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PREPARATION OF GRAPHENE QUANTUM DOTS AS A 
GREEN PHOTOSENSITIZER AND ITS APPLICATION IN DYE-

SENSITIZED SOLAR CELL 

ABSTRACT 

The increasing incidence of global warming provides the impetus for research in 

alternative green renewable energy sources, such as tidal, geothermal, biomass, wind, 

and solar energy. Among these options, solar energy is of great interest due to its 

inherent abundance. Currently, commercially produced solar cells are based on silicon 

technology, which is very expensive due to the high production costs. An alternative to 

the conventional Si solar cell is the Dye-Sensitized Solar Cells (DSSCs), which is 

currently being actively explored. The commonly used dyes for a photosensitizer in 

DSSCs are ruthenium-based complexes. To improve the performances of DSSCs and to 

increase their commercial attractiveness, cheap, colorful, stable, and highly efficient 

ruthenium-free dyes needs to be developed due to ruthenium-based dyes are quite rare. 

An alternative to dye-type sensitizers are quantum dots (QDs). QDs are interesting due 

to their intrinsic properties. The band gap varies with size, therefore, absorption and 

redox properties can be tuned by the synthesis of QDs. Zero-dimensional graphene 

quantum dots (GQDs) consist of single- or few-layer graphene with a size less than 

100nm and stand for a new type of QDs with unique properties combining the graphene 

nature and size-resulted quantum effects. GQDs possess unique optical and electronic 

properties, and in particular possess a band-gap less than 2.0 eV because of quantum 

confinement and edge effects. In this study, we synthesized GQDs from graphene oxide 

(GO) by using the hydrothermal method. We investigated the performance of DSSCs 

using different thicknesses of TiO2 and ZnO nanoparticles as photo-anodes and the as-

prepared GQD as a green photosensitizer. The I-V test results indicate that the 

performance of DSSCs is improved by increasing the thickness of the photo-anode and 

the thickness of 40 μm shows the highest efficiency for both DSSC devices based on 
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TiO2 and ZnO nanoparticles photo-anodes. The DSSCs using TiO2 and ZnO 

nanoparticles as photo-anodes with thickness of 40 μm show almost same efficiency 

when we replaced N-719 with GQDs which is confirmed that using GQDs as an 

alternative to ruthenium based dyes is a new approach for DSSCs. 

Keywords: Graphene quantum dots, Green photosensitizer, Dye-densitized solar cell, 

Solar cell fabrication 
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PENYEDIAAN DARI TANAH GRAPHENE QUANTUM SEBAGAI 

PHOTOSENSITISER HIJAU DAN APLIKASI ITU DALAM SELAR SELAR-

SENSITIS                                                                                                            

ABSTRAK 

Insiden meningkatkan pemanasan global menjadi penggerak untuk penyelidikan 

dalam sumber tenaga boleh diperbaharui alternatif hijau, seperti pasang surut, panas 

bumi, biomas, angin, dan tenaga solar.Antara pilihan ini, tenaga solar sangat menarik 

kerana banyak yang wujud itu. Pada masa ini, sel-sel solar yang dihasilkan secara 

komersial adalah berdasarkan kepada teknologi silikon, yang sangat mahal kerana kos 

pengeluaran yang tinggi. Satu alternatif kepada Si sel solar konvensional adalah Sel 

Solar Dye-sensitif (DSSCs), yang kini sedang giat diterokai.Pewarna yang biasa 

digunakan untuk photosensitizer dalam DSSCs adalah kompleks berasaskan 

ruthenium.Untuk meningkatkan prestasi DSSCs dan untuk meningkatkan daya tarikan 

komersial mereka, murah, pewarna ruthenium bebas berwarna-warni, stabil, dan sangat 

berkesan perlu dibangunkan kerana pewarna berasaskan ruthenium-agak jarang 

berlaku.Satu alternatif kepada pewarna-jenis memeka adalah titik kuantum (QDs).QDs 

adalah menarik kerana sifat intrinsik mereka.Jurang band berbeza dengan saiz, oleh itu, 

penyerapan dan redoks hartanah boleh ditala oleh sintesis QDs. Zero dimensi titik 

graphene kuantum (GQDs) terdiri daripada tunggal atau beberapa lapisan graphene 

dengan saiz yang kurang daripada 100 nm dan berdiri untuk jenis baru QDs dengan ciri-

ciri unik yang menggabungkan sifat graphene dan kesan kuantum saiz menyebabkan. 

GQDs memiliki sifat-sifat optik dan elektronik yang unik, dan khususnya memiliki 

memberikan nilai jurang yang kurang daripada 2.0 eV kerana kesan pantang dan 

kelebihan kuantum.Dalam kajian ini, kami disintesis GQDs daripada oksida graphene 

dengan menggunakan kaedah hidroterma. Kami menyiasat prestasi DSSCs 
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menggunakan thichnesses berbeza TiO2 dan ZnO nanopartikel sebagai photo-anodes 

dan GQD as-disediakan sebagai photosensitizer hijau. Keputusan ujian I-V 

menunjukkan bahawa prestasi DSSCs diperbaiki dengan meningkatkan ketebalan 

photo-anode dan ketebalan 40 mikron menunjukkan kecekapan yang paling tinggi bagi 

kedua-dua peranti DSSC berdasarkan TiO2 dan ZnO nanopartikel photo-anodes. The 

DSSCs menggunakan TiO2 dan ZnO nanoparticls sebagai photo-anodes dengan 

ketebalan 40 mikron menunjukkan kecekapan hampir sama apabila kami menggantikan 

N-719 dengan GQDs yang disahkan bahawa menggunakan GQDs sebagai alternatif 

kepada ruthenium pewarna berasaskan adalah satu pendekatan baru untuk DSSCs. 

Kata kunci: Titik kuantum graphene, fotosensitizer Hijau, Sel suria bertekanan suria, 

fabrikasi sel Suria 
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CHAPTER 1: INTRODUCTION 

 Research Background 

Energy is generated from fossil fuels and nuclear power. The currently limited fossil 

fuel resources and its usage, which results in a large amount of carbon dioxide, 

increases the greenhouse effect and induces climate change, which is fast becoming a 

global concern (Bunn and Heinonen, 2011; Evans, et al., 2009). Figure 1.1 shows the 

consumption of fossil fuels between 1965-2030, where the demand increases as a 

function of time. Fossil fuels are regarded as a non-renewable energy source. Shafiee 

and Topal calculated that oil, coal, and gas stocks will only be sufficient for the next 40, 

200, and 70 years, respectively, if the projected world-consumption rate remains similar 

to the ones reported for 2006 (Shafiee and Topal, 2009). 

 

Figure 1.1: Consumption of the fossil fuel in the world from 1965 to 2030 
(Shafiee and Topal, 2009) 

Researchers searched for an alternative that is green, renewable, environmentally 

friendly and safe, such as solar energy, hydropower, geothermal energy, wind power, 

and bioenergy. Solar energy is of great interest, as the sun is regarded as an infinite 

source of energy (Conn, 2011; Solangi, et al., 2011; Sternberg, 2010). 
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1.1.1 Photovoltaic Technology 

Solar cell, or photovoltaic cell, is an electrical device that converts the incident 

photon energy of the solar radiation directly into electricity via the photovoltaic effect. 

The photovoltaic effect is the physical and chemical phenomenon that occurs when 

photons falls into a semiconductor and generates an electron-hole pair. 

A solar cell contains two electrodes: cathode and anode. When light is irradiated, 

solar cell builds up a voltage through its electrodes (Ellis, 2014b).The concept of a 

photovoltaic device involves charge separation at a junction of two materials with 

different conduction mechanism (Grätzel, 2003). 

1.1.1.1 Solar Cell Terminologies 

A current source in parallel with a forward-biased diode represents an equivalent 

circuit of an ideal solar cell. Series and parallel resistances are added to account for 

various loss mechanisms. Figure 1.2 shows an equivalent circuit of an ideal solar cell. 

 

Figure 1.2: Equivalent circuit of an ideal solar cell (Khan, 2013) 
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1.1.1.2 Short-circuit Current 

It is the current obtained from the cell when short circuited or in other words, when 

the load resistance is zero. Solar cell current is normally represented as current density, 

JSC: 

𝐽𝑆𝐶 =
𝐼𝑆𝐶

𝐴
                                                                                                                                     (1.1) 

where A is the effective area of the solar cell. It is a function of the solar 

illumination, optical properties and charge transfer probability of the cell (Khan, 2013).  

1.1.1.3 Open-circuit Voltage 

Open-circuit voltage is the maximum voltage available from a solar cell and is 

obtained when a load with infinite resistance is attached to its terminals. It is a function 

of the semiconductor band-gap and charge recombination in the cell. For DSSC the VOC 

is given by: 

𝑉𝑂𝐶 =
𝐸𝐶𝐵

𝑞
+

𝑘𝑇

𝑞
𝑙𝑛 (

𝑛

𝑁𝐶𝐵
) −

𝐸𝑟𝑒𝑑𝑜𝑥

𝑞
                                                                                    (1.2) 

where, n is the number of electrons in semiconductor conduction band and NCB is the 

effective density of states (Marinado, et al., 2009). The first two terms define the quasi-

fermi level of semiconductor and Eredox is the Nernst potential of the redox mediator. 

Typical current-voltage relationship of a solar cell which red line is related to light I-V 

response and black line is relates to dark I-V response is shown in Figure 1.3. 
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Figure 1.3: Typical current-voltage relationship of a solar cell (Khan, 2013) 

1.1.1.4 Fill Factor 

The fill factor (FF) is a measure of the maximum power output from a solar cell. It 

represents the squareness of the I-V curve and is defined as the ratio of the maximum 

power of the product of VOC and ISC for the solar cell: 

𝐹𝐹 =
𝑉𝑚𝑎𝑥 × 𝐼𝑚𝑎𝑥

𝑉𝑂𝐶 × 𝐼𝑆𝐶
                                                                                                                   (1.3) 

where, Vmax and Imax are the voltage and current at maximum power point. FF, being 

a ratio of the same physical parameters, has no unit. FF is a function of the series and 

shunt resistance of the solar cell. For DSSC, it reflects the extent of electrical and 

electrochemical losses during cell operation (Khan, 2013).  

1.1.1.5 Efficiency 

The efficiency of a solar cell is defined as the ratio of maximum electrical energy 

output to the energy input from the sun. Thus the mathematical definition of Efficiency: 

𝜂 =
𝑉𝑂𝐶 × 𝐼𝑆𝐶 × 𝐹𝐹

𝑃𝑖𝑛
                                                                                                                 (1.4) 
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where, Pin is the power input from the sunlight. Efficiency is generally expressed in 

percentage (Khan, 2013). 

1.1.1.6 Quantum Efficiency 

Quantum efficiency (QE) or ‘External Quantum Efficiency (EQE)’, sometimes also 

referred to as incident photon-to-current conversion efficiency (IPCE) is a measure of 

how efficient a solar cell is in producing photo-generated charge at a given frequency. It 

is defined as the ratio of the number of incident photons to the number of charge carriers 

generated and is a function of the excitation wavelength: 

𝐼𝑃𝐶𝐸 (𝜆) = 1240 ×
𝐼𝑆𝐶

𝜆 × 𝜙
                                                                                                    (1.5) 

where, ISC is the short circuit current (mA/cm2), λ is the wavelength and Φ is the 

incident radiative light flux (W/m2) (Grätzel, 2009).  

1.1.2 Photovoltaic generation 

Photovoltaics are divided into three generations based on their performance and cost 

effectiveness. 

The first generation of solar cell is based on silicon, and has a relatively high 

efficiency at high production costs, and is limited by the Shokley-Queisser limit 

(Conibeer, et al., 2006). 

The Shokley-Queisser limit, in physics, refers to the maximum theoretical efficiency 

that the solar cells build upon on the principle of a single p-n junction to collect power 

from a cell. It was calculated by Wiliam Shokley and Hans Queisser in 1961 (Shockley 

and Queisser, 1961). Limited absorption of photons is one of the most important 

limitations in the efficiency of solar energy production. 
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In conventional crystalline silicon solar cells, the photo-generated electron-hole pair 

is separated and collected through the p-n junction of a doped semiconductor (Gibbons, 

1977). 

The thin film solar cells based on CdTe or CuInGaSe belong to the second 

generation. Thin film technology is still limited by the Shokley-Queisser limit and is 

less efficient compared to the 1st generation solar cells, but they are much cheaper due 

to its low-cost manufacturing process. In 2nd generation photovoltaics, the cell’s 

thickness has been reduced from millimeters to only a few micrometers. The Shokley-

Queisser theoretical limit limits the propagation of both 1st and 2nd generations of solar 

cells (Timilsina, et al., 2012). 

The 3rd generation of photovoltaics includes any cells that were not included in the 

previous generations. 3rd generation solar cells are capable of exceeding the 

Shokley-Queisser limit. Nanomaterials are used to fabricate 3rd generation 

photovoltaics. The cost of the fabrication process is low as it does not require extreme 

temperatures for the preparation of pure silicon. DSSCs belong to the 2nd and 3rd 

generation of solar cells (Hoffmann and Dorgan, 2012).  

1.1.3 Dye-sensitized solar cells 

Currently, there is a need to develop cheaper photovoltaic devices that are reasonably 

efficient to instigate the widespread application of photovoltaic technology. DSSC is 

regarded as a thin film solar cell, and have emerged as an important alternative to 

conventional silicon solar cells (Grätzel, 2004). 

DSSCs was first reported by O’Regan and Gratzell in 1991, and have attracted 

significant attention, as it is environmentally friendly, easy to manufacture, capable of 
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utilizing indoor light sources, cheap, and relatively efficient (O’regan and Grätzel, 

1991).  

Figure 1.4 shows the DSSCs fabricated by Dyesol, Oxford PV, and power plastic on 

market (Dong, 2013). 

 

Figure 1.4: DSSCs were fabricted by Dyesol, Oxford PV and power plastic on 
market (Dong, 2013) 

At its simplest configuration (Figure 1.5), DSSCs is comprised of a photoelectrode 

made of mesoporous TiO2 film, which is coated on a transparent conducting glass 

(Fluorine-doped tin oxide, FTO), dye molecules attached to the surface of TiO2, a liquid 

electrolyte containing I-/I-
3 redox couple, and a catalyst (typically platinum) coated 

counter electrode (Ni, et al., 2006).   
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Figure 1.5: Schematic of the interior of a DSSC (Ni, et al., 2006) 

1.1.3.1 Structure and mechanism of dye-sensitized solar cells 

Figure 1.6 shows the processes taking place in DSSCs: 

1.  The absorption of the photon in DSSCs occurs by dye molecules, where the dye 

is excited from the ground state to the excited state. 

2. The excited electron is injected into the conduction band of the TiO2 electrode. 

3. The electron is transported to the back of the electrode to reach the counter 

electrode via the circuit. 

4. The oxidized dye accepts electron from the redox couple in the electrolyte and 

regenerate the ground state of the dye, while I- is oxidized to the oxidized state  

I-
3. 

5. I-
3, which is the oxidized redox mediator, diffuses towards the counter electrode, 

where it is then reduced to I- ions (Ellis, 2014a; Halme, et al., 2010).  
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Figure 1.6: Schematic illustration of a DSSC (Ellis, 2014a) 

1.1.4 Graphene quantum dots 

Carbon is the 15th most abundant element in the Earth's crust, and the 4th most 

abundant element in the universe. Carbon nanostructures, or nanocarbons, i.e. low-

dimensional nanomaterials, are being extensively researched for the past two decades 

due to their unique structural and electronic properties, prompting a huge interest from 

the perspective of fundamental research and application in molecular electronics, 

materials science, energy storage and conversion, bio-medicine, sensing, and bio-

sensing (Delhaes, 2012; Gogotsi and Presser, 2013; Rapino, et al., 2014). 

Graphene is a single or few atomic layers of graphite, with sp2 carbon atoms packed 

in a honeycomb crystal lattice. Graphene was recently touted as a wonder material, due 

to its high-mechanical strength, high electron mobility, lightness, flexibility, single-

atom thickness, and near transparency. Graphene also has large surface area, is 

impermeable to gas, reports very high thermal conductivity and Young’s moduli, all of 

which make it suitable for composites, thin films, electromagnetic shielding, sensor, and 

solar cells (Katsnelson, 2007). 
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To effectively tune the band gap of graphene and facilitate its use in various 

applications, its size needs to be reduced (Li, et al., 2011). 

Techniques to alter the band-gap in graphene have attracted significant interest for 

application in graphene-based electronics. To date, diverse strategies for the formation 

of a bandgap in graphene structures have been developed, including graphene 

nanoribbons (GNRs) and GQDs (Tong, et al., 2016). 

Zero-dimensional GQDs consist of single-or few-layer graphene that measures less 

than 100 nm and stands for a new type of quantum dots with unique properties, 

combining the nature of the graphene and size-induced quantum effects. GQDs exhibit 

unique optical and electronic properties, with a band-gap of less than 2.0 eV due to 

quantum confinement and edge effects. GQDs recently emerged as a potential candidate 

for fluorescent probes in cell imaging, bio-sensing, and solar cells, and were explored 

due to their unique characteristics such as high surface area, large diameter, and 

enhanced surface grafting using the π-π conjugated network or surface groups. GQDs 

also possess rich functional groups, such as carboxylic acid moieties at the edge, which 

imparts them with excellent water solubility and subsequent functionalization 

possibilities (Huang, et al., 2011). 

