way, the proposed DHHA algorithm always gives compliment to the best

value of ETS and NTS and at the same time, it does not affect too much the new TS value

for the next iteration.

The purpose of multiplying completion time value by three and divided it by four is to

prevent having big change in time score value, which would ultimately affect the selection

criteria of the high-level selector. Additionally, the multiplication by three is based on
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Table 4.4: Time score result from experimentation in the real-world environment

Problem Size (Degree) 1 1 1 2 2 2
Available VMs 2 4 8 2 4 8
DHHA_AO=*1/1 375 349 353 1066 1027 1012
DHHA_AO=*5/6 373 346 352 1064 1023 1002
DHHA_AO=*3/4 370 345 350 1053 997 963

the experiments that have been conducted in the experimentation stage using different

values instead of three. Table 4.4 shows the experimentation result from the real-world

environment evaluation. Thus, three values always show the best value. As it can be seen

than, the TS result of the defined approval operation is the most optimal value comparing

with other values. So, on the next run, the high-level selector chooses the LLH algorithm

based on the updated time score of that specific scenario.

Based on the explanation of Eq. 4.12 and from Table 4.4, it can be seen that when the

value of ETS or NTS multiplied by a constant number (i.e., 1) and then divide the result by

a constant number (i.e., 1), in DHHA_AO (i.e., DHHA_AO=*1/1, the TS result is slightly

affected by causing a large differences in TS value, which ultimately affects the approval

discussion to choose the LLH for the next run.

At the same time, when the value of ETS or NTS multiplied by a constant number (i.e.,

5) and then divide the result by a constant number (i.e., 6), is considered in DHHA_AO

(i.e., DHHA_AO=*5/6, the TS result does not improve that much by causing a very small

differences in TS value, which ultimately affects the approval discussion to choose the

LLH for the next run.

Thus, based on the conducted experiments, it can be concluded that it is very important

to use the most appropriate DHHA_AO value by multiplying ETS or NTS values by a

constant number (i.e., 3) and then divide the result by a constant number (i.e., 4), (i.e.,

DHHA_AO=*3/4) to achieve the most optimal TS value, as this value will affect the

approval discussion to choose the LLH for the next run.
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With this dynamic LLH algorithm selection mechanism, the proposed hyper-heuristic

algorithm helps towards finding a more optimal solution for the cost optimisation problem

of SWFS in cloud environment. It is worth to mention that due to the domain barrier, the

HLH strategy does not have enough knowledge about the nature of SWFS problem, while

the DHHA_SO and DHHA_AO translate the scheduling problem (that has been defined

in Section 4.1) as the problem domain by adopting the computed TS to choose the most

appropriate algorithm from the employed LLH algorithms.

4.2.4 Stage 4: Termination Stage (Step 15)

The steps in selection and approval stages are repeated until the stop criteria is met.

Note that the considered stop criteria of the proposed algorithm are the maximum number

of runs. Based on the literature review setting (Talukder et al., 2009, 2007; J. Yu, Kirley,

& Buyya, 2007), the maximum number of runs has been fixed to 30 as the stop criteria.

Finally, the result of all successful runs has been collected and analysed, and also compared

them with the baseline meta-heuristic algorithms.

4.2.5 Example of the Proposed Algorithm

In this section, an example of the proposed dynamic hyper-heuristic algorithm is

provided. The given example is about the considered scenario, where the size of SWFA

tasks is the smallest problem size and number of available VMs is 8.

At the first step of the proposedDHHA (Figure 4.8), all the employedmeta-heuristic LLH

algorithms (i.e. genetic algorithm, particle swarm optimisation, invasive weed optimisation,

and hybrid invasive weed optimisation) run for five times. Then, in the second step, average

completion time (AV_M) from the results of running all LLH algorithms are taken and

stored in a scoreboard table.
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Figure 4.8: First step of the proposed DHHA

The proposed approach sorts the obtained average completion time (TS), where the TS

value is arranged from the smallest to the largest value (Figure 4.9).

Figure 4.9: Sorting the scoreboard table based on the TS value

As shown in Figure 4.10, after applying the DHHA_SO the HLH strategy chooses the

LLH algorithm (h) with the lowest TS. Based on the afore-mentioned online learning

mechanism, the IWO algorithm has shown to have the smallest TS value. Therefore, IWO

is used on the next run to schedule the SWFA for this scenario.
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Figure 4.10: Apply the Selector Operator (DHHA_SO)

Figure 4.11 shows the result after applying DHHA_SO and DHHA_AO. Next, the

scoreboard table and the run table are updated based on the lowest TS value (i.e., 362.15),

which achieved by IWO algorithm. Thus, after each run the proposed algorithm updates

the scoreboard table and run table based on the sorted the TS value.

Figure 4.11: Updating scoreboard table and run table

The above-mentioned steps are repeated for 30 times by applying DHHA_SO and

DHHA_AO (Figure 4.12). The termination criteria of the proposed DHHA is the maximum

number of runs (i.e. 30 times).
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Figure 4.12: Repeating the proposed operators of the HLH strategy till reaching
termination criteria

4.3 Summary

The hyper-heuristic approach is an emerging class of meta-heuristic algorithms, which

is integrated in such a manner that allows utilising the maximum strengths of the employed

meta-heuristic algorithms to obtain an optimal solution. In the literature, the hyper-

heuristic mechanisms achieved better performance in terms of shorter execution time

compared to other optimisation mechanisms. Additionally, hyper meta-heuristic is a class

of new advanced techniques that are capable of accelerating the run-time of a single

meta-heuristic algorithm. The proposed DHHA employs four well-known population-

based meta-heuristic algorithms, which act as Low Level Heuristic (LLH) algorithms (i.e.

genetic algorithm, particle swarm optimisation, invasive weed optimisation, and hybrid

invasive weed optimisation). In addition, the proposed algorithm enhances the native

random selection way of existing hyper-heuristic approaches by incorporating the best

computed workflow completion time that acts as a high-level selector to pick a suitable

algorithm from the pool of LLH algorithms after each run. The HLH strategy of the

Selector Operator (DHHA_SO) and Approval Operator (DHHA_AO) is depending on the

completion time performance of the employed LLH algorithms.

The main aim of the proposed approach is to reduce the completion time and total

computational cost to execute the SWFA. Based on the lowest achieved completion time,
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the proposed approach dynamically guides the searching processes to find an optimal

solution by continuously sorting the computed time scores (i.e. completion times of

previous runs) of all LLH algorithms for each considered scenario and after every run.

Consequently, the mechanism of the proposed completion time driven hyper-heuristic

becomes more effective in a way allowing reusing and utilising the maximum strengths of

the employed LLH algorithms in searching for the optimal solution of the targeted cost

optimisation problem.
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CHAPTER 5: EVALUATION AND ANALYSIS USING SIMULATION
ENVIRONMENT

In order to achieve the third research objective of this research, which is “To evaluate and

analyse the performance of cost optimisation parameters (i.e., completion time and total

computational cost) of the proposed approach”, and based on the third stage of research

methodology, in this chapter, all the relevant steps have been identified and discussed

in order to evaluate the proposed completion time driven hyper-heuristic approach for

cost optimisation of SWFS using simulation environment. The benefit of using the

simulation environment is to investigate the performance of proposed approach based on

different types of SWFAs. The proposed CTDHH approach has extensively evaluated

by comparing it with four well-known types of meta-heuristics baseline algorithms (i.e.,

genetic algorithm, particle swarm optimisation, invasive weed optimisation, and hybrid

invasive weed optimisation) as well as by comparing the proposed CTDHH approach

with an existing hyper-heuristic approach named Hyper-Heuristic Scheduling Algorithm

(HHSA). Appendix A provides a complete description of baseline approaches (i.e., GA,

PSO, IWO, and HIWO) and the HHSA approach. Four types of SWFAs datasets (i.e.,

Epigenomics, Inspiral, Montage, SIPHT) have been used in the simulation experimentation,

and for each of these SWFAs, there are three sizes which have been considered in order to

evaluate the data intensiveness and computational intensiveness of the proposed approach.

The experimentation setup of the simulation environment has been discussed. Finally,

different types of statistical analysis have been conducted for the collected results from

running the experimentation. A complete detail on the evaluation of the proposed approach

in the simulation environment will be provided in the following sections.
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5.1 Simulation Environment

The evaluation of any approach using the simulation environment would allow the

researchers to perform simulationswith different application configurations under controlled

conditions. Also, based on the comparison of existing experimental tools (Section 3.3.1)

from the state-of-the-art cost optimisation of SWFS approaches, it has been found that

there are several types of simulations tools that have been utilised by the other researchers

for evaluating the cost optimisation of SWFS approaches in cloud computing (i.e.,

CloudSim (Calheiros, Ranjan, Beloglazov, De Rose, & Buyya, 2011), GridSim (Buyya &

Murshed, 2002), EMUSIM (Calheiros, Netto, De Rose, & Buyya, 2013), and CloudAnalyst

(Wickremasinghe, Calheiros, & Buyya, n.d.). However, only the WorkflowSim (W. Chen

& Deelman, n.d.) simulator is considered as the standard workflow execution model such

as workflow mapper, workflow engine, workflow scheduler, clustering engine, provenance

collector, workflow partitioner. WorkflowSim simulator is an open-access programming

tools for developing and simulating WfMS implemented in a parallel and distributed

environment (W. Chen & Deelman, n.d.).

The following are the main characteristics of WorkflowSim models:

- Workflow Mapper to map abstract workflows to concrete workflows that are

dependent on execution sites.

- Workflow Engine handles the data dependencies.

- Workflow Scheduler matches jobs to the resources.

- Clustering Engine merges small tasks into a large job.

- Provenance Collector tracks the history of task/job execution.

- Workflow Partitioner divides the user workflow into multiple sub-workflows.

Implementation of the proposed CTDHH approach has been done on WorkflowSim

simulator by setting it up on Eclipse editor. Next, the WorkflowSim simulator has been
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utilised to develop and evaluate the proposed approach by comparing it with four meta-

heuristics baseline algorithms as well as by comparing the proposed CTDHH approach with

the HHSA approach. WorkflowSim simulator uses the data collected from actual scientific

workflow executions to generate synthetic workflows resembling those used by real-world

scientific applications. The scheduling-based simulation allows in clearly understanding

and assessing the scheduling process and to easily determine various types of scenarios that

depend on the number of available VMs and size of SWFA dataset to completely investigate

the performance of the proposed approach. The WorkflowSim simulator includes several

types of examples and each of these examples is used for different kinds of challenges

of workflow management processes (e.g., networking, clustering, power estimation, cost

computation, scheduling). Additionally, the WorkflowSim simulator has the required cloud

CloudSim (Calheiros et al., 2011) techniques that support the execution of workloads in

cloud computing infrastructures and services. CloudSim classes and packages have been

used to read the execution time value of tasks for the workload traces.

5.2 Scientific Workflow Applications

As already defined the SWFA in the previous chapters, the SWFA consists of multiple

tasks, which are necessary to complete a submitted workflow (Wieczorek et al., 2009; Ma

et al., 2009; Malawski et al., 2014; Pacini, Mateos, & Garino, 2014). The components

of these tasks can be any executable instances (e.g., load sets, report sets, programs, and

data). The other relation in a scientific workflow application is the relationship between

the tasks/jobs and their data dependencies. As illustrated in Figure 5.1, there are five main

types of relationships between the jobs and data of SWFAs, which are process, pipeline,

data distribution, data aggregation and data redistribution.
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Figure 5.1: Types of the relationship between job and data of SWFAs

Additionally, in the clustering stage of WorkflowSim simulator, the tasks that have the

same type of process can be represented as a job (Figure 5.1). In this way, similar tasks

can be executed one time instead of repeating the same execution for several times.

Based on the literature review, four kinds of SWFAs (i.e., Epigenomics, Inspiral,

Montage, SIPHT) have been considered as datasets to compare the proposed approach with

the baseline approaches as well as to compare the proposed approach with HHSA approach.

These SWFAs have been widely adopted by several researchers as standard SWFAs

(Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013; Malawski et al., 2012, 2014;

Szabo et al., 2014). Each of the considered SWFAs has different computation-intensive

tasks dependencies because it has been used to facilitate different scientific application. In

order to evaluate the data-intensiveness of the proposed CTDHH approach, different sizes

for each of the SWFAs (i.e., small, medium, and large) have been considered. Complete

definitions for each of the considered SWFAs can be found in Appendix B. Table 5.1

represents the settings of the SWFAs that have been used to evaluate the proposed CTDHH

approach based on the size of the application, number of tasks and number of edges.
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Table 5.1: Specification of SWFA datasets

Dataset Name Workflow Application Number of Tasks Number of Edges

CyberShake Earthquake science
50 88
100 180
1000 1988

Epigenome Biology
46 54
100 122
997 1234

LIGO Inspiral Gravitational physics
50 60
100 119
1000 1233

Montage Astronomy
50 106
100 233
1000 2485

SIPHT Biology
60 66
100 109
1000 1096

5.3 Experimentation Setting

For running the simulation experiments, PC with the following specifications has been

used: (i) operating system: Windows 10 Pro (64 bit), (ii) processor: Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz, and (iii) Memory (RAM): 12.0 GB. Due to the reason that

the WorkflowSim is programmed using Java language, Eclipse as integrated development

environment has been used to run the WorkflowSim codes and to implement the proposed

CTDHH approach. The code of WorkflowSim simulator (Version 1.0) has been directly im-

ported from the GitHub website (https://github.com/WorkflowSim/WorkflowSim-1.0.git).

After doing the necessary modifications to the directories of WorkflowSim code, existing

provided examples of the simulator are successfully managed to run. It is worth to mention

that the prices of VM is based on EC2 pricing list. In this research, the type of available

computational resources (i.e., VMs) has been selected based on the comprehensive study of

the existing reproaches in Section 3.3.1 and based onWorkflowSim simulation environment,

the considered VM instance is equivalent to t2.small instance of Amazon EC2 website
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(Amazon EC2 instance types, 2015).

5.4 Results and discussion of Simulation Environment

The proposed Completion Time Driven Hyper-Heuristic (CTDHH) approach has been

compared with four baseline meta-heuristic algorithms (i.e., Genetic Algorithm (GA),

Particle Swarm Optimisation (PSO), Invasive Weed Optimisation (IWO), and Hybrid

Invasive Weed Optimisation (HIWO)) and an existing hyper-heuristic approach named

Hyper-Heuristic Scheduling Algorithm (HHSA). The complete details for each of the used

population-based approaches and HHSA approach is provided in Appendix A.

Four types of SWFAs (i.e., Epigenomics, Inspiral, Montage and Sipht) have been

considered in the simulation environment, which is considered as standard SWFAs in

several previous studies (Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013;

Y. Yang et al., 2008; H. Liu et al., 2011). For each of these SWFAs, there are nine

scenarios that have been utilized in the experiments and each of these scenario has different

number of workflow tasks and different number of VMs. Two main types of statistical

analysis have been used in this research to evaluate the performance of the proposed

CTDHH approach including descriptive statistical analysis as well as normality testing

and significant statistical analysis.

5.4.1 Descriptive Statistic Analysis

In order to extensively analyse the collected data from experimentation, four types of

descriptive statistical analysis have been used (i.e., average, minimum, maximum, and

standard deviation (S.D.)). The descriptive statistic analysis method has been conducted

to compare the proposed CTDHH approach with the baseline approaches and HHSA

approach based on the completion time and total computational cost parameters. As has

been discussed in Section 4.1.3, the value of completion time is calculated based on the

157

Univ
ers

ity
 of

 M
ala

ya



Table 5.2: Specification of scenarios for Epigenomics SWFA in simulation environ-
ment

Scenario No. of Tasks No. of VMs
1 24 2
2 24 4
3 24 8
4 100 2
5 100 4
6 100 8
7 997 2
8 997 4
9 997 8

total required time to finish executing the submitted workflow tasks. Moreover, due to

the static submitting criteria, the value of total computational cost is driven from the

completion time multiplied by the number of VMs multiplied by the price of the VM.

In the following sections, Section 5.4.1.1, Section 5.4.1.2, Section 5.4.1.3, and Section

5.4.1.4, the descriptive statistic analysis of experimentation results have been presented

and discussed for each of the considered SWFAs (i.e., Epigenomics, Inspiral, Montage and

Sipht).

5.4.1.1 Epigenomics-Genome Sequencing SWFAs

This section provides the descriptive statistic analysis result’s discussion of Epigenomics

SWFA. Table 5.2 shows the specification of the utilized scenarios for Epigenomics SWFA.

Based on the number of tasks (which depends on the dataset size) and number of VMs, the

first three scenarios are considered as the smallest datasets scenarios, while the last three

scenarios are considered as the largest scenarios. Appendix B.1 describes the Epigenomics

SWFA datasets in detail.

This section has been divided into two parts. The first part presents the comparison

between proposed CTDHH approach and the baseline approaches (i.e., GA, PSO, IWO,

HIWO), while the second part presents the comparison between proposed CTDHH
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approach and HHSA approach.

A- Comparison between Proposed CTDHH Approach and Baseline Approaches

In this section, the completion time and total computational cost statistical results based

on the comparison between proposed CTDHH approach and baseline approaches have

been presented for each of the nine considered scenarios. Based on the reviewed related

works, the average value has been considered as standard benchmarks by other researchers

in this area of research (Abrishami & Naghibzadeh, 2012; Saeid Abrishami, 2013).

i. Completion time results:

Table 5.3 represents the descriptive statistical analysis for completion time results of

Epigenomics SWFA for all considered nine scenarios.

