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PUBLIC ANNOUNCEMENT LOGIC IN CRYPTOGRAPHIC PROTOCOL

ABSTRACT

Public announcement logic with common knowledge (PAC) is a logic that formalizes the

notion of epistemic update. The main objective of this study is to propose a labelled natural

deduction proof system for PAC and to show some applications of PAC in the cryptographic

protocol. We begin by modifying the Kripke model that is capable of giving semantics

to formulas having announcement indexing. Then, a labelled natural deduction for PAC

(NPAC) is proposed and its soundness and completeness are proven. Then, we proved its

normalization using a proof-theoretic semantical notion of validity of a derivation. Finally,

an application of PAC in cryptographic protocol is presented.

Keywords: Public announcement logic, common knowledge, labelled natural deduction,

cryptographic protocol.
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LOGIK PENGUMUMAN AWAM DALAM PROTOKOL KRIPTOGRAFI

ABSTRAK

Logik pengumuman awam dengan pengetahuan umum (PAC) ialah logik yang mengfor-

malkan konsep bagi pengemaskinian pengetahuan. Matlamat utama kajian ini ialah untuk

mencadangkan sistem bukti deduksi semulajadi berlabel bagi PAC dan tunjukkan beberapa

kegunaan bagi PAC dalam protokol kriptografi. Kami mulakan dengan mengubah suai

model Kripke yang mampu memberi makna terhadap rumus berindeks pengumuman.

Seterusnya, deduksi semulajadi berlabel bagi logik pengumuman awam dengan penge-

tahuan umum (NPAC) dicadangkan dan kesempurnaan dan kelengkapannya dibuktikan.

Kemudian, kami buktikan pengnormalannya dengan menggunakan konsep semantik teori

bukti terhadap kesahihan suatu penerbitan. Akhir sekali, kegunaan bagi PAC dalam

protokol kriptografi dibentangkan.

Kata kunci: Logik pengumuman awam, pengetahuan umum, deduksi semulajadi berlabel,

protokol kriptografi.
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CHAPTER 1: INTRODUCTION

1.1 Literature Review

This introduction will begin very generally though briefly with the notion of logic.

Since the public announcement logic that we are studying is one of the large classes of

logic residing under the umbrella term of dynamic epistemic logic, we will begin also

with the general notion of dynamic epistemic logic. A comprehensive introduction of

public announcement logic will be presented in the next chapter. We will present here the

problem statement and explicitly mention our objective and methodology.

The narrative of this literature review is historical instead of systematic. The systematic

explanation (i.e. formal definitions and examples) will be given in the following chapters.

We will first explain the differences between giving meaning (i.e. semantics) of a logical

language bymeans of proof theory and bymeans of model theory. Then, dynamic epistemic

logic is briefly introduced followed by its brief application on cryptographic protocol in

current literature.

1.1.1 Proof-theoretic semantics and model-theoretic semantics

The dichotomy in studying formal logic or mathematical logic has been established

since Frege’s revolution on the study of logic. The dichotomy that is now called proof

theory that studies the syntactical nature and provability of a logical language; and, model

theory that studies the semantical nature and satisfiability of that language.

The study of semantics by means of proof theory or simply proof-theoretic semantics

(PTS) is an alternative approach of semantics, in which it focuses on meaning-conferring

by means of deductive systems, particularly of natural deduction (ND) system of inference.

PTS focuses purely on its deductive proof of semantics which differs with the entrenched
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notion of model-theoretic semantics that maintains the semantics bymeans of its truth rather

than its proof. This tradition of prescribing semantics using model-theoretic semantics has

been used from Tarski’s famous semantic theory of truth that lays down the foundation of

almost all model theory.

By the description of proof theory stated, it is unusual, prima facie, as to how can one

study meaning or semantics of a logic by its syntactical nature and provability. But this is

exactly what is suggested by the proponent of inferentialist and of intuitionist. One of the

main arguments conforming to this program is to argue that meaning is use, an argument

being propounded by Wittgenstein (2009). The meaning of logical syntax for example

is given of how the syntax is used. More particularly, the meaning of logical operator

(e.g. negation ¬, conjunction ∧, disjunction ∨, conditional ⊃, existential ∃, and universal

∀) is given by how it is used by its introduction rule and elimination rule. More of the

arguments can be referred to Weiss & Wanderer (2010), Brandom (2001), Peregrin (2014),

Dummett (1991), and Wittgenstein (2009).

Coming back to PTS, although Gentzen (1964) has already made a short remark that

his ND is capable of scrutinizing the investigation of logical operator, and although mathe-

matical or technical ND has advanced further, thanks to Prawitz (1965); the philosophical

underpinnings are to be credited to Dummett (1991) as he justifies, foundationally, the

rejection of model theoretical notion of truth. Hence, PTS is inexorably propounded by

Dummett as a new alternative to the inquiry of semantics and truth. Dummett, especially,

rejects the principle of bivalence which has been presupposed by model theoretical study

of semantics. And since principle of bivalence does not inherently conform to intuitionism,

model-theoretic semantics, according to him, can no longer be appropriate in the logical

study of semantics.

2
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As have been said earlier, mathematical technicality of PTS, which is ND, had been first

introduced by Gentzen (1964) and further developed by Prawitz (1965). ND is a method of

proof or proof calculus/system devised by Gentzen (1964) as a mathematical or technical

apparatus towards the motivation of Hilbert’s philosophy of formalism. Proof theory has,

at least, four proof calculus: (i) Hilbert’s calculus, both of Gentzen’s (ii) natural deduction

and (iii) sequent calculus; and, (iv) Belnap’s display calculus.

Briefly, ND, like most of the other kinds of proof calculus, consists of (i) a collection

of symbols which can construct complex formula (or in colloquial sense: a(n) assertion,

proposition, or statement) and (ii) rules (e.g. inference rules of both introduction and

elimination) which capture the deductions that have taken place in the reasoning process.

What differs ND with any other kind of proof calculus is that ND is capable of studying

formal reasoning very intuitively and naturally (hence the name natural deduction) by

means of its introduction rules and elimination rules. This method, as suggested by

Dummett (1991), is useful to the extent that logic without principle of bivalence can

be further investigated. Of course, there will be several problems that are needed to be

defined and reconciled when investigating semantics and logic using ND: tonk (Prior,

1960), harmony (Dummett, 1991), validity (Schroeder-Heister, 2006), normalizability

(Prawitz, 1965), and those collected and formulated by Francez (2016).

1.1.2 Dynamic epistemic logic

First order logic in a sense is extensional. This means that the semantics of its language

can be given truth-functionally. We can see that Tarski’s semantic theory of truth gives

meaning to the logical operator truth-functionally. The semantics (truth) for the logical

operator conjunction ∧ in ϕ ∧ ψ, for example, is given uniquely (therefore a function) by

the truth of its conjuncts (i.e. the formula ϕ and ψ). There are, however, logics that are

3
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not extensional which are called intensional. Epistemic logic is one of them which has a

logical operator knowledge K that is intensional. To see this, we can say that Fermat’s last

theorem ϕ is true but it is not always the case that some person a knows that it is true (i.e.

it is not the case that Kaϕ (this reads as a knows that ϕ)). This shows that the truth of Kaϕ

is not uniquely determined by the truth of its subformula ϕ. Hence, the logical operator K

is intensional.

So, Tarski’s semantic theory of truth will not do and model theorist will resort to

Kripke’s possible world semantics when investigating intensionality. The first rigorous

model theoretic investigation of epistemic logic is given by Hintikka (1962).

Modal logics with the plural ‘s’ is a collection of many intensional logics (e.g.epistemic

logic, doxastic logic, modal logic, temporal logic, etc). Examples of model theoretic study

of modal logics can be seen in Renne (2008) and van Benthem et al. (2018); and, examples

of proof theoretic study of modal logics in Artemov & Protopopescu (2016), Basin et

al. (1998), Bierman & de Paiva (2000), Indrzejczak (2010), Martins & Martins (2006),

Medeiros (2006), Payne (2015), Simpson (1994), von Plato (2005), and Williamson (1992).

Dynamic epistemic logic (DEL) studies the dynamics of epistemic logic (public

announcement logic (PAL) being one of its logic). For example, the question of how can

one’s belief change to one’s knowledge by acknowledging some facts. In other words,

how can the formula Baϕ (this reads as a belief that ϕ) change to Kaϕ? The investigation

of DEL is dominated mainly in model theoretic perspective. There is an abundance of

literature for this investigation and Dechesne et al. (2009), Dechesne & Wang (2007), and

Gattinger (2018) are just a few of them. The book by van Ditmarsch et al. (2008) is a

well-known reference on this. Proof-theoretic investigation of DEL, however, has been less
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celebrated and to our knowledge these are some of the published works for this: Frittella

et al. (2016), Greco et al. (2013), Sikimic (2013), Maffezioli & Negri (2011).

1.1.3 Dynamic epistemic logic in cryptographic protocol

We have explained a brief literature on PTS and DEL, we now will briefly present

how they can be used as a tool in investigating cryptographic protocol. Cryptographic

protocol is a complete description or a set of rules that ensures all the cryptographic

processes are done from the beginning until the end. There are generally two methods,

summarized by Boyd & Mathuria (2003), of achieving this: (i) formal methods and (ii)

complexity-theoretic methods. Complexity-theoretic method models a cryptographic

process and later proves that a known NP problem reduces to it. This means that it is

computationally impossible for an adversary to take any action within a considerable

period of time. But, considering that there are abundant of cryptographic methods, to

prove that an NP problem reduces to each one of them is difficult and endless. Formal

methods uses mathematical logic as a tool to axiomatize cryptographic primitives hoping

that any security flaws can be deduced automatically. The main flaws of this method are

usually related to the inability to provide a logical system that is sufficiently expressive

enough to axiomatize all the cryptographic processes.

BAN logic in Burrows et al. (1990) is one of the pioneering formal methods that had

been proposed using modal logic as its main tool but later proved to be insufficiently

expressive (Lowe, 1996). As noted by Kramer (2007), various types of logic followed to

compensate the inexpressiveness and to use a logic by which cryptographic primitive can

be expressively complete: modal logic, doxastic logic, deontic logic, higher-order logic,

epistemic logic, temporal logic and the combinations thereof. Dynamic epistemic logic

(DEL) is one such combination proposed in cryptography.

5
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Notwithstanding these various logics, as summarized by Gritzalis et al. (1999), there are

at least two main approaches to how formal method can be achieved: model theoretically

and proof theoretically. Although the two methods are generally intertwined even in the

field of logic, what differs them in cryptographic protocol is the fact that proof-theoretic

method proves the protocol to be safe by means of a proof assistant whereas model-theoretic

method by model checking tool. Recent studies, for example Piecha & Schroeder-Heister

(2016), have shown promising results when using PTS as a basis of logic and even as an

implementation in a logic programming, which will be of use in constructing an automated

theorem prover for cryptographic protocol.

Model theoretically, DEL has been investigated at a great length to study cryptographic

protocol. Examples of which are in Dechesne et al. (2009), Dechesne & Wang (2007),

Frydrychowicz (2010), Gattinger (2014), Gattinger (2018), Gattinger & van Eijck (2015),

van Ditmarsch et al. (2012). There has yet to be any study on an application of DEL in

cryptographic protocol proof theoretically.

1.2 Problem Statement

As has been explained in the foregoing discussion, formal semantics given to the logical

language has been studied pervasively bymeans ofmodel theory. Although proof theoretical

semantics has been celebrated and discussed in philosophy, its formal counterpart has not

been investigated to the extent similar to that of model theory. Particularly in the study of

DEL, Kripke’s possible world semantics, which is model theoretical, has been considerably

studied compare to proof-theoretic semantics, which is proof theoretical. Much less is the

application of PTS of DEL in the study of cryptographic protocol. In fact, we have yet to

find any publication on such application.
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1.3 Research Objective and Question

Our goals are of two types. Firstly, we want to have a PTS interpretation of DEL. More

particularly, we want to construct an ND calculus for public announcement logic with

common knowledge (PAC) which is one of the logic under DEL and prove its soundness,

completeness, and normalizability. Secondly, we want to reformulate some problems

involving cryptographic protocol using our ND calculus.

