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DETECTION OF STANDING AND SITTING VARIATIONS BASED ON IN-

SOCKET PIEZOELECTRIC SENSORS FOR TRANSFEMORAL AMPUTEES 

ABSTRACT 

A transfemoral prosthesis is required to assist amputees to perform activities of daily 

living (ADL). The purely mechanical or passive prosthesis has some drawbacks such as 

consumption of high metabolic energy and limitations in mimicking normal dynamics 

and kinematics of gait pattern. In contrast, the active prosthesis offers better performance 

and consumes less metabolic energy. However, recent active prosthesis uses surface 

electromyography as its sensory system which requires massive preparation work, causes 

sores to the patient by its electrodes and requires a lot of computation to extract 

meaningful features. This thesis focuses on developing signal conditioning circuitry to 

classify six different activities related to sit-to-stand of a transfemoral amputee using 

piezoelectric sensors as an in-socket sensory system. Also, it determines the optimal 

classifier by evaluating fifteen time-domain and frequency-domain features and selecting 

effective feature sets, and it investigates the effects of window size on the classification 

accuracy.    

Fifteen piezoelectric film sensors were embedded in the inner socket wall adjacent to 

the most active regions of the agonist and antagonist knee extensor and flexor muscles, 

an i.e. region with the highest level of muscle contractions of the quadriceps and 

hamstring. A male transfemoral amputee wore the instrumented socket and was instructed 

to perform several sitting and standing variations using an armless chair. Data were 

collected from the fifteen sensors and went through signal conditioning circuits. The 

overlapped technique was used to segment the data using different window lengths. 

Fifteen time-domain and frequency-domain features were extracted and new feature sets 

were obtained based on the feature performance. Eight of the common pattern recognition 
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multiclass classifiers were evaluated and compared. Regression analysis was used to 

investigate the impact of the number of features and the window lengths on classifiers’ 

accuracies. The classification accuracy was first calculated using k-fold cross-validation 

method, and 20% of data set was held out for testing the optimal classifier.  

It was shown that the integration of the developed signal conditioning circuitry, the 

experimental protocol, and the data collection method could generate a consistent and 

distinguish signal pattern for each sit-to-stand and stand-to-sit related activity. The results 

showed that 2-feature set consisting of the root mean square (RMS) and the number of 

peaks achieved the highest classification accuracy with most of the classifiers. Also, it 

showed that varying a segment length from 150 ms to 600 ms had no significant effects 

on support vector machine (SVM) classifiers using the 2-feature set. SVM with cubic 

kernel was suggested to be the optimal classifier, and a classification accuracy of 98.33 

% was achieved using the test data set.  

In conclusion, this work demonstrates the use of in-socket piezoelectric sensors to 

classify activities of a transfemoral amputee using pattern recognition.  Different 

variations of sitting and standing activities were accurately classified using two time-

domain features and SVM with cubic kernel. 

Keywords: Transfemoral amputee; transfemoral prosthesis; piezoelectric sensor; in-

socket sensors; classification 
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PENGESANAN VARIASI BERDIRI DAN DUDUK BERDASARKAN SENSOR 

PIEZOELEKTRIK DALAM SOCKET UNTUK ORANG KURANG UPAYA 

TRANSFEMORAL 

ABSTRAK 

Kaki prostetik transfemoral diperlukan untuk membantu orang kurang upaya untuk 

menjalankan aktiviti kehidupan seharian. Kaki prostetik mekanikal atau pasif mempunyai 

beberapa kelemahan. Antaranya, penggunaan tenaga metabolik yang tinggi dan tidak 

dapat mengikut ciri-ciri dinamik dan kinematik gaya berjalan yang normal. Sebaliknya, 

prostesis aktif menawarkan prestasi yang lebih baik dan menggunakan tenaga metabolik 

yang kurang. Walau bagaimanapun, kebanyakan prostesis aktif yang terkini 

menggunakan elektromiografi (EMG) sebagai sistem deria yang memerlukan penyediaan 

yang remeh, boleh menyebabkan luka-luka kepada pesakit oleh elektrod yang digunakan 

dan memerlukan banyak pengiraan untuk mengekstrak ciri-ciri daripada isyarat sistem 

deria tersebut. Fokus tesis ini ialah pada pembikinan litar elektrik untuk menyelaras 

isyarat yang diperoleh daripada sistem sensori di dalam soket yang menggunakan 

beberapa sensor piezoelektrik bagi mengklasifikasikan enam jenis aktiviti berkaitan 

duduk-ke-berdiri pada orang yang kudung transfemoral. Selain itu, ia menentukan kaedah 

klasifikasi yang paling tepat dengan menilai ciri-ciri berasaskan domain masa yang 

optimum dan memilih set ciri-ciri yang berfungsi dengan baik, dan mengenal-pasti kesan 

saiz tetingkap pada ketepatan dalam mengklasifikasi aktiviti-aktiviti itu. 

Lima belas sensor piezoelektrik diletakkan di bahagian dalam dinding soket supaya ia 

bersentuhan dengan kawasan paling aktif agonist dan antagonis lutut extensor dan otot 

flexor, iaitu kawasan yang merekodkan kadar kontraksi otot quadriceps dan hamstring 

yang tertinggi. Seorang subjek lelaki yang diamputasi tahap transfemoral memakai soket 

yang dipasangkan dengan sensor itu dan diarahkan untuk melakukan beberapa variasi 

pergerakan duduk dan berdiri menggunakan kerusi tanpa pemegang. Data dikumpulkan 
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dari lima belas sensor dan melalui litar penyaman isyarat. Teknik bertindih digunakan 

untuk menyusun data menggunakan tetingkap yang berbeza kepanjangan. Tiga belas ciri-

ciri berasaskan domain masa telah diekstrak dan set ciri-ciri baru diperolehi berdasarkan 

prestasi ciri. Lapan daripada klasifier yang biasa digunakan untuk mengenal pasti corak 

dinilai dan dibandingkan. Analisis regresi digunakan untuk mengenalpasti impak kepada 

ketepatan pengelas dengan perubahan bilangan ciri dan panjang tetingkap. Kaedah 

pengesahan bersilang ‘k-fold’ digunakan untuk mengira ketepatan klasifikasi, dan 20% 

daripada data diasingkan untuk menilai pengelas yang optimum. 

Dapat dilihat bahawa litar penyelarasan isyarat yang telah dibina, protokol eksperimen 

dan kaedah mengumpul data yang digunakan mampu menghasilkan isyarat yang 

konsisten dan mampu mengklasifikasikan setiap aktiviti antara satu sama lain. Hasil 

kajian menunjukkan bahawa set 2 ciri yang terdiri daripada ‘Root Mean Square’ (RMS) 

dan bilangan puncak mencapai ketepatan klasifikasi tertinggi (97.82%) menggunakan 

‘Support Vector Machine’ (SVM) dengan kernel kubik. Selain itu, ia menunjukkan 

bahawa panjang segmen yang berbeza dari 150 ms hingga 600 ms tidak mempunyai kesan 

yang ketara ke atas ketepatan pengelasan menggunakan set yang terdiri daripada 2 ciri. 

Keputusan menunjukkan bahawa set yang  mengandungi 2-ciri yang terdiri daripada 

RMS dan bilangan puncak menghasilkan ketepatan klasifikasi yang tertinggi apabila diuji 

dengan kebanyakan pengelas. Selain itu, ia juga menunjukkan bahawa panjang segmen 

yang berbeza dari 150 ms hingga 600 ms tidak mempunyai kesan ketara pada SVM 

menggunakan set 2-ciri. SVM dengan kernel kubik dicadangkan untuk menjadi pengelas 

optimum dan hasil ujian dengan set data ujian mencapai ketepatan pengelasan 98.33%. 

Kesimpulannya, kajian ini menunjukkan penggunaan sensor piezoelektrik dalam-

soket untuk mengklasifikasikan aktiviti-aktiviti orang kurang upaya transfemoral 

menggunakan pengenalan corak. Berbagai variasi aktiviti duduk dan berdiri dapat 
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diklasifikasikan dengan tepat menggunakan dua ciri domain waktu dan SVM dengan 

kernel kubik. 

kata kunci: Orang kurang upaya pransfemoral; prostetik transfemoral; penderia 

piezoelektrik; penderia di dalam soket; pengelasan 
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CHAPTER 1: INTRODUCTION 

1.1 Overview  

The term disability, in many cases, is commonly attributed to limitations in normal human 

movement, vision, respiration, hearing, or balance. It can be highlighted that both disabled 

and nondisabled people have the same health needs that enable them to practice the activities 

of daily living such as feeding and oneself, work, and other activities. Movement-related 

disabilities are either congenital (birth defects) or occur during someone's life (El-Sayed et 

al., 2015). The former is present from birth whereas the latter emerges in some people after 

particular diseases or accidents during their lifetime which, as a result, leads to upper or lower 

extremities amputations. In some cases, additional assistive devices are required to help them 

perform these activities. Limitations in movements, especially for people with major lower 

limb amputations, restrict their performance of basic daily activities such as walking, stair 

ascent/descent, running, standing and sitting (El-Sayed et al., 2015).  

Amputees confront emotional and financial changes due to the tragic loss of their limbs. 

Amputees require assistive devices to replace the missing limb(s). Prosthetic legs are 

artificial devices that replace the missing parts of a leg and restore functions of a sound leg. 

Prosthetic legs can be categorized into two groups (transtibial prosthesis and transfemoral 

prosthesis). The first category (transtibial prosthesis) is an artificial device that replaces the 

missing part of a leg amputated below the knee joint. The second category (transfemoral 

prosthesis) is an artificial limb which replaces above-knee amputated legs (Brooker, 2012). 
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1.2 Importance of sitting and standing movements 

Standing from seating position or a chair to upright posture is called sit-to-stand while 

sitting from standing position is called stand-to-sit. These two movements are two of the most 

essential and common daily activities. According to Yoshioka et al., ( 2009), sit-to-stand and 

stand-to-sit are performed at least 120 times per day which means each movement is repeated 

60 times. These movements are considered pre-requisites and post-requisites for upright 

movements such as walking, stair ascending and descending, and ramp walking. Also, 

performing these activities ensures the amputee’s independence. For instance, if amputees 

require someone to help and support them whenever they perform these movements, this will 

cause a burden on the caretaker. Therefore, performing these movements independently is a 

fundamental component for independence (Demura & Yamada, 2007). Additionally, in the 

mechanical term, sit-to-stand and stand-to-sit are considered among the most demanding 

activities. Sit-to-stand, for instance, requires a greater peak joint moment compared to other 

movements (walking or stair ascending). Three joints are mainly involved in performing sit-

to-stand and stand-to-sit, namely, hip, knee, and ankle joints. A transtibial amputee can 

perform these activities easier than a transfemoral amputee. A transfemoral amputee lacks 

two joints (knee and ankle) while a transtibial amputee lacks only one joint (ankle). 

1.3 Types of transfemoral prostheses 

There are two major categories of transfemoral prostheses, passive (purely mechanical) 

and active (computerized).  The passive type has pre-programable movements that replicate 

the movements of the sound leg, and it has a mechanical structure and requires no power 

source to operate. Although the passive prosthesis is the most durable and the most 

economical among the available prostheses, it is less adaptive to environment’s disturbances 
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compared to active prostheses (Martinez-Vilialpando & Herr, 2009). Moreover, the passive 

prosthetic legs can be classified based on the number of knee axes (single axis or multi-axis), 

fluid control system (pneumatic and hydraulic), and locking system (manual and weight-

activated) (Wang et al., 2005). On the other hand, the active type is equipped with an adaptive 

controller and actuator/s in the knee joint (Popovic et al., 1991). The active prostheses can 

be categorized based on the actuator type (powered knee or non-powered knee) which 

generates torque during activities. Figure 1.1 depicts the classification of the transfemoral 

prosthetic leg systems.  

 

Figure 1.1: Categories of the transfemoral prosthetic leg systems 

 

1.4 Sensors technology used in active transfemoral prosthesis  

The active prosthesis could cope with most of the passive prosthesis limitations with the 

help of embedded sensors, controllers and actuators (Jasni et al., 2016). Mainly, there are two 
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approaches to control the active prosthetic leg which can be classified as follow: 1) approach 

uses dynamic mechanical sensors which interact between the user and the residual limb, 2) 

approach measures muscle electrical activities in the residual limb using surface 

electromyography (SEMG) (Dawley et al., 2013; Yuan et al., 2015). The first approach is 

used by most of the active prosthetic legs, currently in use, that has sensory systems located 

away from muscles and knee axis. These mechanical sensory systems measure different 

parameters such as position, force, velocity, phase transitions, and torque to improve the 

controllability of the prosthesis. Parameters identification is essential to control the prosthesis 

by detecting the current or intended user’s movements (El-Sayed, Hamzaid, & Abu Osman, 

2014b).  

On the other hand, sensors closer to the muscles and knee axis can yield more accurate 

parameters which can be used to derive the user’s state of movement instantaneously. The 

second approach (EMG-based) was first introduced in 1991 to control a multifunction 

prosthesis (B. Hudgins et al., 1991). The EMG-based approach uses electrodes to detect the 

electrical activity produced by muscle, and then the acquired signal is fed to the controller. 

Previous work focused on using EMG measured signal as an input to a pattern recognition 

architecture and control the prosthetic by predetermined states (Huang, Kuiken, & Lipschutz, 

2009).  However, EMG technique has some drawbacks. Massive preparation work is needed 

to accurately place the electrodes in their proper positions which causes discomfort and skin 

problem to the user.  Additionally, electrodes could cause sores for the patient because of 

movements between the amputee ’s residual limb and the socket’s wall (Hargrove et al., 

2013). Feature extraction of the EMG signal is computationally intensive (Li et al., 2012). 

 .   
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1.5 Piezoelectric transducers in transfemoral prostheses 

Smart or intelligent materials can be found in several forms such as piezoelectric 

materials, magnetorheological fluids, and shape memory alloy, which are used in industrial, 

surgical and medical applications. They have the ability to respond to external stimuli such 

as temperature or stress. Smart materials’ properties allow smart materials to simulate or 

respond to environmental changes (El-Sayed et al., 2013). Piezoelectric materials have the 

ability to act as sensors or actuators. For instance, if a mechanical stress is applied on 

piezoelectric materials, electric charges will be generated. These electric charges will be 

proportional to the mechanical stress applied and are measured in volts. On the other hand, 

if electric charges are applied on piezoelectric materials, piezoelectric materials will contract 

and expand based on the polarity direction. 