1.1.4.1 Advantages of graphene quantum dots 

The photoluminescent (PL) behavior of GQDs can be tuned from ultraviolet to near 

infrared based on its size, shape, edge effects, functional groups, heterojunction doping, 

and sp2 carbon fraction. 

In addition to their excellent PL behavior, GQDs exhibit a number of attractive 

characteristics. They report minimal toxicity to humans and the environment in contrast 

to their heavy metal based counterparts. They are also synthesized in bulk from an 
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abundance of starting materials via low cost strategies. Also, because GQDs are 

dispersed in water and organic solvents, they are readily integrated into standard 

industrial manufacturing. 

GQDs are suitable as sensitizers in solar cells, given that their absorption edge 

extends up to 900 nm and they are of one order of magnitude higher in absorbance 

compared to standard metal complexes. In the first proof-of-concept demonstration, the 

low current density was attributed to the low affinity between GQDs and TiO2 

(Kelarakis, 2015). Figure 1.7 indicates a different size of GQDs in water under white 

and UV illumination and also shows the dependence of the band gap as a function of the 

GQD size (Li, et al., 2010). 

 

 

Figure 1.7: Images of different sized GQDs in water under (a) white and (b) UV 
illumination (b). (c) Dependence of the band gap as a function of the GQD size (Li, 

et al., 2010) 

1.1.4.2 Quantum confinement 

The quantum confinement effect is observed when the size of the particle is too small 

to be comparable to the wavelength of the electron. To understand this effect, we can 

break the words like quantum and confinement, the word confinement means to confine 
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the motion of randomly moving electron to restrict its motion in specific energy levels 

(discreteness) and quantum reflects the atomic realm of particles. So, as the size of a 

particle decrease till we can reach a nano scale the decrease in confining dimension 

makes the energy levels discrete and this increases or widens up the band gap and 

ultimately the band gap energy also increases. Materials will have dimensions 

comparable to the exciton Bohr radius, increasing the surface to volume ratio, which 

results in the change in thermal, magnetic, electric and optical properties (Schaefer, 

2010) of the materials, as the size of the materials changes from bulk to the nanoscale. 

When the electrons in the nanomaterials are squeezed to the size comparable to exciton 

Bohr radius, the overlapping energy orbitals of nanomaterials change to discrete energy 

levels (Kittel, et al., 1996; Myasnikov and Myasnikova, 2001), this phenomenon is 

known as quantum confinement. 

 Problem statement 

In the past decade, ruthenium-based complexes are the most utilized dyes in DSSCs. 

However, major technical drawbacks of these complexes include the fact that they are 

expensive, as the metal is rare, its purification process tedious, and its lack of absorption 

in the red region of the visible spectrum, where the light harvesting process is 

optimized. This basically means that an alternative is required. Replacing ruthenium-

based dye with GQDs as a green photo-sensitizer is seen as a new approach for higher 

efficiency DSSCs, since the band gap of GQDs varies with size, therefore, the 

absorption and redox properties can be tuned via the synthesis of quantum dots. 

Moreover, GQDs demonstrate several fascinating properties, such as strong PL activity, 

chemical stability, lower toxicity compared to ruthenium-based dyes, and very high 

optical absorptivity (Tang, et al., 2014).  

Univ
ers

ity
 of

 M
ala

ya



13 

The photo-anode serves a dual function: support sensitizer loading and transport 

photo-excited electrons from the sensitizer to the external circuit. Therefore, a large 

surface area is necessary to ensure increased dye loadings, and a fast rate of charge 

transport is required to ensure high electron collection efficiency. These two properties 

are the defining characteristics of an ideal photo-anode. TMOs (TiO2 and ZnO) report 

many advantages, such as high surface area, which helps dye absorption, electrolyte 

penetration, light scattering, and multi-reflection via its visible light harvesting 

capability. Many efforts were expounded to enhance the performance of the working 

electrode in terms of reducing the recombination loss, increase dye uptake, increase 

Fermi energy level, enhance the electron lifetime with longer diffusion length, as well 

as electron collection and transport. Thus, the optimization procedure should be taken 

into account when determining the perfect thickness of the TMO nanoparticles and 

immersion time in the proposed dye. 

 Research Scopes 

There are three main stages in this work: Synthesis, Fabrication, and Application and 

Optimization of DSSC which is presented in Table 1.1. The synthesis and 

characterization of TiO2, ZnO nanoparticles and GQDs are investigated in this study. 

They will then be used in the DSSCs to enhance the power conversion efficiency (PCE). 
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Table 1.1: Overview of research scopes 

STAGE 1: 

a) Synthesis of TMO 
nanoparticles 

Preparation of TMO nanoparticles by 
Hydrothermal method 

  Intensity 
 Reaction time 
 Concentration 

STAGE 1: 

b) Synthesis of GO 

Preparation of GO from Gt by Hummer’s method 

  Oxidation duration 
 Acid concentration 
 Reaction temperature 

STAGE 1: 

c) Synthesis of GQDs 

Preparation of GQDs by Hydrothermal method 

  Intensity 
 Reaction time 
 Concentration 

Characterization of TMO, GO 
and GQDs  

  TEM, HRTEM, Raman, FTIR, PL, UV-Vis 
STAGE 2: 

a) TMO coated on FTO glass 
by using Dr. Blade method 

 

  Concentration of  nanoparticles 
Characterization of Photo-

anode  

  FESEM, Raman, FTIR, PL, UV- Vis 
STAGE 3: 

DSSC performance and 
Optimization of PCE 

 I–V characteristics of DSSC 
 Electrochemical impedance spectra of DSSCs 
 Incident power conversion efficiency (IPCE) 
 Optimization for preparing the sample 
 Optimization for using sample for the 
application 
 Enhancement of power conversion efficiency in 
DSSCs 

 Research Objectives 

The goal of my research is to understand the fundamental physics and performance 

of DSSCs with improved PCE at lower costs based on TiO2 and ZnO nanostructures 

and sensitizers via integrated experiments. 
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The specific objectives of this research are: 

1. To synthesize graphene quantum dots as a green sensitizer with band gap 

analogous to a transition metal. 

2. To fabricate a highly efficient DSSCs using the as-synthesized GQDs. 

3. To investigate the power conversion efficiency of novel fabricated DSSCs.  

The methodology of this research is shown in the following flowchart (Figure 1.8). 

 

Figure 1.8: Flowchart of fabricating DSSCs 
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 Organization of Thesis 

This dissertation adopts a university Malaya style guide to presentation, logically 

aimed and systematically rendered to enhance understanding of the research. The thesis 

is divided into five chapters as follows: 

Chapter one highlights the background of the study, the problems existing in this 

area which build motivation for this project, and the objectives of this research. 

Chapter two presents the literature review, which covers materials used in DSSCs 

and experimental parameters. This chapter shows that there have been many 

experimental studies regarding the fabrication of DSSCs. However, no work has been 

published on comparing the effect of ZnO and TiO2 photo-anodes with different 

thickness in DSSCs based on GQDs as a photosensitizer.  

Chapter three explains the methodology for conducting this research project. 

Preparation of materials and using them for the fabrication of DSSCs described 

schematically and the characterization equipment explained in details by adding some 

photographs, figures. 

Chapter four presents the experimental results which are analyzed by different 

characterization techniques. 

Chapter five demonstrates the comprehensive conclusions along with 

recommendations for further work.  
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CHAPTER 2: LITERATURE REVIEW 

 Photovoltaics 

Devices used for converting the energy of photons into the electricity are called 

photovoltaics. The generation of electron-hole pair while photons are falling upon a 

semiconductor is called the photovoltaic effect. The electrons and holes can be directed 

to different contacts via a circuit, which establishes an electric potential (Lewis, 2007). 

In 1839, Edmond Becquerel reported the photoelectric effect. Becquerel conducted 

experiments on liquid photo-electrochemical devices. The illuminating solution contains 

metal halide salts. Becquerel observed an electric current between the platinum 

electrodes immersed in the electrolyte solution (Becquerel, 1839).  Figure 2.1 illustrates 

the working principle of the solar cell. The n-doped and p-doped layers were connected. 

When irradiated, the electrons in the n-doped layer moves to the conduction band in its 

excited state. The electrons move into the circuit and arrive at the p-doped layer after 

the circuit. The electrons will then move to the n-type layer again due to the difference 

in energy levels, making the process cyclic (Ellis, 2014b).  

 

Figure 2.1: Schematic illustration of a silicon solar cell (Ellis, 2014b) 

Various kinds of photovoltaics are available; traditional silicon solar cells, thin film 

technologies, organic solar cells, quantum dot solar cells, perovskite solar cells, and 

DSSCs. Just like renewable energy, which should be available in the form of various 
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energy sources in the future, photovoltaics should also be designed to make it adaptable 

(Ellis, 2014b).  Different types of solar cells will be briefly summarized in the following 

subsections. 

2.1.1 Silicon solar cells 

The most widely used photovoltaic technology is crystalline silicon (Si). Silicon 

which is known as the second most plentiful element in the earth’s crust -rarely exists in 

its pure form. Instead, it appears as silicon dioxide (silica) or silicates. The abundance of 

silicon is one of the main advantages of solar cells. However, the energy consumption 

for producing pure silicon is a disadvantage. Crystalline silicon solar cells are available 

in a) mono-crystalline silicon, produced by slicing wafers from a high-purity single 

crystal ingot, and b) multi-crystalline silicon, made by sawing a cast block of silicon 

first into bars, then wafers. The latter reports lower efficiencies. The crystalline silicon 

solar cells proved to have an efficiency of around 25 % (Meinardi, et al., 2014). The 

working principle of silicon solar cells is illustrated in Figure 2.1. Two semiconductors, 

both silicon, one n-doped (most often with phosphorous) and the other p-doped (for 

example with boron) are connected to form the silicon solar cell (Ellis, 2014b; Saga, 

2010). 

2.1.2 Thin film technologies 

Amorphous Si, CdS, CdTe, CuInSe2 (CIS), and CuInGaSe2 (CIGS) are included in 

devices fabricated by thin film technology. The working principles of thin film solar 

cells are almost similar to crystalline silicon photovoltaics; semiconductors are 

connected and an electric field is established at the junction between the p-type and the 

n-type inorganic semiconductors. Around 20 % efficiency has been reported for thin 

film solar cells (Poortmans and Arkhipov, 2006).  
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2.1.3 Organic solar cells 

Conductive polymers or other organic conductors (as charge transport materials) are 

used in organic solar cells. They are seen as analogous to semiconductor based solar 

cells (Heo, et al., 2013). Different conductive polymers with differing highest occupied 

molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) levels are 

brought together, and the application of an effective field resulted in a charge 

separation, which prompt the electrons to fall from one excited state level to another. 

Organic solar cells report efficiencies of around 11 % (Meinardi, et al., 2014). 

2.1.4 Quantum dot solar cells 

Different types of quantum dot solar cells are available, and are almost similar to 

DSSCs. Quantum dot solar cells reported an efficiency of around 8.6 %. Quantum dots 

can be utilized both as a sensitizer and redox mediator, and the quantum dot solar cells 

can be both liquid and solid state based. Lead-sulfide is an example of quantum dots 

materials (Heo, et al., 2013). 

2.1.5 Perovskite solar cells 

One of the latest photovoltaic technologies is the perovskite solar cell. It includes a 

broad class of crystalline minerals, with their working principles and kinetics still being 

investigated. These cells are shown to operate both as charge carrier and absorbance 

medium. One of its disadvantages is that it contains lead (a health hazard), and 

perovskites, being salt-like minerals, can be readily dissolved in water or even humid 

air. Efficiencies of 6.4 % and 17.9 % are reported for non-lead and lead containing 

versions, respectively (Noel, et al., 2014).  

2.1.6 Dye Sensitized Solar Cells 

Dye-sensitization dates back to 1873 (Vogel, 1873), when Vogel sensitized silver 

halide emulsions by dyes to produce black and white photographic films (referred in 
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(McEvoy and Grätzel, 1994)). However, the application of dye-sensitized in 

photovoltaics remained unsuccessful until the 1990’s, when Professor Grätzel and his 

co-workers successfully developed a solar cell (reporting an energy conversion 

efficiency that exceeded 10 %) by combining nanostructured electrodes and efficient 

charge injection dyes in the Laboratory of Photonics and Interfaces in École 

Polytechnique Fédérale de Lausanne (EPFL), Switzerland. This dye-sensitized 

nanostructured solar cell is called the Grätzel cell (O’regan and Grätzel, 1991). It is 

regarded as a photo-electrochemical solar cell, which means a liquid electrolyte or other 

ion-conducting phase is used as a charge transport medium. It is the focus of many 

researches due to its high efficiency and long-term stability. There are also patents and 

licenses developed for the main invention, and numerous research groups investigated 

the possibility of replacing its original materials. The next sub-sections will present the 

DSSCs technology, with a more detailed look into the cell operation in light of the key 

steps of photovoltaic conversion, as well as other important fundamental operational 

aspects of the cell’s physics and chemistry (Gong, et al., 2017; Halme, 2002). 

 Comparison of Different photovoltaic devices 

Table 2.1 shows the comparison between various types of photovoltaic devices. 

Although DSSCs reports lower efficiency compared to traditional silicon-based solar 

cells and CuInSe2 solar cells, several advantages of DSSCs render them suitable for 

conventional solar cells. First, the fabrication cost is quite low compared to 

silicon-based solar cells. Second, the materials used to make DSSCs, such as TiO2, 

ZnO, dye, and iodine, are all widely available. The potentially harmful organic solvents 

have been replaced by the non-volatile ionic liquid and solid-state electrolyte. 

Moreover, colorful and transparent solar cells are easily fabricated, which can serve as 

power-producing windows in architectures or as decorations for both indoor and 

outdoor applications (Wei, 2011). 
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Table 2.1: Performance of photovoltaic and photoelectrochemical solar cells 

(Grätzel, 2001) 

Type of cells Efficiency Research and technology needs 

Crystalline silicon 25.0 
Increase production yields, reduce cost 

and energy content 

Multicrystalline silicon 20.4 
Reduce manufacturing cost and 

complexity 

Amorphous silicon 13 
Reduce production costs, increase 

production volume and stability 

CuInSe2 19.6 

Replace indium (too expensive and 

limited supply), replace CdS window 

layer, scale up production 

DSSCs 13 

Improve efficiency and high 

temperature stability, scale up 

production 

Bipolar AlGaAs/Si 

photoelectrochemical cells 
19-20 Reduce material cost, scale up 

Organic polymer solar cells 8.3 Improve stability and efficiency 

Cell area is larger than 1 cm2. 

 Basic principles of Dye Sensitized Solar Cells 

Figure 2.2 depicts the typical structure and operational principles of a DSSC 

(Grätzel, 2005). Generally, it consists of four elements: a photoelectrode with a thin 

layer of nanostructured wide band-gap semiconductor (usually TiO2, ZnO, SnO2 or 

Nb2O5) attached to the conducting substrate FTO, a monolayer of dye adsorbed on the 

surface of the semiconductor, electrolyte containing a redox couple (typically I-/ I-
3), 

and a counter electrode (platinized FTO). Following photo-excitation of the dye, 

electrons are injected into the conduction band of the semiconductor. I- in the electrolyte 

generate dye and reduce I-
3 to generate I- at the counter electrode. The voltage generated 

under illumination corresponds to the difference between the quasi-Fermi level of the 

electron in the semiconductor and redox potential of the electrolyte. This converts light 
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into electricity, with no permanent chemical transformation taking place. Therefore, 

DSSC is regarded as a regenerative-type photo electrochemical cell (Grätzel, 2001; 

Wei, 2011). 

 

Figure 2.2: Typical structure and operation of a DSSC (Grätzel, 2005) 

2.3.1 Absorption of light 

The superior efficiency of the DSSC is due to many well-tuned physio-chemical 

properties, the most important one being the use of a large band gap semiconductor 

material as an electrode. Its properties are enhanced by the coating of the internal 

surface of the porous semiconductor with a type of altered dye molecules that absorbs 

incoming light. The dye is adsorbed onto the surface of TiO2, owing to the special 

anchoring groups attached to the dye molecule (Pugliese, 2014). Absorption of an 

impinging photon occurs through an excitation between the electronic states of the 

molecule: in Ru complexes-based dyes, the excitation is of metal-to-ligand charge-

transfer (MLCT) type, as reported in Figure 2.3 (Halme, 2002).  
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Figure 2.3: Charge transfer processes between the dye and the TiO2 lattice: 1. 
MLCT excitation; 2. Electron injection; 3. Charge recombination (Halme, 2002) 

The HOMO level is placed near the Ru metal atom, while the LUMO level is 

localized at the ligand species. During excitation, electrons are transferred from HOMO 

to LUMO, and since there is a partial overlap between the electron wave functions of 

the LUMO level of the dye with the conduction band of the oxide material, the electron 

is subsequently fast-injected into the conduction band of TiO2 (Pugliese, 2014).  

2.3.2 Charge separation 

Electron transfer from the dye molecule to the TiO2 and the movement of holes to the 

electrolyte (from the oxidized dye) resulted in the separation of charges in the DSSCs. 

