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QUANTUM TWO-PHOTON LASER IN KERR-LIKE MEDIUM

ABSTRACT

In this thesis, we studied the Kerr nonlinearity effects on nonclassicality and statistics of the

laser field besides the effects of detuning, injection rate, and intensity-dependent coupling

(IDC). We developed a quantum theory of light generated from a two-photon laser (TPL)

with nonlinear Kerr-like medium in a laser dissipative cavity. The full quantum mechanical

approach with the density matrix of the particle-field system is used to derive the TPL

master equation based on Scully-Lamb’s quantum theory of laser. Various dynamical

operators of interest for the cavity field are calculated analytically and computed numerically.

The sophisticated computational program was developed to obtain the numerical solution

for the nonlinear density matrix equation where the exact solution is not possible. We

obtained an approximate soluble form of the photon number distribution equation using

reasonable assumptions. The assumptions are justified by making a comparison with

the exact numerical results that show a good agreement for small fluctuations in the

field. We studied the dynamics and effects of injection rate, two-photon detuning, the

Kerr parameters, and IDC on mean photon number, entanglement criterion, second-order

correlation functions 6(2) , Mandel-& parameter, and photon number distribution. In the

absence of IDC, we found that the field behaves nonclassically for a wide range of the

selected parameters. The results show that the injection rate and detuning decrease

the inter-mode correlation and change the field statistics from sub-Poissonian to super-

Poissonian. However, the Kerr parameters change the field statistics from super-Poissonian

to sub-Poissonian. This means that the Kerr parameters reduce the fluctuations in the mean

photon number below the Poissonian classical limit, which is for photon number squeezed

light. Moreover, Kerr parameters transform the detuning to become intensity-dependent
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and shift the field frequency through the effective detuning. In the presence of IDC, we

found the effects of Kerr parameters and detuning are greatly suppressed, but the effects

of the injection rate are enhanced. The nonlinearity of the Kerr effect results in a dramatic

decrease in the mean photon number. However, the IDC rises mean photon numbers

substantially. The generated photons have nonclassical properties that would last for a

long time. Interestingly, statistics of the field are reversed and become super-Poissonian

under the effects of Kerr parameters and sub-Poissonian under the injection rate, which

is the opposite of the previous case of no IDC. The results show competition between

the Kerr effect and both the two-photon detuning and the IDC with dominance in favor

of the later. These competitions become important if we can exploit and control them

to produce desirable nonclassical photons with acceptable photon number and photon

number fluctuations that would be useful in certain applications in quantum metrology and

quantum information.

Keywords: Two-Photon Laser, Kerr effect, Intensity-dependent coupling.
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ABSTRAK

Di dalam tesis ini, kajian berkenaan kesan ketaklinearan Kerr ke atas keadaan tak klasik

dan statistik medan laser dijalankan disamping mengkaji kesan pengurangan (detuning)

laser, kadar masukan dan gandingan yang bergantung kepada keamatan (IDC). Teori

kuantum cahaya yang dihasilkan dari laser dua foton (TPL) dengan ketaklinearan medium

Kerr-like dalam laser rongga lesap. Pendekatan kuantum mekanik secara menyeluruh

dengan ketumpatan matriks bagi sistem zarah-medan digunakan untuk menerbitkan persa-

maan master untuk TPL berdasarkan teori kuantum laser Scully-Lamb. Pelbagai operator

dinamik terpilih bagi medan rongga dihitung secara analitik dan dikira secara berangka.

Aturcara komputasi yang canggih telah dibangunkan untuk mendapatkan penyelesaian

berangka bagi matriks ketumpatan tak linear dimana tiada kebarangkalian mendapatkan

hasil yang tepat. Anggaran bentuk penyelesaian telah diperolehi bagi persaman taburan

bilangan foton menggunakan set andaian yang munasabah. Andaian tersebut adalah

wajar dengan membuat perbandingan dengan hasil pengiraan berangka yang tepat, yang

mana ianya menunjukkan keputusan yang selari dengan pergolakan kecil dalam medan.

Kajian keatas kedinamikan dan kesan kadar masukan, detuning dua-foton, parameter Kerr,

dan IDC keatas purata bilangan foton, kriteria kebergeliutan, fungsi korelasi tertib kedua

6(2) , parameter Mandel-Q, dan taburan bilangan foton. Tanpa kehadiran IDC, kami dapati

bahawa medan bertindak secara tidak klasik dalam julat parameter yang terpilih. Keputusan

menunjukkan kadar masukan dan detuning telah menurunkan nilai korelasi Antara mod dan

mengubah statistic medan dari sub-Poissonian ke super-Poissonian. Walau bagaimanapun,

parameter Kerr mengubah statistic medan dari super-Poissonian ke sub-Poissonian. Ini

menunjukkan parameter Kerr mengurangkan pergolakan purata bilangan foton dibawah
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had klasik Poissonian, iaitu untuk bilangan foton cahaya termampat. Tambahan pula,

parameter Kerr mengubah keadaan detuning menjadi keadaan bergantung-keamatan, dan

menganjak frekuensi medan melalui kaedah detuning yang berkesan. Dengan kehadiran

IDC, didapati kesan parameter Kerr dan detuning dipadamkan, tetapi kesan kadar masukan

dipertingkatkan. Ketaklinearan kesan Kerr mengakibatkan penurunan dramatik dalam

purata bilangan foton. Walaubagaimanapun, IDC telah menaikkan bilangan foton dengan

ketara. Foton-foton yang dijana mempunyai ciri-ciri tidak klasik yang akan kekal untuk

tempoh masa yang panjang. Apa yang menarik, statistic medan diterbalikkan dan menjadi

super-Poissonian di bawah kesan parameter Kerr dan menjadi sub-Poissonian bawah

kesan kadar masukan, dimana perkara ini bertentangan dengan kes tanda IDC sebelum

ini. Keputusan dari kajian menunjukkan persaingan antara kesan Kerr dengan kedua-dua

detuning dua foton dan IDC dengan kesan dominan memihak kepada IDC. Persaingan ini

penting jika kita dapat mengeksploitasi dan mengawal mereka untuk menghasilkan foton

tak klasik yang dikehendaki dengan bilangan foton yang wajar dan pergolakan foton yang

berguna dalam aplikasi-aplikasi tertentu dalam kuantum metrologi dan kuantum maklumat.

Kata kunci: Laser dua-foton, kesan Kerr, gandingan bergantung keamatan

vi

Univ
ers

ity
 of

 M
ala

ya



ACKNOWLEDGEMENTS

The process of earning a Ph.D. and writing this thesis has been long and arduous. First

of all, I would like to express my sincere gratitude to my supervisor, Professor Dr. Raymond

Ooi for continuously pushing me to complete my Ph.D. study, as well as for his patience,

motivation, and immense knowledge. His guidance has helped me in difficult times, in

research and writing of this thesis, particularly through his insightful comments, wisdom,

and encouragement.

My sincere appreciation is to my family for their prayers, encouragement, and patience.

It is to my father who passed away during my study in Universiti Malaya who was my

shoulder in this life and I miss him too much. It is also to my sisters, brothers, and cousins

whose prayers and unlimited support were my strengths. Special thank you to my friends:

Mujahed Al-Dheeb, Dr. Mohammed Qussailah, Dr. Marwan Alnamari, Dr. Mohammed

Moftah, Dr. Ameen Alqadasi, Dr. Jebreel, Dr. Gamal Almoaled, and Dr. Ahmed Nady.

These great people are my best friends among many, which is hard to list all of them, whom

I appreciate for their support.

My love and appreciation are to my wives, Um Fares and Um Ahmed for their patience,

great support, understanding, and love. My love and appreciation go to my daughters,

Aisha, Reem, and Sarah and my sons, Fares and Yackoob for their love, patience, and

encouragement.

Finally, I would like to express my gratitude and appreciation to Sana’a University (in

Yemen) for their support through the scholarship that was offered to me. I am highly

indebted to the Universiti Malaya, particularly the Faculty of Science staff for the financial

support and extension that enabled me to complete my study. I also would like to thank all

members of the Quantum and Laser Science research group for stimulating discussions.

vii

Univ
ers

ity
 of

 M
ala

ya



TABLE OF CONTENTS

ABSTRACT ................................................................................................................... iii

ABSTRAK ..................................................................................................................... v

ACKNOWLEDGEMENTS ............................................................................................. vii

TABLE OF CONTENTS ................................................................................................ viii

LIST OF FIGURES........................................................................................................ xiii

LIST OF TABLES.......................................................................................................... xvi

LIST OF SYMBOLS AND ABBREVIATIONS ...............................................................xvii

LIST OF APPENDICES ................................................................................................xviii

CHAPTER 1: INTRODUCTION................................................................................... 1

1.1 Preface ................................................................................................................. 1

1.2 Motivations ........................................................................................................... 2

1.3 Aims and Objectives............................................................................................. 6

1.4 Outline .................................................................................................................. 6

1.5 Organization of the Thesis.................................................................................... 7

CHAPTER 2: NONCLASSICALITY OF LIGHT .......................................................... 8

2.1 Introduction........................................................................................................... 8

2.2 Density Matrix....................................................................................................... 10

2.3 Quantization of the Electromagnetic Field............................................................ 15

2.4 Quantum States of the Electromagnetic Field ...................................................... 24

2.4.1 Number State ........................................................................................... 25

2.4.2 Thermal State........................................................................................... 28

2.4.3 Coherent State ......................................................................................... 30

viii

Univ
ers

ity
 of

 M
ala

ya



2.4.4 Squeezed State........................................................................................ 32

2.5 Nonclassical Measures of the Field...................................................................... 35

2.5.1 Mandel & Parameter................................................................................ 35

2.5.2 Correlation Functions ............................................................................... 36

2.5.3 Cauchy-Schwarz Inequality...................................................................... 41

2.6 Glauber-Sudarshan P-Representation ................................................................. 42

CHAPTER 3: QUANTUM THEORY OF THE LASER................................................. 45

3.1 Introduction and Background................................................................................ 45

3.2 Single Mode Field in Bosonic Reservoir............................................................... 46

3.3 Quantum Theory of the Laser: The Gain Part...................................................... 53

3.3.1 Gain Part of Laser Master Equation......................................................... 53

3.3.2 Coarse Graining - Many Atoms................................................................ 56

3.4 Nonlinear Laser Master Equation: Scully - Lamb Approach................................. 57

3.5 Photon Statistics................................................................................................... 59

3.5.1 Exact Photon Statistics ............................................................................ 60

3.5.2 Far Above Threshold................................................................................ 63

3.5.3 Expansion of Nonlinear Terms ................................................................. 64

3.5.4 Below Threshold: Linear Approximation .................................................. 64

3.5.5 Lowest-Order Nonlinearity ....................................................................... 65

3.6 Laser Spectrum and Linewidth ............................................................................. 66

CHAPTER 4: TWO-PHOTON LASER WITH SELF-KERR EFFECT ......................... 68

4.1 Introduction........................................................................................................... 68

4.2 Model and Laser Master Equation........................................................................ 70

4.3 The Laser Rate Equation...................................................................................... 77

ix

Univ
ers

ity
 of

 M
ala

ya



4.4 Characterization of the Cavity Field...................................................................... 81

4.4.1 Mean Photon Number .............................................................................. 83

4.4.2 Nonclassicality by � (2) and CSI .............................................................. 87

4.4.3 Nonclassicality by &................................................................................. 89

4.4.4 Fluctuations.............................................................................................. 90

4.4.5 Entanglement........................................................................................... 92

4.4.6 Photon Statistics ...................................................................................... 93

4.5 The Computational Solution ................................................................................. 96

4.6 Results and Discussion ........................................................................................ 99

4.6.1 Effects of Injection Rate ........................................................................... 100

4.6.1.1 On Mean Photon Number ........................................................ 100

4.6.1.2 On � (2) and CSI ...................................................................... 101

4.6.1.3 On Entanglement ..................................................................... 106

4.6.1.4 On Mandel & Parameter.......................................................... 107

4.6.1.5 On Distribution %=1=2 ................................................................ 107

4.6.2 Effects of Detuning................................................................................... 109

4.6.2.1 On Mean Photon Number ........................................................ 109

4.6.2.2 On � (2) and CSI ...................................................................... 110

4.6.2.3 On Entanglement ..................................................................... 111

4.6.2.4 On Mandel & Parameter.......................................................... 112

4.6.2.5 On Distribution %=1=2 ................................................................ 112

4.6.3 Effects of Kerr parameter ......................................................................... 113

4.6.3.1 On Mean Photon Number ........................................................ 113

4.6.3.2 On � (2) and CSI ...................................................................... 113

4.6.3.3 On Entanglement ..................................................................... 114

x

Univ
ers

ity
 of

 M
ala

ya



4.6.3.4 On Mandel & Parameter.......................................................... 115

4.6.3.5 On Distribution %=1=2 ................................................................ 115

4.6.4 Approximate Solution: Agreement and Justification ................................ 116

CHAPTER 5: TWO-PHOTON LASER WITH (SELF & CROSS) KERR EFFECT
AND IDC ...............................................................................................119

5.1 Introduction........................................................................................................... 119

5.2 Model and Laser Master Equation........................................................................ 120

5.3 The Laser Rate Equation...................................................................................... 122

5.4 Field Nonclassicality and its Measures................................................................. 127

5.4.1 Moments .................................................................................................. 128

5.4.2 Mean Photon Number .............................................................................. 132

5.4.3 � (2) and CSI ............................................................................................ 135

5.4.4 Mandel & Parameter and Fluctuations .................................................... 137

5.4.5 Entanglement........................................................................................... 138

5.5 Results and Discussion ........................................................................................ 139

5.5.1 Effects of Injection Rate ........................................................................... 140

5.5.1.1 On Mean Photon Number ........................................................ 140

5.5.1.2 On � (2) and CSI ...................................................................... 140

5.5.1.3 On Entanglement ..................................................................... 144

5.5.1.4 On Mandel & Parameter.......................................................... 145

5.5.1.5 On Distribution %=1=2 ................................................................ 146

5.5.2 Effects of Detuning................................................................................... 147

5.5.2.1 On Mean Photon Number ........................................................ 147

5.5.2.2 On � (2) and CSI ...................................................................... 147

5.5.2.3 On Entanglement ..................................................................... 149

xi

Univ
ers

ity
 of

 M
ala

ya



5.5.2.4 On Mandel & Parameter.......................................................... 149

5.5.2.5 On Distribution %=1=2 ................................................................ 149

5.5.3 Effects of Kerr parameters ....................................................................... 150

5.5.3.1 On Mean Photon Number ........................................................ 150

5.5.3.2 On � (2) and CSI ...................................................................... 150

5.5.3.3 On Entanglement ..................................................................... 151

5.5.3.4 On Mandel & Parameter.......................................................... 151

5.5.3.5 On Distribution %=1=2 ................................................................ 152

5.5.4 Approximate Solution with IDC: Agreement and Justification .................. 152

CHAPTER 6: CONCLUSION .....................................................................................154

REFERENCES ..............................................................................................................156

LIST OF PUBLICATIONS AND PAPERS PRESENTED ..............................................171

APPENDICES ...............................................................................................................175

xii

Univ
ers

ity
 of

 M
ala

ya



LIST OF FIGURES

Figure 4.1: Energy levels of photon number states and probability flow
corresponding to the diagonal elements of the density matrix,
Equation (4.23). ....................................................................................... 78

Figure 4.2: Mean photon number 〈=1〉 (upper panel) and entanglement � (lower
panel). The dynamics and parameter dependence for: (a) injection
rate A0 (Δ = 0, j1 = 50^), (b) detuning Δ (A0 = 40^, j1 = 50^), and
(c) Kerr parameter j1 (A0 = 40^, Δ = 0).................................................... 101

Figure 4.3: Mean photon number 〈=1〉 (upper panel) and entanglement � (lower
panel). The dynamics for: (a) Δ = 0, j1 = 50^, (b) A0 = 40^,
j1 = 50^, and (c) A0 = 40^, Δ = 0. ........................................................... 102

Figure 4.4: Mean photon numbers, 〈=1〉,〈=2〉 (upper panel) and & (lower panel);
parameter dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b)
detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr parameter j1
(A0 = 40^, Δ = 0). ...................................................................................... 102

Figure 4.5: 6
(2)
11 (upper panel) and 6(2)22 (lower panel). The dynamics and

parameter dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b)
detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr parameter j1
(A0 = 40^, Δ = 0). ...................................................................................... 104

Figure 4.6: 6
(2)
11 (upper panel) and 6(2)22 (lower panel). The dynamics for: (a)
Δ = 0, j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0. .......... 104

Figure 4.7: 6
(2)
12 (upper panel) and CSI (�2B, lower panel). The dynamics and

parameter dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b)
detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr parameter j1
(A0 = 40^, Δ = 0). ...................................................................................... 105

Figure 4.8: 6
(2)
12 (upper panel) and CSI (�2B, lower panel). The dynamics for: (a)
Δ = 0, j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0. .......... 105

Figure 4.9: (upper panel) 6(2)
8 9

; 8, 9 = 1, 2 and (lower panel) CSI (�2B, left-hand
axis in red color) and entanglement � (right-hand axis in blue color).
The parameter dependence for: (a) injection rate A0 (Δ = 0,
j1 = 50^), (b) detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr
parameter j1 (A0 = 40^, Δ = 0)................................................................. 106

Figure 4.10: &1 (upper panel) and &2 (lower panel). The dynamics and parameter
dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuning
Δ (A0 = 40^, j1 = 50^), and (c) Kerr parameter j1 (A0 = 40^, Δ = 0). ..... 108

Figure 4.11: &1 (upper panel) and &2 (lower panel). The dynamics for: (a) Δ = 0,
j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0. ..................... 108

xiii

Univ
ers

ity
 of

 M
ala

ya



Figure 4.12: The statistics distribution function %=1=2 , its contours (ellipses) at
FWHM, and the single-mode distributions %=1 in black color and %=2

in red color, for each mode for: (i) injection rate A0, (ii) detuning Δ,
and (iii) Kerr parameter j1. The distributions and their contours are
evaluated at each of the three values. The vertical (horizontal) line in
contours represents width of the distribution %=1 (%=2). The
coordinate of the cross point of the two lines are the averages (〈=1〉, 〈=1〉).110

Figure 4.13: Agreement between the exact solution and the analytic approximation
at steady-state: (a, b) real part of d=1=2;=1+1=2+1 (Equations 4.12 and
4.26 at =1 = =2 = 6) and 〈=1〉 (solution of the quadratic and quintic
expressions, Equation 4.44 and Equation 4.41) for (a) A0 = 40^,
j1 = 50^ and (b) A0 = 40^, Δ = 0. (c-d) for A0 = 40^, Δ = 0, d11 = 0;
%=1=2 (at j1 = 50^), 〈=1〉, and �2B. ............................................................ 117

Figure 5.1: (i-iv) Mean photon number 〈=1〉 and (v-viii) entanglement � ; the
dynamics and parameter dependence are for: (i, v) Δ = 0, j1 = 50^,
j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0,
j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^........................................... 141

Figure 5.2: (i-iv) Mean photon number 〈=1〉 and (v-viii) entanglement � ; the
dynamics for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^,
j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii)
A0 = 40^, Δ = 0, j1 = 50^......................................................................... 141

Figure 5.3: (i-iV) Mean photon numbers 〈=1〉, 〈=2〉, and (v-viii) &1, &2. The
parameter dependence are for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi)
A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv,
viii) A0 = 40^, Δ = 0, j1 = 50^. ................................................................. 142

Figure 5.4: (i-iv) &1 and (v-viii) 6(2)11 ; the dynamics and parameter dependence
for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0,
(iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^. ... 143

Figure 5.5: (i-iv) 6(2)11 and (v-viii) 6(2)22 ; the dynamics for: (i, v) Δ = 0, j1 = 50^,
j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0,
j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^........................................... 143

Figure 5.6: (i-iv) 6(2)12 and (v-viii) CSI (�2B); the dynamics and parameter
dependence for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^,
j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii)
A0 = 40^, Δ = 0, j1 = 50^......................................................................... 144

Figure 5.7: (i-iv) 6(2)12 and (v-viii) CSI (�2B). The dynamics for: (i, v) Δ = 0,
j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^,
Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^. .............................. 144

xiv

Univ
ers

ity
 of

 M
ala

ya



Figure 5.8: (i-iv) 6(2)11 , 6(2)22 , 6(2)12 . (v-viii) CSI (�2B, on the left-hand side in red
color) and entanglement � (on the right-hand side in blue). The
parameter dependence for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi)
A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv,
viii) A0 = 40^, Δ = 0, j1 = 50^. ................................................................. 145

Figure 5.9: (i-iv) &1 and (v-viii) &2; the dynamics for: (i, v) Δ = 0, j1 = 50^,
j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0,
j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^........................................... 146

Figure 5.10: The statistics distribution function %=1=2 , its contours at FWHM, and
its two marginal distributions for each single mode for: (i) injection
rate A0, (ii) detuning Δ, (iii) Kerr parameter j1, and (iv) Kerr
parameter j. The contours (ellipses) of the distributions and the
single-mode distributions, %=1 in black color and %=2 in red color, for
mode 1 and mode 2, respectively, evaluated at each of the three values. 148

Figure 5.11: The distribution %=1=2 (upper panel for j = 50^), 〈=1〉, and �2B (lower
panel) at A0 = 40^, Δ = 0, j1 = 0. The approximate solutions are
from Equation 5.39 for quadratic and from Equation 5.35 for quartic........ 153

xv

Univ
ers

ity
 of

 M
ala

ya



LIST OF TABLES

Table 2.1: Properties of coherent state........................................................................ 31

Table 2.2: Properties of squeezed coherent state. ...................................................... 34

xvi

Univ
ers

ity
 of

 M
ala

ya



LIST OF SYMBOLS AND ABBREVIATIONS

CSI : Cauchy-Schwarz Inequality

FWHM : Full Width at Half Maximum

IDC : Intensity-Dependent Coupling

TPL : Two-Photon Laser

xvii

Univ
ers

ity
 of

 M
ala

ya



LIST OF APPENDICES

Appendix A: Useful Operator Transformation Formulas ............................................. 175

Appendix B: The Hamiltonian in the Interaction Picture ............................................. 180

Appendix C: Atom-Field Density Matrix Elements ...................................................... 183

Appendix D: The Gain Part of the Density Matrix ....................................................... 188

Appendix E: Effective Values of 〈"±=1=2〉BB and 〈!=1+1,=2+1〉BB − 〈!=1,=2〉BB .................. 193

Appendix F: The Generating Function � (G1, G2; C) .................................................... 195

Appendix G: Derivation of the Statistics Function % (=1, =2; C) ................................... 199

Appendix H: A General Formula for Moments ............................................................ 201

xviii

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 1: INTRODUCTION

1.1 Preface

Light is a jewel of nature. It has been fascinating scientists as well as poets and artists.

The man is exposed to the light that comes from the sun or stars. These sources of

light were the main sources for a very long time. The curiosity of a man leads him to

discover various sources of light for his benefits. The light was, and to somewhat still, a

puzzle to scientists. It captivates so many people by its speed, diffraction, and interference.

Researchers devoted their time to study its properties and there have been two different

views on the nature of light, the wave nature, and the particle nature.

The study of the great scientists, Newton, Huygens, Young, Kirchhoff, and many others

paved the way for understanding the nature of the light. Their efforts came to resounding

success. It is James Clerk Maxwell, who, as a contributor as well, presented a set of

beautiful equations that describe light, which later named after him. This was a revolution

in science, and the next leap was at the beginning of the last century when the photon

idea was proposed. Since then, and after discovering the quantum theory, the science

community adopted the dual nature of the light, a particle, and a wave.

Light is the messenger by which researchers can explore the other worlds, from the

microworld of atoms and molecules to the very distant galaxies. It is the light that makes

the theory of relativity and quantum mechanics possible. Its behavior led to Lorentz’s

transformation and guided Einstein to the special theory of relativity. It is the light that

led to the black body catastrophe that drove scientists to the quantum theory. The recent

advances in understanding the nature came at the beginning of the 1960s when the laser

(light amplification by stimulated emission radiation) was invented.
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1.2 Motivations

The light from lasers has special characteristics that make it unique from the normal light

that comes from the sun or lambs, for example. Uniqueness comes from its directionality and

monochromaticity. The laser has versatile applications and becomes daily life technology.

The laser light is based on stimulated radiation; an incident photon stimulates an atom

from the upper level to the lower level and two photons are scattered by the atom. These

scattered photons have the same phase, frequency, and direction of the incident photon.

The process of lasing is composed of three quantum processes: absorption, spon-

taneous emission, and stimulated emission. Shortly after the invention of the laser, re-

searchers (Sorokin & Braslau, 1964; Prokhorov, 1965) suggested another kind of lasers,

the TPL. This laser was based on a theoretical study performed by Göppert-Mayer (1931)

almost three decades before the invention of the laser. In her investigation, Goeppert

studied the probability of transitions made by the absorption of two quanta (two photons) at

the same time.

In TPL, the lasing is accomplished by emitting two photons from an atomic transition

between levels of identical parity. The quest for knowledge and curiosity led researchers

to perform extensive studies on the possibility of realizing such a new kind of lasers. The

TPL is distinguished from its counterpart standard single-photon laser. It promises to

display a wealth of new and exciting nonlinear behavior that might lead to novel results

(Prokhorov, 1965; Gauthier, 2003). This means that, with TPL, it is possible to achieve

high-intensity light that is an unresisting need. The first realization of the two-photon process

was measured by Kaiser & Garrett (1961) when they reported a blue fluorescence from

two-photon-excited atoms in a europium-doped crystal. Two-photon quantum process idea

became the basis for two-photon scanning microscopy (Denk et al., 1990), and the motive

for multiphoton microscopy (Ustione & Piston, 2011).
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A two-photon laser has attracted a considerable amount of theoretical interest in the

literature, semiclassically (Wang & Haken, 1984a,b,c; Bay et al., 1995), and as well as

quantum-mechanically (Cheng & Haken, 1988; Zhu & Li, 1987; Boone & Swain, 1990). Its

quantum statistical properties such antibunching (Zubairy, 1980) and squeezing (Savage

& Walls, 1986; Zubairy et al., 1983) are of great interest. The quantum theory of laser was

developed in a series of papers by Scully & Lamb (1967, 1968, 1969); Scully et al. (1970);

Kim et al. (1970); Wang & Lamb (1973) and by Haken (2012) and Lax & Louisell (1969).

Haken and Lax developed sophisticated techniques to convert operator master equations

into c-number Fokker-Planck equations or equivalent Langevin’s equations. The quantum

theory of the two-photon laser (Gauthier, 2003) (for review) has been studied many years

ago.

The radiation field has different classical and nonclassical statistical properties, and

the two-photon process is in the heart of nonlinear and quantum optics (Walther et al.,

2006; Loudon, 1980). The nonclassical properties like squeezing, antibunching, and sub-

Poissonian(Davidovich, 1996) can be achieved through nonlinear processes (Brambilla

et al., 1992). Entangled photons can be generated through laser-driven schemes involving

two-photon emissions and double Raman excitations (Ooi, 2007). The field distribution

function obeys the super-Poissonian for thermal light, Poissonian for coherent light, and

sub-Poissonian for squeezed light (Fabre, 1992; Kimble, 1992). It is desirable to produce

nonclassical properties of light (Loudon, 1980; Walther et al., 2006) for experimental appli-

cations where precise measurements are required like gravitational-wave detection(Caves,

1980, 1981; Abadie et al., 2011; Aasi et al., 2013). In photodetection experiments, one

difficulty is to overcome the noise in the light source which limits the measurement accuracy.

Thus photon fluctuation’s reduction is important (Orszag & Retamal, 1991; Orszag, 2016).

It has been shown that the pumping statistics (Orszag & Retamal, 1991) and detuning have
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significant effects on the statistical properties of the field and can be optimized to reduce

the photon fluctuations (Bay et al., 1995).

There aremany studies on the statistical properties for one-photon, two-photon, andmulti-

photon lasers (McNeil & Walls, 1975a,b), correspondingly, from one mode to multimode

cases (Schrade et al., 1993; Eremeev et al., 2011). Two-photon transitions, related to the

production of squeezed lights (Every, 1975; Knight & Pegg, 1982), and production of the

widely used entangled photon pairs by parametric down-conversion, are more interesting

than the usual one-photon transitions (Dodonov & Mizrahi, 1997a,b). Photon statistics have

been studied in various systems, including single beam (Simaan & Loudon, 1975b, 1978)

and double beam (Simaan & Loudon, 1975a), two-photon absorption and stimulated Raman

processes (Simaan, 1975). Extensive theory of two-photon laser has been developed and

studied for two-level systems (Gauthier, 2003) up to saturation level (Bandilla & Voigt, 1982;

Wang & Haken, 1984a; Cheng & Haken, 1988). Exact solutions based on P-representation

have been found (Kryuchkyan et al., 1996). In the case of lasing far above the threshold,

researchers have obtained analytical expressions for the photon statistics, particularly

the photon numbers, moments and correlations of higher orders (Dodonov et al., 1989).

However, for the simple degenerate 3-level cascade scheme, analytical expressions of the

photon statistics remain challenging and non-trivial (Bay et al., 1995).

The two-photon process is the simplest form of nonlinearity and introducing another

nonlinearity to the two-photon atom-field interaction enriches the nonclassical properties of

the system. One simple, but interesting, form of this nonlinearity is the Kerr-effect, which

has paid much attention since the laser invention (Yurke & Stoler, 1986; Bužek & Jex,

1990; Semiao et al., 2009; Faghihi et al., 2013; Singh & Gilhare, 2016b; Ghorbani et al.,

2017). Recently, the two-mode field in a non-dissipative cavity with Kerr-like medium is

investigated (Singh & Ooi, 2018). Another nonlinearity which has been investigated by
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many researchers is the deformed nonlinear coupling between the matter and the radiation

field (Bužek & Jex, 1990; Bartzis, 1990; Napoli & Messina, 1996; Singh & Ooi, 2018).

These studies give us the motivation to investigate the effect of the nonlinearity of

Kerr-type and the IDC on the dynamics and nonclassicality of the two-photon laser. By

Kerr-effect, the study refers to the optical Kerr effect resulting from the interaction of the light

field itself with the matter to distinguish it from other types (external electric or magnetic

field). The Kerr-effect has two parts, self-Kerr, and cross-Kerr. The self-Kerr of a mode of

the field is produced by the mode itself independently from the other modes. However, the

cross-Kerr is the result of the interaction between the two modes through the nonlinear

medium.

In the present thesis, the statistical properties and the role of the IDC of a nondegenerate

TPL in the Kerr-like medium is studied. The laser cavity is filled with many atoms. To realize

the system, the cavity becomes dispersive. To model the dispersion, the dissipation of the

cavity through its walls is simulated by allowing the cavity to interact with its surroundings.

Several observables of the cavity are calculated in terms of the parameters of the system.

These observables are studied through their dependence on time and parameters of

the system. Besides the effects of these various parameters, the impact of the IDC on

the statistical properties and distribution function of two modes of the lasing photons is

investigated.

In this study, the approach of Scully & Lamb (1967) to calculate the master equation for

the laser is followed. Exact nonlinear quantum theory of laser for a system of # two-level

atoms in a doubly resonant cavity is used. The master equation of the system is derived and

from the resulting master equation, the photon statistics and equations for other measurable

quantities to characterize the field are obtained. The mean photon number, the � (2) , and

the Mandel-& parameter are calculated also. The nonclassicality of the TPL is investigated
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through the violation of the Cauchy-Schwarz inequality (CSI) and values of the & that

determine the kind of statistics (Poissonian, sub-Poissonian, and super-Poissonian).

1.3 Aims and Objectives

The objectives of the present work are:

1. Deriving the full quantum master equation of the TPL using the Scully-Lamb approach.

2. Obtaining an analytic approximate solution to the rate equation and the moments of

the photon distribution.

3. Solving the full density-matrix and various nonclassicality measures of the TPL nu-

merically.

4. Studying the effects of the Kerr parameters on the statistical properties of the cavity

field of the TPL.

5. Studying the impact of the injection rate and detuning on the nonclassical properties

of the TPL in Kerr-like medium.

6. Investigating the role of the IDC on the statistical properties of the TPL.

1.4 Outline

The thesis covers the following main topics:

1. The density matrix: The focus is on the derivation of the density matrix from which all

required observables are obtained.

2. The rate equation: The focus is on the derivation of an approximate expression for

the rate equation. Off-diagonal elements in the rate equation are approximated by

diagonal elements. The resulting expression makes the subsequent calculations an

easier task.

3. The moments and correlations: In this topic, the main theme is on deriving and solving

the first moments and calculation of the � (2) and &. Analyzing the assumptions
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behind the approximation and calculation of the mean photon number is given. The

nonclassicality measures follow from the calculation of the moments.

4. The photon statistics: The main focus is on deriving an analytic approximate solution

for the photon distribution.

5. The simulation: In this topic, an account of the algorithm used to solve the multi-

dimensional density matrix and the computational challenges are provided.

1.5 Organization of the Thesis

The thesis has the following structure: The first chapter is the introduction in which

the motivations behind the research work are given. It also gives an account of the aims

and objectives of the study and the outline of the research. Chapter 1 is concluded by

presenting a summary of the thesis structure. The second chapter is devoted to the literature

review in which a review of the previous related published works is presented. Chapter

1 also contains a brief account of the background of the field of quantum and nonlinear

optics. Chapter 3 is devoted to the quantum theory of the laser where more details on the

calculation of the master equation of the laser are given. The main chapters are Chapter 4

and Chapter 5 where the effects of the injection rate, detuning, and self-Kerr parameters

on the statistical properties of the TPL are studied. In Chapter 5, the role of IDC and the

cross-Kerr effect are also studied. Finally, the conclusion of the research and suggestions

for future work are presented in Chapter 6.
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CHAPTER 2: NONCLASSICALITY OF LIGHT

2.1 Introduction

A nonclassical phenomenon is the which cannot be explained in the framework of

classical physics, and have an explanation in quantum physics. Nonclassical light is light

with characteristics that can be described only within quantum optics; a field of physics that

concerns the study and applications of the quantum interactions of the electromagnetic

field with the matter. Dodonov & Man’ko (2003, Chapter 1) presented a comprehensive

review of nonclassical states of light. A brief review on different families of nonclassical

states was presented but much detail is given to squeezed and Schrodinger’s cat states.

They provided a comprehensive list of bibliography to the material for researchers and

interested people. Nonclassical states refers to the quantum states that cannot be produced

in the usual sources of light, such as lasers or lamps, rather than those requiring more

sophisticated apparatus for their production.