Table 5.3: Completion time comparisonbetweenCTDHH

and baselines for Epigenomics
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 22.704 22.704 22.704 22.704 14.308
MIN 22.704 22.704 22.704 22.704 5.948
MAX 22.704 22.704 22.704 22.704 26.262
S.D. 7.2269E-15 7.2269E-15 7.2269E-15 7.2269E-15 5.537990448

Scenario-2
GA PSO HIWO IWO CTDHH

AVAERAGE 25.88666667 27.45866667 26.34533333 26.43466667 23.343
MIN 22.924 22.924 22.924 22.924 7
MAX 28.484 28.484 28.484 28.484 40.942
S.D. 2.625728054 1.552909912 2.153623624 1.782943969 7.201940557

Scenario-3
GA PSO HIWO IWO CTDHH

AVAERAGE 33.75066667 35.444 33.852 33.00933333 24.0434
MIN 23.364 26.484 23.364 23.364 13.176
MAX 42.484 42.484 42.484 42.484 39.452
S.D. 6.956561444 5.965972476 6.873689167 7.881233814 7.224372716

Scenario-4
GA PSO HIWO IWO CTDHH

AVAERAGE 44.672 44.0328 44.672 44.672 26.38806667
MIN 44.672 25.496 44.672 44.672 14.604
MAX 44.672 44.672 44.672 44.672 65.118
S.D. 2.16807E-14 3.501042588 2.16807E-14 2.16807E-14 12.50616675

Scenario-5
GA PSO HIWO IWO CTDHH

AVAERAGE 53.19066667 59.04773333 58.72133333 58.38 33.1116
MIN 44.892 44.892 44.892 44.892 12
MAX 65.652 65.652 65.652 65.652 66.852
S.D. 8.789534425 8.722158033 6.301316192 8.247980066 11.12517507

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 82.33733333 81.83773333 87.01733333 88.452 70.96763333
MIN 45.332 36.476 45.332 56.052 36.08
MAX 110.052 110.052 110.052 110.052 105.78
S.D. 19.98126221 20.96481981 20.77926747 19.11030774 16.13633771

Scenario-7
GA PSO HIWO IWO CTDHH
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AVERAGE 127.126 124.9986 127.126 127.126 119.3176
MIN 127.126 101.85 127.126 127.126 109.54
MAX 127.126 127.126 127.126 127.126 133.356
S.D. 7.2269E-14 5.812743103 7.2269E-14 7.2269E-14 9.14656196

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 242.162 237.1503333 236.818 236.0023333 187.4326667
MIN 127.346 127.346 127.346 114.95 127.346
MAX 317.576 317.576 317.576 324.036 217.476
S.D. 65.50383503 83.41390572 79.65963722 73.17068109 43.21402736

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 586.776 425.3893333 449.8770333 570.026 359.4460667
MIN 218.276 217.476 109.316 218.276 318.776
MAX 720.776 720.776 720.776 720.776 419.276
S.D. 177.7014156 192.4171075 208.9468766 184.276252 44.27171072

From Table 5.3, it can be clearly seen that the average completion time of proposed

CTDHH approach significantly outperformed the baseline approaches for all scenarios.

This is due to the fact that the hyper-heuristic mechanism always chooses the selected

LLH based on their completion time performance at each iteration. Moreover, due to

the utilized simulation environment, the S.D. results are considered higher than those in

the the real-world environment. However, the average value of the completion time is

more important than the S.D. as completion time value is always considered as standard

benchmark by other researchers in this area of research (Abrishami & Naghibzadeh, 2012;

Saeid Abrishami, 2013).

Figure 5.2 illustrates the average completion time of CTDHH and baselines for

Epigenomics SWFA based on the calculated results in Table 5.2. This figure has five charts

and each of these charts is representing the relationship between the average completion

time of each considered scenarios; where x-axis represents the considered scenarios, and

y-axis denotes average completion time in seconds.
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Figure 5.2: Average completion time of CTDHH and baselines for Epigenomics
SWFA

It is evident from Figure 5.2 that the average completion time is increasing as the number

of workflow tasks and number of available VMs are increased for all approaches. The

average completion time of the proposed CTDHH approach outperforms other baseline

approaches for all considered scenarios. The underlying fact of achieving this desired

result is that the proposed CTDHH dynamically chooses the LLH using selection and

approval operators. As a result, the proposed CTDHH approach attains minimal average

completion time as compared to those of the employed baseline approaches.

Figure 5.3 shows the comparison between average completion time of all approaches
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(i.e., proposed and baselines) for Epigenomics SWFA for all considered scenarios.

Figure 5.3: Average completion time of all approaches for Epigenomics SWFA

From Figure 5.3, it can be concluded that as the size of a dataset increases along with

several available VMs, the proposed CTDHH approach attains better performance (in terms

of completion time) than baseline approaches. Improved performance is not so obvious for

the proposed approach until scenario 6, this is because of lesser a number of tasks (i.e.,

maximum up to 100). In contrast, as the number of tasks (i.e., 100 to 997) increases for

scenarios 6 to 9, significant differences of average completion time are attained by the

proposed approach over all other approaches.

ii. Total computational cost results:

Table 5.4 represents the descriptive statistical analysis results for total computational cost

by comparing the proposed CTDHH approach and baseline approaches of Epigenomics

SWFA for all considered scenarios.
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Table 5.4: Total computational cost comparison CTDHH

and baselines for Epigenomics
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 0.0266454 0.0266454 0.0266454 0.0266454 0.0167919
MIN 0.0266454 0.0266454 0.0266454 0.0266454 0.0069806
MAX 0.0266454 0.0266454 0.0266454 0.0266454 0.0308211
S.D. 4.962E-18 4.962E-18 4.962E-18 4.962E-18 0.0064994

Scenario-2
GA PSO HIWO IWO CTDHH

AVAERAGE 0.0607612 0.064451 0.0618378 0.0620474 0.0547907
MIN 0.0538072 0.0538072 0.0538072 0.0538072 0.0164304
MAX 0.0668576 0.0668576 0.0668576 0.0668576 0.0960991
S.D. 0.0061631 0.003645 0.005055 0.0041849 0.0169044

Scenario-3
GA PSO HIWO IWO CTDHH

AVAERAGE 0.1584391 0.1663883 0.1589148 0.154959 0.1128693
MIN 0.10968 0.1243265 0.10968 0.10968 0.0618534
MAX 0.1994369 0.1994369 0.1994369 0.1994369 0.1852035
S.D. 0.0326569 0.0280067 0.0322678 0.0369977 0.0339141

Scenario-4
GA PSO HIWO IWO CTDHH

AVAERAGE 0.0524271 0.0516769 0.0524271 0.0524271 0.030969
MIN 0.0524271 0.0299221 0.0524271 0.0524271 0.0171393
MAX 0.0524271 0.0524271 0.0524271 0.0524271 0.0764225
S.D. 0 0.0041088 0 0 0.0146772

Scenario-5
GA PSO HIWO IWO CTDHH

AVAERAGE 0.1248491 0.1385968 0.1378307 0.1370295 0.0777195
MIN 0.1053705 0.1053705 0.1053705 0.1053705 0.0281664
MAX 0.1540984 0.1540984 0.1540984 0.1540984 0.156915
S.D. 0.0206308 0.0204726 0.0147904 0.0193597 0.026113

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 0.3865244 0.3841791 0.4084942 0.2631305 0.3331505
MIN 0.2128065 0.1712329 0.2128065 0.2631305 0.169374
MAX 0.5166281 0.5166281 0.5166281 0.5166281 0.4965736
S.D. 0.0938 0.0984173 0.0975462 0.0897114 0.0757504

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 0.1491951 0.1466984 0.1491951 0.1491951 0.1400311
MIN 0.1491951 0.1195312 0.1491951 0.1491951 0.1285561
MAX 0.1491951 0.1491951 0.1491951 0.1491951 0.1565066
S.D. 7.94E-17 0.0068218 7.94E-17 7.94E-17 0.0107344

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 0.5684026 0.5566393 0.5558592 0.5539447 0.439942
MIN 0.2989065 0.2989065 0.2989065 0.2698106 0.2989065
MAX 0.7454144 0.7454144 0.7454144 0.7605773 0.5104597
S.D. 0.1537506 0.1957891 0.1869771 0.1717462 0.101432

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 2.7545613 1.9969477 2.1119027 2.6759301 1.6873836
MIN 1.0246749 1.0209193 0.513173 1.0246749 1.4964621
MAX 3.3836109 3.3836109 3.3836109 3.3836109 1.9682493
S.D. 0.8342015 0.9032829 0.9808802 0.8650664 0.2078291

Table 5.4 highlights that the average total computational cost of the proposed CTDHH

approach has the lowest average value for all scenarios comparing with other baseline

approaches. This is mainly due to the fact that the average total completion cost value of
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SWFS depends on the average completion time. This has confirmed that the proposed HLH

strategy has successfully improved the performance of the proposed CTDHH approach

by dynamically choosing the optimal solution for SWFS. However, in scenario 6, the

computational cost value of IWO approach is slightly lower than the computational

cost value of the proposed CTDHH approach and this due to fact that IWO approach

has achieved shorter convergence time with complex SWFA (i.e., Epigenomics), which

ultimately affected the total computational cost value.

Figure 5.4 illustrates the average total computational cost of the proposed CTDHH

and baseline approaches for Epigenomics. It contains five charts and each of these charts

is representing the relationship between the total computational cost ($/hour) and the

considered scenarios.
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Figure 5.4: Average total computational cost of CTDHH and baselines for Epige-
nomics

Figure 5.4 shows that the total computational cost heavily depends on the completion

time, number of available VMs as well as the number of workflow tasks for each of the

considered scenarios. The proposed CTDHH approach always attains optimal performance

results for most of the considered scenarios. In few scenarios, the proposed CTDHH

approach could achieved longer convergence time with complex SWFA (i.e., Epigenomics),

which ultimately affected the total computational cost value.

Figure 5.5 illustrates the comparison between average total computational cost ($/hour)

values of all approaches for the considered scenarios.
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Figure 5.5: Average total computational cost of all approaches for Epigenomics
SWFA

It can be observed from Figure 5.5 that there is a significant difference between the

performance of all approaches for scenario 6 to scenario 9, due to the limited searching

space for the optimal solutions. This confirmed the fact that the total computational cost

results heavily depend on the average completion time values, which are ultimately affected

by the number of submitted SWFA tasks as well as the number of available VMs.

B- Comparison between Proposed CTDHH Approach and HHSA Approach

In this section, the descriptive statistical analysis has been presented for the completion

time and total computational cost by comparing the proposed CTDHH approach with

HHSA approach.

i. Completion time results:

Table 5.5 illustrates the descriptive statistical analysis of completion time by comparing
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the proposed CTDHH approach and HHSA approach for Epigenomics for all considered

scenarios.

Table 5.5: Completion time comparisonbetweenCTDHH

and HHSA for Epigenomics
Scenario-1

HHSA CTDHH
AVERAGE 17.4762 14.308
MIN 0.31 5.948
MAX 26.262 26.262
S.D. 6.595894153 5.537990448

Scenario-2
HHSA CTDHH

AVAERAGE 25.88666667 23.343
MIN 22.924 7
MAX 28.484 40.942
S.D. 2.625728054 7.201940557

Scenario-3
HHSA CTDHH

AVAERAGE 29.43326667 24.0434
MIN 19 13.176
MAX 46.096 39.452
S.D. 7.950334237 7.224372716

Scenario-4
HHSA CTDHH

AVAERAGE 39.0698 26.38806667
MIN 27.196 14.604
MAX 46.534 65.118
S.D. 7.899832584 12.50616675

Scenario-5
HHSA CTDHH

AVAERAGE 43.0406 33.1116
MIN 22.612 12
MAX 67.242 66.852
S.D. 13.88392496 11.12517507

Scenario-6
HHSA CTDHH

AVERAGE 74.4286 70.96763333
MIN 24.032 36.08
MAX 110.052 105.78
S.D. 27.08556185 16.13633771

Scenario-7
HHSA CTDHH

AVERAGE 122.2767333 119.3176
MIN 109.63 109.54
MAX 133.356 133.356
S.D. 9.164143867 9.14656196

Scenario-8
HHSA CTDHH

AVERAGE 258.9094 187.4326667
MIN 139.986 127.346
MAX 306.26 217.476
S.D. 53.18472592 43.21402736

Scenario-9
HHSA CTDHH

AVERAGE 482.7182 359.4460667
MIN 189.19 318.776
MAX 720.776 419.276
S.D. 198.648087 44.27171072

It can be observed from Table 5.5 that the average completion time value of the proposed

CTDHH approach is more optimised than HHSA approach. This is because of the reason
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that the dynamic mechanism of the proposed CTDHH has replaced the random mechanism

in the HHSA approach. Generally speaking, the dynamic mechanism enables the proposed

CTDHH approach to intelligently determine the optimal solution rather than randomly

finding the solution as of HHSA approach.

Figure 5.6 illustrates the average completion time of CTDHH and HHSA approach

for Epigenomics SWFA. Figure 5.6 has two charts, where each chart is representing the

relationship between the completion time and the considered scenarios for each of the

approaches.

Figure 5.6: Average completion time of CTDHH and HHSA for Epigenomics SWFA

From Figure 5.6, it can be seen that the average completion time (in second) increases

as the number of workflow tasks and number of available of VMs are increased for both

approaches.

Figure 5.7 shows the average completion time of both approaches for Epigenomics

SWFA of all the considered scenarios.
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Figure 5.7: Average completion time of both approaches for Epigenomics SWFA

From Figure 5.7, it can be concluded that the proposed CTDHH approach has attained

better performance than HHSA approach. Even if the number of tasks and VMs increases,

it can be also observed that the average completion time of HHSA is significantly affected

by the large numbers of workflow tasks (scenario seven, eight, and nine). Furthermore,

for scenarios one to five, the differences between the average completion time values are

marginally different for both approaches. This is mainly due to the fact that the employed

LLH computes very a few number of optimal solutions for the smallest size scenarios (i.e.,

scenarios one to five). As a result, the hyper heuristic approaches have limited options to

select the best LLH.

ii. Total computational cost results:

Table 5.6 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and HHSA approach for Epigenomics SWFA.
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Table 5.6: Total computational cost comparison CTDHH

and HHSA for Epigenomics
Scenario-1

HHSA CTDHH
AVERAGE 0.0205101 0.0167919
MIN 0.0003638 0.0069806
MAX 0.0308211 0.0308211
S.D. 0.0077409 0.0064994

Scenario-2
HHSA CTDHH

AVAERAGE 0.0607612 0.0547907
MIN 0.0538072 0.0164304
MAX 0.0668576 0.0960991
S.D. 0.0061631 0.0169044

Scenario-3
HHSA CTDHH

AVAERAGE 0.1381715 0.1128693
MIN 0.0891936 0.0618534
MAX 0.2163931 0.1852035
S.D. 0.037322 0.0339141

Scenario-4
HHSA CTDHH

AVAERAGE 0.0458523 0.030969
MIN 0.0319172 0.0171393
MAX 0.0546123 0.0764225
S.D. 0.0092712 0.0146772

Scenario-5
HHSA CTDHH

AVAERAGE 0.1010249 0.0777195
MIN 0.0530749 0.0281664
MAX 0.1578304 0.156915
S.D. 0.0325883 0.026113

Scenario-6
HHSA CTDHH

AVERAGE 0.3493976 0.3331505
MIN 0.1128158 0.169374
MAX 0.5166281 0.4965736
S.D. 0.1271505 0.0757504

Scenario-7
HHSA CTDHH

AVERAGE 0.143504 0.1400311
MIN 0.1286618 0.1285561
MAX 0.1565066 0.1565066
S.D. 0.010755 0.0107344

Scenario-8
HHSA CTDHH

AVERAGE 0.6077121 0.439942
MIN 0.3285751 0.2989065
MAX 0.7188535 0.5104597
S.D. 0.1248352 0.101432

Scenario-9
HHSA CTDHH

AVERAGE 2.2660723 1.6873836
MIN 0.8881335 1.4964621
MAX 3.3836109 1.9682493
S.D. 0.9325336 0.2078291

Table 5.6 shows that the total computational cost value depends on the completion

time (makespan) value. This table shows that the values of total computational cost of

larger datasets (scenarios seven, eight, and nine) are higher than those of the other smaller
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datasets (scenarios one to six), this is due to the completion time required to execute the

SWFA. Also, the total computational cost of the proposed CTDHH approach has the lowest

average values for most of all scenarios compared to the HHSA approach.

Figure 5.8 illustrates the average total computational cost of CTDHH and HHSA for

Epigenomics. This figure contains two charts, where each chart represents the relationship

between the total computational cost ($/hour) and the considered scenarios.

Figure 5.8: Average total computational cost of CTDHH andHHSA for Epigenomics

Figure 5.8 shows that the proposed CTDHH approach has more optimal performance for

average total computational cost results for all of the considered scenarios. Furthermore,

the average total computational cost results of the largest scenarios (scenarios seven, eight,

and nine) are higher than those of the other scenarios (scenarios one to six), which reflects

the similar results’ trends as illustrated in Table 5.6.

Figure 5.9 illustrates the average total computational cost ($/hour) values of both

approaches for the considered scenarios.
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Figure 5.9: Average total computational of both approaches for Epigenomics SWFA

The results shown in Figure 5.9 pointed out that the HHSA approach does not show a

good result comparing with the proposed CTDHH approach for Epigenomics SWFA. This

is because of the random behavior of HHSA approach due to which HHSA cannot always

determine the optimal results for larger scenarios (i.e., scenario seven, eight, and nine).

5.4.1.2 Inspiral Analysis (LIGO) - Gravitational Physics SWFAs

This section provides the result discussion of Inspiral SWFA. Table 5.7 shows the

specification for utilized scenarios of Inspiral SWFA. Based on the datasets size, the first

three scenarios are considered as the smallest datasets scenarios, while the last three

scenarios are considered the largest datasets scenarios. Appendix B.2 describes the Inspiral

SWFA datasets in detail.

This section has been divided into two parts. The first part presents the comparison

172

Univ
ers

ity
 of

 M
ala

ya



Table 5.7: Specification of scenarios for Inspiral SWFA in simulation environment

Scenario No. of Tasks No. of VMs
1 30 2
2 30 4
3 30 8
4 100 2
5 100 4
6 100 8
7 1000 2
8 1000 4
9 1000 8

between the proposed CTDHH approach and baseline approaches, while the second part

presents the comparison between proposed CTDHH approach and HHSA approach.

A- Comparison between Proposed CTDHH Approach and Baseline Approaches

In this section, the descriptive statistical results for the completion time and total

computational cost based on the comparison between proposed CTDHH approach and

baseline approaches has been discussed.

i. Completion time results:

Table 5.8 represents the descriptive statistical analysis for completion time results for

Inspiral SWFA for all considered nine scenarios.

Table 5.8: Completion time comparisonbetweenCTDHH

and baselines for Inspiral
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 3.45 3.449333333 3.45 3.45 2.979
MIN 3.45 3.43 3.45 3.45 1.74
MAX 3.45 3.45 3.45 3.45 4.048
S.D. 1.80672E-15 0.003651484 1.80672E-15 1.80672E-15 0.850991916

Scenario-2
GA PSO HIWO IWO CTDHH

AVERAGE 7.41 9.285666667 7.965333333 7.285333333 5.9464
MIN 3.67 3.67 3.67 3.67 2.07
MAX 10.3 10.3 10.3 10.3 10.3
S.D. 2.984823682 1.800485918 2.912133633 2.666320897 2.271940104

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 19.35333333 18.62333333 17.73593333 17.967 14.79333333
MIN 7.7 7.7 7.53 4.11 7.7
MAX 26.7 26.7 26.7 26.7 22.9
S.D. 7.463369551 6.737014756 5.317247888 6.615523619 5.15972021

Scenario-4
GA PSO HIWO IWO CTDHH
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AVERAGE 11.2 11.20466667 11.2 11.2 11.10733333
MIN 11.2 11.2 11.2 11.2 10.18
MAX 11.2 11.34 11.2 11.2 11.2
S.D. 5.42017E-15 0.025560386 5.42017E-15 5.42017E-15 0.210728348

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 23.91366667 25.31766667 24.29466667 25.5008 19.82233333
MIN 11.53 11.53 11.53 11.53 11.53
MAX 31.3 31.3 31.3 32.316 31.3
S.D. 8.230541727 7.945867147 8.700737873 7.080943082 6.685370381

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 51.65133333 56.007 56.29566667 53.40926667 41.89833333
MIN 11.97 11.97 11.97 16.584 21.7
MAX 75.7 75.7 75.7 75.7 54.1
S.D. 20.24395589 19.82477658 18.8109179 20.6807493 13.13070161

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 110.2 110.4754 110.2 110.2 105.9406667
MIN 110.2 110.19 110.2 110.2 95.32
MAX 110.2 110.798 110.2 110.2 115.06
S.D. 4.33614E-14 0.300149457 4.33614E-14 4.33614E-14 7.346838839

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 269.1000667 222.788 215.98 257.0233333 205.3340667
MIN 73.79 110.2 110.2 200.3 110.2
MAX 301.616 300.4 300.4 300.4 300.4
S.D. 63.49477771 72.23347559 74.20156797 50.45109399 83.11686029

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 401.8333333 563.9966667 402.8333333 627.3933333 338.6054
MIN 110.2 200.3 110.2 500.6 158.68
MAX 700.8 700.8 700.8 700.8 702.832
S.D. 199.8865063 192.2468842 211.821005 98.12453007 162.5510125

Regarding the average completion time, it can be concluded from Table 5.8 that the

proposed CTDHH approach performs much better than the other baseline approaches.

