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POLYHYDROXYALKANOATES FOR INNOVATIVE ELECTRODES AND 

PROTON EXCHANGE MEMBRANE MODIFICATION IN MICROBIAL FUEL 

CELL 

ABSTRACT 

The increase in global energy demand due to increasing population and industrialization 

demands renewable and environmental-friendly alternatives. Energy from fossil fuel are 

non-renewable, depleting and detrimental from environmental perspectives. Alternative 

energy, green and renewable such as hydrogen fuel, biodiesel, bioethanol, microbial fuel 

cell and many more have been extensively investigated. One possible solution lies with 

non-combustion method such as microbial fuel cell. A microbial fuel cell is a sustainable 

and environmental-friendly device that combines electricity generation and wastewater 

treatment through metabolic activities of microorganisms. However, low power output 

from inadequate electron transfer to the anode electrode hampers its practical 

implementation. Nanocomposite of oxidized carbon nanotubes and medium-chain-length 

polyhydroxyalkanoates (mcl-PHA) grafted with methyl acrylate monomers enhances 

anode-cathode electrodes electrochemical function in microbial fuel cell. Extensive 

polymerization of methyl acrylate monomers within mcl-PHA matrix, and homogenous 

dispersion of carbon nanotubes within the graft matrix are responsible for the 

enhancement. Modified electrodes exhibit high conductivities, enhanced redox peak and 

reduction of cell internal resistance up to 76 %. A stable voltage output at almost 700 mV 

running for 225 hours generating maximum power and current density of 351 mW/m2 

and 765 mA/m2 respectively. Superior biofilm growth on modified anode surface as well 

as enhanced redox peak of modified cathode are responsible for improved electron 

transfer to the anode and efficient oxygen reduction rate at cathode, hence stable and 

elevated power output generation. Polyhydroxybutyrate (PHB) as an integrated 

component of ion exchange membrane in microbial fuel cell (MFC) was also investigated. 

PHB crystals ranging from 5-15 % (w/w) were thermally dispersed and composited within 
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medium-chain-length polyhydroxyalkanoate (PHA) matrix as shown by spectroscopic 

analyses. The composite membranes were juxtaposed with Nafion membrane for 

improved ion conduction. Membrane with 10 % and 15 % (w/w) PHB recorded two-fold 

maximum voltage potential compared to Nafion membrane alone. A power density of 

601 mW/m2 was recorded for PHB 15% membrane, which was superior to Nafion 

membrane (520 mW/m2). In operation with real wastewater, maximum voltage potential, 

water uptake, power and current densities, chemical oxygen demand (COD) removal, 

ammoniacal nitrogen (NH3-N) removal, as well as coulombic efficiency (CE) recovery 

of the composite membrane are superior to Nafion; attributed primarily to high resistivity 

to oxygen molecules diffusion from cathode to anode compartments, which subsequently 

improved the overall MFC performance. 

Keywords: Polyhydroxyalkanoates; Microbial fuel cell; Electrode modification; Ion 

permeability; Proton exchange membrane 
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POLIHIDROKSIALKANOAT UNTUK MODIFIKASI MEMBRANE 

PERIHAL ELEKTROD DAN PROTON DALAM MESIN FUEL MICROBIAL 

ABSTRAK 

Peningkatan permintaan tenaga global rentetat daripada peningkatan populasi dan 

perindustrian telah mewujudkan alternatif bagi tenaga yang boleh diperbaharui dan mesra 

alam sekitar. Tenaga dari bahan api fosil adalah tidak boleh diperbaharui, semakin 

berkurang dan merosakkan alam sekitar. Tenaga alternatif, hijau dan boleh diperbaharui 

seperti bahan api hidrogen, biodiesel, bioethanol, sel bahan bakar mikrob dan banyak lagi 

telah diperkenalkan. Salah satu daripada penyelesaian-penyelesaian yang terletak pada 

kaedah bukan pembakaran adalah seperti sel bahan bakar mikrob. Sel bahan bakar mikrob 

adalah peranti mesra alam yang menggabungkan usaha penjanaan elektrik dan rawatan 

air sisa melalui aktiviti metabolik mikroorganisma. Walau bagaimanapun, keluaran kuasa 

yang rendah daripada pemindahan elektron yang tidak mencukupi kepada elektrod anod 

menghalang pelaksanaan secara praktikal. Komposit nano tiub nano karbon teroksida dan 

polihidroksialkanoat berrantaian sederhana panjang (mcl-PHA) yang dicantum dengan 

monomer metil akrilat meningkatkan fungsi elektrokimia elektrod dalam sel bahan bakar 

mikrob. Pempolimeran monomer metal akrilat yang meluas dan penyebaran homogen 

tiub nano karbon dalam matriks dalam matriks mcl-PHA bertanggungjawab dalam 

peningkatan ini. Elektrod yang diubahsuai menunjukkan daya konduktiviti yang tinggi, 

puncak redoks yang lebih baik dan pengurangan rintangan dalaman sel sehingga 76%. 

Keluaran voltan yang stabil pada hampir 700 mV selama 225 jam menghasilkan kuasa 

maksimum dan ketumpatan arus yang baik, masing-masing 351 mW/m2 dan 765 mA/m2. 

Pertumbuhan biofilem yang unggul pada permukaan yang diubahsuai juga 

bertanggungjawab untuk pemindahan elektron yang lebih baik ke anod, justeru menjana 

keluaran kuasa yang stabil dan tinggi. Polihidroksibutirat (PHB) sebagai komponen 

bersepadu bagi membran pertukaran ion dalam sel bahan bakar mikrob (MFC) telah 
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dikaji. 5-15% (w/w) kristal PHB disebarkan secara termal dan digabungkan dalam 

matriks mcl-PHA seperti yang ditunjukkan dalam analisis spektroskopi. Membran 

komposit telah dibandingkan dengan membran Nafion untuk konduksi ion yang lebih 

baik. Membran dengan 10% dan 15% (w/w) PHB mencatatkan potensi voltan maksimum 

dua kali ganda berbanding membran Nafion sahaja. Ketumpatan kuasa 601 mW/m2 

dicatatkan untuk membran PHB sebanyak 15%, yang lebih tinggi daripada membran 

Nafion (520 mW/m2). Dalam operasi dengan air kumbahan sebenar, potensi voltan 

maksimum, pengambilan air, kepadatan kuasa dan arus, penghapusan permintaan oksigen 

kimia (COD), penyingkiran nitrogen ammoniak (NH3-N), serta pemulihan kecekapan 

Coulomb (CE) bagi membran komposit adalah lebih baik daripada Nafion; disebabkan 

oleh rintangan yang tinggi terhadap penyebaran oksigen daripada katod ke anod, 

seterusnya meningkatkan prestasi keseluruhan MFC. 

Kata kunci: Polihidroksialkanoat; Sel bahan bakar mikrob; Pengubahsuaian elektrod; 

Kebolehtelapan ion; Membran pertukaran Proton 
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CHAPTER 1:  INTRODUCTION 

The current rate of CO2 release, mainly from non-renewable energy sources, could 

result in 1.5 C increase in global warming by the year 2040 (Hoegh-Guldberg et al., 

2018). Hence, the urgency to develop and improve alternative energy sources that are 

renewable, economical and environmental-friendly. With respect to these features, 

microbial fuel cell (MFC) stands out as a promising alternative green energy source. The 

device ability to combine electric current generation from the electrons released by 

metabolic activities of microorganisms, and wastewater treatment made it a unique 

energy source (Almatouq & Babatunde, 2018). A double-chambered MFC consists of 

anode and cathode chambers separated by a proton exchange membrane (PEM). 

In MFC operation, the abundance and high reduction potential of oxygen has made it 

the most suitable and practical electron acceptor (Li et al., 2017). However, the slow 

oxygen reduction reaction (ORR) at the cathode electrode negatively affecting the overall 

power output necessitates the use of a catalyst in the cathode for balanced rate of ORR 

(Zhu et al., 2016). The most commonly utilized catalyst as cathode modifier is platinum 

(Pt) due to its longevity, stability and high catalytic potential. Unfortunately, its rarity 

makes it an expensive option (Jafary et al., 2018), and being classified as a heavy metal, 

the exposure to its salts could pose adverse health effects. Carbon based nanomaterials 

such as activated carbon (AC), carbon black (CB), graphene, single-walled and multi-

walled carbon nanotube among others are seen as viable alternatives to Pt (Ahmed et al., 

2012; Ates et al., 2017; Li et al., 2012). In order to lower the cost of cathode catalyst and 

at the same time increase its ORR potential, researchers have focused mainly on the 

nanocomposition of alternative catalysts. These include Ni/AC composite (Luo & He, 

2016), AC/CB composite (Merino-Jimenez et al., 2016), reduced graphene oxide 

composited with MnO2 (MnO2/rGO) (Rout et al., 2018), ferric nitrate/AC nanocomposite 
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(Tofighi et al., 2018), and polyaniline nanofiber (PANInf) composited with CB. Recently, 

Papiya et al. (2018) developed a novel polymeric cathode electrode composed of Ni:Co 

(1:1) supported sulfonated polyaniline (Ni:Co/SPAni) for a single chamber MFC 

application. The maximum power density of ~ 659.79 mW/m2 was observed which was 

greater than that of Pt/C cathode electrode (~ 483.48 mW/m2). The superior performance 

in ORR observed by the polymeric-metal catalysts is the results of higher catalytic 

activity, uniform dispersion of the nanoparticles and good chemical stability of the 

composited electrodes. 

Among major challenges hindering the practical application of MFC is inadequate 

transfer of electrons released from metabolism to the anode electrode (Yusuf et al., 2018). 

The encumbrance in the electron transfer has been attributed to over-potential of anode 

electrodes which arise due to loss in; initiation of oxidation reaction (activation), bacterial 

metabolism, and concentration gradient (mass transport) (Logan, 2008). Conventional 

anode electrodes such as stainless steel fiber felt (SSFF), carbon cloth (CC) and carbon 

paper (CP) amongst others have been modified with catalysts for better activation, low 

internal resistance for improved electron transfer (Yusuf et al., 2018) and ideal size 

compatibility for maximum internal colonization by electrogens (Hu & Cui, 2012). A 

recent review detailing various improvements to anode electrode needed to circumvent 

the loss in electron transfer, and for overall improvement of MFC power generation 

efficiency was presented by Hindatu et al. (2017a). This includes modification of anode 

electrode with graphite-based material (Chou et al., 2014), metal oxide nanocomposition 

(Alatraktchi et al., 2014), chemical and electrochemical modifications (Liu et al., 2014) 

and polymeric modification (Hindatu et al., 2017b). The latter has been reported to 

improve extracellular transfer of electron, thereby reducing the internal resistance and 

concomitantly improved power output (Cui et al., 2015; Kang et al., 2015; Wang et al., 

2014).   
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Considering the architecture of anode electrode in MFC, the physical integrity of the 

electrode is of great importance as the anode is exposed to aqueous environment 

consisting of electrogens and substrate. The electrode must be hydrophobic enough to 

prevent early damage to the electrode due to swelling effect (Sarathi & Nahm, 2013). 