Nonclassical light shows nonclassical behavior such as entanglement (an aspect of

highly nonclassical correlation) (Einstein et al., 1935; Schrödinger, 1935, 1936; Audretsch,

2008), squeezing (Walls, 1983; Loudon & Knight, 1987; Knight & Bužek, 2004; Lvovsky,

2015; Schnabel, 2017), and antibunching (Kimble et al., 1977; Loudon, 1980; Mandel, 1986;

Zou & Mandel, 1990; Mandel & Wolf, 1995). Nonclassical light has nonclassical states

(Tan & Jeong, 2019; Dodonov, 2002) such as squeezed states and Fock or number states.

It has a sub-Poissonian statistics (Mandel, 1979; Short & Mandel, 1983) of no classical

counterpart. According to the Web of Science electronic database of journals and articles

in titles in the field of optics only, the phrases "nonclassical states" , "squeezed states",

"squeezing", and "entanglement" appear 336, 1323, 3150, and 15998 times respectively.

This shows the huge amount of interest in the subject.
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Nonclassicality is relevant in fundamental quantum physics and also in the context of

some high-precision measurements. Sub-Poissonian beams and quadrature-squeezed

light have been envisaged in communications, in precise interferometric measurements,

and in the detection of gravitational waves (Davidovich, 1996; Caves, 1980, 1981). The

nonclassicality is an important resource in quantum metrology. It has been demonstrated

that the nonclassicality of a continuous-variable state is a quantifiable resource for parameter

estimation tasks (Kwon et al., 2019). In the field of quantum optics and quantum information,

the non-classical effects of quantum states, such as sub-Poisson statistical distribution,

the squeezing effect, and the photon anti-bunching effect are a research focus for both

theorists and experimentalists. Their importance is due to their wide applications in various

fields, such as quantum key distribution, quantum measurement, quantum computation,

and quantum teleportation (Bouwmeester & Zeilinger, 2000; Vedral, 2006; Mermin, 2007;

Barnett, 2009; Nielsen & Chuang, 2010; Yamamoto & Semba, 2015).

Squeezed light exhibits noise reduction in one quadrature component and increasing

noise in the other conjugate quadrature component. The most familiar kinds of squeezed

light have either reduced amplitude noise or reduced phase noise, with increased noise of

the other component. Fock states (also called photon number states) have a well-defined

number of photons (stored, e.g., in a cavity), while the phase is totally undefined (Kim

et al., 2012). The most classical state of the quantum light is the coherent state (Glauber,

1963a,b) in which the noise in each quadrature of the field is equal to the minimum quantum

uncertainty (Mandel & Wolf, 1995; Gardiner & Zoller, 2004).

The important question that should be asked is how can one know the light is nonclassi-

cal? To differentiate between classical and nonclassical light, scientists adopted several

measures. One of these, which is considered a definitive measure of nonclassicality is that

the Glauber-Sudarshan P- representation has a negative value or being more singular than
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a Dirac delta function (Glauber, 1963a; Titulaer & Glauber, 1965; Mandel, 1986; Hillery,

1987; Mandel & Wolf, 1995; Richter & Vogel, 2002; Agarwal, 2013; Kwon et al., 2019).

However, many researchers have found regular nonclassical states (Damanet et al., 2018;

Kühn & Vogel, 2018). The P- representation helps deduce a set of inequalities for field

properties that the classical field obeys. A violation of these inequalities indicates the

nonclassicality of the field as can be seen for CSI (Titulaer & Glauber, 1965; Loudon, 1980;

Zubairy, 1982). One more measure to study the nonclassicality of the light is the correlation

functions introduced by Glauber soon after the invention of the laser (Glauber, 1963a,c;

Loudon, 1980). Another measure is the Mandel-& parameter (Mandel, 1979, 1986; Mandel

& Wolf, 1995) which quantifies the field fluctuations. Kwon et al. (2019) introduced the

metrological power as a new measure for nonclassicality and showed that any pure state

with negativity in the % function provides metrological enhancement over all classical states

in displacement estimation tasks.

Nonclassical light is often generated either in nonlinear devices such as sub-threshold

optical parametric oscillators or frequency doublers or in systems with only a single atom

or ion (or just a few such emitters), such as a single-atom laser. The interested reader may

refer to other dedicated reviews of the subject for more indepth discussions (Braunstein &

van Loock, 2005; Davidovich, 1996; Boyd et al., 2019).

2.2 Density Matrix

The density matrix was introduced by von Neumann (1927) to describe statistical con-

cepts in quantum mechanics. Since then its use grows up from quantum mechanics and

statistical physics to other fields (McWeeny, 1960; Haar, 1961). In quantum mechanics,

the concern is almost on states of systems that are represented by state vectors. This is

true for a single isolated or noninteracting system or a pure state. However, we are often

confronted with situations where the system is coupled to another system and the interest
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becomes in one of these two systems but not the other. Here, equations for this system

alone are written and what happens to the other is ignored. The truncation of the total

problem automatically reduces our knowledge and usually results in a mixture.

In the mixture case, we are completely ignorant about the states of the system but rather

the classical probabilities for having various possible state vectors (Landau & Lifshitz, 1981;

Louisell, 1973; Sargent III et al., 1974; Meystre & Sargent, 2007; Blum, 2012). In this case,

the calculation of averages and wave functions of the physical quantities characterizing

a given system using state vectors is extremely cumbersome. So, the primary reason to

have an alternative and mathematically compact tool is to facilitate the treatment of many-

particle interacting quantum systems. The second reason is that the physical system goes

into various kinds of damping and one must include them for a valid and more complete

description. Some of these can be incorporated directly into equations of motion for the

probability amplitudes (the wave functions). However, for other damping mechanisms such

as decoherence, we need a more general description than can be provided by the state

vector (Sargent III et al., 1974; Schleich, 2001; Rand, 2016). For these reasons, the density

matrix gains its importance.

For two noninteracting systems, � and �, the state vector of the combined system is

the direct product of the pure state vectors of each subsystem

|k�+�〉 = |k� = q�〉 ⊗ |k� = q�〉 = |q�〉|q�〉, (2.1)

where |q�〉 and |q�〉 are eigenstates of the subsystems � and �, respectively. If at a

specific point of time the two subsystems are allowed to interact, the state vector of the

combined system |k�+� (C)〉 can be expressed in terms of orthonormal basis vectors |08〉
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and |1 9 〉 of each subsystem

|k�+� (C)〉 =
∑
8 9

�018 9 (C) |081 9 〉〈081 9 |, (2.2)

where the coefficient �01
8 9
(C) are the probability amplitude at time C of the subsystem �

being in the state |08〉 and subsystem � in state |1 9 〉. If the two subsystems have not

interacted at all, the system state vector of the combined system, Equation 2.2, becomes

the direct product of the state vectors of its subsystems and the system is in its pure state.

The combined system is said to be entangled if its state vector cannot be factorized into a

product of the states of its subsystems.

The density or statistical operator d, is a sum of projectors |k8〉〈k8 | onto the possible

state vectors |k8〉, each weighted by a classical probability %8

d =
∑
8

%8 |k8〉〈k8 |. (2.3)

Here the summation can take the form of several summations and integrals. The expectation

value of an observable " is calculated by taking the quantum mechanical average then

taking the ensemble average of all possible states. In another words, one has to sum up all

the possible values of the observable from the quantum state |k8〉 then taking the statistical

average of the system in the state |k8〉 with probability %8

〈"〉 =
∑
8

%8 〈k8 |" |k8〉 . (2.4)
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In a chosen complete orthonormal set of basis q 9 , Equation 2.4 is written as

〈"〉 =
∑
8

%8 〈k8 |"
∑
9

��q 9 〉〈q 9 ��|k8〉 = ∑
8 9

%8 〈q 9 |k8〉〈k8 |" |q 9 〉

=
∑
9

〈
q 9

��∑
8

%8 |k8〉〈k8 |"
��q 9 〉 = Tr (d") , (2.5)

where in the last equality, Equation 2.3 and trace notation are used. The result is indepen-

dent of the basis used as it should be. For two subsystems in interaction, sometimes our

interest becomes in knowing the behavior of only one of them, say �. Now, let " (�) be an

operator in the space of subsystem �, where the superscript � denotes that the operator

acts only on the variables of its subsystem �. Hence expectation value of " (�) is

〈" (�)(C)〉 = Tr
[
d(C)" (�)

]
=

∑
8 9

〈
k
(�)
8
k
(�)
9

���d(C)" (�) ���k (�)8
k
(�)
9

〉
=

∑
8 9 :;

〈
k
(�)
8
k
(�)
9

���d(C)���k (�)
:
k
(�)
;

〉〈
k
(�)
:
k
(�)
;

���" (�) ���k (�)8
k
(�)
9

〉
=

∑
8 9 :;

〈
k
(�)
8
k
(�)
9

���d(C)���k (�)
:
k
(�)
;

〉〈
k
(�)
:

���" (�) ���k (�)8

〉
X; 9

=
∑
8:

(∑
9

〈
k
(�)
8
k
(�)
9

���d(C)���k (�)
:
k
(�)
9

〉) 〈
k
(�)
:

���" (�) ���k (�)8

〉
=

∑
8:

〈
k
(�)
8

���d(�) (C)���k (�)
:

〉〈
k
(�)
:

���" (�) ���k (�)8

〉
=

∑
8

〈
k
(�)
8

���d(�) (C)" (�) ���k (�)8

〉
= Tr�

[
d(�) (C)" (�)

]
, (2.6)

where the relevant density matrix that contains only the variables of subsystem � is defined

by the matrix elements

〈
k
(�)
8

���d(�) (C)���k (�)
:

〉
=

∑
9

〈
k
(�)
8
k
(�)
9

���d(C)���k (�)
:
k
(�)
9

〉
, (2.7)
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and Tr� denotes the trace is over subsystem � variables.This relevant density matrix is

called the reduced density matrix. It has the operator form

d(�)(C) = Tr�d(C). (2.8)

The time evolution of the density operator is given by the Liouville equation

m

mC
d = − 8

ℏ
[�, d] . (2.9)

The solution of Equation 2.9 in terms of the unitary evolution operator* (C, C0) is given by

d(C) = *(C − C0)*†(C − C0). (2.10)

For time-independent Hermitian Hamiltonian �, the evolution operator has the form

*(C − C0) = e−(8/ℏ)� (C−C0) , (2.11)

and Equation 2.10 has the solution

d(C) = e−(8/ℏ)� (C−C0)d(C0)e(8/ℏ)� (C−C0) . (2.12)

Here is a summarized list of a few important properties of the density operator. (Puri, 2001):

1. The density operator of a mixture is given by Equation 2.3 and for a pure state, it is

reduced to a single quantum state |k8〉〈k8 |.

2. The density operator is Hermitian d† = d with Trd = 1.

3. The density operator is positive-definite 〈k |d |k〉 ≥ 0.

4. For mixed state, Trd2 < 1, but for pure state d2 = d and Trd2 = 1.

5. The diagonal elements of the density matrix are non-negative real numbers and repre-
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sent the probability of the system being in particular states of a chosen representation.

6. The off-diagonal elements represent the coherence and are complex in general.

The main virtue of the density matrix is its analytical power in the construction of general

formulas and the proof of general theorems. The use of density matrix methods also has

the advantage of providing a uniform treatment of all quantum mechanical states, whether

they are completely or incompletely known. For an elementary introduction, the interested

reader may refer to Parker (2005), and for a good background and more details on the

density matrix to Blum (2012). A great deal of how to use the density matrix in quantum

and nonlinear optics is presented in Rand (2016).

2.3 Quantization of the Electromagnetic Field

Most of the properties of the light can be explained in the framework of semiclassical

theory in which the matter is treated quantum mechanically while the field is described

by classical electrodynamics. However, few phenomena, but very important, such as

squeezing and antibunching cannot be explained within this theory and it becomes nec-

essary to treat the electromagnetic (EM) field quantum mechanically on the same foot

as the matter. In this section, an outline of the quantization of the free electromagnetic

field (noninteracting, far from the sources, charges, and currents) is given. More details

can be found in Louisell (1973, Chapter 4), Mandel & Wolf (1995, Chapter 10), Greiner &

Reinhardt (1996, Chapter 1), Cohen-Tannoudji et al. (1997), Loudon (2000, Chapter 4),

Schleich (2001, Chapter 10), Blaise & Henri-Rousseau (2011, Chapter 14), and Grynberg

et al. (2010, Chapter 4). For a short survey for quantization in nonlinear quantum optics,

one may refer to Hillery (2009).

The canonical quantization is starting by writing the classical Lagrangian and then

obtaining the Hamiltonian of the system. This Lagrangian must be written in terms of
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the conjugate canonical variables of the system @1, @2, · · · , @# and ?1, ?2, · · · , ?# , a

well-known solved problem in classical mechanics (Landau & Lifshitz, 1976; Goldstein

et al., 2011). In the dynamics of a single particle, the two conjugate canonical variables

are the position @ = G and momentum ? = <E. For the sake of shortening the notation,

the coordinates (the variables) are written collectively by q = (@1, @2, · · · , @# ) and p =

(?1, ?2, · · · , ?# ). These variables characterize the physical system at each instant of

time and from which its energy � = � (@, ¤@, C) is obtained. The Hamiltonian � and the

Lagrangian ! are linked by

� (@, ¤@, C) =
#∑
9=1
¤@ 9 ? 9 − ! (@, ¤@, C) . (2.13)

The pairs of conjugate canonical variables (@ 9 , ? 9 ), 9 = 1, · · · , # are connected by the

Hamilton’s canonical Equations

¤@ 9 =
m�

m? 9
, (2.14)

¤? 9 = −
m�

m@ 9
. (2.15)

The quantum version of the Hamiltonian is obtained by replacing the classical dynamical

conjugate canonical variables (c-numbers, functions of space and time) by their corre-

sponding observables (linear operators in a Hilbert space), @ 9 → @̂ 9 and ? 9 → ?̂ 9 . The

classical Poisson brackets are replaced by their corresponding quantum commutation

relations according to (Greiner & Reinhardt, 1996)

[@ 9 , ? 9 ]Poisson →
1
8ℏ
[@̂ 9 , ?̂ 9 ] . (2.16)

The procedure described above applies to the material particles, and a similar procedure

to quantize the EM field is followed. This means that the conjugate canonical variables
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satisfying the Hamilton’s Equations 2.14 and 2.15 have to be identified. The same procedure

cannot be applied directly since the dynamics of the EM field are governed by Maxwell’s

equations (a continuously infinite system of coupled linear partial differential equations)

and the problem has to be reduced to a countable set of decoupled variables. For this

purpose, the calculations will be performed in the :-space (spacial-reciprocal space) by

using Fourier decomposition. In other words, the real EM field is expressed in terms of

their complex Fourier components. The EM field in free space are governed by the four

Maxwell’s equations

∇ · E(r, C) = 0, (2.17)

∇ · B(r, C) = 0, (2.18)

∇ × E(r, C) = − m
mC

B(r, C) , (2.19)

∇ × B(r, C) = n0`0
m

mC
E(r, C) , (2.20)

where n0 and `0 are the permittivity and permeability of free (vacuum) space, respectively.

The EM field can be expressed in terms of vector A(r, C) and scalar q(r, C) potential fields

E(r, C) = − m
mC

A(r, C) − ∇q(r, C) , (2.21)

B(r, C) = ∇ × A(r, C) . (2.22)

The Maxwell’s equations are gauge invariant (Jackson, 1999, p. 240; Parker, 2005, p. 356;

Schleich, 2001, p. 257; Zangwill, 2013, p. 504). In quantum optics, the Coulomb gauge (or

transversality gauge) condition is used, which is defined by

∇ · A(r, C) = 0. (2.23)
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From Equation 2.17, q = 0 is taken. From the vector identity ∇ × ∇ × A = ∇∇ · A − ∇2A

and Equation 2.20, the vector potential satisfies the wave equation

∇2A − 1
22
m2A
mC2

= 0. (2.24)

Solution of Equation 2.24 can be obtained by either by solving it in a region in space of

volume + with real boundaries such as in a real cavity or in a large cavity without any real

boundaries, called the quantization cavity. In the former case, the solution is represented

by standing waves and in the later by running plane waves, in both situations periodic

conditions at the walls of the cavity are imposed. Adopting the second case, the vector

potential reads

A(r, C) = 1
√
+

∑
k

Ak(C) e8k·r, (2.25)

with the Fourier components (amplitude)

Ak(C) =
1
√
+

∫
+

d3AA(r, C) e−8k·r. (2.26)

The sum in Equation 2.25 is over all the three integer number components of the vector

n = (=1, =1, =3) that define the wave vector k according to

k =
2c
!

n, (2.27)

and the volume + is, for simplicity, chosen to be + = !3 for a cubic cavity. The Coulomb

gauge Equation 2.23 or the transversality condition of the EM field in the :-space becomes

k · Ak = 0. (2.28)
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The reality of the field leads to the condition

A−k(C) = A∗k(C). (2.29)

Using Equation 2.25 in to Equation 2.24, the amplitudes evolve according to

d2Ak

dC2
+ l2

kAk = 0, (2.30)

with the angular frequency lk = 2 |k| (2 is the speed of light in the vacuum). The solution

of Equation 2.30 is straight forward and from the reality of the field it reads

Ak(C) = Uke−8lkC + U∗−ke8lkC , (2.31)

where Uk is a constant vector. The transversality of the field means that, in infinitely many

different ways, two mutually linearly-independent unit vectors YkB, B = 1, 2 can be chosen.

These two unit vectors are the polarization vectors (for the same propagation vector)

constitute with the unit propagation vector k/|k| an orthonormal right-handed system. In

this system, the vector potential is resolved into two components, along these polarization

vectors, so the

Uk =
2∑
B=1

UkBYkB . (2.32)

Using Equation 2.32 in Equation 2.31 and substituting the result in Equation 2.25, the vector

potential has the expansion

A(r, C) = 1
√
+

∑
kB

[
UkBYkBe−8lkBC + U∗−kBY

∗
−kBe

8lkBC
]

e8k·r

=
1
√
+

∑
kB

[
VkB (C)ukB (r) + V∗kB (C)u

∗
kB (r)

]
. (2.33)

19

Univ
ers

ity
 of

 M
ala

ya



The vector potential A(r, C) thus has expansion in terms of vector mode functions ukB with

complex amplitude coefficients UkB. In Equation 2.33, the mode functions and amplitudes

are

ukB (r) = YkBe8k·r, (2.34)

VkB (C) = UkBe−8lkBC . (2.35)

Each mode is labeled by a wave vector k and polarization index B. From Equations 2.21

and 2.22, the fields E(r, C) and B(r, C) have the expansions

E(r, C) = 8
√
+

∑
kB
lkB

[
VkB (C)ukB (r) − V∗kB (C)u

∗
kB (r)

]
, (2.36)

B(r, C) = 8
√
+

∑
kB

[
VkB (C)k × ukB (r) − V∗kB (C)k × u∗kB (r)

]
. (2.37)

The energy of the EM field is obtained by substituting Equations 2.36 and 2.37 in the

formula

� =
n0
2

∫
+

d3A
[
E2(r, C) + 22B2(r, C)

]
. (2.38)

Using the orthogonality relation of the basis functions ukB (r)

∫
+

d3Au∗k′B (r) · ukB (r) = +Xkk′XBB′, (2.39)

and the vector relation (a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c), the energy of the

field reads

� = n0
∑
kB
l2

k
[
V∗kB (C)VkB (C) + VkB (C)V∗kB (C)

]
. (2.40)

The Hamiltonian, Equation 2.40, suggests a linear relation between the conjugate canonical
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variables and the real and imaginary parts of the amplitude functions VkB (C). These

functions, Equation 2.35, satisfy the oscillator equation, Equation 2.30, and their real and

imaginary parts are coupled by linear equations similar to the Hamilton equations. So,

the amplitude functions are linear combination of the real canonical variables that can be

written as

VkB (C) =
1
√

4n0

[
@kB (C) +

8

lk
?kB (C)

]
. (2.41)

By substituting Equation 2.41 in Equation 2.40, the Hamiltonian takes the form

� =
1
2

∑
kB

[
?2

kB (C) + l
2
k@

2
kB (C)

]
. (2.42)

The total energy is the energy of a system of independent harmonic oscillators of unit mass,

each oscillator corresponds to the mode (k, B) of the electromagnetic field. In terms of

the conjugate canonical variables, the expansions of the classical electromagnetic fields

become

A(r, C) = 1
√

4n0+

∑
kB

{[
@kB (C) +

8

lk
?kB (C)

]
YkBe8k·r + c.c.

}
, (2.43)

E(r, C) = 1
√

4n0+

∑
kB

{[
@kB (C) +

8

lk
?kB (C)

]
(8lkYkB) e8k·r + c.c.

}
, (2.44)

B(r, C) = 1
√

4n0+

∑
kB

{[
@kB (C) +

8

lk
?kB (C)

]
(8k × YkB) e8k·r + c.c.

}
. (2.45)

Here c.c stands for the complex conjugate of the preceding term. The quantum version

of the fields is straightforward after obtaining the quantum expressions for the dynamical

variables @ and ?. The quantum mechanical conjugate canonical variables satisfy the
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commutation relations

[@̂kB (C), ?̂k′B′ (C)] = 8ℏXkk′XBB′, (2.46)

[@̂kB (C), @̂k′B′ (C)] = 0, (2.47)

[ ?̂kB (C), ?̂k′B′ (C)] = 0, (2.48)

where the convention of putting carets on the same symbols of their classical corresponding

variables is used. It is more convenient to work with non-Hermitian variables rather than the

Hermitian operators as in the case of the quantum harmonic oscillator. For this purpose,

the non-Hermitian annihilation (or destruction) 0̂kB (C) and creation 0̂†kB(C) operators for a

quantum oscillator are defined by

0̂kB (C) =
1

√
2ℏlk

[lk@̂kB (C) + 8 ?̂kB (C)] , (2.49)

0̂
†
kB (C) =

1
√

2ℏlk
[lk@̂kB (C) − 8 ?̂kB (C)] . (2.50)

The time evolution of operators 0̂kB (C), 0̂†kB (C) has the same form of Equation 2.35

0̂kB (C) = 0̂kB (0)e−8lkC , (2.51)

0̂
†
kB (C) = 0̂

†
kB (0)e

8lkC , (2.52)

with commutation relations (using Equations 2.46-2.48 and Equations 2.49, 2.50)

[
0̂kB (C), 0̂†k′B′ (C)

]
= Xkk′XBB′, (2.53)

[0̂kB (C), 0̂k′B′ (C)] = 0, (2.54)[
0̂
†
kB (C), 0̂

†
k′B′ (C)

]
= 0. (2.55)

In terms of the annihilation and creation operators, Equations 2.49, 2.50, and using the
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commutation relation Equations 2.53-2.55 in Equation 2.42, the Hamiltonian takes the form

�̂ =
∑
kB
ℏlk

(
0̂
†
kB (C)0̂kB (C) +

1
2

)
. (2.56)

The term 1
2ℏlk is the zero point energy contribution to the oscillator mode energy or the

energy of the vacuum field of the corresponding mode. This term is usually dropped in

many calculations and for this case Equation 2.56 takes the form

�̂ =
∑
kB
ℏlk0̂

†
kB (C)0̂kB (C) =

∑
kB
ℏlk=̂kB (C), (2.57)

where =̂kB (C) = 0̂†kB (C)0̂kB (C) is the Hermitian number operator. The energy spectrum is

therefore determined by the eigenvalues of the number operator which are non-negative

integers. In the following section, a brief introduction to different states of the electromagnetic

field, one of which is the number state (the eigenstate of the number operator) is presented.

The quantum mechanical expressions for the EM fields corresponding to the classical EM

fields, Equations 2.43-2.45 read

A(r, C) =
∑
kB

√
ℏ

2n0+lk

(
0̂kB (0)YkBe8(k·r−lkC) + h.c.

)
, (2.58)

E(r, C) =
∑
kB

√
ℏlk
2n0+

(
80̂kB (0)YkBe8(k·r−lkC) + h.c.

)
, (2.59)

B(r, C) =
∑
kB

√
ℏ

2n0+lk

(
80̂kB (0)k × YkBe8(k·r−lkC) + h.c.

)
. (2.60)

Here h.c stands for the Hermitian conjugate of the preceding term. Usually vector fields

are written as a sum of positive and negative frequency parts conjugate to each other. For

23

Univ
ers

ity
 of

 M
ala

ya



the electric field, Equation 2.59

E(r, C) = E(+) (r, C) + E(−) (r, C) , (2.61)

where

E(+) (r, C) = 8
∑
kB

√
ℏlk
2n0+

0̂kB (0)YkBe8(k·r−lkC) , (2.62)

E(−) (r, C) = −8
∑
kB

√
ℏlk
2n0+

0̂
†
kB (0)Y

∗
kBe
−8(k·r−lkC) . (2.63)

The positive frequency E(+) (r, C) is a combination of annihilation operators only and

the negative part is a combination of creation operators only. The field operators with

E(−) (r, C) =
(
E(+) (r, C)

)†
are non-Hermitian operators but the positive frequency part is

the most used in experiments (absorption as in photoelectric effect) to measure the field

not the real field itself, Equation 2.61.

2.4 Quantum States of the Electromagnetic Field

The quantized electromagnetic field can be in different states according to the values

of fluctuations in its amplitude and phase. According to the amount of fluctuations, the

field statistics can be classified also into super-Poissonian (where the variance is greater

than the mean), sub-Poissonian (the variance is less than the mean), or Poissonian (the

variance equals the mean). The classification will be discussed in more detail when the

Mandel-& parameter is explored in the next section. The main states are number state,

coherent state, and squeezed states with many extensions and generalizations (Dodonov

& Man’ko, 2003). Here, a very short summary of a few important properties of four states

of the electromagnetic field is presented. The interested reader may refer to any textbook

in quantum optics and Schleich (2001) is very useful.
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2.4.1 Number State

In the quantization of the electromagnetic field in free space, the modes of the field

are in a one-to-one correspondence with an infinite set of harmonic oscillators as have

been shown in Section 2.3. The energy eigenstate of a single mode of the radiation

field of = photons is the eigenstate of the harmonic oscillator of = excitations which is

also the eigenstate of the number operator with eigenvalue = (Mandel & Wolf, 1995; Fox,

2006; Blaise & Henri-Rousseau, 2011). It is called the number state or Fock state |=〉

with =̂|=〉 = =|=〉. For multimode radiation field, the number state is the tensor product of

the number state of each mode since the corresponding operators act on their each own

subspace

|{=kB}〉 = |=k1B1=k2B2 , · · · , =k;B; , · · ·〉

= |=k1B1〉|=k2B2〉 · · · |=k;B;〉 · · · =
∏
kB
|=kB〉. (2.64)

The number state is the eigenstate of the number operator

=̂kB |=kB〉 = =kB |=kB〉. (2.65)

The lowest energy of the field is when the field being in the vacuum state (ground state, no

excitations) denoted by |vac〉 = |{0kB}〉. The number states are not eigenstates for the

annihilation and creation operators; their operations on the number states are given by

(Mandel & Wolf, 1995)

0̂kB
��=kB

〉
=
√
=kB

��=kB − 1
〉
, (2.66)

0̂
†
kB

��=kB
〉
=

√
=kB + 1

��=kB + 1
〉
. (2.67)
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The operators 0̂kB and 0̂
†
kB sometimes are called lowering and raising operators, respec-

tively, since they lower and raise the energy state of the field by unity as will be seen in the

next section as shown in Equations 2.66 and 2.67. Since the operators in different modes

act on each own subspace, their operations of the number states Equation 2.64 become

0̂kB
��{=kB}

〉
=
√
=kB

�� · · · , =kB − 1, · · ·
〉
, (2.68)

0̂
†
kB

��{=kB}
〉
=

√
=kB + 1

�� · · · , =kB + 1, · · ·
〉
. (2.69)

Any number state can be formed by repeated application of the raising operators on the

vacuum state. From 2.69, the number states read

��{=kB}
〉
=

∏
kB

[
(=kB!)−

1
2

(
0̂
†
kB

)=kB ] ���vac〉. (2.70)

The number state has a definite value of the amplitude (number of the photons) since it

has vanishing variance so the phase is not defined according to Heisenberg uncertainty

principle. The number states |=kB〉 are a complete and orthonormal set that serves as a

basis for representation arbitrary states or operators

∑
=kB

|=kB〉〈=kB | = 1̂, (completeness) (2.71)

〈{=kB}|{<kB}〉 =
∏
kB
X=kB<kB , (orthonormality) (2.72)

where 1̂ is an identity operator. From the completeness relation Equation 2.71, the density

operator reads

d̂ =
∑
=kB<kB

〈=kB | d̂ |<kB〉|=kB〉〈<kB |. (2.73)
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A general pure state of the radiation field in the number state representation takes the form

(Scully & Zubairy, 1997; Loudon, 2000; Grynberg et al., 2010; Schleich, 2001)

|k〉 =
∑

=1=2···= 9 ···
k=1=2···= 9 ··· |=1=2 · · · = 9 · · ·〉, (2.74)

where the probability amplitudes k=1=2···= 9 ··· are arbitrary complex numbers. If the states

|k〉 are products of individual modes states then they are called separable states otherwise

they form what is called entangled states (non-separable states). Entanglement is coined by

Schrödinger (1935, 1936) after the Einstein-Podolsky-Rosen paper (Einstein et al., 1935).

Entangled states exhibit unique non-local correlation properties that are in the heart of

quantum mechanics and extremely important in quantum information (Hillery & Zubairy,

2006; Audretsch, 2008; Horodecki et al., 2009; Ivan et al., 2011). Simple important pure

states of this general form are obtained when the superposition is restricted to the number

states of a single-mode. Examples of such states are coherent states and squeezed states

that will be presented in the following subsections. It is important to calculate the average

and fluctuations of the EM field in the number state representation. Using Equations 2.68,

2.69, and 2.72, the expectation values of the annihilation and creation operators vanishes

〈{=kB}|0̂kB |{=kB}〉 = 0 =
〈
{=kB}

��0̂†kB��{=kB}
〉
. (2.75)

So the expectation values of the EM field Equation 2.61 vanishes too

〈{=kB}|Ê(r, C) |{=kB}〉 = 0. (2.76)
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Again, using 2.68, 2.69, and 2.72, the expectation value of the fluctuations of the EM field

becomes

〈
{=kB}

��(ΔÊ)2
��{=kB}

〉
=

〈{
=kB

}�� [Ê(+) · Ê(+) + Ê(−) · Ê(−)
] ��{=k′B′

}〉
+

〈{
=kB

}�� [Ê(+) · Ê(−) + Ê(−) · Ê(+)
] ��{=k′B′

}〉
=

〈{
=kB

}�� [Ê(+) · Ê(−) + Ê(−) · Ê(+)
] ��{=k′B′

}〉
=

∑
kB

∑
k′B′

ℏ
√
lklk′

2n0+

〈{
=kB

}��0̂kB (0)0̂†k′B′ (0)
��{=k′B′

}〉
5 kBk′B′

+
∑
kB

∑
k′B′

ℏ
√
lklk′

2n0+

〈{
=kB

}��0̂†kB (0)0̂k′B′ (0)
��{=k′B′

}〉
5 ∗kBk′B′

=
∑
kB

∑
k′B′

Xkk′XBB′
ℏ
√
lklk′

2n0+

[
(=kB + 1) 5 kBk′B′ + =kB 5

∗
kBk′B′

]
=

∑
kB

ℏlk
2n0+

(2=kB + 1) = 1
n0+
〈�̂〉, (2.77)

where 5 kBk′B′ = YkB ·Y∗k′B′e
8[(k−k′)·r−(lk−lk′)C] and in the last equality, Equation 2.56 is used.

So the vacuum field has fluctuations of magnitude

〈
vac

��� (ΔÊ
)2 ���vac〉 = 1

n0+

∑
k
ℏlk, (2.78)

where summation over the two polarization states is performed. The vacuum fluctuations

are important pure quantum result that explains many phenomena such as spontaneous

emission, Casimir effect, and Lamb shift (Mandel & Wolf, 1995; Scully & Zubairy, 1997;

Loudon, 2000; Schleich, 2001; Grynberg et al., 2010). These phenomena and the diver-

gence problem in the vacuum energy and vacuum fluctuations are not discussed here.

2.4.2 Thermal State

Most fields commonly encountered in practice are produced by sources in thermal

equilibrium and they are called thermal fields, fields are in a thermal state. A system with
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energy �̂ and in thermal equilibrium at temperature ) is described by a canonical ensemble

d̂ =
exp

(
−V�̂

)
Tr exp

(
−V�̂

) , (2.79)

where V = 1/:B) with :B is the Boltzmann constant and �̂ is the free-field Hamiltonian

Equation 2.56. Since operators associated with different modes are commute then it is

easy to show that the density operator, Equation 2.79, becomes (Mandel & Wolf, 1995;

Loudon, 2000)

d̂ =
∏
kB
d̂kB =

∏
kB

(
1 − e−ℏlkV

)
e−ℏlkV=̂kB . (2.80)

The density operator Equation 2.80 is diagonal in the number state representation and

upon using the completeness relation Equation 2.71, it reads

d̂ =
∑
=kB

∏
kB

(
1 − e−ℏlkV

)
e−ℏlkV=kB |=kB〉〈=kB |. (2.81)

From Equation 2.81, the joint probability ? ({=kB}) is the product of the independent

probabilities ? (=kB) for =kB photons in the mode (k, B)

? ({=kB}) =
∏
kB
? (=kB) , (2.82)

with

? (=kB) =
(
1 − e−ℏlkV

)
e−ℏlkV=kB . (2.83)

The mean of the distribution is found to be

〈=̂kB〉 =
1

eℏlk/:B) − 1
, (2.84)
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and the variance reads

〈
=̂2

kB
〉
− 〈=̂kB〉2 = 〈=̂kB〉 (1 + 〈=̂kB〉) . (2.85)

Equation 2.85 indicates that the thermal field distribution is wider than the Poisson distribu-

tion for the same mean. However, the deviation is small for optical fields at typical radiation

temperature where the mean photon number Equation 2.84 is small (Mandel & Wolf, 1995).

In terms of the mean photon number, the photon number distribution of the individual mode,

Equation 2.83, reads

? (=kB) =
〈=̂kB〉=kB

(1 + 〈=̂kB〉)=kB+1
. (2.86)

So, the photon distribution in a thermal field is described by the Bose-Einstein distribution,

Equation 2.86.