This is due to the nature of Inspiral workforce tasks, which contains a less number of

dependencies for smaller size of datasets. The Inspiral application is strongly affected by

the smaller size of datasets, which gives limited options for the employed LLH algorithms

to determine the SWFS solutions. This can be seen from the results of scenarios 1 to 7

for all the approaches. However, for larger size of datasets (scenario eight and nine), the

differences between average completion time values are more than other scenarios.

Figure 5.10 illustrates the average completion time of the proposed CTDHH approach

and baseline approaches for Inspiral SWFA. This figure contains two charts, where each

chart represents the relationship between the average completion time (in second) and the

considered scenarios.
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Figure 5.10: Average completion time of CTDHH and baselines for Inspiral SWFA

Figure 5.10 shows that the average completion time of the proposed CTDHH approach

has a shorter completion time for all considered scenarios. At the same time, for scenarios

one to seven (in Table 5.8), the baseline meta-heuristic algorithms attained very similar or

close values to each other. The smaller size scenarios give limited options for the employed

LLH algorithms to find SWFS solutions. In contrast, for scenarios that has larger size

of tasks and large number of VMs, the approaches have larger search space to find the

optimize solution.

Figure 5.11 shows the average completion time of all approaches for Inspiral SWFA of
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all the considered scenarios.

Figure 5.11: Average completion time of all approaches for Inspiral SWFA

From Figure 5.11, it can be noticed that the average completion time of the proposed

CTDHH approach is lowest for scenarios eight and nine. In contrast, the average completion

time values achieved by all approaches are very close to each other for scenarios one to

seven.

ii. Total computational cost results

Table 5.9 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and baseline approaches for Inspiral SWFA.

Table 5.9: Total computational cost comparison CTDHH

and baselines for Inspiral
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 0.00404892 0.004048138 0.00404892 0.00404892 0.003496154
MIN 0.00404892 0.004025448 0.00404892 0.00404892 0.002042064
MAX 0.00404892 0.00404892 0.00404892 0.00404892 0.004750733
S.D. 6.20289E-19 4.28538E-06 6.20289E-19 6.20289E-19 0.000998724

Scenario-2
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GA PSO HIWO IWO CTDHH
AVERAGE 0.017392752 0.021795317 0.01869623 0.017100134 0.01395739
MIN 0.008614224 0.008614224 0.008614224 0.008614224 0.004858704
MAX 0.02417616 0.02417616 0.02417616 0.02417616 0.02417616
S.D. 0.007005978 0.004226101 0.00683536 0.006258388 0.005332698

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 0.090852288 0.087425376 0.083259565 0.084344285 0.069445824
MIN 0.03614688 0.03614688 0.035348832 0.019293984 0.03614688
MAX 0.12534048 0.12534048 0.12534048 0.12534048 0.10750176
S.D. 0.035036042 0.031626242 0.024961288 0.031055914 0.024221791

Scenario-4
GA PSO HIWO IWO CTDHH

AVERAGE 0.01314432 0.013149797 0.01314432 0.01314432 0.013035566
MIN 0.01314432 0.01314432 0.01314432 0.01314432 0.011947248
MAX 0.01314432 0.013308624 0.01314432 0.01314432 0.01314432
S.D. 9.92463E-18 2.99977E-05 9.92463E-18 9.92463E-18 0.000247311

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 0.056130158 0.059425627 0.057024442 0.059855478 0.046526981
MIN 0.027063216 0.027063216 0.027063216 0.027063216 0.027063216
MAX 0.07346736 0.07346736 0.07346736 0.075852115 0.07346736
S.D. 0.019318728 0.018650539 0.020422372 0.01662039 0.015691901

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 0.242472019 0.262919261 0.264274378 0.250724461 0.196687536
MIN 0.056191968 0.056191968 0.056191968 0.07785193 0.10186848
MAX 0.35536608 0.35536608 0.35536608 0.35536608 0.25396704
S.D. 0.095033227 0.093065431 0.088305973 0.09708371 0.061640766

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 0.12933072 0.129653929 0.12933072 0.12933072 0.124331966
MIN 0.12933072 0.129318984 0.12933072 0.12933072 0.111867552
MAX 0.12933072 0.130032533 0.12933072 0.12933072 0.135034416
S.D. 5.95478E-17 0.000352255 5.95478E-17 5.95478E-17 0.00862225

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 0.631631676 0.522927994 0.506948256 0.603285168 0.481960121
MIN 0.173199888 0.25866144 0.25866144 0.47014416 0.25866144
MAX 0.707953075 0.70509888 0.70509888 0.70509888 0.70509888
S.D. 0.149034942 0.169546414 0.17416592 0.118418808 0.195091894

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 1.8863664 2.647625952 1.8910608 2.945235264 1.58954919
MIN 0.51732288 0.94028832 0.51732288 2.35001664 0.744907392
MAX 3.28983552 3.28983552 3.28983552 3.28983552 3.299374541
S.D. 0.938347215 0.902483773 0.994372526 0.460635794 0.763079473

From Table 5.9, it is obvious that the values of total computational cost of larger datasets

(scenarios eight, and nine) are higher than those of the other smaller datasets (scenarios one

to seven). This is due to the reason that for larger size datasets, the number of submitted

workflow tasks and number of available VMs are larger, which gives more space for the

baseline approaches to seach for the most optimal solution with minimal completion time

and total computational cost.

Figure 5.12 illustrates the average total computational cost of the proposed CTDHH
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approach and baseline approaches for Inspiral SWFA. Figure 5.12 shows five charts and

each of these charts is representing the relationship between the total computational cost

($/hour) and the considered scenarios.

Figure 5.12: Average total computational cost of CTDHH and baselines for Inspiral

Figure 5.12 depicts that the proposed CTDHH approach has achieved optimal perfor-

mance results for all considered scenarios. In addition, it can be also seen from this figure

that the selection and approval operators of the proposed approach have successfully been

utilized to dynamically select the most optimal LLH for each run and this ultimately affects

the total computational cost. The underlying reason behind the close values of scenarios

one to seven is that the dependencies between workflow tasks of this application are very
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few, which gives very limited options for LLH to search for the optimal solution.

Figure 5.13 illustrates the average total computational cost ($/hour) values of all

approaches for the considered scenarios.

Figure 5.13: Average total computational of all approaches for Inspiral SWFA

From Figure 5.13, it can be observed that the proposed approach gets the lowest total

computational cost for all scenarios and especially for scenarios eight and nine.

B- Comparison between Proposed CTDHH Approach and HHSA Approach

In this section, the descriptive statistical results of completion time and computational

cost based on the comparison between the proposed CTDHH approach and HHSA approach

has been discussed.

i. Completion time results:

Table 5.10 illustrates the descriptive statistical analysis (average, minimum, maximum

and S.D.) for completion time by comparing the proposed CTDHH approach and HHSA

approach for Inspiral SWFA for all considered scenarios.
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Table 5.10: Completion time comparison between CT-

DHH and HHSA for Inspiral
Scenario-1

HHSA CTDHH
AVERAGE 3.3188 2.979
MIN 1.85 1.74
MAX 4.048 4.048
S.D. 0.537644569 0.850991916

Scenario-2
HHSA CTDHH

AVERAGE 8.024266667 5.9464
MIN 3.212 2.07
MAX 10.726 10.3
S.D. 2.08653871 2.271940104

Scenario-3
HHSA CTDHH

AVERAGE 19.76426667 14.79333333
MIN 7.2 7.7
MAX 27.632 22.9
S.D. 5.271645866 5.15972021

Scenario-4
HHSA CTDHH

AVERAGE 11.40626667 11.10733333
MIN 11.2 10.18
MAX 11.798 11.2
S.D. 0.280217026 0.210728348

Scenario-5
HHSA CTDHH

AVERAGE 28.451 19.82233333
MIN 16.39 11.53
MAX 32.656 31.3
S.D. 5.40895803 6.685370381

Scenario-6
HHSA CTDHH

AVERAGE 54.40866667 41.89833333
MIN 22.534 21.7
MAX 77.672 54.1
S.D. 18.65116373 13.13070161

Scenario-7
HHSA CTDHH

AVERAGE 110.3186 105.9406667
MIN 110.2 95.32
MAX 110.798 115.06
S.D. 0.241265714 7.346838839

Scenario-8
HHSA CTDHH

AVERAGE 251.3954 205.3340667
MIN 150.43 110.2
MAX 300.4 300.4
S.D. 60.46154092 83.11686029

Scenario-9
HHSA CTDHH

AVERAGE 409.1258 338.6054
MIN 110.132 158.68
MAX 700.8 702.832
S.D. 203.2124665 162.5510125

From Table 5.10, it is obvious that there is small differences between proposed CTDHH

approach and HHSA approach in terms of computed average completion time value for all

considered scenarios. Moreover, there are some scenarios for which the proposed approach
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achieved a slightly higher S.D. than that of the HHSA approach, this might be due to the

HLH strategy, which ultimately affects the selection of the employed LLH after each run.

Figure 5.14 illustrates the average completion time of CTDHH and HHSA for Inspiral

SWFA. This figure has two charts and each of these charts is representing the relationship

between the completion time and the considered scenarios.

Figure 5.14: Average completion time of CTDHH and HHSA for Inspiral SWFA

From Figure 5.14, it can be seen that average completion time of the proposed CTDHH

approach is slightly better for all considered scenarios comparing with completion time of

HHSA approach.

Figure 5.15 shows the average completion time of both approaches for Inspiral SWFA.
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Figure 5.15: Average completion time of both approaches for Inspiral SWFA

From Figure 5.15, it can be concluded that the average completion time of the proposed

CTDHH approach and HHSA are very close to each other especially for scenarios one to

seven.

ii. Total computational cost results

Table 5.11 represents the descriptive statistical analysis for total computational cost

when comparing the proposed CTDHH approach with HHSA approach for Inspiral SWFA.

Table 5.11: Total computational cost comparison CT-

DHH and HHSA for Inspiral
Senario-1

HHSA CTDHH
AVERAGE 0.003894944 0.003496154
MIN 0.00217116 0.002042064
MAX 0.004750733 0.004750733
S.D. 0.00063098 0.000998724

Senario-2
HHSA CTDHH

AVERAGE 0.018834559 0.01395739
MIN 0.007539206 0.004858704
MAX 0.025176067 0.02417616
S.D. 0.004897524 0.005332698

Senario-3
HHSA CTDHH
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AVERAGE 0.092781373 0.069445824
MIN 0.03379968 0.03614688
MAX 0.129715661 0.10750176
S.D. 0.024747214 0.024221791

Senario-4
HHSA CTDHH

AVERAGE 0.013386395 0.013035566
MIN 0.01314432 0.011947248
MAX 0.013846133 0.01314432
S.D. 0.000328863 0.000247311

Senario-5
HHSA CTDHH

AVERAGE 0.066780187 0.046526981
MIN 0.038470608 0.027063216
MAX 0.076650163 0.07346736
S.D. 0.012695906 0.015691901

Senario-6
HHSA CTDHH

AVERAGE 0.255416045 0.196687536
MIN 0.10578361 0.10186848
MAX 0.364623437 0.25396704
S.D. 0.087556023 0.061640766

Senario-7
HHSA CTDHH

AVERAGE 0.129469909 0.124331966
MIN 0.12933072 0.111867552
MAX 0.130032533 0.135034416
S.D. 0.000283149 0.00862225

Senario-8
HHSA CTDHH

AVERAGE 0.590075283 0.481960121
MIN 0.353089296 0.25866144
MAX 0.70509888 0.70509888
S.D. 0.141915329 0.195091894

Senario-9
HHSA CTDHH

AVERAGE 1.920600156 1.58954919
MIN 0.517003661 0.744907392
MAX 3.28983552 3.299374541
S.D. 0.953960603 0.763079473

From Table 5.11, it can be seen that the total computational cost of the proposed

CTDHH approach has the lowest average value for most of the scenarios compared to that

of the HHSA approach.

Figure 5.16 illustrates the average total computational cost of CTDHH and HHSA

approach. Figure 5.16 contains two charts and each of these charts is representing the

relationship between the total computational cost ($/hour) and the considered scenarios.
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Figure 5.16: Average total computational cost of CTDHH and HHSA for Inspiral

Figure 5.16 shows that the total computational cost of both approaches are very close to

each other for scenarios one to eight. This is due to the reason that the number of workflow

tasks in this scenario is 1000 and the number of available VMs are eight, which gives

the selection and approaval operators of the HLH more options to select which of the

employed LLH algorithms is more appropriate for each run. Generally speaking, a higher

number of tasks and available VMs provide the facility to selection and approval operators

of the HLH to decide about the best LLH for each execution of the approach.

Figure 5.17 illustrates the average total computational cost ($/hour) values of both

approaches for the considered scenarios.
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Figure 5.17: Average total computational of both approaches for Inspiral SWFA

From Figure 5.17, it is evident that there is a significant differences between the

performance of SWFS approaches for scenario six to nine, which is ultimately affected by

the size of dataset of the submitted SWFA as well as the number of available VMs. This is

because of the random nature of HHSA approach due to which it cannot always get the

optimal result by selecting the most optimal solution of the employed LLH approaches.

5.4.1.3 Montage SWFAs

This section provides the discussion about the achieved results of Montage SWFA. Table

5.12 shows the specification of each of the utilized scenarios of Montage SWFA. Based

on the number of tasks, the first three scenarios are considered as the smallest datasets

scenarios, while the last three scenarios are considered as the largest datasets scenarios.

Appendix B.3 describes the Montage SWFA datasets in detail.

In the following sections, the statistical results of completion time and total computational

cost for each of the considered nine scenarios for Montage SWFA have been provided.
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Table 5.12: Specification of scenarios forMontage SWFA in simulation environment

Scenario No. of Tasks No. of VMs
1 25 2
2 25 4
3 25 8
4 100 2
5 100 4
6 100 8
7 1000 2
8 1000 4
9 1000 8

A- Comparison between Proposed CTDHH Approach and Baseline Approaches

This section provides a discussion about the completion time and total computational

cost statistical results based on the comparison between the proposed CTDHH approach

and baseline approaches for each of the nine considered scenarios.

i. Completion time results:

Table 5.13 represents the descriptive statistical analysis for completion time results for

Montage SWFA.

Table 5.13: Completion time comparison between CT-

DHH and baselines for Montage
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 2.95 2.95 2.95 2.95 2.309333333
MIN 2.95 2.95 2.95 2.95 1.774
MAX 2.95 2.95 2.95 2.95 2.95
S.D. 1.35504E-15 1.35504E-15 1.35504E-15 1.35504E-15 0.423633001

Scenario-2
GA PSO HIWO IWO CTDHH

AVERAGE 5.865666667 6.183 7.179333333 6.986 5.214266667
MIN 3.17 3.17 3.17 3.17 3.052
MAX 8.8 8.8 8.8 8.8 8.8
S.D. 2.392852407 2.164188388 2.065152467 2.039098178 1.196539001

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 15.067 15.184 16.16 13.328 11.8564
MIN 3.61 3.61 6.7 3.61 4.69
MAX 23.2 23.2 23.2 23.2 23.2
S.D. 6.685386611 6.836611683 5.98743512 7.467217734 4.407987496

Scenario-4
GA PSO HIWO IWO CTDHH

AVERAGE 11.09 11.00666667 11.09 11.09 9.8944
MIN 11.09 9.05 11.09 11.09 8.77
MAX 11.09 11.09 11.09 11.09 11.134
S.D. 3.61345E-15 0.374122729 3.61345E-15 3.61345E-15 0.970393934

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 20.53066667 24.162 27.38306667 21.224 20.157
MIN 11.31 11.31 9.006 11.31 11.31
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MAX 31.3 31.3 49.728 31.3 31.3
S.D. 8.672439474 7.998597463 7.844059993 9.094120723 8.009407464

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 53.02 55.20333333 52.66 47.67666667 44.86113333
MIN 21.7 11.75 21.7 11.75 23.186
MAX 75.7 75.7 75.7 75.7 75
S.D. 17.56395997 20.19728956 20.00154477 21.79844084 13.02581149

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 108.59 108.59 108.59 108.59 96.46046667
MIN 108.59 108.59 108.59 108.59 91.26
MAX 108.59 108.59 108.59 108.59 108.49
S.D. 4.33614E-14 4.33614E-14 4.33614E-14 4.33614E-14 7.863931871

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 254.7544 239.8543333 219.5723333 217.3336667 207.0166667
MIN 97.986 108.21 108.81 108.81 108.81
MAX 301.3 301.3 301.3 301.3 301.3
S.D. 66.97655323 69.10706529 76.53401672 90.28435674 81.90933437

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 612.8208 495.8310667 490.9383333 387.6133333 451.4533333
MIN 201.7 101.282 109.25 109.25 109.25
MAX 705.7 705.7 705.7 604.9 705.7
S.D. 148.5438475 198.9182474 204.0466646 191.1746723 214.3961741

From Table 5.13, it can be observed that there are more differences between the average

completion time of all approaches. This is due to the strong dependencies between the

workflow tasks of Montage SWFA, which ultimately gives wider space for employed LLH

algorithms of the proposed approach to search for the optimal solution. Furthermore, it can

be also observed that the average completion time of the proposed approach has achieved

the most optimal results for all scenarios except scenario nine. Moreover, the proposed

approach has achived acceptable S.D. results for all scenarios. This is due to large size

of datasets and large of available VMs (i.e., 8), which give more space for the proposed

approach to find the most optimal solution.

Figure 5.18 illustrates the average completion time of the proposed CTDHH approach

and baseline approaches for Montage SWFA. This figure has five charts and each of these

charts is representing the relationship between the completion time and the considered

scenarios for each of the approaches.
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Figure 5.18: Average completion time of CTDHH and baselines for Montage SWFA

Figure 5.18 depicts that the average completion time (in second) increases as the number

of workflow tasks and number of available VMs increase for all approaches. The average

completion time of the proposed CTDHH approach has the lowest results for most of the

considered scenarios. However, the baseline approaches always have very similar or close

values to each other.

