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MATHEMATICAL MODELLING OF THE TUBERCULOSIS 

EPIDEMIOLOGY 

ABSTRACT 

This project analyses the tuberculosis (TB) epidemic mathematically using 

compartmental modelling approach. Three models are presented to discuss drug 

susceptible and multi-drug resistant TB. The first model presented has 4 compartments; 

susceptible, exposed, infectious and recovered. The relevance of the exposed class in 

managing TB is analysed and found to be useful in delaying the eventual onset of the 

infection. Compared to previous researches, our results significantly show that when 

efforts are made such that no infected individual bypasses the exposed class and 

progresses directly to the infectious, the TB epidemic is successfully combatted. Also, 

the model is used to show that reinfection has no significant relevance to TB incidence. 

The model is further extended to accommodate vaccination compartment. The 

vaccination compartment is included to understand the usefulness of a prophylactic 

vaccine in curbing the growth of TB epidemic. The intrinsic features to be considered in 

the formulation of the vaccine as well as the effective proportion of people to be 

vaccinated to achieve herd immunity are presented. A vaccine that would combat the 

infectivity rate of TB by half displays its potency in drastically reducing the TB incident 

rate. Placing the patient on good diets also gives a better result as discussed in the optimal 

control section. Furthermore, a model to analyse the relevance of quarantine in managing 

the incident rate of multi-drug resistant TB (MDR-TB) is formulated. The quarantine 

compartment is created to harbour individuals that develop MDR-TB. This shows its 

efficacy to help; monitor the recovery rate of individuals with MDR-TB, keep the MDR-

TB patients under watch regarding their medications, and as well prevent the MDR-TB 

patients from mingling with susceptible individuals. This model is shown to undergo 

backward bifurcation which gives a vital information on how to deal with the epidemic. 
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In general, the equilibria points of all the 3 models are shown to be locally asymptotically 

stable whenever the basic reproduction number is less than unity (𝑅! < 1) and also, 

globally asymptotically stable at the disease free equilibrium (DFE). The global 

asymptotic stability of the endemic equilibria points (EEP) of the first and last models are 

established using Lyapunov function while that of the second model is established using 

Dulac function. These global stabilities are established at special cases. 

Keywords: Tuberculosis, mathematical model, vaccination, quarantine, bifurcation, 

stability  
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PEMODELAN MATEMATIK EPIDEMIOLOGI TUBERKULOSIS 

ABSTRAK 

Projek ini menganalisa epidemik tuberkulosis (TB) secara pendekatan matematik melalui 

permodelan kompartmen. Tiga model dibentangkan untuk membincangkan jangkitan 

penyakit TB yang mempunyai ketahanan terhadap ubat-ubatan. Model pertama yang 

dibentangkan mempunyai 4 petak iaitu mudah dijangkiti, terdedah, menular dan pulih. 

Perkaitan antara petak kelas terdedah menunjukkan pertalian yang baik dan berguna bagi 

menangguhkan berlakunya jangkitan dalam pengurusan penyakit TB. Selanjutnya, 

apabila usaha-usaha dibuat bagi memastikan tiada individu yang dijangkiti melangkau 

proses kelas terdedah daripada terus boleh dijangkiti, epidemik TB boleh dibanteras 

dengan jayanya. Model ini juga menunjukkan kadar jangkitan semula TB tiada berkaitan 

boleh berlaku. Model ini diperluaskan lagi untuk menampung petak vaksinasi. Ruang 

vaksinasi dimasukkan untuk memahami kegunaan vaksin profilaksis dalam membendung 

pertumbuhan wabak TB. Ciri-ciri intrinsik untuk dipertimbangkan dalam perumusan 

vaksin serta bahagian berkesan orang yang akan divaksin untuk mencapai kekebalan 

kawanan dibentangkan. Vaksin yang akan memerang separuh kadar infeksi TB 

memaparkan potensinya secara drastik mengurangkan kadar insiden TB. Pesakit yang 

mengamalkan pemakanan yang baik memberikan hasil yang memuaskan seperti yang 

dibincangkan dalam bahagian kawalan optimum. Tambahan lagi, model untuk 

menganalisis kaitan kuarantin dalam menguruskan kadar insiden TB (MDR-TB) tahan 

pelbagai ubat telah dirumuskan. Petak kuarantin yang ditambah untuk melindungi 

individu yang membangunkan MDR-TB. Ini menunjukkan keberkesanannya untuk 

membantu memantau kadar pemulihan individu dengan MDR-TB, mengekalkan pesakit 

MDR-TB di bawah pengawasan mengenai ubat-ubatan mereka, dan juga menghalang 

pesakit MDR-TB daripada bergaul dengan individu yang mudah terpengaruh. Model ini 

ditunjukkan dengan menjalani bifokasi mundur yang memberi maklumat penting 
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mengenai bagaimana menangani epidemik. Secara umum, titik kesamaan dari semua 3 

model ditunjukkan secara asimptotik stabil apabila bilangan pembiakan asas adalah 

kurang daripada perpaduan (𝑅! < 1) dan juga secara asimtotiknya stabil di 

keseimbangan bebas penyakit (DFE). Kestabilan menyeluruh asimptotik titik 

keseimbangan endemik (EEP) model pertama dan terakhir telah ditubuhkan 

menggunakan fungsi Lyapunov manakala model kedua ditubuhkan menggunakan fungsi 

Dulac. Ketidakupayaan global ini ditubuhkan pada kes-kes khas. 

Kata Kunci: Tuberkulosis, model matematik, vaksinasi, kuarantin, bifurkasi, kestabilan  
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CHAPTER 1: INTRODUCTION 

1.1  Infectious Diseases 

Diseases generally can be categorized into two types; infectious (communicable) and 

non-infectious (non-communicable). Infectious diseases seem to be more dangerous since 

an infected being may spread the infection to a whole population. An infectious disease 

is an ailment caused by a specific infectious agent such as; bacteria, viruses, parasites and 

fungi. It gets spread by the transmission of that infectious agent from an infected carrier 

to a susceptible individual either directly or indirectly. 

 

 For an infection to spread, it needs an agent of spread which are basically the agents 

of dispersal namely; wind, water and animals. These agents spread infection, depending 

on its nature. Wind is responsible for the spread of infections whose bacteria are released 

into the air through coughing, sneezing or even blowing of powdery infected substance 

such as; dry sputum or mucus. Water spreads an infection from a carrier to an 

unsuspecting healthy person when he drinks water that is contaminated by the faeces of 

an infected individual. Animals are another source of spread of infections. Animals in this 

regard is inclusive of human being (higher animal). Spread of infection through animal is 

majorly by having contact with the infectious animal. This contact can be through the 

eating of an infected animal (e.g. bat in the spread of ebola) or the fluid of an infected 

animal like semen, blood or sputum. 

 

1.2  Bacterial Infection 

According to Vidyasagar (2015), “bacteria are microscopic single-celled organisms 

that thrive in diverse environments”. Bacteria can be classified based on their shapes 

(morphology), DNA sequencing and biochemistry. This classification gives 28 different 

bacterial phyla. 
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 The morphological classification is more popular with the list; cocci (spherical), 

bacilli (rod-like), spirilla (spiral), vibrios (comma) and spirochaetes (corkscrew). An 

example of a bacillus shaped bacterium is Mycobacterium tuberculosis (Mtb), a bacterium 

that has human as its primary reservoir.  

 

Figure 1.1: Types of bacteria (Adapted from Designua (2019), with permission from 
Shutterstock) 

 

1.3  Mycobacterium tuberculosis complex (MTBC) 

“Mycobacterium tuberculosis complex (MTBC) is a genetically related group of 

Mycobacterium species that can cause tuberculosis in humans or animals” (Wikipedia 

contributors, 2018). It is just a group out of the whole Mycobacterium genus. The 

Mycobacterium genus presently accommodates 169 different different species with the 

grouping; Mycobacterium tuberculosis, Mycobacterium leprae and nontuberculous 

mycobacteria (NTM). According to Garcia-Betancur et al. (2012), MTBC consists of six 

validly published species namely; Mycobacterium tuberculosis, Mycobacterium 

africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and 

Mycobacterium pinnipedii. Also, there are three not validly published species with the 
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names; Mycobacterium canettii, Mycobacterium mungi and Mycobacterium orygis. From 

the above list, Mycobacterium tuberculosis is the most prominent one.  

 

Figure 1.2: Mycobacterium tuberculosis complex (MTBC) (Adapted from Dawson et al. 
(2012), with permission from American Society for Microbiology) 

 

1.4  Tuberculosis Infection 

Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb). This 

is an infection that basically affects the lungs, which is referred to as pulmonary TB but 

also have the ability to affect other parts such as; kidney, brain, spine, bones and joints, 

which is referred to as extra-pulmonary TB. The major mode of transmission of TB is 

through air droplets (during sneezing or coughing) and it could also be transmitted 

through contact with the sputum of an infectious carrier (Charles, 2017). Its major 

symptoms are; coughing for three or more weeks, coughing up blood, blood stained 

sputum, chest pain, weight loss, fatigue, fever, night sweats, and loss of appetite. TB is 

ranked 9th in the hierarchy of killer diseases (WHO, 2017), even ahead of HIV and 

malaria. This infection was recorded to single handedly be responsible for 1.1 million 
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deaths globally in the year 2010 (WHO, 2011), 0.9 million in 2011 (WHO, 2012), 1 

million in 2012 (WHO, 2013), 1.2 million in 2013 (WHO, 2014) and 1.1 million in 2014 

(WHO, 2015). Although, there is 20% reduction in the TB incidence in the year 2016 as 

compared to 2015 (WHO, 2017) but yet, death totalling 1.4 million (WHO, 2016a), 1.3 

million (WHO, 2017) and 1.3 million (WHO, 2018b) were recorded in the years 2015, 

2016 and 2017 respectively. Hence intervention strategies on curbing the spread of this 

infection is highly necessary. 

 

 Long latency period is a major characteristic of TB and as such, has important 

implication for its epidemiology (Blower et al., 1995). At the moment, every one out of 

four persons is reported to have latent tuberculosis infection (LTBI) globally (WHO, 

2018b). This is an improvement as the earlier estimate was one out of every three persons 

(Houben & Dodd, 2016). Nonetheless, the present estimate of one-quarter is still huge. 

This huge estimate, coupled with the prolonged latency period puts the world at risk of 

this deadly infection. 

 

Figure 1.3: Mycobacterium tuberculosis (Adapted from Janice et al. (2019), CC0) 
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   In the year 2016, 56% of TB patients in the world were found in five countries; India, 

Indonesia, China, the Philippines and Pakistan (WHO, 2017). Also, eight countries; India, 

China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh and South Africa 

accounted for 67% of the global TB cases in the year 2017 (WHO, 2018b). It is observed 

that its incidence is mostly in densely populated area and also, in under-developed and 

developing nations. This shows that there is correlation between densely populated 

environment and the rate of TB incidence, and as such is in consonance with the research 

of Varughese et al. (2017) for the screening and treatment of immigrants for LTBI. For 

success to be recorded in the war against TB, attentions should focus on; transmission 

rate, treatment rate, treatment failure rate and the rate of immunity loss. This is supported 

by the findings of Ullah et al. (2019). 

 

1.5  History of Tuberculosis 

Schachepheth, the Hebrew term for tuberculosis is mentioned in the Biblical books of 

Deuteronomy (28:22) and Leviticus (26:16) (Daniel & Daniel, 1999). The word 

shachepheth has been translated as “wasting disease” in English Standard Version bible 

(ESV) and New International Version bible (NIV) and also translated as “consumption” 

in 21st century King James version bible (KJ21). There are abundant archeological 

evidences to establish the presence of tuberculosis around 5500 years ago in Egypt (Cave 

& Demonstrator, 1939; Morse et al., 1964), which covers the period when the ancient 

Israelites lived in Egypt (≈3700 to ≈3300 years ago). The biblical verses above further 

corroborate the existence of TB in that region, since the verses are directed at the 

Israelites. 

 

 Phtisis as it is referred to in Greek (Daniel, 1997), “great white plague” (Jassal & 

Aldrovandi, 2011), “the captain among these men of death” (Grange et al., 2010), 
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Consumption (Major, 1945), and Scrofula (Mohajan, 2015) surged in Europe and North 

America in the 18th and 19th centuries with great casualties. It has afflicted humankind 

greatly throughout known history (Daniel, 2006).  

 

 

Figure 1.4: Symptoms of tuberculosis (Adapted from Häggström (2014), CC0 1.0) 

 

1.6  Medical Diagnosis and Interventions for Tuberculosis 

The expulsion of the bacillus Mycobacterium tuberculosis into the air through cough 

or any other mean increases the likelihood of the spread of TB. Chest x-ray and Symptoms 

screening; cough, blood stained sputum, lack of appetite, fever, fatigue, weight loss and 

night sweats, are the two main methods to screen the presence of TB. Chest x-ray is used 

in querying pulmonary TB. Detection of damage to lungs due to TB is identified by the 

presence of grey shadows in the lungs region. Normally, air in the lungs is displayed as 

black, other than black colour (grey or white) indicates problem. Although, this 

abnormality in the x-ray may indicate another health problem, it is still an indication that 

the person whose x-ray was taken requires medical attention. 
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Figure 1.5: An x-ray image portraying tuberculosis (Adapted from Müller (2016), CC 
BY 3.0) 

 

   There are different diagnostic tests for TB such as; sputum smear microscopy, rapid 

molecular tests and culture-based methods (WHO, 2018b). Sputum smear microscopy is 

the oldest among them and requires the use of microscope to determine the presence of 

bacteria in the sputum. This test is cheap, simple and provides result within hours. It 

requires the application of series of special stains (like; carbol fuchsin, acid alcohol and 

methylene blue (Wikipedia contributors, 2019)) to the collected specimen (sputum) 

which is placed on a glass slide. This stained slide is subsequently examined under the 

microscope for probable existence of signs of the bacillus Mycobacterium tuberculosis. 

Retention of stain by the specimen indicates the presence of the bacillus Mycobacterium 

tuberculosis. 

 

 The emergence of resistant TB gave birth to rapid molecular tests and culture based 

methods. Drug-susceptibility testing (DST) is used in ascertaining the fact that the 
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individual infected with TB has no resistance to either the first-line or second-line anti 

tubercular drugs. The first-line anti tubercular drugs are; isoniazid, rifampicin, 

ethambutol and pyrazinamide (WHO, 2018b) and the second-line anti tubercular drugs 

are given in Table  1.1 below. 

Table 1.1: Second line anti-tubercular drugs (Adapted from Kanabus (2018), CC BY-
NC-SA 3.0 IGO) 

Group A: Group B: Group C: 
Levofloxacin (Lfx) or  

Moxifloxacin (Mfx) 
 

Bedaquiline (Bdq) 
 

 

Linezolid (Lzd) 

Clofazimine (Cfz)  

 
Cycloserine (Cs) or 

Terizidone (Trd) 

Ethambutol (E)  

 
Delamanid (Dlm) 

 

Pyrazinamide (Z) 

Imipenem-cilastatin (lpm-Cln) or 

Meropenem (Mpm) 

Amikacin (Am) (or Streptomycin) 

Ethionamide (Eto) or Prothionamide 

(Pto) 

p-aminosalicylic acid (PAS) 
 

DST can be done using the genotypic or phenotypic approach (Suleiman, 2017). The 

genotypic approach is the rapid molecular based tests while phenotypic approach is the 

culture based methods. The rapid molecular test is DNA based test for resistance to either 

first or second-line anti tubercular drugs. According to WHO (2018b), the WHO 

recommended machines are Xpert MTB/RIF and line probe assay (LPA). Xpert 

MTB/RIF tests for TB as well as resistance to rifampicin simultaneously. LPA has two 

types, the one that tests for resistance to rifampicin and isoniazid is called first-line LPA. 

The other one called second-line LPA tests for resistance to fluoroquinolones and 
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injectable anti-TB drugs. Another machine recommended by the WHO is loop-mediated 

isothermal amplification (LAMP), (WHO, 2016a). Although, this does not detect 

rifampicin resistance but has demonstrated high capacity to detect TB. As such, it has 

been recommended as a replacement for microscopy test. 

 

Figure 1.6: A stained sputum smear (Adapted from Ronald and USCDCP (2016), CC0) 

 

Figure 1.7: GeneXpert IV System (Adapted from GDF (2018), with permission from 
Global Drug Facility) 
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Figure 1.8: Conducting test with Gene Xpert (Adapted from Weyer et al. (2013), with 
permission from WHO) 

   The last diagnostic test is the culture based methods. According to Suleiman (2017), 

“culture means taking sputum or another sample from the body that is thought to contain 

the TB bug, decontaminating it (to stop the growth of other non-TB organisms) and giving 

it time to grow on a specific material or medium”. The positive growth of the culture 

implies the presence of TB bacteria. Although, provision of result from the method take 

weeks, it is the WHO current reference standard to monitor the progress made by a TB 

patient on therapeutic vaccine (WHO, 2018b). It is also used in detecting drug-resistant 

TB (DR-TB) and used for monitoring treatment progress for someone with multi-drug 

resistant TB (MDR-TB), (WHO, 2011). 
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Figure 1.9: LAMP (Adapted from HUMAN (2018), with permission from HUMAN) 

 

 

Figure 1.10: Conducting test with LAMP (Adapted from Gray et al. (2016), with 
permission from American Society for Microbiology) 
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Breakthrough research on tuberculosis was in the early 19th century with the research 

of Hermann Heinrich Robert Koch, when he was able to identify a substance from 

tubercle bacilli which he named tuberculin. This was subsequently followed by the work 

of Clemens Freiherr von Pirquet in the early 20th century, where he was able to give a 

measurement of the tuberculin injection to use in testing for latent TB (Daniel, 2005). 

Positive reaction to the injection indicates the presence of latent TB. 

 Advancement in the progress of the fight against TB happened in the year 1921 when 

Albert Calmette and Camille Guérin came up with the famous BCG vaccine. BCG 

(Bacille Calmette Guérin) is a prophylactic anti tubercular vaccine that is administered 

on people to prevent TB infection. BCG has done a lot in the prevention of TB, but its 

ineffectiveness has been a course of discussion in recent time. 

 Isoniazid is the first oral mycobacterial drug. It was introduced in the year 1952 before 

being followed by rifamycins (rifampicin, rifapentin and rifabutin) in 1957, which are the 

two major first-line anti-tubercular drugs (Daniel, 2005). Although, these drugs were 

predated by streptomycin which happens to be the first antibiotic as well as first effective 

bactericidal agent against Mycobacterium tuberculosis. Table  1.2 below shows the latest 

anti-TB drugs in pipeline. 
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Table 1.2: The global clinical development pipeline for new anti-TB drugs and regimens, 
August 2018 (Adapted from WHO (2018b), CC BY-NC-SA 3.0 IGO) 

Phase Ia Phase IIa Phase IIIa 

Contezolid (MRX-1)b 

GSK-303656b 

Macozinone 
(PBTZ169)b 

OPC-167832 

Q203b 

TBA-7371b 

TBI-166 

Delpazolid (LCB01-0371) 

SQ109 

Sutezolid (PNU-100480)b 

Linezolid dose-ranging 

Nitazoxanide 

High dose rifampicin for DS-
TB (PANACEA) 

Bedaquiline and delamanid 
(ACTG A5343 DELIBERATE 
trial) 

Bedaquiline-Pretomanid-
Moxifloxacin-Pyrazinamide 
(BPaMZ) regimen 

Bedaquiline and pretomanid 
with existing and re-purposed 
anti-TB drugs for MDR-TB 
(TB PRACTECAL Phase 2/3 
trial) Delamanid, linezolid, 
levofloxacin, and 
pyrazinamide 
for quinolone sensitive MDR-
TB (MDR-END trial) 

Levofloxacin with OBRcfor 
MDR-TB (OPTI-Q) 

Bedaquiline (TMC-207)b 

Delamanid (OPC-67683)b 

Pretomanid (PA-824) 

Clofazimine 

High dose rifampicin for 
treatment of DS-TB 

Rifapentine for treatment 
of DS-TB 

Bedaquiline-Pretomanid-
Linezolid (NiX-TB trial) 

Bedaquiline-Pretomanid-
Linezolid (ZeNix trial)-
Linezolid optimization 

Bedaquiline with two 
optimised background 
regimens (oral, 
9 months; with oral and 
injectables, 6 months) 
(STREAM 
trial) Bedaquiline-
Linezolid-Levofloxacin 
with OBRc for 
MDR-TB (NExT trial) 

Bedaquiline and 
delamanid with various 
existing regimens 
for MDR-TB and XDR-
TB (endTB trial) 
Pretomanid-Moxifloxacin-
Pyrazinamide regimen 
(STAND 
Rifapentine-Moxifloxacin 
for treatment of DS-TB 
(TB Trial 
Consortium Study 
31/A5349) 
trial) 
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1.7  Problem Statement, Research Questions, Aim and Objectives 

1.7.1  Problem Statement 

On the list of the sustainable development goals (SDG), the third goal is “good health 

and well-being” (WHO, 2018d). This goal is threatened by three main diseases; malaria, 

HIV/AIDS and tuberculosis. Malaria has a total incidence of 219 million in the year 2017 

(WHO, 2018e), HIV/AIDS has 37 million in 2017 (UNAIDS, 2018) and tuberculosis has 

a total of 10 million incidences in 2017 as well (WHO, 2018b). Of them all, tuberculosis 

kills more with a record of 1.3 million deaths (WHO, 2018b). This is followed by 

HIV/AIDS with 900 thousand deaths (UNAIDS, 2018) and malaria with 435 thousand 

deaths (WHO, 2018e). The total deaths from the three diseases is 2.6 million with malaria 

being 16%, HIV/AIDS being 36% and tuberculosis being 48%. This shows that the death 

due to TB is the most and requires utmost attention. This research focuses on addressing 

the ways by which tuberculosis could be eliminated or perhaps reduce its incidence to a 

bearable minimum. 

 

1.7.2  Research Questions 

1.  Can tuberculosis epidemic be eliminated?  

2.  Under what condition do we have a TB free environment?  

3.  What are the missing efforts in effectively managing TB? 

 

1.7.3  Research Gap 

From the reviewed literatures, it is observed that a lot has been done on the 

mathematical modelling of tuberculosis. Even with those researches, the disease 

incidence keeps on persisting and as such gives rise to the research questions in subsection 

1.7.2 above. The published researches have failed to exploit the importance and relevance 

of the latent state of TB in the disease dynamics. Also noted is the fact that the 
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ineffectiveness of BCG has been discussed in literatures but no definite guide on 

formulating a better vaccine has been discussed. In the same vein, the incidences of other 

TB strains are on the rise. As such, there is the need to start giving more focus to these 

strains as delay may be dangerous. 

 

1.7.4  Aim 

The aim of carrying out this research is to come up with analyses on understanding the 

tuberculosis epidemiology and to subsequently propose solutions to reduce its spread. 

This is planned to be achieved using the below stated objectives. 

 

1.7.5  Objectives 

A critical study of relevant literatures as discussed in Chapter 4 show the vacuum yet 

to be filled, hence gives direction to our research objectives which are;   

1.  To formulate a mathematical model to query the relevance of the exposed state in 

reducing tuberculosis incidence rate.  

2.  To formulate a mathematical model which gives direction to the formulation of a 

better vaccine for TB.  

3.  To formulate a quarantine model to check the rising rate of multi-drug resistant TB 

(MDR-TB).  

4.  To determine the equilibrium points and their stabilities alongside the basic 

reproduction number (𝑅!) of the formulated models.  

5.  To find the rate at which the considered parameters (factors) affect the incidence of 

TB. 
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1.8  Organization of the Thesis 

This thesis consists of six chapters. The chapters are namely; Chapter 1 (Introduction), 

Chapter 2 (Literature review), Chapter 3 (Analysing tuberculosis), Chapter 4 (Impact of 

vaccination on tuberculosis), Chapter 5 (The Effect of quarantine in reducing multi-drug 

resistant TB (MDR-TB)) and Chapter 6 (Summary, conclusion, recommendations and 

future work). 

 

 Chapter 1, gives a general overview about tuberculosis with basic discussion on 

infectious diseases. Different types of bacteria of which Mycobacterium tuberculosis 

(Mtb) is an example are discussed. Due to the broadness in the species of Mycobacterium 

genus, the Mycobacterium tuberculosis complex (MTBC) is as well discussed briefly. 

Discussions about tuberculosis infection, its history, medical diagnosis and interventions 

to address the wilder growth of TB are presented. The definition of some relevant terms 

are given while presenting the aim and objectives of the research. 

 

 Due to the multi-facetted approach to ending the TB infection, Chapter 2, gives 

literature reviews from three different fields. The fields are; mathematics, medicine and 

pharmacy. The mathematical point of view describes some of the different models that 

have been previously formulated to discuss the tuberculosis infection as well as their 

findings. Researches from the medical field focus majorly on the diagnostics tools for 

TB. Without proper diagnosis, there is no way a reasonable headway could be achieved 

in the war to stop TB. Lastly, researches from the pharmaceutical field give focus on the 

production of effective medicines to combat the tuberculosis infection with much 

attention given to the identification of the right biomarkers for the production of the drugs. 

 Chapter 3, presents our first model to address tuberculosis epidemic, it is a four 

compartment model. The equilibrium points, basic reproduction number (𝑅!) and 
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stabilities of the model are discussed to give a proper understanding of the model 

formulated. This is subsequently followed by the numerical analysis to give pictorial 

discussions on the model before the presentation of the conclusion. 

 

 In Chapter 4, an extension of the model in Chapter 3 is presented. An extra 

compartment, the vaccination compartment is incorporated to discuss the effect of right 

vaccine in halting the spread of tuberculosis. Just like in Chapter3, the equilibrium points, 

basic reproduction number (𝑅!), stability analysis and the numerical results are 

presented. The summary of this chapter concludes it. 