2.4.3 Coherent State

Coherent states (quasi-classical states) (Klauder & Skagerstam, 1985; Klauder & Su-

darshan, 2006; Zhang et al., 1990) are of central importance to quantum mechanics and,

in particular, to quantum optics. They are states of the harmonic oscillator, which demon-

strate maximum coherence and almost classical behavior. They were discovered by E.

Schrodinger in 1926 when he derived it as a minimum uncertainty Gaussian wavepacket.

Coherent states have a great deal of interest since introduced for the quantized electromag-

netic fields by R. Glauber, J. Klauder and E.C.G. Sudarshan in early 1960. The coherent

state of a single-mode light, |U〉 is defined to be the eigenstate of the annihilation operator,

0̂, of the electromagnetic field (Glauber, 1963a,b)

0̂ |U〉 = U |U〉 , (2.87)
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Table 2.1: Properties of coherent state.

Quantity Definition
creation operator 〈U |0̂† = 〈U |U∗

number-operator mean 〈=̂〉 = 〈U |=̂|U〉 = |U |2

orthogonality 〈U |V〉 = eU∗V−|U |2/2−|V |2/2

completeness 1
c

∫
d2U |U〉〈U | = 1̂

measure d2U = d (ReU) d (ImU)
excitations |U〉 = eU0̂†−U∗0 |0〉
variance

〈
(Δ=̂)2

〉
=

〈
=̂2〉 − 〈=̂〉2 = |U |2

density operator d = |U〉〈U |

where U = ReU + 8 ImU is a complex number. It is the state of a coherent field with

well-defined phase and amplitude (Agarwal, 2013). Coherent states can be represented in

terms of Fock or number states (Glauber, 1963a; Gardiner & Zoller, 2004).

|U〉 = e−|U |
2/2

∞∑
==0

U=
√
=!
|=〉 (2.88a)

= e−|U |
2/2

∞∑
==0

U=

=!

(
0̂†

)=
|0〉 . (2.88b)

The main properties of the coherent state are summarized in Table 2.1 (Carmichael, 2002).

The coherent state in Equation 2.88 can be generated using the unitary displacement

operator � (U) on the vacuum state |0〉

|U〉 = � (U) |0〉, (2.89)

with the displacement operator

� (U) = eU0̂
†−U∗0 . (2.90)

A few important properties of the displacement operator are (Scully & Zubairy, 1997; Walls
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& Milburn, 2008)

�†(U) 0̂� (U) = 0̂ + U1̂, (2.91)

�†(U) 0̂†� (U) = 0̂† + U∗1̂, (2.92)

�†(U) = �−1(U) = � (−U) . (2.93)

The coherent states minimize the uncertainty relation of two quadratures (dimensionless

canonical conjugate operators, -̂1 and -̂2) of the field. These quadratures can be expressed

in terms of the operators 0̂ and 0̂† and they have the minimum value of
(
Δ-̂1

)2
=

(
Δ-̂2

)2
=

1/4 (Peřina et al., 1994; Mandel & Wolf, 1995; Fox, 2006; Walls & Milburn, 2008) (Note

that the authors definition of the quadratures differs by a factor so one encounter
(
Δ-̂1

)2
=(

Δ-̂2
)2
= 1 or 1/2). The extension of the pure coherent state to an ensemble (multimode)

of coherent states is straightforward Mandel & Wolf (1995).

2.4.4 Squeezed State

The coherent states are considered on the boundary between classical and nonclassical

states of the light. Any uncertainty less than the minimum on any one of the two quadratures

of the field mode will produce what is called a squeezed state of the field (Walls, 1983;

Loudon & Knight, 1987; Knight & Bužek, 2004; Lvovsky, 2015; Schnabel, 2017; Bachor &

Ralph, 2004). Squeezed states originally introduced by Yuen (1976) under the name two-

photon coherent states before they bear the current name. When one of the quadratures

of the field has less uncertainty than the minimum; the other quadrature will have greater

uncertainty than the minimum according to uncertainty relation,
(
Δ-̂ 9

)2
< 1/4 ( 9 = 1 or 2)

(Scully & Zubairy, 1997).

The squeezed states are nonclassical states and very important for highly precision
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measurement such as gravitational waves measurement (Abadie et al., 2011). If the

measurement interest is to measure one aspect of the electromagnetic field, for example,

the amplitude then the noise in the amplitude quadrature must be suppressed on the

expense of the phase quadrature. The squeezed state can be generated from the vacuum

state by applying the squeeze operator on the coherent state (Scully & Zubairy, 1997)

|U, b〉 = ((b) |U〉 = ((b) � (U) |0〉 . (2.94)

The unitary squeeze operator is given by

((b) = e(b
∗0̂2−b0̂†2)/2, (2.95)

with the following properties (Scully & Zubairy, 1997)

(†(b) 0̂((b) = `0̂ − a0̂†, (2.96)

(†(b) 0̂†((b) = `0̂† − a∗0̂, (2.97)

(†(b) = (−1(b) = ((−b) . (2.98)

The squeeze parameter b = Ae8\ is an arbitrary complex number. The modulus A = |b |

describes the amount of squeezing, and the phase \ determines the angle of the squeezing

axis in phase space (Garrison & Chiao, 2008). In Table 2.2, a few of the main properties of

the squeezed coherent state are listed.

Alternative definition of the squeezed state is the coherent squeezed state obtained by

first squeezing the vacuum then displace it (Mandel & Wolf, 1995; Walls & Milburn, 2008;
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Table 2.2: Properties of squeezed coherent state.

Quantity Definition
number-operator mean 〈=̂〉 = |U |2

(
`2 + |a |2

)
− U∗2`a − U2`a∗ + |a |2

orthogonality 〈U, b |V, b〉 = 〈U |V〉 = eU∗V−|U |2/2−|V |2/2

completeness 1
c

∫
d2U |U, b〉〈U, b | = 1̂

degree of squeezing A = |b |
generator |U, b〉 = ((b) � (U) |0〉
density operator d = |U, b〉〈U, b |

Garrison & Chiao, 2008; Orszag, 2016)

|U, b〉 = � (U) ((b) |0〉 . (2.99)

In this definition one can consider the squeezed state |U, b〉 as an eigenstate of a gener-

alized annihilation operator �̂ (Mandel & Wolf, 1995; Walls & Milburn, 2008; Garrison &

Chiao, 2008; Orszag, 2016)

�̂ |U, b〉 = U+ |U, b〉 , (2.100)

where

�̂ = ((b) 0̂(†(b) (2.101)

= `0̂ + a0̂†, (2.102)

and

U± = `U ± aU∗, (2.103)

with ` = cosh A, a = e8\ sinh A,
[
�̂, �̂†

]
= 1̂. Mandel & Wolf (1995) and Garrison & Chiao

(2008) make a clear notation to distinguish between the two definitions. They wrote |b, U〉
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for the new definition as the squeezing of the vacuum operates first then displaces the

state. The two definitions are related to each other by (Mandel & Wolf, 1995; Garrison &

Chiao, 2008)

|b, U〉 = |U−, b〉 , (2.104)

|U, b〉 = |b, U+〉 . (2.105)

These quantum states and many others can be generated by different ways (Tan & Jeong,

2019; Braunstein & van Loock, 2005; Davidovich, 1996; Boyd et al., 2019).

2.5 Nonclassical Measures of the Field

To study the nonclassicality of the quantized electromagnetic field, a set of measures is

needed to quantify the nonclassicality of the field (Tan & Jeong, 2019). The main measures

that are adopted in this work to demonstrate the nonclassicality are the Mandel-& parameter,

the correlation functions, and the CSI. For a clear and concise introduction, a reader may

refer to Agarwal (2013).

2.5.1 Mandel & Parameter

In statistics, moments are very important quantities to study statistical probability dis-

tributions of random variables. Fluctuations in a physical quantity are unavoidable and

it is required to be reduced most of the time. To quantify these fluctuations and to study

characteristics of a statistical distribution the normalized moments are used. In practice,

the important is the low-order moments such as variance. For the Poisson random process,

variance equals the mean which is the case for statistics of the ideal laser. Statistics are

called super-Poissonian when its width is larger than the width of Poisson distribution or

the variance is greater than the mean. On the other hand, when the variance is less than

the mean, it is called sub-Poissonian(Davidovich, 1996). To study the departure of photon
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number distribution from Poisson statistics, many measures have been used. The most

used measure is the & parameter introduced by Mandel to characterize the statistics of

photon distribution emitted in atomic resonance fluorescence (Mandel, 1979) which is given

by

& =

〈
0̂†20̂2 −

(
0̂†0̂

)2
〉〈

0̂†0̂
〉 =

〈
=̂

(
=̂ − 1̂

)〉
− 〈=̂〉2

〈=̂〉 =

〈
(Δ=̂)2

〉
〈=̂〉 − 1. (2.106)

The field in a coherent state is considered to be the closest one to a classical field for which

& = 0 is the boundary between a classical and a quantum field. For a thermal state, one

has & > 0, corresponding to a super-Poissonian distribution. For & < 0, photon statistics

are sub-Poissonian and the corresponding state is nonclassical. The most elementary

example of non-classical states is number states. Since they are eigenstates of the number

operator with vanishing fluctuations and the & = −1. The & is related to what is called

Fano factor (Fano, 1947; Teich & Saleh, 1985; Pennini & Plastino, 2010) through & = � − 1

but & has wide use in quantum optics as an indicator for a nonclassical field. The light

that has sub-Poissonian statistics is sometimes described as photon-number squeezed

(Yamamoto et al., 1986).

2.5.2 Correlation Functions

Coherence plays an important role in optics. The coherence is represented by correlation

functions that facilitate the study of interference due to fluctuations of the field. The classical

theory was developed and studied extensively in the classic standard book, Principles of

Optics by Born & Wolf (1999). Glauber (1963c) for the first time studied the quantum theory

of coherence. Born and Wolf studied the coherence function of the first order while Glauber

studied the quantum version of all orders. Correlation functions are essential tools to

characterize the electromagnetic field. In the calculations, the field is assumed to be linearly
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polarized, in which it is much simpler to deal with the scalar quantities � (±) = Y · E(±) . The

photoelectric effect is used in the local field measurements in the optical region where the

photon absorption mechanism is used. For this reason, only the annihilation operators

involved in the measurements. To obtain the counting rate probability, one has to obtain

the transition probability that the detector (atom) absorbs a photon from the field at position

A between times C and C + 3C (Glauber, 1963c). The calculation shows that the transition

probability is governed by the first-order correlation function, � (1) defined by

� (1)(r1, C1; r2, C2) = Tr
[
d� (−)(r1, C1) � (+)(r2, C2)

]
=

〈
� (−)(r1, C1) � (+)(r2, C2)

〉
. (2.107)

For a statistically stationary field (withmeasurement time delay, g), the� (1) = � (1)(r, C; r, C + g)

forms a Fourier transform pair with the power spectrum ((r, l) (Scully & Zubairy, 1997).

((r, l) = 1
c

Re
∫ ∞

0
dge8lg� (1)(r, C; r, C + g) . (2.108)

Statistically stationary field means that the expectation value of any function of the field oper-

ators is invariant under time translation. This means that the correlation functions depend on

the time difference g = C2 − C1 and not on the time points themselves. For a detailed presen-

tation and discussion of this time-translation symmetry and other symmetries, the interested

reader may refer to (Mandel & Wolf, 1995, p. 601) and references therein. In the case of

evaluating the transition rate for a joint absorption of photons at the two space-time points

(two detectors) with C1 < C2, the result defines the � (2) = � (2) (r1, C1, r2, C2, r3, C3, r4, C4)
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(Glauber, 1963c).

� (2) = Tr
[
d� (−)(r1, C1) � (−)(r2, C2) � (+)(r3, C3) � (+)(r4, C4)

]
=

〈
� (−)(r1, C1) � (−)(r2, C2) � (+)(r3, C3) � (+)(r4, C4)

〉
. (2.109)

The � (2) is a measure of intensity correlations at two space-time points. The most general

correlation function may have unequal number of creation and annihilation operators

due to a nonlinear interaction in a dielectric (Mandel & Wolf, 1995). Here the simple

general version of the correlation functions is presented. The nth-order correlation function

� (=) = � (=)(X1, · · · ,X2=) with C1 < C2 < · · · < C2= (Glauber, 1963c; Mandel & Wolf, 1995;

Scully & Zubairy, 1997) is defined by.

� (=) = Tr
[
d� (−)(X1) , · · · , � (−)(X=) � (+)(X=+1) , · · · , � (+)(X2=)

]
=

〈
� (−)(X1) , · · · , � (−)(X=) � (+)(X=+1) , · · · , � (+)(X2=)

〉
. (2.110)

For matter of convenience, the notation of the arguments of the correlation functions is

abbreviated so X 9 is the pair (r 9 , C 9 ). The field operators are in normal order, i.e. all creation

operators are to the left and all destruction operators are to the right which is in consistent

with the kind of measurement based on the photo-electric effect as was discussed. The

nth-order correlation functions are used in multiple photo-detector experiments. The � (2) is

the most used to characterize a quantum field. To quantify the field, it is convenient to use

the normalized correlation functions (degrees of coherence) 6(2) . From now on, when � (2)

is mentioned, it refers to 6(2) . For stationary quantized electromagnetic field, according to

Glauber (1963c) and Mandel & Wolf (1995), the � (2) is defined by.

6
(2)
8 9
(r, g) =

〈
�̂ (−)(r, C) �̂ (−)(r, C + g) �̂ (+)(r, C + g) �̂ (+)(r, C)

〉〈
�̂ (−)(r, C) �̂ (+)(r, C)

〉〈
�̂ (−)(r, C + g) �̂ (+)(r, C + g)

〉 . (2.111)
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For measurements on two distinct modes of the field, Equation 2.111 leads to simple forms

of the � (2) for the modes (Loudon, 1980; Zubairy, 1982).

6
(2)
8 9
(r, g) =

〈
0̂
†
8
(r, C) 0̂†

9
(r, C + g) 0̂ 9 (r, C + g) 0̂8 (r, C)

〉〈
0̂
†
8
(r, C) 0̂8 (r, C)

〉〈
0̂
†
9
(r, C + g) 0̂ 9 (r, C + g)

〉 ; 8, 9 = 1, 2. (2.112)

These modes may differ in their frequencies, polarization, or direction of propagation

(Loudon, 2000), for example. There are two types of correlations in Equation 2.112: the

intra-mode correlations (for 8 = 9 ) and the inter-mode correlations (for 8 ≠ 9 ). For zero

time-delay, the intra-mode and inter-mode � (2) , Equation 2.112, take the form

6
(2)
9 9
(0) =

〈
0̂
†2
9
0̂2
9

〉
〈
0̂
†
9
0̂ 9

〉2 ; 9 = 1, 2, (2.113)

6
(2)
12 (0) =

〈
0̂
†
10̂10̂

†
20̂2

〉〈
0̂
†
10̂1

〉〈
0̂
†
20̂2

〉 . (2.114)

For the calculations, Equations 2.113 and 2.114 are rewritten in terms of the photon number

operator as

6
(2)
9 9
(0) =

〈
=̂ 9

(
=̂ 9 − 1̂

)〉
〈
=̂ 9

〉2 ; 9 = 1, 2, (2.115)

6
(2)
12 (0) =

〈=̂1=̂2〉
〈=̂1〉〈=̂2〉

. (2.116)

The quantum nature of the field appears clearly in Equation 2.115 as a result of non-

commutativity of the EM field operators 0̂ 9 and 0̂†9 applied to Equation 2.113. Equation

2.115 can be rewritten in terms of &, Equation 2.106, and it reads

6
(2)
9 9
(0) = 1 +

& 9

〈=̂ 9 〉
; 9 = 1, 2, (2.117)
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where & 9 is the & for the mode 9 . So, 6(2)
9 9
(0) = 1 is the boundary between a classical and

a quantum field and the statistics are Poissonian. For 6(2)
9 9
(0) > 1, the statistics are super-

Poissonian and becomes sub-Poissonian for 6(2)
9 9
(0) < 1. There are various inequalities

obeyed by correlation functions which can be established using, for example, the CSI. One

important of these inequalities reads

6(2)(g) ≤ 6(2)(0). (2.118)

The violation of this classical inequality is an indication of the nonclassicality of the field.

The field is called bunching if 6(2)(g) < 6(2)(0) as in chaotic thermal light and no bunching

when 6(2)(g) = 6(2)(0) = 1 as in coherent light. The field manifests nonclassical properties

when the above inequality, Equation 2.118, is violated and called antibunching as in photons

emitted in resonance fluorescence (Kimble & Mandel, 1976, 1977; Kimble et al., 1977; Paul,

1982). The bunching refers to the tendency of photons to arrive in bunches (clusters) while

the antibunching is the case when the photons tend to distribute themselves separately

rather than in bunches (Mandel, 1976; Kozierowski, 1981; Paul, 1982; Zou & Mandel, 1990;

Scully & Zubairy, 1997; Loudon, 2000). There are other measures for antibunching (Zou &

Mandel, 1990; Dung et al., 1992); for example

6(2)(0) < 1. (2.119)

However, since there is no association between sub-Poissonian and antibunching as pointed

in Singh (1983) and according to Zou & Mandel (1990), the more acceptable measure for

antibunching is the violation of Equation 2.118 and for sub-Poissonian statistics is violation

of Equation 2.119.
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2.5.3 Cauchy-Schwarz Inequality

CSI is an important tool in mathematics and mathematical physics. It is a simple

inequality useful in establishing mathematical proofs. The importance of this inequality

increased after the use of its quantum version to study the nonclassicality of quantum

systems. The violation of this inequality indicates the nonclassical behavior of the quantum

system. For any pair of vectors �, � in an inner product space, the CSI (Mandel & Wolf,

1995; Puri, 2001; Hassani, 2013; Agarwal, 2013)

|〈�|�〉|2 ≤ 〈�|�〉〈�|�〉. (2.120)

This inequality is valid for classical fields but violated for quantum fields. An example of

these functions is the � (2) (Glauber, 1963c; Loudon, 1980). From Equation 2.112, the CSI

for these functions (Kheruntsyan et al., 2012)

���6(2)8 9 ���2 ≤ 6(2)88 6(2)9 9 . (2.121)

To quantify the nonclassical correlation, and for computational convenience (Ooi et al.,

2007; Kheruntsyan et al., 2012), the function �2B is defined by

�2B =

���6(2)12

���√
6
(2)
11 6

(2)
22

− 1. (2.122)

In terms of �2B, the CSI, Equation 2.121, is equivalent to �2B ≤ 0. The violation of the CSI

Equation 2.122 (i.e. �2B > 0) is an indicator of the nonclassicality of the field. In this study,

this inequality is violated as will be seen.
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2.6 Glauber-Sudarshan P-Representation

It is interesting and desirable to have understanding of quantum aspects intuitively by

setting a correspondence between quantum physics and classical physics. The statistical

distributions in phase space is problematic in quantum physics unlike their classical coun-

terpart. The difficulty comes from the fact that a particle cannot simultaneously have a well

defined position and momentum due to the uncertainty principle. For this reason, a true

phase space probability distribution cannot be defined for a quantum mechanical particle.

However, "quasi-probability distribution functions" that have some resemblance to phase

space distribution functions can be defined (Wigner, 1932; Glauber, 1963b; Sudarshan,

1963; Cahill & Glauber, 1969a,b; Agarwal & Wolf, 1970a,b,c; Drummond & Gardiner, 1980).

A comprehensive review with numerous references is provided by Hillery et al. (1984).

There are three simple kinds of these distributions with much use in quantum optics (Puri,

2001; Schleich, 2001; Carmichael, 2002, 2008). Here, the concern is only on one of these

three which is called the P-representation of Glauber (1963b) and Sudarshan (1963). The

density matrix operator d for any state of light can be written as (Glauber, 1963a; Sudarshan,

1963; Klauder & Sudarshan, 2006).

d =

∫
d2U |U〉%(U, U∗) 〈U |, (2.123)

with

∫
d2U%(U, U∗) = 1, (2.124)

where |U〉 is a coherent state. A classical state of light is one in which the P-representation,

%(U, U∗) is a probability density function. If it is not, the state is said to be nonclassical

(Hillery, 2009). The aspects of %(U, U∗) that would make it nonclassical are:
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• a negative value at any point,

• being more singular than a Dirac delta function.

According to (Mandel &Wolf, 1995, p. 541), "The different coherent states are not orthogonal,

so that even if % (U, U∗) behaved like a true probability density, it would not describe

probabilities of mutually exclusive states." The P-representation of both the number state

and the coherent state is mentioned briefly. The number state has no functional form in

the P-representation, except for the vacuum state which is given by a delta function. A

generalized function (distribution) of singularity much more than the delta function can be

given as a P-representation for the number state (Scully & Zubairy, 1997; Schleich, 2001;

Gardiner & Zoller, 2004; Gerry & Knight, 2005; Agarwal, 2013).

%(U, U∗) = 1
=!

e|U |
2
(

m2

mUmU∗

)=
X2(U). (2.125)

This is a not a well-behaved P-representation; it involves 2nth derivative of the delta function.

In the coherent state, d = |U0〉〈U0 |, the P-representation is much simpler and has a delta

function form (Scully & Zubairy, 1997; Schleich, 2001; Gardiner & Zoller, 2004; Gerry &

Knight, 2005; Agarwal, 2013)

%(U, U∗) = X2(U − U0). (2.126)

The P-representation for squeezed states is more singular than that for number states.

While the representation of number states involves a finite number of derivatives of the

delta function, the representation for squeezed states has derivatives of all orders (Tan &

Jeong, 2019; Schleich, 2001)

%(U, U∗) = exp
[
1 − B

8B
m2

m (ReU)2
− 1 − B

8
m2

m (ImU)2

]
X2(U − U0). (2.127)
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The parameter B > 0 describes the width of the wave packet (squeezing parameter) and

U0 is a displacement. Equation 2.127 can be written as (Schleich, 2001)

%(U, U∗) = exp
[
1 − B
32B
(!+ − B!−)

]
X2(U − U0), (2.128)

!± =
m2

mU2 +
m2

mU∗2
± m2

mUmU∗
. (2.129)
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CHAPTER 3: QUANTUM THEORY OF THE LASER

3.1 Introduction and Background

The inventions of maser and laser (optical maser) involve several notable physicists

and engineers; Charles Hard Townes, Gordon, Ziegler, Theodore Maiman, Alexander

Prokhorov, and Nikolay Basov. There were a lot of efforts on theoretical and experimental

sides relating to laser as a new tool with applications and "a solution looking for problems".

There are various versions of the quantum theory of lasers: the Fokker-Planck method

by Haken and Risken, the noise operator method by Lax and Louisell, and the density

matrix technique by Scully and Lamb. Scully & Lamb’s theory stands out to be correct, truly

quantum and successfully describes the quantum statistical properties of laser light such

as the photon statistics and the linewidth.

The principle of the laser was first described by Albert Einstein in 1917, in his theory

of stimulated emission. It took more than 20 years later for engineers to begin to utilize

this principle for practical purposes. Nobel laureates Charles Hard Townes, Nicolay Gen-

nadiyevich Basov and Aleksandr Mikhailovich Prokhorov published, independently, papers

about the possibility of maser action. In 1958, Charles Hard Townes and Arthur Schawlow

proposed to extend the maser theory to the visible regime. Two years later, the first laser

was invented by T. Maiman. Since then, the laser has revolutionized our lives and provided

a quantum leap to many aspects of science and technology. In the early 1960s, the physics

of laser linewidth was not well understood. Einstein’s theory could not provide the correct

description. This is not surprising since lasing is a combination of quantum statistical and

mechanical effects.

Could the photon statistics of the laser be the thermal distribution, a coherent state

of radiation or something in between? It is the purpose of this chapter to review the
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fundamental nature and the physical origin of the photon statistics of a laser using the

quantum statistical approach based on the successful Scully-Lamb’s quantum theory of

laser (Scully & Lamb, 1967). A self-contained theoretical framework using the master

equation for the quantized laser field coupled to a dissipative system outside the laser

cavity is presented. Such a technique has been applied to atom-laser with Bose-Einstein

condensation.

3.2 Single Mode Field in Bosonic Reservoir

The analogy between the quantum statistics of Bose-Einstein condensate (BEC) (Klaers

et al., 2010) and the quantum theory of laser is built on two parts. The first is the damping

of the Bosons coupled to a reservoir of harmonic oscillators. The second is the pumping

process which gives nonlinear characteristics of the laser. In this section, a short account

is presented for the calculation of the dissipation part in the master equation due to the

coupling between a quantum system (the electromagnetic field in the present case) and

the environment modeled by the reservoir. Many textbooks in quantum optics treat this

subject but for a clear presentation with detailed derivation (for the damping atom which is

similar to the present problem) can be found in Schleich (2001).

The derivation of the damping Liouvillean proceeds from the Liouville-von Neumann

equation, Equation 2.9

m

mC
d̂(C) = 1

8ℏ
[+̂BA , d̂(C)], (3.1)

where, in the interaction picture, the Hamiltonian of the system (B) and the radiation reservoir

(A) reads

+̂BA = ℏ
∑

k
6k

(
1̂k0̂

†e8(l−lk)C + 1̂†k0̂e−8(l−lk)C
)
. (3.2)
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The system is a single mode oscillator with frequency l and creation and annihilation

operators, 0̂†, 0̂. The radiation reservoir is a collection of harmonic oscillators (multimode)

with frequencies lk and creation and annihilation operators, 1̂k, 1̂
†
k. The system harmonic

oscillator couples to the :-th reservoir oscillator through a coupling constant 6k. A closed

form of the dynamical equation of the reduced density operator for the single mode oscillator

d̂B (C) = TrA{ d̂(C)} can be derived by tracing out degrees of freedom of the reservoir. This

is accomplished by first integrating Equation 3.1

d̂(C) = d̂(0) + 1
8ℏ

∫ C

0
[+̂BA (C′), d̂(C′)]dC′. (3.3)

Then, by substituting the result, Equation 3.3, back inside the commutator in Equation 3.1,

gives

m

mC
d̂B (C) =

1
8ℏ

TrA
[
+̂BA , d̂(0)

]
+ 1
(8ℏ)2

TrA
∫ C

0
dC′

[
+̂BA (C),

[
+̂BA (C′), d̂(C′)

] ]
. (3.4)

This may repeated indefinitely, but owing to the weaknesses of the system-reservoir

interaction, it is possible to ignore terms higher than second order in +̂BA . Furthermore, the

system and reservoir are assumed to be approximately uncorrelated in the past, and the

reservoir is so large that it remains practically in thermal equilibrium d̂CℎA , so

d̂(0) = d̂B (0) ⊗ d̂CℎA , (3.5)

d̂(C′) ' d̂B (C′) ⊗ d̂CℎA . (3.6)

To simplify the calculations, the quantities 2k = 6ke−8(l−lk)C , 2k′ = 6k′e−8(l−lk′)C ′, and

�̂k = 2k1̂
†
k0̂ are introduced. In terms of these quantities, the first term becomes

1
8ℏ

TrA
[
+̂BA , d̂

]
= −8

∑
k

{
TrA

[
�̂k, d̂(0)

]
+ TrA

[
�̂
†
k, d̂(0)

]}
, (3.7)
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and the second term reads

1
(8ℏ)2

TrA
[
+̂BA (C),

[
+̂BA (C′), d̂(C′)

] ]
= − TrA

∫ C

0
dC′

∑
kk′

{[
�̂k,

[
�̂k′, d̂(C′)

] ]
+

[
�̂k,

[
�̂
†
k′, d̂(C

′)
] ]
+

[
�̂
†
k,

[
�̂k′, d̂(C′)

] ]
+

[
�̂
†
k,

[
�̂
†
k′, d̂(C

′)
] ]}

. (3.8)

The commutators in Equation 3.8 are evaluated to

[
�̂k,

[
�̂k′, d̂(C′)

] ]
= �̂k �̂k′ d̂(C′) − �̂k d̂(C′) �̂k′ − �̂k′ d̂(C′) �̂k + d̂(C′) �̂k′ �̂k, (3.9)[

�̂k,
[
�̂
†
k′, d̂(C

′)
] ]
= �̂k �̂

†
k′ d̂(C

′) − �̂k d̂(C′) �̂†k′ − �̂
†
k′ d̂(C

′) �̂k + d̂(C′) �̂†k′ �̂k, (3.10)[
�̂
†
k,

[
�̂k′, d̂(C′)

] ]
=

[
�̂k,

[
�̂
†
k′, d̂(C

′)
] ]†

, (3.11)[
�̂
†
k,

[
�̂
†
k′, d̂(C

′)
] ]
=

[
�̂k,

[
�̂k′, d̂(C′)

] ]†
. (3.12)

The commutators in Equations 3.11 and 3.12 are obtained by using the fact that for any two

operators [�, �]† = −
[
�†, �†

]
and the Hermiticity of the density operator. Using Equation

3.6, the trace of commutators in Equation 3.7 reads

TrA
[
�̂k, d̂(0)

]
= 2kTrA

(
1̂
†
k d̂

Cℎ
A

)
0̂ d̂B (0) − 2kTrA

(
d̂CℎA 1̂

†
k

)
d̂B (0)0̂

= 2k

〈
1̂
†
k

〉
[0̂, d̂B (0)] , (3.13)
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and the trace of the commutators in Equations 3.9 and 3.10 is similarly evaluated to

TrA
[
�̂k,

[
�̂k′, d̂(C′)

] ]
= 2k2k′

{
TrA

[
1̂
†
k1̂
†
k′ d̂

Cℎ
A

]
0̂0̂ d̂B (C′) − TrA

[
1̂
†
k d̂

Cℎ
A 1̂
†
k′

]
0̂ d̂B (C′)0̂

− TrA
[
1̂
†
k′ d̂

Cℎ
A 1̂
†
k

]
0̂ d̂B (C′)0̂ + TrA

[
d̂CℎA 1̂

†
k′ 1̂
†
k

]
d̂B (C′)0̂0̂

}
,

(3.14)

TrA
[
�̂k,

[
�̂
†
k′, d̂(C

′)
] ]
= 2k2

∗
k′

{
TrA

[
1̂
†
k1̂k′ d̂

Cℎ
A

]
0̂0̂† d̂B (C′) − TrA

[
1̂
†
k d̂

Cℎ
A 1̂k′

]
0̂ d̂B (C′)0̂†

− TrA
[
1̂k′ d̂

Cℎ
A 1̂
†
k

]
0̂† d̂B (C′)0̂ + TrA

[
d̂CℎA 1̂k′ 1̂

†
k

]
d̂B (C′)0̂†0̂

}
.

(3.15)

Using the property that the trace is invariant under cyclic permutations Tr (���) =

Tr (���) = Tr (���), Equations 3.14 and 3.15 become

TrA
[
�̂k,

[
�̂k′, d̂(C′)

] ]
= 2k2k′

{〈
1̂
†
k1̂
†
k′

〉
0̂0̂ d̂B (C′) −

〈
1̂
†
k′ 1̂
†
k

〉
0̂ d̂B (C′)0̂

−
〈
1̂
†
k1̂
†
k′

〉
0̂ d̂B (C′)0̂ +

〈
1̂
†
k′ 1̂
†
k

〉
d̂B (C′)0̂0̂

}
,

(3.16)

TrA
[
�̂k,

[
�̂
†
k′, d̂(C

′)
] ]
= 2k2

∗
k′

{〈
1̂
†
k1̂k′

〉
0̂0̂† d̂B (C′) −

〈
1̂k′ 1̂

†
k

〉
0̂ d̂B (C′)0̂†

−
〈
1̂
†
k1̂k′

〉
0̂† d̂B (C′)0̂ +

〈
1̂k′ 1̂

†
k

〉
d̂B (C′)0̂†0̂

}
.

(3.17)

Substituting Equation 3.13 in Equation 3.7, the first term in Equation 3.4 becomes

1
8ℏ

TrA
[
+̂BA , d̂(0)

]
= −8

∑
k

{
2k

〈
1̂
†
k

〉
[0̂, d̂B (0)] + 2∗k

〈
1̂k

〉 [
0̂†, d̂B (0)

]}
. (3.18)

The second term in Equation 3.4 is obtained by using Equations 3.16 and 3.17 in Equation

3.8, the result reads

1
(8ℏ)2

TrA
[
+̂BA (C),

[
+̂BA (C′), d̂(C′)

] ]
= −

∫ C

0
dC′

∑
kk′

{
2k2k′L1 + 2k2

∗
k′L2 + h.c.

}
,

(3.19)
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where

L1 =
〈
1̂
†
k1̂
†
k′

〉
0̂0̂ d̂B (C′) −

〈
1̂
†
k′ 1̂
†
k

〉
0̂ d̂B (C′)0̂ −

〈
1̂
†
k1̂
†
k′

〉
0̂ d̂B (C′)0̂

+
〈
1̂
†
k′ 1̂
†
k

〉
d̂B (C′)0̂0̂,

(3.20)

L2 =
〈
1̂
†
k1̂k′

〉
0̂0̂† d̂B (C′) −

〈
1̂k′ 1̂

†
k

〉
0̂ d̂B (C′)0̂† −

〈
1̂
†
k1̂k′

〉
0̂† d̂B (C′)0̂

+
〈
1̂k′ 1̂

†
k

〉
d̂B (C′)0̂†0̂,

(3.21)

where the result of Equations 3.11 and 3.12 for the last two terms represented by h.c.

are used. Since the density matrix of the thermal reservoir is diagonal in the number

state representation, Equation 2.81, so from Equations 2.75 and 2.65 these averages are

evaluated to

TrA
(
1̂k d̂

Cℎ
A

)
=

〈
1̂k

〉
= 0, (3.22)

TrA
(
1̂
†
k d̂

Cℎ
A

)
=

〈
1̂
†
k

〉
= 0, (3.23)

TrA
(
1̂
†
k1̂k′ d̂

Cℎ
A

)
=

〈
1̂
†
k1̂k′

〉
= =CℎXkk′, (3.24)

TrA
(
1̂k1̂

†
k′ d̂

Cℎ
A

)
=

〈
1̂k1̂

†
k′

〉
=

(
=Cℎ + 1

)
Xkk′, (3.25)

TrA
(
1̂k1̂k′ d̂

Cℎ
A

)
=

〈
1̂k1̂k′

〉
= 0, (3.26)

TrA
(
1̂
†
k1̂
†
k′ d̂

Cℎ
A

)
=

〈
1̂
†
k1̂
†
k′

〉
= 0, (3.27)

where =Cℎ = =Cℎ(lk, )) is the mean thermal photon number with frequency lk in thermal

equilibrium at temperature ) given by Equation 2.84, but the temperature dependence will

not be written explicitly. From Equations 3.22 and 3.25, the left-hand side of Equation 3.18

vanishes, so the master equation reduces to

m

mC
d̂B (C) =

∫ C

0
dC′

∑
k
62

ke−8(l−lk) (C−C ′) {=Cℎ(lk)
[
0̂† d̂B (C′)0̂ − 0̂0̂† d̂B (C′)

]
+

(
=Cℎ(lk) + 1

) [
0̂ d̂B (C′)0̂† − d̂B (C′)0̂†0̂

]
+ h.c.