Due to the ability of piezoelectric materials to act as sensors, researchers have attempted 

to utilize them in measuring the pressure between the socket and residual limb in the lower 

amputation field. A feasibility study, for instance, was conducted to identify prosthetic keen 

movements via pattern recognition of mechanical responses of force sensing resistor (FSR) 

and piezoelectric sensors (in two different setups) attached to the socket’s wall of a prosthesis 

(El-Sayed et al., 2015). The study showed that piezoelectric sensors could identify a wide 

range of measurements including phases of different movements such as mid swing and 

terminal swing, pre-full standing and stair ascent. On the other hand, FSR has some 

measurement limitations and could only estimate the gait cycle stance, and at the sit-to-stand 

movement, it could only estimate the pre-full standing phase. Furthermore, in another 

efficacy study (Jasni et al., 2016), a sensory system that uses piezo transducers inside a 

prosthetic socket was developed.  The piezo transducers were placed in direct contact with 
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the remaining part of the amputee’s leg (residual limb). In addition, the piezoelectric sensors 

were positioned in a zigzag orientation in order to cover the active regions of the two major 

muscle groups of the upper leg (Hamstrings and Quadriceps), and the proposed designed 

showed its effectiveness for a transfemoral prosthesis. 

1.6 Motivation of the study 

Safely performing ADL, such as sitting down on a chair or standing up, is an essential 

element in ensuring independent functioning (Zijlstra et al., 2012) . Conversely, confronting 

difficulties in performing these movements, which are prerequisites for gait and upright 

mobility, lead to a sedentary lifestyle (Kralj et al., 1990; Zijlstra et al., 2012). In comparison 

to non-amputees, transfemoral amputees utilize more metabolic energy (60% higher) and 

apply greater torque and power (300% higher) on the amputated side of their bodies (Jasni 

et al., 2016; Wang et al., 2013).  

Passive and active prostheses are used to assist amputees to perform ADL. The passive 

type has pre-programmable movements that replicate the movements of the sound leg 

(Grimmer & Seyfarth, 2014; Popovic et al., 1991) while the active type is equipped with an 

adaptive controller and actuator/s in the knee joint (Popovic et al., 1991). Although the 

current passive prostheses improve the quality of life of transfemoral amputees (Chen et al., 

2013), these passive prostheses do not adequately fulfill the needs of amputees during sitting 

down and standing up owing to the lack of external  power which assists the elevation of the 

boy weight and the high consumption of metabolic energy (Kapti & Yucenur, 2006; Lara-

Barrios et al., 2018). Powered active prostheses were introduced to overcome these 

shortcomings with the help of embedded electronics, controllers and electromechanical 

actuators (Huang et al., 2011; Jasni et al., 2016). Most of the active prosthetic legs, currently 
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in use, have embedded sensory systems located away from muscles which measure different 

parameters such as position, force, velocity, phase transitions, and torque to control a 

prosthesis system (El-Sayed et al., 2015). Inertial Measurement Units were utilized by 

Mueller, Evans (2011)  to obtain kinetic and kinematic data of lower limb prostheses. On 

the other hand, other active prosthetic legs utilize sensors closer to the muscles that provide 

information about neuromuscular activities which can be used to derive the user’s state of 

movement instantaneously (EMG-based approach) (El-Sayed et al., 2015; Huang et al., 

2005). However, the EMG technique has some drawbacks such as the necessity for skin 

preparation (shaving and applying gel before donning the socket) and weak signals with 

microvolt-level intensity which requires complex amplification circuitry. Also, EMG 

requires a relatively high number of electrodes which results in computationally intensive 

feature extraction (Li et al., 2012). For instance, in a study conducted by Hargrove et al. 

(2013), a grid of 96 electrodes and 13 mechanical sensors were used to classify movements 

of a transfemoral amputee. Extracting features from 109 sensors would be computationally 

expensive for the processor and would lead to a lag in the system’s response, therefore, 

which would make the controller unable to function in real-time. Moreover, the 

classification of EMG signals requires extracting a high number of frequency-domain and 

time-domain features. For instance, Geethanjali & Ray (2014) used a feature set consisting 

of 32 features extracted from EMG electrodes and linear discriminate analysis classifier to 

classify six movements of two transradial amputees. This high number of extracted features 

would put extra load on the processor.  
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To find an alternative for the EMG technique, researchers have attempted to measure the 

pressure between a socket and a stump of an amputee. For instance, the pressure of the 

transfemoral amputee’s stump (forces applied to the x-direction) was measured using 

Flexiforce network sensors which consisted of five embedded force sensors attached to the 

socket’s wall (El-Sayed et al., 2014). MEMS-based bubble pressure sensor and custom 

electronics were used to acquire interface pressure between a socket and an amputee’s stump 

(Wheeler et al., 2011). Moreover, piezoelectric materials were utilized to measure the 

pressure between the socket and residual limb in the lower amputation field due to the ability 

of acting as sensors. In a study conducted by Maurizio et al. (2017), piezoelectric sensors 

were utilized to measure normal pressure (both dynamic and static) in order to monitor the 

stress caused by the contact between prosthesis’ wall and the residual limb of an amputee. 

Additionally, Lorenzelli, Sordo (2017) developed a tri-axial force piezoelectric sensor which 

maps interaction forces between a socket and a leg of a transfemoral amputee. A feasibility 

study was conducted by El-Sayed, Hamzaid (2015) to identify prosthetic knee movements 

via pattern recognition of responses of piezoelectric sensors attached to the socket’s wall of 

a prosthesis. Findings from the study showed that piezoelectric sensors could identify a wide 

range of measurements including phases of different movements such as mid swing and 

terminal swing, pre-full standing and stair ascent.  

Utilizing piezoelectric sensors as a sensory system of a prosthetic leg would eliminate the 

preparation work before donning the socket and would require relatively simpler circuitry to 

filter and amplify sensors’ signals compared to EMG. Also, the thickness of the piezoelectric 

sensors could less than 0.03 mm which makes suitable to be placed on the internal wall of a 

socket and caused less skin impingement compared to EMG electrodes since the thickness 
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of EMG electrodes ranges from (5 mm to 15mm) (Hefferman et al., 2015). However, 

transfemoral amputees have substantial differences in the length of their stumps and very 

high variation ratios of muscles’ activities during locomotion (including hamstring and 

quadriceps) which affect the placement of the piezoelectric sensors and makes it impossible 

to standardize sensors configurations and placement (Wu et al., 2004)8/10/20 10:52:00 PM.  

Controlling active prosthesis based on information gathered from the residual limb is still 

at an experimental level apart from few commercially available technologies that use 

mechanical-based sensors to derive the residual limb movement. Moreover, the piezoelectric 

sensory system is still in its first stage and more work is required to develop and validate it. 

To date, no previous studies have been done to classify sitting and standing movements using 

piezoelectric sensors. Therefore, this thesis investigates if the piezoelectric sensor is a good 

alternative to control the powered prostheses by developing a proper method to classify 

variations of sitting and standing activities using the pattern recognition technique.  

1.7 Scope and aim of the study 

Improving the control system of the prosthesis requires a better sensory system and more 

information from the user’s states to enhance the prosthesis performance. This study aims 

to develop signal conditioning circuitry for in-socket piezoelectric sensors to collect and 

prepossess data which requires studying the characteristics and properties of the sensors, 

knowledge about digital signal processing, and data acquisition devices. After preprocessing 

the data, multiclass classifiers would classify six different activities of a transfemoral 

amputee which needs comprehensive knowledge and experience of data segmentation, 

feature extraction, feature selection, programming, statistics, classification algorithms, and 

machine learning techniques.  The specific objectives of the study can be listed as follows:  
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1. To generate a consistent and distinguish signal pattern for each sitting and standing 

variations by developing signal conditioning circuitry for the in-socket sensory 

system, a data collection method, and an experimental protocol.  

2. To identify the most effective feature set and investigate the effects of varying 

window lengths on the classification accuracy. 

3. To determine the optimal classifier for categorizing six variations of sitting and 

standing activities of a transfemoral amputee via in-socket sensory system utilizing 

piezoelectric-based in socket sensors.  

1.8 Thesis structure 

This thesis has five chapters. The first chapter presents the introduction, research 

motivation and the aim of the study. The second chapter contains the literature review which 

depicts the current technologies used in the prosthetic leg field. The third chapter 

demonstrates the methodology used in this thesis, experiment setup, data collection, feature 

selection, and pattern recognition algorithms. The fourth chapter illustrates the experiment’s 

results and discusses the impacts of the results.  The last chapter is the conclusion which 

sums up the whole thesis, gives recommendations and highlights the limitations of the thesis.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The development in the field of transfemoral prosthetic leg helps amputees to perform 

daily life activities in a normal way like non-disable people. For this reason, researchers 

have been encouraged to develop and improve the technology used in transfemoral 

prostheses and the sensory system of the prostheses is no exception.   

This chapter depicts the latest technology advancements in the field of the transfemoral 

prosthesis. Different types of sensory systems used in transfemoral prostheses development 

and their functionalities are discussed. Also, the biomechanics and phases of sit-to-stand and 

stand-to-sit movements are presented. Most popular pattern recognition classification 

algorithms are presented as well. Furthermore, data windowing methods and feature 

extraction are reviewed in this chapter. 

2.2 Passive prosthetic leg 

The single axis knee has only one axis of rotation which allows it to swing backward and 

forward like a door hinge. It is considered the most economical knee and most durable. 

Therefore, it is used mostly by children since they grow up quickly and need to replace the 

prostheses when they get older. The single-axis prosthesis has several limitations. It has no 

stance control, also; it is free-swinging. Amputees need to use their muscles to stabilize and 

control the prosthesis. In contrast, the polycentric (multi-axis) knee, is also called the four-

bar knee, has more than one axis of rotation which offers more stability during the stance 

phase. Also, it can be bent easily during the swing phase. Examples of the single axis and 

multi-axis prostheses are shown in Figure 2.1 (Grant McGimpsey & Terry C. Bradford, 

2011).  
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(a)       (b) 

Figure 2.1: An example of single and polycentric prosthetic knee joint (a) Otto 
Bock 3R95 single axis knee (ottobock, 2016b), (b) ÖSSUR Total Knee® 1900 

polycentric knee(OrtoPed, 2011) 

The passive prosthetic leg uses fluid dynamic (pneumatic and hydraulic) systems to 

provide fixed impedance, and the friction of the prosthesis varies based on the speed of the 

walking amputee. The pneumatic system stores energy during knee flexion (compressing air) 

and releases energy via knee extension. The hydraulic system can provide a wider range of 

walking speed compared to the pneumatic system. Instead of air, the hydraulic system uses 

silicone oil which provides smoother gait. Although the hydraulic offers performances close 

to the normal of the sound knee, costs more, requires more maintenances, and weights more 

compared to the pneumatic system (El-Sayed et al., 2014).    

The passive prosthetic legs have no sensors to ease the interaction between amputees and 

the environment. There are two approaches to stabilize the prosthesis during stance phase; 

manual locking and the weight-activated stance-control. The manual locking approach 

which the amputee walks with a stiff knee utilizes a lever to unlock the knee in order to 

stabilize the user during knee extension, as shown in Figure 2.2(a) This prosthesis requires 
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high energy during walking which the amputee has to bear (Jay Martin, 2010).  Another 

approach is the weight-activated stance-control knee, shown in Figure 2.2(b), which can be 

found in both single axis and polycentric knee. It uses a constant friction to stabilize the 

prosthesis during the stance phase. When the weight of the body transfers to the prosthesis, 

an embedded brake will be activated to prevent buckling (Martinez-Vilialpando & Herr, 

2009). A spring, which can store energy, is used to aid the prosthesis during the swing phase 

by loading during weight bearing and releasing the energy stored during the swing phase. 

One drawback is that it requires accurate and frequent adjustments to ensure the lock is 

working effectively. Also, only one walking speed can be set to this kind of prosthesis. 

However, most of the recent polycentric prostheses use either hydraulic or pneumatic swing 

control to adjust the walking speed. 

 

 

 

(a)       (b) 

Figure 2.2: (a) The manual locking knee attached to a socket (PnOCare, 2012), (b) 
The weight-activated stance-control knee, 3R49 Otto Bock (Ottobock, 2017) 
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Generally, the passive prosthesis is used in the prosthetic limb field due to its robustness, 

light weight, and low cost. Nevertheless, amputees need to stabilize the prosthesis during 

standing using their muscles which might cause fatigue. Additionally, in comparison to non-

amputees, transfemoral amputees with non-powered prostheses  utilize more metabolic 

energy (60% higher) and apply greater torque and power (300% higher) on the amputated 

side of their bodies (Jasni et al., 2016; Waters RL et al., 1976). 

2.3 Active prosthetic leg 

Due to the advancements in technology and the need to overcome passive prosthesis 

drawbacks, the passive prosthetic leg was upgraded to the active prosthetic leg which 

equipped with microprocessor and sensors to control the actuators in order to increase the 

flexibility and knee angle range during movement. Sensors’ main function in the active 

prosthetic leg is to measure the parameters of the leg’s kinematic (knee angle) and kinetic 

(torque). The active prosthetic leg can be grouped into powered (motorized) prosthesis and 

non-powered prosthesis.   

The active non-powered prosthesis, also called adaptive dissipative prosthesis, utilizes a 

microprocessor, sensors, and actuators to adjust the impedance. A microprocessor is used to 

regulate the impedance by tuning fluid dynamics. For instance, the microprocessor in C-leg 

(manufactured by Otto Bock) tunes hydraulic values to adjust the impedance, and in Rheo 

knee (manufactured by Össur), it controls the impedance by varying the magnetic field in a 

magnetorheological fluid. However, this type of prosthetic legs cannot support the amputee 

to perform energy-demand activities such as stair climbing and sit-to-stand. Figure 2.3 

shows two examples of active prosthetic legs (the Rheo Knee and the C-leg). 

Univ
ers

ity
 of

 M
ala

ya



15 

 

   (a)     (b) 

Figure 2.3: Examples of non-powered active prostheses (a) C-Leg (Ottobock, 
2016a), (b) Rheo Knee (Össur, 2018) 

 

The powered or motorized prosthetic leg is another type of the active prosthesis which has 

the capability to support and assist an amputee to perform several activities such as ramp 

descent, standing, stair descent, and level walking. Furthermore, the powered prosthetic leg 

has the ability to detect instances of stumble (Jay Martin, 2010). Moreover, having external 

power enables the prosthesis to adapt to walking in different environments. Although 

powered prosthetic leg assists amputees to perform the mentioned motions, it has some 

limitations when it comes to delivering sufficient joint power to perform movements such as 

sit-to-stand movement and stair climbing (Wolf et al., 2012). Example of the powered 

prostheses are the active agonist-antagonist knee prosthesis (Martinez-Vilialpando & Herr, 

2009), the powered clutchable series-elastic knee prosthesis (Rouse, Mooney, & Herr, 2014), 
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Össur Powered Knee, and the Vanderbilt leg (Sup et al., 2009). Figure 2.4 illustrates 

examples of powered artificial legs.  