1.4 Research Methodology

We will first define our proposed labelled natural deduction for PAC (NPAC). Since our

deduction system exploits formulas having the labelling upon them, we will need to define

a new Kripke’s semantics having labelling upon its formulas as well. The definition should

preserve the usual definition of Kripke’s semantics. Then we will proof the soundness of the

NPAC directly from the Kripke’s semantics and the completeness indirectly by translation

into the known Hilbert axiomatic proof system PAC in van Ditmarsch et al. (2008). Then,

we will proof normalization within the method which PTS has been proposing: by defining

the notion of validity of a derivation without a notion of truth. After having the NPAC, we

will give some examples of how our proof system can be applied and use it to solve some

problems in cryptographic protocol.

1.5 Thesis Organization

Before we begin, we will present here the overall structure of this thesis. In chapter 2,

we will begin defining the syntax, semantics, and proof system for public announcement

logic (with common knowledge). Some preliminary results and the Hilbert axiomatisation

of the logic are presented. In chapter 3, we will present our proposed labelled natural

deduction for PAC and prove the soundness, completeness, and normalization of the proof
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system. In chapter 4, we will present some applications of dynamic epistemic logic in

investigating cryptographic protocol. And finally, in chapter 5, we conclude the thesis with

a comprehensive summary and some insights for further investigation.

8

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 2: PUBLIC ANNOUNCEMENT LOGIC

2.1 Introduction

Public announcement logic (PAL) with common knowledge (PAC) is a logic built

for the purpose of formalising the notion of epistemic update. We will present here the

syntax of PAC in which there two types of formula, labelled and relational, which are built

inductively. Then, the semantics of the logic is presented by first using the usual Kripke’s

model for modal logic and is extended using a restricted Kripke’s model, a model of which

is capable of giving semantics for an indexed formula. Some properties in PAC will be

proven here. We will then present the Hilbert axiomatisation for PAC.

2.2 Syntax

Definition 2.2.1 (PAC language). The language of PAC consists of a countably infinite set

P of atomic propositions p,q,r, . . ., brackets ‘(’ and ‘)’, a finite set G of agent-symbols

a, b, c, . . ., a corresponding finite set RG of binary relations Ra,Rb,Rc, . . ., a setW of

worlds x, y, z, . . ., set of agents ψ,ψ1,ψ2 . . ., a transitive closure symbol ∗; and, logical

operators ⊥ (falsum), ¬ (negation), ∨ (disjunction), ∧ (conjuction) ⊃ (implication), Ka

(modal operator ‘a knows that’), [A] (announcement of a formula A), Eψ (modal operator

‘everyone in ψ knows that’), and Cψ (modal operator ‘it is a common knowledge for

everyone in ψ that’).

Definition 2.2.2 (PAC formula). A formula of PAC is defined inductively as follows:

1. ⊥ is an atomic formula.

2. Every atomic proposition is an atomic formula.

3. If A and B are formulas then (A ∨ B), (A ∧ B), and (A ⊃ B) are formulas.

9

Univ
ers

ity
 of

 M
ala

ya



4. If A is a formula and a is an agent then (Ka A) is a formula.

5. If A is a formula and ψ is a set of agent(s) then (EψA) is a formula.

6. If A is a formula and ψ is a set of agent(s) then (CψA) is a formula.

7. If A and B are formulas then ([A]B) is a formula.

For the inductive clauses number (5) and (6), if ψ = {a, b, c}, instead of writing

(E{a,b,c}A) and (C{a,b,c}A) we remove the bracket and comma thus occasionally write

(Eabc A) and (Cabc A); or even (Ebac A) and (Cbbaaaca A) as these are true in set notation.

¬A is defined as A ⊃⊥. Hence, ¬A too is a formula by 2.2.2.1 and 2.2.2.3. We let

the symbols A,B,C, . . . range over formulas. The brackets will be ignored assuming the

following convention from higher priority to lower over the construction of a formula:

¬,Ka, [A],Eψ,Cψ,∧,∨,⊃.

Definition 2.2.3 (PAC labelled formula). If A is a formula, ϕ a list of formulas, and x a

world (i.e. x ∈ W) then x :ϕ A is a labelled formula.

Definition 2.2.4 (PAC relational formula). If Ra is a binary relation over the setW ×W,

x, y ∈ W, ϕ a list of formulas, and ψ a set of agents then xRϕ
a y, xRϕ

ψy, and xRϕ∗
ψ y are

relational formulas. We let the symbols ρ, ρ1, ρ2, . . . range over relational formulas.

We let the symbols A ,B,C , . . . range over labelled or relational formulas and Γ

(possibly empty) to be an arbitrary set of labelled or relational formulas. We sometimes

just say a formula to mean either a labelled or relational formula A ; or, a formula A

for brevity as which situation can be easily understood by the script font. We let also,

x :ϕ A = x : A if ϕ is an empty list and similarly for relational formula. We say that a

labelled or relational formula is unrestricted if ϕ is an empty list and restricted otherwise.

We use similar convention as PAC formula of removing bracket and comma of ψ.

10
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Definition 2.2.5. Suppose that ◦ is an operator. The rank of a labelled or relational formula

A (r(A )) is defined inductively as follows.



r(x :ϕ⊥) = 〈r′(ϕ),0〉

r(x :ϕ p) = 〈r′(ϕ),0〉

r(x :ϕ ◦A) = 〈r′(ϕ) + r(x : A) + 1,0〉

r(x :ϕ A ◦ B) = 〈r′(ϕ) + max(r(x : A),r(x : B)) + 1,0〉

r(xRϕ
a y) = 〈r′(ϕ),0〉

r(xRϕ
ψy) = 〈r′(ϕ),1〉

r(xRϕ∗
ψ y) = 〈r′(ϕ),2〉

where r′(ϕ) = r(x : A1) + · · · + r(x : An) + 1 if ϕ = A1, . . . , An and r′(ϕ) = 0 if ϕ is an

empty list. We say that the formula with the rank 〈0,0〉 is atomic. The relation < over the

ranks is defined in lexicographical order (i.e. 〈m,n〉 < 〈m′,n′〉 iff m < m′; or, m = m′ and

n < n′).

2.3 Semantics

Definition 2.3.1. A Kripke model for PAC is a structureM = 〈W,RG,V〉 such that:

1. W is a non-empty set of worlds.

2. For all a ∈ G, Ra ⊆ W ×W.

3. V :W × P → {0,1} is a valuation function such that every world x and atomic

proposition p yield the truth value 0 or 1.

Definition 2.3.2 (Restricted Kripke model). LetM be a Kripke model and A a formula.

A restricted Kripke model for PAC is a structureMA = 〈WA,RA
G,V

A〉 such that:

11
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1. WA = {x ∈ W :�M x : A} is a non-empty set of worlds.

2. For all a ∈ G, RA
a = Ra ∩ (W

A ×WA).

3. VA = V|MA×P.

We write linearly Mϕ,A instead of (Mϕ)A to keep the symbolism readable. This

convention is also applied toWϕ, RϕG, andV
ϕ.

Definition 2.3.3 (Relation extension). Let ψ be a subset of a set of agents G.

1. Rψ =
⋃

a∈ψ Ra.

2. The transitive closure of a relation R is the smallest relation R∗ such that R ⊂ R∗

and for every x, y, z ∈ W if (x, y), (y, z) ∈ R∗ then (x, z) ∈ R∗.

Definition 2.3.4. Truth for a formula A in a model Mσ (i.e. �M
σ

A ) is defined

inductively as follows:

1. �Mσ
xRϕ

a y iff (x, y) ∈ R
σ,ϕ
a .

2. �Mσ
xRϕ

ψy iff (x, y) ∈ R
σ,ϕ
ψ .

3. �Mσ
xRϕ∗

ψ y iff (x, y) ∈ Rσ,ϕ∗ψ .

4. 2Mσ
x :ϕ⊥ for every x ∈ W and every list of formulas σ and ϕ.

5. �Mσ
x :ϕ p iffVσ,ϕ(x, p) = 1.

6. �Mσ
x :ϕ A ∨ B iff �M

σ,ϕ
x : A or �Mσ,ϕ

x : B.

7. �Mσ
x :ϕ A ∧ B iff �M

σ,ϕ
x : A and �Mσ,ϕ

x : B.

8. �Mσ
x :ϕ A ⊃ B iff �M

σ,ϕ
x : A implies �Mσ,ϕ

x : B.

9. �Mσ
x :ϕ Ka A iff for all y, �Mσ

xRϕ
a y implies �Mσ,ϕ

y : A.

10. �Mσ
x :ϕ EψA iff for all y, �Mσ

xRϕ
ψy implies �Mσ,ϕ

y : A.

11. �Mσ
x :ϕ CψA iff for all y, �Mσ

xRϕ∗
ψ y implies �Mσ,ϕ

y : A.

12. �Mσ
x :ϕ [A]B iff �M

σ,ϕ
x : A implies �Mσ,ϕ,A

x : B

12
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Definition 2.3.5. Let A be a labelled or relational formula and Γ be a set of formulas.

The following are further notations of our truth definition:

1. �M Γ iff �M A for all A ∈ Γ.

2. � Γ iff �M Γ for allM.

3. Γ �M A iff �M Γ implies �M A .

4. Γ � A iff Γ �M A for allM.

5. Γ �M A iff �M A implies �M B for all B ∈ Γ.

6. Γ �A iff Γ �M A for allM.

The following propositions will justify some of the rules of NPAC, which will be

defined later, whereas the remaining rules are justified straight from the definition of their

semantics.

Proposition 2.3.6. For all Kripke modelM,WA∧[A]B =WA,B.

Proof. By Definition 2.3.2 this is equivalent to proving that x ∈ WA∧[A]B iff x ∈ WA,B.

But x ∈ WA∧[A]B iff �W x : A ∧ [A]B iff �W x : A and �W x : [A]B iff �W x : A and

(�W x : A implies �W x :A B) iff �W x :A B iff x ∈ WA,B.

Proposition 2.3.7.

1. {xRϕ
a y, x :ϕ A, y :ϕ A} �� xRϕ,A

a y.

2. xRϕ,A∗
ψ y � xRϕ∗

ψ y.

3. � x :ϕ,A,B C iff � x :ϕ,A∧[A]B C.

4. For all 1 ≤ i ≤ n, xRϕ
ai y � xRϕ

a1...an y.

5. If �M xRϕ
a1...an y and (�

M xRϕ
ai y implies �M A for every 1 ≤ i ≤ n) then �M A .

6. xRϕ
ψy � xRϕ∗

ψ y.

13
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7. {xRϕ
ψz1, . . . , znRϕ

ψy} � xRϕ∗
ψ y for all natural number n.

8. If �M xRϕ∗
ψ y, (�M xRϕ

ψy implies �M A ), and for all natural number n (�M

xRϕ
ψz1, · · · ,�M znRϕ

ψy implies �M A ); then, �M A .

Proof. 1. For an arbitraryM, �M xRϕ,A
a y iff (x, y) ∈ Rϕ,A

a = Rϕ ∩ (Wϕ,A ×Wϕ,A) iff

(x, y) ∈ Rϕ
a and (x, y) ∈ (Wϕ,A ×Wϕ,A) iff (x, y) ∈ Rϕ

a and x, y ∈ Wϕ,A iff (x, y) ∈ Rϕ
a ,

�M
ϕ

x : A, and �Mϕ
y : A iff �M xRϕ

a y, �M x :ϕ A, and �M y :ϕ A.

2. Clearly, Rϕ,A
ψ ⊂ Rϕ

ψ . So, Rϕ,A∗
ψ ⊂ Rϕ∗

ψ . Therefore, for an arbitraryM, �M xRϕ,A∗
ψ y

implies (x, y) ∈ Rϕ,A∗
ψ ⊂ Rϕ∗

ψ implies �M xRϕ∗
ψ y.

3. Use Proposition 2.3.6.

4. If �M xRϕ
ai y then (x, y) ∈ Rϕ

ai ⊂
⋃

ai∈{a1,...,an} Rϕ
ai ⊂ Rϕ

a1...an . Therefore �M

xRϕ
a1...an y.

5. Suppose that the antecedent is true. Then, (x, y) ∈ Rϕ
a1...an =

⋃
ai∈{a1,...,an} Rϕ

ai . Then

(x, y) ∈ Rϕ
a1 or,. . . , or (x, y) ∈ Rϕ

an . Then �M xRϕ
a1 y or,. . . , or �M xRϕ

an y. Therefore,

since (�M xRϕ
ai y implies �M A for every 1 ≤ i ≤ n), �M A .