The mechanism of electron transfer is closely related to the adsorbed dye electronic 

structure of the adsorbed dye molecule, in addition to the energy levels between the 

excited state of the sensitizer and the conduction band of the oxide semiconductor 

(Kamat, 1993).  

The main difference between the typical p-n junction cell and the one based on the 

nanoparticle electrode/electrolyte interface is that the charge separation in silicon-based 

cell occurs due to an electric field across the junction region. In a DSSC, it is slightly 

different due to the small dimensions of the particles of the nanostructured electrode not 
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permitting the generation of a field. The electrolyte surrounding all the nanoparticles 

decouples them and looks for any electric field in a range of about a nanometer (Pichot 

and Gregg, 2000). Even if the band bending inside the particles is denied, an electric 

field is otherwise created at the interface of oxide/electrolyte, owing to the dye 

molecules being adsorbed. The latter usually employs acid anchoring groups (carboxyl 

group, COOH) as attachment units, and when binding with TiO2, a proton (H+) is 

released, leaving the dye molecule negatively charged. The generated potential 

difference is estimated to be around 0.3 eV, and is the responsible for charge separation. 

The most important mechanism for the separation of charges is the relative position of 

the energy levels: the excited level of the dye must be higher than the conduction band 

of the oxide, while the HOMO level of the sensitizer must be lower than the redox 

potential of the electrolyte (Pugliese, 2014). 

2.3.3 Charge transport 

Electrons move across the interface until the Fermi level of electrons in the 

semiconductor is equal to the electrolyte redox potential once a semiconductor comes 

into contact with an electrolyte. This electron flux creates an area on both junction sides, 

known as the space-charge layer. The charge distribution in the space-charge layer 

differs from the bulk of the material, producing an electric field to drive electron-hole 

separation (Kelly, et al., 1999; Pichot and Gregg, 2000). However, nanocrystalline 

semiconductor particles are simply too small and too lightly doped to sustain any 

significant charge imbalance between the surface and the bulk of the particle. 

Furthermore, the porous nature of the semiconductor means that the electrolyte 

surrounds the particles throughout the entirety of the film thickness, which looks for any 

electric fields that may be present between sintered particles (Fabregat-Santiago, et al., 

2007; Park, et al., 2000). The charge transport in DSSCs is therefore dominated by 

diffusion, or more specifically, ambipolar diffusion, which is a process where electrons 
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and the associated cations on the surface simultaneously move through the film 

(Kopidakis, et al., 2000; Murakoshi, et al., 1997). 

Although diffusion is the dominant driving force for charge transport in the 

semiconductor, early attempts to describe the transport behavior using the diffusion 

equation found that the diffusion coefficient was unexpectedly dependent on 

illumination intensity. It is now widely accepted that charge the transport behavior in 

nanocrystalline semiconductors is dominated by trap states in the semiconductor 

(Nelson, 1999; Saito, et al., 2002b). This model suggests that electronic states in the 

semiconductor are a combination of conduction band states, which allow free transport 

of electrons, and intra-band trap states, which are localized electronic states that trap 

and release electrons to the conduction band. The number of trap states follows an 

exponential distribution with energy, and is significantly higher than the number of free 

electrons in the conduction band, thus, the movement of electrons into these traps and 

their subsequent escape into the conduction band is the dominant charge transport mode 

in the DSSC. This process is illustrated in Figure 2.4 (Griffith, 2012). 

 

Figure 2.4: Schematic illustration of trap-limited charge transport in a dye 
sensitized semiconductor nanoparticle (Griffith, 2012) 
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2.3.4 Recombination 

Electrons injected into the semiconductor from the photoexcited dye have a finite 

lifetime prior to recombining with other species to re-establish electrochemical 

equilibrium. Such recombination is highly undesirable in a solar cell, as the electrons 

can no longer work in an external circuit. Conduction band electrons in a DSSC can 

recombine with one of two sources; either the dye cations created by electron injection, 

or the electron acceptor species of the redox mediator (Figure 2.5) (Grätzel, 2005). 

Fortunately, these two recombination reactions can be analyzed independently, since the 

redox mediator can be added or removed from the electrolyte to activate or deactivate 

the recombination pathway (Griffith, 2012).  

 

Figure 2.5: A schematic illustration of the two possible charge recombination 
pathways in DSSCs following injection from the photo-excited dye state (S*) 

(Grätzel, 2005) 

 DSSCs components 

The basic device structure of DSSCs can be easily modified by replacing each 

component with an alternative material. There are a very large number of material 

combinations that can be employed, each with their own unique benefits. 

Systematically, modifying device components have allowed many of the fundamental 

limitations of DSSCs to be analyzed in isolation, and there are a range of novel 

materials that show great promise for future advancements (Griffith, 2012).  
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2.4.1 Transparent conducting oxide-coated glass substrate in DSSCs 

Typical DSSCs employ anodes comprised of a glass substrate coated with a 

transparent conducting oxide (FTO and indium-doped tin oxide (ITO)). This material 

combination is one of the only candidates that satisfy the dual criteria for DSSC anodes 

of good conductivity, high transparency, and thermal stability (to allow deposited 

semiconductor films to be sintered).  However, the conducting glass electrode 

constitutes 30-50 % of the total cost for a DSSC module, which would make it better if 

it is replaced with a cheaper alternative (Meyer, 1996; Smestad, et al., 1994). Poly 

(ethylene terephthalate) films coated with ITO has been tested as an anode material 

(Nogueira, et al., 2004), however, the low thermal stability of the polymer forces the 

utilization of unsintered semiconductor films, which significantly reduce the overall 

efficiency. Consequently, the overwhelming majority of DSSCs is constructed from 

conducting glass anodes.  

The cathode of a conventional DSSC is constructed from ITO plated with Platinum. 

In contrast to the anode, it does not need to be transparent, but must instead satisfy the 

dual criteria of moderate thermal stability (due to the annealing processes employed for 

most deposited catalysts) and fast catalysis for the reduction of the redox mediator 

acceptor species. Given its extensive use as an electrode material, carbon-functionalized 

counter electrodes have been intricately studied in the context of DSSCs. Counter 

electrodes are formed by coating ITO with activated nanoparticles (Ahmad, et al., 

2010), nanotubes (Suzuki, et al., 2002), and graphene (Kaniyoor and Ramaprabhu, 

2011), with all demonstrating comparable efficiencies and stabilities towards platinum 

coated electrodes. Polymers such as poly (3,4- ethylenedioxythiophene) (PEDOT) 

(Saito, et al., 2002a) or polyester (Fang, et al., 2005) have shown limited success, 

although the polymer coating increases sheet resistance of the electrode, which limits 

the FF of the device. Stainless steel and nickel sheets exhibit reasonable performance as 
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counter electrodes, although the stability of such coatings to the standard I-/I-
3 corrosive 

redox mediator have not been fully examined (Mosconi, et al., 2012). Whilst there are 

clearly many electro-catalysts that can be used as counter electrodes, the material cost is 

negligible compared to the overall module cost. Platinum-coated FTO electrodes are 

therefore used almost exclusively used since they consistently result in the highest 

efficiency (Griffith, 2012) 

2.4.2 Photo-anodes in DSSCs 

The photoelectrode is a key component in a DSSC. The morphology, surface area, 

porosity, and pore size of the semiconductor films directly influence the electron 

transport and electrolyte diffusion in a cell (Jiu, et al., 2006). Due to their large surface 

areas and electron transfer medium, TiO2, ZnO, SnO2, Nb2O5, (semiconductor oxides) 

serves as the carrier for the monolayers of the sensitizer in DSSCs (Yeoh and Chan, 

2017). 

TiO2 is an excellent choice as semiconductors, due to its low cost, abundant in the 

market, nontoxicity, and biocompatibility. Rutile, anatase, and brookite are naturally 

occurring TiO2 crystal types, with rutile reported to be the most thermodynamically 

stable form. Thanks to having a larger band-gap and higher conduction band edge 

energy, anatase is preferred in DSSCs, which in turn leads to a higher Fermi level and 

Voc in DSSCs for similar conduction band electron concentrations (Nwanya, et al., 

2011; Sopian, et al., 2017).  

In the context of environmental remediation, TiO2 is believed to be the most suitable 

semiconductor. Owing to their large surface-to-volume ratios,  nanostructured solar 

cells benefit from increased loading of sensitizers, and the potential of an increased 

number of current-producing electron transfer chemical reactions (Kamat, et al., 2010). 

Nanostructure can increase the specific surface area up to 1000 times that of a bulk 
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material (Nogi, et al., 2012). Nanoparticles are widely utilized for the fabrication of 

mesoporous film, partially due to the direct availability of porous structures with 

assembled nanoparticles and the simplicity of synthesis. Commercially available 

Degussa P25 is one of the conventional sources of TiO2 (Ito, et al., 2006; Rasalingam, et 

al., 2015). TiO2 is easily available, quite inexpensive, and have high photocatalyst 

activity. It contains both anatase and rutile phase in a ratio of 7:3 and a crystallite size is 

30nm (Xin, 2012). 

The TiO2 film generally employed in a DSSC is fabricated from a paste in which 

anatase nanoparticles, with a mean dimension of 20nm, is dispersed. Doctor-blading and 

screen-printing are two widely used deposition processes for preparing nanocrystalline 

TiO2 films, where a viscous dispersion of colloidal TiO2 particles are spread on a 

conducting glass support before being sintering at high temperature to enhance the 

electronic interconnection between the nanoparticles and the charge transfer towards the 

substrate (Nazeeruddin, et al., 1993). The nanoparticles based photo-anode is beneficial 

due to its high SSA value (in the range 50-25 m2g-1), which permits the anchoring of a 

great number of dye molecules, while a disadvantage is the reduced charge transport 

due to a long pathway for the electron diffusion within the semiconductor network 

(Pugliese, 2014). Table 2.2 shows the efficiency reported by different studies on the 

usage of TiO2 nanostructures as a photo-anode in DSSCs.  
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Table 2.2: Efficiency of DSSCs using TiO2 nanostructures as a photo-anode 

Photo-anode Area of the cell 
(cm2) Efficiency (%) References 

TiO2 
nanoparticles    

(N-719) 
3.75 0.015 (Zahn, et al., 2006) 

Different 
thickness of TiO2 

nanoparticles 
photo-anode     

(N-719) 

1 1.10-8.35 (Xin, 2012) 

TiO2 nanotube, 
different thickness 

of photo-anode 
(N-719) 

1 3.69-8.02 (Xin, et al., 2012) 

Different chemical 
compositions of 

TiO2 
nanoparticles 
pastes (N-719) 

0.16 4.46-6.77 
(Karthick, et al., 

2012) 

TiO2 

nanoparticles   
(Ru 535-bisTBA) 

1 5.7 
(Karthick, et al., 

2012) 

TiO2 
nanoparticles 

different 
electrolyte (N-719) 

1 3.67-5.00 
(Weerasinghe, et 

al., 2010) 

 

Having acceptable conversion efficiency increases the chance for the DSSCs to 

compete with commercially available, but expensive solar cells based on silicon or 

compound semiconductors. Nevertheless, the increased additional conversion efficiency 

has been restricted by energy loss due to the recombination between electrons and either 

the oxidized dye molecules or electron-accepting species in the electrolyte during the 

charge-transport process (Grätzel, 2004, 2005; Nissfolk, et al., 2006). Such a 

recombination is predominately derived from the lack of a depletion layer on the TiO2 

nanocrystallite surface, and becomes significantly serious when the thickness of the 
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photoelectrode film increases. In order to understand this, DSSC technology based on 

ZnO has been explored extensively. A promising alternative to TiO2 for the fabrication 

of DSSC photo-anode is ZnO (Ko, et al., 2011; Zhang, et al., 2009). 

 Zinc oxide (ZnO) is a wide-band-gap semiconductor with an energy-band structure. 

The physical properties of ZnO are similar to those of TiO2, but its electronic mobility is 

higher, which would be advantageous for the transport of electrons, on top of the 

reduced recombination loss when used in DSSCs. Numerous investigations have 

already reported the application of ZnO in DSSCs. ZnO’s ease of crystallization and 

anisotropic growth makes it a great alternative to TiO2, although the conversion 

efficiencies of 0.4–5.8 % reported for ZnO are lower than that of 11 % for TiO2. All of 

the aforementioned properties allow ZnO to be produced in various nanostructures, 

therefore offering exceptional properties for electronics, optics, or photocatalysis 

(Schmidt-Mende and MacManus-Driscoll, 2007; Tornow, et al., 2008; Tornow and 

Schwarzburg, 2007; Wang, 2004). Recent investigations of ZnO nanostructure based 

DSSCs have brought about many new concepts, resulting in a better knowledge of 

photoelectrochemically-based energy conversion, which in turn would accelerate the 

growth of DSSCs connected with TiO2. 

The basic units of nanostructures on the nanometer scale represent an important 

feature due to its provision of a large specific surface area. It could also result in many 

specific behaviors in electron transport or light propagation when taking into account 

the surface effect, quantum-confinement effect, or photon localization (Arico, et al., 

2005; Bittkau and Carius, 2007; Xia, et al., 2003). The nanostructural forms of ZnO 

developed during the past several decades, mainly include nanoparticles (Meulenkamp, 

1998; Vafaee and Ghamsari, 2007), nanowires (or nanorods) (Kar, et al., 2006; Yang, et 

al., 2002), nanotubes (Li, et al., 2005), nanobelts (Wang, et al., 2004b), and nanosheets 
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(Fu, et al., 2006; Kar, et al., 2006). The production of these structures can be realized 

via sol–gel synthesis, (Vafaee and Ghamsari, 2007) hydrothermal/solvothermal growth 

(Kar, et al., 2006), physical or chemical vapor deposition (Wang, et al., 2004b; Yang, et 

al., 2002), low-temperature aqueous growth (Li, et al., 2005), chemical bath deposition 

(Wang and Xie, 2006), or electrochemical deposition (Fu, et al., 2006; Nonomura, et al., 

2003). Table 2.3 tabulates the efficiency reported by different studies on ZnO 

nanostructures as a photo-anode in DSSCs. 
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Table 2.3: Efficiency of DSSCs using ZnO nanostructures as a photo-anode 

Photo-anode Area of the cell 
(cm2) 

Efficiency (%) References 

ZnO 
nanoparticles    

(N-719) 
0.25 6.6 (Anta, et al., 2012) 

ZnO 
nanoparticles 

(D102) 
0.25 5.4 (Anta, et al., 2012) 

ZnO 
nanoparticles    

(N-719) 
0.25 5.5 (Anta, et al., 2012) 

ZnO 
nanoparticles    

(N-719) 
1 2.82 (Li, et al., 2014) 

ZnO 
nanoparticles    

(N-719) 
1 0.44, 2.1, 2.22 

(Keis, et al., 2000; 

Kim, et al., 2006; 

Longyue, et al., 

2006) 

ZnO 
nanoparticles    

(N-719) 
1 5 (Keis, et al., 2002) 

ZnO 
nanoparticles (N3) 

1 0.4, 3.4 
(Redmond, et al., 

1994; Suliman, et 

al., 2007) 

ZnO 
nanoparticles 

(Heptamethine 
cyanine) 

1 0.67 
(Otsuka, et al., 

2008) 

ZnO 
nanoparticles 

(Unsymmetrical 
squaraine) 

1 1.5 
(Otsuka, et al., 

2006) 

ZnO 
nanoparticles 

(Eosin-Y) 
1 1.11 (Rani, et al., 2008) 

ZnO 
nanoparticles 
(Acriflavine) 

1 0.588 
(Senevirathne, et 

al., 2008) 

ZnO 
nanoparticles 

(Mercurochrome) 
1 2.5 (Hara, et al., 2000) 
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2.4.3 Photosensitizers in DSSCs 

The photosensitizing dye is perhaps the most crucial component of a DSSC. 

Accordingly, optimization of the dye structure, including a variety of features such as 

the size, metal center, ligands, substituents, and conjugation of molecules has attracted 

significant interests. Studies of thousands of photosensitizers have shown that 

optimizing the performance of most single dyes to achieve higher efficiencies is 

extremely difficult. This is because the desirable properties for efficient electron 

injection and dye regeneration are often incompatible with those required for broad 

visible and near-infrared (NIR) absorption (Hagfeldt, et al., 2010).  

An excellent sensitizer for DSSC should meet several requirements (Duncan and 

Prezhdo, 2007). First, the sensitizer absorption spectrum should cover the visible and 

part of the NIR region. Second, the sensitizer should bind strongly to the 

semiconductor’s surface. Third, the sensitizer should possess suitable energy levels to 

ensure electron injection and dye regeneration. Furthermore, for long-term performance, 

the dye molecules must display excellent chemical and thermal stabilities. Finally, a 

strong electronic coupling among the dye and semiconductor is required for efficient 

charge separation. This is normally achieved by appending a conjugated anchoring 

group to the chromophore, the design of which is rather complex (Griffith, 2012). 