Conducting polymers such as polyaniline (PANI) (Cui et al., 2015; Gao et al., 2012; Hou 

et al., 2015; Wang et al., 2014), polypyrrole (Kumar et al., 2014; Roh & Woo, 2015), and 

poly(3,4-ethylenedioxythiophene) (Chou et al., 2014; Kang et al., 2015; Liu et al., 2015) 

have been extensively utilized in MFC with improved performance when doped with 

composites of nanomaterial. However, stability and longevity of the power output are 

limited to 710 mV for 6 days (Kang et al., 2015). High internal resistance resulting in 

reduced power density has also been reported (Hou et al., 2015; Wang et al., 2014). On 

the other hand, the potential of biodegradable, biocompatible, piezoelectric polymer such 

as medium-chain-length polyhydroxyalkanoates (mcl-PHA) has not been fully explored 

for its direct use as carbon composites in anode modification (Hindatu et al., 2017b; 

Luckarift et al., 2012). Under certain deficiency conditions, specific bacteria synthesize 

mcl-PHA as intracellular storage material. Therefore, efficient microbial colonization in 

the form of biofilm is expected in mcl-PHA modified materials than other conducting 

polymer materials since it is cellular by-product. The previous work has demonstrated the 

mcl-PHA potential utility in enhancing the MFC anode performance when it was grafted 

with hydrophilic polyethylene glycol methacrylate (PEGMA) and composited with 

carbon nanotubes (Yusuf et al., 2018). The amphiphilic product resulted in higher current 

and power densities, improved electron transfer and reduced internal resistance attributed 

to superior biofilm colonization of mcl-PHA modified electrodes.  

The PEM alone could disrupt the overall performance of MFC as it is responsible for 

the amount of protons transferred to the cathode chamber, which could be hindered as a 

result of biofouling, oxygen crossover and substrate loss (Daud et al., 2015; Zhou et al., 
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2013). An ideal membrane should be cheap, resistant to biofouling, prevent oxygen 

crossover, and allow fast, uninterrupted passage of H+ to the cathode chamber (Angioni 

et al., 2017; Angioni et al., 2016). The most commonly utilized PEM in MFC is Nafion 

due to its high proton conductivity and low internal resistance (Sevda et al., 2013). 

However, non-biodegradable nature of Nafion as well as it chemical and biochemical 

biofouling has prompted the search for alternative and innovative membranes in MFC. 

The application of semi-crystalline thermoplastic polymer polyether ether ketone (PEEK) 

as membrane separator in MFC has been investigated. Ayyaru and Dharmalingam (2011) 

developed a single chambered MFC using sulphonated PEEK (SPEEK) as the PEM. 

When compared with Nafion 117, the power density of SPEEK membrane MFC 

increased by 55 %, and showed improved oxygen mass transfer coefficient and increased 

coulombic efficiency. Further modification of the membrane with composite of 

sulphonated TiO2 nanoparticles doubled its power density compared to pristine SPEEK. 

Chae et al. (2014) impregnated the conventional SPEEK with polyimide nanofiber for 

better dimensional stability of the membrane. The novel composite showed improved 

proton conductivity and reduced oxygen crossover. 

The utilization of biodegradable polymers as PEM has been the recent focus in MFC 

technology due to their biocompatibility and environmental-friendly nature. The use of 

biodegradable ceramic and natural rubber was investigated previously (Winfield et al., 

2013a; Winfield et al., 2013b). It was evident that the biodegradable PEM could easily 

outperformed the commercially available ion exchange membranes (IEMs). The gradual 

increase in the performance of the biodegradable PEM with MFC operation time is 

attributed to the increased biofilm colonization, and slow (bio)degradation of the PEM 

which subsequently resulted in micro-pores, thereby enhancing ion permeability. Hence, 

biofouling in biodegradable PEM could be beneficial to the MFC rather than a 

disadvantage as seen in non-biodegradable PEMs. Biodegradable and biocompatible 
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microbial polymer such as medium-chain-length polyhydroxyalkanoates (mcl-PHA) is 

another potential candidate for such role in PEM.  

Despite the ability of PHA to generate electrical charges in response to mechanical 

stress, literatures on its utilization as MFC component is extremely limited (Hindatu et 

al., 2017b; Luckarift et al., 2012b; Yusuf et al., 2018). To date, radical polymerization of 

mcl-PHA with methyl acrylate (MA) monomers, composited with carbon nanotube as 

anode and cathode electrode modifier have not been reported. The current work reported 

the synthesis, characterization and utilization in MFC, highly stable, conductive, and 

active anode/cathode electrode modifier based on mcl-PHA radically-grafted with MA, 

and composited with functionalized multi-walled carbon nanotube. The novel composite 

was characterized by Fourier-Transform Infrared (FTIR) spectroscopy, X-ray diffraction 

(XRD), field emission scanning electron microscopy (FESEM), and proton nuclear 

magnetic resonance (1H-NMR). Electrochemical characterization of the nanocomposite 

was carried out using cyclic voltammetry (CV) and electrochemical impedance 

spectroscopy (EIS). Furthermore, investigation on solvent blending of mcl-PHA and 

polyhydroxybutyrate (PHB), and its utilization as PEM in MFC for wastewater treatment 

was carried out. The study is first of its kind, which utilizes mcl-PHA as a supporting 

matrix for PHB to facilitate ion transport in MFC. Spectroscopic analyses, 

electrochemical characterization, as well as its application in double-chambered MFC 

utilizing real wastewater are discussed. The objectives of the research are: 

1.1 Research objectives 

1) To produce medium-chain-length polyhydroxyalkanoates (mcl-PHA) from 

renewable substrate via bacterial fermentation with lauric acid as sole carbon source; 
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2) To impart amphiphilicity, conductivity and crystallinity properties to neat mcl-

PHA by radical polymerization with methyl acrylate monomers, and composition with 

functionalized multi-walled carbon nanotube (MA-PHA/MWCNT); 

3) To investigate the electrochemical activities and power generation potentials of 

anode and cathode electrodes modified with nanocomposites of MA-PHA/MWCNT in 

microbial fuel cell (MFC); 

4) To investigate mcl PHA-PHB crystal composite as alternative proton exchange 

membrane (PEM) in MFC utilizing real wastewater for electricity generation. 
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CHAPTER 2: LITERATURE REVIEW 

The increase in global energy demand due to increasing population and 

industrialization has resulted in the search for alternative energy sources that are 

renewable and environmental-friendly. Energy from fossil fuel are non-renewable, 

depleting and detrimental from environmental perspectives. Alternative energy sources, 

which are green and renewable such as hydrogen fuel (Jie et al., 2017), biodiesel 

(Kanimozhi & Perinbam, 2013), bioethanol (Parmar et al., 2011), microbial fuel cell 

(MFC) (Hindatu et al., 2017a) and many more have been proposed. One of the many 

possible solutions lies with non-combustion method such as microbial fuel cell. A 

microbial fuel cell (MFC) is a sustainable, promising and nascent energy generation 

device that combines electricity generation and wastewater treatment through metabolic 

activities of microorganisms (Almatouq & Babatunde, 2018; Yu et al., 2016). Its basic 

design is a two-chambered MFC consists of anode and cathode chambers, and a selective 

membrane known as proton exchange membrane (PEM) (Figure 2.1). At anode 

compartment, electrons and hydrogen ions (H+) are generated by the electrogens through 

biological oxidation of organic matters (Logan, 2009). The electrons are transferred to 

the cathode chamber via electrical circuit and the protons (H+) pass through PEM for 

oxygen reduction reaction on the cathode surface, thus completing the redox reaction 

process (Logan, 2009; Xiao & He, 2015). Besides treating wastewater and generating 

electricity in the process, the technology also produce some important products at the 

cathode chamber such as hydrogen peroxide (H2O2) (Fu et al., 2010) and caustic potash 

(KOH) (Gajda et al., 2015; Gajda, et al., 2016). 

Modification of the anode electrode with polymeric nanocomposites has been reported 

to be more efficient as a result of improved extracellular transfer of electrons to the anode 

surface, resulting in reduced internal resistance and improved overall MFC performance 
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(Cui et al., 2015; Kang et al., 2015; Wang et al., 2014). Recent anode modifications with 

polymeric nanomaterials are reported herewith.  

 

Figure 2.1: Schematic overview of a double-chambered MFC 
 

2.1 Anode modification with polymeric nanomaterials 

 The anode chamber structure and function is a vital part of MFC set-up. 

Electrochemically active bacteria oxidize organic matter releasing electrons and protons 

in the process. Efficient transfer of electrons to anode surface is crucial to the power 

output generated and to overall MFC performance. An efficient anode electrode supports 

for maximum biofilm colonization thereby acting as an electron sink. Electrical 

conductivity, durability and stability, large surface area and porosity amongst others are 

the ideal characteristics of anode electrode in MFC (Baudler et al., 2015; Huggins et al., 

2014; Lee et al., 2016). Carbon-based nanomaterials have been known to meet these 

characteristics to some extent. However, the hydrophobic nature of these materials 

prevent for maximum bacterial colonization of anode electrode (Jafary et al., 2018; 

Shuang et al., 2017). As such, polymeric nanocomposites of polyesters, conducting 
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polymers and polysaccharides have been used as anode electrode modifier to some degree 

of success as discussed in the following sections. 

2.1.1 Nanocomposites of conducting polymers 

2.1.1.1 Polypyrrole (PPy) 

 Among the most studied conducting polymers in MFC is PPy. Kaur et al. (2014) 

modified the surface of carbon paper with both pristine and functionalized PPy. The PPy+ 

modified electrode improved the voltage output, the start-up time and stability of 

maximum voltage potential. Further modification of PPy with reduced graphene oxide 

(rGO) nanocomposites (Figure 2.2) doubled the power density and recorded a maximum 

voltage potential of 400 mV for 75 hours (Kumar et al., 2014). One step electrochemical 

method was recently employed by Li et al. (2018) to synthesize PPy nanowires and 

composited it with graphene oxide (GO). The modified anode electrode exhibited 

superior surface area, improved power density and better open circuit voltage (OCV). The 

performance of stainless steel (SS) was significantly enhanced when layered with PPy 

(Pu et al., 2018). It resulted in an increase in power density 29 times higher than bare SS 

anode electrode. Enhancement in the generation of maximum voltage up to seven-fold 

was also recorded (Pu et al., 2018).  
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Figure 2.2: Proposed mechanism for the preparation of the rGO/PPy composite 
(reproduced from (Kumar et al., 2014), with permission from American Chemical 
Society) 

 

2.1.1.2 Polyaniline (PANI) 

 PANI is another conducting polymer widely utilized as anode modifier. Cyclic 

voltammetry (CV) method was employed in preparing PANI composited with multi-

walled carbon nanotube (MWCNT) through electroplating (Wang et al., 2014). 