6. Suppose that, for an arbitraryM, �M xRϕ
ψy. Then (x, y) ∈ Rϕ

ψ but Rϕ
ψ ⊂ Rϕ∗

ψ . So,

�M xRϕ
ψy.

7. Suppose that, for an arbitrary M, �M xRϕ
ψz1, . . . ,�M znRϕ

ψy. Then (x, z1), . . . ,

(zn, y) ∈ Rϕ
ψy. Since Rϕ

ψ ⊂ Rϕ∗
ψ and Rϕ∗

ψ is a transitive closure of Rϕ
ψ , then iteratively

(x, y) ∈ Rϕ∗
ψ . Therefore, �M xRϕ

ψy.

8. Suppose that, for an arbitrary M, �M xRϕ∗
ψ y, (�M xRϕ

ψy implies �M A ), and

for all natural number n (�M xRϕ
ψz1, · · · ,�M znRϕ

ψy implies �M A ). So (x, y) ∈ Rϕ∗
ψ =

Rϕ
ψ ∪ R. If (x, y) ∈ Rϕ

ψ then �M xRϕ
ψy and, by the second supposition, �M A . If not

then (x, y) < Rϕ
ψ but (x, y) ∈ R ⊂ Rϕ∗

ψ . By contradiction, assume that for all natural

14
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number n, 2M xRϕ
ψz1, · · · ,2M znRϕ

ψy. In other words, there are no z1, . . . , zn such that

(x, z1), . . . , (zn, y) ∈ Rϕ
ψ . So, since Rϕ∗

ψ is the smallest transitive closure, (x, y) < Rϕ∗
ψ but

this is a contradiction. Therefore, �M xRϕ
ψz1, · · · ,�M znRϕ

ψy for some natural number n,

and by the third supposition, �M A . Hence, whichever the case, �M A .

2.4 Axiomatisation

There are several proof systems proposed for PAL: display calculus in Frittella et al.

(2016), sequent calculus in Maffezioli & Negri (2011) and Alberucci & Jäger (2005),

algebraic semantics in Ma et al. (2014), and of course the Hilbert system which can be

referred in van Ditmarsch et al. (2008). The proof system for PAC however is currently

only presented with Hilbert system PAC. The following table consists of axioms of the

Hilbert system of PAC (PAC) which is proven to be complete and sound (van Ditmarsch et

al., 2008):

Table 2.1: Axiomatization for PAC
All instantiations of propositional tautologies
Ka(A ⊃ B) ⊃ (Ka A ⊃ KaB) Distribution of Ka over ⊃
Ka A ⊃ A Truth axiom
Ka A ⊃ KaKa A Positive introspection
¬Ka A ⊃ Ka¬Ka A Negative introspection
[A]p ⊃⊂ (A ⊃ p) Atomic permanence
[A]¬B ⊃⊂ (A ⊃ ¬[A]B) Announcement and negation
[A](B ∧ C) ⊃⊂ ([A]B ∧ [A]C) Announcement and conjunction
[A]KaB ⊃⊂ A ⊃ Ka[A]B Announcement and knowledge
[A][B]C ⊃⊂ [A ∧ [A]B]C Announcement composition
Cψ(A ⊃ B) ⊃ (CψA ⊃ CψB) Distribution of Cψ over ⊃
CψA ⊃ (A ∧ EψCψA) Mix of common knowledge
From A and A ⊃ B, infer B Modus ponens
From A, infer Ka A Necessitation of Ka
From A, infer CψA Necessitation of Cψ
From A, infer [B]A Necessitation of [B]
From A ⊃ [B]C and A ∧ B ⊃ EψA, Announcement and
infer A ⊃ [B]CψC common knowledge
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CHAPTER 3: LABELLED NATURAL DEDUCTION FOR PAC

3.1 Introduction

In this chapter we will present our proposed labelled natural deduction for public

announcement logic with common knowledge (i.e. NPAC). As the logic includes a notion

of epistemic update, for which a formula can be true and not true, we have to add an index

for each formula in the logic. We, then, will give the inductive definition of the language

or syntax for PAC including the definition of the mentioned indexed formulas. Then, the

semantics of the language is given using an extended notion of Kripke’s model that exploits

the indexing. Next, we will formulate our proposed NPAC and proof some of its important

properties. We then proof the extensional equivalence of our NPAC and PAC. Finally, we

proof that the NPAC satisfies a strong normalization property.

3.2 Labelled Natural Deduction for PAC

Definition 3.2.1 (Propositional inference rules). Propositional inference rules for NPAC

are defined in Table 3.1.

Definition 3.2.2 (Other inference rules). Modal, announcement, composition, and atomic

inference rules for NPAC are defined in Table 3.2. For Kϕ
a I rule, y , x and does not occur

in any undischarged topmost formula on which y :ϕ A depends other than xRϕy. Similarly

for Eϕψ and Cϕψ with the obvious condition.

Definition 3.2.3 (Relational rules). The following are three relational rules for NPAC:

refl
xRϕ

a x
xRϕ

a y symm
yRϕ

a x
xRϕ

a y yRϕ
a z

trans
xRϕ

a z

Definition 3.2.4 (Relational inference rules). Relational inference rules for NPAC are

defined in Table 3.3. For Rϕ∗
ψ E rule, z1, . . . , zn does not occur in the major premis, in
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the conclusion, or any undischarged topmost formula ending with the premises (major or

minor) other than xRϕ
ψz1, . . . , znRϕ

ψy.

Table 3.1: Propositional inference rules

Introduction Rules Elimination Rules

[x :ϕ A ⊃⊥]
...

y :ϕ⊥
⊥ϕx :ϕ A

x :ϕ A
∨ϕ Ix :ϕ A ∨ B

x :ϕ B
∨ϕ Ix :ϕ A ∨ B x :ϕ A ∨ B

[x :ϕ A]
...

A

[x :ϕ B]
...

A
∨ϕ E

A

x :ϕ A x :ϕ B
∧ϕ Ix :ϕ A ∧ B

x :ϕ A ∧ B
∧ϕ Ex :ϕ A

x :ϕ A ∧ B
∧ϕ Ex :ϕ B

[x :ϕ A]
...

x :ϕ B
⊃ϕ Ix :ϕ A ⊃ B

x :ϕ A ⊃ B x :ϕ A
⊃ϕ Ex :ϕ B

Definition 3.2.5. The labelled natural deduction system NPAC is a structure 〈M,RG,R〉

whereM and RG are similar to those in Kripke’s model and R is a set of the rules in

Definitions 3.2.1, 3.2.2, 3.2.3, and 3.2.4.

Definition 3.2.6. A premise of a rule is the formula appearing before the line of the rule

and a conclusion is the formula appearing after the line. A major premise is a premis

containing the operator that is eliminated in the rule; otherwise it is a minor premise.

Definition 3.2.7 (Derivation). A derivation of a labelled or relational formula A from

a set of labelled or relational formulas Γ is a tree of formulas satisfying the following

condition:
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Table 3.2: Modal, announcement, composition, and atomic inference rules

Introduction Rules Elimination Rules

[xRϕ
a y]

...
y :ϕ A

Kϕ
a Ix :ϕ Ka A

x :ϕ Ka A xRϕ
a y Kϕ

a E
y :ϕ A

[xRϕ
ψy]

...
y :ϕ A

E
ϕ
ψ I

x :ϕ EψA

x :ϕ EψA xRϕ
ψy
E
ϕ
ψ E

y :ϕ A

[xRϕ∗
ψ y]

...
y :ϕ A

C
ϕ
ψ I

x :ϕ CψA

x :ϕ CψA xRϕ∗
ψ y
C
ϕ
ψ E

y :ϕ A

[x :ϕ A]
...

x :ϕ,A B
[A]ϕ I

x :ϕ [A]B

x :ϕ [A]B x :ϕ A
[A]ϕ E

x :ϕ,A B

x :ϕ,A,B C Icomp
x :ϕ,A∧[A]B C

x :ϕ,A∧[A]B C Ecomp
x :ϕ,A,B C

x :ϕ p x :ϕ A Iatomϕ,A

x :ϕ,A p
x :ϕ,A p Eatomϕ,A
x :ϕ p

x :ϕ,A p Eatomϕ,A
x :ϕ A

1. The topmost formulas are either in Γ or discharged by a rule in the tree.

2. The bottommost formula is A .

3. Every formula in the tree except A is a premise of a correct application of rules

whose conclusion stands directly below that formula in the tree.

We say that the conclusion A is derivable from Γ (i.e. Γ ` A ) if such a tree exists. Let

A be a formula (non-relational and non-labelled). Suppose that ∆ ∪ A is a set of formulas
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Table 3.3: Relational inference rules
Introduction Rules Elimination Rules

xRϕ
a y x :ϕ A y :ϕ A

Rϕ,A
a I

xRϕ,A
a y

xRϕ,A
a y

Rϕ,A
a E

xRϕ
a y

xRϕ,A
a y

Rϕ,A
a Ex :ϕ A

xRϕ
a1 y Rϕ

a1...an IxRϕ
a1...an y

...
xRϕ

an y Rϕ
a1...an IxRϕ

a1...an y

xRϕ
a1...an y

[xRϕ
a1 y]

...
A · · ·

[xRϕ
an y]

...
A

Rϕ
a1...an EA

xRϕ
ψy Rϕ∗

ψ I
xRϕ∗

ψ y
...

xRϕ
ψz1 · · · znRϕ

ψy Rϕ∗
ψ I

xRϕ∗
ψ y
...

xRϕ∗
ψ y

[xRϕ
ψy]

...
A · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

...
A · · ·

Rϕ∗
ψ E

A

(non-labelled and non-relational) and x :ϕ Γ means putting x :ϕ on every formula in ∆.

We write ∆ ` A for x :ϕ Γ ` x :ϕ A for every x ∈ W and every list of formulas ϕ. We also

occasionally put a number labeling at the discharge formula and its corresponding rule

application.

Proposition 3.2.8. The following are derived rules:

[x :ϕ A]
...

x :ϕ⊥
¬ϕ Ix :ϕ ¬A

x :ϕ ¬A x :ϕ A
¬ϕ Ex :ϕ⊥

Proof. The introduction and elimination rules for negation are a direct substitution of ⊃ϕ I

and ⊃ϕ E in Table 3.1 by substituting B for ⊥.

As noted by Viganò (2000), ⊥ traverses between worlds. We show that ⊥ also traverses

between worlds and the index ϕ. This is useful later especially in showing normalizability.

Proposition 3.2.9.

1. x :ϕ⊥` y :ϕ⊥
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2. x :ϕ,A⊥` x :ϕ⊥

3. x :ϕ⊥` x :ϕ,A⊥

4. x :ϕ1⊥` x :ϕ2⊥

5. x :ϕ1⊥` y :ϕ2⊥

Proof. 1.

[y :ϕ⊥⊃⊥] x :ϕ⊥
⊥ϕ

y :ϕ⊥

2.

x :ϕ,A⊥ Eatomϕ,A
x :ϕ⊥

3.

[x :ϕ ¬A] x :ϕ⊥
⊥ϕx :ϕ A x :ϕ⊥ Eatomϕ,A

x :ϕ,A⊥

4. We first remove all the ϕ1 by (2), then we add the formulas listed in ϕ2 by (3).

5. By (1) and (4).

The following proposition shows, as it should be expected by the definition, that Rϕ
ψ is

reflexive and symmetry and Rϕ∗
ψ satisfies equivalence relation.

Proposition 3.2.10.

1. ` xRϕ
ψx

2. xRϕ
ψy ` yRϕ

ψx

3. ` xRϕ∗
ψ x

4. {xRϕ∗
ψ y, yRϕ∗

ψ z} ` xRϕ∗
ψ z

5. xRϕ∗
ψ y ` yRϕ∗

ψ x
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Proof. 1.

refl
xRϕ

a x Rϕ
ψ I

xRϕ
ψx

2. Let ψ = {a1, . . . ,an}.

xRϕ
ψy

[xRϕ
a1 y] symm

yRϕ
a1 x

Rϕ
ψ I

yRϕ
ψx · · ·

[xRϕ
an y] symm

yRϕ
an x

Rϕ
ψ I

yRϕ
ψx

Rϕ
ψ E

yRϕ
ψx

3.

