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A MALWARE RISK ANALYSIS AND DETECTION SYSTEM FOR MOBILE 

DEVICES USING PERMISSION-BASED FEATURES 

ABSTRACT 

In recent years, the amount of malware targeting Android users has increased 

dramatically. Among many mobile operating systems, the Android operating system is 

most targeted by malware. In order to detect malware which causes immense chaos and 

problems to mobile device users, the Android mobile applications need to be analysed. 

Two types of malware analysis are available namely, static analysis and dynamic analysis. 

Static analysis examines the whole code of the applications thoroughly while dynamic 

analysis identifies malware applications by monitoring their behaviors. Although both 

types of analysis have been performed with some level of success, additional processes 

are needed to improve the malware detection system. This is because current technologies 

indicate that malware attackers find novel ways of avoiding detection while causing harm. 

This thesis aims to propose an efficient malware detection system which uses the machine 

learning approach and the risk analysis approach to analyse Android applications. This 

study focusses in particular on permission features which are able to disclose the sensitive 

information noted on Android mobile devices. This study uses data samples accessed 

from Drebin by collecting 5,560 applications from 179 different malware families.  It also 

uses data samples accessed from Androzoo by collecting 5,000 benign applications. This 

study also proposes a novel quantitative security method for evaluating the risk analysis 

of malicious and benign applications based on Android permissions. The risk analysis 

helps users to understand the risk level of the applications. It also improves user attention 

by giving responses to the users regarding permissions that contain high-risk levels. More 

specifically, this study performs four experiments through to validate the proposed system 

for use. In particular, this study introduces the EZADroid for evaluating and zoning the 

Android applications which apply the Analytic Hierarchy Process (AHP) as a decision 
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factor to calculate the risk values and to assess the prediction performance through True 

Positive Rate (TPR), False Positive Rate (FPR), accuracy, f-measure and precision. 

Finally, a website was established to validate the prediction performance with machine 

learning approach that measures its efficiency and effectiveness. The outstanding results 

imply that this study has proven that the permission features are capable of classify 

malware applications.  

Keywords: Machine learning, risk analysis, Android, static analysis, features selection 

 

Univ
ers

ity
 of

 M
ala

ya



v 

ANALISIS RISIKO DAN SISTEM PENGESANAN PERISIAN PEROSAK 

UNTUK PERANTI MUDAH ALIH MENGGUNAKAN CIRI KEBENARAN 

ABSTRAK 

Dalam tahun-tahun kebelakangan ini, jumlah perisian perosak yang menyasarkan 

pengguna Android telah meningkat secara dramatik. Di antara perisian mudah alih, sistem 

perisian Android paling disasarkan oleh perisian perosak. Perisian perosak ini 

menyebabkan masalah kepada pengguna peranti mudah alih, aplikasi mudah alih Android 

perlu dianalisis. Terdapat, dua jenis analisis iaitu analisis statik dan analisis dinamik. 

Analisis statik mengkaji keseluruhan kod aplikasi secara menyeluruh sementara analisis 

dinamik mengenal pasti aplikasi malware dengan memantau tingkah laku mereka. 

Walaupun kedua-dua jenis analisis telah dilakukan dengan beberapa tahap kejayaan, 

proses tambahan diperlukan untuk memperbaiki sistem pengesanan perisian perosak. Ini 

kerana teknologi semasa menunjukkan bahawa penyerang perisian perosak mencari cara 

baru untuk mengelakkan pengesanan dan menyebabkan bahaya. Tujuan tesis ini adalah 

untuk mencadangkan sistem pengesanan perisian perosak yang berkesan yang 

menggunakan pendekatan pembelajaran mesin dan pendekatan analisis risiko untuk 

menganalisis aplikasi Android. Kajian ini memberi tumpuan khususnya pada ciri-ciri 

kebenaran yang dapat mendedahkan maklumat sensitif yang dicatatkan pada peranti 

mudah alih Android. Kajian ini menggunakan sampel data yang diakses dari Drebin 

dengan mengumpulkan 5,560 perisian terdiri daripada 179 keluarga. Ia juga 

menggunakan sampel data yang diakses dari Androzoo dengan mengumpulkan 5,000 

perisian baik. Kajian ini juga mencadangkan kaedah keselamatan kuantitatif novel untuk 

menilai analisis risiko perisian perosak dan baik berdasarkan kebenaran Android. Analisis 

risiko membantu pengguna memahami tahap risiko perisian. Ia juga meningkatkan 

perhatian pengguna dengan memberi maklum balas kepada pengguna mengenai 

kebenaran yang mengandungi tahap risiko tinggi. Lebih khusus lagi, kajian ini 
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menjalankan empat eksperimen melalui fasa dan langkah untuk mengesahkan sistem 

yang dicadangkan. Khususnya, kajian ini memperkenalkan EZADroid untuk menilai dan 

mengelaskan aplikasi Android yang menggunakan Proses Hierarki Analitik (AHP) 

sebagai faktor keputusan untuk mengira nilai risiko dan menilai prestasi ramalan melalui 

Kadar Positif Benar (TPR), Kadar Positif Palsu (FPR), f-ukur dan ketepatan. Akhirnya, 

sebuah laman web ditubuhkan untuk mengesahkan prestasi ramalan dengan pendekatan 

pembelajaran mesin yang mengukur kecekapan dan keberkesanannya. Hasil 

menunjukkan bahawa kajian ini telah membuktikan bahawa ciri kebenaran mampu 

meramal perisian perosak yang tidak diketahui termasuk analisis risiko pada perisian 

Android. 

Kata kunci: Pembelajaran mesin, analisis risiko, Android, analisis statik, pemilihan ciri-

ciri  

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



vii 

ACKNOWLEDGEMENTS 

First of all, I am thankful to the Almighty Allah for bestowing me with the strength 

and perseverance to carry on with my PhD journey even though at times I felt weary. I 

am very blessed to have endured it all and still be able to come out of it successfully by 

completing this study.   

I am deeply indebted to my supervisors, Prof. Madya Dr. Rosli Bin Salleh and Prof. 

Madya Dr. Nor Badrul Anuar Bin Jumaat’ for their invaluable guidance, supervision and 

encouragement throughout this study and this journey of endurance. Their continuous 

guidance and support has assisted me in conducting a valuable piece of study that is 

reported in this thesis. They had also provided me with the opportunity to broaden my 

professional experience and to prepare me for future challenges. Their countless efforts 

have further encouraged me to work hard so as to achieve the milestones in a defined time 

limit. 

I would like to express my sincerest gratitude and appreciation to my family for their 

endless love and support during this doctoral stud pursuit especially my parents (Ab 

Razak Bin Taib, Wan Azizah Wan Abdul Rahman). Without their moral support, this 

thesis would not have been completed on time. No words can express my feelings and 

my gratitude towards my parents and siblings for all the sacrifices made. I dedicate the 

highest achievement of my student life to them.  

I would also like to express my deep appreciation to my dearest lab friends who had 

been providing me with so much support and encouragement throughout this study and 

academic pursuit. I wish them all the best in their future undertakings. 

Finally, I would like to thank the Faculty of Computer Science and Information 

Technology for its help in enabling me to deal with all sorts of matters during my studies. 

  

  

Univ
ers

ity
 of

 M
ala

ya



viii 

TABLE OF CONTENTS 

Abstract ............................................................................................................................ iii 

Abstrak .............................................................................................................................. v 

Acknowledgements ......................................................................................................... vii 

Table of Contents ........................................................................................................... viii 

List of Figures ................................................................................................................ xiii 

List of Tables.................................................................................................................. xvi 

List of Symbols and Abbreviations ................................................................................ xix 

List of Appendices .......................................................................................................... xx 

CHAPTER 1: INTRODUCTION .................................................................................. 1 

1.1 Background of the study .......................................................................................... 1 

1.2 Motivation................................................................................................................ 2 

1.3 Statement of problems ............................................................................................. 4 

1.4 Aim and objective .................................................................................................... 5 

1.5 Research methodology............................................................................................. 6 

1.6 Summary .................................................................................................................. 8 

CHAPTER 2: MOBILE DEVICE EVOLUTION, MALWARE 

CHARACTERISTICS AND DETECTION SYSTEMS ........................................... 11 

2.1 Mobile device evolution ........................................................................................ 11 

2.2 Mobile operating systems ...................................................................................... 16 

2.2.1 iOS operating system ................................................................................ 16 

2.2.2 Windows ................................................................................................... 17 

2.2.3 Android ..................................................................................................... 17 

2.3 Android operating system ...................................................................................... 19 

Univ
ers

ity
 of

 M
ala

ya



ix 

2.3.1 Android architecture ................................................................................. 21 

2.3.2 Security model in Android devices .......................................................... 23 

2.3.3 Threats on mobile devices ........................................................................ 26 

2.4 Mobile malware characteristics ............................................................................. 27 

2.4.1 Research on mobile malware.................................................................... 29 

2.4.2 Infected vectors ........................................................................................ 30 

2.5 Malware detection system ..................................................................................... 33 

2.5.1 Analysis technique ................................................................................... 34 

2.5.2 Detection approach ................................................................................... 35 

2.5.3 Deployment approach ............................................................................... 38 

2.6 Risk assessment ..................................................................................................... 40 

2.6.1 Threats ...................................................................................................... 40 

2.7 Risk assessment phase ........................................................................................... 41 

2.8 Judgement matrix................................................................................................... 43 

2.9 Summary ................................................................................................................ 44 

CHAPTER 3: MOBILE MALWARE ANALYSIS TOOLS ..................................... 45 

3.1 Static analysis tools................................................................................................ 45 

3.1.1 Androguard ............................................................................................... 45 

3.1.2 ApkTool .................................................................................................... 46 

3.1.3 Statistical analysis software tools ............................................................. 46 

3.1.4 R language ................................................................................................ 46 

3.1.5 IBM SPSS statistics .................................................................................. 47 

3.2 Machine learning classifiers .................................................................................. 47 

3.3 Machine learning tools .......................................................................................... 50 

3.3.1 WEKA ...................................................................................................... 51 

3.4 Online analysis tools .............................................................................................. 53 

Univ
ers

ity
 of

 M
ala

ya



x 

3.5 Feature selection and optimisation method ........................................................... 55 

3.5.1 Information gain ....................................................................................... 58 

3.5.2 Evolutionary algorithm ............................................................................. 58 

3.5.3 Bio-inspired Particle Swarm Optimisation (PSO) .................................... 59 

3.5.4 Distinctive features between application .................................................. 60 

3.6 Summary ................................................................................................................ 61 

CHAPTER 4: RISK ANALYSIS AND MALWARE DETECTION: THE 

FRAMEWORK… ......................................................................................................... 62 

4.1 EZADroid framework ............................................................................................ 62 

4.2 Machine learning classifiers .................................................................................. 67 

4.3 Evaluation measure ................................................................................................ 68 

4.4 Area under curve (AUC) performance .................................................................. 69 

4.5 Summary ................................................................................................................ 70 

CHAPTER 5: EVALUATION OF RISK ANALYSIS AND MALWARE 

DETECTION FRAMEWORK .................................................................................... 71 

5.1 Dataset descriptions ............................................................................................... 71 

5.1.1 Malware Genome Project ......................................................................... 72 

5.1.2 Drebin ....................................................................................................... 72 

5.1.3 AndroZoo ................................................................................................. 73 

5.1.4 Google Play store ..................................................................................... 73 

5.1.5 Benign dataset .......................................................................................... 74 

5.2 Experiment I: Evaluation of bio-inspired .............................................................. 74 

5.2.1 Experiment setup and procedure description ........................................... 75 

5.2.2 Data collection phase ................................................................................ 76 

5.2.3 Evaluation and results .............................................................................. 83 

Univ
ers

ity
 of

 M
ala

ya



xi 

5.2.4 Discussion ................................................................................................ 89 

5.2.5 Conclusion ................................................................................................ 90 

5.3 Experiment II: Evaluation of machine learning classifiers .................................... 91 

5.3.1 Experiment setup and procedure description ........................................... 92 

5.3.2 Data collection phase ................................................................................ 93 

5.3.3 Evaluation and results .............................................................................. 95 

5.3.4 Discussion .............................................................................................. 103 

5.3.5 Conclusion .............................................................................................. 104 

5.4 Experiment III: Evaluation of time series detection ............................................ 106 

5.4.1 Experiment setup and procedure description ......................................... 106 

5.4.2 Data collection phase .............................................................................. 107 

5.4.3 Evaluation and results ............................................................................ 108 

5.4.4 Discussion .............................................................................................. 110 

5.4.5 Conclusion .............................................................................................. 110 

5.5 Experiment IV: Evaluation of application risk .................................................... 110 

5.5.1 Experiment setup and procedure description ......................................... 113 

5.5.2 Data collection phase .............................................................................. 120 

5.5.3 Evaluation and results ............................................................................ 120 

5.5.4 Discussion .............................................................................................. 131 

5.5.5 Conclusion .............................................................................................. 133 

5.5.6 Summary ................................................................................................ 135 

CHAPTER 6: PROTOTYPE IMPLEMENTATION OF RISK ANALYSIS AND 

MALWARE DETECTION SYSTEMS .................................................................... 136 

6.1 Implementation of EZADroid system ................................................................. 136 

6.1.1 Use case diagram .................................................................................... 137 

6.1.2 State diagram .......................................................................................... 138 

Univ
ers

ity
 of

 M
ala

ya



xii 

6.2 Demonstrating the risk analysis and malware detection system ......................... 141 

6.3 Risk analysis and malware detection system ....................................................... 142 

6.4 Summary .............................................................................................................. 147 

CHAPTER 7: CONCLUSION ................................................................................... 148 

7.1 Research objectives ............................................................................................. 149 

7.2 Achievement of the study .................................................................................... 151 

7.3 Limitation of the study......................................................................................... 153 

7.4 Summary- suggestion for future works ............................................................... 154 

References ..................................................................................................................... 156 

List of Publications and Papers Presented .................................................................... 172 

APPENDIX A: List of publications .............................................................................. 173 

APPENDIX B: List of malware family and risk value ................................................. 180 

APPENDIX C: Parameter of algorithms....................................................................... 184 

Univ
ers

ity
 of

 M
ala

ya



xiii 

LIST OF FIGURES 

Figure 1.1: Distribution of mobile malware in 2017......................................................... 4 

Figure 1.2: Proposed research methodology ..................................................................... 7 

Figure 1.3: Thesis layout ................................................................................................... 8 

Figure 2.1: Mobile operating system trend ..................................................................... 13 

Figure 2.2: Percentages of market share in mobile operating systems in 2017 .............. 13 

Figure 2.3: Percentage of usage in mobile operating systems ........................................ 14 

Figure 2.4: Percentages of worldwide mobile device sales by operating systems in 2016
 ......................................................................................................................................... 15 

Figure 2.5: Android system architecture ......................................................................... 21 

Figure 2.6: Percentages of information collected from mobile devices .......................... 27 

Figure 2.7: Publication trends ......................................................................................... 29 

Figure 2.8: Classification of malware detection system ................................................. 33 

Figure 3.1: WEKA GUI .................................................................................................. 51 

Figure 3.2: Features selection ......................................................................................... 52 

Figure 3.3: Examples of classifiers ................................................................................. 53 

Figure 3.4: GUI of VirusTotal ........................................................................................ 54 

Figure 3.5: Examples of analysis results ......................................................................... 54 

Figure 3.6: Details of scanned applications .................................................................... 55 

Figure 4.1: EZADroid Framework .................................................................................. 64 

Figure 4.2: Layer Framework of the EZADroid System ................................................ 66 

Figure 4.3: Layer Interactions ......................................................................................... 67 

Figure 5.1: Website of AndroZoo ................................................................................... 73 

Figure 5.2:  Malware detection architecture ................................................................... 76 

Figure 5.3: Data collection phase .................................................................................... 77 

Univ
ers

ity
 of

 M
ala

ya



xiv 

Figure 5.4: Total number of applications requesting permissions .................................. 79 

Figure 5.5: Machine learning phase ................................................................................ 80 

Figure 5.6: Comparison of feature optimisation approach based on number of features 81 

Figure 5.7: Performance of ROC curve .......................................................................... 85 

Figure 5.8: Precision ....................................................................................................... 87 

Figure 5.9: Recall ............................................................................................................ 88 

Figure 5.10: F-measure ................................................................................................... 88 

Figure 5.11: Methodology ............................................................................................... 92 

Figure 5.12: ROC curve .................................................................................................. 99 

Figure 5.13: Classification threshold ............................................................................ 101 

Figure 5.14: EZADroid framework............................................................................... 112 

Figure 5.15: Percentage of the top 10 requested permission by malware applications 114 

Figure 5.16: Risk zone threshold .................................................................................. 119 

Figure 5.17: The boxplot of 10 permission ................................................................... 124 

Figure 5.18: The boxplot of 20 permission ................................................................... 125 

Figure 5.19: The boxplot of 30 permission ................................................................... 125 

Figure 5.20: Risk zone evaluation in 10, 20 and 30 criteria ......................................... 127 

Figure 5.21: Risk zone analysis .................................................................................... 131 

Figure 6.1: Web development framework .................................................................... 137 

Figure 6.2: Use Case Diagram ...................................................................................... 138 

Figure 6.3: Prime-state Diagram ................................................................................... 139 

Figure 6.4: Storing of  .apk file state ............................................................................. 140 

Figure 6.5: Assign value state ....................................................................................... 140 

Figure 6.6: Model of analyser state ............................................................................... 141 

Univ
ers

ity
 of

 M
ala

ya



xv 

Figure 6.7: Login page .................................................................................................. 142 

Figure 6.8: Upload page for Android applications........................................................ 143 

Figure 6.9: Result page ................................................................................................. 143 

Figure 6.10: List of application page ............................................................................ 144 

Figure 6.11: Summary of analysis ................................................................................ 145 

  

Univ
ers

ity
 of

 M
ala

ya



xvi 

LIST OF TABLES 

Table 2.1: Worldwide device shipments in 2016-2018 (Millions of Units) ................... 12 

Table 2.2: Comparison of mobile operating system ....................................................... 17 

Table 2.3: Pros and cons of the mobile operating systems ............................................. 18 

Table 2.4: Android version ............................................................................................. 20 

Table 2.5: Description of the Android system’s  Architecture ....................................... 22 

Table 2.6: Level of Android level protection .................................................................. 25 

Table 2.7: Common malware types ................................................................................ 28 

Table 2.8: Types of malware analysis ............................................................................. 35 

Table 2.9: Anomaly approach ......................................................................................... 36 

Table 2.10: Signature approach....................................................................................... 37 

Table 2.11: Advantage and disadvantage of the detection approach .............................. 38 

Table 2.12: Deployment approach .................................................................................. 39 

Table 2.13: Description of risk assessment ..................................................................... 41 

Table 2.14: Fundamental scale of the absolute numbers ................................................ 43 

Table 3.1: Description of classifiers................................................................................ 50 

Table 3.2: Number of features used by previous works.................................................. 57 

Table 4.1: IDS confusion matrix ..................................................................................... 68 

Table 4.2: Evaluation measures ...................................................................................... 69 

Table 4.3: AUC performance threshold .......................................................................... 70 

Table 5.1: Dataset summary ............................................................................................ 77 

Table 5.2: Top 10 permission in benign and malware applications ................................ 78 

Table 5.3: List of permission features ............................................................................. 82 

Table 5.4: Detection performance results ....................................................................... 84 

Univ
ers

ity
 of

 M
ala

ya



xvii 

Table 5.5: Results of AUC .............................................................................................. 86 

Table 5.6: Dataset summary ............................................................................................ 93 

Table 5.7: Lists of permission ......................................................................................... 94 

Table 5.8: Comparison with and without features selection approach ........................... 95 

Table 5.9: Time taken to produce results (second) ......................................................... 97 

Table 5.10: Confusion matrix of classifiers .................................................................... 98 

Table 5.11: AUC results ................................................................................................ 100 

Table 5.12: Optimal threshold ...................................................................................... 101 

Table 5.13: Performance result ..................................................................................... 102 

Table 5.14: Time taken to produce model (seconds) .................................................... 102 

Table 5.15: Categories of application ........................................................................... 107 

Table 5.16: Dataset summary ........................................................................................ 108 

Table 5.17: Time series detection ................................................................................. 109 

Table 5.18: List of criteria ............................................................................................. 117 

Table 5.19: Judgment matrix criteria ............................................................................ 118 

Table 5.20: Description of risk zone ............................................................................. 119 

Table 5.21: Data analysis for 10 permission ................................................................. 120 

Table 5.22: Samples evaluation and risk zone on applications ..................................... 121 

Table 5.23: List of malware family and risk value ....................................................... 123 

Table 5.24: Risk evaluation........................................................................................... 126 

Table 5.25: Top free in Android applications ............................................................... 127 

Table 5.26: Description statistics .................................................................................. 128 

Table 5.27: Variables entered\Removed ....................................................................... 129 

Table 5.28: Model summary ......................................................................................... 129 

Univ
ers

ity
 of

 M
ala

ya



xviii 

Table 5.29: ANOVA ..................................................................................................... 130 

Table 5.30: Coefficients ................................................................................................ 130 

 

  

Univ
ers

ity
 of

 M
ala

ya



xix 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
 
ADB  : Android Debug Bridge 

AHP : Analytical Hierarchy Process 

AI : Artificial Intelligence 

APK : Android Package 

Arff : Attribute-Relation File Format 

CSV : Comma Separated Values 

DT : Decision Tree 

FP :  False Positive 

FPR : False Positive Rate 

GUI : Graphical User Interface 

IDS : Intrusion Detection System 

KNN : K-Nearest Neighbors 

ML : Machine Learning 

MLP : Multi-Layer Perceptron 

NB : Naïve Bayes 

PSO : Particle Swarm Optimization 

RF : Random Forest 

SVM  : Support Vector Machine 

TN : True Negative 

TPR : True Positive Rate 

XML : Extensible Markup Language 

 

  

Univ
ers

ity
 of

 M
ala

ya



xx 

LIST OF APPENDICES 

Appendix A: List of publications....……………………………………………... 173 

Appendix B: List of malware family and risk value…………………………….. 180 

Appendix C: Parameter of algorithms…………………………………………… 184 

  

  

  

  

  

  

  

Univ
ers

ity
 of

 M
ala

ya



1 

CHAPTER 1: INTRODUCTION 

This chapter introduces the theoretical framework by explaining the importance of the 

study. In order to give readers a glimpse into the study, this thesis is divided into six 

sections. Section 1.1 presents the background of the study. Section 1.2 explains the 

research motivation.  Section 1.3 describes the problem statements and highlights the 

issues regarding the application risk and malware detection. Section 1.4 presents the 

research objectives. Section 1.5 explains the research methodology and Section 1.6 

presents the thesis layout.   

1.1 Background of the study 

The explosive growth of Android mobile devices is most notable in the smartphone 

market. Android mobile devices are making smartphones more relevant than ever to 

people’s daily lives as compared to ten or twenty years ago. However, the growing 

adoption of the Android mobile device has also brought about many security concerns 

and threats such as malicious software also called malware. It is a programme that harms 

the mobile system by injecting viruses such as Trojan Horses, root exploit, botnet, and 

spyware into Android applications. This malware has the capability to steal user 

credentials, read contact numbers and cause resource abuse. In 2015, the McAfee Labs 

discovered more than two million new malware (McAfee, 2016). 

By September 2017, a total of 21.1 million Android mobile devices have been infected 

by malware (Dassanayake, 2017; Fox-Brewster, 2017) which sneaked its way into the 

Android mobile devices from Google Play Store (Fox-Brewster, 2017). According to the 

Trend Micro 2016 Security Predictions, China will be driving mobile malware growth to 

20 million and most of the malware will be attacks on mobile payment methods (Clay, 

2015). What the malware does is send fraudulent premium SMS messages and then 

charge the users for fake services. In the first half of 2017, about 235,000 Android 
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ransomware have been detected (Trend Micro, 2017). This number shows that the 

Android has become a high-risk mobile application  (Clay, 2015).  

Current but traditional approaches to detect malware include the anti-virus software 

product and Intrusion Detection System (IDS). However, unscrupulous authors apply 

sophisticated techniques such as a polymorphic and metamorphic techniques to prevent 

from anti-virus and the IDS. These sophisticated techniques are used to obfuscate and 

repackage the malicious codes so as to bypass the signature detection thereby defeating 

attempts to analyse their malicious intentions.  

Of late, researchers (Firdaus et al., 2017) are focusing on malware detection by 

incorporating machine learning approaches to protect users from these novel threats. The 

machine learning approach allows the computer to train the data input while trying to 

detect malware. It uses the data to analyse the malware patterns. Without being 

programmed, it is also able to perform some specific tasks which produce reliable results.  

There are two types of analyses which used on malware analysis namely, static 

analysis and dynamic analysis. Static analysis detects malware by extracting the code 

from the applications. It uses reverse engineering techniques (Razak et al., 2016). 

Dynamic analysis detects malware by running the applications and monitoring their 

behaviours. Its disadvantage is that it consumes high resources such as the central 

processing unit (CPU) processing time (Feizollah et al., 2015).  

1.2 Motivation 

This research was motivated by a number of reasons which are classified as follows: 

a) Trends on mobile devices: The Android mobile device continues to lead in the 

mobile device market (Egham, 2017). To date, a total of 94 percent of mobile devices 

have been installed with the Android operating system (O’Shea, 2017). According to 

the IDC, the year 2020 will be seeing 1.5 billion Android mobile devices being 

shipped (International Data Corporation (IDC), 2016). In addition to this, 3.8 billions 
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of people are expected to be using the Android mobile device in 2022 (O’Shea, 

2017). These statistics make the Android mobile device the most prominent and also 

a primary target of malware threats (Nokia, 2017). 

b) The increase of Android-based malware threat: In the year 2017, the total number 

of malware threats recorded was 3.5 million with around 8,400 new malware being 

recorded. This trend is expected to continue  every day the year until 2018 (Lueg, 

2017). Reports indicate that, 87 percent of the Android mobile devices are exposed 

to malware threats and have become infected with a simple text message (Lab, 2017). 

This occurrence has caused a loss of MYR100,077,311.88 million to the mobile 

device especially in data breaches including operational losses and damages 

(Muncaster, 2017). 

c)  The risk to mobile user: Vulnerabilities and malware attacks in applications give 

attackers access to the mobile devices.  This problem appears to affect mobile devices 

making users vulnerable to security risks. Malware can access sensitive information 

without user knowledge. One example is the Skycure Mobile Threat Risk Score 

which recorded that 30.23 percent of medium risks will be affecting mobile users 

(Skycure Mobile Threat Defense, 2016). Therefore, it is important to understand the 

risks and the severities caused to mobile devices so that users can be protected.  

Despite the many research attempts to detect malware applications, there is still room 

for improvement in the malware detection system domain. The room for improvement 

can be attributed to current solutions which are still inadequate in providing users with 

protection from malware risks.  
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1.3 Statement of problems 

As more sensitive information are being stored and accessed by mobile device users, 

the threat to these users also increases making them easy prey for malware attacks. In 

fact, 21.1 million Android mobile devices have been affected by malware applications 

that had been downloaded from Google Play Store (Dassanayake, 2017). Figure 1.1 

presents the distribution of the types of mobile malware. 

 

Figure 1.1: Distribution of mobile malware in 2017 

The statistics indicate that Risk Tool (40.51%) was the most threatening (Unuchek et 

al., 2017) followed by Trojan-Ransom malware (15.09%). Clearly, most of the malware 

belong to the Trojan-Ransom type. This malware causes serious damages to mobile 

device  users by making them subscribe to some unwanted premium services (Unuchek 

et al., 2017). 

To analyse the risks and to detect malware applications, security analysts have 

implemented two type of analysis techniques, static and dynamic. However, these 

techniques were shown to be ineffective in analysing risks and for detecting malware 

applications when the attacker implements polymorphism into the application. Even 

though Google has introduced the Bouncer application (Oberheide et al., 2012) to detect 

malware applications, the threat cannot be alleviated as the threats seem widespread (Fox-

Brewster, 2017).  
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Malware applications are capable of stealing users’ account details, make them 

subscribe to premium messages via SMS and also compromise the hardware (Tam et al., 

2017). The main problem with malware is that it conducts all these activities without the 

mobile device users’ knowledge. Some benign applications in mobile devices may also 

carry a high-risk impact (Lookout, 2012; Song et al., 2016) thereby compounding the 

situation. 