Maximum voltage potential of almost one volt was recorded and a power density of 286 

mW/m2.  Bifunctional catalyst of graphene (G) and TiO2 with PANI on carbon paper (CP) 

enhanced the performance of MFC (Han et al., 2018). The modified electrode showed 2.7 

times higher power density than plain CP. The internal resistance was found to be reduced 
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by half with modified electrode set-up. The superiority was attributed to efficient 

extracellular electron transfer to anode due to successful colonization of the anode by the 

bacteria (Figure 2.3). Recently, Li et al. (2019) modified carbon cloth (CC) electrode 

surface in situ with PANI composited with titanium suboxide (TS) and G nanoparticles. 

Longevity in maximum voltage output in modified electrode was evidenced with 13-fold 

increase in power density compared to bare CC. About 70 % decrease in internal 

resistance was recorded in PTSG/CC electrode set-up. Similarly, Yellappa et al. (2019) 

synthesized PANI and PANI/CNT nanoparticles through in situ oxidative chemical 

polymerization and spread on stainless steel mesh (SSM) for wastewater treatment. 

PANI/CNT-SSM electrode recorded 80 % chemical oxygen demand (COD) removal 

while 65 % was recorded for PANI-SSM and 58 % for bare SSM. Higher OCV was also 

recorded for polymeric modified electrodes compared to bare SSM. The superiority in 

PANI/CNT-SSM electrode was attributed to enhanced charge transfer due to CNT 

incorporation which subsequently increased the conductivity between the biocatalyst and 

the anode surface. The studies of Yin et al. (2019) showed a synergistic effect of TiO2 

nanosheets (TiN) and PANI through electrochemical deposition of PANI onto TiN, at 

different CV cycles. Maximum power density up to 63.6 % increase was recorded for 

PANI deposited through 20 CV cycles. Lowest charge transfer resistance was also 

recorded by the modified electrode with 20 CV cycles. 

 Univ
ers

ity
 of

 M
ala

ya



12 

 

Figure 2.3: (a,b) Morphology of Shewanella oneidensis MR1 embedded in the matrix 
of the PANI-TiO2-GN catalyst. The red arrows in panel b indicate the nanowires (pili) of 
Shewanella oneidensis MR1 (reproduced from (Han et al., 2018), with permission from 
American Chemical Society) 

 

2.1.1.3 Poly(3,4-ethylene dioxythiophene) (PEDOT) 

 PEDOT is a derivative of polythiophene with superior conductivity compared to 

PPy and PANI (Abidin et al., 2018). This resulted in its utilization as electrode modifier 

in MFC. Ma et al. (2018) modified the surface of SS with PEDOT through 

electrochemical polymerization method. PEDOT/SS electrode recorded six-fold increase 

in power density compared to bare SS electrode. The current density recorded during 

MFC operation leveled off at 1150 mA/m2 for PEDOT/SS compared to 210 mA/m2 for 

SS electrode (Figure 2.4). The efficiency of PEDOT/SS electrode was ascribed to dense 

and conductive film formed on SS plate which not only prevent SS base from biogenic 

and chemical corrosion, but also improved the electron transport rate to anode. Recently, 

Senthikumar et al. (2019) modified PEDOT with nickel ferrite nano-rod on biochar as a 

free-standing electrode. A maximum power density of 1200 mW/m2 was recorded which 

was about five times higher than control (ferric oxide on biochar). Further modification 

of PEDOT polymer matrix with nanoparticles of nickel and rGO (PEDOT/Ni/rGO) 

resulted in a power density up to 3200 mW/m2 and improved internal resistance and OCV 

(Hernandez et al.,  2019). The improved performance of modified electrode was attributed 

to homogenous dispersion of the nanoparticles within PEDOT matrix and enhanced 
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biocompatibility between biocatalyst (Escherichia coli) and PEDOT/Ni/rGO electrode 

surface     

 

Figure 2.4: Power generation in MFCs with an external resistance of 1000 Ω 
(reproduced from (Ma et al., 2018), with permission from American Chemical Society) 

 

2.1.2 Nanocomposites of polyesters 

 Polymers with ester functional groups in their main chain are regarded as 

polyesters. Due to their biocompatibility, biodegradability, piezoelectricity, elasticity, 

durability and resistivity to most chemicals, polyesters have been recently used as anode 

electrode modifier. Its first utilization in MFC was reported by Luckarift et al. (2012) 

when 3-polyhydroxybutyrate-co-3-hydroxyvalerate (PHBV) was composited with 

carbon nanofiber by solvent casting method (Figure 2.5). Superior biofilm colonization 

of the modified anode surface resulted in efficient bioelectrocatalysis, stability and 

reproducibility in electrolyte with significant power density generation compared with 

previously reported graphite felt electrode. Hindatu et al. (2017b) reported the utilization 
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of elastic medium-chain-length polyhydroxyalkanoates (mcl-PHA) composited with 

multi-walled carbon nanotube (MWCNT) as CC surface modifier. Maximum power 

density up to 53 % increase, internal resistance reduction of 31 % and improved maximum 

voltage potential of 50 % were recorded for mcl PHA-MWCNT composite modified 

electrode compared to pristine CC electrode. Interestingly, further modification of CC 

surface with amphiphilic mcl-PHA-co-polyethylene glycol methacrylate / MWCNT 

composite (mcl-PHA-co-PEGMA/MWCNT) further reduced the internal resistance by 

97 %, improved the maximum voltage potential by 75 %, and 74 % enhancement in 

maximum power density was also reported (Yusuf et al., 2018). It was hypothesized that 

the superiority in mcl-PHA-co-PEGMA/MWCNT electrode stemmed from better 

biocompatibility and synergistic relationship between the biocatalyst (Escherichia coli) 

and the modified anode surface (Yusuf et al., 2018). Polycaprolactone (PCL) nano-fibers 

and micro-fibers were composited with gold particles and utilized as anode modifier 

(Fraiwan et al., 2014). Although, high activation loss and high internal resistance were 

reported, the modifier electrode nevertheless showed an improved stability of maximum 

voltage potential of 600 mV up to 10 days MFC operation. Also, the micro-fiber 

composite exhibited two-fold increase in power and current densities compared to nano-

fiber composite. 
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Figure 2.5: Visual representation of polymer/carbon (PHBV/CF) composite 
fabrication. (a) A die is used to (b) pack sucrose/CF around a nickel mesh. (c) The 
resulting sucrose/CF scaffold is intercalated with polymer and (d) the sucrose removed to 
form a porous scaffold. Final electrode cut to show the interior nickel mesh. (e) The 
sucrose dissolves and leaves a hole of a size comparable to the original particles (yellow 
dashed lines) that is (f) interconnected with carbon fibers (reproduced from (Luckarift et 
al., 2012), with permission from American Chemical Society) 

 

2.1.3 Nanocomposites of polysaccharides  

Polysaccharides nanocomposite as anode modifier has been exploited since they 

are made up of polymeric carbohydrate molecules. The effects of different 

nanocomposites viz. magnesium and graphite composed alongside chitin particles were 

investigated as anode electrode modifier (Jung et al., 2014). Maximum power density 

peak of 1872 mW/m2 was recorded in magnesium/chitin composite. Chitin supplement 

was responsible for 121 % increase in magnesium anode, and 164 % increase in graphite 

anode. The improvement showed by chitin-supplemented anode was attributed to the 

simplicity active growth of bacterial communities on anode surface encouraged by the 

saturated carbon source. A conductive carbon nanotube hydrogel composited with 

chitosan was layered on carbon paper (CP) electrode (Figure 2.6) (Liu et al., 2014). A 

Univ
ers

ity
 of

 M
ala

ya



16 

current density peak of 500 mA/m2 was recorded for hydrogel modified electrode at a 

power density of 132 mW/m2, compared to raw CP electrode (150 mA/m2 of current 

density). Coulombic efficiency (CE) of 32 % was reported for CNT-hydrogel modified 

electrode while 19 % CE for the control. It was discovered that the presence of oxygen-

containing functional groups of C=O and C=OH were responsible for high conductivity 

of the modified electrode (Liu et al., 2014). Similarly, Mottet et al. (2018) constructed a 

conductive composite hydrogel made up of alginate and carbon nanotube. The new 

electrode recorded high compatibility with biocatalyst and better conductivity. 

 

 

Figure 2.6: Visual representation of the CNT-hydrogel electrode preparation (a), 
hydrogen gas bubbles produced as template in the deposition process (b), CNT-hydrogel 
on carbon paper (c), SEM images of carbon paper (d), and CNT-hydrogel modified 
carbon paper (e) (reproduced from (Liu et al., 2014), with permission from American 
Chemical Society) 
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2.1.4 Nanocomposites of other polymers 

 Temperature responsive polymer of poly-N-isopropylacrylamide (PNIPAM) was 

investigated by Kumar et al. (2014a) as anode modifier. PNIPAM was composited with 

CNT and GO nanoparticles and subsequently structured into hydrogel. Pristine PNIPAM 

electrode recorded a power density peak of 43 mW/m2 at a current density of 453 mA/m2. 

The incorporation of CNT into PNIPAM matrix resulted in six-fold increase of power 

density viz. 264 mW/m2 at a current density of 2502 mA/m2. Further modification with 

GO nanoparticles resulted in significant increase in both power and current densities at 

434 mW/m2 and 3603 mA/m2, respectively. The decrease in charge transfer resistance of 

PNIPAM was attributed to synergistic interaction between two highly conductive 

nanoparticles of CNT and GO which subsequently improved the MFC performance with 

a longevity of more than 300 hours. Recently, Chen et al. (2019) reported hydrogel 

formation of polyacrylamide (PAM) with rGO and graphite brush (GB) as current 

collector through in situ polymerization method, followed by reduction with ascorbic 

acid. The PAM/rGO/GB electrode recorded 34.8 % increase in maximum power density 

compared to GB anode. Superiority in CE was observed for PAM/rGO/GB electrode at 

35.6 % compared to GB electrode (21.1 %). The close proximity of the biofilm to anode 

as well as the large surface area of modified electrode were responsible for enhanced 

MFC performance. Polymeric derived ceramics (PDC) route was employed in making a 

highly conductive hydrophilic polymeric nanocomposite of poly(methylsilsesquioxane) 

and poly(methyl phenyl silsesquioxane) composited with graphite and carbon black 

(Silva et al., 2019). The novel anode material recorded two-fold increase in power density 

(211 mW/m2) compared to carbon felt anode (111 mW/m2). When the MFC system is 

applied for wastewater treatment, similar COD removal rate and CE were recorded for 

modified and pristine anode electrodes. Nevertheless, high specific area in the modified 

anode as well as its porous structure resulted in superior biocompatibility as confirmed 
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by improved biofilm growth on the electrode surface, hence better electron transfer (Silva 

et al., 2019). 

