

A MALWARE RISK ANALYSIS AND DETECTION
SYSTEM FOR MOBILE DEVICES USING PERMISSION-

BASED FEATURES

MOHD FAIZAL BIN AB RAZAK

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2018

Univ
ers

ity
 of

 M
ala

ya

A MALWARE RISK ANALYSIS AND DETECTION
SYSTEM FOR MOBILE DEVICES USING PERMISSION-

BASED FEATURES

MOHD FAIZAL BIN AB RAZAK

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2018 Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohd Faizal Bin Ab Razak

Matric No: WHA140021

Name of Degree: Degree of Philosophy

Title of Thesis: A MALWARE RISK ANALYSIS AND DETECTION SYSTEM

FOR MOBILE DEVICES USING PERMISSION-BASED FEATURES

Field of Study: Security (Computer Science)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every right in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
of

Mala
ya

iii

A MALWARE RISK ANALYSIS AND DETECTION SYSTEM FOR MOBILE

DEVICES USING PERMISSION-BASED FEATURES

ABSTRACT

In recent years, the amount of malware targeting Android users has increased

dramatically. Among many mobile operating systems, the Android operating system is

most targeted by malware. In order to detect malware which causes immense chaos and

problems to mobile device users, the Android mobile applications need to be analysed.

Two types of malware analysis are available namely, static analysis and dynamic analysis.

Static analysis examines the whole code of the applications thoroughly while dynamic

analysis identifies malware applications by monitoring their behaviors. Although both

types of analysis have been performed with some level of success, additional processes

are needed to improve the malware detection system. This is because current technologies

indicate that malware attackers find novel ways of avoiding detection while causing harm.

This thesis aims to propose an efficient malware detection system which uses the machine

learning approach and the risk analysis approach to analyse Android applications. This

study focusses in particular on permission features which are able to disclose the sensitive

information noted on Android mobile devices. This study uses data samples accessed

from Drebin by collecting 5,560 applications from 179 different malware families. It also

uses data samples accessed from Androzoo by collecting 5,000 benign applications. This

study also proposes a novel quantitative security method for evaluating the risk analysis

of malicious and benign applications based on Android permissions. The risk analysis

helps users to understand the risk level of the applications. It also improves user attention

by giving responses to the users regarding permissions that contain high-risk levels. More

specifically, this study performs four experiments through to validate the proposed system

for use. In particular, this study introduces the EZADroid for evaluating and zoning the

Android applications which apply the Analytic Hierarchy Process (AHP) as a decision

Univ
ers

ity
 of

 M
ala

ya

iv

factor to calculate the risk values and to assess the prediction performance through True

Positive Rate (TPR), False Positive Rate (FPR), accuracy, f-measure and precision.

Finally, a website was established to validate the prediction performance with machine

learning approach that measures its efficiency and effectiveness. The outstanding results

imply that this study has proven that the permission features are capable of classify

malware applications.

Keywords: Machine learning, risk analysis, Android, static analysis, features selection

Univ
ers

ity
 of

 M
ala

ya

v

ANALISIS RISIKO DAN SISTEM PENGESANAN PERISIAN PEROSAK

UNTUK PERANTI MUDAH ALIH MENGGUNAKAN CIRI KEBENARAN

ABSTRAK

Dalam tahun-tahun kebelakangan ini, jumlah perisian perosak yang menyasarkan

pengguna Android telah meningkat secara dramatik. Di antara perisian mudah alih, sistem

perisian Android paling disasarkan oleh perisian perosak. Perisian perosak ini

menyebabkan masalah kepada pengguna peranti mudah alih, aplikasi mudah alih Android

perlu dianalisis. Terdapat, dua jenis analisis iaitu analisis statik dan analisis dinamik.

Analisis statik mengkaji keseluruhan kod aplikasi secara menyeluruh sementara analisis

dinamik mengenal pasti aplikasi malware dengan memantau tingkah laku mereka.

Walaupun kedua-dua jenis analisis telah dilakukan dengan beberapa tahap kejayaan,

proses tambahan diperlukan untuk memperbaiki sistem pengesanan perisian perosak. Ini

kerana teknologi semasa menunjukkan bahawa penyerang perisian perosak mencari cara

baru untuk mengelakkan pengesanan dan menyebabkan bahaya. Tujuan tesis ini adalah

untuk mencadangkan sistem pengesanan perisian perosak yang berkesan yang

menggunakan pendekatan pembelajaran mesin dan pendekatan analisis risiko untuk

menganalisis aplikasi Android. Kajian ini memberi tumpuan khususnya pada ciri-ciri

kebenaran yang dapat mendedahkan maklumat sensitif yang dicatatkan pada peranti

mudah alih Android. Kajian ini menggunakan sampel data yang diakses dari Drebin

dengan mengumpulkan 5,560 perisian terdiri daripada 179 keluarga. Ia juga

menggunakan sampel data yang diakses dari Androzoo dengan mengumpulkan 5,000

perisian baik. Kajian ini juga mencadangkan kaedah keselamatan kuantitatif novel untuk

menilai analisis risiko perisian perosak dan baik berdasarkan kebenaran Android. Analisis

risiko membantu pengguna memahami tahap risiko perisian. Ia juga meningkatkan

perhatian pengguna dengan memberi maklum balas kepada pengguna mengenai

kebenaran yang mengandungi tahap risiko tinggi. Lebih khusus lagi, kajian ini

Univ
ers

ity
 of

 M
ala

ya

vi

menjalankan empat eksperimen melalui fasa dan langkah untuk mengesahkan sistem

yang dicadangkan. Khususnya, kajian ini memperkenalkan EZADroid untuk menilai dan

mengelaskan aplikasi Android yang menggunakan Proses Hierarki Analitik (AHP)

sebagai faktor keputusan untuk mengira nilai risiko dan menilai prestasi ramalan melalui

Kadar Positif Benar (TPR), Kadar Positif Palsu (FPR), f-ukur dan ketepatan. Akhirnya,

sebuah laman web ditubuhkan untuk mengesahkan prestasi ramalan dengan pendekatan

pembelajaran mesin yang mengukur kecekapan dan keberkesanannya. Hasil

menunjukkan bahawa kajian ini telah membuktikan bahawa ciri kebenaran mampu

meramal perisian perosak yang tidak diketahui termasuk analisis risiko pada perisian

Android.

Kata kunci: Pembelajaran mesin, analisis risiko, Android, analisis statik, pemilihan ciri-

ciri

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

First of all, I am thankful to the Almighty Allah for bestowing me with the strength

and perseverance to carry on with my PhD journey even though at times I felt weary. I

am very blessed to have endured it all and still be able to come out of it successfully by

completing this study.

I am deeply indebted to my supervisors, Prof. Madya Dr. Rosli Bin Salleh and Prof.

Madya Dr. Nor Badrul Anuar Bin Jumaat’ for their invaluable guidance, supervision and

encouragement throughout this study and this journey of endurance. Their continuous

guidance and support has assisted me in conducting a valuable piece of study that is

reported in this thesis. They had also provided me with the opportunity to broaden my

professional experience and to prepare me for future challenges. Their countless efforts

have further encouraged me to work hard so as to achieve the milestones in a defined time

limit.

I would like to express my sincerest gratitude and appreciation to my family for their

endless love and support during this doctoral stud pursuit especially my parents (Ab

Razak Bin Taib, Wan Azizah Wan Abdul Rahman). Without their moral support, this

thesis would not have been completed on time. No words can express my feelings and

my gratitude towards my parents and siblings for all the sacrifices made. I dedicate the

highest achievement of my student life to them.

I would also like to express my deep appreciation to my dearest lab friends who had

been providing me with so much support and encouragement throughout this study and

academic pursuit. I wish them all the best in their future undertakings.

Finally, I would like to thank the Faculty of Computer Science and Information

Technology for its help in enabling me to deal with all sorts of matters during my studies.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xiii

List of Tables.. xvi

List of Symbols and Abbreviations .. xix

List of Appendices .. xx

CHAPTER 1: INTRODUCTION .. 1

1.1 Background of the study .. 1

1.2 Motivation.. 2

1.3 Statement of problems ... 4

1.4 Aim and objective .. 5

1.5 Research methodology... 6

1.6 Summary .. 8

CHAPTER 2: MOBILE DEVICE EVOLUTION, MALWARE

CHARACTERISTICS AND DETECTION SYSTEMS ... 11

2.1 Mobile device evolution .. 11

2.2 Mobile operating systems .. 16

2.2.1 iOS operating system .. 16

2.2.2 Windows ... 17

2.2.3 Android ... 17

2.3 Android operating system .. 19

Univ
ers

ity
 of

 M
ala

ya

ix

2.3.1 Android architecture ... 21

2.3.2 Security model in Android devices .. 23

2.3.3 Threats on mobile devices .. 26

2.4 Mobile malware characteristics ... 27

2.4.1 Research on mobile malware.. 29

2.4.2 Infected vectors .. 30

2.5 Malware detection system ... 33

2.5.1 Analysis technique ... 34

2.5.2 Detection approach ... 35

2.5.3 Deployment approach ... 38

2.6 Risk assessment ... 40

2.6.1 Threats .. 40

2.7 Risk assessment phase ... 41

2.8 Judgement matrix... 43

2.9 Summary .. 44

CHAPTER 3: MOBILE MALWARE ANALYSIS TOOLS 45

3.1 Static analysis tools.. 45

3.1.1 Androguard ... 45

3.1.2 ApkTool .. 46

3.1.3 Statistical analysis software tools ... 46

3.1.4 R language .. 46

3.1.5 IBM SPSS statistics .. 47

3.2 Machine learning classifiers .. 47

3.3 Machine learning tools .. 50

3.3.1 WEKA .. 51

3.4 Online analysis tools .. 53

Univ
ers

ity
 of

 M
ala

ya

x

3.5 Feature selection and optimisation method ... 55

3.5.1 Information gain ... 58

3.5.2 Evolutionary algorithm ... 58

3.5.3 Bio-inspired Particle Swarm Optimisation (PSO) 59

3.5.4 Distinctive features between application .. 60

3.6 Summary .. 61

CHAPTER 4: RISK ANALYSIS AND MALWARE DETECTION: THE

FRAMEWORK… ... 62

4.1 EZADroid framework .. 62

4.2 Machine learning classifiers .. 67

4.3 Evaluation measure .. 68

4.4 Area under curve (AUC) performance .. 69

4.5 Summary .. 70

CHAPTER 5: EVALUATION OF RISK ANALYSIS AND MALWARE

DETECTION FRAMEWORK .. 71

5.1 Dataset descriptions ... 71

5.1.1 Malware Genome Project ... 72

5.1.2 Drebin ... 72

5.1.3 AndroZoo ... 73

5.1.4 Google Play store ... 73

5.1.5 Benign dataset .. 74

5.2 Experiment I: Evaluation of bio-inspired .. 74

5.2.1 Experiment setup and procedure description ... 75

5.2.2 Data collection phase .. 76

5.2.3 Evaluation and results .. 83

Univ
ers

ity
 of

 M
ala

ya

xi

5.2.4 Discussion .. 89

5.2.5 Conclusion .. 90

5.3 Experiment II: Evaluation of machine learning classifiers 91

5.3.1 Experiment setup and procedure description ... 92

5.3.2 Data collection phase .. 93

5.3.3 Evaluation and results .. 95

5.3.4 Discussion .. 103

5.3.5 Conclusion .. 104

5.4 Experiment III: Evaluation of time series detection .. 106

5.4.1 Experiment setup and procedure description ... 106

5.4.2 Data collection phase .. 107

5.4.3 Evaluation and results .. 108

5.4.4 Discussion .. 110

5.4.5 Conclusion .. 110

5.5 Experiment IV: Evaluation of application risk .. 110

5.5.1 Experiment setup and procedure description ... 113

5.5.2 Data collection phase .. 120

5.5.3 Evaluation and results .. 120

5.5.4 Discussion .. 131

5.5.5 Conclusion .. 133

5.5.6 Summary .. 135

CHAPTER 6: PROTOTYPE IMPLEMENTATION OF RISK ANALYSIS AND

MALWARE DETECTION SYSTEMS .. 136

6.1 Implementation of EZADroid system ... 136

6.1.1 Use case diagram .. 137

6.1.2 State diagram .. 138

Univ
ers

ity
 of

 M
ala

ya

xii

6.2 Demonstrating the risk analysis and malware detection system 141

6.3 Risk analysis and malware detection system ... 142

6.4 Summary .. 147

CHAPTER 7: CONCLUSION ... 148

7.1 Research objectives ... 149

7.2 Achievement of the study .. 151

7.3 Limitation of the study... 153

7.4 Summary- suggestion for future works ... 154

References ... 156

List of Publications and Papers Presented .. 172

APPENDIX A: List of publications .. 173

APPENDIX B: List of malware family and risk value ... 180

APPENDIX C: Parameter of algorithms... 184

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF FIGURES

Figure 1.1: Distribution of mobile malware in 2017... 4

Figure 1.2: Proposed research methodology ... 7

Figure 1.3: Thesis layout ... 8

Figure 2.1: Mobile operating system trend ... 13

Figure 2.2: Percentages of market share in mobile operating systems in 2017 13

Figure 2.3: Percentage of usage in mobile operating systems .. 14

Figure 2.4: Percentages of worldwide mobile device sales by operating systems in 2016
 ... 15

Figure 2.5: Android system architecture ... 21

Figure 2.6: Percentages of information collected from mobile devices 27

Figure 2.7: Publication trends ... 29

Figure 2.8: Classification of malware detection system ... 33

Figure 3.1: WEKA GUI .. 51

Figure 3.2: Features selection ... 52

Figure 3.3: Examples of classifiers ... 53

Figure 3.4: GUI of VirusTotal .. 54

Figure 3.5: Examples of analysis results ... 54

Figure 3.6: Details of scanned applications .. 55

Figure 4.1: EZADroid Framework .. 64

Figure 4.2: Layer Framework of the EZADroid System .. 66

Figure 4.3: Layer Interactions ... 67

Figure 5.1: Website of AndroZoo ... 73

Figure 5.2: Malware detection architecture ... 76

Figure 5.3: Data collection phase .. 77

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 5.4: Total number of applications requesting permissions 79

Figure 5.5: Machine learning phase .. 80

Figure 5.6: Comparison of feature optimisation approach based on number of features 81

Figure 5.7: Performance of ROC curve .. 85

Figure 5.8: Precision ... 87

Figure 5.9: Recall .. 88

Figure 5.10: F-measure ... 88

Figure 5.11: Methodology ... 92

Figure 5.12: ROC curve .. 99

Figure 5.13: Classification threshold .. 101

Figure 5.14: EZADroid framework... 112

Figure 5.15: Percentage of the top 10 requested permission by malware applications 114

Figure 5.16: Risk zone threshold .. 119

Figure 5.17: The boxplot of 10 permission ... 124

Figure 5.18: The boxplot of 20 permission ... 125

Figure 5.19: The boxplot of 30 permission ... 125

Figure 5.20: Risk zone evaluation in 10, 20 and 30 criteria ... 127

Figure 5.21: Risk zone analysis .. 131

Figure 6.1: Web development framework .. 137

Figure 6.2: Use Case Diagram .. 138

Figure 6.3: Prime-state Diagram ... 139

Figure 6.4: Storing of .apk file state ... 140

Figure 6.5: Assign value state ... 140

Figure 6.6: Model of analyser state ... 141

Univ
ers

ity
 of

 M
ala

ya

xv

Figure 6.7: Login page .. 142

Figure 6.8: Upload page for Android applications.. 143

Figure 6.9: Result page ... 143

Figure 6.10: List of application page .. 144

Figure 6.11: Summary of analysis .. 145

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF TABLES

Table 2.1: Worldwide device shipments in 2016-2018 (Millions of Units) 12

Table 2.2: Comparison of mobile operating system ... 17

Table 2.3: Pros and cons of the mobile operating systems ... 18

Table 2.4: Android version ... 20

Table 2.5: Description of the Android system’s Architecture 22

Table 2.6: Level of Android level protection .. 25

Table 2.7: Common malware types .. 28

Table 2.8: Types of malware analysis ... 35

Table 2.9: Anomaly approach ... 36

Table 2.10: Signature approach... 37

Table 2.11: Advantage and disadvantage of the detection approach 38

Table 2.12: Deployment approach .. 39

Table 2.13: Description of risk assessment ... 41

Table 2.14: Fundamental scale of the absolute numbers .. 43

Table 3.1: Description of classifiers.. 50

Table 3.2: Number of features used by previous works.. 57

Table 4.1: IDS confusion matrix ... 68

Table 4.2: Evaluation measures .. 69

Table 4.3: AUC performance threshold .. 70

Table 5.1: Dataset summary .. 77

Table 5.2: Top 10 permission in benign and malware applications 78

Table 5.3: List of permission features ... 82

Table 5.4: Detection performance results ... 84

Univ
ers

ity
 of

 M
ala

ya

xvii

Table 5.5: Results of AUC .. 86

Table 5.6: Dataset summary .. 93

Table 5.7: Lists of permission ... 94

Table 5.8: Comparison with and without features selection approach 95

Table 5.9: Time taken to produce results (second) ... 97

Table 5.10: Confusion matrix of classifiers .. 98

Table 5.11: AUC results .. 100

Table 5.12: Optimal threshold .. 101

Table 5.13: Performance result ... 102

Table 5.14: Time taken to produce model (seconds) .. 102

Table 5.15: Categories of application ... 107

Table 5.16: Dataset summary .. 108

Table 5.17: Time series detection ... 109

Table 5.18: List of criteria ... 117

Table 5.19: Judgment matrix criteria .. 118

Table 5.20: Description of risk zone ... 119

Table 5.21: Data analysis for 10 permission ... 120

Table 5.22: Samples evaluation and risk zone on applications 121

Table 5.23: List of malware family and risk value ... 123

Table 5.24: Risk evaluation... 126

Table 5.25: Top free in Android applications ... 127

Table 5.26: Description statistics .. 128

Table 5.27: Variables entered\Removed ... 129

Table 5.28: Model summary ... 129

Univ
ers

ity
 of

 M
ala

ya

xviii

Table 5.29: ANOVA ... 130

Table 5.30: Coefficients .. 130

Univ
ers

ity
 of

 M
ala

ya

xix

LIST OF SYMBOLS AND ABBREVIATIONS

ADB : Android Debug Bridge

AHP : Analytical Hierarchy Process

AI : Artificial Intelligence

APK : Android Package

Arff : Attribute-Relation File Format

CSV : Comma Separated Values

DT : Decision Tree

FP : False Positive

FPR : False Positive Rate

GUI : Graphical User Interface

IDS : Intrusion Detection System

KNN : K-Nearest Neighbors

ML : Machine Learning

MLP : Multi-Layer Perceptron

NB : Naïve Bayes

PSO : Particle Swarm Optimization

RF : Random Forest

SVM : Support Vector Machine

TN : True Negative

TPR : True Positive Rate

XML : Extensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

xx

LIST OF APPENDICES

Appendix A: List of publications....……………………………………………... 173

Appendix B: List of malware family and risk value…………………………….. 180

Appendix C: Parameter of algorithms…………………………………………… 184

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter introduces the theoretical framework by explaining the importance of the

study. In order to give readers a glimpse into the study, this thesis is divided into six

sections. Section 1.1 presents the background of the study. Section 1.2 explains the

research motivation. Section 1.3 describes the problem statements and highlights the

issues regarding the application risk and malware detection. Section 1.4 presents the

research objectives. Section 1.5 explains the research methodology and Section 1.6

presents the thesis layout.

1.1 Background of the study

The explosive growth of Android mobile devices is most notable in the smartphone

market. Android mobile devices are making smartphones more relevant than ever to

people’s daily lives as compared to ten or twenty years ago. However, the growing

adoption of the Android mobile device has also brought about many security concerns

and threats such as malicious software also called malware. It is a programme that harms

the mobile system by injecting viruses such as Trojan Horses, root exploit, botnet, and

spyware into Android applications. This malware has the capability to steal user

credentials, read contact numbers and cause resource abuse. In 2015, the McAfee Labs

discovered more than two million new malware (McAfee, 2016).

By September 2017, a total of 21.1 million Android mobile devices have been infected

by malware (Dassanayake, 2017; Fox-Brewster, 2017) which sneaked its way into the

Android mobile devices from Google Play Store (Fox-Brewster, 2017). According to the

Trend Micro 2016 Security Predictions, China will be driving mobile malware growth to

20 million and most of the malware will be attacks on mobile payment methods (Clay,

2015). What the malware does is send fraudulent premium SMS messages and then

charge the users for fake services. In the first half of 2017, about 235,000 Android

Univ
ers

ity
 of

 M
ala

ya

2

ransomware have been detected (Trend Micro, 2017). This number shows that the

Android has become a high-risk mobile application (Clay, 2015).

Current but traditional approaches to detect malware include the anti-virus software

product and Intrusion Detection System (IDS). However, unscrupulous authors apply

sophisticated techniques such as a polymorphic and metamorphic techniques to prevent

from anti-virus and the IDS. These sophisticated techniques are used to obfuscate and

repackage the malicious codes so as to bypass the signature detection thereby defeating

attempts to analyse their malicious intentions.

Of late, researchers (Firdaus et al., 2017) are focusing on malware detection by

incorporating machine learning approaches to protect users from these novel threats. The

machine learning approach allows the computer to train the data input while trying to

detect malware. It uses the data to analyse the malware patterns. Without being

programmed, it is also able to perform some specific tasks which produce reliable results.

There are two types of analyses which used on malware analysis namely, static

analysis and dynamic analysis. Static analysis detects malware by extracting the code

from the applications. It uses reverse engineering techniques (Razak et al., 2016).

Dynamic analysis detects malware by running the applications and monitoring their

behaviours. Its disadvantage is that it consumes high resources such as the central

processing unit (CPU) processing time (Feizollah et al., 2015).

1.2 Motivation

This research was motivated by a number of reasons which are classified as follows:

a) Trends on mobile devices: The Android mobile device continues to lead in the

mobile device market (Egham, 2017). To date, a total of 94 percent of mobile devices

have been installed with the Android operating system (O’Shea, 2017). According to

the IDC, the year 2020 will be seeing 1.5 billion Android mobile devices being

shipped (International Data Corporation (IDC), 2016). In addition to this, 3.8 billions

Univ
ers

ity
 of

 M
ala

ya

3

of people are expected to be using the Android mobile device in 2022 (O’Shea,

2017). These statistics make the Android mobile device the most prominent and also

a primary target of malware threats (Nokia, 2017).

b) The increase of Android-based malware threat: In the year 2017, the total number

of malware threats recorded was 3.5 million with around 8,400 new malware being

recorded. This trend is expected to continue every day the year until 2018 (Lueg,

2017). Reports indicate that, 87 percent of the Android mobile devices are exposed

to malware threats and have become infected with a simple text message (Lab, 2017).

This occurrence has caused a loss of MYR100,077,311.88 million to the mobile

device especially in data breaches including operational losses and damages

(Muncaster, 2017).

c) The risk to mobile user: Vulnerabilities and malware attacks in applications give

attackers access to the mobile devices. This problem appears to affect mobile devices

making users vulnerable to security risks. Malware can access sensitive information

without user knowledge. One example is the Skycure Mobile Threat Risk Score

which recorded that 30.23 percent of medium risks will be affecting mobile users

(Skycure Mobile Threat Defense, 2016). Therefore, it is important to understand the

risks and the severities caused to mobile devices so that users can be protected.

Despite the many research attempts to detect malware applications, there is still room

for improvement in the malware detection system domain. The room for improvement

can be attributed to current solutions which are still inadequate in providing users with

protection from malware risks.

Univ
ers

ity
 of

 M
ala

ya

4

1.3 Statement of problems

As more sensitive information are being stored and accessed by mobile device users,

the threat to these users also increases making them easy prey for malware attacks. In

fact, 21.1 million Android mobile devices have been affected by malware applications

that had been downloaded from Google Play Store (Dassanayake, 2017). Figure 1.1

presents the distribution of the types of mobile malware.

Figure 1.1: Distribution of mobile malware in 2017

The statistics indicate that Risk Tool (40.51%) was the most threatening (Unuchek et

al., 2017) followed by Trojan-Ransom malware (15.09%). Clearly, most of the malware

belong to the Trojan-Ransom type. This malware causes serious damages to mobile

device users by making them subscribe to some unwanted premium services (Unuchek

et al., 2017).

To analyse the risks and to detect malware applications, security analysts have

implemented two type of analysis techniques, static and dynamic. However, these

techniques were shown to be ineffective in analysing risks and for detecting malware

applications when the attacker implements polymorphism into the application. Even

though Google has introduced the Bouncer application (Oberheide et al., 2012) to detect

malware applications, the threat cannot be alleviated as the threats seem widespread (Fox-

Brewster, 2017).

0 10 20 30 40 50

Backdoor

Trojan-Banker

Trojan-Spy

Trojan_Dopper

Trojan-SMS

Trojan

Adware

Trojan-Ransom

Risk Tool

Percentages %

M
al

w
ar

e
Ty

p
e

Univ
ers

ity
 of

 M
ala

ya

5

Malware applications are capable of stealing users’ account details, make them

subscribe to premium messages via SMS and also compromise the hardware (Tam et al.,

2017). The main problem with malware is that it conducts all these activities without the

mobile device users’ knowledge. Some benign applications in mobile devices may also

carry a high-risk impact (Lookout, 2012; Song et al., 2016) thereby compounding the

situation.

Malware detection achieved by deploying an Intrusion Detection System (IDS) using

the static analysis or dynamic analysis approach. Nevertheless, both approaches also

come with challenges. This calls for an urgent need to develop new risk analysis and new

malware detection approaches that identify the risk of applications (Skycure Mobile

Threat Defense, 2016; Saracino et al., 2016; Jackson, 2017).

1.4 Aim and objective

The aim of this study is to improve the current malware detection system for Android

mobile devices and applications. The objectives of this study are thus:

i. To review the security vulnerabilities, challenges of each Android mobile

application and establish the research gap by analysing the state-of-the-art

malware detection system by investigating the properties of the mobile

applications which are most critical with respect to the creation and sustainability

of malware attacks on mobile applications.

ii. To propose a malware detection system that uses risk analysis to analyse the

Android mobile applications, which is capable of analysing the structural

properties of the Android mobile applications for detecting malware.

iii. To propose a malware detection system that is based on the time series approach

by observing the behavioral properties of the Android mobile applications through

time for the purpose of predicting future mobile malware.

Univ
ers

ity
 of

 M
ala

ya

6

iv. To evaluate the proposed system in terms of detection accuracy by using real-

world Android malware and implement the prototype of the proposed system for

a practical evaluation via a web-based assessment.

1.5 Research methodology

The entire study was carried out in four phases as shown in Figure 1.2. In the literature

review phase, the security implications of the Android operating system was emphasised

by focusing specifically on the state-of-the-art security solutions noted in Android risk

analysis and malware detections. This study analyses the security vulnerabilities, risk

analysis, and malware characteristics. It introduces the background of the malware

analysis techniques and the detection methods in detecting malware including the IDS. A

comprehensive taxonomy and the state-of-the-art IDS as well as a classification of mobile

malware detections were then presented. This encompasses looking at the static and

dynamic techniques, the signature approach, and the deployment approach. The chapter

ends with the advantages and limitations of the study.

In order to carry out this study, several tools were deployed for running the

experiments in the mobile malware tools phase. For example, the Androguard, ApkTool,

R languages, and the IBM SPSS Statistics were employed. This study also introduced the

features selection algorithms which include information gain, evolutionary algorithms,

and bio-inspired optimisation algorithms in the tools used.

 Univ
ers

ity
 of

 M
ala

ya

7

Literature Review Mobile Malware Tools Design & Development Evaluation

 To review the domain of
Android malware and risk
analysis.

 To comprehensively
analyze the current state-of-
the-art.

 Classifying the literature to
devise taxonomies.

 Identifying research gap

 To discuss static analysis
and machine learning tools.

 To provide statistical
analysis tools for
experiments.

 To proposes the features
selection and optimization
algorithms for experiments.

 To design and develop
Android risk analysis and
malware detection of
proposed framework.

 Selection of the reliable
algorithms and features for
the proposed framework.

 To design the work-flow
risk analysis and malware
detection of the proposed
framework.

 To evaluate the
performance evaluation on
proposed framework.

 Validate malware detection
using K fold cross
validation model technique
with experiments (machine
learning).

 Validate risk analysis using
statistical analysis (box plot
and linear regression).

Identify Research
Gap

Establish
Problem, Provide

Tools &
Algorithms

Develop &
Implement Risk
Assessment and

Machine
Learning
Approach

Verify &
Validate Solution

Figure 1.2: Proposed research design

The design and development of this study consists of four phases: data collection,

features selection and extraction, and risk assessment evaluation. The data collection

phase explains how dataset comprising benign and malware samples were gathered for

use in the experiments. The samples were extracted and then labelled as accordingly as

“Malware” and “Benign”. The next phase selects static features (permission) while the

final phase evaluates the risk analysis model.

Samples were retrieved from 5,560 malware samples from Drebin (Arp et al., 2014)

and 5000 benign samples from the Androzoo dataset (Allix et al., 2016) and then

evaluated. This was meant to show that permission features can project the effectiveness

of the malware detection system.

The evaluation phase then evaluates the performance measure through seven

benchmarks (i.e. accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall,

precision, f-measure and Receiver Operating Characteristic (ROC). To show the

significant performance and unbiasness of the proposed approach, this study employed a

Univ
ers

ity
 of

 M
ala

ya

8

ten-fold (i.e. k=10) cross-validation. A statistical analysis was then conducted to exhibit

the performance of the proposed approach.

1.6 Summary

This chapter has provided the relevant information which encompass the background

to the study, the motivation spurring this study, the research problem, the research

methodology that this study incurs. The rest of this thesis is as laid out in Figure 1.3. This

thesis is composed of seven chapters. Each chapter contains a part of the research work

that was conducted to address the research problem and fulfill each objective of the study.

Figure 1.3 illustrates.

1. Introduction
Background, Motivation, Problem

Statement, Research Objective

2. Literature Review
Mobile operating systems, Mobile
Malware Characteristic, Malware
Detection System, Risk Assessment

3. Mobile Malware Tools
Static Analysis Tools, Statistical

Analysis Software, Machine
Learning, Features Selection &

Optimization

4. Risk Analysis & Malware
Detection: The Framework

Architecture, Methods, Evaluation
Measure

5. Evaluation Risk Analysis &
Malware Detection Framework

Experiment Set-ups, Evaluation
Metrics, Evaluation Dataset, Results

6. Prototype Implementation of
Risk Analysis & Detection

System
Use Case Diagram, State Diagram,

Demonstrating Prototype

7. Conclusion
Achievement of Study, Limitation,

Challenges of Study

Figure 1.3: Thesis layout

Chapter 1 presents a brief overview of the study. It includes the background study

outlining the Intrusion Detection System (IDS); it also discusses some of the proposed

solutions. This chapter also states the problem statements that were formulated based on

the findings of previous research by considering some gaps in the issues. A brief outline

of the research methodology is then presented to show the steps used in achieving the

objectives of this study and how the experiments were conducted.

Univ
ers

ity
 of

 M
ala

ya

9

 Chapter 2 highlights the achievement of the first objective of this study. It introduces

the various research undertaken in the field of Intrusion Detection System (IDS)

discovery and the state-of-the-art mobile malware in Android mobile devices. This

chapter expands on the horizon of malware detection by evaluating current literature that

focusses on malware detection system. The classification of the malware detection system

was devised by considering several aspects of the domain knowledge of the IDSs in

Android mobile devices. This classification is necessary because it sheds light on how to

discover malware and how to analyse malware threats that affect Android mobile devices.

This chapter also identifies potential challenges that need important considerations in the

future so as to develop a more effective malware detection system.

Chapter 3 discusses the tools used to conduct the experiments. It explains current

approaches of the static analysis, machine learning tools, and other statistical analysis

software. It continues with the review of relevant machine learning classifiers. This

chapter also discusses the installation of the WEKA machine learning tool for malware

detection. Finally, it looks at the feature selection and optimisation approached that helps

to produce an effective Android malware detection system.

Chapter 4 presents the main contribution of this study which evolves around a novel

framework that can be used as an Android malware detection system. The framework

recommends using permission features with the machine learning and risk assessment

approach. In presenting the framework, this chapter also introduces the characteristics

and functionality of the framework as well as the rationale behind it. It also offers an

insight into the evaluation measure, used method, and services offered by the framework.

Chapter 5 highlights the achievement of the second and third objective of this study.

It focusses on the evaluation measurement that was applied in the experiments; it also

analyses the effectiveness of the proposed method. The results highlight the performance

Univ
ers

ity
 of

 M
ala

ya

10

analysis and the ROC curve graph. The results obtained from the experiments were

derived from using the selected classifiers of the WEKA machine learning tool. This

chapter also describes the risk analysis through the risk assessment approach.