 

 

 

 

 

 

 

 (a)                               (b) 

Figure 2.4: Examples of  powered prosthetic legs (a) the powered clutchable series-
elastic knee prosthesis (Rouse et al., 2014),  (b) Vanderbilt Leg (Vanderbilt, 2013) 

2.4 Sitting and standing activities 

Safely performing daily life activities, such as sitting down on a chair or standing up, is 

essential in ensuring independent functioning. On the other hand, confronting difficulties in 

performing such movements lead to an inactive lifestyle (Zijlstra et al., 2012). Thus, 

movements such as sitting and standing up are vital to amputees and prerequisites for gait 

and upright mobility. Besides, standing up is essential for several organs to function properly 

such as bladder, kidney, and intestines. Moreover, standing up helps in maintaining proper 

bone shape (Kralj, Jaeger, & Munih, 1990). Walking, stair ascending and descending are 

examples of everyday activities performed while standing. Inabilities or difficulties in 
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performing these movements easily lead to falling. Many studies have been conducted to 

measure, analyze and detect sitting and standing movements to avoid the risk of falling. 

Falling can cause major injuries for amputees and can negatively change their self-

confidence. However, most of these studies were conducted on healthy and elderly subjects, 

not on transfemoral amputees. For instance, in one study (Wheeler et al., 1985) healthy adult 

women subjects were recruited to perform sit-to-stand movements, and video cameras, EMG 

electrodes (positioned on vastus lateralis and triceps brachii), force plates, and seat switches 

were utilized to measure and analyze the movement. In other studies, accelerometer, 

optoelectronic system and gyroscope were utilized. Several determinants were considered in 

these studies such as the height of a chair, the arm position, the speed of performing the 

movement, and the foot and knee positions.  Some studies divided the sit-to-stand and stand-

to-sit into five phases, others into only two phases while the majority divided them into three 

phases (Galli et al., 2000; Hesse et al., 1994; Park et al., 2003). 

2.5 Biomechanics of sit-to-stand and stand-to-sit 

Standing up from a chair to an upright posture while maintaining balance is defined as a 

sit-to-stand movement, which is considered one of the frequent daily activities. Sit-to-stand 

movement can be divided into three phases, as shown in Figure 2.5; 1) Start (Sitting Posture 

Phase), when an individual starts moving from a sitting posture; 2) Seat-off (Sit-to-Stand 

transfer Phase), when the individual’s bottom  leaves the chair; 3) Finish (Standing Phase), 

when the individual is in a fully upright posture (Yoshioka et al., 2009). The first phase starts 

by tilting the anterior pelvic which gives rising’s initial momentum followed by a trunk 

extension and hip flexion and ends before the glutes leave the chair. The second phase starts 

after the ankles reach their maximum dorsiflexion. The hamstrings muscles group supports 
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the body during the transition by flexing the knee joint and extending the thigh. Glutes are 

responsible for straightening out hips, and this phase ends when the hips stop extending. The 

last phase is standing which requires calf muscle, soleus and gastrocnemius to stabilize the 

body during standing (Kotake T et al., 1993; Roebroeck et al., 1994). 

 

 

Figure 2.5: Stages of sit-to-stand movement (Yoshioka et al., 2009b) 

Sitting down from upright postures is defined as a stand-to-sit movement. It is vital for 

physical independence and one of the basic movements in daily mobility. Like sit-to-stand, 

stand-to-sit movement  can also be divided into three phases; 1) Start (Standing Phase), when 

an individual is in an upright posture and start preparing to sit down; 2) Seat-on (Stand-to-

Sit Transfer Phase), when the individual’s bottom starts touching the chair; 3) Finish (Sitting 

Phase), when the individual is in sitting position (Tsukahara et al., 2010). 

2.6 Sensors used in transfemoral prosthetic leg 

In order for a prosthetic leg to perform optimally, its control system requires several input 

variables; therefore, a variety of sensors is used in the prosthesis (Syrseloudis et al., 2008). 

The control variables need to be determined in order to select the appropriate sensory system 

for the prosthesis. For instance, two variables (force and flexion parameter) are required in 

adaptive-control of a prosthetic leg (Herr & Wilkenfeld, 2003). During a gait cycle, the 
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microprocessor varies the resistance of the knee joint according to the acquired information 

from the sensors. In addition, the knee flexion/ extension was measured by angle sensors that 

were attached to the knee axis. A study conducted by Kapti and Yucenur (2006) utilized a 

potentiometer in the development of an above-knee prosthesis (AKP). The potentiometer was 

located at the center of the joint, as shown in Figure 2.6, and was utilized to measure the knee 

joint angle in order to track pre-defined patterns during the gait cycle. 

In another study, an agonist-antagonist active knee prosthesis (AAAKP) was designed by  

Martinez-Villalpando et al. (2008) which used digital encoders to measure ankle angle and 

motor displacement, and it used hall effect sensors to measure heel strike and spring 

compression. Also, AAAKP used an inertial measurement unit (IMU) to measure limb 

acceleration. Different sensory systems were employed by the researchers to provide 

sufficient input data for controllers, so the prosthetic leg would be able to duplicate the 

normal gait cycle. 

 

 

 

 

 

Figure 2.6: The above knee prosthesis (AKP) at different knee flexion angles (Kapti 
& Yucenur, 2006) 
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Various types of mechanical sensors such as accelerometers, gyroscopes, and vertical load 

sensors are used in prosthetic legs to interact with the user and the mechanical leg in order to 

improve the controllability and stability. Many attempts have been conducted by researchers 

to enhance the performance of the prosthetic leg. FSR, which is placed under the prosthetic 

foot, is used to indicate when the heel strike or toe-off during the gait cycle. FSR has several 

good features such as low cost, relatively thin, ability to generate analog signals and small 

size (Syrseloudis et al., 2008). Another use of  FSR is to measure the pressure distribution 

patterns corresponding to muscle contraction in the forearm (Li et al., 2012). However, in the 

transfemoral prosthesis field, FSR is used to detect phases of gait cycle by placing the sensor 

under the foot, so that it can detect when the foot touches and leaves the ground. Sensors 

need to be located as close as possible to the residual limb of the amputee to provide sufficient 

input data to the controller and advance the performance of the prosthesis. In addition, in 

order to have a real-time detection of the prosthesis activities, sensors need to be in direct 

interaction with the amputee stump. However, the current techniques have limitations when 

it comes to direct interaction between the sensory system and the residual limb of the 

amputee. Thus, some studied attempted to detect the user’s intention using 

electroencephalography (EEG) and electromyography (EMG) to advance the prosthesis’s 

control system.  

Beside mechanical sensors, electroencephalography and electromyography are the most 

recent sensory systems used to improve controlling mechanical legs. In EMG technique, 

muscle activities are detected using electrodes, as shown in Figure 2.7, and the acquired 

signal is then fed to the controller. The controller will send a command to the actuator in 

order to adjust the prosthesis accordingly. EMG signal works as a feedback, which updates 
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the activities of the user, to the control unit of the prosthesis. Prostheses that are controlled 

using EMG are called myoelectric control, and they are used, in the field of transfemoral 

amputation, to do repetitive tasks. Compare to other mechanical-sensor data, EMG control 

information is considered less robust since EMG signals are noisy. 

 Amplification circuit is needed in order to eliminate noise from EMG signals which may 

cause some problems if precautions have not done appropriately. Additionally, electrodes 

could cause sores for the patient because of movements between the amputee’s remaining 

part of the leg ( residual limb) and the socket’s wall (Hargrove et al., 2013). Apart from the 

sores which electrodes cause, sweating, produced due to long contact between residual limb 

and electrodes, causes discomfort and skin problem. In addition, EMG control method has 

some notable shortcomings including: 1) massive preparation work is needed to accurately 

place the electrodes at their proper positions which causes discomfort and skin problems; 2) 

feature extraction of the EMG signal is computationally expensive; 3) noise could be caused 

by sweat, mechanical stress and electromagnetic radiation (Li et al., 2012). 
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Figure 2.7: Electromyographic (EMG) and Mechanical Sensor (Hargrove et al., 
2015) 

Electroencephalography (EEG) signal is the electrical activities of the brain recorded by 

electrodes which are placed on the scalp. The neurons of a human brain process information 

by changing electrical current flow which generates magnetic and electric fields. EEG 

technique is used widely in clinical work and the evaluation of brain disorders. Researchers 

have attempted to use the EEG technique to control prosthetic legs. Due to the short lifespan 

and the absence of robustness, EEG technique is not a good option to control the prostheses. 

The amplitude of the EEG signals is very small which makes them contaminated by noise 

easily (Deepa, Thangaraj, & Chitra, 2010). In addition, the signal-to-noise ratio of the EEG 
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signals is very small; thus, noise can be generated by the electrodes, cables or the body of 

the patient (Khatwani, 2013). 

Beside EMG and EEG, several works have been proposed to use mechanical sensors to 

measure force and torque in the prosthesis (Eshraghi et al., 2013). Also, Inertial 

Measurement Unit (IMU) was suggested to be used to acquire kinetic and kinematic data 

from the prosthetic leg during amputee movements (Jasni et al., 2016). 

Overall, apart from the drawbacks mentioned about EEG and EMG techniques, some 

health and ethical considerations have to be taken during acquiring data from EEG and EMG 

electrodes. Moreover, EMG electrodes need to be clean and dry before donning the socket. 

Thus, it is highly recommended to look for an alternative to replace the current techniques 

used to interact between the residual limb and control system of the prosthetic leg to ensure 

better performance that mimics the sound leg. 

2.7 Piezoelectric transducers 

Many studies have attempted measuring the generated force inside stumps using 

piezoelectric transducers for both transtibial and transfemoral amputees due to its electro-

mechanical feature. In a study conducted by Ali et al. (2013), F-socket transducers 9811E 

was used to study the interface pressure generated by the transtibial amputees’ stumps. The 

transducers were placed in several positions such as anterior, posterior and lateral to obtain 

the greatest possible pressure interface between the sockets and stumps. Several trails were 

conducted to measure the interface pressures during ascending and descending stairs, and 

the study showed that the interface pressures exist between the socket and stump. Another 

study attempted to measure the pressure of the transfemoral amputee’s stump using 
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Flexforce network sensors which consist of five Flexforce elements. The result of the study 

was promising since it could measure the forces applied to the x-direction (El-Sayed, 

Hamzaid, & Abu Osman, 2014a). 

Piezoelectric materials have the capability to act as sensors which encourages researchers 

to attempt utilizing them in transfemoral prostheses sockets to measure the pressure between 

the residual limb of the amputee and the wall of the socket. Piezoelectric bimorph can be 

placed on the wall of the socket, where high interface pressure is expected such as anterior 

distal and posterior regions, which is directly in contact with the residual limb (Ballas, 

Schlaak, & Schmid, 2006). A feasibility study was conducted to identify prosthetic keen 

movements via pattern recognition of mechanical responses of force sensing resistor (FSR) 

and piezoelectric sensors (in two different setups) attached to the socket’s wall of a 

prosthesis. The first setup consisted of two FSR attached to the posterior and interior of the 

socket’s wall whereas the second setup consisted of three piezo sensors attached to the 

anterior proximal, anterior distal and posterior of the wall of the fabricated socket. The 

technique was validated by several movements such as stair ascending and gait cycle as 

shown in Figure 2.8 and Figure 2.9, respectively. 
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Figure 2.8: Locations of FSRs attached to the socket’s wall(El-Sayed et al., 2015) 

 

 

Figure 2.9: Locations of piezo sensors inside the socket at anterior and posterior 
sites (El-Sayed, 2015) 

The study showed that piezoelectric sensors could identify a wide range of measurements 

including phases of different movements such as mid swing and terminal swing, pre-full 

standing and stair ascent. On the other hand, FSR has some measurement limitations and 

could only estimate the pre-full standing phase at sit-to-stand movement and the stance 
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phase at the gait cycle; thus, FSR would be useful to act as a trigger in the knee movement 

such as walking, sit-to-stand, and stair ascending (El-Sayed et al., 2015).  

An efficacy study was conducted by Jasni et al. (2016) to develop a sensory system that 

uses piezo transducers inside a prosthetic socket.  The piezo transducers are directly in 

contact with the amputee’s residual limb. The study’s results suggested that piezo 

transducers need to adopt Cushion-All with Fit size (CA FIT) cantilever in order to be 

mounted on the socket’s wall. In addition, sensors need to be positioned in a zigzag 

orientation in order to cover active regions of the Quadriceps and Hamstring muscles, and 

the proposed design was proven to be effective for a transfemoral prosthesis.  

 In a study conducted by Maurizio et al. (2017), piezoelectric sensors were utilized to 

measure normal pressure (both dynamic and static) in order to monitor the stress caused by 

the contact between prosthesis’ wall and the residual limb of the amputee, as shown in  Figure 

2.10 Another study, conducted by Lorenzelli et al. (2017), developed a tri-axial force 

piezoelectric sensor which could map the interaction forces between the socket and the leg. 

The contribution of the study was to enhance and optimize the design of a transfemoral 

socket. 
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Figure 2.10: Flexible printed circuit board integrated with piezoelectric sensors to 
measure the stress between the socket’s wall and the residual limb of the amputee 

(Maurizio et al., 2017) 

2.8 Pattern recognition in prosthetic limbs 

Pattern recognition classifies data into different classes based on their features. Mainly in 

pattern recognition, the classification methods are divided into two categories: supervised 

and unsupervised classification.  In the field of prosthetic limbs, pattern recognition is 

considered a promising approach which could detect the user’s instantaneous movements 

from EMG signals and control set of motions (Smith et al., 2011). B. Hudgins (1993) 

introduced the first real-time pattern recognition approach with high accuracy and 

performance. This study utilized the use of multilayer perceptron neural network classifier 

with a set of simple time-domain statistics.   

In another study, four different motions were classified with an error rate of 10% using a 

Gaussian mixture model with EMG for upper limb prostheses (Huang et al., 2005). This 
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study attracted the attention of researchers and renewed their interest in using a pattern 

recognition approach to control prostheses. Generally, the pattern recognition approach starts 

by segmenting data and then extracting useful information from the segmented data. Finally, 

the pattern recognition algorithm (classifier) will categorize the input data into output 

categories. 

2.8.1 Data windowing 

It is commonly believed that the raw data of piezoelectric sensor signals are useless input 

for pattern recognition approach due to its random nature. Thus, signal segmentation or data 

winnowing is required to extract descriptive features from raw data. These descriptive 

features will then be fed to a classification algorithm to determine a class of the raw data. 

There are mainly two approaches of data windowing, namely: 1) overlapping and disjoint 

segmentation. The former one depends on the segmentation length, processing time and the 

increment length while the latter relies only on the segmentation length and processing time. 

Englehart and Hudgins (2003) introduced the overlapping segmentation technique in their 

work.  

Figure 2.11 shows the overlapping technique introduced in their work. The length of the 

segment is   !". In order to find the number of samples, the segment length !" is multiplied 

by the sampling rate. To find the number of new samples which will be segmented and 

analysis next, the sampling rate is multiplied by the window increment ( !#$% ). !#$% needs to 

be shorter than !" in order to produce the best possible stream processing.  !& is the signal 

processing time, which is the time required by a processor to segment and analyze the 

previous window. 
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Figure 2.11: The overlapping method for segmenting data (Smith et al., 2011) 

The disjoint method divides a sequence of data into disjoint subsets (segments). Figure 

2.12 shows the disjoint method for segmenting a sequence of data, where PT is the processing 

time and S is the segment length. 