 

 Another strain of tuberculosis (MDR-TB) is discussed in Chapter 5. This is a strain 

that is gradually growing wild and not receiving much attention from mathematical 

modellers. The impact of the use of quarantine in curbing MDR-TB is presented here with 

the aid of mathematical and graphical analysis. 

 

 Chapter 6, summarizes the whole work. The recommendations from the conclusion 

are presented for further actions in achieving the set goal of sending the tuberculosis 

epidemic to extinction. 
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CHAPTER 2: LITERATURE REVIEW 

2.1  Introduction 

Since time immemorial, man has pre-occupied himself with research, either to aid his 

survival or to understand his environment better. The discovery of penicillin as a potent 

drug to fight bacterial infections, identification of differences in finger prints that helps 

in solving criminal matters and even the knowledge of the sphericity of the earth are 

among major breakthroughs recorded through research. 

 The relationship of man with his environment leads him to have contact with different 

bacteria, which can be harmful and as well useful. Mycobacterium tuberculosis (Mtb) is 

an example of the harmful ones. This bacteria is an intracellular pathogen that lives within 

phagosomes and also disrupts these organelles to access the cycstol (Schnettger et al., 

2017). In the course of research, this bacteria has been identified to be responsible for 

tuberculosis (TB) and great works have been done by researchers from different fields, 

charting way forward on how to annihilate its existence or at least reduce its level of 

incidence. Hence, this literature review dwells on three major fields; mathematical, 

medical and pharmaceutical researches on tuberculosis. 

2.2  Mathematical Modelling of Tuberculosis 

Basically, there are two approaches to the mathematical modelling of infectious 

diseases. These approaches are stochastic and deterministic (compartmental) modelling. 

Stochastic approach is probabilistic whereby some level of randomness is allowed. See 

e.g. Wilkinson & Sharkey (2018), Han et al. (2018), Wei et al. (2018), Getz & Dougherty 

(2018) and Funk et al. (2018). Some earlier researches with the same approach are those 

of Witbooi (2017), Ming et al. (2016), Pellis et al. (2015), Zhao et al. (2014), Cai et al. 

(2013), Wang et al. (2012), Nishiura (2011) and Beggs et al. (2010). 
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 On the other hand, the output from a deterministic approach is based on the parameter 

values and initial conditions provided rather than being a probable result. The efficacy of 

this approach has been greatly demonstrated by its use in studying different epidemics. 

Verguet et al. (2015) and Li et al. (2017) are among those that have used it to discuss 

measles epidemic. It has been useful in discussing HIV epidemic as presented by Ali et 

al. (2017), Nah et al. (2017), Geetha & Balamuralitharan (2018), Omondi et al. (2018), 

Wang & Dong (2018), Aldila (2018) and Alshorman et al. (2017). It has also been 

relevant in the analysis of zika virus infection. This is as presented by Suparit et al. (2018), 

Goswami et al. (2018), Padmanabhan & Seshaiyer (2017), Tower et al. (2016) and Gao 

et al. (2016). Aston (2018) also display its efficacy in the analysis of hepatitis C. 

 Mathematical modelling of infectious diseases could be dated back as far as the 17th 

century when Bernoulli came up with an inoculation model against smallpox. According 

to Brauer (2017), first contributions to modern mathematical epidemiology are due to 

En’ko between 1873 and 1894, before the great works of Ross, Hamer, McKendrick and 

Kermack between the years 1900 and 1935. This deterministic modelling approach has 

been used extensively in assessing the tuberculosis epidemic. 

 

 Numerous researchers have presented many models to address this epidemic, these 

models have helped in advancing the approaches to curbing the infection. Okunoghae & 

Omosigho (2011) came up with a model on what could be done to increase TB case 

detection. The model was used to test a result gotten from a survey conducted in Benin 

city, Nigeria. They were able to establish that effective awareness program, active cough 

identification, associated cost factor for treatment of identified cases and effective 

treatment are the key factors to be combined in order to achieve effective control of TB, 

as well as increase the TB case detection rate. The research of Huo &Zou (2016) further 

corroborate this. They establish that the treatment of TB infected individuals at home 

Univ
ers

ity
 of

 M
ala

ya



   20 

gives different result when compared to those treated in the hospital. This is because the 

right treatment to any infection is by proper diagnosis. Proper diagnosis can only be 

achieved at the hospitals. Based on a survey done in Canada, the research of Varughese 

et al. (2017) identified that screening and treating new immigrants for LTBI has the 

efficacy of reducing TB incident cases. This is in line with the aforementioned estimate 

of one-fourth of the world having LTBI, 10% of those with LTBI is expected to develop 

active TB (WHO, 2015). The work of Chong et al. (2019) also shows the importance of 

treating LTBI patients. Their model evaluated the impact of treating elderly persons with 

LTBI as an addition to the established TB control strategies in Hong Kong. Their 

evaluation shows that the incorporation of treatment for the elderly ones (with LTBI) will 

reduce the TB incidence by 50%. This 50% reduction is achievable when this measure is 

merged with the maintenance of treatment completion rate (which stands at 65%) as well 

as the treatment of a moderate proportion of LTBI patients annually.  

 

 Trauer et al. (2014) formulated a ten (10) compartment model to study multi-drug 

resistant TB (MDR-TB) and drug susceptible TB. They were able to observe that 

improved treatment of drug susceptible TB does not result in decreased MDR-TB rates. 

On the other hand, Porco & Blower (1998) advanced the understanding of TB 

transmission dynamics by the consideration of the non-availability of treatment in their 

model. Their observation was that the parameters that affect the severity of TB epidemic 

among the ones considered are; the disease reactivation rate, fraction of infected 

individuals that progress to active TB soon after infection, the number of persons that an 

infectious individual infects per year, disease death rate and the population recruitment 

rate. Arinaminpathy et al. (2019) formulated a mathematical model of TB focusing on 

Mumbai and Patna; the two major cities in India. The model sought to establish the 

relevance of private health care service provider in combatting the TB epidemic. The 
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model reveals that the engagement of the private health care service provider in the 

treatment of TB could help in capturing 75% TB patients. This would in turn reduce the 

TB incidence up to 21.3%. This result is reasonable as most health care service seekers 

would visit a private clinic before public hospitals. 

 

 Jia et al. (2008) formulated an eight (8) compartment model to measure the impact of 

immigration on the tuberculosis epidemiology. They partitioned the total population 

under consideration to two subpopulations; the immigrants and the locals. These 

subpopulations were treated individually to establish their respective basic reproduction 

number. With the denotation of the basic reproduction number numbers of the 

immigrants’ subpopulation and locals’ subpopulation (𝑅&') and (𝑅(!) respectively, they 

noted that tuberculosis disease cannot die out because 𝑅(! < 1 and 𝑅&! > 1. As such, 

they opined that immigrants have drastic impact on the overall epidemiology of TB. 

However, the research of Herrera et al. (2013) investigated the spread of tuberculosis in 

semi-closed communities. A semi-closed community is one with the recruitment of new 

members and as well departure of some others e.g. prison. In their research, five (5) 

compartments were considered in which there are two infectious classes. They explained 

that semi-closed communities should be a major public concern as they promote disease 

transmission to the outside community. 

 

 The research of Bhunu et al. (2008) discusses the effect of incorporating prophylactic 

measure in curbing TB transmission. They formulated a deterministic model of five (5) 

compartments to firstly assess the impact of the treatment of infectives and subsequently, 

the impact of chemoprophylaxis on tuberculosis transmission was assessed. They were 

able to establish that treating the infectives keep them safe for a certain period of time 

while the chemoprophylactic approach reduces the eventual number of infectives, which 
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in turn reduces the TB incident generally. Shrestha et al. (2017) gave a direction on who 

should be the recipient of vaccine. Their research that focused on the impact of 

vaccination on a cohort group (a group of miners with high-risk of getting infected with 

TB) shows a greater efficacy of vaccination on the cohort group when compared to 

vaccinating the entire population. Hence, they suggest that vaccines should be targeted at 

those that are at high-risk of getting tuberculosis infection rather than vaccinating the 

entire community. 

 

 In recent time, TB-HIV co-infection has been a major cause of concern. Perspective 

of Houben et al. (2014) give suggestions on how to address the TB-HIV epidemic. Their 

suggestions focus on the priorities for future modelling works which are;   

1.  The difficult diagnosis and high mortality rate of TB-HIV patients.  

2.  The high risk of disease progression.  

3.  TB health systems in high HIV prevalent settings.  

4.  Uncertainty in the natural progression of TB-HIV.  

5.  Combined interventions for TB-HIV.  

 

 The five (5) above suggestions are really valuable to addressing the TB-HIV co-

infection because without standard and proper diagnosis of any infection, no reasonable 

remedy can be offered. It is with the proper diagnosis that the problems of high TB 

progression rate, proper TB health systems, uncertainty in the natural progression rate of 

TB-HIV infection and as well as the interventions for TB-HIV could be addressed. As 

such, the next two sections present the advances made so far in the field of medicine and 

pharmacy to tame the wild spread of TB. 
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2.3  Medical Researches on Tuberculosis 

At the dawn of any sickness or infection, the first resort is usually medical approach. 

A medical doctor shall diagnose (examine) the patient and proffer potential solution 

which could be; administration of drugs, routine checkup or any other necessary action 

required to be taken. This diagnosis comes in different forms. History taking, physical 

examination and even diagnostic tests may be required to ascertain the type and cause of 

a particular infection. 

 

 Recovering from an infection or disease at times requires much more than the above 

stated approach. According to Skiles et al. (2018), provision of social support for TB 

patient improves their treatment response rate. This was observed from the comparison 

made among TB infected Ukrainians that received social support in the year 2012 and 

those that did not receive such in 2011 and 2012. High-risk patients infected of TB who 

are receiving social support are comparable to low-risk patients in treatment response 

rate. Also, the importance of having a robust program of public-private relationship of 

medical practitioners cannot be over emphasised. The result of such program has been 

demonstrated by Nwe et al. (2017), where they researched on the engagement of public 

and private medical facilities in tuberculosis care in Myanmar. Since most people would 

visit a private medical center first due to their proximities, there was a great reportage of 

TB incidents at the national level, with greater percentage of the reports from private 

medical practitioners. 

 

 It is a well-known fact that ageing comes with a lot of medical challenges which is 

largely due to the weakened immune system. Lee et al. (2017) researched on TB infection 

in elderly people. Their approach was to examine the impact of treatment delay in 

different categories of TB patients. The categories are; those that are less than 65 years 
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of age (cat 1), 65-79 years (cat 2) and those that are greater than 80 years (cat 3). They 

reported 6.5%, 18.5% and 34.7% mortality rates respectively for cat 1, cat 2 and cat 3 

when there is treatment delay. The delay occurs due to the unawareness of the medical 

practitioners that these people are TB carriers. As such, querying of TB is encouraged 

whenever elderly people visit the clinic for a different medical reason, so as to initiate 

treatment early (if required) and avert fatal consequence. 

 

 Incomplete treatment is another critical area to be looked at. Non-completion of TB 

treatment has given room for the emergence of some other strains. Recently, the study of 

Dheda et al. (2017a) exposited a strain described as programmatically incurable 

tuberculosis. This strain is prevalent in South Africa, Russia, India and China (Dheda et 

al., 2017b). From their cohort study with 273 patients of XDR-TB or resistance beyond 

XDR-TB in South Africa, they found out that 203 patients representing 74.36% have 

already developed programmatically incurable TB. More than 50% of this 74.36% got 

discharged into the community and hence transmit this strain of TB to the unsuspecting 

community members unknowingly. This finding calls for more attention to be given to 

ascertain the level of fitness of the patients before being discharged, so as to save the outer 

world from the spread of TB infections in general. Still on the strains of TB, Dheda et al. 

(2017b) reviewed the clinical management of adults and children with MDR-TB and 

XDR-TB, where they remarked that about 20% of all TB strains are resistant to at least 

one major TB drug. This has major contribution from poorly functioning health care 

systems, poverty and lack of political will. 

 

 Diagnostic methods play vital role on tuberculosis case detection. As discussed in 

Chapter 1 (1.6), TB laboratory diagnosis are done in different ways. Gupta-Wright et al. 

(2018) established the relevance of rapid urine-based screening for TB in reducing the 
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mortality rate in HIV-positive patients. They found out that this test enhances better 

medical care for these patients as it reveals those that are co-infected with TB. In their 

research, they considered 1287 patients infected with HIV for HIV treatment alone and 

considered another 1287 patients for HIV treatment alongside tuberculosis. 21% of the 

HIV treatment alone group died while 18% of the HIV alongside TB treatment group 

died. This indicates the importance of testing for TB in a HIV-positive patient. 

Papaventsis et al. (2017) proposed in their review that whole genome sequencing (WGS) 

could be considered a better alternative to drug susceptibility testing methods for 

rifampicin and isoniazid, before having a standardized analytical pipelines. This will help 

a long way in determining the approach required to combat TB upon detection. 

 

 For a continual progress in the fight against tuberculosis, great funds are required to 

be committed. For instance, 65.6 million was spent between 2003 and 2015 in fast 

tracking the development of medical interventions for TB, HIV and malaria (Surette et 

al., 2017). Hence, many collaborators are required in order to finance these researches 

either on the production of alternative drugs or better machines to help in case and strain 

detection. This is pertinently important as the funding on TB research is estimated to gulp 

US $2 billion annually, but the highest funding recorded so far is US $724 million, which 

was in the year 2016 (WHO, 2018b). Doing this will consolidate on the already recorded 

successes in combatting TB and as well take the world closer to achieving the sustainable 

development goals (SDG) and End TB strategy targets set for 2030. 

 

2.4  Pharmaceutical Researches on Tuberculosis 

One of the major setbacks recorded in the production of drugs generally is the less 

reliance of pharmaceutical companies on research and development (R & D) but focusing 

on how to cut cost to be expended (Casty & Wieman, 2013). Elimination of TB has been 
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greatly hampered by the existence of XDR-TB. Although, drug resistance could be seen 

as problem by medical practitioners and their patients but interestingly, it provokes 

reasoning that could lead to the development of new and even better drugs. To this effect, 

hands are on deck to find a way out of this set back. Ojima et al. (2017) published their 

findings on the development of new-generation fluorine containing anti-bacterial agents 

against TB. Their aim is to use this fluorine in targeting Filamenting temperature-sensitive 

mutant Z (FtsZ), which is an important protein that aids the division of bacterial cells. It 

is as well useful in the production of anti-bacterial drugs. They subsequently proposed 

the inclusion of fluorine in the lead compounds required for the production of anti-

tubercular drugs as these lead compounds lack sufficient metabolic and plasma stabilities. 

This inclusion is expected to produce an improved pharmacological properties. As such, 

their research led to the development of fluorine benzimidazoles as potential drug 

candidate. 

 

 In China, it is a common practice to prescribe herbs alongside the anti-tubercular 

drugs. Their belief is that herbs protect liver from damage. However, Liu et al. (2008) 

countered this belief in their research as they were able to establish that there is no reliable 

information to support the recommendation of the herbs to be taken in conjunction with 

the tuberculosis treatment. Zhang et al. (2014) carried out a proteomic analysis to 

investigate LTBI biomarkers. Biomarkers provide prognostic information about future 

health status, either for individual patients or cohorts in clinical trials. It is very important 

in the development of drugs as it serves as a measure of normal biological or pathogenic 

processes or even pharmacological responses to any therapeutic intervention under 

consideration (Atkinson et al., 2001). The diagnostic model used by Zhang et al. (2014) 

was generated using a training set of spectra and they established the accuracy of the 

model using blind testing. They came up with the result that LTBI diagnosis accuracy 
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could be stepped up using the proteomic analysis. More researches on biomarkers that are 

relevant to the production of TB drugs have been presented by different scientists, see 

e.g. Walis et al., (2009), Walis et al., (2010), Walis et al., (2013), Jayakumar et al., (2015) 

and Parida & Kaufmann (2010). 

 

 Different individuals display different attitudes to drugs taking. Dispensation of 

multiple drugs to combat a particular illness may not be much effective as the patient may 

decide not to take the drugs as prescribed due to the much number of drugs given. 

However, production of the drugs in a single form could help in addressing this. With the 

exception of isoniazid, all other drugs could be produced as a single dose to reduce the 

number of drugs to be taken by the patient. This result is discussed in Xu et al. (2013). 

Jassal & Aldovandi (2011) came up with 6 steps that are to be taken to bring about the 

possible elimination of “Phtisis”. They are; addressing the current issues with TB 

pharmacotherapy, novel drug formulations, improvement of preclinical testing models, 

development of strong institutional foundations, direction of focus of clinical drug trials 

to selected populations that comprises of people with LTBI, diabetes mellitus and TB, 

HIV and TB co-infection and paediatric TB. Lastly on the list of their proposition is the 

existence of delivery mechanism for the produced novel drugs. 

 

 Since TB is prevalent mostly in poor environments, the investors on the anti-TB drug 

production record low financial return which in turn hampers the required development 

of better and new drugs to tackle the infection. In the year 1993, TB was declared a global 

emergency by WHO due to the established risk of its possible spread with HIV and also 

the emergence of MDR-TB (Bessa et al., 2017). This gives an insight on why there is the 

need for the international organisations to step up their supports on the free donation of 

drugs and vaccines to the concerned nations. 
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2.5  Conclusion 

The aforementioned discussion are the three main approaches to combat the TB 

epidemic. It should be observed that the researches hover majorly around TB case 

detection and the production of an effective prophylactic vaccine to prevent TB incident. 

However, the advantage that could emanate from preventing the direct progression of TB 

patients from susceptible class to infectious has not been discussed. Also, what should be 

the focus while producing an effective prophylactic vaccine as well as giving great 

attention to other strains of TB are not greatly discussed. Hence, this research focuses on 

taking the advantage of the exposed state (by not progressing directly to the infectious 

class from susceptible), consideration to be made in the production of an effective vaccine 

and also, curbing MDR-TB using quarantine. 
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CHAPTER 3: ANALYSING TUBERCULOSIS 

3.1  Introduction 

Many researchers have achieved reasonable results with the aid of mathematical 

models in assessing the dangers that TB infection portends, see e.g. Bhunnu et al. (2012), 

McCluskey & van den Driessche (2004), Ragonnet et al. (2017), Khajanchi et al. (2018) 

and Nkamba et al. (2019). Others have proposed intervention strategies see e.g. 

Okuonghae & Ikhimwin (2016), Murphy et al. (2003), van den Driessche & Watmough 

(2002), Mushayabasa & Bhunu (2013), Vynnycky et al. (2015) and White & Abubakar 

(2016). Even with all these efforts, the effect of this infection seems non-subsiding. 

 

 Almost all the authors mentioned above did not consider the rate at which recovered 

individuals move back to the susceptible group. The consideration of this scenario makes 

the modelling of TB infection mathematically more complete since recovery from 

bacterial infection confers no permanent immunity against reinfection. As such, it is 

considered in this model formulation. Also, according to WHO (2017), an estimated 4.1% 

of new cases of TB and 19% of previously treated cases had MDR-TB or drug susceptible 

TB globally in the year 2016. Hence, it would be more proper if we initially focus our 

attentions on understanding the drug susceptible TB (DS-TB) before discussing other 

strains. This is because most of the other strains emerge from DS-TB. 

 

3.2  Model Formulation 

3.2.1  Introduction 

There are four groups of human categories considered in the model formulation. They 

are the susceptible individuals 𝑆, latently infected individuals (exposed) 𝐸, infected with 

symptoms (infectious) 𝐼 and the recovered individuals 𝑅. The source of recruitment into 
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the population is through the susceptible compartment with recruitment rate πN and the 

total population 𝑁(𝑡) at any time 𝑡 is  

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).																																																																							 (3.1) 

  The model allows the individuals from different groups to freely mingle with one 

another and a susceptible individual is bound to contract TB after an effective contact 

with an infectious individual at the rate  

𝜆 =
𝛽𝑐𝐼
𝑁
,																																																																																																																							 (3.2) 

where 𝛽 is the probability that a susceptible individual would get TB infection and 𝑐 

denotes the average contact rate. 

 

 The susceptible individuals move to the latent and infectious classes at the rates 𝑓𝜆 

and (1 − 𝑓)𝜆 respectively while the backward movement of the recovered individuals to 

the latent and infectious classes occur at the rates 𝑓)	𝜆 and (1 − 𝑓))𝜆 respectively. The 

exogenous reinfection and endogenous reactivation rates are designated as 𝛿𝜆 and 𝑘 

respectively. Natural death of human is assumed to occur at the rate 𝜇 and the TB induced 

death occurs at the rate 𝜀. The natural recovery rate from the infection is designated as 𝜔 

and the treatment induced recovery is designated as 𝜎. Due to the nature of bacterial 

infection (non-conferment of immunity against reinfection), it is assumed that a fraction 

of the recovered class goes back to the susceptible class at the rate 𝛼. The diagrammatic 

representation of the model is given by Figure 3.1 and the parameter values considered in 

the model formulation are in the interval (0,1] with the exception of the contact rate 𝑐.  
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Figure 3.1: Diagrammatic representation of the tuberculosis model 

 

The nonlinear system describing the model is  

𝑑𝑆
𝑑𝑡

= 𝜋𝑁 + 𝛼𝑅 − (𝜆 + 𝜇)𝑆,																																																																																			 (3.3) 

𝑑𝐸
𝑑𝑡

= 𝑓𝜆𝑆 + 𝑓)𝜆𝑅 + (𝛿𝜆 + 𝑘 + 𝜇)𝐸,																																																																				 (3.4) 

𝑑𝐼
𝑑𝑡
= (1 − 𝑓)𝜆𝑆 + (1 − 𝑓))𝜆𝑅 + (𝛿𝜆 + 𝑘)𝐸 − (𝜎 + 𝜔 + 𝜀 + 𝜇)𝐼,															 (3.5) 

and  

𝑑𝑅
𝑑𝑡

= (𝜎 + 𝜔)𝐼 − (𝜆 + 𝛼 + 𝜇)𝑅,																																																																											 (3.6) 

with the initial conditions:  

 𝑆(0) = 𝑆! ≥ 0,				𝐸(0) = 𝐸! ≥ 0,				𝐼(0) = 𝐼! ≥ 0,				𝑅(0) = 𝑅! ≥ 0. 

Adding (3.3)-(3.6) yields  

𝑑𝑁
𝑑𝑡

= (𝜋 − 𝜇)𝑁 − 𝜀𝐼.																																																																																											 (3.7) 
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  Normalisation of the nonlinear system (3.3)-(3.6) is achieved by its division 

throughout by N. If *
+
, ,
+
, %
+

 and -
+

 are consecutively denoted by 𝑠, 𝑒, 𝑖 and 𝑟, then the 

system becomes  

1
𝑁
𝑑𝑆
𝑑𝑡

= 𝜋 + 𝛼𝑟 − (𝛽𝑐𝑖 + 𝜇)𝑠,																																																																																			 (3.8) 

1
𝑁
𝑑𝐸
𝑑𝑡

= 𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − (𝛿𝛽𝑐𝑖 + 𝑘 + 𝜇)𝑒,																																																									 (3.9) 

1
𝑁
𝑑𝐼
𝑑𝑡
= (1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + (𝛿𝛽𝑐𝑖 + 𝑘)𝑒 − (𝜎 + 𝜔 + 𝜀 + 𝜇)𝑖, (3.10) 

and  

1
𝑁
𝑑𝑅
𝑑𝑡

= (𝜎 + 𝜔)𝑖 − (𝛽𝑐𝑖 + 𝛼 + 𝜇)𝑟.																																																																			 (3.11) 

Since 𝑆 = 𝑠𝑁,  

⇒
𝑑𝑆
𝑑𝑡

= 𝑁
𝑑𝑠
𝑑𝑡
+ 𝑠

𝑑𝑁
𝑑𝑡
,																																																																																													 (3.12) 

then 

1
𝑁
𝑑𝑆
𝑑𝑡

=
𝑑𝑠
𝑑𝑡
+ 𝑠[(𝜋 − 𝜇) − 𝜀𝑖].																																																																														 (3.13) 

In the same manner,  

1
𝑁
𝑑𝐸
𝑑𝑡

=
𝑑𝑒
𝑑𝑡
+ 𝑒[(𝜋 − 𝜇) − 𝜀𝑖],																																																																														 (3.14) 

1
𝑁
𝑑𝐼
𝑑𝑡
=
𝑑𝑖
𝑑𝑡
+ 𝑖[(𝜋 − 𝜇) − 𝜀𝑖]																																																																																	 (3.15) 

and  

1
𝑁
𝑑𝑅
𝑑𝑡

=
𝑑𝑟
𝑑𝑡
+ 𝑟[(𝜋 − 𝜇) − 𝜀𝑖].																																																																													 (3.16) 

 

The substitution of (3.13)-(3.16) into (3.8)-(3.11) produces 

𝑑𝑆
𝑑𝑡

= 𝜋 + 𝛼𝑟 − [𝜋 + (𝛽𝑐 − 𝜀)𝑖]𝑠,																																																																								 (3.17)	

𝑑𝐸
𝑑𝑡

= 𝑓𝛽𝑐𝑖𝑠 + 𝑓)	𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖]𝑒,																																												 (3.18)	
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𝑑𝐼
𝑑𝑡
= (1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + (𝛿𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝜎 + 𝜔 + 𝜀(1 − 𝑖)]𝑖	 (3.19) 

and	

𝑑𝑅
𝑑𝑡

= (𝜎 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖]𝑟																																																																			 (3.20) 

with the initial conditions:  

𝑠(0) = 𝑠! ≥ 0,				𝑒(0) = 𝑒! ≥ 0,				𝑖(0) = 𝑖! ≥ 0,				𝑟(0) = 𝑟! ≥ 0,																													 

such that  

𝑠 + 𝑒 + 𝑖 + 𝑟 = 1																																																																																																														  

 

3.2.2  Positivity of the Solution 

The formulated model shall only be epidemiologically correct if all the considered 

dependent variables are non-negative at any time 𝑡. Hence, the Lemma 3.1 below 

establishes the positivity of the model. 