Malware detection achieved by deploying an Intrusion Detection System (IDS) using 

the static analysis or dynamic analysis approach. Nevertheless, both approaches also 

come with challenges. This calls for an urgent need to develop new risk analysis and new 

malware detection approaches that identify the risk of applications (Skycure Mobile 

Threat Defense, 2016;  Saracino et al., 2016; Jackson, 2017). 

1.4 Aim and objective 

The aim of this study is to improve the current malware detection system for Android 

mobile devices and applications. The objectives of this study are thus:  

i. To review the security vulnerabilities, challenges of each Android mobile 

application and establish the research gap by analysing the state-of-the-art 

malware detection system by investigating the properties of the mobile 

applications which are most critical with respect to the creation and sustainability 

of malware attacks on mobile applications. 

ii. To propose a malware detection system that uses risk analysis to analyse the 

Android mobile applications, which is capable of analysing the structural 

properties of the Android mobile applications for detecting malware. 

iii. To propose a malware detection system that is based on the time series approach 

by observing the behavioral properties of the Android mobile applications through 

time for the purpose of predicting future mobile malware. 
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iv. To evaluate the proposed system in terms of detection accuracy by using real-

world Android malware and implement the prototype of the proposed system for 

a practical evaluation via a web-based assessment. 

1.5 Research methodology 

The entire study was carried out in four phases as shown in Figure 1.2. In the literature 

review phase, the security implications of the Android operating system was emphasised 

by focusing specifically on the state-of-the-art security solutions noted in Android risk 

analysis and malware detections. This study analyses the security vulnerabilities, risk 

analysis, and malware characteristics. It introduces the background of the malware 

analysis techniques and the detection methods in detecting malware including the IDS. A 

comprehensive taxonomy and the state-of-the-art IDS as well as a classification of mobile 

malware detections were then presented. This encompasses looking at the static and 

dynamic techniques, the signature approach, and the deployment approach. The chapter 

ends with the advantages and limitations of the study.  

In order to carry out this study, several tools were deployed for running the 

experiments in the mobile malware tools phase. For example, the Androguard, ApkTool, 

R languages, and the IBM SPSS Statistics were employed. This study also introduced the 

features selection algorithms which include information gain, evolutionary algorithms, 

and bio-inspired optimisation algorithms in the tools used.   
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Literature Review Mobile Malware Tools Design & Development Evaluation

 To review the domain of 
Android malware and risk 
analysis.

 To comprehensively 
analyze the current state-of-
the-art.

 Classifying the literature to 
devise taxonomies.

 Identifying research gap

 To discuss static analysis 
and machine learning tools.

 To provide statistical 
analysis tools for 
experiments.

 To proposes the features 
selection and optimization 
algorithms for experiments.

 To design and develop 
Android risk analysis and 
malware detection of 
proposed framework.

 Selection of the reliable 
algorithms and features for 
the proposed framework.

 To design the work-flow 
risk analysis and malware 
detection of the proposed 
framework.

 To evaluate the 
performance evaluation on 
proposed framework.

 Validate malware detection 
using K fold cross 
validation model technique 
with experiments (machine 
learning).

 Validate risk analysis using 
statistical analysis (box plot 
and linear regression).

Identify Research 
Gap

Establish 
Problem, Provide 

Tools & 
Algorithms

Develop & 
Implement Risk 
Assessment and 

Machine 
Learning 
Approach

Verify & 
Validate Solution

 

Figure 1.2: Proposed research design 

The design and development of this study consists of four phases: data collection, 

features selection and extraction, and risk assessment evaluation. The data collection 

phase explains how dataset comprising benign and malware samples were gathered for 

use in the experiments. The samples were extracted and then labelled as accordingly as 

“Malware” and “Benign”. The next phase selects static features (permission) while the 

final phase evaluates the risk analysis model.  

Samples were retrieved from 5,560 malware samples from Drebin (Arp et al., 2014) 

and 5000 benign samples from the Androzoo dataset (Allix et al., 2016) and then 

evaluated. This was meant to show that permission features can project the effectiveness 

of the malware detection system.  

The evaluation phase then evaluates the performance measure through seven 

benchmarks (i.e. accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall, 

precision, f-measure and Receiver Operating Characteristic (ROC). To show the 

significant performance and unbiasness of the proposed approach, this study employed a 
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ten-fold (i.e. k=10) cross-validation. A statistical analysis was then conducted to exhibit 

the performance of the proposed approach.  

1.6 Summary 

This chapter has provided the relevant information which encompass the background 

to the study, the motivation spurring this study, the research problem, the research 

methodology that this study incurs. The rest of this thesis is as laid out in Figure 1.3. This 

thesis is composed of seven chapters. Each chapter contains a part of the research work 

that was conducted to address the research problem and fulfill each objective of the study. 

Figure 1.3 illustrates.   

1. Introduction
Background, Motivation, Problem 

Statement, Research Objective

2. Literature Review
Mobile operating systems, Mobile 
Malware Characteristic, Malware 
Detection System, Risk Assessment

3. Mobile Malware Tools
Static Analysis Tools, Statistical 

Analysis Software, Machine 
Learning, Features Selection & 

Optimization 

4. Risk Analysis & Malware 
Detection: The Framework

Architecture, Methods, Evaluation 
Measure

5. Evaluation Risk Analysis & 
Malware Detection Framework

Experiment Set-ups, Evaluation 
Metrics, Evaluation Dataset, Results

6. Prototype Implementation of 
Risk Analysis & Detection 

System
Use Case Diagram, State Diagram, 

Demonstrating Prototype

7. Conclusion
Achievement of Study, Limitation, 

Challenges of Study

 

Figure 1.3: Thesis layout 

Chapter 1 presents a brief overview of the study. It includes the background study 

outlining the Intrusion Detection System (IDS); it also discusses some of the proposed 

solutions. This chapter also states the problem statements that were formulated based on 

the findings of previous research by considering some gaps in the issues. A brief outline 

of the research methodology is then presented to show the steps used in achieving the 

objectives of this study and how the experiments were conducted.   
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 Chapter 2 highlights the achievement of the first objective of this study. It introduces 

the various research undertaken in the field of Intrusion Detection System (IDS) 

discovery and the state-of-the-art mobile malware in Android mobile devices. This 

chapter expands on the horizon of malware detection by evaluating current literature that 

focusses on malware detection system. The classification of the malware detection system 

was devised by considering several aspects of the domain knowledge of the IDSs in 

Android mobile devices. This classification is necessary because it sheds light on how to 

discover malware and how to analyse malware threats that affect Android mobile devices. 

This chapter also identifies potential challenges that need important considerations in the 

future so as to develop a more effective malware detection system.  

Chapter 3 discusses the tools used to conduct the experiments. It explains current 

approaches of the static analysis, machine learning tools, and other statistical analysis 

software. It continues with the review of relevant machine learning classifiers. This 

chapter also discusses the installation of the WEKA machine learning tool for malware 

detection. Finally, it looks at the feature selection and optimisation approached that helps 

to produce an effective Android malware detection system.  

Chapter 4 presents the main contribution of this study which evolves around a novel 

framework that can be used as an Android malware detection system. The framework 

recommends using permission features with the machine learning and risk assessment 

approach. In presenting the framework, this chapter also introduces the characteristics 

and functionality of the framework as well as the rationale behind it. It also offers an 

insight into the evaluation measure, used method, and services offered by the framework. 

Chapter 5 highlights the achievement of the second and third objective of this study. 

It focusses on the evaluation measurement that was applied in the experiments; it also 

analyses the effectiveness of the proposed method. The results highlight the performance 
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analysis and the ROC curve graph. The results obtained from the experiments were 

derived from using the selected classifiers of the WEKA machine learning tool. This 

chapter also describes the risk analysis through the risk assessment approach.  

Chapter 6 highlights the achievement of the fourth objective of this study. The chapter 

presents the website development as a prototype which practically utilises the proposed 

features to detect the unknown malware. It provides an overview of the system 

development which consists of uploading and reversing the engineering applications. It 

also identifies and extracts the proposed features and the machine learning predictions. In 

addition, this chapter illustrates the use of different samples of malware extracted from a 

reliable source in testing the efficiency of the prediction.  

Chapter 7 presents the conclusion to the study. It considers the results obtained as the 

achievement of the research objectives and the contribution of this research. It highlights 

the significance of the proposed solution. It also states the limitation of the research work. 

Finally, it discusses directions for future research that relevant to this area of discipline.  
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CHAPTER 2: MOBILE DEVICE EVOLUTION, MALWARE 

CHARACTERISTICS AND DETECTION SYSTEMS 

This chapter covers the first objective of the thesis. It presents an overview of the 

security aspect of the Intrusion Detection System (IDS) as a leeway to discuss the 

vulnerabilities found in the Android mobile applications. The objective of this chapter is 

to highlight the significance of risk analysis and malicious detections on mobile devices 

which have been neglected thus far. The background of mobile malware is reviewed to 

gain insight into the problems faced by the Android mobile device. The classification of 

mobile detection systems such as analysis techniques, detection approaches, and various 

other deployments used is also included.  The threats faced by mobile device users are 

discussed before the chapter concludes with a short summary.   

2.1 Mobile device evolution 

 This section unveils the comprehensive information of the mobile operating systems, 

mobile devices, IDS and threats posed to mobile devices. It is important to describe the 

history and nature of a well-defined research problem with reference to the existing 

literature.   

Personal computers (PC) and mobile devices are ubiquitous in today’s landscape 

because of their highly personal and easy to use features followed by their portability and 

powerful attributes. Such devices are in high demand due to the advancement of 

technology. Between the two, mobile device shipments have surpasssed PCs (Egam et 

al., 2016,  Egham, 2015b). Gartner, Inc. estimates that the use of worldwide mobile 

devices will reach 1933 million units in 2018, an increase of  1.2 percent from 2017 (Egam 

et al., 2016) while PC shipments are expected to exhibit a three percent increase in 2018. 

The mobile device market is maturing, reaching a global saturation with phones that are 
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increasingly high tech and more capable than before. Table 2.1 shows the worldwide 

device shipments between 2016-2018 (Millions of Units). 

Table 2.1: Worldwide device shipments in 2016-2018 (Millions of Units) 

Device Type 2016 2017 2018 
Personal Computers (PC) Market 265 266 274 

Mobile Device 1887 1910 1933 
Total Device Market 2152 2176 2207 

 

It seems clear that mobile devices will lead, surpassing others by the millions. This 

occurrence is caused by the polarisation of mobile devices with prices ranging between 

the high end to the low end market prices. Of the operating systems running the mobile 

devices, it appears that the Android and the iOS are in high demands. Gartner Inc. expect 

the market for mobile devices to grow 3.5 per cent in 2017. Accompanying this growth 

with newer designs and newer features that attractive enough to convince more buyers to 

replace their PCs with mobile devices (Egam et al., 2016). Expectations also indicate that 

mobile devices continue to do well globally in the next few years especially in developed 

countries thereby causing bigger shipments and generating more profits.  

The world’s mobile device shipments have expanded but the (Egam et al., 2016) the 

IDCs are noticeably experiencing a slowdown. This is explained further. The Android 

mobile device operating system is currently dominating the world market with 86.8 

percent share in the third quartile of 2016 and Samsung tops them all (IDC, 2017). Figure 

2.1 illustrates the statistics showing the trends of the mobile operating system from March 

2016 to January 2017. Clearly, two (2) mobile device operating systems stood out 

showing the positive growth rate of the two rivals, the iOS and the Android operating 

systems. Between the two, Android has maintained a growth rate of more than 60 percent.   
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Figure 2.1: Mobile operating system trend 

Android’s exuberance sparked in May 2016. This is due to Google updating an 

Android version called Marshmallow (Kellex, 2016). This Marshmallow operating 

system had increased the popularity of the Android operating system because it offers 

many sophisticated functions. Other mobile operating systems such as Windows Phone, 

Java ME and Symbian, in comparison, showed a declining trend with below a 10 percent 

growth rate. Figure 2.2 presents the market share of the various mobile operating systems 

and the respective dominance owned by Android and iOS. 

 

Figure 2.2: Percentages of market share in mobile operating systems in 2017  
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The figure also shows the top five (5) market shares with Android dominating the peak. 

The IDC (2017) claims that the global smartphone market has grown 1.1 percent on a 

yearly basis and in the third quarter of  2016, there had been 363.2 million shipments  

throughout the world (IDC, 2017). With Samsung currently dominating the smartphone 

market and Samsung continuing to climb the chart in the future, the Android operating 

system seems born to lead. In contrast, the iOS market shares for the third quarter of 2016 

had grown by only 12.7 percent with 45.5 million shipments. This growth is attributed to 

Apple’s newest smartphone model, the iPhone 7.  Windows Phone, unfortunately, had 

experienced a decline of 35.2 percent with only 974.4 thousand units being shipped for 

the third quarter of 2016 while the Android market share had increased 7.1 percent across 

Europe in the first three months of 2016. Today, it holds 75.6 percent of the market shares 

compared to Apple's 18.9 per cent which had dropped from 20.2 per cent (Rhiannon 

Williams, 2016). In the operating system (OS) market, Android had surpassed a billion 

shipment of devices in 2014 continuing to grow at a double-digit pace in 2015 with a 26 

percent increase year after year (Egham, 2015a). This undoubtedly makes Android the 

most prominently used mobile device operating system, as illustrated in Figure 2.3.  

 

Figure 2.3: Percentage of usage in mobile operating systems 
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The Android operating system is an open source operating system. In 2014, a total of 

204.4 million units of mobile devices were installed with the Android system. In 

European countries (EU5) alone, like France, the United Kingdom (UK), Germany, Italy 

and Spain, the leading operating system is led by Android (74%) as opposed to iOS 

(14.4%). This statistic shows that most users in the EU5 prefer Android-based devices. 

The popularity of Android based devices can also be traced to the 1.5 million units of 

mobile devices being installed on a daily basis (Amadeo, 2016) as portrayed in Figure 

2.4.  

 

Figure 2.4: Percentages of worldwide mobile device sales by operating systems 
in 2016 
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sales of mobile devices which exceeded 349 million units (Egham, 2016). Since its 

introduction by Google in 2007, Android has become the leading operating system in the 

world as illustrated in Figure 2.4. Since its release, the Android has grown in strength 

with 78 percent mobile devices running on the Android operating system. This is equal 

to 220 million of Android mobile device sales in 2013 (Statista, 2017). By 2015, Android 

mobile devices had sold more than 1.16 billion units. In 2016, the Android mobile device 

had increase 85 percent of its sales worldwide. 

Besides the Android, the second most popular smartphone operating system based on 

sales is Apple’s iOS. This company has sold over 50 million units of mobile devices in 

the final quarter of 2013. For the whole of 2013, the Apple iPhones sold over 150 million 

sets worldwide. Nonetheless, Figure 2.4 indicates that Apple’s iOS system remains to be 

behind Android.  

2.2 Mobile operating systems 

This section presents the general overview of the several outstanding mobile operating 

systems. This section is important because it provides information showing the 

differences of the various mobile operating systems as well as their advantages and 

disadvantages as projected in Table 2.2 and Table 2.3 respectively.  

2.2.1 iOS operating system 

The iOS is a proprietary operating system which belongs to Apple; it is only installed 

in Apple’s devices. The strict requirement of Apple makes it challenging for developers 

to upload the iOS application into Apple Store. In addition, Apple’s fees for applications 

are much higher than Android or Windows. It is different from the Android operating 

system that is introduced by Google that comes with an open source environment which 

enables multiple vendors to have access to its system. The iOS is a proprietary operating 

system that is controlled solely by Apple for Apple’s own devices only.   
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2.2.2 Windows 

Windows mobile operating system is similar to the iOS in that it is individually 

reviewed by system who then give the approval for all applications to be submitted to the 

store thereby eliminating malicious applications from gaining access to Windows Store. 

Due to the review ability, Windows mobile operating system does not require a dedicated 

anti-malware and software anti-virus. 

2.2.3 Android 

Android mobile operating system is an open source system used on mobile devices 

such as smartphones and tablets. Opened to multiple vendors, the Android operating 

system is also the most used among all mobile devices. This, inevitably, has attracted 

many malware attackers who want to penetrate the system by taking advantage of the 

users. Unlike Apple and Windows, Android is the easier prey for attackers because it is 

much easier to submit and to get applications accepted into Google Play Store. The 

Google Play Store contains Google Bouncer which is a malware scanner. It was 

developed to protect users. It main function is to analyse and identify available 

applications in the Google Play Store. Table 2.2 lists the comparison of the various mobile 

operating systems. 

Table 2.2: Comparison of mobile operating system 

Type Android iOS Windows 
Proprietary Open source Close source Close Source 

Application store Google Application Store Apple Store Window Phone Store 
Device manufacture No Apple only No 

Operating system based Linux Darwin Window 
Access to external storage Yes No Yes 

 

The above information indicates that majority of the software used are closed source 

software. None of these mobile operating systems produces its own mobile device except 
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for Apple. Table 2.3 lists the advantages and disadvantages of the various mobile 

operating systems. Here, it appears that Android has lesser secure features comparatively.  

Table 2.3: Pros and cons of the mobile operating systems 

Operating 
Systems 

Pros Cons 

Android  Available on a large range of 
devices 
 Open source operating system 
 Anybody has capability to 
submit application to Google 
Play Store 

 

 Android holds the majority of 
smartphone users making them 
more susceptible to malicious 
attacks  
 Since Android is run on many 
different devices, not all of them 
support the newest OS. This is 
problematic due to security updates 
 Not as secure as iOS and 
windows OS 

Window  Provide support from Microsoft 
Services 
 It is more secure compared than 
Android and iOS because it has 
sandboxing, secure boot and data 
sync. 

 As more users adapt to this OS, 
there would likely be more 
vulnerabilities that are found. 
 Sharing function is less than 
Android and iOS 

iOS  Proprietary operating systems 
 Improving on secure app 
submission process, whereas 
required the applications are 
signed by certificates that are 
checked using Apple’s servers. 

 Difficult to integrate and sharing 
file with different manufactures 
 Like Android, a large number of 
mobile users also own Apple 
devices. This alone poses a risk as 
it is more susceptible to being a 
target for attackers. 

 

From the table above, it derived that mobile devices with the iOS, Windows or Android 

operating systems are capable of doing similar functions such as messaging, calling, 

connecting to the Wi-Fi and taking photos. However, the open source system of the 

Android and its capability to be installed by a number of mobile manufacturers make it 

an easy target for malware attackers.     
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2.3 Android operating system 

As technology becomes more woven into the fabric of society, the mobile device 

landscape also continues to grow and evolve. This has been accelerated by the 

improvement in technology, the increase in power, the abundance in storage space and 

the multitude of applications available, thereby making the mobile device susceptible to 

malware attacks. Current mobile devices offer many accessibilities such as online 

banking, online shopping, online applications for jobs, gaming, music and e-purchasing 

of air tickets or hotel reservations. The number of users installing the Android system is 

also multiplying enormously. The International Data Corporation (IDC) has predicted 

that the Android operating system powered by Google will experience a more positive 

exponential growth than the iOS (International Data Corporation (IDC), 2016).  

 In 2016, Android’s operating system had grown 6.2 percent garnered by 1.24 billion 

shipments. It is expected to increase to 1.57 billion in 2020. In contrast, the iOS system 

is expected to decline by -2.0 percent  (International Data Corporation (IDC), 2016). The 

growing trend illustrates the dominance of the Android operating system.  As an open 

source system, Android runs on the Linux-based operating system that was developed by 

Google (Gheorghe et al., 2015). This has transformed the Android operating system to be 

more popular than ever besides its unified approach in application development. This 

means that all Android applications are able to run on any Android devices.  

Mobile users using the Android operating system easily download a variety of Android 

applications from Google Play store. These applications include a mix of free as well as 

premium applications that require payments. In total, there are 2,449,044 numbers of 

Android applications (AppBrain, 2016). In this regard, Google Play store is its official 

market.  
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To constantly support the wave of new technologies, Google Play store also constantly 

updates its version of Android software (Razak et al., 2016;  Firdaus et al., 2017). Most 

Android versions are themed with sweets and desserts and sorted in alphabetical order. 

The latest version of Android provides a great API for applications. For example, the new 

version of the Android Marshmallow aims to save battery life;  is user friendly and it 

provides more control to users as demonstrated in Table 2.4 which also highlights their 

codenames (Developer, 2016c).  

Table 2.4: Android version 

Version Codename API 

2.2 Froyo 8 

2.3.3 - 2.3.7 Gingerbread 10 

4.0.3 - 4.0.4 Ice Cream Sandwich 15 

4.1x Jelly Bean 16 

4.2.x Jelly Bean 17 

4.3    Jelly Bean 18 

4.4 KitKat 19 

5.0 Lollipop 21 

5.1    Lollipop 22 

6.0 Marshmallow 23 

7.0 Nougat 24 

8.0 Oreo 27 

 

 As seen in the table, the API in the Android versions has increased. This increase is 

important because it helps users and developers to install an Android application based 

on mobile device characteristics such as screen size. Furthermore, the current Android 

API also supports the older versions as well. This makes it easier for users and developers, 

thereby expanding market growth. The Android system is made up of a certain 

architecture.  
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2.3.1 Android architecture 

Android is designed in software stacks which are customised for mobile devices. It has 

six (6) layers: Linux kernel, Hardware abstraction, Libraries, Android runtime, Java API 

framework and System applications.  Each layer provides different services to users to 

perform their functions. Figure 2.5 illustrates the major components of the Android 

system. 

 

Figure 2.5: Android system architecture 

The detailed architecture of the Android begins from bottom up. The figure shows that 

each layer of the stacks and the corresponding elements within each layer are tightly 

integrated and carefully tuned so as to provide users with optimal application 

development and execution. Table 2.5 describes the Android system’s architecture 

(Developer, 2016b). 
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Table 2.5: Description of the Android system’s  Architecture 

Type of layer Description 
Linux kernel  

 

Linux kernel is at the bottom of the entire layer and represent as the heart of 
Android architecture as well as foundation of Android platform. This layer 
is important because it responsible for device driver and allows Android to 
take advantage of key security features. 

Hardware 
abstraction 
layer (HAL) 

 

The hardware abstraction layer (HAL) defines a standard interface for 
implementation between hardware and driver. It allows implementing 
functionality to the higher-level Java API framework. When a framework 
API makes a call to access device hardware, the Android system loads the 
library module for that hardware component. It also consists of multiple 
library modules, each of which implements an interface for a specific type 
of hardware component, such as the camera or Bluetooth module.  

Android 
Runtime  

 

Android runtime provides core libraries and Android Runtime (ART). The 
core libraries enable Android developers to write Android applications using 
standard Java programming language. ART is responsible to run Android 
application. For Android version 5.0 (API level 21) or higher, each 
application running within their own ART and process.  The ART able to 
execute multiple virtual machines on low memory device using DEX files.  

Native C/C ++ 
Libraries  

Top of HAL consist of native libraries such as Webkit, OpenMax AL, Libc, 
media framework and OpenGL ES.  The Android system component and 
services are built from native code written in C and C++. Webkit library is 
used for browser support.  

Java API 
Framework 

The operating systems of Android are written in Java language while 
Android API provides classes and interface for development Android 
application. Java API framework consists of content provider, view system 
and managers.  

System 
applications 

 

Android system applications are on the top of Android architecture. It 
consists a set of core applications for contact, email, camera, web browsing 
and SMS messaging. Various applications created by developers like tools, 
games, browser and social media are installed in this layer.  

 

Based on the architecture and description, developer able to develop applications and 

to become a good Android developer, a clear understanding of the Android system’s 

architecture is necessary. Since the Android operating system is an architecture of stacked 

software encompassing the Linux kernel, hardware abstraction layer, Android runtime, 

native C/C++ libraries, Java API framework and system applications, users are protected 

from resource consumption. This is because Android’s system architecture was built to 

ensure that it functions with efficiency and offers a great performance.    
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2.3.2 Security model in Android devices 

Android’s mobile device security has always been a crucial topic. Aside from the 

calling and messaging functions, Android users also use mobile devices for connecting 

their digital life such as photo sharing, social networking, emailing and internet banking. 

As a result, the user stores valuable data information on their mobile devices. This 

valuable information is confidential and used irresponsibly by others for impersonation 

and blackmailing purposes, hence, attracting attackers. These attackers are interested in 

using the valuable information to harness profits for themselves. For examples, attackers 

apply social engineering mechanisms to attract users to subscribe to premium SMS 

services. This service is very costly and when users fall prey to this scam, they encounter 

many financial losses as well as problems.   

As the aforementioned problem becomes widespread, a more significant security 

mechanism is needed to overcome threats faced by mobile device users. Threat has the 

potential to cause serious harms to mobile devices. Among these threats, mobile malware 

remains a significant cyber security threat.  Suarez-Tangil et al. (2014) highlighted three 

(3) security features which are incorporated into mobile devices: a) security measure 

implemented at the market level, b) security measure implemented at the platform level  

and c) others types of security mechanisms. Market protection is a primary defense 

against malware applications, preventing them from entering the distribution market. Two 

(2) protection approaches are applied at the market level. They are application reviews 

and signing. Both protections are, however, insufficient to protect mobile devices from 

malware. Security at the platform level aims to restrict the malware application from 

executing on mobile devices while other Android security mechanisms applied at the 

platform level (e.g. permission) includes sandboxing followed by interactions between 

application platforms. Other security mechanisms being offered by others are the research 

works done on analysis and in detecting malware on mobile devices.  
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It is important to develop an Android security mechanism for mobile device users 

because no individual able to survive without his/her mobile device. The individual’s 

basic, personal and important information are all located within that mobile device. Such 

information and identities stored in the mobile device can be compromised by attackers. 

Application permission, application signing, and component encapsulation are types of 

security mechanisms used to thwart a malware threat on the Android (Gheorghe et al., 

2015).  As is understood, all Android applications must be signed with a certificate before 

they are installed. However, the certificate is unable to control applications installed in 

the mobile device. The important point for users to understand about application signing 

is that the Android system is unable to run an application that is not signed in properly. 

Furthermore, the Android application encapsulates different components which unable 

to access from an external entity (Gheorghe et al., 2015). This external entity needs 

permission to access certain application components. Another security mechanism is 

sandboxing which is used to isolate running applications by using mandatory access 

control policies. Sandboxing has the capability to protect the mobile system from 

malicious applications to a certain extent. However, this sandboxing has flaws. When 

user grants permission to install the applications, it is unable to protect the mobile system 

from exploiting attackers.  

Application permission is a special privilege that needs to be granted before an 

application is installed. This permission system always asks permission from users to 

access sensitive information such as picture, contact number, email, location, and 

documents. This sensitive information is used by irresponsible users to threaten the user’s 

privacy. By default, application has the permission unable to perform any operations that 

would adversely impact the user, other applications and the operating system (Developer, 

2016a). This includes reading and writing the user’s sensitive information, keeping the 
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device awake or performing a network access (Developer, 2016a). There are more than 

100 predefined permissions stored in the Android architecture but developers are able to 

declare custom permissions (Gheorghe et al., 2015). The Android permission system is 

divided into several protection levels: normal, dangerous, and signature or system. 

Android applications request permissions based on the defining permission of the 

AndroidManifest.xml file. This permission is used to notify users about the risk of 

installing the application (Felt et al., 2012). Table 2.6 lists the levels of Android 

protection.  

 Table 2.6: Level of Android level protection 

Level protection Descriptions 
Normal A lower risk permission that give granted permission to access isolated 

application level features with minimal impact to other system, 
applications or user. This state, the system automatically granted 
access to install application without user approval. 

Dangerous A higher risk permission whereas require to grant access from user to 
access on confidential information and have negative impact. Due to 
the high risk, the system may not automatically grant access to the 
requesting applications. 

Signature Provide grant access to the application whereas already signed with the 
same certificate as the applications declared the permissions. The 
system automatically grant access the permission when the certificate 
is match. 

SignatureOrSystem This type of level protection is used on specific task only when multiple 
vendor requires to build an application into system image. The 
permission only granted when the application has sign with same 
certificate as declare on permissions. 