 

 

Figure 2.12:The disjoint method for segmenting data (Oskoei & Hu, 2008) 
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2.8.2 Feature extraction 

Pattern recognition consists of three main stages (data windowing, feature extraction, and 

classification). Figure 2.13 shows feature extraction which is one of the main procedures in 

pattern recognition. Feature extraction obtains useful information from the subsets of the data 

sequence. Thus, several studies have been conducted to extract features from the signals in 

the field of pattern recognition such as time-domain feature and frequency-domain features 

(Liu et al., 2013). Time and frequency analysis methods are wildly used in the field of pattern 

recognition because of their noticeable physical interpretation and relatively low 

computational cost. In the time-domain analysis, for instance, slope sign changes (SSC), 

mean absolute value (MAV), zero crossing (ZC), root mean square (RMS), and mean 

absolute value slope (MAVSLP) are among the most used time-domain features. In the 

frequency-domain analysis, cepstral coefficients and Fourier transform coefficients are the 

common feature extraction methods.  Recently, researchers have combined the two methods 

(time and frequency domain analysis) to introduce a new analysis method called time-

frequency method. Wavelet package, short time Fourier transform, and wavelet are the most 

common features in time-frequency method (X. P. Chen, Zhu, & Zhang, 2010). 

 

Figure 2.13: Block diagram of piezo signal classification based on pattern 
recognition 
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Pattern recognition and feature extraction have been used widely in the field of prosthetic 

limbs. In a study conducted by Oskoei and Hu (2008), frequency-domain and time-domain 

features were used to classify hand’s movements using myoelectric control. Time-domain 

features such as variance, root mean square, mean absolute value, and zero crossing were 

chosen in this study. Furthermore, frequency-domain features were used in their work such 

as power spectrum, mean of signal frequency and autoregressive coefficients.  

In a study conducted by Angkoon, Chusak, and Pornchai (2009), six upper limbs motions 

were classified by extracting frequency-domain and time-domain features from eight 

different EMG electrodes. Time-domain features such as mean absolute value, integrated 

EMG, mean absolute value slope, simple square integral (SSI), zero crossing and root mean 

square were extracted from the eight electrodes. Besides, frequency-domain were also 

evaluated. Autoregressive coefficients (AR), and modified median frequency (MMF) were 

extracted from the EMG electrodes. The classification rate validated by Leave-One-Out 

showed that MAV, ZC, SCC, AR, and RMS have the cleanest level of signal-to-noise ratio 

(SNR).   

In another study conducted by Xi et al., (2017), a wearable leg EMG sensors were utilized 

to monitor activities and detect falling using pattern recognition. The study tested several 

features (time-domain and frequency domain). Time-domain features consisted of variance, 

zero crossing, integral of absolute value (IAV), number of turns (NT) or slope sign changes, 

wavelength (WL), and mean of amplitude (MA). Frequency-domain features, on the other 

hand, consisted of zero crossing of wavelet coefficient (ZCWT), mean frequency (MNF), 

energy of wavelet packet coefficient (EWP), and energy of wavelet coefficient (EWT). The 
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results show that frequency-domain features require more time compare to time-domain 

which make them not suitable for instantaneous monitoring and fall detection. 

The following are the most common time-domain and frequency-domain features which 

were used in this work:  

2.8.2.1 Mean Value 

Mean value can be calculated by taking the average of the piezoelectric signal of each 

window. It requires low memory space and low computational power to be obtained which 

makes it one of the most popular time-domain features. The formula of mean value can be 

expressed as (Geethanjali & Ray, 2014):  

Mean = 1
N
∑ xn

 N
n=1     (1) 

where N is the length of the piezoelectric signal segment, and ($		 is the n sample of the 

piezoelectric segmented signal 

2.8.2.2 Standard deviation 

Standard deviation is used to measure and quantify the amount of variation of a set of data 

relative to its mean value.  Standard deviation is calculated as the square root of the variance. 

It is defined as follows (Angkoon et al., 2009):  

 SD =  *			1
N
∑ (xn-x+ )2N

n=1                      (2) 

where N is the length of the piezoelectric signal segment whereas ($	and	(̅		are the n sample 

of the piezoelectric segmented signal and the mean of the signal, respectively. 
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2.8.2.3 Skewness 

Skewness is a statistical term which used to measure the asymmetry of a data from the 

normal distribution. There are three types of skewness values which can be positive, 

undefined and negative. The positive value indicates the data are spread more towards the 

right side and it is called right skewness. On the other hand, the negative value indicates that 

the data are spread more towards the left side; therefore, it is called left skewness. When the 

value of the skewness is zero, it indicates that the data are normally distributed around their 

mean. The formula of skewness is expressed as (Riillo et al., 2014): 

Skewness=∑ (xn-x+)3

Nσ3
	N
n=1     (3) 

where (̅ is the mean of the segmented signal, 0 is the standar deviation of the segmented 

signal and N is the number of samples. 

2.8.2.4 Variance 

Variance is used to measure the spread of data samples (numbers) from their mean. It can 

be calculated by subtracting each sample of the data from its mean value, squaring the 

difference, summing all the squared differences and dividing the summation by the number 

of samples. Variance is defined as (Xi et al., 2017):  

VAR= ∑ (xn-x+)2	N
n=1

N
        (4) 

where N is the length of the piezoelectric signal segment whereas ($	and	(̅		are the n sample 

of the piezoelectric segmented signal and the mean of the signal, respectively.  
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2.8.2.5 Zero crossing 

Zero crossing counts how many times the amplitude of a signal crosses the y-axis (zero). 

It describes the frequency of the signal. It is defined as follows (Angkoon et al., 2009): 

ZC= 1
2
∑ |	sgn(xn)	-	sgn	(xn-1)|	N-1

n=1      (5) 

where sgn is a sign function which is defined as follows: 

sgn(x)= 4     1,             sgn(x)		≥	0
-1,            sgn(x)	<	0                            (6) 

2.8.2.6 Root mean square 

Root mean square refers to the square root of the mean square of a signal, and it is also 

called the quadratic mean. The root mean square is referred as standard deviation when the 

signal has a zero mean. Root mean square can be defined as follows (Hargrove et al., 2013):  

	RMS	=	*	1
N
∑ 	xn

2	N
n=1         (7) 

where N is the length of the piezoelectric signal segment, and ($	is the n sample of the 

piezoelectric segmented signal. 

2.8.2.7 Number of peaks 

One way to distinguish a signal is to derive its number of local maxima peaks. Local peaks 

are those with value higher (depending on the threshold) than their neighboring samples. 

MATLAB function called findpeaks was used twice to find the number of local peaks. In the 

first time, it found the local maxima peak for the positive amplitude. Then, the signal was 

inverted by multiplying it by -1 and the function was called for the second time to count the 
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number of local peaks for the negative part of the signal. The amplitude threshold (minimum 

peak height) was set to 0.1 V and the distance threshold (minimum distance between two 

peaks) was set to 100 ms. 

2.8.2.8 Kurtosis 

Kurtosis is used to measure the distribution of data based on extreme values of the tail. 

When the value of kurtosis is positive it indicates that the tail of the data is exceeding the tail 

of the normal distribution (pointy tail). On the other hand, when the value of kurtosis is 

negative it indicates that the tail of the normal distribution is pointier which means the tail of 

the measured data is less extreme. Kurtosis’s formula is shown below (Dawley et al., 2013):  

kurtosis= N∑ (xn-x+)4

σ4
	N
n=1       (8) 

where (̅ and  0  the mean and standard deviation of the segmented signal, ($	is the n sample 

of the segmented signal and N is the number of samples. 

2.8.2.9 Integral of absolute value 

In discrete signals, integral of absolute value is calculated as the summation of each 

sample absolute value of the signal and divided by the total number of samples (N). The 

formula of IAV is expressed as (Xi et al., 2017) : 

IAV= 1
N
∑ |xn|N

n=1           (9) 

where ($	is the n sample of the segmented signal and N is the number of samples. 
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2.8.2.10 Simple square integral 

The energy of a signal is used as a feature using the simple square integral. The simple 

square integral is the summation of the square of the sample’s absolute value. SSI is a popular 

feature used in pattern recognition to detect muscle expansion and contraction. The equation 

of SSI is defined as (Xi et al., 2017):  

	SSI = ∑ |xn|	2	N
n=1                     (10) 

2.8.2.11 Mean absolute value 

The mean absolute value is calculated by taking the average of the absolute value of each 

sample. It is similar to the average rectified value which averages the rectified signal 

(absolute values). Mean absolute value is used widely in machine learning and pattern 

recognition due to its computational simplicity. MAV is expressed as (Smith et al., 2011):  

	MAV= 1
N
∑ |xn|N

n=1        (11) 

2.8.2.12 Slope sign change   

Another method to describe the frequency of the signal is by counting the slope sign 

changes. Slope sign change is also called the number of turns (NT). Slope sign change 

formula is defined as follows (Angkoon et al., 2009):  

	SCC=6[	f	((xn-xn-1)×(xn-xn+1))]
N-1

n=2

 

	f(x	)= 4 1 ,                      if x slope changes 
  0 ,   if no changes in slope occures          (12) 

where ($	is the n sample of the segmented signal and N is the number of samples. 
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2.8.2.13 Mean Frequency 

Mean frequency (MNF) is considered as a frequency-domain feature which is deployed 

from the power spectrum of the piezoelectric sensor. It is defined as the sum of the 

piezoelectric signal power spectrum multiplied by the frequency and divided by the 

summation of the signal spectrum intensity. The formula of the MNF is defined as follows 

(Thongpanja, Phinyomark, Phukpattaranont, & Limsakul, 2013): 

 

	MNF	= ∑ Pjfj
M
j=1

∑ Pj
M
j=1

    (13) 

where 9: is the frequency value, ;: is the power spectrum of the signal and M is the length of 
the frequency bin.  

2.8.2.14 Median Frequency 

Median Frequency (MDF) is also considered as a frequency-domain feature which is used 

to extract information from a signal. Similar to the mean frequency, the median frequency is 

deployed from the power spectrum of a piezoelectric signal. It can be defined as the value of 

the frequency which divides the power spectrum of the piezoelectric signal into two equal 

integrated power regions. MDF is expressed as follows:  

∑ Pj
MDF
j=1 =∑ Pj

M
j=MDF = 1

2
∑ Pj

M
j=1        (14) 

 

where MDF is the middle value of frequency which divides the signal power spectrum into 

two equal regions, <: is the power spectrum of the signal whereas the length of the frequency 

bin is M (Liu et al., 2013; Thongpanja et al., 2013).  
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2.8.2.15 Spectral power magnitude 

Spectral power magnitude (SPM) is calculated by performing the fast Fourier transform 

(FFT) for a data segment followed by finding the average of the power spectrum of the FFT 

segment. In previous studies, SPM has proved that it is an effective frequency- domain 

feature (Chen & Wang, 2013).  

2.8.3  Classification algorithms 

Pattern recognition technique is considered as a classification process, which its main aim 

is extracting patterns from given inputs (features) (Lihong Zheng & Xiangjian He, 2007). 

The classification algorithm plays a vital role in the overall recognition performance, 

recognition efficiency and computational complexity (Chen & Wang, 2013). Pattern 

recognition algorithms are categorized into two categories based on the learning method. The 

first category is unsupervised learning which is used to solve problems such as clustering and 

association. The second category is supervised learning which its algorithms used to solve 

problems such as classification and regression.   

In the recent years, the pattern recognition approach has been used widely in the field of 

prosthetic limbs using EMG and EEG signals. However, most of the applications are based 

on upper limb application. In a study (Chen & Wang, 2013),  a wireless surface EMG system 

was developed to classify Chinese number gestures. In this study, several pattern recognition 

algorithms were tested and compared. Linear discriminant analysis (LDA), k-nearest 

neighbor (k-NN), support vector machine (SVM) with different kernels, and quadratic 

discriminate analysis (QDA) were utilized to classify number gestures from zero to nine. The 

results showed that SVM and QDA could achieve classification accuracies above 95% while 

k-NN and LDA were less robust compared to SVM and QDA.  
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In another study conducted by Riillo et al. (2014), an EMG-based recognition system was 

employed to classify hand gestures of transradial amputees and healthy subjects. Three 

pattern recognition algorithms (SVM, LDA and artificial neural network (ANN) were 

compared to accurately recognize five hand gestures. Artificial neural network algorithm 

achieved the highest average classification accuracy (88.81% with a standard deviation of 

6.58) with healthy subjects using root mean square (RMS) and Willison amplitude (WA) 

features. The same algorithm (ANN) and features (RMS and WA) achieved 

92.04%classification accuracy with transradial amputees.  

Table 2.1 presents a summary of the reviewed literature.  It can be seen that all of the 

literature used EMG signals to classify activities of upper and lower limbs using the pattern 

recognition technique. Time-domain features were preferable due to their short processing 

time compared to frequency-domain features, computing simplicity, and low memory space. 
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Table 2.1: Summary of the state-of-the-art literature review on the pattern recognition technique with prosthetic 
applications 

 

 

Study 

 

Type of 
application 

Control 
method 

Time-domain 
features 

Frequency-domain 
features 

Window 

Length 
(ms) 

Classification 
algorithm 

Classification accuracy and 
other remarks 

(Oskoei & Hu, 
2008) 

 

Prosthetic hand 

 

Myoelectric 
ZC, RMS, 

VAR, MAV, 
WL, and SSC 

PS, AR2, AR6, 
median and mean of 
the signal frequency 

50-
500 

SVM, LDA and 
multilayer 

perceptron (MLP) 

SVM offered robust 
performance with exceptional 

accuracy 

(Angkoon et 
al., 2009) 

Arm 
gestures 

EMG 

RMS, VAR 
MAVS, SSC, 
ZC, WL, and 

histogram 

AR, modified 
mean frequency, and 

modified median 
frequency 

256 
Noise removal 
algorithm 

MAV, ZC, SCC, AR, and RMS 
have the cleanest level of signal-to-

noise ratio 

(Khokhar, 
Xiao, & Menon, 

2010) 

Wrist 
exoskeleton 

EMG RMS 
AR model 

coefficients 
250 SVM 

Accuracy for 19 classes is 88% 
and for 13 classes 96% 

(Chen & 
Wang, 2013) 

Hand 
gestures 

wireless 
surface 
EMG 

MAV, ZC, 
SSC and MAV 

ratio 

Spectral power 
magnitudes 

64 
k-NN, LDA, 

QDA, and SVM 
SVM and QDA classified with 

accuracies above 95% 

(Riillo et al., 
2014) 

Hand 
gesture 

EMG 
Mean, RMS, 

WA, SSC, SSI, 
PCA, and VAR 

NA 300 
SVM, ANN, and 

LDA 
ANN with RMS and WA achieved 

the highest accuracy Univ
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                                                                                                     Table 2.1 continued   
 

Study 

 

Type of 
application 

Control 
method 

Time-domain 
features 

Frequency-domain 
features 

Window 

Length 
(ms) 

Classification 
algorithm 

Classification accuracy and 
other remarks 

 

(Geethanjali & 
Ray, 2014) 

Prosthetic 
hand 

EMG 

MAV, ZC, 
SSC, WL, 

MAVS, VAR 
and RMS 

NA 256 

Simple logistic 
regression, decision 
tree, NN, LDA, and 
logistic model tree 

Five ensembles groups were 
obtained from the time-domain 

features and NN and LDA offer the 
highest classification accuracy. 