 

Lemma 3.1: Given that the initial conditions of nonlinear system ((3.17)-(3.20)) are as 

given above, then the solutions 𝑠(𝑡), 𝑒(𝑡), 𝑖(𝑡),	and 𝑟(𝑡)	are positive for all 𝑡 > 0. 

Proof. Suppose that 𝑡∗ = 	𝑠𝑢𝑝{𝑡 > 0: 𝑠(𝑡) > 0, 𝑒(𝑡) > 0, 𝑖(𝑡) > 0, 𝑟(𝑡) > 0} ∈ [0, 𝑡], 

then 𝑡∗ > 0. By the consideration of the first equation in the nonlinear system (3.17)-

(3.20), that is  

𝑑𝑠
𝑑𝑡
= 𝜋 + 𝛼𝑟 − [𝜋 + (𝛽𝑐 − 𝜀)𝑖]𝑠,																																																																														  

  if (𝛽𝑐 − 𝜀)𝑖 = 𝛬),	then  

𝑑𝑠
𝑑𝑡
= 𝜋 + 𝛼𝑟 − [𝜋 + 𝛬)]𝑠 ≥ 𝜋 − [𝜋 + 𝛬)]𝑠,																																																						  

𝑑
𝑑𝑡
_𝑠(𝑡)𝑒/012∫

!
" 4#(6)869` ≥ 𝜋𝑒/012∫

!
" 4#(6)869																																																				  

⇒ 𝑠(𝑡))𝑒
/01#2∫

!#
" 4#(6)869 − 𝑠(0) ≥ a

1#

!
𝜋𝑒/0:2∫

$
" 4#(6)869𝑑𝑦																								  
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⇒ 𝑠(𝑡)) ≥ 𝑒;/01#2∫
!#
" 4#(6)869 c𝑠(0) + a

1#

!
𝜋𝑒/0:2∫

$
" 4#(6)869𝑑𝑦d > 0.							  

 

In similar manner, it can be shown that 𝑒(𝑡), 𝑖(𝑡) and 𝑟(𝑡) are positive. 

 

3.3  Equilibrium Points, Basic Reproduction Number (𝑹𝟎) and Stability Analysis 

3.3.1  Equilibrium Points 

 At equilibrium, the nonlinear system (3.17)-(3.20) becomes 

0 = 𝜋 + 𝛼𝑟 − [𝜋 + (𝛽𝑐 − 𝜀)𝑖]𝑠																																																																													 (3.21) 

0 = 𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖]𝑒																																																			 (3.22) 

						0 = (1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + (𝛿𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝜎 + 𝜔 + 𝜀(1 − 𝑖)]𝑖.		(3.23) 

0 = (𝜎 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖]𝑟.																																																																	 (3.24) 

From (3.24),  

𝑟 =
(𝜎 + 𝜔)𝑖

[𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖]
,																																																																																								 (3.25) 

if (3.25) is used in (3.21), it gives  

𝑠 =
𝜋[𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖] + 𝛼(𝜎 + 𝜔)𝑖
[𝜋 + (𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖]

,																																																											 (3.26) 

whilst the subsequent substitution of (3.25) and (3.26) in (3.22) results to  

				𝑒 =
𝑓𝛽𝑐𝑖{𝜋[𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖] + 𝛼(𝜎 + 𝜔)𝑖} + 𝑓!𝛽𝑐(𝜎 + 𝜔)[𝜋 + (𝛽𝑐 − 𝜀)𝑖]𝑖"

[𝜋 + (𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖]
.						(3.27)  
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When (3.25)-(3.27) are put into (3.23) as functions of 𝑖, then  

	𝐴=𝑖= + 𝐴>𝑖> + 𝐴?𝑖? + 𝐴"𝑖" + 𝐴)𝑖 = 0,																																																																	 (3.28) 

such that 𝐴), 𝐴", 𝐴?, 𝐴> and 𝐴= are given in Appendix B. 

When (3.28) is solved, five values of 𝑖; 𝑖), 𝑖", 𝑖?, 𝑖>, 𝑖= are produced. The values are 

subsequently put in (3.25)-(3.27) to give the corresponding (𝑠, 𝑒, 𝑟) values in a set of five 

each i.e., (𝑠), 𝑠", 𝑠?, 𝑠>, 𝑠=), (𝑒), 𝑒", 𝑒?, 𝑒>, 𝑒=) and (𝑟), 𝑟", 𝑟?, 𝑟>, 𝑟=). Two out of the 

obtained equilibrium points are 𝑃), which is the disease free equilibrium (DFE) and 𝑃" 

which is a member of the endemic equilibrium point (EEP). The other sets of equilibrium 

points 𝑃?, 𝑃> and 𝑃= which are the remaining EEP could not be produced here as they 

cover almost 2000 pages when solved with Mathematica 10. 

𝑃) = (𝑠), 𝑒), 𝑖), 𝑟)) = (1,0,0,0), and 𝑃" = (𝑠", 𝑒", 𝑖", 𝑟"), such that 

𝑃" = <
𝜋𝛽𝑐 + 𝛼(𝜎 + 𝜔 + 𝜀)

𝛽𝑐[𝛼𝜀 + 𝜋𝛽𝑐]
,
𝜋𝑓𝜀[𝜋𝛽𝑐 + 𝛼(𝜎 + 𝜔 + 𝜀)] + 𝜋"𝑓!	𝛽𝑐(𝜎 + 𝜔)

[𝜋𝛽𝑐 + 𝛼𝜀][𝜋𝛿𝛽𝑐 + 𝑘𝜀]
,
𝜋
𝜀
,
𝜋(𝜎 + 𝜔)
[𝛼𝜀 + 𝜋𝛽𝑐]

>. 

By the adopted normalisation approach, it would be expected that the sum of the 

solution equals to unity at any point in time. Also, four sets of equilibrium solutions would 

be expected since there are four independent variables. Since five sets of solutions are 

produced, the validity of the results are tested using the two conditions below;  

a.  The substitution of the values of 𝑖 into (3.28) is expected to give its LHS as 0 at all 

times.  

b.  The sum of 𝑠, 𝑒, 𝑖 and 𝑟 is expected to be 1 at all times.  

  All the equilibrium points passed these tests except 𝑃" which could not pass the 

second condition. By this failure, 𝑃" is disregarded as a true solution, and the equilibrium 

points are reduced to four sets. By inspection, 𝑃) coincides with the disease free 

equilibrium (DFE) which can easily be verified by setting 𝑖 = 0 in the nonlinear system 
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(3.17)-(3.20), (𝑖 = 0 explains the situation when there is yet to be TB infection in the 

community under consideration).  

 

3.3.2 Basic Reproduction Number (𝑹𝟎) 

Establishing the Basic Reproduction Number (𝑹𝟎) 

When there is disease outbreak, the number of persons that get the infection from a 

single carrier is termed as the basic reproduction number (𝑅!). Simply, basic reproduction 

number (𝑅!) is the number of secondary infections from a singly reported one. In 

establishing the (𝑅!) of the model under consideration, the use of next generation matrix 

shall be considered as discussed by van den Driessche & Watmough (2002), where (𝑅!) 

is defined as  

𝑅! = 𝜌(𝐹𝑉;@).																																																																																																												 (3.29) 

𝜌 is defined as the spectral radius (dominant eigenvalue) of the matrix 𝐹𝑉@, where 𝐹 

represents the rate of appearance of new infections in the infected compartments and 𝑉 

represents the inward and outward movements at the infected compartments. 

𝑉 is defined as  

    𝑉 = 𝑉A; − 𝑉A2,	    

where 

𝑉A; = the rate of inward movements of individuals into the infected compartments 

and 

𝑉A2 = the rate of outward movements of individuals from the infected compartments. 

From the nonlinear system (3.17)-(3.20), 𝐹 and 𝑉 respectively are 

𝐹 = k
0 𝑓𝛽𝑐𝑠 + 𝑓)𝛽𝑐𝑟
𝛿𝛽𝑐𝑖 (1 − 𝑓)𝛽𝑐𝑠 + (1 − 𝑓))𝛽𝑐𝑟l																																																							 (3.30) 
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and  

𝑉 = k
[𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖] (𝛿𝛽𝑐 − 𝜀)𝑒
−𝑘 [𝜋 + 𝜎 + 𝜔 + 𝜀(1 − 𝑖)]l.																																	 (3.31) 

When 𝐹 and 𝑉 are evaluated at DFE (1,0,0,0), then  

𝐹 = k
0 𝑓𝛽𝑐
0 (1 − 𝑓)𝛽𝑐l																																																																																											 (3.32) 

and  

𝑉 = k
(𝜋 + 𝑘) 0
−𝑘 (𝜋 + 𝜎 + 𝜔 + 𝜀)l.																																																																 (3.33) 

⇒ 𝑉;% =
1

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)k
(𝜋 + 𝜎 + 𝜔 + 𝜀) 0
𝑘 (𝜋 + 𝑘)l.										 (3.34) 

From (3.32) and (3.34),  

𝐹𝑉#! =
1

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)
B
0 𝑓𝛽𝑐
0 (1 − 𝑓)𝛽𝑐DB

(𝜋 + 𝜎 + 𝜔 + 𝜀) 0
𝑘 (𝜋 + 𝑘)D (3.35) 

⇒ 𝐹𝑉;% =

⎝

⎜⎜
⎛

𝑓𝛽𝑐𝑘
(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)

𝑓𝛽𝑐(𝜋 + 𝑘)
(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)

(1 − 𝑓)𝛽𝑐𝑘
(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)

(1 − 𝑓)𝛽𝑐(𝜋 + 𝑘)
(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)

⎠

⎟⎟
⎞
.													 (3.36) 

The dominant eigenvalue of (3.36) i.e., 𝜌(𝐹𝑉;@) is  

𝜌s𝐹𝑉;%t =
𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)]

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀).																																																																												 
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Hence, the basic reproduction number (𝑅!) is  

𝑅! =
𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)]

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)
.																																																																					 (3.37) 

 

Theorem 3.3.1.  Whenever there is no bypassing of the exposed class i.e., 𝑓 = 1 in 𝑅!, 

the TB infection becomes less rampaging.  

Proof. Since 𝑓 ≤ 1, 

0 ≤ 𝜋(1 − 𝑓).																																																																																																								 (3.38) 

The addition of 𝑘 to both sides of (3.38) gives  

𝑘 ≤ 𝑘 + 𝜋(1 − 𝑓),																																																																																																 (3.39) 

and the multiplication of (3.39) by 𝛽𝑐 and subsequent division by (𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 +

𝜀) gives  

𝛽𝑐𝑘
(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)

≤
𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)]

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)
.																															 (3.40) 

That is  

𝑅!# ≤ 𝑅!,																																																																																																																  

where  

𝑅!# =
𝛽𝑐𝑘

(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀).																																																																						
 

When 𝑓 < 1 

⇒ 𝑅!# < 𝑅!																																																																																																									 (3.41) 

and when 𝑓 = 1 

⇒ 𝑅!# = 𝑅!.																																																																																																									 (3.42) 

(3.42) concludes the proof. 
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Figure 3.2: Impact of f on the TB infection 

 

The role played by the latent stage of TB is explained by the Theorem 3.3.1 above. 

The latent stage slows down the infection and in fact, drastically reduces its incidence as 

displayed in Figure 3.2, when properly utilised. Variation in the value of f from 𝑓 = 0.2 

to 𝑓 = 0.8 and subsequently 𝑓 = 0.94 shows early outbreak of the TB infection. 

Conversely, 𝑓 = 0.99 delays the outbreak while 𝑓 = 1 (no infected individual bypasses 

the latent stage to move directly to the infectious) almost annihilate the infection. 

 

 As discussed at the Dahlem workshop held in 1997, the requisite intervention 

strategies to combat any infectious disease are in five stages; control, elimination of 

disease, elimination of infections, eradication and extinction. The list is in the hierarchical 

order which means, the least expected to be done at the dawn of TB outbreak is control 

(i.e. reduction of the tuberculosis incidence to an acceptable level in the community where 

0 5 10 15 20 25
Time (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fe

ct
io

us
 F

ra
ct

io
n

f=0.2
f=0.8
f=0.94
f=0.99
f=1

Univ
ers

ity
 of

 M
ala

ya



   40 

it has broken out), while the supreme result that could be achieved is the disease going to 

an extinction (i.e. non-existence of the TB bacteria, Mycobacterium tuberculosis(Mtb) 

naturally or in the laboratory). As such, making sure every carrier of TB passes through 

the exposed state controls the spread of the infection. 

 

3.3.3  Stability Analysis 

The Jacobian matrix of equations (3.17)-(3.20) is expressed as  

𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝑓)
𝜕𝑠

𝜕𝑓)
𝜕𝑒

𝜕𝑓)
𝜕𝑖

𝜕𝑓)
𝜕𝑟

𝜕𝑓"
𝜕𝑠

𝜕𝑓"
𝜕𝑒

𝜕𝑓"
𝜕𝑖

𝜕𝑓"
𝜕𝑟

𝜕𝑓?
𝜕𝑠

𝜕𝑓?
𝜕𝑒

𝜕𝑓?
𝜕𝑖

𝜕𝑓?
𝜕𝑟

𝜕𝑓>
𝜕𝑠

𝜕𝑓>
𝜕𝑒

𝜕𝑓>
𝜕𝑖

𝜕𝑓>
𝜕𝑟
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

																																																																																			 (3.43) 

where  

𝑓) = 𝜋 + 𝛼𝑟 − [𝜋 + (𝛽𝑐 − 𝜀)𝑖]𝑠,																																																																																								 

 𝑓" = 𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖]𝑒,																																																																				 

𝑓? = (1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + (𝛿𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝜎 + 𝜔 + 𝜀(1 − 𝑖)]𝑖,					 

and  

 𝑓> = (𝜎 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖]𝑟.																																																																														 

Hence, 

𝐽 =

⎝

⎛

−[𝜋 + (𝛽𝑐 − 𝜀)𝑖] 0 −(𝛽𝑐 − 𝜀)𝑠 𝛼
𝑓𝛽𝑐𝑖 𝑎"" 𝑎"? 𝑓)𝛽𝑐𝑖
(1 − 𝑓)𝛽𝑐𝑖 𝛿𝛽𝑐𝑖 + 𝑘 𝑎?? (1 − 𝑓))𝛽𝑐𝑖
0 0 (𝜎 + 𝜔) − (𝛽𝑐 − 𝜀)𝑟 𝑎>> ⎠

⎞ ,

																																																																																																																																																				(3.44)
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where 

						𝑎"" = −[𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖], 

						𝑎"? = 𝑓𝛽𝑐𝑠 + 𝑓)𝛽𝑐𝑟 − (𝛿𝛽𝑐 − 𝜀)𝑒, 

𝑎?? = (1 − 𝑓)𝛽𝑐𝑠 + (1 − 𝑓))𝛽𝑐𝑟 + 𝛿𝛽𝑐𝑒 − (𝜋 + 𝜎 + 𝜔 + 𝜀) + 2𝜀𝑖																								 

and  

𝑎>> = −[𝜋 + 𝛼 + (𝛽𝑐 − 𝜀)𝑖].																																																																																													 

 

3.3.4  Stability of the DFE 

Local Stability 

Theorem 3.3.2. The disease free equilibrium (DFE) of the model is locally asymptotically 

stable whenever R! < 1 and unstable otherwise. 

Proof.  The evaluation of (3.44) at the DFE (1,0,0,0) gives  

𝐽 =

⎝

⎛

−𝜋 0 −(𝛽𝑐 − 𝜀) 𝛼
0 −(𝜋 + 𝑘) 𝑓𝛽𝑐 0
0 𝑘 (1 − 𝑓)𝛽𝑐 − (𝜋 + 𝜎 + 𝜔 + 𝜀) 0
0 0 (𝜎 + 𝜔) −(𝜋 + 𝛼)⎠

⎞ . (3.45) 

By denoting the eigenvalue as 𝜂, the eigenvalues of (3.45) would be gotten from  

|𝐽 − 𝜂𝐼| = 0.																																																																																																																									 

That is,  

{{

−(𝜋 + 𝜂) 0 −(𝛽𝑐 − 𝜀) 𝛼
0 −(𝜋 + 𝑘 + 𝜂) 𝑓𝛽𝑐 0
0 𝑘 (1 − 𝑓)𝛽𝑐 − (𝜋 + 𝜎 + 𝜔 + 𝜀 + 𝜂) 0
0 0 (𝜎 + 𝜔) −(𝜋 + 𝛼 + 𝜂)

{{ = 0.

																																																																																																																																																				(3.46)
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The first two eigenvalues of (3.46) are  

𝜂) = −𝜋																																																																																																																																 

and 

𝜂" = −(𝜋 + 𝛼)																																																																																																														 

after which (3.46) is reduced to 

|−
(𝜋 + 𝑘 + 𝜂) 𝑓𝛽𝑐

𝑘 (1 − 𝑓)𝛽𝑐 − (𝜋 + 𝜎 + 𝜔 + 𝜀 + 𝜂)| = 0, (3.47)																										 

hence  

𝜂" + {(𝜋 + 𝑘) + (𝜋 + 𝜎 + 𝜔 + 𝜀) − 𝛽𝑐(1 − 𝑓)}𝜂
							+{(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀) − 𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)]} = 0. (3.48)																																			 

If (3.48) is compared with  

𝑎𝜂" + 𝑏𝜂 + 𝑐 = 0																																																																																																							 

such that  

𝑎 = 1,																																																																																																																												 

𝑏 = (𝜋 + 𝑘) + (𝜋 + 𝜎 + 𝜔 + 𝜀) − 𝛽𝑐(1 − 𝑓)																																																 

and 

𝑐 = (𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀) − 𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)],																																							 

then the third and fourth eigenvalues, 𝜂? and 𝜂> respectively are  

𝜂?, 𝜂> =
−𝑏 ± �𝑏" − 4{(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀) − 𝛽𝑐[𝑘 + 𝜋(1 − 𝑓)]}

2
(3.49) 
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=
−𝑏 ± �𝑏" − 4(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀) �1 − BC[E20();F)]

(02E)(02H2I2J)
�

2 .												 (3.50)
 

Hence,  

𝜂?, 𝜂> =
−𝑏 ± �𝑏" − 4(𝜋 + 𝑘)(𝜋 + 𝜎 + 𝜔 + 𝜀)(1 − 𝑅!)

2
.																			 (3.51) 

Evidently, the eigenvalues of (3.51) depend on 𝑅!. 𝑅! < 1 ⇒ 𝜂?, 𝜂> < 0 while 𝑅! > 1 ⇒

𝜂? > 0 and 𝜂> < 0. Hence, 𝑅! < 1 guarantees the stability and as such completes the 

proof. 

 

Global Stability 

To establish the global stability of the DFE of the nonlinear system (3.17)-(3.20), the 

use of the global stability theorem discussed by Castillo-Chavez et al. (2002) is employed. 

This approach has been used by Bhunu et al. (2011), Srivastav & Ghosh (2016) and 

Goswami et al. (2018) among other researchers. 

 

 If the system of equations (3.17)-(3.20) can be written in the form: 

𝑑𝑋
𝑑𝑡 = 𝐹(𝑋, 𝑌)			𝑎𝑛𝑑				

𝑑𝑌
𝑑𝑡 = 𝐺(𝑋, 𝑌)			𝑠𝑢𝑐ℎ				𝑡ℎ𝑎𝑡				𝐺(𝑋, 0) = 0,																							 

where the uninfected and infected compartments are respectively represented as 

𝑋 = (𝑠, 𝑟)K and 𝑌 = (𝑒, 𝑖)K, and also, the DFE, 𝑃) is simply expressed as  

𝑃) = (𝑋!∗, 0)																																																																																																																						 

where  

𝑋!∗ = (1,0),																																																																																																																							 
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then the DFE is globally asymptotically stable (GAS) provided 𝑅! < 1 and as well 

satisfies the conditions 𝐻) and 𝐻" given below. 

						𝐻):
8L
81
= 𝐹(𝑋!, 0), 𝑋!∗ is globally asymptotically stable. 

𝐻": 𝐺(𝑋, 𝑌) = 𝐴𝑌 − 𝐺�(𝑋, 𝑌), 𝐺�(𝑋, 𝑌) ≥ 0,																																																																								 

where 𝐴 = 𝐷M𝐺(𝑋!∗, 0) is M-matrix (that is, all the non-diagonal elements of the matrix 

are non-negative).  

Theorem 3.3.3. The DFE, P) = (X!∗ , 0) of the nonlinear system (3.17)-(3.20) is globally 

asymptotically stable (GAS) so far it satisfies the conditions H) and H" above, as well as 

R! < 1. 

Proof. From the above, the following are established  

𝐹(𝑋!, 0) = �𝜋 − 𝜋𝑠					0 �																																																																																																										 

and  

𝐺(𝑋, 𝑌) = 𝐴𝑌 − 𝐺�(𝑋, 𝑌), 

where  

𝐴 = �−
[𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖] 𝑓𝛽𝑐𝑠 + 𝑓)𝛽𝑐𝑟 − (𝛿𝛽𝑐 − 𝜀)𝑒

𝛿𝛽𝑐𝑖 + 𝑘 𝐴""
� ,

																																																																																																																																																				(3.52)
 

where 𝐴"" and 𝐺�(𝑋, 𝑌) are respectively expressed as 

									𝐴"" = (1 − 𝑓)𝛽𝑐𝑠 + (1 − 𝑓))𝛽𝑐𝑟 + 𝛿𝛽𝑐𝑒 − (𝜋 + 𝜎 + 𝜔 + 𝜀) + 2𝜀𝑖,  
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𝐺�(𝑋, 𝑌) = �𝐺
�)(𝑋, 𝑌)
𝐺�"(𝑋, 𝑌)

� = �
𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟
(1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + 𝛿𝛽𝑐𝑖𝑒

�.																		 (3.53) 

Recall that 𝑌! = 𝑌(0) ≥ 0 ⇒ 𝑌(𝑡) ≥ 0. Since A is an M-matrix, then 𝑒N1 is a positive 

semigroup. By the variation of constant formula (Wu, 2003; Carrasco & Leiva, 2007) 

gives  

0 ≤ 𝑌(𝑡) = 𝑒N1𝑌! −a
1

!
𝑒N(1;O)𝐺�s𝑋(𝑤), 𝑌(𝑤)t𝑑𝑤																																					 (3.54) 

					≤ 𝑒N1𝑌!.																																																																																																																																	 

It is obvious from (3.51) that A has dominant eigenvalue 𝑚(𝐴) < 0 for 𝑅! < 1,hence,  

lim
1→Q

�|𝑒N1|� = 0,				 ⇒ lim
1→Q

𝑌(𝑡) = 0.																																																																																 

𝑋∗ is a GAS equilibrium point of 8L
81
= 𝐹(𝑋, 0) which is a limiting system of 

𝐹(𝑋(𝑡), 𝑌(𝑡)).Thus,  

				lim
						1→Q

𝑋(𝑡) = 𝑋∗				      

which satisfies condition 𝐻).Also, evaluating (3.52) and (3.53) at the DFE (𝑋!, 0) gives  

𝐴 = �−
[𝜋 + 𝑘] 𝑓𝛽𝑐

𝑘 (1 − 𝑓)𝛽𝑐 − (𝜋 + 𝜎 + 𝜔 + 𝜀)�																																							 (3.55) 

and 

𝐺�(𝑋, 𝑌) = 0.																																																																																																										 (3.56) 

Apparently, the non-diagonal elements of A are non-negative. Since 𝑓 ≤ 1 and 𝑓) ≤

1 ⇒ 𝐺�(𝑋, 𝑌) ≥ 0, the satisfaction of condition 𝐻" is thus established. Then, the DFE, 𝑃) 

of the nonlinear system (3.17)-(3.20) is GAS. 
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3.3.5  Stability of the EEP 

Local Stability 

The establishment of the local stability of the EEP analytically is quite challenging. 

This is due to the cumbersomeness of the gotten results which was mentioned earlier to 

be almost 2000 pages long. Hence, phase portrait diagrams are used in demonstrating the 

local stability of the EEP with five randomly chosen points: 

{[𝑠(0) = 0.99175,				𝑒(0) = 0.00750,				𝑖(0) = 0.00075,				𝑟(0) = 0], 

[𝑠(0) = 0.89110, 𝑒(0) = 0.09900,				𝑖(0) = 0.00990,				𝑟(0) = 0], 

[𝑠(0) = 0.80200,				𝑒(0) = 0.18000, 𝑖(0) = 0.01800,				𝑟(0) = 0], 

[𝑠(0) = 0.75250,				𝑒(0) = 0.22500,				𝑖(0) = 0.02250, 𝑟(0) = 0], 

[𝑠(0) = 0.60400,				𝑒(0) = 0.36000,				𝑖(0) = 0.03600,				𝑟(0) = 0]} as well as the 

parameter values given in Table 3.1 below. All the randomly chosen points converge to 

the same point, which implies the local asymptotic stability of the EEP. The phase 

portraits are shown in Figures  3.1 - 3.5 below.  
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       Figure 3.3: Phase portrait of the system (3.17)-(3.20) in s-i Plane 

 

       Figure 3.4: Phase portrait of the system (3.17)-(3.20) in s-e Plane 
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        Figure 3.5: Phase portrait of the system (3.17)-(3.20) in i-r Plane 

 

Global Stability 

Theorem 3.3.4. The endemic equilibrium point {E) = (s∗, e∗, i∗, r∗) ∈ Φ} of the 

nonlinear system (3.17)-(3.20) is globally asymptotically stable whenever f = 1.  