2.4.3.1 Anchoring group of photosensitizers 

Several types of anchoring groups have been tested for DSSCs. The legends must 

first immobilize the dye on the surface, and ideally, should also be electron withdrawing 

in order to facilitate electron transfer from the dye into the semiconductor. The binding 

interaction can occur via physisorption, such as hydrogen bonding, although it only 

results in weak electronic interactions with the semiconductor. Commonly, the 

anchoring group is designed in a way that it forms a permanent chemical bond with the 
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semiconductor, and is frequently conjugated in order to facilitate electron transfer 

(Murakoshi, et al., 1995). Chemical moieties that have been employed for this purpose 

include sulfonic acids (SO3H) (Taffa, et al., 2010), phosphonic acids (PO3H) 

(Nazeeruddin, et al., 2003; Wang, et al., 2004a), COOH (Lee, et al., 2009; Nazeeruddin, 

et al., 2003; Srinivas, et al., 2009), and catechols [C6H4(OH)2] (An, et al., 2010; 

Sánchez-de-Armas, et al., 2011). Somewhat surprisingly, the strongest binders (PO3H 

and catechols) resulted in poorly performing devices, reportedly due to a very fast 

recombination from strong coupling. 

2.4.3.2 Dye Molecules 

There have been thousands of sensitizing dyes tested in DSSCs, making a complete 

assessment of sensitizers quite complex. Some major classes of dyes and their 

corresponding advantages will be discussed here, with more detailed information 

available in a recently published review of various dye systems (Hagfeldt, et al., 2010). 

Ruthenium organometallic complexes were by far the most extensively investigated due 

to higher power conversion efficiency of the dyes reported more than two decades ago 

(O’regan and Grätzel, 1991). The most reported ruthenium complex, the benchmark N-

719 dye, exhibit highly efficient electron injection due to a long lived triplet excited 

state, absorption of light over a broad wavelength range, and extremely slow 

recombination (Katoh, et al., 2011; Mozer, et al., 2008; Robertson, 2008). The 

modification of the bipyridyl ligands with conjugated substitutes has been shown to 

improve the extinction coefficient and long-term stability of the dye (Wang, et al., 

2003), whilst the addition of organic antennae to the dye creates an extremely high 

extinction coefficient that allows it to be employed in devices that require thin 

semiconductor films (Choi, et al., 2008; Jang, et al., 2009). Several groups investigated 

the addition of electron donating groups, including furan (Gao, et al., 2008), 

triarylamine (Haque, et al., 2005; Shi, et al., 2008), and thiophene (Jiang and Masaki, 
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2006) units to the basic ruthenium polypyridyl structure. This strategy has been shown 

to reduce charge recombination via controlling the location of electron density in the 

excited state of the dyes. However, the injection yield of the dyes was often 

compromised. 

Although traditional ruthenium dyes fulfill all these requirements and reported high 

energy conversion efficiency, they are quite costly and are detrimental to the 

environment, which severely limit their large-scale applications. 

The replacement of the central ruthenium species with other heavy metal atoms that 

also produce triplet excited states has been tested. Transition metal complexes formed 

from copper (Sakaki, et al., 2002), platinum (Geary, et al., 2005), and iron (Ferrere, 

2002) were examined. The majority of these dyes also produce broad metal-to-ligand 

charge transfer absorption bands; however, the photocurrent produced from such 

devices is often poor. This low Jsc was attributed to the poor injection and the 

regeneration of the neutral dye ground state for many systems. 

By contrast, organic dyes have many advantages in the context of application in 

DSSCs (Campbell, et al., 2004). First, its cost is relatively low, because they are easily 

synthesized, and are essentially not limited by available resources. Second, organic dyes 

generally report much higher absorption coefficients than that of ruthenium dyes, and 

the light absorption band of organic dyes can be easily tuned via molecular design. They 

are also environmentally friendly, as they could be easily removed by sintering in the 

air. Accordingly, the photoelectrode could be recycled, which further reduces the cost of 

the DSSCs. Coumarin (Hara, et al., 2003) and indoline (Ito, et al., 2006) dyes were 

amongst the first organic species to demonstrate high device efficiencies, with the 

former also reporting excellent long term stability. The modification of the dye structure 

led to the extension of the absorption spectrum towards the near infrared region, leading 
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to conversion efficiencies of ~8-10 % (Ito, et al., 2008a). Carbazole dyes have also been 

extensively studied in DSSCs (Wang, et al., 2008). These dyes offer all of the 

advantages of other organic dyes, and have also been heavily utilized to study the effect 

of dye structure on charge injection and recombination, owing to the ease with which 

the length of the conjugated thiophene backbone can be controlled and alkyl chain 

substituents of various lengths can be appended (Miyashita, et al., 2008). Perylene 

(Shibano, et al., 2007) dyes have also been examined, and whilst they do not 

demonstrate outstanding power conversion efficiency, they have been shown as injected 

by direct charge transfer from the ground state to the TiO2 rather than from the excited 

state, making them a valuable tool for the examination of some unusual photophysical 

properties of the sensitizing dye (De Angelis, 2010). 

Dyes with absorption bands in the infrared region have been particularly sought after, 

since this is the region where solar flux is the strongest. Phthalocyanine dyes have been 

examined in this context, as they have a strong absorption bands in the ~700-800 nm 

region (Nazeeruddin, 1998). These dyes are of great interest since they behave as an 

intermediate between transition metal complexes and purely organic dyes, with 

absorption dominated by the organic framework, but the metal center impacting the 

injection and recombination processes (Silvestri, et al., 2009). Phthalocyanine dyes 

suffer from strong π–π stacking and aggregation, and also experience very fast 

recombination, which limits their power conversion efficiencies in devices (Eu, et al., 

2008); although recent reports indicate that this class of dyes remain quite promising 

(Mori, et al., 2010). Squaraine dyes have also demonstrated significant infrared 

absorption in operational devices (Maeda, et al., 2011), although its small band-gap that 

produces infrared absorption also limits the driving force for the regeneration between 

the redox mediator and the dye HOMO level (Tatay, et al., 2007). As a result of this and 

other issues such as limited injection, the power conversion of the infrared dyes remains 
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low. Other dyes of interest include triarylamines (Marinado, et al., 2009), anthracenes 

(Mann, et al., 2008), quinones (Mann, et al., 2008), and polymers (Hong, et al., 2002), 

where each provides useful support that allows us to examine the relationship between 

dye structure and device functionality (Griffith, 2012). Table 2.4 tabulates the efficiency 

of DSSCs using different photosensitizers. 
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Table 2.4:Efficiency of DSSCs using different photosensitizer 

Photosensitizer Area of the cell 
(cm2) 

Efficiency (%) References 

Anthocyanin dye 3.75 0.00159 
(Subodro, et al., 

2017) 

Eosin b disodium 
salt (different light 

intensity) 
0.25 7.56, 0.28, 0.00159 (Ito, et al., 2008b) 

Porphyrin 
sensitizers 

(SM371,SM315) 
0.28 12,13 

(Mathew, et al., 

2014) 

FbNC 1 0.045 (Griffith, 2012) 
ZnNC 1 0.353 (Griffith, 2012) 
FbC 1 0.316 (Griffith, 2012) 
ZnC 1 1.67 (Griffith, 2012) 
GD2 1 2.82 (Griffith, 2012) 

Fb-GD2 1 0.97 (Griffith, 2012) 

Eosin Y 1 0.399 
(El-Agez, et al., 

2014) 

Aniline blue 1 0.117 
(El-Agez, et al., 

2014) 

Bromophenol blue 1 0.120 
(El-Agez, et al., 

2014) 

Alcian blue 1 0.156 
(El-Agez, et al., 

2014) 

Methyl orange 1 0.115 
(El-Agez, et al., 

2014) 

Crystal violet 1 0.249 
(El-Agez, et al., 

2014) 

Fast green 1 0.117 
(El-Agez, et al., 

2014) 

Carbol fuchsin 1 0.303 
(El-Agez, et al., 

2014) 

Ru complex 1 2.58 
(El-Agez, et al., 

2014) 

 

2.4.4 Counter electrodes in DSSCs 

The counter electrode of a DSSC using I-/I-
3 as redox couple is usually fabricated by 

sputtering a platinum layer (~200 nm) or pyrolysis of H2PtCl6 solution onto an FTO 

substrate. The features that render platinized FTO glass well suited for the counter 
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electrode is the electrocatalytic activity of platinum, which improves the reduction of I3- 

by facilitating electron exchange (Papageorgiou, et al., 1997) and increasing light-

refection due to the mirror-effect of platinized FTO.  

Although most highly efficient DSSCs are based on a platinum counter electrode, 

several disadvantages hinder its widespread application, such as limited material 

availability for such a rare metal, making it unsuitable for the production of large-area 

DSSCs. There are also reports proving the corrosion of platinum in I3
- containing 

electrolyte generating platinum iodide, such as PtI4 (Olsen, et al., 2000), indicating 

problems with long-term stability of platinum electrode. It is desirable to develop 

platinum-free counter electrode with excellent catalytic activity for the reduction of I3
- 

and excellent stability in the electrolyte.  

In a previous report, a mixture of graphite and carbon black was used as the counter 

electrode, which resulted in an energy conversion efficiency of 6.7 % (Kay and Grätzel, 

1996). Later, several varieties of carbon materials, such as carbon nanotubes (Suzuki, et 

al., 2002) and activated carbon and graphite (Imoto, et al., 2003; Lindström, et al., 2001) 

were also employed as catalysts on FTO glass for counter electrodes. Organic ion-doped 

conducting polymers based on poly (3,4-ethylenedioxythiophene) (PEDOT) were used 

as a catalytic material, and FTO glass as the counter electrode for DSSCs with both 

organic and liquid electrolytes (Imoto, et al., 2003; Saito, et al., 2002a; Saito, et al., 

2004). Although the costs of carbon materials and organic conducting polymers are 

lower than that of platinum, poor adhesion to the FTO substrates and insufficient energy 

conversion efficiency are disadvantages of using platinum free counter electrode 

(Murakami, et al., 2006). 
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2.4.5 Electrolytes in DSSCs 

The role of a redox mediator is to intercept recombination between electrons in the 

semiconductor and the oxidized dye molecules by regenerating the dye cation following 

injection. There are three major components of the redox electrolyte, each affecting its 

function.  

Most high performing DSSCs are based on liquid electrolytes. This is due to their 

combination of good solvation for a range of redox species, high chemical stability, and 

low viscosity that minimizes diffusion limitations on redox mediator transport. Water 

would be the obvious solvent of choice; however, many sensitizing chromophores are 

susceptible to hydrolysis. Consequently, polar organic solvents are commonly 

employed, as they satisfy the criteria of a good solvent (Hagfeldt, et al., 2010). The 

drawback with these organic solvents is their volatility, which makes many choices 

unsuitable for long-term stability. Currently, the most successful liquid solvent is 

3-methoxypropionitrile (Boschloo, et al., 2002), since it combines a higher boiling point 

with a low viscosity and high chemical stability.  

Ionic liquids, where the solvent is composed of bulky anions and cations that are in a 

liquid state at room temperature have also been explored as electrolyte solvents (Gorlov 

and Kloo, 2008). Typically based on imidazolium derivatives, these solvents provide an 

attractive alternative since they have negligible vapor pressure and high boiling points, 

and can therefore provide greater long-term stability. The higher viscosity of such 

solvents generally limits mass transport for the redox species. However, this can be 

circumvented to a certain extent by employing strategies such as forming liquid crystals 

to increase the local concentration of the redox mediator, thereby enhancing the 

Grotthuss mechanism charge hopping conductivity mechanism (Yamanaka, et al., 2005; 
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Yamanaka, et al., 2007). Continuous improvements in ionic liquid electrolytes have 

been transferred to device power conversion efficiencies of up to 9 % (Shi, et al., 2008).  

An intriguing substitute for electrolyte solvents is to remove the dissolved redox 

mediator and replace it with a solid-state hole conductor. This approach has significant 

practical advantages, since it removes the difficulties normally associated with the 

permanent sealing of a solid-liquid junction. However, the implementation of these 

electrolytes limits conductivity due to the charge hopping conductivity mechanism and 

the difficulty of filling nanopores in the semiconductor with a solid material. The hole 

conductor most often utilized for such studies is spiro-MeOTAD (Bach, 2000), with 

efficiencies of up to 5 % reported by these solid state devices (Tétreault, et al., 2010) 

which the efficiencies of them are lower than the efficiency of devices that using liquid 

electrolytes. 

 Graphene 

A planar single sheet of graphite is called a graphene, which is currently used as a 

heterogeneous catalysis. Electro-catalysis and photocatalysis, which will be further 

discussed herein, seem to benefit most from the properties of carbon support.  

It is a common practice to assume that graphene is an even structure composed of a 

few stacked carbon layers (maximum 10), as they exhibit very similar properties to 

individual graphene sheets (Figure 2.6) (Cooper, et al., 2012).  Univ
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Figure 2.6: Triangular sublattices of graphene. Each atom in one sublattice (A) 
has 3 nearest neighbors in sublattice (B) and vice-versa (Cooper, et al., 2012) 

Graphene has recently became the new wonder material due to its high-mechanical 

strength, high-electron mobility, lightness, flexibility, single-atom thickness, and near-

transparency; these properties are somewhat similar to carbon nanotubes(Geim, 2009). 

They render graphene as a promising candidate for composites, thin films, 

electromagnetic shielding, barrier films, sensors, as well as other applications. In order 

to process graphene, as is the case for carbon nanostructures, it needs to be dispersed 

(Geim and Novoselov, 2007). Ideally, one would like to be able to dissolve it, i.e. deal 

with separated graphene rather than aggregated ones, or smaller layers of graphite. 

Some of its important attributes include its conductivity and transparency. Its electronic 

features are particularly fascinating, as graphene exhibits ambipolar electrical field 

effects (Chen, et al., 2010). 

To effectively tune the bandgap of graphene and facilitate its use in various 

applications, its size can be reduced (Shen, et al., 2012a). Zero-dimensional GQDs 

consist of single-or few-layer graphene that measures less than 100 nm and stand for a 

new type of QDs with unique properties, combining the nature of the graphene and size-

resulted quantum effects. GQDs possess unique optical and electronic properties, and 
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has a band-gap of less than 2.0eV due to the quantum confinement and edge effects 

(Cheng, et al., 2013). GQDs are carbon materials, and are thus plentiful. Furthermore, 

they are of low toxicity and high solubility in different solvents, and can be equipped 

with functional groups. All aforementioned properties make GQDs more suitable for 

numerous applications as opposed to the inorganic semiconductor QDs. The interesting 

optoelectronic properties of GQDs have been recently reported, and their potential 

application in cell imaging, bio-sensing, and solar cells have also been explored. GQD 

which is indicated in Figure 2.7 also possess rich functional groups, such as COOH at 

the edge, which imparts them with excellent water solubility and subsequent 

functionalization possibilities (Zhang, et al., 2012).  

 

Figure 2.7:Image of GQDs (Chua, et al., 2015) 

2.5.1 Synthesis of graphene quantum dots 

GQDs synthesis methods fall into two broad classes: top-down and bottom-up. The 

former involves the cheap decomposition and exfoliation, readily available bulk 

graphene-based materials, most commonly graphite, in harsh conditions, involving 

concentrated acids, strong oxidizing agents, and high temperatures. Precise control of 

particle morphology and size distribution is not possible with these methods. However, 
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bottom-up methods, although more complex, allow for excellent control of the 

properties of the final product. They involve the quantum dots synthesis of polycyclic 

aromatic compounds or other molecules with aromatic structures (e.g. fullerenes) (Liu, 

et al., 2011; Zhu, et al., 2017).  

2.5.1.1 Top-down methods 

The graphite-based starting material is converted to graphite oxide sheets via a 

modified Hummers method, representing the first step in most reported methods. This 

technique uses a mix of sulfuric acid, sodium nitrate, and potassium permanganate or 

other similar reagents. The majority of top-down methods, such as hydrothermal 

cutting, solvothermal cutting, electrochemical cutting, nanolithography, 

microwave-assisted cutting, and ultrasonic shearing varies in their respective ways of 

altering these GO sheets to quantum dots, and are termed accordingly (Bacon, et al., 

2014).  

2.5.1.2 Bottom-up Methods 

GQDs are made by (Liu, et al., 2013) from hexa-peri-hexabenzocoronene (HBC), 

which is a polycyclic aromatic hydrocarbon that could be regarded as graphene 

nanoscaled fragments that stack via π–π interactions. Disk-like GQDs measuring 

approximately 60nm and 2–3 nm thick was produced in their work. HBC was 

pyrolyzed, oxidized, functionalized, and subsequently reduced. 

2.5.2 Application of graphene quantum dots in photovoltaics 

The application of GQDs in photovoltaic devices represents its most suitable use, due 

to extraordinary electronic properties of graphene and its ability to absorb a high 

percentage of incident light. 
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The improvement of the efficiency of GQD-based photovoltaics is not limited to 

chemical modification. Changes in the photoelectrical properties of colloidal GQDs 

were reported by Hamilton  when orientated differently on polar surfaces.  The 

molecular device orientation on surfaces can alter their efficiency, and even 

functionality, therefore, Hamilton and his co-workes investigated the effect of 

orientation on the colloidal GQDs photoelectric properties in solution by adjusting its 

orientation on a water and mica substrate. The arrangement of the GQDs on the 

substrate (water) was determined by the strength of the molecule–water interaction and 

the co-facial molecule–water interaction (Hamilton, et al., 2011).  