2.2 Cathode modification  

 Although, MFC is clean, sustainable, renewable and earth-friendly, which are the 

characteristics needed in an alternative energy source, the low power output generated by 

this technology is of major concern for its widespread practical applications (Hindatu et 

al., 2017a). To tackle this issue, the cathode electrode which determines the catalytic 

activities of the terminal electron acceptors needs to be modified accordingly. The 

difficulty in fabricating the cathode electrode lies with the three-phase reaction of the 

protons, electrons and oxygen meeting at a catalyst. The catalyst must be on a conductive 

surface and at the same time exposed to water and air for easy contact with protons and 

electrons (Logan, 2008). A good cathode electrode should be inexpensive and readily 

available (Ortiz-Martínez et al., 2015), easy to fabricate (Kim et al., 2009; Liu & Logan, 

2004), effective in electrocatalysis (Gajda et al., 2018; Lu & Li, 2012; Xia et al., 2016), 

and stable in catholyte (Dicks & Rand, 2018; Rabaey & Verstraete, 2005; Wei et al., 

2011). Factors such as pH (He et al., 2008; Mani et al., 2017), concentration of protons 

(Zhao et al., 2009), electrode spacing (Cheng et al., 2006), and electrode surface area 

(Lianhua et al., 2011; Liu et al., 2011; Oh & Logan, 2006) have been known to affect the 

electrocatalytic activities of the cathode electrode. An extensive review detailing the 

carbon-based polymer nanocomposites as cathode electrode material for MFC was 

presented by Jafary et al. (2018). Significant improvements were evidenced in polymeric 

modified cathode electrodes compared to bare electrode materials. The development of a 

stable, efficient, polymeric cathode electrode that boost the chemical reaction meeting at 

a tri-phase reaction (water, air and solid catalyst) will significantly increase the power 

output of MFC, and a step closer towards its adoption in various applications. 
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2.2.1 Cathode modification with polymeric nanomaterials 

 Ahmad et al. (2012) set-up an MFC with PANI nanofibers composited with 

carbon black. Higher electrochemical activities with power density improvement up to 

2.7-fold increase with composite cathode electrode compared to pristine PANI (control). 

Although the power density is still lower than Pt-based electrode, the environmental-

friendly polymeric composite is economically feasible when considering large-scale 

applications. Further doping of the conducting polymer PANI to form sulfonated PANI 

(SPANI), and composited with highly efficient bimetallic nanocomposites of 1:1 nickel 

and cobalt was investigated by Papiya et al. (2018) for cathode electrode modifier. 

Spectroscopic analyses showed equal distribution of the nanocomposites on the 

supporting matrix. When compared with controls, the highest catalytic activity was 

observed in SPANI/Ni-Co electrode with a maximum power density of 659 mW/m2 

relative to Pt-based electrode at 483 mW/m2. Highly functional nanoparticles of graphene 

and TiO2 were incorporated into PANI matrix to enhance the reduction of oxygen at 

cathode (Han et al., 2018). The ternary nanocomposite exhibited superior oxygen 

reduction reaction activity compared to controls (pristine PANI and PANI/TiO2 

electrodes). 

Polypyrrole (PPy) is another conducting polymer that has been utilized as cathode 

modifier. A solvothermal method was employed to synthesize a novel composite of 

manganese, PPy and carbon nanotube (Lu et al., 2013). The composite demonstrated 

efficiency and stability as cathode catalyst for oxygen reduction reaction. A power density 

peak of 213 mW/m2 at a material loading rate of 2 mg/cm2 was recorded, comparable to 

platinum/carbon black composite electrode. Further modification of PPy polymer matrix 

with MnO2/CNT composite through cost-effective hydrothermal method resulted in an 

improved maximum power density of 721 mW/m2 (Yuan et al., 2015). Improved long-
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term stability of the composite electrode compared to Pt/C electrode was also reported, 

making the electrode an alternative to Pt/C electrode for sustainable energy generation. 

A single-chambered MFC was developed by coating the air facing side with 

poly(dimethylsiloxane) composited with nitrogen doped nickel nanoparticles and carbon 

nanofibers. The polymer-metal-carbon nanocomposite showed high efficiency in oxygen 

reduction reaction in MFC, serving as an ideal alternative to poisonous Pt-based and 

Nafion electrode (Modi et al., 2017). Ong et al. (2018) recently synthesize a polymeric 

cathode composed of polyvinylpyrrolidone/carbon nanotube/manganese oxide 

(P/MnO2/CNT) for air cathode MFC. Electrochemical analyses revealed higher oxygen 

reduction reaction activities with low charge transfer resistance compared to control 

electrodes of MnO2 and MnO2/CNT. When utilized in MFC, a maximum power density 

of 91 mW/m2 was recorded, which was significantly higher than MnO2/CNT catalyst (72 

mW/m2), MnO2 catalyst (36 mW/m2) and CNT catalyst (29 mW/m2). Also, higher COD 

removal percentage of 74 % was recorded for P/MnO2/CNT electrode. 

Among the most recent modification involving polymeric cathode nanocomposite 

utilizes polysaccharide-carbon composite. A bacterial cellulose doped with particles of 

phosphorus (P) and copper (Cu) was used as cathode catalyst in MFC (Li et al., 2019) 

(Figure 2.7). A three-dimensional structure with extensive large surface area was 

obtained. Improvement in the catalytic activity of the polymeric nanocomposite was 

attributed to increase active sites from Cu and P doping. A maximum power density of 

1177 mW/m2 at a current density of 6730 mA/m2 was recorded, which was significantly 

higher than Pt-based electrode (1044 mW/m2 at a current density of 6020 mA/m2). A five-

fold increase in power density was observed when a cathode electrode was modified with 

a dual-doped carbon derived from chitosan (Liang et al., 2019). Improved internal 

resistance, high open circuit voltage potential as well as large surface area of about 982 
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m2/g, which resulted in better oxygen mass transfer were attributed to better performance 

in the nitrogen- and phosphorus-doped electrode. 

 

 

Figure 2.7: Schematic diagram of bacterial cellulose doped with phosphorus and 
copper via freeze-drying and high-temperature pyrolysis (reproduced from (Li et al., 
2019), with permission from Elsevier) 

 

2.3 Proton exchange membrane (PEM) 

 The primary function of a PEM in MFC is to separate the anode and cathode 

electrolytes and simultaneously allow for maximum proton (H+) passage from anode to 

cathode chamber. However, high cost and non environmental-friendly nature of some 

widely utilized PEM warrant for the development of efficient, readily available, cheap, 

and environmental-friendly PEMs. The recent advancements in PEM fabrication for MFC 

application are discussed hereafter. 
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2.3.1 Polyether ether ketone (PEEK) nanocomposites as PEM 

 Quaternized PEEK (QPEEK) and sulfonated PEEK (SPEEK) were fabricated and 

respectively utilized as anion and cation exchange membranes (Elangovan & 

Dharmalingam, 2016). Superiority in QPEEK were observed with maximum power 

density of 603 mW/m2 and CE of 76 % compared to SPEEK (458 mW/m2 and 61 %). 

SPEEK allowed for more cation transport instead of protons, and exhibited high pH 

gradient. This resulted in chemical precipitate formation on cathode surface and 

subsequently, high internal resistance and MFC deterioration. SPEEK membrane was 

fabricated with different degree of sulfonation (DS) (20.8 %, 41 %, 63.6 % and 76 %) for 

MFC application (Ghasemi et al., 2016a). SPEEK with 63.3 % DS exhibited the highest 

power density (68.64 mW/m2), COD removal (91 %) and CE (26 %). Although, the power 

density generated was still lower than Nafion membrane (74.8 mW/m2), cost estimation 

suggested the utilization of SPEEK with 63 % DS as feasible alternative due to high 

power generation per cost. Further modification of the SPEEK membrane with 

hybridization of polysulfone (PS) at lower and higher DS for desalination and power 

generation was investigated (Ghasemi et al., 2016b). The degree of porosity of the 

modified membrane was in direct proportion to DS as illustrated in Figure 2.8. The 

amphiphilic hybrid membrane with 29 % DS exhibited the highest power density and a 

significantly high NaCl (62 %) and MgSO4 (68 %) rejection rate albeit lower than 

PS/SPEEK (76 %) for NaCl (67 %) and MgSO4 (81 %) rejection rate. Particles of 

silicotungstic acid were entrapped into the matrix of SPEEK through phase inversion 

method (Venkatesan & Dharmalingam, 2017). The hybrid composite membrane showed 

reduced oxygen gas crossover, which resulted in four-fold increase in the generation of 

maximum power density compared to Nafion membrane. 
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Figure 2.8: SEM image of the cross section of a) surface of PS, b) surface of 
PS/SPEEK (29 %), c) surface of PS/SPEEK (76 %), d) cross section of PS, e) cross 
section of PS/SPEEK (29 %), f) cross section of PS/SPEEK (76 %) (reproduced from 
(Ghasemi et al., 2016b), with permission from Elsevier) 

 

2.3.2 Nafion nanocomposites as PEM 

 While neat Nafion is the most utilized PEM in MFC, enhancement of its 

performance through composites of nanoparticles have also been investigated. Angioni 

et al. (2016) modified Nafion membrane with functionalized SB-15 silica. 

Functionalization was done with SO3H group and utilized as PEM in a prolonged MFC 

operation. Nafion-based SB-15 composite of 15 % w/w was found to exhibit maximum 

power density, three times higher than neat Nafion after three months of MFC operation. 

The same membrane offered high resistivity to biofouling, high COD removal of 95 % 
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after 14 days and improved CE recovery of 34 %. The efficiency of the modified PEM 

was attributed to the presence of the silica-based SO3H functionalized filler. Bajestani et 

al. (2016) investigated the effects of different solvents on Nafion composited with TiO2 

through solvent casting method. Nafion composite with dimethylformamide (DMF) 

solvent exhibited the highest OCV, proton conductivity and highest membrane porosity. 

Alumina nanoparticles (Al2O3) ranging from 5-20 % (w/w) were incorporated within the 

matrix of sulfonated poly-(vinylidene fluoride-hexafluoropropylene) (PVDF-co-HFP) 

blended with Nafion at different molar ratios (Kumar et al., 2016a). Increase in water 

uptake was observed with an increase in Al2O3 nanoparticles. Membrane with 5 % w/w 

nano Al2O3 showed superior proton conductivity and improved maximum power and 

current densities of 48 and 11 % respectively. Hernandez et al. (2016) developed 

membranes of agar composited with Nafion liquid and tested against Nafion 117 

membrane. Reduced internal resistance was observed in all modified membranes from 

incorporation of agar. Although the power densities were lower than the control i.e. 