Chapter 6 highlights the achievement of the fourth objective of this study. The chapter

presents the website development as a prototype which practically utilises the proposed

features to detect the unknown malware. It provides an overview of the system

development which consists of uploading and reversing the engineering applications. It

also identifies and extracts the proposed features and the machine learning predictions. In

addition, this chapter illustrates the use of different samples of malware extracted from a

reliable source in testing the efficiency of the prediction.

Chapter 7 presents the conclusion to the study. It considers the results obtained as the

achievement of the research objectives and the contribution of this research. It highlights

the significance of the proposed solution. It also states the limitation of the research work.

Finally, it discusses directions for future research that relevant to this area of discipline.

Univ
ers

ity
 of

 M
ala

ya

11

CHAPTER 2: MOBILE DEVICE EVOLUTION, MALWARE

CHARACTERISTICS AND DETECTION SYSTEMS

This chapter covers the first objective of the thesis. It presents an overview of the

security aspect of the Intrusion Detection System (IDS) as a leeway to discuss the

vulnerabilities found in the Android mobile applications. The objective of this chapter is

to highlight the significance of risk analysis and malicious detections on mobile devices

which have been neglected thus far. The background of mobile malware is reviewed to

gain insight into the problems faced by the Android mobile device. The classification of

mobile detection systems such as analysis techniques, detection approaches, and various

other deployments used is also included. The threats faced by mobile device users are

discussed before the chapter concludes with a short summary.

2.1 Mobile device evolution

 This section unveils the comprehensive information of the mobile operating systems,

mobile devices, IDS and threats posed to mobile devices. It is important to describe the

history and nature of a well-defined research problem with reference to the existing

literature.

Personal computers (PC) and mobile devices are ubiquitous in today’s landscape

because of their highly personal and easy to use features followed by their portability and

powerful attributes. Such devices are in high demand due to the advancement of

technology. Between the two, mobile device shipments have surpasssed PCs (Egam et

al., 2016, Egham, 2015b). Gartner, Inc. estimates that the use of worldwide mobile

devices will reach 1933 million units in 2018, an increase of 1.2 percent from 2017 (Egam

et al., 2016) while PC shipments are expected to exhibit a three percent increase in 2018.

The mobile device market is maturing, reaching a global saturation with phones that are

Univ
ers

ity
 of

 M
ala

ya

12

increasingly high tech and more capable than before. Table 2.1 shows the worldwide

device shipments between 2016-2018 (Millions of Units).

Table 2.1: Worldwide device shipments in 2016-2018 (Millions of Units)

Device Type 2016 2017 2018
Personal Computers (PC) Market 265 266 274

Mobile Device 1887 1910 1933
Total Device Market 2152 2176 2207

It seems clear that mobile devices will lead, surpassing others by the millions. This

occurrence is caused by the polarisation of mobile devices with prices ranging between

the high end to the low end market prices. Of the operating systems running the mobile

devices, it appears that the Android and the iOS are in high demands. Gartner Inc. expect

the market for mobile devices to grow 3.5 per cent in 2017. Accompanying this growth

with newer designs and newer features that attractive enough to convince more buyers to

replace their PCs with mobile devices (Egam et al., 2016). Expectations also indicate that

mobile devices continue to do well globally in the next few years especially in developed

countries thereby causing bigger shipments and generating more profits.

The world’s mobile device shipments have expanded but the (Egam et al., 2016) the

IDCs are noticeably experiencing a slowdown. This is explained further. The Android

mobile device operating system is currently dominating the world market with 86.8

percent share in the third quartile of 2016 and Samsung tops them all (IDC, 2017). Figure

2.1 illustrates the statistics showing the trends of the mobile operating system from March

2016 to January 2017. Clearly, two (2) mobile device operating systems stood out

showing the positive growth rate of the two rivals, the iOS and the Android operating

systems. Between the two, Android has maintained a growth rate of more than 60 percent.

Univ
ers

ity
 of

 M
ala

ya

13

Figure 2.1: Mobile operating system trend

Android’s exuberance sparked in May 2016. This is due to Google updating an

Android version called Marshmallow (Kellex, 2016). This Marshmallow operating

system had increased the popularity of the Android operating system because it offers

many sophisticated functions. Other mobile operating systems such as Windows Phone,

Java ME and Symbian, in comparison, showed a declining trend with below a 10 percent

growth rate. Figure 2.2 presents the market share of the various mobile operating systems

and the respective dominance owned by Android and iOS.

Figure 2.2: Percentages of market share in mobile operating systems in 2017

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Android

iOS

Windows Phone

Java ME

Symbian

Other

0

10

20

30

40

50

60

70

P
er

ce
n

ta
ge

s
(%

)

Operating System

Univ
ers

ity
 of

 M
ala

ya

14

The figure also shows the top five (5) market shares with Android dominating the peak.

The IDC (2017) claims that the global smartphone market has grown 1.1 percent on a

yearly basis and in the third quarter of 2016, there had been 363.2 million shipments

throughout the world (IDC, 2017). With Samsung currently dominating the smartphone

market and Samsung continuing to climb the chart in the future, the Android operating

system seems born to lead. In contrast, the iOS market shares for the third quarter of 2016

had grown by only 12.7 percent with 45.5 million shipments. This growth is attributed to

Apple’s newest smartphone model, the iPhone 7. Windows Phone, unfortunately, had

experienced a decline of 35.2 percent with only 974.4 thousand units being shipped for

the third quarter of 2016 while the Android market share had increased 7.1 percent across

Europe in the first three months of 2016. Today, it holds 75.6 percent of the market shares

compared to Apple's 18.9 per cent which had dropped from 20.2 per cent (Rhiannon

Williams, 2016). In the operating system (OS) market, Android had surpassed a billion

shipment of devices in 2014 continuing to grow at a double-digit pace in 2015 with a 26

percent increase year after year (Egham, 2015a). This undoubtedly makes Android the

most prominently used mobile device operating system, as illustrated in Figure 2.3.

Figure 2.3: Percentage of usage in mobile operating systems

0 1 2 3 4 5

Android

iOS

Windows Phone

Others

Percentages (%)

M
o

b
ile

 o
p

er
at

in
g

sy
st

em

Univ
ers

ity
 of

 M
ala

ya

15

The Android operating system is an open source operating system. In 2014, a total of

204.4 million units of mobile devices were installed with the Android system. In

European countries (EU5) alone, like France, the United Kingdom (UK), Germany, Italy

and Spain, the leading operating system is led by Android (74%) as opposed to iOS

(14.4%). This statistic shows that most users in the EU5 prefer Android-based devices.

The popularity of Android based devices can also be traced to the 1.5 million units of

mobile devices being installed on a daily basis (Amadeo, 2016) as portrayed in Figure

2.4.

Figure 2.4: Percentages of worldwide mobile device sales by operating systems
in 2016

The year 2008 saw the slowest sales and growth of global mobile devices (Egham,

2015c). Only 403 million units of mobile devices were successfully sold within the world

in the fourth quarter of 2015 (Egham, 2015c). By 2014, the figure had increased with the

value of 9.7 percent in the same period of time. On the whole, the sale of mobile devices

reached 1.4 billion units between 2014 to 2015, showing an increase of 14.4 percent

(Egham, 2015c). In the first quarter of 2016, there was an increase of 3.9 percent of global

Android
84%

iOS
15%

Windows Phone
1%

Others
0%

BlackBerry
0%

Univ
ers

ity
 of

 M
ala

ya

16

sales of mobile devices which exceeded 349 million units (Egham, 2016). Since its

introduction by Google in 2007, Android has become the leading operating system in the

world as illustrated in Figure 2.4. Since its release, the Android has grown in strength

with 78 percent mobile devices running on the Android operating system. This is equal

to 220 million of Android mobile device sales in 2013 (Statista, 2017). By 2015, Android

mobile devices had sold more than 1.16 billion units. In 2016, the Android mobile device

had increase 85 percent of its sales worldwide.

Besides the Android, the second most popular smartphone operating system based on

sales is Apple’s iOS. This company has sold over 50 million units of mobile devices in

the final quarter of 2013. For the whole of 2013, the Apple iPhones sold over 150 million

sets worldwide. Nonetheless, Figure 2.4 indicates that Apple’s iOS system remains to be

behind Android.

2.2 Mobile operating systems

This section presents the general overview of the several outstanding mobile operating

systems. This section is important because it provides information showing the

differences of the various mobile operating systems as well as their advantages and

disadvantages as projected in Table 2.2 and Table 2.3 respectively.

2.2.1 iOS operating system

The iOS is a proprietary operating system which belongs to Apple; it is only installed

in Apple’s devices. The strict requirement of Apple makes it challenging for developers

to upload the iOS application into Apple Store. In addition, Apple’s fees for applications

are much higher than Android or Windows. It is different from the Android operating

system that is introduced by Google that comes with an open source environment which

enables multiple vendors to have access to its system. The iOS is a proprietary operating

system that is controlled solely by Apple for Apple’s own devices only.

Univ
ers

ity
 of

 M
ala

ya

17

2.2.2 Windows

Windows mobile operating system is similar to the iOS in that it is individually

reviewed by system who then give the approval for all applications to be submitted to the

store thereby eliminating malicious applications from gaining access to Windows Store.

Due to the review ability, Windows mobile operating system does not require a dedicated

anti-malware and software anti-virus.

2.2.3 Android

Android mobile operating system is an open source system used on mobile devices

such as smartphones and tablets. Opened to multiple vendors, the Android operating

system is also the most used among all mobile devices. This, inevitably, has attracted

many malware attackers who want to penetrate the system by taking advantage of the

users. Unlike Apple and Windows, Android is the easier prey for attackers because it is

much easier to submit and to get applications accepted into Google Play Store. The

Google Play Store contains Google Bouncer which is a malware scanner. It was

developed to protect users. It main function is to analyse and identify available

applications in the Google Play Store. Table 2.2 lists the comparison of the various mobile

operating systems.

Table 2.2: Comparison of mobile operating system

Type Android iOS Windows
Proprietary Open source Close source Close Source

Application store Google Application Store Apple Store Window Phone Store
Device manufacture No Apple only No

Operating system based Linux Darwin Window
Access to external storage Yes No Yes

The above information indicates that majority of the software used are closed source

software. None of these mobile operating systems produces its own mobile device except

Univ
ers

ity
 of

 M
ala

ya

18

for Apple. Table 2.3 lists the advantages and disadvantages of the various mobile

operating systems. Here, it appears that Android has lesser secure features comparatively.

Table 2.3: Pros and cons of the mobile operating systems

Operating
Systems

Pros Cons

Android Available on a large range of
devices
 Open source operating system
 Anybody has capability to
submit application to Google
Play Store

 Android holds the majority of
smartphone users making them
more susceptible to malicious
attacks
 Since Android is run on many
different devices, not all of them
support the newest OS. This is
problematic due to security updates
 Not as secure as iOS and
windows OS

Window Provide support from Microsoft
Services
 It is more secure compared than
Android and iOS because it has
sandboxing, secure boot and data
sync.

 As more users adapt to this OS,
there would likely be more
vulnerabilities that are found.
 Sharing function is less than
Android and iOS

iOS Proprietary operating systems
 Improving on secure app
submission process, whereas
required the applications are
signed by certificates that are
checked using Apple’s servers.

 Difficult to integrate and sharing
file with different manufactures
 Like Android, a large number of
mobile users also own Apple
devices. This alone poses a risk as
it is more susceptible to being a
target for attackers.

From the table above, it derived that mobile devices with the iOS, Windows or Android

operating systems are capable of doing similar functions such as messaging, calling,

connecting to the Wi-Fi and taking photos. However, the open source system of the

Android and its capability to be installed by a number of mobile manufacturers make it

an easy target for malware attackers.

Univ
ers

ity
 of

 M
ala

ya

19

2.3 Android operating system

As technology becomes more woven into the fabric of society, the mobile device

landscape also continues to grow and evolve. This has been accelerated by the

improvement in technology, the increase in power, the abundance in storage space and

the multitude of applications available, thereby making the mobile device susceptible to

malware attacks. Current mobile devices offer many accessibilities such as online

banking, online shopping, online applications for jobs, gaming, music and e-purchasing

of air tickets or hotel reservations. The number of users installing the Android system is

also multiplying enormously. The International Data Corporation (IDC) has predicted

that the Android operating system powered by Google will experience a more positive

exponential growth than the iOS (International Data Corporation (IDC), 2016).

 In 2016, Android’s operating system had grown 6.2 percent garnered by 1.24 billion

shipments. It is expected to increase to 1.57 billion in 2020. In contrast, the iOS system

is expected to decline by -2.0 percent (International Data Corporation (IDC), 2016). The

growing trend illustrates the dominance of the Android operating system. As an open

source system, Android runs on the Linux-based operating system that was developed by

Google (Gheorghe et al., 2015). This has transformed the Android operating system to be

more popular than ever besides its unified approach in application development. This

means that all Android applications are able to run on any Android devices.

Mobile users using the Android operating system easily download a variety of Android

applications from Google Play store. These applications include a mix of free as well as

premium applications that require payments. In total, there are 2,449,044 numbers of

Android applications (AppBrain, 2016). In this regard, Google Play store is its official

market.

Univ
ers

ity
 of

 M
ala

ya

20

To constantly support the wave of new technologies, Google Play store also constantly

updates its version of Android software (Razak et al., 2016; Firdaus et al., 2017). Most

Android versions are themed with sweets and desserts and sorted in alphabetical order.

The latest version of Android provides a great API for applications. For example, the new

version of the Android Marshmallow aims to save battery life; is user friendly and it

provides more control to users as demonstrated in Table 2.4 which also highlights their

codenames (Developer, 2016c).

Table 2.4: Android version

Version Codename API

2.2 Froyo 8

2.3.3 - 2.3.7 Gingerbread 10

4.0.3 - 4.0.4 Ice Cream Sandwich 15

4.1x Jelly Bean 16

4.2.x Jelly Bean 17

4.3 Jelly Bean 18

4.4 KitKat 19

5.0 Lollipop 21

5.1 Lollipop 22

6.0 Marshmallow 23

7.0 Nougat 24

8.0 Oreo 27

 As seen in the table, the API in the Android versions has increased. This increase is

important because it helps users and developers to install an Android application based

on mobile device characteristics such as screen size. Furthermore, the current Android

API also supports the older versions as well. This makes it easier for users and developers,

thereby expanding market growth. The Android system is made up of a certain

architecture.

Univ
ers

ity
 of

 M
ala

ya

21

2.3.1 Android architecture

Android is designed in software stacks which are customised for mobile devices. It has

six (6) layers: Linux kernel, Hardware abstraction, Libraries, Android runtime, Java API

framework and System applications. Each layer provides different services to users to

perform their functions. Figure 2.5 illustrates the major components of the Android

system.

Figure 2.5: Android system architecture

The detailed architecture of the Android begins from bottom up. The figure shows that

each layer of the stacks and the corresponding elements within each layer are tightly

integrated and carefully tuned so as to provide users with optimal application

development and execution. Table 2.5 describes the Android system’s architecture

(Developer, 2016b).

Univ
ers

ity
 of

 M
ala

ya

22

Table 2.5: Description of the Android system’s Architecture

Type of layer Description
Linux kernel

Linux kernel is at the bottom of the entire layer and represent as the heart of
Android architecture as well as foundation of Android platform. This layer
is important because it responsible for device driver and allows Android to
take advantage of key security features.

Hardware
abstraction
layer (HAL)

The hardware abstraction layer (HAL) defines a standard interface for
implementation between hardware and driver. It allows implementing
functionality to the higher-level Java API framework. When a framework
API makes a call to access device hardware, the Android system loads the
library module for that hardware component. It also consists of multiple
library modules, each of which implements an interface for a specific type
of hardware component, such as the camera or Bluetooth module.

Android
Runtime

Android runtime provides core libraries and Android Runtime (ART). The
core libraries enable Android developers to write Android applications using
standard Java programming language. ART is responsible to run Android
application. For Android version 5.0 (API level 21) or higher, each
application running within their own ART and process. The ART able to
execute multiple virtual machines on low memory device using DEX files.

Native C/C ++
Libraries

Top of HAL consist of native libraries such as Webkit, OpenMax AL, Libc,
media framework and OpenGL ES. The Android system component and
services are built from native code written in C and C++. Webkit library is
used for browser support.

Java API
Framework

The operating systems of Android are written in Java language while
Android API provides classes and interface for development Android
application. Java API framework consists of content provider, view system
and managers.

System
applications

Android system applications are on the top of Android architecture. It
consists a set of core applications for contact, email, camera, web browsing
and SMS messaging. Various applications created by developers like tools,
games, browser and social media are installed in this layer.

Based on the architecture and description, developer able to develop applications and

to become a good Android developer, a clear understanding of the Android system’s

architecture is necessary. Since the Android operating system is an architecture of stacked

software encompassing the Linux kernel, hardware abstraction layer, Android runtime,

native C/C++ libraries, Java API framework and system applications, users are protected

from resource consumption. This is because Android’s system architecture was built to

ensure that it functions with efficiency and offers a great performance.

Univ
ers

ity
 of

 M
ala

ya

23

2.3.2 Security model in Android devices

Android’s mobile device security has always been a crucial topic. Aside from the

calling and messaging functions, Android users also use mobile devices for connecting

their digital life such as photo sharing, social networking, emailing and internet banking.

As a result, the user stores valuable data information on their mobile devices. This

valuable information is confidential and used irresponsibly by others for impersonation

and blackmailing purposes, hence, attracting attackers. These attackers are interested in

using the valuable information to harness profits for themselves. For examples, attackers

apply social engineering mechanisms to attract users to subscribe to premium SMS

services. This service is very costly and when users fall prey to this scam, they encounter

many financial losses as well as problems.

As the aforementioned problem becomes widespread, a more significant security

mechanism is needed to overcome threats faced by mobile device users. Threat has the

potential to cause serious harms to mobile devices. Among these threats, mobile malware

remains a significant cyber security threat. Suarez-Tangil et al. (2014) highlighted three

(3) security features which are incorporated into mobile devices: a) security measure

implemented at the market level, b) security measure implemented at the platform level

and c) others types of security mechanisms. Market protection is a primary defense

against malware applications, preventing them from entering the distribution market. Two

(2) protection approaches are applied at the market level. They are application reviews

and signing. Both protections are, however, insufficient to protect mobile devices from

malware. Security at the platform level aims to restrict the malware application from

executing on mobile devices while other Android security mechanisms applied at the

platform level (e.g. permission) includes sandboxing followed by interactions between

application platforms. Other security mechanisms being offered by others are the research

works done on analysis and in detecting malware on mobile devices.

Univ
ers

ity
 of

 M
ala

ya

24

It is important to develop an Android security mechanism for mobile device users

because no individual able to survive without his/her mobile device. The individual’s

basic, personal and important information are all located within that mobile device. Such

information and identities stored in the mobile device can be compromised by attackers.

Application permission, application signing, and component encapsulation are types of

security mechanisms used to thwart a malware threat on the Android (Gheorghe et al.,

2015). As is understood, all Android applications must be signed with a certificate before

they are installed. However, the certificate is unable to control applications installed in

the mobile device. The important point for users to understand about application signing

is that the Android system is unable to run an application that is not signed in properly.

Furthermore, the Android application encapsulates different components which unable

to access from an external entity (Gheorghe et al., 2015). This external entity needs

permission to access certain application components. Another security mechanism is

sandboxing which is used to isolate running applications by using mandatory access

control policies. Sandboxing has the capability to protect the mobile system from

malicious applications to a certain extent. However, this sandboxing has flaws. When

user grants permission to install the applications, it is unable to protect the mobile system

from exploiting attackers.

Application permission is a special privilege that needs to be granted before an

application is installed. This permission system always asks permission from users to

access sensitive information such as picture, contact number, email, location, and

documents. This sensitive information is used by irresponsible users to threaten the user’s

privacy. By default, application has the permission unable to perform any operations that

would adversely impact the user, other applications and the operating system (Developer,

2016a). This includes reading and writing the user’s sensitive information, keeping the

Univ
ers

ity
 of

 M
ala

ya

25

device awake or performing a network access (Developer, 2016a). There are more than

100 predefined permissions stored in the Android architecture but developers are able to

declare custom permissions (Gheorghe et al., 2015). The Android permission system is

divided into several protection levels: normal, dangerous, and signature or system.

Android applications request permissions based on the defining permission of the

AndroidManifest.xml file. This permission is used to notify users about the risk of

installing the application (Felt et al., 2012). Table 2.6 lists the levels of Android

protection.

 Table 2.6: Level of Android level protection

Level protection Descriptions
Normal A lower risk permission that give granted permission to access isolated

application level features with minimal impact to other system,
applications or user. This state, the system automatically granted
access to install application without user approval.

Dangerous A higher risk permission whereas require to grant access from user to
access on confidential information and have negative impact. Due to
the high risk, the system may not automatically grant access to the
requesting applications.

Signature Provide grant access to the application whereas already signed with the
same certificate as the applications declared the permissions. The
system automatically grant access the permission when the certificate
is match.

SignatureOrSystem This type of level protection is used on specific task only when multiple
vendor requires to build an application into system image. The
permission only granted when the application has sign with same
certificate as declare on permissions.

Table 2.6 illustrates the characteristics of the risks implied in the permission. It is

important to note that this level of protection determines whether or not to grant

requesting permission from an application for security purposes. This security feature has

the capability to reduce the impact and frequency of the application’s security issues. In

addition, it makes application developers follow the system design that comes with the

default system and the file permissions. The following section discusses the threats posed

to mobile devices.

Univ
ers

ity
 of

 M
ala

ya

26

2.3.3 Threats on mobile devices

 In 2014, Symantec detected more than 317 million new malwares. In the same year,

PandaLabs was able to neutralise 75 million malware (Lopez, 2015). This figure

demonstrates that nearly one (1) million of malware are released every day (Symantec,

2015). This explosive growth in malware will continuously infiltrate the system and

mobile devices thereby posing threats to privacy issues as well as financial losses. This

occurrence makes mobile devices a more vulnerable target for cybercriminals. In 2016,

the Android operating system was suffering from major vulnerabilities (McAfee, 2016)

posed by Remote access tool (RATs) and ransomware involving bank frauds. Due to this

problem, Google took a very serious stand in updating the security system.

Mobile devices face three types of threats. It is first threatened by the growing presence

of malware that is able to slip into the application store without being noticed. Second, it

is threatened by the slow security updates. For instance, the Android monthly security

system gets updated but it is always late in rolling out the updates for users. Finally, it is

threatened by attackers who are now more sophisticated in expanding their targets into

the mobile environment. According to the McAfee Mobile Security Report, some favorite

mobile applications may actually be running some malicious behaviors such as tracking

users’ location data, oversharing users’ personal information, looking for users’ contact

information as well as installing malware. These behaviors are used by attackers who sell

the stolen information for profit incentives. Figure 2.6 illustrates the type of information

collected from mobile devices.

Univ
ers

ity
 of

 M
ala

ya

27

Figure 2.6: Percentages of information collected from mobile devices

The figure above shows how applications invade users’ privacy on mobile devices. In

2014, a total of 82 percent of applications were used to track users’ mobile activities and

80 percent of these had actually collected users’ location information (Caetano, 2014).

The location information that was collected comprised users’ exact location, general

location and the last known location. Some major application had also collected

information about users’ Wi-Fi and data networks. This behavior of applications places

mobile users under great risks. To avoid these risks, all mobile applications that accessed

sensitive information should be analyse in host-based or network-based deployment

approaches.

2.4 Mobile malware characteristics

Malware is a programme bearing malicious intents which are posed by generic forms

of hostile applications. Malware has become a severe threat to interconnected mobile

devices for years. It is a particular type of virus used by attackers to infiltrate the mobile

devices of users so as to collect user activities and sensitive information that can be used

to perform unauthorised operations. All the information gained are sent to unscrupulous

authors through the network connection who use these for profits. Guarding against

malware attacks is becoming an increasingly complex process. For example,

0 10 20 30 40 50 60 70 80 90

Read device ID

Collect location

Track last known location

Collect account information

Know phone number

Read application use

Percentages (%)

Ty
p

es

Univ
ers

ity
 of

 M
ala

ya

28

unscrupulous authors apply obfuscation through stealthy techniques such as

polymorphism, encryption and metamorphism to escape from anti-malware detection

systems (Gandotra et al., 2014). Unscrupulous authors can design various types of

malware such as botnet, Trojan, rootkit and worm (Karim et al., 2014) for their benefit.

Each malware has its own goals and usually causes undesirable results (Wu et al., 2014).

Table 2.7 illustrates the common types of malware.

Table 2.7: Common malware types

Type Description
Worm Worm infect the operating systems by multiplying itself to affect the operating

systems and sending copies of itself through networks.
Trojan Trojan able distinguish as a normal application to attract user for run its. After

successfully run, Trojan take over the resources and able to disrupt the availability
of operating system with denial of service.

Rootkits Rootkits is difficult to detect because it start the malware activities while the user
is not using the computer.

Botnet Botnet allow attacker to take control over the infected computer. The infected
system known as a zombie and always spread themselves through the network.

Spyware Malware application that uses eavesdropper technique to reveal user’s private
information.

Backdoor Specialize Trojan horses that masquerade itself to enable remote access and bypass
authorize authentication to take control of the infected system.

As seen, the most dangerous malware are those which silently infect mobile devices

through fake websites, counterfeit software updates, spam email attachments and

fraudulent applications. These malwares appear as attractive and useful tools for users.

This is how malware manipulate users into executing malware applications. By the time

users realise this, it would have been too late. The situation becomes worst when sensitive

information leads to financial losses (Fang et al., 2014). In order to thwart the break-neck

exponential growth of malware, it needs a significant approach to detect and analyse these

applications as well as give quick responses to users.

Univ
ers

ity
 of

 M
ala

ya

29

2.4.1 Research on mobile malware

 There are existing approaches such as firewall, antiviruses and the Intrusion Detection

Systems (IDSs) which aim to overcome malware attacks but the noticeable spikes of the

aforementioned malware statistics suggest that current mechanism is still inadequate.

Honeypot and computer forensics are able to expose the malware behaviors by analysing

malware behaviors and researchers are able to identify the attack mechanism and goals

through analysis. These activities enable them to implement an effective malware

detection approach that protect mobile device users from malware. Figure 2.7 illustrates

the publication trends that are related to mobile research.

Figure 2.7: Publication trends

The above statistics show three (3) categories of publication trends which include

mobiles, smartphones and Android. Presently, Android has become a popular target for

malware research encompassing 42.8 percent of publications. This shows that the current

issue involves Android, a trend that has been growing since 2012 until 2015. It is also

expected to increase for the next few years. Android malware is best described as the new

direction for research in security.

0

10

20

30

40

50

60

2008 2009 2010 2011 2012 2013 2014 2015

N
o

. P
u

b
lic

at
io

n

Publication trends

Mobile Smartphone Android

Univ
ers

ity
 of

 M
ala

ya

30

As described previously, Android is a mobile operating system made by Google

(Schmeelk et al., 2015). It is installed on a variety of mobile devices and it offers Google

services like Google search, Gmail, YouTube, and Google maps. The Android also

delivers a free application for downloads which are easily installed on mobile devices.

Such services fascinate user’s attention and so it further encourages them to use the

Android mobile operating system. Android, as discussed earlier, is more popular than

other operating systems (Apvrille et al., 2012) and Gartner estimates that 60 percent of

the mobile devices are installed with the Android operating systems (Egham, 2015a).

 Besides downloading applications from its official website Google Play store,

Android able to download applications from third party markets such as SlideMe, GetJar,

and Amazon’s Appstore (Narudin et al., 2016). Android applications are free for

downloading but some payment may be required for full premium versions. It is hereby

mentioned that applications downloaded from third party markets are normally done so

manually without going through a store. In this regard, it makes Android a trendy mobile

operating system that is the main target of malware.

2.4.2 Infected vectors

This section presents the methods for preventing malware infection on the mobile

device system. It is important to show how infected vectors play their role in ensuring

that their attacks penetrate the mobile device system.

 The insecurity of mobile device: The mobile device threat landscape has continued

to grow and evolve with several contributing factors such as the increasing speed of

technology, the expansion of data storage, the increase in power and the vast mobility

offered by mobile devices. All these factors have certainly made user’s daily lives

more convenient as they use their personal mobile devices for various transactions

such as online shopping, online banking, e-payment of utility bills and also for social

Univ
ers

ity
 of

 M
ala

ya

31

interactions such as playing games. These conveniences have certainly made mobile

devices more prone for attacks by unscrupulous cybercriminals. The reality of the

matter is that mobile devices and their core applications and operating systems are

important. Therefore, these become vulnerable when the Android operating system

is also open sourced. In addition, the altered configurations happening on mobile

devices also make the system more vulnerable for attacks.

 Insecure application threat: Currently, there are millions of applications that are

available in application stores such as Amazon and Play Store. The newer

applications are being created by developers, the easier it is for attackers to attack.

This is because application developers do not focus on security. On top of that,

application developers are only good with their application designs and specifications

as well as usability. They tend to overlook application security particularly on private

information. Added to this is the false sense of security that these applications

provide to user. Most application stores claim that their sites are secure giving users

this false impression that an application is safe to be downloaded and installed in

mobile devices. In reality, some of these application stores actually contain malware

applications that expose users to risk. Furthermore, most of the applications require

the Internet to update and communicate their services. Indirectly, malware

applications uses the Internet to get the data during photo and other exchange of

details. Moreover, malware such as Botnet is able to open up Web services and give

the applications permission to access personal information.

 Network based threat: Spam, phishing and adware come under the same type of

malware that uses the Internet. Mobile devices that are infected with these malwares,

as a result, also impact the reputation of the application stores and the mobile’s user.

Besides that, free Wi-Fi hotspot offered by scammers because it is a source for

capturing user’s personal data such as online banking passwords, credit card and

Univ
ers

ity
 of

 M
ala

ya

32

contact numbers. As an example, worm uses the push based scheme to find

vulnerability on network services so as to infect mobile devices. Based on this, it was

said that mobile users should avoid using free Wi-Fi hotspot if this unprovided by

reputable mobile operators or business agencies.

 Drive by download: The drive-by download is the most common web browser

which also contains malicious web pages that able to infect mobile users. It basically

refers to users downloading applications without knowing the source. This

accomplished by users triggering a drive-by download which click on some

malicious links in text messages or pictures. In this case, malicious applications

pretend to look like legitimate applications thus when clicked, it exposes users to

unwanted applications and services. This kind of services activate the SMS message

from the user’s mobile device and then sending a request for premium services

without user knowledge. As a result, users are charged and at the same time, the

attacker deletes any receiving SMS messages which acknowledge the charges. In

order to protect mobile devices from these threats, the user should stop immediately

when getting any suspicious pop-up screens that asks users to click on it. Besides

that, users need to make sure that the anti-virus and operating system is up to date.

 Social engineering: Any kind of action where a user is lured into executing

malicious codes in his/her mobile device rather than using technical hacking

techniques. This is known as social engineering attacks. In the past years, social

engineers trying to fool users by getting them to give up sensitive information; they

pretend to be a good friend on the social network which lures the users into clicking

into malicious web sites. In mobile devices, this method is used to penetrate the user’s

smartphone and gain access into their confidential information.

Univ
ers

ity
 of

 M
ala

ya

33

2.5 Malware detection system

Malware is a malicious software that can access mobile and computer devices with the

aim of extractjng personal information thereby causing serious damage to the system.

Although existing systems such as firewall, antiviruses and the IDS are available in

overcoming malware attacks, more novel approaches are necessary. This is because

through new technologies, malware authors are able to use novel approaches to avoid

detection. Studies Razak et al. (2017) exploring malware domains are some mechanisms

that contribute to this detection. The study of malware is about investigating and

analysing malware characteristics in order to propose a new approach that detect malware.

Studies such as Tang et al. (2014) and Sahs et al. (2012) had applied the machine learning

approach to detect malware. In contrast, Nadeem et al. (2014) applied adaptive responses

as an approach to halt attacks, mitigate damages and prevent attacks in a mobile ad hoc

network (MANET). These studies demonstrate that research activities conducted in this

domain are significant. Figure 2.8 shows the various classifications of the malware

detection system.

Malware Detection System

Analysis
Technique

Anomaly

Signature

Detection
Approach

Static

Host- BasedDynamic

Network- Based

Deployment
Approach

Hybrid Hybrid-Based

Figure 2.8: Classification of malware detection system

Univ
ers

ity
 of

 M
ala

ya

34

In this study, the existing malware detection systems are classified based on three

components: a) analysis technique, b) detection approach and c) deployment approach.

These classifications are important in showing the relationship of malware detection

system.