The colloidal GQDs used by Hamilton were produced via the synthetic approach 

reported by (Pan, et al., 2010), which results in the carboxylated GQDs. Three types of 

GQDs were synthesized to obtain differing degrees of carboxylic acid modification, 

differing numbers of attached alkyl chains (2′, 4′, 6′-trialkyl phenyl), and sizes. The 

aggregation of the GQDs was prevented by the alkyl chains, which, due to steric 

constraints, twist in a 3D configuration, creating a cage around the graphene core. The 

photoinduced charge injection could potentially be tuned via alignment effects for 

increased cell performance.  

GQDs have been investigated for use in DSSCs. A DSSC device consists of a 

sensitized photoelectrode (typically TiO2), an electrolyte, and a counter electrode (CE), 

which is commonly made from platinum. GQDs could increase the efficiency of 

DSSCs, as they can be used as both photo-anode sensitizers (Li, et al., 2011; Pan, et al., 

2013) and composite materials in counter electrodes (Chen, et al., 2013). The size and 

synthesis-dependent optical properties, efficient multiple carrier generation, high PL 

quantum yields, tunable band gaps, high electron mobility, and high specific surface 

areas render GQDs suitable for DSSCs.  
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As briefly mentioned in the synthesis section, (Yan, et al., 2010) synthesized large 

(168 conjugated carbon) GQDs for photovoltaic applications, demonstrating maximum 

absorbance at 591nm. The GQDs had a molar absorption coefficient that is an order of 

magnitude larger than metal complexes used in DSSCs (1.0 × 104 M−1). Yan and his 

group studied the photoelectrical properties of these GQDs on a TiO2 photo-anode, 

which was constructed by the immersion of nanocrystalline thin films of TiO2 on 

conducting glass in a toluene/ethanol mixture containing GQDs. The authors calculated 

the energy of the HOMO (5.3 eV) and LUMO (3.8 eV) of the GQDs, which, when 

compared to the relative bands of TiO2 and the reduction potential of the I-/I-
3 

electrolyte, theoretically allows for the sensitization of TiO2 by GQDs.  

Yan was able to produce an open current voltage of 0.48 V, however, he postulated 

that the efficiency can be increased by tuning functionalization of GQDs and surface 

chemistry, and increasing the affinity of the GQDs with the TiO2 surfaces via similar 

modifications.  

Pan and his co-workers recently fabricated photo-electrocatalysts using GQD-

sensitized nano-tube arrays. TiO2 nanotube arrays were selected by the authors due to 

their high n-type photoconductivity (excess free electrons), large internal surface area, 

excellent stability, and environmental friendliness. The GQDs were prepared by a 

hydrothermal method (Chen, et al., 2013) and were complexed with the TiO2 nanotube 

arrays via vacuum-assisted filling and electrophoretic filling, with the latter being 

preferred due to poor GQD deposition on the TiO2 nanotube arrays when using the 

former. The GQD-TiO2 nanotube arrays hetero-junctions showed exhibited photo-

electrochemical activity over unfilled TiO2 nanotube arrays and those reported for the 

CdS filled arrays. The researchers reported that visible light excitation of GQDs resulted 

in electron transfer to the TiO2, and inferred that the mechanism for electron transfer 
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would lead to highly active holes on the surface of the GQDs, which would oxidize 

water, producing hydroxyl radicals. Pan suggested that such a mechanism (with 

production of a -OH radical) could be useful for decomposing organic pollutants in 

water to CO2 and H2O.  

(Li, et al., 2011) used green-luminescent GQDs and poly (3-hexylthiophene) (P3HT) 

to construct a bulk hetero-junction polymer. They constructed a photovoltaic cell, where 

an electron transport cascade results in an electric current, and showed that the addition 

of GQDs to the active layer (P3HT) improved the performance of the cell, reporting an 

open circuit voltage of 0.67 V (conversion efficiency of 1.28 %). The increased 

performance is probably due to the high electron mobility within the GQDs. The low FF 

(conversion efficiency) can be attributed to the lack of device optimization in common 

with novel constructions. (Kim, et al., 2013) reported a similar system with a 

significantly improved performance.  

(Chen, et al., 2013) recently synthesized a GQD-doped polypyrrole counter 

electrode, where GQDs were synthesized via the oxidation of carbon black and added to 

a pyrrole/lithium perchlorate solution. This complex was doped onto FTO glass by 

electrochemical deposition. 

For the fabrication of the DSSC, an I-/I-
3 electrolyte was sandwiched between the 

counter electrode and a TiO2 photo-anode. Doping the polypyrrole with GQDs resulted 

in a more porous structure, with more active sites and higher charge transfer rate of 

electrolyte reduction. A 10 % doping with GQDs results in the highest PCE, which is 

close to that afforded by a platinum counter electrode.  

Gupta and his group also used GQD/polymer blends to improve the optoelectronic 

properties of photovoltaic devices containing graphene-based materials. They intend to 
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develop low-cost donor/acceptor materials for photovoltaic applications. They showed 

that GQD-polymer blends performed better than graphene-sheet-blended polymers. 

GQDs were synthesized via a hydrothermal method (Gupta, et al., 2011), and were then 

functionalized with aniline (ANI-GQDs). Two types of cells were constructed; cells 

with the blended ANI-GQD-functionalized polymers (P3HT/ ANI-GQD), and cells with 

graphene-sheet-aniline-functionalized polymers (P3HT/ ANIGSs). The peak 

performance for the P3HT/ANI-GQD was for a device consisting of 1 wt % ANI-GQD. 

The researchers determined the morphology of the blends using atomic force 

microscopy, and it was found that while the GQD blend showed uniform morphology 

and nano-scale phase separation, the graphene sheet blend showed large-scale phase 

separation, which increased resistance for exciton migration and subsequently decreased 

performance (Oueiny, et al., 2014). 

A ZnO/GQD solid-state solar cell was recently constructed by (Dutta, et al., 2012). 

They synthesized GQDs using a top-down approach, which were used to infiltrate and 

cover ZnO nanowire arrays grown on aluminum doped ZnO thin films by repeated spin-

casting of an ethanolic suspension of GQDs on the nanowires. They then deposited a 

60–70 nm layer of N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl)-4,4′- 

diamine to act as a hole transporting layer. The device was then annealed, and a gold 

electrode was sputtered on the TPD layer (Bacon, et al., 2014). 

The researchers verified the charge transfer at the interface between the photo-

excited GQDs and ZnO nanowires via emission spectroscopy and photovoltaic 

measurements. The open circuit voltage was reported to be 0.8 V without any 

optimization (Ebrahimi, et al., 2016).  

Williams and his co-workers reported a hot electron injection and charge 

recombination dynamics for graphene QDs, anchored to the semiconductor surface via 
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carboxyl linkers using femtosecond time-resolved second harmonic generation. They 

found ultrafast electron injection from photo-excited graphene QDs to the 

semiconductor conduction band with time constant (Williams, et al., 2013). 
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CHAPTER 3: MATERIALS AND CHEMICALS 

This chapter provides a detailed account of the synthesis of TiO2 and ZnO 

nanoparticles using as a photo-anodes for DSSCs application. It will also detail the 

preparation of GQDs from GO and using GQDs as a photosensitizer in DSSCs. This 

chapter also discusses the fabrication of DSSCs by coating different layers of TiO2 and 

ZnO nanoparticles to observe the effect of the thickness of the photo-anode on the 

performance of DSSCs. The principles of the analytical techniques used in the 

characterization of physical and chemical properties of materials will be discussed as 

well.  

   Materials 

Graphite powder, H2SO4, H3PO4, KMnO4, Na2HPO4, NaH2PO4, KCl, TTIP, zinc 

acetate dihydrated (Zn(CH3COO)2.2H2O), ethanol, methanol, NaOH and Triton-X100 

were purchased from Sigma-Aldrich. Ruthenium polypyridyl dye N-719, purchased 

from Solaronix and used as a photosensitizer.  

 Synthesis and characterization of transition metal oxide nanoparticles 

As shown in Figure 3.1, in order to synthesize the TMO nanoparticles, the source of 

transition metals such as titanium and zinc will be prepared in stirred ethanol.  

TiO2 nanoparticles were prepared by hydrothermal reaction of titanium isopropoxide 

in an acidic ethanol-water solution. TTIP was added dropwise to a mixed ethanol and 

water solution at pH 0.7 with nitric acid, and transferred into a Teflon-lined sealed 

stainless steel autoclaves at 240 °C for 4 h. The TiO2 nanoparticles synthesized under 

this acidic ethanol-water environment were mainly primary structure in the anatase 

phase without secondary structure. The sizes of the particles were controlled to the 

range of 7-25 nm by adjusting the concentration of Ti precursor and the composition of 
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the solvent system. After the reaction is completed, the resulting product will be washed 

with ethanol, filtered, and then dried in a laboratory oven (Chae, et al., 2003).  

In order to synthesize the ZnO nanoparticles, stock solutions of Zn(CH3COO)2.2H2O 

(0.1 M) was prepared in 50ml methanol under stirring. To this stock solution 25ml of 

NaOH (0.2 M) solution prepared in methanol was added under continuous stirring in 

order to get the pH value of reactants between 8 and 11. These solutions was transferred 

into a teflon lined sealed stainless steel autoclaves and maintained at 200 °C for 6 h 

under. It was then allowed to cool naturally to room temperature (Aneesh, et al., 2007).  

 

Figure 3.1: Preparation of TMO nanoparticles 
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 Dye Solution 

In order to prepare GQDs, the first step is to synthesize graphite oxide from graphite 

using the modified Hummer’s method which the process is shown in Figure 3.2. 

The properties of GQDs were compared to a benchmark ruthenium polypyridyl dye 

N-719, purchased from Solaronix and used as is without further purification.  

3.3.1 Synthesis and characterization of graphene oxide 

GO will be obtained by oxidizing graphite flakes with sulfuric acid (H2SO4), 

phosphoric acid (H3PO4), and potassium permanganate (KMnO4). The mixture will be 

stirred to oxidize graphite. The formed graphite oxide will be washed thrice with HCl 

using a centrifuge, and repeatedly washed with deionized water until its pH is ~4–5. 

During the washing process with deionized water, the graphite oxide underwent 

exfoliation, which results in the thickening of the GO solution, leading to the formation 

of GO gel (Shahriary and Athawale, 2014).  
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Figure 3.2: Synthesis of GO by modified Hummer's method 

3.3.2 Synthesis and characterization of graphene quantum dots 

The preparation process of GQDs using one-pot hydrothermal method is indicated in 

Figure 3.3 (Shen, et al., 2012b). GO (prepared by modified Hummers method) will be 

added into the acid under refluxing condition. This solution will be then allowed to cool 

naturally to room temperature. Then, the mixture will be subjected to a hydrothermal 

process in a 40 mL Teflon-lined stainless-steel autoclave to obtain the GQDs solution 

(Fang, et al., 2014). The solution will be ultra-sonicated and subsequently filtered.  
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Figure 3.3: Preparation of GQDs via hydrothermal method 

 Fabrication of DSSCs 

The preparation of DSSCs is crucial for the advancement of DSSC technology. Each 

of its components is capable of influencing the PEC parameters. The quality of 

materials, variation of the spacer distance between the photo-anode and the counter 

electrode, and quality of electrical contacts on the electrodes can result in different 

values of short-circuit photocurrents and photo-voltages. Both physical and chemical 

engineering should be optimized to obtain highly efficient devices. This chapter 

describes the methods used to prepare DSSCs in this work.  
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3.4.1 TMO nanoparticles coating on FTO glass by the Dr. Blade method 

FTO-glass was cut into 2×2 cm strips, the FTO slides were cleaned by dipping it in 

detergent solution for 15 min, then sonicated 5 min each time in acetone, ethanol, and 

distilled water.  

TMO pastes were prepared by adding 1 g TMO nanopowders in 5mL of absolute 

ethanol, 2mL of Triton-X100, and 0.5 mL of distilled water, and stirred for 20 minutes 

at room temperature. After that, the TMO pastes were deposited onto a cleaned FTO-

glass using the doctor-blade technique. The thickness of the subsequent films can be 

altered using multiple layer of scotch tape masks and additional TMO pastes after its 

annealed at 450°C for 30 minutes. After annealing, the TMO film has cooled for 15 

minutes at room temperatures.  The fabrication process of TMO nanoparticles films is 

shown in Figure 3.4. After that, the surface-treated TMO nanoparticles were immersed 

in ethanol solutions of ruthenium-based dye and GQDs at room temperature to allow for 

sufficient dye absorption. 

 

Figure 3.4: Fabrication process of TMO nanoparticles films 

3.4.2 Preparation of counter electrode 

Platinum-coated FTO glass will be used as the counter electrode, prepared by placing 

a drop of platinum-ethanol solution onto the clean FTO glass substrate, and 
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subsequently sintered. The fabrication process of the photocathode is shown in Figure 

3.5.  

 

Figure 3.5: Fabrication process of TMO nanoparticles films 

The DSSC will be sandwiched between the TMO nanoparticles paste-coated FTO 

glass (anode) and the platinum coated onto FTO glass (cathode). The fabrication 

process of the DSSC is shown in Figure 3.6.  
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Figure 3.6: Schematic view of DSSC 

 Material characterization technique 

3.5.1 X-ray Diffraction 

The crystalline states under normal atmospheric conditions are measured by X-ray 

diffractometer. X-rays focused on a sample fixed on the axis of the spectrometer are 

diffracted by the sample and the changes in the diffracted X-ray intensities are 

measureed and plotted against the rotation angles of the sample. The result is referred to 

as the X-ray diffraction (XRD) pattern of the sample. Computer analysis of the peak 

positions and intensities associated with this pattern enables qualitative analysis, lattice 

constant determination and stress determination of the sample. Qualitative analysis may 
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be conducted on the basis of peak height or peak area. The peak angles and profiles can 

be used to determine particle diameters and degree of crystallization, and are useful in 

conducting precise X-ray structural analysis (Rahima, 2008). XRD was used to identify 

the crystal phase and estimate crystal size (Bruker-D8). 

3.5.2 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a technique to determine the 

functional group in the samples. 200 mg of potassium bromide and 1% of the samples 

were mixed and made the pellets by pressing at 10 tonnes for preparing KBr disc. The 

FTIR spectra of samples were characterized by a Bruker IFS 66/S FTIR (Germany) with 

4 cm-1 resolution.  

3.5.3 Field Emission Scanning Electron Microscopy 

The morphologies and thicknesses of TiO2 and ZnO nanostructure coated on FTO 

glasses were studied by Field Emission Scanning Electron Microscopy (FESEM) that 

scans the sample with a focused beam of electrons and as a result of the bombardment 

different type of electrons is coming out from the specimen.  

The schematic diagram of FESEM can be seen in Figure 3.7. The secondary 

electrons are collected or detected by a detector. The surface image of the sample is 

built up by comparing the intensity of these secondary electrons with the scanning 

primary electron beam. The FESEM images of samples were captured by a scanning 

electron microscopy of Model: Nova Nanosem 230.  
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Figure 3.7: Schematic of the working principle of FESEM 

3.5.4 Photoluminescence spectroscopy 

One of the forms of a quantum mechanical which called PL is fluorescence. The 

process that the electron absorbs photons and move from the valence band to 

conduction and then re-radiates photons is PL. The schematic of the working of PL 

sectroscopy is shown in Figure 3.8. It shows specially, a setup with a mercury-vapor 

lamp as a light source. Dichroic mirror, excitation and emission filter are joined in a so-

called filter cube, in many commercial fluorescence microscopes. The PL of TiO2, ZnO 

and GQDs which were coated on FTO glasses were measured by 

spectroflourophotometer (Model: RF-5301PC).  Univ
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Figure 3.8: Schematic of the working principle of PL spectroscopy  

3.5.5 UV-Visible Spectrophotometry 

UV-Visible spectra of GQDs, TiO2 and ZnO nanoparticles were obtained between 

300 nm and 750 nm with the spectral acquisition range extended out to 850 nm for the 

N-719 dye. Solution state UV-visible spectra were measured on a Shimadzu UV 1601 

spectrophotometer connected to a PC running UV-Vis Probe software.  

3.5.6 Raman Spectroscopy 

The Raman spectra of GQDs were obtained using a Renishaw inVia™ confocal 

Raman microscope employing a 532 nm excitation wavelength to confirm the reduction 

of graphene. Excitation was provided by a HeNe laser (Melles Griot). The exciting laser 

radiation was coupled into a Zeiss microscope through a wavelength-specific single 

mode optical fiber. The incident laser beam was collimated via an achromatic lens and 

passes a holographic band-pass filter before it was focused onto the sample through the 

microscope objective. The sample is located on a piezo-electrically driven microscope 

scanning stage with an x, y resolution of ca. 3 nm and a repeatability of 5nm, and z 

resolution of ca. 0.3 nm and 2 nm repeatability. The Raman back-scattered radiation 
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was detected by a back-illuminated deep depletion, 1024 128 pixel charge-coupled 

device camera operating at -82.  

3.5.7 Brunauer-Emmett-Teller (BET) Surface Area Analysis 

The Brunauer-Emmett-Teller (BET) theory (an extension of the Langmuir adsorption 

theory44) uses gas adsorption to determine surface area was proposed in 1938. BET has 

since become the most extensively used method to calculate surface area of adsorbent 

materials, including nanocatalysts and catalyst supports. BET theory assumes that gas 

molecules are adsorbed randomly onto a surface of equivalent sites with no interaction 

between adsorbed molecules in the same layer. It further assumes that each layer of gas 

molecules are essentially the ‘first’ layer on the adsorbent, with each subsequent 

adsorbed layer behaving as the surface of the adsorbent, therefore, the rate of adsorption 

and the heat of condensation do not change between subsequent layers (Olsen, 2013). 