1
xRϕ

ψx
Rϕ∗
ψ I

xRϕ∗
ψ x

4.

xRϕ∗
ψ y

yRϕ∗
ψ z [xRϕ

ψy]
1

Π1

xRϕ∗
ψ z · · ·

yRϕ∗
ψ z [xRϕ

ψx1]
1 · · · [xnRϕ

ψy]
1

Π2

xRϕ∗
ψ z · · ·

Rϕ∗
ψ E1

xRϕ∗
ψ z

where Π1 and Π2 are respectively

yRϕ∗
ψ z

[xRϕ
ψy]

1[yRϕ
ψz]2

Rϕ∗
ψ I

xRϕ∗
ψ z · · ·

[xRϕ
ψy]

1[yRϕ
ψy1]

2 · · · [ymRϕ
ψz]2

Rϕ∗
ψ I

xRϕ∗
ψ z · · ·

Rϕ∗
ψ E2

xRϕ∗
ψ z

and

yRϕ∗
ψ z

[xRϕ
ψx1]

1 · · · [xnRϕ
ψy]

1[yRϕ
ψz]2

Rϕ∗
ψ I

xRϕ∗
ψ z · · ·

[xRϕ
ψx1]

1 · · · [xnRϕ
ψy]

1[yRϕ
ψy1]

2 · · · [ymRϕ
ψz]2

Rϕ∗
ψ I

xRϕ∗
ψ z · · ·

Rϕ∗
ψ E2

xRϕ∗
ψ z
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5.

xRϕ∗
ψ y

[xRϕ
ψy]

2
yRϕ

ψx
Rϕ∗
ψ I

yRϕ∗
ψ x · · ·

[xRϕ
ψx1] · · · [xnRϕ

ψy]

Π

yRϕ∗
ψ x · · ·

Rϕ∗
ψ E

yRϕ∗
ψ x

where Π is

[xnRϕ
ψy]

2
yRϕ

ψxn
Rϕ∗
ψ I

yRϕ∗
ψ xn

[xn−1Rϕ
ψxn]

2
xnRϕ

ψxn−1
Rϕ∗
ψ I

xnRϕ∗
ψ xn−1

4
yRϕ∗

ψ xn−1

[xn−2Rϕ
ψxn−1]

2
xn−1Rϕ

ψxn−2
Rϕ∗
ψ I

xn−1Rϕ∗
ψ xn−2

4
yRϕ∗

ψ xn−2

yRϕ∗
ψ x1

[xRϕ
ψx1]

2
x1Rϕ

ψx
Rϕ∗
ψ I

x1Rϕ∗
ψ x

6
yRϕ∗

ψ x

3.3 Soundness and Completeness

Theorem 3.3.1 (Soundness). Let Γ ∪A be a set of labelled or relational formulas. NPAC

is sound with respect to the restricted Kripke model, i.e.: Γ ` A implies Γ � A .

Proof. We prove by induction over the number of rules in the derivation Π of A . For

the base case, suppose that A is a relational formula ρ and the number of rules used to

derive it is 0. Then Π consists only ρ as its topmost and bottommost formula (i.e. ρ ∈ Γ).

Suppose that, for an arbitraryM, �M Γ. Then by Definition 2.3.5.1 �M ρ since ρ ∈ Γ.

Then by Definition 2.3.5.2, Γ �M ρ. As the modelM is arbitrary, Γ � ρ. A similar

method is applied if A is a labelled formula x :ϕ A.

For the inductive step, suppose that Γ ` A with the derivation Π using n number of

rules. Suppose now that the conclusion of Π is a relational formula. We will show only for
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Rϕ,A
a I as others will be of similar method with the help of Proposition 2.3.7. So, suppose

that the bottommost relational formula is obtained by the application of Rϕ,A
a I rule:

Γ1

Π1

xRϕ1
a y

Γ2

Π2

x :ϕ1 A

Γ3

Π3

y :ϕ1 A
Rϕ1,A

a I
xRϕ1,A

a y

where Γ = Γ1∪Γ2∪Γ3 and ϕ = ϕ1, A. By the induction hypothesis, asΠ1, Π2, andΠ3 have

fewer applications of rules than Π, Γ � xRϕ1
a y, Γ � x :ϕ1 A, and Γ � y :ϕ1 A. Suppose, for

an arbitrary modelM, that �M Γ, then �M xRϕ1
a y, �M x :ϕ1 A, and �M y :ϕ1 A. Then

by Proposition 2.3.7, �M xRϕ1,A
a y. Hence, asM is arbitrary, Γ � xRϕ1,A

a y.

Now for the case in which the final conclusion is a labelled formula. The proof if the

bottommost formula is obtained by the application of any introduction and elimination

of propositional rules is obvious. As for other non-propositional rules, the proof can be

obtained using Proposition 2.3.7. We will only show the case in which the bottommost

formula is the application of the rules [A]ϕ I and [A]ϕ E as examples. So, as for the first

case, let Π be:

Γ, [x :ϕ A]

Π1

x :ϕ,A B
[A]ϕ I

x :ϕ [A]B

As Π1 has fewer applications of rules than Π, it follows that, by the induction hypothesis,

Γ ∪ {x :ϕ A} � x :ϕ,A B. We need to show that Γ � x :ϕ [A]B. By contradiction, suppose

that, for someM, �M Γ but 2M x :ϕ [A]B. Then �M Γ, �M x :ϕ A, and 2M x :ϕ,A B.

Then �M Γ ∪ {x :ϕ A} and 2M x :ϕ,A B. But this contradicts Γ ∪ {x :ϕ A} � x :ϕ,A B.

For the second case, let Π be:
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Γ1

Π1

x :ϕ1 [A]B

Γ2

Π2

x :ϕ1 A
[A]ϕ1 E

x :ϕ1,A B

where Γ = Γ1 ∪ Γ2 and ϕ = ϕ1, A. By the induction hypothesis, as Π1 and Π2 have fewer

applications of rules than Π, Γ � x :ϕ1 [A]B and Γ � x :ϕ1 A. Suppose that, for an

arbitraryM, �M Γ. Then �M x :ϕ1 [A]B and �M x :ϕ1 A. Then (�M x :ϕ1 A implies

�M x :ϕ1,A B) and �M x :ϕ1 A. It follows that �M x :ϕ1,A B. Hence, sinceM is arbitrary,

Γ � x :ϕ1,A B.

Theorem 3.3.2 (Completeness). Let ∆ ∪ A be a set of formulas (non-relational and non

labelled). NPAC is complete with respect to the unrestricted Kripke model, i.e.: ∆ ` A

implies ∆ � A.

Proof. We will proof completeness via translation by showing that Hilbert’s axiomatic

system PAC in (van Ditmarsch et al., 2008) is a subset of NPAC system (i.e. ∆ `PAC A

implies ∆ `NPAC A). It is sufficient to show that all the axioms in PAC are derivable from

NPAC. As PAC is complete, it follows that NPAC is also complete. There are 16 axioms

to be shown to be derivable from NPAC. In the following proof we let the world x and

list of formulas ϕ to be arbitrary. Furthermore, without lost of generality, we will ignore

the ϕ in the proof tree to reduce notational overhead. It is important to note that, by the

conventional unlabelled Kripke model, to prove ∆ ` A is to prove x :ϕ Γ ` x :ϕ A for all

x ∈ W and for all list of formulas ϕ.

1. Distribution of Ka.

[x : Ka(A ⊃ B)]1 [xRay]
3

y : A ⊃ B
[x : Ka A]2 [xRay]

3

y : A
y : B

Ka I3KaB
⊃ I2x : Ka A ⊃ KaB

⊃ I1x : Ka(A ⊃ B) ⊃ (Ka A ⊃ KaB)
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2. Truth axiom.

[x : Ka A] xRa x
x : A

⊃ Ix : Ka A ⊃ A

3. Positive introspection.

[x : Ka A]1
[xRay]

2 [yRaz]3

xRaz
z : A

Ka I3
y : Ka A

Ka I2x : KaKa A
⊃ I1x : Ka A ⊃ KaKa A

4. Negative introspection.

[xRay]
2

yRa x [y : Ka A]3

x : A

[xRaz]4
[xRay]

2

yRa x
yRaz [y : Ka]

3

z : A Ka Ix : Ka A [x : ¬Ka A]1
x :⊥

⊃ I3y : ¬Ka A
Ka I2x : Ka¬Ka A
⊃ I1x : ¬Ka A ⊃ Ka¬Ka A

5. Atomic permanence. For one direction,

[x : [A]p]1 [x : A]2

x :A p
EatomAx : p
⊃ I2x : A ⊃ p
⊃ I1x : [A]p ⊃ (A ⊃ p)

For the other direction,

[x : A ⊃ p]1 [x : A]2
x : p [x : A]2

x :A p
[A] I2x : [A]p
⊃ I1

(A ⊃ p) ⊃ [A]p
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6. Announcement and negation. For one direction,

[x : [A]¬B]1 [x : A]2

x :A ¬B
[x : [A]B]3 [x : A]2

xAB
x :A⊥
x :⊥

⊥ I3x : ¬[A]B
⊃ I2x : A ⊃ ¬[A]B

⊃ I1x : [A]¬B ⊃ (A ⊃ ¬[A]B)

For the other direction,

[x : A ⊃ ¬[A]B]1 [x : A]2

x : ¬[A]B
[x : A]2 [x :A B]3

x : [A]B
x :⊥ [x : A]2

x :A⊥
⊥A I3

x :A ¬B
[A] I2x : [A]¬B

⊃ I1x : (A ⊃ ¬[A]B) ⊃ [A]¬B

7. Announcement and conjunction. For one direction,

[x : [A](B ∧ C)]1 [x : A]2

x :A B ∧ C
x :A B

[A] I2x : [A]B

[x : [A](B ∧ C)]1 [x : A]3

x :A B ∧ C
x :A C

[A] I3x : [A]C
∧ Ix : [A]B ∧ [A]C

⊃ I1x : [A](B ∧ C) ⊃ [A]B ∧ [A]C

For the other direction,

[x : [A]B ∧ [A]C]1
x : [A]B [x : A]2

x :A B

[x : [A]B ∧ [A]C]1
x : [A]C [x : A]2

x :A C
x :A B ∧ C

[A] I2x : [A](B ∧ C)
⊃ I1x : [A]B ∧ [A]C ⊃ [A](B ∧ C)

8. Announcement and kowledge. For one direction,

[x : [A]KaB]1 [x : A]2

x :A KaB
[y : A]4 [x : A]2 [xRay]

3

xRay

y :A B
[A] I4

y : [A]B
Ka I3x : Ka[A]B
⊃ I2x : A ⊃ Ka[A]B

⊃ I1x : [A]KaB ⊃ (A ⊃ Ka[A]B)

For the other direction,
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[x : A ⊃ Ka[A]B]1 [x : A]2

x : Ka[A]B
[xRA

a y]
3

xRay

y : [A]B
[xRA

a y]
3

y : A
y :A B

K A
a I3

x :A KaB
[A] I2x : [A]KaB

⊃ I1x : (A ⊃ Ka[A]B) ⊃ [A]KaB

9. Announcement composition. For one direction,

[x : [A][B]C]1
[x : A ∧ [A]B]2

x : A
x :A [B]C

[x : A ∧ [A]B]2

x : [A]B
[x : A ∧ [A]B]2

x : A
x :A B

x :A,B C Icomp
x :A∧[A]B C

[A ∧ [A]B] I2x : [A ∧ [A]B]C
⊃ I1x : [A][B]C ⊃ [A ∧ [A]B]C

For the other direction,

[x : A]2 [x :A B]3

x : [A]B [x : A]2

x : A ∧ [A]B x : [[A ∧ [A]B]C]1

x :A∧[A]B C E comp
x :A,B C

[B] I3
x :A [B]C

[A] I2x : [A][B]C
⊃ I1x : [A ∧ [A]B]C ⊃ [A][B]C

10. Distribution of Cψ .

[x : Cψ(A ⊃ B)]1 [xR∗ψy]
3

y : A ⊃ B

[x : CψA]2 [xR∗ψy]
3

y : A
y : B

Cψ I3x : CψB
⊃ I2x : CψA ⊃ CψB

⊃ I1x : Cψ(A ⊃ B) ⊃ (CψA ⊃ CψB)

11. Mix of common knowledge.

3.2.10xR∗ψx [x : CψA]1

x : A

[xRψy]2

xR∗ψy [yR∗ψz]3
3.2.10xR∗ψz [x : CψA]1

z : A
Cψ I3

y : CψA
Eψ I2x : EψCψA

x : A ∧ EψCψA
⊃ I1x : CψA ⊃ (A ∧ EψCψA)
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12. Modus ponens. Suppose that ` A and ` A ⊃ B. Let Π1 and Π2 be the derivations

of them respectively.