Figure 5.19 shows the average completion time of all approaches for Montage SWFA of

all considered scenarios.
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Figure 5.19: Average completion time of all approaches for Montage SWFA

From Figure 5.19, it can be concluded that as the size of dataset increases (with several

available VMs), the proposed CTDHH approach and IWO performs better than other

approaches. Furthermore, for scenarios one to five, the differences between the average

completion time values are relatively small for all approaches.

ii. Total computational cost results:

Table 5.14 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and baseline approaches for Montage SWFA

for all considered scenarios.

Table 5.14: Total computational cost comparison CT-

DHH and baselines for Montage
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 0.00346212 0.00346212 0.00346212 0.00346212 0.002710234
MIN 0.00346212 0.00346212 0.00346212 0.00346212 0.002081966
MAX 0.00346212 0.00346212 0.00346212 0.00346212 0.00346212
S.D. 2.48116E-18 2.48116E-18 2.48116E-18 2.48116E-18 0.000497176

Scenario-2
GA PSO HIWO IWO CTDHH
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AVERAGE 0.015049464 0.014512738 0.016851331 0.016397539 0.012238927
MIN 0.007440624 0.007440624 0.007440624 0.007440624 0.007163654
MAX 0.02065536 0.02065536 0.02065536 0.02065536 0.02065536
S.D. 0.004643751 0.005079783 0.004847326 0.004786171 0.002808516

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 0.078959808 0.07127977 0.075861504 0.0727632 0.055658684
MIN 0.03145248 0.016946784 0.03145248 0.03145248 0.022016736
MAX 0.10891008 0.10891008 0.10891008 0.10891008 0.10891008
S.D. 0.029317918 0.03209379 0.028107415 0.031071944 0.020692857

Scenario-4
GA PSO HIWO IWO CTDHH

AVERAGE 0.013015224 0.012917424 0.013015224 0.013015224 0.011612068
MIN 0.013015224 0.01062108 0.013015224 0.013015224 0.010292472
MAX 0.013015224 0.013015224 0.013015224 0.013015224 0.013066862
S.D. 7.44347E-18 0.00043907 7.44347E-18 7.44347E-18 0.001138854

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 0.048189581 0.056713046 0.064273534 0.049816973 0.043301928
MIN 0.026546832 0.026546832 0.021138883 0.026546832 0.026546832
MAX 0.07346736 0.07346736 0.116721562 0.07346736 0.054947952
S.D. 0.02035595 0.018774308 0.018411578 0.02134572 0.008008016

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 0.248897088 0.259146528 0.247207104 0.2370672 0.191367842
MIN 0.10186848 0.0551592 0.10186848 0.10186848 0.108844358
MAX 0.35536608 0.35536608 0.35536608 0.35536608 0.28307232
S.D. 0.082452254 0.094814156 0.093895252 0.08559927 0.044669991

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 0.127441224 0.127441224 0.127441224 0.127441224 0.113206004
MIN 0.127441224 0.127441224 0.127441224 0.127441224 0.107102736
MAX 0.127441224 0.127441224 0.127441224 0.127441224 0.127323864
S.D. 9.92463E-17 9.92463E-17 9.92463E-17 9.92463E-17 0.00922911

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 0.597959528 0.562986091 0.515380181 0.510125582 0.430317653
MIN 0.229992739 0.253990512 0.255398832 0.255398832 0.255398832
MAX 0.70721136 0.70721136 0.70721136 0.70721136 0.49455504
S.D. 0.157207366 0.162208104 0.179640644 0.211915442 0.098680411

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 2.876825964 2.327629359 2.304660912 2.256034752 1.819612032
MIN 0.94686048 0.475458221 0.5128632 0.94686048 0.5128632
MAX 3.31283808 3.31283808 3.31283808 2.83964256 2.36644704
S.D. 0.697324238 0.933801821 0.957876662 0.72121401 0.704677437

It is evident from Table 5.14 that the total computational cost of the proposed CTDHH

approach has the lowest average value for most of the scenarios comparing with other

baseline approaches. This is due to the reason that total computational cost is related to

the time spend by the approach to compete the submitted SWFA.

Figure 5.20 illustrates the average total computational cost of CTDHH and baselines for

Montage SWFA. This figure has five charts and each of these charts is representing the

relationship between the total computational cost ($/hour) and the considered scenarios.
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Figure 5.20: Average total computational cost of CTDHH and baselines forMontage

Figure 5.20 shows that the total computational cost heavily depends on the completion

time, number of available VMs as well as the number of workflow tasks for each of the

considered scenarios. It can be also observed from the charts (Figure 5.20) that the average

total computational cost of this application is much less than the Epigenomics and Inspiral

SWFAs even using the same number of workflow tasks. This mainly occurs due to the

nature of dataset that has been executed by Montage SWFA.

Figure 5.21 illustrates the average total computational cost ($/hour) values of all

approaches for the considered scenarios.
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Figure 5.21: Average total computational of all approaches for Montage SWFA

From Figure 5.21, it can be seen that there is a significant differences between the

performance of SWFS approaches for scenarios eight and nine. This has confirmed the

argument that the cost results are dependent on the average completion values, which are

ultimately affected by the size of dataset of the submitted SWFA as well as the number of

available VMs.

B- Comparison between Proposed CTDHH Approach and HHSA Approach

In this section, the completion time and total computational cost statistical results

have been discussed, which are based on the comparison between the proposed CTDHH

approach and HHSA approach for each of the nine considered scenarios.

i. Completion time results:

Table 5.15 illustrates the descriptive statistical analysis for completion time by comparing

the proposed CTDHH approach and HHSA approach for Montage SWFA for all considered

scenarios.
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Table 5.15: Completion time comparison between CT-

DHH and HHSA for Montage
Scenario-1

HHSA CTDHH
AVERAGE 2.7508 2.309333333
MIN 2.004 1.774
MAX 2.994 2.95
S.D. 0.282925407 0.423633001

Scenario-2
HHSA CTDHH

AVERAGE 5.972133333 5.214266667
MIN 4.452 3.052
MAX 7.9 8.8
S.D. 0.973905318 1.196539001

Scenario-3
HHSA CTDHH

AVERAGE 18.3238 11.8564
MIN 8.584 4.69
MAX 63.68 23.2
S.D. 10.42268274 4.407987496

Scenario-4
HHSA CTDHH

AVERAGE 10.73933333 9.8944
MIN 8.89 8.77
MAX 11.09 11.134
S.D. 0.723308173 0.970393934

Scenario-5
HHSA CTDHH

AVERAGE 23.46173333 18.44833333
MIN 13.824 11.31
MAX 31 23.41
S.D. 4.771669779 3.411731367

Scenario-6
HHSA CTDHH

AVERAGE 47.20933333 40.76513333
MIN 30.348 23.186
MAX 72.2 60.3
S.D. 16.02239557 9.515591035

Scenario-7
HHSA CTDHH

AVERAGE 101.4836 96.46046667
MIN 91.26 91.26
MAX 108.59 108.49
S.D. 8.358356799 7.863931871

Scenario-8
HHSA CTDHH

AVERAGE 242.0149333 183.3323333
MIN 91.798 108.81
MAX 301.3 210.7
S.D. 70.41136552 42.04175647

Scenario-9
HHSA CTDHH

AVERAGE 446.2908 387.6133333
MIN 199.562 109.25
MAX 705.7 504.1
S.D. 166.490772 150.1102244

From Table 5.15, it can be observed that the average completion time of both approaches

(i.e., CTDHH and HHSA) are very close to each other, which shows that both hyper-

heuristic approaches are achieving optimised results. However, the average completion
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time and S.D. values of the proposed CTDHH are more optimal due to the dynamic strategy

of the HLH by continuously learning from the computed time score after each run based

on the selection and approval operators of HLH strategy.

Figure 5.22 illustrates the average completion time of CTDHH and HHSA approach for

Montage SWFA. This figure contains two charts and each of these charts is representing

the relationship between the completion time and the considered scenarios for each of the

approaches.

Figure 5.22: Average completion time of CTDHH and HHSA for Montage SWFA

Regarding completion time of Montage SWFA, it can be concluded from Figure 5.22

that the proposed CTDHH approach achieved much lower values than the HHSA approach

for all scenarios one to seven, while there is a major improvement in the performance of

the proposed CTDHH approach for scenarios eight and nine.

Figure 5.23 shows the average completion time of both approaches for Montage SWFA

of all considered scenarios.
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Figure 5.23: Average completion time of both approaches for Montage SWFA

The results shown in Figure 5.23 have confirmed the observation depicted by Figure

5.22 that for scenarios eight and nine, the proposed CTDHH approach achieves clear

improvement when comparing with the HHSA approach; while for other scenarios, both

approaches achieve almost equal optimisation results.

ii. Total computational cost results:

Table 5.16 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and HHSA approach for Montage SWFA.

Table 5.16: Total computational cost comparison CT-

DHH and HHSA for Montage
Scenario-1

HHSA CTDHH
AVERAGE 0.003228339 0.002710234
MIN 0.002351894 0.002081966
MAX 0.003513758 0.00346212
S.D. 0.000332041 0.000497176

Scenario-2
HHSA CTDHH

AVERAGE 0.014017791 0.012238927
MIN 0.010449734 0.007163654
MAX 0.01854288 0.02065536
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S.D. 0.002285951 0.002808516
Scenario-3

HHSA CTDHH
AVERAGE 0.086019247 0.055658684
MIN 0.04029673 0.022016736
MAX 0.298939392 0.10891008
S.D. 0.048928242 0.020692857

Scenario-4
HHSA CTDHH

AVERAGE 0.012603682 0.011612068
MIN 0.010433304 0.010292472
MAX 0.013015224 0.013066862
S.D. 0.000848874 0.001138854

Scenario-5
HHSA CTDHH

AVERAGE 0.05506938 0.043301928
MIN 0.032447693 0.026546832
MAX 0.0727632 0.054947952
S.D. 0.011200063 0.008008016

Scenario-6
HHSA CTDHH

AVERAGE 0.221619494 0.191367842
MIN 0.142465651 0.108844358
MAX 0.33893568 0.28307232
S.D. 0.075215534 0.044669991

Scenario-7
HHSA CTDHH

AVERAGE 0.119101153 0.113206004
MIN 0.107102736 0.107102736
MAX 0.127441224 0.127323864
S.D. 0.009809368 0.00922911

Scenario-8
HHSA CTDHH

AVERAGE 0.568057452 0.430317653
MIN 0.215468266 0.255398832
MAX 0.70721136 0.49455504
S.D. 0.165269557 0.098680411

Scenario-9
HHSA CTDHH

AVERAGE 2.095067532 1.819612032
MIN 0.936823853 0.5128632
MAX 3.31283808 2.36644704
S.D. 0.78157428 0.704677437

In terms of computational cost, it can be concluded from Table 5.16 that the proposed

CTDHH approach has the lowest average value for all scenarios compared to other baseline

approaches. This is because the total computational cost of SWFS is strongly depends on

the completion time (makespan) required by the proposed approach to complete execution

of the submitted SWFAs (based on the problem statement of this research).

Figure 5.24 illustrates the average total computational cost of CTDHH and HHSA

approach. This figure has two charts and each of these charts is representing the relationship

between the total computational cost ($/hour) and the considered scenarios for each of the

approaches.
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Figure 5.24: Average total computational cost of CTDHH and HHSA for Montage

Figure 5.24 shows that the total computational cost heavily depends on the completion

time. The proposed CTDHH approach shows similar results for scenarios eight and nine.

In these two scenarios, the proposed approach managed to achieve the optimal result due

to the high number of tasks (i.e., 1000 tasks) and the available VMs (8 VMs). In this case,

the chances of finding the optimal solution of the proposed approach is higher compared to

other scenarios (i.e., scenarios one to seven) where the number of tasks and VMs are lower.

Figure 5.25 illustrates the average total computational cost ($/hour) values of both

approaches for the considered scenarios.
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Figure 5.25: Average total computational of both approaches for Montage SWFA

Similar to the previous figure (Figure 5.24), Figure 5.25 shows that there is a major

differences between the total computational cost value of the proposed CTDHH and HHSA

approach.

5.4.1.4 SIPHT-search for sRNAs SWFAs:

This section provides the result discussion of SIPHT SWFA. Table 5.17 shows the

specification of each of the utilized scenarios of SIPHT SWFA. Based on the workflow tasks

(datasets size), the first three scenarios are considered as the smallest datasets scenarios,

while the last three scenarios are considered as the largest datasets scenarios. Appendix

B.4 describes the SIPHT SWFA datasets in detail.

This section has been divided into two parts. The first part presents the comparison

between proposed CTDHH approach and baseline approaches, while the second part

presents the comparison between proposed CTDHH approach and HHSA approach.

A- Comparison between Proposed CTDHH Approach and Baseline Approaches
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Table 5.17: Specification of scenarios for SIPHT SWFA in simulation environment

Scenario No. of Tasks No. of VMs
1 30 2
2 30 4
3 30 8
4 100 2
5 100 4
6 100 8
7 1000 2
8 1000 4
9 1000 8

This section provides a discussion about the completion time and total computational

cost statistical results based on the comparison between proposed CTDHH approach and

baseline approaches for each of the nine considered scenarios.

i. Completion time results:

Table 5.18 represents the descriptive statistical analysis for completion time results for

SIPHT SWFA for all considered nine scenarios.

Table 5.18: Completion time comparison between CT-

DHH and baselines for SIPHT
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 3.48 3.48 3.48 3.48 3.348466667
MIN 3.48 3.48 3.48 3.48 2.71
MAX 3.48 3.48 3.48 3.48 3.658
S.D. 9.03362E-16 9.03362E-16 9.03362E-16 9.03362E-16 0.290713122

Scenario-2
GA PSO HIWO IWO CTDHH

AVERAGE 7.95 8.17 7.342 7.764666667 6.505333333
MIN 6.74 6.74 3.7 3.7 3.7
MAX 10.04 10.04 10.04 10.04 10.04
S.D. 1.617437309 1.663222879 2.380723448 2.251728429 2.540197838

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 16.17333333 18.47973333 19.13333333 19.62666667 13.00073333
MIN 7.54 4.14 11.24 11.24 8.316
MAX 26.04 26.04 26.04 26.04 16.906
S.D. 6.893591894 7.378023055 4.632861135 5.226572249 1.97026289

Scenario-4
GA PSO HIWO IWO CTDHH

AVERAGE 10.87 10.87833333 10.87 10.87 10.6196
MIN 10.87 10.87 10.87 10.87 10.244
MAX 10.87 10.94 10.87 10.87 10.87
S.D. 3.61345E-15 0.021668877 3.61345E-15 3.61345E-15 0.311918822

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 25.35 26.27396667 26.15666667 29.05333333 20.87
MIN 20.3 13.134 11.2 20.3 11.2
MAX 30.4 83.499 30.4 30.4 30.4
S.D. 5.13633104 12.61821654 7.057482375 3.492033627 6.913263115
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Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 49.93866667 49.83466667 48.53506667 47.73466667 38.48333333
MIN 11.64 11.64 17.58 11.64 26.7
MAX 73.6 73.6 73.6 73.6 63.1
S.D. 21.26467489 18.40849649 20.50696816 20.33561302 10.71438232

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 106.68 106.68 106.68 106.68 106.7043333
MIN 106.68 106.68 106.68 106.68 106.68
MAX 106.68 106.68 106.68 106.68 106.734
S.D. 2.89076E-14 2.89076E-14 2.89076E-14 2.89076E-14 0.025008045

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 241.056 246.6398667 244.0752667 225.5513333 170.6413333
MIN 106.68 60.04 78.674 106.68 106.68
MAX 290.8 290.928 290.828 290.8 193.9
S.D. 75.82318823 66.49934373 77.4065922 81.03379247 39.22950154

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 510.9004 549.2 503.98 523.36 423.23
MIN 97.488 290.8 290.8 193.9 290.8
MAX 678.4 678.4 678.4 678.4 581.5
S.D. 208.8424202 114.7477203 159.7305131 171.8391822 128.4599928

Table 5.18 shows that the average values of the completion time of the proposed CTDHH

approach are very close to those of the other baseline approaches for most of the scenarios.

This could be due to the nature of SIPHT SWFA having a less number of dependencies

between their tasks, which gives smaller search space for the employed LLH algorithms to

find an optimal solution especially when the number of VMs are less (scenarios one, four

and six). However, in scenario 7 the average values of the completion time of the IWO

approach is slightly lower than the proposed CTDHH approach, and this due to strong

dependences between the tasks of SIPHT SWFA, the IWO approach managed to find the

optimal with shorter convergence time.

Figure 5.26 illustrates the average completion time of CTDHH and baselines for SIPHT

SWFA. This figure contains five charts and each of these charts is representing the

relationship between the completion time and the considered scenarios for each of the

approaches.
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Figure 5.26: Average completion time of CTDHH and baselines for SIPHT SWFA

Figure 5.26 depicts that the average completion time (in second) of the proposed

CTDHH approach is more optimal for all considered scenarios. However, the baseline

meta-heuristic algorithms always attained very similar or closer values to each other,

especially for scenarios one to seven.

Figure 5.27 shows the average completion time of all approaches for SIPHT SWFA of

all considered scenarios.
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Figure 5.27: Average completion time of all approaches for SIPHT SWFA

Figure 5.27 summaries the results of Figure 5.26, where the average computation time

values of the proposed CTDHH approach are much better for all scenarios.

ii. Total computational cost results

Table 5.19 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and baseline approaches for SIPHT SWFA.