}
. (3.28)
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It is noteworthy that the terms proportional to 2k2k′ = 6k6k′e−8[(l−lk)C+(l−lk′)C ′] and 2∗k2
∗
k′ =

6k6k′e8[(l−lk)C+(l−lk′)C ′] vanish for the thermal reservoir. These fast oscillating terms are

neglected also in the secular approximation (Puri, 2001, p. 162). The sum over the modes

is evaluated by moving to the continuum and using the correspondence

∑
k
5k =

∫ ∞

0
dΩ� (Ω) 5 (Ω), (3.29)

where � (Ω) is the density of states. Using Equation 3.29 with g = C − C′, the master

equation, Equation 3.28 becomes

m

mC
d̂B (C) =

∫ C

0
dg

{
� =̄ (g)

[
0̂† d̂B (C − g)0̂ − 0̂0̂† d̂B (C − g)

]
+ � =̄+1(g)

[
0̂ d̂B (C − g)0̂† − d̂B (C − g)0̂†0̂

]
+ h.c.

}
,

(3.30)

where

� =̄ (g) =
∑

k
62

ke−8(l−lk)g=Cℎ (lk)

=

∫ ∞

0
dΩe−8(l−Ω)g� (Ω) |6(Ω) |2=Cℎ (Ω), (3.31)

� =̄+1(g) =
∑

k
62

ke−8(l−lk)g
(
=Cℎ (lk) + 1

)
=

∫ ∞

0
dΩe−8(l−Ω)g� (Ω) |6(Ω) |2

(
=Cℎ (Ω) + 1

)
. (3.32)

The integration in Equation 3.30 is dominated by times that are much shorter than the time

scale for the evolution of dB. It is true in vacuum, where the continuum property of the

density of modes corresponds to the state of the system being independent of its past. This

allows us to perform the short memory or Markovian approximation (dB (C − g) ' dB (C))

(Mandel & Wolf, 1995; Blum, 2012). In the Markovian approximation, the integration limit
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are extended to∞ and Equation 3.30 becomes

md̂B

mC
= C1

[
0̂† d̂B0̂ − 0̂0̂† d̂B

]
+ (C0 +C1)

[
0̂ d̂B0̂

† − d̂B0̂†0̂
]

+C∗1
[
0̂† d̂B0̂ − d̂B0̂0̂†

]
+

(
C∗0 +C

∗
1
) [
0̂ d̂B0̂

† − 0̂†0̂ d̂B
]
,

(3.33)

where the damping coefficients are

C0 =

∫ ∞

0
dΩ� (Ω) |6(Ω) |2

∫ ∞

0
dge−8(l−Ω)g =

1
2
^ + 8b0, (3.34)

C1 =

∫ ∞

0
dΩ� (Ω) |6(Ω) |2=Cℎ(Ω, ))

∫ ∞

0
dge−8(l−Ω)g =

1
2
^=Cℎ + 8b1, (3.35)

with

^ = 2c� (l) |6(l) |2, (3.36)

b0 = %

∫ ∞

0
dΩ

� (Ω) |6(Ω) |2
Ω − l , (3.37)

b1 = %

∫ ∞

0
dΩ

� (Ω) |6(Ω) |2
Ω − l =Cℎ(Ω, )). (3.38)

In deriving Equations 3.34 and 3.35, the following relation is used (Puri, 2001, Appendix A)

∫ ∞

0
d:e±8:G = cX(G) ± 8%1

G
. (3.39)

In Equation 3.39, X(G) and % are the delta function and the Cauchy principal value, respec-

tively. In terms of the real and imaginary parts of the coefficients in Equations 3.34 and

3.35, the master equation, Equation 3.33, takes the form

md̂B

mC
= b0

[
0̂†0̂, d̂B

]
− 1

2
^=Cℎ

(
0̂0̂† d̂B − 20̂† d̂B0̂ + d̂B0̂0̂†

)
− 1

2
^

(
=Cℎ + 1

) (
0̂†0̂ d̂B − 20̂ d̂B0̂† + d̂B0̂†0̂

)
.

(3.40)

For an ideal Markovian process, the commutator in Equation 3.40 is discarded, and the
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dissipation master equation reduces to

md̂B

mC
= − 1

2
^=Cℎ

(
0̂0̂† d̂B − 20̂† d̂B0̂ + d̂B0̂0̂†

)
− 1

2
^

(
=Cℎ + 1

) (
0̂†0̂ d̂B − 20̂ d̂B0̂† + d̂B0̂†0̂

)
,

(3.41)

where ^ is the cavity decay rate. To understand the meaning of each term in the density

matrix Equation 3.41, it is rewritten as follows

md̂B

mC
=

1
2
^=Cℎ

−
(
0̂0̂† d̂B + d̂B0̂0̂†

)
loss to above (emission)

+ 20̂† d̂B0̂
gain from below(emission)


+ 1

2
^(=Cℎ + 1)

−
(
0̂†0̂ d̂B (C) + d̂B0̂†0̂

)
loss to below (emission)

+ 20̂ d̂B0̂†
gain from above (absorption)

 (3.42)

3.3 Quantum Theory of the Laser: The Gain Part

In the previous section, the derivation of the damping part of the master equation is

presented. The pumping dynamics are governed by the laser coupling which leads to gain

in the photon number. In this section, the nonlinear theory that gives the gain part in the

laser master equation is provided.

3.3.1 Gain Part of Laser Master Equation

Assume that a two-level atom with upper level |0〉 and lower level |1〉 interacts with a

single-mode quantum field of creation and annihilation operators 0̂† and 0̂, respectively. If

the atom-field coupling constant is 6, the atom-field interaction Hamiltonian at resonance

becomes

+ = ℏ6

(
|0〉〈1 |0̂ + |1〉〈0 |0̂†

)
, (3.43)
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where |0〉〈1 | is the atom transition operator from the lower level |1〉 to the upper level |0〉

and |1〉〈0 | is the transition operator from the upper level |0〉 to the lower level |1〉. The

internal state vector of the atom-field as a superposition of the two states becomes

|k〉 =
∑
=

(�0= |0〉 + �1= |1〉) |=〉, (3.44)

where |=〉 is the field number state with = photons. The Schrödinger equation gives the

coupled equations

d
dC
�0= = −86

√
= + 1�1,=+1, (3.45)

d
dC
�1,=+1 = −86

√
= + 1�0=. (3.46)

Laplace transform gives

B20= (B) = �0= (0) − 86
√
= + 121,=+1(B), (3.47)

B21,=+1(B) = �1,=+1(0) − 86
√
= + 120= (B). (3.48)

The solution of these algebraic coupled equations is straightforward. By doing the inverse

Laplace transform, the general solution is

�0= (C0 + g) = �0= (C0) cos
(
6g
√
= + 1

)
− 8�1,=+1(C0) sin

(
6g
√
= + 1

)
, (3.49)

�1,=+1(C0 + g) = �1,=+1(C0) cos
(
6g
√
= + 1

)
− 8�0= (C0) sin

(
6g
√
= + 1

)
, (3.50)
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The density matrix elements are constructed as follows

d0=,0=′ (C + g) = �0= (C + g)�∗0=′ (C + g)

= d0=,0=′ (C) cos
(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
+ d1=+1,1=′+1(C) sin

(
6g
√
= + 1

)
sin

(
6g
√
=′ + 1

)
+ 8d0=,1=′+1(C) cos

(
6g
√
= + 1

)
sin

(
6g
√
=′ + 1

)
− 8d1=+1,0=′ (C) sin

(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
,

(3.51)

d1=+1,1=′+1(C + g) = �1=+1(C + g)�∗1=′+1(C + g)

= d1=+1,1=′+1(C) cos
(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
+ d0=,0=′ (C) sin

(
6g
√
= + 1

)
sin

(
6g
√
=′ + 1

)
+ 8d1=+1,0=′ (C) cos

(
6g
√
= + 1

)
sin

(
6g
√
=′ + 1

)
− 8d0=,1=′+1(C) sin

(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
,

(3.52)

where, in the adiabatic approximation (Sargent III et al., 1974), C0 = C is assumed. Assume

initially no population in level 1 as well as no coherence, d0=,0=′ (C) = d=,=′ (C), others are

zero,

d0=,0=′ (C + g) = d=,=′ (C) cos
(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
, (3.53)

d1=+1,1=′+1(C + g) = d=,=′ (C) sin
(
6g
√
= + 1

)
sin

(
6g
√
=′ + 1

)
. (3.54)

An alternative method using evolution operator can also give the same results. The density

matrix elements in Equations 3.51 and 3.52 are obtained for the resonant case when the field

frequencylmatches the atom transition frequencyl0 (zero detuning,Δ = l0−l = 0). The

general case for an arbitrary detuning can be obtained in a similar way. The corresponding
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Hamiltonian and probability amplitude coefficients take the form

+ = ℏ6

(
e8ΔC |0〉〈1 |0̂ + e−8ΔC |1〉〈0 |0̂†

)
, (3.55)

and

�0,= (C) = e8ΔC/2
{
�0,= (0)

[
cos

(
Ω=C

2

)
− 8Δ
Ω=

sin
(
Ω=C

2

)]
− 826

√
= + 1
Ω=

sin
(
Ω=C

2

)
�1,=+1(0)

}
,

(3.56)

�1,=+1(C) = e−8ΔC/2
{
�1,=+1(0)

[
cos

(
Ω=C

2

)
+ 8Δ
Ω=

sin
(
Ω=C

2

)]
− 826

√
= + 1
Ω=

sin
(
Ω=C

2

)
�0,= (0)

}
,

(3.57)

where Ω2
= = Δ

2 + 462(= + 1). More details are given in Scully & Zubairy (1997).

3.3.2 Coarse Graining - Many Atoms

Let an atom enters the cavity at time C. The change in the field due to one atom (say 9 )

when it transits through the cavity in time g is obtained by the trace on the atomic degrees

of freedom and is given by

Xd̂
9

5
(C) = Tr0{ d̂ 9 (C + g) − d̂ 9 (C)} (3.58)

= d̂
9
00 (C + g) + d̂ 911 (C + g) − d̂

9
00 (C) − d̂ 911 (C). (3.59)

The change in the field due to all # atoms in the cavity from time C to C + ΔC is

Δd̂ 5 (C) '
#∑
9=1
Xd̂

9

5
(C). (3.60)
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Assuming that all atoms are essentially identical, the injection rate can be defined by

A0 = #/ΔC and hence

Δd̂ 5

ΔC
' A0Xd̂ 5 . (3.61)

The atoms fly by the cavity and assumed to have a transit lifetime W. Coarse graining

(Fischer, 2018; Phoenix & Knight, 1988) gain over the transit time gives gain contribution

dd 5
dC 608=

'
∫ ∞

0
%(g)

Δd̂ 5

ΔC
dg =

∫ ∞

0
%(g)A0Xd̂ 5 dg (3.62)

=

∫ ∞

0
%(g)A0Tr0{ d̂(C + g) − d̂(C)}dg

= A0

∫ ∞

0
%(g)

∑
G

{ d̂GG (C + g) − d̂GG (C)}dg, (3.63)

where %(g) = W4−Wg is the weighting function, probability of an atom having a decay rate

W of being in the cavity, and the trace is over atoms states. The elements of the density

matrix are given in Equations 3.51 and 3.52 for the resonance case and directly obtained

from Equations 3.56 and 3.57.

3.4 Nonlinear Laser Master Equation: Scully - Lamb Approach

In this section, a brief introduction to the nonlinear master equation of the laser is

presented. The main focus is on the Scully-Lamb approach for its clarity and simplicity; it is

adopted in the analysis.

Scully-Lamb master equation can be obtained simply by using the coarse graining

method Equation 3.63 and the density matrix elements from Equations 3.51 and 3.52. For

the Scully-Lamb result, where the atoms are initially in excited state and in resonance with
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the field, Equations 3.53 and 3.54 are used to obtain

〈=|Xd̂ 5 (C) |=′〉 = 〈=|Tr0 [ d̂(C + g) − d̂(C)] |=′〉

= d0=,0=′ (C + g) + d1=,1=′ (C + g) − d0=,0=′ (C) − d1=,1=′ (C)

= d=,=′ (C) cos
(
6g
√
= + 1

)
cos

(
6g
√
=′ + 1

)
+ d=−1,=′−1(C) sin

(
6g
√
=
)

sin
(
6g
√
=′

)
− d=,=′ (C),

(3.64)

where d=,=′ (C) = d0=,0=′ (C) and d1=,1=′ (C) = 0 are assumed and the field reduced density

matrix is used

d=,=′ (C + g) = d1=,1=′ (C + g) + d0=,0=′ (C + g). (3.65)

Performing the integration on g, the gain part (Equation 3.63) of the laser master equation

is obtained (Sargent III et al., 1974)

(
m?==′

mC

)
gain

= −
(

M==′A

1 +N==′B/A

)
?==′ +

(
A
√
==′

1 +N=−1,=′−1B/A

)
?=−1,=′−1, (3.66)

where

A =
2A62

W2 , B =
462

W2 A, (3.67)

M==′ =
1
2
(= + 1 + =′ + 1) + (= − =′)2 B

8A
, (3.68)

N==′ =M==′ − (= − =′)2
B

16A
=

1
2
(= + 1 + =′ + 1) + (= − =′)2 B

16A
, (3.69)

where A and B are the linear gain and self-saturation coefficients, respectively. After
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including the damping part, Equation 3.41, the overall master equation for laser is

m?==′

mC
=

(
m?==′

mC

)
gain
+

(
m?==′

mC

)
damping

(3.70)

= −
(

M==′A

1 +N==′B/A

)
?==′ +

(
A
√
==′

1 +N=−1,=′−1B/A

)
?=−1,=′−1

− 1
2
^=Cℎ

[
(= + 1)?=,=′ − 2

√
==′?=−1,=′−1 + (=′ + 1)?=,=′

]
− 1

2
^(=Cℎ + 1)

[
=?=,=′ − 2

√
(= + 1) (=′ + 1)?=+1,=′+1 + =′?=,=′

]
.

(3.71)

In the analysis a simple three-level system is considered where the cavity field couples

between level 0 and level 1 of particles in a molecular beam injected into a cavity at a rate

A; this is an effective two-level system. The particles undergo non-radiative decay from

level 1 to level 6. A pumping mechanism established between level 6 up to level 0 can

produce gain to the single mode field. The pumping process drives the single mode field

and introduces nonlinearity in the new master equation. The diagonal elements of the

density matrix Equation 3.71 evolve according to

m?==

mC
= −

(
(= + 1)A

1 + (= + 1)B
A

)
?= +

(
=A

1 + =B
A

)
?=−1

− ^=
[(
=Cℎ + 1

)
?= − =Cℎ?=−1

]
+ ^ (= + 1)

[(
=Cℎ + 1

)
?=+1 − =Cℎ?=

]
.

(3.72)

This is a nonlinear equation compared to the classic Pauli master equation (Kreuzer, 1981)

linear in photon number, =.

3.5 Photon Statistics

The photon statistics of the laser are found by considering the steady-state of the diagonal

elements. Statistics equation becomes much easier to solve in the absence of coherence

(vanishing of density matrix off-diagonal elements). In this section, exact the photon number

distribution ?= for zero and nonzero thermal mean photon number =Cℎ. Also, two limiting

cases will be discussed; the distribution below the laser threshold (when the gain in laser
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medium equals the loss) and the far above the laser threshold.

3.5.1 Exact Photon Statistics

Assuming atoms are prepared initially in the excited state only as in the Scully-Lamb

result considered above, the exact photon statistics function (photon number distribution)

can be obtained. From Equation 3.72, the steady-state equation results in the detailed

balance set of equations

(= + 1)A
1 + (= + 1)B

A

?= = ^ (= + 1)
[(
=Cℎ + 1

)
?=+1 − =Cℎ?=

]
, (3.73)

=A

1 + =B
A

?=−1 = ^=
[(
=Cℎ + 1

)
?= − =Cℎ?=−1

]
. (3.74)

From Equation 3.74, the statistics function ?= is calculated by iteration

?= =
1(

=Cℎ + 1
) (

A/^
1 + =B

A

+ =Cℎ
)
?=−1. (3.75)

The iteration of Equation 3.75 gives

?= =
?0(

=Cℎ + 1
)= =∏

<=1

(
A/^

1 + <B
A

+ =Cℎ
)
. (3.76)

where the constant ?0 is determined from the normalization condition
∑∞
==0 ?= = 1. The

product can be evaluated after some arrangement, which results in

?= = ?0

(
=Cℎ

=Cℎ + 1

)= =∏
<=1

< + A2

=Cℎ^B
+ A

B

< + A
B

= ?0

(
=Cℎ

=Cℎ + 1

)= Γ (
A
B
+ 1

)
Γ

(
= + A2

=Cℎ^B
+ A

B
+ 1

)
Γ

(
A2

=Cℎ^B
+ A

B
+ 1

)
Γ

(
= + A

B
+ 1

) , (3.77)
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where Γ (I + 1) = IΓ (I) is the gamma function and the constant ?0 is

?0 =


∞∑
0

(
=Cℎ

=Cℎ + 1

)= Γ (
A
B
+ 1

)
Γ

(
A2

=Cℎ^B
+ A

B
+ 1 + =

)
Γ

(
A2

=Cℎ^B
+ A

B
+ 1

)
Γ

(
A
B
+ 1 + =

) 
−1

. (3.78)

The expressions Equations 3.77 and 3.78 take simple forms in the case of zero thermal

mean photon number =Cℎ → 0 (=Cℎ is almost zero in the optical region). In this case,

Equations 3.77 and 3.78 are reduced to

?= = ?0

(
A2

B^

)=
Γ

(
A
B
+ 1

)
Γ

(
A
B
+ 1 + =

) , (3.79)

?0 =


∞∑
==0

(
A2

B^

)= (
A
B

)
!(

= + A
B

)
!


−1

=

[
�

(
1;

A

B
+ 1;

A2

B^

)]−1

, (3.80)

where

� (0; 1; I) =
∞∑
==0

Γ (1) Γ(0 + =)
Γ (0) Γ (1 + =)

I=

=!
(3.81)

is confluent hypergeometric function.

The mean photon number
〈
=
〉
and second moment

〈
=2〉 are evaluated as follows

〈
=
〉
=

∞∑
==0

=?=, (3.82)

〈
=2〉 = ∞∑

==0
=2?=. (3.83)

Instead of using Equation 3.77 or to evaluate the sum, it is easier to use Equation 3.75

after rearrangement

(
1 + =B

A

)
?= =

(
A/^
=Cℎ + 1

+ =Cℎ

=Cℎ + 1

(
1 + =B

A

))
?=−1. (3.84)
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The mean is obtained from Equation 3.84 by sum over = and the second moment is obtained

by multiplying Equation 3.84 by = and sum over =

∞∑
==0

(
1 + =B

A

)
?= =

∞∑
==0

(
A/^
=Cℎ + 1

+ =Cℎ

=Cℎ + 1

(
1 + =B

A

))
?=−1

∞∑
==0

(
= + =2B

A

)
?= =

∞∑
==0

(
A/^
=Cℎ + 1

= + =Cℎ

=Cℎ + 1

(
= + =2B

A

))
?=−1

or

1 + 〈=〉B
A
=

A/^
=Cℎ + 1

+ =Cℎ

=Cℎ + 1

(
1 + 〈= + 1〉B

A

)
, (3.85)〈

=
〉
+

〈
=2〉B

A
=

A/^
=Cℎ + 1

〈
= + 1

〉
+ =Cℎ

=Cℎ + 1

(〈
= + 1

〉
+

〈
(= + 1)2

〉B
A

)
. (3.86)

From Equations 3.85 and 3.86, the mean and variance are

〈=〉 = A

^

(
A − ^
B

)
+ =Cℎ, (3.87)〈

=2〉 − 〈
=
〉2
=

(
=Cℎ + 1

) (〈
=
〉
+ A

B

)
. (3.88)

In the above analysis, the laser is working above threshold in which A > ^.

The laser statistics can be classified according to & as follows.

& =

〈
=2〉 − 〈=〉2
〈=〉 − 1 = =Cℎ +

^A
(
=Cℎ + 1

)
A (A − ^) + =Cℎ^B

. (3.89)

In the above threshold regime, laser statistics are super-Poissonian (& > 0) like thermal

state. When the laser is working far from threshold A � ^, the laser is in coherent state

and the statistics become Poissonian 〈=〉 → A2

B^
and & → 0 as will be shown in the next

section.
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3.5.2 Far Above Threshold

Far above threshold, A � C, the saturation becomes large in which B〈=〉/A � 1 so

the unity term in the denominator on the right-hand side of Equation 3.76 can be ignored.

This corresponds to canceling the A/B term form the numerator and denominator in

Equations 3.77 and 3.78. In this case the distribution ?= becomes

?= = ?0

(
=Cℎ

=Cℎ + 1

)=
Γ

(
A2/=Cℎ^B + 1 + =

)
Γ

(
A2/=Cℎ^B + 1

)
=!
, (3.90)

with

?0 =

[ ∞∑
0

(
=Cℎ

=Cℎ + 1

)=
Γ

(
A2/=Cℎ^B + 1 + =

)
Γ

(
A2/=Cℎ^B + 1

)
=!

]−1

. (3.91)

Equations 3.90 and 3.91 take simple form when thermal mean photon number =Cℎ = 0. In

this case, the distribution reduces to Poissonian

?= = ?0

(
A2/^B

)=
=!

, (3.92)

?0 =

[ ∞∑
0

(
A2/^B

)=
=!

]−1

= e−A
2/^B. (3.93)

The mean and variance of the distribution are reduced form of the expressions in Equations

3.87 and 3.88 read

〈=〉 = A2

^B
, 〈=2〉 − 〈=〉2 = A2

^B
. (3.94)

Using Equation 3.94, the distribution far above threshold is

%= = e−〈=〉
〈=〉=
=!

, (3.95)

and & = 0 as it would be expected.
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3.5.3 Expansion of Nonlinear Terms

In this subsection, the role of linear and nonlinear terms in the gain part of the distribution

equation ?= is discussed. Near threshold and for weak saturation, =B
A
< 1, Equation 3.72

for the distribution function is expanded in terms of = and written as

m?==

mC
= − (= + 1)A

∞∑
<=0

(
−(= + 1)B

A

)<
?= + =A

∞∑
<=0

(
−=B

A

)<
?=−1

− ^=
[(
=Cℎ + 1

)
?= − =Cℎ?=−1

]
+ ^ (= + 1)

[(
=Cℎ + 1

)
?=+1 − =Cℎ?=

]
= − (= + 1)A?= + =A?=−1 Linear approximation (3.96a)

+ (= + 1)2B?= − =2B?=−1 First order nonlinearity (3.96b)

...

+ (−1)<+1 (= + 1)<+1 B<

A<−1 ?= + (−1)< =<+1 B<

A<−1 ?=−1︸                                                                 ︷︷                                                                 ︸
<th-order approximation

(3.96c)

...

− ^=
[(
=Cℎ + 1

)
?= − =Cℎ?=−1

]
+ ^(= + 1)

[(
=Cℎ + 1

)
?=+1 − =Cℎ?=

]
. (3.96d)

In the following two subsections, the distribution is discussed in the linear and first nonlinear

terms for zero thermal mean photon number.

3.5.4 Below Threshold: Linear Approximation

If =Cℎ = 0 is assumed, and the expansion in Equation 3.96 is truncated and only the first

linear term of the gain, Equation 3.96a is maintained, the detailed balance gives

?= =
A

^
?=−1. (3.97)
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The solution for Equation 3.75 exists only for A < ^ (below threshold) and by iteration the

distribution becomes

?= = ?0

(
A

^

)=
. (3.98)

The normalization ?0 is found from
∑∞
==0 ?= = ?0

(
1 − A

^

)−1
, and the distribution becomes

?= =

(
1 − A

^

) (
A

^

)=
. (3.99)

Below threshold A < ^, the laser is in thermal state and the statistics are of the black body

radiation, Equation 2.83 with an effective temperature defined by e−ℏl/:B) = A
^
.

3.5.5 Lowest-Order Nonlinearity

From Equation 3.96, it can be seen that the terms associated with B introduce the

lowest order nonlinearity, Equation 3.96b. The question arises: How does this nonlinearity

affect the photon number distribution? Would it remain to be thermal? To answer these

questions, the detailed balance equation between level = − 1 and = is obtained

(
A= −B=2

)
?=−1 − ^=?= = 0. (3.100)

By iteration

?= =

(
A −B=

^

)
?=−1 = ?0

=∏
<=1

A −B<

^
= ?0

(
B

^

)= =∏
<=1
(A/B − <) . (3.101)

Note that Equation 3.101 is valid for =B
A
< 1 and can be rewritten as

?= = ?0

(
B

^

)=
Γ (A/B)

Γ (A/B − =) , (3.102)
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and the normalization constant

?0 =

[
=2∑
==0

(
B

^

)=
Γ (A/B)

Γ (A/B − =)

]−1

, (3.103)

where the cutoff photon number = ≤ =2 = A/B. The cutoff is the largest photon number

allowed in this regime determined by the laser parameters: the gain, saturation, and loss.

The photon statistics of the laser are not Poissonian, Equation 3.95, as would be expected

for a coherent state. This shows that the consequence of coherent in laser is due to higher

order nonlinearities.

3.6 Laser Spectrum and Linewidth

The fluctuations have to parts; fluctuations in intensity or the number of photons and

fluctuations in the phase of the laser field. The fluctuations in the phase lead to widening

the finite linewidth of the laser spectrum. While the photon number distribution of the laser

is associated with the diagonal elements of the density matrix, the off-diagonal elements of

the density matrix are associated with the coherence or the phase. The calculation of the

linewidth is not an easy task; it requires the calculation of the Fourier transform of � (1) ,

Equation 2.108. Calculation of � (1) requires evaluation of a two-time average which needs

a solution of the full density matrix, Equation 3.71, and use of the regression theorem

(Carmichael, 1993). In this section, the main simple result of laser linewidth is present.

According to the regression theorem (which is satisfied in the Markovian approximation),

the two-time average in � (1) is reduced to a single time average of the field 〈� (+) (C)〉. The

field of a single-mode laser of frequency a and amplitude �0 and its average are

�̂ (+) (C) = �00̂e−8aC , (3.104)〈
�̂ (+) (C)

〉
= �0e−8aC

∑
=

〈=|0̂ d̂ |=〉 = �0e−8aC
∑
=

√
= + 1d=+1,=. (3.105)
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Equation 3.105 shows that the decay in the off-diagonal elements of the density matrix

(decoherence) yields laser linewidth. So, evaluating the off-diagonal elements d=+1,=,

determines the laser linewidth. Since it is difficult to obtain analytic solution for the density

matrix, various approximations are used. One approach is to use %-representation and

solve Fokker-Planck equation by calculating the diffusion coefficient. Another method

using an ansatz approximation after some arrangement on the equation of the off-diagonal

elements to allow using the detailed balance (Scully & Zubairy, 1997). The Lorentzian

spectrum ((l) that gives the laser linewidth � is

((l) ∝ Re
∫ ∞

0
dge8lg〈� (−) (C)� (+) (C + g)〉 ∝ 1

(l − a)2 + �2 , (3.106)

� ' A + ^
〈=〉 . (3.107)

The result shows that the damping ^ and the spontaneous emission associated coefficient

A increase the laser linewidth.
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CHAPTER 4: TWO-PHOTON LASER WITH SELF-KERR EFFECT

4.1 Introduction

The quantum theory of TPL [for review, see Gauthier (2003) and Scully & Zubairy (1997)]

has been studied many years ago and laser statistics have attracted a great deal of attention.

The radiation field has different classical and nonclassical statistical properties and the

two-photon process is in the heart of nonlinear and quantum optics (Walther et al., 2006;

Reid & Walls, 1986; Kozierowski, 1981; Loudon, 1980). The nonclassical properties like

squeezing, antibunching and sub-Poissonian can be achieved through nonlinear processes

(Brambilla et al., 1992). Entangled photons can be produced through laser-driven schemes

involving two-photon emissions and double Raman excitations (Ooi, 2007). The field

distribution function obeys the super-Poissonian for thermal light, Poissonian for coherent

light, and sub-Poissonian for squeezed light (Fabre, 1992; Kimble, 1992). It is desirable to

produce nonclassical properties of light (Loudon, 1980;Walther et al., 2006) for experimental

applications where precise measurements are required like gravitational wave detection. In

photodetection experiments, one difficulty is to overcome the noise in the light source which

limits the measurement accuracy. Thus photon fluctuations reduction is important (Orszag

& Retamal, 1991; Orszag, 2016). It has been shown that the pumping statistics (Orszag &

Retamal, 1991) and detuning have significant effects on the statistical properties of the field

and can be optimized to reduce the photon fluctuations (Bay et al., 1995). There are many

studies on the statistical properties for one-photon, two-photon, and multi-photon lasers

(McNeil & Walls, 1975a,b), correspondingly, from one mode to multimode cases (Schrade

et al., 1993; Eremeev et al., 2011). Two-photon transitions, related to the generation of

squeezed light (Every, 1975; Knight & Pegg, 1982), and generation of the widely used

entangled photon pairs by parametric down-conversion, are more interesting than the usual
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one-photon transitions (Dodonov & Mizrahi, 1997a,b). Photon statistics have been studied

in various systems, including single beam (Simaan & Loudon, 1975b, 1978) and double

beam (Simaan & Loudon, 1975a), two-photon absorption and stimulated Raman processes

(Simaan, 1975). An extensive theory of TPL has been developed and studied for two-level

systems (Gauthier, 2003), up to saturation level (Bandilla & Voigt, 1982; Wang & Haken,

1984a; Cheng & Haken, 1988). Exact solutions based on P-representation have been found

(Kryuchkyan et al., 1996). In the case of lasing far above the threshold, researchers have

obtained analytical expressions for the photon statistics, particularly the photon numbers,

moments and correlations of higher orders (Dodonov et al., 1989). However, for the simple

degenerate 3-level cascade scheme, analytical expressions of the photon statistics remain

challenging and non-trivial (Bay et al., 1995). The two-photon process is the simplest form

of nonlinearity and introducing another nonlinearity to the two-photon atom-field interaction

enriches the nonclassical properties of the system. One simple, but interesting, form of

this nonlinearity is the Kerr-effect which has paid much attention since the laser invention

(Yurke & Stoler, 1986; Bužek & Jex, 1990; Semiao et al., 2009; Faghihi et al., 2013; Singh

& Gilhare, 2016b; Ghorbani et al., 2017). A recent study for two modes cavity-field non-

dissipative system in Kerr-like medium is investigated (Singh & Ooi, 2018). These studies

give us the motivation to study the effect of the nonlinearity of Kerr-type on the dynamics

and nonclassicality of the TPL.

In this chapter, the statistical properties of a nondegenerate TPL in Kerr-like medium in a

dissipative cavity are studied and analyze the effects of injection rate, two-photon detuning,

and Kerr parameters on the statistical properties and distribution function of two modes of

lasing photons. Exact nonlinear quantum theory of laser for the system of # two-level atoms

in a doubly resonant cavity is used. The use of effective two-level Hamiltonian to represent

the actual three-level scheme is realistic and acceptable under specific conditions (when
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the laser field and the intermediate level are far off-resonance in which one can drop the

slow variation of this low populated level) (Bay et al., 1995; Boone & Swain, 1989a,b, 1990;

Singh et al., 2012). The density matrix master equation of the system was derived using the

Scully-Lamb approach. Equations of the photon statistics are derived and an approximate

form of equation was presented. From the approximate equation of the photon statistics, a

general equation of the moments was given and the first moments’ expressions are derived.

Analytic expressions for mean photon numbers, � (2) , and & are obtained in elegant forms.

Two expressions for the mean photon-number are obtained. One of these expressions is

more reliable over a long range of the parameters of the system. Moreover, for a special

case, photon statistics are calculated using the generating function method and a general

formula for the moments is derived. The exact full density matrix was solved numerically

using MATLAB. A justification of the analytic solution by making a comparison between the

analytic results and those of the exact solution is presented. Nonclassicality of the field

such as squeezing, sub-Poissonian statistics, and violation of the CSI is documented. A

discussion of the numerical computations is given.

4.2 Model and Laser Master Equation

In this chapter and the following chapters, and to lower the cost of notation by having

hats on quantum operators, the hat will be dropped and it will be understood from the

context that they are operators not classical c-numbers. For example, the creation and

annihilation operators 0̂† and 0̂ become 0† and 0; therefore, 〈=̂〉 = 〈=〉. The model in

this study is an open system of a collection of two-level atoms placed in a cavity. The

ensemble of noninteracting identical effective two-level atoms interacts with a two-mode

cavity field. The atoms have excited level |0〉 and ground level |1〉 of with frequencies l0

and l1, respectively. The atom transition frequency l = l0 −l1 and the two-mode cavity

field have frequencies, a1 and a2. The subsystems (atoms and cavity field) are coupled
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through the coupling constants 61, 62, for simplicity, taken to be real and equal to 6 which

is acceptable in most cases. In addition to that, the two-mode cavity field has nonlinear

interaction with the medium (the atoms in the cavity) through the parameters j1 and j2,

which are proportional to the third-order susceptibility of the medium j(3) (optical Kerr

effect). The cavity field modes interact with the environment (mode of the universe). The

effective Hamiltonian of the system in the dipole (Parker, 2005, p. 719; Puri, 2001, p. 137)

and rotating wave approximation (Parker, 2005, p. 489; Puri, 2001, p. 140) is the sum of

the free Hamiltonian �0 and the interaction Hamiltonian �� and has the form

� = �0 + �� , (4.1a)

where

�0 =
ℏl

2

∑
9

fI
9
+ ℏ

∑
5=1,2

(
a 5 0

†
5
0 5 + j 5 0†25 0

2
5

)
, (4.1b)

�� =
∑
9

ℏ6

(
f+9 0102 + f−9 0

†
10
†
2

)
, (4.1c)

where 0 †
5
(0 5 ), 5 = 1, 2 are creation (annihilation) operator of the field in mode 5 and

fI
9
, f±

9
are the j th- atom transition operators with

f+9 =
��0 9 〉 〈

1 9
�� , (4.2a)

f−9 =
(
f+9

)†
=

��1 9 〉 〈
0 9

�� , (4.2b)

fI
9
=

[
f+9 , f

−
9

]
. (4.2c)

Without the Kerr terms, the model is a two-mode version of the Jaynes-Cummings model

(Jaynes & Cummings, 1963; Shore & Knight, 1993). Using the unitary transformation

*0 = e−8�0C/ℏ, the Hamiltonian, Equation 4.1a, in the interaction picture, after setting the
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cross-Kerr parameter j = 0 and the IDC, � = 1 (discussed in the next chapter) takes the

form (see Appendix B for the derivation)

+ = *
†
0��*0 =

∑
9

+ 9 , (4.3a)

+ 9 = ℏ6e−82
(
Δ
2 +j10

†
101+j20

†
202

)
C
0102f

+
9 + h.c. (4.3b)

where + 9 is the Hamiltonian of a single atom, and the two-photon detuning is

Δ = a1 + a2 − l. (4.4)

The dynamics of the TPL can be described completely by knowing the reduced density

matrix of the field d = TratomsdC , which can be obtained by tracing of over the atomic

degrees of freedom of the total (atom+field) density matrix dC of the system. The dynamics

of the reduced density matrix d is governed by the master equation

d
dC
d =

1
8ℏ
Tratoms [+, dC] +

∑
5=1,2

L5 d. (4.5)

The first and second terms on the right side of Equation 4.5 represent the gain and loss

contributions to the reduced density matrix d respectively. The super-operator L5 in the

loss (second term) part is obtained in the standard method of a system in a reservoir.