3.5.8 High Resolution Transmission Electron Microscopy 

Transmission electron microscopy (TEM) images of as-received nanostructures were 

captured using Philips PW 6061 TEM system (model CM 200, Eindhoven, Netherlands) 

to analyze the dimension and structure of nanostructures. FEIG-4020, 500kV high-

resolution transmission electron microscopy (HRTEM) was used to study GQDs 

structure.  

 Photovoltaic performance 

3.6.1 Current-voltage characteristics 

One of the most essential measurements of a solar cell is the current-voltage (I-V) 

measurement. In order to be able to compare performances of solar cells the I-V curve is 

measured under the illumination of a lamp with a spectrum similar to the AM1.5G 

illumination (Figure 3.9). The AM1.5G spectrum is the spectrum of sunlight that has 

traveled 1.5 times the thickness of the atmosphere. The intensity of the illumination is 

Univ
ers

ity
 of

 M
ala

ya



63 

calibrated to 1000 W/m2, equal to 1 sun. The I-V characteristics are monitored under 

illumination by applying an external potential between the working and counter 

electrode. The external potential is altered from Jsc to Voc or opposite depending on 

scanning direction. The I-V curve can also be measured under dark conditions. This will 

give information about recombination to the oxidized redox species. Since no oxidized 

dye is present in dark, the dark current is a measure of electrons going in the reverse 

way, from the TMOs to the oxidized species of the redox couple. 

 

Figure 3.9: Current- voltage characteristic 

3.6.2 Incident photon to current conversion efficiency 

The incident photon to current conversion efficiency (IPCE) is a measure of 

the efficiency of the solar cell to convert the incoming photons to photocurrent at 

different wavelengths was performed by Photovoltaic SR_EQE_IQE_Mapping 

(Model: PVE300-IVT) which is shown in Figure 3.10. This is done by measuring 

the resulting photocurrent of the solar cell when illuminated by monochromatic 

light. 
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Figure 3.10: Incident photon to current conversion efficiency 

3.6.3 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectroscopy is a recent tool in corrosion and solid state 

laboratories that are slowly making its way into the service environment as units are 

decreased in size and become portable. Impedance Spectroscopy is also called AC 

Impedance or just Impedance Spectroscopy. 

The usefulness of impedance spectroscopy lies in the ability to distinguish the 

dielectric and electrical properties of individual contributions of components under 

investigation. In order to gain deeper insight into the interfacial charge transfer process 

within the fabricated bio-electrode, the electrochemical impedance spectra (EIS) were 

recorded in a frequency range between 0.01 Hz and 100 kHz. All electrochemical 

measurements were performed using a computer controlled Potentiostat/Galvanostat 

(302N Autolab). 
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CHAPTER 4: RESULTS AND DISCUSSION 

The objective of this research is to replace the GQDs with ruthenium-based dye in 

DSSCs and observe the effect of photo-anodes with different thickness on the 

performance of DSSCs. This chapter presents a detailed description of the results 

obtained through experimentations and scientific analysis of the outcomes.  

 Material characterization 

4.1.1 Characterization of TiO2 nanoparticles 

The key to the breakthrough for DSSCs in 1999 was the use of a mesoporous TiO2 

electrode with a high internal surface area to support the monolayer of a sensitizer. 

Typically, the increase of surface area using mesoporous electrodes is a factor in 

DSSCs. TiO2 still reports the highest efficiency, but many other metal oxide systems 

have been tested, such as ZnO, SnO2, and Nb2O5 (Xin, 2012).  

TiO2 is believed to be the most suitable semiconductor for environmental 

remediation. A major advantage of nanostructured solar cell is their large surface-to-

volume ratios, which allows for increased loading of sensitizers and the potential for an 

increased number of current-producing electron transfer chemical reactions (Kamat, et 

al., 2010). 

In this study, we prepared TiO2 nanoparticles by a hydrothermal method. To analyze 

the prepared TiO2 nanoparticles, the FTIR spectrum was recorded, and shown in Figure 

4.1. The peak centered at 654 cm−1 is attributed to TiO2 and assigned to the stretching of 

Ti-O-Ti (Esteban Benito, et al., 2014). The absorption band at 1387cm−1 can be 

assigned to the lattice vibrations of TiO2. The absorption band at 1641cm−1 is due to a 

bending vibration of coordinated H2O, as well as Ti-OH, and the characteristic band 

position at 3441 and 3742cm-1 are attributed to O-H stretching (Zamiri, et al., 2014).  
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Table 4.1: Characteristic peaks of TiO2 nanoparticles  

Characteristic 
absorptions 

(cm-1) 
654 1387 1641 3441, 3742 

Functional 
group 

Streching of 
Ti-O-Ti 

The lattice vibrations 
of TiO2 H-O-H O-H stretching 

 

 

Figure 4.1: FTIR spectrum of TiO2 nanoparticles 

The XRD patterns of TiO2 are shown in Figure 4.2. The wide-angle XRD pattern 

showed anatase-phase TiO2 with characteristic diffraction peaks of 2θ values at about 

25.6(101), 38.1(004), 48.5(200), 54.7(105), 55.3(211), 63.0(204), 68.9(116), 70.8(220) 

and 76.1(215), respectively (Cheng, et al., 1995). 
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Figure 4.2: XRD pattern of TiO2 nanoparticles 

Figure 4.3 shows the Raman spectrum of TiO2 nanoparticles. Raman spectroscopy 

provides information regarding the lattice vibration of nanostructure materials. Four 

bands at 144 cm−1 (Eg), 395 cm−1 (B1g), 516 cm−1 (A1g), and 639 cm−1 (Eg) are observed 

in the Raman spectra of the TiO2, which are the characteristic Raman modes of the 

anatase phase (Swamy, et al., 2005).  

Table 4.2: Raman peaks of TiO2 nanoparticles 

Band position  144 (cm-1) 395 (cm-1) 516 (cm-1) 639 (cm-1) 

Details Eg B1g A1g Eg 
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Figure 4.3: Raman spectrum of TiO2 nanoparticles 

TEM was used to study the morphology and average particle size of the synthesized 

TiO2 nanoparticles. The prepared sample show heterogeneity in its shape and size. The 

TEM image of the TiO2 nanoparticles in Figure 4.4 indicates fine nanoparticles 

measuring around 50 nm. Interesting correlations can be established between the 

morphology and hydrothermal conditions of the preparation.  
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Figure 4.4:TEM images of TiO2 nanoparticles 

The UV pattern of TiO2 is shown in Figure 4.5. To investigate the optical absorption 

properties of TiO2 nanoparticles under present investigation, UV-Vis study was carried 

out (Figure 4.5). The band gap energy (Eg) was calculated according to the equation:  

𝐸𝑔 = ℎ 𝑐
𝜆⁄                                                                                                                                 (4.1) 

Where Eg is the band gap energy (eV), h is Planck's constant, c is the velocity of 

light (m/s) and λ is the wavelength in nm. The band gap value for absorption to be 335 

nm was calculated by above formula is 3.2 eV (Hema, et al., 2013).  
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Figure 4.5: UV-Visible spectrum of TiO2 nanoparticles. 

Specific surface area is a significant microstructural parameter of materials particles, 

which depends on the geometrical shape and porosity. This includes the Brunauer–

Emmett–Teller (BET) surface area analysis. The microstructural characteristics of the 

nanoparticles are investigated with the N2 adsorption–desorption analysis. Figure 4.6 

shows the N2 adsorption–desorption isotherm OF TiO2
 nanoparticlares. It exhibits a type 

IV isotherm typical for mesoporous materials with a hysteresis loop. This hysteresis is 

an intermediate between typical H1 and H2 type hysteresis loop in the relative pressure 

range (p/p0) 0.4–1.0 suggesting large uniform mesopores with a cage-like pore structure 

connected by windows with a small size. The specific surface area is determined from 

the isotherms to be 52.60 m2/g based on the BET model (Swapna and Haridas, 2016).   Univ
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Figure 4.6: Nitrogen adsorption-desorption of TiO2 nanoparticles 

4.1.2 Characterization of ZnO nanoparticles 

The crystal structure of ZnO nanoparticles was characterized by XRD. Figure 4.7 

shows XRD patterns of ZnO nanoparticles. The peaks at 2θ = 31.67°, 34.31°, 36.14°, 

47.40°, 56.52°, 62.73°, 66.28°, 67.91°, 69.03°, and 72.48° were assigned to (100), 

(002), (101), (102), (110), (103), (200), (112), (201), and (004). No characteristic 

peaks of any impurities were detected, suggesting that high-quality ZnO 

nanoparticles were synthesized (Akhtar, et al., 2012). 
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Figure 4.7: XRD spectrum of ZnO nanoparticles 

Figure 4.8 shows the FTIR spectra of the ZnO nanoparticles. Infrared studies were 

conducted in order to ascertain the purity and nature of the nanoparticles. Metal oxides 

generally reports absorption bands in fingerprint region, i.e. below 1000 cm-1, arising 

from inter-atomic vibrations. The peaks observed at 3443 and 1540 cm-1 are due to O-H 

stretching and deformation, respectively, assigned to the water adsorption on the metal 

surface. The peaks at 1637 and 618 cm-1 correspond to Zn-O stretching and deformation 

vibrations, respectively (Kumar and Rani, 2013).  

Table 4.3:Characteristic peaks of ZnO nanoparticles  

Characteristic 
absorptions 

(cm-1) 
430-500 618 1540 1637 3443 

Functional 
group 

Metal oxide 
bond (ZnO) 

Zn-O 
deformation 

The O-H bending 
vibrations 

Zn-O 
stretching 

O-H stretching 
vibration in pure 

ZnO 
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Figure 4.8: FTIR spectrum of ZnO nanoparticles 

Figure 4.9 shows the Raman spectrum of ZnO nanoparticles. The peak that belongs 

to the ZnO lattice vibration at 438 cm−1 appears to be sharp and narrow. The other small 

peak on the right at 540 cm−1 corresponds to the oxygen vacancies in the ZnO 

nanoparticles. The ratio of zinc and oxygen in ZnO nanoparticles is more obvious at low 

temperatures, and the small peaks on the left at 332 and 385 cm−1 can be accurately 

analyzed. The Raman spectrum of ZnO nanoparticles was reported by Marie and his co-

workers, showing the same peaks at 332 cm−1 (E2high-E2low), 385 cm−1 (A1(TO)), 

438 cm−1 (E2high), and 540cm−1 (A1(LO)) (Marie, et al., 2015).  

Table 4.4: Raman peaks of ZnO nanoparticles  

Band position  332 (cm-1) 385 (cm-1)  438 (cm-1) 540 (cm-1) 

Details E2high-E2low A1(TO) E2high A1(LO) 
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Figure 4.9: Raman spectrum of ZnO nanoparticles 

Figure 4.10 shows the TEM images of ZnO nanoparticles. The prepared sample 

showed heterogeneity in its shapes and sizes. It is obvious from the image that the 

sample is well dispersed, with an average particle size of approximately 50 nm.  

 

Figure 4.10: TEM images of ZnO nanoparticles 
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For analytical study of the prepared sample, the amount of absorption within wave 

length of 300-550 nm was observed by uv-vis spectroscopy. It is known that an 

absorption band at about 370 nm due to surface plasmon resonance in ZnO 

nanoparticles. Figure 4.11 shows the UV-Vis spectrum of ZnO nanoparticles recorded 

between 300 and 550 nm. As illustrated the peak cantered 370 nm confirms the 

formation of ZnO nanoparticles in the solution (Ghorbani, et al., 2015). The band gap 

value was calculated from the formula (4.1) has been 3.3 eV (Akhtar, et al., 2012).  

 

Figure 4.11: UV-Vis spectrum of ZnO nanoparticles 

Figure 4.12 shows the N2 adsorption–desorption isotherm OF ZnO nanoparticlares 

which is characterized by the hysteresis loop, and it does not exhibit any limiting 

adsorption at high relative pressures. The specific BET surface area of the ZnO 

nanoparticles was determined to be 37.5 m2/g (Do, et al., 2014). 
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Figure 4.12: Nitrogen adsorption-desorption of ZnO nanoparticles 

4.1.3 Characterization of GQDs 

A dye used in DSSC should possess a wide panchromatic capacity to harvest light to 

produce a large current and high molar extinction coefficient to excite as many electrons 

as possible, molecular orbital that matches the host material conduction band for 

efficient charge injection, excellent chemical properties to stabilize the monolayer on 

the host material, and a low HOMO energy level that can be regenerated with 

electrolyte and produce a large driving force for electron flow through the external 

circuit (Hagfeldt, et al., 2010; Luitel, 2015). 

The FTIR spectra of GO and GQDs are shown in Figure 4.13. Each GQD show 

defects due to incomplete reduction. FTIR proved the presence of -OH, epoxy/ether, 

C=O; it is assumed that these groups caused the structural defects. The peak at 1741 

cm−1 belongs to C=O, while the peaks at 1259 and 1370 cm−1 correspond to epoxy/ether 

groups, making GQDs water soluble. The peak centered at 1620 cm−1 is assigned to 

C=C stretching, and the broad range from 2500 to 3500 cm-1 confirms the presence of 
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COOH. The characteristic band position at 3386 cm-1 is attributed to O-H stretching 

(Ting, et al., 2015).  

Table 4.5: Characteristic peaks of GQDs 

Characteristic 
absorptions (cm-1) 1151 1620 1741 2500-3500 3386 

Functional group 
C-O 

stretching of 
alkoxy groups 

C=C 
stretching C=O Carboxylic 

group O-H 

 

 

Figure 4.13: FTIR spectra of GO and GQDs 

Figure 4.14 shows the Raman spectrum of the GQDs. The G (1608cm−1) and D 

bands (1366 cm−1) of GQDs show a large intensity ratio (ID/IG) at 0.85. The results 

imply that the surfaces of GQDs have many structural defects capped with various 

oxygenated groups (Fan, et al., 2015).  

Table 4.6: Raman peaks of GQDs 

D Band (cm-1) G band (cm-1) 

1366 1608 
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Figure 4.14: Raman spectrum of GQDs 

Figure 4.15 shows the GQDs efficiently absorbing UV light. A typical absorption 

peak at 321 nm was observed, which is similar to the reported GQDs. The peak at 321 

nm represents the uniform sp2 clusters in GQDs. 

 

Figure 4.15: UV-Visible spectrum of GQDs 

In Figure 4.16, an excitation-dependent PL spectrum was obtained from GQDs, 

while two peaks at 430 nm and 560 nm were observed with 321 nm excitation. The PL 
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spectrum was dominated by the peak at 560 nm, which is responsible for green 

fluorescence of GQDs (Ting, et al., 2015).  

 

Figure 4.16: Photoluminescence spectrum of GQD 

Figure 4.17 shows HRTEM image of GQDs. The prepared GQDs have a quite 

uniform size of around 5nm.  

 

Figure 4.17: HRTEM images of GQDs 
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 Characterization of DSSCs based on TiO2 photo-anode 

4.2.1 Effect of different immersion time in GQDs on PCE in DSSCs based on 

TiO2 photo-anode 

To investigate the effect of different immersion times on the performance of DSSCs, 

TiO2 photo-anodes with thickness of 10 μm were immersed in GQDs at different times, 

such as 7, 14, 21, and 28 hours.  

Figure 4.18 compares the I-V characteristics obtained from DSSCs made of TiO2 

nanoparticles as photo-anodes immersed in GQDs for many hours. After increasing the 

immersion time from 7 - 21 hours, the efficiency increased from 0.415 to 1.097 %.  

 

Figure 4.18: Current-voltage (I-V) Curves of DSSCs based on TiO2 photo-anode 
with different immersion time in GQDs as a photosensitizer 

As seen in Figure 4.18 and Table 4.7, the effect of immersion time on the 

performance of DSSCs was examined. We note that increasing immersion time of TiO2 

photo-anodes in GQDs is a good strategy to improve the performance of DSSCs. More 

photosensitizer molecules can be adsorbed when the immersion time is increased, thus 

realizing higher light harvesting efficiency. To this end, DSSCs devices based on TiO2 
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nanoparticles photo-anodes immersed in GQDs at different durations (7, 14, 21, and 28 

hours) were prepared. It is not surprising that the lowest immersion time (i.e., 7 hours) 

reported the lowest efficiency (PCE = 0.417 %). As the duration of immersion time 

increased from 7 hours to 21 hours, ISC increased from 1.067 mA to 2.57 mA, while 

PCE increased from 0.417% to 1.097 %. However, when the immersion time increased 

from 21 hours to 28 hours, ISC and PCE decreased from 2.57 to 1.681 mA and from 

1.097 % to 0.67 %, respectively.  

Table 4.7: Photovoltaic Characteristics of  DCCS devices based on TiO2 
nanoparticles with different immersion time in GQDs as a photosensitizer 

Immersion time ISC (mA) VOC (V) FF PCE (%) 

7 hours 1.067 0.716 0.543 0.415 

14 hours 1.85 0.683 0.590 0.744 

21 hours 2.75 0.755 0.528 1.097 

28 hours 1.681 0.686 0.581 0.67 

 

4.2.2 FESEM images of TiO2 photo-anode with different thicknesses 

The optimum thickness was determined to be critical for the performance of DSSC. 