2.5.1 Analysis technique

Malware analysis is a process of examining the malware code and identifying the

dynamic characteristics of the malware. Unscrupulous authors strive to avoid malware

analysis with obfuscation (Sharif et al., 2008) or the packer and anti-debugging technique

(Rad et al. 2012; Xie et al., 2013; (Mamoun Alazab et al., 2010). These techniques make

the examining of malware analysis harder thus enabling the malware to better hide their

devious intentions.

A malware analysis is performed for the purpose of examining the components through

the dissection of application codes and behaviors (Zhou et al., 2012; Platforms et al.,

2013). Malware analysts need to apply caution during such examinations so as to alleviate

the spread of contamination. To analyse the malware, analysts need a proper environment

setup that ensure security and prevent infection (Razak et al., 2017). The process of a

malware analysis begins with an isolated environment such as a virtualisation software

(Damopoulos et al., 2012; Gonzalez et al., 2014). Two most commonly known malware

analysis techniques are static analysis and dynamic analysis (Ravula et al., 2013;

Gandotra et al., 2014). Table 2.8 further illustrates.

Static analysis applies reverse engineering, similarity and command techniques

(Veerwal et al., 2013) whereas dynamic analysis analyses the malicious behaviors and

error programmes through observations conducted in the controlled environment (Ghiasi

et al., 2015). Static analysis has fast detection but its major problem is its unable to detect

when the malware applies obfuscation technique. It is able to examine malware without

Univ
ers

ity
 of

 M
ala

ya

35

being able to execute it. This technique is also able to read the code programme, determine

the goals and then detect malware (Talha et al., 2015). Unscrupulous malware authors

apply other techniques like polymorphism, metamorphism, and encryption to evade such

detections (Rad et al., 2012).

The dynamic analysis is capable of detecting unknown malware, executing the

malware through monitors in a controlled environment (Egele et al., 2012; Seideman et

al., 2015) even when the malware applies obfuscation.

Table 2.8: Types of malware analysis

Analysis
technique

Advantages Disadvantages

Dynamic Able to detect unknown
malware

 Time intensive
 Resource consuming

Static Fast detection Unable to detect malware with
obfuscation technique

2.5.2 Detection approach

The two common detection approaches seen in the IDS are anomaly (Feizollah et al.,

2013; Elshoush et al., 2011) and signature (Yassin et al., 2012; Hubballi et al., 2014).

 Anomaly-based approach: The Anomaly-based approach detects malicious

activities by monitoring the level of activities seen in the network traffic and systems

(A Shabtai et al., 2014; Narudin et al., 2016). The anomaly detection approach is

better in comparison because it is able to detect new and unfamiliar attacks through

the normal and abnormal patterns noted. Any abnormal pattern noted in the mobile

device is considered a malware attack. The changing behavior of users moving from

normal to abnormal patterns is also considered an attack. This approach however, is

limited by several factors. It requires a complex process to examine the effective

features for the learning and training processes. To optimise the process of

Univ
ers

ity
 of

 M
ala

ya

36

determining malware behaviors, it is important to collect specific mobile malware

features. For example, mobile applications have the capability to provide features to

researchers who are investigating malware activities. Table 2.9 presents the anomaly

approach.

Table 2.9: Anomaly approach

Reference Objective Algorithm Result
(P. Wang et
al., 2014)

To develop an automatic
malware detection system by
based on behavior signatures

Support vector machines
(SVM)

Accuracy = 97.67%

(D. W. Kim et
al., 2015)

To identify fake AV web
pages in the Internet.

Random forest, SVM and
Gradient-Boosted Tree

Accuracy = 90.4%,
FPR = 0.2%.

(Cui et al.,
2015)

To identify the malicious
behaviors of the mobile
applications using data
mining packet

Naive Bayes and Decision
tree

Accuracy = 60%

(Lin et al.,
2015)

To select and extract malware
features

SVM Accuracy = 0.98,
Precision = 0.85, TPR =
0.92, TNR = 0.98

(Ghiasi et al.,
2015)

To find similarities of run-
time behaviors based on the
assumption that binary
behaviors affect registers
values

Random forest, Decision
tree, Bayesian logistic
regression

Accuracy = 95.9%, FP
= 4.5%

 Signature-based approach: Another type of approach is called the signature

approach as illustrated in Table 2.10. This approach detects malicious activities by

matching the normal pattern with abnormal signatures. It discovers malware patterns

by using the signatures which are stored in the database. Nonetheless, this approach

is unable to detect unknown malware if the signatures are unavailable in the database.

Moreover, this type of approach needs to frequently update the signatures database

so as to ensure that able to detect new variants of malware. It also helps to define

some possible pattern variations (Feizollah et al., 2013). Any mistake in defining the

malicious pattern cause a false alarm thereby decreasing the accuracy of the detection

technique.

Univ
ers

ity
 of

 M
ala

ya

37

Table 2.10: Signature approach

 Hybrid-based approach: The hybrid-based approach combines the signature

database with anomaly patterns so as to detect known or some new variants of

malware attacks (Inayat et al., 2016; Wang et al., 2015). This approach is able to

perform dynamic analysis during the running applications; it also uses statistically

analyse data by using the signatures database (Arshad et al., 2016). This approach is

able to overcome the weaknesses of both the signature-based approach and the

anomaly detection approach. Its disadvantage is that it needs more research to be

conducted subject to the malware detection designs. Machine learning is also used to

trace the normal and abnormal patterns (Inayat et al., 2016; Haq, 2015) in this

approach.

Machine learning is a type of artificial intelligence that provides computational

learning theories to predict the data. Machine learning focuses on prediction making; it

acts without being explicitly programmed. In addition, machine learning is an approach

Reference Objective Algorithm Result
(Elish et al.,
2015)

To advocate the approach of
benign property enforcement

Trigger based API dependence FP = 2%, FN =
2.1%

(Talha et al.,
2015)

To characterize and classify
Android applications as benign
or malicious.

Statistical score FPR = 0.050, TPR
= 0.101, FNR =
0.898

(Sheen et
al., 2015)

To design malware detection
using multi feature
collaborative decision fusion
(MCDF).

Naive Bayes, Decision tree,
SVM, IBk (Instance based
learning), JRip (Rule based
learning)

Precision = 83%,
TPR = 97%

(Choi et al.,
2015)

To detect the act of leakage
internal private information

Context Ontology Reasoning Condition
reasoning (high,
low, active,
available)

(Faruki et
al., 2014)

To detect unknown malware Clustering algorithm Accuracy = 76%,
TPR = 80.65%

(Cen et al.,
2015)

To develop effective technique
for malware detection

Naive Bayes Accuracy = 0.95,
TPR = 0.95, FPR =
0.05

(Clemens,
2015)

To classify architecture of
computer object code

SVM, Decision tree, Random
Forest, Naive Bayes, Neural
network

Accuracy = 90%

Univ
ers

ity
 of

 M
ala

ya

38

that examines the data so as to look for patterns. Supervised and unsupervised classifiers

in machine learning have been used to trace the model and to analyse the features

(Narudin et al., 2016). This approach helps to determine the validity of the normal and

malicious activities. Decision trees, random forest, and SVM are the types of algorithm

classifiers used on supervised learning for this purpose. Table 2.11 lists the advantage and

disadvantage of the detection approach..

Table 2.11: Advantage and disadvantage of the detection approach

Detection
approach

Advantages Disadvantages

Anomaly Dynamically adapt to new, unique, or
original attacks.

 Less dependent on identifying specific
operating system vulnerabilities

 Effective to detect new and unforeseen
vulnerabilities

 Higher false alarm rates.
 Usage patterns that change often

and not be static enough to
implement an effective behavior-
based IDS.

Signature Lower false alarm rates.
 Alarms are more standardized and more

easily understood than behavior-based.
 Simplest and effective method to detect

known attacks (Liao et al., 2012)

 Signature database must be
continually updated and
maintained.

 Ineffective to detect unknown
attacks, evasion attacks, and
variants of known attacks (Liao et
al., 2012).

 Time-consuming to maintain the
knowledge

2.5.3 Deployment approach

The deployment approach (hybrid, network and host-based) monitors and detects

malicious activities (Inayat et al., 2016; Shameli-Sendi et al., 2014; Lar, 2011). The

hybrid-based Intrusion Detection System is a combination of both the Network-based

Intrusion Detection System (NIDS) and the Host-based Intrusion Detection System

(HIDS) (Butun et al., 2014; Tahaei et al., 2018). The NIDS is used to analyse data over

the network traffic by using deep packet analysers (Zhang et al., 2003). The packet

analyser is able to identify any malicious activities during interactions between the

network and computer (Patel et al., 2012). Table 2.12 shows the deployment approach.

Univ
ers

ity
 of

 M
ala

ya

39

Table 2.12: Deployment approach

Reference Titles Deployment
approach

Detection
approach

Year

(Asaf Shabtai et al.,
2010)

Applying behavioral detection on
android-based devices

HIDS Signature 2010

(Grace et al., 2012) Unsafe exposure analysis of mobile
in-app advertisements

HIDS Signature 2012

(Dini, Martinelli,
Saracino, et al.,
2012)

MADAM: A multi-level anomaly
detector for android malware

HIDS Anomaly 2012

(Zhao et al., 2012) RobotDroid : A Lightweight Malware
Detection Framework on Smartphones

HIDS Anomaly 2012

(D.-J. Wu et al.,
2012)

DroidMat: Android Malware
Detection through Manifest and API
Calls Tracing

HIDS Signature 2012

(Feizollah,
Shamshirband, et al.,
2013)

Anomaly Detection Using
Cooperative Fuzzy Logic Controller

NIDS Anomaly 2013

(Narudin et al.,
2016)

Evaluation of machine learning
classifiers for mobile malware
detection

NIDS Anomaly 2014

(Cen et al., 2015) A Probabilistic Discriminative Model
for Android Malware Detection with
Decompiled Source Code

HIDS Signature 2014

(Gonzalez et al.,
2014)

DroidKin : Lightweight Detection of
Android Apps Similarity

HIDS Signature 2014

(Gheorghe et al.,
2015)

Smart malware detection on Android NIDS Anomaly 2015

(Chen et al., 2015) Simple and effective method for
detecting abnormal internet behaviors
of mobile devices

NIDS Anomaly 2015

(X. Wang et al.,
2015)

Novel Hybrid Mobile Malware
Detection System Integrating
Anomaly Detection With Misuse
Detection

HIDS Hybrid 2015

(Chuang et al., 2015) Machine Learning Based Hybrid
Behavior Models for Android
Malware Analysis

HIDS Hybrid 2015

The HIDS monitors and analyses any intrusive activities by assessing the system

resources. It focuses on the memory, the device, CPU consumption, the user, system

activities and also the file system (Weiss et al., 2012). Andromaly (Asaf Shabtai et al.,

2012) is an example of host-based malware detection. The HIDS collects resources from

mobile devices, computers, and servers. Over the years, the booming mobile devices have

stimulated users into replacing personal computers, in terms of the Internet usage, for

Univ
ers

ity
 of

 M
ala

ya

40

personal transactions such as online banking, games, emails, social media, and news

articles. Mobile devices are also more appealing to users because applications are

downloadable and free. Based on Table 2.12, it shows the Android malware detection

system implements the HIDS and NIDS. The IDS method is used to identify and analyse

the Android mobile malware (Corona et al., 2013).

2.6 Risk assessment

Risk assessment is the process which identifies the loss, vulnerability, damage and

consequences of the action. It is very important because it presents studies with the

evaluated impact of malware attacks. In terms of mobile risk, risk assessment helps

mobile devices to establish the level of safety or the risk involved in some mobile

applications. The risk mechanism protects mobile users from installing malware

applications (Seo et al., 2014). This is achieved by informing the users in the permissive

mode by ensuring the right trust. Potential risks able to mininmise (Chowdhury et al.,

2012; Anuar et al., 2011). Risk is defined as one component that combines threats with

vulnerabilities; risks cause an impact on an asset even though the vulnerabilities flawed.

Some researchers (Ledermüller et al., 2011) treat a risk as a single entity but others treat

risk as giving bad impacts such as costs, degraded performance as well as functionality.

The aim of risk assessment is to provide security measures by impacting confidentiality,

integrity and availability in security threat.

2.6.1 Threats

Threats exists in risk assessment. Becher et al. (2011) classify mobile threats into four

classes: a) hardware centric attack where the attacker has direct access to the physical

mobile devices, b) device independent attack which protects the device from the

confidentiality violation, c) software centric attack which is the most used by attackers

i.e. APK file with malicious application to exploit the vulnerabilities, and d) user layer

Univ
ers

ity
 of

 M
ala

ya

41

attacks. To defend mobile threats, an effective security mechanism which provides a

response to the user must be available. The risk assessment approach is used to improve

the effectiveness of risk evaluation by generating risk zones as a warning against

malicious applications (e.g. very low, low, medium, and high). Table 2.13 presents the

description of risk assessment.

Table 2.13: Description of risk assessment

 Description
AHP approach One of the Multi-Criteria decision-making approach for analyzing decisions
Risk assessment phase An approach that is derived from an evaluation of threat and impact of risk
Judgment matrix This technique gives an analysis to construct the matrix consistency.

2.7 Risk assessment phase

The AHP uses a pairwise comparison of criteria to evaluate the weight of the criteria

which is in line with the main objective of the hierarchical structure. This pair-wise

comparison is performed using a matrix table which evaluates the consistency of the

judgment (Model et al., 2015). The comparison matrix (A) takes the size nxn where n

denotes the number of criteria being compared, which is relative to the specific elements.

The elements of the matrix are aij. The table matrix A demonstrates the evaluation that is

similar to Dweiri et al.(2016):

𝑎𝑖𝑗 = 𝑎𝑗𝑘 𝑥 𝑎𝑗𝑘 2-1
𝑎𝑖𝑗 = 1/𝑎𝑗𝑘 2-2

where i, j and k are any elements of the matrix A.

𝐴 = (
𝑎11
𝑎21

𝑎31

𝑎12
𝑎22

𝑎32

𝑎13
𝑎23

𝑎33

)
2-3

where 𝑎𝑖𝑗 = 1 𝑎𝑛𝑑 𝑖 = 𝑗 2-4

Univ
ers

ity
 of

 M
ala

ya

42

In order to evaluate the consistency, the normalization table matrix of A is computed

using N matrix

𝑁 = (
𝑤11
𝑤21
𝑤31

𝑤12
𝑤22
𝑤32

𝑤13
𝑤23
𝑤33

) where, 𝑤𝑖𝑗 = 𝑎𝑖𝑗 2-5

𝑤𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

 2-6

∑ 𝑎𝑖𝑗
𝑛
𝑖=1 𝑤𝑖 = 1 is the sum of the columns 2-7

Divide the sum of the value of n to find the relative weight

The weight of 𝑖 = 𝑤𝑖 =
∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
 2-8

Note that ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 2-9

A is reflected as consistent if

𝐴 𝑥 𝑤 = 𝑛 𝑥 𝑤 2-10

The Eigenvalue problem could be solved by using this equation where the largest

Eigenvalue is greater than or equal to 𝑛 (𝜆𝑚𝑎𝑥 ≥ 𝑛). The value (𝜆𝑚𝑎𝑥) becomes closer

to n, thus it is more consistent. (𝜆𝑚𝑎𝑥) is equivalent to the total of the criteria of the

column vector AW. The consistency ratio (CR) is calculated as:

𝐶𝑅 =
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)

𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝐴

 2-11

The value 𝐶𝐼 =
𝜆 max − 𝑛

𝑛−1
 2-12

The level of consistency is considered acceptable when the CR is less than or equal to

0.10. Otherwise, it requires a reexamination of the judgment for the values of aij. This

judgment is necessary in order to keep the consistency

Univ
ers

ity
 of

 M
ala

ya

43

2.8 Judgement matrix

In AHP, the hierarchy of risk assessment is measured by using the pairwise comparison

which is important for estimating the relative elements in the hierarchy and the preceding

level. Pairwise comparison is measured through the ratio scale. The scale is used to define

the intensity of important judgments. Table 2.14 shows the fundamental scale of the

absolute numbers of the AHP approach (Saaty, 2008).

Table 2.14: Fundamental scale of the absolute numbers

Intensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to
the objective

2 Weak Two activities contribute equally to
the objective

3 Moderate importance One activity is slightly being
favored over another based on
experience and judgment

4 Moderate plus One activity is slightly being
favored over another based on
experience and judgment

5 Strong importance One activity is strongly being
favored over another based on
experience and judgment

6 Strong plus One activity is very strongly favored
over another based its dominance in
practice

7 Very strong or demonstrated importance One activity is very strongly favored
over another based its dominance in
practice

8 Very strong One activity is very strongly favored
over another based its dominance in
practice

9 Utmost importance One activity is utmost important
favored over another based on the
highest possible order of affirmation

Reciprocals of
above

If nonzero numbers assigned to activity I
when compared with activity j, then when
compared with I, j has the reciprocal value

A sensible assumption

Univ
ers

ity
 of

 M
ala

ya

44

2.9 Summary

This chapter has presented the mobile device evolution as well as the mobile operating

systems. It highlights the Android operating system including its unique characteristics

and architecture. It also discusses the types of malware detection systems by providing

the detection taxonomies which encompass the analysis techniques and the detection and

development approaches. It also presents the risk assessment approach by introducing the

risk assessment phases and the judgment matrix which are used in the experiments of this

study. The subsequent chapter presents the mobile malware analysis tools.

Univ
ers

ity
 of

 M
ala

ya

45

CHAPTER 3: MOBILE MALWARE ANALYSIS TOOLS

As detailed previously, this study adopts the static analysis as the analytical procedure

because it consumes low resources, it checks for application code structures and it is a

common practice of researchers. The main advantage of adapting this approach is that it

is able to differentiate between a well-known coding standard and malicious codes.

Without such tools the process of identifying malicious codes in Android applications is

likely to fail because the number of codes in the Android application structure is so large

that it is difficult to remember. This chapter details the static analysis tools by introducing

their characteristics as well as their advantages. Overviewing various tools used in

malware detection also helps to save a lot of effort in understanding the applications codes

structure and making the analysis process more effective.

3.1 Static analysis tools

Several types of static analysis tools are presented in this section. They are helpful for

analysing the codes in Android applications. They also help to shed light on the structure

of the codes for malware detection systems. Details of the static analysis tools are

described as follows:

3.1.1 Androguard

Androguard is a toolkit for malware analysis. It has the capability to reverse

engineering in Android applications (Desnos, 2012). It is a python based tool which

executed on Windows, Linux and OSX operating systems. It is a powerful tool that able

to decompile and disassemble Android applications by using the static analysis approach.

The advantages of the Androguard include its ability to reverse engineering on the

Android applications, its compatibility with the open source malware analysis, it able to

assess the static approach of the codes, and it visualises the applications with gephi

outputs.

Univ
ers

ity
 of

 M
ala

ya

46

3.1.2 ApkTool

The ApkTool is also a reverse engineering tool used for Android applications

(Wiśniewski, 2017). It has the capability to decode the resources to nearly its original

form and to rebuild after making some modifications. It comes with features such as

organising and handling the apks that depend on the framework resource; it also has the

ability to turn the smali debugging and the rebuilding decode sources back to apks. Smali

is a DEX code dissembler that transforms the byte code into a syntax. The aim of the

syntax is to alleviate the complexity of the exploring Java Virtual Machine binary.

Decompilation performs an inverse operation to that of the Dalvik’s byte code compiler

and the apk packaging.

3.1.3 Statistical analysis software tools

Statistical software are programmes which data analytics use for analysis,

interpretation, and the presentation of data. It comes with unique features such as user

interface which enhances its usability, its comprehensive and powerful programming

language for in-depth analysis and its data exploration. With a graphical user interface

and analysis capability, the software has been applied in research, academia, industries

and government agencies. Statistical analysis software enhances the experience of

developing statistical analyses and the interpretation of results.

3.1.4 R language

 R language is used for statistical computing and graphics. It is a free software and it

runs on different platforms such as Windows, UNIX and MacOS under the Free Software

Foundation’s GNU General Public License (Bryan et al., 2017). It provides a variety of

statistical analysis like classification, clustering, linear and nonlinear modelling, time-

series analysis and graphical techniques. The R language offers advantages such as

effective data handling, graphical attribute provision, and integrated collection tools for

Univ
ers

ity
 of

 M
ala

ya

47

data analysis. It also contains an effective programming language which includes

conditional and loops. Due to its capability in data manipulation, calculation and

graphical display, the software is used by researchers especially in statistical methodology

activities.

3.1.5 IBM SPSS statistics

The IBM SPSS Statistics is a statistical software used to solve research and business

problems (IBM, 2017). This powerful software provides a variety of features, for

example, it interprets data; it manages data; it enables hypothesis testing; it reports and

performs analyses. It also provides a wide range of analytic capabilities including linear

regression and descriptive analysis which enhance the presentation of results as well as

uncover dataset relationships. In addition, it offers scalability, flexibility and cost

effectiveness.

3.2 Machine learning classifiers

Machine learning is a type of artificial intelligence (AI) that the computer provides; it

has the ability to learn without being explicitly programmed. It also has the capability to

predict future decisions and to improve decisions when exposed to new data. The process

of prediction is based on the search through the dataset which look for patterns. This is

also known as learning. The learning process and prediction results are made according

to the types of classifiers. This technique has been widely implemented for classifying

samples especially in the intrusion detection system area (malware and benign). The two

common types of machine learning are supervised and unsupervised machine learning.

Supervised learning is where the dataset for training are labeled with the class (malware

and benign). The class is used for training the dataset which are in the learning process of

an algorithm learning. The algorithm makes predictions based on the training data.

Learning stops when the algorithm achieves an acceptable level of performance. Linear

Univ
ers

ity
 of

 M
ala

ya

48

regression, random forest and support vector machine (SVM) algorithms are examples of

supervised machine learning algorithms. The latter, unsupervised learning, only demands

input data without comparing yield factors. The goals are to model the underlying

structure or distribution in the data in order to learn more about the data. The algorithm

presents the interesting structure in the data which show the information. This learning

type has no right answers and they are unlabelled. The learning stage measures itself to

predict and present the information. Apriori algorithm is an example of unsupervised

machine learning algorithm.

This study applies the supervised machine learning approach because the sample

dataset for each application come with labels (i.e. malware and benign). Besides that,

supervised machine learning offers good potential results by reducing errors. In the

interest to observe the distinctive results noted in the various machine learning classifiers,

this study implements five (5) classifiers: random forest (RF), multi-layer perceptron

(MLP), k-nearest neighbors (KNN), J48 and Adaboost. They are further explained below.

a) RF: Random forest is a combination of tree predictors. Each tree is capable of

producing a response with the set of predator value. This classifier was developed

by Leo Breiman and Adele Cutler (Gaviria et al., 2013). The principle of the

random forest is a weak learner forms a group to create a strong learner. (Gaviria

et al., 2013) and (Narudin et al., 2016). The random forest classifier is used for

mobile malware detection.

b) MLP: The multi-layer perceptron is a supervised learning algorithm which

consists of multiple layers of nodes. Each node interacts via the weighted

connection (Narudin et al., 2016). The intermediate layer is known as a hidden

layer with one or more non-linear layers.

Univ
ers

ity
 of

 M
ala

ya

49

c) KNN: The K-nearest neighbors is one of the simple machine learning classifiers

that works well in classification. It is a lazy learning type of classifier. In order to

predict the label of a new instance, the KNN classifier needs to find the K-nearest

neighbor. The classifier uses training samples to predict the label whereas the user

defines and classifies the K-nearest neighbor by labelling the sample. Gaviria et

al. (2013) achieved a high detection accuracy by using permission features.

d) J48: This is an open source implementation of the machine learning tool (WEKA)

which comprises the C4.5 algorithms. The tool predicts the sample training based

on the various attribute values of the sample training data. It requires dependent

and independent variables to predict data. The independent variable is used to

predict the dependent variable. In addition, this classifier chooses the attribute that

is most efficient in using the entropy in the data (Aung et al., 2013). This classifier

obtained a TPR value of 90.7 percent and so the J48 is noted as a logic-based

learning type classifier.

e) AdaBoost: This is a popular boosting classification algorithm. It resembles the

learning type classifier. It is constructed from multiple learners for the purpose of

building a stronger learning classifier. It also performs well in a variety of dataset

except for noisy data. During the training data, the model attempts to correct the

error so as to improve the predictable performance. Sheen et al. (2015) used

AdaBoost for malware detection and they achieved high precision with a recalled

value of more than 90 percent. Table 3.1 describes the four classifiers and their

advantages and disadvantages, both of which were noted in the current study.

Univ
ers

ity
 of

 M
ala

ya

50

Table 3.1: Description of classifiers

Classifier Learning type Advantages Disadvantages
Random
forests

Ensemble Used bagging and
boosting to support a
large number of training
samples with efficiently.

 It able to improve the
classification accuracy
by growing an ensemble
of the tree.

 Run efficiently on large
datasets.

 Over fit when dataset is
unclean from noise.

MLP Perceptron
based

 Capable of learning non-
linear models.

 Capable of learning
models in real time

 Requires tuning a
number of
hyperparameters such as
layer and number of
hidden neurons.

 Ineffective to feature
scaling

KNN Instance-based Able to use with
categorical data.

 Robust to noise training
set.

 Run effectively on large
data sets.

 Require to determine
value of K (number of
nearest neighbors).

 High computation cost
because require to
distance of each query.

J48 Ensemble Applicable for
continuous and
categorical inputs.

 Data classification
without much
calculations.

 High classification error
while training set is
small.

AdaBoost Ensemble A powerful
classification algorithm
that improves the
prediction performance

 Sensitive to noisy data
and outliers

3.3 Machine learning tools

Machine learning tools provide functionality for data analysis that automates the

analytical model building. This model enables a system to learn from the past or present

dataset and in that learning process makes predictions or decisions. In general, there are

two (2) types of machine learning tools: supervised and unsupervised. Implementing the

machine learning tools in a system makes the analytical work easier and faster. In

addition, it has the ability to automatically apply complex mathematical calculations in

solving problems without requiring any machine learning technique or expertise.

Univ
ers

ity
 of

 M
ala

ya

51

3.3.1 WEKA

The Waikato Environment for Knowledge Analysis (WEKA) is a popular suite; it has

a collection of machine learning algorithms written in Java (Waikato, 2017). It is used for

data mining tasks, data analysis and for predictive modelling. It was developed at the

University of Waikato, New Zealand. It is a free software licensed under the General

Public License (GNU). It is made up of visualisation tools that comprise various types of

algorithms such as random forest, multi-layer perceptron, regression, clustering,

Adaboost, k-nearest neighbors and neural networks. These algorithms able to applied

directly to a dataset or recalled from the Java code. Figure 3.1 shows the user interface of

the WEKA.

Figure 3.1: WEKA GUI

The graphical user interface (GUI) of WEKA with four (4) tabs in the header and five

(5) applications is illustrated. The program tab contains the system setting and memory

usage while the visualisation tab is used to generate a graph like the ROC, a plot, and the

boundary visualiser. Figure 3.2 further portrays the applications for features selection.

Univ
ers

ity
 of

 M
ala

ya

52

Figure 3.2: Features selection

The figure shows the information gain with ranker attributes for choosing the relevant

features for malware detection from 10 fold cross validations. With good interface, this

application is used even by normal users. All the algorithms for classifier and features

selection is found in this application. The application is also able to show good quality

result which is also easy to understand.

Figure 3.3 shows the list of classifiers which belong to the tree algorithms. In addition

to this, there are bayes, functions, meta, misc, and rules. These classifiers are used for

training and testing the sample dataset. The training and testing are used to create a model.

It is well-suited for developing new predictive machine learning.

Univ
ers

ity
 of

 M
ala

ya

53

Figure 3.3: Examples of classifiers

The main objective of WEKA is to make machine learning approaches available, to

design new predictive models for sharing with the world, and to contribute to the

theoretical framework. The advantages of the WEKA are able to traced to its services to

users, its user friendly values due to its graphical user interface, the comprehensive

collection of modelling techniques and data analysis and its portability.

3.4 Online analysis tools

 VirusTotal is a web analysis tool that provides free online services; it also analyses

files and URLs (Quintaro, 2017). This web analysis has the capability to identify viruses

like Trojans, worms, or any kinds of malicious applications through website scanners and

antivirus engines. The purpose is to help to improve the antivirus security industry thereby

making the internet a safer place accomplished through the development of free tools and

services. Figure 3.4 shows the GUI for VirusTotal.
Univ

ers
ity

 of
 M

ala
ya

54

Figure 3.4: GUI of VirusTotal

As seen on Figure 3.4, the user is able to submit a file to VirusTotal through the Web

browser and then receive results of the file scanning. The maximum file size is only

128MB for each application. This study used the Web analyser to analyse all the sample

dataset so as to ensure that the data were correctly labelled with benign or malware

applications. The user is able to select the application from the folder before scanning.

Figure 3. 5 shows the results of the scanned applications.

Figure 3.5: Examples of analysis results

Above, the result of the applications indicates whether the applications were benign or

malware, based on the detection ratio. Any application with a detection ratio of more than

0 is known as a malware. It is worth noting that this web analyser runs multiple antivirus

Univ
ers

ity
 of

 M
ala

ya

55

engines and website scanners. Additionally, the malware signatures of the antivirus

solution in VirusTotal are periodically updated as they are developed and distributed by

an antivirus company. As a result, the report that is received from the submitted file will

display the exact detection. Figure 3.6 shows the detail of the scanned applications.

This detailed information is used to create an attribute or features for the dataset. The

information explains the role of permission on the scanned applications. The information

is used to as a part for improving and advancing the testing sample dataset.

Figure 3.6: Details of scanned applications

3.5 Feature selection and optimisation method

Feature selection plays an important role in detecting malicious activities in mobile

applications. The relevance of the extracted features depends on the topology and

resilience of the malware in general. This study survey the features based on their

categories, relevance and definitions. Relevant features is one of the important

contributing factors of an excellent detection model. Features with a lack of exploration

may lose their full potential for best analysis. For example, Android applications consist

of various elements for analysis such as static, dynamic, hybrid and application metadata.

Selecting the most relevant feature from the massive number of available features is

crucial because feature selection also has other motivations which include:

Univ
ers

ity
 of

 M
ala

ya

56

i. General data reduction: It limits storage requirement and increases algorithm

speed to save time and cost of experiments.

ii. Feature set reduction: It saves resources for data collection during utilisation.

iii. Performance enhancement: By removing the irrelevant features such as noisy

data from the dataset, detection accuracy especially on machine learning

algorithms is increased.

iv. Data understanding: It is easy to visualise data and monitor the experiment

process.

An Android application consists of several elements that carry good potentials to be

the features in Android malware detection. Therefore, this study selected the permission

features for the experiment of Android malware detection. The permission features were

selected because permissions are the entry points for every mobile application. Various

dangerous permissions for Android applications have been highlighted but users are still

unaware of the side effects of such risky permissions. Undoubtedly, dangerous

permissions act as a gateway for attackers to install malware applications that interact

with malware programmers who access users’ mobile devices. A large portion of

dangerous permissions requested by applications present malicious intentions (Firdaus et

al., 2017). Permissions features have been widely explored and its significance and

effectiveness have also been established. Thus, this study considered permission features.

For the purpose of recognising the dangerous permissions in Android applications, it

is necessary to conduct a thorough static analysis. Static analysis is used in the experiment

because it provides more insights into the coding patterns of the applications. The in-

depth knowledge gained of the dangerous and risky permissions of Android applications

are used to analyse Android applications in cloud analyses thereby serving as the

proposed solution to the problem.

Univ
ers

ity
 of

 M
ala

ya

57

Static analysis is a lightweight approach when compared to dynamic analysis. It has

the capability to dissemble the Android application so as to retrieve the codes. Thus it

was applied on the benign and malware applications. The malware programmer deploy

various evasion techniques on Android applications to secure premium message on

permission features. This study attempts to solve the problem by relying on the entry-

level structural information known as AndroidManifest.xml to collect the permission

features.

The Android application which consist of data, resource files, and Java code are

compiled using Android SDK tools. This process requires static analysis to decompile

and extract the binary codes. During this phase, any permission listed on

AndroidManifest.xml is considered as features.

Following this, the features are examined so as to remove the irrelevant data. The most

relevant features containing malicious activities are then stored. This is important in

ensuring the accuracy of the Android malware detection performance. To achieve this,

the current study selected lesser features for the experiments involved because previous

works (Razak et al., 2017) had also used fewer features to remove the irrelevant data from

the dataset thereby improving the result of the machine learning algorithms. Table 3.2

shows the number of features used by previous works.