For a thermal field, the loss term takes the Lindblad form given in Equation 3.41 (Sar-

gent III et al., 1974; Scully & Zubairy, 1997)

L5 d = −
^ 5

2
=Cℎ5

(
0 5 0

†
5
d − 20†

5
d 0 5 + d0 5 0†5

)
−
^ 5

2

(
=Cℎ5 + 1

) (
0
†
5
0 5 d − 20 5 d 0†5 + d 0

†
5
0 5

)
,

(4.6)

where ^ 5 is the decay constant of mode 5 = 1, 2 of the field, and =Cℎ5 is the mean number
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of quanta in the thermal reservoir. The hard work, now, in obtaining the master equation of

the density matrix resides in calculating the gain or lasing part represented by the trace

over the atomic variables in the first term of Equation 4.5. Fortunately, the goal is reached

easily using the Scully-Lamb method (Scully & Lamb, 1967; Sargent III et al., 1974), in

which the calculations reduced to finding the density matrix of one atom then doing a sum

(integral). The calculation of the field density matrix d for one atom in a cavity is straight

forward; using the evolution operator (for a single atom), or obtaining the wave function

by solving Schrodinger equation. It is assumed that the atoms are initially prepared in a

coherent superposition of the ground state |0〉 and the excited state |1〉, and the atoms

and the field are uncoupled so the initial one-atom density matrix of the system is the direct

product of the each subsystem

dC (C0) = d0C>< (C0) ⊗ d(C0) =
©­­­«
d00 (C0)d(C0) d01 (C0)d(C0)

d10 (C0)d(C0) d11 (C0)d(C0)

ª®®®¬ . (4.7)

According to the Scully-Lamb laser theory, the gain part of the field density matrix is

calculated as follows

¤d(gain)
=1=2;=′1=

′
2
= A0

∫ ∞

0
Wdge−Wg

[ ∑
G=0,1

dG=1=2;G=′1=
′
2
(C + g) − d=1=2;=′1=

′
2
(C)

]
, (4.8)

where W is the atomic decay constant, A0 rate of atomic injection. In this theory, it is assumed

that the effect on an atom by other atoms in the medium comes only through the laser field,

i.e. they are independent, and the cavity decay time ^−1 is much longer than the atomic

lifetime W−1. The time g is assumed to be long compared with an atomic lifetime W−1, but

short compared to the time characterizing the growth or decay of the laser radiation ^−1.

So in this coarse-grained time rate of change (Phoenix & Knight, 1988) for the gain part in

the field operator ¤d608= is readily found from Equation 4.8 where the condition W � ^1, ^2,
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i.e. the laser field does not change appreciably on a time scale of an atomic lifetime, and

the approximation d (C0) ≈ d (C) for the field operator is made. To this end, it is required to

obtain the single-atom and field density matrix, d.

The single-atom density matrix can be obtained in straight forward and Schrodinger

equation will be used to obtain it. To achieve this, the elements d0=1=2;0=′1=
′
2
, d1=1=2;1=′1=

′
2

are evaluated. These elements are defined by

dU=1=2V=
′
1=
′
2
(C) = �U=1=2 (C) �∗V=′1=′2 (C) ;U, V = 0, 1. (4.9)

The coefficients �U=1=2 (C) are the probability amplitude of the wave function that can be

obtained from solution of Schrödinger equation

d
dC
|k〉 = − 8

ℏ
+ 9 |k〉. (4.10)

. The wave function is the superposition of the two states |0=1, =2〉 (atom is in the excited

state |0〉 and the field in |=1, =2〉 state) and |1=1, =2〉 (atom is in the ground state |1〉 and

the field in |1=1, =2〉 state).

|k〉 =
∑
=1=2

[
�0=1=2 |0=1, =2〉 + �1=1=2 |1=1, =2〉

]
. (4.11)

A detailed derivation of the density matrix elements dU=1=2V=
′
1=
′
2
(C) is given in Appendix C.

By substituting Equations C.26 and C.27 from Appendix C into Equation 4.8, employing the

argument above, and performing the integration, the gain part of the laser master equation

based on Scully-Lamb theory is obtained (detailed derivation is presented in Appendix

D). By taking the elements of the dissipation part, Equation 4.6 at zero-temperature, and

adding it to the gain part of the maser equation given by Equation D.30, the full master

74

Univ
ers

ity
 of

 M
ala

ya



equation of the field is found to be

d
dC
d=1=2;=′1=

′
2
= − A0

(
d00!=1+1=2+1;=′1+1=

′
2+1 + d11!

∗
=1=2;=′1=

′
2

)
d=1=2;=′1=

′
2

+ e28
(
�=1=2−�=′1=′2

)
WC
A0d00(

∗
=1=2;=′1=

′
2
d=1−1=2−1;=′1−1=′2−1

+ e−28
(
�=1+1=2+1−�=′1+1=′2+1

)
WC
A0d11(=1+1=2+1;=′1+1=

′
2+1d=1+1=2+1;=′1+1=

′
2+1

+ 8e28�=′1+1=
′
2+1
WC
A0d01"=1+1=2+1;=′1+1=

′
2+1d=1=2;=′1+1=

′
2+1

− 8e28�=1=2WCA0d01 
∗
=1=2;=′1=

′
2
d=1−1=2−1;=′1=

′
2

− 8e−28�=1+1=2+1WCA0d10 =1+1=2+1;=′1+1=
′
2+1d=1+1=2+1;=′1=

′
2

+ 8e−28�=′1=
′
2
WC
A0d10"

∗
=1=2;=′1=

′
2
d=1=2;=′1−1=′2−1

+ ^1

√
(=1 + 1)

(
=′1 + 1

)
d=1+1,=2;=′1+1,=

′
2

+ ^2

√
(=2 + 1)

(
=′2 + 1

)
d=1,=2+1;=′1,=

′
2+1

− 1
2

[
^1

(
=1 + =′1

)
+ ^2

(
=2 + =′2

) ]
, (4.12)

where

 =1=2;=′1=
′
2
=

�=1=2

'=1=2;=′1=
′
2

(
,+−=1=2;=′1=

′
2
− 82�=′1=

′
2
_=1=2;=′1=

′
2

)
, (4.13)

!=1=2;=′1=
′
2
= 1 − 1

'=1=2;=′1=
′
2


_=1=2;=′1=

′
2

(
,++
=1=2;=′1=

′
2
+ 2�=1=2�=′1=

′
2

)
+8�=1=2,

+−
=1=2;=′1=

′
2
− 8�=′1=

′
2
,−+
=1=2;=′1=

′
2

 , (4.14)

"=1=2;=′1=
′
2
=

�=′1=
′
2

'=1=2;=′1=
′
2

(
,−+=1=2;=′1=

′
2
+ 82�=1=2_=1=2;=′1=

′
2

)
, (4.15)

(=1=2;=′1=
′
2
=

2�=1=2�=′1=
′
2
_=1=2;=′1=

′
2

'=1=2;=′1=
′
2

, (4.16)
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and

_=1=2;=′1=
′
2
= 1 + 8

(
�=1=2 − �=′1=

′
2

)
, (4.17)

'=1=2;=′1=
′
2
= ,++2=1=2;=′1=

′
2
− 4Ω2

=1=2Ω
2
=′1=
′
2
, (4.18)

,
UV

=1=2;=′1=
′
2
= _2

=1=2;=′1=
′
2
+ UΩ2

=1=2 + VΩ
2
=′1=
′
2
;U, V = ±1, (4.19)

with

�=1=2 = W
−1

[
1
2
Δ + j1 (=1 − 1) + j2 (=2 − 1)

]
, (4.20)

�=1=2 = W
−16
√
=1=2, (4.21)

Ω=1=2 =

√
�2
=1=2 + �2

=1=2 . (4.22)

The oscillating nature in the density matrix elements Equation 4.12 of the system appears

clearly in the coefficients. The source of the oscillation comes from �=1=2 which contains

the detuning and the nonlinearity in the system, i.e. the Kerr term in the Hamiltonian. The

Hamiltonian in the interaction picture Equation 4.3b manifests this oscillation through the

strength of the cavity field and the optical Kerr effect. The Hamiltonian in the interaction

picture gives the dependence of the coupling on photon numbers or intensity and time. This

kind of interaction is the cause of many effects as was mentioned above. The explanation

of these effects (and others that may occur) requires further information from the analysis

of the density matrix elements.

The solution of the density matrix Equation 4.12 contains all the information needed to

describe the field in the cavity completely. Unfortunately, there is no solution in a closed form

for the density matrix, Equation 4.12, even in the special case for the diagonal elements,

as will be seen later.

To gain some understanding of the dynamics of the system considered, the photon
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statistics, %=1=2 = d=1=2;=1=2 , will be studied. The computation of %=1=2 function is much

easier than the total density matrix though some information is lost that can be obtained

from the off-diagonal terms that disappear in the distribution function.

4.3 The Laser Rate Equation

The time evolution of the diagonal elements of the density matrix from Equation 4.12

reads

¤%=1=2 = − A0
(
d00!=1+1=2+1 + d11!=1=2

)
%=1=2

+ A0
(
d00!=1=2%=1−1=2−1 + A0d11!=1+1=2+1%=1+1=2+1

)
− 8A0

(
d10 =1+1=2+1d=1+1=2+1;=1=2e−82�=1+1=2+1WC + h.c.

)
+ 8A0

(
d10 =1=2d=1=2;=1−1=2−1e−82�=1=2WC + h.c.

)
+ ^1(=1 + 1) %=1+1,=2 + ^2(=2 + 1) %=1,=2+1 − ^1=1%=1=2 − ^2=2%=1=2 ,

(4.23)

with population and coherence coupling strength coefficients

 =1,=2 =
W−16
√
=1=2

[
1 + 82W−1 (Δ/2 + j1 (=1 − 1) + j2 (=2 − 1))

]
1 + 4W−2 (Δ/2 + j1 (=1 − 1) + j2 (=2 − 1))2 + 4W−262=1=2

, (4.24a)

!=1,=2 =
2W−262=1=2

1 + 4W−2 (Δ/2 + j1 (=1 − 1) + j2 (=2 − 1))2 + 4W−262=1=2
. (4.24b)

Unfortunately, it is difficult to obtain an analytic solution in a closed form for the photon-

statistics function, %=1=2 from Equation 4.23 even in the steady state, ¤%=1=2 = 0 case. The

difficulty comes from the absence of detailed balance where the element %=1,=2 is coupled

to other elements such that the values of =1, =2 do not change by the same amount (as the

elements of the first line do). The terms that cause this difficulty are the coherence terms

(the third and fourth lines) and the first two terms of the fourth line where the absorption is

one photon in each mode. For this reason, Equation 4.23 has to be solved numerically.

However, an analytic approximation for the solution could be found under reasonable
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conditions as will be shown in the next section. To have some understanding of Equation

Figure 4.1: Energy levels of photon number states and probability flow corresponding to
the diagonal elements of the density matrix, Equation (4.23).

4.23, one should interpret its various elements. The rate of probability of the state that there

are =1 photons of the first mode and =2 photons of the second mode in the cavity, ¤%=1=2 ,

consists of twelve terms. The transitions and mechanisms of these terms are depicted in

Figure 4.1. The eight terms on the first, second, third, and fourth lines are the lasing terms;

contributions of populations and coherence. The contribution from populations comes

from the first four terms on the first and second lines. The first (second) term represents

the two-photon emission (absorption) one in each mode by the lasing media to state of

|=1 + 1, =2 + 1〉 (|=1 − 1, =2 − 1〉) represented by �0 (�1) on the figure. The third (fourth)

term represents the two-photon emission (absorption) one in each mode by the lasing

media from state |=1 − 1, =2 − 1〉 (|=1 + 1, =2 + 1〉) represented by �−0 (�+1) on the figure.
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The four terms on the third and fourth lines are the coherence contribution. The fifth and

sixth terms (�+01 on the figure) are the coherence of the states |=1, =2〉 and |=1 + 1, =2 + 1〉

of the field and d10 of the atom (as being in a superposition of its ground and excited

states). The same can be said about the seventh and eighth terms (�−01 on the figure)

as coherence between states |=1, =2〉 and |=1 − 1, =2 − 1〉. The last four terms on the last

line represent the loss due to interaction with the environment stimulated by one-photon

absorption. The first (second) term on the last line is the loss of a single photon (absorbed

by the cavity walls) of the first (second) mode in the state |=1 + 1, =2〉 (|=1, =2 + 1〉) where

the field state changes to |=1, =2〉 (increasing its population), represented by �+1 (�+2)

in the figure. The third and fourth terms are the loss of population in |=1, =2〉 state for

the first and second modes (�−1 and �−2). This section is concluded by approximating

the coherence part of Equation 4.23 in terms of the populations. This approximation will

allow us to derive analytic expressions for the moments to simplify the study of photons

statistics. Equation of the density matrix element ¤d=1−1,=2−1;=1,=2 can be easily obtained

from the density matrix equation Equation 4.12 by shifting indices. By neglecting the

small contribution of coherence terms compared to population contributions in the resulting

equation, an adequate approximation for ¤d=1−1,=2−1;=1,=2 in terms of populations takes the

form

¤d=1−1=2−1;=1=2 ≈ −
(
A0d00!=1=2;=1+1=2+1 + A0d11!∗=1−1=2−1;=1=2

)
d=1−1=2−1;=1=2

−
∑
9=1,2

^ 9

(
= 9 −

1
2

)
d=1−1=2−1;=1=2 − 8A0d10e−82�=1=2WC

×
(
 =1=2;=1+1=2+1d=1=2;=1=2 − "∗=1−1=2−1;=1=2

d=1−1=2−1;=1−1=2−1

)
.

(4.25)
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In the vicinity of steady-state, it can be written as

d=1−1=2−1;=1=2 ≈
8d10e−82�=1=2WC

Γ=1−1=2−1;=1=2

(
"∗=1−1=2−1;=1=2

%=1−1=2−1 −  =1=2;=1+1=2+1%=1=2

)
,

(4.26)

where

Γ=1−1=2−1;=1=2 = d00!=1=2;=1+1=2+1 + d11!∗=1−1=2−1;=1=2
+ 1
A0

∑
9=1,2

^ 9

(
= 9 −

1
2

)
. (4.27)

This expression tells us that the coherence between two states is approximated by the

weighted difference of populations of these states. It also shows the rule of detuning and

Kerr parameters in the oscillating nature of the coherence. Making use of Equation 4.26 in

Equation 4.23, it gives the approximated rate equation

¤%=1=2 = −
(
A0d00!=1+1,=2+1 + A0d11!=1,=2 + 2A0 |d01 |2 "+=1=2

)
%=1,=2

+ A0
[
d00!=1,=2 + |d01 |2

(
"+=1−1=2−1 + "

−
=1−1=2−1

)]
%=1−1,=2−1

+ A0
[
d11!=1+1,=2+1 + |d01 |2

(
"+=1+1=2+1 − "

−
=1+1=2+1

)]
%=1+1=2+1

+ ^1(=1 + 1)%=1+1=2 + ^2(=2 + 1)%=1=2+1 − (^1=1 + ^2=2)%=1,=2 ,

(4.28)

with

"±=1=2 = Re

(
 ∗
=1+1=2+1 =1+1=2+1;=1=2

Γ=1=2;=1+1=2+1
±
 ∗=1,=2 =1=2;=1+1=2+1

Γ=1−1=2−1;=1=2

)
. (4.29)

This is the main result in this section. This formula relates not only the diagonal elements of

the density matrix, but it includes the coherence contributions. The statistics rate equation,

Equation 4.23, is still hard to solve in this form, but if few assumptions are made, analytic

approximate solution could be found (e.g., a simple solution could be obtained for the case

d11 = 0). From Equation 4.28 an analytic approximation for the moments will be derived.
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Moments and � (2) will be the subjects of the next section.

4.4 Characterization of the Cavity Field

To characterize and study the nonclassical properties of the field, four measures are

used. The � (2) , CSI, &, and the photon number fluctuations as was discussed in Chapter

2. More insights into the characteristics of a quantum electromagnetic field can be drawn

from the study of quantum coherence (Mandel & Wolf, 1995). It is interesting to explore

the effect of Kerr nonlinearity on the nonclassicality of the light through the study of these

measures. For this goal, the first moments are derived using Equation 4.28.

From Equation 4.28, analytic calculations of photon statistics and the moments under

specific conditions are presented. The approximation, within this model, that is presented

is more effective over others presented in the literature (Zubairy, 1982; Bay et al., 1995),

for example. The effectiveness is in the sense it takes into account the coherence and

differences in photon number of adjacent states to the second order (i.e. !=+1 − != =

;1=
−1 + ;2=−2 +$

(
=−3)). The first few moments are easily found by multiplying Equation

4.28 by = 9 , =2
9
, and =1=2 then doing the sum. After making the right shift in the indices, the

moments are found to be

d
dC

〈
= 9

〉
= − ^ 9

〈
= 9

〉
+ A0d00

〈
!=1+1,=2+1

〉
− A0d11

〈
!=1,=2

〉
+ 2A0 |d01 |2

〈
"−=1=2

〉
,

(4.30a)

d
dC

〈
=2
9

〉
= − 2^ 9

〈
=2
9

〉
+ ^ 9

〈
= 9

〉
+ 2A0 |d01 |2

(〈
"+=1=2

〉
+ 2

〈
= 9"

−
=1=2

〉)
+ A0d00

〈(
2= 9 + 1

)
!=1+1,=2+1

〉
− A0d11

〈(
2= 9 − 1

)
!=1,=2

〉
,

(4.30b)

d
dC
〈=1=2〉 = − (^1 + ^2) 〈=1=2〉 + 2A0 |d01 |2

(〈
"+=1=2

〉
+

〈
(=1 + =2)"−=1=2

〉)
+ A0d00

〈
(=1 + =2 + 1)!=1+1,=2+1

〉
− A0d11

〈
(=1 + =2 − 1)!=1,=2

〉
.

(4.30c)
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It is not easy to solve this system unless a few simplifications are made. The difficulty is

in obtaining the averages such as
〈
!=1,=2

〉
and

〈
"±=1=2

〉
. In principle, the system could

be integrated if one decorrelates these averages to the first order such that the system

of equations is closed. This process is still complicated since it consists of a system of

coupled nonlinear equations, but a simpler procedure with several additional simplifications

are adopted.

Above threshold, the averages 〈!=1,=2〉 and 〈"±=1,=2〉 are slowly varying functions (asymp-

totically). Taking this into account, their values can be approximated by their steady-

state values 〈!=1,=2〉 ≈ 〈!=1,=2〉BB, 〈"±=1,=2〉 ≈ 〈"
±
=1,=2〉BB. The averages 〈= 9!=1,=2〉BB and

〈= 9"−=1,=2〉BB are decorrelated such that 〈= 9!=1,=2〉BB ≈ 〈!=1,=2〉BB〈= 9 〉 and 〈= 9"−=1,=2〉BB ≈

〈"−=1,=2〉BB〈= 9 〉. The resulting steady-state averages are decorrelated to the zeroth-order

(their variables are uncorrelated),
〈
!=1,=2

〉
BB
≈ !〈=1〉BB 〈=2〉BB ,

〈
"±=1=2

〉
BB
≈ "±〈=1〉BB 〈=2〉BB

(re-

placing a photon number by its average which is reasonable above the threshold and for a

sharp enough distribution function). Employing these arguments, the moments in Equation

4.30 take the simple form

d
dC
〈= 9 〉 = A0〈_−=1,=2〉BB − ^ 9 〈= 9 〉, (4.31a)

d
dC

〈
= 9

〉2
= −2^ 9

〈
= 9

〉2 +
(
2A0〈_−=1,=2〉BB + ^ 9

)
〈= 9 〉 + A0〈_+=1,=2〉BB, (4.31b)

d
dC
〈=1=2〉 = − (^1 + ^2) 〈=1=2〉 + A0〈_−=1,=2〉BB〈=1 + =2〉 + A0〈_+=1,=2〉BB, (4.31c)

where

_±=1,=2 = d00!=1+1,=2+1 ± d11!=1,=2 + 2 |d01 |2 "±=1=2 . (4.32)
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Integrating Equation 4.31a, yields

〈= 9 〉 =
A0〈_−=1,=2〉BB

^ 9

(
1 − e−^ 9 C

)
. (4.33)

Using this result back in Equations 4.31b, 4.31c, and integrating for 〈=1=2〉 and
〈
= 9

〉2 gives

〈=1=2〉 − 〈=1〉〈=2〉 =
A0〈_+=1,=2〉BB
^1 + ^2

(
1 − e−(^1+^2)C

)
, (4.34a)〈

=2
9

〉
−

〈
= 9

〉2 −
〈
= 9

〉
=
A0

2^ 9
(
〈_+=1,=2〉BB − 〈_−=1,=2〉BB

) (
1 − e−2^ 9 C

)
. (4.34b)

The moments in Equation 4.34, along with Equation 4.32, tell us that statistics are super-

Poissonian and the coherence increases the correlation, but Kerr parameter decreases this

correlation. The variances say that the coherence widens both the joint and the marginal

photon distribution functions. This is clear since the right-hand side is non-negative,

〈_+=1,=2〉BB − 〈_−=1,=2〉BB ≥ 0 (the equality holds when d11 = 0, which means the atoms are

prepared in their excited states). In this case, the variance becomes 〈=2
9
〉 − 〈= 9 〉2 = 〈= 9 〉

and statistics are Poissonian. The correlations reach their maximum at steady-state and

the spread of the distribution is enhanced by the atomic coherence. The moments are

one method of characterizing a probability distribution and here they characterize the field

distribution.

4.4.1 Mean Photon Number

From Equations 4.31a and 4.32, the steady-state mean photon-number can be calculated

as

^ 9
〈
= 9

〉
BB
= A0

(
d00

〈
!=1+1,=2+1

〉
BB
− d11

〈
!=1,=2

〉
BB
+ 2 |d01 |2

〈
"−=1=2

〉
BB

)
. (4.35)

83

Univ
ers

ity
 of

 M
ala

ya



This result enables us to express
〈
= 9

〉
BB

in terms of the total mean-photon number 〈=〉BB =

〈=1 + =2〉BB

^ 9
〈
= 9

〉
BB
= ^ 〈=〉BB , (4.36)

where the effective decay constant

^ =
^1^2
^1 + ^2

. (4.37)

The relation in Equation 4.36 is useful since it simplifies the calculations for effective

expressions of the averages
〈
!=1,=2

〉
BB
,
〈
!=1+1,=2+1

〉
BB
, and

〈
"±=1=2

〉
BB
. To the orders

$ (〈=〉−2
BB ),$ (〈=〉−3

BB ), and$ (〈=〉−3
BB ), respectively, effective expressions for

〈
"+=1=2

〉
BB
,
〈
"−=1=2

〉
BB
,

and
〈
!=1+1,=2+1

〉
BB
−

〈
!=1,=2

〉
BB

can be written as

〈
"+=1=2

〉
BB
=

<1
〈=〉BB

, (4.38a)〈
"−=1=2

〉
BB
=

<2

〈=〉2BB
, (4.38b)

〈!=1+1,=2+1〉BB = 〈!=1,=2〉BB +
;1
〈=〉BB

+ ;2

〈=〉2BB
. (4.38c)

with

〈
!=1,=2

〉
BB
=

2 〈=〉2BB
1 + W−2X2 + 4W−1�X 〈=〉BB + 4� 〈=〉2BB

, (4.39)
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and

 =

(
6

W

)2
^2

^1^2
, (4.40a)

� =
^

W

(
j1
^1
+ j2
^2

)
, (4.40b)

� =  

[
1 + ^1^2

62

(
j1
^1
+ j2
^2

)2
]
, (4.40c)

X = Δ − 2@, (4.40d)

@ = j1 + j2. (4.40e)

The coefficients ; 9 , < 9 are presented with their derivation in Appendix E.

By using Equation 4.38 and Equation 4.39 in Equation 4.35, it is straight forward to write

the mean photon-number, 〈=〉BB, as a solution of the quintic equation

〈=〉5BB − �4 〈=〉4BB − �3 〈=〉3BB − �2 〈=〉2BB − �1 〈=〉BB − �0 = 0, (4.41)

with

�0 =
A0

4^�

(
1 + X

2

W2

) (
d00;2 + 2 |d01 |2 <2

)
, (4.42a)

�1 =
A0

4^�

(
d00

((
1 + X

2

W2

)
;1 + 4

X

W
�;2

)
+ 8 |d01 |2

X

W
�<2

)
, (4.42b)

�2 =
A0

4^�

(
4d00

(
X

W
�;1 + �;2

)
+ 8 |d01 |2 �<2

)
, (4.42c)

�3 =
A0

4^�

(
4d00�;1 −

^

A0

(
1 + X

2

W2

))
, (4.42d)

�4 =
A0

4^�

(
2 (d00 − d11)  − 4

^X

WA0
�

)
. (4.42e)

Equation 4.41 has, in general, five real roots, three real roots and two complex conjugate

roots, or only one real root and four complex conjugate roots. The real physical solution is

found to be in a good agreement with the numerical solution. The coherence contributes
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through the low-order coefficients, �0, �1, �2 that means it is negligible for large intensities.

A special and simpler expression for the mean, yet still in a good agreement with the

numerical solution for not very large values of the detuning and Kerr parameters is obtained

by ignoring coherence contribution and the correction in the difference
〈
!=1+1,=2+1

〉
−
〈
!=1,=2

〉
(derived in Appendix E). For this special case, the fifth-degree polynomial reduces to the

quadratic equation

〈=〉2BB − �4 〈=〉BB +
1

4�

(
1 + W−2X2

)
= 0. (4.43)

The stable solution of Equation 4.43 is

〈
= 9

〉
BB
=

^

2^ 9
�4

(
1 +

√
1 − 1 + W−2X2

��2
4

)
, (4.44)

and the other solution is unstable and diminishes far above threshold. This expression

gives the threshold condition, �4 >
√(

1 + W−2X2) �−1, explicitly

A06
2 (d00 − d11) − 2 (j1^2 + j2^1) X√(
W2 + X2) (

(j1^2 + j2^1)2 + 62^1^2

) ≥ 2. (4.45)

The threshold condition Equation 4.45 predicts that the Kerr parameter and positive detuning

raise the threshold, but negative detuning lowers it. It also predicts the necessity of

population inversion to sustain steady-state production of photons. The role of the sign of

the detuning can be explained as follows: Kerr effect makes a shift in the field frequency

(scattering photons) (He & Liu, 2017). From the definition of detuning, Equation 4.4),

negative detuning represents low-energy photons (red-photons), and positive detuning

represents high-energy photons. So, combining the energy from these red-scattering

photons (from the optical Kerr effect) to the field energy will drive the atom and field far

from resonance in the case of positive detuning but bring them close to resonance for the
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negative detuning case (Mathkoor et al., 2020). So, in the presence of the Kerr effect, the

mean photon number will be greater than for positive detuning.

Far from threshold (large
〈
= 9

〉
BB
), the means take the simpler form

〈
= 9

〉
BB
=

1
2^ 9

A06
2 (d00 − d11) − 2 (j1^2 + j2^1) X

62 +
(
j1

√
^2/^1 + j2

√
^1/^2

)2 . (4.46)

Expression in Equation 4.46 (zeroth approximation in
(
1 + W−2X2) /��2

4 ) anticipates

a linear decrease of the mean with increasing detuning towards positive values. It says

that the Kerr parameter and positive detuning lessen the mean photon number and the

negative values for detuning, enhanced by the Kerr effect, increase the mean. However,

the Kerr effect is dominant and the overall result is decreasing the mean photon number.

This means that low-energy photons enhance the mean photon number while high-energy

photons reduce the mean.

It is worth to state comparison between the solution in Equation 4.44 and its approxima-

tion given by Equation 4.46 as the solution to the fifth degree polynomial given by Equation

4.41. First, the solution of Equation 4.41 takes into account the coherence, but Equations

4.44 and 4.46 neglect the coherence. Second, the numerical solution of Equation 4.41 is in

agreement with both Equations 4.44 and 4.46 and for a longer range of the parameters as

shown in the discussion.

4.4.2 Nonclassicality by � (2) and CSI

The field correlation functions are useful tools to analyze the quantized electromagnetic

field (Glauber, 1963c). The � (2) is one measure for nonclassical properties of the field,

among other measures such as violation of CSI for � (2) (Loudon, 1980; Reid & Walls,

1986; Klyshko, 1996; Walther et al., 2006). From Equations 2.115 and 2.116, the � (2) in
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simple elegant form is

6
(2)
9 9
= 1 +

(
6
(2)BB
9 9
− 1

)
coth

(
1
2
^ 9 C

)
, (4.47a)

6
(2)
12 = 1 + 1

2

(
6
(2)BB
12 − 1

) [
coth

(
1
2
^1C

)
+ coth

(
1
2
^2C

)]
. (4.47b)

These equations give a better agreement after a specific long time. This is a consequence

of the assumption and validity of the approximation, e.g., far from threshold which is

a point that needs more time to reach. By ignoring the fast decaying terms and using

coth(G) ≈ 1 + 2 exp(−2G), G � 1, so 6(2) near the steady-state takes the form

6
(2)
9 9
= 1 +

(
6
(2)BB
9 9
− 1

) (
1 + 2e−^ 9 C

)
, (4.48a)

6
(2)
12 = 1 +

(
6
(2)BB
12 − 1

) (
1 + e−^1C + e−^2C

)
. (4.48b)

From Equations 4.33 and 4.34, the steady-state 6(2) are

6
(2)BB
9 9

= 1 + A0

2^ 9
〈_+=1,=2〉BB − 〈_−=1,=2〉BB

〈= 9 〉2BB
, (4.49a)

6
(2)BB
12 = 1 + A0

^1 + ^2

〈_+=1,=2〉BB
〈=1〉BB〈=2〉BB

. (4.49b)

Equation 4.48 states that the correlations reach their lowest values at steady-state given

by Equation 4.49. These expressions say that 6(2)
8 9
> 1 at all times and the field is super-

Poissonian. These functions violate the CSI as will be shown soon. In the case d11 = 0, the

averages 〈_±=1,=2〉BB are reduced to 〈_+=1,=2〉BB = 〈_−=1,=2〉BB = 〈!=1+1,=2+1〉BB = A−1
0 ^ 9 〈= 9 〉BB

(from Equation 4.32 and using the steady-state of Equation 4.31a). In this case and from
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Equation 4.48, the � (2) reduce to

6
(2)
9 9
= 1, (4.50a)

6
(2)
12 = 1 + A0

^1 + ^2

〈_+=1,=2〉BB
〈=1〉BB 〈=2〉BB

(
1 + e−^1C + e−^2C

)
. (4.50b)

In the steady-state, 6(2)12 takes the form

6
(2)
12 = 1 + 1

〈=1〉BB + 〈=2〉BB
. (4.51)

Equation 4.51 is identical with Zubairy’s result (Zubairy, 1982); The violation of CSI is

of order (〈=1〉BB + 〈=2〉BB)−1. It is convenient to use the function �2B, as was discussed

in Chapter 2, to quantify the correlation and to measure the nonclassicality through its

violation of CSI, or �2B > 0. For the case d11 = 0, and from Equation 4.50, the function

�2B takes the form

�2B =
1

〈=1〉BB + 〈=2〉BB
(
1 + e−^1C + e−^2C

)
> 0. (4.52)

The function is always positive and takes its lowest value at the steady-state. So, � (2)

violates CSI all the time. Another important measure that is adopted here is the& parameter.

4.4.3 Nonclassicality by &

As was discussed in Chapter 2, the statistics of the field are determined by quantifying

&. It measures the departure of the statistics from Poissonian & = 0 or
〈
=2
9

〉
=

〈
= 9

〉2

(the variance equals the mean). So, & indicates the nonclassicality when & < 0 which

corresponds to the sub-Poissonian statistics (Mandel, 1979). The & parameter and the

intra-mode correlations are related by Equation 2.117 which is written as

& 9 =
〈
= 9

〉 (
6
(2)
9 9
− 1

)
. (4.53)
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By substituting Equation 4.47a in Equation 4.53, the dynamics of & are

& 9 = &
BB
9

(
1 + e−^ 9 C

)
. (4.54)

Equation 4.54 states that the &-parameter reaches its lowest value at the steady-state.

The explicit expression of & at steady-state is obtained from by substituting Equation 4.49a

in Equation 4.53 giving

&BB
9 =

A0

2^ 9
〈_+=1,=2〉BB − 〈_−=1,=2〉BB

〈= 9 〉BB
. (4.55)

Equation 4.55 indicates that&BB
9
> 0, so the statistics are super-Poissonian. When d11 = 0

(atoms are initially in their excited states) and from Equation 4.50b, & 9 = 0. So, & cannot

tell about the nonclassicality of the field that is already found from the violation of the

CSI at all times. Thus the approximate solution predicts that the statistics of the field are

super-Poissonian and become Poissonian only when d11 = 0, but the nonclassicality is

witnessed through the violation of CSI.