Proof. Consider the Lyapunov function  

𝑉 = 𝐾) �𝑠 − 𝑠∗ − 𝑠∗ln
S
S∗
� + 𝐾" �𝑒 − 𝑒∗ − 𝑒∗ln

T
T∗
� + 𝐾? �𝑖 − 𝑖∗ − 𝑖∗ln

U
U∗
� , (3.57)

then the time derivative of 𝑉 is  

𝑉@ = 𝐾) �
𝑠 − 𝑠∗

𝑠 �
𝑑𝑠
𝑑𝑡 + 𝐾" �

𝑒 − 𝑒∗

𝑒 �
𝑑𝑒
𝑑𝑡 + 𝐾? �

𝑖 − 𝑖∗

𝑖 �
𝑑𝑖
𝑑𝑡 .																											

(3.58) 

Substituting 8S
81
, 8T
81

 and 8U
81

 as expressed in (3.17)-(3.19) in (3.58), 
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													𝑉@ = 𝐾) �
𝑠 − 𝑠∗

𝑠 � [𝜋 + α𝑟 − [𝜋 + (𝛽𝑐 − 𝜀)𝑖]s]																																																																						

	+𝐾" �
𝑒 − 𝑒∗

𝑒 � [𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿𝛽𝑐 − 𝜀)𝑖]e]																		

								+𝐾? �
𝑖 − 𝑖∗

𝑖
� ((1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + (𝛿𝛽𝑐𝑖)𝑒 + 𝑘𝑒																					

−(𝜋 + 𝜎 + 𝜔 + 𝜀)𝑖 + 𝜀𝑖𝑖).																																																																									
																																																																																																																																														(3.59)

 

At equilibrium, 𝜋 = 𝜋𝑠∗ + (𝛽𝑐 − 𝜀)𝑖∗𝑠∗ − 𝛼𝑟∗, (𝑘 + 𝜇) = FBCU∗S∗2F#BCUV∗;(WBC;J)U∗T∗

T∗
 

and(𝜋 + 𝜎 + 𝜔 + 𝜀) = ();F)BCU∗S∗2();F#)BCU∗V∗2WBCU∗T∗2ET∗2JU∗U∗

U∗
 which upon substitution 

into (3.59) gives  

𝑉@ = 𝐾) �
𝑠 − 𝑠∗

𝑠 � £𝜋𝑠∗ + (𝛽𝑐 − 𝜀)𝑖∗𝑠∗ − 𝛼𝑟∗ + 𝛼𝑟 − s𝜋 + (𝛽𝑐 − 𝜀)t𝑠¤																		

+𝐾" �
𝑒 − 𝑒∗

𝑒 �																																																																																																								

																		�𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − c
𝑓𝛽𝑐𝑖∗𝑠∗ + 𝑓)𝛽𝑐𝑖∗𝑟∗ − (𝛿𝛽𝑐 − 𝜀)𝑖∗𝑒∗

𝑒∗
d 𝑒 − (𝛿𝛽𝑐 − 𝜀)𝑖𝑒�

														+𝐾? �
𝑖 − 𝑖∗

𝑖 � k(1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + 𝛿𝛽𝑐𝑖𝑒 + 𝑘𝑒 − �
𝐾?∗

𝑖∗ �
𝑖 + 𝜀𝑖𝑖l ,

																																																																																																																																																				(3.60)

 

𝐾?∗ = (1 − 𝑓)𝛽𝑐𝑖∗𝑠∗ + (1 − 𝑓))𝛽𝑐𝑖∗𝑟∗ + 𝛿𝛽𝑐𝑖∗𝑒∗ + 𝑘𝑒∗ + 𝜀𝑖∗𝑖∗.																														 

From 𝑠 + 𝑒 + 𝑖 + 𝑟 = 1,  

𝑖 = 1 − (𝑠 + 𝑒 + 𝑟) ⇒ 𝑖∗ = 1 − (𝑠∗ + 𝑒∗ + 𝑟∗).																																								 (3.61) 

Using (3.61) in (3.60) gives  Univ
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𝑉@ =
−𝐾)𝜋(𝑠 − 𝑠∗)"

𝑠 + 𝐾) �
𝑠 − 𝑠∗

𝑠 � [(𝛽𝑐 − 𝜀)(𝑖∗𝑠∗ − 𝑖𝑠) − 𝛼𝑟∗ + 𝛼𝑟]												

+𝐾" �
𝑒 − 𝑒∗

𝑒 �																																																																																																																					

�𝑓𝛽𝑐𝑖𝑠 + 𝑓)𝛽𝑐𝑖𝑟 − c
𝑓𝛽𝑐𝑖∗𝑠∗ + 𝑓)𝛽𝑐𝑖∗𝑟∗ − (𝛿𝛽𝑐 − 𝜀)𝑖∗𝑒∗

𝑒∗
d 𝑒 − (𝛿𝛽𝑐 − 𝜀)𝑖𝑒�

								+𝐾? �
𝑖 − 𝑖∗

𝑖 � �(1 − 𝑓)𝛽𝑐𝑖𝑠 + (1 − 𝑓))𝛽𝑐𝑖𝑟 + 𝛿𝛽𝑐𝑖𝑒 + 𝑘𝑒 + 𝜀𝑖s1 − (𝑠 + 𝑒 + 𝑟)t�

−𝐾? �
𝑖 − 𝑖∗

𝑖 �																																																																																																																							

								�
(1 − 𝑓)𝛽𝑐𝑖∗𝑠∗ + (1 − 𝑓))𝛽𝑐𝑖∗𝑟∗ + 𝛿𝛽𝑐𝑖∗𝑒∗ + 𝑘𝑒∗ + 𝜀𝑖∗s1 − (𝑠∗ + 𝑒∗ + 𝑟∗)t

𝑖∗
� 𝑖.

																																																																																																																																																				(3.62)

 

Let S
S∗
= 𝑥), T

T∗
= 𝑥", U

U∗
= 𝑥?, 𝑖∗𝑠∗ = 𝑎, 𝑖∗𝑒∗ = 𝑏, 𝑖∗𝑟∗ = 𝑑, 𝑘𝐸∗ = 𝑔, 𝜀𝑖∗ = 𝑚 and  

𝛼𝑟∗ = ℎ, then (3.62) becomes  

													𝑉@ = −
−𝐾)𝜋(𝑠 − 𝑠∗)"

𝑠 + 𝐾) �1 −
1
𝑥)
� [(𝛽𝑐 − 𝜀)(𝑖∗𝑠∗ − 𝑖∗𝑥?𝑠∗𝑥)) − 𝛼𝑟∗																				

											+𝛼𝑟∗𝑥>] + 𝐾" �1 −
1
𝑥"
� (𝑓𝛽𝑐𝑖∗𝑥?𝑠∗𝑥) + 𝑓)𝛽𝑐𝑖∗𝑥?𝑟∗𝑥> − (𝑓𝛽𝑐𝑖∗𝑠∗ + 𝑓)𝛽𝑐𝑖∗𝑟∗									

												−(𝛿𝛽𝑐 − 𝜀)𝑖∗𝑒∗)𝑥" − (𝛿𝛽𝑐 − 𝜀)𝑖∗𝑥?𝑒∗𝑥") + 𝐾? �1 −
1
𝑥?
� ((1 − 𝑓)𝛽𝑐𝑖∗𝑥?𝑠∗𝑥)									

+(1 − 𝑓))𝛽𝑐𝑖∗𝑥?𝑟∗𝑥> + 𝛿𝛽𝑐𝑖∗𝑥?𝑒∗𝑥" + 𝑘𝑒∗𝑥" − 𝐾? �1 −
1
𝑥?
� �
𝐾?∗∗

𝑖∗ �
𝑖,												

+𝜀𝑖∗𝑥?(1 − (𝑠∗𝑥) + 𝑒∗𝑥" + 𝑟∗𝑥>))) + 𝜀𝑖∗𝑥?(1 − (𝑠∗𝑥) + 𝑒∗𝑥" + 𝑟∗𝑥>)))						

																																																																																																																																															(3.63)

 

								𝐾$∗∗ = (1 − 𝑓)𝛽𝑐𝑖∗𝑠∗ + (1 − 𝑓!)𝛽𝑐𝑖∗𝑟∗ + 𝛿𝛽𝑐𝑖∗𝑒∗ + 𝑘𝑒∗ + 𝜀𝑖∗(1 − (𝑠∗ + 𝑒∗ + 𝑟∗)) 

													𝑉@ =
−𝐾)𝜋(𝑠 − 𝑠∗)"

𝑠 + 𝐾) �1 −
1
𝑥)
� [(𝛽𝑐 − 𝜀)(𝑖∗𝑠∗ − 𝑎𝑥)𝑥?) − ℎ + ℎ𝑥>]						

										+𝐾" �1 −
1
𝑥"
� (𝑓𝛽𝑐𝑎𝑥)𝑥? + 𝑓)𝛽𝑐𝑑𝑥?𝑥> − (𝑓𝛽𝑐𝑎 + 𝑓)𝛽𝑐𝑑 − (𝛿𝛽𝑐 − 𝜀)𝑏)𝑥"

					−(𝛿𝛽𝑐 − 𝜀)𝑏𝑥"𝑥?) + 𝐾? �1 −
1
𝑥?
� ((1 − 𝑓)𝛽𝑐𝑎𝑥)𝑥? + (1 − 𝑓))𝛽𝑐𝑑𝑥?𝑥>

+𝛿𝛽𝑐𝑏𝑥"𝑥? + 𝑔𝑥" +𝑚𝑥? − 𝜀𝑎𝑥)𝑥? − 𝜀𝑏𝑥"𝑥? − 𝜀𝑑𝑥?𝑥>))																			

−𝐾? �1 −
1
𝑥?
� ((1 − 𝑓)𝛽𝑐𝑎𝑥? − (1 − 𝑓))𝛽𝑐𝑑𝑥? − 𝛿𝛽𝑐𝑏𝑥?																				

−𝑔𝑥? −𝑚𝑥? + 𝜀𝑎𝑥? + 𝜀𝑏𝑥? + 𝜀𝑑𝑥?).																																																								
																																																																																																																																																			(3.64)

 

Univ
ers

ity
 of

 M
ala

ya



   51 

𝑉@ =
−𝐾)𝜋(𝑠 − 𝑠∗)"

𝑠 + (𝐾)(𝛽𝑐 − 𝜀)𝑎 + 𝐾"𝑓𝛽𝑐𝑎 + 𝐾?(1 − 𝑓)𝛽𝑐𝑎

−𝐾?𝜀𝑎)𝑥)𝑥? + (𝐾?𝛿𝛽𝑐𝑏 − 𝐾"(𝛿𝛽𝑐 − 𝜀)𝑏 − 𝐾?𝜀𝑏)𝑥"𝑥? + (𝐾"𝑓)𝛽𝑐𝑑
+𝐾?(1 − 𝑓))𝛽𝑐𝑑 − 𝐾?𝜀𝑑)𝑥?𝑥> + (𝐾?𝜀𝑎 − 𝐾?(1 − 𝑓)𝛽𝑐𝑎)𝑥)															
+(𝐾"(𝛿𝛽𝑐 − 𝜀)𝑏 − 𝐾"𝑓𝛽𝑐𝑎 − 𝐾"𝑓)𝛽𝑐𝑑 + 𝐾?𝑔 − 𝐾?𝛿𝛽𝑐𝑏 + 𝐾?𝜀𝑏)𝑥"
+(𝐾)(𝛽𝑐 − 𝜀)𝑎 + 𝐾"(𝛿𝛽𝑐 − 𝜀)𝑏 − 𝐾?(1 − 𝑓)𝛽𝑐𝑎 − 𝐾?(1 − 𝑓))𝛽𝑐𝑑

				−𝐾?𝛿𝛽𝑐𝑏 − 𝐾?𝑔 + 𝐾?𝜀𝑎 + 𝐾?𝜀𝑏 + 𝐾?𝜀𝑑)𝑥? + (𝐾)ℎ − 𝐾?(1 − 𝑓))𝛽𝑐𝑑

+𝐾?𝜀𝑑)𝑥> + 𝐾)(𝛽𝑐 − 𝜀)𝑎 − 𝐾)ℎ − 𝐾)ℎ
𝑥>
𝑥)
+ 𝐾)

ℎ
𝑥)
− 𝐾)(𝛽𝑐 − 𝜀)

𝑎
𝑥)

						−𝐾"𝑓𝛽𝑐𝑎
𝑥)𝑥?
𝑥"

− 𝐾"𝑓)𝛽𝑐𝑑
𝑥?𝑥>
𝑥"

+ 𝐾"𝑓𝛽𝑐𝑎 + 𝐾"𝑓)𝛽𝑐𝑑 − 𝐾"(𝛿𝛽𝑐 − 𝜀)𝑏

		−𝐾?𝑔
𝑥"
𝑥?
+ 𝐾?(1 − 𝑓)𝛽𝑐𝑎 + 𝐾?(1 − 𝑓)𝛽𝑐𝑑 + 𝐾?𝛿𝛽𝑐𝑏 + 𝐾?𝑔 − 𝐾?𝜀𝑎

−𝐾?𝜀𝑏 − 𝐾?𝜀𝑑.																																																																																																		
																																																																																																																																																							(3.65)

 

Equating the coefficients of 𝑥)𝑥?, 𝑥"𝑥?, 𝑥?𝑥>, 𝑥), 𝑥", 𝑥? and 𝑥> to 0 gives 𝐾) = 𝐾" = 𝐾?; 

𝑔 = 𝑓𝛽𝑐𝑎; 𝜀 = (1 − 𝑓)𝛽𝑐, 𝑑 = ℎ = 0. Choosing the values of 𝐾) = 𝐾" = 𝐾? = 𝑓 = 1, 

and substituting the values of 𝑔, 𝜀, 𝑑 and ℎ gives  

𝑉@ =
−𝜋(𝑠 − 𝑠∗)"

𝑠 + 𝛽𝑐𝑎 �3 −
1
𝑥)
−
𝑥)𝑥?
𝑥"

−
𝑥"
𝑥?
�.																								 (3.66) 

Since arithmetic mean (AM) is greater than or equal to geometric mean (GM).           

(𝐴𝑀 ≥ 𝐺𝑀), then  

1
𝑥)
+
𝑥)𝑥?
𝑥"

+
𝑥"
𝑥?
≥ 3.																																																																																							 

It is clear from (3.66) that 𝑉@ ≤ 0 for which the equality holds when 𝑥) = 𝑥" = 𝑥? = 1 

(which implies 𝑠 = 𝑠∗, 𝑒 = 𝑒∗ and 𝑖 = 𝑖∗). By the LaSalle’s invariance principle (LaSalle 

& Artstein, 1976), the EEP of the system is globally asymptotically stable whenever     

𝑓 = 1. 
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3.4  Numerical Simulation 

The simulation of the model is done using 𝑂𝐷𝐸45 package of MATLAB 2016a. The 

set of values used are as given in the Table  3.1 below where 𝑥∗ is used to denote Bhunu 

et al. (2008) (with permission from Society for Mathematical Biology). The initial 

populations in terms of fraction for the susceptible, exposed, infectious and recovered are 

0.99175, 0.00750, 0.00075 and 0 respectively, while the resulting graphs are as presented 

below. 

 

3.4.1  Graphical Results 

The Simulation 

The numerical simulation investigates the interactions between the compartments and 

also the relevance of some of the factors considered in the model formulation. Figures  

3.6 –3.8 show the proportion of each population compartmental-wise while Figures  3.9 

and 3.10 respectively display the picture of the infectious compartment when there is an 

increase in the recruitment rate and when the treatment rate is stepped up. 

 

𝑺𝑬𝑰𝑹 Relationship Graphs 

Here, the relationship between each compartments are shown. Figures 3.6 – 3.8 reveal 

the dynamic of the infection by the evolution of time. The proportion of each fractional 

population under various contact rates (c) are shown. In Figure  3.7, 6.25% reduction in 

the original value of contact rate c=80 shows a delay in the disease outbreak and in Figure 

3.8, the infection tends to disappear when there is 10% reduction in the contact rate.  

 

Sensitivity Analysis Graphs 

In the face of any infection, apart from the contact rate investigated above, also of 

importance are the recruitment and treatment rates. The recruitment is useful in 

maintaining the constant influx of people into the community while the treatment is useful 
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in removing the infectious individuals out of the infectious class. Increase in the 

recruitment rate (Figure 3.9) slightly delays the outbreak of the infection while increment 

in the treatment rate (Figure 3.10) delays the period of infection in huge proportion with 

a slight reduction in the infectious population. The result due to treatment is in agreement 

with the findings of Khan et al. (2019) where increment in the treatment rate and 

decrement in the transmission and immunity loss rates help in reducing TB epidemic. 

This delay could be optimised  in tackling the spread of the infection, to manage the 

eventual break out of the epidemic. However, a growth rate of 7% of the population or a 

treatment rate of 80% for the infectious can lead the infection to extinction as displayed 

in Figure  3.9 and Figure  3.10 respectively.  

 

Figure 3.6: SEIR relationship within 50 Years 
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Table 3.1: Table of values 

S/No  Parameter  Meaning  Value 

(𝑦𝑟;)) 

Source 

1 

 

 

 

2 

3 

4 

5 

6 

7 

 

8 

9 

10 

11 

 

12 

𝛽 

 

 

 

𝜋 

𝑐 

𝜇 

𝜀 

𝑘 

𝛼 

 

𝛿 

𝜔 

𝜎 

𝑓 

 

𝑓) 

Probability of being infected after  
 
effective contact with an infectious  
 
being 
 
Recruitment rate 

Contact rate 

Natural mortality rate 

TB induced death rate 

Endogenous reactivation rate 

Rate of the recovered moving back to 

susceptible 

Exogenous reinfection rate 

Natural recovery rate 

Treatment rate 

Probability that the infected will enter the 
 
latent stage of the disease 
 

Probability of the re-infected R moving to 

E 

0.35000 
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Figure 3.7: Reduction of c by 6.25% 

 

Figure 3.8: Reduction of c by 10% 
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         Figure 3.9: Effect of the recruitment rate (π) on the infectious 

 

 

          Figure 3.10: Effect of the treatment rate (σ) on the infectious 
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3.5  Summary 

This chapter studies the tuberculosis epidemiology using SEIR compartmental 

modelling. The disease free equilibrium (DFE) and the endemic equilibrium (EEP) of the 

model are established and their local and global stabilities are as well shown. Also, 

normalisation method was used which subsequently helps eliminate the natural death 

factor (𝜇), hence allowing the concentration on other factors that can be controlled; 

recruitment, contact and treatment rates. 

 

 The analysis carried out on the basic reproduction number (𝑅!) (Theorem 3.3.1) 

reveals the relevance of the exposed class in reducing the incident rate of the TB infection. 

Non-direct progression of the Mycobacterium tuberculosis (Mtb) carriers to the infectious 

state reduces the eventual number of people with full blown infection due to the fact that 

𝑅!# is the same as 𝑅! whenever 𝑓 = 1, which implies a reduction in the actual value of 

𝑅!. The exposed state can be utilised in reducing the incidence of TB infection when 

measures are put in place to identify Mtb carriers at that stage as displayed in Figure  3.2. 

 

 The numerical simulation done on the model explains the importance of some of the 

factors considered in the model formulation. It is shown that the contact rate between the 

infectious and susceptible individuals play significant role in the rapid spread of the 

infection. The reduction in the value of the contact rate shows a great improvement in 

controlling the epidemic. In fact, this result explains part of the reasons why sanatoria 

used in the 18th century were effective in dealing with the epidemic. Other factors; 

recruitment and treatment rates have shown how important they are in delaying the 

infection, and as such, should be optimised in handling the infection before it becomes an 

epidemic. At 7% growth rate of the population or 80% treatment rate of the infectious, 
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the infection dies out, as displayed in Figures 3.8 and 3.9. It should be remarked that the 

recruitment into the population is expected to be constituted by those that are free of Mtb. 

 

 To win the war against tuberculosis epidemic, listed below are some of the approaches 

as derived from the model formulated. 

i. Normalisation of any formulated model serves as a guide to verify the level of 

correctness of any result gotten as the equilibrium point must always sum up 

to 1,  

ii. Identifying the exposed individuals and subsequently treating them, drastically 

reduces the TB incident,  

iii. Ascertainment of the medical fitness (TB freeness) of any individual before 

being allowed to enter any community helps control the infection,  

iv. Absolute reduction in the rate of contact between a TB carrier and a susceptible 

individual should be encouraged and lastly,  

v. Provision of vaccine to combat the TB infectivity rate shall transform our 

environment to a safe haven, free of TB.  

 

 It is worthy of note that awareness could also be of great help in reducing the incidence 

of the infection through e.g., education, social media, local dailies, media houses, etc., as 

it would help in keeping people informed of the inherent dangers in freely mingling with 

TB carriers. This is corroborated by the Figures 3.6 – 3.8 in which reasonable control of 

the epidemic is achieved. This is in agreement with the findings of Xiang et al. (2019) 

where health education is shown to help in reducing TB burden. These measures are 

greatly needed in some parts of the developing nations and in most of the under-developed 

nations as they are the major victims of tuberculosis. 
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CHAPTER 4: IMPACT OF VACCINATION ON TUBERCULOSIS 

4.1  Introduction 

When deaths are considered from a single infectious agent, tuberculosis is the topmost 

cause of death globally (WHO, 2017). Tuberculosis, TB as it is commonly called has 

greatly claimed the lives of its victims throughout much of known human history. In fact, 

according to Daniel (2006), Mycobacterium tuberculosis which is the bacteria responsible 

for TB might have killed more people than any other microbe. This simply explains the 

reason why it was nicknamed “captain among these men of death” in the early 20th 

century. According to the WHO report stated in section 1.4 of Chapter 1 earlier (WHO, 

2016a), TB killed more persons in the year 2015 than HIV and malaria as it was 

responsible for 1.4 million deaths globally (WHO, 2016a). This portends a great danger 

which requires urgent attention. 

 

 The foundation to understanding the pathogenesis of TB was laid by Théophile 

Laennec in the early 19th century. This was subsequently expanded by Jean-Antoine 

Villemin in 1865 and Robert Koch in 1882, where they respectively showed the 

transmissibility of Mycobacterium infection and identified tubercle bacillus as the 

etiological agent, (Daniel, 2006). These works led to the discovery of the prophylactic 

BCG vaccine in the year 1921 whose efficacy was tested in 1930s through field trials 

(Gomes et al., 2004). BCG is an acronym standing for Bacille Calmette-Guérin coined 

from the names Albert Calmette and Camille Guérin, the brains behind its invention. BCG 

did not enjoy much acceptability during this period until after world war II when TB 

became a major health threat. By the support of the Danish Red Cross Society as well as 

encouragement by UNICEF, it became more acceptable (Luca & Mihaescu, 2013). 

Although, there have been discussions about the ineffectiveness of BCG in the prevention 

of TB lately, whereby some authors (Kernodle, 2010; Moliva et al., 2015; Bhandari, 2016; 
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Jalan, 2018) have mentioned the likely cause of its ineffectiveness, despite that, many 

countries have greatly embraced its use (Gerberry, 2009). The perceived ineffectiveness 

of BCG to prevent adult pulmonary TB has brought about discussions and agitations for 

its replacement with a more potent vaccine. This new vaccine is required to achieve 95% 

reduction in the TB induced death as well as decrement by 90% in the incidence of TB 

worldwide by the year 2035 (WHO, 2018c). 

 

 Hawn et al. (2014) discussed about the use of vaccine in the prevention of TB 

infection. They explained how different researches have discussed about the need to 

consider preinfection vaccines against TB, which is summarized in five different areas. 

First on the list is the epidemiology and mathematical modelling studies. Researches in 

this field show drastic reduction in TB incident when preinfection vaccine is put in place. 

This is followed by immunology researches that have identified host responses as 

probably being more effective during acute infection rather than the chronic one. As such, 

the direction of efforts toward the prevention of infection is promoted. 

 

 The natural history studies are the third on the list, and have shown that only paltry 

proportion of the population have resistance towards TB infection. The fourth are on case 

control studies of BCG vaccine. The studies give indication that BCG may prevent TB 

infection. Lastly are the studies on prevention of infection trials. These researches from 

these five different areas are all pointing at the need to prevent the infection as a good 

measure to reducing its incidence. They concluded that the prioritization of vaccine 

products, selection of endpoint assays, endpoint definitions, sample sizes and also the 

target populations are to be set as the TB vaccine research agenda. 
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Several models have been presented to understand the dynamics of TB e.g. Aparicio 

& Castillo-Chavez (2009), Raimundo & Yang (2006), Vynnycky et al. (2015), 

McCluskey & van den Driessche (2004), Jia et al. (2008), and Trauer et al. (2014) while 

some have been presented to provide intervention strategies to tame its spread, e.g. Bhunu 

et al. (2008), Murphy et al. (2003), Ragonnet et al. (2017) and Varughese (2017). The 

requisite consideration in the formulation of any proposed vaccine have not been 

discussed by these authors. As such, it is the research focus of this chapter. It is expected 

to provide guiding frame work for the pharmacists on the intrinsic features expected of 

any proposed vaccine. 