Π1

x : A

Π2

x : A ⊃ B
⊃ Ex : B

13. Necessitation of Ka. Suppose that ` A. Then, ` y : A for every y ∈ W. Let Π be

the derivation of y : A and x be an arbitrary world, then:

[xRay]

Π

y : A
Ka Ix : Ka A

Therefore, ` x : Ka A for every x ∈ W. Hence, ` Ka A.

14. Necessitation of Cψ . Similarly, suppose that ` y : A for every y ∈ W, then:

[xR∗ψy]

Π

y : A
Cψ I

x : CψA

15. Necessication of [B]. Suppose that ` y :ϕ A for every y ∈ W and every list of

formulas ϕ then:

[x : B]

Π

x :B A
[B] I

x : [B]A

16. Announcement and common knowledge. For any xi ∈ W, let Π1 be a derivation of

xi : A ⊃ [B]C and Π2 be a derivation of xi : A ∧ B ⊃ EψA. Then:

[xRB∗
ψ y]3

[xRB
ψ y]

4

Π3

y :B C · · ·

[xRB
ψu1]

4 · · · [unRB
ψ y]

4

Π4

y :B C · · ·
RB∗
ψ E4

y :B C
Cψ I3

x :B CψC [x : B]2
[B] I2x : [B]CψC [x : A]1

⊃ I1x : A ⊃ [B]CψC
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where Π3 and Π4 are as follows respectively.

[xRB
ψ y]

4

xRψy

[x : A]1 [x : B]2

x : A ∧ B Π2
x : EψA

y : A Π1
y : [B]C

[xRB
ψ y]

4

y : B
y :B C

[x : A]1 [x : B]2

x : A ∧ B Π2
x : EψA

[xRB
ψu1]

4

xRψu1
u1 : A

[xRB
ψu1]

4

u1 : B Π2
u1 : EψA

[u1RB
ψu2]

4

u1Rψu2
u2 : A

y : A

[u1RB
ψu2]

4

u2 : B

y : B Π1

y :B C

3.4 Normalization

We prove normalization of NPAC without the operator ∨. This operator is problematic

in the sense that it seems impossible to “atomize” the application of ⊥ϕ rules when its

conclusion is of the form xRϕ
ψy or xRϕ∗

ψ y unless we define propositional rules to relational

formulas as well. We prove the normalization of NPAC using an extended definition of

validity of a derivation used in Stålmarck (1991) from which the validity of a rule is a

spesific case. The definition of the validity of the derivation Π is defined inductively

over the complexity of its conclusion A . We will define first the notion of reduction in

a derivation and the definition of normalization. Although the definition of reduction

includes the definition of a conversion, we will give all the conversions after the definition

of reduction as we would want to declare clearly first what normalization is about.
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Definition 3.4.1.

1. A derivation Π2 is an immediate reduction of Π1 if Π2 is obtained from Π1 by

replacing a part by one conversion.

2. A derivation Πn is a reduction of Π1 if there is a sequence Π1, . . . ,Πn such that Πi+1

is an immediate reduction of Πi where 1 ≤ i ≤ n − 1.

3. A derivation is said to be normal if it has no immediate reduction.

4. A reduction sequence is a sequence Π1,Π2, . . . of derivations where Πi+1 is an

immediate reduction of Πi for 1 ≤ i ≤ n − 1; and, if the sequence is finite, the last

derivation in the sequence is normal. We say that the reduction sequence of Π to

mean that it is a reduction sequence starting with Π.

5. From here onwards we always put our major premise of an elimination rule on the

leftmost side of the derivation tree.

6. Length of a derivation Π is the sum of the rules in Π.

Definition 3.4.2 (Normalization theorem). A natural deduction system is said to satisfy the

normalization theorem if each derivation Π in the system has at least one finite reduction

sequence starting with Π.

Definition 3.4.3 (Strong normalization theorem). A natural deduction system is said to

satisfy strong normalization theorem if each reduction sequence comes to an end.

Definition 3.4.4 (Detour conversion). 1. Detour conversion for ∧ϕ.

Π1

x :ϕ A1

Π2

x :ϕ A2
∧ϕ Ix :ϕ A1 ∧ A2

∧ϕ Ex :ϕ Ai

converts to Πi

x :ϕ Ai
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2. Detour conversion for ⊃ϕ.

[x :ϕ A]

Π1

x :ϕ B
⊃ϕ Ix :ϕ A ⊃ B

Π2

x :ϕ A
⊃ϕ Ex :ϕ B

converts to

Π2

[x :ϕ A]

Π1

x :ϕ B

3. Detour conversion for Kϕ
a .

[xRϕ
a y]

Π1

y :ϕ A
Kϕ

a Ix :ϕ Ka A

Π2

xRϕ
a y Kϕ

a E
y :ϕ A

converts to

Π2

[xRϕ
a y]

Π1

y :ϕ A

4. Detour conversion for Eϕψ .

[xRϕ
ψy]

Π1

y :ϕ A
E
ϕ
ψ I

x :ϕ EψA

Π2

xRϕ
ψy
E
ϕ
ψ E

y :ϕ A

converts to

Π2

[xRϕ
ψy]

Π1

y :ϕ A

5. Detour conversion for Cϕψ .

[xRϕ∗
ψ y]

Π1

y :ϕ A
C
ϕ
ψ I

x :ϕ CψA

Π2

xRϕ∗
ψ y
C
ϕ
ψ E

y :ϕ A

converts to

Π2

[xRϕ∗
ψ y]

Π1

y :ϕ A

6. Detour conversion for [A]ϕ.

[x :ϕ A]

Π1

x :ϕ,A B
[A]ϕ I

x :ϕ [A]B

Π2

x :ϕ A
[A]ϕ E

x :ϕ,A B

converts to

Π2

[x :ϕ A]

Π1

x :ϕ,A B
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7. Detour conversion for comp.

Π

x :ϕ,A,B C Icomp
x :ϕ,A∧[A]B C Ecomp

x :ϕ,A,B C

converts to Π

x :ϕ,A,B C

8. First detour conversion for atomϕ,A.

Π1

x :ϕ p

Π2

x :ϕ A Iatomϕ,A

x :ϕ,A p Eatomϕ,A
x :ϕ p

converts to Π1

x :ϕ p

9. Second detour conversion for atomϕ,A.

Π1

x :ϕ p

Π2

x :ϕ A Iatomϕ,A

x :ϕ,A p Eatomϕ,A
x :ϕ A

converts to Π2

x :ϕ A

10. First detour conversion for Rϕ,A
a .

Π

xRϕ
a y

Π1

x1 :ϕ A

Π2

x2 :ϕ A
Rϕ,A

a I
x1Rϕ,A

a x2
Rϕ,A

a E
x1Rϕ

a x2

converts to Π

x1Rϕ
a x2

11. Second detour conversion for Rϕ,A
a .

Π

xRϕ
a y

Π1

x1 :ϕ A

Π2

x2 :ϕ A
Rϕ,A

a I
x1Rϕ,A

a x2
Rϕ,A

a Exi :ϕ A

converts to Πi

xi :ϕ A
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12. Detour conversion for Rϕ
a1...an .

Π

xRϕ
ai y Rϕ

a1...an IxRϕ
a1...an y

[xRϕ
a1 y]

Π1

A · · ·

[xRϕ
an y]

Πn

A
Rϕ

a1...an EA

converts to

Π

[xRϕ
ai y]

Πi

A

13. Detour conversions for Rϕ∗
ψ .

Π

xRϕ
ψy Rϕ∗

ψ I
xRϕ∗

ψ y

[xRϕ
ψy]

Π0

A · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

Πn

A · · ·
Rϕ∗
ψ E

A

converts to

Π

[xRϕ
ψy]

Π0

A

and for arbitrary n

Π1

xRϕ
ψz1 · · ·

Πn

znRϕ
ψy Rϕ∗

ψ I
xRϕ∗

ψ y

[xRϕ
ψy]

Π′0

A · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

Π′n

A · · ·
Rϕ∗
ψ E

A

converts to
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Π1

[xRϕ
ψz1] · · ·

Πn

[znRϕ
ψy]

Π′n

A

Definition 3.4.5 (⊥ conversion).

1. ⊥ conversion for ∧ϕ.

[x :ϕ ¬(A1 ∧ A2)]

Π

y :ϕ⊥
⊥ϕx :ϕ A1 ∧ A2
∧ϕ Ex :ϕ Ai

converts to

[x :ϕ ¬Ai]
1

[x :ϕ A1 ∧ A2]
2
∧ϕ Ex :ϕ Ai

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ∧ A2)]

Π

y :ϕ⊥
⊥ϕ,1x :ϕ Ai

2. ⊥ conversion for ⊃ϕ.

[x :ϕ ¬(A ⊃ B)]

Π1

y :ϕ⊥
⊥ϕx :ϕ A ⊃ B

Π2

x :ϕ A
⊃ϕ Ex :ϕ B

converts to

[x :ϕ ¬B]1
[x :ϕ A ⊃ B]2

Π2

x :ϕ A
⊃ϕ Ex :ϕ B

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A ⊃ B)]

Π1

y :ϕ⊥
⊥ϕ,1x :ϕ B

3. ⊥ conversion for Kϕ
a .

[x :ϕ ¬Ka A]

Π1

y :ϕ⊥
⊥ϕx :ϕ Ka A

Π2

xRϕ
a y Kϕ

a E
y :ϕ A
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converts to

[y :ϕ ¬A]1
[x :ϕ Ka A]2

Π2

xRϕ
a y
⊃ϕ E

y :ϕ A
⊃ϕ E

y :ϕ⊥
3.2.9x :ϕ⊥
⊃ϕ I2x :ϕ ¬Ka A

Π1

y :ϕ⊥
⊥ϕ,1y :ϕ A

4. ⊥ conversion for Eϕψ .

[x :ϕ ¬EψA]

Π1

y :ϕ⊥
⊥ϕx :ϕ EψA

Π2

xRϕ
ψy
E
ϕ
ψ E

y :ϕ A

converts to

[y :ϕ ¬A]1
[x :ϕ EψA]2

Π2

xRϕ
ψy
⊃ϕ E

y :ϕ A
⊃ϕ E

y :ϕ⊥
3.2.9x :ϕ⊥
⊃ϕ I2x :ϕ ¬EψA

Π1

y :ϕ⊥
⊥ϕ,1y :ϕ A

5. ⊥ conversion for Cϕψ .

[x :ϕ ¬CψA]

Π1

y :ϕ⊥
⊥ϕx :ϕ CψA

Π2

xRϕ∗
ψ y
C
ϕ
ψ E

y :ϕ A

converts to
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[y :ϕ ¬A]1
[x :ϕ CψA]2

Π2

xRϕ∗
ψ y
⊃ϕ E

y :ϕ A
⊃ϕ E

y :ϕ⊥
3.2.9x :ϕ⊥
⊃ϕ I2

[x :ϕ ¬CψA]

Π1

y :ϕ⊥
⊥ϕ,1y :ϕ A

6. ⊥ conversion for [A]ϕ.

[x :ϕ ¬[A]B]

Π1

y :ϕ⊥
⊥ϕx :ϕ [A]B

Π2

x :ϕ A
C
ϕ
ψ E

x :ϕ,A B

converts to

[x :ϕ,A ¬B]1
[x :ϕ [A]B]2

Π2

x :ϕ A
⊃ϕ E

x :ϕ,A B
⊃ϕ E

x :ϕ,A⊥ 3.2.9x :ϕ⊥
⊃ϕ I2

[x :ϕ ¬[A]B]

Π1

y :ϕ⊥
3.2.9

x :ϕ,A⊥
⊥ϕ,1

x :ϕ,A B

7. First ⊥ conversion for atom.

[x :ϕ,A ¬p]

Π

y :ϕ,A⊥
⊥ϕ,A

x :ϕ,A p Eatomx :ϕ p

converts to
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[xϕ¬p]1
[x :ϕ,A p]2 Eatomx :ϕ p

x :ϕ⊥ 3.2.9
x :ϕ,A⊥

⊃ I2
[x :ϕ,A ¬p]

Π

y :ϕ,A⊥
3.2.9

y :ϕ⊥
⊥ϕ,1x :ϕ p

8. Second ⊥ conversion for atom.

[x :ϕ,A ¬p]

Π

y :ϕ,A⊥
⊥ϕ,A

x :ϕ,A p Eatomx :ϕ A

converts to

[xϕ¬A]1
[x :ϕ,A p]2 Eatomx :ϕ A

x :ϕ⊥ 3.2.9
x :ϕ,A⊥

⊃ I2
[x :ϕ,A ¬p]

Π

y :ϕ,A⊥
3.2.9

y :ϕ⊥
⊥ϕ,1x :ϕ A

9. ⊥ conversion for comp. This is done by induction on the complexity of C.