Nafion 117 membrane, higher power/cost ratio was more advantageous in agar composite 

membranes than Nafion membrane. 

2.3.3 Chitosan and polyester nanocomposites as PEM 

 A low cost polyester cloth (PC) with varying layers were utilized as PEM in MFC 

and compared with Nafion membrane (Kim et al., 2016). Higher mass transfer and 

reduced diffusion coefficient of oxygen were observed in PC membranes compared to 

Nafion. A comparable internal resistance, power and current densities were observed in 

PC membranes and Nafion membrane, indicating a possible alternative to poisonous 

Nafion. Yusuf et al. (2018) for the first time utilized biodegradable microbial polyester 

i.e. medium-chain-length polyhydroxyalkanoates composited with functionalized multi-

walled carbon nanotubes (mcl-PHA/MWCNT) at varying amount of the nanoparticles (5-

20 % w/w) through ultrasound dispersion blending method. Comparable power density to 
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Nafion membrane was recorded. However, membrane with 10 % MWCNT was superior 

in COD removal percentage, CE, conductivity and reduced internal resistance over 

Nafion membrane. Harewood et al. (2017) investigated the thermal condensation of malic 

and citric acid in ratio 3:1 and blended with chitosan. The copolymer was utilized as PEM 

in MFC. The maximum power and current densities generated were comparable to Nafion 

117 membrane. The copolymer is biodegradable and environmental-friendly, which 

makes it another alternative to Nafion membrane. Furthermore, the effects of applying 

different cross-linkers were investigated by Holder et al. (2017). Graphene oxide 

nanoparticles were incorporated into the matrix of chitosan and cross-linked with either 

phosphoric or sulfuric acid. Phosphoric acid cross-linked PEM showed 135 % increase in 

power density compared to sulfuric acid cross-linked PEM.  

2.3.4 Ceramics and polyethersulfone (PES) nanocomposites 

 Polyethersulfone (PES) was sulfonated with chlorosulfonic acid (SPES) and 

finally blended with pristine PES (PES/SPES) (Zinadini et al., 2017). The PES/SPES 

membrane showed superiority in COD removal percentage, CE, oxygen permeability, 

biofouling and power generation compared to Nafion membrane. Di Palma et al. (2018) 

recently developed a membrane of PES composited with different concentration of Fe3O4 

nanoparticles through melt-blend method. PES with 20 % Fe3O4 nanoparticles generated 

maximum power density of 9.59 mW/m2 and current density of 38 mA/m2. Incorporation 

of the nanoparticles of more than 20 % (w/w) led to cracking of the membrane. Similar 

observation was also reported by Yusuf et al. (2018). Ceramic membranes with different 

pore sizes were investigated as PEM in MFC and compared with cation exchange 

membranes and Nafion membrane (Daud et al., 2018). Ceramic membrane with the 

largest pore size (13.8 %) showed improved power density, better CE and reduced internal 

resistance compared to other membranes. Furthermore, the surface wall of ceramics was 

fabricated with composite layered films composed of chitosan and montmorillonite 
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minerals (Yousefi et al., 2018). Membranes with six layers and above of the composites 

recorded a decrease of six-fold in the oxygen gas crossover. This resulted in two-fold 

maximum power density in membrane with seven bi-layers compared to pristine ceramic 

membrane.  

2.3.5 Nanocomposites of other material as PEM 

Hernandez et al. (2016) developed a polymer inclusion membrane based on 

different weight percent ionic liquid as PEM in MFC application. Ionic liquid of 1-octyl-

3-methylimidazolium hexafluorophosphate and methyl trioctil ammonium chloride were 

utilized. Maximum power density of up to 30 mW/m2 and COD removal efficiency of 80 

% were recorded for membrane with 70 % (w/w) ionic liquid supported with ammonium. 

The increase in ionic liquid concentration resulted in an increase in power density. A 

synthetic fiber of polybenzimidazole (PBI) was fabricated with different amount of 

polyvinylpyrrolidone (PVP) and utilized as PEM in MFC (Kumar et al., 2016b). About 

81 % increase in power output and superior COD removal percentage were observed in 

composite membrane with 70:30 % (PVP:PBI) over pure PBI membrane, indicating the 

efficacy of PVP as composite membrane in MFC. Similarly, PBI was fabricated with 

mesostructure of SB-15 silica as PEM in a long term MFC operation for wastewater 

treatment (Angioni et al., 2017). The cost-efficient composite membrane showed an order 

magnitude increase in maximum power density compared to Nafion, and about 31 % CE 

and 90 % COD removal were observed. 

Blending of sulfonated SiO2 (S-SiO2) with sulfonated polystyrene ethylene butylene 

polystyrene (SSEBS) was investigated as yet another alternative to Nafion membrane. 

Various percentages of S-SiO2 ranging from 2.5-10 % (w/w) were studied (Sivasankaran 

et al., 2016). The modified membranes showed superior power density over Nafion, with 

7.5 % S-SiO2 membrane exhibiting four-fold increase in power density (1209 mW/m2) 
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over Nafion (290 mW/m2). S-SiO2 incorporation was responsible for improve proton 

conductivity. Li et al. (2017) thermally grafted an ozone-pretreated poly(vinylidene 

fluoride) (PVDF) with sodium styrene sulfonate (SSS) as illustrated in Figure 2.9. Solvent 

evaporation method was employed for the preparation of sulfonic acid PEM. Better in 

COD removal percentage was observed in the cost-efficient copolymer with comparable 

maximum power density to Nafion membrane. 

 

 

Figure 2.9: Schematic representation of ozone pretreatment of PVDF and graft 
copolymerization of SSS (reproduced from (Li et al., 2017), with permission from 
Elsevier) 
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2.4 Polyhydroxyalkanoates (PHA) 

 Polyhydroxyalkanoates (PHA) are natural polyesters synthesized by specific 

groups of bacteria under certain nutrient-deprived conditions. They are widely utilized in 

medical, industrial and environmental applications due to their biodegradability, 

biocompatibility and piezoelectric nature (Gumel et al., 2012). In 1926, Bacillus 

megaterium was the first bacterium reported by a French microbiologist to accumulate 

PHA (Prieto, 2007). Subsequently, various organisms were reported to accumulate PHA 

either intracellular (Ni et al., 2010; Prieto, 2007; Wong et al., 2011) or extracellular (Abu-

Elreesh et al., 2011; Sabirova et al., 2014). The early extraction method using hot alcohol 

and subsequent purification process by diethyl ether and chloroform resulted in 

saponified PHA (Lemoigne, 1926). Since then, efficient methods for extraction and 

purification have been proposed such as extraction through refluxing at 60 ºC in organic 

solvent such as chloroform for 4 hours and purification using excess cold methanol 

(Gumel et al., 2012). 

PHA are classified into three main groups on the basis of their carbon side chain length. 

Short-chain-length PHA (scl-PHA) contains 3-5 carbon atoms and are mostly 

homopolymers, whereas, medium-chain-length PHA (mcl-PHA) contains 6-12 carbon 

atoms, and are heteropolymers of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-

hydroxydecanoate and 3-hydroxydodecanoate (Zhang et al., 2009). PHA with more than 

14 carbon atoms are considered long-chain-length PHA (lcl-PHA). The structural 

properties of PHA are determined by the bacterial species and the carbon source(s) 

utilized during production (Berezina & Martelli, 2014). Figure 2.10 shows mcl-PHA 

inclusion in cells, extracted and purified mcl-PHA and mcl-PHA chemical structure. 
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Figure 2.10: (A) phase contrast ( 100 magnification) and (B) transmission electron 
microscope ( 5000 magnification) micrographs of Pseudomonas putida Bet001 cells 
with PHA inclusion (Gumel et al., 2012), (C) extracted and purified mcl-PHA film, and 
(D) mcl-PHA basic structure 

    

2.4.1 Biosynthetic pathway of PHA 

 For maximum polymer yield and specificity in the PHA type and properties, 

metabolic engineering of PHA pathways have been reported (Filippou et al., 2011; Jian 

et al., 2010; Theodorou et al., 2011). Three pathways are utilized by bacteria for PHA 

production (Figure 2.11). The first and common pathway begins with breaking down of 

sugar to form pyruvic acid through glycolysis pathway (Figure 2.11). Pyruvic acid is then 

converted to acetyl-CoA via pyruvate dehydrogenase oxidation pathway. This process is 

followed by condensation of acetyl-Co-A molecules to form acetoacetyl-Co-A via β-

ketothiolase enzyme. Acetoacetyl-CoA reductase enzyme further reduces acetoacetyl-

CoA to form the building blocks of PHAs ((R)-3-hydroxyacyl-CoA). Polymerization of 

(R)-3-hydroxyacyl-CoA monomers is finally carried out by PHA synthase to form 

polyhydroxyalkanoates (Figure 2.11) (Gumel et al., 2013). 
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Figure 2.11: Metabolic pathways for PHA biosynthesis via sugar catabolism, fatty acid 
β-oxidation and intermediary pathways (reproduced from (Gumel et al., 2013) with 
permission from Springer Nature) 

 

The second pathway involves the synthesis of acyl-CoA from fatty acid in the presence 

of acyl-CoA synthetase. The acyl-CoA then enters the oxidation pathway to form (S)-3-

hydroxyacyl-CoA (Fig. 2.11). The (S)-3-hydroxyacyl-CoA is either reduces to 3-

ketoacyl-CoA in the presence of 3-hydroxyacyl-CoA dehydratase or forms the PHA 

building block monomers of (R)-3-hydroxyacyl-CoA via (R)-specific enoyl-CoA 

hydratase enzyme. Finally, PHA synthase enzyme polymerize the (R)-3-hydroxyacyl-

CoA monomers to form polyhydroxyalkanoates. 
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2.4.2 Production of PHA from renewable sources 

 Various methods for PHA production have been reported with varying amount of 

polymer yield. Cupriavidus species USMAA2-4 was reported to produce poly-(β)-

hydroxybutyric acid at 29 % yield when supplied with oleic acid and 1-pentanol as carbon 

source (Grothe et al., 1999). The fermentation was carried out in a fed-batch mode at 30 

ºC, 200 rpm with 20 % dissolved oxygen. Similar condition with 400 rpm and higher 

dissolved oxygen (50 %) resulted in about 45 % yield of poly(3-hydroxybutyrate-co-4-

hydroxybutyrate) when Ralstonia eutropha DSM428 was supplemented with fructose as 

carbon source (Chanprateep et al., 2010). Annuar et al. (2008) reported the production of 

mcl-PHA by Pseudomonas putida PGA1 cultivated on saponified palm kernel oil as the 

sole carbon source with the yield of 70 % of total biomass weight.  