 

4.2  Model Formulation 

4.2.1  Introduction 

The model formulated in this chapter is an extension of the model considered in 

Chapter 5. The extension is the consideration and inclusion of a vaccination compartment 

to analyse the impact of potent vaccine in managing the TB epidemic. Human population 

is divided into five group of individuals which are; susceptible (𝑆), vaccinated 

(𝑉),	exposed (𝐸), infectious (𝐼)	and the recovered (𝑅)	and the total population N(t) at 

any time t is  

𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).																																																					 (4.1) 

There is homogenous mixing of individuals in all compartments and a susceptible 

individual contracts TB after an effective contact with an infectious person at the rate  

𝜆 =
𝛽𝑐𝐼
𝑁
,																																																																																																																		 (4.2) 

where 𝛽 is the probability that a susceptible individual would get infected and 𝑐 is the 

average contact rate. 
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 The recruitment into the susceptible class occurs at the rate 𝜋𝑁 and people progress 

to the exposed and the infectious classes at the rates (1 − 𝜏)𝑓𝜆	and                                        

(1 − 𝜏)(1 − 𝑓)𝜆,	respectively. 𝑓)𝜆	and (1 − 𝑓))𝜆, respectively denote the rates at which 

recovered individuals move back to the exposed and infectious compartments due to loss 

of immunity. Also, people move from the susceptible compartment to the vaccinated after 

being vaccinated at the rate 𝜏, from where they can contract TB at the rate 𝜃. The 

exogenous reinfection and endogenous reactivation rates are designated as 𝛿)	𝜆 and 𝑘, 

respectively. After the loss of immunity conferred by the drug, recovered individuals 

could get re-infected at the rate 𝛿". People can die due to nature at the rate 𝜇 and rate 𝜀 

for the TB induced death. 

 

 Recovery from TB are basically two ways; the natural inexplicable way or due to 

treatment. These ways are denoted as 𝜔 and 𝛾 respectively. Due to the fact that bacterial 

infections confer no permanent immunity against reinfection, a fraction of the recovered 

individuals is assumed to go back to the susceptible class at the rate 𝛼. Figure 4.1 below 

presents the pictorial representation of the model which is governed by the nonlinear 

system (4.3)-(4.7)  

𝑑𝑆
𝑑𝑡

= 𝜋𝑁 + 𝜎𝑉 + 𝛼𝑅 − [𝜏 + (1 − 𝜏)𝜆 + 𝜇]𝑆,																																																						 (4.3) 

𝑑𝑉
𝑑𝑡

= 𝜏𝑆 − (𝜃𝜆 + 𝜎 + 𝜇)𝑉,																																																																																							 (4.4) 

𝑑𝐸
𝑑𝑡

= (1 − 𝜏)𝑓𝜆𝑆 + 𝜃𝑓𝜆𝑉 + 𝑓)𝛿"	𝜆𝑅 − (𝛿)	𝜆 + 𝑘 + 𝜇)𝐸,																																 (4.5) 

𝑑𝐼
𝑑𝑡 =

(1 − 𝜏)(1 − 𝑓)𝜆𝑆 + 𝜃(1 − 𝑓)𝜆𝑉 + (1 − 𝑓))𝛿"	𝜆𝑅 + (𝛿)	𝜆 + 𝑘)𝐸					

−(𝛾 + 𝜔 + 𝜀 + 𝜇)𝐼																																																																																 (4.6)
 

and  

𝑑𝑅
𝑑𝑡

= (𝛾 + 𝜔)𝐼 − (𝛿"	𝜆 + 𝛼 + 𝜇)𝑅,																																																																							 (4.7) 
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with initial conditions:  

𝑆(0) = 𝑆! ≥ 0, 𝑉(0) = 𝑉! ≥ 0, 𝐸(0) = 𝐸! ≥ 0, 𝐼(0) = 𝐼! ≥ 0, 𝑅(0) = 𝑅! ≥ 0. 

 

Figure 4.1: Vaccination model for tuberculosis 

 

Adding (4.3)-(4.7) gives  

𝑑𝑁
𝑑𝑡

= (𝜋 − 𝜇)𝑁 − 𝜀𝐼.																																																																																							 (4.8) 

 

Normalisation of the system (4.3)-(4.7) is done by dividing throughout by 𝑁. If 

*
+
, X
+
, ,
+
, %
+

 and -
+

 are consecutively denoted by 𝑠, 𝑣, 𝑒, 𝑖 and 𝑟, then the system becomes  

1
𝑁
𝑑𝑆
𝑑𝑡

= 𝜋 + 𝜎𝑣 + 𝛼𝑟 − [𝜏 + (1 − 𝜏)𝛽𝑐𝑖 + 𝜇]𝑠,																																											 (4.9) 

1
𝑁
𝑑𝑉
𝑑𝑡

= 𝜏𝑠 − (𝜃𝛽𝑐𝑖 + 𝜎 + 𝜇)𝑣,																																																																						 (4.10) 

1
𝑁
𝑑𝐸
𝑑𝑡

= (1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"	𝛽𝑐𝑖𝑟 − (𝛿)	𝛽𝑐𝑖 + 𝑘 + 𝜇)𝑒,				 (4.11) 

1
𝑁
𝑑𝐼
𝑑𝑡
= (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟										

+(𝛿)𝛽𝑐𝑖 + 𝑘)𝑒 − (𝛾 + 𝜔 + 𝜀 + 𝜇)𝑖																															
(4.12)
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and  

1
𝑁
𝑑𝑅
𝑑𝑡

= (𝛾 + 𝜔)𝑖 − (𝛿"	𝛽𝑐𝑖 + 𝛼 + 𝜇)𝑟.																																																						 (4.13) 

Since 𝑆 = 𝑠𝑁, then  

1
𝑁
𝑑𝑆
𝑑𝑡

=
𝑑𝑠
𝑑𝑡
+ 𝑠[(𝜋 − 𝜇) − 𝜀𝑖].																																																																						 (4.14) 

 

Similarly from 𝑉 = 𝑣𝑁, 𝐸 = 𝑒𝑁, 𝐼 = 𝑖𝑁 and 𝑅 = 𝑟𝑁, then the appropriate governing 

nonlinear system becomes  

𝑑𝑠
𝑑𝑡
= 𝜋 + 𝜎𝑣 + 𝛼𝑟 − {𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖}𝑠,																																 (4.15) 

𝑑𝑣
𝑑𝑡

= 𝜏𝑠 − [𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]𝑣,																																																													 (4.16) 

					
𝑑𝑒
𝑑𝑡

= (1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"	𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿)	𝛽𝑐 − 𝜀)𝑖]𝑒, (4.17) 

𝑑𝑖
𝑑𝑡 =

(1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"	𝛽𝑐𝑖𝑟											

+(𝛿)	𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝛾 + 𝜔 + 𝜀(1 − 𝑖)]𝑖,																							
(4.18)

 

and  

𝑑𝑟
𝑑𝑡
= (𝛾 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛿"	𝛽𝑐 − 𝜀)𝑖]𝑟																																																	 (4.19) 

with the initial conditions:  

𝑠(0) = 𝑠! ≥ 0,				𝑣(0) = 𝑣! ≥ 0,				𝑒(0) = 𝑒! ≥ 0,				𝑖(0) = 𝑖! ≥ 0,				𝑟(0) = 𝑟! ≥ 0, 

where  

𝑠 + 𝑣 + 𝑒 + 𝑖 + 𝑟 = 1.																																																																																		  

 

4.2.2  Positivity of the Solution 

The model represented by the system (4.15)-(4.19) shall only be epidemiologically 

correct if all the dependent variables are non-negative at any time 𝑡. As such, the positivity 

of the model is thus presented. 
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Lemma 4.1: Given that the initial conditions of nonlinear system ((4.15)-(4.19)) are as 

given above, then the solutions 𝑠(𝑡), 𝑣, 𝑒(𝑡), 𝑖(𝑡), and 𝑟(𝑡) are positive for all 𝑡 > 0. 

Proof. Suppose that 𝑡∗ = sup{𝑡 > 0: 𝑠(𝑡) > 0, 𝑣(𝑡) > 0, 𝑒(𝑡) > 0, 𝑖(𝑡) > 0, 𝑟(𝑡) > 0} ∈

[0, 𝑡], then 𝑡∗ > 0. Considering the first equation of system (4.15)-(4.19),  

𝑑𝑠
𝑑𝑡 = 𝜋 + 𝜎𝑣 + 𝛼𝑟 − {𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖}𝑠,																																																	 

        let [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖 = Λ", then  

𝑑𝑠
𝑑𝑡 = 𝜋 + 𝜎𝑣 + 𝛼𝑟 − [𝜋 + Λ"]𝑠 ≥ 𝜋 − [𝜋 + 𝜏 + Λ"]𝑠,																																									 

𝑑
𝑑𝑡 _𝑠(𝑡)𝑒

/(02Y)12∫!" 4'(6)869` ≥ 𝜋𝑒/(02Y)12∫
!
" 4'(6)869																																																															 

⇒ 𝑠(𝑡))𝑒
Z(02Y)1#2∫

!#
" 4'(6)86[ − 𝑠(0) ≥ a

1#

!
𝜋𝑒/(02Y):2∫

$
" 4'(6)869𝑑𝑦															 

⇒ 𝑠(𝑡)) ≥ 𝑒;Z(02Y)1#2∫
!#
" 4'(6)86[ c𝑠(0) + a

1#

!
𝜋𝑒/(02Y):2∫

$
" 4'(6)869𝑑𝑦d > 0. 

Following the same approach, it can as well be shown that 𝑣(𝑡), 𝑒(𝑡), 𝑖(𝑡) and 𝑟(𝑡) are 

positive. 

 

4.3  Equilibrium Points, Basic Reproduction Number (𝑹𝟎) and Stability Analysis 

4.3.1  Equilibrium Points 

At equilibrium point, the nonlinear system (4.15)-(4.19) becomes  

0 = 𝜋 + 𝜎𝑣 + 𝛼𝑟 − {𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖}𝑠,																																				 (4.20) 

0 = 𝜏𝑠 − [𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]𝑣,																																																																		 (4.21) 

0 = (1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"	𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿)	𝛽𝑐 − 𝜀)𝑖]𝑒, (4.22) 
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0 = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"	𝛽𝑐𝑖𝑟.																	
+(𝛿)	𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝛾 + 𝜔 + 𝜀(1 − 𝑖)]𝑖,																																

(4.23)
 

and  

0 = (𝛾 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛿"	𝛽𝑐 − 𝜀)𝑖]𝑟.																																																							 (4.24) 

From (4.24),  

𝑟 =
(𝛾 + 𝜔)𝑖

[𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖]
.																																																																																 (4.25) 

When (4.21) and (4.25) are substituted in (4.20), it produces  

			𝑠 =
[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]{𝜋[𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖] + 𝛼(𝛾 + 𝜔)𝑖}

[𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖]{[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖] − 𝜎𝜏}
,

																																																																																																																																																																				(4.26)
 

whilst substituting (4.26) in (4.21) gives  

𝑣 =
𝜏[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]{𝜋[𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖] + 𝛼(𝛾 + 𝜔)𝑖}

[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖]𝐾
, (4.27) 

where  

𝐾 = {[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖][𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖] − 𝜎𝜏}																								 

and the subsequent insertion of (4.25)-(4.27) in (4.22) gives  

𝑒 =
(1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟

[𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖]
.																																																				 (4.28) 

When (4.25)-(4.28) are substituted as functions of 𝑖 in (4.23), it produces  

𝐴))𝑖\ + 𝐴)!𝑖= + 𝐴]𝑖> + 𝐴^𝑖? + 𝐴_𝑖" + 𝐴\𝑖 = 0,																																			 (4.29) 

where the coefficients 𝐴\, 𝐴_, 𝐴^, 𝐴], 𝐴)! and 𝐴)) are in Appendix B. 
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Solving (4.29) produces six equilibrium values of 𝑖; 	𝑖), 𝑖", 𝑖?, 𝑖>, 𝑖=, 𝑖\. These values are 

subsequently  substituted  in  (4.25)-(4.28)  to  establish  (𝑠, 𝑒, 𝑣, 𝑟)  equilibrium     values    

i.e., (𝑠), 𝑠", 𝑠?, 𝑠>, 𝑠=, 𝑠\),			(𝑣), 𝑣", 𝑣?, 𝑣>, 𝑣=, 𝑣\),			(𝑒), 𝑒", 𝑒?, 𝑒>, 𝑒=, 𝑒\) and 

(𝑟), 𝑟", 𝑟?, 𝑟>, 𝑟=, 𝑟\). From the equilibrium points gotten are the disease free equilibrium 

(DFE), 

						𝑃) = � 0(02H)
(02H)(02Y);HY

, 0Y
(02H)(02Y);HY

, 0,0,0� and 𝑃" = {𝑠", 𝑣", 𝑒", 𝑖", 𝑟"},  

where  

					𝑠" =
𝜀𝜋𝜓Λ

Γ{[𝜋𝛽𝑐(1 − 𝜏) + 𝜏𝜀]Λ − 𝜀"𝜎𝜏} , 				𝑣" =
𝜀"𝜏𝜋𝜓Λ

ΓΛ{Λ[𝜋𝛽𝑐(1 − 𝜏) + 𝜏𝜀] − 𝜀"𝜎𝜏},									 

					𝑒" =
(0BCW#2EJ){BCF0'();Y)4'a2BCFb0'J'Y4a}

d4[(0BC();Y)2YJ)4;J'HY]
+ BCW'F#0'(e2I)

d(0BCW#2EJ)
, 𝑖" =

0
J
  and 𝑟" =

0(e2I)
d

. 

such that 

𝜓 = 𝜋𝛽𝑐𝛿" + 𝛼(𝛾 + 𝜔 + 𝜀), Λ = (𝜋𝛽𝑐𝜃 + 𝜎𝜀)  and Γ = (𝜋𝛽𝑐𝛿" + 𝛼𝜀). 

𝑃?, 𝑃>, 𝑃= and 𝑃\ are cumbersome to be presented here. Since the system has been 

normalised, sum of all the solutions at any point in time shall be unity. As such, the 

solution 𝑃" is dropped out of the solutions because its sum could not give unity. This 

reduces the set of solutions to five which is quite expected as there are five variables in 

the model. 

 

4.3.2  Basic Reproduction Number (𝑹𝟎) 

Establishing the Basic Reproduction Number (𝑹𝟎) 

Following the method as discussed in subsection 3.3.2, 

𝑅! = 𝜌s𝐹𝑉;%t.																																																																																																					 (4.30) 
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𝜌 is the spectral radius (dominant eigenvalue) of the matrix 𝐹𝑉;% ,	where 𝐹 represents the 

rate of appearance of new infections in the infected compartments and 𝑉 represents the 

inward and outward movement at the infected compartments. 

𝑉 is defined as  

𝑉 = 𝑉A; − 𝑉A2,																																																																																																																		 

where 

𝑉A; =	the rate of inward movement of individuals into the infected compartments 

and 

𝑉A2 =	the rate of outward movement of individuals from the infected compartments. 

From the nonlinear system (4.15)-(4.19) above, 𝐹 and 𝑉 are respectively given as 

𝐹 = k
0 𝛽𝑐{[𝑓(1 − 𝜏)𝑠 + 𝜃𝑣] + 𝑓)𝛿"𝑟}
𝛿)𝛽𝑐𝑖 𝛽𝑐[(1 − 𝑓)𝑠 + (1 − 𝑓))𝛿"𝑟] l																																					 (4.31) 

and  

𝑉 = k
[𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖] (𝛿)𝛽𝑐 − 𝜀)𝑒
−𝑘 [𝜋 + 𝛾 + 𝜔 + 𝜀(1 − 𝑖)]l.															 (4.32) 

Evaluating (4.31) and (4.32) at the DFE � 0(02H)
(02H)(02Y);HY

, 0Y
(02H)(02Y);HY

, 0,0,0� gives   

𝐹 = k
0 𝛽𝑐𝑓[(1 − 𝜏)𝑠 + 𝜃𝑣]
0 𝛽𝑐(1 − 𝑓)[(1 − 𝜏)𝑠 + 𝜃𝑣]l																																														 (4.33) 

and  

𝑉 = k
[𝜋 + 𝑘] 0
−𝑘 [𝜋 + 𝛾 + 𝜔 + 𝜀]l,																																																				 (4.34) 
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				⇒ 𝑉;% =
1

(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)k
(𝜋 + 𝛾 + 𝜔 + 𝜀) 0
𝑘 (𝜋 + 𝑘)l.								 (4.35) 

From (4.33) and (4.35),  

					𝐹𝑉;% =

⎝

⎜⎜
⎛

𝛽𝑐𝑓𝑘[(1 − 𝜏)𝑠 + 𝜃𝑣]
(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)

𝛽𝑐𝑓[(1 − 𝜏)𝑠 + 𝜃𝑣]
(𝜋 + 𝛾 + 𝜔 + 𝜀)

𝛽𝑐𝑘(1 − 𝑓)[(1 − 𝜏)𝑠 + 𝜃𝑣]
(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)

𝛽𝑐(1 − 𝑓)[(1 − 𝜏)𝑠 + 𝜃𝑣]
(𝜋 + 𝛾 + 𝜔 + 𝜀)

⎠

⎟⎟
⎞

(4.36) 

After the simplification of (4.36), the dominant eigenvalue 𝜌(𝐹𝑉;@) is established as  

𝜌s𝐹𝑉;%t =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] .
(4.37) 

Hence the basic reproduction number, 𝑅! is  

𝑅! =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏].									
(4.38) 

 

Theorem 4.3.1.  Whenever there is no vaccination program (τ = 0), TB infection shall 

always be more rampaging. 

Proof. Since 0 ≤ 𝜏 ≤ 1, 

1 ≥ (1 − 𝜏).																																																																																																										 (4.39) 

When (4.39) is multiplied through by (𝜋 + 𝜏) and 𝜏𝜃 is subsequently added to both sides, 

the result is  

(𝜋 + 𝜏) + 𝜏𝜃 ≥ (𝜋 + 𝜏)(1 − 𝜏) + 𝜏𝜃.																																																											 (4.40) 

Multiplication by BC0(02H)[E20();F)]
(02Y)(02E)(02e2I2J)[(02Y)(02H);HY]

 gives  
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𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(𝜋 + 𝜏) + 𝜏𝜃]
(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] ≥																		

𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(𝜋 + 𝜏)(1 − 𝜏) + 𝜏𝜃]
(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏]

,																					 (4.41)
 

which implies  

𝑅!# ≥ 𝑅!,																																																																																																									  

where  

𝑅!# =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(𝜋 + 𝜏) + 𝜏𝜃]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏]																							 

and  

𝑅! =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(𝜋 + 𝜏)(1 − 𝜏) + 𝜏𝜃]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏].																					 

When 𝜏 = 0,  

⇒ 𝑅!# = 𝑅!																																																																																																						 (4.42) 

which implies there is no intervention strategy put in place, and when 𝜏 = 1, 

⇒ 𝑅!# > 𝑅!,																																																																																																					 (4.43) 

which shows the impact of the vaccination intervention and as such concludes the proof. 

 

The need for an effective vaccine to manage the incidence of TB is buttressed by 

Theorem 4.3.1. From the above, the 𝜏 = 0 case explains the implication of not having 

any vaccination program in place. It shows that nothing would change in the management 

of TB incidence as the reproduction numbers 𝑅! and 𝑅!# are the same. On the other hand, 

when vaccination program is put in place (𝜏 = 1), the disease incidence shall be properly 
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managed as there shall be reduction in the number of TB cases. This is evident in the 

reduction of the number of secondary infections as given by 𝑅! < 𝑅!# . Hence, the use of 

a potent prophylactic TB vaccine should be encouraged. 

Theorem 4.3.2.  If the TB vaccine is designed to give full immunity against the 

contraction of TB infection (θ = 0), its incidence shall be drastically reduced. 

Proof. Since 0 ≤ 𝜃 ≤ 1,  

𝜃 ≤ 1.																																																																																																																						 (4.44) 

When both sides of (4.44) are multiplied by 𝜏 and (1 − 𝜏)(𝜋 + 𝜏) is subsequently added 

to the resulting equation, (4.45) below is produced  

(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃 ≤ (1 − 𝜏)(𝜋 + 𝜏) + 𝜏.																																																	 (4.45) 

Multiplying this by BC0(02H)[E20();F)]
(02Y)(02E)(02e2I2J)[(02Y)(02H);HY]

 gives  

𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]
(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] ≤																							

𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏]
(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏]

																										 (4.46)
 

⇒ 𝑅! ≤ 𝑅!' 																																																																																																													 

such that  

𝑅! =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏]																		 

and  

𝑅!' =
𝛽𝑐𝜋(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)][(1 − 𝜏)(𝜋 + 𝜏) + 𝜏]

(𝜋 + 𝜏)(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏].															 
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When 𝜃 = 0,  

⇒ 𝑅! < 𝑅!' ,																																																																																														 (4.47) 

which implies reduction in the number of secondary cases of TB infection, and when    

𝜃 = 1, 

⇒ 𝑅! = 𝑅!' ,																																																																																																 (4.48) 

which explains that nothing has been achieved in the management of the infection and 

hence concludes the proof. 

 

Theorem 4.3.2 targets the intrinsic features to be considered in the vaccine 

formulation. Since 𝑅!, i.e. (4.38) is the number of secondary infection from a primary 

one, any value lesser to the established 𝑅! shall reduce the tuberculosis incidence while 

a greater value does the opposite. Formulation of a vaccine that provides 100% immunity 

against TB would reduce the disease incident rate. This is as established in (4.47) where 

the impact of 𝜃 (when it is zero) i.e., 𝜃 = 0 is measured, and results to the reduction in 

the value of 𝑅!. 𝜃 = 0 is the scenario where the vaccine provides 100% immunity. 

Contrastingly, 𝜃 = 1 does the opposite. This explains the scenario where the vaccine 

confers no immunity whatsoever. Equation (4.48) shows that more persons shall contract 

TB infection due to the non-availability of an effective vaccine. Univ
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4.3.3  Stability Analysis 

The Jacobian matrix of equations (4.15)-(4.19) is expressed as 

𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

fF#
fS

fF#
fg

fF#
fT

fF#
fU

fF#
fV

fF'
fS

fF'
fg

fF'
fT

fF'
fU

fF'
fV

fF(
fS

fF(
fg

fF(
fT

fF(
fU

fF(
fV

fF)
fS

fF)
fg

fF)
fT

fF)
fU

fF)
fV

fF*
fS

fF*
fg

fF*
fT

fF*
fU

fF*
fV
⎠

⎟
⎟
⎟
⎟
⎟
⎞

																																																																 (4.49) 

where 

														𝑓) = 𝜋 + 𝜎𝑣 + 𝛼𝑟 − {𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖}𝑠, 

														𝑓" = 𝜏𝑠 − [𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]𝑣, 

														𝑓? = (1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖]𝑒, 

														𝑓> = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟 + (𝛿)𝛽𝑐𝑖 + 𝑘)𝑒 

																								−[𝜋 + 𝛾 + 𝜔 + 𝜀(1 − 𝑖)]𝑖, 

															𝑓= = (𝛾 + 𝜔)𝑖 − [𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖]𝑟. 

Then,  

												𝐽 =

⎝

⎜
⎛

𝑎)) 𝜎 0 𝑎)> 𝛼
𝜏 𝑎"" 0 −(𝜃𝛽𝑐 − 𝜀)𝑣 0
(1 − 𝜏)𝑓𝛽𝑐𝑖 𝜃𝑓𝛽𝑐𝑖 𝑎?? 𝑎?> 𝑓)𝛿"𝛽𝑐𝑖
𝑎>) 𝜃(1 − 𝑓)𝛽𝑐𝑖 (𝛿)𝛽𝑐𝑖 + 𝑘) 𝑎>> 𝑎>=
0 0 0 𝑎=> 𝑎== ⎠

⎟
⎞
,

																																																																																																																																																	(4.50)

 

where 

											𝑎)) = −{𝜋 + 𝜏 + [(1 − 𝜏)𝛽𝑐 − 𝜀]𝑖}, 
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											𝑎)> = −[(1 − 𝜏)𝛽𝑐 − 𝜀]𝑠 

     𝑎"" = −[𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖] 

											𝑎?? = −[𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖], 

											𝑎?> = (1 − 𝜏)𝑓𝛽𝑐𝑠 + 𝜃𝑓𝛽𝑐𝑣 + 𝑓)𝛿"𝛽𝑐𝑟 − (𝛿)𝛽𝑐 − 𝜀)𝑒, 

											𝑎>) = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖 

											𝑎>> = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑟 + 𝛿)𝛽𝑐𝑒 

																								−(𝜋 + 𝛾 + 𝜔 + 𝜀 − 2𝜀𝑖), 

														𝑎>= = (1 − 𝑓))𝛿"𝛽𝑐𝑖, 

															𝑎=> = (𝛾 + 𝜔) − (𝛿"𝛽𝑐 − 𝜀)𝑟, 

and 

															𝑎== = −[𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖] 

 

4.3.4  Stability of the DFE 

Local Stability 

Theorem 4.3.3. The disease free equilibrium (DFE) of the model is locally asymptotically 

stable whenever R! < 1 and unstable otherwise.  

Proof.  Evaluation of (4.50) at the DFE � 0(02H)
(02Y)(02H);HY

, 0Y(02H)
(02Y)[(02Y)(02H);HY]

, 0,0,0� gives  
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𝐽 =

⎝

⎜
⎜
⎜
⎜
⎛
−(𝜋 + 𝜏) 𝜎 0

−𝜋(𝜋 + 𝜎)[(1 − 𝜏)𝛽𝑐 − 𝜀]
(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏

𝛼

𝜏 −(𝜋 + 𝜎) 0
−𝜋𝜏(𝜋 + 𝜎)(𝜃𝛽𝑐 − 𝜀)

(𝜋 + 𝜏)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] 0

0 0 −(𝜋 + 𝑘) 𝜗1 0
0 0 𝑘 𝜗2 0
0 0 0 (𝛾 + 𝜔) −(𝜋 + 𝛼)⎠

⎟
⎟
⎟
⎟
⎞

,

																																																																																																																																													(4.51)

 

where  

𝜗) =
𝜋𝑓𝛽𝑐(𝜋 + 𝜎)[(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]
(𝜋 + 𝜏)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] 																																											 

 𝜗" =
0BC();F)(02H)[();Y)(02Y)2Yb];{(02Y)[(02Y)(02H);HY]}(02e2I2J)

(02Y)[(02Y)(02H);HY]
.																					 