(Xi et al., 
2017) 

Wearable 
leg sensors 

EMG 

VAR, ZC, 
SSC, Mean of 
Amplitude and 

Histogram 

MF, AR 
coefficients, Energy 

of Wavelet 
Coefficient 

 

NA 
Gaussian kernel 

SVM and Fuzzy 
Min-Max NN 

Gaussian kernel SVM with 
frequency-domain achieved with 

the highest accuracy (97.35%) but 
with high calculation time 

 

*  Electromyography (EMG); zero crossing (ZC); root mean square (RMS); variance (VAR); mean absolute value (MAV); 
waveform length (WL); mean frequency (MF); slope sign change (SSC); autoregressive (AR); neural network (NN); linear 
discriminate analysis (LDA); quadratic discriminate analysis (QDA);  support vector machine (SVM); k nearest neighbor 
(k-NN);  power spectrum (PS);  principle component analysis (PCA);  simple square integral (SSI);  artificial neural 
network (ANN) 
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2.9 Summary 

In this chapter, a literature review of the existing technology of transfemoral was 

discussed and analyzed. This chapter illustrated a brief review of the existing technology 

of transfemoral prosthesis. Section two and three discussed the biomechanics of sitting 

and standing. Sensory systems used in transfemoral prostheses were described in the 

fourth section of this chapter. Besides, a literature review of the piezoelectric transducers 

used in transfemoral prostheses was discussed. The stages of the pattern recognition 

process were described in this chapter as well as the most popular features and 

classification algorithm used in pattern recognition. 

A transfemoral prosthesis is required to assist amputees to perform the activity of daily 

living (ADL). Although the passive prosthesis has advantages such as low cost, 

robustness, light weight and durability, it has some drawbacks which can be summarized 

as follows:   

1. Single axis prosthesis has no stance control and is free-swinging which means 

amputees need to use their muscle to control and stabilize the prosthetic leg.  

2. The hydraulic passive prosthetic leg requires frequent maintenance and weights 

more compared to other passive legs 

3.  The manual locking passive prosthesis requires high energy to perform 

activities which leads to fatigue 

4. The weight-activated stance-control prosthesis requires frequent and accurate 

adjustments to ensure the lock is working properly. Also, it has only one 

walking speed.  
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5. The current passive prostheses do not adequately fulfil the needs of amputees 

during sitting down and standing up owing to the lack of external  power which 

assists the elevation of the boy weight and the high consumption of metabolic 

energy. 

On the other hand, the active prosthesis consumes less metabolic energy and offers 

better performance owing to the embedded microprocessor, sensors, and actuators which 

allow to adjust the impedance. However, the recent active prosthesis cannot support the 

amputee to perform energy-demand activities such as stair climbing and sit-to-stand. 

Powered or motorized active prostheses were introduced to overcome these 

shortcomings. The powered active prostheses are controlled using embedded sensory 

systems located away from muscles which measure different parameters such as position, 

force, velocity, phase transitions, and torque to control a prosthesis system. These sensory 

systems lack the direct interaction with the amputee’s residual limb which, as a result, 

prevents exploitation of the useful information about neuromuscular activities which can 

be used to derive the user’s state of movement instantaneously. Another clinical method 

to control the motorized prosthesis is to use EEG, however; due to its short lifespan, the 

absence of robustness, and the high of noise-to-signal ratio, this method is not a good 

option. Another method to control the powered prostheses is to use surface 

electromyography (EMG) as its sensory system. However, the EMG approach has some 

drawbacks which can be summarized as follows:  

1. Massive preparation work is needed before donning the socket such as shaving 

and applying gel.  

2. Relative thick electrodes cause pain and discomfort because of movements 

between the amputee’s remaining part of the leg (residual limb) and the socket’s 

wall. 
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3.  Feature extraction of the EMG signal is computationally expensive.  

4. Noise could be caused by electromagnetic radiation. 

5. Weak signals with microvolt-level. 

In order to overcome the drawbacks of the EMG-based control and other mentioned 

approaches, an alternative has to be suggested. A piezoelectric sensor showed promising 

results when it comes to the user’s state of movement instantaneously via muscle 

contraction. However, to date, only a few studies have been conducted to investigate the 

feasibility of piezoelectric sensors to be used in the field of transfemoral prostheses. Some 

advantages of the piezoelectric sensor are the followings:  

1- Relatively thin compared to the EMG electrodes which, as a result, causes less 

sore for the amputee 

2- Requires less complex amplification circuitry compared to the EMG 

3- Has voltage range in millivolt  

4- Require a smaller number of sensors compared to EMG electrode to cover 

muscle region, thus, requires less feature to be fed the algorithm.  

The piezoelectric sensory system is still in its first stage and more work is required to 

validate and develop the system. Therefore, the use of the pattern recognition technique 

to classify variations of sitting and standing activities using piezoelectric sensors was 

proposed in this thesis to investigate if the piezoelectric sensor is a good alternative to 

control the powered prostheses.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter presents the methods used to conduct the experiment. It first details the 

materials and sensors configuration and placement utilized in the experiment. Also, it 

explains data collection methods, experiment setup, and experimental protocol. 

Furthermore, the data segmentation method, feature selection, and pattern recognition 

algorithms are explained in details in this chapter.       

3.2 Materials 

The sensory system of the prosthetic leg consisted of fifteen piezoelectric film sensors 

(FDT series), manufactured by Measurement Specialties, which have high flexibility. The 

dimension of the sensors (30mm×15mm×0.028mm) makes them suitable to be placed on 

the internal wall of a socket and caused no skin impingement pain compared to EMG 

electrodes. In addition, piezo film sensors generate higher voltage compare to other piezo 

sensors given the same amount of input force. Figure 3.1 shows one film piezoelectric 

sensor which was used with the other fourteen sensors. 

Figure 3.1: Piezo Film sensor (FDT series, Measurement Specialties Product 
Guide) 
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A custom-made socket was fabricated by a certified prosthetist, its type was 

polypropylene quadrilateral (Jasni et al., 2016). In addition, a hydraulic knee joint (3R60 

EBS Pro) manufactured by Ottobock was attached to a solid ankle cushion heel foot. 

Figure 3.2 shows the fabricated socket attached to the hydraulic knee joint and foot solid 

ankle cushion heel foot. 

 

Figure 3.2: The fabricated socket equipped with the in-socket piezoelectric 
sensors attached to the hydraulic knee joint and the foot solid ankle cushion heel 

foot 

 

3.3 Sensors configuration and placement 

The sensors configuration and placement were adopted from a prior study conducted 

in our same lab (Jasni et al., 2016). For piezoelectric sensors, the optimal mounting 

configuration which produced the highest strain for a particular force input was cantilever 

beam configuration. To enhance the performance of the piezoelectric sensors’ output 

signal, an elastic foundation was added with the cantilever beam configuration. The main 
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function of piezoelectric sensors is to detect forces applied by the residual limb. 

Therefore, the location of the sensors was identified to be on active areas and regions that 

have a high level of muscle contractions. The knee extensor agonist and antagonist muscle 

groups (quadriceps and hamstring) placement were targeted based on their biggest 

contraction bulge size and closeness to the skin which eases the measurement process. 

The areas of quadriceps and hamstring were identified using F-socket sensors (Jasni et 

al., 2016). Fifteen piezo sensors were placed in zigzag orientation to cover muscle’s active 

regions (quadriceps and hamstring). Seven were placed on the hamstring area (posterior 

socket’s wall) and the remaining eight were placed on the quadriceps area (anterior 

socket’s wall) as shown in Figure.3.3. 

 

 

 

 

 

 

 

Figure 3.3: The fifteen piezoelectric sensors placed in zigzag orientation on the 
socket’s wall with the added elastic foundation 
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3.4 Signal conditioning circuitry  

Signals acquired from the fifteen piezo sensors went through signal conditioning 

circuitry. The signals, firstly, were low-pass filtered at a passing frequency of 800 Hz as 

recommended by the manufacturer to ensure sensors detect small forces (muscle pressure 

in this case). Secondly, the filtered signals, coming from piezoelectric sensors, were 

amplified using operational amplifier LM358p (Texas Instruments) by a gain of 11. The 

filtering and amplification of the signals were conducted via an active pass filter as shown 

in Figure 3.4. 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.4: An active low-pass filter circuit schematic for the first anterior 
sensor (A1) 

The circuit schematic was then converted into a layout of a printed circuit (PCB) which 

is shown in Figure 3.5.  

Univ
ers

ity
 of

 M
ala

ya



 

49 

 

 

 

 

 

 

 

Figure 3.5: The PCB layout of the first anterior sensor (A1) 

 

The cut-off frequency can be calculated using the following equation:  

							Fc=
1

2πR1C1
 = 1

2π*2000*100*10-9 ≈800Hz  

The gain was calculated using the following equation:  

							A=1+
R3

R2
=1+

10000

1000
=11 

Fifteen active low-pass filters were fabricated separately to simplify troubleshooting, 

and they were divided into two groups (anterior and posterior). Eight active low pass 

filters (for anterior sensors) were connected together to reduce wiring mess which may 

cause accidents for the subject. The remaining low pass filters were utilized for the 

posterior sensors. The two signal conditioning circuits are shown in Figure 3.6 and Figure 

3.7. Two DC power supplies were used to generate +9V and -9V.  Univ
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Figure 3.6: The signal condition circuit designed for the eight anterior sensors 
consisting of eight active low-pass filters 

 

 

 

Figure 3.7: The signal condition circuit designed for the seven posterior sensors 
consisting of seven active low-pass filters 

 

Three different types of cables (twisted pair, coaxial, and ribbon) were tested in order 

to connect the sensors to the signal conditioning circuits. Ribbon cable was chosen since 

it has low signal-to-noise ratio and has the least weight and, therefore, exerts the least 
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tension on the subject. Two ribbon cables were used, the length of each one was three 

meters. 

3.5 Data collection 

Two synchronized data acquisition devices (NI 9221, National Instrument) were used 

to collect the filtered and amplified signals using 12-bit analog-digital converters, and 

sampling frequencies were set at 1 kHz in both devices. Each data acquisition device had 

8 single-ended channels and a signal range up to ± 60 V. A PC was utilized to fetch and 

store the data using LabVIEW software. The virtual instrument (VI) or the block diagram 

of the first data acquisition cards, the posterior and anterior sensors, and a trigger is shown 

in Figure 3.8.  

 

 

 

 

 

 

 

 

Figure 3.8:  LabVIEW virtual instrument of the two data acquisition cards, 15 
sensors, one trigger and pass-band filtered 
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The collected data were pass-band filtered (0.5-20 Hz) using 6th order Butterworth 

filter (IIR) by LabVIEW software to eliminate noise and get smoother signals. Since 

muscle activation and deactivation takes place at frequencies up to 20 Hz (Prendergast, 

Helm, & Duda, 2005), the cut-off frequency was set to 20 Hz. The data acquisition 

devices, signal conditioning circuits, and the prosthesis are shown in Figure 3.9. 

 

Figure 3.9: A transfemoral amputee donning the in-socket based piezoelectric 
sensory system and the data acquisition cards connected to the signal conditioning 

circuits 

 

The experiment was conducted in motion analysis lab of University of Malaya which 

was equipped with two force plates. Ground reaction forces of the subject were measured 

using these two force plates at 1 kHz sampling rate of using VICON Nexus (1.8.5) 

software.  The first force plate was placed under the subject feet while the second one 

was placed under the armless chair. The second force plate was placed under the chair to 
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detect the seat-off and seat-on transitions which were used to determine phases of sitting 

and standing (Kralj et al., 1990). Figure 3.10 shows the graphical user interface of VICON 

Nexus and the two force plates. 

 

 

Figure 3.10: The Graphical User Interface (GUI) of VICON Nexus software 
(Version 1.8.5) used to collect data from the two force plates  

The data of the two systems (LabVIEW and VICON Nexus) were synchronized using 

a trigger switch (piezoelectric sensor) placed on the first force plate and connected to one 

of the data acquisition cards (DAQ). Before each activity, this sensor was knocked which 

caused the GRFs of the first force plate to pulse (signal marker) due to the force applied 

at the same time it made a pulse in LabVIEW system since the sensor was connected to 

the DAQ. Figure 3.11 shows the trigger switch (sensor) placed on force plate 1 and 

connected to the data acquisition cards. 
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Figure 3.11: Trigger sensor to synchronize LabVIEW and VICON Nexus 

 

3.6 Experiment setup 

A 36-year-old male unilateral transfemoral amputee (left leg), of height 174.5cm and 

weight 789.44 N was recruited. The subject was healthy (in a good mental condition) and 

had no physiological or other physical problem otherwise. He was a user of a transfemoral 

prosthetic leg for 17 years. A new user of a transfemoral prosthesis was excluded from 

this experiment to avoid accidents during the experiment and to ensure that sensors’ 

signals come from the activities only, since stabilizing and balancing during performing 

the activities could cause uncertainty (noise) for the algorithm. The subject signed a 

written informed consent approved by the Medical Research Ethics Committee of the 

University of Malaya Medical Center to participate in this experiment.  

3.6.1 Experimental protocol  

The subject was given time (around one hour before each session) before conducting 

the experiment to walk, sit and stand while donning the prosthetic leg in order to get 

familiar with the prosthesis and ensure the performed activities were similar to his daily 

Univ
ers

ity
 of

 M
ala

ya



 

55 

 

activities. The subject was instructed to perform six activities using an armless chair (42 

cm height, in the recommended range of Demura and Yamada (2007) while donning the 

socket. An armless chair was chosen to make the subject depend only on his leg’s 

muscles.  

Prior to performing each activity, as a signal cue for synchronization of data collection, 

a handphone was set to ring three times. When the phone rang for the first time, the two 

systems (LabVIEW and VICON) started collecting data. The second time the phone rang 

was after 5 seconds (to allow the two systems settled from overshooting due to turning 

the systems on), after hearing the second alarm one person was assigned to hit the trigger 

switch. The purpose of hitting the trigger sensor was to synchronize the two systems. The 

third time the phone rang was 5 seconds after hearing the second alarm sound. After 

hearing the third alarm sound, the subject had to perform the assigned activity. After 

performing the assigned activity, data collection from the two systems were stopped. 