 

Table 2.6 illustrates the characteristics of the risks implied in the permission. It is 

important to note that this level of protection determines whether or not to grant 

requesting permission from an application for security purposes. This security feature has 

the capability to reduce the impact and frequency of the application’s security issues. In 

addition, it makes application developers follow the system design that comes with the 

default system and the file permissions. The following section discusses the threats posed 

to mobile devices. 
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2.3.3 Threats on mobile devices 

 In 2014, Symantec detected more than 317 million new malwares. In the same year, 

PandaLabs was able to neutralise 75 million malware (Lopez, 2015). This figure 

demonstrates that nearly one (1) million of malware are released every day (Symantec, 

2015). This explosive growth in malware will continuously infiltrate the system and 

mobile devices thereby posing threats to privacy issues as well as financial losses. This 

occurrence makes mobile devices a more vulnerable target for cybercriminals. In 2016, 

the Android operating system was suffering from major vulnerabilities (McAfee, 2016) 

posed by Remote access tool (RATs) and ransomware involving bank frauds. Due to this 

problem, Google took a very serious stand in updating the security system.  

Mobile devices face three types of threats. It is first threatened by the growing presence 

of malware that is able to slip into the application store without being noticed. Second, it 

is threatened by the slow security updates. For instance, the Android monthly security 

system gets updated but it is always late in rolling out the updates for users. Finally, it is 

threatened by attackers who are now more sophisticated in expanding their targets into 

the mobile environment. According to the McAfee Mobile Security Report, some favorite 

mobile applications may actually be running some malicious behaviors such as tracking 

users’ location data, oversharing users’ personal information, looking for users’ contact 

information as well as installing malware. These behaviors are used by attackers who sell 

the stolen information for profit incentives. Figure 2.6 illustrates the type of information 

collected from mobile devices.  
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Figure 2.6: Percentages of information collected from mobile devices 

The figure above shows how applications invade users’ privacy on mobile devices. In 

2014, a total of 82 percent of applications were used to track users’  mobile activities and 

80 percent of these had actually collected  users’ location information (Caetano, 2014). 

The location information that was collected comprised users’ exact location, general 

location and the last known location. Some major application had also collected 

information about users’ Wi-Fi and data networks. This behavior of applications places 

mobile users under great risks. To avoid these risks, all mobile applications that accessed 

sensitive information should be analyse in host-based or network-based deployment 

approaches. 

2.4 Mobile malware characteristics 

Malware is a programme bearing malicious intents which are posed by generic forms 

of hostile applications. Malware has become a severe threat to interconnected mobile 

devices for years. It is a particular type of virus used by attackers to infiltrate the mobile 

devices of users so as to collect user activities and sensitive information that can be used 

to perform unauthorised operations. All the information gained are sent to unscrupulous 

authors through the network connection who use these for profits. Guarding against 

malware attacks is becoming an increasingly complex process. For example, 
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unscrupulous authors apply obfuscation through stealthy techniques such as 

polymorphism, encryption and metamorphism to escape from anti-malware detection 

systems (Gandotra et al., 2014). Unscrupulous authors can design various types of 

malware such as botnet, Trojan, rootkit and worm (Karim et al., 2014) for their benefit.  

Each malware has its own goals and usually causes undesirable results (Wu et al., 2014). 

Table 2.7 illustrates the common types of malware. 

Table 2.7: Common malware types 

Type Description 
Worm Worm infect the operating systems by multiplying itself to affect the operating 

systems and sending copies of itself through networks. 
Trojan Trojan able distinguish as a normal application to attract user for run its. After 

successfully run, Trojan take over the resources and able to disrupt the availability 
of operating system with denial of service. 

Rootkits Rootkits is difficult to detect because it start the malware activities while the user 
is not using the computer. 

Botnet Botnet allow attacker to take control over the infected computer. The infected 
system known as a zombie and always spread themselves through the network. 

Spyware Malware application that uses eavesdropper technique to reveal user’s private 
information. 

Backdoor Specialize Trojan horses that masquerade itself to enable remote access and bypass 
authorize authentication to take control of the infected system. 

 

As seen, the most dangerous malware are those which silently infect mobile devices 

through fake websites, counterfeit software updates, spam email attachments and 

fraudulent applications. These malwares appear as attractive and useful tools for users. 

This is how malware manipulate users into executing malware applications. By the time 

users realise this, it would have been too late. The situation becomes worst when sensitive 

information leads to financial losses (Fang et al., 2014). In order to thwart the break-neck 

exponential growth of malware, it needs a significant approach to detect and analyse these 

applications as well as give quick responses to users.  
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2.4.1 Research on mobile malware 

 There are existing approaches such as firewall, antiviruses and the Intrusion Detection 

Systems (IDSs) which aim to overcome malware attacks but the noticeable spikes of the 

aforementioned malware statistics suggest that current mechanism is still inadequate. 

Honeypot and computer forensics are able to expose the malware behaviors by analysing 

malware behaviors and researchers are able to identify the attack mechanism and goals 

through analysis. These activities enable them to implement an effective malware 

detection approach that protect mobile device users from malware. Figure 2.7 illustrates 

the publication trends that are related to mobile research.  

 

Figure 2.7: Publication trends 

The above statistics show three (3) categories of publication trends which include 

mobiles, smartphones and Android. Presently, Android has become a popular target for 

malware research encompassing 42.8 percent of publications. This shows that the current 

issue involves Android, a trend that has been growing since 2012 until 2015. It is also 

expected to increase for the next few years. Android malware is best described as the new 

direction for research in security. 
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As described previously, Android is a mobile operating system made by Google 

(Schmeelk et al., 2015). It is installed on a variety of mobile devices and it offers Google 

services like Google search, Gmail, YouTube, and Google maps. The Android also 

delivers a free application for downloads which are easily installed on mobile devices. 

Such services fascinate user’s attention and so it further encourages them to use the 

Android mobile operating system. Android, as discussed earlier, is more popular than 

other operating systems (Apvrille et al., 2012) and Gartner estimates that 60 percent of 

the mobile devices are installed with the Android operating systems (Egham, 2015a).  

 Besides downloading applications from its official website Google Play store, 

Android able to download applications from third party markets such as SlideMe, GetJar, 

and Amazon’s Appstore (Narudin et al., 2016). Android applications are free for 

downloading but some payment may be required for full premium versions. It is hereby 

mentioned that applications downloaded from third party markets are normally done so 

manually without going through a store. In this regard, it makes Android a trendy mobile 

operating system that is the main target of malware.   

2.4.2 Infected vectors 

This section presents the methods for preventing malware infection on the mobile 

device system. It is important to show how infected vectors play their role in ensuring 

that their attacks penetrate the mobile device system.  

 The insecurity of mobile device: The mobile device threat landscape has continued 

to grow and evolve with several contributing factors such as the increasing speed of 

technology, the expansion of data storage, the increase in power and the vast mobility 

offered by mobile devices. All these factors have certainly made user’s daily lives 

more convenient as they use their personal mobile devices for various transactions 

such as online shopping, online banking, e-payment of utility bills and also for social 
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interactions such as playing games. These conveniences have certainly made mobile 

devices more prone for attacks by unscrupulous cybercriminals. The reality of the 

matter is that mobile devices and their core applications and operating systems are 

important. Therefore, these become vulnerable when the Android operating system 

is also open sourced. In addition, the altered configurations happening on mobile 

devices also make the system more vulnerable for attacks. 

 Insecure application threat: Currently, there are millions of applications that are 

available in application stores such as Amazon and Play Store. The newer 

applications are being created by developers, the easier it is for attackers to attack. 

This is because application developers do not focus on security. On top of that, 

application developers are only good with their application designs and specifications 

as well as usability. They tend to overlook application security particularly on private 

information. Added to this is the false sense of security that these applications 

provide to user. Most application stores claim that their sites are secure giving users 

this false impression that an application is safe to be downloaded and installed in 

mobile devices. In reality, some of these application stores actually contain malware 

applications that expose users to risk.  Furthermore, most of the applications require 

the Internet to update and communicate their services. Indirectly, malware 

applications uses the Internet to get the data during photo and other exchange of 

details. Moreover, malware such as Botnet is able to open up Web services and give 

the applications permission to access personal information. 

 Network based threat: Spam, phishing and adware come under the same type of 

malware that uses the Internet. Mobile devices that are infected with these malwares, 

as a result, also impact the reputation of the application stores and the mobile’s user. 

Besides that, free Wi-Fi hotspot offered by scammers because it is a source for 

capturing user’s personal data such as online banking passwords, credit card and 
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contact numbers. As an example, worm uses the push based scheme to find 

vulnerability on network services so as to infect mobile devices. Based on this, it was 

said that mobile users should avoid using free Wi-Fi hotspot if this unprovided by 

reputable mobile operators or business agencies. 

 Drive by download: The drive-by download is the most common web browser 

which also contains malicious web pages that able to infect mobile users. It basically 

refers to users downloading applications without knowing the source. This 

accomplished by users triggering a drive-by download which click on some 

malicious links in text messages or pictures. In this case, malicious applications 

pretend to look like legitimate applications thus when clicked, it exposes users to 

unwanted applications and services. This kind of services activate the SMS message 

from the user’s mobile device and then sending a request for premium services 

without user knowledge. As a result, users are charged and at the same time, the 

attacker deletes any receiving SMS messages which acknowledge the charges. In 

order to protect mobile devices from these threats, the user should stop immediately 

when getting any suspicious pop-up screens that asks users to click on it. Besides 

that, users need to make sure that the anti-virus and operating system is up to date. 

 Social engineering: Any kind of action where a user is lured into executing 

malicious codes in his/her mobile device rather than using technical hacking 

techniques. This is known as social engineering attacks. In the past years, social 

engineers trying to fool users by getting them to give up sensitive information; they 

pretend to be a good friend on the social network which lures the users into clicking 

into malicious web sites. In mobile devices, this method is used to penetrate the user’s 

smartphone and gain access into their confidential information.   
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2.5 Malware detection system 

Malware is a malicious software that can access mobile and computer devices with the 

aim of extractjng personal information thereby causing serious damage to the system. 

Although existing systems such as firewall, antiviruses and the IDS are available in 

overcoming malware attacks, more novel approaches are necessary. This is because 

through new technologies, malware authors are able to use novel approaches to avoid 

detection. Studies Razak et al. (2017) exploring malware domains are some mechanisms 

that contribute to this detection. The study of malware is about investigating and 

analysing malware characteristics in order to propose a new approach that detect malware. 

Studies such as Tang et al. (2014) and Sahs et al. (2012) had applied the machine learning 

approach to detect malware. In contrast, Nadeem et al. (2014) applied adaptive responses 

as an approach to halt attacks, mitigate damages and prevent attacks in a mobile ad hoc 

network (MANET). These studies demonstrate that research activities conducted in this 

domain are significant. Figure 2.8 shows the various classifications of the malware 

detection system. 

Malware Detection System

Analysis 
Technique

Anomaly

Signature

Detection 
Approach

Static

Host- BasedDynamic

Network- Based

Deployment 
Approach

Hybrid Hybrid-Based
 

Figure 2.8: Classification of malware detection system 
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In this study, the existing malware detection systems are classified based on three 

components: a) analysis technique, b) detection approach and c) deployment approach. 

These classifications are important in showing the relationship of malware detection 

system.    

2.5.1 Analysis technique 

Malware analysis is a process of examining the malware code and identifying the 

dynamic characteristics of the malware. Unscrupulous authors strive to avoid malware 

analysis with obfuscation (Sharif et al., 2008) or the packer and anti-debugging technique 

(Rad et al. 2012; Xie et al., 2013; (Mamoun Alazab et al.,  2010). These techniques make 

the examining of malware analysis harder thus enabling the malware to better hide their 

devious intentions.  

A malware analysis is performed for the purpose of examining the components through 

the dissection of application codes and behaviors (Zhou et al., 2012; Platforms et al., 

2013). Malware analysts need to apply caution during such examinations so as to alleviate 

the spread of contamination.  To analyse the malware, analysts need a proper environment 

setup that ensure security and prevent infection (Razak et al., 2017). The process of a 

malware analysis begins with an isolated environment such as a virtualisation software 

(Damopoulos et al., 2012; Gonzalez et al., 2014). Two most commonly known malware 

analysis techniques are static analysis and dynamic analysis (Ravula et al., 2013;  

Gandotra et al., 2014).  Table 2.8 further illustrates.  

Static analysis applies reverse engineering, similarity and command techniques 

(Veerwal et al., 2013) whereas dynamic analysis analyses the malicious behaviors and 

error programmes through observations conducted in the controlled environment (Ghiasi 

et al., 2015). Static analysis has fast detection but its major problem is its unable to detect 

when the malware applies obfuscation technique. It is able to examine malware without 

Univ
ers

ity
 of

 M
ala

ya



35 

being able to execute it. This technique is also able to read the code programme, determine 

the goals and then detect malware (Talha et al., 2015). Unscrupulous malware authors 

apply other techniques like polymorphism, metamorphism, and encryption to evade such 

detections (Rad et al., 2012).  

The dynamic analysis is capable of detecting unknown malware, executing the 

malware through monitors in a controlled environment (Egele et al., 2012;  Seideman et 

al., 2015) even when the malware applies obfuscation.  

Table 2.8: Types of malware analysis 

Analysis 
technique 

Advantages Disadvantages 

Dynamic  Able to detect unknown 
malware 

 Time intensive 
 Resource consuming 

Static  Fast detection  Unable to detect malware with 
obfuscation technique 

 

2.5.2 Detection approach 

The two common detection approaches seen in the IDS are anomaly (Feizollah et al., 

2013;  Elshoush et al., 2011) and signature  (Yassin et al., 2012; Hubballi et al., 2014).  

 Anomaly-based approach: The Anomaly-based  approach detects malicious 

activities by monitoring the level of activities seen in the network traffic and systems 

(A Shabtai et al., 2014;  Narudin et al., 2016). The anomaly detection approach is 

better in comparison because it is able to detect new and unfamiliar attacks through 

the normal and abnormal patterns noted. Any abnormal pattern noted in the mobile 

device is considered a malware attack. The changing behavior of users moving from 

normal to abnormal patterns is also considered an attack. This approach however, is 

limited by several factors. It requires a complex process to examine the effective 

features for the learning and training processes. To optimise the process of 
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determining malware behaviors, it is important to collect specific mobile malware 

features. For example, mobile applications have the capability to provide features to 

researchers who are investigating malware activities. Table 2.9 presents the anomaly 

approach.  

Table 2.9: Anomaly approach 

Reference Objective Algorithm Result 
(P. Wang et 
al., 2014)  

To develop an automatic 
malware detection system by 
based on behavior signatures 

Support vector machines 
(SVM) 

Accuracy = 97.67% 

(D. W. Kim et 
al., 2015)  

To identify fake AV web 
pages in the Internet. 

Random forest, SVM and 
Gradient-Boosted Tree 

Accuracy = 90.4%, 
FPR = 0.2%. 

(Cui et al., 
2015) 

To  identify the malicious 
behaviors of the mobile 
applications using data 
mining packet 

Naive Bayes and Decision 
tree 

Accuracy = 60% 

(Lin et al., 
2015) 

To select and extract malware 
features  

SVM Accuracy = 0.98, 
Precision = 0.85, TPR = 
0.92, TNR = 0.98 

(Ghiasi et al., 
2015) 

To find similarities of run-
time behaviors based on the 
assumption that binary   
behaviors affect registers 
values 

Random forest, Decision 
tree,  Bayesian logistic 
regression 

Accuracy = 95.9%, FP 
= 4.5% 

 

 Signature-based approach: Another type of approach is called the signature 

approach as illustrated in Table 2.10. This approach detects malicious activities by 

matching the normal pattern with abnormal signatures. It discovers malware patterns 

by using the signatures which are stored in the database. Nonetheless, this approach 

is unable to detect unknown malware if the signatures are unavailable in the database. 

Moreover, this type of approach needs to frequently update the signatures database 

so as to ensure that able to detect new variants of malware. It also helps to define 

some possible pattern variations (Feizollah et al., 2013). Any mistake in defining the 

malicious pattern cause a false alarm thereby decreasing the accuracy of the detection 

technique.  
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Table 2.10: Signature approach 

 

 Hybrid-based approach: The hybrid-based approach combines the signature 

database with anomaly patterns so as to detect known or some new variants of 

malware attacks (Inayat et al., 2016; Wang et al., 2015). This approach is able to 

perform dynamic analysis during the running applications; it also uses statistically 

analyse data by using the  signatures database (Arshad et al., 2016). This approach is 

able to overcome the weaknesses of both the signature-based approach and the 

anomaly detection approach. Its disadvantage is that it needs more research to be 

conducted subject to the malware detection designs. Machine learning is also used to 

trace the normal and abnormal patterns (Inayat et al., 2016; Haq, 2015) in this 

approach.  

Machine learning is a type of artificial intelligence that provides computational 

learning theories to predict the data. Machine learning focuses on prediction making; it 

acts without being explicitly programmed. In addition, machine learning is an approach 

Reference Objective Algorithm Result 
(Elish et al., 
2015)  

To advocate the approach of 
benign property enforcement 

Trigger based API  dependence FP = 2%, FN = 
2.1% 

(Talha et al., 
2015) 

To characterize and classify 
Android applications as benign 
or malicious. 

Statistical score  FPR = 0.050, TPR 
= 0.101, FNR =  
0.898 

(Sheen et 
al., 2015) 

To design malware detection 
using multi feature 
collaborative decision fusion 
(MCDF). 

Naive Bayes, Decision tree, 
SVM, IBk (Instance based 
learning), JRip (Rule based 
learning) 

Precision = 83%, 
TPR = 97% 

(Choi et al., 
2015) 

To detect  the act of leakage 
internal private information 

Context Ontology Reasoning Condition 
reasoning (high, 
low, active, 
available) 

(Faruki et 
al., 2014) 

To detect unknown malware Clustering algorithm Accuracy = 76%, 
TPR = 80.65% 

(Cen et al., 
2015) 

To develop effective technique 
for malware detection 

Naive Bayes Accuracy = 0.95, 
TPR = 0.95, FPR = 
0.05 

(Clemens, 
2015) 

To classify architecture of 
computer object code 

SVM, Decision tree, Random 
Forest, Naive Bayes, Neural 
network 

Accuracy = 90% 
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that examines the data so as to look for patterns. Supervised and unsupervised classifiers 

in machine learning have been used to trace the model and to analyse the features 

(Narudin et al., 2016). This approach helps to determine the validity of the normal and 

malicious activities. Decision trees, random forest, and SVM are the types of algorithm 

classifiers used on supervised learning for this purpose. Table 2.11 lists the advantage and 

disadvantage of the detection approach.. 

Table 2.11: Advantage and disadvantage of the detection approach 

Detection 
approach 

Advantages Disadvantages 

Anomaly  Dynamically adapt to new, unique, or 
original attacks. 

 Less dependent on identifying specific 
operating system vulnerabilities 

 Effective to detect new and unforeseen 
vulnerabilities 

 Higher false alarm rates. 
 Usage patterns that change often 

and not be static enough to 
implement an effective behavior-
based IDS. 

Signature  Lower false alarm rates. 
 Alarms are more standardized and more 

easily understood than behavior-based. 
 Simplest and effective method to detect 

known attacks (Liao et al., 2012) 

 Signature database must be 
continually updated and 
maintained. 

 Ineffective to detect unknown 
attacks, evasion attacks, and 
variants of known attacks (Liao et 
al., 2012). 

 Time-consuming to maintain the 
knowledge 

 

2.5.3 Deployment approach 

The deployment approach (hybrid, network and host-based) monitors and detects 

malicious activities (Inayat et al., 2016; Shameli-Sendi et al., 2014; Lar, 2011). The 

hybrid-based Intrusion Detection System is a combination of both the Network-based 

Intrusion Detection System (NIDS) and the Host-based Intrusion Detection System 

(HIDS) (Butun et al., 2014; Tahaei et al., 2018). The NIDS is used to analyse data over 

the network traffic by using deep packet analysers (Zhang et al., 2003). The packet 

analyser is able to identify any malicious activities during  interactions between the 

network and computer (Patel et al., 2012). Table 2.12 shows the deployment approach. 
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Table 2.12: Deployment approach 

Reference Titles Deployment 
approach 

Detection 
approach 

Year 

(Asaf Shabtai et al., 
2010) 

Applying behavioral detection on 
android-based devices 

HIDS Signature 2010 

(Grace et al., 2012) Unsafe exposure analysis of mobile 
in-app advertisements 

HIDS Signature 2012 

(Dini, Martinelli, 
Saracino, et al., 
2012) 

MADAM: A multi-level anomaly 
detector for android malware 

HIDS Anomaly 2012 

(Zhao et al., 2012) RobotDroid : A Lightweight Malware 
Detection Framework on Smartphones 

HIDS Anomaly 2012 

(D.-J. Wu et al., 
2012) 

DroidMat: Android Malware 
Detection through Manifest and API 
Calls Tracing 

HIDS Signature 2012 

(Feizollah, 
Shamshirband, et al., 
2013) 

Anomaly Detection Using 
Cooperative Fuzzy Logic Controller 

NIDS Anomaly 2013 

(Narudin et al., 
2016) 

Evaluation of machine learning 
classifiers for mobile malware 
detection 

NIDS Anomaly 2014 

(Cen et al., 2015) A Probabilistic Discriminative Model 
for Android Malware Detection with 
Decompiled Source Code 

HIDS Signature 2014 

(Gonzalez et al., 
2014) 

DroidKin : Lightweight Detection of 
Android Apps Similarity 

HIDS Signature 2014 

(Gheorghe et al., 
2015) 

Smart malware detection on Android NIDS Anomaly 2015 

(Chen et al., 2015) Simple and effective method for 
detecting abnormal internet behaviors 
of mobile devices 

NIDS Anomaly 2015 

(X. Wang et al., 
2015) 

Novel Hybrid Mobile Malware 
Detection System Integrating 
Anomaly Detection With Misuse 
Detection 

HIDS Hybrid 2015 

(Chuang et al., 2015) Machine Learning Based Hybrid 
Behavior Models for Android 
Malware Analysis 

HIDS Hybrid 2015 

 

The HIDS monitors and analyses any intrusive activities by assessing the system 

resources. It focuses on the memory, the device, CPU consumption, the user, system 

activities and also the file system (Weiss et al., 2012). Andromaly (Asaf Shabtai et al., 

2012) is an example of host-based malware detection. The HIDS collects resources from 

mobile devices, computers, and servers. Over the years, the booming mobile devices have 

stimulated users into replacing personal computers, in terms of the Internet usage, for 
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personal transactions such as online banking, games, emails, social media, and news 

articles. Mobile devices are also more appealing to users because applications are 

downloadable and free. Based on Table 2.12, it shows the Android malware detection 

system implements the HIDS and NIDS. The IDS method is used to identify and analyse 

the Android mobile malware (Corona et al., 2013).  

2.6 Risk assessment 

Risk assessment is the process which identifies the loss, vulnerability, damage and 

consequences of the action. It is very important because it presents studies with the 

evaluated impact of malware attacks. In terms of mobile risk, risk assessment helps 

mobile devices to establish the level of safety or the risk involved in some mobile 

applications. The risk mechanism protects mobile users from installing malware 

applications (Seo et al., 2014). This is achieved by informing the users in the permissive 

mode by ensuring the right trust. Potential risks able to mininmise (Chowdhury et al., 

2012; Anuar et al., 2011). Risk is defined as one component that combines threats with 

vulnerabilities; risks cause an impact on an asset even though the vulnerabilities flawed. 

Some researchers (Ledermüller et al., 2011) treat a risk as a single entity but others treat 

risk as giving bad impacts such as costs, degraded performance as well as functionality. 

The aim of risk assessment is to provide security measures by impacting confidentiality, 

integrity and availability in security threat.  

2.6.1 Threats 

Threats exists in risk assessment. Becher et al. (2011) classify mobile threats into four 

classes: a) hardware centric attack where the attacker has direct access to the physical 

mobile devices, b) device independent attack which protects the device from the 

confidentiality violation, c) software centric attack which is the most used by attackers 

i.e. APK file with malicious application to exploit the vulnerabilities, and d) user layer 
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attacks. To defend mobile threats, an effective security mechanism which provides a 

response to the user must be available. The risk assessment approach is used to improve 

the effectiveness of risk evaluation by generating risk zones as a warning against 

malicious applications (e.g. very low, low, medium, and high). Table 2.13 presents the 

description of risk assessment. 

Table 2.13: Description of risk assessment 

 Description 
AHP approach One of the Multi-Criteria decision-making approach for analyzing decisions 
Risk assessment phase An approach that is derived from an evaluation of threat and impact of risk 
Judgment matrix  This technique gives an analysis to construct the matrix consistency. 

 

2.7 Risk assessment phase 

The AHP uses a pairwise comparison of criteria to evaluate the weight of the criteria 

which is in line with the main objective of the hierarchical structure. This pair-wise 

comparison is performed using a matrix table which evaluates the consistency of the 

judgment (Model et al., 2015). The comparison matrix (A) takes the size nxn where n 

denotes the number of criteria being compared, which is relative to the specific elements. 

The elements of the matrix are aij. The table matrix A demonstrates the evaluation that is 

similar to Dweiri et al.(2016): 

𝑎𝑖𝑗 =  𝑎𝑗𝑘 𝑥 𝑎𝑗𝑘 2-1 
𝑎𝑖𝑗 = 1/𝑎𝑗𝑘 2-2 

 

where i, j and k are any elements of the matrix A. 

𝐴 =  (
𝑎11
𝑎21

𝑎31

𝑎12
𝑎22

𝑎32

𝑎13
𝑎23

𝑎33

) 
2-3 

where 𝑎𝑖𝑗 = 1 𝑎𝑛𝑑 𝑖 = 𝑗 2-4 
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In order to evaluate the consistency, the normalization table matrix of A is computed 

using N matrix 

𝑁 =  (
𝑤11
𝑤21
𝑤31

𝑤12
𝑤22
𝑤32

𝑤13
𝑤23
𝑤33

) where, 𝑤𝑖𝑗 =  𝑎𝑖𝑗 2-5 

𝑤𝑖𝑗 =  
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1 

 2-6 

∑ 𝑎𝑖𝑗
𝑛
𝑖=1  𝑤𝑖 = 1 is the sum of the columns 2-7 

Divide the sum of the value of n to find the relative weight 

The weight of 𝑖 =  𝑤𝑖 =  
∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
 2-8 

  

Note that ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 2-9 

  

A is reflected as consistent if  
 

𝐴 𝑥 𝑤 = 𝑛 𝑥 𝑤 2-10 

The Eigenvalue problem could be solved by using this equation where the largest 

Eigenvalue is greater than or equal to 𝑛 (𝜆𝑚𝑎𝑥 ≥ 𝑛). The value (𝜆𝑚𝑎𝑥 ) becomes closer 

to n, thus it is more consistent. (𝜆𝑚𝑎𝑥 ) is equivalent to the total of the criteria of the 

column vector AW. The consistency ratio (CR) is calculated as:  

𝐶𝑅 =  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)

𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝐴
 

      2-11 

The value 𝐶𝐼 =  
𝜆 max − 𝑛

𝑛−1
 2-12 

The level of consistency is considered acceptable when the CR is less than or equal to 

0.10. Otherwise, it requires a reexamination of the judgment for the values of aij. This 

judgment is necessary in order to keep the consistency 
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2.8 Judgement matrix 

In AHP, the hierarchy of risk assessment is measured by using the pairwise comparison 

which is important for estimating the relative elements in the hierarchy and the preceding 

level. Pairwise comparison is measured through the ratio scale. The scale is used to define 

the intensity of important judgments. Table 2.14 shows the fundamental scale of the 

absolute numbers of the AHP approach (Saaty, 2008). 

Table 2.14: Fundamental scale of the absolute numbers 

Intensity of 
importance 

Definition Explanation 

1  Equal importance Two activities contribute equally to 
the objective 

2 Weak Two activities contribute equally to 
the objective 

3 Moderate importance One activity is slightly being 
favored over another based on 
experience and judgment 

4 Moderate plus One activity is slightly being 
favored over another based on 
experience and judgment 

5 Strong importance One activity is strongly being 
favored over another based on 
experience and judgment 

6 Strong plus One activity is very strongly favored 
over another based its dominance in 
practice 

7 Very strong or demonstrated importance One activity is very strongly favored 
over another based its dominance in 
practice 

8 Very strong One activity is very strongly favored 
over another based its dominance in 
practice 

9 Utmost importance One activity is utmost important 
favored over another based on the 
highest possible order of affirmation 

Reciprocals of 
above 

If nonzero numbers assigned to activity I 
when compared with activity j, then when 
compared with I, j has the reciprocal value 

A sensible assumption 
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2.9 Summary 

This chapter has presented the mobile device evolution as well as the mobile operating 

systems. It highlights the Android operating system including its unique characteristics 

and architecture. It also discusses the types of malware detection systems by providing 

the detection taxonomies which encompass the analysis techniques and the detection and 

development approaches. It also presents the risk assessment approach by introducing the 

risk assessment phases and the judgment matrix which are used in the experiments of this 

study. The subsequent chapter presents the mobile malware analysis tools.  
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CHAPTER 3: MOBILE MALWARE ANALYSIS TOOLS 

As detailed previously, this study adopts the static analysis as the analytical procedure 

because it consumes low resources, it checks for application code structures and it is a 

common practice of researchers. The main advantage of adapting this approach is that it 

is able to differentiate between a well-known coding standard and malicious codes. 