Table 3.2: Number of features used by previous works

References Total of benign Total of malware Total of features
(Feizollah et al., 2017) 1846 5560 10

(Afifi et al., 2016) 20 1000 7
(Narudin et al., 2016) 20 1000 11

(Yuan et al., 2016) 880 880 13
(Gheorghe et al., 2015) 400 400 13

Univ
ers

ity
 of

 M
ala

ya

58

As seen in Table 3.2, previous studies used fewer than 20 features for testing and

training their machine learning algorithms. The reason for using fewer features is because

this will save the time and costs of the experiments thereby hastening the time for real

world implementation. The following are the features selection approaches applied in this

study:

3.5.1 Information gain

Information gain is also known as info gain; it is an attribute selection approach that

uses the ratio of information gain to measure the intrinsic information. It measures the

small bits of information obtained for predicting a class (c) by understanding the absence

and presence of a term (t) in a dataset.

In the Intrusion Detection System (IDS), information gain is applied so as to improve

the accuracy performance of the malware detection (Nadiammai et al., 2014). The

features are ranked in descending order with the highest information gain being the most

relevant feature ranked at the top. The features are then selected for training the model so

as to maximise the classification accuracy (McWilliams et al., 2014). In their study, Asaf

Shabtai et al. (2012) managed to achieve a 99.9 percent accuracy rate after applying

information gain with the decision tree, J48. Similarly, Santos et al. (2013) performed

features selection on 1000 opcode sequences using information gain. They also achieved

95.26 percent accuracy with the decision tree, random forest. These findings suggest that

information gain has the capability to select relevant features and as a result, is able to

increase the classification performance accuracy.

3.5.2 Evolutionary algorithm

Evolutionary algorithms (EAs) are inspired by the biological model of evolution and

natural selection that was first proposed by Charles Darwin in 1859 (Dyer, 2010). In the

natural world, evolution helps species to adapt to their environment. Environmental

Univ
ers

ity
 of

 M
ala

ya

59

factors that influence the survival prospect of an organism include climate, availability of

food and the dangers of predators. Species change over the course of many generations

and mutations occur randomly. Some mutations will be advantageous but many will be

useless or detrimental. In that regard, progress comes from the feedback provided by non-

random natural selection, for example, animals that can run fast will be more successful

at evading predators than their slower rivals. If a random genetic modification helps an

organism to survive and reproduce, that modification will itself survive and spread

throughout the population via the organism's offspring. This is how evolutionary

algorithms work.

Evolutionary algorithms are derived from a simplified model of this biological

evolution. It is typically used to provide good approximate solutions to problems that

cannot be solved easily when using other techniques. Many optimisation problems fall

into this category. It may be too computationally-intensive to find an exact solution but a

near-optimal solution is sufficient. In such situations, evolutionary techniques can be

effective.

3.5.3 Bio-inspired Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) was implemented in this study for the purpose of

increasing the performance of the malware detection system. This is accomplished by

minimising the error imposed on the swarm intelligence. PSO was developed by Dr.

Kennedy and Dr. Eberhart in 1995 (Afifi et al., 2016). It is a popular bionic algorithm

that was derived from looking at the social behavior of birds flocking together for

formulating the optimisation problem. PSO is based on the principle particle of the swarm

for each solution. Each particle has a solution in the search space where the vector 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2 … . , 𝑥𝑖𝐷) and where D represents the dimensionality of the search space. Besides

that, the particle has a velocity with 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, … . , 𝑣𝑖𝐷). Each particle updates its

Univ
ers

ity
 of

 M
ala

ya

60

velocity and position during the movement based on its neighbours. The pbest and gbest

obtained from the best population is known as the best position for the particle. These

pbest and gbest help the PSO to search for optimal solution as it signifies the best swarm

particle. The equation shown below illustrates how the PSO searches for optimal solution.

𝑥𝑡+1 = 𝑥𝑖𝑑
𝑡 + 𝑣𝑖𝑑

𝑡+1 3-1

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡) 3-2

In the evolutionary process, t serves as the tth iteration while dth is represented in d ϵ

D within the search space. In order to control the impact of previous velocities, the inertia

weight (w) is used. The 𝑐1and 𝑐2 show the acceleration constant. The random values 𝑟1

and 𝑟2 are generally distributed in terms of [0, 1]. The 𝑝𝑖𝑑 and 𝑝𝑔𝑑 indicate the value of

pbest and gbest in the dth dimension. The maximum velocity, 𝑣𝑚𝑎𝑥 and

𝑣𝑖𝑑
𝑡+1ϵ [−𝑣𝑚𝑎𝑥,𝑣𝑚𝑎𝑥] predefines the velocity. After all the predefined criteria are met, the

algorithm is stopped. It then shows the best fitness value or the maximum number of

iterations that have been set.

3.5.4 Distinctive features between application

This type of feature selection was motivated by the aim of conducting an experiment

that calculates the range of the features noted in Android applications (malware and

benign) and its effectiveness in detecting malware. For instance, malware applications

would request more dangerous permissions than benign applications.

Univ
ers

ity
 of

 M
ala

ya

61

3.6 Summary

This chapter has explained some related and important static analysis tools which can

be used to improve the effectiveness of analysing the applications structure. Addressing

the advantages and functionality of these tools is important because the outcome of the

current study is used as a guideline to construct an analysis process which aids in finding

the relevant features for malware detection systems. The subsequent chapter discusses the

framework of the proposed system along with its different modules and the rationale

behind it.

Univ
ers

ity
 of

 M
ala

ya

62

CHAPTER 4: RISK ANALYSIS AND MALWARE DETECTION: THE

FRAMEWORK

This chapter provides the details of the proposed framework that serve as a system that

able to detect malware applications and also identify their risks. This framework was

derived from two approaches: the machine learning approach and the risk assessment

approach, both of which were used in combination with other selected methods and

models. The proposed framework is necessary for detecting malware risks thereby

protecting mobile device users. This chapter also explains the procedure of the malware

detection process as well as the rationale behind the implementation of framework. The

chapter also provides a detailed overview of the main and sub-models used to support the

proposed framework.

4.1 EZADroid framework

The proposed framework attempts to identify whether the Android applications are

malware or benign by using the Intrusion Detection System (IDSs) and risk assessment

to detect malware and assess the risk level of applications posed to users. It is very

important to choose the appropriate approach when dealing with the technical aspects.

This study proposes to develop an EZADroid framework that is represented in Figure 4.1.

The system is capable of detecting and analysing Android applications in mobile devices

as well as on Web browsers. The proposed framework contains the following benefits:

i. User awareness: This framework is designed to identify malware applications.

ii. Web module: This framework contains different models including malware

detection and risk analysis models to satisfy the objectives of this study.

iii. Signature approach: This framework relies on signatures; it examines the

collected information which allows the framework to identify which

applications act and look like malware.

Univ
ers

ity
 of

 M
ala

ya

63

iv. Response: This framework comes with a risk assessment approach which

poses itself as a passive response to users until the threat is reduced.

v. Intelligent: This framework detects and analyses the malware including the

effective responses given to users, based on risk levels.

vi. Scalability: This framework applies the machine learning model to classify

Android applications as malware or benign. The system administrator has the

capability to access the back end of the system which extends the framework

to meet the current demand in detecting the malware applications. For instance,

updating the model by re-training via the use of the machine learning classifiers

and adding more functions to the system. As a result, the system becomes more

effective in detecting Android malware applications.

The proposed framework is established through the combination of three (3)

components: webpages, mobile devices and server. With the aid of the IDS, the risk

assessment approach and the machine learning approach as noted in the previous chapters,

the server thus acts as a model. It then supports the procedures for selecting the relevant

features for malware detection by using the machine learning algorithms. Additionally,

the server plays several important roles such as collecting dataset, analysing results and

responding to users with the results.

The web pages offer online malware analysis services specifically for Android

applications. This web pages are considered as a comprehensive online security service

that is capable of identifying suspicious and malicious applications by using the static

analysis technique. The technique analyses the applications with the machine learning

algorithms. These web pages service users and security researchers by identifying their

Android applications as malware or benign. Users activate this service by submitting their

Android applications to these web pages through their personal computers.

Univ
ers

ity
 of

 M
ala

ya

64

Server

Mobile DevicesWeb Pages
Online Submitted

Application

Decompress .apk
files

Features Extraction

Convert Manifest.xml
binary to readable

Scan Application

Features Extraction

Convert Manifest.xml
binary to readable

Decompress .apk
files

Internet

Machine Learning
Model

Storing Results
Database

Risk Assessment
Model

Reporting Results

Figure 4.1: EZADroid Framework

Mobile devices are designed such that they able to assess the application risks and

detect Android malware on mobile devices. Part of the EZADroid system offers a risk

assessment and detection approach which utilizes applications that monitor the static

analysis and is capable of protecting mobile devices from threats. Even though the

detection and risk assessment works with the server, all the results obtained from scanning

the applications are returned to users. These results also indicate the risk level of the

threats and the ratio number of positives detected.

Servers are built with an IDS and a risk assessment approach. The main advantages of

this server is that the submitted Android applications are analysed through the static

analysis and risk analysis model, reducing the chance for a malware to attack users. In

Univ
ers

ity
 of

 M
ala

ya

65

addition, it is capable of collecting data, detecting the result and responding to users. The

heavy process of identifying the malware is done on the server and the responses are sent

back to users through the mobile devices or web pages. In this way, it is able to reduce

processing time and consumption of resources.

The similarity in these three (3) parts is that they implement static analysis which is

responsible for analysing the apk files of the application and for extracting related

features. The apk files from mobile devices and web pages are sent to the server which

extract the features of the applications. All the extracted features are then collected and

stored in a database at the server for analysis purposes. The analysis helps to ensure that

the mobile devices and the apk files are clean from malicious activities. This process is

performed by submitting data to the machine learning model that is prepared offline by

the system administrator.

 This model is produced by training thousands of malware and benign applications

using selected extracted features. These features are then fed into the machine learning

algorithms. The best algorithms are selected based on their performance and accuracy.

The entire process is able to create a good detection model which placed at the server

module to determine the cleanliness of the new apk files which submitted by the mobile

devices and web pages. All the results obtained from analysing the apk files are then sent

back to the mobile devices and web pages. To ensure the accuracy and durability of the

results, the system administrator accesses the server directly. It helps to maintain and

update the model whenever it is required. The detailed process of creating the model and

for testing the effectiveness of the model is discussed in the next chapter

Univ
ers

ity
 of

 M
ala

ya

66

Decompress

MLP Random Forest

Risk Matrix Impact Threat

Layer 2: Data Storage
Storing data in a database

Layer 3: Machine Learning Algorithms
Algorithms used to detect anomalies

Reporting Results

Experiments Results

J48

Layer 1: Application Program Interface
Functions on the Server

K Nearest Neighbors

Applying Trained Algorithms

Layer 1: Interface
User interface, frontend of the system

Mobile Application

Layer 2: Application Program Interface
Various functions of the application

Extracting Features Response Action

Layer 3: Static Analysis Tools
Analysis tools to dissect applications

Apktool Androguard

Response

Layer 4: Risk Assessment
Calculate risk

Collected Apps Permission

Layer 1: Interface
User interface, frontend of the system

Mobile Application

Layer 2: Application Program Interface
Various functions of the application

Extracting Features Response Action

Layer 3: Static Analysis Tools
Analysis tools to dissect applications

Apktool Androguard

Figure 4.2: Layer Framework of the EZADroid System

Figure 4.2 depicts the structure layer of the EZADroid. Each layer represents a

function within the respective system. There are four (4) structured layers: web pages,

mobile devices, server and responses. Each layer has its own specific action to make sure

the process functions effectively. For instance, the application programme interface layer

in the mobile devices and Webpages perform activities such as collecting and submitting

the apk files to the server. These activities continue at the server when dissecting the apk

files and extracting the features through static analysis. These structured layers are

important in presenting the flow process of the EZADroid. Figure 4.3 depicts the flow

process and the layers of interactions.

Univ
ers

ity
 of

 M
ala

ya

67

High

Medium

Low

Very Low

Response

Storing Features

Storing Results

Reporting Results

Applying Trained Algorithms

MLP Random
Forest

J48K Nearest
Neighbor

Mobile
Application

Submit Features

Receiving
Results

Static Feature Extraction

Apktool Androguard Decompress

Web
Application

Submit Features

Receiving
Results

Static Feature Extraction

Apktool Androguard Decompress

Figure 4.3: Layer Interactions

4.2 Machine learning classifiers

It is important to determine the best machine learning classifiers for Android malware

detection because it able to produce models that can analyze more complex data and

deliver faster results. This section discusses the output gained from the machine learning

classifier. The output is derived from the results that were extracted after training and

testing the sample dataset which comprised the malware and the benign dataset.

In this study, 10-fold cross validations and split percentages were conducted to

evaluate the performance of the machine learning classifiers for the collected dataset. The

10-fold cross validations were used to construct 10 identical instances in the dataset.

Finally, the results from each of these instances were combined into one composite final

result. The significance of using the 10-fold cross validations is that they are able to

produce a realistic result.

Univ
ers

ity
 of

 M
ala

ya

68

4.3 Evaluation measure

This section identifies the common evaluative measures noted in the research

community. The effectiveness of the malware detection system is assessed based on

accuracy, true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), f-

measure, precision, and recall through the evaluation measures used (Narudin et al.,

2016; Razak et al., 2017). In this study, the standard metrics were used to evaluate

malware detection. A true positive (TP) refers to an instance where the detection is

correctly noted as malicious. The higher the true positive, the better the result. A false

negative (FN) represents an instance where the detection is incorrectly noted as benign.

A true negative (TN) is a benign application detected correctly as benign. A false positive

(FP) is a benign application detected incorrectly as malicious, as shown in Table 4.1.

Table 4.1: IDS confusion matrix

 Prediction Condition
 Prediction positive Prediction negative

Actual Condition positive True positive (TP) False negative (FN)
 Condition negative False positive (FP) True negative (TN)

TPR, also called recall rate, is defined as: 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 4-1

TN) is defined as: 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 4-2

FPR is defined as: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 4-3

False negative rate (FNR) is defined as: 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 4-4

Accuracy is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 4-5

Precision is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 4-6

F-measure is defined as: 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 𝑥 𝑇𝑃𝑅 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃𝑅+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 4-7

With the formula provided in assessing accuracy, the section below discusses the

evaluation measures as demonstrated in Table 4.2.

Univ
ers

ity
 of

 M
ala

ya

69

Table 4.2: Evaluation measures

Evaluation
measure

No. of tested
apps

Type of
analysis

Year Reference

True positive
rate

800 Dynamic 2015 (Gheorghe et al., 2015)
1738 Static 2012 (Wu et al., 2012)
2000 Static 2013 (Yerima et al., 2013)
6863 Static 2015 (Suleiman Y. Yerima et

al., 2015)
True negative

rate
1100 Static 2014 (Deshotels et al., 2014)
2000 Static 2013 (Yerima et al., 2013)

False positive
rate

1000 Dynamic 2014 (Narudin et al., 2016)
1257 Dynamic 2013 (Feizollah et al., 2013)
120 Dynamic 2012 (Dini, Martinelli,

Saracino, et al., 2012)
False negative

rate
1100 Static 2014 (Deshotels et al., 2014)
2000 Static 2013 (Yerima et al., 2013)

Accuracy 800 Dynamic 2015 (Gheorghe et al., 2015)
1738 Static 2012 (Wu et al., 2012)

Precision 1000 Dynamic 2014 (Narudin et al., 2016)
174971 Static 2015 (Cen et al., 2015)

F-measure 1000 Dynamic 2014 (Narudin et al., 2016)
1738 Static 2012 (Wu et al., 2012)
800 Dynamic 2015 (Gheorghe et al., 2015)

From the information given above, it shows that evaluation measures and the number

of dataset used have a significant role in measuring the malware detection system.

4.4 Area under curve (AUC) performance

The area under the ROC curve, known as area under the curve (AUC), is widely used

in optimising the problem and for weighing classifier performance on malware dataset.

The AUC results identified were able to measure the detection approach as good or bad.

An area of 1 indicates perfect prediction while an area of 0.5 indicates a bad prediction.

The AUC levels were listed as: 0.9-1.0 = perfect prediction; 0.8-0.9 = excellent

prediction; 0.7-0.8 = good prediction; 0.6-0.7 = fair prediction; and 0.5-0.60 = poor

prediction. Table 4.3 defines the AUC threshold which describes the performance of

malware detection system (Narudin et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

70

Table 4.3: AUC performance threshold

Threshold Description
1.0 Perfect prediction
0.9 Excellent prediction
0.8 Good prediction
0.7 Mediocre prediction
0.6 Poor prediction

4.5 Summary

This chapter has illustrated the proposed framework that was developed for this study.

It also described the characteristics of the proposed framework. The schematic

presentation of the proposed framework and its major layers of interactions were also

noted in the proposed EZADroid. This chapter also described the layers of interactions

that occurred between the modules (i.e. web pages, mobile devices and servers) by

explaining the functional and non-functional characteristics of the main components of

the framework. Added to this is the highlight of several significant features of the

framework. The next chapter explains the comprehensive experiments conducted in the

proposed EZADroid.

Univ
ers

ity
 of

 M
ala

ya

71

CHAPTER 5: EVALUATION OF RISK ANALYSIS AND MALWARE

DETECTION FRAMEWORK

This chapter presents the performance of the evaluation methods which were used to

evaluate and validate the execution performance of the proposed framework. The novelty

of the framework is its ability to assess the risk of Android applications and to detect

malware on mobile devices by sending them to the servers for processing. The process

helps to reduce the resource consumption on mobile devices and avoid heavy processing

issues. In this framework, all the detection processes were performed on the server

without affecting the mobile device resources. The aim of this chapter is thus to evaluate

the proposed framework in terms of validity and feasibility. The evaluation is carried out

to verify how well the system meets the research objective.

Four (4) experiments were conducted on the proposed framework. These experiments

involved the static analysis technique (bio – inspired analysis, features selection, time

based detection and risk analysis). The first experiment describes the static analysis

procedure. It analyses Android permissions for malware detection by using bio-inspired

algorithms. The second experiment is also performed on Android permissions to see how

feature selection plays an important role in determining the performance measures of

malware detection. The third experiment discusses how future malware can be predicted

by using time-series analysis. The fourth experiment assesses the risk of Android

applications on mobile devices. The assessment produced are returned to users as a

response.

5.1 Dataset descriptions

This section describes the collection of the dataset. The dataset is important; they are

an integral and critical part of the research process. The dataset paves the way for

understanding the malicious and benign activities. Upon further examination, the dataset

Univ
ers

ity
 of

 M
ala

ya

72

is then analysed and the results are used for predicting future events in Android malware.

The growth of Android malware comes hand in hand with the proliferation of online

repositories.

5.1.1 Malware Genome Project

The Android Malware Genome Project is a malware repository that focuses on the

Android platform. Its aim is to characterise existing Android malware. The samples of

this study were collected from August 2010 to October 2011. The total samples collected

contained more than 1,200 malware samples that come from 49 malware families. This

number covers the majority of the existing Android malware families. Zhou and Jiang

(Zhou et al., 2012) had characterised the samples from various aspects including their

installation methods, activation mechanisms as well as the nature of their carried

malicious payloads. These characteristics of the dataset have been published by Zhou and

Jiang (Zhou et al., 2012).

5.1.2 Drebin

Drebin dataset are made publicly available by the MobileSandbox project (Arp et al.,

2014). They are considered the largest available malware dataset. The dataset collected

from Drebin came to a total of 5,560 malwares which were composed of 179 families.

The samples were collected between August 2010 to October 2012. The dataset was

published as a means of filling in the gap for Android malware detection where malware

dataset was required for experimental purposes. This malware dataset was used in the

experiments which help in developing a more effective malware detection system. Prior

to use, this dataset was scanned by anti-virus applications. The results showed that 90

percent of the samples detected were malware. Drebin is well-accepted among

researchers (Karim, 2016; Feizollah et al., 2017) and previous studies (Firdaus et al.,

2017; Feizollah et al., 2017) had also used similar dataset.

Univ
ers

ity
 of

 M
ala

ya

73

5.1.3 AndroZoo

AndroZoo comes from the Android Applications which were sourced from several

sites such as the official Google Play app market. It contains 5,416,421 different

applications and each application was analysed by 70 of different AntiVirus products so

as to distinguish them as malware (Allix et al., 2016). This dataset contributes to the new

potential research in Android malware detection. Figure 5.1 shows the interface of the

AndroZoo website published by the University of Luxembourg.

Figure 5.1: Website of AndroZoo

Figure 5.1 illustrates the AndroZoo website which provides access to researchers to

download Android applications. The website also provides labels with their respective

results for each apk. This type of result is important to researchers as it helps to ensure

the validity of the apk by indicating whether they are malware or benign applications.

This contributes to the efficiency of the system.

5.1.4 Google Play store

Google Play store is Google’s official market source for Android applications and

downloads (Google, 2017). It contains more than one million applications including

games. Google Play store is a wide resource which allows researchers to search for

specific dataset using keywords or by browsing applications in the Google Play library.

Univ
ers

ity
 of

 M
ala

ya

74

Most of the applications in this store are free for downloads. Some of applications need

to be purchased as they contain more functions. This store is suitable for collecting

benign applications because Google Play store provides an automated antivirus system

known as Google bouncer (Tam et al., 2017). It has the capability to scan both the new

and existing applications for malware and benign.

5.1.5 Benign dataset

To collect the benign dataset, clean applications from AndroZoo were gathered (Allix

et al., 2016). In this study, the experiment only used benign applications taken from

Google Play. This is because each submitted application must go through Google Bouncer

before it is available for downloading. In addition, Google is continuously updating and

improving the effectiveness of Google Bouncer which is responsible for the analysis of

any malicious applications. Google Play applications have been categorized into 27 main

categories while the games have been categorized into 17 subcategories (Feizollah et al.,

2017). To ensure cleanliness, all the applications were scanned on VirusTotal and then

analyzed by 70 of different AntiVirus products such as Avira, Comodo and AVG

Technologies. Additionally, only applications with a score of 0/50 were used for the

experiments as this indicate that there is no positive number for the malicious activities.

By doing this, completeness of the genuine benign dataset is confirmed.

5.2 Experiment I: Evaluation of bio-inspired

The leaking of sensitive data on Android mobile devices poses serious threats to users.

It occurs when unscrupulous attacks violate the privacy of users. However, detecting the

attack is challenging due to the similarity of the permissions noted in malware and benign

applications. This experiment aims to evaluate the effectiveness of the machine learning

approach for detecting Android malware. In this experiment, we applied the bio-inspired

algorithm as a feature optimisation technique for selecting the relevant permission

Univ
ers

ity
 of

 M
ala

ya

75

features that are able to identify malware attacks. A static analysis technique combined

with machine learning classifiers was then developed from the permission features noted

in Android mobile devices. This is used for detecting the malware applications. This study

compares the bio-inspired algorithms (particle swarm optimisation (PSO) and the

evolutionary computations with information gain as a means to detect the best feature

optimisation technique in selecting the features.

5.2.1 Experiment setup and procedure description

In implementing a mechanism for Android malware detection, a machine learning

approach which trains the sample dataset to learn the behaviors of the benign and malware

applications was developed. The mechanism was also implemented to determine the

severity of new applications as malware or benign.

The main components of the Android malware detection system are presented in

Figure 5.2. Here, three (3) components are noted in the detection architecture. They

include data collection, machine learning, and the database. The system describes the

relationship between the components and the purpose of each component. Data collection

begins by gathering all the permissions which include benign and malware applications.

The process includes decompiling the apk file. This is followed by the process which

extracts and filters the permissions. All the collected permissions are stored in a readable

format and saved as a .arff file. This file contains all the feature attributes that are used

for the feature optimisation approach. This approach is able to exclude irrelevance and

noise in the dataset (Kumar et al., 2014). In the context of this experiment, the bio-inspired

algorithms (particle swarm optimization (PSO) and evolutionary computation) and

information gain play the role of identifying and selecting the best features. The main

purpose of using the three (3) features optimisation technique was to locate the difference

between the bio-inspired algorithms and the non-bio-inspired algorithms. The database

Univ
ers

ity
 of

 M
ala

ya

76

noted here also stores a collection of data and results. Figure 5.2 illustrates the malware

detection architecture.

Applications

Malwar
e

Data Collection

Decompile .apk file

Extract used Permission

Filtering

Server
Repository

Database

Machine Learning

Features Optimization

Trained Classifiers

Evaluation

 SHA-256
 MD5
 Package name
 List of permission

Detection
Model

Store
Data

Reporting
 Result

Store
 Data

Figure 5.2: Malware detection architecture

In this experiment, data collection and the feature optimisation process are important

for detecting malware. Specifically, the data collection process obtains the benign and

malware behavior data from the application permissions. It then sends the information to

the database. Here, the data are filtered based on the permission and package names. This

filtering is important because it helps to ensure that the duplicate applications and features

(used permission) are removed from the database. The filtered features are then sent to a

machine learning process for the feature optimisation which provides the number of fold

values for each permission.

5.2.2 Data collection phase

This section discusses the data collection process which compiles the benign and

malware applications (.apk) datasets. The samples chosen for this experiment were

randomly drawn from the Drebin and AndroZoo dataset. The dataset retrieved from

AndroZoo was confined to the applications drawn from Google Play store. Table 5.1

depicts the summary of the dataset.

Univ
ers

ity
 of

 M
ala

ya

77

Table 5.1: Dataset summary

Dataset Source Total used in experiments
Benign Androzoo 3500

Malware Drebin 5000
Total 8500

a) Decompiling the apk file

This process begins by collecting the benign and malware applications which

amounted to 8,500 samples dataset with 5,000 being malware and 3,500 being benign

applications. The benign applications were downloaded from AndroZoo which belongs

to Google Play store. The samples comprise a collection of more than three (3) million

applications (Allix et al., 2016). Figure 5.3 illustrates the process of the data collection.

In the figure, the AndroidManifest.xml file is shown to contain essential information

regarding the application information such as activities and permission. All the extracted

permission must be labelled before they are stored in the database as a .arff file. The value

of the permission is stored as a binary number (0 or 1).

Data Labeling

.arff file

Static Analysis

Decompile .apk file

Process
AndroidManifest.xml

Extract Permission

Benign

Malware

Figure 5.3: Data collection phase

For further investigation, feature optimisation was used. This helps to gain the best

features among the 378 lists of permissions. Table 5.2 tabulates the top 10 permissions

noted in the benign and malware applications.

Univ
ers

ity
 of

 M
ala

ya

78

Table 5.2: Top 10 permission in benign and malware applications

Benign application Percentages
(%)

Malware application Percentages
(%)

INTERNET 94 INTERNET 80
ACCESS_NETWORK_STATE 88 READ_PHONE_STATE 70
WRITE_EXTERNAL_STORAGE

66
WRITE_EXTERNAL_STORAG
E 49

WAKE_LOCK 65 ACCESS_NETWORK_STATE 28
READ_PHONE_STATE 52 SEND_SMS 27
VIBRATE

47
RECEIVE_BOOT_COMPLETE
D 22

ACCESS_WIFI_STATE 43 ACCESS_WIFI_STATE 21
ACCESS_FINE_LOCATION 38 WAKE_LOCK 20
GET_ACCOUNTS 38 RECEIVE_SMS 19
ACCESS_COARSE_LOCATION 36 READ_SMS 18

From the table, six (6) similar permissions were used in the benign and malware

applications. They include: ACCESS_WIFI_STATE, ACCESS_NETWORK_STATE,

WAKE_LOCK, WRITE_EXTERNAL_STORAGE, READ_PHONE_STATE and

INTERNET. Among the top 10 permissions, four (4) were dangerous permissions such

as RECEIVE_BOOT_COMPLETE, READ_SMS, RECEIVE_SMS, and SEND_SMS.

These dangerous permissions occur recurrently in malware applications but infrequently

in benign applications. Permissions such as WRITE_SMS has the capability of

subscribing to premium SMS service without user knowledge thereby directly providing

profit to attackers (Elish et al., 2015; Somarriba et al., 2016). Although this study

implements a large number of sample applications for analysis, the experiment is still

considered small when compared to real world applications in the Android market.

Therefore, the outcome is considered as a reflection of the permission trend in Android

applications today. Figure 5.4 illustrates the total number of permissions requested by the

benign and malware applications.

Univ
ers

ity
 of

 M
ala

ya

79

Figure 5.4: Total number of applications requesting permissions

The figure shows that malware applications requested more permissions than benign

applications. It seems evident that malware applications have similar types of requested

permissions as benign applications but its aim is malicious as it aspires to infect and

disable the functionality of mobile systems. It is also noted that more than 500 malware

applications requested only nine (9) permissions as are shown in the graph. This indicates

that the technique used by an attacker to threaten mobile devices is by using permissions.

b) Machine learning phase

The use of the machine learning approach is to ensure that mobile device users are able

to optimise the permission features through the feature optimisation approach. This

approach reduces time for training and testing; it also reduces overfitting while also

simplifying the malware detection system. It is also significant to data processing (Kumar

et al., 2014). Inevitably, feature optimisation is a crucial core for building any malware

detection system (Zhang et al., 2003). Without a good knowledge of the classifications,

users will find it challenging to identify which features are relevant when detecting

malware.

Univ
ers

ity
 of

 M
ala

ya

80

As a consequence of this, the dataset will contain redundant, irrelevant and relevant

features. These features, if not attended to, can reduce the classification performance. To

resolve this problem, feature optimisation was thus applied as a measure of improving the

accuracy of experiments thereby serving as an effective component in the malware

detection system (Ahmad, 2015). Feature optimization also has the ability to optimise the

evaluation measure (Kumar et al., 2014).

Figure 5.5 summarises the selection of the significant features for Android malware

detection. The feature optimisation approach was applied by using a specific metric which

computes and returns a score for each feature individually (Shabtai et al., 2012). This

process helps the feature optimisation approach to acquire significant features through the

best accuracy rate coupled by the lack of over-fitting. The process begins with the

cleaning of the dataset. This involves removing irrelevant and redundant features.

Features optimization

Feature Refining

PSO,
Evolutionary,Info Gain

Data Cleaning

Randomize

Features Evaluation

.arff file

Best
 Features

All
Permission

Figure 5.5: Machine learning phase

The next step of the experiment uses WEKA to acquire data randomisation which

balances and controls the dataset. Doing so enhances the optimal sensitivity of feature

optimisation. In this study, the bio-inspired algorithms (PSO) and the evolutionary

computation algorithms were compared with information gain for feature optimisation.

Figure 5.6 shows the result of the comparison. The feature optimisation approach was

based on the number of folds which totals to more than 90 percent. It is also based on the

Univ
ers

ity
 of

 M
ala

ya

81

information gain which uses a ratio of the information gain to select relevant features.

This study chooses features with ranks ranging from 0 to 0.4 on the information gain. The

PSO algorithm and information gain have 11 features while the evolutionary computation

has 13 features. Here, it is seen that the number of the selected features is totally

dependent on the type of algorithms used. The PSO algorithms carry a high performance

in detecting malware. Table 5.3 lists the permission features noted after PSO was adopted

in the approach.

Figure 5.6: Comparison of feature optimisation approach based on number of
features

Table 5.3 presents the list of feature permissions that were extracted after using the

bio-inspired algorithm and PSO as the feature optimization approach. Here, it is noted

that eight (8) of the 11 permission features belonged to the dangerous levels. These

features are high-risk permissions which require application permissions to grant access

and control over the mobile devices.

For instance, five (5) permissions were similar to the top 10 permissions noted in the

malware applications of Table 5.2, READ_PHONE_STATE, READ_SMS,

SEND_SMS, and RECEIVED_BOOT_COMPLETE ACCESS_WIFI_STATE. In this

context, it is worth noting that the READ_SMS, SEND_SMS, RECEIVED_SMS and the

BILLING permissions allowed the conveying of billing request and response between

11 11

13

0

2

4

6

8

10

12

14

PSO Information gain Evolutionary
computation

N
u

m
b

er
 o

f
fe

at
u

re
s

Feature optimisation

Univ
ers

ity
 of

 M
ala

ya

82

applications on a mobile device with the Google Play server. Clearly, these were used by

attackers to make mobile device users purchase premium rate messages.

If the user was unaware of this incidence, the permission granted able to incur a loss

of money for the mobile device user and he user then ends up paying for expensive

messages which are unrequired. It is also noted that READ_GSERVICES belongs to the

Android.permission-group.ACCOUNTS. As malicious permissions, they have the

capability to access the user’s available accounts on his/her mobile device thereby

incurring financial losses.

Table 5.3: List of permission features

List of features Description Protection
levels

ACCESS_WIFI_STATE Allows applications to access information
about Wi-Fi networks

Normal

DELETE_PACKAGES Allows an application to delete packages.
Starting in Nougat (N), user confirmation is
requested when the application deleting the
package is not the same application that
installed the package

Normal

READ_PHONE_STATE Allows read only access to phone state Dangerous
READ_SMS Allows an application to read SMS messages Dangerous
RECEIVE_BOOT_COMPLETED Allows an application to receive the

ACTION_BOOT_COMPLETED that is
broadcast after the system finishes booting

Normal

RECEIVE_SMS Allows an application to receive SMS
messages.