A two-stage continuous fed-batch mode of fermentation was employed for the 

synthesis of complexed poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Pseudomonas 

putida KTOY06ΔC (PhaPCJac) supplied with mixed fatty acids as carbon source 

(Theodorou et al., 2011). The system was controlled at 30 ºC, 200 rpm, and pH of 6.5 for 

2 days. Sugar molasses was supplied to mixed culture in continuous stirred tank reactor 

at 400 rpm (Albuquerque et al., 2010). Copolymer of hydroxybutyrate and 

hydroxyvalerate were synthesized at maximum polymer yield of 61 % by the mixed 

culture. This process of PHA production opens up a new view in simultaneous production 

of PHA during wastewater treatment. 

2.4.3 Applications of PHA 

 The rapid increase in utilization of PHA in numerous field has given rise to its 

mass production. Among the current commercial producers of PHA are Kaneka (Japan); 

Biomatera, (Italy); Lianyi Biotech (China); Tellas (USA); and Biomer Biotechnology Co. 

(Germany) (Bugnicourt et al., 2014). 
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2.4.3.1 Biomedical applications of PHA 

 PHB brittle nature limited its applications in some fields. Nevertheless, its 

utilization in biomedical field has been widely reported due to its biocompatibility with 

cells, supporting role for cell growth, guiding and organizing the cells, allowing tissue in-

growth, and degradation to non-toxic products (Williams et al., 1999). Both PHB and 

PHBV have been reported to respond to both acute and chronic inflammation when 

applied in vivo (Akhtar, 1990). The composites also facilitated healing of muscle-fascial 

wound (Shishatskaya et al., 2002; Shishatskaya et al., 2004). PHBV alone sustained cell 

proliferation up to 35 days when incorporated with fibroblast cells (Williams et al., 1999). 

The blends of PHB and hydroxyapatite were reported for the treatment of bone defects 

(Doyle et al., 1991; Knowles et al., 1992; Luklinska & Bonfield, 1997). 

Polyhydroxyalkanoates (PHA) was synthesized by Bacillus circulans (MTCC 8167) and 

used in enhancing the stability of colloidal silver nanoparticles (Phukon et al., 2011). The 

copolymer of PHA and polycaprolactone (PCL) has been used as scaffolds for 

cardiovascular tissue engineering (Bouten et al., 2011). Fig. 2.12 shows the applications 

of various PHA types in biomedical field (Zhang et al., 2018).  
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Figure 2.12: Applications of different PHA types in biomedicine. PHB: poly-(R)-3-
hydroxybutyrate; P4HB: poly-4-hydroxybutyrate; PHO: poly-3-hydroxyoctanoate; 
PHBV: copolymers of (R)-3-hydroxybutyrate and (R)-3-hydroxyvalerate; PHBHHx: 
copolymers of (R)-3-hydroxybutyrate and (R)-3-hydroxyhexanoate; P3HB4HB: 
copolymers of (R)-3-hydroxybutyrate and 4-hydroxybutyrate (reproduced from (Zhang 
et al., 2018) with permission from Elsevier) 

 

2.4.3.2 Industrial applications of PHA 

 Zhang et al. (2009) proposed a novel biofuel containing esterified PHB and mcl-

PHA with methanol via acid-catalyzed hydrolysis. The copolymer with purity of about 

97 % showed combustion heat of 30 KJ/g, slightly lower than ethanol (27 KJ/g). Blending 

of the copolymer with diesel or gasoline significantly lowered the combustion heat 

compared to pure diesel or gasoline. Manipulation of PHB synthesis pathway with other 

metabolic pathways resulted in a new biofuel of butanol, produced from glucose (Bond-
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Watts et al., 2011). Also, the monomer chiral centers of PHA and the functional groups 

of carboxyl and hydroxyl groups in each monomer pave way for its utilization as 

precursors or intermediates for production of antibiotics, pheromones, aromatics and 

vitamins (Gao et al., 2011; Ren et al., 2010).  

PHB granules in fish-feed have been shown to inhibit the growth of pathogenic 

bacteria in aquaculture, serving as an alternative to antibiotics (De Schryver et al., 2011; 

Defoirdt et al., 2011; Nhan et al., 2010). The successful encapsulation of ametryn in PHB 

was reported by Grillo et al. (2011) to improve herbicidal action and reduce 

environmental pollution. PHB was successfully utilized as a biomimetic adsorbent 

material for chlorobenzene and o-nitrochlorobenzene removal (Zhang et al., 2010). The 

glass transition and melting temperatures of PHB were reduced when synthesized with 

copolymer of poly(3-hydroxyvalerate) for packaging potential (Modi et al., 2011). The 

glass transition temperature of the copolymer ranged between -10 ºC and 20 ºC making 

it suitable for packaging. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Materials 

 Ammonium chloride (NH4Cl), magnesium sulfate heptahydrate (MgSO4.7H2O), 

sodium chloride (NaCl), monopotassium phosphate hydrogen phosphate (KH2PO4), 

dipotassium phosphate hydrogen phosphate (K2HPO4), hydrogen peroxide (H2O2), 

potassium hexacyanoferrate III (K3Fe(CN)6), sodium dihydrogen phosphate (NaH2PO4), 

disodium hydrogen phosphate (Na2HPO4) were purchased from SYSTERM (Malaysia). 

Sodium bicarbonate (NaHCO3) and calcium chloride dihydrate (CaCl2.2H2O) were 

purchased from BDH Chemicals (England). n-hexane and methanol were obtained from 

Lichrosolv (Germany). Methyl acrylate, dichloromethane and benzoyl peroxide were 

supplied by Merck Millipore (Germany). Sulphuric acid (H2SO4, 98 %) was obtained 

from Fisher Chemicals (Malaysia). Poly-(R)-3-hydroxybutyrate was purchased from 

Sigma-Aldrich (Germany) while Nafion 117 membrane was supplied by Dupont (U.S.A), 

and activated prior usage by soaking in H2O2 (30 %), ultrapure water and sulphuric acid 

(0.5 M) at 60 ºC for an hour each. Carbon cloth (CC) was sourced from Fuel Cell (Texas, 

U.S.A), and cleaned via ultrasonication in ultrapure water at 35 ºC, 35 kHz for 30 minutes 

(Qiao et al., 2014). Polytetrafluoroethelene (PTFE) binder was purchased from Sigma-

Aldrich (U.S.A) while Nafion 117 solution (binder) was obtained from Fluka (USA). 

Multi walled carbon nanotube, CNT (≥ 98 % carbon basis, O.D  I.D  L 10 nm ± 1 nm 

 4.5 nm ± 0.5 nm  3 to ~6 µm) was purchased from Sigma-Aldrich (USA). 

The oxidation of (CNT) with slight modification to earlier report (Gumel et al., 2014) 

was carried out. In brief, an appropriate amount of CNT was transferred into a Schott 

bottle containing a mixture of H2SO4 and H2O2 in 3:1 volume ratio. The solution was 

stirred at room temperature (25  1 C) for 24 hours and followed by sonication at 40 ºC, 

40 kHz for 120 minutes at a power output of 100 % (Elma, P30H, Germany). The 

sonicated CNT was recovered by filtration using fritted glass. The cake containing the 
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CNT was washed several times with ultrapure water until the pH of the filtrate became 

neutral. Finally, it was washed with absolute ethanol. The functionalized CNT cake was 

dried in an oven at 70 ºC until constant weight. The final yield was approximately 93 %. 

All experiments were conducted using ultrapure water of 18.2 MΩ/cm resistivity while 

the reagents are of analytical grades and used as received. 

3.2 Methods 

3.2.1 Cultivation of medium-chain-length polyhydroxyalkanoate (mcl-PHA) 

 Mcl-PHA was synthesized by Pseudomonas putida BET001 using shaking 

incubator (DAIHAN LABTECH Co. Ltd., LSI-3016R, Korea). The bacteria culture was 

grown in a sterilized 30 mL nutrient broth medium contained in 100 mL conical flask 

shaken at 200 rpm for 24 hours. The culture was further cultivated in rich medium (RM) 

containing (g/L): yeast extract (10), nutrient broth (15), and ammonium sulphate (5) 

(Table 3.1). Then, 1 mL of the culture was transferred aseptically into sterilized 200 mL 

RM contained in 500 mL conical flask, and incubated at 200 rpm for 24 hours at 25  

1C. The cells were concentrated in a 50 mL centrifuge tube by centrifugation (8000 rpm, 

3 min, 4 ºC) (SORVALL RC5C PLUS, Thermo Scientific, U.S.A). Residual debris was 

removed from the cell by washing twice with normal saline (0.9 g/l) prior to optical 

density determination at 600 nm (OD600nm) using spectrophotometer (UNICO 2100, Vis 

spectrophotometer). Subsequently, an appropriate volume of the cell was transferred 

aseptically into 200 mL of polymer production medium (E2) contained in 500 mL conical 

flask. The E2 medium contained (g/L): 5.6 lauric acid as the sole carbon and energy 

source, 5.7 K2HPO4, 3.7 KH2PO4 and 3.5 NaNH4HPO4.4H2O (Table 3.1). After 

sterilization of E2 medium, a separate solution of 0.1 M MgSO4
.7H2O (10 mL/L) and 

trace element solution (1mL/ L) were aseptically added prior to inoculation. Incubation 

was carried out at 200 rpm for 48 hours (Gumel et al., 2012). The culture containing the 

cells and the polymer was harvested by centrifugation at 8000 rpm, 3 min, 4 ºC. The 
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recovered pellet was washed twice with normal saline and finally with n-hexane to 

remove residual fatty acid. Then, the separated biomass was dried using vacuum drier 

(SCANVAC CoolSafe, 110-4, Denmark) and its weight recorded.  