Without such tools the process of identifying malicious codes in Android applications is 

likely to fail because the number of codes in the Android application structure is so large 

that it is difficult to remember. This chapter details the static analysis tools by introducing 

their characteristics as well as their advantages. Overviewing various tools used in 

malware detection also helps to save a lot of effort in understanding the applications codes 

structure and making the analysis process more effective. 

3.1 Static analysis tools 

Several types of static analysis tools are presented in this section. They are helpful for 

analysing the codes in Android applications. They also help to shed light on the structure 

of the codes for malware detection systems. Details of the static analysis tools are 

described as follows: 

3.1.1 Androguard 

Androguard is a toolkit for malware analysis. It has the capability to reverse 

engineering in Android applications (Desnos, 2012). It is a python based tool which 

executed on Windows, Linux and OSX operating systems. It is a powerful tool that able 

to decompile and disassemble Android applications by using the static analysis approach. 

The advantages of the Androguard include its ability to reverse engineering on the 

Android applications, its compatibility with the open source malware analysis, it able to 

assess the static approach of the codes, and it visualises the applications with gephi 

outputs. 
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3.1.2 ApkTool 

The ApkTool is also a reverse engineering tool used for Android applications 

(Wiśniewski, 2017). It has the capability to decode the resources to nearly its original 

form and to rebuild after making some modifications. It comes with features such as 

organising and handling the apks that depend on the framework resource; it also has the 

ability to turn the smali debugging and the rebuilding decode sources back to apks. Smali 

is a DEX code dissembler that transforms the byte code into a syntax. The aim of the 

syntax is to alleviate the complexity of the exploring Java Virtual Machine binary. 

Decompilation performs an inverse operation to that of the Dalvik’s byte code compiler 

and the apk packaging. 

3.1.3 Statistical analysis software tools 

Statistical software are programmes which data analytics use for analysis, 

interpretation, and the presentation of data. It comes with unique features such as user 

interface which enhances its usability, its comprehensive and powerful programming 

language for in-depth analysis and its data exploration. With a graphical user interface 

and analysis capability, the software has been applied in research, academia, industries 

and government agencies. Statistical analysis software enhances the experience of 

developing statistical analyses and the interpretation of results. 

3.1.4 R language 

 R language is used for statistical computing and graphics. It is a free software and it 

runs on different platforms such as Windows, UNIX and MacOS under the Free Software 

Foundation’s GNU General Public License (Bryan et al., 2017). It provides a variety of 

statistical analysis like classification, clustering, linear and nonlinear modelling, time-

series analysis and graphical techniques. The R language offers advantages such as 

effective data handling, graphical attribute provision, and integrated collection tools for 
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data analysis. It also contains an effective programming language which includes 

conditional and loops. Due to its capability in data manipulation, calculation and 

graphical display, the software is used by researchers especially in statistical methodology 

activities.  

3.1.5 IBM SPSS statistics 

The IBM SPSS Statistics is a statistical software used to solve research and business 

problems (IBM, 2017). This powerful software provides a variety of features, for 

example, it interprets data; it manages data; it enables hypothesis testing; it reports and 

performs analyses. It also provides a wide range of analytic capabilities including linear 

regression and descriptive analysis which enhance the presentation of results as well as 

uncover dataset relationships. In addition, it offers scalability, flexibility and cost 

effectiveness. 

3.2 Machine learning classifiers 

Machine learning is a type of artificial intelligence (AI) that the computer provides; it 

has the ability to learn without being explicitly programmed. It also has the capability to 

predict future decisions and to improve decisions when exposed to new data. The process 

of prediction is based on the search through the dataset which look for patterns. This is 

also known as learning. The learning process and prediction results are made according 

to the types of classifiers. This technique has been widely implemented for classifying 

samples especially in the intrusion detection system area (malware and benign). The two 

common types of machine learning are supervised and unsupervised machine learning. 

Supervised learning is where the dataset for training are labeled with the class (malware 

and benign). The class is used for training the dataset which are in the learning process of 

an algorithm learning. The algorithm makes predictions based on the training data. 

Learning stops when the algorithm achieves an acceptable level of performance. Linear 
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regression, random forest and support vector machine (SVM) algorithms are examples of 

supervised machine learning algorithms. The latter, unsupervised learning, only demands 

input data without comparing yield factors. The goals are to model the underlying 

structure or distribution in the data in order to learn more about the data. The algorithm 

presents the interesting structure in the data which show the information. This learning 

type has no right answers and they are unlabelled. The learning stage measures itself to 

predict and present the information. Apriori algorithm is an example of unsupervised 

machine learning algorithm.  

This study applies the supervised machine learning approach because the sample 

dataset for each application come with labels (i.e. malware and benign). Besides that, 

supervised machine learning offers good potential results by reducing errors. In the 

interest to observe the distinctive results noted in the various machine learning classifiers, 

this study implements five (5) classifiers: random forest (RF), multi-layer perceptron 

(MLP), k-nearest neighbors (KNN), J48 and Adaboost. They are further explained below.  

a) RF: Random forest is a combination of tree predictors. Each tree is capable of 

producing a response with the set of predator value. This classifier was developed 

by Leo Breiman and Adele Cutler (Gaviria et al., 2013). The principle of the 

random forest is a weak learner forms a group to create a strong learner. (Gaviria 

et al., 2013) and (Narudin et al., 2016). The random forest classifier is used for 

mobile malware detection.  

b) MLP: The multi-layer perceptron is a supervised learning algorithm which 

consists of multiple layers of nodes. Each node interacts via the weighted 

connection (Narudin et al., 2016). The intermediate layer is known as a hidden 

layer with one or more non-linear layers.  
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c) KNN: The K-nearest neighbors is one of the simple machine learning classifiers 

that works well in classification. It is a lazy learning type of classifier. In order to 

predict the label of a new instance, the KNN classifier needs to find the K-nearest 

neighbor. The classifier uses training samples to predict the label whereas the user 

defines and classifies the K-nearest neighbor by labelling the sample. Gaviria et 

al. (2013) achieved a high detection accuracy by using permission features. 

d) J48: This is an open source implementation of the machine learning tool (WEKA) 

which comprises the C4.5 algorithms. The tool predicts the sample training based 

on the various attribute values of the sample training data. It requires dependent 

and independent variables to predict data. The independent variable is used to 

predict the dependent variable. In addition, this classifier chooses the attribute that 

is most efficient in using the entropy in the data (Aung et al., 2013). This classifier 

obtained a TPR value of 90.7 percent and so the J48 is noted as a logic-based 

learning type classifier.  

e) AdaBoost: This is a popular boosting classification algorithm. It resembles the 

learning type classifier. It is constructed from multiple learners for the purpose of 

building a stronger learning classifier. It also performs well in a variety of dataset 

except for noisy data. During the training data, the model attempts to correct the 

error so as to improve the predictable performance. Sheen et al. (2015) used 

AdaBoost for malware detection and they achieved high precision with a recalled 

value of more than 90 percent. Table 3.1 describes the four classifiers and their 

advantages and disadvantages, both of which were noted in the current study. 
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Table 3.1: Description of classifiers 

Classifier Learning type Advantages Disadvantages 
Random 
forests 

Ensemble  Used bagging and 
boosting to support a 
large number of training 
samples with efficiently.  

 It able to improve the 
classification accuracy 
by growing an ensemble 
of the tree.  

 Run efficiently on large 
datasets. 

 Over fit when dataset is 
unclean from noise. 

MLP Perceptron 
based 

 Capable of learning non-
linear models.  

 Capable of learning 
models in real time 

 Requires tuning a 
number of 
hyperparameters such as 
layer and number of 
hidden neurons.  

 Ineffective to feature 
scaling 

KNN Instance-based  Able to use with 
categorical data.  

 Robust to noise training 
set. 

 Run effectively on large 
data sets. 

 Require to determine 
value of K (number of 
nearest neighbors).  

 High computation cost 
because require to 
distance of each query. 

J48 Ensemble  Applicable for 
continuous and 
categorical inputs.  

 Data classification 
without much 
calculations. 

 High classification error 
while training set is 
small. 

AdaBoost Ensemble  A powerful 
classification algorithm 
that improves the 
prediction performance 

 Sensitive to noisy data 
and outliers 

 

3.3 Machine learning tools 

Machine learning tools provide functionality for data analysis that automates the 

analytical model building. This model enables a system to learn from the past or present 

dataset and in that learning process makes predictions or decisions. In general, there are 

two (2) types of machine learning tools: supervised and unsupervised. Implementing the 

machine learning tools in a system makes the analytical work easier and faster. In 

addition, it has the ability to automatically apply complex mathematical calculations in 

solving problems without requiring any machine learning technique or expertise.  
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3.3.1 WEKA 

The Waikato Environment for Knowledge Analysis (WEKA) is a popular suite; it has 

a collection of machine learning algorithms written in Java (Waikato, 2017). It is used for 

data mining tasks, data analysis and for predictive modelling. It was developed at the 

University of Waikato, New Zealand. It is a free software licensed under the General 

Public License (GNU). It is made up of visualisation tools that comprise various types of 

algorithms such as random forest, multi-layer perceptron, regression, clustering, 

Adaboost, k-nearest neighbors and neural networks. These algorithms able to applied 

directly to a dataset or recalled from the Java code. Figure 3.1 shows the user interface of 

the WEKA. 

 

Figure 3.1: WEKA GUI 

The graphical user interface (GUI) of WEKA with four (4) tabs in the header and five 

(5) applications is illustrated. The program tab contains the system setting and memory 

usage while the visualisation tab is used to generate a graph like the ROC, a plot, and the 

boundary visualiser. Figure 3.2 further portrays the applications for features selection.  
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Figure 3.2: Features selection 

The figure shows the information gain with ranker attributes for choosing the relevant 

features for malware detection from 10 fold cross validations. With good interface, this 

application is used even by normal users. All the algorithms for classifier and features 

selection is found in this application. The application is also able to show good quality 

result which is also easy to understand.  

Figure 3.3 shows the list of classifiers which belong to the tree algorithms. In addition 

to this, there are bayes, functions, meta, misc, and rules. These classifiers are used for 

training and testing the sample dataset. The training and testing are used to create a model. 

It is well-suited for developing new predictive machine learning. 
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Figure 3.3: Examples of classifiers 

The main objective of WEKA is to make machine learning approaches available, to 

design new predictive models for sharing with the world, and to contribute to the 

theoretical framework. The advantages of the WEKA are able to traced to its services to 

users, its user friendly values due to its graphical user interface, the comprehensive 

collection of modelling techniques and data analysis and its portability. 

3.4 Online analysis tools 

 VirusTotal is a web analysis tool that provides free online services; it also analyses 

files and URLs (Quintaro, 2017). This web analysis has the capability to identify viruses 

like Trojans, worms, or any kinds of malicious applications through website scanners and 

antivirus engines. The purpose is to help to improve the antivirus security industry thereby 

making the internet a safer place accomplished through the development of free tools and 

services. Figure 3.4 shows the GUI for VirusTotal.  
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Figure 3.4: GUI of VirusTotal 

As seen on Figure 3.4, the user is able to submit a file to VirusTotal through the Web 

browser and then receive results of the file scanning. The maximum file size is only 

128MB for each application. This study used the Web analyser to analyse all the sample 

dataset so as to ensure that the data were correctly labelled with benign or malware 

applications. The user is able to select the application from the folder before scanning. 

Figure 3. 5 shows the results of the scanned applications. 

 

Figure 3.5: Examples of analysis results 

Above, the result of the applications indicates whether the applications were benign or 

malware, based on the detection ratio. Any application with a detection ratio of more than 

0 is known as a malware. It is worth noting that this web analyser runs multiple antivirus 
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engines and website scanners. Additionally, the malware signatures of the antivirus 

solution in VirusTotal are periodically updated as they are developed and distributed by 

an antivirus company. As a result, the report that is received from the submitted file will 

display the exact detection. Figure 3.6 shows the detail of the scanned applications. 

This detailed information is used to create an attribute or features for the dataset. The 

information explains the role of permission on the scanned applications. The information 

is used to as a part for improving and advancing the testing sample dataset. 

 

Figure 3.6: Details of scanned applications 

3.5 Feature selection and optimisation method 

Feature selection plays an important role in detecting malicious activities in mobile 

applications. The relevance of the extracted features depends on the topology and 

resilience of the malware in general. This study survey the features based on their 

categories, relevance and definitions. Relevant features is one of the important 

contributing factors of an excellent detection model. Features with a lack of exploration 

may lose their full potential for best analysis. For example, Android applications consist 

of various elements for analysis such as static, dynamic, hybrid and application metadata. 

Selecting the most relevant feature from the massive number of available features is 

crucial because feature selection also has other motivations which include: 
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i. General data reduction: It limits storage requirement and increases algorithm 

speed to save time and cost of experiments. 

ii. Feature set reduction: It saves resources for data collection during utilisation. 

iii. Performance enhancement: By removing the irrelevant features such as noisy 

data from the dataset, detection accuracy especially on machine learning 

algorithms is increased. 

iv. Data understanding: It is easy to visualise data and monitor the experiment 

process.  

An Android application consists of several elements that carry good potentials to be 

the features in Android malware detection. Therefore, this study selected the permission 

features for the experiment of Android malware detection. The permission features were 

selected because permissions are the entry points for every mobile application. Various 

dangerous permissions for Android applications have been highlighted but users are still 

unaware of the side effects of such risky permissions. Undoubtedly, dangerous 

permissions act as a gateway for attackers to install malware applications that interact 

with malware programmers who access users’ mobile devices. A large portion of 

dangerous permissions requested by applications present malicious intentions (Firdaus et 

al., 2017).  Permissions features have been widely explored and its significance and 

effectiveness have also been established. Thus, this study considered permission features.  

For the purpose of recognising the dangerous permissions in Android applications, it 

is necessary to conduct a thorough static analysis. Static analysis is used in the experiment 

because it provides more insights into the coding patterns of the applications. The in-

depth knowledge gained of the dangerous and risky permissions of Android applications 

are used to analyse Android applications in cloud analyses thereby serving as the 

proposed solution to the problem.  
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Static analysis is a lightweight approach when compared to dynamic analysis. It has 

the capability to dissemble the Android application so as to retrieve the codes. Thus it 

was applied on the benign and malware applications. The malware programmer deploy 

various evasion techniques on Android applications to secure premium message on 

permission features. This study attempts to solve the problem by relying on the entry-

level structural information known as AndroidManifest.xml to collect the permission 

features.  

The Android application which consist of data, resource files, and Java code are 

compiled using Android SDK tools. This process requires static analysis to decompile 

and extract the binary codes. During this phase, any permission listed on 

AndroidManifest.xml is considered as features.  

Following this, the features are examined so as to remove the irrelevant data. The most 

relevant features containing malicious activities are then stored. This is important in 

ensuring the accuracy of the Android malware detection performance. To achieve this, 

the current study selected lesser features for the experiments involved because previous 

works (Razak et al., 2017) had also used fewer features to remove the irrelevant data from 

the dataset thereby improving the result of the machine learning algorithms. Table 3.2 

shows the number of features used by previous works.  

Table 3.2: Number of features used by previous works 

References Total of benign Total of malware Total of features 
(Feizollah et al., 2017) 1846 5560 10 

(Afifi et al., 2016) 20 1000 7 
(Narudin et al., 2016) 20 1000 11 

(Yuan et al., 2016) 880 880 13 
(Gheorghe et al., 2015) 400 400 13 
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As seen in Table 3.2, previous studies used fewer than 20 features for testing and 

training their machine learning algorithms. The reason for using fewer features is because 

this will save the time and costs of the experiments thereby hastening the time for real 

world implementation. The following are the features selection approaches applied in this 

study: 

3.5.1 Information gain 

Information gain is also known as info gain; it is an attribute selection approach that 

uses the ratio of information gain to measure the intrinsic information. It measures the 

small bits of information obtained for predicting a class (c) by understanding the absence 

and presence of a term (t) in a dataset. 

In the Intrusion Detection System (IDS), information gain is applied so as to improve 

the accuracy performance of the malware detection (Nadiammai et al., 2014). The 

features are ranked in descending order with the highest information gain being the most 

relevant feature ranked at the top. The features are then selected for training the model so 

as to maximise the classification accuracy (McWilliams et al., 2014). In their study, Asaf 

Shabtai et al. (2012) managed to achieve a 99.9 percent accuracy rate after applying 

information gain with the decision tree, J48. Similarly,  Santos et al. (2013) performed 

features selection on 1000 opcode sequences using information gain. They also achieved 

95.26 percent accuracy with the decision tree, random forest. These findings suggest that 

information gain has the capability to select relevant features and as a result, is able to 

increase the classification performance accuracy.  

3.5.2 Evolutionary algorithm 

Evolutionary algorithms (EAs) are inspired by the biological model of evolution and 

natural selection that was first proposed by Charles Darwin in 1859 (Dyer, 2010). In the 

natural world, evolution helps species to adapt to their environment. Environmental 
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factors that influence the survival prospect of an organism include climate, availability of 

food and the dangers of predators. Species change over the course of many generations 

and mutations occur randomly. Some mutations will be advantageous but many will be 

useless or detrimental. In that regard, progress comes from the feedback provided by non-

random natural selection, for example, animals that can run fast will be more successful 

at evading predators than their slower rivals. If a random genetic modification helps an 

organism to survive and reproduce, that modification will itself survive and spread 

throughout the population via the organism's offspring. This is how evolutionary 

algorithms work.  

Evolutionary algorithms are derived from a simplified model of this biological 

evolution. It is typically used to provide good approximate solutions to problems that 

cannot be solved easily when using other techniques. Many optimisation problems fall 

into this category. It may be too computationally-intensive to find an exact solution but a 

near-optimal solution is sufficient. In such situations, evolutionary techniques can be 

effective.  

3.5.3 Bio-inspired Particle Swarm Optimisation (PSO)  

Particle Swarm Optimisation (PSO) was implemented in this study for the purpose of 

increasing the performance of the malware detection system. This is accomplished by 

minimising the error imposed on the swarm intelligence. PSO was developed by Dr. 

Kennedy and Dr. Eberhart in 1995 (Afifi et al., 2016). It is a popular bionic algorithm 

that was derived from looking at the social behavior of birds flocking together for 

formulating the optimisation problem. PSO is based on the principle particle of the swarm 

for each solution. Each particle has a solution in the search space where the vector 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2 … . , 𝑥𝑖𝐷) and where D represents the dimensionality of the search space. Besides 

that, the particle has a velocity with 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, … . , 𝑣𝑖𝐷). Each particle updates its 
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velocity and position during the movement based on its neighbours. The pbest and gbest 

obtained from the best population is known as the best position for the particle. These 

pbest and gbest help the PSO to search for optimal solution as it signifies the best swarm 

particle. The equation shown below illustrates how the PSO searches for optimal solution. 

𝑥𝑡+1 =  𝑥𝑖𝑑
𝑡 + 𝑣𝑖𝑑

𝑡+1 3-1 
  

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡 ) 3-2 
 

In the evolutionary process, t serves as the tth iteration while dth is represented in d ϵ 

D within the search space. In order to control the impact of previous velocities, the inertia 

weight (w) is used. The 𝑐1and 𝑐2 show the acceleration constant. The random values 𝑟1 

and 𝑟2 are generally distributed in terms of [0, 1]. The 𝑝𝑖𝑑 and 𝑝𝑔𝑑 indicate the value of 

pbest and gbest in the dth dimension. The maximum velocity, 𝑣𝑚𝑎𝑥 and 

𝑣𝑖𝑑
𝑡+1ϵ [−𝑣𝑚𝑎𝑥,𝑣𝑚𝑎𝑥] predefines the velocity. After all the predefined criteria are met, the 

algorithm is stopped. It then shows the best fitness value or the maximum number of 

iterations that have been set.  

3.5.4 Distinctive features between application 

This type of feature selection was motivated by the aim of conducting an experiment 

that calculates the range of the features noted in Android applications (malware and 

benign) and its effectiveness in detecting malware. For instance, malware applications 

would request more dangerous permissions than benign applications. 
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3.6 Summary 

This chapter has explained some related and important static analysis tools which can 

be used to improve the effectiveness of analysing the applications structure. Addressing 

the advantages and functionality of these tools is important because the outcome of the 

current study is used as a guideline to construct an analysis process which aids in finding 

the relevant features for malware detection systems. The subsequent chapter discusses the 

framework of the proposed system along with its different modules and the rationale 

behind it. 
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CHAPTER 4: RISK ANALYSIS AND MALWARE DETECTION: THE 

FRAMEWORK 

This chapter provides the details of the proposed framework that serve as a system that 

able to detect malware applications and also identify their risks. This framework was 

derived from two approaches: the machine learning approach and the risk assessment 

approach, both of which were used in combination with other selected methods and 

models. The proposed framework is necessary for detecting malware risks thereby 

protecting mobile device users. This chapter also explains the procedure of the malware 

detection process as well as the rationale behind the implementation of framework. The 

chapter also provides a detailed overview of the main and sub-models used to support the 

proposed framework.  

4.1 EZADroid framework 

The proposed framework attempts to identify whether the Android applications are 

malware or benign by using the Intrusion Detection System (IDSs) and risk assessment 

to detect malware and assess the risk level of applications posed to users. It is very 

important to choose the appropriate approach when dealing with the technical aspects. 

This study proposes to develop an EZADroid framework that is represented in Figure 4.1. 

The system is capable of detecting and analysing Android applications in mobile devices 

as well as on Web browsers. The proposed framework contains the following benefits: 

i. User awareness: This framework is designed to identify malware applications.  

ii. Web module: This framework contains different models including malware 

detection and risk analysis models to satisfy the objectives of this study. 

iii. Signature approach: This framework relies on signatures; it examines the 

collected information which allows the framework to identify which 

applications act and look like malware. 
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iv. Response: This framework comes with a risk assessment approach which 

poses itself as a passive response to users until the threat is reduced. 

v. Intelligent: This framework detects and analyses the malware including the 

effective responses given to users, based on risk levels. 

vi. Scalability: This framework applies the machine learning model to classify 

Android applications as malware or benign. The system administrator has the 

capability to access the back end of the system which extends the framework 

to meet the current demand in detecting the malware applications. For instance, 

updating the model by re-training via the use of the machine learning classifiers 

and adding more functions to the system. As a result, the system becomes more 

effective in detecting Android malware applications.  

The proposed framework is established through the combination of three (3) 

components: webpages, mobile devices and server. With the aid of the IDS, the risk 

assessment approach and the machine learning approach as noted in the previous chapters, 

the server thus acts as a model. It then supports the procedures for selecting the relevant 

features for malware detection by using the machine learning algorithms. Additionally, 

the server plays several important roles such as collecting dataset, analysing results and 

responding to users with the results.  

The web pages offer online malware analysis services specifically for Android 

applications. This web pages are considered as a comprehensive online security service 

that is capable of identifying suspicious and malicious applications by using the static 

analysis technique. The technique analyses the applications with the machine learning 

algorithms. These web pages service users and security researchers by identifying their 

Android applications as malware or benign. Users activate this service by submitting their 

Android applications to these web pages through their personal computers.   
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Figure 4.1: EZADroid Framework 

Mobile devices are designed such that they able to assess the application risks and 

detect Android malware on mobile devices. Part of the EZADroid system offers a risk 

assessment and detection approach which utilizes applications that monitor the static 

analysis and is capable of protecting mobile devices from threats. Even though the 

detection and risk assessment works with the server, all the results obtained from scanning 

the applications are returned to users. These results also indicate the risk level of the 

threats and the ratio number of positives detected.  

Servers are built with an IDS and a risk assessment approach. The main advantages of 

this server is that the submitted Android applications are analysed through the static 

analysis and risk analysis model, reducing the chance for a malware to attack users. In 
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addition, it is capable of collecting data, detecting the result and responding to users. The 

heavy process of identifying the malware is done on the server and the responses are sent 

back to users through the mobile devices or web pages. In this way, it is able to reduce 

processing time and consumption of resources. 

The similarity in these three (3) parts is that they implement static analysis which is 

responsible for analysing the apk files of the application and for extracting related 

features. The apk files from mobile devices and web pages are sent to the server which 

extract the features of the applications. All the extracted features are then collected and 

stored in a database at the server for analysis purposes. The analysis helps to ensure that 

the mobile devices and the apk files are clean from malicious activities. This process is 

performed by submitting data to the machine learning model that is prepared offline by 

the system administrator.  

 This model is produced by training thousands of malware and benign applications 

using selected extracted features. These features are then fed into the machine learning 

algorithms. The best algorithms are selected based on their performance and accuracy. 

The entire process is able to create a good detection model which placed at the server 

module to determine the cleanliness of the new apk files which submitted by the mobile 

devices and web pages. All the results obtained from analysing the apk files are then sent 

back to the mobile devices and web pages. To ensure the accuracy and durability of the 

results, the system administrator accesses the server directly. It helps to maintain and 

update the model whenever it is required. The detailed process of creating the model and 

for testing the effectiveness of the model is discussed in the next chapter 
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Figure 4.2: Layer Framework of the EZADroid System 

Figure 4.2 depicts the structure layer of the EZADroid. Each layer represents a 

function within the respective system. There are four (4) structured layers: web pages, 

mobile devices, server and responses. Each layer has its own specific action to make sure 

the process functions effectively. For instance, the application programme interface layer 

in the mobile devices and Webpages perform activities such as collecting and submitting 

the apk files to the server. These activities continue at the server when dissecting the apk 

files and extracting the features through static analysis. These structured layers are 

important in presenting the flow process of the EZADroid. Figure 4.3 depicts the flow 

process and the layers of interactions.   
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Figure 4.3: Layer Interactions 

4.2 Machine learning classifiers 

It is important to determine the best machine learning classifiers for Android malware 

detection because it able to produce models that can analyze more complex data and 

deliver faster results. This section discusses the output gained from the machine learning 

classifier. The output is derived from the results that were extracted after training and 

testing the sample dataset which comprised the malware and the benign dataset.  

In this study, 10-fold cross validations and split percentages were conducted to 

evaluate the performance of the machine learning classifiers for the collected dataset. The 

10-fold cross validations were used to construct 10 identical instances in the dataset. 

Finally, the results from each of these instances were combined into one composite final 

result. The significance of using the 10-fold cross validations is that they are able to 

produce a realistic result. 
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4.3  Evaluation measure 

This section identifies the common evaluative measures noted in the research 

community. The effectiveness of the malware detection system is assessed based on 

accuracy, true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), f-

measure, precision, and recall  through the evaluation measures used (Narudin et al., 

2016; Razak et al., 2017). In this study, the standard metrics were used to evaluate 

malware detection. A true positive (TP) refers to an instance where the detection is 

correctly noted as malicious. The higher the true positive, the better the result. A false 

negative (FN) represents an instance where the detection is incorrectly noted as benign. 

A true negative (TN) is a benign application detected correctly as benign. A false positive 

(FP) is a benign application detected incorrectly as malicious, as shown in Table 4.1.  