We do not have a ⊥ conversion for the relational inference rules as ⊥ rule is only defined

for labelled formulas and not for relational formulas.

Definition 3.4.6 (Permutative conversion).

1. Permutative conversion for Rϕ
ψ .
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Π

xRϕ
ψy

[xRϕ
a1 y]

Π′1

A · · ·

[xRϕ
an y]

Π′n

A
Rϕ
ψ E

A

Π1

B1 · · ·
R

C

converts to

Π

xRϕ
ψy

[xRϕ
a1 y]

Π′1

A

Π1

B1 · · ·
R

C · · ·

[xRϕ
an y]

Π′n

A

Π1

B1 · · ·
R

C
Rϕ
ψ E

C

where

Π

xRϕ
ψy

[xRϕ
a1 y]

Π′1

A · · ·

[xRϕ
an y]

Π′n

A
Rϕ
ψ E

A

is normal.

2. Permutative conversion for Rϕ∗
ψ .

Π

xRϕ∗
ψ y

[xRϕ
ψy]

Π′0

A · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

Π′n

A · · ·
Rϕ∗
ψ E

A

Π1

B1 · · ·
R

C

converts to

Π

xRϕ∗
ψ y

[xRϕ
ψy]

Π′0

A

Π1

B1 · · ·
R

C · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

Π′n

A

Π1

B1 · · ·
R

C · · ·
Rϕ∗
ψ E

C

where
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Π

xRϕ∗
ψ y

[xRϕ
ψy]

Π′0

A · · ·

[xRϕ
ψz1] · · · [znRϕ

ψy]

Π′n

A · · ·
Rϕ∗
ψ E

A

is normal.

Definition 3.4.7 (Redundant ⊥ conversion).

1.

Π

x :ϕ1⊥ y :ϕ2 ¬ ⊥
⊃ϕ Ez :ϕ3⊥

converts to Π

z :ϕ3⊥

2.

Π

x :ϕ1⊥
y :ϕ2⊥

converts to Π

x :ϕ1⊥

where no assumption is discharged by the last application of the ⊥ϕ2 rule in the derivation

Π

x :ϕ1⊥
⊥ϕ2

y :ϕ2⊥

Definition 3.4.8.

1. We say that A is a compound formula if A is of the form xRϕ
ψy, xRϕ∗

ψ y, or x :ϕ A

where A is not an atomic formula.

2. Given a derivation

Π =
Π1

A1 · · ·

Πn

An R
B

where R is a last rule application applied inΠ, we say thatΠ is in I-form ifB is a compound

formula or is in a ρ form; and, R is either an introduction rule or the ⊥ϕ rule. Any other

rule that does not satisfy this condition is called non I-form.
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3. From here onward we will allow the number n to be an ordinal number less than ε0.

This is necessary as the introduction and elimination rule for Rϕ∗
ψ are infinite in a sense that

they can have infinitely countable many premises. But we will leave the ordinal analysis.

Definition 3.4.9 (Valid derivation). A derivation Π is valid if one of the following

conditions is satisfied:

1. The derivation

Π =
Π1

A1 · · ·

Πn

An R
B

is in I-form, each Πi is valid, and each derivation

Π′ =
Π

B

Π′1

A ′1 · · ·

Π′m

A ′m R′
C

is valid given that R′ is an elimination rule and each Π′i is valid.

2. The derivation

Π =
Π1

A1 · · ·

Πn

An R
B

is not in I-form, each immediate reduction of Π is valid, and if the last inference rule in Π

is an application of Rϕ
ψ E or Rϕ∗

ψ E then the derivations of minor premises of that inference

are valid.

Definition 3.4.10 (Valid inference rule). An inference rule R is valid if each derivation

Π =
Π1

A1 · · ·

Πn

An R
B
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is valid given that each Πi is valid.

Proposition 3.4.11. 1. A reduction of a derivation in I-form that ends with an application

of a rule R ends with the same application of R.

2. Validity is closed under reduction.

3. If the derivation

Π =
Π′

A

Π1

A1 · · ·

Πn

An R
B

is normal, where R is Rϕ
ψ E or Rϕ∗

ψ E, then the derivation

Π′′ =
Π′

A

Π′1

A ′1 · · ·

Π′m

A ′m
R

B

is valid, given that each Π′i is valid.

4. If a derivation Π is valid, then the derivation

Π′ =
Π

A

Π′1

A ′1 · · ·

Π′n

A ′n R′
B

is valid, given that each Πi is valid and R is an elimination rule.

5. Let Π1 be a valid derivation with a conclusion A1 and Π2 be a valid derivation with

a conclusion A2 and with the premis A1. Then the following derivation is valid:

Π1

A1

Π2

A2
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Proof. 1. This is obvious by simply checking all the conversions.

2. We prove by induction on the definition of validity.

(i) If Π is a valid derivation in I-form, then

Π′ =
Π

B

Π′1

A ′1 · · ·

Π′n

A ′n R′
C

is valid, given that R′ is an elimination rule and each Π′i is valid. Now, let Π
′′ be an

immediate reduction of Π; then, obviously the derivation

Π′′

B

Π′1

A ′1 · · ·

Π′n

A ′n R′
C

is an immediate reduction of Π′. According to Proposition 3.4.11.1, Π′′ is in I-form, and,

by the definition of validity of non I-form, each immediate reduction of Π′ is valid. Hence,

by the definition of validity of I-form and the induction hypothesis, Π′′ is valid.

(ii) Assume that Π is not in I-form. Then each immediate reduction of Π is valid by the

definition of validity of non I-form.

3. We prove by the induction on the sum of lengths of the reduction sequences of

the derivations Π′1, . . . ,Π
′
m. According to the assumption that Π is normal, there is no

conversion of Π′. Hence, each immediate reduction of Π′′ is the result of replacing a part

of one of Π′1, . . . ,Π
′
m by its conversion, and the induction value of the immediate reduction

of Π′′ is lower than the induction value of Π′′.

4. We prove that each immediate reduction Π′′ of Π′ is valid, by induction on a

lexicographically ordered pair 〈m, k〉 of natural numbers, where m is the sum of the lengths

of the reduction sequences of Π,Π1, . . . ,Πn and k is the length of Π′.
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(i) If Π′′ is a detour conversion of Π′, then Π is in I-form. Hence, the validity of Π′′

follows from the definition of validity of derivations.

(ii) If Π′′ is a permutative conversion of Π′, then the induction values 〈mi, ki〉 of the

derivation of the minor premises of the last inference in Π′′ are lower than 〈m, k〉, since

each mi = m and each ki < k. Hence the validity follows from the restrictions on the

permutative conversion and Proposition 3.4.11.3.

(iii) If Π′′ is a result of redundant ⊥ conversion of Π′, the validity of Π′′ follows from

the validity of Π′.

(iv) If Π′′ is the result of replacing a proper part of Π′ by its conversion, then the validity

of Π′′ follows from the induction hypothesis, because the induction value 〈m′, k′〉 of Π′′ is

lower than 〈m, k〉 since m′ < m.

(iv) Similar proof by induction.

Theorem 3.4.12. All derivations in NPAC are strongly normalizable.

Proof. The theorem is proved in three steps:

I. All NPAC rules are valid.

II. Derivation that are built out of valid rules are valid.

III. Valid derivations are strongly normalizable.

All of which will be proven in the next three seperate lemmas.

Lemma 3.4.13. All NPAC rules are valid.

Proof. 1. All introduction rules are valid. We need to prove that each derivation of the

form
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Π =
Π1

A1 · · ·

Πn

An R
B

where R is an introduction rule, is valid given that each Πi is valid. So, suppose that Π is

as mentioned. By Definition 3.4.9.1 we need to prove that each derivation

Π′ =
Π

B

Π′1

A ′1 · · ·

Π′m

A ′m R′
C

is valid given that R′ is an elimination rule and each Π′i is valid. And, by Definition 3.4.9.2,

to show that Π′ is valid is to show that each immediate reduction Π′′ of Π′ is valid, and if

the last inference rule in Π′ is an application of Rϕ
ψ E or Rϕ∗

ψ E then the derivations of minor

premises of that inference are valid. We prove this by induction on the sum of lengths of

the reduction sequences of Π1, . . . ,Πn and Π′1, . . . ,Π
′
m.

(i) Validity of ∧ϕ I. If R is ∧ϕ I then Π′ has the form

Π1

x :ϕ A1

Π2

x :ϕ A2
∧ϕ Ix :ϕ A1 ∧ A2

∧ϕ Ex :ϕ Ai

If the immediate reduction Π′′ of Π′ is by the detour conversion for ∧ϕ, then Π′′ is

Πi

x :ϕ Ai

and is valid by assumption. If not then Π′′ is the result of replacing a proper part of Π′ by

its conversion. Since the lengths of the reduction sequences of Π′′ is lower the sum of

the lengths of the reduction sequences of Π1 and Π2, then Π′′ is valid by the induction

hypothesis.

If not, then Π′ has the following form if ϕ = ϕ′,B ∧ [B]C for some formula B and C.
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Π1

x :ϕ′,B∧[B]C A1

Π2

x :ϕ′,B∧[B]C A2
∧ϕ
′,B∧[B]C I

x :ϕ′,B∧[B]C A1 ∧ A2 Ecomp
x :ϕ′,B,C A1 ∧ A2

Clearly there is no detour conversion defined between ∧ϕ′,B∧[B]C I and Ecomp. So, the

immediate reduction Π′′ of Π′ is only by the result of replacing a proper part of Π′. Since

the lengths of the reduction sequences ofΠ′′ is lower the sum of the lengths of the reduction

sequences of Π1 and Π2, then Π′′ is valid by the induction hypothesis.

(ii) Validity of ⊃ϕ I. If R is ⊃ϕ I then Π′ has the form

[x :ϕ A]

Π1

x :ϕ B
⊃ϕ Ix :ϕ A ⊃ B

Π′1

x :ϕ A
⊃ϕ Ex :ϕ B

If the immediate reduction Π′′ of Π′ is by the detour conversion for ⊃ϕ, then Π′′ is

Π′1

[x :ϕ A]

Π1

x :ϕ B

and is valid since Π1 and Π′1 are valid by assumption and Proposition 3.4.11.5. If not then

Π′′ is the result of replacing a proper part of Π′ by its conversion. Since the lengths of the

reduction sequences of Π′′ is lower the sum of the lengths of the reduction sequences of

Π1 and Π′1, then Π
′′ is valid by the induction hypothesis.

If not, then Π′ has a form, mutatis mutandis, similar to (1) if ϕ = ϕ′,B ∧ [B]C for some

formula B and C. The proof is similar as well.

45

Univ
ers

ity
 of

 M
ala

ya



(iii) Validity of Kϕ
a I, Eϕψ I, Cϕψ I, and [A]ϕ I. The proofs of each rule are similar to the

proof of the validity of ⊃ϕ I since the detour conversion of all these rules are similar as can

be seen in 3.4.4.

(iv) Validity of Icomp. If R is Icomp then Π′ has the form

Π1

x :ϕ,A,B C Icomp
x :ϕ,A∧[A]B C Ecomp

x :ϕ,A,B C

If the immediate reduction Π′′ of Π′ is by the detour conversion for comp, then Π′′ is

Π1

x :ϕ,A,B C

and is valid since Π1 is valid by assumption. If not then Π′′ is the result of replacing a

proper part of Π′ by its conversion. Since the lengths of the reduction sequences of Π′′

is lower the sum of the lengths of the reduction sequences of Π1, then Π′′ is valid by the

induction hypothesis.

(v) Validity of Iatomϕ,A. The proof is similar to the proof of the validity of ∧ϕ I.