Table 5.19: Total computational cost comparison CT-

DHH and baselines for SIPHT
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 0.004084128 0.004084128 0.004084128 0.004084128 0.00392976
MIN 0.004084128 0.004084128 0.004084128 0.004084128 0.003180456
MAX 0.004084128 0.004084128 0.004084128 0.004084128 0.004293029
S.D. 1.86087E-18 1.86087E-18 1.86087E-18 1.86087E-18 0.000341181

Scenario-2
GA PSO HIWO IWO CTDHH

AVERAGE 0.01866024 0.019176624 0.017233142 0.018225226 0.015269318
MIN 0.015820128 0.015820128 0.00868464 0.00868464 0.00868464
MAX 0.023565888 0.023565888 0.023565888 0.023565888 0.023565888
S.D. 0.003796449 0.003903917 0.005588034 0.005285257 0.005962352

Scenario-3
GA PSO HIWO IWO CTDHH

AVERAGE 0.075924096 0.08675126 0.08981952 0.092135424 0.061030643
MIN 0.035395776 0.019434816 0.052765056 0.052765056 0.03903863
MAX 0.122242176 0.122242176 0.122242176 0.122242176 0.079363526
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S.D. 0.032361278 0.034635391 0.021748503 0.024535621 0.009249202
Scenario-4

GA PSO HIWO IWO CTDHH
AVERAGE 0.012757032 0.012766812 0.012757032 0.012757032 0.012463163
MIN 0.012757032 0.012757032 0.012757032 0.012757032 0.012022358
MAX 0.012757032 0.012839184 0.012757032 0.012757032 0.012757032
S.D. 2.48116E-18 2.54306E-05 2.48116E-18 2.48116E-18 0.000366068

Scenario-5
GA PSO HIWO IWO CTDHH

AVERAGE 0.05950152 0.061670255 0.061394928 0.068193984 0.048986064
MIN 0.04764816 0.030828125 0.02628864 0.04764816 0.02628864
MAX 0.07135488 0.195988853 0.07135488 0.07135488 0.07135488
S.D. 0.012055996 0.029617478 0.016565323 0.008196501 0.016226811

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 0.234432077 0.233943859 0.227843017 0.224085619 0.18065616
MIN 0.054642816 0.054642816 0.082527552 0.054642816 0.12534048
MAX 0.34550784 0.34550784 0.34550784 0.34550784 0.29621664
S.D. 0.09982489 0.086416846 0.096267911 0.095463502 0.050297596

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 0.125199648 0.125199648 0.125199648 0.125199648 0.125228206
MIN 0.125199648 0.125199648 0.125199648 0.125199648 0.125199648
MAX 0.125199648 0.125199648 0.125199648 0.125199648 0.125263022
S.D. 1.98493E-17 1.98493E-17 1.98493E-17 1.98493E-17 2.93494E-05

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 0.565806643 0.578913095 0.572893466 0.52941409 0.400529338
MIN 0.250399296 0.140925888 0.184663613 0.250399296 0.250399296
MAX 0.68256576 0.682866202 0.682631482 0.68256576 0.45512208
S.D. 0.177972187 0.15608726 0.181688753 0.190202518 0.092079486

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 2.398370838 2.57816448 2.365883712 2.456861184 1.986810912
MIN 0.457647667 1.36513152 1.36513152 0.91024416 1.36513152
MAX 3.18468096 3.18468096 3.18468096 3.18468096 2.7297936
S.D. 0.980389857 0.538671698 0.749838921 0.806681857 0.60304259

From Table 5.19, it is evident that the total computational cost values of the proposed

CTDHH approach is showing much better results for all scenarios. This is due to fact that

the proposed approach always consider finding the most optimal solution by choosing the

suitable LLH algorithm for each iteration.

Figure 5.28 illustrates the average total computational cost of CTDHH and the baseline

approaches for SIPHT. Figure 5.28 has five charts and each of these charts is representing

the relationship between the total computational cost ($/hour) and the considered scenarios

for each of the approaches.
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Figure 5.28: Average total computational cost of CTDHH and baselines for SIPHT

It can be observed from Figure 5.28 that the proposed CTDHH approach attains most

optimal average total computational cost results for all considered scenarios and especially

scenarios seven, eight and nine, where the number of tasks are high (1000 tasks). This

shows the optimal performance of the proposed CHDHH with different types, complexities,

and sizes of SWFAs.

Figure 5.29 illustrates the average total computational cost ($/hour) values of all

approaches for the considered scenarios.
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Figure 5.29: Average total computational of all approaches for SIPHT SWFA

From Figure 5.29, it can be concluded that the total computational cost results depend

on the average completion values, which are ultimately affected by the size of datasets of

the submitted SWFA as well as the number of available VMs.

B- Comparison between Proposed CTDHH Approach and HHSA Approach

In this section, the completion time and total computational cost statistical results have

been discussed, which are based on the comparison between proposed CTDHH approach

and HHSA approach for each of the nine considered scenarios.

i. Completion time results:

Table 5.20 illustrates the descriptive statistical analysis for completion time by comparing

the proposed CTDHH approach and HHSA approach for SIPHT for all considered scenarios.

Table 5.20: Completion time comparison between CT-

DHH and HHSA for SIPHT
Scenario-1

HHSA CTDHH
AVERAGE 3.492 3.348466667
MIN 2.72 2.71
MAX 3.668 3.658
S.D. 0.182022356 0.290713122
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Scenario-2
HHSA CTDHH

AVERAGE 8.400766667 6.505333333
MIN 3.292 3.7
MAX 13.659 10.04
S.D. 2.044015853 2.540197838

Scenario-3
HHSA CTDHH

AVERAGE 19.0858 13.00073333
MIN 9.79 8.316
MAX 26.152 16.906
S.D. 5.226268672 1.97026289

Scenario-4
HHSA CTDHH

AVERAGE 10.89566667 10.6196
MIN 10.84 10.244
MAX 10.94 10.87
S.D. 0.03460948 0.311918822

Scenario-5
HHSA CTDHH

AVERAGE 28.29933333 20.87
MIN 18.72 11.2
MAX 30.46 30.4
S.D. 4.18839442 6.913263115

Scenario-6
HHSA CTDHH

AVERAGE 48.2526 38.48333333
MIN 20.67 26.7
MAX 73.6 63.1
S.D. 20.54516844 10.71438232

Scenario-7
HHSA CTDHH

AVERAGE 106.7279333 106.7043333
MIN 106.68 106.68
MAX 106.734 106.734
S.D. 0.01644622 0.025008045

Scenario-8
HHSA CTDHH

AVERAGE 253.0144 170.6413333
MIN 106.778 106.68
MAX 290.8 193.9
S.D. 62.99297419 39.22950154

Scenario-9
HHSA CTDHH

AVERAGE 497.487 423.23
MIN 257.532 290.8
MAX 678.4 581.5
S.D. 177.6833579 128.4599928

It is evident from Table 5.20 that as much as the number of the submitted workflow

tasks are getting bigger, the response of the proposed CTDHH approach still remains the

same by achieving more optimal results than the HHSA approach. This can be seen in

the results of scenarios one, four and nine, where the number of tasks are the highest (i.e.,

1000 tasks). However, for the other smaller size scenarios, the results of the proposed

CTDHH approach are higher but still close to the HHSA approach.

Figure 5.30 illustrates the average completion time of CTDHH and HHSA approach for
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SIPHT SWFA. This figure contains two charts and each of these charts is representing

the relationship between the completion time and the considered scenarios for each of

the approaches. Note that y-axis denotes the completion time and x-axis denotes the

considered scenarios.

Figure 5.30: Average completion time of CTDHH and HHSA for SIPHT SWFA

From Figure 5.30, it can be seen that average completion time of the proposed CTDHH

approach is much lower for all considered scenarios compared to the HHSA approach.

Figure 5.31 shows the average completion time of both approaches for SIPHT SWFA of

all considered scenarios.
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Figure 5.31: Average completion time of both approaches for SIPHT SWFA

From Figure 5.31, it is evident that the average completion time achieved by CTDHH

and HHSA approach is significantly affected by the large numbers of workflow tasks in

scenarios seven to nine. Furthermore, for scenarios one to six, the differences between the

average completion time values are relatively small for both approaches.

ii. Total computational cost results

Table 5.21 represents the descriptive statistical analysis for total computational cost by

comparing the proposed CTDHH approach and HHSA approach for SIPHT SWFA for all

considered scenarios.

Table 5.21: Total computational cost comparison CT-

DHH and HHSA for SIPHT
Scenario-1

HHSA CTDHH
AVERAGE 0.004098211 0.00392976
MIN 0.003192192 0.003180456
MAX 0.004304765 0.004293029
S.D. 0.000213621 0.000341181

Scenario-2
HHSA CTDHH
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AVERAGE 0.01971828 0.015269318
MIN 0.007726982 0.00868464
MAX 0.032060405 0.023565888
S.D. 0.004797714 0.005962352

Scenario-3
HHSA CTDHH

AVERAGE 0.08959638 0.061030643
MIN 0.045958176 0.03903863
MAX 0.122767949 0.079363526
S.D. 0.024534196 0.009249202

Scenario-4
HHSA CTDHH

AVERAGE 0.012787154 0.012463163
MIN 0.012721824 0.012022358
MAX 0.012839184 0.012757032
S.D. 4.06177E-05 0.000366068

Scenario-5
HHSA CTDHH

AVERAGE 0.066424195 0.048986064
MIN 0.043939584 0.02628864
MAX 0.071495712 0.07135488
S.D. 0.009830999 0.016226811

Scenario-6
HHSA CTDHH

AVERAGE 0.226517005 0.18065616
MIN 0.097033248 0.12534048
MAX 0.34550784 0.29621664
S.D. 0.096447239 0.050297596

Scenario-7
HHSA CTDHH

AVERAGE 0.125255903 0.125228206
MIN 0.125199648 0.125199648
MAX 0.125263022 0.125263022
S.D. 1.93013E-05 2.93494E-05

Scenario-8
HHSA CTDHH

AVERAGE 0.5938754 0.400529338
MIN 0.250629322 0.250399296
MAX 0.68256576 0.45512208
S.D. 0.147857109 0.092079486

Scenario-9
HHSA CTDHH

AVERAGE 2.335402973 1.986810912
MIN 1.208958221 1.36513152
MAX 3.18468096 2.7297936
S.D. 0.834116755 0.60304259

From Table 5.21, it can be seen that the total computational cost value of SWFS

depends on the completion time (makespan) value and also on the VM available for each

considered scenario. This table shows that the values of total computational cost of larger

datasets (scenario seven, eight, and nine) are higher than those of the other smaller datasets

(scenarios one to six). Logically speaking, larger size datasets require more time to execute

than smaller size datasets, which significantly increases the overall computational cost.

Also, the total computational cost of the proposed CTDHH approach has the lowest average

value for most of the scenarios than the baseline approaches.
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Figure 5.32 illustrates the average total computational cost of CTDHH and HHSA

approach for SIPH SWFA. This figure depicts five charts, where each chart is representing

the relationship between the total computational cost ($/hour) and the considered scenarios

for each of the approaches.

Figure 5.32: Average total computational cost of CTDHH and HHSA for SIPHT

Figure 5.32 shows that the average total computational cost of this application is much

less than the Epigenomics and Inspiral SWFAs even using the same number of workflow

tasks. This is due to the nature of considered dataset that has been executed by SIPHT

SWFA. Furthermore, the proposed CTDHH approach always attains optimal performance

results for all considered scenarios.

Figure 5.33 illustrates the average total computational cost ($/hour) values of both

approaches for the considered scenarios.
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Figure 5.33: Average total computational of both approaches for SIPHT SWFA

From Figure 5.33, it is evident that there is a significant differences between the

performance of SWFS approaches in scenarios eight to nine. This has confirmed that the

cost results are dependent on the average completion values, which are ultimately affected

by the size of dataset of the submitted SWFA as well as the number of available VMs.

Moreover, it can be observed that for SIPHT SWFA, the HHSA approach does not show a

good result comparing with previous SWFAs. This is due to the random behavior of the

HHSA approach due to which HHSA cannot always get the optimal result.

5.4.2 Normality Test and Significance Test of the Proposed Approach

As it has been discussed in Section 3.3.5, this section presents the statistical results of

normality test and significance test of the proposed approach.
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Figure 5.34: Normality tests for the proposed CTDHH approach

Based on Figure 5.34, it can be concluded that results data is normally distributed, the

paired T-test is used for statistical comparison of result data from the proposed CTDHH

approach for each of the baseline approaches as well as the comparison of result data for

the proposed CTDHH approach and HHSA approach.

As the result data of this research is considered as paired data, so there is a need to

conduct statistical analysis tests to deal with such paired data. Therefore, a parametric test

called Paired-Samples T-Test has been conducted to evaluate the significance between the

proposed approach and the baseline approaches as well as the significance between the

proposed CTDHH approach and the HHSA. As the total completion time result values

are dependent on the completion time values, thus, it has been found that Paired-Samples

T-Test value of both variables (i.e., completion time and total completion time) have the

same T-Test values. The following tables (Tables 5.22 to 5.25) represent the T-Tests results

of comparing the proposed approach and the baseline approaches as well as the significance

between the proposed CTDHH approach and the HHSA approach.

Table 5.22: Normality and significance tests for Epige-

nomics SWFA
Scenario - 1

t-value Significat (1-tailed) test
CTDHH=GA -8.585 7.031E-10
CTDHH=PSO -8.585 7.031E-10
CTDHH=HIWO -8.585 7.031E-10
CTDHH=IWO -8.585 7.031E-10
CTDHH=HHSA -2.065 0.0238235

Scenario - 2
t-value Significat (1-tailed) test

CTDHH=GA -1.828 0.0389555
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CTDHH=PSO -3.027 0.0025725
CTDHH=HIWO -2.208 0.01764
CTDHH=IWO -2.162 0.0194905
CTDHH=HHSA -1.828 0.0389555

Scenario - 3
t-value Significat (1-tailed) test

CTDHH=GA -5.671 0.000002
CTDHH=PSO -7.113 3.96485E-08
CTDHH=HIWO -6.103 0.0000005
CTDHH=IWO -4.765 0.0000245
CTDHH=HHSA -2.369 0.012363

Scenario - 4
t-value Significat (1-tailed) test

CTDHH=GA -8.008 3.92935E-09
CTDHH=PSO -7.809 6.518E-09
CTDHH=HIWO -8.008 3.92935E-09
CTDHH=IWO -8.008 3.92935E-09
CTDHH=HHSA -4.286 0.0000915

Scenario - 5
t-value Significat (1-tailed) test

CTDHH=GA -8.474 1.2263E-09
CTDHH=PSO -9.503 1.03645E-10
CTDHH=HIWO -11.449 1.40555E-12
CTDHH=IWO -9.187 2.1784E-10
CTDHH=HHSA -3.279 0.0013555

Scenario - 6
t-value Significat (1-tailed) test

CTDHH=GA -2.509 0.008977
CTDHH=PSO -2.344 0.013071
CTDHH=HIWO -3.218 0.0015855
CTDHH=IWO -1.735 0.04664
CTDHH=HHSA -0.621 0.2697515

Scenario - 7
t-value Significat (1-tailed) test

CTDHH=GA -4.676 0.000031
CTDHH=PSO -2.879 0.003714
CTDHH=HIWO -4.676 0.000031
CTDHH=IWO -4.676 0.000031
CTDHH=HHSA -1.141 0.131515

Scenario - 8
t-value Significat (1-tailed) test

CTDHH=GA -3.703 0.000445
CTDHH=PSO -2.865 0.003837
CTDHH=HIWO -2.955 0.0030755
CTDHH=IWO -2.926 0.003303
CTDHH=HHSA -5.923 0.000001

Scenario - 9
t-value Significat (1-tailed) test

CTDHH=GA -6.436 2.4276E-07
CTDHH=PSO -1.828 0.0389495
CTDHH=HIWO -2.192 0.018291
CTDHH=IWO -6.131 0.0000005
CTDHH=HHSA -3.248 0.0014665
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Table 5.23: Normality and significance tests for Inspiral

SWFA
Scenario-1
t-value Significat (1-tailed) test

CTDHH=GA -3.031 0.0025415
CTDHH=PSO -3.027 0.002572
CTDHH=HIWO -3.031 0.0025415
CTDHH=IWO -3.031 0.0025415
CTDHH=HHSA -2.077 0.023405

Scenario-2
t-value Significat (1-tailed) test

CTDHH=GA -2.247 0.0162195
CTDHH=PSO -6.041 0.0000005
CTDHH=HIWO -3.108 0.0020985
CTDHH=IWO -2.135 0.0206495
CTDHH=HHSA -3.697 0.0004525

Scenario-3
t-value Significat (1-tailed) test

CTDHH=GA -2.882 0.00368
CTDHH=PSO -2.491 0.0093515
CTDHH=HIWO -2.363 0.012535
CTDHH=IWO -2.07 0.0237355
CTDHH=HHSA -3.729 0.000415

Scenario-4
t-value Significat (1-tailed) test

CTDHH=GA -2.409 0.0112975
CTDHH=PSO -2.537 0.008414
CTDHH=HIWO -2.409 0.0112975
CTDHH=IWO -2.409 0.0112975
CTDHH=HHSA -4.534 0.000046

Scenario-5
t-value Significat (1-tailed) test

CTDHH=GA -3.186 0.0017625
CTDHH=PSO -3.131 0.0020255
CTDHH=HIWO -2.635 0.0067845
CTDHH=IWO -3.617 0.000581
CTDHH=HHSA -5.771 0.0000015

Scenario-6
t-value Significat (1-tailed) test

CTDHH=GA -2.288 0.014793
CTDHH=PSO -3.714 0.0004325
CTDHH=HIWO -2.994 0.002792
CTDHH=IWO -2.763 0.004925
CTDHH=HHSA -2.684 0.0059505

Scenario-7
t-value Significat (1-tailed) test

CTDHH=GA -3.175 0.0017665
CTDHH=PSO -3.362 0.001094
CTDHH=HIWO -3.175 0.0017665
CTDHH=IWO -3.175 0.0017665
CTDHH=HHSA -3.281 0.0013475

Scenario-8
t-value Significat (1-tailed) test
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CTDHH=GA -3.199 0.001662
CTDHH=PSO -0.856 0.199423
CTDHH=HIWO -0.506 0.308387
CTDHH=IWO -2.551 0.00814
CTDHH=HHSA -2.703 0.0056795

Scenario-9
t-value Significat (1-tailed) test

CTDHH=GA -1.416 0.0837295
CTDHH=PSO -5.385 0.0000045
CTDHH=HIWO -1.508 0.071241
CTDHH=IWO -9.617 7.9515E-11
CTDHH=HHSA -1.636 0.056306

Table 5.24: Normality and significance tests for Montage

SWFA
Scenario 1

t-value Significat (1-tailed) test
CTDHH=GA -8.283 1.9665E-09
CTDHH=PSO -8.283 1.9665E-09
CTDHH=HIWO -8.283 1.9665E-09
CTDHH=IWO -8.283 1.9665E-09
CTDHH=HHSA -0.704 0.24359

Scenario 2
t-value Significat (1-tailed) test

CTDHH=GA -2.939 0.003201
CTDHH=PSO -2.071 0.0236675
CTDHH=HIWO -4.737 0.0000265
CTDHH=IWO -4.516 0.0000485
CTDHH=HHSA -2.939 0.003201

scenario 3
t-value Significat (1-tailed) test

CTDHH=GA -3.246 0.001476
CTDHH=PSO -2.269 0.015458
CTDHH=HIWO -3.807 0.0003365
CTDHH=IWO -2.385 0.011927
CTDHH=HHSA -3.12 0.002032

Scenario 4
t-value Significat (1-tailed) test

CTDHH=GA -1.232 0.113913
CTDHH=PSO -3.226 0.0015525
CTDHH=HIWO -5.882 0.000001
CTDHH=IWO -1.62 0.058048
CTDHH=HHSA -5.002 0.0000125

Scenario 5
t-value Significat (1-tailed) test

CTDHH=GA -3.306 0.001263
CTDHH=PSO -3.768 0.0003745
CTDHH=HIWO -2.795 0.0045575
CTDHH=IWO -2.442 0.010465
CTDHH=HHSA -2.107 0.0219375

Scenario 6
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t-value Significat (1-tailed) test
CTDHH=GA -8.448 1.3057E-09
CTDHH=PSO -8.448 1.3057E-09
CTDHH=HIWO -8.448 1.3057E-09
CTDHH=IWO -8.448 1.3057E-09
CTDHH=HHSA -2.329 0.013518