Table 4.1: IDS confusion matrix 

  Prediction Condition 
  Prediction positive Prediction negative 

Actual Condition positive True positive (TP) False negative (FN) 
 Condition negative False positive (FP) True negative (TN) 

  

TPR, also called recall rate, is defined as:  𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 4-1 

TN) is defined as:  𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 4-2 

FPR is defined as:  𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 4-3 

False negative rate (FNR) is defined as: 𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
 4-4 

Accuracy is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 4-5 

Precision is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 4-6 

F-measure is defined as: 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 𝑥 𝑇𝑃𝑅 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃𝑅+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 4-7 

With the formula provided in assessing accuracy, the section below discusses the 

evaluation measures as demonstrated in Table 4.2.  
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Table 4.2: Evaluation measures 

Evaluation 
measure 

No. of tested 
apps 

Type of 
analysis 

Year Reference 

True positive 
rate 

800 Dynamic  2015 (Gheorghe et al., 2015) 
1738 Static  2012 (Wu et al., 2012) 
2000 Static  2013 (Yerima et al., 2013) 
6863 Static 2015 (Suleiman Y. Yerima et 

al., 2015) 
True negative 

rate 
1100 Static  2014 (Deshotels et al., 2014) 
2000 Static  2013 (Yerima et al., 2013) 

False positive 
rate 

1000 Dynamic 2014 (Narudin et al., 2016) 
1257 Dynamic  2013 (Feizollah et al., 2013) 
120 Dynamic  2012 (Dini, Martinelli, 

Saracino, et al., 2012) 
False negative 

rate 
1100 Static  2014 (Deshotels et al., 2014) 
2000 Static  2013 (Yerima et al., 2013) 

Accuracy 800 Dynamic 2015 (Gheorghe et al., 2015) 
1738 Static  2012 (Wu et al., 2012) 

Precision 1000 Dynamic  2014 (Narudin et al., 2016) 
174971 Static  2015 (Cen et al., 2015) 

F-measure 1000 Dynamic  2014 (Narudin et al., 2016) 
1738 Static  2012 (Wu et al., 2012) 
800 Dynamic  2015 (Gheorghe et al., 2015) 

 

From the information given above, it shows that evaluation measures and the number 

of dataset used have a significant role in measuring the malware detection system. 

4.4 Area under curve (AUC) performance 

The area under the ROC curve, known as area under the curve (AUC), is widely used 

in optimising the problem and for weighing classifier performance on malware dataset. 

The AUC results identified were able to measure the detection approach as good or bad. 

An area of 1 indicates perfect prediction while an area of 0.5 indicates a bad prediction. 

The AUC levels were listed as: 0.9-1.0 = perfect prediction; 0.8-0.9 = excellent 

prediction; 0.7-0.8 = good prediction; 0.6-0.7 = fair prediction; and 0.5-0.60 = poor 

prediction. Table 4.3 defines the AUC threshold which describes the performance of 

malware detection  system (Narudin et al., 2016). 
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Table 4.3: AUC performance threshold 

Threshold Description 
1.0 Perfect prediction 
0.9  Excellent prediction 
0.8 Good prediction 
0.7  Mediocre prediction 
0.6 Poor prediction 

 

4.5 Summary 

This chapter has illustrated the proposed framework that was developed for this study. 

It also described the characteristics of the proposed framework. The schematic 

presentation of the proposed framework and its major layers of interactions were also 

noted in the proposed EZADroid. This chapter also described the layers of interactions 

that occurred between the modules (i.e. web pages, mobile devices and servers) by 

explaining the functional and non-functional characteristics of the main components of 

the framework. Added to this is the highlight of several significant features of the 

framework. The next chapter explains the comprehensive experiments conducted in the 

proposed EZADroid.
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CHAPTER 5: EVALUATION OF RISK ANALYSIS AND MALWARE 

DETECTION FRAMEWORK 

This chapter presents the performance of the evaluation methods which were used to 

evaluate and validate the execution performance of the proposed framework. The novelty 

of the framework is its ability to assess the risk of Android applications and to detect 

malware on mobile devices by sending them to the servers for processing. The process 

helps to reduce the resource consumption on mobile devices and avoid heavy processing 

issues. In this framework, all the detection processes were performed on the server 

without affecting the mobile device resources. The aim of this chapter is thus to evaluate 

the proposed framework in terms of validity and feasibility. The evaluation is carried out 

to verify how well the system meets the research objective.  

Four (4) experiments were conducted on the proposed framework. These experiments 

involved the static analysis technique (bio – inspired analysis, features selection, time 

based detection and risk analysis). The first experiment describes the static analysis 

procedure. It analyses Android permissions for malware detection by using bio-inspired 

algorithms. The second experiment is also performed on Android permissions to see how 

feature selection plays an important role in determining the performance measures of 

malware detection. The third experiment discusses how future malware can be predicted 

by using time-series analysis. The fourth experiment assesses the risk of Android 

applications on mobile devices. The assessment produced are returned to users as a 

response. 

5.1 Dataset descriptions  

This section describes the collection of the dataset. The dataset is important; they are 

an integral and critical part of the research process. The dataset paves the way for 

understanding the malicious and benign activities. Upon further examination, the dataset 
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is then analysed and the results are used for predicting future events in Android malware. 

The growth of Android malware comes hand in hand with the proliferation of online 

repositories. 

5.1.1 Malware Genome Project 

The Android Malware Genome Project is a malware repository that focuses on the 

Android platform. Its aim is to characterise existing Android malware. The samples of 

this study were collected from August 2010 to October 2011. The total samples collected 

contained more than 1,200 malware samples that come from 49 malware families. This 

number covers the majority of the existing Android malware families. Zhou and Jiang 

(Zhou et al., 2012) had characterised the samples from various aspects including their 

installation methods, activation mechanisms as well as the nature of their carried 

malicious payloads. These characteristics of the dataset have been published by Zhou and 

Jiang (Zhou et al., 2012).  

5.1.2 Drebin 

Drebin dataset are made publicly available by the MobileSandbox project (Arp et al., 

2014). They are considered the largest available malware dataset. The dataset collected 

from Drebin came to a total of 5,560 malwares which were composed of 179 families.  

The samples were collected between August 2010 to October 2012. The dataset was 

published as a means of filling in the gap for Android malware detection where malware 

dataset was required for experimental purposes. This malware dataset was used in the 

experiments which help in developing a more effective malware detection system. Prior 

to use, this dataset was scanned by anti-virus applications. The results showed that 90 

percent of the samples detected were malware. Drebin is well-accepted among 

researchers (Karim, 2016;  Feizollah et al., 2017) and previous studies (Firdaus et al., 

2017; Feizollah et al., 2017) had also used similar dataset. 
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5.1.3 AndroZoo 

AndroZoo comes from the Android Applications which were sourced from several 

sites such as the official Google Play app market. It contains 5,416,421 different 

applications and each application was analysed by 70 of different AntiVirus products so 

as to distinguish them as  malware (Allix et al., 2016). This dataset contributes to the new 

potential research in Android malware detection. Figure 5.1 shows the interface of the 

AndroZoo website published by the University of Luxembourg.  

 

Figure 5.1: Website of AndroZoo 

Figure 5.1 illustrates the AndroZoo website which provides access to researchers to 

download Android applications. The website also provides labels with their respective 

results for each apk. This type of result is important to researchers as it helps to ensure 

the validity of the apk by indicating whether they are malware or benign applications. 

This contributes to the efficiency of the system.    

5.1.4 Google Play store 

Google Play store is Google’s official market source for Android applications and 

downloads (Google, 2017). It contains more than one million applications including 

games. Google Play store is a wide resource which allows researchers to search for 

specific dataset using keywords or by browsing applications in the Google Play library. 
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Most of the applications in this store are free for downloads. Some of applications need 

to be purchased as they contain more functions. This store is suitable for collecting  

benign applications because Google Play store provides an automated antivirus system 

known as Google bouncer (Tam et al., 2017). It has the capability to scan both the new 

and existing applications for malware and benign.   

5.1.5 Benign dataset 

To collect the benign dataset, clean applications from AndroZoo were gathered (Allix 

et al., 2016). In this study, the experiment only used benign applications taken from 

Google Play. This is because each submitted application must go through Google Bouncer 

before it is available for downloading. In addition, Google is continuously updating and 

improving the effectiveness of Google Bouncer which is responsible for the analysis of 

any malicious applications. Google Play applications have been  categorized into 27 main 

categories while the games have been  categorized into 17 subcategories (Feizollah et al., 

2017). To ensure cleanliness, all the applications were scanned on VirusTotal and then 

analyzed by 70 of different AntiVirus products such as Avira, Comodo and AVG 

Technologies. Additionally, only applications with a score of 0/50 were used for the 

experiments as this indicate that there is no positive number for the malicious activities. 

By doing this, completeness of the genuine benign dataset is confirmed.   

5.2 Experiment I: Evaluation of bio-inspired 

The leaking of sensitive data on Android mobile devices poses serious threats to users. 

It occurs when unscrupulous attacks violate the privacy of users. However, detecting the 

attack is challenging due to the similarity of the permissions noted in malware and benign 

applications. This experiment aims to evaluate the effectiveness of the machine learning 

approach for detecting Android malware. In this experiment, we applied the bio-inspired 

algorithm as a feature optimisation technique for selecting the relevant permission 

Univ
ers

ity
 of

 M
ala

ya



75 

features that are able to identify malware attacks. A static analysis technique combined 

with machine learning classifiers was then developed from the permission features noted 

in Android mobile devices. This is used for detecting the malware applications. This study 

compares the bio-inspired algorithms (particle swarm optimisation (PSO) and the 

evolutionary computations with information gain as a means to detect the best feature 

optimisation technique in selecting the features. 

5.2.1 Experiment setup and procedure description 

In implementing a mechanism for Android malware detection, a machine learning 

approach which trains the sample dataset to learn the behaviors of the benign and malware 

applications was developed. The mechanism was also implemented to determine the 

severity of new applications as malware or benign.   

The main components of the Android malware detection system are presented in 

Figure 5.2. Here, three (3) components are noted in the detection architecture. They 

include data collection, machine learning, and the database. The system describes the 

relationship between the components and the purpose of each component. Data collection 

begins by gathering all the permissions which include benign and malware applications. 

The process includes decompiling the apk file. This is followed by the process which 

extracts and filters the permissions. All the collected permissions are stored in a readable 

format and saved as a .arff file. This file contains all the feature attributes that are used 

for the feature optimisation approach. This approach is able to exclude irrelevance and 

noise in the dataset (Kumar et al., 2014). In the context of this experiment, the bio-inspired 

algorithms (particle swarm optimization (PSO) and evolutionary computation) and 

information gain play the role of identifying and selecting the best features. The main 

purpose of using the three (3) features optimisation technique was to locate the difference 

between the bio-inspired algorithms and the non-bio-inspired algorithms. The database 
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noted here also stores a collection of data and results. Figure 5.2 illustrates the malware 

detection architecture.  
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Figure 5.2:  Malware detection architecture 

In this experiment, data collection and the feature optimisation process are important 

for detecting malware. Specifically, the data collection process obtains the benign and 

malware behavior data from the application permissions. It then sends the information to 

the database. Here, the data are filtered based on the permission and package names. This 

filtering is important because it helps to ensure that the duplicate applications and features 

(used permission) are removed from the database. The filtered features are then sent to a 

machine learning process for the feature optimisation which provides the number of fold 

values for each permission. 

5.2.2 Data collection phase 

This section discusses the data collection process which compiles the benign and 

malware applications (.apk) datasets. The samples chosen for this experiment were 

randomly drawn from the Drebin and AndroZoo dataset. The dataset retrieved from 

AndroZoo was confined to the applications drawn from Google Play store. Table 5.1 

depicts the summary of the dataset.  
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Table 5.1: Dataset summary 

Dataset Source Total used in experiments 
Benign Androzoo 3500 

Malware Drebin 5000 
Total 8500 

 

a) Decompiling the apk file 

This process begins by collecting the benign and malware applications which 

amounted to 8,500 samples dataset with 5,000 being malware and 3,500 being benign 

applications. The benign applications were downloaded from AndroZoo which belongs 

to Google Play store. The samples comprise a collection of more than three (3) million 

applications (Allix  et al., 2016). Figure 5.3 illustrates the process of the data collection.  

In the figure, the AndroidManifest.xml file is shown to contain essential information 

regarding the application information such as activities and permission. All the extracted 

permission must be labelled before they are stored in the database as a .arff file. The value 

of the permission is stored as a binary number (0 or 1).   

Data Labeling

.arff file

Static Analysis

Decompile .apk file

Process 
AndroidManifest.xml

Extract Permission

Benign

Malware

 

Figure 5.3: Data collection phase 

For further investigation, feature optimisation was used. This helps to gain the best 

features among the 378 lists of permissions. Table 5.2 tabulates the top 10 permissions 

noted in the benign and malware applications.  
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Table 5.2: Top 10 permission in benign and malware applications 

Benign application Percentages 
(%) 

Malware application Percentages 
(%) 

INTERNET 94 INTERNET 80 
ACCESS_NETWORK_STATE 88 READ_PHONE_STATE 70 
WRITE_EXTERNAL_STORAGE 

66 
WRITE_EXTERNAL_STORAG
E 49 

WAKE_LOCK 65 ACCESS_NETWORK_STATE 28 
READ_PHONE_STATE 52 SEND_SMS 27 
VIBRATE 

47 
RECEIVE_BOOT_COMPLETE
D 22 

ACCESS_WIFI_STATE 43 ACCESS_WIFI_STATE 21 
ACCESS_FINE_LOCATION 38 WAKE_LOCK 20 
GET_ACCOUNTS 38 RECEIVE_SMS 19 
ACCESS_COARSE_LOCATION 36 READ_SMS 18 

 

From the table, six (6) similar permissions were used in the benign and malware 

applications. They include: ACCESS_WIFI_STATE, ACCESS_NETWORK_STATE, 

WAKE_LOCK, WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE and 

INTERNET. Among the top 10 permissions, four (4) were dangerous permissions such 

as RECEIVE_BOOT_COMPLETE, READ_SMS, RECEIVE_SMS, and SEND_SMS. 

These dangerous permissions occur recurrently in malware applications but infrequently 

in benign applications. Permissions such as WRITE_SMS has the capability of 

subscribing to premium SMS service without user knowledge thereby directly providing 

profit to attackers (Elish et al., 2015;  Somarriba et al., 2016).  Although this study 

implements a large number of sample applications for analysis, the experiment is still 

considered small when compared to real world applications in the Android market. 

Therefore, the outcome is considered as a reflection of the permission trend in Android 

applications today. Figure 5.4 illustrates the total number of permissions requested by the 

benign and malware applications.  
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Figure 5.4: Total number of applications requesting permissions 

The figure shows that malware applications requested more permissions than benign 

applications. It seems evident that malware applications have similar types of requested 

permissions as benign applications but its aim is malicious as it aspires to infect and 

disable the functionality of mobile systems. It is also noted that more than 500 malware 

applications requested only nine (9) permissions as are shown in the graph. This indicates 

that the technique used by an attacker to threaten mobile devices is by using permissions. 

b) Machine learning phase 

The use of the machine learning approach is to ensure that mobile device users are able 

to optimise the permission features through the feature optimisation approach. This 

approach reduces time for training and testing; it also reduces overfitting while also 

simplifying the malware detection system. It is also significant to data processing (Kumar 

et al., 2014). Inevitably, feature optimisation is a crucial core for building any malware 

detection system (Zhang et al., 2003). Without a good knowledge of the classifications, 

users will find it challenging to identify which features are relevant when detecting 

malware.  
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As a consequence of this, the dataset will contain redundant, irrelevant and relevant 

features. These features, if not attended to, can reduce the classification performance. To 

resolve this problem, feature optimisation was thus applied as a measure of improving the 

accuracy of experiments thereby serving as an effective component in the malware 

detection system (Ahmad, 2015). Feature optimization also has the ability to optimise the 

evaluation measure (Kumar et al., 2014).  

Figure 5.5 summarises the selection of the significant features for Android malware 

detection. The feature optimisation approach was applied by using a specific metric which 

computes and returns a score for each feature individually (Shabtai et al., 2012). This 

process helps the feature optimisation approach to acquire significant features through the 

best accuracy rate coupled by the lack of over-fitting. The process begins with the 

cleaning of the dataset. This involves removing irrelevant and redundant features. 

Features optimization

Feature Refining

PSO, 
Evolutionary,Info Gain

Data Cleaning

Randomize

Features Evaluation

.arff file

Best
 Features

All 
Permission

 

Figure 5.5: Machine learning phase 

The next step of the experiment uses WEKA to acquire data randomisation which 

balances and controls the dataset. Doing so enhances the optimal sensitivity of feature 

optimisation. In this study, the bio-inspired algorithms (PSO) and the evolutionary 

computation algorithms were compared with information gain for feature optimisation. 

Figure 5.6 shows the result of the comparison. The feature optimisation approach was 

based on the number of folds which totals to more than 90 percent. It is also based on the 
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information gain which uses a ratio of the information gain to select relevant features. 

This study chooses features with ranks ranging from 0 to 0.4 on the information gain. The 

PSO algorithm and information gain have 11 features while the evolutionary computation 

has 13 features. Here, it is seen that the number of the selected features is totally 

dependent on the type of algorithms used. The PSO algorithms carry a high performance 

in detecting malware. Table 5.3 lists the permission features noted after PSO was adopted 

in the approach. 

 

Figure 5.6: Comparison of feature optimisation approach based on number of 
features 

Table 5.3 presents the list of feature permissions that were extracted after using the 

bio-inspired algorithm and PSO as the feature optimization approach. Here, it is noted 

that eight (8) of the 11 permission features belonged to the dangerous levels. These 

features are high-risk permissions which require application permissions to grant access 

and control over the mobile devices.  

For instance, five (5) permissions were similar to the top 10 permissions noted in the 

malware applications of Table 5.2, READ_PHONE_STATE, READ_SMS, 

SEND_SMS, and RECEIVED_BOOT_COMPLETE ACCESS_WIFI_STATE. In this 

context, it is worth noting that the READ_SMS, SEND_SMS, RECEIVED_SMS and the 

BILLING permissions allowed the conveying of billing request and response between 
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applications on a mobile device with the Google Play server. Clearly, these were used by 

attackers to make mobile device users purchase premium rate messages. 

If the user was unaware of this incidence, the permission granted able to incur a loss 

of money for the mobile device user and he user then ends up paying for expensive 

messages which are unrequired. It is also noted that READ_GSERVICES belongs to the 

Android.permission-group.ACCOUNTS. As malicious permissions, they have the 

capability to access the user’s available accounts on his/her mobile device thereby 

incurring financial losses.  

Table 5.3: List of permission features 

List of features Description Protection 
levels 

ACCESS_WIFI_STATE Allows applications to access information 
about Wi-Fi networks 

Normal 

DELETE_PACKAGES Allows an application to delete packages. 
Starting in Nougat (N), user confirmation is 
requested when the application deleting the 
package is not the same application that 
installed the package 

Normal 

READ_PHONE_STATE Allows read only access to phone state Dangerous 
READ_SMS Allows an application to read SMS messages Dangerous 
RECEIVE_BOOT_COMPLETED Allows an application to receive the 

ACTION_BOOT_COMPLETED that is 
broadcast after the system finishes booting 

Normal 

RECEIVE_SMS Allows an application to receive SMS 
messages. 

Dangerous 

SEND_SMS Allows an application to send SMS messages. Dangerous 
WRITE_APN_SETTINGS Allow an application to change network 

setting, interpret and intercept all the network 
traffic 

Dangerous 

WRITE_HISTORY_BOOKMARKS Allows an application to write (but not read) 
the user's browsing history and bookmarks 

Dangerous 

BILLING Allows sending In-app Billing request and 
managing In-app Billing transaction using 
Google Play 

Dangerous 

READ_GSERVICES Allows this app to read Google service 
configuration data 

Dangerous 
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Further, the WRITE_APN_SETTINGS also seems to allow the malware applications 

to monitor, redirect or modify the network packet without the user’s knowledge. The 

WRITE_APN_SETTINGS permission is used by malware to steal Transaction 

Authorisation Codes (TAC) during the communication between mobile devices and 

online banking transactions (Feizollah et al., 2017). To conclude, the list of permission 

features is comprehensive for malware detection since it contains malicious activities. 

5.2.3 Evaluation and results 

To evaluate the performance of the machine learning approach in detecting Android 

malware and to ensure that the machine learning approach generate a complex analysis 

of the permissions, this study conducted another experiment on two (2) public Android 

application dataset. Here, the benign applications comprise 3,500 randomly selected 

samples taken from the AndroZoo database which were downloaded only from Google 

Play Store. The 5,000 malicious Android application dataset came from Drebin. The total 

number of evaluations made for the Android applications thus amounted to 8,500.  

a) Machine learning performance 

This section provides part of the result taken from the experiment conducted. These 

applications were mixed together for training and testing the dataset.  To train and test the 

models for machine learning, the parameters including the cross-validations need to be 

set. Table 5.4 illustrates the variation of the detection performance of machine learning 

as seen in the various categories of classifiers.  

The detection performance of five (5) classifiers for Android malware detection is 

presented above. Each classifier performance was evaluated through five (5) performance 

metrics such as f-measure, recall, TPR, precision and FPR. The table indicates that the 

PSO presents a better performance when compared to evolutionary computation and 

information gain. It can also be noted that AdaBoost on the PSO provides a good detection 
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performance of 95.5 percent for TPR. The average TPR for each classifier was noted to 

be higher than 90 percent. Table 5.4 clearly shows that the machine learning approach is 

effective in detecting malware such as random forest, multi-layer perceptron, K-nearest 

neighbors, AdaBoost and J48. Therefore, it is worth noting that feature optimisation has 

a significant role in identifying the relevant features. This experiment evaluated the ROC 

curve, based on the PSO results for the classification accuracies, as explained below.  

Table 5.4: Detection performance results 

Features 
optimization 

Classifier TPR 
(%) 

FPR Precision 
(%) 

Recall 
(%) 

F-Measure 
(%) 

 

PSO 

Random Forest 93.6 0.15
5 

89.6 93.6 91.6 

MLP 91.9 0.13 90.6 91.9 91.2 
kNN 93.7 0.15 89.4 93.7 91.5 

Adaboost 95.6 0.32 81 95.6 87.7 
J48 93.1 0.16 89 93.1 91 

 

Evolutionary 
computation  

Random Forest 88.6 0.09 93.3 88.6 90.9 
MLP 88.5 0.09 93.3 88.5 90.8 
kNN 88.7 0.09 93.2 88.7 90.9 

Adaboost 88 0.11 91.8 88 89.8 
J48 88.4 0.09 92.8 88.4 90.6 

 

Information 
gain 

Random Forest 90.1 0.11 91.7 90.1 90.9 
MLP 90.1 0.11 91.8 90.1 90.9 
kNN 90.3 0.11 91.7 90.3 91 

Adaboost 87 0.1 92.1 87 89.5 
J48 89.9 0.11 91.5 89.9 90.7 

 

b) Receiver operating characteristics curve (ROC) 

Focussing on the TPR, it is observed that the receiver operating characteristic curve 

(ROC) is a technique used for visualising the evaluated performance.  This has been used 

in machine learning and data mining approaches (Fawcett, 2006). This technique also 

provides reliable information about the performance: the closer the apex of the curve is 

towards the upper left corner, the better the performance. In the context of this 

experiments, the ROC curve was used to measure the quality and the effectiveness of the 
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prediction classifiers. Figure 5.7 illustrates the tradeoff between the TPR and FPR. Cross 

validations with 11 features were applied on five (5) classifiers. The left corner represents 

the percentages of the samples which were correctly detected as malware. This statistic 

indicates the high performance of the occurrence. The results further confirmed that the 

experiments conducted had achieved high accuracy rates with minimal false alarms. Here, 

the curve is also indicated at the top border of the ROC curve. The five (5) classifiers 

demonstrate the good results of the ROC curve because it turned towards the upper left-

hand corner of the plot. 

 

Figure 5.7: Performance of ROC curve 

The multi-layer perceptron (MLP) outperformed all the classifiers. This shows that the 

MLP is effective in predicting any case as positive (malware). It also appears to be 

presenting an acceptable accuracy rate. The MLP is typically designed to minimise error 

rates; it measures how far the threshold to each sample training falls from its ideal value. 

Other classifiers such as AdaBoost, J48, KNN and random forest also provide good 

measures in mobile malware detection.  

Table 5.5 lists the results of the AUC that was taken from the experiment which uses 

five (5) classifiers. Here, all the five (5) classifiers showed excellent prediction rates thus 
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the AUC values were acceptable for detecting mobile malware in the Android platform. 

This experiment specifically performed 10 cross validations which showed that the MLP 

classifiers had accomplished high detection accuracy. This performance is comparable to 

the random forest thereby indicating that the selected features were effective in detecting 

malware. 

Table 5.5: Results of AUC 

Classifier AUC  Level 
MLP 0.958 Perfect prediction 
RF 0.957 Perfect prediction 

KNN 0.956 Perfect prediction 
J48 0.945 Perfect prediction 

AdaBoost 0.932 Perfect prediction 
 

c) Empirical assessment 

The experiment applied in this study is similar to Allix  et al. (2016). In the steps that 

followed, the approach was validated by using different parameters that were involved in 

the measurement process. In this regard, the current study used the results of the PSO 

because the results showed the best performance, with a minimum number of features. 

All the results of the testing process were saved into an .arff file. These were then saved 

again into the .csv file in order to get a result that bears consecutive numbers. Following 

that, the consecutive numbers were generated into box plot graphs for experimental 

assessment purposes. 

The PSO experiments were run with 10-fold cross-validation experiments using a few 

types of performance metric to validate the performance of the Android malware 

detection approach. The validation of the experiments assessed five (5) classifiers of the 

machine learning model. Figure 5.8, Figure 5.9 and Figure 5.10 illustrate the results of 

the validation test for precision, recall, and f-measure. Each boxplot splits the result into 

a quartile. The boxplot size is made from the 25 percent score which depicts the minimum 
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value to the maximum value of the whisker. The results suggest that majority of the five 

(5) classifiers had revealed a high precision rate with an average value of over 0.89. The 

average value for the recall performance was at 0.63, demonstrating that 80 percent of the 

classifiers had a recall value that is equal or higher than 0.63. It also shows that five (5) 

classifiers were going from 0.0 to 1.0. In particular, the precision and recall value and the 

f-measure achieved a value of 0.72. All these results are important for measuring the 

performance of the classifiers in detecting malware.  

The increase of the precision rate indicates that the classification of the machine 

learning model is related to the low positive rate. It also shows an accurate result when 

detecting malware. However, the high recall shows that the malware applications have 

similar features to the benign applications. Thus, it was concluded that the results indicate 

an accuracy precision that carries a high recall value. In short, it is effective in detecting 

malware accurately.   

 

Figure 5.8: Precision 
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Figure 5.9: Recall 

 

Figure 5.10: F-measure 

This assessment is important for Android malware detection because the benign 

samples are more than the malware samples in real situations. The assessment implies 

that researchers require more malware samples with known features so as to be able to 

increase the performance evaluation for detecting malware. 
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5.2.4 Discussion 

This section presents the discussion of the findings that are related to malware 

detection in brief. As has been mentioned, this study performs malware analysis by using 

a machine learning approach to detect Android malware. In doing so, it also considered 

other issues which helped the experiment to achieve a good performance evaluation 

during the Android malware detection. The first issue concerns feature collection. This 

issue was viewed as complementary to other studies. It appears that the performance 

evaluation had greatly benefited from the higher sets of data. The larger dataset would 

also give more features thus requiring more resources and constraints on the model. 

Therefore, the implication drawn from this study is that focus should be given to 

developing better features to increate malware detection performance.  

This study also examines the role of the bio-inspired algorithm and the non-bio-

inspired algorithm for feature optimisation. The results indicate that particle swarm 

optimisation (PSO), as compared to evolutionary computational and information gain, 

leads to better feature characterisation. This improves the performance evaluation of 

Android malware detection. It further shows that if the machine learning approach is 

unable to identify malware correctly, then the feature characteristics have not been 

selected properly. Besides that, any malware application should have some special 

characteristics before being defined as malware. Therefore, to detect more malware, a set 

of fine grain features need to be collected. This study collected 378 features from 8,500 

Android applications but only 11 selected features were presented. Based on this, it can 

be concluded that fine grain features play an essential role in performance evaluation.  

The second issue of this study relates to the machine learning approach. This study has 

applied several machine learning classifiers for the purpose of identifying the reliable 

predictive correlation in detecting malware. The experiment is important for the purpose 
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of finding effective classifiers that able to predict Android malware. The experiment 

showed that the AdaBoost outperforms the other machine learning classifiers.  

The third issue of this study relates to the training samples which clearly still served 

as the major challenge in Android malware collections. It is deduced that more training 

samples are able to improve the accuracy of the classifiers in malware detection. 

Therefore, genuine malware dataset ought to be identified and researched for the purpose 

of sharing the outcome with the public and guided by some rules. This contribution can 

lead to more discoveries and so provide more improvement for areas related to Android 

malware detection. Nonetheless, all outcomes tend to depend on the goals of a research 

that is whether to detect new malware or signatures. In order to detect new malware, a 

study would require the latest dataset because attackers are constantly updating their 

techniques to steal information from mobile device users.  