4.4.4 Fluctuations

The relative fluctuations of the number of photons in j-mode is〈(
Δ= 9

)2
〉〈

= 9
〉 =

〈
=2
9

〉
−

〈
= 9

〉2〈
= 9

〉 = & 9 + 1. (4.56)

It was thought that the relative fluctuations of the number of photons in a TPL cannot

be smaller than the fluctuations in the coherent emission. Zubairy (1980) and Bay et al.

(1995) calculated the photon number fluctuations high above the threshold and found the

fluctuations in the photon number of TPL
〈
(Δ=)2

〉
/〈=〉 = 3/2. This is greater than that

of the one-photon which means that spectral distribution for the TPL is wider than the

90

Univ
ers

ity
 of

 M
ala

ya



Poissonian that describes the standard one-photon laser. This increase in the width attains

the maximum when the two photons have the same decay rates. The TPL is bunched

(Cheng & Haken (1988) and the references therein). However, under some conditions,

the fluctuations could be reduced and antibunching is observed (Bay et al., 1995; Loudon,

1980; Kozierowski, 1981). From Equation 4.55, the relative fluctuations for single-mode

statistics, Equation 4.56, are〈(
Δ= 9

)2
BB

〉〈
= 9

〉
BB

= 1 + A0

2^ 9
〈_+=1,=2〉BB − 〈_−=1,=2〉BB

〈= 9 〉BB
. (4.57)

The fluctuations in the single mode distribution take their lowest value 1 when d11 = 0. It is

interesting to see the fluctuations in the total photon number distribution, 〈=〉 = 〈=1〉 + 〈=2〉.

The relative noise could be written as

〈
(Δ=)2BB

〉
〈=〉BB

= 1 + 2^
^1 + ^2

+ A0
2^

(
1 + 4^

^1 + ^2

) 〈_+=1,=2〉BB − 〈_−=1,=2〉BB
〈=〉BB

. (4.58)

The lowest value of the relative total fluctuations (for d11 = 0 ) is

〈
(Δ=)2BB

〉
〈=〉BB

= 1 + 2^1^2

(^1 + ^2)2
, (4.59)

which has the maximum value of 3/2 when the two modes have the same decay rate and

the known result (Zubairy, 1980; Bay et al., 1995) is recovered. This relation is also reduced

to the known value of 1 (for coherent state) for the one-photon laser when one mode has a

very small decay rate and becomes dominant over the other mode.
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4.4.5 Entanglement

It is interesting to investigate the role of Kerr parameters on the entanglement. To study

the entanglement, it is convenient to define � = � (01, 02) by

� (01, 02) = |〈0102〉|2 −
〈
0
†
101

〉 〈
0
†
202

〉
. (4.60)

According to Hillery & Zubairy (2006), the criterion for entanglement is � > 0. The

criterion states that the positivity of � implies entanglement. The computational form of

Equation 4.60 in terms of the density matrix elements is

� (=1, =2) =
�����∑
=1=2

√
(=1 + 1) (=2 + 1)d=1+1=2+1;=1=2

�����2 − 〈=1〉〈=2〉. (4.61)

An approximate expression for Equation 4.61 can be obtained by using Equation 4.26

in Equation 4.60. The off-diagonal elements d=1+1=2+1;=1=2 are written as

d=1+1=2+1;=1=2 ≈
8d01e82�=1+1=2+1WC

Γ∗
=1=2;=1+1=2+1

(
 ∗=1+1=2+1;=1+2=2+2%=1+1=2+1 −  ∗=1+1=2+1;=1=2

%=1=2

)
.

(4.62)

Using Equation 4.62 in Equation 4.61, � can be written as

� (=1, =2) =
���d01〈Ξ=1+1,=2+1 

∗
=1+1=2+1;=1=2

− Ξ=1,=2 
∗
=1=2;=1+1=2+1〉

���2 − 〈=1〉〈=2〉,

(4.63)

where

Ξ=1,=2 =

√
=1=2

Γ=1=2;=1−1=2−1
e82�=1=2WC . (4.64)
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It worth to notice that the atomic coherence supports the entanglement. However, the

expression in absolute value is smaller than the last term. This removes any possibility

for entanglement. However, the model exhibits nonclassicality. It has been found that, in

metrological tasks, nonclassicality rather than entanglement is a necessary resource to

achieve quantum advantages (Kwon et al., 2019; Sahota & Quesada, 2015; Friis et al.,

2015; Ge et al., 2018). This section is concluded by presenting a solution for the statistics

function.

4.4.6 Photon Statistics

In this section, a solution for the statistics function using the generating function method

is presented (Simaan & Loudon, 1975a,b, 1978; Zubairy, 1980; Dodonov & Mizrahi, 1997b).

It is instructive to rewrite the statistics equation, Equation 4.28, in a simple form to simplify

the calculations. From Equation 4.28 and Equation 4.32 the statistics equation is

¤%=1=2 = −
(
A0_+=1,=2 + ^1=1 + ^2=2

)
%=1,=2

+ 1
2
A0

(
_+=1−1,=2−1 + _−=1−1,=2−1

)
%=1−1,=2−1

+ 1
2
A0

(
_+=1+1,=2+1 − _−=1+1,=2+1

)
%=1+1=2+1

+ ^1(=1 + 1)%=1+1=2 + ^2(=2 + 1)%=1=2+1.

(4.65)

Using the generating function,� = � (G1, G2; C), in two variables G1, G2 with C as a parameter

� (G1, G2; C) =
∑
=1=2=0

%=1,=2 (C) G
=1
1 G

=2
2 , (4.66)
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along with the assumptions employed in solving the moments, the generating function

takes the form (for the derivation, see Appendix F)

mC� =
[
−A0〈_+=1,=2〉BB + ^1(1 − G1)mG1 + ^2(1 − G2)mG2

]
�

+ 1
2
A0

(
〈_+=1−1,=2−1〉BB + 〈_−=1−1,=2−1〉BB

)
G1G2�

+ 1
2
A0

(
〈_+=1+1,=2+1〉BB − 〈_−=1+1,=2+1〉BB

) (
mG1mG2G1G2

)−1
mG1mG2�,

(4.67)

where mG = m
mG

; G = C, G1, G2.The third line of Equation 4.67 makes the solution complicated.

A simple solution is easy to obtain for the case d11 = 0 where this term disappears. So, a

solution for this special case when the atoms are prepared in excited states is presented.

This solution provides some insight on the effects of Kerr parameters and detuning on the

dynamics of the system. Under this assumption, the solution can be approached as follows.

The generating function � is rewritten in terms of a new auxiliary generating function .

such that

� = exp(. ) . (4.68)

Equation of the new generating function is

mC. = ^〈=〉BB (G1G2 − 1) +
[
^1(1 − G1)mG1 + ^2(1 − G2)mG2

]
. . (4.69)

Using Laplace transform and power series expansion, the solution of Equation 4.69 is (the

derivation is given in Appendix F)

. = 〈=1〉(G1 − 1) + 〈=2〉(G2 − 1) + �12(G1 − 1) (G2 − 1) , (4.70)
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where the mean 〈= 9 〉 and covariance are �12

〈= 9 〉 = 〈= 9 〉BB
(
1 − e−^ 9 C

)
, (4.71)

�12 =
(
〈=1=2〉BB − 〈=1〉BB〈=2〉BB

) [
1 − e−(^1+^2)C

]
. (4.72)

It have to be remembered that the mean photon number that appears in this calculation for

the distribution %=1,=2 is evaluated for the case d11 = 0 otherwise the result is not correct.

The statistics function, %=1,=2 , is obtained directly by performing a series expansion for

�; it is the coefficient of the term G
=1
1 G

=2
2 in the expansion. The calculations are presented

in Appendix G and the result is

%=1=2 =
〈=1〉=1 〈=2〉=2

=1!=2!
exp(−〈=1〉 − 〈=2〉)

× exp(�12)
(
1 − �12
〈=1〉

)=1 (
1 − �12
〈=2〉

)=2

b=1=2

(
�12

(〈=1〉 − �12) (〈=2〉 − �12)

)
,

(4.73)

where

b=1=2 (G) =
min(=1,=2)∑

:=0
:!

(
=1
:

) (
=2
:

)
G: , (4.74)

and
(:
;

)
is binomial coefficient. The first line of the function in Equation 4.73 is the product

of two independent (�12 = 0) Poissonian distributions and the second line is the correlation

of the two modes. Departure of the distribution from a two-dimensional Poissonian is

a measure of the statistics resulting from the correlation between the two modes. One

interesting observation is the symmetric form of the distribution in the two modes variables.

This symmetry will break when the average photon number in the two mode are different,

〈=1〉 ≠ 〈=2〉. This breaking of symmetry comes from the two factors in the middle of the

second line. For example, if 〈=1〉 > 〈=2〉, then the first factor will be the dominant and
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contributions of the first mode is greater than the contribution of the second mode and

the reverse is true when 〈=1〉 < 〈=2〉. Thus the distribution function is symmetric in =1

and =2 when 〈=1〉 = 〈=2〉. The implication of this symmetry-breaking in %=1=2 is photon

number squeezing as a result of reduction in the fluctuations of one mode. In this case, the

single-mode distribution (or the marginal distribution) can be obtained by projecting the two

dimensional distribution on one dimension. Similarly to calculation of a reduced density

matrix, the single-mode distribution is

%=1 =

∞∑
=2=0

%=1=2 , %=2 =

∞∑
=1=0

%=1=2 . (4.75)

In this section, analytic expressions for moments and photon statistics in a special case

are derived. � (2) and & are calculated and discussed. One of the main results of this

section is the mean photon number expressed in Equation 4.41 which is in a very good

agreement with the numerical solution over a large range of the parameters. In the next

section, the results from the numerical solution are discussed and the analytic solution is

compared to these results.

4.5 The Computational Solution

In this section, a numerical solution to Equation 4.23 is presented, and the moments and

� (2) as tools used to study the characteristics of the field are computed. For the numerical

solution, the whole density matrix in Equation 4.12 has to be solved since the system of

equations in Equation 4.23 is not closed to the diagonal elements.

To solve a problem numerically, one must truncate the infinite-dimensional space to

a finite one. This truncation causes a small error in the computations at the boundaries

but this error decreases as the dimension of the finite space increases. In solving the

density matrix equation, the four-dimensional density matrix d is rewritten in a column
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vector form, r. The density matrix equation took the form ¤r = "r where the matrix " is

time-dependent. The size of the system becomes large when the number of photons in

each mode is increased and make the computations a challenge in the cost of memory

and time. The maximum number of photons in the first mode and the second mode are

considered to be equal to # . The vector r has (# + 1)4 elements and the matrix " has

(# + 1)8 elements. Fortunately, most of the elements of " are zeros (sparse matrix).

Equations are solved using the adaptive Runge-Kutta-Fehlberg method (RKF45) algorithm

(Esfandiari, 2017) on Matlab. The algorithm of the solution is explained as follows.

The 4-dimensional density matrix
(
d=1=2;=′1=

′
2

)
, = 9 , =

′
9
= 0 · · · # is rewritten in a vector

form. The vectorization is performed in two steps. First, the pair of indices (=1=2), (=′1=
′
2)

are transformed to the pair (==′) which are

= = (# + 1) =2 + =1 + 1, =′ = (# + 1) =′2 + =
′
1 + 1, (4.76)

for =, =′ = 1, · · · , (# + 1)2. The density matrix becomes d=1=2;=′1=
′
2
→ d==′. Then, the later

is transformed into a single-index, :

: = (# + 1)2 (=′ − 1) + =; : = 1, · · · , (# + 1)4 , (4.77)

and the density matrix transforms as d==′ → d: . So the matrix is transformed from a

4-dimensional form into a single column matrix (vector).

(
d=1=2;=′1=

′
2

)
︸       ︷︷       ︸

(#+1)×(#+1)×(#+1)×(#+1)

→ (d: )︸︷︷︸
(#+1)4×1

= r. (4.78)

Using this final form of the density matrix, Equation 4.12 is rewritten in a matrix equation as

¤r = "r, (4.79)
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where r is the (column) vector form of the the density operator d and " is a (# + 1)4 ×

(# + 1)4 matrix, the Jacobian of the matrix equation, that contains the coefficients in the

master equation. It is clear how fast the the system size is growing as # increases. For

example, for # = 9, the size of r and " are 104 × 1 and 104 × 104, respectively. In

the calculations, # = 15 is used, in which r and " have, roughly and respectively, the

dimensions of 6.55(104 × 1) and 42.95(104 × 104). As can be seen, when # increased

by about 50%, the matrices r and " increased by about 6.55 and 42.95, respectively.

This drastic increase in the size of the problem was an instrumental factor to limit the

computations to not large values of # . In principle, the matrix equation Equation 4.79 can

be solved analytically. The solution is formally, r (C) = e" (C−C0) r (C0). The difficulty is in

the calculation of the exponential matrix. The algorithm is to calculate the eigenvalues and

eigenvectors of the matrix " , which is a difficult task as # increases. Another way is to use

Laplace transform but again the difficulty lies in calculation the inverse of a matrix that has

the same size as of" . More complication in calculation of inverse Laplace transform, which

is normally using the diagonalization procedure and the problem is reduced to calculation

of the eigenvalues and eigenvectors. From these considerations, the numerical solution

is the preferable procedure. In the numerical solution, the matrix " is computed at each

set of values of the parameters and then using the vacuum initial density matrix, r (0),

Equation 4.79 is solved using the Runge-Kutta fourth-order on Matlab. The vacuum initial

density matrix is calculated as

d (0) = |=1 = 0, =2 = 0〉〈=′1 = 0, =′2 = 0|, (4.80)
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with the vacuum states are

|=1 = 0, =2 = 0〉 = |=1 = 0〉 ⊗ |=2 = 0〉, (4.81a)

|= 9 = 0〉 = (1 0 0 · · · 0)) . (4.81b)

The column matrix r becomes (1 0 0 · · · 0)) (T for transpose).

4.6 Results and Discussion

So far in this chapter, the density matrix is derived and from which the photon distribution

equation and its approximated formEquation 4.28 are obtained. The solution of this equation

and its results were studied. In this section, the exact results from the computational solution

are provided as well as a justification for the analytic results from the approximated solution.

The justification is through a comparison between the exact results and the results of the

analytic approximation. The effects of injection rate A0, detuning Δ, and the Kerr parameters

j1 and j2 on mean photon number, � (2) , CSI through the �2B function, &, entanglement,

and photon distribution are studied. To study the dynamics of these quantities, 2D and

3D figures are presented. The 3D figures show the dynamics as well as the parameter

dependence of the quantities. The 2D figures present the dynamics but at three chosen

values of one of these parameters to make the effect quantitatively noticeable. The effect

of these parameters on the steady-state of these quantities is studied also. Through these

quantities, photon statistics and nonclassicality of the field are studied. For simplicity, the

two modes are assumed to have the same decay rate. So, from the symmetry of system,

the mean photon number 〈=1〉, 〈=2〉; correlation functions, 6(2)11 (0), 6
(2)
22 (0); and Mandel

& parameters, &1, &2 of the two modes are equal whenever they have the same Kerr

parameter. Also, from this symmetry, only one Kerr parameter j1 is allowed to change

values because the other produces the same effects. If the two modes have different decay
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rates, the mode of the smaller decay rate will dominate and the other will die if its decay

rate is too high and the problem reduces to the normal single-photon laser (Eremeev et al.,

2011).

A prototype realistic values of the parameters to show the main features of the field

are selected. As expected, and verified by the exact solution, the injection rate increases

the average of photon number, approximately, linearly as will be shown. Due to limiting

computational capacity, as it discussed in the previous section, the researcher was confined

to select a small range of values for the injection rate. The selected parameters are:

d00 = 0.9, d11 = 0.1, d01 = −0.38, d10 = 0.38,

W = 100^, 6 = 70^, j2 = 50^, ^1 = 2^, ^2 = 2^, ^ = 106s−1. (4.82)

The other parameters (A0, Δ, j1) are given in figure captions. The initial atomic state

selection is based on that the system becomes more nonclassical as the inversion d00−d11

increases (Mathkoor et al., 2020). In the justification, computation of %=1=2 is performed for

d11 = 0. The time range of the simulation is chosen to be ^C = 6 since the field reaches

steady-state earlier and the main features of the field are shown.

4.6.1 Effects of Injection Rate

In this subsection, the effects of injection rate A0 on all quantities under the study

mentioned above are discussed.

4.6.1.1 On Mean Photon Number

The effects of A0 on dynamics of the mean photon numbers 〈=1〉, 〈=2〉 are shown on the

upper panels of Figure 4.2(a) and Figure 4.3(a). Mean photon number starts from zero and

reaches steady-state in time about ^C ≈ 1.3 or C = 1.3 × 10−6s. The increase in injection

rate results in rising mean photon number which is understood since number of excited
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atoms in the cavity will increase and they emit more photons. This rise is approximately

linear as can be seen from Figure 4.3(a). The increase mean photon number when injection

rate increases from A0 = 20^ to A0 = 35^ is almost similar to the increase when A0 rises

from A0 = 35^ to A0 = 50^. The dependence of mean photon number on injection rate

appears clearly in the steady-state, Figure 4.4, where a linear growth in photon number

is observed. This confirms the analytic result, Equation 4.46, when the laser is above

threshold with an excess of photons. What about the effects of A0 on � (2)?

Effects of injection rate, detuning, and Kerr parameter on dynamics of the 
mean photon number and entanglement.

(a) (b) (c)

Figure 4.2: Mean photon number 〈=1〉 (upper panel) and entanglement � (lower panel).
The dynamics and parameter dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b)
detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr parameter j1 (A0 = 40^, Δ = 0).

4.6.1.2 On � (2) and CSI

The � (2) is the most important measure of nonclassicality of the field, and here a

discussion and analysis of the results and its response to changes in the injection rate

are given. The effects of A0 on dynamics of � (2) and consequently on CSI (demonstrated

through �2B) are presented in Figure 4.5(a), and Figure 4.6(a) for single-mode (or intra-

mode) 6(2)11 , 6(2)22 ; and in Figure 4.7(a), Figure 4.8(a) for inter-mode correlation 6(2)12 and

CSI. In steady-state, the results are shown in Figure 4.9(a) for 6(2)12 and �2B. The results
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Dynamics of the mean photon number and entanglement: 
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.3: Mean photon number 〈=1〉 (upper panel) and entanglement � (lower panel).
The dynamics for: (a) Δ = 0, j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0.

Mean photon number and sub-Poissonian statistics (𝑄1,2 < 0): 
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.4: Mean photon numbers, 〈=1〉,〈=2〉 (upper panel) and& (lower panel); parameter
dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuningΔ (A0 = 40^, j1 = 50^),
and (c) Kerr parameter j1 (A0 = 40^, Δ = 0).

for � (2) time-dependence show that the intra-mode correlations start from values below

the classical limit for Poissonian statistics 6(2)11 = 1(= 6(2)22 ). Then, quickly, they reach their

lowest value of around 0.9 at the kink before they grow up with small oscillations and reach

their steady-state. This indicates that, initially, the relative fluctuations are small before they
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grow up. They take their minimum at the kink where mean photon number 〈=1〉 ≈ 1(= 〈=2〉).

It can be observed how the kink shifts to the right by increasing the injection rate. The shift

gives time for the field to grow and reach the mean value of 〈=1〉 = 1. At this particular

time, the cavity has a mixture of one photon in each mode; the field in the two-photon state.

The result reminds us that the lowest allowed value for 6(2)11 is that for single-photon Fock

state which is 6(2)11 = 0. As time goes on, 6(2)11 increases and finally reaches its steady-state.

When A0 continues to increase, 6(2)11 increases too and becomes 6(2)11 > 1 for large values of

A0 before it decreases again due to reduction in fluctuations for reaching a kind of equilibrium

state between gain and loss. For example, at A0 = 50^, 6(2)11 reaches a maximum value

at ^C = 2.2. The rise of correlation, is understood, and can be explained, as follows: The

cavity photons build up with the time that results in a tendency of the cavity to have more

photons as time passes. This leads to a high probability to find photons in higher states

and fluctuations increase. As soon as the cavity reaches its saturation state, fluctuations

response is delayed. This behavior can be understood as inertia and photon fluctuations

need time to respond. So, statistics of the field change from sub-Poissonian at the initial

time to super-Poissonian before reaching steady-state with statistics of sub-Poissonian, or

Poissonian, depending on the value of injection rate. For weak values of A0 (and then 〈=1〉),

the field maintains its statistics to be sub-Poissonian Figure 4.9(a). However, for large A0,

6
(2)
11 attains the classical value and the statistics become Poissonian. The dynamics for

6
(2)
12 , Figure 4.7(a) and Figure 4.8(a), it starts from large values at initial time. So, initially,

6
(2)
11 is higher than 6(2)11 . 6(2)12 drops fast as fluctuations weaken when the cavity reaches

an equilibrium between absorption and emission. In this case, the two modes become

close to be independent and 6(2)12 reaches its lowest values. This result becomes more

realistic at strong injection rate when mean photon number becomes significantly large.

The large 6(2)12 and the slow change in 6(2)11 , 6(2)22 (≈ 1) explain the dynamics of �2B on the
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Effects of injection rate, detuning, and Kerr parameter on the dynamics 
of the single-mode correlation functions.                      

(a) (b) (c)

Figure 4.5: 6(2)11 (upper panel) and 6(2)22 (lower panel). The dynamics and parameter
dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuning Δ (A0 = 40^,
j1 = 50^), and (c) Kerr parameter j1 (A0 = 40^, Δ = 0).

Dynamics of the single-mode correlation functions: 
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.6: 6(2)11 (upper panel) and 6(2)22 (lower panel). The dynamics for: (a) Δ = 0,
j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0.

same figures, Figure 4.7(a) and Figure 4.8(a). The function �2B is always positive and

this means that CSI is violated all the time and the field is nonclassical. In steady-state

4.9(a), 6(2)11 and 6(2)22 increase but the 6(2)12 decreases as injection rate builds up. This shows

that the amount of violation of CSI becomes less as A0 gets large. Thus the effect of A0
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is to increase fluctuations and reduce � (2) which leads to driving the statistics towards

super-Poissonian and weaken nonclassicality of the field.

Effects of injection rate, detuning, and Kerr parameter on dynamics of 
the correlation function and violation of CSI.                      

(a) (b) (c)

Figure 4.7: 6(2)12 (upper panel) and CSI (�2B, lower panel). The dynamics and parameter
dependence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuningΔ (A0 = 40^, j1 = 50^),
and (c) Kerr parameter j1 (A0 = 40^, Δ = 0).

Dynamics of the correlation function and violation of CSI:
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.8: 6(2)12 (upper panel) and CSI (�2B, lower panel). The dynamics for: (a) Δ = 0,
j1 = 50^, (b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0.
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Correlation functions and violation of CSI:
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.9: (upper panel) 6(2)
8 9

; 8, 9 = 1, 2 and (lower panel) CSI (�2B, left-hand axis in red
color) and entanglement � (right-hand axis in blue color). The parameter dependence for:
(a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuning Δ (A0 = 40^, j1 = 50^), and (c) Kerr
parameter j1 (A0 = 40^, Δ = 0).

4.6.1.3 On Entanglement

Since inter-mode correlations decrease by the increase in A0, weak entanglement is

expected if it is available. The results reveal that there is no entanglement and the injection

rate makes entanglement hard to exist (increase of � , but in negative) as Figure 4.2(a)

and Figure 4.3(a) show its dynamics. The increase in A0 lowers photon correlation and

the two modes constitute two separable systems. The field density matrix becomes a

tensor product of the single-mode density-matrix of the two modes. The response of �

to the increase in A0 is nonlinear as shown in these figures. Figure 4.3(a) confirms that

the contribution to � comes from the last term in Equation 4.63. since the off-diagonal

elements d=1+1=2+1;=1=2 are small, the average in absolute value is very small and has no

effect. The smallest value is � = 0, which can be reached only at the initial time when the

field in its vacuum state and entanglement criterion � > 0 is not satisfied. In steady-state

� changes almost quadratically as demonstrated in Figure 4.9(a). This is confirmed by

combining Equation 4.63, and Equation 4.46. From these two equations, � dependence
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on A0, approximately, follows a quadratic formula.

4.6.1.4 On Mandel & Parameter

Since A0 reduces correlation and increases fluctuations, an increase in & is expected

and this is the case as results exhibit in Figures 4.10(a), 4.11(a) for its dynamics and in

Figure 4.4(a) for its steady-state. Again, the kink at which the lowest values of fluctuations

take place is seen. The & and 6(2)11 , 6(2)22 are sensitive to fluctuations so oscillations appear

clearly at maximum fluctuations then they fade when the cavity approaches steady-state

as exhibited in the figures. In the beginning, &1 = 0 which means that mean photon

number and its fluctuations vanishes. Then &1 drops quickly to its smallest value at the

kink and the shift of the kink is clear as was discussed above. As A0 increases, & rises

and statistics remain sub-Poissonian for the whole range of time while the injection rate is

not high enough for fluctuations to exceed the mean. As soon as A0 becomes large, &1

turns to be positive and statistics of the field are super-Poissonian. The response of & to

the variation in the injection rate in steady-state is depicted in Figure 4.4(a). It is increasing

almost linearly and the statistics change from sub-Poissonian at small values of A0 to super

Poissonian at large values of A0. Since the mean increases also, the increase in &1 means

higher fluctuations according to Equation 4.56.

4.6.1.5 On Distribution %=1=2

Since the width of the distribution indicates the number of fluctuations, the photon

distribution is expected to be wide as the mean photon number increases due to injection.

This is clearly represented in the 3D plot of the function %=1=2 in Figure 4.12i. The figure

shows the variation of the distribution at three values of A0: (a) A0 = 20^, (b) A0 = 35^,

and (c) A0 = 50^. In the same figure, the marginal or single-mode distribution is plotted for

the two modes, %=1 in black color and %=2 in red color projected on their corresponding
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Effects of injection rate, detuning, and Kerr parameter on dynamics of the 
Mandel parameter (sub-Poissonian statistics, 𝑄1,2 < 0).  

(a) (b) (c)

Figure 4.10: &1 (upper panel) and &2 (lower panel). The dynamics and parameter depen-
dence for: (a) injection rate A0 (Δ = 0, j1 = 50^), (b) detuning Δ (A0 = 40^, j1 = 50^), and
(c) Kerr parameter j1 (A0 = 40^, Δ = 0).

Dynamics of the Mandel parameter (sub-Poissonian statistics, 𝑄1,2 < 0) : 
Effects of injection rate, detuning, and Kerr parameter.

(a) (b) (c)

Figure 4.11: &1 (upper panel) and&2 (lower panel). The dynamics for: (a) Δ = 0, j1 = 50^,
(b) A0 = 40^, j1 = 50^, and (c) A0 = 40^, Δ = 0.

axis. Also, to study the width of the distribution, its FWHM is shown through the contour

lines represented by the ellipses. The two crossed lines, in Figures 4.12i(a) and 4.12i(c),

represent projection of the width on each axis, i.e. they represent the width of each single-

mode distribution. The vertical line is the width of the first mode and the horizontal line is the
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width of the second mode. The mean values 〈=1〉 and 〈=2〉 lie on the cross point of the two

lines. Width of first mode distribution, %=1 , is equal to width of the second mode distribution,

%=2 because the system is symmetric for the two modes, and %=1 = %=2 . This symmetry

will break when the effect of j1 is discussed. By looking at Figure 4.12 an increase in size

of the contours is observed which indicates that width of the distribution %=1=2 is increasing

when injection rate increases from A0 = 20^ in Figure 4.12i(a) to A0 = 50^ in Figure 4.12i(c).

So, the injection rate widens photon number distribution which is consistent with the effect

on both mean photon number and &. This result explains and supports the discussion on

increasing fluctuations.

4.6.2 Effects of Detuning

In this subsection, the effects of detuning Δ are discussed in a similar way to the

discussion for the effect of the injection rate.

4.6.2.1 On Mean Photon Number

The effects of detuning on dynamics of the mean photon number are shown on the

upper panels of Figure 4.2(b) and Figure 4.3(b). The increase in detuning lowers the mean

photon number as can be seen when detuning changes from Δ = 0 to Δ = 100^. It is

interesting to notice the effect of the sign of detuning. The results show that the mean

photon number is greater for negative detuning, Δ < 0, than for positive detuning, Δ > 0

which supports the early discussion. This is true due to the frequency-shift made by the

Kerr effect as was shown previously. The effect of detuning on mean photon number is

clearly shown for the steady-state in Figure 4.4 that demonstrates the argument presented

and confirms the prediction of Equations 4.44 and 4.46. The decrease in the average,

〈= 9 〉, 9 = 1, 2 due to detuning, is linear as Equation 4.46 predicts and Figure 4.4 confirms.

How this result will affect other quantities will be shown.
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(i) Statistics at j1 = 50^, Δ = 0 for:
(a) A0 = 20^, (b) A0 = 35^, and (c) A0 = 50^

(ii) Statistics at A0 = 40^, j1 = 50^ for:
(a) Δ = −100^, (b) Δ = 0, and (c) Δ = 100^

(iii) Statistics at A0 = 40^, Δ = 0 for:
(a) j1 = 0^, (b) j1 = 50, and (c) j1 = 100^

Figure 4.12: The statistics distribu-
tion function %=1=2 , its contours (el-
lipses) at FWHM, and the single-
mode distributions %=1 in black color
and %=2 in red color, for each mode
for: (i) injection rate A0, (ii) detuning
Δ, and (iii) Kerr parameter j1. The
distributions and their contours are
evaluated at each of the three val-
ues. The vertical (horizontal) line in
contours represents width of the dis-
tribution %=1 (%=2). The coordinate
of the cross point of the two lines are
the averages (〈=1〉, 〈=1〉).

4.6.2.2 On � (2) and CSI

The dynamics of 6(2)11 and 6(2)22 in Figures 4.5(b), 4.6(b) are, initially, larger for negative

detuning than for positive detuning before the situation is swiftly reversed. The results

manifest, in the case of negative detuning, a fast change of statistics from super-Poissonian

(at initial time) to sub-Poissonian. For non-negative detuning, statistics start from sub-

Poissonian before they change, in a time not longer than ^C ≈ 0.8, to Poissonian, for not

large detuning, and to super-Poissonian for large detuning. The field maintains its statistics,
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for the rest of time, to be super-Poissonian, for large positive detuning, and sub-Poissonian

for negative or small detuning. In steady-state, � (2) shown in Figure 4.9(b) exhibit this

obviously. For 6(2)12 , depicted on Figures 4.7(b) and 4.8(b), initially, it becomes stronger at

high detuning and reaches its lowest value when Δ = 0 but later it reduces as detuning

changes from the far negative to the far positive which is demonstrated well in Figure 4.9(b).

This result may be explained by the fact that close to resonance (Δ < 0 in the present

study) coupling becomes stronger. So, correlations are reduced as Δ increases negative

to positive. The consequence of detuning effects on 6(2)11 , 6(2)22 , and 6(2)12 is demonstrated

by their violation for CSI (�2B > 0) that demonstrates nonclassicality of the field shown

in Figures 4.7(b), 4.8(b), and 4.9(b). Violation increases gradually as detuning takes its

values from negative to positive. The violation is stronger in the beginning but it becomes

weak when the system approaches steady-state. The increase in �2B is due to the reduction

in 6(2)12 . It is interesting to notice that statistics are more sub-Poissonian for negative values

of detuning but more nonclassical for positive values. This is understood since statistics

come from 6
(2)
11 and 6(2)22 which inform us about fluctuations but violations depends mostly

on inter-mode correlations which comes from 6
(2)
12 .

4.6.2.3 On Entanglement

The probe of entanglement through the function � shows that the two modes are not

entangled since � < 0 for the whole time as shown in Figures 4.2(b) and 4.3(b). The

increase in detuning reduces correlations which excludes any possibility for entanglement.

The effect of detuning, in this sense, is similar to that is discussed for the effect of the injection

rate. However, as results presented in Figure 4.9(b) shows, the function � increases when

Δ changes from negative to positive.
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4.6.2.4 On Mandel & Parameter

Effects of detuning on Mandel & parameter are exhibited in Figures 4.10(b), 4.11(b),

and 4.4(b). The dynamics show a drop in & in the beginning and the noticeable kink at

which the lowest values of fluctuations take place as was found previously. Later, & rises

and statistics remain sub-Poissonian for the whole range of time while detuning is negative

or has small values. In a short time and for large detuning, the field statistics change

from sub-Poissonian to super-Poissonian for the whole range of time. The effect is more

important in the steady-state that is demonstrated in Figure 4.4(b). As detuning changes

from the far negative to the far positive, & increases and statistics show a transition from

sub-Poissonian to super-Poissonian. However, according to 4.56, the relative fluctuations

increase but the fluctuations decrease since the drop in mean photon number is greater

than the rise in &.

4.6.2.5 On Distribution %=1=2

The effect of detuning on the two-mode distribution function %=1=2 and the single-mode

distribution functions %=1 , %=2 are shown in Figure 4.12ii. The effect of detuning is similar

to the injection rate effect. As was discussed earlier, fluctuations are reduced by increasing

detuning as can be seen from the shrinking in size of the contours, though they are small.

Figure shows reduction in widths of the distributions as detuning increases and mean

photon number decrease starting from Δ = −100^ in Figure 4.12ii(a) to Δ = 100^ in Figure

4.12ii(c). This reduction in the width is accompanied by a reduction in the mean number of

photons. So, there is no contradiction with the fact that statistics become super-Poissonian

when detuning increases. The peaks of the distributions increase and shifted towards

smaller values of photon numbers, which is the opposite effect to their counterparts when

the influence of the injection rate was discussed.
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4.6.3 Effects of Kerr parameter

It is interesting to see the effect of Kerr parameter j1 on the quantities that already were

discussed above and how much different the effect on properties of each mode will be.

Kerr parameter j1 (and analogously j2) has a stronger effect on the field properties. It has

some similarities with detuning effects as can be observed from their corresponding figures.

However, the difference is significant since the Kerr parameter takes its role through the

intensity.

4.6.3.1 On Mean Photon Number

The effects of injection rate and detuning on mean photon numbers are found to be

almost linear. However, a noticeable nonlinear dependence is expected in the case of

the Kerr parameter because it is combined with the intensity. Mean photon number 〈=1〉

dynamics with Kerr parameter dependence is shown in Figures 4.2(c) and Figure 4.3(c).