Scenario 7
t-value Significat (1-tailed) test

CTDHH=GA -4.573 0.0000415
CTDHH=PSO -3.887 0.0002715
CTDHH=HIWO -2.143 0.020302
CTDHH=IWO -1.977 0.0288015
CTDHH=HHSA -3.671 0.0004845

Scenario 8
t-value Significat (1-tailed) test

CTDHH=GA -6.163 0.0000005
CTDHH=PSO -2.343 0.013097
CTDHH=HIWO -2.66 0.0062975
CTDHH=IWO -2.288 0.014807
CTDHH=HHSA -1.579 0.0625995

Scenario 9
t-value Significat (1-tailed) test

CTDHH=GA -6.163 0.0000005
CTDHH=PSO -2.343 0.013097
CTDHH=HIWO -2.66 0.0062975
CTDHH=IWO -2.288 0.014807
CTDHH=HHSA -1.579 0.0625995

Table 5.25: Normality and significance tests for SIPHT

SWFA
Scenario 1

t-value Significat (1-tailed) test
CTDHH=GA -2.478 0.0096355
CTDHH=PSO -2.478 0.0096355
CTDHH=HIWO -2.478 0.0096355
CTDHH=IWO -2.478 0.0096355
CTDHH=HHSA -2.064 0.0240405

Scenario 2
t-value Significat (1-tailed) test

CTDHH=GA -3.71 0.0004365
CTDHH=PSO -3.156 0.0018565
CTDHH=HIWO -1.145 0.130865
CTDHH=IWO -2.031 0.0257605
CTDHH=HHSA -3.408 0.0009695

Scenario 3
t-value Significat (1-tailed) test

CTDHH=GA -2.33 0.0134905
CTDHH=PSO -4.095 0.0001545
CTDHH=HIWO -6.994 5.4325E-08
CTDHH=IWO -6.507 2.0045E-07
CTDHH=HHSA -5.817 0.0000015

Scenario 4
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t-value Significat (1-tailed) test
CTDHH=GA -4.397 0.0000675
CTDHH=PSO -4.573 0.0000415
CTDHH=HIWO -4.397 0.0000675
CTDHH=IWO -4.397 0.0000675
CTDHH=HHSA -4.859 0.000019

Scenario 5
t-value Significat (1-tailed) test

CTDHH=GA -2.803 0.004469
CTDHH=PSO -2.16 0.0195885
CTDHH=HIWO -2.635 0.0066785
CTDHH=IWO -5.027 0.000012
CTDHH=HHSA -4.803 0.000022

Scenario 6
t-value Significat (1-tailed) test

CTDHH=GA -2.524 0.008676
CTDHH=PSO -2.804 0.004457
CTDHH=HIWO -2.417 0.0110825
CTDHH=IWO -2.136 0.0206405
CTDHH=HHSA -2.426 0.010858

Scenario 7
t-value Significat (1-tailed) test

CTDHH=GA 5.329 0.000005
CTDHH=PSO 5.329 0.000005
CTDHH=HIWO 5.329 0.000005
CTDHH=IWO 5.329 0.000005
CTDHH=HHSA -4.509 0.0000495

Scenario 8
t-value Significat (1-tailed) test

CTDHH=GA -4.481 0.0000535
CTDHH=PSO -4.833 0.00002
CTDHH=HIWO -4.519 0.000048
CTDHH=IWO -3.077 0.002268
CTDHH=HHSA -7.183 3.30035E-08

Scenario 9
t-value Significat (1-tailed) test

CTDHH=GA -1.966 0.0294735
CTDHH=PSO -3.719 0.0004265
CTDHH=HIWO -2.171 0.019122
CTDHH=IWO -2.868 0.0038145
CTDHH=HHSA -1.956 0.0300615

From tables (Table 5.22 to 5.25) and based on the t-values and p-values, it can be

observed that the proposed CTDHH approach has significant results for most of the

Paired-Samples T-Test comparison results. This has ultimately confirmed that completion

time and total computational cost results of the proposed CTDHH are more optimised

compared to the baseline and existing approaches for most the SWFA datasets. However,
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in the following exceptional cases, the proposed approach does not get significant results

for the t-values and Paired-Samples T-Test (Table 5.22 to 5.25):

- In scenario 6 of Epigenomics SWFA the proposed CTDHH approach does not get

significant results comparing with HHSA approach. This due to the fact that the hyper

heuristic approches are always achieve optimal results.

- In scenario 8 of Inspiral SWFA the proposed CTDHH approach does not get significant

results comparing with PSO and HIWO approaches. Also, in scenario 9 of the same

SWFA, the proposed CTDHH approach does not get significant results comparing with

HHSA approach. This due to the fact that the hyper heuristic approches are always achieve

optimal results.

- In scenario 1 of Montage SWFA the proposed CTDHH approach does not get

significant results comparing with HHSA approach. Also, in scenario 4 of the same SWFA,

the proposed CTDHH approach does not get significant results comparing with GA and

IWO approaches. Furthermore, in scenario 8 of the same SWFA, the proposed CTDHH

approach does not get significant results comparing with HHSA approach. And finally, in

scenario 9 of the same SWFA, the proposed CTDHH approach does not get significant

results comparing with HHSA approach. Due to the high complexity of the Montage

SWFA, the above-mentioned results shows that there is significant differences between the

compared approaches.

- In scenario 2 of SIPHT SWFA the proposed CTDHH approach does not get significant

results comparing with HIWO approach. This due to the fact that hybrid approch has

achieved optimal results by considering the mutation operation of GA algorithm.

5.5 Summary

In this chapter, the statistical analysis methods have been extensively discussed, which

were applied on the collected data by running the proposed approach and the baseline
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approaches for cost optimisation of SWFS using WorkflowSim simulation environment.

In order to efficiently evaluate the data-intensiveness and computational-intensiveness

performance of the proposed approach, four scientific workflow application datasets (i.e.,

epigenomics, inspiral, montage, SIPHT) with different sizes of datasets have been executed

using the simulation environment. All of descriptive analysis tests are particularly useful

to get an observation of the data collected. Four statistical methods have been conducted

in this chapter in order to perform complete analysis of the collected data. The four main

values (i.e., average value, maximum value (represents the worst value), and minimum

value (represents the best value), standard deviation)) have been selected for the completion

time (makespan) and total computational cost.

For completion time results, it is concluded that the meta-heuristic algorithms (i.e.,

GA, PSO, IWO, and HWO) lack in achieving good results compared to the proposed

approach. This is due to the nature of the solution proposed by these algorithms, which have

limitations in considering for a more optimal solution, compared with the hyper-heuristic

approach. It is worth mentioning that in some cases, the S.D. values of these algorithms

are equal to zero because there is no variation to be measured. Also, the result has shown

that the proposed approach has attained the most optimal values comparing with the other

approaches. Besides this, the Epigenomics SWFA has always taken longer completion

time (makespan) comparing with Inspiral, Montage, and Sipht SWFA, for all sizes of

datasets. This is due to two reasons: (i) the size of tasks is large comparing with the

other SWFAs, and (ii) the data dependencies (precedence constraints) between these tasks

are more complex comparing with the other SWFAs. Furthermore, the results also show

that the proposed approach has achieved the most optimal results for all types of SWFA

datasets and for all considered sizes compared with the baseline approaches.

For total computational cost results, similar to the completion time results, the proposed
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approach has achieved the cheapest total computational cost comparing with the baseline

approaches. And these results are affected by the SWFA’s type and size. This is mainly

because of the complex and large size of the submitted workflow tasks, which ultimately

make the SWFS approaches to take longer time to execute these tasks. Also, the Montage

SWFA always consumes the lowest total cost compared with the other SWFA datasets (i.e.,

Epigenomics, Inspiral, and Sipht). This is due to the fact that the tasks of Montage SWFA

have less precedence constraints compared to the other SWFA datasets.
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CHAPTER 6: EVALUATION AND ANALYSIS USING REAL-WORLD
ENVIRONMENT

In this chapter, the second type of the evaluation for the proposed Completion Time

Driven Hyper-Heuristic (CTDHH) approach has been discussed, which is used to achieve

the third objectives of this research. At the first stage, an extensive definition of the

utilized Workflow Management System (WfMS) has been provided. At the second stage,

the adopted settings and methodological steps for the conducted experiments have been

comprehensively discussed. Finally, at the third stage, the results and statistical analysis

have been provided by running the real-world based experiments using Pegasus WfMS. In

the following sections (i.e. Section 6.1, Section 6.2 and Section 6.3) a complete detail for

each of the above-mentioned stages has been provided.

6.1 Real-world Based Environment

The WfMS in cloud computing has the ability to handle the requests from different

domains of SWFAs. To execute the SWFA datasets, high performance resources, such

as supercomputers, need to be delivered by the service provider (i.e. infrastructure as a

service) (Z. Wu et al., 2013; Yan et al., 2013; Deelman et al., 2013; Bittencourt & Madeira,

2013; Malawski et al., 2012). Therefore, WfMSs using cloud services enable the scientists

to define multi-stage computational and data processing pipelines that can be executed as

resources with predefined QoS. Therefore, the scheduling process can automate complex

analyses, improves application performance, and reduces the time required to obtain the

desired results (Sharif et al., 2013). Inspired by this, the studies that focused on cost

optimisation of SWFS in cloud computing environment have been extensively surveyed.

Thanks to the above-mentioned importance of SWFAs, various WfMSs such as Pegasus

(Deelman et al., 2005), Kepler (Ludscher, Altintas, Berkley, Higgins, & Zhao, 2006) and

Taverna workbench (Wolstencroft, Haines, Fellows, Williams, & Fisher, 2013), Oozie
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(Islam, Huang, Battisha, & Abdelnur, n.d.), ASKALON (Wieczorek, Prodan, & Fahringer,

2005), and GrADS (Berman, Casanova, Chien, & Cooper, 2005) have been successfully

proposed for different types of scientific workflows. These WfMSs have been devised to

define, manage, execute, and evaluate workflows in different computational environments

besides cloud computing.

In this study, the Pegasus WfMS is utilized as a the second type of environment for

evaluating the proposed approach.

This is mainly due to the fact that the use of Pegasus WfMS facilitated in explaining

the complex computational tasks into workflows that link and manage sets of dependent

tasks and related data files. The Pegasus WfMS can be defined as a configurable system

for mapping and executing abstract application workflows over a wide range of execution

environments including a laptop, a campus cluster, a Grid, or a commercial or academic

cloud. Nowadays, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science

Grid, the TeraGrid, and many campus clusters. One workflow can run on a single system

or across a heterogeneous set of resources. Pegasus can run workflows ranging from

just a few computational tasks up to 1 million. Pegasus WfMS bridges the scientific

domain and the execution environment by automatically mapping high-level workflow

descriptions onto distributed resources. It automatically locates the necessary input

data and computational resources necessary for workflow execution. Pegasus enables

scientists to construct workflows in abstract terms without worrying about the details of the

underlying execution environment or the particulars of the low-level specifications required

by the middleware (Condor, Globus, or Amazon EC2). Pegasus WfMS also bridges the

current cyber infrastructure by effectively coordinating multiple distributed resources. The

input to Pegasus is a description of the abstract workflow in a XML format. Pegasus

automatically chains dependent tasks together, so that a single scientist can complete
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complex computations that once required many different people. Pegasus has a number of

features that contribute to its usability and effectiveness (Deelman et al., 2005; Deelman,

Blythe, Gil, & Kesselman, n.d.; Deelman, Vahi, Juve, Rynge, & Livny, 2015).

1. Portability/Reuse : User-created workflows can easily be run in different environments

without any alteration. Pegasus currently runs workflows on top of Condor, Cloud

infrastructures such as Open Science Grid and TeraGrid, Amazon EC2, and Nimbus. The

same workflow can run on a single system or across a heterogeneous set of resources.

2. Per f ormance : The Pegasus mapper can reorder, group, and prioritise tasks in order to

increase the overall workflow performance.

3. Scalability : Pegasus can easily scale both the size of the workflow tasks as well as

the distributed computational resources. Pegasus runs workflows ranging from just a few

computational tasks up to 1 million. The number of resources involved in executing a

workflow can scale as needed without any impediments to performance.

4. Provenance : By default, all jobs in Pegasus are launched via the kick-start process that

captures runtime provenance of the job and helps in debugging. The provenance data is

collected in a database, and the data can be summaried with tools such as Pegasus-statistics,

Pegasus-plots, or directly with SQL queries.

5. Data Management : Pegasus handles replica selection, data transfers and output

registrations in data catalogs. These tasks are added to a workflow as auxiliary jobs by the

Pegasus planner.

6. Operating Environments : Pegasus workflows can be deployed across a variety of

computational environments such as Cloud, Local Execution, Grid, Condor Pools and

Glideins. The Cloud computing environment uses a network as a means to connect a

Pegasus end user to distributed resources that are based in the cloud.
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6.2 Experimentation Setting

In order to implement and develop the proposed CHDHH approach in the real-world

experimentation environment, four main phases have been performed. In the first phase,

the experimentation test-bed layers has been planned. At the second phase, configuring and

testing the experimentation environment in order to prepare for the implementation phase.

At the third phase, the proposed CTDHH approach has been implemented. And finally

at the fourth phase, the experiments have been conducted to evaluate the performance of

the proposed CTDHH approach. Figure 6.1, represents the main phases of the considered

experimentation.

Figure 6.1: Phases of test-bed experimentation

The following sections provide a complete detail about each of these phases.

6.2.1 Planning the Experimentation Test-bed

As mentioned earlier, several types of frameworks have been considered by the

researchers in the literature. For this reason, planning and selecting the right real-world

test-bed tools is one of the most challenging researchers usually face. In this section, the

main layers have been listed (i.e. SWFA layer, Pegasus layer, HTCondor layer, Visualization

layer, and Physical layer) that have been considered to implement the SWFS test-bed

experimentation.
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Figure 6.2: Experimentation test-bed layers
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The following are the explanation of these layers (Figure 6.2).

6.2.1.1 SWFA layer

For Scientific Workflow Application (SWFA) layer, the usage of real-world SWFA can

be efficiently utilised to evaluate the performance of the proposed CTDHH approach. The

main reason behind choosing the real-world SWFA is that the real dependent tasks and

data will be executed in real computational resources, while collecting accurate results for

the considered completion time (makespan) and total computational cost parameters.

Based on the literature review and discussions with the experts in this area of research,

the Montage application has been selected as the SWFA dataset. Three different sizes

have been considered in order to evaluate the data-intensiveness of the proposed approach.

Montage application has been developed on the top of Pegasus WfMS. The utilised

package of Montage application has several types of files, for instance, the tasks (executable

programming files), data (set of images that need to be processed) and others scripts, which

are used to facilitate the configuration of Pegasus WfMS. The scripts of Monatge SWFA

have been modified in order to establish the communication between this application and

HTCondor pool, which ultimately supports the sending and receiving of tasks and images

from Montage to the HTCondor pool. Furthermore, the Montage SWFA in real-world

datasets is a well-known SWFA in Pegasus due to its tasks and data complexity. Montage

(http://montage.ipac.caltech.edu) is a SWFA for assembling Flexible Image Transport

System (FITS) images into custom mosaics. The main files component is the set of

dependent programs (tasks) and sets of images (data). With the help of Pegasus, these

files will be submitted and executed in an automated way. There are several features that

scientists can benefit from using the Montage SWFA in real world as. More details for the

Montage SWFA are available in Appendix B.3.
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6.2.1.2 Pegasus layer

As it has been mentioned earlier in Section 6.1, Pegasus layer as the core layer of

the considered test-bed experimentation is considered as the WfMS of experimentation

setup. The Pegasus WfMS (Version 4.6) was installed using Github repository hosting

service on the Ubuntu Linux operating system (Version 16.04 LTS). A Pegasus WfMS

defines, manages, and executes workflows on available virtual machines (i.e. computing

resources), where the workflow execution order is driven by a computer representation

of the workflow logic. There are several stages that have been performed by the Pegasus

WfMS in order to accomplish the submitted workflow tasks. Each stage is responsible to

process the submitted tasks based on the different underlying techniques. For instance,

modeling stage can be done using Directed Acyclic Graph (DAG) technique to highlight

the precedence constraints of the submitted workflow tasks. In comparison to the modeling

stage, scheduling or planning is considered as a core workflow processing stage of a WfMS.

After processing the workflow tasks in modeling and scheduling stages, WfMS needs to

submit the scheduled tasks to the execution stage using the HTCondor pool.

6.2.1.3 HTCondor layer

The execution process of Pegasus WfMS can be applied using various computational

environments. For instance, previously researchers have used clustering computing, parallel

computing, and grid computing. After the emergence of cloud computing, researchers

have started migrating their WfMS to the cloud computing environment as it offers more

powerful, scalable, flexible, and virtualised features. The main goal of using the condor

pool is to implement, develop, deploy, and evaluate mechanisms and policies that support

High Throughput Computing (HTC) on large collections of distributively owned computing

resources. Furthermore, a HTCondor is a compute-intensive cloud system that provides a

mechanism called DAGMan to schedule workflows within the HTCondor enabled grid.
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DAGMan is a meta-scheduler that manages the workflow tasks dependencies. Its name

is derived from the structure of the workflows (DAG) that it schedules. DAGMan relies

on the workflow description to submit tasks in a predefined order. However, DAGMan is

limited in terms of the task dependencies. In particular, it is unable to handle branching or

looping. The actual scheduling of the tasks is done by the Condor scheduler. Based on the

recommendations from the literature, one manager node and eight slaves (workers) has

been configured, where each of these nodes represents a virtual machine. The specification

of these VMs are (1 processor - intel Xeon CPU E5540 @ 2.53GHz, 4 GB RAM, 100GB

Hard disk for Master and 10 GB Hard disk for each of the slaves).

6.2.1.4 Virtualization layer

All the VMs were installed on EXSi VMware Virtual Server 5.5, which is configured

on VSphere Client 5.5.

6.2.1.5 Physical layer

As the physical layer of the test-bed, the EXSi VMware Virtual Server 5.5 has been

configured on the physical server: Intel(R) Xeon(R) CPU E5-24070 @ 2.20GHz.

6.2.2 Assessing the Test-bed Experimentation

In order to investigate the test-bed experimentation, the already implemented workflow

examples (e.g., hello world example) in Pegasus have been implemented. This testing

step has helped to check the data-flow of the workflow tasks submitted to the SWFA side

through the Pegasus WfMS to the available VM slaves of the condor pool.

6.2.3 Implementing the Proposed CTDHH Approach

In this section, the considered implementation stages of the proposed CTDHH approach

is described. Figure 6.3 illustrates the main steps that have been considered in implementing
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the proposed approach, starting from the submission step and finishing at collecting results.