5.2.5 Conclusion 

This study has presented the performance of the evaluation approach in detecting 

Android malware. The study used a machine learning classifier to identify the relevant 

permission features which were used to evaluate the learning types of classifiers. The 

study also used the ROC curve and the TPR to determine the effectiveness of the 

classifiers. This study has evaluated various categories of machine learning classifiers 

which were expected to improve the Android malware detection performance. For this 

purpose, large training samples were extracted and the most effective classifiers were 

identified. They include Random forest, J48, K-nearest neighbors, Multi-layer 

perceptron, and AdaBoost.  

In all the experiments performed, a dataset consisting of real Android malware and 

benign sample applications were considered. In particular, this study evaluated a total of 

5,560 malware samples drawn from Drebin and a total of 3,500 benign applications 
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collected from the Androzoo dataset. This experiment also used the static analysis 

technique to differentiate the benign and malware applications. The machine learning 

process comprised three (3) phases: (1) feature optimisation; (2) trained classifiers; and 

(3) the evaluation of machine learning classifiers.  

The experiment results indicate a 95.6 percent detection rate for the TPR when using 

AdaBoost classifiers on the Drebin malware samples which were analysed using the PSO 

feature optimisation. The results also showed that the experiment which used the machine 

learning model had achieved a higher accuracy rate. Moreover, the evaluation of the 

machine learning approach in the experiment also indicated its efficiency in detecting 

Android malware. This proves that machine learning classifiers have the capability to 

detect the latest Android malware. Hence, it concluded that the greatest gains in detection 

performance will continue to be derived from an improved feature optimisation technique 

and from learning classifiers that are more efficient in detecting malware cases. 

The significance of this study lies in use of the latest Android data collection and the 

evaluation of the different classifiers. Additionally, the results of the performance 

evaluation also showed that this mechanism as proposed by the current study, has the 

potential to detect well-known Android malware. 

5.3 Experiment II: Evaluation of machine learning classifiers 

In order to address the security concerns contained within Android applications, 

Experiment II introduces a novel machine learning approach which aims to detect 

malware by using the permission patterns used by Android applications with minimal 

features. The approach is based on the static analysis of the resource file of Android 

applications. The aim is to obtain permission patterns. For the sake of improving the 

detection accuracy rate, this study also used relevant features in minimal amounts. 

Specifically, this experiment applies permission features and the machine learning 
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approach to detect Android malware. For the purpose of evaluating the effectiveness of 

the proposed approach, this experiment compares the achieved results with results 

extracted from a baseline Android detection which uses a similar level of permission. 

5.3.1 Experiment setup and procedure description 

The methodology of Experiment II as performed in the current study is illustrated in 

Figure 5.11. Three (3) phases are involved: data collection, feature extraction and 

refining. These phases will help the experiment to select the relevant features noted 

among the overall features so that the effectiveness of the approach can be conducted. 

Here, the comparative analysis was used to detect the unknown malware. This is done by 

using the four machine learning classifiers of random forest, MLP, KNN and J48.  

AndroidManifest.xml

Readable file

Extract required permission Remove noise

Binary form

List of permission

Check with Android official 
website

Permission description Calculate range of permission 

Evaluate the features

Measure machine learning 
performance

Results

Detection 
model

APK file

Data Collection Features Extraction Evaluation

 

Figure 5.11: Methodology 

Figure 5.11 depicts the construction of the Android malware detection approach based 

on the machine learning model which was implemented for application training and 

testing. It also helps to distinguish the benign applications from malware applications. 

Once the. apk file of an application is submitted, the approach analyses the permission 

and determines whether it is benign or malicious. The detection results, including the 

detailed information gathered from the machine learning performance evaluation, are 

then reported. This methodology is expected to detect unknown malware and to keep pace 
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with the evolution of Android malware. There are two types of experiments. Experiment 

I was conducted by using 12551 samples which include malware and benign applications 

and Experiment II was carried out by using 12551 samples which include malware and 

benign applications but this experiment used the feature selection approach instead. 

5.3.2 Data collection phase 

All the features were collected from the required permission types. A total of 274 

different required permissions were collected from apk files through static analysis. This 

study uncompressed the apk file with Java code. The procedure then focused on the 

AndroidManifest.xml file which helped the experiment to obtain the permissions that 

were required by the applications. For instance, INTERNET served as the permission 

which allowed the applications to open the network sockets. It also allowed the 

applications to access the Internet. As a result of this, attackers were able to use this 

permission to download malware applications and then collect the sensitive information. 

Table 5.6 lists the summary of the dataset used in Experiment I and II. 

Table 5.6: Dataset summary 

Dataset Source Number used in experiments 
Malware Drebin 5551 
Benign Androzoo 7000 

Total 12551 
 

The features of the Android permission were first trained and then classified by using 

relevant features. When the machine learning classifiers have been trained well, some 

kind of regularity should appear in the extracted features. When this occurs, the features 

are then converted into binary forms of malware and benign applications, catering to two 

categorical features (1 and 0). In order to select the relevant features for effective malware 

detection, this study applies a similar feature selection approach that was used by Firdaus 

et al. (2017). In this way, the number of features was reduced from 274 features to 15 
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only. To ensure that there is a unique pattern occurring between the benign and malicious 

applications, it is necessary to look at the relevant features. By using a larger amount of 

data, this study was also able to classify the malware processes with more precision. Table 

5.7 presents the list of permission used by the experiments.  

Table 5.7: Lists of permission 

Permission Description 
ACCESS_NETWORK_STATE Allows applications to access information about 

networks 
ACCESS_WIFI_STATE Allows applications to access information about 

Wi-Fi networks 
GET_ACCOUNTS Allows access to the list of accounts in the 

Accounts Service 
INSTALL_PACKAGES Allows an application to install packages 
READ_CONTACTS Allows an application to read the user's contacts 

data 
READ_PHONE_STATE Allows read only access to phone state, including 

the phone number of the device, current cellular 
network information, the status of any ongoing 
calls, and a list of any Phone Accounts registered 
on the device 

READ_SMS Allows an application to read SMS messages 
RECEIVE_BOOT_COMPLETED Allows an application to receive the 

ACTION_BOOT_COMPLETED that is broadcast 
after the system finishes booting 

RECEIVE_SMS Allows an application to receive SMS messages 
SEND_SMS Allows an application to send SMS messages 
WRITE_SMS Allows an application to write SMS messages 
READ_HISTORY_BOOKMARKS Allows the app to read the history of all URLs that 

the Browser has visited, and all of the Browser's 
bookmarks 

WRITE_HISTORY_BOOKMARKS Allows the app to modify the Browser's history or 
bookmarks stored on your phone. This may allow 
the app to erase or modify Browser data 

INSTALL_SHORTCUT Allows an application to add Home screen 
shortcuts without user intervention 

com.google.android.c2dm.permission.RECEIVE Allows apps to accept cloud to device messages 
sent by the app's service. Using this service will 
incur data usage. Malicious apps could cause 
excess data usage. 
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5.3.3 Evaluation and results 

The best results obtained from the experiments are further discussed. These are 

highlighted in bold in the following tables. The initial results indicate the comparison of 

the outcomes which were obtained from the four machine learning classifiers: random 

forest, MLP, KNN and J48. As this study also used the parameters of accuracy, FPR, 

recall, precision, and f-measure to examine the different measurements, the results are 

simultaneously provided. The results achieved from 30 percent of the testing set which 

used four (4) selected classifiers to perform the experiments are presented in Table 5.8. 

Here, the result illustrates the performance of each of the classifiers used in the two (2) 

experiment sets for the Android malware detection.  

Table 5.8: Comparison with and without features selection approach 

Experiment Classifier Without features selection 
  Accuracy (%) FPR Precision Recall F-Measure 

I 

Random forest 95.1 0.048 0.952 0.951 0.951 
MLP 93.8 0.061 0.939 0.938 0.938 
KNN 94.6 0.058 0.946 0.946 0.946 
J48 93.3 0.073 0.933 0.933 0.933 

 
Experiment Classifier With features selection 

  Accuracy (%) FPR Precision Recall F-Measure 

II 

Random Forest 92.0 0.080 0.921 0.920 0.919 
MLP 91.6 0.084 0.917 0.916 0.915 
KNN 92.0 0.080 0.920 0.920 0.919 
J48 91.5 0.085 0.917 0.915 0.914 

 

In Experiment I, the results showed that random forest classifier had achieved a higher 

accuracy result of 95.1 percent when compared to J48 which achieved only 93.3 percent. 

This outcome indicates that the random forest learning classifier is more effective than 

other selected classifiers in detecting the Android malware. Similarly, the instance-based 

classifier (KNN) also produced a high detection rate of 95 percent accuracy.  
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Table 5.8 illustrates the random forest and KNN classifiers both of which had achieved 

a 92 percent accuracy thus far, the highest precision value noted in the Android malware 

detection. This outcome indicates that feature selection plays an important role in 

determining the effectiveness of malware detection. The value for the FPR when using 

feature selection was also noted to be higher than the value of the FPR which was without 

feature selection. This happened because of the bias noted in the dataset as the benign 

samples have a common pattern as the malware samples. Most of the classifiers observed 

in Experiment II have similar FPR values of 0.08. The value for precision and the recall 

for Experiment I and Experiment II was more than 90 percent. The high precision rate 

indicates that the classifiers produced more relevant results. The high precision rate also 

indicates that the classifiers were producing accurate results, with majority being positive 

results. 

Nevertheless, there are resource constraints on mobile devices, for instance, CPU, 

memory, battery and storage. In this regard, Experiment I and Experiment II were 

conducted based on the time spent by the classifiers. Time spent was tested because it is 

important for the malware detection system to detect any abnormal activity within 

minimal time without affecting the resource consumption on mobile devices. Table 5.9 

shows the comparison of the processing time during the experiments - with feature 

selection approach and without feature selection approach.   

The table Table 5.9 shows that by using minimal and relevant features, the experiments 

were able to improve the model for malware detection. When all the 274 features were 

used in the experiments, random forest classifier was shown to take a longer time to build 

the model, consuming 27.05 seconds. However, by using minimal features after the 

feature selection approach, the time was reduced to 2.27 seconds. 
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Table 5.9: Time taken to produce results (second) 

Experiment Classifier Without features selection 
  Build model Test model 

I 

Random forest 27.05 0.24 
MLP 25.64 0.03 
KNN 0.01 14.35 
J48 7.0 0.01 

 
Experiment Classifier With features selection 

  Build model Test model 

II 

Random Forest 2.27 0.14 
MLP 14.18 0.01 
KNN 0 2.09 
J48 0.29 0.0 

 

In addition, the other classifiers also showed a decrease in processing time following 

the feature selection approach. Consequently, the results imply that when more features 

were used, the processing time taken to build the model also increased. Nonetheless, the 

size of the dataset also played a crucial role in the detection of malware, as this study 

indicates.   

a) Confusion matrix 

A confusion matrix is a table that describes the performance of a classification model. 

In this regard, the table provides two (2) possible predictable classes: “malware” and 

“benign”. For instance, if a model predicts the presence of malicious activities, the result 

would show “malware” and likewise “benign” if it does not detect any malicious 

activities. A confusion matrix also describes the information of the prediction in the 

testing phase as correct or incorrect. Table 5.10 shows the performance of the classifiers 

for the two experiments. 
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Table 5.10: Confusion matrix of classifiers 

Experiment Classifier 
Without features selection 

Actual Predicted 
Predicted malware Predicted benign 

I 

Random Forest Actual malware 1526 134 
 Actual benign 49 2056 

MLP Actual malware 1498 162 
 Actual benign 70 2035 

KNN Actual malware 1537 123 
 Actual benign 81 2024 

J48 Actual malware 1499 161 
 Actual benign 91 2014 

 

Experiment Classifier 
With features selection 

Actual Predicted 
Predicted malware Predicted benign 

II 

Random Forest Actual malware 1421 214 
 Actual benign 88 2042 
MLP Actual malware 1407 228 
 Actual benign 89 2041 
KNN Actual malware 1425 210 
 Actual benign 93 2037 
J48 Actual malware 1398 237 
 Actual benign 84 2046 

 

The statistics above indicate that without using feature selection, the experiment had 

produced correct and magnificent results in predicting the unknown malware, with 1537 

for the KNN classifier. In the incorrectly predicted perspective, the KNN also showed the 

most minimal value whether with or without feature selection. The outcome was 210 and 

123 respectively. Meanwhile, random forest classifier also showed a prominent result in 

predicting malware. Consequently, the outcome suggests that random forest and the KNN 

classifiers were able to predict the unknown malware more accurately.  

b) Receiver operating characteristics curve (ROC) 

In the approach used in this study, the processes were classified as malware and benign 

applications based on the requested permissions. Besides using the performance matrix, 

this study also calculated the receiver operating characteristics (ROC) curve for each of 
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the machine learning classifiers. In this context, the TPR was regarded as the detection 

rate which correctly predicted the malware process and the FPR was regarded as the 

detection rate which incorrectly predicted benign as malware. Figure 5.12 presents the 

curve for the machine learning classifiers. 

 

Figure 5.12: ROC curve 

The horizontal axis in the above figure indicates the error detection rate; the vertical 

axis indicates the detection rate. Four (4) lines represent the individual ROC curve of the 

machine learning classifiers. The ROC curve is difficult to compare because it seems to 

be similar under the same conditions. Therefore, the area under the curve (AUC) was used 

to measure detection accuracy. The AUC results identified were able to measure whether 

the detection approach was good or bad. An area of 1 indicates perfect prediction while 

an area of 0.5 indicates a bad prediction.  

 The average AUC of random forest, MLP, KNN and J48 are 96.4, 95.8, 96.2 and 93.0 

respectively. These results show that the approach applied in this study was able to detect 

the unknown malware processes with high precision. Table 5.11 shows the AUC 

performance.  
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Table 5.11: AUC results 

Classifier AUC Level 
Random Forest 0.964 Perfect prediction 

MLP 0.958 Perfect prediction 
KNN 0.962 Perfect prediction 
J48 0.930 Perfect prediction 

 

Table 5.11 illustrates that the random forest and KNN classifiers provided the best 

AUC value, with over 0.96. This signifies perfect prediction. The MLP classifier was 

next, with 0.958, denoting perfect prediction as well. Finally, the J48 classifier attained 

0.930, which also signifies a perfect prediction. Overall, the ROC curve and the AUC 

values confirmed that the most recent malware experiments had provided compelling 

accurate results in the malware applications detection. 

c) Threshold 

Optimal threshold is defined as the value that best separates the two detection 

distributions that are relative to the malware and benign applications. The threshold value 

is used to determine whether the presence of behavior pattern indicator is malware (1) or 

benign (0). The threshold values for random forest, MLP, KNN and J48  are given in 

Figure 5.13. As the threshold values were obtained based on the real behavior patterns of 

the malware and benign applications, it can be said that the approach used in this study 

was able to detect malware with more than 90 percent accuracy rate. 

Figure 5.13 also shows that the KNN classifier has an optimal threshold of 0.526 

carrying an accuracy of 0.921. This is the point where the malware is finally detected. In 

other words, a threshold value of between 0 to1.0 needs to be seen in the system in order 

for the malicious behaviors to be identified. 
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Figure 5.13: Classification threshold 

Additionally, random forest also showed a similar accuracy as the KNN classifier. 

However, it has an optimal threshold value of 0.462. Thus, among other classifiers, it can 

be said that random forest and KNN both have high detection accuracy for malware 

detection. Therefore, it is deduced that different types of classifiers have different optimal 

thresholds in detecting malware. Table 5.12 shows the result of optimal threshold for 

classifiers. 

 Table 5.12: Optimal threshold 

Classifier Accuracy Threshold 
Random Forest 0.921 0.462 

MLP 0.919 0.504 
KNN 0.921 0.526 
J48 0.916 0.326 

 

d) Robustness 

Besides evaluating the effectiveness of the approach, the robustness of the approach 

for producing more reliable results was also tested. Robustness is a method that 

characterises the effectiveness of the classifier while it is being tested on the new 

independent dataset. In other words, the robust performance of the classifier does not 

deteriorate too much when training and testing the dataset. In addition, this method shows 
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the stability of the approach used; it also demonstrates the good performance of the 

machine learning classifiers. Table 5.13 shows the result of the classifiers’ performance.  

Table 5.13: Performance result 

Classifier Accuracy (%) FPR Precision Recall F-Measure ROC 
Random Forest 91.8 8.1 91.9 91.8 91.8 96.6 

MLP 90.9 9.0 91.1 91.0 90.9 95.9 
KNN 91.6 8.3 91.7 91.6 91.6 96.4 
J48 90.8 9.2 91.0 90.8 90.7 91.5 

 

The results noted above shows that the approach applied in this study was able to detect 

unknown malware with over 90 percent accuracy rate. The comparison of results between 

Table 5.8 and Table 5.13 indicates that the approach has significantly more robustness by 

losing just 0.4 percent and 0.2 percent in accuracy for the random forest and KNN 

classifiers respectively with both drops being very low. 

 Further to that, it can be noted that the time taken to process the dataset when building 

the model was less than the time shown in Table 5.9. This implies that the KNN has the 

lowest model complexity since it uses minimal time to build the model.  The robustness 

of the approach, based on the time taken to produce the model, is presented in Table 5.14 

below. Consequently, it is deduced that to achieve acceptable accuracy and effectiveness 

in classifying unknown malware, robustness is important as it helps to determine the 

performance of the classifiers.  

Table 5.14: Time taken to produce model (seconds) 

Classifier Build model Test model 
Random Forest 2.15 0.18 

MLP 1.78 0.01 
KNN 0 2.1 
J48 0.18 0.01 
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5.3.4 Discussion 

Permission in the dataset were analyzed from the standpoint of the current status or 

importance of the permissions. As mentioned earlier, permission requested has the 

capability to control access to the system’s resources. Each application developer is 

required to declare the permission it needs. This permission is then notified to the user 

during the installation. As a result of the different types of permissions that were available 

and due to the large number of permissions being asked, the Android system becomes 

very complicated.  

Consequently, this offers attackers more access into users’ personal and sensitive 

resources which are available on mobile devices. Therefore, when an application notifies 

the permission request, there is no guarantee that all the permissions are needed in order 

to access the system’s resources. A malicious application can request for more 

permissions than it actually needs. This permission is simply declared in the 

AndroidManifest.xml file where it provides essential information about the application to 

run on the mobile devices. This situation causes the malicious application to gain access 

to all the sensitive resources that are available on the mobile devices, inclusive of contact 

numbers, emails, photos, messages and passwords. When used irresponsibly, this lead to 

big personal and monetary losses to the mobile device user. 

Current dataset indicate that malicious applications had used dangerous permissions 

more than clean applications did. However, clean applications like Facebook stimulated 

extra permissions such as com.facebook.home.permission.WRITE_BADGES and 

com.htc.launcher.permission.READ_SETTINGS which initiate their activities on mobile 

devices. Unlike the clean applications, each malicious application tends to ask for 

dangerous permissions more times. These requests for permissions enable the attackers 

to succeed in hijacking the sensitive information contained in the mobile devices.  
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In view of this threat posed by the malicious applications, it is suggested that mobile 

device users learn about such application risks so that they clearly understand the motive 

behind these requested permissions. This awareness is able to hinder the malicious 

applications from accessing users’ sensitive information. In the context of this study, the 

current dataset was analysed. Findings indicate that the malicious applications had used 

the INTERNET as a medium to collect and transfer the sensitive information to attackers 

who camouflaged their malicious activities by confusing the mobile device users through 

fake installers. This made it easy for the attackers to spread the dangerous threats.   

5.3.5 Conclusion 

This study has highlighted the use of a machine learning approach which can 

effectively detect and analyse Android malware based only on requested permissions. 

The results obtained also offer a better understanding of the information derived from 

examining Android permissions. The crucial aspect of the Android malware detection 

was described in detail and the methodology was also detailed accordingly to demonstrate 

how the experiment processes were conducted according to phases. This was then 

followed by an exploration of the machine learning approach which was used for training 

and testing the dataset as well as for predicting and distinguishing the Android 

applications as malware or benign. In this regard, four (4) machine learning classifiers 

were implemented. Finally, the results obtained were discussed.   

From the results obtained, it seen that Android security relies on permissions for 

controlling the applications’ access to the software components as well as the mobile 

hardware. Android security has become a major challenge in current times where fine-

grained permission control is necessary for Android applications. While Google 

implemented the Bouncer to analyse the submitted applications on Google Play store, this 

study discovered that existing permissions which were the focus of this study, had forced 
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the mobile users to either accept all the required permissions or to terminate the 

installation process. Consequently, most of the users who had proceeded with the 

installations ignored the warning permissions thereby, becoming targets for the malicious 

applications. Although, significant research work has been carried out to investigate the 

permission model of the Android malware detection, the privacy leak continues to 

happen.  

To address this problem, an approach was proposed for the detection of malware. This 

was accomplished by analysing the permissions of Android applications. The aim was to 

evaluate the effectiveness of Android permissions by identifying the malicious 

applications through the use of a machine learning approach. In order to identify the 

relevant permission of the applications, the apk file was extracted and the required 

permissions were collected on AndroidManifest.xml file. Among the permissions 

required, it was noted that any application that used more permissions for its functionality 

could lead to malicious attacks. In addition, it was found that communication types such 

as READ_SMS, WRITE_SMS, SEND_SMS and RECEIVE_SMS were used malicious 

applications. These types of permission allowed the malicious applications to make 

premium message without the mobile user’s knowledge and subsequently, caused money 

losses. 

Applications with the permission READ_CONTACTS and GET_ACCOUNT were 

functional for accessing the list of accounts in the Accounts Service and for reading the 

mobile user's contact data. This occurrence highlighted the potential of malware threats 

to Android devices. The experiments conducted with the Android permissions showed 

that the approach used in this study had achieved a high detection rate and a low false 

positive rate. In addition, this study had also applied supervised learning using four 

classifiers: random forest, KNN, MLP and J48, on a collection of 5551 of malware and 
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7000 benign applications. Both were tested and validated. Thus it can be concluded that 

the approach with an accuracy of 92.0 percent and a prediction accuracy of around 92.0 

percent is effective in detecting Android malware These outcomes suggest that the 

approach is capable of detecting almost all the malware applications. In addition, the AUC 

curve noted to be between 93 percent and 96 percent also implies that the approach carried 

an outstanding property that is reminiscent of Fawcett’s (2006) work.   

Nonetheless, some limitations exist because the malware detection approach only 

considered the permissions as features. The first limitation is that benign applications 

have several permissions which were likely to be considered as malware since they 

seemed to access several resources such as accounts, contact numbers, passwords, emails, 

and bookmarks. The second limitation is that the benign applications had also requested 

for the same permissions as malware applications did. In this regard, the detection is likely 

to be less precise.   

5.4 Experiment III: Evaluation of time series detection 

This section discusses the time series classification used to detect malware. A time 

series is a continuous sequence of discrete time spaced at time intervals (Patri et al., 2017; 

Tanaka et al., 2016). The aim in using the time series classification is twofold. First, it 

offers an understanding of the underlying structure that was produced by the observed 

data. Second, it is used to fit a model and to predict Android malware. In addition, 

classification algorithms, based on the time series, are more accurate and significantly 

faster than the state-of-the-art classifiers (Ye et al., 2011). The time series detection was 

applied to predict future unknown malware based on previously observed data.  

5.4.1 Experiment setup and procedure description 

The time series detection involves a few steps. The first step was to create the time 

series dataset. As mentioned above, the malware and benign dataset were collected from 
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the AndroZoo dataset. Each of them was then split according to the time series 

representation (i.e. 2010 - 2016). The dataset was then labelled as malware or benign 

applications. The second step was to create a time series model. Each model is used to 

test the future unknown malware dataset by using previous dataset. For instance, the 

dataset from the year 2010 were used to predict malware for 2011. Following this, dataset 

from 2010 and 2011 were combined so as to predict the future malware for 2012. The 

same preprocessing steps were conducted on the different time series dataset. The results 

were then collected. Finally, the machine learning technique was used to train and test the 

model as a means of predicting future unknown malware. 

5.4.2 Data collection phase 

This section describes the process of gathering and measuring the related information. 

Specifically, this study extracts the permission data from Android applications. The data 

collection phase is crucial for maintaining result accuracy. The real world applications 

were used to ensure data integrity. Typically, in the Android malware detection study, 

two (2) types of dataset were involved: benign (a normal application) and malware. Table 

5.15 shows the categories of sample applications. 

Table 5.15: Categories of application 

Art Design Dating Food & Drink 
Auto & Vehicle Communication Health & Fitness 

Beauty Education House & Home 
Book & Reference Entertainment Library & Demo 

Business Events Map & Navigation 
Comics Finance Medical 

Music & Audio Photography Sports  
News & Magazines Productivity Tools  

Parenting Shopping Travel & Local 
Personalization Social Video Player & Editors 

 
Primarily, the dataset is a collection of related data that were used to initiate the 

experiment in the initial phase. It consists of all the information required for research 
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activities. The features used are similar to those noted in Section 5.3. Table 5.16 lists the 

summary of the dataset.  

Table 5.16: Dataset summary 

Dataset Source Number used in experiments 
Malware Androzoo 6942 
Benign Androzoo 7000 

Total 13942 
 

5.4.3 Evaluation and results 

This section discusses the problem of malware detection for the time series 

classification process. This component is important because it is the basis for 

understanding how the performance of the approach relates to the nature of the unknown 

malware, also known as malware attack, in terms of time series. New malware 

applications taken from the AndroZoo dataset were used to test time series. This is based 

on the random forest model since the model shows high detection results. Findings 

indicate that the malware applications showed a positive ratio ranging from 1 to 50 on the 

VirusTotal evaluation. In this context, time series generated from the year 2010 until 2016 

were tested using random forest classifier. Results are presented in Table 5.17.  

Here, the best average prediction result achieved was produced when using training 

sets from the year 2010 until 2012. The trained model was used to perform prediction on 

the dataset for year 2013 until 2016 and it achieved the highest average accuracy rate of 

90.70 percent. This shows that the model was able to perform prediction on future 

malware effectively. The assumption behind this result is that the unknown malware time 

series were different from the training sets. This can be attributed to the different time 

series that was generated; it showed different results in terms of conditions and patterns 

although the dataset may be almost similar. Consequently, irregular patterns emerged and 

digressed from achieving good results. 
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To generate an exact pattern within the time series, this study implemented a dataset 

that are from various time series. The performance of the approach used in this study is 

highly dependent on the time series dataset which were not easy to select. Nonetheless, 

the results shown in Table 5.17 reveal interesting insights about the performance of the 

malware detection approach on time series. Based on this, it is deduced that the results 

generated from this study imply that the approach used is superior in predicting future 

Android malware.  

Table 5.17: Time series detection 

Training Testing Accuracy (%) 

2010 

2011 62.85 
2012 87.23 
2013 88.25 
2014 78.39 
2015 83.60 
2016 85.89 

Average 81.04 
 

2010-2011 

2012 92.06 
2013 93.71 
2014 83.64 
2015 86.18 
2016 86.39 

Average 88.39 
 

2010-2012 

2013 94.84 
2014 86.99 
2015 89.56 
2016 91.42 

Average 90.70 
   

2010-2013 

2014 91.61 
2015 89.17 
2016 90.51 

Average 90.43 
 

2010-2014 
2015 89.74 
2016 90.36 

Average 90.05 
 

2010-2015 
2016 89.74 

Average 89.74 
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5.4.4 Discussion 

This section briefly presents the synthesis results of the findings derived from 

predicting unknown malware using time series detection. The experiment results 

presented in the previous section are encouraging as the classifier (random forest) had 

successfully predicted the unknown malware. The accuracy result obtained from the 

random forest classifier using sample dataset proves that the results were very promising. 

Overall, the experiment results accumulated from using the training model between 2010 

– 2012 had shown the highest accuracy (90.70%). This outcome demonstrates the efficacy 

of the machine learning-based classification method on time series as representations of 

the Android permissions. The reason is because random forest is mostly dependent on the 

sample dataset; this means that the training dataset of 2010 – 2012 had worked perfectly 

well with the random forest classifier. 

5.4.5 Conclusion 

Determining the best similarity measure for the different types of time series dataset 

was not easy. A performance measure of detection algorithms such as the random forest 

was observed to be performing well as it was highly sensitive to malware patterns. Thus, 

the approach used in this study is unsuitable when the time series are of different years. 

Finally, the disadvantage of the time series approach is its lack of ability to detect 

applications with no permissions since it had used permissions as features. 