With the increase of thickness, more photosensitizer molecules are present in the 

semiconductor layer for absorbing sunlight, which result in the generation of current. 

However, increasing thickness requires a longer path for the photo-generated electrons 

to reach the working electrode, which increases the rate of electron recombination. 

Therefore, the current started decreasing post-optimal thickness (Xin, et al., 2011). 

To investigate the effect of the thickness of TiO2 photo-anodes in DSSCs, multiple 

layers of TiO2 nanoparticles were coated onto the FTO glasses for the preparation of 
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photo-anodes. The FESEM images in Figure 4.19 show that the thickness of each layer 

of TiO2 nanoparticles is around 10 μm.  

 

Figure 4.19: FESEM images of TiO2 photo-anode with different thicknesses 

4.2.3 Effect of TiO2 photo-anode with different thicknesses on PCE in DSSCs 

using N-719 as photosensitizer 

The effect of TiO2 photo-anode thickness on the performance of DSSCs using N-719 

as a photosensitizer was investigated by coating different layers of TiO2 nanoparticles 

on FTO glasses to prepare photo-anodes, which was then immersed in N-719 for 21 

hours (Wang, et al., 2006). 
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Figure 4.20 compares the I-V characteristics obtained from DSSCs from five 

thicknesses of TiO2 nanoparticles coated on FTO glasses. After the thickness increased 

from ~10 μm to ~40 μm, the efficiency increased from 0.37 to 2.92 %.  

 

Figure 4.20: The typical current-voltage (I-V) Curves of DSSCs based on TiO2 

photo-anodes with different thicknesses and using N-719 as a photosensitizer 

The effect of TiO2 thickness on the performance of the DSSCs was examined (Figure 

4.20 and Table 4.8). We note that increasing the thickness of TiO2 thin film improves 

the performance of DSSCs. TiO2 active layer suggests that more dye molecules can be 

adsorbed, which results in increased light harvesting efficiency (Khan, et al., 2017). 

DSSCs with TiO2 thin films 10 μm, 20 μm, 30 μm, 40 μm, and 50 μm thick were 

prepared. It is not surprizing that the thinnest TiO2 film (i.e., 10 μm) resulted in the 

lowest efficiency (PCE = 0.37 %). As the thickness increased from 10μm to 40μm, the 

ISC increased from 0.938 mA to 5.89 mA, while PCE increased from 0.37 % to 2.92%. 

However, when thicker TiO2 nanoparticle film was employed (i.e., 50 μm), ISC and PCE 

decreased from 5.89 to 5.292 mA and from 2.92 % to 2.46 %, respectively. The 

decrease in ISC and PCE can be rationalized as follows.  
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Table 4.8: Photovoltaic Characteristics of DCCSs devices based on TiO2 
nanoparticles with different thicknesses and using N-719 as a photosensitizer 

Photosensitizer Layers ISC (mA) VOC (V) FF PCE (%) 

N-719 

1 0.938 0.705 0.559 0.37 

2 3.22 0.790 0.581 1.47 

3 5.596 0.775 0.611 2.65 

4 5.89 0.79 0.627 2.92 

5 5.292 0.745 0.625 2.46 

 

The sensitivity of a DSSC is a function of the wavelength of the incident light. IPCE 

measures the ratio of the number of electrons generated by the solar cell to the number 

of incident photons on the active surface under monochromatic light irradiation (Lü, et 

al., 2010). Figure 4.21 indicates that the maximum IPCE value of ~29 % was obtained 

at ~540 nm, which is related to TiO2 photo-anode with thickness of 40 μm. The IPCE 

suggest that light harvesting was significantly improved via the increase of the thickness 

of TiO2 photo-anode (Mohammadpour, et al., 2015).  
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Figure 4.21: IPCE Curves of DSSCs using TiO2 photo-anodes with different 
thicknesses and using GQDs as a photosensitizer 

4.2.4 Effect of TiO2 photo-anode with different thicknesses on PCE in DSSCs 

using GQDs as photosensitizer 

The influence of the thickness of the TiO2 photo-anodes when GQDs was used as 

photosensitizer in DSSCs was investigated by coating multiple layers of TiO2 

nanoparticles on the FTO glasses to prepare photo-anodes, which was then immersed in 

GQDs for 21 hours. 

Figure 4.22 compares the I-V characteristics obtained from DSSCs with different 

thicknesses of TiO2 nanoparticles coated onto the FTO glasses. When the thickness 

increased from ~10 to ~40 μm, the efficiency was increased from 1.097 to 2.76 %.  Univ
ers

ity
 of

 M
ala

ya



86 

 

Figure 4.22: Current-voltage (I-V) Curves of DSSCs using TiO2 photo-anodes 
with different thicknesses and using GQDs as a photosensitizer 

The influence of the thickness of TiO2 on the performance of DSSCs was examined 

(Figure 4.22 and Table 4.9). By increasing the thickness of TiO2 thin film, the 

performance of the DSSCs improves (Mohammadpour, et al., 2015). The thicker TiO2 

active layer seems to suggest that more dye molecules can be absorbed, which increases 

light harvesting efficiency (Khan, et al., 2017). We prepared DSSCs with TiO2 

nanoparticle film that were 10 μm, 20 μm, 30 μm, 40 μm, and 50 μm thick, which was 

then immersed in GQDs. As seen in Table 4.8, the thinnest TiO2 film (i.e., 10 μm) 

resulted in the lowest efficiency (PCE = 1.097 %), and as the thickness increased from 

10 μm to 40 μm, the ISC increased from 2.75 mA to 6.618 mA, while PCE increased 

from 1.097 % to 2.76 %. However, when an even thicker TiO2 nanoparticle film was 

employed (i.e., 50 μm), the ISC and PCE decreased from 6.618 to 6.25 mA and from 

2.76 % to 2.55 %, respectively.  
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Table 4.9: Photovoltaic Characteristics of  DCCSs devices based on TiO2 
nanoparticles with different thicknesses by using GQDs as a photosensitizer 

Photosensitizer Layers ISC (mA) VOC (V) FF PCE (%) 

GQDs 

1 2.75 0.755 0.528 1.097 

2 3.73 0.762 0.632 1.795 

3 5.084 0.762 0.628 2.43 

4 6.618 0.738 0.566 2.76 

5 6.25 0.744 0.548 2.55 

 

The maximum IPCE value of 38 % obtained at around 510 nm is related to TiO2 

photo-anode that was 40 μm thick (Figure 4.23). As seen in Figure 4.23, the IPCE 

results indicated that light harvesting is significantly improved by the increase thickness 

of the TiO2  photo-anode.  

 

Figure 4.23: IPCE Curves of DSSCs sensitized by TiO2 photo-anodes with 
different thicknesses and using GQDs as a photosensitizer 
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 Characterization of DSSCs based on ZnO photo-anode 

4.3.1 Effect of different immersion time in GQDs on PCE in DSSCs based on 

ZnO photo-anode 

In order to investigate the effect of different immersion times on the performance of 

DSSCs, ZnO photo-anodes with thickness of 10 μm  were immersed in GQDs for 7, 14, 

21, and 28 hours.  

Figure 4.24 compares the I-V characteristics obtained from DSSCs made of ZnO 

nanoparticles as photo-anodes, which were immersed in GQDs for different hours. After 

increasing the immersion time from 7 hours to 21 hours, the efficiency was increased 

from 0.133 to 0.6 %.  

 

Figure 4.24: Current-voltage (I-V) Curves of DSSCs based on ZnO photo-anode 
with different immersion time in GQDs as a photosensitizer 

As seen Figure 4.24 and Table 4.10, we note that increasing the immersion time of 

ZnO photo-anodes in GQDs improves the performance of DSSCs. More photosensitizer 

molecules can be adsorbed when immersion time is increased, which also increase the 

light harvesting efficiency (Xin, et al., 2011). DSSCs devices based on ZnO 
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nanoparticles photo-anodes were immersed in GQDs at (7, 14, 21 and 28 hours). The 

lowest immersion time (i.e., 7 hours) resulted in the lowest efficiency (PCE = 0.133 %). 

As the duration of immersion time increased from 7 hours to 21 hours, the ISC increased 

from 0.361 mA to 1.29 mA, while PCE increased from 0.133 % to 0.6 %. However, 

when the immersion time was increased from 21 hours to 28 hours, ISC and PCE 

decreased from 1.29 to 1.068 mA and from 0.6 % to 0.435 %, respectively.  

Table 4.10: Photovoltaic Characteristics of  DSSCs devices based on ZnO 
nanoparticles with different immersion time in GQDs as a photosensitizer 

Immersion time ISC (mA) VOC (V) FF PCE (%) 

7 hours 0.361 0.715 0.515 0.133 

14 hours 0.954 0.701 0.550 0.398 

21 hours 1.29 0.706 0.663 0.6 

28 hours 1.068 0.716 0.569 0.435 

 

4.3.2 FESEM images of ZnO photo-anode with different thicknesses 

The effect of ZnO photo-anode thickness on the performance of DSSCs using N-719 

as a photosensitizer was investigated by coating different layers of ZnO nanoparticles 

on FTO glasses to prepare photo-anodes. The FESEM images in Figure 4.25 show that 

the thickness of each layer of ZnO nanoparticles is ~10 μm.  
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Figure 4.25: FESEM images of ZnO photo-anode with different thicknesses 

4.3.3 The effect of ZnO photo-anode with different thicknesses on PCE in 

DSSCs using N-719 as photosensitizer 

To investigate the effect of the thickness of ZnO photo-anodes when N-719 is used 

as a photosensitizer in DSSCs, different layers of ZnO nanoparticles were coated onto 

FTO glasses to prepare photo-anodes, which were then immersed in N-719 for 21 hours 

(Wang, et al., 2006).  

Figure 4.26 compares the I-V characteristics obtained from DSSCs from different 

thicknesses of ZnO nanoparticles coated onto the FTO glasses. As seen in Figure 4.26, 

when the thickness increase from 10 μm to 40 μm, the efficiency increased from 0.396 

to 1.13 %. 
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Figure 4.26: Current-voltage (I-V) Curves of DSSCs using ZnO photo-anodes 
with different thicknesses and N-719 as a photosensitizer 

The effect of the thickness of ZnO on the performance of the DSSCs was examined 

(Figure 4.26 and Table 4.11). The results show that increased thickness of ZnO 

nanoparticle film improves the performance of DSSCs. The thicker ZnO active layer 

suggests that more photosensitizer molecules can be adsorbed, which results in 

increased light harvesting efficiency (Khan, et al., 2017). We prepared DSSC with ZnO 

nanoparticles films that were 10 μm, 20 μm, 30 μm, 40 μm and 50 μm thick. Table 4.9 

and Figure 4.26 indicated that the thinnest ZnO film (i.e., 10 μm) reported the lowest 

efficiency (PCE = 0.396 %). As the thickness increased from 10 μm to 40 μm, ISC 

increased from 1.122 mA to 2.657 mA, while PCE increased from 0.396 % to 1.13 %. 

However, when an even thicker ZnO nanoparticle film was used (i.e., 50 μm), ISC and 

PCE decreased from 2.657 to 2.54 mA and from 1.13 % to 1.04 %, respectively. The 

decrease in ISC and PCE can be rationalized as follows.  
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Table 4.11: Photovoltaic Characteristics of  DCCSs devices based on ZnO 
nanoparticles with different thicknesses and using N-719 as a photosensitizer 

Photosensitizer Layers ISC (mA) VOC (V) FF PCE (%) 

N-719 

1 1.122 0.693 0.510 0.396 

2 1.64 0.673 0.589 0.65 

3 1.85 0.675 0.607 0.76 

4 2.657 0.661 0.645 1.13 

5 2.54 0.661 0.619 1.04 

 

The IPCE plots in Figure 4.27 showed that the active photon-to-current responses of 

ZnO photo-anode with a thickness of 40 μm are more red-shifted compared to the other 

thicknesses of ZnO photo-anode (10, 20, 30 and 50 μm), which indicates that the 

spectral absorption range is effectively broadened. On the other hand, the maximum 

IPCE value of 11 % was obtained at around 500 nm, which is related to ZnO 

nanoparticles photo-anode with a thickness of 40 μm. These results suggest that light 

harvesting is significantly improved by increasing the thickness of ZnO photo-anode.  
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Figure 4.27: IPCE Curves of DSSCs sensitized by ZnO photo-anodes with 
different thicknesses and using N-719 as a photosensitizer 

4.3.4 The effect of ZnO photo-anode with different thicknesses on PCE in 

DSSCs using GQDs as photosensitizer 

The effect of ZnO photo-anodes thickness when GQDs is used as a photosensitizer in 

DSSCs was investigated by coating different layers of ZnO nanoparticles onto FTO 

glasses to prepare photo-anodes, which was then immersed in GQDs for 21 hours. 

Figure 4.28 compares the I-V characteristics obtained from DSSCs from different 

thicknesses of ZnO nanoparticles coated onto FTO glasses. Clearly, after increasing the 

thickness from 10 μm to 40 μm, the efficiency increased from 0.6 % to 1.26 %.  Univ
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Figure 4.28: Current-voltage (I-V) Curves of DSSCs using ZnO photo-anodes 
with different thicknesses and GQDs as a photosensitizer 

The effect of the thickness of ZnO on the performance of the DSSC was examined 

(Figure 4.28 and Table 4.12). The increasing thickness of ZnO nanoparticle film 

improves the performance of the DSSCs (Mohammadpour, et al., 2015). The thicker 

ZnO active layer suggests that more photosensitizer molecules can be adsorbed, which 

increases the light harvesting efficiency (Khan, et al., 2017). DSSCs were prepared with 

ZnO nanoparticle films that were 10 μm, 20 μm, 30 μm, 40 μm and 50 μm, which was 

then immersed in GQDs for 21 hours. As seen in Table 4.10, the thinnest ZnO film (i.e., 

10 μm) reported the lowest efficiency (PCE = 0.6 %). As the thickness increased from 

10 μm to 40 μm, ISC increased from 1.29 mA to 3.169 mA, while PCE increased from 

0.6 % to 1.26 %. However, when an even thicker ZnO nanoparticle film was used (i.e., 

50 μm), PCE decreased from 1.26 % to 1.21 %, respectively.  
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Table 4.12: Photovoltaic Characteristics of  DSSCs devices based on ZnO 
nanoparticles with different thicknesses and using GQDs as a photosensitizer 

Photosensitizer Layers ISC (mA) VOC (V) FF PCE (%) 

GQDs 

1 1.29 0.706 0.663 0.6 

2 2.59 0.703 0.591 1.077 

3 2.887 0.595 0.643 1.105 

4 3.169 0.64 0.623 1.26 

5 3.715 0.602 0.541 1.21 

 

The maximum IPCE value of ~50 % was obtained at ~530 nm, which is due to the 

ZnO photo-anode that was 40 μm thick (Figure 4.29). As seen in Figure 4.29, the IPCE 

results indicate that light harvesting is significantly improved by increasing the 

thickness of ZnO photo-anode (Baxter, et al., 2006). 

 

Figure 4.29: IPCE Curves of DSSCs using ZnO photo-anodes with different 
thicknesses and GQDs as a photosensitizer 
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The results in this section indicate that the increasing thickness of TiO2 and ZnO 

nanoparticle films for both N-719 and GQDs as photosensitizers improves the 

performance of DSSCs, due to the thicker TiO2 and ZnO active layers, which suggest 

that more photosensitizer molecules can be adsorbed, increasing the light harvesting 

efficiency (Yang and Leung, 2011) The performance, decreased with increasing 

thickness of TiO2 and ZnO nanoparticle films from 40 μm to 50 μm. Although the 

increased thickness of TiO2 and ZnO photo-anodes improve light absorption, in the 

current front side illumination mode (i.e., light entered the cell through the transparent 

FTO glass on which TiO2 and ZnO photo-anodes were directly deposited), as the 

thicknesses of TiO2 and ZnO nanoparticles increased, most of the photons were 

absorbed by the dyes anchored on TiO2 and ZnO photo-anodes that were close to the 

FTO glass (i.e., the bottom part of TiO2 and ZnO thin films), while photosensitizers on 

the top part of  the thin films that were near the TiO2/electrolyte and ZnO/electrolyte 

interfaces may lack the photons for absorption (Hsin, et al., 2008). The advantage 

afforded by thick films was negated by further increasing the thickness. Also, thicker 

TiO2 and ZnO films implies that electrons had to undergo a longer pathway before 

reaching the FTO glass, which increases the chances for recombination during the 

transport process (Zhu, et al., 2006). Finally, the thicker TiO2 and ZnO films may hinder 

the electrolyte from penetrating completely to the bottom of TiO2 and ZnO films and the 

transport of the I-
3 in the electrolyte to the platinum coated counter electrode, thus 

impeding the recovery of photosensitizer molecules after the injection of the excited 

electrons to TiO2 and ZnO. Taken together, the performance increased in tandem with 

the thickness of the thin films. 
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 Characterization of DSSCs based on 4-Layers TiO2 photo-anode using  

GQDs as a photosensitizer and N-719 as a photosensitizer 

Figure 4.30 reveals the vacuum energy levels of TiO2 nanoparticles, N-719, and 

GQDs. According to this Figure, the energy level of the TiO2 conduction band is -4.26 

eV, while the GQD is -3.82 eV, and N-719 is -3.01 eV.  