3.2.2 Extraction and purification of synthesized polymer (mcl-PHA)  

 Mcl-PHA was extracted from the dried biomass using acetone. The biomass was 

ground using mortar and pestle into fine powder and poured into 1 liter Schott bottle 

containing excess acetone. The mixture was stirred at room temperature for 24 hours at 

200 rpm. This was followed by filtration using Ross 44a filter paper (125 mm in diameter) 

and the filtrate containing the polymer was concentrated using rotatory evaporator 

(Yamato Scientific Co. LTD, RE300, Japan). The concentrated mcl-PHA was purified by 

precipitating the polymer in excess cold methanol (1:5 v/v of acetone to methanol) 

followed by centrifugation at 2500 rpm for 30 min. The process was repeated several 

times prior to casting of the purified mcl-PHA in PTFE petri-dish (5.5 cm diameter). The 

polymer was kept at room temperature until it solidify completely. It was finally dried 

under vacuo over P2O5 prior to characterization. 
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Table 3.1: Composition of nutrient rich (NR), fermentation medium (E2), mineral 
solution and trace element 

Media Composition Weight per liter (g/L) in 
UPW 

Nutrient rich (NR) Nutrient broth 15.0 
 Yeast extract 10.0 
 Ammonium sulphate 5.0 

Fermentation medium 
(E2) NaNH4HPO4.4H2O 3.5 

 K2HPO4 5.7 
  KH2PO4 3.7 
   
 Mineral solution Volume in E2 (% v/v) 
 MgSO4

.7H2O (0.1M) 1.0 
 Trace element 0.1 
   

 Trace element  Weight per liter (g/L) in 1 M 
HCl 

 CoCl2.6H2O 2.4 
 CuCl2.2H2O 0.2 
 CaCl2.2H2O 1.5 
 FeSO4.7H2O 3.0 
 MnCl2.4H2O 2.0 
 ZnSO4.7H2O 0.3 

 

3.2.3 Gas chromatography (GC) 

 GC (Trace GC Ultra, Thermo Scientific, Italy) was employed to determine the 

concentration and monomer composition of the purified mcl-PHA. The machine was 

fitted with a fused silica capillary column of 30 m length × 0.32 mm internal diameter 

with 0.25 µM film (Supelco SPBTM-1, USA). About 10 mg of the sample was dissolved 

in 2 mL chloroform contained in a vial. Then, methanol and sulphuric acid mixture (85 : 

15 % v/v ) at 2 mL was added to the vial followed by uniform heating in a metal block at 

100 ºC for 2 hours. Then, 1 mL of ultrapure water was added to the mixture and vortexed 

thoroughly. The solution was left overnight for adequate separation. The lower organic 

solvent layer containing the hydrolysed polymer was separated and analyzed by GC. 

Benzoic acid methyl ester was used as internal standard to mark the beginning of sample 
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elution in the column. Methyl 3-hydroxyalkanoates monomer standards (Larodan, 

Sweden and Aldrich, Germany) were used to determine the retention time and amount of 

each monomer present (Anis et al., 2017). 

3.2.4 Gel permeation chromatography (GPC) 

 The GPC analysis was carried out using Agilent Technologies 1220 infinity LC 

instrument (Agilent, USA) with gel column of 7.8 mm internal diameter × 300 mm length 

and equipped with refractive index detector (Model 1260) (Aris et al., 2016). About 1 mg 

of the sample was dissolved in 1 mL of tetrahydrofuran (THF) solvent and filtered 

through PTFE membrane filter (nominal pore size 0.22 µm.) The filtered sample 0.1 mL 

aliquot was injected at 40 ºC with a flow rate of 0.4 mL / minute using THF as a mobile 

phase. 

3.3 Radical grafting of mcl-PHA with methyl acrylate (MA) 

The grafting of mcl-PHA with MA was carried out using thermal method (Figure 

3.1). About 200 mg of neat mcl-PHA was dissolved in 4 mL acetone in a trident vial. 

Benzoyl peroxide (5 mg) was added as the radical initiator and finally, 200 mg of MA 

was added to the mixture. The solution was sparged with nitrogen gas for 10 minutes to 

provide O2-free reaction medium. Then, the reaction vials were immediately sealed and 

incubated at 80 ºC for 120 minutes in a metal heating block (WiseTherm®, HB48, Korea). 

After incubation, the vials were allowed to cool to room temperature, and subsequently 

poured into a glass petri dish and allowed to solidify. The grafted polymer was purified 

by dissolution in acetone followed by precipitation in excess cold methanol. This process 

was repeated thrice, and the graft material was re-casted in a glass petri dish. Finally, it 

was dried in vacuo over P2O5 at 30 ºC. The purified grafted copolymer was designated as 

MA-PHA and showed 71.2 % increase in mass.  
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Figure 3.1: Schematic diagram of MA-PHA copolymerization and its subsequent 
composite with oxidized CNT 

 

3.3.1 Preparation of electrodes 

For cathode electrodes, purified carbon cloth (CC) was modified with either CNT 

(designated as CC-CNT) or composite of CNT and MA-PHA (designated as CC-

CNT/MA-PHA). For CC-CNT cathode electrode, about 20 mg of functionalized CNT 

was added into a vial containing 2 mL ultrapure water. The mixture was vortexed and 

sonicated at 40 kHz, 35 ºC for 30 minutes at 100 % power output. Thereafter, 100 µL of 

Nafion 117 solution was added and vortexed rigorously. Using 100 µL micro pipette, the 

mixture was evenly spread on purified CC and allowed to dry at room temperature. For 

CC-CNT/MA-PHA cathode electrode, about 5 mg of the grafted polymer was dissolved 

in 2 mL acetone. Approximately 20 mg of CNT was added and vortexed prior to 

ultrasonication as previously explained without the addition of a binder.  

The anode electrodes were modified with either CNT (CC-CNT) as explained above 

or with CC-CNT/MA-PHA containing 20 mg of the grafted polymer. All electrodes were 

dried for 48 hours at room temperature before undergoing further preparation steps by 
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soaking in ultrapure water for 4 hours to remove residual debris prior to application in 

MFC. The surface area of each electrode is approximately 2  3 cm2. The loading of CNT 

on the CC was approximately 3 mg/cm2 while that of MA-PHA and CNT composite was 

6 mg/cm2 and 3 mg/cm2 for anode and cathode electrode respectively. The material 

loading was calculated according to equation (3.1): 

Material loading rate =
𝐹𝑊𝑐𝑐−𝐼𝑊𝑐𝑐

𝐸𝑆𝐴
      (3.1) 

where FWcc and IWcc are the final and initial weight of CC (mg), and ESA is the 

electrode surface area (cm2).  

3.3.2 Characterization of electrodes 

Functionalized CNT, neat mcl-PHA, carbon cloth and modified electrodes were 

subjected to Perkin-Elmer (Wellesley, MA, USA) FTIR spectrometer at a scan range of 

4000-400 cm-1 (Gumel & Annuar, 2014). The crystallinity of pristine and modified 

electrodes was determined using XRD (Bruker, Smart Apex II) at 25 ºC ranging between 

5º ≤ 2θ ≤ 70º with a step size of 0.0260 s-1 (Yusuf et al., 2018). The morphologies of the 

electrodes before and after biofilm formation were analyzed using FESEM (FEI Quanta 

450 FEG) and coated with platinum prior viewing. Electrode samples with biofilm 

attached after MFC operation were prepared by soaking in 2.5 % glutaraldehyde for 12 

hours, followed by washing with sodium chloride (0.9 % w/v) and with ethanol solution 

of 30, 50, 70, 85 and 95 % for an interval of 10 minutes (Liu et al., 2014). Proton nuclear 

magnetic resonance (H1 NMR) spectra of plain PHA and MA-PHA were recorded on 

JEOL (FT-NMR ECA400) machine (Gumel & Annuar, 2014).  

3.3.3 Electrochemical analyses 

Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and 

electrode conductivity (δ) measurement were performed on the electrodes applied in MFC 
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using Gamry Interface 1000 (Warminister, PA, USA). The CV of each anode electrode 

in 100 mL of fresh anolyte was recorded at a scan rate of 5 mV/s between -600 mV and 

+600 mV, while the cathode electrode in 100 mL of fresh catholyte was recorded at scan 

rate of 5 mV/s from 0 to 1000 mV. The working electrode was either the anode or cathode 

electrode while the reference and counter electrodes were Ag/AgCl and platinum wire 

respectively.  

At a stable and maximum cell potential, the EIS of the device was measured at an open 

circuit potential mode with frequency ranging from 10-8 to 1 MHz at alternate current 

(AC) amplitude signal of 10 mV. Prior to MFC operation, different amounts of MA-PHA 

ranging from 5 mg to 100 mg was composited with a fixed amount of CNT (20 mg) and 

loaded onto CC to determine the appropriate amount for MFC operation. The electrodes 

were subjected to CV and conductivity tests. The conductivity (δ) of dried electrodes was 

measured by placing the electrode between metal electrode of 3.142 cm2 surface area and 

the resistance (R) from 100 Hz to 1 MHz measured at AC of 10 mV. The δ was calculated 

according to equation (3.2): 

δ(S/cm) =
𝑇𝑒

𝑅×𝐴
         (3.2) 

where Te is the electrode thickness (cm) and A is the electrode cross-sectional area 

(cm2). 

3.3.4 MFC fabrication and operation 

3.3.4.1 Inoculum preparation 

The anode chamber of the doubled-chambered MFC was inoculated with 

Escherichia coli as biocatalyst. Escherichia coli was chosen because it is a facultative 

anaerobe, and oxygen cross-over effects on the strain will be minimal, compared to other 

biocatalysts such as Geobacter sulfurreducens, which is an obligate anaerobe. The 
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bacteria preparation was activated aseptically from freeze dried samples kept at -20 C in 

glycerol. The activation was performed in Luria-Bertani (LB) broth at 30 C, 200 rpm for 

24 hours. The bacteria was concentrated by centrifugation at 8000 rpm, 4 C for 3 

minutes, followed by three times washing with phosphate buffer solution (PBS, pH 7). 

The concentrate was finally re-suspended in 10 mL PBS and used as biocatalyst in MFC 

operation at 10 % v/v. 

3.3.4.2 MFC assembly and operation 

 The MFC operation was carried-out using a double-chambered, H-shaped 

cylindrical glass vessel (Adams and Chittenden Scientific Glass, Berkeley, USA). The 

use of toxic and expensive platinum at the cathode for efficient oxygen reduction rate in 

most single-chambered MFC favors the application of inexpensive double-chambered 

MFC in this study. In addition, the steps involved in assembling air cathode single-

chambered MFC are relatively less simple compared to the double-chambered MFC. 

More importantly, the rate of oxygen diffusion from membraneless single-chambered 

MFC is about 2.7 times higher than the double-chambered MFC. Consequently, it results 

in low coulombic efficiency (CE) and low power output (Luo et al., 2009; Saravanan & 

Karthikeyan, 2017). 

The chambers were separated by purified Nafion membrane (3.5 cm diameter). 

The total volume for each of the anode and cathode compartment was 90 mL. The anode 

chamber was inoculated with 10 % v/v biocatalyst together with laboratory prepared 

anolyte containing (g L-1) in ultrapure water: K2HPO4 (10.7), KH2PO4 (5.3), NaCl (1), 

MaHCO3 (0.2), NH4Cl (0.3), MgSO4.7H2O (0.3), CaCl2.2H2O (0.04) and 0.1 % (v/v) of 

trace element (Table 3.1). The cathode chamber was filled with 50 mM [K3Fe(CN)6] in 

100 mM PBS (pH 7). Since the biocatalyst is a facultative anaerobe microorganism, the 

anode chamber was sparged with nitrogen for 15 minutes and immediately sealed for 
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oxygen-free environment. The prepared electrodes were utilized in three different MFC 

setups. MFC 1 consisted of CC-CNT anode and CC-CNT cathode, MFC 2 consisted of 

CC-CNT anode and CC-CNT/MA-PHA cathode, while MFC 3 consisted of CC-

CNT/MA-PHA anode and CC-CNT/MA-PHA cathode. The three MFC setups were 

operated at 30 C in an incubator (Hotech, Model 624, Taiwan) for 30 days across 1 kΩ 

external resistor. The voltage was recorded hourly using a digital multimeter (VICTOR, 

86B, RuoShui Yitensen®). Fed-batch mode of operation was employed and the anolyte 

was replaced when the voltage reading decreased below 40 mV. The catholyte was 

sparged continuously during 30 days operation with filtered air using air pump (FISCO, 

Model AP-348T, Singapore). Resistors between 0.33 kΩ - 10 kΩ were applied during 

stable and maximum power output and the polarization data was recorded (Logan, 2008). 