Denoting the eigenvalue as 𝜂, the eigenvalues of (4.51) shall be gotten from  

 |𝐽 − 𝜂𝐼| = 0.																																																																																																																								 

That is,  

{
{

−(𝜋 + 𝜏 + 𝜂) 𝜎 0 𝑎)>∗ 𝛼
𝜏 −(𝜋 + 𝜎 + 𝜂) 0 0
0 0 −(𝜋 + 𝑘 + 𝜂) 𝜗) 0
0 0 𝑘 𝜗" − 𝜂 0
0 0 0 (𝛾 + 𝜔) −(𝜋 + 𝛼 + 𝜂)

{
{
= 0,

																																																																																																																																																				(4.52)

 

where 𝑎)>∗ = ;0(02H)[();Y)BC;J]
(02Y)(02H);HY

, 𝑎">∗ = ;0Y(02H)(bBC;J)
(02Y)[(02Y)(02H);HY]

 

The first three eigenvalues of (4.52) are  

𝜂) = −𝜋,																																																																																																																									 

𝜂" = −(𝜋 + 𝛼)																																																																																																												 
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and 

 												𝜂? = −(𝜋 + 𝜎 + 𝜏), 

and equation (4.52) is subsequently reduced to  

·−(𝜋 + 𝑘 + 𝜂)
𝜋𝑓𝛽𝑐(𝜋 + 𝜎)[(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃]
(𝜋 + 𝜏)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏]

𝑘 𝜗" − 𝜂
· = 0.															 (4.53) 

Considering the quadratic equation  

𝑎𝜂" + 𝑏𝜂 + 𝑐 = 0,																																																																																												 (4.54) 

where   

𝑎 = 1,																																																																																																																										 

 𝑏 = (𝜋 + 𝑘) + (𝜋 + 𝛾 + 𝜔 + 𝜀) − BC0();F)(02H)[();Y)(02Y)2Yb]
(02Y)[(02Y)(02H);HY]

																															 

and  

											𝑐 = (𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀) −
𝛽𝑐𝜋(1 − 𝑓)(𝜋 + 𝜎)[𝑘 + 𝜋(1 − 𝑓)]{(1 − 𝜏)(𝜋 + 𝜏) + 𝜏𝜃}

(𝜋 + 𝜏)[(𝜋 + 𝜏)(𝜋 + 𝜎) − 𝜎𝜏] , 

the fourth and fifth eigenvalues, 𝜂> and 𝜂= respectively are  

𝜂>, 𝜂= =
−𝑏 ± �𝑏" − 4(𝜋 + 𝑘)(𝜋 + 𝛾 + 𝜔 + 𝜀){1 − 𝑅!}

2
.												 (4.55) 

Obviously, the eigenvalues 𝜂>, 𝜂= from (4.55) depend on 𝑅!. 𝑅! < 1 ⇒ 𝜂>, 𝜂= < 0 while 

𝑅! > 1 ⇒ 𝜂> > 0 and 𝜂= < 0. Hence, 𝑅! < 1 guarantees the stability and as such 

completes the proof. 
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Global Stability 

The approach of Castillo-Chavez et al. (2002) as discussed in Chapter 3 is as well 

adopted to establish the global stability of the DFE of this model. 

If the system of equations (4.15)-(4.19) can be written in the form: 

𝑑𝑋
𝑑𝑡 = 𝐹(𝑋, 𝑌)			𝑎𝑛𝑑				

𝑑𝑌
𝑑𝑡 = 𝐺(𝑋, 𝑌) ∋ :				𝐺(𝑋, 0) = 0,																																							 

where the uninfected and infected compartments are respectively represented as 

𝑋 = (𝑠, 𝑣, 𝑟)K and 𝑌 = (𝑒, 𝑖)K, and also, the DFE, 𝑃) is simply expressed as  

𝑃) = (𝑋!∗, 0)																																																																																																																					 

where  

𝑋!∗ = �
𝜋(𝜋 + 𝜎)

(𝜋 + 𝜎)(𝜋 + 𝜏) − 𝜎𝜏 ,
𝜋𝜏

(𝜋 + 𝜎)(𝜋 + 𝜏) − 𝜎𝜏 , 0�,																																					 

then the DFE is globally asymptotically stable (GAS) provided 𝑅! < 1 and as well 

satisfies the conditions 𝐻) and 𝐻" given below. 

												𝐻):
8L
81
= 𝐹(𝑋!, 0), 𝑋!∗ is globally asymptotically stable. 

𝐻": 𝐺(𝑋, 𝑌) = 𝐴𝑌 − 𝐺�(𝑋, 𝑌), 𝐺�(𝑋, 𝑌) ≥ 0,																																																									 

where 𝐴 = 𝐷M𝐺(𝑋!∗, 0) is M-matrix (that is, all the non-diagonal elements of the matrix 

arenon-negative). 

 

Theorem 4.3.4. The DFE, P) = (X!∗ , 0) of the nonlinear system (4.15)-(4.19) is globally 

asymptotically stable (GAS) provided it satisfies the conditions H) and H" above, as well 

as R! < 1. 
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Proof. From the above conditions, the following are established  

𝐹(𝑋!, 0) = k
𝜋 + 𝜎𝑣 − (𝜋 + 𝜏)𝑠
				𝜏𝑠 − (𝜋 + 𝜎)𝑣
																0

l																																																																											 

and  

𝐺(𝑋, 𝑌) = 𝐴𝑌 − 𝐺�(𝑋, 𝑌),																																																																																								 

where  

 𝐺�(𝑋, 𝑌) = �𝐺
�)(𝑋, 𝑌)
𝐺�"(𝑋, 𝑌)

�																																																																																																									 

 = �																																(1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟(1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟 + (𝛿)𝛽𝑐𝑖 + 𝑘)𝑒
�.				 

Recall that 𝑌! = 𝑌(0) ≥ 0 ⇒ 𝑌(𝑡) ≥ 0. Since A is an M-matrix, then 𝑒N1 is a positive 

semigroup. By the variation of constant formula, then  

0 ≤ 𝑌(𝑡) = 𝑒N1𝑌! −a
1

!
𝑒N(1;O)𝐺�s𝑋(𝑤), 𝑌(𝑤)t𝑑𝑤 ≤ 𝑒N1𝑌!.										 (4.56) 

It can be seen from (4.55) that for 𝑅! < 1, 𝑚(𝐴) is the dominant eigenvalue of A,hence,  

 lim
1→Q

�|𝑒N1|� = 0,				 ⇒ lim
1→Q

𝑌(𝑡) = 0.																																																																																	 

𝑋∗ is GAS equilibrium point of 8L
81
= 𝐹(𝑋, 0) which is a limiting system of 𝐹(𝑋(𝑡), 𝑌(𝑡)). 

Thus,  

 lim
1→Q

𝑋(𝑡) = 𝑋∗																																																																																																																						 

which satisfies condition 𝐻). 
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Likewise,  

𝐺�(𝑋, 𝑌) = �
(1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟
(1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟 + (𝛿)𝛽𝑐𝑖 + 𝑘)𝑒

�

																																																																																																																																															(4.57)
 

and  

						𝐴 = �−
[𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖] (1 − 𝜏)𝑓𝛽𝑐𝑠 + 𝜃𝑓𝛽𝑐𝑣 + 𝑓)𝛿"𝛽𝑐𝑟 − (𝛿)𝛽𝑐 − 𝜀)𝑒

𝛿)𝛽𝑐𝑖 + 𝑘 𝐴""∗
� ,

																																																																																																																																																	(4.58)
 

𝐴""∗ = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑟.								
+𝛿)𝛽𝑐𝑒 − (𝜋 + 𝛾 + 𝜔 + 𝜀) + 2𝜀𝑖																															

 

which at the DFE (𝑋!, 0) gives  

										𝐴 = �−
[𝜋 + 𝑘] (1 − 𝜏)𝑓𝛽𝑐𝑠 + 𝜃𝑓𝛽𝑐𝑣

𝑘 (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑣 − (𝜋 + 𝛾 + 𝜔 + 𝜀)� .

																																																																																																																																																(4.59)
 

It is obvious that the non-diagonal elements of A are non-negative because 𝜏 < 1. In 

line with that, 𝑓 ≤ 1 and 𝑓) ≤ 1 ⇒ 𝐺�(𝑋, 𝑌) ≥ 0. Then, the DFE, 𝑃) of the nonlinear 

system (4.15)-(4.19) is GAS. 

 

4.3.5  Stability of the EEP 

Local Stability 

As remarked in Chapter 3, the establishment of the local stability of the system 

analytically is challenging. This is greatly attached to the fact that gotten equilibrium 

solutions of the system spans beyond 20000 pages when solved with Mathematica 10. 

Hence the local stability is shown using the phase portrait diagrams as displayed below. 

This is done by the consideration of five arbitrary points; 
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{[𝑠(0) = 0.4800,				𝑣(0) = 0.3000,				𝑒(0) = 0.2000,				𝑖(0) = 0.0200,				𝑟(0) =

0], [𝑠(0) = 0.6680,				𝑣(0) = 0.2000,				𝑒(0) = 0.1200,				𝑖(0) = 0.0120,				𝑟(0) =

0], [𝑠(0) = 0.7200,				𝑣(0) = 0.0700,				𝑒(0) = 0.1900,				𝑖(0) = 0.0190,				𝑟(0) =

0], [𝑠(0) = 0.8010,				𝑣(0) = 0.1000,				𝑒(0) = 0.0900,				𝑖(0) = 0.0090,				𝑟(0) =

0], [𝑠(0) = 0.8890,				𝑣(0) = 0.1000,				𝑒(0) = 0.0100,				𝑖(0) = 0.0010,				𝑟(0) = 0]} 

as well as the parameter values in Table 4.1. The graphs emanating from the chosen points 

eventually converge to the same point. The phase portraits are shown in Figures  4.2, 4.3 

and 4.4 below.  

  

Figure 4.2: Phase portrait of the system (4.15)-(4.19) in s-i Plane 
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      Figure 4.3: Phase portrait of the system (4.15)-(4.19) in s-e Plane 

          

Figure 4.4: Phase portrait of the system (4.15)-(4.19) in i-r Plane 
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Global Stability 

Theorem 4.3.5. The endemic equilibrium point {E) = (s∗, e∗, i∗, r∗) ∈ Φ} of the 

nonlinear system (4.15)-(4.19) is globally asymptotically stable at the special case ε = 0, 

whenever R! > 1. 

Proof. From (4.17) and (4.18), when 𝜀 = 0 

⇒ 𝑒@ = (1 − 𝜏)𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + 𝛿)𝛽𝑐𝑖]𝑒									 (4.60) 

and  

𝑖@ = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟 + (𝛿)𝛽𝑐𝑖 + 𝑘)𝑒
−[𝜋 + 𝛾 + 𝜔]𝑖.																																																																																															

																																																																																																																																																				(4.61)
 

⇒ 𝑒@ = (1 − 𝜏)𝑓𝛽𝑐𝑖[1 − (𝑣 + 𝑒 + 𝑖 + 𝑟)] + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟 − [𝜋 + 𝑘 + 𝛿)𝛽𝑐𝑖]𝑒
																																																																																																																																																				(4.62)  

and  

													𝑖@ = (1 − 𝜏)(1 − 𝑓)𝛽𝑐𝑖[1 − (𝑣 + 𝑒 + 𝑖 + 𝑟)] + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟
+(𝛿)𝛽𝑐𝑖 + 𝑘)𝑒 − [𝜋 + 𝛾 + 𝜔]𝑖.																																																						

																																																																																																																																																					(4.63)
 

Using the Dulac multiplier Θ = )
TU

 with the below Dulac function as discussed in 

Mukandavire et al. (2009) and Omondi et al. (2018)  

𝜕(Θ𝑒@)
𝜕𝑒 +

𝜕(Θ𝑖@)
𝜕𝑖 ,																																																																																													 

produces  

												
−𝛽𝑐
𝑒"

{𝑓(1 − 𝜏)[1 − (𝑣 + 𝑖 + 𝑟)] + 𝜃𝑓𝑣 + 𝑓)𝛿𝑟} −
(1 − 𝜏)(1 − 𝑓)𝛽𝑐

𝑒
−
𝑘
𝑖"

																																																																																																																																																					(4.64)
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⇒ −»
𝛽𝑐
𝑒"
{𝑓(1 − 𝜏)[1 − (𝑣 + 𝑖 + 𝑟)] + 𝜃𝑓𝑣 + 𝑓)𝛿𝑟} +

(1 − 𝜏)(1 − 𝑓)𝛽𝑐
𝑒 +

𝑘
𝑖"¼ < 0.

																																																																																																																																																								(4.65)
 

As such, we can infer by the Dulac’s criterion that there are no periodic orbits in Φ. Since 

Φ is positively invariant and the EEP of the model exists only when 𝑅! > 1, then using 

Poincaré-Bendixson theorem (Perko, 2001) all solutions of the limiting system emanating 

in Φ remains in Φ for all 𝑡. Also, the uniqueness of the globally asymptotically stable 

EEP of the special case is established by the absence of the periodic orbits in Φ. 

 

4.4  Numerical Simulation 

The model is simulated using 𝑂𝐷𝐸45 package of MATLAB 2016a. The set of values 

given in Table 4.1 below are used in the numerical simulation where 𝑥∗ is Bhunu et al. 

(2008). The values; 0.6680, 0.2000, 0.1200, 0.0120 and 0 are chosen as the initial 

fractions of the susceptible, vaccinated, exposed, infectious and recovered populations 

respectively. Published below are the graphs emanating from the simulation. 

 

4.4.1  Graphical Results 

The Simulation 

This part discusses the graphical solutions of the model. The nonlinear system (4.15)-

(4.19) is solved to produce the Figures 4.5–4.10. Figures  4.5, 4.6 and 4.7 show the 

behaviour of the infection under various infectivity (𝛽) and contact (𝑐) rates while 

vaccination is maintained. Figure 4.8 explain the impacts of different vaccination 

proportions while Figure 4.9 displays the dynamic of the infection when prevention of 

reinfection is not considered in the drugs formulation. Figure 4.10 explains the scenario 

when the vaccine is potently designed to confer total immunity against TB. 
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The Analysis 

Combatting epidemics with the aid of drugs are done majorly using two approaches; 

prophylactic and therapeutic. When the prevention of an infection is desired, prophylactic 

is the way while therapeutic is used to manage an already contracted infection, this model 

deals with the prophylactic approach. Figure  4.5 shows the disease dynamics when the 

standardly declared infectivity (𝛽) and contact (𝑐) rates (from Table 4.1) are maintained. 

Reduction of the infectivity rate (𝛽) by half gives a reduction in the peak value of the 

infectious fraction by 30.67% (which is the same when the contact rate is reduced by half 

itself) as displayed in Figure 4.6. When efforts are made to keep both parameters (factors) 

at half their values, the infection ultimately dies off the community as there is 98.48% 

reduction in the peak of the infectious fraction (which is quite significant) as displayed in 

Figure 4.7 below. 

 

 Furthermore, Figure  4.8 gives the impact of varying vaccination rate on the disease 

management. The variation (in percentage) is from 0 to 100 so as to ascertain the impact 

of each vaccination proportion. Apart from the observed difference between 0% and 

100% vaccination proportions at steady rates, the maximum infectious fraction for the 

100% vaccination proportion is 0.5053 whilst that of the 0% vaccination proportion is 

0.7451. This is significant reduction by 32.18% in the maximum infectious fraction. The 

importance of 𝛿", the reinfection rate (from the recovered class) is displayed by Figure 

4.9. It is observed that its non-consideration in the model formulation i.e. (𝛿" = 1) makes 

the vaccination non-impactful in reducing the TB incidence. Lastly, Figure 4.10 probes 

the impact of the vaccination when it confers 100% immunity against tuberculosis 

infection. When the vaccine confers total immunity, it should also be designed to reduce 

the infectivity rate of the infection. When this is done, 80% vaccination rate gives herd 

immunity against TB. The base vaccination proportion considered is 20%, when this is 
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varied to 40%, 60% and 80% respectively, various degree of reduction (in progressing 

order) is recorded in the infectious fraction as obviously displayed in Figure 4.10. For the 

vaccine to have full immunity, it must be designed to have the power of reducing the 

infectivity rate of Mycobacterium tuberculosis by half. 

 

         Figure 4.5: SVEIR Relationship within 15 Years 

 

 

0 5 10 15
Time(years)

0

0.2

0.4

0.6

0.8

1

1.2

P
op

ul
at

io
n 

F
ra

ct
io

n

Susceptible
Vaccinated
Exposed
Infectious
Recovered
Total Population

β=0.35
c=80

Univ
ers

ity
 of

 M
ala

ya



   86 

 

Figure 4.6: SVEIR Relationship within 15 Years 

 

Figure 4.7: SVEIR Relationship within 50 Years 
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      Figure 4.8: Effect of the vaccination rate 

 

Figure 4.9: Effect of 𝜹𝟐 (probability of recovered being reinfected) in reducing TB 
infection 
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Figure 4.10: Effect of a better vaccine 
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control. The base objective is to further reduce the TB infection rate while maintaining 

the associated cost. Choi et al. (2015), Bowong & Alaoui (2013), Gao & Huang (2018) 

and Moualeu et al. (2015) are among the authors that have presented an optimal control 

model for tuberculosis. 

 

Controls 𝑢) and 𝑢" are introduced such that 𝑢) is designated as the reduction in the 

exposure rate of the susceptible individual to the infectious (exposure predates contact) 

whilst 𝑢" is the recommendation of healthy meals (by the nutritionists or health 

practitioners) to boost the immune system of the infectious individuals. Controls 𝑢), 𝑢" ∈

[0,1] as indicated in system (4.66) below. 
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𝑑𝑠
𝑑𝑡 = 𝜋 + 𝜎𝑣 + 𝛼𝑟 − {𝜋 + 𝜏 + [(1 − 𝜏)(1 − 𝑢))𝛽𝑐 − 𝜀]𝑖}𝑠 

									
𝑑𝑣
𝑑𝑡 = 𝜏𝑠 − [𝜋 + 𝜎 + (𝜃𝛽𝑐 − 𝜀)𝑖]𝑣 

										
𝑑𝑒
𝑑𝑡 =

(1 − 𝜏)(1 − 𝑢))𝑓𝛽𝑐𝑖𝑠 + 𝜃𝑓𝛽𝑐𝑖𝑣 + 𝑓)𝛿"𝛽𝑐𝑖𝑟 

																		−[𝜋 + 𝑘 + (𝛿)𝛽𝑐 − 𝜀)𝑖]𝑒																																																																																 (4.66) 

											
𝑑𝑖
𝑑𝑡 =

(1 − 𝜏)(1 − 𝑢))(1 − 𝑓)𝛽𝑐𝑖𝑠 + 𝜃(1 − 𝑓)𝛽𝑐𝑖𝑣 + (1 − 𝑓))𝛿"𝛽𝑐𝑖𝑟 

																					+(𝛿)𝛽𝑐𝑖 + 𝑘)𝑒 − 𝜑 

										
𝑑𝑟
𝑑𝑡 =

(𝛾 + 𝜔 + 𝑢")𝑖 − [𝜋 + 𝛼 + (𝛿"𝛽𝑐 − 𝜀)𝑖]𝑟. 

where 

𝜑 = [𝜋 + 𝛾 + 𝜔 + 𝑢" + 𝜀(1 − 𝑖)]𝑖.																																																																  

Since the objective is to reduce the infectious (𝑖), the objective functional for the optimal 

control is  

𝐽(𝑢), 𝑢") = a
1+

!
_𝑄𝑖 +

1
2
𝑐)𝑢)" +

1
2
𝑐"𝑢""` 𝑑𝑡																																																 (4.67) 

where 𝑄 ≥ 0, 𝑐) ≥ 0, 𝑐" ≥ 0, represent the weight constants. The control parameters 𝑢)∗ 

and 𝑢"∗  are to be established such that 𝐽(𝑢)∗ , 𝑢"∗) = 𝑚𝑖𝑛j#,j'∈				𝐽(𝑢), 𝑢") such that  is the 

control set defined as = {𝑢), 𝑢": 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 ∋: 0 ≤ 𝑢), 𝑢" ≤ 1for    all				𝑡 ∈ [0, 𝑡F]}.  

As expressed in the above objective functional, we have the Lagrangian associated with 

the problem as  
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𝐿(𝑖, 𝑢), 𝑢") = 𝑄𝑖 +
1
2 𝑐)𝑢)

" +
1
2 𝑐"𝑢"

",																																																							 (4.68) 

and the Hamiltonian ℋ 

ℋ = 𝐿(𝑖, 𝑢), 𝑢") + 𝜆)∗
𝑑𝑠
𝑑𝑡
+ 𝜆"∗

𝑑𝑣
𝑑𝑡
+ 𝜆?∗

𝑑𝑒
𝑑𝑡
+ 𝜆>∗

𝑑𝑖
𝑑𝑡
+ 𝜆=∗

𝑑𝑟
𝑑𝑡
,												 (4.69) 

where 𝜆U∗, 𝑖 = 1, . . . ,5 are the adjoint variables satisfying 8m#
∗

81
= ;fℋ

fS
, 8m'

∗

81
= ;fℋ

fg
, 8m(

∗

81
=

;fℋ
fT

, 8m)
∗

81
= ;fℋ

fU
, 8m*

∗

81
= ;fℋ

fV
 and the transversality condition 𝜆U∗(𝑡F) = 0, 𝑖 = 1, . . . ,5. 

If 𝑠̂, 𝑣Ä, 𝑒̂, 𝚤,̂ 𝑟̂ are the optimum values of 𝑠, 𝑣, 𝑒, 𝑖, 𝑟 and also, 𝜆Æ)∗ , 𝜆Æ"∗ , 𝜆Æ?∗ , 𝜆Æ>∗ , 𝜆Æ=∗  are the 

solutions of (4.66), then with the aid of Pontryagin’s maximum principle, 𝑢) and 𝑢" are 

optimal controls that minimize the function. 

 

Theorem 4.5.1. There are optimal controls u)∗ , u"∗ ∋: J(u)∗ , u"∗) = mino#,o' 				J(u), u") 

subject to the optimal control system. 

Proof. The approach of the proof is taken from Pontryagin et al. (1962) alongside Lenhart 

& Workman (2007) as it is obvious that the state variables and the controls are positive. 

For this minimizing problem, the necessary convexity of the objective functional in 

(𝑢), 𝑢") is satisfied. Likewise, the control variable set ∋: 𝑢), 𝑢" ∈ is also convex and 

closed by the definition. The integrand of the functional 𝑄𝑖 + )
"
𝑐)𝑢)" +

)
"
𝑐"𝑢"" is convex 

on the control set  and the state variables are bounded. 

Pontryagin maximum principle (Pontryagin & Boltyanskii, 1980) is used to minimize the 

objective functional and also the optimal solution. Consider (𝑥, 𝑢) as an optimal solution 

of an optimal control problem, then there is a non-trivial vector function 𝜆∗ = 𝜆)∗ , 𝜆"∗ , . . . 𝜆p∗  

that satisfies the following;  
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Table 4.1: Table of values 

S/No  Parameter  Meaning  Value 

(𝑦𝑟;)) 

Source 

1 
 

2 

3 

4 

5 

6 

7 
 

8 

9 

10 
 

11 

12 

 

13 

 

14 
 

 

15 

16 
 

 

17 

 

18 

𝛽 
 

𝜋 

𝑐 

𝜇 

𝜀 

𝑘 

𝛼 
 

𝛿) 

𝛿" 

𝜏 

𝜔 

𝜎 

 

𝑓 

 

𝑓) 

 

𝛾 

𝜃 
 

 

𝜇) 

 

𝜇" 

Probability of being infected after 
effective contact with an infectious being 
Recruitment rate 

Contact rate 

Natural mortality rate 

TB induced death rate 

Endogenous reactivation rate 

Rate of the recovered moving back to 
susceptible 
Exogenous reinfection rate 

Probability of the recovered individuals 
being re-infected 
Vaccination rate 

Natural recovery rate 

Rate of movement to susceptible class after 

loss of immunity given by vaccine 

Probability that the infected will enter the 
latent stage of the disease 
 

Probability of the re-infected R moving to 
E  
 

 

Treatment rate 

Rate of the vaccinated getting infected 
 

 
Reduction in the exposure rate of the 
susceptible individuals to the infectious 
 
Boosting of the immune system by eating 
healthy meals 

0.35000 
 

0.03000 

80.0000 

0.01000 

0.30000 

0.00013 

0.30000 
 

0.70000 

0.02000 

0.20000 
 

0.20000 

0.50000 

 

0.99000 

 

0.70000 

 

0.60000 

0.28500 
 

 

0.50000 

 

0.20000 

𝑥∗ 
 

𝑥∗ 

𝑥∗ 

Estimate 

𝑥∗ 

𝑥∗ 

Estimate 

𝑥∗ 

Estimate 

Estimate 
 

𝑥∗ 

Estimate 

 

𝑥∗ 

 

𝑥∗ 

 

Estimate 

WHO 

(2018a) 

Estimate 

 

Estimate 
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𝑑𝑥
𝑑𝑡 =

𝜕ℋ(𝑡, 𝑥, 𝑢, 𝜆∗)
𝜕𝜆∗ 																																																																																																								 

0 =
𝜕ℋ(𝑡, 𝑥, 𝑢, 𝜆∗)

𝜕𝜆∗ 																																																																																																									 

𝑑𝜆
𝑑𝑡 =

𝜕ℋ(𝑡, 𝑥, 𝑢, 𝜆∗)
𝜕𝜆∗ 																																																																																																							 

Theorem 4.5.2. The optimal controls u)∗ , u"∗  that minimize the objective functional J over 

the region are  

𝑢)∗ = 𝑚𝑖𝑛É1,𝑚𝑎𝑥{0, 𝑢Ä)}Ê																																																																																											 

and  

𝑢"∗ = 𝑚𝑖𝑛É1,𝑚𝑎𝑥{0, 𝑢Ä"}Ê																																																																																											 

where  

 𝑢Ä) =
BCUS();Y)(m)∗;m#∗ )2FBCUS();Y)(m(∗;m)∗ )

C#
																																																																																 

and   

𝑢Ä" =
𝑖(𝜆=∗ − 𝜆>∗ )

𝑐"
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Proof.  From equation (4.69), the below system is established.  