The subject was requested to perform the activities shown in Figure 3.12: 1) Sit-to-

Stand, here the subject was instructed to stand up from a stationary position, 2) Stand-to-

Sit, here the subject was requested to sit down on a stationary chair from an upright 

position, 3) Dynamic Sitting, here the subject was expected to have minimum to average 

lower body movements while sitting down on a chair, 4) Dynamic Standing; where the 

subject was allowed to shift his weight between the legs with minimal movement while 

standing upright, 5) Static Sitting; where the subject sat in a rigid position with no bodily 

movements, and 6) Static Standing ; where the subject stood still in an upright position in 

the same spot with no bodily movements. 
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Figure 3.12: Illustration of the activities performed by the subject: (a) Sit-to-
stand, (b) stand-to-sit, (c) dynamic sitting, (d) static sitting, (e) dynamic standing 

and (f) static standing 

The six activities were tested in this study, and a total of 360 activities, as summarized 

in Table 3.1, were performed in three days, each day consisted of two sessions. In each 

session, 60 activities were performed (ten of each type) and a 30-minute break was given 

between sessions to avoid fatigue. The number of repetitions for each activity was set to 

60 since the learning curve saturated at 46 repetitions.  After 46 repetitions, the 

classification accuracy did not improve which indicated that the training samples are 

enough, therefore; 80% of the data was utilized for a training set (48 repetitions for each 

activity) and 20% was held out for a testing set (12 repetitions).   
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Table 3.1: Experiment protocol of activities 

No. Activity Number of Repetition  

1 Sit-to-Stand 60 

2 Stand-to-Sit 60 

3 Dynamic Sitting 60 

4 Dynamic Standing 60 

5 Static Sitting 60 

6 Static Standing 60 

                          Total                             360 

 

 

3.7 Data windowing and feature selection 

The pattern recognition technique’s first stage is to preprocess the data which starts by 

filtering the sensors’ signals from noise and followed by amplifying the signals. After 

that, the signals are fetched and stored in a PC using data acquisition cards. Then the data 

is segmented using windowing techniques. At this stage, the features are ready to be 

extracted from each data window. All the features were normalized in order to have the 

same scale and eliminate biases. After feature extraction comes the model selection, in 

this stage a classification algorithm needs to be selected, and after that the model is ready 

to train. After the training comes the model evaluation which tests the model performance 

using validation methods. If the model performance is not satisfactory, the parameters of 

the model will be retuned and go back to the training. However, if the model gives a good 
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classification accuracy, the model can be used for prediction (generalization). The flow 

chart of the pattern recognition technique is shown in Figure 3.13.  

 

 

Figure 3.13: The flowchart of the pattern recognition technique  

 

The overlapping technique was used to segment the data using different window 

lengths (150, 200, 250, 300, 350, 400, 450, 500, 550 and 600 ms), and in order to fulfill 

real-time requirements of controlling a prosthesis, a delay of 100 ms between two 

overlapped windows was chosen (Riillo et al., 2014). Different segmentation lengths were 

used for investigating the effects of window size on the classification accuracy. 

Features have to present the properties and characteristics of a signal for different 

sitting and standing activities and computational load needs to be considered (Oskoei & 

Hu, 2008). In this work, features were obtained from each time window and were 

concatenated together to form a feature vector which was fed to the classifiers. Twelve 

time-domain features were extracted due to their computational simplicity. Also, 

frequency-domain features were extracted, but with a lower rate, since they are 
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computationally intensive. Only three frequency-domain features were extracted. Time-

domain features are the most popular features in pattern recognition applications which 

can be calculated in real-time (Angkoon et al., 2009). Mean value, standard deviation 

(SD), skewness, variance, zero crossing, root mean square, peak, kurtosis, integral of 

absolute value, simple square integral, mean absolute value , and slope sign change  were 

used to extract features from each time window (Angkoon et al., 2009; Geethanjali & 

Ray, 2014; Oskoei & Hu, 2008; Riillo et al., 2014; Xi et al., 2017). Mean frequency 

(MNF), median frequency (MDF) and spectral power magnitude (SPM) were utilized as 

frequency-domain features to extract useful information from signals’ frequencies. 

Extracted features were normalized in order to eliminate dimensional disparities and 

scaling. The number of elements in the feature vector (input) is variable and can be 

calculated using the following equation:  

Input=15×number of windows ×number of features	……………….. (1) 

Where 15 is the number of sensors, and the features were extracted from 3000 samples. 

The number of windows can be calculated as follows:  

number of windows	= number of samples-window size 
Delay time   

    …………………….. …… (2) 

																						= 3000	-	window size
100

 

For instance, for two features and a window of 600 ms size   (24 windows) the input can 

be calculated using equations (1) and (2):  

Input	=15×24 ×2=720 
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The number of outputs was six classes (each class for each activity), and it was fixed 

throughout the experiment. Single feature performance test was performed, and features 

with poor performance were excluded and new feature sets were obtained. 

  

3.8 Pattern recognition algorithms  

The classification algorithm plays a vital role in the overall recognition performance, 

recognition efficiency and computational complexity (Chen & Wang, 2013). In this work, 

eight of the common pattern recognition multiclass classifiers were evaluated and 

compared, namely, linear discriminant analysis, decision tree (DT), 

artificial neural networks, k-nearest neighbors and support vector machine. The optimum 

classification parameters were chosen based on the performance of the classifier and the 

complexity of the algorithm. For instance, in the artificial neural networks, increasing the 

number of neurons would improve the network performance; however, a high number of 

neurons would lead to slow convergence and training as well as overfitting. Therefore, 

the optimum classification parameters were selected in order to make a trade-off between 

the classification performance and algorithm complexity (avoiding overfitting, biased 

results and slow convergences).  MATLAB R2017a libraries and apps were used to 

extract features and process all the classification algorithms. 

3.8.1 Linear discriminant analysis 

LDA classifier computes K hyperplanes (linear discriminant functions), where K is 

greater than 2, and these hyperplanes separate features linearly into different classes 

(Riillo et al., 2014).  The classifier selects the maximum linear discriminant function as 

the classification rule. All classes have a common covariance matrix while a feature 

vector is multivariate normally distributed in each class (Chen & Wang, 2013). In this 
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work, the two types of discriminant analysis (linear discriminant and quadratic 

discriminant) were tested, which both utilized fitcdiscr function, and linear discriminant 

classifier was selected since it had better performance.  

3.8.2 Decision tree 

DT classifier is among the most popular classifiers used in approximating discrete-

valued functions and inductive inference. It is capable of learning disjunctive expression 

and is robust when it comes to classifying noisy data. DT is represented as sets of if-then 

rules in order to improve readability (Polat & Gunes, 2007). DT develops a tree with a 

root that is split into a number of subsets with internal nodes which contain attribute test 

conditions, and these subsets are further subdivided until they reach the leave (Geethanjali 

& Ray, 2014). In this experiment, the number of leaves was varied from low (maximum 

number of splits not more than four) to high (maximum number of splits not more than 

100). To optimize the decision tree classifier, trial and error method was used to find the 

optimal number of splits since there is no general rule which can guarantee that the 

classifier will separate the data optimally, and it was found that 20 was the optimal 

number of splits.  

3.8.3 k-Nearest-Neighbor 

k-NN is a classification algorithm that depends on memory. It predicts a class of the 

test sample based on its k nearest neighbor training sample. Majority vote is used to 

classify a test sample among the k neighbors. Features need to have zero mean and 

variance of 1 in order to be measured in the same unit. Euclidean distance is used in 

feature space to decide which k-neighbor is the nearest to the test sample (Chen & Wang, 

2013; Hastie, Tibshirani, & Friedman, 2009). In this study, k was varied from 1 to 100 in 

order to optimize the classifier. The optimal number was found to be equal to 10 using 

trial and error method. Furthermore, several distance metrics were evaluated such as 
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cosine distance, Euclidean distance, and cubic distance. Euclidean distance had the best 

performance with the k-NN classifier; therefore, it was chosen as the distance metric of 

the classifier.        

3.8.4 Artificial neural network 

Artificial neural networks, also called neural networks, are a non-linear classifier 

which is inspired by the neural networks of a biological brain. A series of weighted nodes, 

which called neurons, is utilized by ANN to perform information processing (Riillo et al., 

2014). These neurons are arranged in three layers, called input layers, hidden layers and 

output layers, and are interconnected with each other which structure an architecture of 

the network. In ANN, it is required to make a few choices about the neural network ahead 

of time to ensure that the network is complex enough to classify the training data. The 

network should not be too complex that makes training very slow. In this work, for 

simplicity, one hidden layer was chosen and for optimizing the neural network the number 

of neurons was ranged between 10 and 100, and cross-validation method was used to 

choose the optimal number of neurons. It was found that after 20 neurons the 

classification performance did not improve. The learning rate was set to 0.1 to avoid 

overfitting and slow convergence. Thus, scaled conjugate gradient backpropagation was  

implemented as a training function with 20 neurons in each layer (Riillo et al., 2014), and 

the maximum number of iteration before the training procedure terminated was set to 

1000.  A sigmoid transfer function was used in the hidden layers which gives a value 

between 0 and 1, and a softmax transfer function was used for the output layers. Figure 

3.14 shows the architecture of ANN of a window of 300 ms size (with a 100 ms 

overlapping) and two feature. The input layer consisted of 810 (15 sensor x 27 windows 

x 2 feature) whereas the output layer had 6 neurons wherein each neuron represents a 

different class (an activity).  
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Figure 3.14: Architecture of ANN used to classify six activities using two feature 
and a window of 300 size 

 

3.8.5 Support Vector Machine 

Support vector machine aims to separate data sets using optimal hyperplanes between 

different classes (Bitzer & Smagt, 2006). SVM is a powerful classification tool which can 

perform linear classification, and with the usage of kernels, SVM can perform non-linear 

classification without substantially increasing computational costs. SVM is a binary 

classifier which means it can be used only to classify two data sets; however, adapted 

methods can make SVMs a multi-classifier. For instance, one-against-all (OAA) 

approach uses one SVM per class and trains this SVM to discriminate training samples 

of a certain class from other training samples of other classes (Oskoei & Hu, 2008). 

Another approach is one-against-one (OAO) which separates a pair of two classes by 

training k(k-1) binary classifiers. The class with the greatest number of votes of the k(k-

1) classifiers will be chosen as the final output (Wu, Lin, & Weng, 2004).  

Kernels are used to develop a complex non-linear classifier. Gaussian and polynomial 

are among the most popular kernels in the SVM classifier, and it is unclear that which 

kernel is optimal for this application. Also, there is no one right approach which can be 

followed to choose the optimal kernel. Therefore, four SVM classifiers were tested using 
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Gaussian kernel, linear kernel, quadratic kernel, and cubic kernel, and OAO method was 

adopted to conduct multiclass classification since OAO method resulted in better 

performance compared to OAA. 

3.9 Evaluation  

In order to calculate the classification accuracy, the data set was first randomized and, 

the k-fold cross-validation method was employed for all the classifiers. In the k-fold 

cross-validation, the dataset was divided into k subsets. Each time one subset was used 

as the test set while the remaining subsets (k-1) are used as the training set. This holdout 

method is repeated k times, and k was chosen to be 5. The accuracy results were averaged 

to get the final classification accuracy. The optimal classifier was tested using 20% of the 

data set which was held out from the training data set while 80% of the data set was used 

for training.   

To determine the relationship between classification accuracy and window length, 

classification accuracies were first averaged after that a regression analysis was 

performed to each classifier. P-value was computed, and the threshold of the accepted 

error was set to 5%. Also, regression analysis was used to determine the impacts of 

increasing the number of features on classification accuracies.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Data preprocessing and collection 

Three trials of sit-to-stand and stand-to-sit movements with their corresponding 

ground reaction forces are shown in Figure 4.1 and Figure 4.2.  Each movement consisted 

of 3000 samples (3 seconds), and for the sake of making the figure more readable the x-

axis of the figures was displayed in percentage (meaning each 10% is each to 300 

samples).  

Figure 4.1: Three trials of P1 and A1 signals of sit-to-stand movements with the 
corresponding GRFs, 

The first sensor from the posterior side (P1) and the first sensor from the anterior side 

(A1) showed the piezoelectric sensors burst at posture transition, which happened when 

the subject changed his position from sitting position to upright position and vice versa.  

In the sit-to-stand movement, the ground reaction forces and piezoelectric sensors seemed 

to be unchanged from 0 to 20%. This was the period where the subject was stationary. 

After that, the subject starts the first phase of the sit-to-stand movement (trunk flexion), 

and the signals of the two sensors start oscillating. During trunk flexion phase, the subject 
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exerted a force on the ground which made the GRFs change. The second phase of sit-to-

stand movement (knee extension) depends mostly on the hamstring muscle group; thus, 

the amplitude of the P1 (0.1 mV) is almost double the amplitude of A1(0.05mV). The last 

phase was trunk extension that occurred when the subject tried to stabilize his legs at an 

upright position, as illustrated in Figure 4.1(a) from (55% -80%) (Millington, Myklebust, 

& Shambes, 1992). At this phase, the subject shifted his body weight in order to balance; 

therefore, the signals of P1 and A1 oscillated in this phase.  

 

Figure 4.2: Three trials of P1 and A1 signals of stand-to-sit movements with the 
corresponding GRFs. 

Figure 4.2 shows three trials of stand-to-sit movement with their corresponding GRFs, 

similar to sit-to-stand movement, the piezoelectric signal reaches its peak amplitude at 

posture transition. At posture transition, both muscle groups quadriceps and hamstrings 

aided in performing the stand-to-sit movement. For this reason, both sensors P1 and A1 

have an amplitude of 0.1 mV. 
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         (a) 

          (b) 

Figure 4.3: The fifteen sensors’ filtered and amplified signals of the six different 
activities (a) the anterior sensors, (b)Posterior sensors 
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Figure 4.3 (a) and (b) show the piezoelectric signals recorded from the subject, 

depicting the fifteen sensors filtered and amplified signals of the six different activities.  

It can be seen from the figures that the signal’s pattern generated for each movement is 

distinguish which makes it easier for the algorithm to extract useful information from the 

signal (features). The designed signal conditioning circuits, the experimental protocol, the 

data collection method, and the chosen piezoelectric sensors could obtain a distinguish 

pattern for each movement. Also, it is obvious that for the stand-to-sit movement the 

upper sensors for both sides (anterior and posterior) generated higher amplitude than the 

low sensors which indicates that upper sensors had more important information than the 

lower sensors. On the other hand, the peak of the dynamic sitting movement fluctuated 

between 0.05V and 0.2 V in all the sensors, therefore; it was a good decision to cover all 

the active regions of the quadriceps and hamstring muscle in order to feed the algorithm 

with all the beneficial information. It can be concluded that the designed signal 

conditioning circuitry, the developed data acquisition method, and the experimental 

protocol could generate a pattern with good consistency for the movements.  The A1 and 

P2 sensors generated signals with a high positive correlation which indicates that 

classifier would easily classify these movements since the pattern is repeated. 
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4.2 Feature selection results 

The feature selection test was performed in two stages. The first stage evaluated single 

features while the second stage compared selected feature sets.  