In order to automate the proposed CTDHH approach, twomain dashboards (web-interfaces)

have been implemented, (i) Run dashboard, and (ii) Monitoring dashboard. Both web-

based dashboards are used to simplify the task for the user (i.e. scientists) to manage

the submitted workflow tasks to WfMS in an automated manner. The following section

elaborates on the steps for each of these dashboards:

Figure 6.3: Implementing steps of the proposed CTDHH approach
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6.2.3.1 Run Dashboard

Figure 6.4 shows the print-screen of the implemented run dashboard, in this page, the

user can select the required scenario by choosing the targeted SWFS approach as well

as the number of available VMs and size of workflow tasks (degree). After selectng the

proposed CTDHH approach and scenario type details, the selected approach passes these

details from the HTML page to PHP code “run.php” to send a signal to Linux O.S. (Version

16.04 LTS) by creating “list.txt” file. Next, BASH file in Linux O.S. will receive the details

from “run.php” and do the compilation then run the experimentation based on the selected

scenario. After the compilation is done successfully, the BASH file “testscript.sh” runs the

experiment and updates the database by running the database updater “testSQL.php”. The

other task of this BASH file is to remove the “list.txt” once the task is done and wait for

the next order send by “run.php” file. To run the experimentation, the “run-bamboo-test”

BASH file is used to pass the required details to Pegasus environment, by selecting the

targeted list of datasets (images) and then run the “Pegasus-run” command. After the run

is completed successfully, the approach will run “Pegasus-Statistics” command to get all

the required statistical results for that particular run. In order to keep all the achieved

runs’ results, after each run, the complete results will be saved in an archived folder called

“Run-Folder”. This folder will be used to update the SQL database tables using testSQL.php

script which will grip the run results from all the relevant files in "Run-Folder” and save

them in a run table as a database file. After this step is done, the proposed approach will

follow the other steps using the java class implemented in Pegasus (EHLH.java). Once

all the steps of the proposed CTDHH approach is done successfully, the approach will

run “loadDB.php” to store the following results in SQL database: algorithm (the used

approach name), available VMs (number of VMs), and problem size (degree size). It is

worth to mention that the "scoreboard table" (see Chapter 4 for complete details about the
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run table and scorebored table) is used by the proposed CTDHH approach to update the

Time Score (TS) after each run and also it will be used for the next run. The results of all

the runs can be imported by the user using “CSV” format to be used by the Monitoring

Dashboard to view the required results based on the user selection.

Figure 6.4: Run dashboard of the proposed CTDHH approach

6.2.3.2 Monitoring Dashboard

As shown in Figure 6.5, the monitoring dashboard page can be used by the user to display

and compare the results of the completion time and total computational of the proposed

CTDHH approach with the baseline approaches and HHSA approach. At the first step, the

user can select the targeted scenario by selecting the degree size and number of VMs. The

approach will automatically retrieve the scenario details and pass them to JavaScript file

called “Draw.js” to set the diagrams specifications. The “loadDB.php” file will be used

to get the diagrams details from the database to display them in “index.php” page. The
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"index.php" page shows the results of the completion time and total computational cost for

the user to be able to know the performance of the proposed approach as well as the other

baseline approaches and HHSA approach.

Figure 6.5: Monitoring dashboard of the proposed CTDHH approach

6.2.4 Conducting the Experiments for the Proposed CTDHH Approach

The first step of the experimentation is selecting the proposed CTDHH approach using

the "Run Dashboard". Then, compile the Pegasus using "ant" compiler to update the

files. The next step is choosing the size of the Montage SWFA and finally by running

the Montage SWFA in the real environment. In order to comprehensively evaluate the

proposed approach, nine experimentation scenarios have been considered by running the

proposed CTDHH approach and baseline as well as HHSA approach using different degree

sizes of Montage SWFA by utilising the master node and other eight slaves’ nodes of

the condor pool. Table 6.1 presents each of the considered scenarios, where each of the
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Table 6.1: Specification of scenarios for Montage SWFA in real-world environment

Scenario Size of Workflow No. of Tasks No. of Jobs No. of VMs
1 Degree-1 387 44 2
2 Degree-1 387 44 4
3 Degree-1 387 44 8
4 Degree-2 1442 95 2
5 Degree-2 1442 95 4
6 Degree-2 1442 95 8
7 Degree-3 2425 150 2
8 Degree-3 2425 150 4
9 Degree-3 2425 150 8

considered scenarios has a different number of workflow tasks and a different number of

VMs.

It is worth to mention that the "pegasus-statistics" and "pegasus-analyser" command of

Pergasus WfMS have been used to check the status of the submitted workflow tasks and

the statistical results from running each approach. Based on the literature and because

of population search based approaches that have been considered in this study for the

conducted experimentation scenarios, each approach has been executed for 30 times.

6.3 Results and Discussion of Real-world Environment

Similar to the simulation environment for the real-world evaluation environment, the

proposed approach Completion Time Driven Hyper-Heuristic (CTDHH) approach has

been compared with four baseline meta-heuristic approaches (i.e Genetic Algorithm (GA),

Particle Swarm Optimisation (PSO), Invasive Weed Optimisation (IWO), and Hybrid

Invasive Weed Optimisation (HIWO)) and an existing hyper-heuristic approach named

Hyper-Heuristic Scheduling Algorithm (HHSA). The complete details for each of the used

baseline approaches and HHSA approach is provided in Appendix A.

There are nine scenarios that have been utilized in the experiments and each of these

scenarios has a different number of workflow tasks and a different number of VMs. Two
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main types of statistical analysis have been used in this chapter to evaluate the performance

of the proposed CTDHH approach in the real-world environment including (i) descriptive

statistical analysis, and (ii) Normality testing and significant statistical analysis.

6.3.1 Descriptive Statistical Analysis

Four types of descriptive statistical analysis have been used for the experimentation

(average, minimum, maximum, and standard deviation (S.D.)) to compare the proposed

CTDHH approach with the baseline and HHSA approaches based on the completion time

and total computational cost values. The minimum statistical value represents the best

value and the maximum statistical value represents the worst result. In the following

sections, the experimentation results of the descriptive statistical analysis of the considered

Montage SWFAs in the real-world environment have been presented and discussed.

6.3.1.1 ComparisonbetweenProposedCTDHHApproachandBaselineApproaches

In the this section, the completion time and total computational cost statistical results

have been discussed on the comparison between proposed CTDHH approach and baseline

approaches for each of the nine considered scenarios.

i. Completion time results

Table 6.2 represents the descriptive statistical analysis of completion time results for

Montage SWFA in the real-world environment for all considered nine scenarios.

Table 6.2: Completion time comparisonbetweenCTDHH

and baselines for Montage
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 380.5 378.9 373.5333333 392.1 370.9333333
MIN 344 351 352 370 349
MAX 401 419 399 446 396
S.D. 15.4378621 16.655433 11.55417027 15.34960406 14.64271817

Scenario-2
GA PSO HIWO IWO CTDHH

AVAERAGE 364.5333333 354.2333333 356.5333333 379.5333333 344.6
MIN 332 333 337 349 326
MAX 395 373 374 423 382
S.D. 13.10628523 9.394361234 8.443456284 18.30909579 13.58142748
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Scenario-3
GA PSO HIWO IWO CTDHH

AVAERAGE 363.1333333 351.8333333 367.5 479.4666667 342.1666667
MIN 329 332 333 370 321
MAX 389 368 440 805 378
S.D. 15.92381286 9.627845153 22.23502983 89.03998843 14.57935085

Scenario-4
GA PSO HIWO IWO CTDHH

AVAERAGE 1336.9 1389.366667 1061.6 1104.633333 1065.533333
MIN 1252 1330 1016 1040 1004
MAX 1390 1466 1145 1237 1114
S.D. 28.1674182 29.1139063 28.70371837 43.41975026 31.40144224

Scenario-5
GA PSO HIWO IWO CTDHH

AVAERAGE 1085.766667 1099.266667 1180.566667 1159.466667 1027.1
MIN 1024 1032 1088 1078 976
MAX 1260 1208 1478 1461 1145
S.D. 59.47742738 43.7161166 108.0863905 69.23758862 38.27878678

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 982.9 1007.3 1014.333333 963.3333333 956.5
MIN 915 955 937 919 909
MAX 1200 1062 1085 1041 1023
S.D. 79.02437424 27.79251946 37.38461175 32.31134458 27.5690356

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 1889.966667 1844.633333 1819.7 1755 1706.966667
MIN 1757 1778 1610 1675 1627
MAX 2273 1958 2099 1843 1795
S.D. 108.4522725 43.92507989 168.2834534 49.62827337 46.0033607

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 1746.633333 1712.2 1654.333333 1674.766667 1635.566667
MIN 1639 1610 1578 1593 1576
MAX 1905 2014 1817 1881 1711
S.D. 52.78550175 99.94874549 54.5845332 70.28399697 35.0818583

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 1856.833333 1948.7 1920.6 1987.466667 1715.866667
MIN 1747 1750 1818 1885 1622
MAX 2068 2694 2079 2162 1864
S.D. 85.08092834 276.1708804 62.11924018 62.94263033 72.47674221

It can be observed from Table 6.2 that the proposed CTDHH approach has the most

optimal average completion time (second) compared with the other baseline approaches.

Regarding the S.D. value, HIWOmeta-heuristic algorithm achieved better results comparing

to the proposed CTDHH approach. This is due to the reason that after each run, selection

operator of CTDHH approach is required to select most suitable LLH from a list of LLHs,

which ultimately has affect the S.D. However, the average value of the completion time

is always considered by researchers for scheduling problem (Abrishami & Naghibzadeh,

2012; Saeid Abrishami, 2013).

Figure 6.6 presents five charts. Note that each of these charts is representing the
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relationship between the average completion time and the considered scenarios for each of

the approaches.

Figure 6.6: Average completion time of CTDHH and baselines for Montage in real
environment

The first observation from these charts (Figure 6.6) is that the proposed CTDHH

approach achieved the most optimal average completion time values. Also, the average

completion time values of all approaches are affected by the size of dataset (degree) as

well as the availability of VMs. It can be also observed that there are slight changes of

the average value for scenarios one, two and three of all approaches. This is because of

the limited number of available VMs and the problem size is smaller comparing with

other scenarios (scenarios four to six). On the other hand, the average completion time

of the proposed approach has achieved the most optimal value comparing with all other

baseline approaches. This is due to the fact that the HLH strategy of the proposed CTDHH

approach depends on the TS of the execution results of employed LLH algorithms.

Figure 6.7 shows the average completion time of all approaches for the considered

scenarios.
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Figure 6.7: Average completion time of all approaches for Montage in real environ-
ment

It can be observed from Figure 6.7 that the values of average completion time of

scenario one to scenario three are always lower than the average completion time of all

other scenarios. Also, the other observation is that the average completion time values

of scenario seven to scenario nine are always higher than the average completion time of

all other scenarios. The proposed CTDHH approach has achieved the lowest completion

time performance comparing with the performance of all other baseline approaches and

the performance of the proposed CTDHH approach is getting better as the size of dataset

increases.

ii. Total computational cost results

Table 6.3 presents the statistical results of total computational cost for Montage SWFA

in the real-world environment for all considered scenarios.
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Table 6.3: Total computational cost comparison CTDHH

and baselines for Montage
Scenario-1

GA PSO HIWO IWO CTDHH
AVERAGE 1.7506044 1.74324312 1.71855216 1.80397368 1.70659008
MIN 1.5826752 1.6148808 1.6194816 1.702296 1.6056792
MAX 1.8449208 1.9277352 1.8357192 2.0519568 1.8219168
S.D. 0.07102652 0.07662832 0.05315843 0.07062046 0.06736822

Scenario-2
GA PSO HIWO IWO CTDHH

AVAERAGE 3.35428992 3.25951344 3.28067712 3.49231392 3.17087136
MIN 3.0549312 3.0641328 3.1009392 3.2113584 2.9997216
MAX 3.634632 3.4321968 3.4413984 3.8922768 3.5150112
S.D. 0.12059879 0.08644315 0.07769331 0.16847298 0.12497086

Scenario-3
GA PSO HIWO IWO CTDHH

AVAERAGE 6.68281536 6.4748592 6.763176 8.82372096 6.2969616
MIN 6.0546528 6.1098624 6.1282656 6.809184 5.9074272
MAX 7.1588448 6.7723776 8.097408 14.814576 6.9564096
S.D. 0.29304911 0.17718316 0.4091957 1.63862072 0.26830671

Scenario-4
GA PSO HIWO IWO CTDHH

AVAERAGE 6.15080952 6.39219816 4.88420928 5.08219704 4.90230576
MIN 5.7602016 6.119064 4.6744128 4.784832 4.6192032
MAX 6.395112 6.7447728 5.267916 5.6911896 5.1252912
S.D. 0.12959266 0.13394726 0.13206007 0.19976559 0.14447176

Scenario-5
GA PSO HIWO IWO CTDHH

AVAERAGE 9.99079056 10.1150122 10.8631022 10.6689485 9.45096336
MIN 9.4224384 9.4960512 10.0113408 9.9193248 8.9807616
MAX 11.594016 11.1155328 13.5999648 13.4435376 10.535832
S.D. 0.5472875 0.40225822 0.99456773 0.6370966 0.35222608

Scenario-6
GA PSO HIWO IWO CTDHH

AVERAGE 18.0885053 18.5375434 18.6669792 17.728416 17.6026608
MIN 16.838928 17.575056 17.2437984 16.9125408 16.7285088
MAX 22.08384 19.5441984 19.967472 19.1577312 18.8264736
S.D. 1.45430136 0.51147129 0.68799649 0.59463214 0.50735848

Scenario-7
GA PSO HIWO IWO CTDHH

AVERAGE 8.69535864 8.48678904 8.37207576 8.074404 7.85341224
MIN 8.0836056 8.1802224 7.407288 7.70634 7.4855016
MAX 10.4576184 9.0083664 9.6570792 8.4792744 8.258436
S.D. 0.49896722 0.20209051 0.77423851 0.22832976 0.21165226

Scenario-8
GA PSO HIWO IWO CTDHH

AVERAGE 16.0718213 15.7549795 15.2225136 15.410533 15.0498302
MIN 15.0814224 14.814576 14.5201248 14.6581488 14.5017216
MAX 17.529048 18.5320224 16.7193072 17.3082096 15.7439376
S.D. 0.48571107 0.91968838 0.50226504 0.64672523 0.32280923

Scenario-9
GA PSO HIWO IWO CTDHH

AVERAGE 34.1716752 35.8623158 35.3451859 36.5757466 31.5774374
MIN 32.1503904 32.2056 33.4570176 34.690032 29.8499904
MAX 38.0578176 49.5782208 38.2602528 39.7877184 34.3035648
S.D. 1.56576134 5.08242795 1.1431928 1.15834581 1.33380398

As discussed earlier in chapter 5 (simulation results), the total computational cost value

of SWFS relies on the completion time (makespan) value and also depends on the VM

available for each scenario. It can be concluded that the values of total computational cost
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of larger datasets (scenarios seven, eight, and nine) is higher than those of the other smaller

datasets (scenarios one to six). This mainly occurs due to the time required to execute

the SWFA. The other important point is that the total computational cost of the proposed

CTDHH approach always attains the lowest average value comparing with other baseline

approaches. However, in scenario 4, the total computational cost value of HIWO approach

is slightly lower than the total computational cost value of the proposed approach, and this

due to the low convention time that HIWO appoach can achieve in most of the runs, which

ultimately affect the produced optimal solution for each run.

Figure 6.8 presents five charts. Note that each chart is representing the relationship

between the total computational cost ($/hour) and the considered scenarios for each of the

approaches.

Figure 6.8: Average total computational cost of CTDHH and baselines for Montage

Figure 6.8 shows that the average cost values of scenarios three (comparing with

scenarios one and two), scenario six (comparing with scenarios four and five) and scenario

nine (comparing with scenarios seven and eight) are always higher than those of the other

scenarios of all the approaches. This is due to the larger size of workflow tasks and more

available VMs (8 VMs). Furthermore, the proposed CTDHH approach always attained
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optimal performance results for all considered scenarios.

Figure 6.9 illustrates the average total computational cost ($/hour) values of all ap-

proaches for the considered scenarios.

Figure 6.9: Average total computational of all approaches for Montage in real
environment

Figure 6.9 shows as the size of dataset increases (with several available VMs), the

proposed CTDHH approach performs better than other baseline approaches in terms of

average total computational cost. Also, it can be evident that the average value of total

computational cost of IWO approach achieves the worst value for most of the scenarios.

6.3.1.2 Comparison between Proposed CTDHH Approach and HHSA Approach

i. Completion time results
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Table 6.4 illustrates the statistical results (average, minimum, maximum and S.D.) of

completion time for Montage SWFA in the real-world environment for all considered

scenarios.

Table 6.4: Completion time comparisonbetweenCTDHH

and HHSA for Montage
Scenario-1

HHSA CTDHH
AVERAGE 381.9 370.9333333
MIN 346 349
MAX 422 396
S.D. 14.81925588 14.64271817

Scenario-2
HHSA CTDHH

AVAERAGE 359.9333333 344.6
MIN 334 326
MAX 380 382
S.D. 11.88720939 13.58142748

Scenario-3
HHSA CTDHH

AVAERAGE 349.7 342.1666667
MIN 326 321
MAX 376 378
S.D. 10.51156998 14.57935085

Scenario-4
HHSA CTDHH

AVAERAGE 1116.5 1065.533333
MIN 1055 1004
MAX 1200 1114
S.D. 30.08579686 31.40144224

Scenario-5
HHSA CTDHH

AVAERAGE 1253.966667 1027.1
MIN 1179 976
MAX 1391 1145
S.D. 53.44315919 38.27878678

Scenario-6
HHSA CTDHH

AVERAGE 1010.866667 956.5
MIN 961 909
MAX 1106 1023
S.D. 42.60705246 27.5690356

Scenario-7
HHSA CTDHH

AVERAGE 1718.966667 1706.966667
MIN 1624 1627
MAX 1832 1795
S.D. 52.85013511 46.0033607

Scenario-8
HHSA CTDHH

AVERAGE 1681.933333 1635.566667
MIN 1596 1576
MAX 1847 1711
S.D. 65.81370433 35.0818583

Scenario-9
HHSA CTDHH

AVERAGE 1780.1 1715.866667
MIN 1645 1622
MAX 2245 1864
S.D. 110.0944266 72.47674221

The average completion time value of the proposed CTDHH approach is very close to
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the average completion time of HHSA approach (Table 6.4). This is due to the utilized

hyper-heuristic mechanism in employing the employed LLH algorithms (GA, PSO, IWO,

HIWO) in order to find the most optimal SWFS solution.

Figure 6.10 presents two charts, where each of these charts is representing the relationship

between the average completion time and the considered scenarios for each of the

approaches.

Figure 6.10: Average completion time of CTDHH and HHSA for Montage in real
environment

It is evident from Figure 6.10 that the average completion time values of both approaches

are significantly affected by the size of dataset (degree) as well as the availability of VMs.

The proposed CTDHH approach has the most optimal average completion time values.

Ultimately, it concludes that the performance of the proposed CTDHH approach is improv-

ing with increased size of datasets compared to with HHSA approach.