Dangerous

SEND_SMS Allows an application to send SMS messages. Dangerous
WRITE_APN_SETTINGS Allow an application to change network

setting, interpret and intercept all the network
traffic

Dangerous

WRITE_HISTORY_BOOKMARKS Allows an application to write (but not read)
the user's browsing history and bookmarks

Dangerous

BILLING Allows sending In-app Billing request and
managing In-app Billing transaction using
Google Play

Dangerous

READ_GSERVICES Allows this app to read Google service
configuration data

Dangerous

Univ
ers

ity
 of

 M
ala

ya

83

Further, the WRITE_APN_SETTINGS also seems to allow the malware applications

to monitor, redirect or modify the network packet without the user’s knowledge. The

WRITE_APN_SETTINGS permission is used by malware to steal Transaction

Authorisation Codes (TAC) during the communication between mobile devices and

online banking transactions (Feizollah et al., 2017). To conclude, the list of permission

features is comprehensive for malware detection since it contains malicious activities.

5.2.3 Evaluation and results

To evaluate the performance of the machine learning approach in detecting Android

malware and to ensure that the machine learning approach generate a complex analysis

of the permissions, this study conducted another experiment on two (2) public Android

application dataset. Here, the benign applications comprise 3,500 randomly selected

samples taken from the AndroZoo database which were downloaded only from Google

Play Store. The 5,000 malicious Android application dataset came from Drebin. The total

number of evaluations made for the Android applications thus amounted to 8,500.

a) Machine learning performance

This section provides part of the result taken from the experiment conducted. These

applications were mixed together for training and testing the dataset. To train and test the

models for machine learning, the parameters including the cross-validations need to be

set. Table 5.4 illustrates the variation of the detection performance of machine learning

as seen in the various categories of classifiers.

The detection performance of five (5) classifiers for Android malware detection is

presented above. Each classifier performance was evaluated through five (5) performance

metrics such as f-measure, recall, TPR, precision and FPR. The table indicates that the

PSO presents a better performance when compared to evolutionary computation and

information gain. It can also be noted that AdaBoost on the PSO provides a good detection

Univ
ers

ity
 of

 M
ala

ya

84

performance of 95.5 percent for TPR. The average TPR for each classifier was noted to

be higher than 90 percent. Table 5.4 clearly shows that the machine learning approach is

effective in detecting malware such as random forest, multi-layer perceptron, K-nearest

neighbors, AdaBoost and J48. Therefore, it is worth noting that feature optimisation has

a significant role in identifying the relevant features. This experiment evaluated the ROC

curve, based on the PSO results for the classification accuracies, as explained below.

Table 5.4: Detection performance results

Features
optimization

Classifier TPR
(%)

FPR Precision
(%)

Recall
(%)

F-Measure
(%)

PSO

Random Forest 93.6 0.15
5

89.6 93.6 91.6

MLP 91.9 0.13 90.6 91.9 91.2
kNN 93.7 0.15 89.4 93.7 91.5

Adaboost 95.6 0.32 81 95.6 87.7
J48 93.1 0.16 89 93.1 91

Evolutionary
computation

Random Forest 88.6 0.09 93.3 88.6 90.9
MLP 88.5 0.09 93.3 88.5 90.8
kNN 88.7 0.09 93.2 88.7 90.9

Adaboost 88 0.11 91.8 88 89.8
J48 88.4 0.09 92.8 88.4 90.6

Information
gain

Random Forest 90.1 0.11 91.7 90.1 90.9
MLP 90.1 0.11 91.8 90.1 90.9
kNN 90.3 0.11 91.7 90.3 91

Adaboost 87 0.1 92.1 87 89.5
J48 89.9 0.11 91.5 89.9 90.7

b) Receiver operating characteristics curve (ROC)

Focussing on the TPR, it is observed that the receiver operating characteristic curve

(ROC) is a technique used for visualising the evaluated performance. This has been used

in machine learning and data mining approaches (Fawcett, 2006). This technique also

provides reliable information about the performance: the closer the apex of the curve is

towards the upper left corner, the better the performance. In the context of this

experiments, the ROC curve was used to measure the quality and the effectiveness of the

Univ
ers

ity
 of

 M
ala

ya

85

prediction classifiers. Figure 5.7 illustrates the tradeoff between the TPR and FPR. Cross

validations with 11 features were applied on five (5) classifiers. The left corner represents

the percentages of the samples which were correctly detected as malware. This statistic

indicates the high performance of the occurrence. The results further confirmed that the

experiments conducted had achieved high accuracy rates with minimal false alarms. Here,

the curve is also indicated at the top border of the ROC curve. The five (5) classifiers

demonstrate the good results of the ROC curve because it turned towards the upper left-

hand corner of the plot.

Figure 5.7: Performance of ROC curve

The multi-layer perceptron (MLP) outperformed all the classifiers. This shows that the

MLP is effective in predicting any case as positive (malware). It also appears to be

presenting an acceptable accuracy rate. The MLP is typically designed to minimise error

rates; it measures how far the threshold to each sample training falls from its ideal value.

Other classifiers such as AdaBoost, J48, KNN and random forest also provide good

measures in mobile malware detection.

Table 5.5 lists the results of the AUC that was taken from the experiment which uses

five (5) classifiers. Here, all the five (5) classifiers showed excellent prediction rates thus

Univ
ers

ity
 of

 M
ala

ya

86

the AUC values were acceptable for detecting mobile malware in the Android platform.

This experiment specifically performed 10 cross validations which showed that the MLP

classifiers had accomplished high detection accuracy. This performance is comparable to

the random forest thereby indicating that the selected features were effective in detecting

malware.

Table 5.5: Results of AUC

Classifier AUC Level
MLP 0.958 Perfect prediction
RF 0.957 Perfect prediction

KNN 0.956 Perfect prediction
J48 0.945 Perfect prediction

AdaBoost 0.932 Perfect prediction

c) Empirical assessment

The experiment applied in this study is similar to Allix et al. (2016). In the steps that

followed, the approach was validated by using different parameters that were involved in

the measurement process. In this regard, the current study used the results of the PSO

because the results showed the best performance, with a minimum number of features.

All the results of the testing process were saved into an .arff file. These were then saved

again into the .csv file in order to get a result that bears consecutive numbers. Following

that, the consecutive numbers were generated into box plot graphs for experimental

assessment purposes.

The PSO experiments were run with 10-fold cross-validation experiments using a few

types of performance metric to validate the performance of the Android malware

detection approach. The validation of the experiments assessed five (5) classifiers of the

machine learning model. Figure 5.8, Figure 5.9 and Figure 5.10 illustrate the results of

the validation test for precision, recall, and f-measure. Each boxplot splits the result into

a quartile. The boxplot size is made from the 25 percent score which depicts the minimum

Univ
ers

ity
 of

 M
ala

ya

87

value to the maximum value of the whisker. The results suggest that majority of the five

(5) classifiers had revealed a high precision rate with an average value of over 0.89. The

average value for the recall performance was at 0.63, demonstrating that 80 percent of the

classifiers had a recall value that is equal or higher than 0.63. It also shows that five (5)

classifiers were going from 0.0 to 1.0. In particular, the precision and recall value and the

f-measure achieved a value of 0.72. All these results are important for measuring the

performance of the classifiers in detecting malware.

The increase of the precision rate indicates that the classification of the machine

learning model is related to the low positive rate. It also shows an accurate result when

detecting malware. However, the high recall shows that the malware applications have

similar features to the benign applications. Thus, it was concluded that the results indicate

an accuracy precision that carries a high recall value. In short, it is effective in detecting

malware accurately.

Figure 5.8: Precision

Univ
ers

ity
 of

 M
ala

ya

88

Figure 5.9: Recall

Figure 5.10: F-measure

This assessment is important for Android malware detection because the benign

samples are more than the malware samples in real situations. The assessment implies

that researchers require more malware samples with known features so as to be able to

increase the performance evaluation for detecting malware.

Univ
ers

ity
 of

 M
ala

ya

89

5.2.4 Discussion

This section presents the discussion of the findings that are related to malware

detection in brief. As has been mentioned, this study performs malware analysis by using

a machine learning approach to detect Android malware. In doing so, it also considered

other issues which helped the experiment to achieve a good performance evaluation

during the Android malware detection. The first issue concerns feature collection. This

issue was viewed as complementary to other studies. It appears that the performance

evaluation had greatly benefited from the higher sets of data. The larger dataset would

also give more features thus requiring more resources and constraints on the model.

Therefore, the implication drawn from this study is that focus should be given to

developing better features to increate malware detection performance.

This study also examines the role of the bio-inspired algorithm and the non-bio-

inspired algorithm for feature optimisation. The results indicate that particle swarm

optimisation (PSO), as compared to evolutionary computational and information gain,

leads to better feature characterisation. This improves the performance evaluation of

Android malware detection. It further shows that if the machine learning approach is

unable to identify malware correctly, then the feature characteristics have not been

selected properly. Besides that, any malware application should have some special

characteristics before being defined as malware. Therefore, to detect more malware, a set

of fine grain features need to be collected. This study collected 378 features from 8,500

Android applications but only 11 selected features were presented. Based on this, it can

be concluded that fine grain features play an essential role in performance evaluation.

The second issue of this study relates to the machine learning approach. This study has

applied several machine learning classifiers for the purpose of identifying the reliable

predictive correlation in detecting malware. The experiment is important for the purpose

Univ
ers

ity
 of

 M
ala

ya

90

of finding effective classifiers that able to predict Android malware. The experiment

showed that the AdaBoost outperforms the other machine learning classifiers.

The third issue of this study relates to the training samples which clearly still served

as the major challenge in Android malware collections. It is deduced that more training

samples are able to improve the accuracy of the classifiers in malware detection.

Therefore, genuine malware dataset ought to be identified and researched for the purpose

of sharing the outcome with the public and guided by some rules. This contribution can

lead to more discoveries and so provide more improvement for areas related to Android

malware detection. Nonetheless, all outcomes tend to depend on the goals of a research

that is whether to detect new malware or signatures. In order to detect new malware, a

study would require the latest dataset because attackers are constantly updating their

techniques to steal information from mobile device users.

5.2.5 Conclusion

This study has presented the performance of the evaluation approach in detecting

Android malware. The study used a machine learning classifier to identify the relevant

permission features which were used to evaluate the learning types of classifiers. The

study also used the ROC curve and the TPR to determine the effectiveness of the

classifiers. This study has evaluated various categories of machine learning classifiers

which were expected to improve the Android malware detection performance. For this

purpose, large training samples were extracted and the most effective classifiers were

identified. They include Random forest, J48, K-nearest neighbors, Multi-layer

perceptron, and AdaBoost.

In all the experiments performed, a dataset consisting of real Android malware and

benign sample applications were considered. In particular, this study evaluated a total of

5,560 malware samples drawn from Drebin and a total of 3,500 benign applications

Univ
ers

ity
 of

 M
ala

ya

91

collected from the Androzoo dataset. This experiment also used the static analysis

technique to differentiate the benign and malware applications. The machine learning

process comprised three (3) phases: (1) feature optimisation; (2) trained classifiers; and

(3) the evaluation of machine learning classifiers.

The experiment results indicate a 95.6 percent detection rate for the TPR when using

AdaBoost classifiers on the Drebin malware samples which were analysed using the PSO

feature optimisation. The results also showed that the experiment which used the machine

learning model had achieved a higher accuracy rate. Moreover, the evaluation of the

machine learning approach in the experiment also indicated its efficiency in detecting

Android malware. This proves that machine learning classifiers have the capability to

detect the latest Android malware. Hence, it concluded that the greatest gains in detection

performance will continue to be derived from an improved feature optimisation technique

and from learning classifiers that are more efficient in detecting malware cases.

The significance of this study lies in use of the latest Android data collection and the

evaluation of the different classifiers. Additionally, the results of the performance

evaluation also showed that this mechanism as proposed by the current study, has the

potential to detect well-known Android malware.

5.3 Experiment II: Evaluation of machine learning classifiers

In order to address the security concerns contained within Android applications,

Experiment II introduces a novel machine learning approach which aims to detect

malware by using the permission patterns used by Android applications with minimal

features. The approach is based on the static analysis of the resource file of Android

applications. The aim is to obtain permission patterns. For the sake of improving the

detection accuracy rate, this study also used relevant features in minimal amounts.

Specifically, this experiment applies permission features and the machine learning

Univ
ers

ity
 of

 M
ala

ya

92

approach to detect Android malware. For the purpose of evaluating the effectiveness of

the proposed approach, this experiment compares the achieved results with results

extracted from a baseline Android detection which uses a similar level of permission.

5.3.1 Experiment setup and procedure description

The methodology of Experiment II as performed in the current study is illustrated in

Figure 5.11. Three (3) phases are involved: data collection, feature extraction and

refining. These phases will help the experiment to select the relevant features noted

among the overall features so that the effectiveness of the approach can be conducted.

Here, the comparative analysis was used to detect the unknown malware. This is done by

using the four machine learning classifiers of random forest, MLP, KNN and J48.

AndroidManifest.xml

Readable file

Extract required permission Remove noise

Binary form

List of permission

Check with Android official
website

Permission description Calculate range of permission

Evaluate the features

Measure machine learning
performance

Results

Detection
model

APK file

Data Collection Features Extraction Evaluation

Figure 5.11: Methodology

Figure 5.11 depicts the construction of the Android malware detection approach based

on the machine learning model which was implemented for application training and

testing. It also helps to distinguish the benign applications from malware applications.

Once the. apk file of an application is submitted, the approach analyses the permission

and determines whether it is benign or malicious. The detection results, including the

detailed information gathered from the machine learning performance evaluation, are

then reported. This methodology is expected to detect unknown malware and to keep pace

Univ
ers

ity
 of

 M
ala

ya

93

with the evolution of Android malware. There are two types of experiments. Experiment

I was conducted by using 12551 samples which include malware and benign applications

and Experiment II was carried out by using 12551 samples which include malware and

benign applications but this experiment used the feature selection approach instead.

5.3.2 Data collection phase

All the features were collected from the required permission types. A total of 274

different required permissions were collected from apk files through static analysis. This

study uncompressed the apk file with Java code. The procedure then focused on the

AndroidManifest.xml file which helped the experiment to obtain the permissions that

were required by the applications. For instance, INTERNET served as the permission

which allowed the applications to open the network sockets. It also allowed the

applications to access the Internet. As a result of this, attackers were able to use this

permission to download malware applications and then collect the sensitive information.

Table 5.6 lists the summary of the dataset used in Experiment I and II.

Table 5.6: Dataset summary

Dataset Source Number used in experiments
Malware Drebin 5551
Benign Androzoo 7000

Total 12551

The features of the Android permission were first trained and then classified by using

relevant features. When the machine learning classifiers have been trained well, some

kind of regularity should appear in the extracted features. When this occurs, the features

are then converted into binary forms of malware and benign applications, catering to two

categorical features (1 and 0). In order to select the relevant features for effective malware

detection, this study applies a similar feature selection approach that was used by Firdaus

et al. (2017). In this way, the number of features was reduced from 274 features to 15

Univ
ers

ity
 of

 M
ala

ya

94

only. To ensure that there is a unique pattern occurring between the benign and malicious

applications, it is necessary to look at the relevant features. By using a larger amount of

data, this study was also able to classify the malware processes with more precision. Table

5.7 presents the list of permission used by the experiments.

Table 5.7: Lists of permission

Permission Description
ACCESS_NETWORK_STATE Allows applications to access information about

networks
ACCESS_WIFI_STATE Allows applications to access information about

Wi-Fi networks
GET_ACCOUNTS Allows access to the list of accounts in the

Accounts Service
INSTALL_PACKAGES Allows an application to install packages
READ_CONTACTS Allows an application to read the user's contacts

data
READ_PHONE_STATE Allows read only access to phone state, including

the phone number of the device, current cellular
network information, the status of any ongoing
calls, and a list of any Phone Accounts registered
on the device

READ_SMS Allows an application to read SMS messages
RECEIVE_BOOT_COMPLETED Allows an application to receive the

ACTION_BOOT_COMPLETED that is broadcast
after the system finishes booting

RECEIVE_SMS Allows an application to receive SMS messages
SEND_SMS Allows an application to send SMS messages
WRITE_SMS Allows an application to write SMS messages
READ_HISTORY_BOOKMARKS Allows the app to read the history of all URLs that

the Browser has visited, and all of the Browser's
bookmarks

WRITE_HISTORY_BOOKMARKS Allows the app to modify the Browser's history or
bookmarks stored on your phone. This may allow
the app to erase or modify Browser data

INSTALL_SHORTCUT Allows an application to add Home screen
shortcuts without user intervention

com.google.android.c2dm.permission.RECEIVE Allows apps to accept cloud to device messages
sent by the app's service. Using this service will
incur data usage. Malicious apps could cause
excess data usage.

Univ
ers

ity
 of

 M
ala

ya

95

5.3.3 Evaluation and results

The best results obtained from the experiments are further discussed. These are

highlighted in bold in the following tables. The initial results indicate the comparison of

the outcomes which were obtained from the four machine learning classifiers: random

forest, MLP, KNN and J48. As this study also used the parameters of accuracy, FPR,

recall, precision, and f-measure to examine the different measurements, the results are

simultaneously provided. The results achieved from 30 percent of the testing set which

used four (4) selected classifiers to perform the experiments are presented in Table 5.8.

Here, the result illustrates the performance of each of the classifiers used in the two (2)

experiment sets for the Android malware detection.

Table 5.8: Comparison with and without features selection approach

Experiment Classifier Without features selection
 Accuracy (%) FPR Precision Recall F-Measure

I

Random forest 95.1 0.048 0.952 0.951 0.951
MLP 93.8 0.061 0.939 0.938 0.938
KNN 94.6 0.058 0.946 0.946 0.946
J48 93.3 0.073 0.933 0.933 0.933

Experiment Classifier With features selection

 Accuracy (%) FPR Precision Recall F-Measure

II

Random Forest 92.0 0.080 0.921 0.920 0.919
MLP 91.6 0.084 0.917 0.916 0.915
KNN 92.0 0.080 0.920 0.920 0.919
J48 91.5 0.085 0.917 0.915 0.914

In Experiment I, the results showed that random forest classifier had achieved a higher

accuracy result of 95.1 percent when compared to J48 which achieved only 93.3 percent.

This outcome indicates that the random forest learning classifier is more effective than

other selected classifiers in detecting the Android malware. Similarly, the instance-based

classifier (KNN) also produced a high detection rate of 95 percent accuracy.

Univ
ers

ity
 of

 M
ala

ya

96

Table 5.8 illustrates the random forest and KNN classifiers both of which had achieved

a 92 percent accuracy thus far, the highest precision value noted in the Android malware

detection. This outcome indicates that feature selection plays an important role in

determining the effectiveness of malware detection. The value for the FPR when using

feature selection was also noted to be higher than the value of the FPR which was without

feature selection. This happened because of the bias noted in the dataset as the benign

samples have a common pattern as the malware samples. Most of the classifiers observed

in Experiment II have similar FPR values of 0.08. The value for precision and the recall

for Experiment I and Experiment II was more than 90 percent. The high precision rate

indicates that the classifiers produced more relevant results. The high precision rate also

indicates that the classifiers were producing accurate results, with majority being positive

results.

Nevertheless, there are resource constraints on mobile devices, for instance, CPU,

memory, battery and storage. In this regard, Experiment I and Experiment II were

conducted based on the time spent by the classifiers. Time spent was tested because it is

important for the malware detection system to detect any abnormal activity within

minimal time without affecting the resource consumption on mobile devices. Table 5.9

shows the comparison of the processing time during the experiments - with feature

selection approach and without feature selection approach.

The table Table 5.9 shows that by using minimal and relevant features, the experiments

were able to improve the model for malware detection. When all the 274 features were

used in the experiments, random forest classifier was shown to take a longer time to build

the model, consuming 27.05 seconds. However, by using minimal features after the

feature selection approach, the time was reduced to 2.27 seconds.

Univ
ers

ity
 of

 M
ala

ya

97

Table 5.9: Time taken to produce results (second)

Experiment Classifier Without features selection
 Build model Test model

I

Random forest 27.05 0.24
MLP 25.64 0.03
KNN 0.01 14.35
J48 7.0 0.01

Experiment Classifier With features selection

 Build model Test model

II

Random Forest 2.27 0.14
MLP 14.18 0.01
KNN 0 2.09
J48 0.29 0.0

In addition, the other classifiers also showed a decrease in processing time following

the feature selection approach. Consequently, the results imply that when more features

were used, the processing time taken to build the model also increased. Nonetheless, the

size of the dataset also played a crucial role in the detection of malware, as this study

indicates.

a) Confusion matrix

A confusion matrix is a table that describes the performance of a classification model.

In this regard, the table provides two (2) possible predictable classes: “malware” and

“benign”. For instance, if a model predicts the presence of malicious activities, the result

would show “malware” and likewise “benign” if it does not detect any malicious

activities. A confusion matrix also describes the information of the prediction in the

testing phase as correct or incorrect. Table 5.10 shows the performance of the classifiers

for the two experiments.

Univ
ers

ity
 of

 M
ala

ya

98

Table 5.10: Confusion matrix of classifiers

Experiment Classifier
Without features selection

Actual Predicted
Predicted malware Predicted benign

I

Random Forest Actual malware 1526 134
 Actual benign 49 2056

MLP Actual malware 1498 162
 Actual benign 70 2035

KNN Actual malware 1537 123
 Actual benign 81 2024

J48 Actual malware 1499 161
 Actual benign 91 2014

Experiment Classifier
With features selection

Actual Predicted
Predicted malware Predicted benign

II

Random Forest Actual malware 1421 214
 Actual benign 88 2042
MLP Actual malware 1407 228
 Actual benign 89 2041
KNN Actual malware 1425 210
 Actual benign 93 2037
J48 Actual malware 1398 237
 Actual benign 84 2046

The statistics above indicate that without using feature selection, the experiment had

produced correct and magnificent results in predicting the unknown malware, with 1537

for the KNN classifier. In the incorrectly predicted perspective, the KNN also showed the

most minimal value whether with or without feature selection. The outcome was 210 and

123 respectively. Meanwhile, random forest classifier also showed a prominent result in

predicting malware. Consequently, the outcome suggests that random forest and the KNN

classifiers were able to predict the unknown malware more accurately.

b) Receiver operating characteristics curve (ROC)

In the approach used in this study, the processes were classified as malware and benign

applications based on the requested permissions. Besides using the performance matrix,

this study also calculated the receiver operating characteristics (ROC) curve for each of

Univ
ers

ity
 of

 M
ala

ya

99

the machine learning classifiers. In this context, the TPR was regarded as the detection

rate which correctly predicted the malware process and the FPR was regarded as the

detection rate which incorrectly predicted benign as malware. Figure 5.12 presents the

curve for the machine learning classifiers.

Figure 5.12: ROC curve

The horizontal axis in the above figure indicates the error detection rate; the vertical

axis indicates the detection rate. Four (4) lines represent the individual ROC curve of the

machine learning classifiers. The ROC curve is difficult to compare because it seems to

be similar under the same conditions. Therefore, the area under the curve (AUC) was used

to measure detection accuracy. The AUC results identified were able to measure whether

the detection approach was good or bad. An area of 1 indicates perfect prediction while

an area of 0.5 indicates a bad prediction.

 The average AUC of random forest, MLP, KNN and J48 are 96.4, 95.8, 96.2 and 93.0

respectively. These results show that the approach applied in this study was able to detect

the unknown malware processes with high precision. Table 5.11 shows the AUC

performance.

Univ
ers

ity
 of

 M
ala

ya

100

Table 5.11: AUC results

Classifier AUC Level
Random Forest 0.964 Perfect prediction

MLP 0.958 Perfect prediction
KNN 0.962 Perfect prediction
J48 0.930 Perfect prediction

Table 5.11 illustrates that the random forest and KNN classifiers provided the best

AUC value, with over 0.96. This signifies perfect prediction. The MLP classifier was

next, with 0.958, denoting perfect prediction as well. Finally, the J48 classifier attained

0.930, which also signifies a perfect prediction. Overall, the ROC curve and the AUC

values confirmed that the most recent malware experiments had provided compelling

accurate results in the malware applications detection.

c) Threshold

Optimal threshold is defined as the value that best separates the two detection

distributions that are relative to the malware and benign applications. The threshold value

is used to determine whether the presence of behavior pattern indicator is malware (1) or

benign (0). The threshold values for random forest, MLP, KNN and J48 are given in

Figure 5.13. As the threshold values were obtained based on the real behavior patterns of

the malware and benign applications, it can be said that the approach used in this study

was able to detect malware with more than 90 percent accuracy rate.

Figure 5.13 also shows that the KNN classifier has an optimal threshold of 0.526

carrying an accuracy of 0.921. This is the point where the malware is finally detected. In

other words, a threshold value of between 0 to1.0 needs to be seen in the system in order

for the malicious behaviors to be identified.

Univ
ers

ity
 of

 M
ala

ya

101

Figure 5.13: Classification threshold

Additionally, random forest also showed a similar accuracy as the KNN classifier.

However, it has an optimal threshold value of 0.462. Thus, among other classifiers, it can

be said that random forest and KNN both have high detection accuracy for malware

detection. Therefore, it is deduced that different types of classifiers have different optimal

thresholds in detecting malware. Table 5.12 shows the result of optimal threshold for

classifiers.

 Table 5.12: Optimal threshold

Classifier Accuracy Threshold
Random Forest 0.921 0.462

MLP 0.919 0.504
KNN 0.921 0.526
J48 0.916 0.326

d) Robustness

Besides evaluating the effectiveness of the approach, the robustness of the approach

for producing more reliable results was also tested. Robustness is a method that

characterises the effectiveness of the classifier while it is being tested on the new

independent dataset. In other words, the robust performance of the classifier does not

deteriorate too much when training and testing the dataset. In addition, this method shows

Univ
ers

ity
 of

 M
ala

ya

102

the stability of the approach used; it also demonstrates the good performance of the

machine learning classifiers. Table 5.13 shows the result of the classifiers’ performance.

Table 5.13: Performance result

Classifier Accuracy (%) FPR Precision Recall F-Measure ROC
Random Forest 91.8 8.1 91.9 91.8 91.8 96.6

MLP 90.9 9.0 91.1 91.0 90.9 95.9
KNN 91.6 8.3 91.7 91.6 91.6 96.4
J48 90.8 9.2 91.0 90.8 90.7 91.5

The results noted above shows that the approach applied in this study was able to detect

unknown malware with over 90 percent accuracy rate. The comparison of results between

Table 5.8 and Table 5.13 indicates that the approach has significantly more robustness by

losing just 0.4 percent and 0.2 percent in accuracy for the random forest and KNN

classifiers respectively with both drops being very low.

 Further to that, it can be noted that the time taken to process the dataset when building

the model was less than the time shown in Table 5.9. This implies that the KNN has the

lowest model complexity since it uses minimal time to build the model. The robustness

of the approach, based on the time taken to produce the model, is presented in Table 5.14

below. Consequently, it is deduced that to achieve acceptable accuracy and effectiveness

in classifying unknown malware, robustness is important as it helps to determine the

performance of the classifiers.

Table 5.14: Time taken to produce model (seconds)

Classifier Build model Test model
Random Forest 2.15 0.18

MLP 1.78 0.01
KNN 0 2.1
J48 0.18 0.01

Univ
ers

ity
 of

 M
ala

ya

103

5.3.4 Discussion

Permission in the dataset were analyzed from the standpoint of the current status or

importance of the permissions. As mentioned earlier, permission requested has the

capability to control access to the system’s resources. Each application developer is

required to declare the permission it needs. This permission is then notified to the user

during the installation. As a result of the different types of permissions that were available

and due to the large number of permissions being asked, the Android system becomes

very complicated.

Consequently, this offers attackers more access into users’ personal and sensitive

resources which are available on mobile devices. Therefore, when an application notifies

the permission request, there is no guarantee that all the permissions are needed in order

to access the system’s resources. A malicious application can request for more

permissions than it actually needs. This permission is simply declared in the

AndroidManifest.xml file where it provides essential information about the application to

run on the mobile devices. This situation causes the malicious application to gain access

to all the sensitive resources that are available on the mobile devices, inclusive of contact

numbers, emails, photos, messages and passwords. When used irresponsibly, this lead to

big personal and monetary losses to the mobile device user.

Current dataset indicate that malicious applications had used dangerous permissions

more than clean applications did. However, clean applications like Facebook stimulated

extra permissions such as com.facebook.home.permission.WRITE_BADGES and

com.htc.launcher.permission.READ_SETTINGS which initiate their activities on mobile

devices. Unlike the clean applications, each malicious application tends to ask for

dangerous permissions more times. These requests for permissions enable the attackers

to succeed in hijacking the sensitive information contained in the mobile devices.

Univ
ers

ity
 of

 M
ala

ya

104

In view of this threat posed by the malicious applications, it is suggested that mobile

device users learn about such application risks so that they clearly understand the motive

behind these requested permissions. This awareness is able to hinder the malicious

applications from accessing users’ sensitive information. In the context of this study, the

current dataset was analysed. Findings indicate that the malicious applications had used

the INTERNET as a medium to collect and transfer the sensitive information to attackers

who camouflaged their malicious activities by confusing the mobile device users through

fake installers. This made it easy for the attackers to spread the dangerous threats.

5.3.5 Conclusion

This study has highlighted the use of a machine learning approach which can

effectively detect and analyse Android malware based only on requested permissions.

The results obtained also offer a better understanding of the information derived from

examining Android permissions. The crucial aspect of the Android malware detection

was described in detail and the methodology was also detailed accordingly to demonstrate

how the experiment processes were conducted according to phases. This was then

followed by an exploration of the machine learning approach which was used for training

and testing the dataset as well as for predicting and distinguishing the Android

applications as malware or benign. In this regard, four (4) machine learning classifiers

were implemented. Finally, the results obtained were discussed.

From the results obtained, it seen that Android security relies on permissions for

controlling the applications’ access to the software components as well as the mobile

hardware. Android security has become a major challenge in current times where fine-

grained permission control is necessary for Android applications. While Google

implemented the Bouncer to analyse the submitted applications on Google Play store, this

study discovered that existing permissions which were the focus of this study, had forced

Univ
ers

ity
 of

 M
ala

ya

105

the mobile users to either accept all the required permissions or to terminate the

installation process. Consequently, most of the users who had proceeded with the

installations ignored the warning permissions thereby, becoming targets for the malicious

applications. Although, significant research work has been carried out to investigate the

permission model of the Android malware detection, the privacy leak continues to

happen.

To address this problem, an approach was proposed for the detection of malware. This

was accomplished by analysing the permissions of Android applications. The aim was to

evaluate the effectiveness of Android permissions by identifying the malicious

applications through the use of a machine learning approach. In order to identify the

relevant permission of the applications, the apk file was extracted and the required

permissions were collected on AndroidManifest.xml file. Among the permissions

required, it was noted that any application that used more permissions for its functionality

could lead to malicious attacks. In addition, it was found that communication types such

as READ_SMS, WRITE_SMS, SEND_SMS and RECEIVE_SMS were used malicious

applications. These types of permission allowed the malicious applications to make

premium message without the mobile user’s knowledge and subsequently, caused money

losses.

Applications with the permission READ_CONTACTS and GET_ACCOUNT were

functional for accessing the list of accounts in the Accounts Service and for reading the

mobile user's contact data. This occurrence highlighted the potential of malware threats

to Android devices. The experiments conducted with the Android permissions showed

that the approach used in this study had achieved a high detection rate and a low false

positive rate. In addition, this study had also applied supervised learning using four

classifiers: random forest, KNN, MLP and J48, on a collection of 5551 of malware and

Univ
ers

ity
 of

 M
ala

ya

106

7000 benign applications. Both were tested and validated. Thus it can be concluded that

the approach with an accuracy of 92.0 percent and a prediction accuracy of around 92.0

percent is effective in detecting Android malware These outcomes suggest that the

approach is capable of detecting almost all the malware applications. In addition, the AUC

curve noted to be between 93 percent and 96 percent also implies that the approach carried

an outstanding property that is reminiscent of Fawcett’s (2006) work.

Nonetheless, some limitations exist because the malware detection approach only

considered the permissions as features. The first limitation is that benign applications

have several permissions which were likely to be considered as malware since they

seemed to access several resources such as accounts, contact numbers, passwords, emails,

and bookmarks. The second limitation is that the benign applications had also requested

for the same permissions as malware applications did. In this regard, the detection is likely

to be less precise.