5.5 Experiment IV: Evaluation of application risk 

This section introduces the EZADroid, which was used to evaluate Android 

applications which used less features or carried very minimal features. This study zoned 

the applications into several categories (i.e. high, medium, low and very low). This “zone” 

approach helps to inform users about the specific risks of Android applications, as seen 

in their criticality. Specifically, this study applies risk assessment and the AHP approach 
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to allow mobile device users to identify the risk zones noted in Android applications. This 

approach is better in helping users to make decisions and in using the appropriate method 

to identify which incidents are important and which are trivial. 

The AHP was used to calculate the risk of the applications. The AHP is a structured 

technique for the multi-criteria decision-making approach that was developed by Saaty 

(Lo et al., 2012). With the ability for multicriteria decision making, AHP has used in 

many studies. It is broadly applicable because each application is well structured and 

effective in making a decision. For example, in fields of operation studies such as (Nikou 

et al., 2013) and (Nikou et al., 2011), they applied AHP to investigate the most applicable 

mobile service for the consumer. AHP method is used to identify the linkage between 

perceived performance benefit with and good practice in Small and Medium Enterprise 

(SME) (Thanki et al., 2016) but (Khalil et al., 2016) applied risk analysis to rating the 

building based on excellent, good, medium, low and poor as well as to lessen users’ 

safety.  

Within computer security studies, (Dini et al., 2018) and (Dini et al., 2012) adopted 

AHP to evaluate the trustworthiness of Android applications. Moreover, the methodology 

has proven to be very suitable for decision making and capable producing results that 

agree with expectations (Olson, 1996). According to a literature review by (Cegan et al., 

2017) shows that AHP most frequently used in multicriteria decision making and has been 

thoroughly tested by thousands of organization around the world for the last 35 years 

(Opydo, 2013). The combination of AHP and risk assessment gives an advantage for 

decision making to assess quantitative of risk. In addition, a survey by (Gritzalis et al., 

2018) shows that AHP is a popular method to assess and manage information security 

risk. 
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Figure 5.14 illustrates the main components of the EZADroid. The framework is 

categorised into three components: a) response option, b) response systems and c) risk 

zone. The proposed framework attempts to identify the risk of Android applications 

whether it malware or benign by assessing the risk zone. It is very important to choose 

appropriate approach, especially when dealing with the technical aspects. With the aid of 

the intrusion detection system (IDS), risk assessment and machine learning approach, 

EZADroid supports the procedures in selecting relevant features and response to the user 

with the risk zone. 

Response Action

User

Mobile Apps

Very Low Low Medium High

Risk Zone

Risk Evaluation

Risk Value

Risk Assessment

Database

Response Planning 
Modules

Response Systems

Criteria Selection

 

Figure 5.14: EZADroid framework 

The response option component defines the boundaries of the response action which 

notifies the risk zone to users. In this component, the user is able to evaluate the risk on 

the Android applications and then respond to the risk either by accepting or removing the 

risk. The response system then conducts an analysis of the Android applications. This 

analysis consists of risk evaluation, risk value and the response planning module. Here, 

the first risk evaluation is associated with the selection of the criteria which consists of 
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the grouping permissions. The second is with respect to the risk value. In this regard, the 

criteria are evaluated using risk assessment. The risk value is stored in the database before 

it is submitted to the risk zone. This is achieved by using the response planning module. 

The risk zone categories have four (4) types of indicators: very low, low, medium and 

high risk. If the risk is greater than a certain threshold, the warning notification appears 

on the mobile device to notify the risk zone to the user. Each of the risk zones is presented 

in different colors to indicate the different levels of risk and to improve user awareness. 

5.5.1 Experiment setup and procedure description  

This section presents the overall workflow of the experiments. The risk assessment 

approach is used to improve the effectiveness of the risk evaluation by generating a risk 

zone for the user. It serves as a warning against malicious applications (e.g. very low, 

low, medium, and high). In recent works published in (Dini et al., 2018) is similar to our 

proposed approach, conduct a risk analysis method by considering permission as 

likelihood threat (Dini et al., 2018). They proposed user's rating developer's reputation 

and a number of application download as criteria for risk analysis. However, these criteria 

are less effective and untrusted. This is because user's rating is inconsistency (Sharma et 

al., 2013) and malware application also stored in Google Play Store (Liam Tung, 2017). 

This malware application has been downloaded up to 4.2 million (Liam Tung, 2017). 

These led to false sense accuracy. Though, our proposed approach submits Android 

applications to VirusTotal to validate and ensure the trustworthiness of dataset. In 

addition, the proposed approach utilized the relevant features as criteria in multicriteria 

decision making by implementing machine learning approach to significantly increase 

detection accuracy for risk analysis and malware detection. The proposed approach 

achieved higher accuracy with 89.82%, while (Dini et al., 2018) achieved 77.37% only. 

The results also validated using statistical analysis. 
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a) Risk assessment criteria 

Android applications require permission granting from the mobile users in order to 

invoke the Android API successfully. The declared permission in AndroidManifest.xml 

file is important and effective for revealing potential risks; it is also useful as a warning 

message to notify users. Most of the risky applications require a combination of some 

permissions in order for attackers to launch the attack. Figure 5.15 illustrates the 

percentage of the top ten (10) most requested permissions by malware and benign 

applications.   

0 10 20 30 40 50 60 70 80 90 100

INTERNET

READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE

WRITE_APN_SETTINGS

SEND_SMS

RECEIVED_BOOT_COMPLETED

ACCESS_WIFI_STATE

WAKE_LOCK

RECEIVED_SMS

READ_SMS

Malware

Benign

Percentages (%)  

Figure 5.15: Percentage of the top 10 requested permission by malware 
applications 

The above figure shows that the INTERNET is the most commonly used permission, 

both by the malware (94.06%) and benign (80.45%) applications. This is because the 

INTERNET permission is mandatory for applications to access the Internet especially for 

an application update. The permission access to READ_PHONE_STATE is also highly 

requested by the malware. This table shows an outcome that is similar to the results of 

Zhou and Jiang (2012) in detecting malware by permission, as the first research done on 

the Android malware family. Moreover, the malware noted in this study had also 
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requested more permissions on communication such as SEND_SMS, RECEIVED_SMS, 

and READ_SMS. This implies that the malware applications were more interested in 

acquiring dangerous permissions that offer access to sensitive information. It appears to 

be using the Internet as a medium.  

Based on the observatory analysis, the related permissions were grouped. The 

individual permission joins the group through the same attributes of the permission 

(Developer, 2016a). The grouping process includes reading all the permissions in 

AndroidManifest.xml and extracting the permissions through grouping. This allows the 

number of comparisons to be reduced. A member of the group is then presented together 

as a criteria with each criterion used to calculate the risk of the Android applications.  

b) Criteria selection 

This study had used 10000 Android applications samples as the training set. The total 

number of benign and malware samples were thus 5000 each. The samples were manually 

predefined with their appropriate labels as benign or malware. However, it is important 

to note that we validated the labelling process by checking the Android application's 

status from VirusTotal. In other words, we labelled a sample as malware after running it 

through VirusTotal which is an online website that checks for viruses through the URL 

or through an uploaded file (Quintaro, 2017).  

VirusTotal is highly reliable as it inspects the sample and aggregates the result of over 

70 antivirus scanners. VirusTotal widely used by researchers (Huang et al., 2014; 

Boukhtouta et al., 2015) to provide the ground truth in their works. Following the use of 

the VirusTotal, the dataset samples were used for criteria selection.  

The criteria selection phase makes use of a specific metric which computes and returns 

a score for each feature individually (Asaf Shabtai et al., 2012). Here, the WEKA 
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approach was implemented. It includes information gain which was used to select the best 

criteria. In this study, WEKA was applied as the machine learning platform. WEKA is a 

well-established software that has a collection of machine learning algorithms (Waikato, 

2017). It is a well-rounded and complete software suite that fits the objective of the 

current study. information gain was implemented directly into WEKA to save time from 

manually coding the algorithms. The reliability and accuracy of WEKA's algorithms are 

also well recognized (Kaur et al., 2015;  Deepa et al., 2015).  

The criteria with a high value of information gain is selected. In this way, 10, 20 and 

30 criteria were selected based on information gain values ranging from 0.033 to 1.0. The 

best criteria helped to improve the performance measure (Kumar et al., 2014). Table 5.18 

shows a list of the criteria recorded when information gain was implemented. These were 

then stored in the database for the risk assessment process. 

From the results presented in the table below, it appears that phone calls and messages 

were the top in the permission-based system. This represents the types of features noted 

on the Android developer (Developer, 2016a). It is necessary to assert that this group is 

significant in the risk assessment approach. 
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Table 5.18: List of criteria 

Information Gain 
Value 

Criteria Permission Group 

0.2776 android.permission.READ_PHONE_STATE Phone Calls 
0.2286 android.permission.SEND_SMS Messages 
0.1908 android.permission.READ_SMS Messages 
0.1739 android.permission.RECEIVE_SMS Messages 
0.1285 android.permission.RECEIVE_BOOT_COMPLETED Application 

Information 
0.1067 android.permission.WRITE_SMS Messages 
0.1016 com.android.launcher.permission.INSTALL_SHORTCU

T 
Properties 

0.078 android.permission.INSTALL_PACKAGES Application 
Information 

0.0686 com.android.launcher.permission.UNINSTALL_SHORT
CUT 

Properties 

0.0685 com.android.browser.permission.WRITE_HISTORY_B
OOKMARKS 

Personal 
Information 

0.067 com.android.browser.permission.READ_HISTORY_BO
OKMARKS 

Personal 
Information 

0.0631 com.lge.launcher.permission.READ_SETTINGS Dev_Read_Setting 
0.0631 com.motorola.launcher.permission.READ_SETTINGS Dev_Read_Setting 
0.0624 com.motorola.dlauncher.permission.READ_SETTINGS Dev_Read_Setting 
0.06 com.htc.launcher.permission.READ_SETTINGS Dev_Read_Setting 

0.0586 com.fede.launcher.permission.READ_SETTINGS Dev_Read_Setting 
0.0581 com.motorola.launcher.permission.INSTALL_SHORTC

UT 
Dev_Install 

0.0579 com.android.launcher.permission.READ_SETTINGS Properties 
0.0578 com.lge.launcher.permission.INSTALL_SHORTCUT Dev_Install 
0.0575 com.motorola.dlauncher.permission.INSTALL_SHORT

CUT 
Dev_Install 

0.056 org.adw.launcher.permission.READ_SETTINGS Dev_Read_Setting 
0.0526 android.permission.WRITE_APN_SETTINGS Properties 
0.0508 android.permission.RESTART_PACKAGES Application 

Information 
0.0484 android.permission.CHANGE_WIFI_STATE Network 

Communication 
0.0434 com.google.android.providers.gsf.permission.READ_GS

ERVICES 
Dev_Service 

0.0411 android.permission.ACCESS_NETWORK_STATE Network 
Communication 

0.0403 com.google.android.c2dm.permission.RECEIVE Network 
Communication 

0.0401 android.permission.GET_ACCOUNTS Account 
0.0359 com.android.vending.BILLING Account 
0.033 android.permission.READ_CONTACTS Personal 

Information 
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Table 5.19 illustrates the judgment matrix for the decision factor and the indicator used 

in the risk zone threshold.  The results of risk assessment are demonstrated in the 

evaluation and result section. 

Table 5.19: Judgment matrix criteria 

 Messages 
Personal 

Information 
Application 
Information Properties 

Phone 
Calls Normalized 

Messages 1 5 5 5 5 0.54 
Personal 

Information 0.2 1 0.5 0.5 0.5 0.07 
Application 
Information 0.2 2 1 2 2 0.16 
Properties 0.2 2 0.5 1 2 0.12 

Phone Calls 0.2 2 0.5 0.5 1 0.09 
Consistency ratio = 0.043 

 

c) Risk zone threshold 

To establish a methodological approach for identifying the risk zone in the Android 

applications, the risk value and zoning process are explained. Four types of risk zones 

were applied: very low, low, medium and high. These risk zones have been used in 

security investigations for the purpose of evaluating the risk impact. The risk zone has 

been exemplified in the works undertaken by Theoharidou et al (2012) and Anuar et al. 

(2013b). They used the method for the Android platform and for incident prioritisation. 

The risk zones of the current study are presented in different colors depending on the 

levels of risk. The purpose is to increase awareness among Android users. This 

application of colors have also been applied by previous researchers (Theoharidou et al., 

2012; Anuar et al., 2013b). Table 5.20 illustrates the description of the risk zones. 
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Table 5.20: Description of risk zone 

Color Risk Zone Description 
Red High High to critical risk. This application is able to harm the user. 

Orange Medium Moderate risk. This application is capable to harm the user and should be put 
under observation. 

Yellow Low Slight risk. This application is safe but could be misused if it has malicious 
activities or potential threats. 

Green Very Low Very low to no risk. This application is safe for use. 
 

As the table illustrates, the risk zones determine the levels of severity of the 

applications, thereby raising users’ awareness of the severity of the risks involved. Very 

low and low-risk zone means that the risk of application is acceptable and safe to use. 

Figure 5.16 illustrates the threshold for the risk zone. 

0 0.065 0.15 0.25 1

Very Low Low Medium HighRisk Zone

Risk Value

Risk Response Planning Acceptance Transfer Mitigation Avoidance  

Figure 5.16: Risk zone threshold 

This threshold is not a definitive value. It is subject to other reassessments thus 

different scales will produce a different distribution. The selection of this threshold is 

important in making a suitable and significant decision of the risk zones. The risk zone 

threshold is adapted from Table 5.21 which is the distribution analysis drawn from the 

box plot of ten (10) permissions. Furthermore, this threshold indicates the significance of 

the mapping process between the risk zone and the risk response planning for future 

works. Table 5.21lists the data analysis taken from the box plot Figure 5.7 which uses ten 

(10) permissions. 
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Table 5.21: Data analysis for 10 permission 

 Malware Benign 
Min 0 0 

1st Quartile 0.2306 0 
Median 0.3738 0 
Mean 0.3989 0.06447 

3rd Quartile 0.5314 0.09468 
Maximum 0.9176 0.79265 

 

5.5.2 Data collection phase 

This section describes the results of the experiment. This study evaluated the risk of 

5,000 benign and 5,000 malware applications.  Each application permission was extracted 

so as to collect their permissions from AndroidManifest.xml. Each of the permissions on 

the application was stored in the database as a criterion collection. This criterion is 

important in guaranteeing the accuracy of the proposed approach. The permission-based 

approach was used to identify the risk zone. After the EZADroid accepts the application’s 

permission-based behavioral data, it computes the risk value and then determines the risk 

zone to see whether the application is very low, low, medium or high risk.  

5.5.3 Evaluation and results 

This section presents the experimental results and performance evaluation of 

EZADroid in generating the risk zones. The assessment consists of two (2) experiments. 

The first applies the risk assessment approach to evaluate the risk value. The second 

generates a risk zone. The experiment uses the box plot analysis to show the difference 

between the malware and the benign applications. The box plot analysis was able to 

discover the risk potential and to predict the risky malware. It plays an important role in 

determining how relevant the EZADroid. The risk zone was determined after the results 

were gathered. 
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a) Risk assessment evaluation 

This section presents the risk assessment evaluation which uses the AHP approach. 

Table 5.22 shows the results obtained. It classifies the benign and malware applications 

accordingly. It appears that all the malware and benign applications had obtained the risk 

values from the AHP analysis which then classifies the risk zones accordingly. In order 

to validate the experiment, VirusTotal (Total, 2016) was used to strengthen the risk zone 

evaluation. Table 5.22 illustrates samples of the evaluation. 

Table 5.22: Samples evaluation and risk zone on applications 

Sha256 Virus
Total 

Family Risk Value Risk 
Zone 

Class 

78c1c57100bc14f9689c3f670d48405d9eb7487df
1a34a846296f8dd4ab34e33 

36 Plankton 0.760934 High Mal
ware 

1ee4f5a8812ba86eda9f12f1e76a1a44e4d318bf47
99eb7fd22c3c6a8a0f8ad2 

34 Plankton 0.696939 High Mal
ware 

3dc3631adbae697a10edfea65c06ebda751741302
b6ba95c4f6c6031db71ce74 

41 ExploitLi
nuxLoto
or 

0.656039 High Mal
ware 

4419c922b2926246ffb5c4d427920b8785b7853f1
f2c400914531ce99ad6164e 

38 ExploitLi
nuxLoto
or 

0.656039 High Mal
ware 

97d9acf46ba6e3bd759f74d0f2f312165f143a815ff
41d26a212f3f99b20b8c6 

35 FakeRun 0.559957 High Mal
ware 

9e9fef1079a8d20a3074a1be16be029333d863add
15dd0a44d67ab685bee7ea4 

34 FakeRun 0.559957 High Mal
ware 

06b53d3ea2aeee828123194b4cea8135f5b868296
d8d7ab3cb839e34b2f04d6a 

39 Adrd 0.557189 High Mal
ware 

294cfb2bc890b65d7bc9135225369ab9bbd0ca81b
aa109f829e2c22478b4db2f 

37 Adrd 0.557189 High Mal
ware 

08ad6b366abf609018b1866f609d132ecdb66981a
ae540d3316c7584c816b179 

38 BaseBrid
ge 

0.423385 High Mal
ware 

09ac19bce6a6c98948ceb7db6398c0cddf2cb9167
d547597731bc44411371478 

38 BaseBrid
ge 

0.423385 High Mal
ware 

00f24c9904ce23bae5a3cc4ca5a1bd13ed811b57ca
772032530d415ccda02f04 

0 Google 
Play 

0.197446 Mediu
m 

Beni
gn 

00f28a5c4851f2702fc61753c21867c68916d0053
6d59b7c4e1d2bbbe8c7ca00 

0 Google 
Play 

0.031939 Very 
Low 

Beni
gn 

00f2915b170f755efa3409c3ccd12fe5b1edd90559
2aad75d957295a1a616650 

0 Google 
Play 

0.115419 Low Beni
gn 

00f29243375e2151947287b52f81a73a46a9e21b5
0a82e7cd7e3b8a8d6e6cafc 

0 Google 
Play 

0.197446 Mediu
m 

Beni
gn 

00f29ffd36c87e9138c65e09e5b455b4dbca29cbb5
f37fc9bdd01c9ea73fd9a6 

0 Google 
Play 

0.031939 Very 
Low 

Beni
gn 
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Table 5.22 is classified into six (6) columns: SHA256, Virus Total, family, risk value, 

risk zone and class. The experiments applied in this study used a generated SHA256 hash 

to provide a unique key for each sample application.  

i. The columns named VirusTotal and class presents the distinction between the 

malware and benign applications taken from the sample dataset.  

ii. The family column shows the particular malware family of the sample application 

that was discovered during the experiment.  

iii. The risk value column shows the weight of the risk that was measured by the risk 

assessment. In addition, the risk zone displays the level of risk generated from the 

risk value.  

The proposed approach provides a solution to give rich insights into the application 

risk analysis by using a set of criteria that are combined with a multi-criteria decision 

approach. It automatically performs the permission analysis of applications. The level of 

risk provides insight information related to the risk of application. It also directly shows 

the user the risk zone. In fact, it improves the application security and the user awareness. 

Moreover, the ability to distinct permissions for malware detection provides an additional 

protection for the user. The results reveal that the proposed approach reduces a significant 

potential for several malicious applications from accessing mobile devices. It analyzes 

application permission in order to access the signature of malicious applications. The 

results of the analyses demonstrate that permissions to request message are requested by 

a high-risk application as well as the permissions, related to the application information 

(i.e. RECEIVE_BOOT_COMPLETE, INSTALL_PACKAGEs, and 

RESTART_PACKAGES) demonstrated risky permission. 

Table 5.23 also indicates that applications infected with malware would pose as threats 

to the mobile device users. The high-risk application came from the Plankton malware 
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family. Once the Plankton malware is installed on mobile devices, it collects the device’s 

ID and user information before sending it to a remote server (Idrees et al., 2017). The 

remote server then pushes payload dynamic onto the user's mobile device to exploit the 

root. The approach proposed in this study is effective in detecting the Plankton malware 

and in identifying the risk it poses. This is because the Plankton malware uses permissions 

such as messages, properties, phone calls and personal information. This was discovered 

by Zhou et al. (2012) and was consequently removed from the Android market by Google 

(Vanja Svajcer, 2011). Table 5.23 lists the malware families with their risk values. The 

full list of malware family and risk value is available in Appendix B. 

Table 5.23: List of malware family and risk value 

N
o. 

Family Tot
al 

Min 
Value 

Max 
Valu

e 

No. Family Tot
al 

Min 
Value 

Max 
Value 

1 AccuTrack 9 0.01840
4 

0.018
404 

9 Loicdos 1 0.06387
7 

0.06387
7 

2 Adrd 78 0.21913
8 

0.557
189 

10 Loozfon 2 0.13966
3 

0.13966
3 

3 Adsms 3 0.39427
1 

0.412
675 

11 Luckycat 5 0.10188
4 

0.10188
4 

4 Aks 5 0.08348 0.083
48 

12 Lypro 1 0.18268
3 

0.18268
3 

5 Ansca 1 0.17422
2 

0.174
222 

13 Maistealer 1 0.05618
3 

0.05618
3 

6 Antares 2 0.18006
3 

0.192
626 

14 Mania 6 0.18852
4 

0.40169
3 

7 Anti 2 0.21072
7 

0.210
727 

15 Maxit 1 0.46116
4 

0.46116
4 

8 Anudow 1 0.34126
1 

0.341
261 

17 MMarketPay 1 0.38073
6 

0.38073
6 

 

The extensive results displayed in Table 5.23 indicate the various Android malware 

families that had been presented in the sample dataset used in this study together with 

their risk values. Four (4) major malware families noted in the malware sample dataset 

were FakeInstaller, Plankton, DroidKungfu, and Opfake. Each of these malware families 

has a different risk value because each used different permissions. Table 5.23 also shows 

that the same malware family is unable to show the same risk value. Based on this, it is 
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deduced that the applications in the same malware family used different permissions. As 

a result, they showed different types of risk zones. To further discuss the risk zones, the 

following section discusses the rating threshold that was proposed in the RSM (Anuar et 

al., 2013a). This is applied to rate the risk zones.  

b) Box plot analysis 

In order to avoid any bias, an arbitrary number of criteria selection was used. This 

study used the criteria selection approach with three different configurations: 10, 20 and 

30 criteria, as a measure to select the highest out of the 378 criteria featured by the feature 

selection algorithms (e.g. Information Gain). The box plot analysis shown in Figure 5.19 

is related to the risk value for the malware and benign applications. The box plot analysis 

is also able to identify the criteria more effectively as it differentiates the benign from the 

malware applications. This difference will suggest that the two populations belong to 

different distributions. Figure 5.17, Figure 5.18 and Figure 5.19 illustrate the malware 

and benign applications. The trend illustrates that permission-based criteria are significant 

and relevant for conducting risk assessment.  

 

Figure 5.17: The boxplot of 10 permission 

Univ
ers

ity
 of

 M
ala

ya



125 

 

Figure 5.18: The boxplot of 20 permission 

 

Figure 5.19: The boxplot of 30 permission 

The distribution shown in Figure 5.17, Figure 5.18 and Figure 5.19 demonstrates  

different values. This means that there is a distinction between the benign and malware 

applications. This evidence strengthens the experiment evaluation with the result showing 

an accuracy of over 80 percent for the risk zone. It is fascinating to note that the 

implementation of the EZADroid is able to determine the risk zone based on 10,000 

samples.  
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Table 5.24 shows the distribution of a dataset. The top 50 percent of the malware 

applications (2500) have high risks. They are represented by everything above the 

medium risk (the black line). The top whisker shows that 25 percent of the malware 

applications came from 625 applications. The maximum whisker represents the greatest 

value in the malware application (risk value). Returning to the aims of this study, it is 

possible to state that an application is malware or benign if it shows a good overview of 

the data’s distribution. Table 5.24 illustrates the risk evaluation for 10, 20 and 30 criteria. 

Table 5.24: Risk evaluation 

 10 20 30 
 Malware Benign Malware Benign Malware Benign 

Very Low 95 2643 127 2928 127 2373 
Low 414 1722 814 1679 697 1530 

Medium 869 483 985 300 1800 922 
High 3622 152 3074 93 2376 175 

 

By indicating the applications as high and medium risk malware or as very low and 

low risk benign, the EZADroid had achieved an accuracy rate of 89.82 percent for the 

malware outcomes and 87.30 percent for the benign outcomes. This implies that the 

EZADroid is able to evaluate the risk of both applications effectively. In that regard, it 

improves the aim of this study in identifying the risk of applications and for detecting 

malware. Figure 5.20 shows evaluation of risk zone. 
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Figure 5.20: Risk zone evaluation in 10, 20 and 30 criteria 

Figure 5.20 indicates that the total frequency of the application is measured by 

presenting the type of risk zones. In the 10 criteria selection, over 80 percent of the 

malware were detected as high risk. Based on this, it concluded that the proposed 

approach is efficient in evaluating the risk for most of the sample dataset. 

In order to warrant the significance of the proposed approach, a statistical analysis of 

the 10 criteria was also conducted. The 10 criteria were selected because the results were 

more reliable, as shown on the box plot analysis. Table 5.25 illustrates the most famous 

in Android applications on Google Play store. 

Table 5.25: Top free in Android applications 

Applications Categories Risk Zone 
Facebook Social High 

Facebook Messenger Communication High 
WhatsApp Messenger Communication High 

WeChat Communication High 
Instagram Social High 

 

0

500

1000

1500

2000

2500

3000

3500

4000

Malware Benign Malware Benign Malware Benign

10 20 30

Fr
eq

u
en

cy

Very Low

Low

Medium

High

Univ
ers

ity
 of

 M
ala

ya



128 

Table 5.25 shows that the top Android applications which belong to the social and 

communication categories have high risk because most of these applications requested 

dangerous permissions such as READ_SMS, RECEIVE_SMS and 

INSTALL_SHORTCUT. For instance, Facebook applications allowed Google to display 

contents from Facebook mobile applications including public profile information 

(Westenberg, 2015). This information could lead to cyber threat problems.  

c) Statistical analysis 

This section presents a component of the data analytics. In the context of research, 

statistical analysis scrutinises data and presents a selection taken from the population. 

Linear regression was applied to specify the nature of the relation between the malware 

and benign applications. A total of 10,000 applications taken from the sample dataset 

were applied. The experiment was able to manage the dependent (risk value) and 

independent (risk zone) variable score into the same row. Table 5.26 illustrates the 

variables used for the analysis and the results of the mean and standard deviation.  

Table 5.26: Description statistics 

 Mean Std. Deviation N 
Risk Value 0.40 0.199 5000 
Risk Zone 3.60 0.720 5000 

 

In order to locate and interpret the relevant regression and correlation coefficients, the 

experiment needs to consider a variable Entered\Removed, model summary, ANOVA, 

and coefficient. Table 5.27 illustrates the independent variables. Table 5.28, Table 5.29 

and Table 5.30 present the statistics of the data variable score. Table 5.28 demonstrates 

the correlation coefficient (r) and the coefficient of the determination (r square). It 

specifies the strength of the linear trend between the variables. Table 5.29 indicates the 

significant value of the independent-variable scores when compared to a predetermined 
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α. Finally, Table 5.30 also illustrates the y-intercept and the slope for the regression 

equation. 

Table 5.27: Variables entered\Removed 

Model Variables Entered Variables Removed efficient 
1 Risk zoneb . Enter 

 

The model summary shows the correlation between the two variables (r): correlation 

coefficient (r) and the coefficient of determination (r square). The value of R represents 

the correlation coefficient that indicates the relation strength between the independent 

variable to the dependent variable. 

Table 5.28: Model summary 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 
1 0.750a 0.562 0.562 0.132 0.160 

a. Predictors: (Constant), Risk zone;  
b. Dependent Variable: Risk value 

 

Table 5.28 indicates the correlation coefficient (r) with the value of 0.750. It suggests 

that the number of sample applications has a good linear relationship. Due to this result, 

the coefficient of the determination (r square) shows a different value of 0.562.  

Table 5.29 lists the ANOVA statistics which indicate whether the regression equation 

explains the significant portion (sig.) variability of the dependent variable and the 

independent variable. It also presents the value of sig. to be 0.0. This indicates that the 

proposed approach is able to reject a null hypothesis where it demonstrates a significant 

and fit model. The table shows a p-value of 0.0 percent which obviously indicates that 

the number of malware changes significantly with respect to the number of malware 

applications. This change is found from the regression equation, y = -0.349 + (208)x. 
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Table 5.29: ANOVA 

Model Sum of Squares df Mean Square F Sig. 
1 Regression 111.820 1 111.820 6421.648 0.000b 

Residual 87.030 4998 0.017   
Total 198.851 4999    

a. Dependent Variable: Risk value 
b. Predictors: (Constant), Risk zone 

Table 5.30 shows one able dependent-variable score for each independent variable 

score. The y value is a result obtained from the regression equation which indicates that 

the pair falls on the regression line while the x value of the risk zone is substituted for the 

regression equation. This process is able to guess the number of application risk values 

and the risk zone. 