The effect is similar to that of detuning but stronger. The increase in the Kerr parameter

lowers the mean photon number since j1 rises the effective detuning through the intensity

of the first mode. The reduction in 〈=1〉 when Kerr parameter increases from j1 = 0 to

j1 = 50^ is larger than the corresponding increase from j1 = 50^ to j1 = 100^ as shown

in Figure 4.3(c). So, Mean photon number reduces nonlinearly with j1 which is consistent

with the analytic result in Equation 4.46 and clearly depicted in Figure 4.4(c).

4.6.3.2 On � (2) and CSI

The effects of j1 on 6(2)11 and 6(2)22 dynamics are presented in Figures 4.5(c), 4.6(c). In

the beginning, 6(2)11 and 6(2)22 are large for j1 = 0 and become smaller as j1 increase. Soon,

they reach a steady-state where the correlation for larger j1 is smaller in the first mode

and the opposite in the second mode. Results display stronger effects on 6(2)11 than on 6(2)22

in contrast to the effects in the cases of injection rate and detuning. It also predicts that
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statistics of the first mode are sub-Poissonian for large values of j1 but a little effect on the

second mode. For 6(2)12 and CSI, their dynamics are exhibited in Figures 4.7(c), 4.8(c) that

show higher inter-mode correlation in the beginning similar to what is already observed in

the effects of A0 and Δ but j1 almost has no effect. The effects on CSI is much similar to

the effects of detuning in which a high violation in the beginning is seen then soon becomes

weak. The weakness in the nonclassicality is due to the drop in inter-mode correlation. For

steady-state, effects of Kerr parameter j1 on 6(2)12 and �2B are demonstrated in Figures

4.9(c). The inter-mode correlation, 6(2)12 starts from ^C = 1.1 for j1 = 0 and slowly rises with

the increase in j1. The single-mode correlation, 6(2)11 starts from 6
(2)
11 > 1 which indicates

super-Poissonian statistics and ends up with 6(2)11 < 1. Whereas, for the second mode it

starts from 6
(2)
22 < 1 and reaches 6(2)22 > 1. This means that statistics of the two modes

change from super-Poissonian to sub-Poissonian for the first mode but from sub-Poissonian

to super-Poissonian for the second mode. The change happens when their j1 = j2. These

changes are due to fluctuations that will be discussed in studying the effects on &. The

violation in CSI increases, approximately linearly; proportional to 6(2)12 .

4.6.3.3 On Entanglement

The correlation between modes rises and fluctuations decrease as j1 rises, so an

increase in � is expected and this is the case as dynamics in Figures 4.2(c), 4.3(c) shows.

The increase in j1 lowers mean photon numbers 〈=1〉, 〈=2〉 and, as was discussed earlier,

the last term in the expression of � given by Equation 4.63 becomes less. The increase in

� is nonlinear as the contribution comes to it almost from the last term that is exhibited in

Figure 4.9(c) which was explained before. So, the results predicts no entanglement and

Kerr parameter j1 boosts the field closely to an entangled state.
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4.6.3.4 On Mandel & Parameter

The effects of j1 on & are prominent as results exhibit in Figures 4.10(c), 4.11(c) for

their dynamics and in Figure 4.4(c) for their steady-state. The kinks in &1 and &2 are very

obvious in which the lowest values of fluctuations take place. At the kink, &1 reaches its

lowest value close to −0.30. After that, fluctuations develop and reach their steady-state

where j1 greatly reduces fluctuations in the first mode but lightly enhances fluctuations in

the second mode. Fluctuations in the first mode are less than fluctuations in the second

mode. As have been shown in the discussion of � (2) , which is very obvious for &, the two

modes have statistics transition from super-Poissonian to sub-Poissonian in the first mode

and from super-Poissonian to sub-Poissonian in the second mode; the magnitude of this

change is large in the first mode. The transition occurs at 2j1 = j2 and in which &1 > &2

for j1 < j2 and &1 < &2 for j1 > j2.

4.6.3.5 On Distribution %=1=2

The probability to measure a specific number of photons in the first mode in the cavity

is higher than to measure them in the second mode. This means that at the same mean

photon number, %=1 is narrower than %=2 for j1 > j2 and vice versa as was presented in

the discussion of the effects of j1 on &. This implies large squeezing in photon number for

the first mode for j1 > j2 and small squeezing in photon number for the second mode for

j1 < j2. This is exhibited in Figure 4.12iii(c) and the sizes of contours. The two crossed

lines shown on the contours demonstrate the case as in the discussion of injection rate

effects. In the present case, it is noticeable that the ellipse has been rotated clockwise

as j1 increased (by symmetry, the rotation will be anticlockwise when j2). This makes

the vertical line and the minor axis of the ellipse close to each other and the horizontal

line and the major axis closer. The meaning is that the width of the distribution %=1 is

less than the width of %=2 for this case j1 > j2. This is the breaking of symmetry that
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was discussed early. It is to notice that the Kerr parameter j1 decrease the mean photon

number of each mode simultaneously, 〈=1〉 = 〈=2〉 but the fluctuations are different for

j1 ≠ j2. The implication of this result is variation in the field quadratures if each mode due

to change in the phase.

4.6.4 Approximate Solution: Agreement and Justification

The point that is presented here is a discussion of the agreement between exact results

from the simulation and analytic results from the approximation. Figure 4.13 shows a

few exact and analytic results side by side. The comparison is to justify the assumptions

that were made for deriving the analytic results and to what extent their validity and the

discussion that can be built on. The upper panel of Figure 4.13(a, b) shows the agreement

for the real part of the off-diagonal elements of the density matrix d=1=2;=1+1=2+1 at steady-

state for =1 = =2 = 6 against detuning and Kerr parameter j1. The exact result comes from

the solution of the density Equation 4.12 and the approximate solution given in Equation

4.26. The results show a good agreement, and this justifies the approximation used for

the off-diagonal elements, which is given by Equation 4.26. The lower panel of Figure

4.13(a, b) shows the mean photon number 〈=1〉 against detuning Δ and Kerr parameter

j1 for the exact and two expressions for the approximate solution; one is the solution of

the quadratic expression, Equation 4.44, and the other is the solution of the fifth-degree

polynomial, Equation 4.41. Also, there is a good agreement. Below, a possible explanation

for the differences between the exact and approximate solutions is provided. On the right

panel and at steady-state, Figure 4.13(c, d), the statistics function, mean photon number,

and �2B are depicted for A0 = 40^, Δ = 0 and for initial atom density matrix d00 = 1,

d11 = 0, d01 = 0. The atom density matrix element d11 = 0 is chosen to abide by condition

of validity of Equation 4.73. The statistics function %=1=2 at j1 = 50^ shows acceptable

agreement. Also, the mean photon number 〈=1〉 and �2B show a good agreement. The
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mean 〈=1〉 on the right panel is greater than the one on the left because inversion on the

right (d00 − d11 = 1) is higher than inversion for the left panel (d00 − d11 = 0.8) and the

agreement is better since the part of the error due to approximation is removed.

Agreement:  Exact and approximation at steady-state.

(a) (b) (c) (d)

Figure 4.13: Agreement between the exact solution and the analytic approximation at
steady-state: (a, b) real part of d=1=2;=1+1=2+1 (Equations 4.12 and 4.26 at =1 = =2 = 6) and
〈=1〉 (solution of the quadratic and quintic expressions, Equation 4.44 and Equation 4.41)
for (a) A0 = 40^, j1 = 50^ and (b) A0 = 40^, Δ = 0. (c-d) for A0 = 40^, Δ = 0, d11 = 0;
%=1=2 (at j1 = 50^), 〈=1〉, and �2B.

The are two likely causes for the differences between the exact and the analytic solutions:

First the analytic is valid above threshold for large number of photons which might be not

fulfilled exactly in the exact solution due to computation capacity. The second reason is due

to neglecting correlations in the solution for the moments. In order to solve the system of the

moments in Equation 4.30, it was necessary to decouple them. The averages
〈
= 9!=1,=2

〉
and

〈
= 9"

−
=1=2

〉
are decorrelated to the first order. Then, to obtain a solution for the mean

photon number
〈
= 9

〉
BB
, the average

〈
!=1,=2

〉
BB
(i.e.

〈
!=1,=2

〉
BB
≈ !〈=1〉BB 〈=2〉BB ) is decorrelated

in which the zeroth (uncorrelated) term was used. The source of the differences is due to

ignoring the fluctuations in solving those equations. If one needs more accurate result one

has to solve the coupled equations and keep the second order correlations in the Taylor
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expansion of
〈
!=1,=2

〉
BB

around the means

〈
!=1,=2

〉
BB
≈ !〈=1〉BB 〈=2〉BB + ;20

(〈
=2

1
〉
BB
− 〈=1〉2BB

)
+ ;02

(〈
=2

2
〉
BB
− 〈=2〉2BB

)
+ ;11 (〈=1=2〉BB − 〈=1〉BB 〈=2〉BB) ,

(4.83)

where the coefficients ;20, ;11, and ;02 are rational functions of 〈=1〉BB and 〈=2〉BB. In solving

for the mean the first term of the above equation was taken and the fluctuations are

completely ignored.
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CHAPTER 5: TWO-PHOTON LASER WITH (SELF & CROSS) KERR EFFECT AND
IDC

5.1 Introduction

In Chapter 4, the role of the self-Kerr effect on the dynamics of the TPL is studied. The

self-Kerr effect is a cause of many phenomena such as self-focusing. However, when

the two modes interact, the mutual interaction energy must be included. This interaction

energy or what is known by the cross-Kerr effect plays an important role also (Khan et al.,

2015). Cross-phase modulation is one of them. Both self- and cross-Kerr effects have

many applications in communication and fiber optics (Semiao et al., 2009). Since the Kerr

effect is a result of third-order nonlinearity in the induced polarization of the medium, the

interaction process is said to be intensity-dependent. The nonlinear part of the refractive

index depends on the intensity. The TPL itself is considered as a nonlinear interaction

process. These ideas lead researchers to investigate the role of the nonlinear interaction

coupling strength, i.e. the intensity-dependence of the coupling between the field and

the atoms of the medium (Bužek & Jex, 1990; Singh & Ooi, 2018; Singh et al., 2012;

Singh & Gilhare, 2016a; Bartzis, 1990; Napoli & Messina, 1996; Gao et al., 2002). This

kind of nonlinearity and its impact on entanglement and the dynamics and properties of

the field and the atoms were investigated for a single atom (Faghihi et al., 2013) and

two atoms (Ghorbani et al., 2017). In this chapter, the study in Chapter 4 is extended to

investigate the role of the cross-Kerr effect and the IDC on the TPL. The role of both self-

and cross-Kerr effects in the dynamics of the system is studied. How the properties of the

field and statistics depend on the Kerr effect and IDC are investigated. A recent study of a

single atom two-mode cavity field in a non-dissipative cavity filled with Kerr-like medium

is investigated (Singh & Ooi, 2018). The researchers studied the dynamics of the atom

and the field. These studies gave us the motivation to study the effect of the nonlinearity of

119

Univ
ers

ity
 of

 M
ala

ya



Kerr-type on the dynamics and nonclassicality of the TPL.

Along the same line in the previous chapter, the statistical properties of a nondegenerate

TPL in Kerr-like medium in a dissipative cavity are studied and the effects of Kerr parameters

on the statistical properties and distribution function of two modes of lasing photons are

analyzed. In the second section, the model and its Hamiltonian in the interaction picture

are presented. In the third section, the photon statistics equation is studied. The field

characterization measures are calculated in the fourth section. The calculations carried out

for the mean photon number, the moments, � (2) , &, the entanglement, and the CSI. The

photon statistics function is presented in the fifth section. The last section is devoted to the

discussion of the results of the numerical and analytic solutions.

5.2 Model and Laser Master Equation

In this model, the extension is in two directions. First, the two modes are allowed to

have mutual interaction through the Kerr media. So, in the Hamiltonian, besides the self-

Kerr, quantified by the parameters j1 and j2, there is also the cross-Kerr, represented

by the parameter j. These parameters j1, j2, and j are proportional to the third-order

susceptibility of the medium j(3) (optical Kerr effect). The second, the coupling between the

atoms and the field is assumed to be IDC represented by the function � = � (0†101, 0
†
202).

In the analysis of the problem in this chapter, the effect of the coupling function of the

form � (0†101, 0
†
202) =

√
0
†
101 + 1

√
0
†
202 + 1 is studied, but in the general master equation,

the function � is general and takes any form. The effective Hamiltonian of the system in

the dipole approximation and rotating wave approximation is the sum of the free �0 and

interaction �� Hamiltonians

� = �0 + �� , (5.1a)
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where

�0 =
∑
9

1
2
ℏlfI

9
+

∑
:=1,2

ℏ

(
a: 0

†
:
0: + j: 0†2: 0

2
:

)
+ ℏj 0†1010

†
202, (5.1b)

�� =
∑
9

ℏ

[
6f+9 �

(
0
†
101, 0

†
202

)
0102 + 6∗f−9 0

†
10
†
2�
†
(
0
†
101, 0

†
202

)]
. (5.1c)

Using the unitary transformation *0 = e−8�0C/ℏ, the Hamiltonian Equation 5.1b in the

interaction picture takes the form (for the calculations, see Appendix B)

+ = *
†
0��*0 =

∑
9

+ 9 , (5.2a)

+ 9 = ℏ6�exp
[
−82

(
X + @10

†
101 + @20

†
202

)
C

]
f+9 0102 + h.c. (5.2b)

where (from Appendix B and for : = 1, 2)

@: = j: +
1
2
j, (5.3)

X =
1
2
(Δ + j) . (5.4)

The cross-Kerr effect has two actions as Equations 5.3 and 5.4 predict. It enhances the

self-Kerr effect of each mode equally and modifies the detuning which means shifting the

energy levels. Similar to the presentation given in Chapter 4 (see Appendices C and D for

details), the laser master equation based on Scully-Lamb theory has the same form of the

master equation in Equation 4.12. The difference is in the coefficients �=1=2 and �=1=2 that

are modified by the cross-Kerr parameter j and the IDC, �, where they become

�=1=2 = W
−1 [X + @1 (=1 − 1) + @2 (=2 − 1)] , (5.5)

�=1=2 = W
−16
√
=1=2 � (=1 − 1, =2 − 1) . (5.6)
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These coefficients are used in Appendix C. Since there is no change in the general form of

the density matrix by adding the cross-Kerr parameter and the IDC, the discussion refers

to Equation 4.12 when the master equation is mentioned.

In the next section, the photon statistics, %=1=2 = d=1=2;=1=2 will be studied. Since the IDC

function � appears explicitly in the coefficients !=1=2 and  =1=2 of the distribution equation

¤%=1=2 , the statistics equation is rewritten for easy reference.

5.3 The Laser Rate Equation

The time evolution of the diagonal elements of the density matrix, Equation 4.23 with its

modified coefficients, reads

¤%=1=2 = − A0
(
d00!=1+1=2+1 + d11!=1=2

)
%=1=2

+ A0
(
d00!=1=2%=1−1=2−1 + A0d11!=1+1=2+1%=1+1=2+1

)
− 8A0

(
d10 =1+1=2+1d=1+1=2+1;=1=2e−82�=1+1=2+1WC + h.c.

)
+ 8A0

(
d10 =1=2d=1=2;=1−1=2−1e−82�=1=2WC + h.c.

)
+ ^1 (=1 + 1) %=1+1,=2 + ^2 (=2 + 1) %=1,=2+1 − ^1=1%=1=2 − ^2=2%=1=2 ,

(5.7)

where population and coherence coupling strength coefficients

!=1=2 =
2W−2 |6 |2 =1=2

���=1−1,=2−1
��2

1 + 4W−2 (
X@ + @1=1 + @2=2

)2 + 4W−2 |6 |2 =1=2
���=1−1,=2−1

��2 , (5.8a)

 =1=2 =
W−16
√
=1=2�=1−1,=2−1

[
1 − 82W−1 (

X@ + @1=1 + @2=2
) ]

1 + 4W−2 (
X@ + @1=1 + @2=2

)2 + 4W−2 |6 |2 =1=2
���=1−1,=2−1

��2 , (5.8b)

and

X@ = X − @1 − @2 =
Δ − j

2
− j1 − j2. (5.9)
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To shorten notations, the function � (=1, =2) is written as �=1,=2 which is the matrix elements

of the operator � (0†101, 0
†
202), i.e. �=1,=2 = 〈=1, =2 |� (0†101, 0

†
202) |=1, =2〉.

It is worth briefly discuss the effect of Kerr parameters and IDC on the probability

transition flow in Equation 5.7 phenomenologically. From Equation 5.8, the values of the

coefficients !=1=2 and  =1=2 become small by increasing the Kerr parameters. The cross

Kerr parameter enhances the contributions of the self-Kerr parameters of each mode. Also,

these parameters change the phase of the coefficient  =1=2 and then the total phase of the

off-diagonal terms in Equation 5.7. The result will be reflected in the sign of the contribution

of these terms. These parameters lessen the values of !=1=2 and so the probability flow

will decrease and growth in mean photon number will decrease and the intensity becomes

less. When it comes to the effect of the IDC, �, it decreases the absolute value of  =1=2

but accelerates the growth of !=1=2 . The effect of � is much greater than that of the Kerr

parameters since the gain and saturation (see the single-photon laser, Equation 3.66)

depends on � and become nonlinear. So, the IDC is expected to increase the mean

photon number greatly. Later, the reflection of these effects on the correlations, fluctuations,

and statistics of the field and its consequences on the nonclassicality of the field will be

addressed.

Equation of the cavity field distribution, Equation 5.7, shows explicitly the oscillating

nature of the off-diagonal elements terms in the third and fourth lines due to the time-

dependent factors. The oscillation becomes fast at high intensity or large detuning. This

means that these terms become small at high intensity or detuning and the coherence

vanishes. The oscillation time of these time-dependent factors is

g=1,=2 =
c

W

1���=1,=2

�� = c��X@ + @1=1 + @2=2
�� . (5.10)

Equation 5.10 shows how this oscillation becomes fast as Kerr parameters, detuning, and
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intensity (average mean photon number) become high.

Until now, the IDC, � is general but for the particular choice in this study, its elements are

�=1,=2 = � (=1, =2) =
√
(=1 + 1) (=2 + 1). Without loosing generality, the coupling strength,

6, is taken to be real. For this particular choice, Equation 5.8 becomes

!=1=2 =
2W−262=2

1=
2
2

1 + 4W−2 (
X@ + @1=1 + @2=2

)2 + 4W−262=2
1=

2
2

, (5.11a)

 =1=2 =
W−16=1=2

[
1 − 82W−1 (

X@ + @1=1 + @2=2
) ]

1 + 4W−2 (
X@ + @1=1 + @2=2

)2 + 4W−262=2
1=

2
2

, (5.11b)

The photon statistics in Equation 5.7 can be rewritten to show the coherence terms clearly

Lu & Bergou (1989). For this goal, the complex quantities are written in polar form to show

the phase explicitly.

d01 = |d01 | e8\ , (5.12a)

 ∗=1+1=2+1 =
�� =1+1=2+1

�� e8 arctan 2�=1+1=2+1 , (5.12b)

d=1=2;=1+1=2+1 =
��d=1=2;=1+1=2+1

�� e8i=1+1,=2+1 (C) . (5.12c)

The total phase will be

o=1,=2 (C) = \ + arctan
(
2�=1,=2

)
+ 2�=1,=2WC + i=1,=2 (C) . (5.13)

The phase i=1,=2 (C) of the density matrix Equation 5.12c is time-dependent. Using Equation
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5.12, the photon distribution function Equation 5.7 is rewritten in the form

¤%=1=2 = −
(
A0d00!=1+1=2+1 + A0d11!=1=2

)
%=1=2

+ A0d00!=1=2%=1−1=2−1 + A0d11!=1+1=2+1%=1+1=2+1

− 2A0
��d01 =1+1=2+1d=1=2;=1+1=2+1

�� sin o=1+1,=2+1 (C)

+ 2A0
��d01 =1=2d=1−1=2−1;=1=2

�� sin o=1,=2 (C)

+ ^1 (=1 + 1) %=1+1,=2 + ^2 (=2 + 1) %=1,=2+1 − (^1=1 + ^2=2) %=1=2 .

(5.14)

In Equation 5.14, the total phase o=1,=2 controls the contribution of coherence to cavity

field distribution function, %=1,=2 . For the phase angle 2:c < o=1,=2 < (2: + 1) c ( is an

integer), the coherence contribution from states |=1 − 1, =2 − 1〉 and |=1, =2〉 enhances the

rate, ¤%=1=2 by stimulation the emission from state |0=1−1, =2−1〉 to |1=1, =2〉 state, yet this

phase, in the meantime, reduces the rate since it boosts stimulation emission from state

|0=1, =2〉 to |1=1+1, =2+1〉 state. On the contrary, as long as the phase angle (2: + 1) c <

o=1,=2 < 2 (: + 1) c, its role is reversed. The time, CA , it takes for the action to reverse

between these two states is a solution of i=1,=2 (CA) + 2�=1,=2WCA + arctan
(
2�=1,=2

)
+ \ = c.

It can be said that the phase angle controls the competition of stimulation emission between

states; when it reduces the stimulation from one state, it improves it by reversing its direction

for the other state. The phase can be controlled through the atomic coherence d01, detuning

and Kerr parameters in �=1,=2 . The time-dependence of the phase appears explicitly in the

third term and implicitly in the fourth term in Equation 5.13. By adjusting the values of Kerr

parameters and detuning, one can produce desirable nonclassical states or statistics of the

field such as sub-Poissonian statistics.

It is worth to emphasize here that an analytic solution to Equation 5.14 is hard to obtain

even in a steady state situation. However, above threshold with sufficient mean photon

numbers, the oscillation in the system becomes small and the system reaches a stationary
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state. In this case, the total phase becomes constant. To achieve this state, the phase

of the density matrix element d=1−1=2−1;=1=2 must be, i=1,=2 (C) ≈ i0
=1,=2 − 2�=1,=2WC and

the total phase becomes oBB=1,=2 = \ + arctan 2�=1,=2 + i0
=1,=2 (phase-locked), where i0

=1,=2

is a constant phase. This section is concluded by approximating the coherence part of

Equation 5.7 in terms of the populations.

The density matrix element d=1−1,=2−1;=1,=2 is obtained in the same way as have been

done in Chapter 4. For its extensive, it is repeated here but with a little modification in

notation. Under the same conditions it can be written as

d=1−1=2−1;=1=2 ≈
8d10e−82�=1=2WC

Γ=1−1=2−1;=1=2

(
 =1=2;=1−1=2−1%=1−1=2−1 −  =1=2;=1+1=2+1%=1=2

)
,

(5.15)

where

Γ=1−1=2−1;=1=2 = d00!=1=2;=1+1=2+1 + d11!=1=2;=1−1=2−1 +
1
A0

∑
9=1,2

^ 9

(
= 9 −

1
2

)
. (5.16)

In deriving Equation 5.15, the relations !∗
=′1=
′
2;=1=2

= !=1=2;=′1=
′
2
and "∗

=′1=
′
2;=1=2

=  =1=2;=′1=
′
2

(Equation D.23, Appendix D) are used. By using Equations 5.15 and 5.16 in Equation 5.7,

the approximated rate equation becomes

¤%=1=2 = −
(
A0d00!=1+1=2+1 + A0d11!=1=2 + 2A0 |d10 |2Λ=1=2

)
%=1=2

+
(
A0d00!=1=2 + 2A0 |d10 |2Λ−=1−1=2−1

)
%=1−1=2−1

+
(
A0d11!=1+1=2+1 + 2A0 |d10 |2Λ+=1+1=2+1

)
%=1+1=2+1

+ ^1(=1 + 1)%=1+1,=2 + ^2(=2 + 1)%=1,=2+1 − (^1=1 + ^2=2)%=1=2 ,

(5.17)
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with

Λ+=1=2 = Re
(

 ∗=1=2

Γ=1−1=2−1;=1=2

 =1=2;=1+1=2+1

)
, (5.18a)

Λ−=1=2 = Re

(
 ∗
=1+1=2+1

Γ=1=2;=1+1=2+1
 =1+1=2+1;=1=2

)
, (5.18b)

Λ=1=2 = Λ
+
=1=2 + Λ

−
=1=2 . (5.18c)

The expression of Equation 5.17 can be rewritten in simpler form

¤%=1=2 = −
(
A0!

+
=1,=2 + ^1=1 + ^2=2

)
%=1=2 + ^1(=1 + 1)%=1+1,=2

+ ^2(=2 + 1)%=1,=2+1 +
1
2
A0


(
!+
=1−1,=2−1 + !

−
=1−1,=2−1

)
%=1−1=2−1

+
(
!+
=1+1,=2+1 − !

−
=1+1,=2+1

)
%=1+1=2+1

 , (5.19)

where

!±=1,=2 = d00!=1+1,=2+1 ± d11!=1,=2 ± 2 |d10 |2
(
Λ+=1=2 ± Λ

−
=1=2

)
. (5.20)

Analytic approximation for the moments and statistics in a special situation (d11 = 0)

coming from Equation 5.19 will be presented in the same foot as in Chapter 4.

5.4 Field Nonclassicality and its Measures

In this section, the measurable quantities are calculated to study the field properties.

The moments, � (2) , and& are studied. Also, the nonclassicality is investigated by studying

the �2B function. The entanglement criterion � is investigated.
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5.4.1 Moments

The calculations of the moments will enable us to obtain � (2) later. The calculations of

moments are easily found by multiplying Equation 5.19 by =A1=
B
2 and doing the sum

∞∑
=1=2=0

=A1=
B
2
¤%=1=2 = −

∞∑
=1=2=0

(
A0!

+
=1,=2 + ^1=1 + ^2=2

)
=A1=

B
2%=1=2

+ 1
2
A0

∞∑
=1=2=0

(
!+=1−1,=2−1 + !

−
=1−1,=2−1

)
=A1=

B
2%=1−1=2−1

+ 1
2
A0

∞∑
=1=2=0

(
!+=1+1,=2+1 − !

−
=1+1,=2+1

)
=A1=

B
2%=1+1=2+1

+ ^1

∞∑
=1=2=0

(=1 + 1)=A1=
B
2%=1+1,=2 + ^2

∞∑
=1=2=0

(=2 + 1)=A1=
B
2%=1,=2+1.

(5.21)

From the definition of average and making the right shift of the indices to regain the

definition of average, the following general formula for equations of moments is obtained

d
dC
〈=A1=

B
2〉 = −

〈(
A0!

+
=1,=2 + ^1=1 + ^2=2

)
=A1=

B
2
〉
+ ^1

〈
=1 (=1 − 1)A =B2

〉
+ ^2

〈
=A1=2(=2 − 1)B

〉
+ 1

2
A0

〈(
!+=1,=2 + !

−
=1,=2

)
(=1 + 1)A (=2 + 1)B

〉
+ 1

2
A0

〈(
!+=1,=2 − !

−
=1,=2

)
(=1 − 1)A (=2 − 1)B

〉
. (5.22)

The solution for 5.22 is impossible unless specific assumptions are made as presented

below for the first moments. A general solution is given in Appendix H for the case d11 = 0

under the assumptions that are presented in what follows using the generating function.

The first few moments are
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d
dC

〈
= 9

〉
= −^ 9

〈
= 9

〉
+ A0

〈
!−=1,=2

〉
; 9 = 1, 2, (5.23a)

d
dC

〈
=2
9

〉
= −2^ 9

〈
=2
9

〉
+ ^ 9

〈
= 9

〉
+ 2A0

〈
= 9!

−
=1,=2

〉
+ A0

〈
!+=1,=2

〉
, (5.23b)

d
dC
〈=1=2〉 = − (^1 + ^2)〈=1=2〉 + A0

〈
(=1 + =2) !−=1,=2

〉
+ A0

〈
!+=1,=2

〉
. (5.23c)

The system in Equation 5.23 is difficult to solve as has been discussed in Chapter 4. Far from

threshold (large mean photon-numbers), the quantities !=1,=2(Λ±=1=2) are slowly growing

(decaying) functions of orders $ (1)
(
$

(
〈=〉−3) ) , where 〈=〉 = 〈=1 + =2〉, the total mean

photon number. So at large values of photon numbers, the changes in these quantities

are very small. Taking this into account, the averages
〈
!±=1,=2

〉
can be approximated by

their steady-state values,
〈
!±=1,=2

〉
≈

〈
!±=1,=2

〉
BB

then decorrelate the averages such as〈
= 9!

±
=1,=2

〉
≈

〈
!±=1,=2

〉
BB

〈
= 9

〉
; 9 = 1, 2. Employing these arguments, Equation 5.23 are

rewritten as

d
dC

〈
= 9

〉
= −^ 9

〈
= 9

〉
+ A0

〈
!−=1,=2

〉
BB

; 9 = 1, 2, (5.24a)

d
dC

〈
=2
9

〉
= −2^ 9

〈
=2
9

〉
+ ^ 9

〈
= 9

〉
+ 2A0

〈
!−=1,=2

〉
BB

〈
= 9

〉
+ A0

〈
!+=1,=2

〉
BB
, (5.24b)

d
dC
〈=1=2〉 = − (^1 + ^2)〈=1=2〉 + A0

〈
!−=1,=2

〉
BB
〈=1 + =2〉 + A0

〈
!+=1,=2

〉
BB
. (5.24c)

The steady-state of moments in Equation 5.24 are

^ 9
〈
= 9

〉
BB
= A0

〈
!−=1,=2

〉
BB

; 9 = 1, 2, (5.25a)

2^ 9
〈
=2
9

〉
BB
= ^ 9

〈
= 9

〉
BB
+ 2A0

〈
= 9

〉
BB

〈
!−=1,=2

〉
BB
+ A0

〈
!+=1,=2

〉
BB
, (5.25b)

(^1 + ^2)〈=1=2〉BB = A0〈=1 + =2〉BB
〈
!−=1,=2

〉
BB
+ A0

〈
!+=1,=2

〉
BB
. (5.25c)
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The moments in Equation 5.25 can be rewritten as

〈
= 9

〉
BB
=
A0

^ 9

〈
!−=1,=2

〉
BB

; 9 = 1, 2, (5.26a)〈
=2
9

〉
BB
−

〈
= 9

〉2
BB
=

1
2

(〈
= 9

〉
BB
+ ^−1

9 A0
〈
!+=1,=2

〉
BB

)
, (5.26b)

〈=1=2〉BB − 〈=1〉BB〈=2〉BB =
A0

^1 + ^2
〈!+=1,=2〉BB . (5.26c)

Using Equation 5.26, the moments in Equation 5.24 can be rewritten as

d
dC

〈
= 9

〉
= −^ 9

(〈
= 9

〉
−

〈
= 9

〉
BB

)
; 9 = 1, 2, (5.27a)

d
dC

〈
=2
9

〉
= −2^ 9

(〈
=2
9

〉
−

〈
=2
9

〉
BB

)
+ ^ 9

(
2
〈
= 9

〉
BB
+ 1

) (〈
= 9

〉
−

〈
= 9

〉
BB

)
, (5.27b)

d
dC
〈=1=2〉 = − (^1 + ^2)

(
〈=1=2〉 − 〈=1=2〉BB

)
+

∑
9=1,2

^ 9
〈
= 9

〉
BB

(〈
= 9

〉
−

〈
= 9

〉
BB

)
= − (^1 + ^2)

(〈
= 9

〉
−

〈
= 9

〉
BB

)
+ ^〈=〉BB

(
〈=〉 − 〈=〉BB

)
, (5.27c)

where ^ and = are the same as in Chapter 4. Integrating Equation 5.27a gives

〈
= 9

〉
=

〈
= 9

〉
BB

(
1 − exp

(
−^ 9 C

) )
. (5.28)

Using this result in Equations 5.27b, 5.27c and integrating for
〈
=2
9

〉
and 〈=1=2〉 yields

〈
=2
9

〉
−

〈
= 9

〉2 −
〈
= 9

〉
=

(〈
=2
9

〉
BB
−

〈
= 9

〉2
BB
−

〈
= 9

〉
BB

) (
1 − e−2^ 9 C

)
, (5.29a)

〈=1=2〉 − 〈=1〉 〈=2〉 = (〈=1=2〉BB − 〈=1〉BB 〈=2〉BB)
(
1 − e−(^1+^2)C

)
. (5.29b)

The time-dependence of fluctuations in Equation 5.29 reach their highest values in steady-

state and the variance
(
Δ= 9

)2
BB
=

〈
=2
9

〉
BB
−

〈
= 9

〉2
BB

attains its minimum when
〈
!+=1,=2

〉
BB
,

in Equation 5.26b, reaches its lowest value (achieved for d10 = 0, incoherent pumping).

For incoherent pumping, an atom must be prepared in one of its two states |0〉 or |1〉.
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However, from Equation 5.26a,
〈
!−=1,=2

〉
BB

cannot be negative and then only d11 = 0, the

atom are prepared in the excited state |0〉). In this case, from Equation 5.20,
〈
!+=1,=2

〉
BB
=〈

!−=1,=2

〉
BB
= A−1

0 ^ 9
〈
= 9

〉
BB

and the variance becomes
(
Δ= 9

)2
BB
=

〈
= 9

〉
BB
. This means that

the fluctuations are minimum for the Poissonian statistics. The moments in steady-state,

Equation 5.26 predict the statistics to be super-Poissonian and become Poissonian for

incoherent pumping in which the atoms are prepared in their excited states. It is clear from

Equation 5.11 and Equation 5.20 that the Kerr parameters decrease the average
〈
!±=1,=2

〉
BB
,

so the mean and fluctuations in Equation 5.26 decrease. One may ask, what is the role of

the IDC? The answer to this question comes from the discussion made above about the

role of � in !=1,=2 . Since � increases !=1,=2 then !±=1,=2 (Equation 5.20) will increase too

(atomic inversion is already assumed). From these observations, and from Equation 5.26,

the mean photon number as well as fluctuations will increase.

So far, first moments are discussed, and now general expressions for moments, in

the case d11 = 0, are presented. The expressions can be obtained from the generating

function, �; the calculations are given in Appendix H in detail and the result is

〈=A 9
9
〉 =

A 9∑
:=0

{
A 9

:

}
〈= 9 〉: , (5.30)

〈=A1
1 =

A2
2 〉 =

A2∑
:=0

A1∑
;=0

A1−;∑
B=0

;∑
@=0

B!
(
:

B

) (
A1
;

) {
A2
:

}{
;

@

}{
A1 − ;
B

}
〈=1〉@ 〈=2〉:−B�B12, (5.31)

where
{
:
;

}
are Stirling numbers of the second kind given by (see Appendix H)

{
:

;

}
=

1
;!