 

Figure 4.30: Vacuum energy level of TiO2 nanoparticles, N-719 and GQDs 

Figure 4.31 indicates the PL spectra of photo-anodes based on TiO2 nanoparticles 

immersed in N-719 and GQDs as photosensitizers under 325 nm laser excitation. PL is 

a suitable tool for determining the efficiency of charge carrier trapping, migration, and 

transfer, and to understand the fate of electron–hole pairs in semiconductor particles due 

to PL emissions from the recombination of free carriers (Lim, et al., 2015b). TiO2 will 

absorb the incident photons with sufficient energy equal to or higher than the band-gap 

energy, which will produce photoinduced charge carriers (Du, et al., 2006). In addition, 

the recombination of photoinduced electrons and holes releases energy in the form of 

PL emission spectra. Hence, a lower PL intensity indicates lower charge recombination 

(Lim, et al., 2015b). Broad peaks with maximum emissions at around 549, 569, and 559 

nm can be observed for TiO2 coated on FTO glass, and TiO2 photo-anodes immersed in 
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N-719 and GQDs, respectively. TiO2 photo-anode immersed in GQDs showed a higher 

PL intensity due to the rapid recombination of photoinduced charge carriers (Lim, et al., 

2014; Lim, et al., 2015a).  

 

Figure 4.31: PL spectra of photo-anodes based on TiO2 photo-anode immersed 
in N-719 and GQDs as photosensitizers 

Figure 4.32 shows the typical current-voltage (I-V) curves for the two devices based 

on TiO2 photo-anodes using N-719 as a photosensitizer and GQDs as a photosensitizer 

were measured under AM 1.5 G illuminations (data summarized in Table 4.12). DSSCs 

were fabricated using GQDs gave VOC (0.738 V) and ISC (6.618 mA), achieving an 

overall PCE of 2.76 %. The best photovoltaic characteristics were obtained for the 

device that using N-719 as a photosensitizer compared with using GQDs as a 

photosensitizer. DSSC fabricated using N-719 gave VOC (0.790 V) and ISC (5.89 mA) 

reports an overall PCE of 2.92 %.  
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Table 4.13: Photovoltaic Characteristics of  DSSCs devices based on TiO2 
nanoparticles using N-719 and GQDs as photosensitizer 

Photosensitizers ISC (mA) VOC (V) FF PCE (%) 

N-719 5.89 0.79 0.627 2.92 

GQDs 6.618 0.738 0.566 2.76 

 

 

Figure 4.32: Current-voltage (I-V) curves of DSSCs devices based on TiO2 
nanoparticles using N-719 as a photosensitizer and GQDs as a photosensitizer 

In order to gain deeper insight into the interfacial charge transfer process within the 

fabricated DSSC, the electrochemical impedance spectroscopy (EIS) were recorded in a 

frequency range between 0.01 Hz and 100 kHz in dark condition, as shown in Figure 

4.33.  

In dark conditions, three semicircles located in high, middle, and low frequency 

regions (left to right) of Nyquist plots are attributed to the redox reaction at the platinum 

counter electrode and the electron transfer at the TiO2/dye/electrolyte interface and 
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charge transfer in the electrolyte (Wei, et al., 2015). Therefore, the larger semicircle 

observed in the middle frequency region represents the resistances of the charge transfer 

from the TiO2 to the electrolyte. The radius of this semicircle decreases when GQDs 

was used as a photosensitizer, indicating a decrease of Rrec. A large Rrec means a small 

charge recombination rate, and vice versa. The radius of the semicircle observed in the 

middle frequency range lies in the order of N719/ TiO2 > GQDs/ TiO2, indicating the 

sequence of Rrec at the TiO2/dye/electrolyte interface (Sharma, et al., 2013). The 

increased value of Rrec for DSSCs implies the retardation of charge recombination 

between injected electron and I3
− ions in the electrolyte, with a consequent increase 

of Voc. This appears to be consistent with the larger Voc values sequence. The Rct of the 

DSSCs using N-719 and GQDs as photosensitizers is different, caused by the binding 

between the dye molecules and the TiO2 film.  
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Figure 4.33: Nyquist plots of EIS for DSSCs based on TiO2 nanoparticles using 
N-719 and GQDs as photosensitizer in dark conditions  

The IPCE curves in Figure 4.34 clearly shows that the active photon-to-current 

responses of TiO2 photo-anode immersed in N-719 are more red-shifted compared to the 

TiO2 photo-anode immersed in GQDs, which indicates that the spectral absorption range 

is effectively broadened. The IPCE value of TiO2 photo-anode immersed in N-719 

exceeds 28 %, while the quantum efficiency increased to 39 % for the DSSC device 

based on TiO2 nanoparticles using GQDs as a photosensitizer (Lai, et al., 2015).  
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Figure 4.34: IPCE Curves for DSSCs N-719 and GQDs using TiO2 nanoparticles 
as a photo-anode 

However, the energy level results show that TiO2 photo-anode immersed in GQD is 

closer to the TiO2 photo-anode immersed in N-719. The I-V test results show that the 

efficiency of TiO2 in GQD is lower than the N-719, which might be due to the high 

intensity of GQD in PL spectra showing rapid recombination alongside decreasing 

efficiency (Lim, et al., 2015).  

 Characterization of DSSCs based on 4-Layes ZnO photo-anode using 

GQDs as a photosensitizer and N-719 as a photosensitizer  

Figure 4.35 shows the vacuum energy level of ZnO nanoparticles, N-719, and GQDs. 

According to this Figure, the energy level of the ZnO conduction band is -4.05 eV, 

while the GQD represent -3.82 eV and N-719 is -3.01 eV.  
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Figure 4.35: Vacuum energy level of ZnO nanoparticles, N-719 and GQDs  

Figure 4.36 indicates the PL spectra of photo-anodes based on ZnO nanoparticles 

immersed in N-719 and GQDs as photosensitizers under 325 nm laser excitation. ZnO 

will absorb the incident photons with sufficient energy equal to or higher than the band-

gap energy, which will produce photoinduced charge carriers (Lim, et al., 2015b). 

Broad peaks with maximum emissions at around 563, 565, and 571 nm can be observed 

for ZnO coated on FTO glass, and ZnO photo-anodes immersed in N-719 and GQDs, 

respectively (Lim, et al., 2014; Lim, et al., 2015a).  
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Figure 4.36: PL spectra of photo-anodes based on ZnO nanoparticles immersed 
in N-719 and GQDs as photosensitizers 

Figure 4.37 shows the typical current-voltage (I-V) curves for the two devices based 

on ZnO nanoparticles using N-719 as a photosensitizer and GQDs as a photosensitizer 

were measured under AM 1.5 G illuminations (data summarized in Table 4.13). DSSCs 

fabricated using N-719 gave VOC (0.661 V) and ISC (2.657 mA), reports an overall PCE 

of 1.13%. DSSCs fabricated using GQDs reported a VOC (0.640V) and ISC (3.169mA), 

achieving an overall PCE of 1.26%. The best photovoltaic characteristics were obtained 

for device that using GQDs as a photosensitizer compared with using N-719 as a 

photosensitizer.  

Table 4.14: Photovoltaic Characteristics of  DCCSs devices based on ZnO 
nanoparticles using N-719 and GQDs as photosensitizer 

Photozensitizers ISC (mA) VOC (V) FF PCE (%) 

N-719 2.657 0.661 0.645 1.13 

GQDs 3.169 0.64 0.623 1.26 
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Figure 4.37: Current-voltage (I-V) curves of DSSCs devices based on ZnO 
nanoparticles using N-719 and GQDs as photosensitizer 

The EIS for DSSCs based on ZnO nanoparticles using N-719 and GQDs as 

photosensitizers measured in dark conditions were recorded in a frequency range 

between 0.01 Hz and 100 kHz and shown in Figure 4.38.  

In dark condition, the three semicircles located in high, middle, and low frequency 

regions (left to right) of Nyquist plots are attributed to the redox reaction at the Pt 

counter electrode and the electron transfer at the ZnO/dye/electrolyte interface and 

charge transfer in the electrolyte (Wei, et al., 2015).  They are, respectively, assigned to 

the electrochemical reaction at the Pt counter electrode (Rct1) and chemical capacitance 

(CPE1), the charge transfer at the ZnO/dye/electrolyte (Rct2) and chemical capacitance 

(CPE2) and the charge diffusion process of I−/I3
− ions (Zw). Compared with the ZnO 

immersed in N-719, ZnO photoanode immersed in GQDs shows significant reduction 

on Rct2 which means that using GQDs as a photosensitizer makes the electron transfer 

easier at the ZnO/dye/electrolyte (Tan, et al., 2014). 
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Figure 4.38: Nyquist plots of EIS for DSSCs based on ZnO nanoparticles using 
N-719 and GQDs as photosensitizer in dark condition 

The IPCE plots in Figure 4.39 clearly shows that the active photon-to-current 

responses of ZnO photo-anode immersed in GQDs are more red-shifted compared to the 

ZnO photo-anode immersed in N-719, which indicates that the spectral absorption range 

is effectively broadened. However, the IPCE value of ZnO photo-anode immersed in 

GQDs exceeds 52 %, while the quantum efficiency is reduced to 11 % for the DSSC 

device based on ZnO nanoparticles using N-719 as a photosensitizer (Lai, et al., 2015).  
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Figure 4.39: IPCE Curves for DSSCs using N-719 and GQDs a photosensitizers 
and ZnO nanoparticles as a photo-anode 

Meanwhile, the I-V test shows that the efficiency of ZnO photo-anode immersed in 

GQDs is higher than the efficiency of ZnO photo-anode immersed in N-719, due to the 

conduction band of GQDs being closer to the conduction band of ZnO compared to N-

719. The IPCE results confirm all these findings.  

 Characterization of dye-sensitized solar cells based on GQDs as a 

photosensitizer using 4-Layers TiO2 and ZnO photo-anodes 

Figure 4.40 shows the vacuum energy level of TiO2 nanoparticles, ZnO 

nanoparticles, and GQDs. According to this Figure, the energy level of the ZnO 

conduction band is -4.05 eV, and -4.62 eV for TiO2, while the GQD is -3.82 eV.  Univ
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Figure 4.40: Vacuum energy level of GQDs, TiO2 and ZnO nanoparticles 

Figure 4.41 shows the PL spectra of photo-anodes based on TiO2 and ZnO 

nanoparticles immersed in GQDs as a photosensitizer under 325nm laser excitation. A 

lower PL intensity indicates lower charge recombination. Broad peaks with a maximum 

emission at around 556 and 571nm can be observed for TiO2 and ZnO photo-anodes 

immersed in GQDs, respectively. The ZnO photo-anode immersed in GQDs showed a 

high PL intensity at around 556 nm due to the high photoinduced charge carrier 

recombination, whereas the PL intensity was minimized when TiO2 photo-anode was 

immersed in GQDs (Lim, et al., 2014; Lim, et al., 2015a).  
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Figure 4.41: PL spectra of photo-anodes based on TiO2 and ZnO nanoparticles 
immersed in GQDs as a photosensitizer 

Figure 4.42 presents the typical current-voltage (I-V) curves for the two devices 

based on GQDs as photosensitizers using TiO2 and ZnO nanoparticles as 

photoelectrodes were measured under AM 1.5 G illumination (data summarized in 

Table 4.15). DSSCs fabricated using TiO2 reported a VOC (0.738 V) and ISC (6.618 mA), 

achieving an overall PCE of 2.76 %. The DSSCs fabricated using ZnO gave VOC (0.623 

V) and ISC (3.169 mA), achieving an overall PCE of 1.26 %. The best photovoltaic 

characteristics using GQDs, as a photosensitizer, were obtained for device that using 

TiO2 as photoelectrodes as opposed to ZnO.  

Table 4.15: Photovoltaic Characteristics of  DSSCs devices based on GQDs as a 
photosensitizer using TiO2 and ZnO as photo-anodes 

Photo-anodes ISC (mA) VOC (V) FF PCE (%) 

TiO2 6.618 0.738 0.566 2.76 

ZnO 3.169 0.64 0.623 1.26 
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Figure 4.42: Current-voltage (I-V) curves of DSSCs devices based on GQDs as a 
photosensitizer using TiO2 and ZnO as photo-anodes 

The EIS DSSCs based on GQDs as photosensitizers using TiO2 and ZnO 

nanoparticles as photoelectrodes measured in dark condition were recorded in a 

frequency range between 0.01 Hz and 100 kHz and are shown in Figure 4.43.  

Compared with the ZnO immersed in GQDs, TiO2 photoanode immersed in GQDs 

shows significant reduction on Rct2 which means that the device using TiO2 as a 

photoanode and GQDs as a photosensitizer makes the electron transfer easier at the 

photoanode/photosensitizer/electrolyte (Tsai and Lu, 2011). 
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Figure 4.43: Nyquist plots of EIS for DSSCs based on GQDs as a photosensitizer 
using TiO2 and ZnO as photo-anodes in dark condition 

The IPCE plots in Figure 4.44 demonstrate that the active photon-to-current 

responses of TiO2 photo-anode immersed in GQDs are more red-shifted compared to 

the ZnO photo-anode immersed in GQDs, indicating that the spectral absorption range 

is effectively broadened. The IPCE value of ZnO photo-anode exceeds 51 %, while the 

quantum efficiency is reduced to 39 % for the DSSC device based on TiO2 

nanoparticles using GQDs as a photosensitizer (Lai, et al., 2015).  Univ
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Figure 4.44: IPCE Curves for DSSCs based on TiO2 and ZnO as photo-anodes 
and GQDs as photosensitizer 

The I-V test results indicate that the efficiency of TiO2 photo-anode immersed in 

GQD is higher than the efficiency of ZnO photo-anode immersed in GQD. This might 

be due to the high intensity of GQD in PL spectra, which shows the rapid recombination 

and decrease of efficiency (Yu, et al., 2011).  
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CHAPTER 5: CONCLUSION 

 CONCLUSION 

In this study, the performance of low cost DSSCs with improved PCE based on TiO2 

and ZnO nanoparticles as photo-anodes and GQDs as a photosensitizer were 

investigated experimentally. For this purpose, a series of experiments were performed 

and the results were recorded. As described in the previous chapters, different DSSC 

devices were fabricated based on different photo-anodes and different photosensitizers. 

The effect of different immersion times on the performance of DSSCs was 

investigated by immersing TiO2 and ZnO photo-anodes in different photosensitizer for 

different times. For both photosensitizers, the I-V tests and IPCE results confirm when 

the immersion time is 21 hours the efficiency was increased due to more photosensitizer 

molecules can be adsorbed when immersion time is increased, which also increase the 

light harvesting efficiency. 

To investigate the effect of the thickness of TiO2 and ZnO photo-anodes in DSSCs, 

multiple layers of TiO2 and ZnO nanoparticles were coated onto the FTO glasses for the 

preparation of photo-anodes and then immersed in N-719 and GQDs as 

photosensitizers. With an increasing thickness, there was more photosensitizer 

molecules present in the semiconductor layer for absorbing sunlight, which result in the 

generation of current. However, increasing thickness requires a longer path for the 

photo generated electrons to reach the working electrode, which increases the rate of 

electron recombination. Therefore, the current started decreasing post-optimal 

thickness. For both photosensitizers, the I-V tests and IPCE results confirm that photo-

anodes with 40 μm thicknesses show the highest efficiency. 

To compare the efficiency of DSSCs using GQDs as a photosensitizer with DSSCs 

using N-719 as photosensitizer, TiO2 and ZnO photo-anodes with 40 μm thicknesses 
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were immersed in both photosensitizers for 21 hours. The I-V test results show that the 

efficiency of TiO2 photo-anodes immersed in GQDs are lower than the N-719, which 

might be due to the high intensity of GQDs in PL spectra showing rapid recombination 

alongside decreasing efficiency. Meanwhile, from I-V test results, the efficiency of ZnO 

photo-anode immersed in GQDs is higher than the efficiency of ZnO photo-anode 

immersed in N-719, due to the conduction band of GQDs being closer to the conduction 

band of ZnO compared to N-719. Although, the efficiency of ZnO photo-anode 

immersing in GQD is higher than ZnO photo-anode immersing in N-719, but the TiO2 

photo-anode immersing in GQD efficiency (2.76 %) is more than two times higher than 

the ZnO (1.26 %) photo-anode immersing in GQDs. 

 Recommendations for future work 

Though this study has provided good efficiencies of DSSCs using GQDs as 

photosensitizer, there is still a need for further study on these achievements. As it has 

been reported in the literature, the higher efficiency of DSSC employing N-719 is 11 %, 

while the one fabricated in this research is 2.76 %. This difference might be due to the 

method which has been used to fabricate the DSSC. As a result, future work can focus 

on the fabrication method such as sputtering, spin-coating and etcetera, which might 

increase the efficiency of DSSC utilizing GQD in its photo-anode. 

Due to uniqe properties of GQDs which has been mentioned earlier, green quantum dots 

can be used as a green photosensitizer. In addition quantum dots (QDs) are superior 

to organic photosensitizers in terms of photostability and water dispersability. 

All these benefits of green quantum dots, put in the center of attention for future 

studies both in the case of green photosensitizer and also water treatment. 
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