5.4 Experiment III: Evaluation of time series detection

This section discusses the time series classification used to detect malware. A time

series is a continuous sequence of discrete time spaced at time intervals (Patri et al., 2017;

Tanaka et al., 2016). The aim in using the time series classification is twofold. First, it

offers an understanding of the underlying structure that was produced by the observed

data. Second, it is used to fit a model and to predict Android malware. In addition,

classification algorithms, based on the time series, are more accurate and significantly

faster than the state-of-the-art classifiers (Ye et al., 2011). The time series detection was

applied to predict future unknown malware based on previously observed data.

5.4.1 Experiment setup and procedure description

The time series detection involves a few steps. The first step was to create the time

series dataset. As mentioned above, the malware and benign dataset were collected from

Univ
ers

ity
 of

 M
ala

ya

107

the AndroZoo dataset. Each of them was then split according to the time series

representation (i.e. 2010 - 2016). The dataset was then labelled as malware or benign

applications. The second step was to create a time series model. Each model is used to

test the future unknown malware dataset by using previous dataset. For instance, the

dataset from the year 2010 were used to predict malware for 2011. Following this, dataset

from 2010 and 2011 were combined so as to predict the future malware for 2012. The

same preprocessing steps were conducted on the different time series dataset. The results

were then collected. Finally, the machine learning technique was used to train and test the

model as a means of predicting future unknown malware.

5.4.2 Data collection phase

This section describes the process of gathering and measuring the related information.

Specifically, this study extracts the permission data from Android applications. The data

collection phase is crucial for maintaining result accuracy. The real world applications

were used to ensure data integrity. Typically, in the Android malware detection study,

two (2) types of dataset were involved: benign (a normal application) and malware. Table

5.15 shows the categories of sample applications.

Table 5.15: Categories of application

Art Design Dating Food & Drink
Auto & Vehicle Communication Health & Fitness

Beauty Education House & Home
Book & Reference Entertainment Library & Demo

Business Events Map & Navigation
Comics Finance Medical

Music & Audio Photography Sports
News & Magazines Productivity Tools

Parenting Shopping Travel & Local
Personalization Social Video Player & Editors

Primarily, the dataset is a collection of related data that were used to initiate the

experiment in the initial phase. It consists of all the information required for research

Univ
ers

ity
 of

 M
ala

ya

108

activities. The features used are similar to those noted in Section 5.3. Table 5.16 lists the

summary of the dataset.

Table 5.16: Dataset summary

Dataset Source Number used in experiments
Malware Androzoo 6942
Benign Androzoo 7000

Total 13942

5.4.3 Evaluation and results

This section discusses the problem of malware detection for the time series

classification process. This component is important because it is the basis for

understanding how the performance of the approach relates to the nature of the unknown

malware, also known as malware attack, in terms of time series. New malware

applications taken from the AndroZoo dataset were used to test time series. This is based

on the random forest model since the model shows high detection results. Findings

indicate that the malware applications showed a positive ratio ranging from 1 to 50 on the

VirusTotal evaluation. In this context, time series generated from the year 2010 until 2016

were tested using random forest classifier. Results are presented in Table 5.17.

Here, the best average prediction result achieved was produced when using training

sets from the year 2010 until 2012. The trained model was used to perform prediction on

the dataset for year 2013 until 2016 and it achieved the highest average accuracy rate of

90.70 percent. This shows that the model was able to perform prediction on future

malware effectively. The assumption behind this result is that the unknown malware time

series were different from the training sets. This can be attributed to the different time

series that was generated; it showed different results in terms of conditions and patterns

although the dataset may be almost similar. Consequently, irregular patterns emerged and

digressed from achieving good results.

Univ
ers

ity
 of

 M
ala

ya

109

To generate an exact pattern within the time series, this study implemented a dataset

that are from various time series. The performance of the approach used in this study is

highly dependent on the time series dataset which were not easy to select. Nonetheless,

the results shown in Table 5.17 reveal interesting insights about the performance of the

malware detection approach on time series. Based on this, it is deduced that the results

generated from this study imply that the approach used is superior in predicting future

Android malware.

Table 5.17: Time series detection

Training Testing Accuracy (%)

2010

2011 62.85
2012 87.23
2013 88.25
2014 78.39
2015 83.60
2016 85.89

Average 81.04

2010-2011

2012 92.06
2013 93.71
2014 83.64
2015 86.18
2016 86.39

Average 88.39

2010-2012

2013 94.84
2014 86.99
2015 89.56
2016 91.42

Average 90.70

2010-2013

2014 91.61
2015 89.17
2016 90.51

Average 90.43

2010-2014
2015 89.74
2016 90.36

Average 90.05

2010-2015
2016 89.74

Average 89.74

Univ
ers

ity
 of

 M
ala

ya

110

5.4.4 Discussion

This section briefly presents the synthesis results of the findings derived from

predicting unknown malware using time series detection. The experiment results

presented in the previous section are encouraging as the classifier (random forest) had

successfully predicted the unknown malware. The accuracy result obtained from the

random forest classifier using sample dataset proves that the results were very promising.

Overall, the experiment results accumulated from using the training model between 2010

– 2012 had shown the highest accuracy (90.70%). This outcome demonstrates the efficacy

of the machine learning-based classification method on time series as representations of

the Android permissions. The reason is because random forest is mostly dependent on the

sample dataset; this means that the training dataset of 2010 – 2012 had worked perfectly

well with the random forest classifier.

5.4.5 Conclusion

Determining the best similarity measure for the different types of time series dataset

was not easy. A performance measure of detection algorithms such as the random forest

was observed to be performing well as it was highly sensitive to malware patterns. Thus,

the approach used in this study is unsuitable when the time series are of different years.

Finally, the disadvantage of the time series approach is its lack of ability to detect

applications with no permissions since it had used permissions as features.

5.5 Experiment IV: Evaluation of application risk

This section introduces the EZADroid, which was used to evaluate Android

applications which used less features or carried very minimal features. This study zoned

the applications into several categories (i.e. high, medium, low and very low). This “zone”

approach helps to inform users about the specific risks of Android applications, as seen

in their criticality. Specifically, this study applies risk assessment and the AHP approach

Univ
ers

ity
 of

 M
ala

ya

111

to allow mobile device users to identify the risk zones noted in Android applications. This

approach is better in helping users to make decisions and in using the appropriate method

to identify which incidents are important and which are trivial.

The AHP was used to calculate the risk of the applications. The AHP is a structured

technique for the multi-criteria decision-making approach that was developed by Saaty

(Lo et al., 2012). With the ability for multicriteria decision making, AHP has used in

many studies. It is broadly applicable because each application is well structured and

effective in making a decision. For example, in fields of operation studies such as (Nikou

et al., 2013) and (Nikou et al., 2011), they applied AHP to investigate the most applicable

mobile service for the consumer. AHP method is used to identify the linkage between

perceived performance benefit with and good practice in Small and Medium Enterprise

(SME) (Thanki et al., 2016) but (Khalil et al., 2016) applied risk analysis to rating the

building based on excellent, good, medium, low and poor as well as to lessen users’

safety.

Within computer security studies, (Dini et al., 2018) and (Dini et al., 2012) adopted

AHP to evaluate the trustworthiness of Android applications. Moreover, the methodology

has proven to be very suitable for decision making and capable producing results that

agree with expectations (Olson, 1996). According to a literature review by (Cegan et al.,

2017) shows that AHP most frequently used in multicriteria decision making and has been

thoroughly tested by thousands of organization around the world for the last 35 years

(Opydo, 2013). The combination of AHP and risk assessment gives an advantage for

decision making to assess quantitative of risk. In addition, a survey by (Gritzalis et al.,

2018) shows that AHP is a popular method to assess and manage information security

risk.

Univ
ers

ity
 of

 M
ala

ya

112

Figure 5.14 illustrates the main components of the EZADroid. The framework is

categorised into three components: a) response option, b) response systems and c) risk

zone. The proposed framework attempts to identify the risk of Android applications

whether it malware or benign by assessing the risk zone. It is very important to choose

appropriate approach, especially when dealing with the technical aspects. With the aid of

the intrusion detection system (IDS), risk assessment and machine learning approach,

EZADroid supports the procedures in selecting relevant features and response to the user

with the risk zone.

Response Action

User

Mobile Apps

Very Low Low Medium High

Risk Zone

Risk Evaluation

Risk Value

Risk Assessment

Database

Response Planning
Modules

Response Systems

Criteria Selection

Figure 5.14: EZADroid framework

The response option component defines the boundaries of the response action which

notifies the risk zone to users. In this component, the user is able to evaluate the risk on

the Android applications and then respond to the risk either by accepting or removing the

risk. The response system then conducts an analysis of the Android applications. This

analysis consists of risk evaluation, risk value and the response planning module. Here,

the first risk evaluation is associated with the selection of the criteria which consists of

Univ
ers

ity
 of

 M
ala

ya

113

the grouping permissions. The second is with respect to the risk value. In this regard, the

criteria are evaluated using risk assessment. The risk value is stored in the database before

it is submitted to the risk zone. This is achieved by using the response planning module.

The risk zone categories have four (4) types of indicators: very low, low, medium and

high risk. If the risk is greater than a certain threshold, the warning notification appears

on the mobile device to notify the risk zone to the user. Each of the risk zones is presented

in different colors to indicate the different levels of risk and to improve user awareness.

5.5.1 Experiment setup and procedure description

This section presents the overall workflow of the experiments. The risk assessment

approach is used to improve the effectiveness of the risk evaluation by generating a risk

zone for the user. It serves as a warning against malicious applications (e.g. very low,

low, medium, and high). In recent works published in (Dini et al., 2018) is similar to our

proposed approach, conduct a risk analysis method by considering permission as

likelihood threat (Dini et al., 2018). They proposed user's rating developer's reputation

and a number of application download as criteria for risk analysis. However, these criteria

are less effective and untrusted. This is because user's rating is inconsistency (Sharma et

al., 2013) and malware application also stored in Google Play Store (Liam Tung, 2017).

This malware application has been downloaded up to 4.2 million (Liam Tung, 2017).

These led to false sense accuracy. Though, our proposed approach submits Android

applications to VirusTotal to validate and ensure the trustworthiness of dataset. In

addition, the proposed approach utilized the relevant features as criteria in multicriteria

decision making by implementing machine learning approach to significantly increase

detection accuracy for risk analysis and malware detection. The proposed approach

achieved higher accuracy with 89.82%, while (Dini et al., 2018) achieved 77.37% only.

The results also validated using statistical analysis.

Univ
ers

ity
 of

 M
ala

ya

114

a) Risk assessment criteria

Android applications require permission granting from the mobile users in order to

invoke the Android API successfully. The declared permission in AndroidManifest.xml

file is important and effective for revealing potential risks; it is also useful as a warning

message to notify users. Most of the risky applications require a combination of some

permissions in order for attackers to launch the attack. Figure 5.15 illustrates the

percentage of the top ten (10) most requested permissions by malware and benign

applications.

0 10 20 30 40 50 60 70 80 90 100

INTERNET

READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE

WRITE_APN_SETTINGS

SEND_SMS

RECEIVED_BOOT_COMPLETED

ACCESS_WIFI_STATE

WAKE_LOCK

RECEIVED_SMS

READ_SMS

Malware

Benign

Percentages (%)

Figure 5.15: Percentage of the top 10 requested permission by malware
applications

The above figure shows that the INTERNET is the most commonly used permission,

both by the malware (94.06%) and benign (80.45%) applications. This is because the

INTERNET permission is mandatory for applications to access the Internet especially for

an application update. The permission access to READ_PHONE_STATE is also highly

requested by the malware. This table shows an outcome that is similar to the results of

Zhou and Jiang (2012) in detecting malware by permission, as the first research done on

the Android malware family. Moreover, the malware noted in this study had also

Univ
ers

ity
 of

 M
ala

ya

115

requested more permissions on communication such as SEND_SMS, RECEIVED_SMS,

and READ_SMS. This implies that the malware applications were more interested in

acquiring dangerous permissions that offer access to sensitive information. It appears to

be using the Internet as a medium.

Based on the observatory analysis, the related permissions were grouped. The

individual permission joins the group through the same attributes of the permission

(Developer, 2016a). The grouping process includes reading all the permissions in

AndroidManifest.xml and extracting the permissions through grouping. This allows the

number of comparisons to be reduced. A member of the group is then presented together

as a criteria with each criterion used to calculate the risk of the Android applications.

b) Criteria selection

This study had used 10000 Android applications samples as the training set. The total

number of benign and malware samples were thus 5000 each. The samples were manually

predefined with their appropriate labels as benign or malware. However, it is important

to note that we validated the labelling process by checking the Android application's

status from VirusTotal. In other words, we labelled a sample as malware after running it

through VirusTotal which is an online website that checks for viruses through the URL

or through an uploaded file (Quintaro, 2017).

VirusTotal is highly reliable as it inspects the sample and aggregates the result of over

70 antivirus scanners. VirusTotal widely used by researchers (Huang et al., 2014;

Boukhtouta et al., 2015) to provide the ground truth in their works. Following the use of

the VirusTotal, the dataset samples were used for criteria selection.

The criteria selection phase makes use of a specific metric which computes and returns

a score for each feature individually (Asaf Shabtai et al., 2012). Here, the WEKA

Univ
ers

ity
 of

 M
ala

ya

116

approach was implemented. It includes information gain which was used to select the best

criteria. In this study, WEKA was applied as the machine learning platform. WEKA is a

well-established software that has a collection of machine learning algorithms (Waikato,

2017). It is a well-rounded and complete software suite that fits the objective of the

current study. information gain was implemented directly into WEKA to save time from

manually coding the algorithms. The reliability and accuracy of WEKA's algorithms are

also well recognized (Kaur et al., 2015; Deepa et al., 2015).

The criteria with a high value of information gain is selected. In this way, 10, 20 and

30 criteria were selected based on information gain values ranging from 0.033 to 1.0. The

best criteria helped to improve the performance measure (Kumar et al., 2014). Table 5.18

shows a list of the criteria recorded when information gain was implemented. These were

then stored in the database for the risk assessment process.

From the results presented in the table below, it appears that phone calls and messages

were the top in the permission-based system. This represents the types of features noted

on the Android developer (Developer, 2016a). It is necessary to assert that this group is

significant in the risk assessment approach.

Univ
ers

ity
 of

 M
ala

ya

117

Table 5.18: List of criteria

Information Gain
Value

Criteria Permission Group

0.2776 android.permission.READ_PHONE_STATE Phone Calls
0.2286 android.permission.SEND_SMS Messages
0.1908 android.permission.READ_SMS Messages
0.1739 android.permission.RECEIVE_SMS Messages
0.1285 android.permission.RECEIVE_BOOT_COMPLETED Application

Information
0.1067 android.permission.WRITE_SMS Messages
0.1016 com.android.launcher.permission.INSTALL_SHORTCU

T
Properties

0.078 android.permission.INSTALL_PACKAGES Application
Information

0.0686 com.android.launcher.permission.UNINSTALL_SHORT
CUT

Properties

0.0685 com.android.browser.permission.WRITE_HISTORY_B
OOKMARKS

Personal
Information

0.067 com.android.browser.permission.READ_HISTORY_BO
OKMARKS

Personal
Information

0.0631 com.lge.launcher.permission.READ_SETTINGS Dev_Read_Setting
0.0631 com.motorola.launcher.permission.READ_SETTINGS Dev_Read_Setting
0.0624 com.motorola.dlauncher.permission.READ_SETTINGS Dev_Read_Setting
0.06 com.htc.launcher.permission.READ_SETTINGS Dev_Read_Setting

0.0586 com.fede.launcher.permission.READ_SETTINGS Dev_Read_Setting
0.0581 com.motorola.launcher.permission.INSTALL_SHORTC

UT
Dev_Install

0.0579 com.android.launcher.permission.READ_SETTINGS Properties
0.0578 com.lge.launcher.permission.INSTALL_SHORTCUT Dev_Install
0.0575 com.motorola.dlauncher.permission.INSTALL_SHORT

CUT
Dev_Install

0.056 org.adw.launcher.permission.READ_SETTINGS Dev_Read_Setting
0.0526 android.permission.WRITE_APN_SETTINGS Properties
0.0508 android.permission.RESTART_PACKAGES Application

Information
0.0484 android.permission.CHANGE_WIFI_STATE Network

Communication
0.0434 com.google.android.providers.gsf.permission.READ_GS

ERVICES
Dev_Service

0.0411 android.permission.ACCESS_NETWORK_STATE Network
Communication

0.0403 com.google.android.c2dm.permission.RECEIVE Network
Communication

0.0401 android.permission.GET_ACCOUNTS Account
0.0359 com.android.vending.BILLING Account
0.033 android.permission.READ_CONTACTS Personal

Information

Univ
ers

ity
 of

 M
ala

ya

118

Table 5.19 illustrates the judgment matrix for the decision factor and the indicator used

in the risk zone threshold. The results of risk assessment are demonstrated in the

evaluation and result section.

Table 5.19: Judgment matrix criteria

 Messages
Personal

Information
Application
Information Properties

Phone
Calls Normalized

Messages 1 5 5 5 5 0.54
Personal

Information 0.2 1 0.5 0.5 0.5 0.07
Application
Information 0.2 2 1 2 2 0.16
Properties 0.2 2 0.5 1 2 0.12

Phone Calls 0.2 2 0.5 0.5 1 0.09
Consistency ratio = 0.043

c) Risk zone threshold

To establish a methodological approach for identifying the risk zone in the Android

applications, the risk value and zoning process are explained. Four types of risk zones

were applied: very low, low, medium and high. These risk zones have been used in

security investigations for the purpose of evaluating the risk impact. The risk zone has

been exemplified in the works undertaken by Theoharidou et al (2012) and Anuar et al.

(2013b). They used the method for the Android platform and for incident prioritisation.

The risk zones of the current study are presented in different colors depending on the

levels of risk. The purpose is to increase awareness among Android users. This

application of colors have also been applied by previous researchers (Theoharidou et al.,

2012; Anuar et al., 2013b). Table 5.20 illustrates the description of the risk zones.

Univ
ers

ity
 of

 M
ala

ya

119

Table 5.20: Description of risk zone

Color Risk Zone Description
Red High High to critical risk. This application is able to harm the user.

Orange Medium Moderate risk. This application is capable to harm the user and should be put
under observation.

Yellow Low Slight risk. This application is safe but could be misused if it has malicious
activities or potential threats.

Green Very Low Very low to no risk. This application is safe for use.

As the table illustrates, the risk zones determine the levels of severity of the

applications, thereby raising users’ awareness of the severity of the risks involved. Very

low and low-risk zone means that the risk of application is acceptable and safe to use.

Figure 5.16 illustrates the threshold for the risk zone.

0 0.065 0.15 0.25 1

Very Low Low Medium HighRisk Zone

Risk Value

Risk Response Planning Acceptance Transfer Mitigation Avoidance

Figure 5.16: Risk zone threshold

This threshold is not a definitive value. It is subject to other reassessments thus

different scales will produce a different distribution. The selection of this threshold is

important in making a suitable and significant decision of the risk zones. The risk zone

threshold is adapted from Table 5.21 which is the distribution analysis drawn from the

box plot of ten (10) permissions. Furthermore, this threshold indicates the significance of

the mapping process between the risk zone and the risk response planning for future

works. Table 5.21lists the data analysis taken from the box plot Figure 5.7 which uses ten

(10) permissions.

Univ
ers

ity
 of

 M
ala

ya

120

Table 5.21: Data analysis for 10 permission

 Malware Benign
Min 0 0

1st Quartile 0.2306 0
Median 0.3738 0
Mean 0.3989 0.06447

3rd Quartile 0.5314 0.09468
Maximum 0.9176 0.79265

5.5.2 Data collection phase

This section describes the results of the experiment. This study evaluated the risk of

5,000 benign and 5,000 malware applications. Each application permission was extracted

so as to collect their permissions from AndroidManifest.xml. Each of the permissions on

the application was stored in the database as a criterion collection. This criterion is

important in guaranteeing the accuracy of the proposed approach. The permission-based

approach was used to identify the risk zone. After the EZADroid accepts the application’s

permission-based behavioral data, it computes the risk value and then determines the risk

zone to see whether the application is very low, low, medium or high risk.

5.5.3 Evaluation and results

This section presents the experimental results and performance evaluation of

EZADroid in generating the risk zones. The assessment consists of two (2) experiments.

The first applies the risk assessment approach to evaluate the risk value. The second

generates a risk zone. The experiment uses the box plot analysis to show the difference

between the malware and the benign applications. The box plot analysis was able to

discover the risk potential and to predict the risky malware. It plays an important role in

determining how relevant the EZADroid. The risk zone was determined after the results

were gathered.

Univ
ers

ity
 of

 M
ala

ya

121

a) Risk assessment evaluation

This section presents the risk assessment evaluation which uses the AHP approach.

Table 5.22 shows the results obtained. It classifies the benign and malware applications

accordingly. It appears that all the malware and benign applications had obtained the risk

values from the AHP analysis which then classifies the risk zones accordingly. In order

to validate the experiment, VirusTotal (Total, 2016) was used to strengthen the risk zone

evaluation. Table 5.22 illustrates samples of the evaluation.

Table 5.22: Samples evaluation and risk zone on applications

Sha256 Virus
Total

Family Risk Value Risk
Zone

Class

78c1c57100bc14f9689c3f670d48405d9eb7487df
1a34a846296f8dd4ab34e33

36 Plankton 0.760934 High Mal
ware

1ee4f5a8812ba86eda9f12f1e76a1a44e4d318bf47
99eb7fd22c3c6a8a0f8ad2

34 Plankton 0.696939 High Mal
ware

3dc3631adbae697a10edfea65c06ebda751741302
b6ba95c4f6c6031db71ce74

41 ExploitLi
nuxLoto
or

0.656039 High Mal
ware

4419c922b2926246ffb5c4d427920b8785b7853f1
f2c400914531ce99ad6164e

38 ExploitLi
nuxLoto
or

0.656039 High Mal
ware

97d9acf46ba6e3bd759f74d0f2f312165f143a815ff
41d26a212f3f99b20b8c6

35 FakeRun 0.559957 High Mal
ware

9e9fef1079a8d20a3074a1be16be029333d863add
15dd0a44d67ab685bee7ea4

34 FakeRun 0.559957 High Mal
ware

06b53d3ea2aeee828123194b4cea8135f5b868296
d8d7ab3cb839e34b2f04d6a

39 Adrd 0.557189 High Mal
ware

294cfb2bc890b65d7bc9135225369ab9bbd0ca81b
aa109f829e2c22478b4db2f

37 Adrd 0.557189 High Mal
ware

08ad6b366abf609018b1866f609d132ecdb66981a
ae540d3316c7584c816b179

38 BaseBrid
ge

0.423385 High Mal
ware

09ac19bce6a6c98948ceb7db6398c0cddf2cb9167
d547597731bc44411371478

38 BaseBrid
ge

0.423385 High Mal
ware

00f24c9904ce23bae5a3cc4ca5a1bd13ed811b57ca
772032530d415ccda02f04

0 Google
Play

0.197446 Mediu
m

Beni
gn

00f28a5c4851f2702fc61753c21867c68916d0053
6d59b7c4e1d2bbbe8c7ca00

0 Google
Play

0.031939 Very
Low

Beni
gn

00f2915b170f755efa3409c3ccd12fe5b1edd90559
2aad75d957295a1a616650

0 Google
Play

0.115419 Low Beni
gn

00f29243375e2151947287b52f81a73a46a9e21b5
0a82e7cd7e3b8a8d6e6cafc

0 Google
Play

0.197446 Mediu
m

Beni
gn

00f29ffd36c87e9138c65e09e5b455b4dbca29cbb5
f37fc9bdd01c9ea73fd9a6

0 Google
Play

0.031939 Very
Low

Beni
gn

Univ
ers

ity
 of

 M
ala

ya

122

Table 5.22 is classified into six (6) columns: SHA256, Virus Total, family, risk value,

risk zone and class. The experiments applied in this study used a generated SHA256 hash

to provide a unique key for each sample application.

i. The columns named VirusTotal and class presents the distinction between the

malware and benign applications taken from the sample dataset.

ii. The family column shows the particular malware family of the sample application

that was discovered during the experiment.

iii. The risk value column shows the weight of the risk that was measured by the risk

assessment. In addition, the risk zone displays the level of risk generated from the

risk value.

The proposed approach provides a solution to give rich insights into the application

risk analysis by using a set of criteria that are combined with a multi-criteria decision

approach. It automatically performs the permission analysis of applications. The level of

risk provides insight information related to the risk of application. It also directly shows

the user the risk zone. In fact, it improves the application security and the user awareness.

Moreover, the ability to distinct permissions for malware detection provides an additional

protection for the user. The results reveal that the proposed approach reduces a significant

potential for several malicious applications from accessing mobile devices. It analyzes

application permission in order to access the signature of malicious applications. The

results of the analyses demonstrate that permissions to request message are requested by

a high-risk application as well as the permissions, related to the application information

(i.e. RECEIVE_BOOT_COMPLETE, INSTALL_PACKAGEs, and

RESTART_PACKAGES) demonstrated risky permission.

Table 5.23 also indicates that applications infected with malware would pose as threats

to the mobile device users. The high-risk application came from the Plankton malware

Univ
ers

ity
 of

 M
ala

ya

123

family. Once the Plankton malware is installed on mobile devices, it collects the device’s

ID and user information before sending it to a remote server (Idrees et al., 2017). The

remote server then pushes payload dynamic onto the user's mobile device to exploit the

root. The approach proposed in this study is effective in detecting the Plankton malware

and in identifying the risk it poses. This is because the Plankton malware uses permissions

such as messages, properties, phone calls and personal information. This was discovered

by Zhou et al. (2012) and was consequently removed from the Android market by Google

(Vanja Svajcer, 2011). Table 5.23 lists the malware families with their risk values. The

full list of malware family and risk value is available in Appendix B.

Table 5.23: List of malware family and risk value

N
o.

Family Tot
al

Min
Value

Max
Valu

e

No. Family Tot
al

Min
Value

Max
Value

1 AccuTrack 9 0.01840
4

0.018
404

9 Loicdos 1 0.06387
7

0.06387
7

2 Adrd 78 0.21913
8

0.557
189

10 Loozfon 2 0.13966
3

0.13966
3

3 Adsms 3 0.39427
1

0.412
675

11 Luckycat 5 0.10188
4

0.10188
4

4 Aks 5 0.08348 0.083
48

12 Lypro 1 0.18268
3

0.18268
3

5 Ansca 1 0.17422
2

0.174
222

13 Maistealer 1 0.05618
3

0.05618
3

6 Antares 2 0.18006
3

0.192
626

14 Mania 6 0.18852
4

0.40169
3

7 Anti 2 0.21072
7

0.210
727

15 Maxit 1 0.46116
4

0.46116
4

8 Anudow 1 0.34126
1

0.341
261

17 MMarketPay 1 0.38073
6

0.38073
6

The extensive results displayed in Table 5.23 indicate the various Android malware

families that had been presented in the sample dataset used in this study together with

their risk values. Four (4) major malware families noted in the malware sample dataset

were FakeInstaller, Plankton, DroidKungfu, and Opfake. Each of these malware families

has a different risk value because each used different permissions. Table 5.23 also shows

that the same malware family is unable to show the same risk value. Based on this, it is

Univ
ers

ity
 of

 M
ala

ya

124

deduced that the applications in the same malware family used different permissions. As

a result, they showed different types of risk zones. To further discuss the risk zones, the

following section discusses the rating threshold that was proposed in the RSM (Anuar et

al., 2013a). This is applied to rate the risk zones.

b) Box plot analysis

In order to avoid any bias, an arbitrary number of criteria selection was used. This

study used the criteria selection approach with three different configurations: 10, 20 and

30 criteria, as a measure to select the highest out of the 378 criteria featured by the feature

selection algorithms (e.g. Information Gain). The box plot analysis shown in Figure 5.19

is related to the risk value for the malware and benign applications. The box plot analysis

is also able to identify the criteria more effectively as it differentiates the benign from the

malware applications. This difference will suggest that the two populations belong to

different distributions. Figure 5.17, Figure 5.18 and Figure 5.19 illustrate the malware

and benign applications. The trend illustrates that permission-based criteria are significant

and relevant for conducting risk assessment.

Figure 5.17: The boxplot of 10 permission

Univ
ers

ity
 of

 M
ala

ya

125

Figure 5.18: The boxplot of 20 permission

Figure 5.19: The boxplot of 30 permission

The distribution shown in Figure 5.17, Figure 5.18 and Figure 5.19 demonstrates

different values. This means that there is a distinction between the benign and malware

applications. This evidence strengthens the experiment evaluation with the result showing

an accuracy of over 80 percent for the risk zone. It is fascinating to note that the

implementation of the EZADroid is able to determine the risk zone based on 10,000

samples.

Univ
ers

ity
 of

 M
ala

ya

126

Table 5.24 shows the distribution of a dataset. The top 50 percent of the malware

applications (2500) have high risks. They are represented by everything above the

medium risk (the black line). The top whisker shows that 25 percent of the malware

applications came from 625 applications. The maximum whisker represents the greatest

value in the malware application (risk value). Returning to the aims of this study, it is

possible to state that an application is malware or benign if it shows a good overview of

the data’s distribution. Table 5.24 illustrates the risk evaluation for 10, 20 and 30 criteria.

Table 5.24: Risk evaluation

 10 20 30
 Malware Benign Malware Benign Malware Benign

Very Low 95 2643 127 2928 127 2373
Low 414 1722 814 1679 697 1530

Medium 869 483 985 300 1800 922
High 3622 152 3074 93 2376 175

By indicating the applications as high and medium risk malware or as very low and

low risk benign, the EZADroid had achieved an accuracy rate of 89.82 percent for the

malware outcomes and 87.30 percent for the benign outcomes. This implies that the

EZADroid is able to evaluate the risk of both applications effectively. In that regard, it

improves the aim of this study in identifying the risk of applications and for detecting

malware. Figure 5.20 shows evaluation of risk zone.

Univ
ers

ity
 of

 M
ala

ya

127

Figure 5.20: Risk zone evaluation in 10, 20 and 30 criteria

Figure 5.20 indicates that the total frequency of the application is measured by

presenting the type of risk zones. In the 10 criteria selection, over 80 percent of the

malware were detected as high risk. Based on this, it concluded that the proposed

approach is efficient in evaluating the risk for most of the sample dataset.

In order to warrant the significance of the proposed approach, a statistical analysis of

the 10 criteria was also conducted. The 10 criteria were selected because the results were

more reliable, as shown on the box plot analysis. Table 5.25 illustrates the most famous

in Android applications on Google Play store.

Table 5.25: Top free in Android applications

Applications Categories Risk Zone
Facebook Social High

Facebook Messenger Communication High
WhatsApp Messenger Communication High

WeChat Communication High
Instagram Social High

0

500

1000

1500

2000

2500

3000

3500

4000

Malware Benign Malware Benign Malware Benign

10 20 30

Fr
eq

u
en

cy

Very Low

Low

Medium

High

Univ
ers

ity
 of

 M
ala

ya

128

Table 5.25 shows that the top Android applications which belong to the social and

communication categories have high risk because most of these applications requested

dangerous permissions such as READ_SMS, RECEIVE_SMS and

INSTALL_SHORTCUT. For instance, Facebook applications allowed Google to display

contents from Facebook mobile applications including public profile information

(Westenberg, 2015). This information could lead to cyber threat problems.

c) Statistical analysis

This section presents a component of the data analytics. In the context of research,

statistical analysis scrutinises data and presents a selection taken from the population.

Linear regression was applied to specify the nature of the relation between the malware

and benign applications. A total of 10,000 applications taken from the sample dataset

were applied. The experiment was able to manage the dependent (risk value) and

independent (risk zone) variable score into the same row. Table 5.26 illustrates the

variables used for the analysis and the results of the mean and standard deviation.

Table 5.26: Description statistics

 Mean Std. Deviation N
Risk Value 0.40 0.199 5000
Risk Zone 3.60 0.720 5000

In order to locate and interpret the relevant regression and correlation coefficients, the

experiment needs to consider a variable Entered\Removed, model summary, ANOVA,

and coefficient. Table 5.27 illustrates the independent variables. Table 5.28, Table 5.29

and Table 5.30 present the statistics of the data variable score. Table 5.28 demonstrates

the correlation coefficient (r) and the coefficient of the determination (r square). It

specifies the strength of the linear trend between the variables. Table 5.29 indicates the

significant value of the independent-variable scores when compared to a predetermined

Univ
ers

ity
 of

 M
ala

ya

129

α. Finally, Table 5.30 also illustrates the y-intercept and the slope for the regression

equation.

Table 5.27: Variables entered\Removed

Model Variables Entered Variables Removed efficient
1 Risk zoneb . Enter

The model summary shows the correlation between the two variables (r): correlation

coefficient (r) and the coefficient of determination (r square). The value of R represents

the correlation coefficient that indicates the relation strength between the independent

variable to the dependent variable.