;∑
<=0
(−1);−<

(
;

<

)
<: . (5.32)

Practically, the lowest order correlations are most important but the general relations for

moments in Equations 5.30 and 5.31 are obtained for reference. The higher-order moments

or correlations are expressed in terms of the mean photon numbers 〈=1〉, 〈=2〉 and the
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correlation 〈=1=2〉.

5.4.2 Mean Photon Number

In the previous subsection, the time-dependent and the steady-state moments of the

field were derived. They are expressed in terms of the mean photon numbers
〈
= 9

〉
. The

steady-state mean photon number
〈
= 9

〉
BB

can be obtained by using Equation 5.20 and

solving Equation 5.26a. The resulting equation is not easy to solve, but with few reasonable

assumptions, simple, but adequate, expressions to quantify the field properties are obtained.

To this end, simple form for the averages
〈
!±=1,=2

〉
BB

are obtained by decorrelating them,〈
!±=1,=2

〉
BB
≈ !±〈=1〉BB 〈=2〉BB

. Similar to the treatment in Chapter 4, an effective expression for〈
!±=1,=2

〉
BB

can be obtained by using Equation 5.25a to express !±〈=1〉BB 〈=2〉BB
in terms of the

total mean photon number 〈=〉 = 〈=1 + =2〉 = 〈=1〉 + 〈=2〉. From Equation 5.25a, Equation

4.36 are obtained. As discussed in the previous subsection, above threshold, the function〈
!=1,=2

〉
BB

changes very slowly which allows to write
〈
!=1+1,=2+1

〉
BB
≈

〈
!=1,=2

〉
BB
. Also, the

coherence contribution becomes very small and negligible compared to the contribution

from population ( since 〈Λ±=1=2〉 are of order 〈=〉−3
BB ). Therefore, the last terms in Equation

5.20 are canceled safely, and Equation 5.20 is reduced to

〈
!±=1,=2

〉
BB
≈ (d00 ± d11)

〈
!=1,=2

〉
BB
. (5.33)

By using Equations 5.33 and 5.11a in Equation 5.26a, the result becomes

^ 〈=〉BB =
2A0[ (d00 − d11) 〈=〉4BB

1 + 4W−2
[
X@ +

(
@1^
−1
1 + @2^

−1
2

)
^ 〈=〉BB

]2 + 4[ 〈=〉4BB
, (5.34a)

with

[ =

(
6^2

W^1^2

)2

. (5.34b)
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The trivial unimportant solution, 〈=〉BB = 0, for Equation 5.34a is discarded. From Equation

5.34a, a quartic equation is obtained that has the form

20 + 21 〈=〉BB + 22 〈=〉2BB + 23 〈=〉3BB + 〈=〉4BB = 0, (5.35)

with

20 =
1
[

(
X2
@ +

1
4

)
, (5.36a)

21 =
2^X@
[

(
@1
^1
+ @2
^2

)
, (5.36b)

22 =
^2

[

(
@1
^1
+ @2
^2

)2
, (5.36c)

23 = −
A0 (d00 − d11)

2^
. (5.36d)

This equation has, in general, four real roots or two real roots and two complex conjugate

roots. The physical solution is found to be in a good agreement with the numerical solution.

A simpler expression for the mean, for strong coupling and detuning comparable with Kerr

parameters, is obtained by ignoring the first and second terms in Equation 5.35. For this

special case, the fourth-degree polynomial is reduced to a quadratic equation with the

solution

〈=〉BB = −
1
2
23

(
1 ±

√
1 − 4222

−2
3

)
. (5.37)

This expression requires 23 < 0 and 4222
−2
3 < 1 to have a physical solution. Explicitly, the

two conditions are combined in the threshold condition

A0 (d00 − d11) ≥
4
6
(@1^2 + @2^1) . (5.38)
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The threshold condition Equation 5.38 predicts that Kerr parameters rise threshold. It also

predicts the necessity of population inversion. The root of the positive sign represents the

stable solution above the threshold and the other root is unstable and diminishes far above

threshold. The mean photon numbers are

〈
= 9

〉
BB
= −^23

2^ 9

(
1 +

√
1 − 4222

−2
3

)
. (5.39)

For large
〈
= 9

〉
BB

(very far from threshold) and small Kerr parameters, the means take the

simpler form

〈
= 9

〉
BB
=
A0 (d00 − d11)

2^ 9
. (5.40)

The expression in Equation 5.40 is the dominant zero-order approximation of Equation

5.39. Equation 5.39 says that Kerr parameters lessen the mean photon number as one

can see from the first-order approximation

〈
= 9

〉
BB
=
^

^ 9

(
−23 +

22
23

)
, (5.41)

which confirms the previous discussion. Here, it is important to emphasize that the IDC

is dominant over the Kerr parameters. This is clear if the two expressions of the mean

photon number, Equation 4.44 from Chapter 4 and Equation 5.39 and their zero-order

approximations are examined. These two equations, for large photon number, are reduced

forms of their corresponding higher-order polynomials, Equation 4.41 and Equation 5.35,

respectively. One may notice that the Kerr parameters enter in the lower-degree terms (�2

in Equation 5.35). At strong coupling, Equation 4.46 is reduced to Equation 5.40.
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5.4.3 � (2) and CSI

The functional form of � (2) is maintained as in Chapter 4. The difference comes from

the dependence of the mean photon numbers on the cross-Kerr parameter and the IDC, �.

At steady-state and from Equation 5.26, 6(2) is written as

6
(2)BB
9 9

= 1 + 1
2

( 〈!+=1,=2〉BB
〈!−=1,=2〉BB

− 1
)

1
〈= 9 〉BB

, (5.42a)

6
(2)BB
12 = 1 +

〈!+=1,=2〉BB
〈!−=1,=2〉BB

1
〈=1〉BB + 〈=2〉BB

. (5.42b)

At far from threshold and using Equation 5.33, Equation 5.42 is reduced to

6
(2)BB
9 9

= 1 + d11

d00 − d11
1
〈= 9 〉BB

, (5.43a)

6
(2)BB
12 = 1 + 1

d00 − d11
1

〈=1〉BB + 〈=2〉BB
. (5.43b)

From Equation 5.43a, the � (2) , 6(2)BB
9 9

> 1, 9 = 1, 2 predicts super-Poissonian statistics.

It takes its lowest value for incoherent pumping d11 = 0 where statistics become Poissonian

6
(2)BB
9 9

= 1. So, statistics are not sub-Poissonian; however, the � (2) exhibits violation of CSI

(Walther et al., 2006; Klyshko, 1996) as demonstrated by Equation 4.52. The violation of

CSI does not require d11 = 0 as shown below.

From Equation 5.42, and using Equations 4.36 and 4.37, 6(2)BB11 and 6(2)BB22 can be written

in terms of 6(2)BB12

6
(2)BB
11 =

^1
2^

[
6
(2)BB
12 − 1

〈=〉BB
− ^1 − ^2
^1 + ^2

]
, (5.44a)

6
(2)BB
22 =

^2
2^

[
6
(2)BB
12 − 1

〈=〉BB
− ^2 − ^1
^1 + ^2

]
, (5.44b)
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and hence

6
(2)BB
11 6

(2)BB
22 −

(
6
(2)BB
12

)2
=
^1^2

4^2

[(
6
(2)BB
12 − 1

〈=〉BB

)2
−

(
^1 − ^2
^1 + ^2

)2
]
−

(
6
(2)BB
12

)2

=

( ^1^2

4^2 − 1
) (
6
(2)BB
12

)2
− ^1^2

4^2

(
^1 − ^2
^1 + ^2

)2

− ^1^2

2^2
1
〈=〉BB

(
6
(2)BB
12 − 1

2 〈=〉BB

)
. (5.45)

Since

^1^2

4^2 − 1 =
(^1 + ^2)2

4^1^2
− 1 =

(^1 − ^2)2

4^1^2
,

Equation 5.45 takes the form

6
(2)BB
11 6

(2)BB
22 −

(
6
(2)BB
12

)2
=
(^1 − ^2)2

4^1^2

(
6
(2)BB
12

)2
− (^1 − ^2)2

4^1^2

− (^1 + ^2)2

2^1^2

1
〈=〉BB

(
6
(2)BB
12 − 1

2 〈=〉BB

)
=
(^1 − ^2)2

4^1^2

[(
6
(2)BB
12

)2
− 1

]
− (^1 + ^2)2

2^1^2

1
〈=〉BB

(
6
(2)BB
12 − 1

2 〈=〉BB

)
. (5.46)

Since
〈
!+=1,=2

〉
BB
≥

〈
!−=1,=2

〉
BB
, and 6(2)BB12 > 1 + 〈=〉−1

BB (from Equation 5.42b), for not

large difference in the cavity mode decay constants, the right-hand side of Equation 5.46

is negative, so the CSI is violated. The maximum of violation happens when ^1 = ^2 with

amount of

(
6
(2)BB
12

)2
− 6(2)BB11 6

(2)BB
22 =

2
〈=〉BB

(
6
(2)BB
12 − 1

2 〈=〉BB

)
; (^1 = ^2) . (5.47)

This violation is greater than 2〈=〉−1
BB , which is similar to the result by Zubairy (1982). It

reduces to Zubairy’s result in the special situation d11 = 0 with violation of amount 〈=〉−1
BB .
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As can be observed, the Kerr parameters decrease the mean photon number but the IDC

increases it; therefore, the � (2) will increase due to the Kerr effect but will decrease due to

IDC as Equation 5.43 predict. However, as discussed above, the IDC is dominant and the

effective result is decreasing the � (2) . From Equation 5.47, the violation of CSI becomes

small at a large mean photon number. As a result, IDC weakens the nonclassicality of the

field.

5.4.4 Mandel & Parameter and Fluctuations

The important measure to characterize statistics is the Mandel & parameter. The

difference between the result here and that of Chapter 4 is the steady-state expressions. In

the steady-state and from Equations 5.42, 4.53, & becomes

&BB
9 =

1
2

( 〈
!+=1,=2

〉
BB〈

!−=1,=2

〉
BB

− 1

)
. (5.48)

Far from threshold and from Equation 5.43a, the & parameter Equation 5.48 is reduced to

&BB
9 =

d11

d00 − d11
. (5.49)

Since 〈!−=1,=2〉
−1
BB 〈!+=1,=2〉BB > 1, so that & given by Equation 5.48 excludes any chance

for sub-Poissonian statistics (&BB
9
< 0) as seen clearly from Equation 5.49. It predicts

Poissonian statistics (&BB
9
= 0) when

〈
!−=1,=2

〉
BB
=

〈
!+=1,=2

〉
BB

which can be satisfied only at

d11 = 0. Other than this special case, the statistics are super-Poissonian (&BB
9
> 0).

From Equation 5.48, the relative fluctuations of each single mode are easily written as〈(
Δ= 9

)2
〉
BB〈

= 9
〉
BB

=
1
2

( 〈
!+=1,=2

〉
BB〈

!−=1,=2

〉
BB

+ 1

)
. (5.50)

These fluctuations, Equation 5.50, take their lowest values when
〈
!+=1,=2

〉
BB
=

〈
!−=1,=2

〉
BB
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which is
〈(
Δ= 9

)2
〉
/
〈
= 9

〉
= 1. The relative fluctuations in the total photon number 〈=〉 =

〈=1〉 + 〈=2〉 could be written as

〈
(Δ=)2

〉
BB

〈=〉BB
=

1
2
+ 1

2

(
1 + 4^

^1 + ^2

) 〈
!+=1,=2

〉
BB〈

!−=1,=2

〉
BB

. (5.51)

The lowest value of the relative total fluctuations takes place when
〈
!+=1,=2

〉
BB
=

〈
!−=1,=2

〉
BB

which reduces to the result in Equation 4.59. Since the atomic coherence comes at the

expense of atomic population inversion, so the effective result of coherence is to decrease

correlations. This is can be seen from Equation 5.20, where the increase in the atomic

coherence d01 increase !+=1,=2 and decrease !−=1,=2 . The consequence of this is that the

relative fluctuations increase as Equations 5.50 and 5.51 predict. So the coherence widens

both the joint and the marginal photon distribution function.

5.4.5 Entanglement

To study the role of cross-Kerr effect and IDC on entanglement criterion, the final formula

is written because its derivation is the same as that given in Chapter 4 and the final result

has the same form as it was discussed earlier when deriving the approximation for the

off-diagonal elements of density matrix. The entanglement criterion, the � function, has

the expression

� (=1, =2) =
���d01〈Ξ=1+1,=2+1 

∗
=1+1=2+1;=1=2

− Ξ=1,=2 
∗
=1=2;=1+1=2+1〉

���2 − 〈=1〉〈=2〉,

(5.52)

where

Ξ=1,=2 =

√
=1=2

Γ=1=2;=1−1=2−1
e82�=1=2WC . (5.53)
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The last term in Equation 5.52 is the dominant and possibility to witness entanglement is

faded similar to the result in Chapter 4. However, studying the effect of Kerr parameters

and IDC on entanglement is useful for more understanding of their roles.

The effect of the Kerr parameters and IDC on the statistics function can be investigated

by solving the statistics equation by following the same procedure that is used in Chapter

4. Since the equation has the same form, its solution has identical form with the solution

obtained in Chapter 4 but with different coefficients as explained earlier. Therefore, it will not

be repeated here, and the discussion refers to the expression of Chapter 4. The effect of the

Kerr parameters and the IDC is through the mean photon numbers, as the analytic solution

manifests. However, the correlation and coherence contribution to the exact solution cannot

be neglected.

In this chapter, analytic expressions for the moments are derived; � (2) and & are

calculated and discussed. One of the main results of this section is the mean photon

number expressed in Equation 5.35 which is in a very good agreement with the numerical

solution over a large range of the parameters.

5.5 Results and Discussion

The effects of the detuning Δ, and the Kerr parameters, j1, j2, and j on the dynamics

of the field are studied through analysis of various measured quantities. The computed

quantities are the same quantities that were studied in Chapter 4: the mean photon number

〈= 9 〉, &, � (2) , CSI, Entanglement � , and the photon statistics %=1=2 . The computations

are for the same set of parameters and the same values but here the cross Kerr parameter

j is added to the set of the parameters similarly as j1.
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5.5.1 Effects of Injection Rate

In this subsection, the effects of the injection rate A0 on all quantities under the study

mentioned above are discussed.

5.5.1.1 On Mean Photon Number

The dynamics in Figures 5.1(i) and 5.2(i) show the effects of A0 on mean photon number

〈=1〉. Mean photon number starts from zero and builds up quickly to reach steady-state.

The amount of the increase in the mean photon number is greater than that is found in the

absence of IDC. In the present situation, the mean photon number is approximately doubles

that is because the IDC is proportional to the square root of field intensity and the effects of

Kerr parameters that lower the average photon number are incomparable to the effects of

IDC. In this situation, Equation 5.40 is almost satisfied. WE notice the delay in reaching

steady-state and the reason of this may be attributed to the strong atom-field coupling that

makes Rabbi oscillations increase and rises the time of reaching steady-state. To reach

steady-state with IDC, it requires more photons in the cavity to have a stationary exchange

of energy between atom and cavity field which in turn rise mean photon number. The

increase in injection rate results in a growth of mean photon number. In the steady-state,

the mean photon number dependence on the injection rate is shown in Figure 5.3, where a

large nonlinear growth in photon number is seen as explained. This in consistent with the

predictions of Equation 5.39.

5.5.1.2 On � (2) and CSI

The dynamics of � (2) and its dependence on injection rate, A0 are shown in Figures

5.4(v), 5.5(i, v) for single-mode, and in Figures 5.6(i, v), 5.7(i, v) for inter-mode and CSI. The

single-mode � (2) , is, initially, high and then reduces fast to reach steady-state below the

classical limit 6(2)11 = 6
(2)
22 = 1 at large injection rate. It is interesting to see the disappearance
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Mean photon number and entanglement : Dynamics and effects of 
injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr effect (𝜒).

(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.1: (i-iv) Mean photon number 〈=1〉 and (v-viii) entanglement � ; the dynamics and
parameter dependence are for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^,
j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr 
effect (𝜒) on dynamics of the mean photon number and entanglement.

(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.2: (i-iv) Mean photon number 〈=1〉 and (v-viii) entanglement � ; the dynamics for:
(i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0,
j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

of the kinks that was observe in the previous case without IDC. This is due to the fact

that IDC dominates Kerr and detuning effects and fluctuations are become strong in the

beginning before they settle down over time. What is noticeable here is that the IDC converts

effects of injection rate such that A0 reduce distribution width and for large values of injection
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Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr 
effect (𝜒) on steady-state of the mean photon number and photon number 

distribution (sub-Poissonian and super-Poissonian).
(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.3: (i-iV) Mean photon numbers 〈=1〉, 〈=2〉, and (v-viii) &1, &2. The parameter
dependence are for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii,
vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

rate, 6(2)11 < 1 indicating that the statistics are sub-Poissonian. This is completely opposite

to the effects of injection rate in the previous case of non-IDC. However, fluctuations are still

increasing by the rise in injection rate that can be obtained from Figures 5.5(i), 5.2(i) using

Equations 4.53 and 4.56. For A0 = 20^, the variance is
〈
=2

1
〉
− 〈=1〉2 ≈ 5, and for A0 = 50^,

it is
〈
=2

1
〉
− 〈=1〉2 ≈ 7. The inter-mode dynamics, in Figures 5.6(i), 5.7(i) 5.6(i) exhibit strong

correlations in the beginning and decay swiftly with time to steady-state similarly to the

non-IDC case. The violation of CSI, in Figures 5.6(v) and 5.7(v), is clear and persistent

over time as in the previous results. The nonclassicality becomes less with IDC, since

photon number and fluctuation increase, as correlation and violation of CSI become weak.

These outcomes are seen obviously in steady-state from Figures 5.8(i, v). Thus the effect

of A0 with IDC is to weaken the single-mode � (2) which means that the chance to measure

two photons simultaneously is reduced or the light becomes antibunching in one sort of

definition as discussed in Chapter 2. It also increases fluctuations, reduces the correlation

between the two modes, and weakens the nonclassicality of the field. However, it leads to
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driving statistics of the field towards sub-Poissonian.

Photon number distribution (sub-Poissonian and super-Poissonian) and self-
mode second-order correlation function: Dynamics and effects of injection rate 

(𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr effect (𝜒).

(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.4: (i-iv) &1 and (v-viii) 6(2)11 ; the dynamics and parameter dependence for: (i, v)
Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0,
and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr effect 
(𝜒) on the dynamics of the  self-mode second-order correlation functions.

(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.5: (i-iv) 6(2)11 and (v-viii) 6(2)22 ; the dynamics for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi)
A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0,
j1 = 50^.
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Inter-mode second-order correlation function and violation of CSI:
Dynamics and effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and 

cross-Kerr effect (𝜒).

(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.6: (i-iv) 6(2)12 and (v-viii) CSI (�2B); the dynamics and parameter dependence for:
(i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0,
j = 0, and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr 
effect (𝜒) on dynamics of inter-mode second-order correlation function and 

violation of the CSI.
(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.7: (i-iv) 6(2)12 and (v-viii) CSI (�2B). The dynamics for: (i, v) Δ = 0, j1 = 50^, j = 0,
(ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^,
Δ = 0, j1 = 50^.

5.5.1.3 On Entanglement

The increase in fluctuations and mean photon numbers as a result of the increase in the

injection rate make reaching an entangled state unattainable goal. This result is shown in

144

Univ
ers

ity
 of

 M
ala

ya



Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr 
effect (𝜒) on the steady-state of the second-order correlation function and 

violation of the CSI.
(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.8: (i-iv) 6(2)11 , 6(2)22 , 6(2)12 . (v-viii) CSI (�2B, on the left-hand side in red color) and
entanglement � (on the right-hand side in blue). The parameter dependence for: (i, v)
Δ = 0, j1 = 50^, j = 0, (ii, vi) A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0,
and (iv, viii) A0 = 40^, Δ = 0, j1 = 50^.

Figures 5.1(v) and 5.2(v) which also predicts that over time and as injection rate increase,

the two modes are more separable and far from being entangled. The presence of IDC

enhances the effect of the injection rate for entanglement to be improbable. Again, from

these figures and Figure 5.8(v), the last term in the expression of � , Equation 5.52, is

dominant and changes almost quadratically as discussed earlier.

5.5.1.4 On Mandel & Parameter

In the discussion of � (2) , an increase in the field fluctuations was found, but a reduction

in the single-mode � (2) was observed. The increase in fluctuations is also accompanied

by a rise in the mean photon number. According to Equation 4.53, there is a competition

between fluctuations and the average for &. This competition dynamics are displayed in

Figures 5.4(i), 5.9(i) which shows the prediction stated above. The results demonstrate

rapid development in fluctuations which is faster than the growth in photon number average

at the beginning which does not last for long and soon the average photon number exceeds

145

Univ
ers

ity
 of

 M
ala

ya



fluctuations and the relative fluctuations drop to a saturated steady-state value. These

dynamics are shown through the sign change of & with more reduction as an injection

rate increases. Thus with IDC, the injection rate enhances nonclassicality of the field by

switching statistics from super-Poissonian to sub-Poissonian which is distinctly depicted in

Figure 5.3.

Effects of injection rate (𝑟𝑎), detuning (Δ), self-Kerr effect (𝜒1), and cross-Kerr 
effect (𝜒) on dynamics of photon number distribution (sub-Poissonian and 

super-Poissonian).
(i)

(iii)

(ii)

(iv)

(v)

(vii)

(vi)

(viii)

Figure 5.9: (i-iv) &1 and (v-viii) &2; the dynamics for: (i, v) Δ = 0, j1 = 50^, j = 0, (ii, vi)
A0 = 40^, j1 = 50^, j = 0, (iii, vii) A0 = 40^, Δ = 0, j = 0, and (iv, viii) A0 = 40^, Δ = 0,
j1 = 50^.

5.5.1.5 On Distribution %=1=2

The effects of the injection rate on the quantities that have been discussed can be

understood through the photon distribution function %=1=2 in Figure 5.10i. The displacement

of the center of the distribution towards large values of photon numbers means the increase

in the mean as A0 increase qualitatively similar, but greater than in the case without IDC

in Figure 4.12i. The symmetry of the distribution about line of symmetry, =1 = =2, shows

equal mean photon numbers, 〈=1〉 = 〈=2〉 and from the projections on the planes =2 = 0

and =1 = 0, the single-mode distributions %=1 = %=2 is obtained. Thus, it is most probable
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to have more photons when the injection rate increases and with the increase in photon

numbers, fluctuations grow also as can be seen from the broadening of the distribution.

5.5.2 Effects of Detuning

The effects of detuning, with IDC, on nonclassicality measures will be provided.

5.5.2.1 On Mean Photon Number

The detuning effects are reduced by IDC, and its effects on the dynamics of the mean

photon number become insignificant compared to the injection rate as Figure 5.1(ii) and

Figure 5.2(ii) show. The figures display a rapid growth of the average 〈=1〉 for all values of

detuning. The increase in mean photon number due to the rise in detuning from Δ = −100^

to Δ = 100^ is tiny as depicted in Figure 5.3(ii). In the present case for IDC, the dynamics of

mean photon number reach steady-state with higher value and in a longer time than in the

previous case where the coupling is not intensity-dependent. The slight dependence of the

mean photon number on detuning confirms its consistency with the analytic expressions,

Equations 5.39, 5.40, and confirms the discussion at the end of the Subsection 5.4.2.

5.5.2.2 On � (2) and CSI

The effects of detuning on dynamics of � (2) , 6(2)11 and 6(2)22 displayed in Figures 5.4(vi),

5.5(ii, vi) are, initially, larger especially for negative detuning. The single-mode correlations

drop fast to reach their steady-state values with very small rise for the increase in detuning

as shown in Figure 5.8(ii). Also, the inter-mode correlation, 6(2)12 and �2B start high and

quickly drop to their steady-state similar to what is found in the non-IDC case. Also, the

inter-mode correlation and violation of CSI are almost insensitive to the change in detuning

as Figures 5.8(ii), 5.8(v) shows. The negligible response of � (2) to the change in detuning

as a consequence of effect of IDC where intensity effects almost annihilate the small effects

of detuning.
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(i) Statistics at Δ = 0, j1 = 50^, j = 0 for:
(a) A0 = 20^, (b) A0 = 35^, and (c) A0 = 50^

(ii) Statistics at A0 = 40^, j1 = 50^, j = 0 for:
(a) Δ = −100^, (b) Δ = 0, and (c) Δ = 100^

(iii) Statistics at A0 = 40^, Δ = 0, j = 0 for:
(a) j1 = 0, (b) j1 = 50^, and (c) j1 = 100^

(iv) Statistics at A0 = 40^, Δ = 0, j1 = 0 for:
(a) j = 0, (b) j = 50^, and (c) j = 100^

Figure 5.10: The statistics distribution function %=1=2 , its contours at FWHM, and its two
marginal distributions for each single mode for: (i) injection rate A0, (ii) detuning Δ, (iii) Kerr
parameter j1, and (iv) Kerr parameter j. The contours (ellipses) of the distributions and
the single-mode distributions, %=1 in black color and %=2 in red color, for mode 1 and mode
2, respectively, evaluated at each of the three values.

148

Univ
ers

ity
 of

 M
ala

ya



5.5.2.3 On Entanglement

As time evolves, the function � takes large negative values and ends up in steady-state

of showing a little difference to the changes in detuning, Figures 5.1(vi) and 5.2(vi). Two

features can be highlighted, high negative amount of � and reversing change effects in �

where the increase in detuning from negative values to positive values, � slightly increases

as Figures 5.2(vi) and 5.8(vi) expose, oppositely to what happens if there is no IDC. So, in

the IDC case, detuning has negligible effects on entanglement.

5.5.2.4 On Mandel & Parameter

The Mandel & parameter displays violent fluctuations in the beginning before they settle

down over time to reach a steady-state. Fluctuations start larger for the off-resonance than

for Δ = 0 which exponentially decay to a stationary state, Figures 5.4(ii), 5.9(ii, vi). The

stationary values of fluctuations grow when detuning increase as exhibited, also, in Figure

5.3(vi). The expectations state that statistics are super-Poissonian, and become close to

Poissonian for large negative detuning. Moreover, fluctuations rise as detuning increases.

Accordingly, IDC rises fluctuations ratio and the field is bunching with super-Poissonian

statistics even for negative detuning.

5.5.2.5 On Distribution %=1=2

Figure 5.10ii displays effects of detuning on the the two-mode distribution function %=1=2

and the single-mode distribution functions %=1 , %=2 as well as their FWHM. In steady-state,

detuning has a weak effect on photon distributions which means that the number of photons

in a given state does not change appreciably by changing detuning. This is because of the

intensity effect, through IDC, exceeds any finite change in detuning. So, the mean photon

number has not affected, in a certain state is similar to the injection rate effect.
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5.5.3 Effects of Kerr parameters

Here, a discussion on the effects of Kerr parameters, j1 and j when the coupling is

intensity-dependent is provided.

5.5.3.1 On Mean Photon Number

The dependence of the mean photon number 〈=1〉 on time and Kerr parameters j1 and

j are given in Figures 5.1(iii, iv) and 5.2(iii, iv). The results from these figures indicate

that both self-Kerr and cross-Kerr effects are weak in the presence of IDC. However, the

self-Kerr effect is a little stronger than the cross-Kerr effect for the same values of j1 and

j. This difference is due to the way they contribute to the total energy of the system. The

cross-Kerr effect enhances one mode by half of its energy and the other half goes to the

other mode. This means that the combined effect of the parameters j1 and j2 is larger

than the effect of j. Thus, Kerr parameters reduce the mean photon number slightly in the

presence of IDC which is significantly different from their effects without IDC.

5.5.3.2 On � (2) and CSI

The results from Figures 5.4(vii, viii), 5.5(iii, iv), and 5.5(vii, viii), inform us how much

weak are the effects of these parameters i the presence of IDC. The self-mode correlation

decrease from large vales in the beginning and almost reach the classical limit 6(2)11 = 6
(2)
22 =

1. The fluctuations are increased by the effect of IDC, so the statistics are sub-Poissonian

only at small values for Kerr parameters and soon become super-Poissonian for larger

values. This result is represented clearly in Figures 5.8(viii, iv). Therefore, the IDC lowers

the role of the Kerr parameters and their contributions to the nonclassicality are decreased.

Also, the inter-mode correlations reduce as exhibited in Figures 5.6(viii), 5.7(iv). They are

high in the beginning and soon decrease but in the present situation, the j1 has no role,

whereas j shows a little difference where correlations increase slightly. The reason is
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that the cross-Kerr effect couples the two modes through their intensities. Therefore, an

increase in correlations and violation of CSI are expected, which is provided in Figures

5.6(vii), 5.7(viii). The steady-state of the correlations and violation of CSI are displayed in

Figure 5.8(iii, iv), and 5.8(vii, viii). The results show a very small increase in � (2) and in

violation of CSI. Thus, statistics become super-Poissonian and the field is still nonclassical,

but the effects are weak.

5.5.3.3 On Entanglement

The dynamics and functional dependence of � on the Kerr parameters are similar to

the effect of detuning on its dynamics but the effects of Kerr parameters are a little stronger.

The Kerr effect rise values of � but the function is far from satisfying the entanglement

criterion. The result are presented in Figures 5.1(vii, viii) and 5.2(vii, viii). The steady-state

dependence of � on Kerr parameters are exposed in Figures 5.8(vii, viii). Therefore, Kerr

parameters slightly improve the chance for the system to show entanglement but still far

since the effect of IDC weaken their roles.

5.5.3.4 On Mandel & Parameter

In the discussion of� (2) , the self-mode correlations are found to be close to the classical

limit and the statistics are sub-Poissonian only for small values of Kerr parameters. The

dynamics of & shown in Figures 5.4(iii, iv) and 5.9(iii, iv) are similar to its dynamics when

effects of detuning are discussed. The effects in this situation are distinguished from that

of the detuning. Here the effect is stronger and the important thing is that the statistics

are sub-Poissonian for small Kerr parameters, whereas for the detuning, statistics always

super-Poissonian. The results are displayed for the steady-state in Figures 5.3(vii, viii).
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5.5.3.5 On Distribution %=1=2

The effect of IDC results in a weak change in the photon number distribution as in

Figures 5.10iii, 5.10iv which is close to the effect of detuning, but here the effects are a little

larger. From the shift in the ellipses towards smaller values of =1 and =2, the mean photon

numbers are reduced but with a small amount and the narrowing or broadening in the

distribution is very small. The effect of Kerr parameters on the photon number distribution

is widening the distribution which is contradictory to the situation when the coupling is not

intensity dependent. So, the Kerr effect is not responsible for widening the distribution, but

the effect of IDC is large such that the roles of Kerr parameters become very small.

5.5.4 Approximate Solution with IDC: Agreement and Justification

Now, a discussion on a few results from the analytic solution when the coupling is

intensity-dependent is given. The effects of IDC on the validity of the assumptions made

to derive the distribution equation are addressed. The results for the photon number

distribution and the mean photon number are displayed in Figure 5.11 side-by-side to see

how much these assumptions are valid. The figure shows an acceptable agreement if weak

fluctuations are assumed. The results are not as good as in the case without IDC, but they

are fairly useful to predict how the dynamics of the system are going to be. The reason for

this error, which is larger than the error when the coupling is not intensity-dependent is the

large fluctuations in the present case as was observed. The IDC increases the fluctuations

that make neglecting correlation is not possible if more accurate results from the analytic

solution are needed. However, as stated, the difficulty to solve the density matrix has the

price in which one has to look for an approximate solution to have more insight into the

dynamics and system behavior.
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Figure 5.11: The distribution %=1=2 (upper panel for j = 50^), 〈=1〉,
and �2B (lower panel) at A0 = 40^, Δ = 0, j1 = 0. The approximate
solutions are from Equation 5.39 for quadratic and from Equation
5.35 for quartic.
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CHAPTER 6: CONCLUSION

In this thesis, the TPL in Kerr-like medium is studied. Effective two-level atoms injected

in a dispersive cavity that emit nondegenerate two photons by stimulation emission is

considered. The lasing medium is assumed to have a Kerr nonlinearity. A quantum theory

of two-photon laser using the Scully-Lamb method is developed. A sophisticated program

to obtain the exact numerical solution is developed too. Also, an approximate solution under

certain assumptions, which is justified by comparison with the exact numerical results is

obtained. The analytic solution enables having more insight into the physics of the problem.

To study the statistical properties and nonclassicality of the laser, several measures are

calculated. In addition to the numerical solution, explicit formulas for the mean photon

number, � (2) , &, entanglement criterion, and photon number distribution are obtained. The

effects of the injection rate, detuning, and Kerr parameters on the statistical properties of

the field are studied for two cases of the atom-field coupling, intensity-free, and intensity-

dependent. Statistics of the laser is found to be sub-Poissonian for different ranges of the

Kerr parameters, and for small injection rate and not large positive detuning where the

fluctuation ratio is below the classical limit. While the injection rate increases the mean

photon number, the Kerr parameters and detuning reduce it. However, the Kerr parameters

have a strong effect on the nonclassicality of the field. In the IDC case, the effects of the

parameters changed dramatically. The effect of injection rate enhanced by the IDC become

dominant, and with more injection rate, statistics transform to sub-Poissonian. However,

the effects of Kerr parameters and detuning significantly reduced and limited, and statistics

become sub-Poissonian only for small values of Kerr parameters. The results demonstrate

strong competition between the Kerr effect, detuning, IDC, and injection rate. The ability to

exploit and control the competition between the nonlinear processes of TPL, Kerr effect
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and IDC is a fascinating subject for fundamental research. The light produced from such a

device with nonclassical properties is promising for information science as well as chemical,

biological and medical sciences. The search for entanglement does not succeed where

the entanglement criterion does not fulfill due to low correlations and high fluctuations.

However, the field exhibits nonclassicality through violation of CSI for all the time and all

ranges of the parameters. In metrology, nonclassicality like squeezing or violation of CSI,

rather than entanglement, is the necessary resource to achieve quantum advantages. The

high nonclassicality is important to enhance the sensitivity of devices in quantum metrology.

The need for photon number squeezing for accurate measurements is not avoidable as in

interferometry. The nonclassicality in the TPL enhanced by the Kerr effect increases the

reduction in the noise in photon number fluctuations that improves measurement tasks as

in gravitational wave detection. It is expected that the results of this work will have some

implications in this direction. One potential extension to this work is considering a few

linear processes besides these nonlinear to achieve more understanding of the physical

processes and using more sophisticated mathematical techniques.
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