											
𝑑𝜆)∗

𝑑𝑡 = 𝜏(𝜆)∗ − 𝜆"∗) + 𝛽𝑐𝑖(1 − 𝜏)(1 − 𝑢))(𝜆)∗ − 𝜆>∗ ) 

																							+𝑓𝛽𝑐𝑖(1 − 𝜏)(1 − 𝑢))(𝜆>∗ − 𝜆?∗ ) + (𝜋 − 𝜀𝑖)𝜆)∗  

											
𝑑𝜆"∗

𝑑𝑡 = 𝜎(𝜆"∗ − 𝜆)∗) + 𝜃𝛽𝑐𝑖(𝜆"∗ − 𝜆>∗) + 𝜃𝑓𝛽𝑐𝑖𝜆>∗ − 𝜆?∗ + (𝜋 − 𝜀𝑖)𝜆"∗  

											
𝑑𝜆?∗

𝑑𝑡 = 𝑘(𝜆?∗ − 𝜆>∗ ) + 𝛿)𝛽𝑐𝑖(𝜆?∗ − 𝜆>∗ ) + (𝜋 − 𝜀𝑖)𝜆?∗ 																																												(4.70) 

												
𝑑𝜆>∗

𝑑𝑡 = −𝑄 + 𝛽𝑐𝑠(1 − 𝜏)(1 − 𝑢))(𝜆)∗ − 𝜆>∗ ) + 𝑓𝛽𝑐𝑠(𝜆>∗ − 𝜆?∗ ) 

																										+𝜃𝛽𝑐𝑣(𝜆"∗ − 𝜆>∗ ) + 𝑀 

𝑑𝜆=∗

𝑑𝑡 = 𝛼(𝜆=∗ − 𝜆)∗) + 𝛿"𝛽𝑐𝑖(𝜆=∗ − 𝜆>∗ ) + 𝑓)𝛿"𝛽𝑐𝑖(𝜆>∗ − 𝜆?∗) + (𝜋 − 𝜀𝑖)𝜆>∗ 		 

where  

												𝑀 = 𝜃𝑓𝛽𝑐𝑣(𝜆>∗ − 𝜆?∗ ) + 𝛿"𝛽𝑐𝑟(𝜆=∗ − 𝜆>∗ ) + 𝑓)𝛿"𝛽𝑐𝑟(𝜆>∗ − 𝜆?∗ ) + 𝛿)𝛽𝑐𝑒(𝜆?∗ − 𝜆>∗ ) 

																					+(𝛾 + 𝜔 + 𝑢")(𝜆>∗ − 𝜆=∗ ) + 𝜆>∗ (𝜋 + 𝜀) − 𝜀(𝜆)∗𝑠 + 𝜆"∗𝑣 + 𝜆?∗𝑒 + 2𝜆>∗ 𝑖 + 𝜆=∗𝑟). 

By the optimality condition fℋ
fj#

= 0 and fℋ
fj'

= 0, 

𝑢) =
𝛽𝑐𝑖𝑠(1 − 𝜏)(𝜆>∗ − 𝜆)∗) + 𝑓𝛽𝑐𝑖𝑠(1 − 𝜏)(𝜆?∗ − 𝜆>∗ )

𝑐)
= 𝑢Ä)																	 (4.71) 

and 

𝑢" =
U(m*

∗;m)∗ )
C'

= 𝑢Ä"																																																																																											 (4.72) 
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4.5.1  Numerical Simulation of the Optimal Control Model 

The optimal control model (4.66) is solved using the numerical values in Table 4.1 

above and the subsequent graphs are the resulting outputs. The impact of the controls 

𝑢), 𝑢" are tested and are found to be highly relevant in further reducing the incidence of 

TB. Figure 4.11 queries the relevance of these controls in the model. It is shown that there 

is significant difference between the infectious fraction of the model with optimal control 

and that without control. The one with optimal control produces reduction in the 

infectious fraction. Furthermore, increment in the values of these controls give far better 

results as shown in Figures 4.12 and 4.13.  

 

      Figure 4.11: Effect of the optimal control on the infectious class 
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Figure 4.12: Effect of the variations in optimal control 𝒖𝟏 

 

Figure 4.13: Effect of the variations in optimal control 𝒖𝟐 
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4.6  Summary 

A five compartmental model of susceptible (𝑆), vaccinated (𝑉), exposed (𝐸), 

infectious (𝐼) and recovered (𝑅) was formulated using a nonlinear system of 𝑂𝐷𝐸 to 

investigate the relevance of prophylactic vaccine in reducing the rate of TB incident. 

Since efforts can only be made on the controllable factors like; infectivity rate, contact 

rate, vaccination rate, reinfection rate, TB induced death rate, e.t.c., the model was 

normalised in order to eliminate the natural death factor (𝜇). Subsequently, the basic 

reproduction number (𝑅!) was established which was further used to establish the 

stability of the disease free equilibrium (𝐷𝐹𝐸). It was shown that the 𝐷𝐹𝐸 is stable 

whenever 𝑅! < 1. The system is as well shown to be globally asymptotically stable using 

Theorems 4.3.3 and 4.3.5. 

 

 Theorems 4.3.1 and 4.3.2 explain the importance of the vaccination, its potency and 

immunity conferment power. From Theorem 4.3.1, it is established that vaccination helps 

a long way in reducing the TB incidence. Similarly, Theorem 4.3.2 explains the reason 

why the vaccine should be designed in a way that it is potent enough to prevent getting 

the infection. These Theorems are corroborated by Figure 4.10. In similar manner, if the 

vaccines and drugs are designed to reduce the infectivity rate coupled with the reduction 

of contacts between the susceptible and infectious individuals, the tuberculosis incidence 

would be reduced as shown in Figures 4.5-4.7. Figure 4.8 highlights the fact that 

variations in the vaccination rate makes much differences in the TB incident rate; as such, 

it would be reasonable to administer the vaccine on a good proportion of the susceptible 

class. If the drugs are not designed to prevent reinfection, little or nothing would be 

achieved in the war against tuberculosis as displayed in Figure 4.9. 

 As mentioned earlier, any intended vaccine should be designed to combat the 

infectivity rate of Mycobacterium tb (Mtb). A vaccine that could reduce the infectivity 
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rate of Mtb by half and as well give a permanent immunity against TB infection would 

drastically reduce the incident of TB. This is as evidently presented by Figure 4.10. 

Increment in the vaccination rate gives better result as the infection is speedily 

annihilated. 

 

 From the above, it is recommended that any intended vaccine that will replace BCG 

should target the reduction of the infectivity rate of Mtb by at least half. This vaccination 

would be of great benefit in high TB burden places or regions that are prone to this 

epidemic, especially developing nations. If the BCG vaccine could be made available to 

these nations at little or no cost, it would indirectly benefit the wealthy donor nations due 

to the infectious nature of TB. Also, the drugs designed to treat tuberculosis should be 

done in way that they prevent reinfection.  

 

 In furtherance to the above, an optimal control analysis was done. Controls 𝑢) and 𝑢" 

were introduced. 𝑢) is the reduction in the exposure rate of the susceptible individuals to 

the infectious and 𝑢" is the boosting of the immune system by the intake of healthy meals. 

The impacts of these two controls were measured as displayed in Figures 4.11-4.13. The 

inclusion of these controls in the model shows significant reduction in the TB infectious 

fraction. 

 

 When the above measures; design of highly potent vaccine, drugs that prevent 

reinfection, reduction in the exposure rate of the susceptible persons to infectious and 

meals that boost the immune system of an infected person are considered, tuberculosis 

infection would be drastically reduced in our communities. 
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CHAPTER 5: THE EFFECT OF QUARANTINE IN REDUCING MULTI-

DRUG RESISTANT TB (MDR-TB) 

5.1  Introduction 

The 2018 global tuberculosis report by the WHO has it that one-fourth of the world 

population is infected with tuberculosis (TB). This estimate is inclusive of different TB 

strains such as; drug susceptible TB (DS-TB), drug resistant TB (DR-TB), multi-drug 

resistant TB (MDR-TB), extensively drug resistant TB (XDR-TB) and totally drug 

resistant TB (TDR-TB). The discovery of MDR-TB took place in 1956 at the Great 

Britain (Blackman et al., 2013), only to gain prominence in the 90’s as a public health 

threat. This strain of TB has resistance to at least one of the two most powerful anti-

tubercular drugs; isoniazid and rifampicin. Its emergence has great attachment to the 

mismanagement (incomplete treatment course) or misuse (wrong dosage or time length 

to complete the drugs) (Centers for Disease Control and Prevention (CDC), 2012). It can 

as well be transmitted from a carrier to a susceptible person. 

 

 According to Zignol et al. (2016) the percentages of those diagnosed of MDR-TB in 

2011 (Uzbekistan) stands at 62%, 62.3% in 2012 (Moldova), 57.8% in 2013 

(Kazakhstan), 55.1% in 2013 (Krygyzstan), 69.1% in 2014 (Belarus), 62.1% in 2014 

(Estonia) and 52.2% in 2014 (Tajikistan). Out of the 457,000 cases of MDR-TB reported 

in 2017 globally, the most concentrations are in India, China and Russian Federation 

which constitute 47% of the total reported cases. Out of this number, just a paltry 25% 

got enrolled for treatment in the year (WHO, 2018b). This indicates the existence of a 

wide gap between the detection and treatment rates of MDR-TB patients. Presently, there 

are two treatment regimens for MDR-TB, the variation in the regimens is attached to the 

drugs administration period; the 9-12 months drugs administration period which is termed 

the shorter treatment regimen (WHO, 2016b) and the 18 months or more drugs 
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administration period which is termed the longer treatment regimen (WHO, 2016c). 

Nonetheless, the efficacy of the longer regimen over that of the shorter has been 

established. The treatment of the multi-drug resistant TB (MDR-TB) as well as the 

extensively drug resistant TB (XDR-TB) must be maintained alongside measures to 

prevent drug susceptible TB, vis-á-vis; early detection, completion of treatment and the 

administration of correct drugs combination among other measures, since wider treatment 

coverage for MDR-TB decreases MDR-TB incidence (Sharma et al., 2017). In particular, 

complying with the instructions regarding the TB treatment should be encouraged as 

stressed by Ronoh et al. (2016). Non-compliance does the opposite by promoting the 

persistence of TB. 

 

 This chapter gives a different look to how MDR-TB is managed. It presents a 

deterministic model with the consideration of a quarantine class. This class is included to 

help check the rising rate of the multi-drug resistant TB. This is necessitated due to the 

fact that the TB menace is now multi-facetted due to the availability of its different strains 

(DS-TB, DR-TB, MDR-TB, XDR-TB and TDR-TB). This quarantine compartment is 

included to help monitor drug susceptible patients who may develop multi-drug resistant 

TB due to the non-compliance with the drugs directives. This approach adopted is to help 

ensure that no patient is lost due to the absence of follow up. This is in agreement with 

the discussion in Augusto et al. (2015). 

 

5.2  Model Formulation 

5.2.1  Introduction 

The model has five human populations namely; susceptible 𝑆, infected asymptomatic 

individuals 𝐸 (exposed), infected individuals with symptoms 𝐼 (infectious), individuals 
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with multi-drug resistant TB 𝑄 (quarantine) and the recovered individuals 𝑅. The 

population is assumed to grow at the rate 𝛱 and at any time 𝑡, the total population 𝑁(𝑡)	is 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡).																																																	  

Susceptible individuals are assumed to freely mix with the infectious individuals at the 

rate  

𝜆) = 𝛽𝑐𝐼																																																																																																													 (5.1) 

such that 𝛽 is the probability of a susceptible individual getting infected and 𝑐 is the 

average contact rate. 

 

 These susceptible individuals have the ability to either move to the exposed state 𝐸 at 

the rate 𝑓𝜆) or the infectious state 𝐼 at the rate (1 − 𝑓)𝜆). Exposed individuals are 

considered to progress in two ways to the 𝐼 compartment, this is either through 

endogenous reactivation designated as 𝑘 or exogenous reinfection designated as 𝛿𝜆).	The 

rate of the emergence of MDR-TB from DS-TB state is denoted as 𝜔 while treatment 

relapse back to the quarantine compartment occurs at the rate 𝛾. Successful treatment 

rates are denoted as 𝜎 and 𝛼 for both the DS-TB and MDR-TB respectively, while death 

occur due to DS-TB and MDR-TB at the rates 𝜀)and 𝜀"respectively. It is as well assumed 

that death due to nature occurs at the rate 𝜇 and all parameter values declared are in the 

interval (0,1]	except 𝑐. The diagrammatic representation of the model is presented in 

Figure 5.1 and the model is mathematically described by the system below. 

𝑑𝑆
𝑑𝑡

= Π − (𝜆) + 𝜇)𝑆																																																																																						 (5.2) 

𝑑𝐸
𝑑𝑡

= 𝑓𝜆)𝑆 − (𝛿𝜆) + 𝑘 + 𝜇)𝐸																																																																				 (5.3) 

𝑑𝐼
𝑑𝑡
= (1 − 𝑓)𝜆)𝑆 + (𝛿𝜆) + 𝑘)𝐸 − (𝜎 + 𝜔 + 𝜀) + 𝜇)𝐼																															 (5.4) 
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𝑑𝑄
𝑑𝑡

= 𝜔𝐼 + 𝛾𝑅 − (𝛼 + 𝜀" + 𝜇)𝑄																																																																						 (5.5) 

𝑑𝑅
𝑑𝑡

= 𝜎𝐼 + 𝛼𝑄 − (𝛾 + 𝜇)𝑅,																																																																															 (5.6) 

having the initial conditions:  

𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0.																															 (5.7) 

 

Figure 5.1: A quarantine model for tuberculosis 

 

5.2.2  Positivity of the Solution and Invariant Region 

The model represented by the system (5.2)-(5.6) above shall only be epidemiologically 

correct if all the dependent variables are non-negative at any time t. As such, the positivity 

of the model as well as its invariant region are thus presented. 

 

Lemma 5.1: Let the initial conditions of system (5.2)-(5.6) be as given in (5.7), then the 

solutions 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are positive for all 𝑡 > 0. 

Proof. Suppose that 𝑡∗ = sup{𝑡 > 0: 𝑆(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) >

0} ∈ [0, 𝑡], then 𝑡∗ > 0. Considering the first equation of system (5.2)-(5.6), 

 8*
81
= Π − (𝜆) + 𝜇)𝑆,																																																																																																												 
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then,  

 8
81
_𝑆(𝑡)𝑒/q12∫

!
" m#(6)869` = Π𝑒/q12∫

!
" m#(6)869																																																																		 

 ⇒ 𝑆(𝑡))𝑒
/q1#2∫

!#
" m#(6)869 − 𝑆(0) = ∫1#! Π𝑒/q:2∫

$
" m#(6)869𝑑𝑦																																			 

 ⇒ 𝑆(𝑡)) = 𝑒;/q1#2∫
!#
" m#(6)869 _𝑆(0) + ∫1#! Π𝑒/q1#2∫

!#
" m#(6)869𝑑𝑦` > 0.																	 

Following the same approach, it can as well be shown that 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are 

positive.  

 

Lemma 5.2: The biologically feasible region  

 W= �𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡) ∈ ℝ2
= : 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) ≤ r

q
� 

is positively invariant.  

 8+(1)
81

= Π − 𝜇𝑁(𝑡) − (𝜀)𝐼 + 𝜀"𝑄),																																																																																			 

so that  

 8+(1)
81

≤ Π − 𝜇𝑁(𝑡).																																																																																																														 

Hence, using the standard comparison theorem (Lakshmikantham et al., 1989),        

𝑁(𝑡) ≤ 𝑁(0)𝑒;q1 + r
q
(1 − 𝑒;q1). 

 

5.3  Stability Analysis 

5.3.1  Local Stability of Disease-Free Equilibrium (DFE) 

At equilibrium, the DFE of the system (5.2)-(5.6) is given by 𝐸! = �s
q
, 0,0,0,0�.	As 

discussed earlier, next generation operator method is adopted to establish the linear 

stability of 𝐸!.	The matrices 𝐹 (the new infection terms) and 𝑉 (the transition terms) are 

respectively given by 
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𝐹 = k
0 𝑓𝛽𝑆 0
0 (1 − 𝑓)𝛽𝑆 0
0 0 0

l																																																																												 (5.8) 

and 

𝑉 = Ï
𝑘 + 𝜇 + 𝛿𝜆) 0 0
−(𝑘 + 𝛿𝜆)) (𝜎 + 𝜔 + 𝜀) + 𝜇) 0
0 𝜔 (𝛼 + 𝜀" + 𝜇)

Ð.																			 (5.9) 

When (5.8) and (5.9) are evaluated at the DFE and and subsequently calculating for the 

spectral radius 𝜌 of 𝐹𝑉;@ i.e. 𝜌(𝐹𝑉;@), then  

𝜌s𝐹𝑉;%t = 𝑅! =
𝛽𝑐Π[𝑘 + 𝜇(1 − 𝑓)]

𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)
.																																			 (5.10) 

Basic reproduction number (𝑅!) is the number of secondary infections from a singly 

recorded one.  

Theorem 5.3.1. The DFE, (E!), of the system is locally asymptotically stable in  if      

𝑅! < 1, and unstable otherwise.  

Proof. The Jacobian matrix (𝐽!) of the nonlinear system (5.2)-(5.6) at the DFE 

�r
q
, 0,0,0,0� is given by 

	𝐽0 =

⎝

⎜
⎜
⎜
⎜
⎛
−𝜇 0 −

𝛽𝑐Π
𝜇

0 0

0 −(𝑘 + 𝜇)
𝑓𝛽𝑐Π
𝜇

0 0

0 𝑘 𝐽0
∗ 0 0

0 0 𝜔 −(𝛼 + 𝜀2 + 𝜇) 𝛾
0 0 𝜎 𝛼 −(𝛾 + 𝜇)⎠

⎟
⎟
⎟
⎟
⎞

,			

																																																																																																																																								(5.11)

 

          𝐽!∗ =
();F)BCr

q
− (𝜎 + 𝜔 + 𝜀) + 𝜇). 
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Denoting the eigenvalue as 𝜂, then the eigenvalues of (5.11) is established from.           

|𝐽! − 𝐼| = 0,  

⇒

{

{
−(𝜇 + 𝜂) 0 −

𝛽𝑐Π
𝜇

0 0

0 −(𝑘 + 𝜇 + 𝜂)
𝑓𝛽𝑐Π
𝜇

0 0

0 𝑘 𝑍 0 0
0 0 𝜔 −(𝛼 + 𝜀" + 𝜇 + 𝜂) 𝛾
0 0 𝜎 𝛼 −(𝛾 + 𝜇 + 𝜂)

{

{

= 0,

																																																																																																																																																				(5.12)

 

where  

𝑍 =
(1 − 𝑓)𝛽𝑐Π

𝜇 − (𝜎 + 𝜔 + 𝜀) + 𝜇 + 𝜂)																																																						 

(5.12) produces the first eigenvalue, 𝜂) as −𝜇, while the other 4 eigenvalues are as 

expressed in (5.13) and (5.14) below.  

𝜂",? =
1
4�−

(𝛼 + 2𝜀" + 3𝜇) ± �𝛼" + 𝛼(4𝜀" − 2𝜇) + (2𝜀" + 𝜇)"�		 (5.13) 

and  

𝜂>,= =
1
2𝜇 Ï−𝑏 ±

Ò𝑏" − 4𝜇"η∗(𝑘 + 𝜇) »1 −
𝛽𝑐Π[𝑘 + 𝜇(1 − 𝑓)]

𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)
¼Ð ,

																																																																																																																																																				(5.14)

 

where 

𝑏 = 𝜇[(𝑘 + 𝜇) + (𝜎 + 𝜔 + 𝜀) + 𝜇)] − 𝛽𝑐Π(1 − 𝑓).																																					 

 η∗ = (𝜎 + 𝜔 + 𝜀) + 𝜇) 

𝜂",? becomes negative when  

(𝛼 + 2𝜀" + 3𝜇) > �𝛼" + 𝛼(4𝜀" − 2𝜇) + (2𝜀" + 𝜇)".																					 (5.15) 

Squaring both sides of (5.15) which after simplification gives  
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 𝛼 + 𝜀" + 𝜇 > 0,																																																																																																																			 

which is always true, and as such, 𝜂",? < 0. 

Also, since  

 𝑅! =
BCr[E2q();F)]

q(E2q)(H2I2J#2q)
,																																																																																																					 

then (5.14) implies  

−𝑏 ± �𝑏" − 4𝜇"(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇){1 − 𝑅!}
2𝜇 .																						 (5.16) 

Obviously, the eigenvalues of (5.16) depend on 𝑅!, hence 𝑅! < 1 ⇒ 𝜂>,= < 0 while  

𝑅! > 1 ⇒ 𝜂> > 0 and 𝜂= < 0. As such, the stability of the system is guaranteed by     

𝑅! < 1 and thus completes the proof. 

 

5.3.2  Global Stability of Disease-Free Equilibrium (DFE) 

Theorem 5.3.2. The disease free equilibrium (DFE), E! = {S∗∗, E∗∗, I∗∗, Q∗∗, R∗∗} ∈ of the 

system (5.2)-(5.6) is globally asymptotically stable. 

Proof. Consider the Lyapunov function  

𝑉 = �𝑆 − 𝑆∗∗ − 𝑆∗∗ln
𝑆
𝑆∗∗� + 𝐸 + 𝐼 + 𝑄 + 𝑅,																																							

(5.17) 

	𝑉@ =
(𝑆 − 𝑆∗∗)

𝑆
𝑆@ + 𝐸@ + 𝐼@ + 𝑄@ + 𝑅@																																																			 (5.18) 

								⇒ 𝑉@ =
(𝑆 − 𝑆∗∗)

𝑆
[Π − (𝜆) + 𝜇)𝑆] + 𝑓𝜆)𝑆 − (𝛿𝜆) + 𝑘 + 𝜇)𝐸 + (1 − 𝑓)𝜆)𝑆

																					+(𝛿𝜆) + 𝑘)𝐸 − (𝜎 + 𝜔 + 𝜀) + 𝜇)𝐼 + 𝜔𝐼 + 𝛾𝑅 − (𝛼 + 𝜀" + 𝜇)𝑄.			
+𝜎𝐼 + 𝛼𝑄 − (𝛾 + 𝜇)𝑅.																																																											

																																																																																																																																																					(5.19)
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   𝜆) = 0 

								⇒ 𝑉@ =
(𝑆 − 𝑆∗∗)

𝑆
[𝜇𝑆∗ − 𝜇𝑆] − 𝜇𝐸 − (𝜀) + 𝜇)𝐼 − (𝜀" + 𝜇)𝑄 − 𝜇𝑅 (5.21) 

⇒ 𝑉@ =
−𝜇(𝑆 − 𝑆∗∗)"

𝑆
− 𝜇𝐸 − (𝜀) + 𝜇)𝐼 − (𝜀" + 𝜇)𝑄 − 𝜇𝑅. (5.22) 

From (5.22) 𝑉@ ≤ 0 of which the equality holds only when 𝑆 = 𝑆∗∗. Using the LaSalle’s 

invariance principle (LaSalle & Artstein, 1976), the DFE of the model is globally 

asymptotically stable. 

 

5.4  Bifurcation Analysis and Global Stability of Endemic Equilibrium Point (EEP) 

Bifurcation Analysis 

At the equilibrium point, (5.1) becomes 

𝜆)∗ = 𝛽𝑐𝐼∗																																																																																																						 (5.23) 

Also,  

𝑆∗ =
Π

𝜆)∗ + 𝜇
, 𝐸∗ =

𝑓𝜆)∗Π
(𝜆)∗ + 𝜇)(𝛿𝜆)∗ + 𝑘 + 𝜇)

,																																																				 

𝐼∗ =
(1 − 𝑓)(𝛿𝜆)∗ + 𝑘 + 𝜇)𝜆)∗Π + 𝑓𝜆)∗Π(𝛿𝜆)∗ + 𝑘)
(𝜆)∗ + 𝜇)(𝛿𝜆)∗ + 𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)

,																																				

										𝑄∗ =
[𝜔(𝛾 + 𝜇) + 𝛾𝜎][(1 − 𝑓)(𝛿𝜆)∗ + 𝑘 + 𝜇) + 𝑓(𝛿𝜆)∗ + 𝑘)]𝜆)∗Π

(𝜆)∗ + 𝜇)(𝛿𝜆)∗ + 𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)[(𝛾 + 𝜇)(𝛼 + 𝜀" + 𝜇) − 𝛾𝛼]
,

													𝑅∗ =
[𝛼(𝜎 + 𝜔) + 𝜎(𝜀" + 𝜇)][(1 − 𝑓)(𝛿𝜆)∗ + 𝑘 + 𝜇) + 𝑓(𝛿𝜆)∗ + 𝑘)]𝜆)∗Π
(𝜆)∗ + 𝜇)(𝛿𝜆)∗ + 𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)[(𝛾 + 𝜇)(𝛼 + 𝜀" + 𝜇) − 𝛾𝛼]

.			