Table 5.28: Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson
1 0.750a 0.562 0.562 0.132 0.160

a. Predictors: (Constant), Risk zone;
b. Dependent Variable: Risk value

Table 5.28 indicates the correlation coefficient (r) with the value of 0.750. It suggests

that the number of sample applications has a good linear relationship. Due to this result,

the coefficient of the determination (r square) shows a different value of 0.562.

Table 5.29 lists the ANOVA statistics which indicate whether the regression equation

explains the significant portion (sig.) variability of the dependent variable and the

independent variable. It also presents the value of sig. to be 0.0. This indicates that the

proposed approach is able to reject a null hypothesis where it demonstrates a significant

and fit model. The table shows a p-value of 0.0 percent which obviously indicates that

the number of malware changes significantly with respect to the number of malware

applications. This change is found from the regression equation, y = -0.349 + (208)x.

Univ
ers

ity
 of

 M
ala

ya

130

Table 5.29: ANOVA

Model Sum of Squares df Mean Square F Sig.
1 Regression 111.820 1 111.820 6421.648 0.000b

Residual 87.030 4998 0.017
Total 198.851 4999

a. Dependent Variable: Risk value
b. Predictors: (Constant), Risk zone

Table 5.30 shows one able dependent-variable score for each independent variable

score. The y value is a result obtained from the regression equation which indicates that

the pair falls on the regression line while the x value of the risk zone is substituted for the

regression equation. This process is able to guess the number of application risk values

and the risk zone.

Table 5.30: Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Correlations

B Std. Error Beta Zero-order
1 (Constant) -0.349 0.010 -36.680 0.000

Risk zone 0.208 0.003 0.750 80.135 0.000 0.750

Figure 5.21 illustrates the risk zone analysis where the high risk indicates the

exponential line. This shows that the proposed approach had managed to evaluate the risk

of the samples. The mean risk value for the medium risk zone is 0.2 while the high-risk

zone is 0.5.

Univ
ers

ity
 of

 M
ala

ya

131

Figure 5.21: Risk zone analysis

5.5.4 Discussion

The EZADroid had implemented a permission-based application assessment. It

collected 5,000 applications from a malware repository, Drebin, which was generally

accepted as the Android malware dataset (Arp et al., 2014). The EZADroid also used

5,000 benign applications downloaded from AndroZoo (Allix et al., 2016) which belongs

to Google Play. In total, this paper analyzed 10,000 applications by using the risk

assessment approach. Both the benign and malware applications were analysed by

VirusTotal (Total, 2016) which checks the validity of the malicious activities (Faruki et

al., 2013). The VirusTotal provides significant results which also include a definition of

all kinds of malware through 70 antivirus products (e.g. Symantec and Kaspersky; Talha

et al., 2015). The experimental results demonstrate the effectiveness of the EZADroid in

differentiating the malware from the benign applications. This is illustrated in Figure 5.17,

Figure 5.18 and Figure 5.19.

Table 5.24 illustrates the results of the risk evaluation which evaluated the risk for the

different kinds of malware family. Table 5.24 also shows that the EZADroid is effective

Univ
ers

ity
 of

 M
ala

ya

132

in identifying the risk for malware applications. The EZADroid had achieved an accuracy

rate of over 89 percent thereby raising a challenge of the risk assessment for Android

mobile malware. Specifically, the permission-based applications could preclude the use

of the sophisticated risk assessment approach. Interestingly, a higher number of criteria

had resulted in a lower performance of the risk assessment.

Using less criteria seems to show more promising results, as illustrated in Table 5.24.

This outcome is also supported by Feizollah et al. (2015) where it was noted that less

criteria resulted in less time thereby reducing the cost of the experiment. It is also

prominent in showing more accurate results. From another perspective, the presence of

the criteria (including benign and malware) provided some unique advantages in

generating a risk zone and in preventing the malicious applications from affecting

Android mobile users. It thus helped to increase users’ awareness. One of the more

significant findings that emerged from this experiment is that the number and types of

criteria used, could have an effect on the effectiveness of the risk assessment. One

possible solution recommended is to adapt a machine learning approach to create a

different result in the risk assessment so as to ensure the effectiveness of the risk zone.

To demonstrate the superiority of the work, we compared the results with existing

solutions. Kim et al. (2017) had conducted a study on risk assessment for Android

applications to identify malware applications using Naive Bayes classification. Kim et al.

(2017) proposed the Android application package (APK) Vulnerability Identification

System (AVIS) that classifies an application into malware or benign based on the DEX

file. The authors used 250 applications samples as the training set where the total number

of malware and benign samples were 125 each. Their approach achieved approximately

94 percent accuracy. Although the current study, in comparison, had recorded a slightly

lower accuracy rate, the size of the dataset used in the current study was much higher than

Univ
ers

ity
 of

 M
ala

ya

133

those of Kim et al. (2017), i.e. 10000 application samples. The approach used in this study

had also managed to lower the risk of overfitting with better generalisations on unseen

samples. In comparison, Rashidi et al. (2017) had proposed the XDroid which is an

Android application and resource risk assessment tool. The XDroid was implemented

with the dynamic analysis technique to detect malware by observing the applications'

behaviors. Their results showed that the XDroid only managed to achieve 82 percent

accuracy with 1000 samples training set. The XDroid also consumed higher consumption

of computational time to train the model.

In contrast, our EZADroid solution had implemented the static analysis techniques

which was effective in detecting known malware. The results of our experiments revealed

the effectiveness of our approach. Detection rate showed 89.82 percent accuracy. This

shows that our proposed approach had performed better than previous studies. The

proposed approach of this study also involved using risk analysis on applications as well

as to generate responses to users through the risk zone. This helped to alert security

concerns for the users. Therefore, the sensitive data of the users can be safely protected

via timely responses. Further to that, our approach was also able to reduce attacks from

malware application and similarly minimise the risks.

5.5.5 Conclusion

This study has highlighted the significant findings of risk assessment and the risk zones

for Android applications through the EZADroid which also implemented a permission-

based application to determine the risk zones. Based on that knowledge and the effective

risk evaluations, it was able to assess the mobile Android application into four (4) types

of risk zones (e.g. very low, low, medium and high).

The data were collected from the permission-based applications using static analysis.

The collected data were organized in a database. In order to select the effective criteria to

Univ
ers

ity
 of

 M
ala

ya

134

increase the effectiveness of the risk evaluation on the EZADroid, this study applied the

criteria selection approach. The combination of the risk assessment approach and the AHP

approach had improved the risk evaluation level as well as determined the risk zones for

Android applications. The applications taken from Drebin and AndrZoo were used for

fixing the validation and reputation of the EZADroid. It was noted that the EZADroid

offered a good risk zone performance evaluation.

The EZADroid performed and achieved an accuracy rate of 89.82 percent in the

experimental evaluation of 5,000 malwares and 5,000 benign applications based on the

10 criteria approach. The EZADroid was able to achieve an accuracy rate of over 80

percent on risk evaluation without using the machine learning classifier. This is the main

advantage of the proposed approach. Moreover, the approach was also suitable to be

installed on a mobile device as it provides good risk evaluation and increases user

awareness about the risk of applications. This was accomplished through the illustration

of the risk zone threshold.

The EZADroid approach has a limitation in running the risk evaluation for malware

applications that do not use the criteria that were selected in its permission. This is a

limitation of all permission-based malware detection mechanisms. Furthermore, the

EZADroid was also unable to calculate the risk if the malware application does not have

any permission. Nonetheless, this resolved by combining the permission-based

applications with other different criteria. Another limitation is traced to the general static

analysis applied. Here, the static analysis was less efficient in detecting the malware with

an obfuscation technique. Considering the weaknesses of this study, an uninstalled or

blocked application may be a good protection alternative for mobile devices. Therefore,

more investigations and experimentations on Android risk assessments need to be

conducted.

Univ
ers

ity
 of

 M
ala

ya

135

5.5.6 Summary

This chapter has discussed the evaluation study of the selected static features derived

from the investigations and methods used in the proposed framework. The useful results

from the experiments have demonstrated a combination of different aspects of evaluation,

and they highlighted their unique findings and conclusions.

The key objective of describing the evaluation at different experiments of studies is to

investigate the unique objectives at each experiment. The result presented has shown

strong evidence to support the ability of the proposed framework to work robustly based

upon its operational characteristics. In conclusion, the analysis made of the studies clearly

defined their contribution as well as stating their limitations.

To further investigate the usefulness and feasibility of the proposed framework in a

practical mode, the following chapter presents the prototype of the proposed framework

and evaluates it using different datasets to the one used in this chapter, in order to test the

efficiency in predicting unknown malware.

Univ
ers

ity
 of

 M
ala

ya

136

CHAPTER 6: PROTOTYPE IMPLEMENTATION OF RISK ANALYSIS AND

MALWARE DETECTION SYSTEMS

After validating and evaluating the proposed framework, the next stage of the research

is to design and implement a prototype system that demonstrates the main operation and

also shows how these could be implemented in practice. This chapter discusses the

prototype implementation of the proposed framework specifically, the administration

detection module and risk assessment. The main features of the administration module

have been embodied in the Web interface, EZADroid, which was used to manage,

monitor, configure, detect and assess the risk on Android applications modules. Several

modelling languages were used including case diagrams and state diagrams. These were

used to provide a visual illustration of the prototype.

6.1 Implementation of EZADroid system

There are three parts in the proposed framework as illustrated in Figure 6.1 below.

They include the Webpages, mobile device, and detection modules. These modules have

been fully implemented whereas the data were collected from other sources such as

AndroZoo and Drebin.

The rationale behind adopting the existing IDS and risk assessment approach rather

than implementing them from scratch is twofold. Firstly, implementing these modules

from scratch would have been out of the scope of this study and supporting input from

existing IDS and risk assessment would provide a more realistic environment and

strengthen the compatibility of the existing solutions. VirusTotal (Quintaro, 2017) as a

popular free online service that analyzes file and URLs was used to identify the malicious

contents that feed the prototype. Its only drawback is its inability to provide more

information about the level of risk. The descriptions of the modules that were fully

implemented in this study are as follows:

Univ
ers

ity
 of

 M
ala

ya

137

Server

Mobile DevicesWeb Pages
Online Submitted

Application

Decompress .apk
files

Features Extraction

Covert Manifest.xml
binary to readable

Scan Application

Features Extraction

Covert Manifest.xml
binary to readable

Decompress .apk
files

Internet

Machine Learning
Model

Storing Results
Database

Risk Assessment
Model

Reporting Results

Figure 6.1: Web development framework

6.1.1 Use case diagram

Use case diagram has been commonly adopted to present a graphical overview of the

functionality of a system and to show the relationship between actor and system. It is a

set of actions, functions and services that is performed by the system. In this context, the

“system” is the EZADroid while the ‘actor” is the user. Use case diagram determines the

characteristics of the developed systems with the actor without worrying about the details

on how that functionality is implemented. Figure 6.2 demonstrates the system level and

the relationship between the external systems.

Univ
ers

ity
 of

 M
ala

ya

138

Figure 6.2: Use Case Diagram

The following explanations illustrate the role of the user in the above figure.

i. User as actor is an entity that performs a role in one given system. The actor is

able to interact with the system to manage and run specific application modules.

This includes the ability to update the detection model, analyse and configure the

Web module. In addition, the actor or user is able to upload Android applications

to the Web analyser to analyse the applications as benign or malware.

ii. The system defines the scope of the system as anything within the box that

represents the functionality that is within the scope.

6.1.2 State diagram

The state diagram defines the different states of the system. These states are controlled

by external or internal events. The purpose is to model the dynamic nature of a system

and to respond to the external and internal events. In addition, it is used to control the

flow process of one state to another. Figure 6.3 illustrates all the possible states in the

proposed framework and it also summarises the characteristics of the running system.

Univ
ers

ity
 of

 M
ala

ya

139

Figure 6.3: Prime-state Diagram

Figure 6.3 illustrates three sub-states. The summary of each is provided as follows:

a) Save .apk file and extract permission: The initial state is T2.1 when the user

uploads the .apk file. There are four sub-states in this specific state namely,

Database stored .apk file, Identification of .apk file, Decompress .apk file and

Stored permission features. Figure 6.4 illustrates the storing .apk file state. In

T2.2, the system identifies the file either as the .apk file or a different type of

file. If the file is .apk, then the user is able to upload it in the system. The T2.3

state starts the process by decompressing the file to obtain application

permissions. In T2.4, the system extracts the proposed features and stores them.

Univ
ers

ity
 of

 M
ala

ya

140

Figure 6.4: Storing of .apk file state

b) Assign value: This state assigns the features vectors by creating the csv and

arff files. It is important for the model of the analyser to detect and assess the

risk on uploaded. apk file. These files contain the information of permission

features. Figure 6.5 illustrates the assign value state.

Figure 6.5: Assign value state

c) Model of analyser: This state processes the arff file to detect and assess the

risks according to the analysers namely, Risk Assessment Model, Bio-Inspired

Model and Time-Based Model. The Risk Assessment Model assesses the risk

on the Android applications and provides risk responses indicating whether

they are very low, low, medium or high risk. The Bio-Inspired model detects

the unknown malware through the PSO feature selection while the time-series

model detects malicious applications by using the proposed time based

features. Figure 6.6 illustrates the model of the analyser state.

Univ
ers

ity
 of

 M
ala

ya

141

Figure 6.6: Model of analyser state

6.2 Demonstrating the risk analysis and malware detection system

Having presented the main functionalities of the proposed framework and its web

module, this section demonstrates some examples to show how malware can be classified.

The analysers have the capability to decompress the Android applications, feature

extraction, detection and risk assessment.

a) Decompress Android application: This system requires the Android application

package file (.apk) to be used as a sample to be analysed on the website and mobile

devices. The system grants a unique identification number followed by the name

of the file so as to avoid duplications.

b) Feature extraction: The next step sees the system collecting the information

from the manifest.xml file and extracting the proposed features.

c) Detection: The system then uses the collected features as input for the machine

learning classifier to predict the class of uploaded file as either malware or benign

applications.

d) Risk analysis: Finally, the system measures the risk on applications and provides

response to the user by showing the level of risk (very low, low, medium and

high).

The difference between these analysers are in the proposed approach and the features.

This analyser implements two approaches: risk assessment and machine learning. In order

Univ
ers

ity
 of

 M
ala

ya

142

to demonstrate the effectiveness of the analyser, these prototypes used similar hardware

specifications which consist of desktop computer equipped with Intel Core i7-4770 CPU

of 3.40 GHZ, 16 GB of RAM, and the operating system of Microsoft Window 7

Professional.

6.3 Risk analysis and malware detection system

This section demonstrates some examples to show how the risk analysis and malware

detection were classified. It also presents the main features of the proposed framework

and its module and the login web pages. Figure 6.7 further illustrates.

EZADroid Analyzer

 Figure 6.7: Login page

The login account system allows the user to give specific access to the system. Two

types of login accounts are noted: administrator and normal user. The administrator

account is a special account that is used for managing other users’ accounts and for

making changes to the system. It has the capability to view the figures and total number

of applications submitted. In contrast, the normal user account is for normal tasks such as

submitting Android applications and viewing the scanned results. To log into the Web

module, administrator and normal users are required to use a legitimate username and

password otherwise the Web module will prevent any access to other pages. The

password is stored in the database. Once the login process is successful, the administrator

and the normal user are redirected to the landing page which displays the main dashboard

Univ
ers

ity
 of

 M
ala

ya

143

of the module. To begin analysis, a user is required to upload Android applications into

the system. Figure 6.8 illustrates the upload page for use by Android applications.

EZADroid Analyzer

Figure 6.8: Upload page for Android applications

Once the process of the uploaded file is successful, a list of uploaded Android

application is listed in the result page as shown in Figure 6.9.

Figure 6.9: Result page

Figure 6.9 shows the result of the uploaded Android applications. This page shows the

information regarding the uploaded applications including the name of the file using

SHA-1 hashing, package name, result from the model and risk results. In the enthusiasm

to substantiate the adequacy of experiment results, this study applied Drebin dataset for

training and testing as the evaluation. Apart from the evaluation, the EZADroid was also

evaluated through Malgenome malware dataset to expose the practicality of the

framework and a scenario independence model. The obtained results from Malgenome

Univ
ers

ity
 of

 M
ala

ya

144

testing dataset showed that the framework recorded accuracy of 95.0%. It shows that the

proposed approaches capable to detect malware even though using cross-dataset. In

addition, after an analysis is successfully carried out, the user is able to view the entire

result for the uploaded file, as shown in Figure 6.10.

EZADroid Analyzer

Figure 6.10: List of application page

Figure 6.10 provides the risk analysis result which shows whether the Android

applications have very low, low, medium or high risk. This risk result indicates the

severity of the Android applications. The two models noted in Figure 6.10 refer to the

evaluation of our approach as stated in Section 5.2 and Section 5.4.

Model 1 uses the Bio-inspired approach while Model 2 uses the Time-based approach.

These models analyse the uploaded applications and determine whether the applications

are malware or benign. As concluded, this system provides a summary of the detection

as well as the risk of the applications. Figure 6.11 further illuminates.

Univ
ers

ity
 of

 M
ala

ya

145

EZADroid Analyzer

Figure 6.11: Summary of analysis

The EzaDroid offers a more detailed analysis based on the number of uploaded

applications. It summarises the number of risks indicated by the benign and malware

application as noted in the graphs. The EzaDroid provides a flexible platform for the

administrator to configure, analyze and make wise decisions by using the analysis results.

In particular, the Web page and mobile devices module gives the following advantages:

a) Analytics results. The Web and mobile device module offers a web analytics

solution that gives rich insights into the malware detection process besides

simplifying the analysis. The EzaDroid is easy-to-use, is customisable, flexible

and able to optimise results. Hence, it allows administrators to analyse the entire

detection process and examine the results in an online assessment mode.

b) Simple graphical interfaces. The Web and mobile device module also has the

capability to analyse and respond by providing graphical interfaces in interpreting

the malware analysis. It uses different colors and interesting graphs to improve

user experience. This also allows the administrator to interpret the detection

Univ
ers

ity
 of

 M
ala

ya

146

results conveniently thereby giving an additional advantage to high-level

management and non-technical people to understand the current situation.

c) Easy management and user friendly interfaces. The EzaDroid analyser also

provides a user friendly interface where the administrator is able to customise the

display settings.

d) Able to utilize in mobile browser. The EzaDroid module is Web based or mobile

device based. Therefore, it is available for making analysis on the internet browser

which may be installed in mobile devices. This advantage provides users with the

opportunity to scan their applications quickly thereby minimizing the risk of

malware attacks.

In addressing the advantages of the Web based module, some limitations are detected.

a) Applications dependent. As the Web module is served using a web server, it also

relies on the efficiency of the web server to be efficient. In the case of the web

server going offline, the detection process will be terminated and other analyses

have to be halted. In addition, the network consistency is necessary for the

communication and exchange of information to be processed.

b) Inherit other vulnerabilities. Due to the use of web applications, the Web

module is henceforth vulnerable to some existing web applications such as HTTP

Parameter Pollution (HPP), SQL injection, cross-site scripting and session

hijacking. This increases the vulnerability of the Web and mobile device module

to other hardware (e.g. web server and mobile devices) and software (e.g.

browsers) elements.

In that regard, it is important to address these limitations by looking at other security

precautions and countermeasures so as to ensure that future malware detection more

efficient.

Univ
ers

ity
 of

 M
ala

ya

147

6.4 Summary

 This chapter has presented the implementation stage of the proposed framework. It

provided some examples and snapshots that were extracted from the Web and mobile

device module which consists of the EzaDroid. The details of this module were explained

by describing its system architecture and state diagrams.

The key objective of demonstrating and describing the details of the module was to

shed light on how the EzaDroid works. A detailed explanation was given to demonstrate

how its internal module may be affected by the external environment. Due to time

constraint, it was impossible to fully implement the operation of some modules. This

limitation, among others, is further exploited in the following chapter.

Univ
ers

ity
 of

 M
ala

ya

148

CHAPTER 7: CONCLUSION

Mobile devices in today’s era are equipped with powerful computing and networking

capabilities. In addition, they are easy to carry and have become the choice of most users

with many preferring the tablet or smartphones. This phenomenon has led to mobile

devices outselling the number of PCs worldwide. The increasing development of mobile

devices and their widespread use among users throughout the world have simultaneously

attracted unscrupulous authors for personal benefits such as money. Thus, these

unscrupulous authors device some malicious software which can attack mobile users and

consequently, collect their personal information from their mobile devices for their own

benefits. Although a number of existing approaches such as firewall, antiviruses and

Intrusion Detection Systems (IDSs) are available as a solution to overcome these malware

attacks, the current advancement of technology indicates that there is still a need to

develop a novel approach to detect malware. The availability of sophisticated techniques

has encouraged these unscrupulous authors to become even more daring by taking more

sophisticated steps to overcome the security and detection mechanisms so as to make

malware attacks more difficult for detection. This thesis is based on a study that attempts

to identify the problem of mobile malware attacks on the Android platform; it also aims

to address several fundamental issues when automating its analysis on a large scale

scenario.

This chapter summarises the study by reviewing the research aim and objectives. It

highlights the most important findings of this study as well as the limitations. This chapter

also discusses the potential of new research within the same domain showing how the

proposed framework able to further enhanced for future implementation in mobile

malware detection.

Univ
ers

ity
 of

 M
ala

ya

149

7.1 Research objectives

The aim of this study was to improve a malware detection system by using the static

analysis technique for Android mobile applications. Section 1.4 had described the four

research objectives of this study. In order to accomplish the aim, the four research

objectives have to be accomplished so as to solve the problem.

Objective 1: To review the security vulnerabilities, challenges of each Android

mobile application and establish the research gap by analysing the state-of-the-art

malware detection system by investigating the properties of the mobile applications

which are most critical with respect to the creation and sustainability of malware

attacks on mobile applications.

The first objective was to critically investigate the current state-of-the-art malware

detection specifically those of Android mobile devices. The research objective was

accomplished by conducting a thorough review of the most crucial works published in

online scholarly journals. They were extracted from digital libraries which were accessed

through the University of Malaya’s access portal. These journals include those published

by the Institute of Electrical and Electronics Engineers (IEEE), the Association for

Computing Machinery (ACM), Elsevier and the Web of Science portals. This objective

was accomplished through Chapter 2 where all the related information regarding Android

malware detection and risk assessment were presented. Chapter 2 also presented the

malware detection taxonomy and the machine learning approach and algorithms. The

static analysis technique using machine learning approach with anomaly based detection

was reviewed as it offers a higher potential in uncovering and predicting unknown and

future malware.

Univ
ers

ity
 of

 M
ala

ya

150

Objective 2: To propose a malware detection system that uses risk analysis to

analyse the Android mobile applications, which is capable of analysing the

structural properties of the Android mobile applications for detecting malware.

The second objective of this study was to propose a novel approach to facilitate the

practical evaluation of mobile risk analysis by using the machine learning approach and

to facilitate the analytical hierarchy process. The outcomes gathered from this study

highlighted the importance of the risk assessment in determining the level of risk noted

on Android applications. This study presented the threshold which assesses the risk; it

also provided the risk levels which ranged from very low, low, medium to high risk. In

addition, this study also searched for relevant features with minimum numbers to be used

for assessing the risk noted on Android applications by using the feature selection

approach (i.e. information gain). This is important for improving the assessment

measurement results. This objective was accomplished in Chapter 5.

Objective 3: To propose a malware detection system that is based on the time

series approach by observing the behavioral properties of the Android mobile

applications through time for the purpose of predicting future mobile malware.

The third objective of this research was to propose the malware detection system based

on the time series approach. The evaluation of the malware detection system was

examined in two platforms: a) WEKA and b) Prototype. In the Weka simulation, the

experiments tested the features in six evaluation measures: accuracy, True Positive Rate

(TPR), recall, precision, f-measure and False Positive Rate (FPR). In the prototype

platform, the experiment evaluated the features in terms of the accuracy and performance

of each analyser model (i.e. Risk Assessment, Bio-Inspired and Time-based) in a practical

environment. This assessment encompassed processes which include the decompressing

Univ
ers

ity
 of

 M
ala

ya

151

of applications, the extracting of features, the selecting of features and the measuring of

the risks of Android applications. This objective was accomplished in Chapter 5.

Objective 4: To evaluate the proposed system in terms of detection accuracy by

using real-world Android malware and implement the prototype of the proposed

system for a practical evaluation via a web-based assessment.

The fourth objective of this study was to evaluate a prototype of the malware detection

system based on a novel framework that was developed according to the relevant features

and methodology approach. This study then devised a Web based system to detect

Android applications to differentiate the files as malware or benign. The apk file was

uploaded by the user to check the file application on the Web page or mobile device

module. The system decompresses the apk file to extract features; it then identifies the

classes of applications with the machine learning model. Based on the review of literature,

this study had selected the best machine classifiers by comparing the performance of the

prototype with the WEKA results. The proposed system contains three model analysers

namely, Risk Assessment, Bio-Inspired and Time-Based model. This objective was

accomplished in Chapter 6.

7.2 Achievement of the study

This research began by studying the mobile devices evolution and reviewing the

different types of malware detection systems. It explored the issues about mobile device

detection and risk assessment as well as the selection of relevant features. Several

machine learning classifiers were explored and the performance results were collected.

The study then evaluated the performance results so as to satisfy the aim of the study.

Several points of interests were identified as noted in the following:

Univ
ers

ity
 of

 M
ala

ya

152

a) A detection model for mobile malware. This study has created a model which

able to detect mobile malware applications through the static analysis approach.

A machine learning approach was used as a better adaptive detection model. The

model worked perfectly in detecting mobile malware based on permission

features.

b) Issues in mobile malware detection studies. In Chapter 2, this study presented

the state-of-the art technique on mobile malware detection and their significance

in detecting mobile malware. By presenting the strengths and weaknesses of these

issues, several strategies were identified for addressing the limitations. In order to

improve the effectiveness of the malware detection system, research highlighting

some of the limitation were performed. The aim was to search for the relevant

features which used to develop a more efficient approach.

c) Issue in mobile malware feature selection. This study has shown a critical

analysis of the different perspectives used when addressing the significant

problems of feature selection in anomaly-based detection model. The aim was to

improve detection performance and to minimise complexity.

d) Implementation of the proposed model. The investigation was extended by

examining the feasibility of the proposed model so as to demonstrate its practical

application on Android permissions with the risk assessment model. A proof-of-

concept study was designed and realised (See Chapter 6). As an extension to the

evaluation study, the implementation stage also developed a Web-based system,

which concentrates on the Web module of the proposed model. To illustrate the

implementation stage, the proposed model was presented with details using the

modelling language. It includes the case diagrams as well as some snapshots

extracted from the prototype pages.

Univ
ers

ity
 of

 M
ala

ya

153

e) Risk Assessment model for mobile applications. This study has created a model

which has the capability to assess the risk of mobile applications through the risk

assessment approach. The Analytical Hierarchy Process technique was applied to

measure the risk and the rule was applied in the model. The model worked

perfectly in assessing risks on mobile applications as well as generating the risk

levels noted (i.e. very low, low, medium and high).

7.3 Limitation of the study

The discussions noted in previous chapters have validated that this study has

adequately achieved its aims and objectives - the establishment of a novel framework that

is useful for detecting unknown malware in anomaly-based detection environment.

However, a number of limitations and challenges were encountered during the study and

they are listed here for future references.

a) The evaluation of the study was taken only from static-based detection model.

In conducting the experiment during the evaluation phase (see Chapter 5), this study

found some practical limitations. In particular, all input features are gathered from

static analysis. However, in practical solution, static and dynamic have their pros and

cons. Therefore, comparing results from both analyses would be more meaningful.

b) A practical proof-of-concept. Although a practical evaluation study using web

modules and a live simulation has been presented in Chapter 6, it is important to

perform the entire prototype in a real mobile device with actual detection module

because it able to strengthen the feasibility of the proposed approach. Moreover, the

result from the experiments show a clear distinction between the ways mobile

malware detected and risk analysis on Android applications.

c) The usability of web module. The performance evaluation study extended the

implementation phase to demonstrate the practically of the web modules. However,

Univ
ers

ity
 of

 M
ala

ya

154

the usability of such module is not evaluated in this study. The snapshots of the

prototype pages presented in Chapter 6 are considered adequate in order to

demonstrate the usage of the web module.

7.4 Summary- suggestion for future works

The following are suggestions for future work outside the scope of this study have

been identified as follows:

a) Visualisation for risk analysis and malware detection. This thesis has provided

figures, tables and graphs which used to the advantage of security analysts and

academic researchers in terms of an interactive approach that offer viewers an

insight into the two dimensional aspect of the analysis. This thesis had also

provided sizeable numerical figures and statistical data in an effective manner.

The significance of these figure, tables and graphs is their ability to draw readers

to the specific information in a short time span. Therefore, using different types

of graph models offer further opportunities for future research.

b) Improve false alarm rate. False alarm rates continue to be an issues as long as it

exists in the detection module. False alarms refer to the statistical measure of how

well sample dataset correctly classify the malware applications. This means that

the malware data have been falsely predicted as normal. This problem leads to

false detection of applications and even a small rate of false alarms able to trigger

huge impacts. Therefore, a reliable and effective detection module is necessary to

overcome this issue.

c) Select relevant features. As data become more complex and larger, the selection

of relevant and adequate features to improve detection performance becomes

harder. The process will require further analysis to be conducted so as to examine

the correlation between malware and benign applications. Doing so, it helps to

Univ
ers

ity
 of

 M
ala

ya

155

reduce instances of false alarms thereby increasing higher detection accuracy rate,

especially when dealing with permission features.

d) The malware detection approach could be combined to produce a hybrid

approach. Hybrid approaches have the capability to detect new variants of

malware attacks. This hybrid approach when designed, will be able to perform

static analysis and dynamic analysis using signatures and running applications.

Moreover, this hybrid approach could also produce explicit learning and more

comprehensible models. This hybrid approach can be used by future studies to

improve the performance of malware detection.

Univ
ers

ity
 of

 M
ala

ya

156

REFERENCES

Afifi, F., Anuar, N. B., Shamshirband, S., & Choo, K.-K. R. (2016). DyHAP: Dynamic
Hybrid ANFIS-PSO Approach for Predicting Mobile Malware. Plos One, 11(9),
e0162627.

Ahmad, I. (2015). Feature Selection Using Particle Swarm Optimization. International
Journal of Distributed Sensor Networks, 2015, 1–8.

Alazab, M., Monsamy, V., Batten, L., Lantz, P., & Tian, R. (2012). Analysis of Malicious
and Benign Android Applications. 2012 32nd International Conference on
Distributed Computing Systems Workshops, 608–616.

Alazab, M., Venkataraman, S., & Watters, P. (2010). Towards Understanding Malware
Behaviour by the Extraction of API Calls. 2010 Second Cybercrime and Trustworthy
Computing Workshop, (November 2009), 52–59.

Allix, K., Bissyandé, T. F., Jérome, Q., Klein, J., State, R., Le Traon, Y., … Traon, Y.
Le. (2016). Empirical assessment of machine learning-based malware detectors for
Android: Measuring the gap between in-the-lab and in-the-wild validation scenarios.
Empirical Software Engineering, 21(1), 183–211.

Allix, K., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2016). AndroZoo: collecting
millions of Android apps for the research community. 13th International Workshop
on Mining Software Repositories - MSR ’16, 468–471.

Alzahrani, A. J., Stakhanova, N., Gonzalez, H., & Ali, A. (2014). Characterizing
Evaluation Practices of Intrusion Detection Methods for Smartphones. Journal of
Cyber Security, 3(2), 89–132. Retrieved from Alzahrani2014

Anuar, N. B., Furnell, S., Papadaki, M., & Clarke, N. (2011). A risk index model for
security incident prioritisation. Australian Information Security Management
Conference, 24–39.

Anuar, N. B., Papadaki, M., Furnell, S., & Clarke, N. (2013a). A response selection model
for intrusion response systems: Response Strategy Model (RSM). Security and
Communication Networks, 7(11), 71–81.

Anuar, N. B., Papadaki, M., Furnell, S., & Clarke, N. (2013b). Incident prioritisation
using analytic hierarchy process (AHP): Risk Index Model (RIM). Security and
Communication Networks, 6(9), 1087–1116.

AppBrain. (2016). Google Play Stats. Retrieved October 12, 2016, from
http://www.appbrain.com/stats/stats-index

Univ
ers

ity
 of

 M
ala

ya

157

Apvrille, A., & Strazzere, T. (2012). Reducing the window of opportunity for Android
malware Gotta catch ’em all. Journal in Computer Virology, 8(1–2), 61–71.

Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K. (2014). Drebin: Effective
and Explainable Detection of Android Malware in Your Pocket. Symposium on
Network and Distributed System Security (NDSS), 1–15.