(vi) Validity of Rϕ,A
a I. The proof is similar to the proof of the validity of ∧ϕ I but with

three premises instead of two in Π.

(vii) Validity of Rϕ
ψ I. If R is Rϕ

ψ then Π′ has the form

Π1

xRϕ
ai y Rϕ

a1...an IxRϕ
a1...an y

[xRϕ
a1 y]

Π′1

A · · ·

[xRϕ
an y]

Π′n

A
Rϕ

a1...an EA

If the immediate reduction Π′′ of Π′ is by the detour conversion for Rϕ
ψ , then Π

′′ is
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Π1

[xRϕ
ai y]

Π′i

A

and is valid by assumption. If not then Π′′ is the result of replacing a proper part of Π′

by its conversion. Since the lengths of the reduction sequences of Π′′ is lower the sum

of the lengths of the reduction sequences of Π1 and Π′i , then Π
′′ is valid by the induction

hypothesis.

(viii) Validity of Rϕ∗
ψ I. The proof of the detour conversions of Rϕ∗

ψ I is similar to the

proof of the validity of Rϕ
ψ I.

Note that, for each of the previous cases, R′ can also be Ecomp or both of the Eatoms.

But the conversion of these is clearly valid by the induction hypothesis.

2. The ⊥ϕ rule is valid. Note again that a derivation ending with the application ⊥ϕ is

defined as an I-form and a conclusion of an application of the ⊥ϕ rule is always a labelled

formula as we do not define it for a relational formula. Now, suppose that a derivation Π

[x :ϕ ¬A]

Π1

y :ϕ⊥
⊥ϕx :ϕ A

is a derivation whose last inference is an application of the ⊥ϕ and Π1 is valid. We prove

by induction on the rank of x :ϕ A that Π is valid. Note that this induction is our main

induction. We will later use another induction within this main induction.

Base case. Suppose that x :ϕ A is atomic (i.e. r(x :ϕ A) = 〈0,0〉). Since A is atomic

there will be no elimination rule with x :ϕ A as a major premise. So, Π′ is the same as Π.

We prove that each immediate reduction Π′′ of Π′ is valid by induction on the length of

the reduction sequence of Π1. If Π′′ is obtained by a redundant ⊥ conversion, then Π′′
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is Π1 and valid by assumption. If Π′′ is the result of replacing a proper part of Π′ by its

conversion, then Π′′ is valid by the induction hypothesis.

Induction step. We prove that each immediate reduction Π′′ of the derivation

Π′ =

[x :ϕ ¬A]

Π1

y :ϕ⊥
⊥ϕx :ϕ A

Π′1

A ′1 · · ·

Π′m

A ′m R′
B

is valid, given that R is an elimination rule and each Π′i is valid, by induction on the sum

of the lengths of the reduction tress of Π1 and all the Π′is.

(i) A has the form A1 ∧ A2.

(a) If Π′′ is a ⊥ conversion of Π′, then Π′′ has the form

[x :ϕ ¬Ai]
1

[x :ϕ A1 ∧ A2]
2
∧ϕ Ex :ϕ Ai

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ∧ A2)]

Π1

y :ϕ⊥
⊥ϕ,1x :ϕ Ai

According to the main induction hypothesis and the validity of Π1 it is sufficient to prove

the validity of the derivation

Π′′′ =

Π′′1

[x :ϕ ¬Ai]
1

[x :ϕ A1 ∧ A2]
2
∧ϕ Ex :ϕ Ai

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ∧ A2)]

Π1

y :ϕ⊥

given the validity of Π′′1 . Since ⊃
ϕ is a valid rule, the validity of Π′′′ follows if we prove

that the derivation

48

Univ
ers

ity
 of

 M
ala

ya



Π′′′′ =
Π′′1

[x :ϕ ¬Ai]
1

Π′′2

[x :ϕ A1 ∧ A2]
2
∧ϕ Ex :ϕ Ai

⊃ϕ Ex :ϕ⊥

is valid, given the validity of Π′′2 . But the validity of Π
′′′′ follows by two applications of

Proposition 3.4.11.4.

(b) If Π′′ is the result of replacing a proper part of Π′ by its conversion, then the validity

of Π′′ follows from the induction hypothesis.

(ii) A has the form A1 ⊃ A2.

(a) If Π′′ is a ⊥ conversion of Π′, then Π′′ has the form

[x :ϕ ¬A2]
1

[x :ϕ A1 ⊃ A2]
2

Π′1

x :ϕ A1
⊃ϕ Ex :ϕ A2

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ⊃ A2)]

Π1

y :ϕ⊥
⊥ϕ,1x :ϕ A2

According to the main induction hypothesis and the validity of Π1, it is sufficient to prove

the validity of the derivation

Π′′′ =

Π′′1

[x :ϕ ¬A2]
1

[x :ϕ A1 ⊃ A2]
2

Π′1

x :ϕ A1
⊃ϕ Ex :ϕ A2

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ⊃ A2)]

Π1

y :ϕ⊥

given the validity of Π′′1 . Since ⊃
ϕ is a valid rule the validity of Π′′′ follows if we prove

that the derivation
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Π′′′′ =

Π′′1

[x :ϕ ¬A2]
1

Π′′2

[x :ϕ A1 ⊃ A2]
2

Π′1

x :ϕ A1
⊃ϕ Ex :ϕ A2

⊃ϕ Ex :ϕ⊥
⊃ϕ I2

[x :ϕ ¬(A1 ⊃ A2)]

Π1

y :ϕ⊥

is valid given the validity of Π′′2 . The validity of Π′′′′ follows by two applications of

Proposition 3.4.11.4.

(iii) A has the form Ka A1, EψA1, CψA1, or [A1]A2. The proofs are similar.

(iv) A has the form x :A1∧[A1]A2 A3. The proof is similar.

Note that, for each of the previous cases, R′ can also be Ecomp or both of the Eatoms.

But the conversion of these is clearly valid by the induction hypothesis.

3. All elimination rules are valid. We need to prove that each derivation of the form

Π =
Π1

A1 · · ·

Πn

An R
B

where R is an elimination rule is valid given that each Πi is valid. This is to show that each

immediate reduction of Π is valid; and, if R is an application of Rϕ
ψ E or Rϕ∗

ψ E then the

derivations of the minor premises of that inference are valid.

(i) Validity of ∧ϕ E, ⊃ϕ E, Kϕ
a E, Eϕψ E, Cϕψ E, [A]ϕ E, Ecomp, Eatomϕ,A, and Rϕ,A

a E. The

proofs follow immediately from Proposition 3.4.11.4.

(ii) Validity of Rϕ
ψ E. If R is Rϕ

ψ E then Π has the form

Πn+1

xRϕ
a1...an y

[xRϕ
a1 y]

Π1

A · · ·

[xRϕ
an y]

Πn

A
Rϕ

a1...an EA
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where each Πi is valid. We prove, by induction on a lexico-graphically ordered pair 〈m, k〉

of natural numbers, where m is the sum of the lengths of the reduction sequences of each

Πi, and k is the length of Π, that each immediate reduction Π′ of Π is valid.

(a) If Π′ is a detour conversion of Π, then Π′ has the form

Πn+1

[xRϕ
ai y]

Πi

A

Then the validity of Π′ follows from the validity of Πn+1 and Πi; and, Proposition 3.4.11.5.

(b) if Π′ is a permutative conversion of Π, then Πn+1 has the form

Π′′1

ρ

Π′1

xRϕ
ψy · · ·

Π′m

xRϕ
ψy

R
xRϕ

ψy

where R is either Rϕ
ψ E or Rϕ∗

ψ E, and Π′ has the form

Π′′1

ρ

Π′1

xRϕ
ψy

[xRϕ
a1 y]

Π1

A · · ·

[xRϕ
an y]

Πn

A

A · · ·

Π′m

xRϕ
ψy

[xRϕ
a1 y]

Π1

A · · ·

[xRϕ
an y]

Πn

A

A
R

A

The validity of each Π′i follows from the definition of validity and the validity of Πn+1.

Hence, each derivation

Π′i

xRϕ
ψy

[xRϕ
a1 y]

Π1

A · · ·

[xRϕ
an y]

Πn

A
Rϕ
ψ E

A

is valid by the induction hypothesis. The validity of Π′ now follows from Proposition

3.4.11.3 and the restriction on permutative conversion.
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(iii) Validity Rϕ∗
ψ E. The proof is similar to the proof of the validity of Rϕ

ψ E.

Lemma 3.4.14. Derivations that are built out of valid rules are valid.

Proof. By induction on the length of the derivation.

Lemma 3.4.15. Valid derivations are strongly normalizable.

Proof. We prove by induction on the definition of validity.

(i) The derivation

Π =
Π1

A1 · · ·

Πn

An R
B

in is I-form. According to the induction hypothesis, each Πi is strongly normalizable.

Hence, by Proposition 3.4.11.1, Π is strongly normalizable.

(ii) Π is not in I-form. According to the induction hypothesis, each immediate reduction

of Π is strongly normalizable. Hence Π is strongly normalizable.
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CHAPTER 4: APPLICATION IN CRYPTOGRAPHIC PROTOCOL

4.1 Reviews on DEL in Cryptographic Protocol

A logical method is used in cryptographic method mainly in the form of model checking,

where certain system or algorithm is checked to be correct for all model, or in the form

of a proof assistant, where certain system or algorithm is being proved to be correct.

It is important to note that cryptographic protocol is not in any way the study of the

cryptographic system in itself, like that of studying the complexity or the impossibility of

finding a factorization of a large prime, but is the study of how the cryptographic system

is implemented from the beginning to the end. Generally, both methods are being used

simultaneously and their use can be seen negatively in the sense that we use the model

checking to find a counter model while at the same time use the proof assistant to find a

solution.

To demonstrate how PAC is applicable we take an example from (van Ditmarsch et al.,

2008). Let there be three people Anne, Bill, and Cath each having one card from the stack

of 0, 1, and 2 labelled cards. Suppose that Anne, Bill, and Cath has the card 0, 1, and 2

respectively. Suppose now a series of announcement/protocol:

1. Anne: I do not have card 1.

2. Bill: I still do not know Anne’s card.

3. Anne: I have the card 1, Bill have the card 2, and Cath has the card 3.

From this series of announcements we can deduce a lot of information even within each

step of the announcement. Now to demonstrate let Nx be the symbol for person x having

the card numbered N . For example, 0a represents the statement “Anne has the card 0”. To
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simplify let 012 represent the world in which 0a ∧ 1b ∧ 2c is true. The following is the

diagram showing the modelM for this situation:

012 021

102 120

201 210

a

b

b

c

c

a

b

a

c

Figure 4.1: Three cards modelM

The model in this case consists of 6 worlds (W = {012,021,102,120,201,210}),

Ra = {(012,021), (201,210), (102,120)}, Rb = {(012,210), (102,201), (021,120)}, Rc =

{(012,102), (021,201), (210,120)}, and the valuation functionV in the obvious way as seen

in the diagram (e.g. V(012,0a) = 1 andV(012,1a) = 0). Let Γ be a set including all the

relations above and all atomic labelled formulas for which its valuation is 1 (e.g. 012 : 0a).

Note that we ignore the transitive and symmetric relations to simplify. The announcement

of 1, 2, and 3 can be symbolized respectively by ¬1a, ¬Kb0a ∧ ¬Kb1a ∧ ¬Kb2a, and

0a ∧ 1b ∧ 2c.

Now we know for example that Cath knows Anne’s card after the first announcement by

considering the following restricted model (i.e. �M 012 : [¬1a](Kc0a ∨ Kc1a ∨ Kc2a)):

012 021

201 210

a

b

a

c

Figure 4.2: Three cards modelM after announcing [¬1a]

We can also show for example:

1. �M 012 : [¬1a](¬Kb0a ∧ ¬Kb1a ∧ ¬Kb2a); i.e. after the first announcement Bill

still does not know Anne’s card.
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2. �M 012 : [¬1a][¬Kb0a∧¬Kb1a∧¬Kb2a][(Ka0b∨Ka1b∨Ka2b](¬Kb0a∧¬Kb1a∧

¬Kb2a); i.e. Bill still does not know Anne’s card even after Anne’s announcement

that she knows Bill’s card.