Figure 6.11 shows the average completion time of all approaches for the considered

scenarios.
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Figure 6.11: Average completion time of CTDHH and HHSA for Montage in real
environment

It can be observed from Figure 6.11 that the proposed CTDHH approach are achieving

a more optimal result when the problem size is getting bigger.

This is due to the hyper-heuristic method of selecting the most suitable LLH algorithm

from the list of meta-heuristic algorithms based on the achieved time score instead of keep

using the same algorithm for all runs.

ii. Total computational cost results

Table 6.5 presents the statistical results of total computational cost for Montage SWFA

in the real-world environment for all considered scenarios.
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Table 6.5: Average completion time of both approaches
Scenario-1

HHSA CTDHH
AVERAGE 1.75704552 1.70659008
MIN 1.5918768 1.6056792
MAX 1.9415376 1.8219168
S.D. 0.06818043 0.06736822

Scenario-2
HHSA CTDHH

AVAERAGE 3.31196256 3.17087136
MIN 3.0733344 2.9997216
MAX 3.496608 3.5150112
S.D. 0.10938135 0.12497086

Scenario-3
HHSA CTDHH

AVAERAGE 6.43559904 6.2969616
MIN 5.9994432 5.9074272
MAX 6.9196032 6.9564096
S.D. 0.19344652 0.26830671

Scenario-4
HHSA CTDHH

AVAERAGE 5.1367932 4.90230576
MIN 4.853844 4.6192032
MAX 5.52096 5.1252912
S.D. 0.13841873 0.14447176

Scenario-5
HHSA CTDHH

AVAERAGE 11.5384997 9.45096336
MIN 10.8486864 8.9807616
MAX 12.7994256 10.535832
S.D. 0.49176257 0.35222608

Scenario-6
HHSA CTDHH

AVERAGE 18.6031814 17.6026608
MIN 17.6854752 16.7285088
MAX 20.3539392 18.8264736
S.D. 0.78410611 0.50735848

Scenario-7
HHSA CTDHH

AVERAGE 7.90862184 7.85341224
MIN 7.4716992 7.4855016
MAX 8.4286656 8.258436
S.D. 0.2431529 0.21165226

Scenario-8
HHSA CTDHH

AVERAGE 15.4764778 15.0498302
MIN 14.6857536 14.5017216
MAX 16.9953552 15.7439376
S.D. 0.60559138 0.32280923

Scenario-9
HHSA CTDHH

AVERAGE 32.7595363 31.5774374
MIN 30.273264 29.8499904
MAX 41.315184 34.3035648
S.D. 2.02608975 1.33380398

As previously discussed in chapter 5 (simulation results), the total computational cost

value of SWFS heavily relies on the completion time (makespan) value and the VM

available for each considered scenarios. The other important observation is that the total

computational cost of the proposed CTDHH approach always attains the lowest average
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value comparing with other HHSA approach.

Figure 6.12 presents two charts. Note that each chart is representing the relationship

between the total computational cost ($/hour) and the considered scenarios for each of the

approaches.

Figure 6.12: Average total computational cost of CTDHH and HHSA for Montage
in real environment.

The proposed CTDHH approach has the optimal performance results for all considered

scenarios (Figure 6.12). Furthermore, similar to the simulation results, the total computa-

tional cost value heavily depends on the completion time, number of available VMs as

well as the number of workflow tasks for each of the considered scenarios.

Figure 6.13, illustrates the average total computational cost ($/hour) values of all

approaches for the considered scenarios.
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Figure 6.13: Average total computational of both approaches for Montage in real
environment

From Figure 6.13, it can be concluded that in the real-world environment, the proposed

approach is shows better performance that of compared with HHSA approach. This is

due to the random behavior of original hyper-heuristic approach that can not get the most

optimal results.

6.3.2 Normality Test and Significance Test of the Proposed Approach

As it has been discussed in Section 3.3.5, this section presents the statistical results of

normality test and significance test of the proposed approach.

Figure 6.14: Normality tests for the proposed CTDHH approach
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Based on Figure 6.14, it can be concluded that result data is normally distributed, the

paired T-test is used for statistical comparison, the result data from the proposed CTDHH

approach with each of the baseline approaches as well as the comparison the result data

from the proposed CTDHH approach and the HHSA.

The following Table 6.6 represents the T-Tests results by comparing proposed approach

and the baseline approaches as well as the significance between the proposed CTDHH

approach and the HHSA.

Table 6.6: Normality and significance tests for Montage
Scenario 1

t-value Significat (1-tailed) test
CTDHH=GA -2.449 0.0103105
CTDHH=PSO -1.932 0.0316075
CTDHH=HIWO -0.76 0.2267285
CTDHH=IWO -5.249 0.0000065
CTDHH=HHSA -2.7 0.0057225

Scenario 2
t-value Significat (1-tailed) test

CTDHH=GA -5.85 0.000001
CTDHH=PSO -2.911 0.0034305
CTDHH=HIWO -4.181 0.000122
CTDHH=IWO -8.44 1.332E-09
CTDHH=HHSA -4.72 0.0000275

Scenario 3
t-value Significat (1-tailed) test

CTDHH=GA -5.924 0.000001
CTDHH=PSO -3.671 0.000485
CTDHH=HIWO -6.664 1.31135E-07
CTDHH=IWO -8.083 3.24495E-09
CTDHH=HHSA -2.323 0.0137065

Scenario 4
t-value Significat (1-tailed) test

CTDHH=GA -30.043 1.0558E-23
CTDHH=PSO -38.149 1.22275E-26
CTDHH=HIWO 0.562 0.2893465
CTDHH=IWO -4.131 0.00014
CTDHH=HHSA -5.601 0.0000025

Scenario 5
t-value Significat (1-tailed) test

CTDHH=GA -4.433 0.000061
CTDHH=PSO -7.635 1.01745E-08
CTDHH=HIWO -6.803 9.0325E-08
CTDHH=IWO -8.652 7.902E-10
CTDHH=HHSA -17.875 1.6837E-17

Scenario 6
t-value Significat (1-tailed) test

CTDHH=GA -1.79 0.0419715
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CTDHH=PSO -7.848 5.9005E-09
CTDHH=HIWO -6.201 4.5936E-07
CTDHH=IWO -1.001 0.162527
CTDHH=HHSA -6.425 2.4985E-07

Scenario 7
t-value Significat (1-tailed) test

CTDHH=GA -8.379 1.5485E-09
CTDHH=PSO -13.467 2.61525E-14
CTDHH=HIWO -4.142 0.000136
CTDHH=IWO -3.604 0.00058
CTDHH=HHSA -1.183 0.123301

Scenario 8
t-value Significat (1-tailed) test

CTDHH=GA -10.428 1.2637E-11
CTDHH=PSO -3.9 0.0002625
CTDHH=HIWO -1.483 0.07448
CTDHH=IWO -2.858 0.0039075
CTDHH=HHSA -3.379 0.001047

Scenario 9
t-value Significat (1-tailed) test

CTDHH=GA -8.087 3.21955E-09
CTDHH=PSO -4.954 0.0000145
CTDHH=HIWO -10.825 5.302E-12
CTDHH=IWO -15.923 3.56525E-16
CTDHH=HHSA -3.169 0.001798

From Table 6.6 and based on the t-values and p-values, it can be observed that the

proposed CTDHH approach has significant results for most of the Paired-Samples T-

Test comparison results. This has ultimately confirmed that completion time and total

computational cost results of proposed CTDHH are more optimised compared to the

baseline and existing approaches for most the SWFA datasets. However, in the following

exceptional cases, the proposed approach does not get significant results for the t-values

and Paired-Samples T-Test (Table 6.6):

- In scenario 1 of Montage SWFA the proposed CTDHH approach does not get

significant results comparing with HIWO approach.

- In scenario 4 of the same SWFA, the proposed CTDHH approach does not get

significant results comparing with HIWO approach.

- In scenario 6 of the same SWFA, the proposed CTDHH approach does not get

significant results comparing with IWO approach.
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- In scenario 7 of the same SWFA, the proposed CTDHH approach does not get

significant results comparing with HHSA approach.

The reason behind these exceptional results is the high complexity of the Montage

SWFA cause significant differences between the achieved results of approaches.

6.4 Summary

This chapter discusses about the implementation and evaluation of the proposed CTDHH

approach in the real-world environment. The behavior of the proposed CTDHH approach

is more clear when it is implemented in the real cloud environment. It can be observed

from results that the proposed CTDHH approach has the most optimal average completion

time compared with the other baseline approaches. This is due to the fact that the HLH

strategy of the proposed CTDHH approach depends on the TS of the execution results of

employed LLH algorithms. Also, the average completion time values of all approaches

are affected by the size of dataset (degree) as well as the availability of VMs. Thus, it

can be also observed that in most cases, there are slight changes of the average value

for scenarios one, two and three of all approaches and the performance of the proposed

CTDHH approach is getting better as the size of dataset increases. This is because of the

limited number of available VMs and the problem size is smaller comparing with other

scenarios. And also this mainly occurs due to the time required to execute the SWFA.

Furthermore, the average completion time value of the proposed CTDHH approach is

very close to the average completion time of HHSA approach. This is due to the utilized

hyper-heuristic mechanism in employing the employed LLH algorithms (GA, PSO, IWO,

HIWO) in order to find the most optimal SWFS solution.

The total computational cost of the proposed CTDHH approach always attains the lowest

average value comparing with other baseline approaches. Average total computational cost

results show as the size of dataset increases (with several available VMs), the proposed
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CTDHH approach performs better than other baseline approaches. This is due to the

hyper-heuristic method of selecting the most suitable LLH algorithm from the list of

meta-heuristic algorithms based on the achieved time score instead of keep using the same

algorithm for all runs. The other important observation is that the total computational cost

of the proposed CTDHH approach always attains the lowest average value comparing with

other HHSA approach. This is due to the random behaviour of original hyper-heuristic

approach that can not get the most optimal results.

It can also be concluded from normality test and significance test that result data is

normally distributed, the paired T-test is used for statistical comparison, the result data

from the proposed CTDHH approach with each of the baseline approaches as well as the

comparison the result data from the proposed CTDHH approach and the HHSA. This has

ultimately confirmed that completion time and total computational cost results of proposed

CTDHH are more optimised compared to the baseline and existing approaches for most

the SWFA datasets.
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CHAPTER 7: CONCLUSION AND FUTUREWORK

This chapter concludes this research by presenting the following subsections: (i)

summarising the key findings in relation to the research questions, (ii) listing the core

contributions of the research, (iii) discussing the main limitations of the conducted research,

and (iv) future work for the research.

7.1 Summary of Findings in Relation to the Research Questions

In Chapter 1, the formulated research objectives and Research Questions (RQs) have

been formulated, which help in conducting the research methodology. In this section, the

main finding of this research has been discussed by answering the formulated RQs.

RQ1: What are the key cost optimisation challenges of SWFS in the cloud environment?

Through an extensive literature review, the challenges of SWFS have been classified

into three main types (Figure 2.6): (i) QoS performance; (ii) system functionality; and

(ii) system architecture. Section 2.3.1, Section 2.3.2, and Section 2.3.3 provide complete

details about these challenges.

RQ2: What are the main cost optimisation aspects affecting the SWFS in the cloud

environment?

Several aspects need to be considered while scheduling the scientific workflow tasks.

Section 2.1 presents a classification for aspects of cost optimisation SWFS approaches

in a cloud computing environment based on eight main classes including computing

environment, optimisation method, structural representation, profitability, scheduling

technique, workload type, optimisation criteria, and QoS constraints.

RQ3: What are the key cost parameters of SWFS in cloud computing, and how these

parameters could affect the profitability of cost optimisation of SWFS?

After analysing the cost optimisation parameters considered by different researchers
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in the area of cost optimisation of SWFS in cloud computing, it has been found that the

classification of the cost optimisation parameters is dependent on two types: (i) monetary

cost parameters, and (ii) temporal cost parameters, as shown in Figure 2.3 in Section 2.2.

RQ4: What are the existing cost optimisation approaches for the SWFS problem?

The relevant cost optimisation approaches have been identified for SWFS problem in

Section 2.4. It also provides a clearer understanding of the strengths of the underlying

optimisation, and limitations for all considered and reviewed approaches. Furthermore,

answering this question has helped in selecting the hyper-heuristic meta-heuristic approach

as the most suitable proposed approach for the problem of this research.

RQ5: How to model the cost optimisation problem of SWFS?

In Section 4.1, the cost optimisation model of SWFS has been defined which helped to

understand the mapping and scheduling processes of workflow tasks by considering the

scheduling stages along with completion time and total computational cost parameters.

Three standard stages of SWFS cost optimisation model are defined. The first stage

discusses about the SWFAs, while the second stage describes the targeted computing

environment. Finally, the third stage formulates the cost optimisation criteria.

RQ6: How to propose a dynamic hyper-heuristic algorithm for cost optimisation

challenge of SWFS?

In Section 4.2, the Dynamic Hyper-Heuristic Algorithm (DHHA) has been presented

for cost optimisation challenge of SWFS in a cloud environment. The DHHA is the

main part of the proposed Completion Time Driven Hyper-Heuristic (CTDHH) approach.

The proposed algorithm is considered as a new advanced technique that is capable of

accelerating the run-time of a meta-heuristic algorithm. DHHA used the High Level

Heuristic (HLH) strategy by employing four well-known population-based meta-heuristic

algorithms, which act as the Low Level Heuristic (LLH). The main purpose of HLH
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strategy is to intelligently guide the search process based on the performance of the

employed meta-heuristic LLH algorithms.

RQ7: What are the key experimental cloud environments that need to be considered for

the evaluation of the proposed approach?

From studying the existing experimental tools in the Section 3.3.1, it has been found that

to comprehensively develop and evaluate the performance of any SWFS cost optimisation

approach in cloud computing environment, there is a need to consider different compu-

tational environments. In this thesis, two different types of computational environments

have been selected to evaluate the performance of the proposed CTDHH approach: (i)

simulation-based usingWorkflowSim, and (ii) a real-world based using PegasusWfMS. The

purpose of considering different computational environments is to efficiently understand

the performance of the proposed CHDHH approach using diverse types of SWFAs.

RQ8: What are the most relevant baseline and existing hyper-heuristic approaches that

need to be considered to evaluate the proposed approach?

In Chapter 5 and Chapter 6, the proposed CTDHH approach has been extensively

evaluated. As explained earlier in Chapter 3 (Section 3.1.4), the performance of the

proposed approach is evaluated by comparing it with four population-based approaches (i.e.

GA, PSO, IWO, HIWO) and an existing hyper-heuristic approach named Hyper-Heuristic

Scheduling Algorithm (HHSA) to effectively and efficiently evaluate the performance.

RQ9: How to evaluate the computational-intensiveness and data-intensiveness of the

proposed approach?

In chapter 5 (Section 5.4), four types of SWFAs have been used to evaluate the

performance of the proposed CTDHH approach. Note that these SWFAs also consider

the computational-intensive of the workflow tasks that can be measured by the number

and their composition structure. Furthermore, for each of these standard SWFA datasets,
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there are different sizes that allows measuring the scalability of data-intensive applications

(Section 5.4 and Section 6.3).

RQ10: Would the proposed approach lead to results that are better than the considered

baseline and existing hyper-heuristic approaches?

From the several types of the conducted statistical analysis, the result of completion

time parameter shows that the meta-heuristic algorithms (i.e. GA, PSO, IWO, and HWO)

lack in attaining optimised results compared to the proposed CTDHH approach. This

is due to the nature of solutions produce by these approaches (i.e. GA, PSO, IWO, and

HWO), which are unable to provide an optimal solution for the SWFS, while the proposed

CTDHH approach utilised a dynamic on-line learning strategy to find the most optimal

solution. Furthermore, the results in Chapter 5 and Chapter 6 also show that the proposed

CTDHH approach has achieved the most optimal results for most of the SWFA datasets and

for most of the considered scenarios compared with the baseline and HHSA approaches.

For total computational cost results, similar to the completion time results, the proposed

approach has achieved the cheapest total computational cost comparing with the baseline

approaches. And these results are affected by the SWFA’s type and size. This is mainly

because of the complex and large size of the submitted workflow tasks, which ultimately

make the SWFS approaches to take longer time to execute these tasks. Also, the Montage

SWFA always consumes the lowest total cost compared with the other SWFA datasets (i.e.,

Epigenomics, Inspiral, and Sipht). This is due to the fact that the tasks of Montage SWFA

have less precedence constraints compared to the other SWFA datasets.

7.2 Research Contributions

There are several contributions that have been gained from conducting this research.

The following are the key contribution of this research:
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• Several taxonomies of cost optimisation for SWFS challenges, aspects, and

parameters.

• A completion time driven hyper-heuristic approach for cost optimisation of SWFS

has been proposed. The proposed approach helps in optimising the completion time

(makespan) and total execution cost of SWFS in the cloud computing environment.

• The proposed CTDHH approach can be profitable for service consumers, by

reducing the total computational cost by utilising the computational resources of the

cloud. At the same time, the proposed approach can provide more satisfying user

requirements (i.g. shorter completion time and cheaper computational cost).

• The proposed approach helps in saving the energy and time of the service providers,

by judiciously utilising the computational resources. This would ultimately help in

reducing the computation cost as well as handling the computation-intensive and

data-intensive SWFAs.

• This research would open new doors for a high impact research with innovative

values through SWFA and cloud computing.

• To comprehensively evaluate the proposed approach, (i) two types of experimenta-

tion environment have been considered, (ii) several types of baseline and the existing

hyper-heuristic approaches have been used to compare the proposed approach, (iii)

several types of SWFAs have been considered, and (iv) different sizes of SWFAs

have been used.

• Several papers have been published in high impact journals (please refer to the list

of publications at the end of this thesis).

7.3 Research Limitations

The following are the key limitations of this research:

255

Univ
ers

ity
 of

 M
ala

ya



• In some cases, the proposed CTDHH approach has higher standard deviation

values comparing with the other baseline and HHSA approaches.

• Due to the limited global contribution from remote research laboratory, only

private cloud computing environment has been considered.

• In order to simplify the research problem, some cost parameters have to be assumed

to be of constant value (e.g., cost of storage, communication cost).

• Only one type of SWFA has been considered in the real-world environment.

This is mainly due to the long computational time, which has been taken to do the

experimentation using a real scientific application with large data sizes. However, in

the simulation based environment, four types of SWFAs have been considered.

7.4 Future Work

The following are the key future work that may be consider in the future study:

• Identify more classifications for the existing approaches in order to find a more

optimal solution for the SWFS problem.

• Apply the proposed CTDHH approach in different kinds of optimisation challenges

of SWFS including security, load balancing, reliability, and Quality of Service (QoS).

• Finding a more optimal solution by enhancing the selection and approval operators

of the hyper-heuristic approaches.

• Implement the proposed approach in a hybrid cloud environment by linking

the current private cloud environment to a public cloud environment by renting

heterogeneous VMs from different service providers (e.g., Amazon). This would

ultimately help in exploring the behavior of the proposed CTDHH approach with

different computational environments, where the communication cost will also be

considered.
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