																																																																																																																																																				(5.24)

 

If 𝐼∗ is substituted into (5.23), then it could be shown that the endemic equilibrium, EEP 

of the system satisfies the following quadratic equation 

𝐴(𝜆)∗)" + 𝐵𝜆)∗ + 𝐶 = 0,																																																																											 (5.25) 
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such that  

𝐴 = 𝛿(𝜎 + 𝜔 + 𝜀) + 𝜇),																																																																																															 

𝐵 = (𝑘 + 𝜇 + 𝜇𝛿)(𝜎 + 𝜔 + 𝜀) + 𝜇) − 𝛽𝑐𝛿Π,																																																										 

𝐶 = 𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)(1 − 𝑅!).																																																																	 

Hence, the EEP of system (5.2)-(5.6) is obtained when (5.25) is solved for the values of 

𝜆)∗  and subsequently substituted in (5.23) to obtain 𝐼∗. The coefficient 𝐴 is always positive 

and also, 𝐶 is always positive (negative) when 𝑅! < 1 (𝑅! > 1). As such, the following 

is established.  

Theorem 5.4.1. The tuberculosis model has   

1. a unique endemic equilibrium if 𝐶 < 0 ⇔ 𝑅! > 1,  

2. a unique endemic equilibrium if 𝐵 < 0 and 𝐶 = 0 or 𝐵" − 4𝐴𝐶 = 0,  

3. two endemic equilibria if 𝐶 > 0, 𝐵 < 0 and 𝐵" − 4𝐴𝐶 > 0,  

4. no endemic equilibrium otherwise.   

Obviously, condition shows that the model has a unique endemic equilibrium point. On 

the other hand, the third case indicates the possibility of backward bifurcation. Backward 

bifurcation is the scenario when locally asymptotically stable DFE coexists with a locally 

asymptotically EEP when 𝑅! < 1. The existence of this bifurcation explains that keeping 

the basic reproduction number less than unity (𝑅! < 1) is no longer sufficient but 

required to curb the TB spread. To check this, let the discriminant 𝐵" − 4𝐴𝐶 be zero, 

which after solving for the critical value of 𝑅! denoted as 𝑅C gives  

𝑅C = 1 −
𝐵"

4𝐴𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)
.																																																													 
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Lemma 5.3: The model undergoes backward bifurcation when case (3) of  Theorem 5.4.1 

holds and 𝑅C < 𝑅! < 1. It is important to note here that the feasibility of the global 

asymptotic stability property of the DFE established earlier is outside the region of the 

backward bifurcation. 

 

Global Stability of EEP 

Theorem 5.4.2. The endemic equilibrium point (EEP), E) = {S∗, E∗, I∗, Q∗, R∗} ∈ of the 

system (5.2)-(5.6) is globally asymptotically stable. 

Proof. Consider the Lyapunov function  

														𝑉" = 𝐾) �𝑆 − 𝑆∗ − 𝑆∗ln
𝑆
𝑆∗� + 𝐾" �𝐸 − 𝐸

∗ − 𝐸∗ln
𝐸
𝐸∗� + 𝐾? �𝐼 − 𝐼

∗ − 𝐼∗ln
𝐼
𝐼∗� ,

																																																																																																																																																				(5.26)
 

then the time derivative of 𝑉 is  

𝑉"@ = 𝐾) �
𝑆 − 𝑆∗

𝑆 �
𝑑𝑆
𝑑𝑡 + 𝐾" �

𝐸 − 𝐸∗

𝐸 �
𝑑𝐸
𝑑𝑡 + 𝐾? �

𝐼 − 𝐼∗

𝐼 �
𝑑𝐼
𝑑𝑡 .											

(5.27) 

The substitution of 8*
81
, 8,
81

 and 8%
81

 as expressed in (5.2)-(5.4) in (5.27) gives,  

𝑉"@ = 𝐾) �
*;*∗

*
� [Π − (𝜆) + 𝜇)𝑆]																																																										

+𝐾" �
,;,∗

,
� [𝑓𝜆)𝑆 − 𝛿𝜆)𝐸 − (𝑘 + 𝜇)𝐸]																										

												+𝐾? �
%;%∗

%
� [(1 − 𝑓)𝜆)𝑆 + (𝛿𝜆) + 𝑘)𝐸 − (𝜎 + 𝜔 + 𝜀) + 𝜇)𝐼]

																																																																																																																																																				(5.28)

At the equilibrium point, Π = 𝛽𝑐𝐼∗𝑆∗ + 𝜇𝑆∗, (𝑘 + 𝜇) = FBC%∗*∗;WBC%∗,∗

,∗
 and                    

(𝜎 + 𝜔 + 𝜀) + 𝜇) =
();F)BC%∗*∗2WBC%∗,∗2E,∗

%∗
 which after substitution into (5.28) 

produces
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𝑉"@ = 𝐾) �
*;*∗

*
� [𝛽𝑐𝐼∗𝑆∗ + 𝜇𝑆∗ − (𝜆) + 𝜇)𝑆]																																																							

+𝐾" �
,;,∗

,
� �𝑓𝜆)𝑆 − 𝛿𝜆)𝐸 − Ú

u'∗

,∗
Û 𝐸�																																																		

										+𝐾? �
%;%∗

%
� �(1 − 𝑓)𝜆)𝑆 + (𝛿𝜆) + 𝑘)𝐸 − Ú

();F)BC%∗*∗2WBC%∗,∗2E,∗

%∗
Û 𝐼� .

																																																																																																																																																				(5.29)

where  

𝐾"∗ = 𝑓𝛽𝑐𝐼∗𝑆∗ − 𝛿𝛽𝑐𝐼∗𝐸∗																																																																																					 

⇒ 𝑉"@ = −𝐾)𝜇
(𝑆 − 𝑆∗)"

𝑆
+ 𝐾) �1 −

𝑆∗

𝑆
� [𝛽𝑐𝐼∗𝑆∗ − 𝛽𝑐𝐼𝑆]																												

+𝐾" �1 −
𝐸∗

𝐸 � �𝑓𝜆)𝑆 − 𝛿𝜆)𝐸 − _
𝐾"∗

𝐸∗` 𝐸�																										

+𝐾? �1 −
𝐼∗

𝐼 �																																																																												

																															k(1 − 𝑓)𝜆)𝑆 + (𝛿𝜆) + 𝑘)𝐸 − c
(1 − 𝑓)𝛽𝑐𝐼∗𝑆∗ + 𝛿𝛽𝑐𝐼∗𝐸∗ + 𝑘𝐸∗

𝐼∗ d 𝐼l .

																																																																																																																																																				(5.30)

 

Let *
*∗
= 𝑥), ,

,∗
= 𝑥", %

%∗
= 𝑥?, 𝐼∗𝑆∗ = 𝑎, 𝐼∗𝐸∗ = 𝑏 and 𝑘𝐸∗ = 𝑔, then the simplification 

of (5.30) gives  

𝑉"@ = −𝐾)𝜇
(𝑆 − 𝑆∗)"

𝑆 + 𝐾)𝛽𝑐𝑎 + [−𝐾)𝛽𝑐𝑎 + 𝐾"𝑓𝛽𝑐𝑎 + 𝐾?(1 − 𝑓)𝛽𝑐𝑎]𝑥)𝑥?
+[−𝐾"𝛿𝛽𝑐𝑏 + 𝐾?𝛿𝛽𝑐𝑏]𝑥"𝑥?																																																																		
+[𝐾"𝛿𝛽𝑐𝑏 − 𝐾?(1 − 𝑓)𝛽𝑐𝑎 − 𝐾?𝛿𝛽𝑐𝑏 − 𝐾?𝑔 + 𝐾)𝛽𝑐𝑎]𝑥?											
+[−𝐾"𝑓𝛽𝑐𝑎 − 𝐾?𝛿𝛽𝑐𝑏 + 𝐾?𝑔 − 𝐾"𝛿𝛽𝑐𝑏]𝑥" − (1 − 𝑓)𝛽𝑐𝑎𝑥)					

								−𝐾)
1
𝑥)
− 𝐾"𝑓𝛽𝑐𝑎

𝑥)𝑥?
𝑥"

− 𝑔
𝑥"
𝑥?
+ 𝑓𝛽𝑐𝑎 + (1 − 𝑓)𝛽𝑐𝑎 + 2𝛿𝛽𝑐𝑏 + 𝑔.

																																																																																																																																																				(5.31)

 

When the coefficients of 𝑥)𝑥?, 𝑥"𝑥?, 𝑥?, 𝑥" and 𝑥) are equated to 0, then 𝐾) = 𝐾" = 𝐾?; 

𝑓 = 1; 𝑔 = 𝛽𝑐𝑎; 𝛿 = 0. 

Choosing the values of 𝐾) = 𝐾" = 𝐾? = 1 and substituting the values of 𝑓, 𝑔 and 𝛿 as 

established above gives  
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𝑉"@ =
−𝜇(𝑆 − 𝑆∗)"

𝑆 + 𝛽𝑐𝑎 _3 −
1
𝑥)
−
𝑥)𝑥?
𝑥"

−
𝑥"
𝑥?
`.																							 (5.32) 

Since arithmetic mean (AM) is greater than or equal to geometric mean (GM),           

(𝐴𝑀 ≥ 𝐺𝑀), then  

 )
v#
+ v#v(

v'
+ v'

v(
≥ 3.																																																																																																									 

It is obvious from (5.32) that 𝑉"@ ≤ 0 for which the equality holds when                               

𝑥) = 𝑥" = 𝑥? = 1 (i.e. 𝑆 = 𝑆∗, 𝐸 = 𝐸∗ and 𝐼 = 𝐼∗). By the LaSalle’s invariance principle 

(LaSalle & Artstein, 1976), the EEP of the system is globally asymptotically stable. 

 

5.5  Sensitivity Analysis and Numerical Simulation 

5.5.1  Sensitivity Analysis 

As earlier defined, the basic reproduction number (𝑅!) is the number of secondary 

infection from a singly recorded one, hence the behaviour of an infection can be measured 

using its 𝑅!. If 𝑅! is regarded as a function, then the constituent parameters would be 

designated as its independent variables. When this function (𝑅!) is partially differentiated 

with respect to these parameters (independent variables), their effects on the disease 

incidence could be established. The parameters considered in the model formulation are 

𝛱, 𝛽, 𝑐, 𝑘, 𝑓, 𝜇, 𝜎, 𝜔 and 𝜀). Positive result after differentiating the function (𝑅!) partially 

with respect to each of these variables indicate that parameter promotes the disease 

incidence while negative result does the opposite. 

 

𝜕𝑅!
𝜕Π =

Π𝛽𝑐((1 − 𝑓)𝜇 + 𝑘)
𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)

,
𝜕𝑅!
𝜕𝛽 =

Π𝑐((1 − 𝑓)𝜇 + 𝑘)
𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)

, 

𝜕𝑅!
𝜕𝑐 =

Π𝛽((1 − 𝑓)𝜇 + 𝑘)
𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)

,
𝜕𝑅!
𝜕𝑘 =

Π𝛽𝑐𝑓
(𝑘 + 𝜇)"(𝜎 + 𝜔 + 𝜀) + 𝜇)

, 
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𝜕𝑅!
𝜕𝑓 = −

Π𝛽𝑐
(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)

,
𝜕𝑅!
𝜕𝜎 = −

Π𝛽𝑐((1 − 𝑓)𝜇 + 𝑘)
𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)"

, 

𝜕𝑅!
𝜕𝜔 = −

Π𝛽𝑐((1 − 𝑓)𝜇 + 𝑘)
𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)"

,
𝜕𝑅!
𝜕𝜀)

= −
Π𝛽𝑐((1 − 𝑓)𝜇 + 𝑘)

𝜇(𝑘 + 𝜇)(𝜎 + 𝜔 + 𝜀) + 𝜇)"
, 

𝜕𝑅,
𝜕𝜇 = −

Π𝛽𝑐((1 − 𝑓)𝜇-(𝜀 + 2𝜇 + 𝜎 + 𝜔) + 𝑘𝜇(2𝜀(4 − 𝑓)𝜇 + 2(𝜎 + 𝜔)) + 𝑘-(𝜀 + 2𝜇 + 𝜎 + 𝜔))
𝜇-(𝑘 + 𝜇)-(𝜀 + 𝜇 + 𝜎 + 𝜔)- . 

 

From the above Π, 𝛽, 𝑐 and 𝑘 promote the disease incidence while 𝑓, 𝜎, 𝜔 and 𝜀) reduce 

the incident rate. Π is the recruitment rate into the population, as such it services the 

population with susceptible individuals which promote the disease spread. Expectedly, 𝛽 

which is the disease incident rate and 𝑘 which is the endogenous reactivation rate promote 

the disease incidence as well. Another cogent result is given by 𝑐, the contact rate. This 

explains that the more the TB carrier mingles with unsuspecting individuals, the more the 

possibility of the spread of the infection. On the other hand, 𝜇 and 𝜀) representing the 

death due to nature and disease induced death respectively reduces the spread of the 

infection. This is because carriers are removed from the population and as such, the 

number of persons to spread the infection get reduced. In similar manner, 𝜎 which 

represents the successful treatment rate and 𝜔 representing the movement to the 

quarantine compartment after the development of MDR-TB contribute to the reduction in 

the disease incident rate. The same trend is followed by the differentiation with respect to 

𝑓 which represents the rate at which susceptible individual move to the exposed 

compartment after infection. This is consonance with the results gotten from the first 

model considered in this thesis. It is reinstating the fact that proper management of the 

infected individuals by which no one goes directly to the infectious, I compartment would 

help curb the TB incidence rate generally. 
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5.5.2  Numerical Simulation 

In this section, the numerical simulation of the model is considered. The simulation is 

done to query the relevance and importance of the parameters considered in the model 

formulation. This is to further corroborate the results gotten through the partial 

differentiation of the basic reproduction, 𝑅!	with respect to the independent variables. 

The model is simulated using 𝑂𝐷𝐸45 package of MATLAB 2016a with the hypothetical 

values;   𝑆 = 8000, 𝐸 = 1000, 𝐼 = 500, 𝑄 = 300, 𝑅 = 200, 𝛼 = 0.5, 𝛽 = 0.35, 𝑐 =

80, 𝛿 = 0.7, 𝜀) = 0.3, 𝜀" = 0.1, 𝑓 = 0.99, 𝛾 = 0.1, 𝑘 = 0.00013, 𝛱 = 0.03, 𝜎 =

0.85, 𝜔 = 0.8,	and 𝜇 = 0.01. 

 The resulting graphs are as presented in Figures 5.2-5.5. As established earlier, 

𝛱, 𝛽, 𝑐	and 𝑘 contribute to the disease persistence while 𝑓, 𝜎, 𝜔, 𝜀) and 𝜇 help in taming 

the wild spread of the infection. 

 

The impact of the recruitment rate is displayed by the Figure 5.2. This confirms the 

possibility of greater spread of the infection when more people are admitted into the 

community. Similar trend is maintained in Figure 5.3 where the impact of the infection 

rate is queried. When the infectivity rate is drastically reduced, the quarantine class 

population patients is as well reduced. The quarantine class houses the MDR-TB patients. 

 

 Concerted efforts by all concerned in preventing the direct progression of infected 

individuals from the susceptible class to the infectious is required. This is as displayed in 

Figure 5.4 where the relevance of 𝑓 in curbing the spread of the infection is explained. 

The story is the same when 𝜔 (probability of advancement to the MDR-TB stage) is 

varied. Ordinarily, bigger values of 𝜔 would be expected to keep the infection out of 

control, but it is actually explaining the role of quarantine in curbing the spread of the 

infection as displayed in Figure 5.5 i.e., the quarantine is effective in the management of 
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MDR-TB. The Figure shows the greatest value of 𝜔 subsiding in little time to be at par 

with the other values. When patients with MDR-TB are allowed to freely mingle with the 

general populace, it gives room for the spread of the infection. On the other hand, if they 

are confined to a designated place, the public would be safe from the havoc that may erupt 

through mingling with them. Also, the health care givers would be able to monitor them 

regarding the proper intake of their medications (because of the long administration 

period of the drugs) as and when due and immediately attend to them in case of any 

emergency.  

 

Figure 5.2: Effect of 𝜫 (recruitment rate) on the quarantine class 

0 5 10 15 20 25
Time (years)

0

500

1000

1500

2000

2500

Q
ua

ra
nt

in
e 

Po
pu

la
tio

n

Π=0.01
Π=0.03
Π=0.05
Π=0.07
Π=0.09

Univ
ers

ity
 of

 M
ala

ya



   114 

 

Figure 5.3: Effect of 𝜷 (probability of infectivity) on the quarantine class 

 

 

 

 

Figure 5.4: Effect of 𝒇 (progression from 𝑺 to 𝑬) on the quarantine class 
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Figure 5.5: Effect of 𝝎 (progression from I to Q) on the quarantine class 

 

5.6  Summary 

A five compartmental deterministic model is considered in this chapter to present the 

relevance of quarantine in the management of multi-drug resistant TB (MDR-TB). The 

quarantine compartment is positioned after the infectious compartment to harbour those 

that may develop MDR-TB from the infectious class. The analytical and numerical results 

presented explain in details the relevance of recruitment, infectivity, contact, treatment, 

progression, reactivation, reinfection and relapse rates to the disease dynamics. Also 

established is the need for greater efforts to be put in place in addressing the disease 

incidence rate as the model shows the existence of backward bifurcation. This implies 

making sure 𝑅! < 1 is no more sufficient to stall the disease spread. 
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CHAPTER 6: SUMMARY, CONCLUSION, RECOMMENDATIONS AND 

FUTURE WORK 

6.1  Summary 

This research work focuses on mathematical approaches to address tuberculosis 

epidemic. Basically, there are 6 chapters of the research with Chapters 1, 2, and 6 

discussing the introduction, literature review and summary respectively. Chapters 3-5 

present different mathematical models to discuss the tuberculosis epidemic. 

 Chapter 3 presents a model in which the impact of passing through the exposed state 

is discussed. In that model, there are 4 compartments namely; susceptible, exposed, 

infectious and recovered. From the mathematical analysis, it is established that when 

those that have been infected with TB pass through the exposed state without moving 

directly to the infectious compartment, TB incidence is greatly reduced. Also from the 

model, the impact of contact, recruitment and treatment rates are established. Expectedly, 

higher contact rates produce higher TB incident rate. On the other hand, high recruitment 

and treatment rates delay the eventual onset of the infection which could be used in 

preventing ultimate breakout of TB infection. 

 Chapter 4 gives an extension of the model in the third chapter whereby the impact of 

vaccination is tested. The model was formulated to accommodate vaccination 

compartment and as such leads to a 5-compartmental model. Two theorems are 

established in this chapter to discuss the importance of vaccination, its potency and the 

degree to which it can confer immunity. The results from these theorems are further 

corroborated by graphical results. From the graphical results gotten, it is safe to say that 

the more the number of people vaccinated with an effective vaccine, the safer a 

community would be. The results also show that designing a potent prophylactic vaccine 
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should focus on how to attack the infectivity rate of Mycobacterium tuberculosis (Mtb). 

Vaccines that attack the infectivity rate of Mtb give better protection against TB. 

 The model was further extended to take impact of optimal control into consideration. 

The major highlight of the optimal control approach is the recommendation of healthy 

meals to TB patients. The healthy meals in this respect are meant to boost the immune 

system of the TB patient. This consideration also gives good result as there is significant 

reduction in the number of TB cases. Reduction in the rate of exposure of the susceptible 

individuals to infectious also reduce the TB incidence. This is established using the 

second control 𝑢). 

 Chapter 5 presents the last model considered. In this model, multi-drug resistant TB 

(MDR-TB) was considered in the presence of quarantine program. The quarantine class 

is designed to house drug susceptible individuals that develop MDR-TB. The quarantine 

program displays its efficacy in reducing the MDR-TB incident cases as the patients are 

not left to freely mingle with susceptible individuals. This measure also helps in keeping 

the MDR-TB under watch to ascertain if they are taking their medications as prescribed.  

 Also established is the fact that the model undergoes backward bifurcation. This 

indicates the need to put better measures in place as the locally stable DFE coexists with 

the locally stable EEP. The implication of this behaviour is that, having the basic 

reproduction number less than unity (𝑅! < 1) is no longer sufficient to put out the 

infection. 
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6.2  Conclusion 

Chapters 3 and 4 have their models in fractions of the total population while the model 

in Chapter 5 is in terms of the total population. From both approaches, it is discovered 

that the fractional population method helps in ascertaining the correctness of the obtained 

results as it would be expected that the population fraction sum to 1 at any point in time. 

However, the mathematical analysis becomes more difficult using this approach. The 

total population approach on the other hand gives an easier mathematical analysis as 

compared to the fractional approach, but the correctness of the obtained solution may not 

be easily ascertained. 

 

 The models provide the understanding that tuberculosis epidemic incidence is 

increasing due to the high contact rates between the susceptible and infectious individuals. 

Also, the non-availability of an effective prophylactic vaccine in the regions mostly 

affected keeps the incident rate in an increasing order. Lastly, existence of the backward 

bifurcation also gives the information why the incident rate is increasing. 

 

 The research questions posed in Chapter 1 (1.7.2) are thus answered. The analysis 

done on the models show that there is the possibility of eliminating TB as shown from 

the results gotten in the first model when the contact and infectivity rates of the TB are 

kept at different levels. However, if we are unable to reduce the infectivity rate, reducing 

the contact rate alone shall help in reducing the rate of incidence. Also, the main condition 

under which we have a TB free environment is when efforts are made to ensure all TB 

infected individuals pass through the exposed state before progressing to the infectious 

class. It is the unavailability of this effort that makes the management of TB ineffective. 

In overall, awareness, effective vaccination and quarantine should be put in place as an 
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addition to the stated requirements if any reasonable result is desired to be achieved in 

reducing the incidence of tuberculosis. 

 

6.3  Recommendations 

From our research, a lot of loop holes promoting the incidence of TB are observed and 

as such, the below recommendations are given;   

    1.  Every TB patient should be made to pass through the exposed state. Passage 

through the exposed state has been established by one of the models to help reduce the 

TB incidence drastically. This may not seem easily achievable, but when there is great 

awareness regarding proper and frequent medical checkup, most unaware TB carriers 

could be saved from becoming TB infectious patients.  

    2.  Great reduction in the contacts with TB patients should be encouraged. This 

requires educating people on the basic symptoms of TB such as cough, coughing up 

blood, night sweats, fatigue, weight loss, fever, etc. When people are aware of these, it 

will be easy for them to decide who they can freely mix with.  

    3.  Great focus should be on immigrants as they are major contributors to TB 

incidence. When people are coming from a high TB burden zones, it should be strictly 

encouraged they undergo TB screening before gaining entrance to the community. This 

would help ascertain their medical fitness and as well guide on deciding whether the 

patients are to be placed on some drugs before entering the community. It would be a 

win-win situation for both parties as the community would be saved from TB and the 

patient has a good chance of being cured of his infection.  

    4.  Since successes are being recorded in the treatment of TB patients, it would be 

encouraged that the treatment is stepped up for greater coverage. This is especially 

required in the under developed nations as most patients there are yet to have access to 

proper medical care.  
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    5.  Another form of awareness should be designed solely to educate the populace on 

how TB spreads. When people are aware of such, they would be able to make informed 

decisions when any of the TB symptoms is observed in any individual.  

    6.  It is high time new TB vaccines were produced. This vaccine should be designed 

to give 100% immunity coverage against TB.  

    7.  The focus of the new vaccine should be on attacking the infectivity rate of 

Mycobacterium tuberculosis (Mtb). Our model has shown that when the vaccine attacks 

the Mtb infectivity rate by half, TB incidence reduces drastically.  

    8.  Enough funds should be earmarked for TB vaccination and campaign. Each 

nation should be encouraged to set these funds aside from their annual budget to achieve 

the end TB campaign slated by the WHO for 2035.  

    9.  TB therapeutic drugs should be designed to be potent enough in preventing TB 

reinfection. When this is done, the recovery trajectory of TB patients can be easily studied 

for future projections.  

    10.  One of the presented models has shown the importance of good diet. Balanced 

diet should be recommended for TB patients which would in turn help in boosting the 

immune system of the TB patients. Perhaps, this may promote the swift recovery of the 

patient.  

    11.  The production of new TB drugs that lasts less than six months should be 

encouraged. This would reduce the drug taking burden on the patient and as well give 

better result in shorter period.  

    12.  A greater focus should be given to drug susceptible TB (DS-TB) strain than 

other strains. This is because the incidence of most other strains are by the evolution of 

DS-TB.  
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    13.  Decision makers should not only rely on keeping the basic reproduction number 

less than unity (𝑅! < 1). This is because the last model considered exhibits backward 

bifurcation. This is an indication of possible endemicity of TB even when 𝑅! < 1. 

    14.  Isolation option should not be left out. This would also help in containing the 

spread of other TB strains. 

 

6.4  Future Work 

Since our sole aim is to eliminate TB or at least reduce its incidence to minimum, 

below listed are some of the works considered for the future so as to look at the TB 

dynamics from a different perspective.   

    1.  Awareness is among the recommendations made, hence we plan to come up with 

an awareness model of TB with the possibility of TB reinfection.  

    2.  When the awareness model has been done with the understanding of its 

dynamics, we shall consider extending the model to accommodate vaccination program. 

This extension is intended to see the impact of the duo in TB management.  

    3.  There is also the plan to extend the vaccination model to accommodate HIV. This 

extension would be with the assumption that TB vaccine confers permanent immunity 

against TB infection. This would also give the possible understanding of the dynamics of 

the TB-HIV co-infection.  

    4.  Also, the TB-HIV co-infection model would be constructed for the other strains 

of TB. This would give an extensive understanding of the TB dynamics away from the 

common DS-TB.  

    5.  A model to possibly establish any relationship between TB and malaria is under 

consideration. This is because in recent news, malaria is said to have resistance to drugs 

as well.  
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    6.  Among the consideration for future work is also the formulation of a fractional 

order model of TB. This is planned to ascertain which among the fractional and integer 

order models present better picture of the true dynamics of TB.  
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