3. �M 012 : [¬1a][¬Kb0a∧¬Kb1a∧¬Kb2a][0a∧1b∧2c]((¬Kb0a∧¬Kb1a∧¬Kb2a)∧

(¬Kb0c ∧ ¬Kb1c ∧ ¬Kb2c)); i.e. Bill knows Anne’s and Cath’s card after the third

announcement.

4. �M 012 : [¬1a][¬Kb0a ∧¬Kb1a ∧¬Kb2a][0a ∧1b∧2c]Cabc(0a ∧1b∧2c); i.e. after

the third announcement, it is a common knowledge for everyone that the card deal is

012.

Note that, announcing something does not imply that it is a common knowledge. This

is especially true when there is a case of a formula being false after it is announced (van

Ditmarsch et al., 2008). So, the following are the formal definition of this situation.

Definition 4.1.1.

1. A is a successful formula iff ` [A]A.

2. A is a unsuccessful formula iff it is not successful.

It turns out that every formula having common knowledge as its principle operator is

a successful formula (van Ditmarsch et al., 2008). It can be proven semantically (van

Ditmarsch et al., 2008) but we will demonstrate how it is proven using our NPAC. But to

show this we require the following propositions.

Proposition 4.1.2. x :ϕ Cψ ⊥a` x :ϕ⊥

Proof. For one direction

x :ϕ Cψ ⊥
3.2.10

xRϕ∗
ψ x
C
ϕ
ψ E

x :ϕ⊥
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For the other direction.

x :ϕ⊥ 3.2.9
y :ϕ⊥ [xRϕ∗

ψ y]
C
ϕ
ψ I

x :ϕ Cψ ⊥

Proposition 4.1.3. Suppose that ◦ is a propositional operator then ` Cψ(¬A) ⊃ ¬(CψA)

and ` Cψ(A ◦ B) ⊃ (CψA ◦ CψB).

Proof. The second assertion is clearly true when ◦ is ⊃ since we have proven it in Theorem

3.3.2.10. The rest of the proof can be proven using the distributivity of Cψ in Theorem

3.3.2.10, Proposition 4.1.2, and the fact that two logical operators ⊥ and ⊃ are functionally

complete for propositional operators. The following is the proof for the first assertion. For

an arbitrary world x,

[x : Cψ(A ⊃⊥)]1
3.3.2.10x : CψA ⊃ Cψ ⊥ [x : CψA]2

⊃ Ex : Cψ ⊥
4.1.2x :⊥
⊃ I2x : ¬CψA

⊃ I1x : Cψ(¬A) ⊃ ¬CψA

Proposition 4.1.4.

1. xRϕ,A
ψ y ` xRϕ

ψy

2. xRϕ,A
ψ y ` x :ϕ A

3. xRϕ,A
ψ y ` y :ϕ A

4. xRϕ,A∗
ψ y ` xRϕ∗

ψ y

5. xRϕ,A∗
ψ y ` x :ϕ A

6. xRϕ,A∗
ψ y ` y :ϕ A
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Proof. 1.

xRϕ,A
ψ y

[xRϕ,A
a1 y]

xRϕ
a1 y

xRϕ
ψy · · ·

[xRϕ,A
an y]

xRϕ
an y

xRϕ
ψy Rϕ,A

ψ E
xRϕ

ψy

2.

xRϕ,A
ψ y

[xRϕ,A
a1 y]

x :ϕ A · · ·

[xRϕ,A
an y]

x :ϕ A
Rϕ,A
ψ E

x :ϕ A

3. Similar to (2).

4.

xRϕ,A∗
ψ y

[xRϕ,A
ψ y]

1
xRϕ

ψy

xRϕ∗
ψ y · · ·

[xRϕ,A
ψ x1]

1
xRϕ

ψx1

xRϕ∗
ψ x1 · · ·

[xnRϕ,A
ψ y]

1
xnRϕ

ψy

xnRϕ∗
ψ y

3.2.10
xRϕ∗

ψ y · · ·
Rϕ,A∗
ψ E

xRϕ∗
ψ y

5.

xRϕ,A∗
ψ y

[xRϕ,A
ψ y]

2x :ϕ A · · ·

[xRϕ,A
ψ x1]

2x :ϕ A · · ·
Rϕ,A∗
ψ E

x :ϕ A

6. Use (4) and then (5).

Theorem 4.1.5 (Public knowledge updates are successful). ` [CψA]CψA.

Proof. We prove by induction over the complexity of the formula A.

Base case. If A is an atomic proposition p then for an arbitrary world x
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[xRCψp∗
ψ y]2

[x : Cψp]1[xRCψp
ψ y]3

Π1

y :Cψp p · · ·

[x : Cψp]1[xRCψp
ψ x1]

3 · · · [xnRCψp
ψ y]3

Πn

y :Cψp p · · ·
RCψp∗
ψ E3

y :Cψp p
C
Cψp
ψ I2

x :Cψp Cψp
[Cψp] I1

x : [Cψp]Cψp

where Π1 is

[xRCψp
ψ y]3

4.1.4xRψy
xR∗ψy [x : Cψp]1

y : p

[xRCψp
ψ y]3

xRψy
xR∗ψy [yR∗z]4

xR∗z [x : Cψp]1
Cψ Ez : p

Cψ I4
y : Cψp IatomCψp

y :Cψp p

and similarly for Πn but with the use of transitivity of R∗ψ in Proposition 3.2.10.

Induction step. We will show only for one case when A is B ∧ C as the other cases can

be shown with almost similar method. Recall that ` A means that ` x :ϕ A for all world x

and for all list of formulas ϕ. So, suppose that the formulas B and C satisfy the theorem.

Let Π1 be the derivation of x1 :ϕ1 [CψB]CψB and Π2 be the derivation of x2 :ϕ2 [CψC]CψC.

We want to show that x :ϕ [Cψ(B ∧ C)]Cψ(B ∧ C) for all x and for all list of formulas ϕ.

But this can be shown using Proposition 4.1.2 and 4.1.4.

The three card game above illustrates the simple protocol of two exchanging party

conveying a secret message publicly without the third person knowing the secret message.

The three subjects in the example can be seen as a state machine which can be directly imple-

mented in a computer system for cryptographic protocol purposes. A more comprehensive

example can be seen in van Ditmarsch et al. (2008) in the form of Russian card problem

where now there are 7 cards instead of 3. Safe announcement in cryptographic protocol

means that two parties openly announcing between each other in order to convey a certain

message without having another party learning that message. This can be formalized using
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the PAC as

KψA ∧ [KψA]¬Keve A.

In another example in Gattinger (2018), DEL is used and is extended with some

additional language to formalize the protocol of Diffie-Hellman key exchange. A model

checker is used to check whether there is an eavesdropper Eve that can eavesdrop between

Alice and Bob during the key exchange. The formalization of eavesdropping is as follow:

(ka = kb) ∧ (KAliceka ∧ KBobkb) ∧ (¬KEveka ∧ ¬KEvekb)

which says informally that the key a which Alice knows is equal to the key b which Bob

knows and that Eve does not know both of the keys a and b.
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CHAPTER 5: CONCLUSION

5.1 Conclusion

We have given a general overview of proof-theoretic semantics in which we have

mentioned its difference compared to model-theoretic semantics that gives meaning to

a language by means of a model or truth. We have adopted the proof-theoretic view of

the validity of an inference defined from the validity of a derivation. This differs from

model-theoretic views which define the validity of an inference by the preservation of the

truth from its premises to its conclusion. By using proof-theoretic views of validity we

have proven the normalizability of NPAC. We have also briefly surveyed what dynamic

epistemic logic studies, where public announcement logic is one of its branch, and its

application in the cryptographic protocol.

We, then, comprehensively present the syntax, semantics, and the proof system of PAC.

We present all the language/syntax/symbol that is comprised in PAC and from which a well

formed formula is defined inductively to separate between meaningless concatenation of

symbols in PAC and the meaningful ones. The formula in PAC has two forms, labelled and

relational, which are built from a formula that is defined priorly. The rank of a formula

in PAC is given mainly for defining the notion of validity of a derivation and for proving

its normalizability in the later chapter. We then present the semantics of the well formed

formulas by means of a restricted Kripke model, a model of which is capable of giving a

meaning of an indexed labelled or relational formulas. Some properties are then proven

mainly for justifying all the rules in NPAC or in general to prove the soundness of our

NPAC in the later chapter. Then, we presented the known Hilbert’s proof system that

axiomatizes PAC (PAC). Although there are proof systems for PAL, Hilbert system is the

only proof system of PAL with the important common knowledge operator (PAC).
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We then present our proposed labelled natural deduction for PAC (NPAC). It consists

of the usual propositional inference rules with the additional labelling and indexing, modal,

announcement, composition, and atomic inference rules, relational inference rules, ;and,

the three reflexive, symmetric, and transitive rules. A notion of a derivation is defined as a

tree consisting rules consisting premise(s) and a conclusion that satisfies certain conditions.

We have proven that the falsum ⊥ traverses along worlds and also along the indexed of a

list of formulas which are especially useful in proving the normalizability later. We have

proven also the reflexive and symmetric properties of the Rϕ
ψ operator and the equivalence

relation of the Rϕ∗
ψ operator which should be the case considering how they are both being

defined semantically. This is especially useful in proving the completeness of NPAC later.

Then we have proven the soundness of NPAC directly from the restricted Kripke model

and have proven the completeness of NPAC via translation from the known Hilbert system

of PAC (PAC). Both completeness and soundness theorem show that the NPAC and PAC

are extensionally equivalent. We have as well proven the strong normalizability of the

NPAC. This shows that every reduction of the derivation of the NPAC will always be

reduced to a normal form. We have shown this using the proof theoretic notion of validity

of a derivation from which the validity of an inference is defined.

Finally, we have presented some applications of PAC in cryptographic protocol. We

have shown how the notion of safe announcement, where the secret can be kept although

the information regarding it is announced publicly, can be formalized in PAC.

5.2 Further Work

The normalization theorem for NPAC is proven without the ∨ϕ operator mainly because

it seems impossible to atomize the conclusion on an application of ⊥ϕ rule when the
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conclusion is a compund relational formula. In other words, it seems impossible to atomize

every relational formula ρ in the following derivation.

Π

x :ϕ Ai
∨ϕ Ix :ϕ A1 ∨ A2

[x :ϕ A1]

Π1

ρ

[x :ϕ A2]

Π2

ρ
∨ϕ Eρ

This might be circumvented if we define propositional rules to relational formulas as well.

This prompts for further work to make the proof system more comprehensive by giving the

relational formulas propositional rules. It is also warranting to prove the completeness

directly from the restricted Kripke semantics rather than by translation into PAC Hilbert

proof system. One can also investigate further properties of NPAC considering that every

derivation can be normalized: consistency, sub-formula property, and other proof-theoretic

principles.

Another gap that we find is that the combination of comp rules and other NPAC rules

introduce an unusual detour for which we do not define a conversion in our definition.

Consider the following derivation as an example:

Π1

x :ϕ′,B,C A1 Icomp
x :ϕ′,B∧[B]C A1

Π2

x :ϕ′,B,C A2 Icomp
x :ϕ′,B∧[B]C A2

∧ϕ
′,B∧[B]C I

x :ϕ′,B∧[B]C A1 ∧ A2 Ecomp
x :ϕ′,B,C A1 ∧ A2

∧ϕ
′,B,C E

x :ϕ′,B,C A1

Clearly we can see that x :ϕ′,B,C A1 appears twice in the derivation. If we are not to accept

this derivation as normal then we can of course define a new conversion to circumvent this

situation. In this example, the conversion would be the following

Π1

x :ϕ′,B,C A1
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We can easily define all conversions of this form to avoid this kind of detour and can

easily find a way to normalize all derivations in NPAC (i.e. weak normalization). But the

challenge would be to give a new definition of valid derivation in order to achieve strong

normalization.

As proof assistant is very useful as a formal method in computer science in general, it is

possible to use a proof assistant to implement the NPAC. One possible line of research

is to use Isabella theorem prover to implement NPAC like how Viganò (2000) did for

non-classical modal logic.

Epistemic action logic (EAL) is another logic under the umbrella of dynamic epistemic

logic. EAL is an extension of PAC which is more expressive and capable of formalizing a

more complex and dynamic situation. The proof system for EAL with common knowledge

operator is likewise currently only presented with the Hilbert system. Further work would

be to add theNPAC rules towards having a new labelled natural deduction system satisfying

the soundness and the completeness with respect to the EAL.
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