Figure 4.4: Averaged classification errors and standard deviations of Mean and 
MAV features and their standard deviations with the eight classifiers 

 

Figure 4.4 compares averaged classification errors of two time-domain features (mean 

value and mean absolute value) and their standard deviations with the eight classifiers are 

illustrated. Although both features measured the average values of a segmented signal, 

MAV evaluates only the average of the absolute value of the signal. It can be seen in 

Figure 4.4 that MAV outperformed Mean, and it had lower classification error values in 

all classifiers. MAV had its best performance with SVM with cubic kernel with a 

classification error of less than 15%. On the other hand, the Mean feature had its best 

classification performance at 40% classification error using SVM with Gaussian kernel. 

K-NN classifier had the highest classification error (more than 70%), this can be reasoned 

by that the feature vector (Mean) had a very small range of values which made the 

classifier unable to distinguish different classes and performed ineffectively. 
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Figure 4.5: Classification errors and standard deviations of IAV and SSI 
features with the eight classifiers 

 

Figure 4.5 shows the averaged classification errors of eight classifiers with two single 

time-domain features (integral of absolute value and simple square integral). Also, it 

illustrates the standard deviation values of these errors. Although both features evaluated 

the summation of the absolute value of a signal, SSI found the summation of the signal 

square values.  In all the eight classifiers, IAV had lower classification errors compared 

to SSI. Similar to MAV, IAV and SSI had their best performances with SVM with cubic 

kernel, approximately 13%, and 20% errors, respectively. However, DT and LDA 

classifiers could not classify the activities well for both features (IAV and SSI). ANN also 

failed to successfully distinguish different classes. It can be reasoned by the inadequate 

number of features which were fed to the classifier since ANN requires either a high 

training data set or a high number of features in order to perform at its best. Thus, 

increasing the number of features may result in an improvement of ANN’s classification 

accuracy. Due to the poor performance of ANN, its standard deviation of SSI was higher 
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than other standard deviations (more than 300%). Also, ANN classifier changes its initial 

conditions in every new training which generates different results. 

Figure 4.6: Averaged classification errors and standard deviations of Skewness 
and kurtosis features with the eight classifiers 

 

Both kurtosis and skewness measured how the data were distributed compared to the 

normal distribution. Kurtosis shows if the tail of the data exceeded the normal distribution 

tail. On the other hand, skewness measured the asymmetry of data from the normal 

distribution. Figure 4.6 depicts the averaged classification errors and standard deviations 

of two time-domain features (kurtosis and skewness) with the eight tested classifiers.  

These tow statistical terms were used as time-domain features to extract useful 

information from the signal’s windows; nonetheless, both features had poor performance, 

all classification errors were more than 40% in all classifiers. Skewness was not a useful 

feature since it had a classification error of more than 70% with DT, LDA, KNN, and 

ANN classifiers. 
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Figure 4.7: Averaged classification errors and standard deviations of RMS, SD, 
and VAR features with the eight classifiers 

 

SD and VAR were used to measure and quantify the spread and the variation of the 

segmented signal from its mean. RMS could have the same value of SD if the signal 

segmented had a zero mean. Figure 4.7 shows the averaged classification errors and their 

standard deviations of RMS, SD, and VAR with the eight classifiers. RMS had the lowest 

classification errors among the three features with all the classifiers. SD outperformed 

VAR in all the classifiers but DT. DT and LDA had poor performances with all the three 

features this can be explained by the nonlinearity of the features since these classifiers 

work better with linear feature dataset.  SD and VAR had their lowest classification errors 

(16.37% and 22.53%, respectively) with SVM with cubic kernel classifier whereas RMS 

lowest classification error was achieved by ANN classifier (12.12%). Univ
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Figure 4.8: Averaged classification errors and standard deviations of Peak, ZC 
and SSC features with the eight classifiers 

 

Peak number, zero crossing, and slope sign change all described the frequency of the 

signal but in the time domain. Figure 4.8 shows the classification errors and standard 

deviations of three time-domain features (Peak, ZC, and SSC) with the eight classifiers. 

It is obvious that Peak feature was not only the best of the three features compared but 

the best time-domain feature tested in this thesis since it had the lowest classification 

errors with all the classifiers but LDA. The lowest classification error of Peak feature was 

achieved by ANN classifiers (approximately 3%). However, the LDA classifier failed to 

discriminate the six classes of activities since Peak feature was not linearly distributed 

which made it difficult for the classifier to create linear hyperplanes to separate the 

classes. ZC performed well with SVM four classifiers, and its lowest classification error 

was obtained by SVM with cubic kernel. On the other hand, SSC had classification errors 

of more than 25% with all the classifiers. 
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Figure 4.9: Averaged classification errors and standard deviations of MNF, 
MDF, and SPM features with the eight classifiers 

 

Mean frequency, median frequency, and spectral power magnitude are all frequency-

domain features which required a fast Fourier transform for the segmented signal before 

extracting features. Figure 4.9 depicts the averaged classification errors and their standard 

deviations of the three frequency-domain features (MNF, MDF, and SPM) with the eight 

classifiers. MNF had the poorest performances of the three features with most of the 

classifiers. On the other hand, MDF had the lowest classification errors with LDA, ANN, 

SVM with linear, quadratic, and Gaussian kernels whereas the rest classifiers performed 

better with SPM feature. MDF and SPM achieved their lowest classification errors with 

SVM with cubic kernel 19.10% and 17.93%, respectively. 

Table 4.1. shows the classification accuracies, in descending order, of the eight 

classifiers with the 15 single features extracted from a 300ms sliding window with 100 

ms overlapping. Single time- domain features such as skewness, and kurtosis had 

classification accuracies less than 57% with all the classifiers. On the other hand, single 

features such as IAV, Peak, RMS, and MAV have better classification accuracy. All the 
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frequency-domain features had better accuracies with SVM classifiers than with the other 

classifiers. MDF had the best performance among the frequency-domain features, 

achieving its classification accuracy with SVM with Quad kernel (81.63%). LDA 

classifier had its highest classification accuracy using ZC (66.83%) while all the other 

classifiers achieved their highest classification accuracies using the number of peak 

feature (Peak). 

 

Table 4.1: Classification accuracies (%) of the 15 single features with the eight 
classifiers 

 
DT LDA 

SVM 

Linear 

SVM 

Quad 

SVM 

Cubic 

SVM 

Gaussian KNN ANN 

Peak 96.40 46.00 96.93 96.37 96.83 96.27 96.43 96.97 

RMS 60.77 64.53 81.30 86.73 87.50 83.47 75.63 87.88 

ZC 54.97 66.83 84.27 86.10 85.47 84.27 74.70 84.10 

MAV 64.37 63.60 79.63 84.53 85.63 80.57 74.53 74.23 

IAV 63.27 64.23 80.70 85.10 86.97 81.93 73.13 71.20 

SD 56.67 65.57 78.53 82.40 83.63 78.23 69.93 73.48 

MDF 47.07 59.57 79.47 81.63 80.90 80.73 65.90 75.75 

SPM 60.80 53.10 76.10 79.77 82.07 75.30 67.30 67.42 

SSI 62.53 54.97 76.20 78.23 79.97 74.57 65.93 65.92 

VAR 57.40 55.07 72.07 76.70 77.47 70.67 61.40 61.35 

SSC 43.53 55.53 70.07 73.13 72.97 71.00 64.37 66.65 

MNF 40.13 54.80 68.83 71.00 70.80 68.67 66.37 68.92 

Kurtosis 26.10 46.27 53.23 54.80 51.57 56.80 32.40 41.68 

Mean 42.77 42.17 37.33 48.13 48.30 59.87 28.10 42.43 

Skew 20.80 29.03 34.73 35.63 39.20 49.23 25.30 22.73 

* Red color represents low classification accuracies, and yellow color represents moderate 
classification accuracies while green color represents high classification accuracies. 

Table 4.2. shows descriptive statistics (minimum, maximum, mean, standard 

deviation) of computation times taken to extract features from a 300 ms window 

(consisting of 300 samples). Each feature was extracted 100 times and the descriptive 
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statistics were calculated based on this dataset. It can be seen clearly that frequency-

domain features took a longer time to be computed compared to time-domain features. 

For instance, the mean values of calculating frequency-domain features were more than 

2.2 ms whereas all the time-domain features required less than 1 ms to be computed. The 

standard deviations of frequency-domain features were greater compared to the other 

features which may lead to a lag in a real-time application. For example, the maximum 

computation times of MNF and MDF were both more than 7 ms, it causes a lag of more 

than 4ms from their mean computation time. Frequency-domain features required a 

longer time to compute ( at least 400%) compared with time-domain frequency since FFT 

was applied before extracting the features which also may result in putting a heavier load 

on the processor. 

Table 4.2: Descriptive statistics (mean, standard deviation, minimum and 
maximum) of features’ computation time 

 

 

 

 

 

 

 

 

Feature Minimum 
(ms) 

Maximum 
(ms) 

Mean 
(ms) 

Standard 
deviation (ms) 

IAV 0.0064 0.8174 0.0447 0.2089 
SSI 0.0051 0.8140 0.0254 0.1102 

Mean 0.0214 1.5770 0.0586 0.1723 
MAV 0.0150 1.5056 0.0527 0.1823 
Peak 0.3304 1.7330 0.9008 0.1546 
ZC 0.0115 1.5210 0.0468 0.2030 
SSC 0.0210 2.5488 0.0811 0.3009 
RMS 0.0257 1.822 0.0517 0.1266 
SD 0.0248 1.1792 0.0572 0.1526 

VAR 0.0107 1.1348 0.0327 0.1188 
Skewness 0.2986 1.8178 0.4813 0.2056 
Kurtosis 0.3606 2.1250 0.5203 0.2385 

MNF 2.3008 7.2154 3.1374 0.8788 
     MDF   

2.3059 7.9729 3.2552 0.8119 

SPM 1.5920 4.0177 2.2330 0.4870 
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Figure 4.10: Averaged computation time of the single features in 
descending order 

Figure 4.10 shows the mean values of times required to compute each feature in 

descending order. Three time-domain features (peak, skewness, and kurtosis) had higher 

means compared to the other time-features. The rest of time-domain features required less 

than 1 ms to be computed. 

Figure 4.11: Averaged training time of the eight test classifiers 
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Figure 4.11 shows averaged training times of the classifiers. It can be seen that SVM 

classifiers had higher training time than the other classifiers. Unlike ANN and LDA, SVM 

classifiers are non-parametric models which means increasing the training samples would 

increase the complexity of the model. Although generalized linear models (parametric 

models) are faster to learn from data, their complexity is limited and constrained to a 

specific form. It should be mentioned that evaluating classifiers’ computational 

complexity requires sophisticated means such as varying input size and comparing 

computational recourses (time, memory space) which are out of the scope of this work 

(Cocco & Monasson, 2001). All the eight classifiers required an average training more 

than 4 s. 

Table 4.3. lists the mean, maximum, minimum and standard deviation of 

classifiers predication time. It can be seen that SVM with Gaussian kernel had the 

slowest prediction time while LDA has the fastest. However, all the classifier had 

prediction speeds of more than 100 observation/second which were quite fast and 

sufficient for a real-time application. 

Table 4.3: Mean, maximum, minimum and standard deviation of the prediction 
time of the eight classifiers 

Classifier Mean 
Prediction 
Time (s) 

Max Min SD 

DT 0.0073 0.0091 0.0063 0.0012 
LDA 0.0063 0.0071 0.0050 0.0008 
k-NN 0.0071 0.0083 0.0059 0.0010 
ANN 0.0076 0.0083 0.0067 0.0007 

SVMLinear 0.0075 0.0083 0.0065 0.0006 
SVMQuadratic 0.0078 0.0091 0.0067 0.0009 

SVMCubic 0.0077 0.0083 0.0071 0.0005 
SVMGaussian 0.0082 0.0100 0.0071 0.0011 
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Due to the poor performance, features such as Skewness, Kurtosis, Mean, MNF, and 

SSC were excluded from the next stage tests. New feature sets were obtained by grouping 

single features based on their performance since features with high classification accuracy 

indicate good separability. Grouping the best performing features (features with good 

separability) together would improve the classification accuracy since hyperplanes could 

be used to separate the good separable data even if a dimension of a feature vector is 

increased. Five new feature sets were created by grouping the best ten features in the first 

feature set, the best eight features in the second feature set, the best six and the best four 

features were gathered in separate sets as well, and the last feature set consisting of only 

two features. The first feature set (10-feature) consists of ten single features (Peak, RMS, 

ZC, IAV, MAV, SD, MDF, SPM, VAR, and SSI), and the second feature set (8-feature) 

consists of eight single features (Peak, RMS, ZC, MAV, IAV, SD, MDF, and SPM). The 

third (6-feature) and the fourth (4-feature) feature sets had six (Peak, RMS, ZC, IAV, 

MAV and, SD) and four (Peak, RMS, ZC, and MAV) features, respectively. The Number 

of Peaks and RMS features were selected to obtain the last feature set (2-feature).  

Figure 4.12: The averaged computation time of the obtained five feature sets 

Univ
ers

ity
 of

 M
ala

ya



 

80 

 

 

Figure 4.12 shows the averaged computation time of the five obtained feature sets. It 

can be seen that 10-feature and 8-feature sets had substantially higher computation time 

than the other feature sets due to the computation time of frequency-domain features 

(SPM and MDF). In contrast, 6-feature, 4-feature, and 2-feature had computation time 

around 1 ms computation time since all their features were in time-domain. This test was 

conducted to show how expensive it is to increase the number of features. For instance, 

increasing the number of features from 2-feature to 4-feature (adding by two features) 

increased the computation time by approximately 15%. However, by increasing the same 

number of features (2 features) from 6-feature to 8-feature increased the computation time 

by almost 440%.  

 

Figure 4.13: Classification accuracy of the eight classifiers with the five obtained 
feature sets 

 

The classification accuracies of the obtained feature sets are compared in Figure 4.13. 

The results obtained using feature sets were quite satisfying when compared to the 
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existing studies. For example, EMG electrodes were used to classify six hand motions of 

two transradial amputees by ANN and DT using a feature set consisting of MAV, ZC, 

SSC and waveform length. The obtained averaged accuracies of ANN and DT were 67.90 

% and 62.50%, respectively (Geethanjali & Ray, 2014). In another study, Mean, RMS 

and SSC were utilized as a feature vector, extracted from EMG electrodes, to recognize 

five hand gestures of a transradial amputee. The yielded classification accuracies obtained 

from SVM, ANN and LDA were all less than 88% (Riillo et al., 2014). 

DT, LDA, and ANN had their highest classification accuracies with 8-feature, 10-

feature, and 4-feature sets, respectively. On the other hand, k-NN and SVM with linear, 

quadratic, cubic and Gaussian kernel achieved their highest classification accuracies 

using 2-feature set. Using only two time-domain features to classify activities will 

significantly reduce the processing time of controlling a prosthesis which will make it 

possible to operate in real-time without any substantial delay. The computation time of 

2-feature set was less compared to the other feature sets since it had fewer feature 

numbers. Also, 2-feature set achieved the highest classification accuracy with five 

classifiers (out of eight) and classification accuracy of more than 95% in six classifiers. 