Table 5.30: Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 
   

B Std. Error Beta Zero-order 
1 (Constant) -0.349 0.010  -36.680 0.000  

Risk zone 0.208 0.003 0.750 80.135 0.000 0.750 
 

Figure 5.21 illustrates the risk zone analysis where the high risk indicates the 

exponential line. This shows that the proposed approach had managed to evaluate the risk 

of the samples. The mean risk value for the medium risk zone is 0.2 while the high-risk 

zone is 0.5. 
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Figure 5.21: Risk zone analysis 

5.5.4 Discussion 

The EZADroid had implemented a permission-based application assessment. It 

collected 5,000 applications from a malware repository, Drebin, which was generally 

accepted as the Android malware dataset (Arp et al., 2014). The EZADroid also used 

5,000 benign applications downloaded from AndroZoo (Allix et al., 2016) which belongs 

to Google Play. In total, this paper analyzed 10,000 applications by using the risk 

assessment approach. Both the benign and malware applications were analysed by 

VirusTotal (Total, 2016) which checks the validity of the malicious activities (Faruki et 

al., 2013). The VirusTotal provides significant results which also include a definition of 

all kinds of malware through 70 antivirus products (e.g. Symantec and Kaspersky;  Talha 

et al., 2015). The experimental results demonstrate the effectiveness of the EZADroid in 

differentiating the malware from the benign applications. This is illustrated in Figure 5.17, 

Figure 5.18 and Figure 5.19.  

Table 5.24 illustrates the results of the risk evaluation which evaluated the risk for the 

different kinds of malware family.  Table 5.24 also shows that the EZADroid is effective 
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in identifying the risk for malware applications. The EZADroid had achieved an accuracy 

rate of over 89 percent thereby raising a challenge of the risk assessment for Android 

mobile malware. Specifically, the permission-based applications could preclude the use 

of the sophisticated risk assessment approach. Interestingly, a higher number of criteria 

had resulted in a lower performance of the risk assessment.    

Using less criteria seems to show more promising results,  as illustrated in Table 5.24. 

This outcome is also supported by Feizollah et al. (2015) where it was noted that less 

criteria resulted in less time thereby reducing the cost of the experiment. It is also 

prominent in showing more accurate results. From another perspective, the presence of 

the criteria (including benign and malware) provided some unique advantages in 

generating a risk zone and in preventing the malicious applications from affecting 

Android mobile users. It thus helped to increase users’ awareness. One of the more 

significant findings that emerged from this experiment is that the number and types of 

criteria used, could have an effect on the effectiveness of the risk assessment. One 

possible solution recommended is to adapt a machine learning approach to create a 

different result in the risk assessment so as to ensure the effectiveness of the risk zone. 

To demonstrate the superiority of the work, we compared the results with existing 

solutions. Kim et al. (2017) had conducted a study on risk assessment for Android 

applications to identify malware applications using Naive Bayes classification. Kim et al. 

(2017) proposed the Android application package (APK) Vulnerability Identification 

System (AVIS) that classifies an application into malware or benign based on the  DEX 

file. The authors used 250 applications samples as the training set where the total number 

of malware and benign samples were 125 each. Their approach achieved approximately 

94 percent accuracy. Although the current study, in comparison, had recorded a slightly 

lower accuracy rate, the size of the dataset used in the current study was much higher than 
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those of Kim et al. (2017), i.e. 10000 application samples. The approach used in this study 

had also managed to lower the risk of overfitting with better generalisations on unseen 

samples. In comparison, Rashidi et al. (2017) had proposed the XDroid which is an 

Android application and resource risk assessment tool. The XDroid was implemented 

with the dynamic analysis technique to detect malware by observing the applications' 

behaviors. Their results showed that the XDroid only managed to achieve 82 percent 

accuracy with 1000 samples training set. The XDroid also consumed higher consumption 

of computational time to train the model.  

In contrast, our EZADroid solution had implemented the static analysis techniques 

which was effective in detecting known malware. The results of our experiments revealed 

the effectiveness of our approach. Detection rate showed 89.82 percent accuracy. This 

shows that our proposed approach had performed better than previous studies. The 

proposed approach of this study also involved using risk analysis on applications as well 

as to generate responses to users through the risk zone. This helped to alert security 

concerns for the users. Therefore, the sensitive data of the users can be safely protected 

via timely responses. Further to that, our approach was also able to reduce attacks from 

malware application and similarly minimise the risks.  

5.5.5 Conclusion 

This study has highlighted the significant findings of risk assessment and the risk zones 

for Android applications through the EZADroid which also implemented a permission-

based application to determine the risk zones. Based on that knowledge and the effective 

risk evaluations, it was able to assess the mobile Android application into four (4) types 

of risk zones (e.g. very low, low, medium and high).  

The data were collected from the permission-based applications using static analysis. 

The collected data were organized in a database. In order to select the effective criteria to 
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increase the effectiveness of the risk evaluation on the EZADroid, this study applied the 

criteria selection approach. The combination of the risk assessment approach and the AHP 

approach had improved the risk evaluation level as well as determined the risk zones for 

Android applications. The applications taken from Drebin and AndrZoo were used for 

fixing the validation and reputation of the EZADroid. It was noted that the EZADroid 

offered a good risk zone performance evaluation.   

The EZADroid performed and achieved an accuracy rate of 89.82 percent in the 

experimental evaluation of 5,000 malwares and 5,000 benign applications based on the 

10 criteria approach. The EZADroid was able to achieve an accuracy rate of over 80 

percent on risk evaluation without using the machine learning classifier. This is the main 

advantage of the proposed approach. Moreover, the approach was also suitable to be 

installed on a mobile device as it provides good risk evaluation and increases user 

awareness about the risk of applications. This was accomplished through the illustration 

of the risk zone threshold. 

The EZADroid approach has a limitation in running the risk evaluation for malware 

applications that do not use the criteria that were selected in its permission. This is a 

limitation of all permission-based malware detection mechanisms. Furthermore, the 

EZADroid was also unable to calculate the risk if the malware application does not have 

any permission. Nonetheless, this resolved by combining the permission-based 

applications with other different criteria. Another limitation is traced to the general static 

analysis applied. Here, the static analysis was less efficient in detecting the malware with 

an obfuscation technique. Considering the weaknesses of this study, an uninstalled or 

blocked application may be a good protection alternative for mobile devices. Therefore, 

more investigations and experimentations on Android risk assessments need to be 

conducted.   
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5.5.6 Summary 

This chapter has discussed the evaluation study of the selected static features derived 

from the investigations and methods used in the proposed framework. The useful results 

from the experiments have demonstrated a combination of different aspects of evaluation, 

and they highlighted their unique findings and conclusions. 

The key objective of describing the evaluation at different experiments of studies is to 

investigate the unique objectives at each experiment. The result presented has shown 

strong evidence to support the ability of the proposed framework to work robustly based 

upon its operational characteristics. In conclusion, the analysis made of the studies clearly 

defined their contribution as well as stating their limitations. 

To further investigate the usefulness and feasibility of the proposed framework in a 

practical mode, the following chapter presents the prototype of the proposed framework 

and evaluates it using different datasets to the one used in this chapter, in order to test the 

efficiency in predicting unknown malware. 
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CHAPTER 6: PROTOTYPE IMPLEMENTATION OF RISK ANALYSIS AND 

MALWARE DETECTION SYSTEMS 

After validating and evaluating the proposed framework, the next stage of the research 

is to design and implement a prototype system that demonstrates the main operation and 

also shows how these could be implemented in practice. This chapter discusses the 

prototype implementation of the proposed framework specifically, the administration 

detection module and risk assessment. The main features of the administration module 

have been embodied in the Web interface, EZADroid, which was used to manage, 

monitor, configure, detect and assess the risk on Android applications modules. Several 

modelling languages were used including case diagrams and state diagrams. These were 

used to provide a visual illustration of the prototype.  

6.1 Implementation of EZADroid system 

There are three parts in the proposed framework as illustrated in Figure 6.1 below. 

They include the Webpages, mobile device, and detection modules. These modules have 

been fully implemented whereas the data were collected from other sources such as 

AndroZoo and Drebin.   

The rationale behind adopting the existing IDS and risk assessment approach rather 

than implementing them from scratch is twofold. Firstly, implementing these modules 

from scratch would have been out of the scope of this study and supporting input from 

existing IDS and risk assessment would provide a more realistic environment and 

strengthen the compatibility of the existing solutions. VirusTotal (Quintaro, 2017) as a 

popular free online service that analyzes file and URLs was used to identify the malicious 

contents that feed the prototype. Its only drawback is its inability to provide more 

information about the level of risk. The descriptions of the modules that were fully 

implemented in this study are as follows:  
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Figure 6.1: Web development framework 

6.1.1 Use case diagram 

Use case diagram has been commonly adopted to present a graphical overview of the 

functionality of a system and to show the relationship between actor and system. It is a 

set of actions, functions and services that is performed by the system. In this context, the 

“system” is the EZADroid while the ‘actor” is the user. Use case diagram determines the 

characteristics of the developed systems with the actor without worrying about the details 

on how that functionality is implemented. Figure 6.2 demonstrates the system level and 

the relationship between the external systems.  
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Figure 6.2: Use Case Diagram 

The following explanations illustrate the role of the user in the above figure.   

i. User as actor is an entity that performs a role in one given system. The actor is 

able to interact with the system to manage and run specific application modules. 

This includes the ability to update the detection model, analyse and configure the 

Web module. In addition, the actor or user is able to upload Android applications 

to the Web analyser to analyse the applications as benign or malware.  

ii. The system defines the scope of the system as anything within the box that 

represents the functionality that is within the scope. 

6.1.2 State diagram 

The state diagram defines the different states of the system. These states are controlled 

by external or internal events. The purpose is to model the dynamic nature of a system 

and to respond to the external and internal events. In addition, it is used to control the 

flow process of one state to another. Figure 6.3 illustrates all the possible states in the 

proposed framework and it also summarises the characteristics of the running system. 
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Figure 6.3: Prime-state Diagram 

Figure 6.3 illustrates three sub-states. The summary of each is provided as follows: 

a) Save .apk file and extract permission: The initial state is T2.1 when the user 

uploads the .apk file. There are four sub-states in this specific state namely, 

Database stored .apk file, Identification of .apk file, Decompress .apk file and 

Stored permission features. Figure 6.4 illustrates the storing .apk file state. In 

T2.2, the system identifies the file either as the .apk file or a different type of 

file. If the file is .apk, then the user is able to upload it in the system. The T2.3 

state starts the process by decompressing the file to obtain application 

permissions. In T2.4, the system extracts the proposed features and stores them.  
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Figure 6.4: Storing of  .apk file state 

b) Assign value: This state assigns the features vectors by creating the csv and 

arff files. It is important for the model of the analyser to detect and assess the 

risk on uploaded. apk file. These files contain the information of permission 

features. Figure 6.5 illustrates the assign value state. 

 

Figure 6.5: Assign value state 

c) Model of analyser: This state processes the arff file to detect and assess the 

risks according to the analysers namely, Risk Assessment Model, Bio-Inspired 

Model and Time-Based Model. The Risk Assessment Model assesses the risk 

on the Android applications and provides risk responses indicating whether 

they are very low, low, medium or high risk. The Bio-Inspired model detects 

the unknown malware through the PSO feature selection while the time-series 

model detects malicious applications by using the proposed time based 

features. Figure 6.6 illustrates the model of the analyser state.  
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Figure 6.6: Model of analyser state 

6.2 Demonstrating the risk analysis and malware detection system 

Having presented the main functionalities of the proposed framework and its web 

module, this section demonstrates some examples to show how malware can be classified. 

The analysers have the capability to decompress the Android applications, feature 

extraction, detection and risk assessment.  

a) Decompress Android application: This system requires the Android application 

package file (.apk) to be used as a sample to be analysed on the website and mobile 

devices. The system grants a unique identification number followed by the name 

of the file so as to avoid duplications. 

b) Feature extraction: The next step sees the system collecting the information 

from the manifest.xml file and extracting the proposed features. 

c) Detection: The system then uses the collected features as input for the machine 

learning classifier to predict the class of uploaded file as either malware or benign 

applications. 

d) Risk analysis: Finally, the system measures the risk on applications and provides 

response to the user by showing the level of risk (very low, low, medium and 

high). 

The difference between these analysers are in the proposed approach and the features. 

This analyser implements two approaches: risk assessment and machine learning. In order 
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to demonstrate the effectiveness of the analyser, these prototypes used similar hardware 

specifications which consist of desktop computer equipped with Intel Core i7-4770 CPU 

of 3.40 GHZ, 16 GB of RAM, and the operating system of Microsoft Window 7 

Professional.  

6.3 Risk analysis and malware detection system 

This section demonstrates some examples to show how the risk analysis and malware 

detection were classified. It also presents the main features of the proposed framework 

and its module and the login web pages. Figure 6.7 further illustrates.   

EZADroid Analyzer

 

 Figure 6.7: Login page 

The login account system allows the user to give specific access to the system. Two 

types of login accounts are noted: administrator and normal user. The administrator 

account is a special account that is used for managing other users’ accounts and for 

making changes to the system. It has the capability to view the figures and total number 

of applications submitted. In contrast, the normal user account is for normal tasks such as 

submitting Android applications and viewing the scanned results. To log into the Web 

module, administrator and normal users are required to use a legitimate username and 

password otherwise the Web module will prevent any access to other pages. The 

password is stored in the database. Once the login process is successful, the administrator 

and the normal user are redirected to the landing page which displays the main dashboard 
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of the module. To begin analysis, a user is required to upload Android applications into 

the system. Figure 6.8 illustrates the upload page for use by Android applications.  

EZADroid Analyzer

 

Figure 6.8: Upload page for Android applications 

Once the process of the uploaded file is successful, a list of uploaded Android 

application is listed in the result page as shown in Figure 6.9.  

 

Figure 6.9: Result page 

Figure 6.9 shows the result of the uploaded Android applications. This page shows the 

information regarding the uploaded applications including the name of the file using 

SHA-1 hashing, package name, result from the model and risk results. In the enthusiasm 

to substantiate the adequacy of experiment results, this study applied Drebin dataset for 

training and testing as the evaluation. Apart from the evaluation, the EZADroid was also 

evaluated through Malgenome malware dataset to expose the practicality of the 

framework and a scenario independence model. The obtained results from Malgenome 
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testing dataset showed that the framework recorded accuracy of 95.0%. It shows that the 

proposed approaches capable to detect malware even though using cross-dataset. In 

addition, after an analysis is successfully carried out, the user is able to view the entire 

result for the uploaded file, as shown in Figure 6.10. 

EZADroid Analyzer

 

Figure 6.10: List of application page 

Figure 6.10 provides the risk analysis result which shows whether the Android 

applications have very low, low, medium or high risk. This risk result indicates the 

severity of the Android applications. The two models noted in Figure 6.10 refer to the 

evaluation of our approach as stated in Section 5.2 and Section 5.4.  

Model 1 uses the Bio-inspired approach while Model 2 uses the Time-based approach. 

These models analyse the uploaded applications and determine whether the applications 

are malware or benign. As concluded, this system provides a summary of the detection 

as well as the risk of the applications. Figure 6.11 further illuminates.  
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EZADroid Analyzer

 

Figure 6.11: Summary of analysis 

The EzaDroid offers a more detailed analysis based on the number of uploaded 

applications. It summarises the number of risks indicated by the benign and malware 

application as noted in the graphs. The EzaDroid provides a flexible platform for the 

administrator to configure, analyze and make wise decisions by using the analysis results. 

In particular, the Web page and mobile devices module gives the following advantages: 

a) Analytics results. The Web and mobile device module offers a web analytics 

solution that gives rich insights into the malware detection process besides 

simplifying the analysis. The EzaDroid is easy-to-use, is customisable, flexible 

and able to optimise results. Hence, it allows administrators to analyse the entire 

detection process and examine the results in an online assessment mode. 

b) Simple graphical interfaces. The Web and mobile device module also has the 

capability to analyse and respond by providing graphical interfaces in interpreting 

the malware analysis. It uses different colors and interesting graphs to improve 

user experience. This also allows the administrator to interpret the detection 
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results conveniently thereby giving an additional advantage to high-level 

management and non-technical people to understand the current situation. 

c) Easy management and user friendly interfaces. The EzaDroid analyser also 

provides a user friendly interface where the administrator is able to customise the 

display settings.  

d) Able to utilize in mobile browser. The EzaDroid module is Web based or mobile 

device based. Therefore, it is available for making analysis on the internet browser 

which may be installed in mobile devices. This advantage provides users with the 

opportunity to scan their applications quickly thereby minimizing the risk of 

malware attacks. 

In addressing the advantages of the Web based module, some limitations are detected.   

a) Applications dependent. As the Web module is served using a web server, it also 

relies on the efficiency of the web server to be efficient. In the case of the web 

server going offline, the detection process will be terminated and other analyses 

have to be halted. In addition, the network consistency is necessary for the 

communication and exchange of information to be processed.  

b) Inherit other vulnerabilities. Due to the use of web applications, the Web 

module is henceforth vulnerable to some existing web applications such as HTTP 

Parameter Pollution (HPP), SQL injection, cross-site scripting and session 

hijacking. This increases the vulnerability of the Web and mobile device module 

to other hardware (e.g. web server and mobile devices) and software (e.g. 

browsers) elements. 

In that regard, it is important to address these limitations by looking at other security 

precautions and countermeasures so as to ensure that future malware detection more 

efficient.   
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6.4 Summary 

 This chapter has presented the implementation stage of the proposed framework. It 

provided some examples and snapshots that were extracted from the Web and mobile 

device module which consists of the EzaDroid. The details of this module were explained 

by describing its system architecture and state diagrams.  

The key objective of demonstrating and describing the details of the module was to 

shed light on how the EzaDroid works. A detailed explanation was given to demonstrate 

how its internal module may be affected by the external environment. Due to time 

constraint, it was impossible to fully implement the operation of some modules. This 

limitation, among others, is further exploited in the following chapter. 
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CHAPTER 7: CONCLUSION 

Mobile devices in today’s era are equipped with powerful computing and networking 

capabilities. In addition, they are easy to carry and have become the choice of most users 

with many preferring the tablet or smartphones. This phenomenon has led to mobile 

devices outselling the number of PCs worldwide. The increasing development of mobile 

devices and their widespread use among users throughout the world have simultaneously 

attracted unscrupulous authors for personal benefits such as money. Thus, these 

unscrupulous authors device some malicious software which can attack mobile users and 

consequently, collect their personal information from their mobile devices for their own 

benefits. Although a number of existing approaches such as firewall, antiviruses and 

Intrusion Detection Systems (IDSs) are available as a solution to overcome these malware 

attacks, the current advancement of technology indicates that there is still a need to 

develop a novel approach to detect malware. The availability of sophisticated techniques 

has encouraged these unscrupulous authors to become even more daring by taking more 

sophisticated steps to overcome the security and detection mechanisms so as to make 

malware attacks more difficult for detection. This thesis is based on a study that attempts 

to identify the problem of mobile malware attacks on the Android platform; it also aims 

to address several fundamental issues when automating its analysis on a large scale 

scenario.  

This chapter summarises the study by reviewing the research aim and objectives. It 

highlights the most important findings of this study as well as the limitations. This chapter 

also discusses the potential of new research within the same domain showing how the 

proposed framework able to further enhanced for future implementation in mobile 

malware detection.  
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7.1 Research objectives 

The aim of this study was to improve a malware detection system by using the static 

analysis technique for Android mobile applications. Section 1.4 had described the four 

research objectives of this study. In order to accomplish the aim, the four research 

objectives have to be accomplished so as to solve the problem.  

Objective 1: To review the security vulnerabilities, challenges of each Android 

mobile application and establish the research gap by analysing the state-of-the-art 

malware detection system by investigating the properties of the mobile applications 

which are most critical with respect to the creation and sustainability of malware 

attacks on mobile applications. 

The first objective was to critically investigate the current state-of-the-art malware 

detection specifically those of Android mobile devices. The research objective was 

accomplished by conducting a thorough review of the most crucial works published in 

online scholarly journals. They were extracted from digital libraries which were accessed 

through the University of Malaya’s access portal. These journals include those published 

by the Institute of Electrical and Electronics Engineers (IEEE), the Association for 

Computing Machinery (ACM), Elsevier and the Web of Science portals. This objective 

was accomplished through Chapter 2 where all the related information regarding Android 

malware detection and risk assessment were presented. Chapter 2 also presented the 

malware detection taxonomy and the machine learning approach and algorithms. The 

static analysis technique using machine learning approach with anomaly based detection 

was reviewed as it offers a higher potential in uncovering and predicting unknown and 

future malware. 
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Objective 2: To propose a malware detection system that uses risk analysis to 

analyse the Android mobile applications, which is capable of analysing the 

structural properties of the Android mobile applications for detecting malware. 

The second objective of this study was to propose a novel approach to facilitate the 

practical evaluation of mobile risk analysis by using the machine learning approach and 

to facilitate the analytical hierarchy process. The outcomes gathered from this study 

highlighted the importance of the risk assessment in determining the level of risk noted 

on Android applications. This study presented the threshold which assesses the risk; it 

also provided the risk levels which ranged from very low, low, medium to high risk. In 

addition, this study also searched for relevant features with minimum numbers to be used 

for assessing the risk noted on Android applications by using the feature selection 

approach (i.e. information gain). This is important for improving the assessment 

measurement results. This objective was accomplished in Chapter 5. 

Objective 3: To propose a malware detection system that is based on the time 

series approach by observing the behavioral properties of the Android mobile 

applications through time for the purpose of predicting future mobile malware. 

The third objective of this research was to propose the malware detection system based 

on the time series approach. The evaluation of the malware detection system was 

examined in two platforms: a) WEKA and b) Prototype. In the Weka simulation, the 

experiments tested the features in six evaluation measures: accuracy, True Positive Rate 

(TPR), recall, precision, f-measure and False Positive Rate (FPR). In the prototype 

platform, the experiment evaluated the features in terms of the accuracy and performance 

of each analyser model (i.e. Risk Assessment, Bio-Inspired and Time-based) in a practical 

environment. This assessment encompassed processes which include the decompressing 
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of applications, the extracting of features, the selecting of features and the measuring of 

the risks of Android applications. This objective was accomplished in Chapter 5. 

Objective 4: To evaluate the proposed system in terms of detection accuracy by 

using real-world Android malware and implement the prototype of the proposed 

system for a practical evaluation via a web-based assessment.  

The fourth objective of this study was to evaluate a prototype of the malware detection 

system based on a novel framework that was developed according to the relevant features 

and methodology approach. This study then devised a Web based system to detect 

Android applications to differentiate the files as malware or benign. The apk file was 

uploaded by the user to check the file application on the Web page or mobile device 

module. The system decompresses the  apk file to extract features; it then identifies the 

classes of applications with the machine learning model. Based on the review of literature, 

this study had selected the best machine classifiers by comparing the performance of the 

prototype with the WEKA results. The proposed system contains three model analysers 

namely, Risk Assessment, Bio-Inspired and Time-Based model. This objective was 

accomplished in Chapter 6. 

7.2 Achievement of the study 

This research began by studying the mobile devices evolution and reviewing the 

different types of malware detection systems. It explored the issues about mobile device 

detection and risk assessment as well as the selection of relevant features. Several 

machine learning classifiers were explored and the performance results were collected. 

The study then evaluated the performance results so as to satisfy the aim of the study. 

Several points of interests were identified as noted in the following: 
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a) A detection model for mobile malware. This study has created a model which 

able to detect mobile malware applications through the static analysis approach. 

A machine learning approach was used as a better adaptive detection model. The 

model worked perfectly in detecting mobile malware based on permission 

features. 

b) Issues in mobile malware detection studies. In Chapter 2, this study presented 

the state-of-the art technique on mobile malware detection and their significance 

in detecting mobile malware. By presenting the strengths and weaknesses of these 

issues, several strategies were identified for addressing the limitations. In order to 

improve the effectiveness of the malware detection system, research highlighting 

some of the limitation were performed. The aim was to search for the relevant 

features which used to develop a more efficient approach. 

c) Issue in mobile malware feature selection. This study has shown a critical 

analysis of the different perspectives used when addressing the significant 

problems of feature selection in anomaly-based detection model. The aim was to 

improve detection performance and to minimise complexity.  

d) Implementation of the proposed model. The investigation was extended by 

examining the feasibility of the proposed model so as to demonstrate its practical 

application on Android permissions with the risk assessment model. A proof-of-

concept study was designed and realised (See Chapter 6). As an extension to the 

evaluation study, the implementation stage also developed a Web-based system, 

which concentrates on the Web module of the proposed model. To illustrate the 

implementation stage, the proposed model was presented with details using the 

modelling language. It includes the case diagrams as well as some snapshots 

extracted from the prototype pages. 
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e) Risk Assessment model for mobile applications. This study has created a model 

which has the capability to assess the risk of mobile applications through the risk 

assessment approach.  The Analytical Hierarchy Process technique was applied to 

measure the risk and the rule was applied in the model. The model worked 

perfectly in assessing risks on mobile applications as well as generating the risk 

levels noted (i.e. very low, low, medium and high). 

7.3 Limitation of the study 

The discussions noted in previous chapters have validated that this study has 

adequately achieved its aims and objectives - the establishment of a novel framework that 

is useful for detecting unknown malware in anomaly-based detection environment. 

However, a number of limitations and challenges were encountered during the study and 

they are listed here for future references. 

a) The evaluation of the study was taken only from static-based detection model. 

In conducting the experiment during the evaluation phase (see Chapter 5), this study 

found some practical limitations. In particular, all input features are gathered from 

static analysis. However, in practical solution, static and dynamic have their pros and 

cons. Therefore, comparing results from both analyses would be more meaningful. 

b) A practical proof-of-concept. Although a practical evaluation study using web 

modules and a live simulation has been presented in Chapter 6, it is important to 

perform the entire prototype in a real mobile device with actual detection module 

because it able to strengthen the feasibility of the proposed approach. Moreover, the 

result from the experiments show a clear distinction between the ways mobile 

malware detected and risk analysis on Android applications.  

c) The usability of web module. The performance evaluation study extended the 

implementation phase to demonstrate the practically of the web modules. However, 
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the usability of such module is not evaluated in this study. The snapshots of the 

prototype pages presented in Chapter 6 are considered adequate in order to 

demonstrate the usage of the web module.  

7.4 Summary- suggestion for future works 

The following are suggestions for future work outside the scope of this study have 

been identified as follows: 

a) Visualisation for risk analysis and malware detection. This thesis has provided 

figures, tables and graphs which used to the advantage of security analysts and 

academic researchers in terms of an interactive approach that offer viewers an 

insight into the two dimensional aspect of the analysis. This thesis had also 

provided sizeable numerical figures and statistical data in an effective manner. 

The significance of these figure, tables and graphs is their ability to draw readers 

to the specific information in a short time span. Therefore, using different types 

of graph models offer further opportunities for future research.   

b) Improve false alarm rate. False alarm rates continue to be an issues as long as it 

exists in the detection module. False alarms refer to the statistical measure of how 

well sample dataset correctly classify the malware applications. This means that 

the malware data have been falsely predicted as normal. This problem leads to 

false detection of applications and even a small rate of false alarms able to trigger 

huge impacts. Therefore, a reliable and effective detection module is necessary to 

overcome this issue.   

c) Select relevant features. As data become more complex and larger, the selection 

of relevant and adequate features to improve detection performance becomes 

harder. The process will require further analysis to be conducted so as to examine 

the correlation between malware and benign applications. Doing so, it helps to 
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reduce instances of false alarms thereby increasing higher detection accuracy rate, 

especially when dealing with permission features.  

d) The malware detection approach could be combined to produce a hybrid 

approach. Hybrid approaches have the capability to detect new variants of 

malware attacks. This hybrid approach when designed, will be able to perform 

static analysis and dynamic analysis using signatures and running applications. 

Moreover, this hybrid approach could also produce explicit learning and more 

comprehensible models. This hybrid approach can be used by future studies to 

improve the performance of malware detection.  
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