Arshad, S., Ahmed, M., Shah, M. A., & Khan, A. (2016). Android Malware Detection &
Protection : A Survey. International Journal of Advanced Computer Science and
Applications (IJACSA), 7(2), 463–475.

Aung, Z., & Zaw, W. (2013). Permission-Based Android Malware Detection.
International Journal of Scientific & Technology Research, 2(3), 228–234.

Becher, M., Freiling, F. C., Hoffmann, J., Holz, T., Uellenbeck, S., Wolf, C., & Horst, G.
(2011). Mobile Security Catching Up ? Revealing the Nuts and Bolts of the Security
of Mobile Devices. In 2011 IEEE Symposium on Security and Privacy (pp. 96–111).
Ieee.

Boukhtouta, A., Mouheb, D., Debbabi, M., Alfandi, O., Iqbal, F., & El Barachi, M.
(2015). Graph-theoretic characterization of cyber-threat infrastructures. Digital
Investigation, 14, S3–S15.

Bryan, J., Cook, D., Josse, J., Kalibera, T., & Narasimhan, B. (2017). The R Project for
Statistical Computing. Retrieved June 5, 2017, from https://www.r-
project.org/about.html

Butun, I., Morgera, S. D., & Sankar, R. (2014). A Survey of Intrusion Detection Systems
in Wireless Sensor Networks. IEEE Sensors Journal, 14(5), 1370–1379.

Caetano, L. (2014). Are Your Apps Oversharing? 2014 Mobile Security Report Tells All.
Retrieved February 16, 2017, from
https://securingtomorrow.mcafee.com/consumer/mobile-security/mobile-security-
report-2014/

Cegan, J. C., Filion, A. M., Keisler, J. M., & Linkov, I. (2017). Trends and applications
of multi-criteria decision analysis in environmental sciences: literature review.
Environment Systems and Decisions, 37(2), 123–133.

Cen, L., Gates, C., Si, L., & Li, N. (2015). A Probabilistic Discriminative Model for
Android Malware Detection with Decompiled Source Code. IEEE Transactions on
Dependable and Secure Computing, 12(4), 1–13.

Chen, P. S., Lin, S.-C., & Sun, C.-H. (2015). Simple and effective method for detecting

Univ
ers

ity
 of

 M
ala

ya

158

abnormal internet behaviors of mobile devices. Information Sciences, 321(January
2012), 193–204.

Choi, J., Sung, W., Choi, C., & Kim, P. (2015). Personal information leakage detection
method using the inference-based access control model on the Android platform.
Pervasive and Mobile Computing.

Chowdhury, M. J. M., Matulevičius, R., Sindre, G., & Karpati, P. (2012). Aligning mal-
activity diagrams and security risk management for security requirements
definitions. Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 7195 LNCS, 132–
139.

Chuang, H.-Y., & Wang, S.-D. (2015). Machine Learning Based Hybrid Behavior
Models for Android Malware Analysis. 2015 IEEE International Conference on
Software Quality, Reliability and Security, 201–206.

Clay, J. (2015). Continued Rise in Mobile Threats for 2016. Retrieved September 8, 2016,
from http://blog.trendmicro.com/continued-rise-in-mobile-threats-for-2016/

Clemens, J. (2015). Automatic classification of object code using machine learning.
Digital Investigation, 14, S156–S162.

Corona, I., Giacinto, G., & Roli, F. (2013). Adversarial attacks against intrusion detection
systems: Taxonomy, solutions and open issues. Information Sciences, 239, 201–225.

Cui, B., Jin, H., Carullo, G., & Liu, Z. (2015). Service-oriented mobile malware detection
system based on mining strategies. Pervasive and Mobile Computing, 24, 101–116.

Damopoulos, D., Kambourakis, G., Gritzalis, S., & Park, S. O. (2012). Exposing mobile
malware from the inside (or what is your mobile app really doing?). Peer-to-Peer
Networking and Applications, 7(4), 687–697.

Dassanayake, D. (2017). ANDROID WARNING - Google Play apps infect millions of
phones with dangerous malware. Retrieved October 7, 2017, from
http://www.express.co.uk/life-style/science-technology/854529/Android-warning-
Google-Play-malware-ExpensiveWall

Deepa, K., Radhamani, G., & Vinod, P. (2015). Investigation of feature selection methods
for android malware analysis. Procedia Computer Science, 46(Icict 2014), 841–848.

Deshotels, L., Notani, V., & Lakhotia, A. (2014). DroidLegacy : Automated Familial
Classification of Android Malware. In Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014, 3.

Univ
ers

ity
 of

 M
ala

ya

159

Desnos, A. (2012). Androguard. Retrieved March 8, 2017, from
http://doc.androguard.re/html/index.html

Developer, A. (2016a). Android Permission. Retrieved September 2, 2016, from
https://developer.android.com/guide/topics/security/permissions.html

Developer, A. (2016b). Platform Architecture. Retrieved from
https://developer.android.com/guide/platform/index.html#art

Developer, A. (2016c). Platform Versions. Retrieved October 12, 2016, from
https://developer.android.com/about/dashboards/index.html

Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A., & Sgandurra, D.
(2012). A Multi-criteria-Based Evaluation of Android Applications. International
Conference on Trusted Systems, 67–82.

Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A., & Sgandurra, D.
(2018). Risk analysis of Android applications: A user-centric solution. Future
Generation Computer Systems, 80, 505–518.

Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012). MADAM: A multi-level
anomaly detector for android malware. Computer Network Security, 240–253.

Dweiri, F., Kumar, S., Khan, S. A., Jain, V., Ahmed, S., & Jain, V. (2016). Designing an
integrated AHP based decision support system for supplier selection in automotive
industry. Expert Systems with Applications, 62, 273–283.

Dyer, D. W. (2010). Evolutionary Computation in Java. Retrieved March 10, 2017, from
http://watchmaker.uncommons.org/manual/ch01.html

Egam, & Egham. (2016). Gartner Forecasts Worldwide Device Shipments to Decline for
Second Year in a Row. Retrieved February 13, 2017, from
http://www.gartner.com/newsroom/id/3468817

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on Automated Dynamic
Malware-Analysis. ACM Computing Surveys (CSUR), 44(2), 1–42.

Egham. (2015a). Gartner Says Tablet Sales Continue to Be Slow in 2015. Retrieved
February 13, 2017, from http://www.gartner.com/newsroom/id/2954317

Egham. (2015b). Gartner Says Worldwide Device Shipments to Grow 1.5 Percent, to
Reach 2.5 Billion Units in 2015. Retrieved February 13, 2017, from
http://www.gartner.com/newsroom/id/3088221

Univ
ers

ity
 of

 M
ala

ya

160

Egham. (2015c). Gartner Says Worldwide Smartphone Sales Grew 9.7 Percent in Fourth
Quarter of 2015. Retrieved February 14, 2017, from
http://www.gartner.com/newsroom/id/3215217

Egham. (2016). Gartner Says Worldwide Smartphone Sales Grew 3.9 Percent in First
Quarter of 2016. Retrieved February 13, 2017, from
http://www.gartner.com/newsroom/id/3323017

Egham. (2017). Gartner Says Worldwide Sales of Smartphones Grew 9 Percent in First
Quarter of 2017. Retrieved October 9, 2017, from
http://www.gartner.com/newsroom/id/3725117

Elish, K. O., Shu, X., Yao, D. (Daphne), Ryder, B. G., & Jiang, X. (2015). Profiling user-
trigger dependence for Android malware detection. Computers & Security, 49(540),
255–273.

Elshoush, H. T., & Osman, I. M. (2011). Alert correlation in collaborative intelligent
intrusion detection systems - A survey. Applied Soft Computing Journal, 11(7),
4349–4365.

Fang, Z., Han, W., & Li, Y. (2014). Permission based Android security : Issues and
countermeasures. Computers & Security, 43(0), 205–218.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). AndroSimilar :
Robust Statistical Feature Signature for Android Malware Detection. In Proceedings
of the 6th International Conference on Security of Information and Networks, ACM,
152–159.

Faruki, P., Laxmi, V., Bharmal, A., Gaur, M. S., & Ganmoor, V. (2014). AndroSimilar:
Robust signature for detecting variants of Android malware. Journal of Information
Security and Applications, 22, 66–80.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27,
861–874.

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. R., & Shamshirband, S.
(2013). A study of machine learning classifiers for anomaly-based mobile botnet
detection. Malaysian Journal of Computer Science, 26(4), 251–265.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).
AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection.
Computers and Security, 65, 121–134.

Feizollah, A., Anuar, N. B., Salleh, R., Wahid, A., & Wahab, A. (2015). A Review on

Univ
ers

ity
 of

 M
ala

ya

161

Feature Selection in Mobile Malware Detection. Digital Investigation, 3, 22–37.

Feizollah, A., Shamshirband, S., Anuar, N. B., Salleh, R., & Kiah, M. L. M. (2013).
Anomaly Detection Using Cooperative Fuzzy Logic Controller. In Intelligent
Robotics Systems: Inspiring the NEXT, 220–231.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D. (2012). Android
Permissions : User Attention , Comprehension , and Behavior. Symposium on Usable
Privacy and Security (SOUPS) 2012.

Firdaus, A., Anuar, N. B., Karim, A., & Razak, M. F. A. (2017). Discovering optimal
features using static analysis and genetic search based method for android malware
detection. Frontiers of Information Technology & Electronic Engineering, 1–27.

Firdaus, A., Anuar, N. B., Razak, M. F. A., & Sangaiah, A. K. (2017). Bio-inspired
computational paradigm for feature investigation and malware detection: interactive
analytics. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-
4586-0

Fox-Brewster, T. (2017). Google Is Fighting A Massive Android Malware Outbreak --
Up To 21 Million Victims. Retrieved October 7, 2017, from
https://www.forbes.com/sites/thomasbrewster/2017/09/14/massive-google-
android-malware-expensivewall/#60594e79477f

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and Classification : A
Survey. Journal of Information Security, 5, 56–64.

Gaviria, J., Puerta, D., Sanz, B., Grueiro, I. S., & Bringas, P. G. (2013). The Evolution of
Permission as Feature for AndroidMalware Detection. International Joint
Conference, Advances in Intelligent Systems and Computing, 761.

Gheorghe, L., Marin, B., Gibson, G., Mogosanu, L., Deaconescu, R., Voiculescu, V.-G.,
& Carabas, M. (2015). Smart malware detection on Android. Security and
Communication Networks, 8(18), 4254–4272.

Ghiasi, M., Sami, A., & Salehi, Z. (2015). Dynamic VSA: a framework for malware
detection based on register contents. Engineering Applications of Artificial
Intelligence, 44(0), 111–122.

Gonzalez, H., Stakhanova, N., & Ghorbani, A. A. (2014). DroidKin : Lightweight
Detection of Android Apps Similarity. Proceedings of the 10th SECURECOMM.

Google. (2017). Google Play. Retrieved March 6, 2017, from
https://play.google.com/store?hl=en

Univ
ers

ity
 of

 M
ala

ya

162

Grace, M. C., Zhou, W., Jiang, X., & Sadeghi, A.-R. (2012). Unsafe exposure analysis of
mobile in-app advertisements. Proc. 5th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, 67(2), 101–112.

Gritzalis, D., Iseppi, G., Mylonas, A., & Stavrou, V. (2018). Exiting the Risk Assessment
Maze : A Meta-Survey. ACM Computing Surveys, 51(1), 1–30.

Haq, N. F. (2015). Application of Machine Learning Approaches in Intrusion Detection
System : A Survey. International Journal of Advanced Research in Artificial
Intelligence (IJARAI), 4(3), 9–18.

Houmansadr, A., Zonouz, S. a., & Berthier, R. (2011). A cloud-based intrusion detection
and response system for mobile phones. 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops (DSN-W), 31–32.

Huang, H.-D., Lee, C.-S., Wang, M.-H., & Kao, H.-Y. (2014). IT2FS-based ontology
with soft-computing mechanism for malware behavior analysis. Soft Computing,
18(2), 267–284.

Hubballi, N., & Suryanarayanan, V. (2014). False alarm minimization techniques in
signature-based intrusion detection systems: A survey. Computer Communications,
49, 1–17.

IBM. (2017). IBM SPSS Statistics. Retrieved June 6, 2017, from
https://www.ibm.com/us-en/marketplace/spss-statistics/details#product-header-top

IDC. (2017). Smartphone OS Market Share, 2016 Q3. Retrieved February 13, 2017, from
http://www.idc.com/promo/smartphone-market-share/os

Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017).
PIndroid : A novel Android malware detection system using ensemble learning
methods. Computers & Security, 68, 36–46.

Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response
systems: Foundations, design, and challenges. Journal of Network and Computer
Applications.

International Data Corporation (IDC). (2016). Worldwide Smartphone Growth Forecast
to Slow to 3.1% in 2016 as Focus Shifts to Device Lifecycles, According to IDC.
Retrieved October 12, 2016, from
http://www.idc.com/getdoc.jsp?containerId=prUS41425416

Jackson, J. (2017). New research reveals that 30 percent of malware attacks are zero day
exploits. Retrieved November 14, 2017, from

Univ
ers

ity
 of

 M
ala

ya

163

http://www.itsecurityguru.org/2017/03/30/new-research-reveals-30-percent-
malware-attacks-zero-day-exploits/

Karim, A. (2016). On the Analysis and Detection of Mobile Botnet. Journal of Universal
Computer Science, 22(4), 567–588.

Karim, A., Salleh, R. Bin, Shiraz, M., Shah, S. A. A., Awan, I., & Anuar, N. B. (2014).
Botnet detection techniques: review, future trends, and issues. Journal of Zhejiang
University SCIENCE C, 15(11), 943–983.

Kaur, P., Singh, M., & Josan, G. S. (2015). Classification and Prediction Based Data
Mining Algorithms to Predict Slow Learners in Education Sector. Procedia
Computer Science, 57, 500–508.

Kellex. (2016). Android Distribution Updated for May 2016 – Marshmallow Climbs to
7.5%. Retrieved May 3, 2016, from http://www.droid-life.com/2016/05/03/android-
distribution-updated-may-2016/

Khalil, N., Kamaruzzaman, S. N., & Baharum, M. R. (2016). Ranking the indicators of
building performance and the users’ risk via Analytical Hierarchy Process (AHP):
Case of Malaysia. Ecological Indicators, 71, 567–576.

Kim, D. W., Yan, P., & Zhang, J. (2015). Detecting fake anti-virus software distribution
webpages. Computers & Security, 49, 95–106.

Kim, H., Cho, T., Ahn, G.-J., & Hyun Yi, J. (2017). Risk assessment of mobile
applications based on machine learned malware dataset. Multimedia Tools and
Applications, 1–16.

Kumar, V., & Minz, S. (2014). Feature Selection: A literature Review. Smart Computing
Review, 4(3), 211–229.

Lab, K. (2017). Android Mobile Security Threats. Retrieved October 9, 2017, from
https://www.kaspersky.com/resource-center/threats/mobile

Lar, S.-U. (2011). Proactive Security Mechanism and Design for Firewall. Journal of
Information Security, 2(3), 122–131.

Ledermüller, T., & Clarke, N. L. (2011). Risk Assessment for Mobile Devices. In Trust,
Privacy and Security in Digital Business, 210–221.

Lee, S., Lee, J., & Lee, H. (2015). Screening Smartphone Applications Using Malware
Family Signature. Computers & Security, 1–31.

Univ
ers

ity
 of

 M
ala

ya

164

Liam Tung. (2017). Android malware in Google Play racked up 4.2M downloads: Are
you a victim? Retrieved March 6, 2018, from http://www.zdnet.com/article/android-
malware-in-google-play-racked-up-4-2-million-downloads-so-are-you-a-victim/

Liao, H.-J., Richard Lin, C.-H., Lin, Y.-C., & Tung, K.-Y. (2012). Intrusion detection
system: A comprehensive review. Journal of Network and Computer Applications,
36(1), 16–24.

Lin, C.-T., Wang, N.-J., Xiao, H., & Eckert, C. (2015). Feature Selection and Extraction
for Malware Classification. Journal of Information Science and Engineering, 31,
965–992.

Lo, C. C., & Chen, W. J. (2012). A hybrid information security risk assessment procedure
considering interdependences between controls. Expert Systems with Applications,
39(1), 247–257.

Lookout. (2012). Lookout Mobile Endpoint Security. PC Magazine, 178. Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=85818542&
%0Alang=ja&site=ehost-live

Lopez, M. (2015). PandaLabs. Retrieved November 25, 2015, from
http://www.pandasecurity.com/mediacenter/press-releases/pandalabs-neutralized-
75-million-new-malware-samples-2014-twice-many-2013/

Lueg, C. (2017). 8,400 new Android malware samples every day. Retrieved October 9,
2017, from https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-
android-malware-samples-every-day

McAfee. (2016). Mobile Threat Report: What’s on the Horizon for 2016. Retrieved from
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

McWilliams, G., Sezer, S., & Yerima, S. Y. (2014). Analysis of Bayesian classification-
based approaches for Android malware detection. IET Information Security, 8(1),
25–36.

Model, H., Challenges, E. I., ShahidFarid, Ahmad, R., & MujahidAlam. (2015). A
Hierarchical Model for E-learning Implementation Challenges using AHP.
Malaysian Journal of Computer Science, 28(3), 166–188.

Muncaster, P. (2017). Firms Face £18 Million Bill for Mobile Data Breaches. Retrieved
October 9, 2017, from https://www.infosecurity-magazine.com/news/firms-face-18-
million-bill-for/

Nadeem, A., & Howarth, M. P. (2014). An intrusion detection & adaptive response

Univ
ers

ity
 of

 M
ala

ya

165

mechanism for MANETs. Ad Hoc Networks, 13(PART B), 368–380.

Nadiammai, G. V., & Hemalatha, M. (2014). Effective approach toward Intrusion
Detection System using data mining techniques. Egyptian Informatics Journal,
15(1), 37–50.

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine
learning classifiers for mobile malware detection. Soft Computing, 20(1), 343–357.

Nikou, S., & Mezei, J. (2013). Evaluation of mobile services and substantial adoption
factors with Analytic Hierarchy Process (AHP). Telecommunications Policy, 37(10),
915–929.

Nikou, S., Mezei, J., & Bouwman, H. (2011). Analytic Hierarchy Process (AHP)
approach for selecting mobile service category: (Consumers’ preferences).
Proceedings - 2011 10th International Conference on Mobile Business, ICMB 2011,
119–128.

Nokia. (2017). Nokia malware report reveals new all-time high in mobile device
infections and major IoT device security vulnerabilities. Retrieved April 20, 2017,
from https://www.nokia.com/en_int/news/releases/2017/03/27/nokia-malware-
report-reveals-new-all-time-high-in-mobile-device-infections-and-major-iot-
device-security-vulnerabilities

O’Shea, D. (2017). Forrester: 5.5B mobile users globally by 2022. Retrieved October 9,
2017, from http://www.retaildive.com/news/forrester-55b-mobile-users-globally-
by-2022/447283/

Oberheide, J., & Miller, C. (2012). Dissecting the Android Bouncer. Retrieved September
5, 2017, from https://jon.oberheide.org/files/summercon12-bouncer.pdf

Olson, D. L. (1996). The analytic Hierarchy process. Decision Aids for Selection
Problems, 49–68.

Opydo, D. (2013). 6 Reasons to Use Analytic Hierarchy Process for Collaborative
Decision Making. Retrieved March 5, 2018, from
https://blog.transparentchoice.com/analytic-hierarchy-process/6-reasons-to-use-
ahp-for-collaborative-decision-making

Patel, R., Thakkar, A., & Ganatra, A. (2012). A Survey and Comparative Analysis of Data
Mining Techniques for Network Intrusion Detection Systems. International Journal
of Soft Computing …, 2(1), 265–271. Retrieved from
http://www.ijsce.org/attachments/File/v2i1/A0432022112.pdf

Univ
ers

ity
 of

 M
ala

ya

166

Patri, O. P., Wojnowicz, M. T., & Wolff, M. (2017). Discovering Malware with Time
Series Shapelets Abstract. ACM Conference on Computer and Communications
Security, 4(1), 229–240.

Platforms, N., & Threats, C. (2013). Security Threat Report 2013. SOPHOS.

Quintaro, B. (2017). VirusTotal. Retrieved April 11, 2017, from
https://www.virustotal.com/

Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in Malware : from Encryption
to Metamorphism. International Journal of Computer Science and Network
Security, 12(8), 74–83.

Rashidi, B., Fung, C., & Bertino, E. (2017). Android resource usage risk assessment using
hidden Markov model and online learning. Computers and Security, 65, 90–107.

Ravula, R. R., Liszka, K. J., & Chan, C. (2013). Learning Attack Features from Static and
Dynamic Analysis of Malware. Knowledge Discovery, Knowledge Engineering and
Knowledge Management, 109–125.

Razak, M. F. A., Anuar, N. B., Othman, F., Firdaus, A., Afifi, F., & Salleh, R. (2017).
Bio-inspired for Features Optimization and Malware Detection. Arabian Journal for
Science and Engineering.

Razak, M. F. A., Anuar, N. B., Salleh, R., & Firdaus, A. (2016). The rise of “malware”:
Bibliometric analysis of malware study. Journal of Network and Computer
Applications, 75, 58–76.

Rhiannon Williams. (2016). Android roars back in strongest growth in two years, as iOS
shrinks. Retrieved February 13, 2017, from
http://www.telegraph.co.uk/technology/2016/05/17/android-roars-back-in-
strongest-growth-in-two-years-as-apple-shr/

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International
Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590

Sahs, J., & Khan, L. (2012). A Machine Learning Approach to Android Malware
Detection. 2012 European Intelligence and Security Informatics Conference, 141–
147.

Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. G. (2013). Opcode sequences as
representation of executables for data-mining-based unknown malware detection.
Information Sciences, 231, 64–82.

Univ
ers

ity
 of

 M
ala

ya

167

Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). MADAM: Effective and
Efficient Behavior-based Android Malware Detection and Prevention. IEEE
Transactions on Dependable and Secure Computing, 1–14.

Schmeelk, S., Yang, J., & Aho, A. (2015). Android Malware Static Analysis Techniques.
Proceedings of the 10th Annual Cyber and Information Security Research
Conference.

Seideman, J. D., Khan, B., & Vargas, C. (2015). Quantifying Malware Evolution through
Archaeology. Journal of Information Security, 6, 101–110.

Seo, S.-H., Gupta, A., Mohamed Sallam, A., Bertino, E., & Yim, K. (2014). Detecting
mobile malware threats to homeland security through static analysis. Journal of
Network and Computer Applications, 38, 43–53.

Shabtai, A., & Elovici, Y. (2010). Applying behavioral detection on android-based
devices. Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, 48 LNICST, 235–249.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: a
behavioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 38(1), 161–190.

Shabtai, A., Mimran, D., Rokach, L., Shapira, B., & Elovici, Y. (2014). Mobile malware
detection through analysis of deviations in application network behavior. Computers
& Security, 43, 1–18.

Shameli-Sendi, A., Cheriet, M., & Hamou-Lhadj, A. (2014). Taxonomy of intrusion risk
assessment and response system. Computers and Security, 45, 1–16.

Sharif, M., Lanzi, A., Giffin, J., & Lee, W. (2008). Impeding Malware Analysis Using
Conditional Code Obfuscation. Informatica. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.9256&rep=rep
1&type=pdf

Sharma, K., & Lin, K.-I. (2013). Review spam detector with rating consistency check.
Proceedings of the 51st ACM Southeast Conference on - ACMSE ’13, 1.

Sheen, S., Anitha, R., & Natarajan, V. (2015). Android based malware detection using a
multifeature collaborative decision fusion approach. Neurocomputing, 151, 905–
912.

Skycure Mobile Threat Defense. (2016). Mobile Threat Intelligence Report. Retrieved
from https://cg9j53d64gz46qncx41jvxq16p-wpengine.netdna-ssl.com/wp-

Univ
ers

ity
 of

 M
ala

ya

168

content/uploads/2016/06/Skycure-Q1-2016-MobileThreatIntelligenceReport.pdf

Somarriba, O., Zurutuza, U., Uribeetxeberria, R., Delosières, L., & Nadjm-tehrani, S.
(2016). Detection and Visualization of Android Malware Behavior. Journal of
Electrical and Computer Engineering, 2016(i), 1–17.

Song, J., Han, C., Wang, K., Zhao, J., & Ranjan, R. (2016). An integrated static detection
and analysis framework for android. Pervasive and Mobile Computing, 32, 15–25.

Statista. (2017). Global smartphone sales by operating system from 2009 to 2015 (in
millions). Retrieved February 14, 2017, from
https://www.statista.com/statistics/263445/global-smartphone-sales-by-operating-
system-since-2009/

Su, M. Y. (2011). Using clustering to improve the KNN-based classifiers for online
anomaly network traffic identification. Journal of Network and Computer
Applications, 34(2), 722–730.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Ribagorda, A. (2014). Evolution,
detection and analysis of malware for smart devices. IEEE Communications Surveys
and Tutorials, 16(2), 961–987.

Suleiman Y. Yerima, S. S., & Muttik, I. (2015). High accuracy android malware detection
using ensemble learning. IET Information Security, 9(6), 313–320.

Symantec. (2015). 2015 Internet Security Threat Report. Internet Security Threat Report
(Vol. 20). Retrieved from
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-
security-threat-report-volume-20-2015-social_v2.pdf

Tahaei, H., Salleh, R., Razak, M. F. A., Ko, K., & Anuar, N. B. (2018). Cost Effective
Network Flow Measurement for Software Defined Networks: A Distributed
Controller Scenario. IEEE Access, 6, 5182–5198.

Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK Auditor: Permission-based Android
malware detection system. Digital Investigation, 13, 1–14.

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The Evolution
of Android Malware and Android Analysis Techniques. ACM Computing Surveys,
49(4), 1–41.

Tanaka, Y., & Goto, A. (2016). Analysis of malware download sites by focusing on time
series variation of malware. Proceedings - IEEE Symposium on Computers and
Communications, 2016–Augus, 173–179.

Univ
ers

ity
 of

 M
ala

ya

169

Tang, A., Sethumadhavan, S., & Stolfo, S. (2014). Unsupervised Anomaly-based
Malware Detection using Hardware Features. Research in Attacks, Intrusions and
Defenses, 109–129. Retrieved from http://arxiv.org/abs/1403.1631

Tchakounte, F. (2014). Permission-based Malware Detection Mechanisms on Android :
Analysis and Perspectives. Journal of Computer Science and Software Application,
1(2), 63–77.

Thanki, S., Govindan, K., & Thakkar, J. (2016). An investigation on lean-green
implementation practices in Indian SMEs using analytical hierarchy process (AHP)
approach. Journal of Cleaner Production, 135, 284–298.

Theoharidou, M., Mylonas, A., & Gritzalis, D. (2012). A Risk Assessment Method for
Smartphones. In Information Security and Privacy Research, 376, 443–456.

Total, V. (2016). Analyzes suspicious files and URLs. Retrieved September 8, 2016, from
https://www.virustotal.com/en/#dlg-join

Trend Micro. (2017). Android Mobile Ransomware: Bigger, Badder, Better? Retrieved
October 7, 2017, from http://blog.trendmicro.com/trendlabs-security-
intelligence/android-mobile-ransomware-evolution/

Unuchek, R., Sinitsyn, F., Parinov, D., & Liskin, A. (2017). IT threat evolution Q2 2017.
Statistics. Retrieved October 11, 2017, from https://securelist.com/it-threat-
evolution-q2-2017-statistics/79432/

Vanja Svajcer. (2011). Plankton malware drifts into Android Market. Retrieved
September 21, 2016, from https://nakedsecurity.sophos.com/2011/06/14/plankton-
malware-drifts-into-android-market/

Veerwal, D., & Menaria, P. (2013). Ensemble of Soft Computing Techniques for
Malware detection. International Journal of Emerging Technologies in
Computational and Applied Sciences (IJETCAS), 6(2), 159–167.

Waikato, U. of. (2017). Waikato Environment for Knowledge Analysis (Weka).
Retrieved March 8, 2017, from http://www.cs.waikato.ac.nz/ml/weka/

Wang, P., & Wang, Y.-S. (2014). Malware behavioural detection and vaccine
development by using a support vector model classifier. Journal of Computer and
System Sciences, 1(Ml), 1–15.

Wang, X., Yang, Y., Zeng, Y., Tang, C., Shi, J., & Xu, K. (2015). A Novel Hybrid Mobile
Malware Detection System Integrating Anomaly Detection With Misuse Detection.
Proceedings of the 6th International Workshop on Mobile Cloud Computing and

Univ
ers

ity
 of

 M
ala

ya

170

Services, 15–22.

Weiss, Y., Fledel, Y., Elovici, Y., & Rokach, L. (2012). Cost-Sensitive Detection of
Malicious Applications in Mobile Devices. Mobile Computing, Applications, and
Services, 382–395.

Westenberg, J. (2015). Facebook now allowing Google to index its mobile app. Retrieved
April 4, 2017, from http://www.androidauthority.com/facebook-allowing-google-
to-index-its-mobile-app-655958/

Wiśniewski, R. (2017). Apktool. Retrieved March 8, 2017, from
https://ibotpeaches.github.io/Apktool/

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012). DroidMat: Android
Malware Detection through Manifest and API Calls Tracing. 2012 Seventh Asia
Joint Conference on Information Security, 62–69.

Wu, F., Narang, H., & Clarke, D. (2014). An Overview of Mobile Malware and Solutions.
Journal of Computer and Communications, 2(2), 8–17.

Xie, P., Lu, X., Wang, Y., Su, J., & Li, M. (2013). An Automatic Approach to Detect
Anti-debugging in Malware Analysis. Trustworthy Computing and Services, 436–
442.

Yassin, W., Udzir, N. I., Muda, Z., Abdullah, a., & Abdullah, M. T. (2012). A Cloud-
based Intrusion Detection Service framework. Proceedings Title: 2012 International
Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec),
213–218.

Ye, L., & Keogh, E. (2011). Time series shapelets: A novel technique that allows
accurate, interpretable and fast classification. Data Mining and Knowledge
Discovery, 22(1–2), 149–182.

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A New Android Malware
Detection Approach Using Bayesian Classification. 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA), 121–
128.

Yuan, Z., Lu, Y., & Xue, Y. (2016). DroidDetector : Android Malware Characterization
and Detection Using Deep Learning. Tsinghua Science and Technology, 21(1), 114–
123.

Zhang, Y., Lee, W., & Huang, Y.-A. (2003). Intrusion detection techniques for mobile
wireless networks. Wireless Networks, 9, 545–556.

Univ
ers

ity
 of

 M
ala

ya

171

Zhao, M., Zhang, T., Ge, F., & Yuan, Z. (2012). RobotDroid : A Lightweight Malware
Detection Framework on Smartphones. Journal of Networks, 7(4), 715–722.

Zhou, Y., & Jiang, X. (2012). Dissecting Android Malware: Characterization and
Evolution. 2012 IEEE Symposium on Security and Privacy, (4), 95–109.

Univ
ers

ity
 of

 M
ala

ya

172

LIST OF PUBLICATIONS AND PAPERS PRESENTED

i. Razak, M. F. A., Anuar, N. B, Salleh, R., & Firdaus, A. (2016). The rise of
“malware”: Bibliometric analysis of malware study. Journal of Network and
Computer Applications, 75, 58–76.

ii. Razak, M. F. A, Anuar, N. B, Othman, F, Firdaus, A, Afifi, F, & Salleh, R. (2017).
Bio-inspired for Features Optimization and Malware Detection. Arabian Journal
Sciences and Engineering, 1 –19.

iii. Firdaus, A., Anuar, N. B., Karim, A., & Razak, M. F. A. (2017). Discovering
optimal features using static analysis and genetic search based method for android
malware detection. Frontiers of Information Technology & Electronic
Engineering, 1–27.

iv. Firdaus, A., Anuar, N. B. N. B., Razak, M. F. A. M. F. A., & Sangaiah, A. K. A.
K. (2017). Bio-inspired computational paradigm for feature investigation and
malware detection: interactive analytics. Multimedia Tools and Applications.

v. Tahaei, H., Salleh, R., Razak, M. F. A., Ko, K., & Anuar, N. B. (2018). Cost
Effective Network Flow Measurement for Software Defined Networks: A
Distributed Controller Scenario. IEEE Access, 6, 5182–5198.

vi. Firdaus, A., Anuar, N.B., Razak, M.F.A., Hashem, I.A.T., Bachok, S., Sangaiah,
A.K., 2018. Root Exploit Detection and Features Optimization: Mobile Device
and Blockchain Based Medical Data Management. Journal of Medical Systems
42.

vii. Hazim, M., Anuar, N.B., Ab Razak, M.F., Abdullah, N.A., 2018. Detecting
opinion spams through supervised boosting approach. PLoS ONE 13, 1–23

Univ
ers

ity
 of

 M
ala

ya