Therefore, it can be concluded that 2-feature set (Peak and RMS) outperformed the other 

feature sets. 

Regression analysis was performed to study the relationship between increasing the 

number of features and the classification accuracies of each classifier. Table 4.4 lists the 

P-values of the test. The results of this section can be summarized as follows: DT and 

LDA had regression lines with positive slopes (increasing the number of features would 

increase classification accuracy) whereas the other six classifiers had regression lines with 

negative slopes (increasing the number of features would decrease classification 

accuracy). DT, SVM with linear kernel, and ANN had p-values of more than 0.05 which 
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indicated that increasing the number of features had no significant effects on classification 

accuracies. On the contrary, LDA and other SVM classifiers had p-values of less than 

0.05. Thus, it can be deduced that the number of features affected the classification 

accuracies, and the output results were not obtained by chance. Although all the SVM 

classifiers had a negative correlation with the number of features (increasing the number 

of features decreased classification accuracy), LDA had a positive correlation. Therefore, 

increasing the number of features in LDA improves the classification accuracy and results 

in an increase in both memory space and computational time. 

 

Table 4.4: The regression analysis P-values to study the  relationship between 
increasing the number of features and the classification accuracy 

Classifier P_Value 

DT 0.4073 

LDA 0.0380 

SVM Linear 0.1257 

SVM Quadratic 0.0172 

SVM Cubic 0.0081 

SVM Gaussian 0.0177 

k-NN 0.0001 

ANN 0.0989 
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4.3 Effects of varying window length 

In this section, the dependency of the 2-feature set on varied window lengths was 

investigated by testing the classifiers’ accuracy rates. Due to the poor performances of 

LDA and the negative correlations between K-NN accuracies and the number of features, 

these two classifiers were excluded from this test. In total, six classifiers were investigated 

and compared which are shown in Figure 4.14 

Figure 4.14: The classification accuracies with different. Window sizes (from 
150ms to 600 ms) 

As it can be seen, most of the classifiers showed no change by increasing the length of 

a window.  The regression analysis showed that varying window lengths from 150ms to 

600ms had no significant effect on all the four SVM classifiers (p<0.05). This indicates 

that for SVM classifiers a small window length could contain enough information to 

classify different activities of a transfemoral amputee. In contrast, varying window 

lengths had a significant effect on DT and ANN (p >0.05). It can be clearly seen that 

varying window sizes affected the classification accuracies of these classifiers. For 

instance, ANN’s accuracy dropped from 98.2 % (in a 400 ms window) to 94.38 % (in a 

600 ms window). Table 4.5. lists the p-values of the regression analysis for all classifiers. 
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The independent parameter was window lengths while the dependent parameters were the 

classification accuracies of all classifiers. 

Table 4.5: The P-values of a regression analysis to investigate the impact of 
window lengths on classifiers’ classification accuracies 

Classifier P_Value 

DT 0.9158 

SVM Linear 0.0430 

SVM Quadratic 0.0071 

SVM Cubic 0.0225 

SVM Gaussian 0.0017 

ANN 0.3932 

 

Figure 4.14 shows that windows of size 150 and 200 ms did not have enough 

information; thus, all the classifiers had classification accuracies almost less than 97%. 

ANN achieved its highest classification accuracy with 450 and 500 ms windows. Most 

classifiers attained their best performance at a window of 450 ms. For instance, ANN and 

SVM with quadratic reached their peaks with accuracies of 98.20% and 98.22%, 

respectively.  SVM with linear kernel had the lowest classification accuracy among the 

classifiers. It can be concluded that SVM with cubic kernel achieved the highest 

classification accuracy almost in all the different window sizes (five classifiers more than 

98%) including small window sizes indicating they had enough useful information 

(features).   

4.4 Optimal classifier 

SVM with cubic kernel was chosen as the optimal classier because it achieved the 

highest classification accuracies with almost all window sizes, had no significant effects 

when the window lengths are varied and had a fast prediction speed. The estimated 
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medians and confidence interval accuracies of SVM with cubic kernel classifier are 

shown in the box-plots in Figure 4.15.  

 

Figure 4.15: Medians and confidence interval accuracies of SVM with cubic 
kernel 

 

The accuracy ranges of SVM with cubic kernel were narrow in windows of 250, 350 

and 400 ms sizes. It is shown in Figure 4.15, for instance, the lowest range was attained 

by the window of 200 ms size (from 97.9% to 98.62). In contrast, the other windows had 

wider ranges which may reduce the robustness of a prosthesis’s controller. The windows 

of sizes 500 and 550 ms had the widest range (from 96.29% to 98.6).  Real-time 

controllability requires the window size to be short in order to reduce the processing time. 

Additionally, it requires the confidence interval of the classifier to be narrow to robustly 

control the prosthesis. Considering these two factors, it was suggested to choose SVM 

with cubic kernel with a window of 250 ms size as the optimal classifier’s window size 

since it fulfilled the two requirements.  
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Table 4.6 shows the confusion matrix of SVM with cubic kernel classifier with the test 

data set. The testing data set comprised of 20% of the total activities. From the confusion 

matrix, the overall recognition accuracy was calculated (98.33%) which is quite 

satisfying. By comparing this accuracy to the existing literature, it is comparable to or 

even outperforms the previous results. In a study conducted by Hargrove et al. (2013), 

mechanical sensors and a grid of 96 EMG electrodes were utilized to identify a 

transfemoral amputee movements such as knee flexion and knee extension the accuracy 

of the attempted movements was 96% while in this study only 15 piezoelectric sensors 

yielded a recognition accuracy of 98.33 %. Although most of the activities were correctly 

predicted, the classifier misclassified some activities such as sit-to-stand as stand-to-sit 

 

 

 

 

 

 

Predicted 
class 

 

Table 4.6: Confusion matrix of the testing data set classified by 
SVM with cubic kernel 

True class 

 
 Sit-to-

stand 
Stand-
to-sit 

Dynamic 
sitting 

Dynamic 
Standing 

Static 
sitting 

Static 
standing 

Sit-to-

stand 

96.67% 0% 0% 0% 0% 0% 

Stand-to-

sit 

3.3% 100% 0% 0% 0% 0% 

Dynamic 

sitting 

0% 0% 100% 0% 0% 0% 

Dynamic 

standing 

0% 0% 0% 100% 0% 0% 

Static 

Sitting 

0% 0% 0% 0% 95.00% 1.67% 

Static 

Standing 

0% 0% 0% 0% 5% 98.33% 
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and static sitting as static standing. These activities are relatively more difficult to be 

distinguished due to, probably, the high similarities of each pair’s signals.  

It can be summarized that the SVM with cubic kernel and 2-feature set was chosen as 

the optimal classifier since it achieved the highest classification accuracies among all the 

classifiers with small window sizes (200 – 300 ms). Also, the 250 ms window size was 

chosen as the optimal window size, and the testing data set was used to evaluate the 

performance of the optimal classifier with the chosen feature set (2-feature) and the 

window size (250 ms). The overall recognition accuracy obtained was 98.33%. 

 

4.5 Summary  

The designed signal conditioning circuitry, the developed data collection method, and 

the experimental protocol were able to generate signals which had distinguish patterns for 

each activity. Having repeated and different patterns for each movement made it easier 

for the classification algorithms to extract useful features from the sensors’ signals.  

The feature selection test was performed in two stages. The features were evaluated in 

the first stage, and selected feature sets were compared in the second stage. Skewness and 

kurtosis had classification accuracies less than 57% in all the classifiers. In contrast, the 

number of peaks feature achieved the highest classification accuracy followed by RMS 

and ZC. All the frequency-domain features attained their best classification performance 

with SVM classifiers. LDA classifier had its highest classification accuracy using ZC 

while the other classifiers achieved their highest classification accuracies using peak 

feature. Some features such as Skewness, Kurtosis, Mean, MNF, and SSC were excluded 

from the next stage tests due to poor performance. Five new feature sets were obtained 

by grouping single features based on their performance.  DT, LDA, and ANN had their 
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highest classification accuracies using 8-feature, 10-feature, and 4-feature, respectively. 

On the other hand, five classifiers (k-NN and SVM with linear, quadratic, cubic and 

Gaussian kernels) achieved their highest classification accuracies using 2-feature. 

The dependency of 2-feature set on varied window lengths was investigated by testing 

classifiers’ accuracy rates. Due to poor performances of LDA and negative correlations 

between k-NN accuracies and the number of features, these two classifiers were not 

further tested.  SVM with linear kernel had the lowest classification accuracy while SVM 

with cubic kernel achieved the highest classification accuracy almost in all window 

lengths. Since SVM with cubic kernel with 2-feature set achieved the highest 

classification accuracies among all the classifiers and performed better than other 

classifiers with small window lengths (200 – 300 ms), it was chosen as the optimal 

classifier. A windows length of 250 ms was chosen as the optimal window since it is 

suitable for real-time application and had narrow confidence interval. The testing data set 

was evaluated using SVM with cubic kernel, a window length of 250 ms, and 2-feature 

set. The overall classification accuracy of the testing data set was 98.33%. 
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CHAPTER 5: CONCLUSION 

This chapter presents a summary of the findings analyzed earlier in the previous 

chapter. Recommendations for future research and limitations of this study are also 

detailed in this chapter.   

5.1 Summary of the findings    

In this thesis, in-socket piezoelectric sensors were used to detect muscle contraction, 

and signal conditioning circuitry was designed to preprocess sensors’ raw data (filtering 

and amplifying). After that, the data was collected and sampled using data acquisition 

devices. The experimental protocol, signal conditioning circuits, and the data collection 

method could generate a repeated and distinguish pattern for each activity.  

The next stage was feature extraction, 15 time-domain and frequency-domain features 

were extracted and then evaluated using eight of the most popular classifiers in pattern 

recognition. Feature vectors were extracted from a 300 ms sliding window with an 

overlapping of 100 ms. Features with poor performances were excluded, and the 

remaining features were combined to obtain five new feature sets. Regression analysis on 

the number of features and the classifiers showed that the number of features had 

significant impacts on LDA and SVM with quadratic, cubic and Gaussian kernels. 

Although the classification accuracies of SVM classifiers were improved by decreasing 

the number of features, LDA’s accuracy decreased by decreasing the number of features.  

On the other hand, the number of features had insignificant effects on DT, ANN, and 

SVM with linear kernel. Most of the classifiers yielded their best recognition accuracy 

with the 2-feature set (RMS and Peak), and SVM with cubic kernel outperformed the 

other tested classifiers. 
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Furthermore, the regression analysis on window length and classifiers yielded that DT 

and ANN had signification effects when the length of a window was varied while all the 

SVM classifiers had no substantial impacts by varying the length of windows. 

Additionally, the box-plot of SVM with cubic kernel and the different length windows 

showed that a 250 ms window had the narrowest accuracy range; thus, it was selected as 

the optimal window length to ensure robot controllability. The optimal classifier (SVM 

with cubic kernel) and the optimal window size (250 ms) were tested using a test data set, 

and the overall recognition accuracy obtained was 98.33%. By comparing this accuracy 

to the existing literature, it is comparable to or even outperforms the previous results. In 

a study conducted by Hargrove et al. (2013) , mechanical sensors and a grid of 96 EMG 

electrodes were utilized to identify movements of a single subject (transfemoral amputee). 

The results showed that using EMG signals improved control of a prosthesis, and 

classification accuracy of 96% was achieved; however, in this work, 15 piezoelectric 

sensors were utilized without mechanical sensors and an accuracy of 98.33% was 

achieved. 

Summarizing the findings of the study can conclude that the main outcomes of this 

study are:  

1. This study offered a complete guideline to build signal conditioning circuity, 

develop a data collection method for in-socket piezoelectric sensors and an 

experimental protocol for sitting and standing variation. This work is the first 

that utilized piezoelectric sensors embedded in the transfemoral socket to 

perform sitting and standing classification. 

2. This study showed a thorough time-domain and frequency-domain feature 

evaluation and suggested a feature set consisting of only two time-domain 
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features as the optimal feature set which can be extracted in less than 1 ms and 

yields high classification accuracy.  

3. This study investigated the effect of varying window length on the 

classification accuracy of different multiclass classification algorithms and 

suggested an optimal window length (250 ms) which can be utilized for real-

time applications. 

4. In this study, eight of the most common multiclass classifiers were evaluated 

to classify six variations of sitting and standing activities, and an optimal 

classifier was determined (SVM with cubic kernel).   

5.2 Limitations of the study 

Due to the specificity of individual anatomy, the study was performed on a single 

subject to establish the classification reliability. Transfemoral amputees have very high 

variation ratios of muscles’ activities during locomotion (including hamstring and 

quadriceps) (Wentink et al., 2013) . Additionally, in a study conducted by Hong and Mun 

(2005), it was found that variation in measurements of interface pressure between sockets 

and residual limbs of two transfemoral amputees was large. It can be deduced that 

performing the experiment on several subjects requires different socket configurations. 

Also, large variations may result in signal intensity and pattern, which would affect 

classification results. Therefore, an individual experiment has to be conducted to 

determine each person’s movement classifier based on the same principles. 

The practical day to day application may involve hands function to support the body 

during standing up and sitting down, and this may result in less signal magnitude or even 

slight variation in the signal responses. Also, practical daily activities involve different 

body postures with non-central body weight distribution during sitting and standing 

movements which may yield variations in signal pattern.  
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The result findings of this study were based on components and instruments described 

in sections 3.1 and 3.3. If they were changed, the result findings might change as well. 

This study did not investigate the effects of varying the experiment’s components on the 

result findings. 

5.3 Recommendations for future work 

This study pioneered the implementation of piezoelectric sensors for transfemoral 

prostheses-based applications. The study has provided promising results. Nonetheless, it 

is recommended that further studies expand and validate this work as there were some 

limitations due to the lack of previous work done using piezoelectric sensors in the fields 

of pattern recognition and transfemoral development.  

Further studies are required to determine the classification performance and its 

consistency in different subjects with different amputation levels and stump types and 

thus slightly different sensor-to-muscle configuration. Furthermore, conducting a study 

with different body postures during sitting and standing with the support of amputee’s 

hands are recommended to expand this work. Also, conducting a real-time experiment 

consisting of a motorized prosthesis leg and a control law is recommended to expand this 

work.  

Furthermore, detecting the user’s intention for movements such as sit-to-stand and 

stand-to-sit would make their mobility very close to a normal subject. Therefore, it is 

suggested to conduct a study to investigate the possibility of implementing an intention 

detection system using piezoelectric sensors and pattern recognition technique.  

Overall, the achieved results of this work significantly show improvements over the 

work of predecessors, and it is believed that piezoelectric sensors may lead to an 

expansion of practical applications in the field of transfemoral prostheses. 
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