The current (I) and power density (PD) were calculated according to the equations (3.3) 

and (3.4), respectively; 

𝐼 =
𝑉

𝑅
          (3.3) 

where R is the resistance (Ω) and V is the voltage recorded (V); and 

PD =
𝐼×𝑉

𝐸𝑆𝐴
          (3.4) 

where ESA is electrode surface area (cm2). 

3.3.5 Stability of polymeric electrode in MFC 

The anode electrode containing MA-PHA nanocomposites was tested for 

copolymer (bio)degradability at day 0, 30 and 60 of MFC operation. The reduction in the 

molecular weight of the copolymer indicated its (bio)degradability rate.  
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3.3.5.1 Gel Permeation Chromatography (GPC) 

At the end of 0-, 30- and 60 days MFC operation, a small piece (1  1 cm2) of the 

electrode containing MA-PHA was cut out and immersed in dichloromethane (DCM). 

The copolymer was extracted, purified and analyzed as previously reported in section 

3.2.4, and the changes in molecular weight were recorded.  

3.4 Preparation of polymeric membrane (mcl PHA-PHB composite) 

 Mcl PHA-PHB membrane was prepared through solvent blending method (Figure 

3.2). An appropriate amount of purified mcl-PHA was dissolved in 5 mL chloroform in a 

vial. Different percentages of commercially sourced PHB ranging from 5 – 15 % (w/w) 

were added to the solution. The mixture was stirred at room temperature for 30 min and 

subsequently kept in 50 ºC oven for 12 hours. The blend was stirred once more for 30 

min prior to casting in PTFE petri-dish (5.5 cm diameter). The membrane was kept at 

room temperature until constant weight. Residual solvent was removed under vacuo over 

P2O5 before characterization and utilization in MFC. Pristine mcl-PHA was prepared in 

parallel following the above steps to be applied as reference membrane.  

 

 

Figure 3.2: Schematic diagram of mcl PHA-PHB nanocomposite membrane 
formation 
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3.4.1 Characterization of membranes 

3.4.1.1 FTIR and XRD Analyses 

The functional groups of the membranes were determined using FTIR 

spectrometer (Perkin-Elmer, Wellesley, MA, USA) as described in section 3.2.2. The 

degree of crystallinity of neat and modified membranes were evidenced by XRD (Bruker, 

Smart Apex II) as previously described in section 3.2.2. 

3.4.1.2 Field Emission Scanning Electron Microscopy (FESEM) 

 About 1  1 cm2 of each membrane sample was subjected to both surface and 

cross-sectional morphology using FESEM (FEI Quanta 450 FEG) (details in section 

3.2.2) 

3.4.1.3 Oxygen Diffusion Test 

 The amount of oxygen seeping from aerobic cathode to anaerobic anode over time 

was determined according to earlier reports (Kim et al., 2007; Yusuf et al., 2018). In brief, 

both the anode and cathode chambers were filled with 100 mL of sterilized ultra-pure 

water (UPW) of 18.2 Ω/cm2 resistivity. The cathode was sparged with purified oxygen 

until 100 % saturation while the anode was sparged with purified nitrogen gas until 0 % 

oxygen content. The oxygen diffusivity rate was measured with oxygen probe sensor 

(Mettler Toledo, Greitensce, Switzerland). The measurements were used to determine 

diffusion coefficient (Do) and mass transfer coefficient of oxygen (Ko) as reported by 

(Kim et al., 2007); 

𝐾o = −
𝑉

𝐶𝑠∙𝑡
∙ 𝑙𝑛 [

𝐶1−𝐶2(𝑡)

𝐶1
]        (3.5) 

where V is the volume of UPW in the anode chamber (100 mL), Cs is the membrane 

cross-sectional area, C1 is the concentration of dissolved oxygen at the cathode chamber 

and C2(t) is the dissolved oxygen at the anode at time t. 
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The Do was calculated using the following equation; 

𝐷o = 𝐾𝑜 ∙ 𝑀𝑡         (3.6) 

where Mt is the membrane thickness (cm). 

3.4.1.4 Water uptake by membrane 

 About 50 mg of each membrane was dried under vacuo over P2O5 overnight and 

the weight recorded as weight initial (Wi). The membrane was then immersed in 50 mL 

UPW and allow to stand for 24 hours at room temperature. The wet membrane was blotted 

to remove excess water and the weight was recorded as weight final (Wf). The percentage 

water uptake (% WU) was determined according to equation 3.7: 

% 𝑊𝑈 =
𝑊𝑓−𝑊𝑖

𝑊𝑖
∙ 100        (3.7) 

3.4.2 MFC fabrication and operation 

3.4.2.1 Wastewater characterization 

 Food wastewater was obtained from Euro Cafeteria, Student Complex Center, 

University of Malaya, Malaysia and kept in -20 ºC freezer (Protech, Chest Freezer, CF-

300, Malaysia). Table 3.2 showed the raw and supplemented pH, conductivity, chemical 

oxygen demand (COD), and ammoniacal nitrogen (NH3-N) of the wastewater. To 

increase the conductivity of the wastewater, the following supplements were added (g/L): 

10.7 K2HPO4, 5.3 KH2PO4, 1 glucose and 0.1 % (v/v) trace element. 
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Table 3.2: Food wastewater parameters before and after the addition of supplements 

 

Parameters 

 

Raw 
wastewater 

 

Wastewater with 
supplements 

Conductivity (µS/cm) 

pH 

COD (mg/L) 

NH3-N (mg/L) 

208.8 

4.20 

780 

6.3 

1500 

7.00 

1005 

8.2 
 

3.4.2.2 Preparation of inoculum 

 Escherichia coli was utilized as the biocatalyst. The bacteria preparation was 

cultivated aseptically as previously reported in section 3.2.4.1. Separated bacterial cells 

were re-suspended in 10 mL phosphate buffer solution (PBS, pH 7) and used in MFC 

operation at 10 % v/v. The acclimatized anolyte containing E. coli and wastewater was 

used as inoculum at 10 % v/v as described in the following sections. 

3.4.2.3 Electrode preparation 

 Carbon cloth (CC) of 2  3 cm2 surface area was utilized as base material for both 

anode and cathode electrodes, and modified with functionalized MWCNT with PTFE as 

binder. The anode electrode was activated with biofilm colonization by dipping it for a 

month in an MFC set-up with wastewater and E. coli mixture as anolyte. The electrode 

with prominent microbial growth and biofilm attachment was utilized in a batch mode 

MFC operation. 

3.4.2.4 MFC operation 

 A double-chambered, H-shaped cylindrical glass vessel (Adam and Chittenden 

Scientific Glass, Berkeley, U.S.A) was used throughout the experiment. The working 

volume of the anode was 100 mL containing 90 mL of wastewater and 10 mL of 
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acclimatized inoculum. The cathode chamber was filled with 100 mL of 50 mM 

[K3Fe(CN)6] in 100 mM PBS (pH 7) (Figure 3.3). An oxygen-free environment was 

created in the anode chamber by sparging with nitrogen gas for 15 min and then 

immediately sealed. The cathode chamber was sparged with purified oxygen gas. The 

modified membranes were utilized in six different MFC set-ups. MFC 1 consisted of 

Nafion 117 as the control membrane, and designated as Nafion, MFC 2 consisted of 5 % 

PHB and 95 % PHA (w/w) and designated as PHB5%. MFC 3 consisted of 10% PHB and 

90% PHA (w/w) and designated as PHB10%, MFC 4 consisted of 15% PHB and 85% 

PHA (w/w) and designated as PHB15%, MFC 5 consisted of 15% PHB with polymeric 

modified electrodes of MA-PHA as described in section 3.3.1 and designated as mMFC 

(modified MFC) while MFC 6 consisted of 100% PHA as negative control and designated 

as PHA100%. The six MFC set-ups were operated at 30 ºC in an incubator (Hotech, 624, 

Taiwan) across 1000 Ω external resistor for a complete MFC cycle. Polarization data was 

recorded at a stable and maximum power output between 430 – 10,000 Ω resistance 

(Logan, 2008). The voltage was monitored at an hour interval while 5 mL of anolyte was 

drawn every 24 hours for the determination of OD600nm (UNICO 2100, Visible 

spectrophotometer), pH (Mettler Toledo, FiveEasy F20, Switzerland), conductivity 

(Mettler Toledo, SevenCompact S20, Switzerland), ammoniacal nitrogen (NH3-N) and 

chemical oxygen demand (COD) tests (Rice et al., 2012). The NH3-N concentration was 

calculated from standard calibration plot prepared according to phenate method as 

reported by (Rice et al., 2012) (Figure 3.4) while COD content was calculated based on 

equation 3.8: 

%𝐶𝑂𝐷 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐶𝑂𝐷1−𝐶𝑂𝐷2

𝐶𝑂𝐷1
∙ 100      (3.8) 

where COD1 is the initial COD content while COD2 is the final COD content of the 

wastewater.  
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The coloumbic efficiency (CE) over time t was determined according to equation 3.9 

(Logan et al., 2006) 

𝐶𝐸 =
𝑀𝑤

𝑔𝑙𝑢
𝑤 ∫ 𝐼𝑑𝑡

𝑡
0

𝐹𝑏𝑉∆𝐶𝑂𝐷
         (3.9) 

where 𝑀𝑤
𝑔𝑙𝑢 is the glucose molecular weight, F is Faraday’s constant (96,485 C/mol), 

b is the number of electrons exchanged per mole of glucose (24), V is the volume of 

anolyte (100 mL) and ΔCOD is change in COD over time. 

 

 

Figure 3.3: MFC utilized for mcl PHA-PHB membrane performance 
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Figure 3.4: Ammoniacal nitrogen (NH3-N) standard calibration 
 

3.5  Statistical analysis 

 Experimental data were analyzed using SigmaPlot version 12.0. One-way 

ANOVA was utilized for determination of significant difference at p < 0.05 using 

Minitab software version 17.  

 

 

 

 

 

 

y = 1.3655x - 0.0619
R² = 0.991

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6

M
ea

n 
ab

so
rb

an
ce

 (O
D

64
0n

m
)

NH3-N concentration (mg L-1)

Univ
ers

ity
 of

 M
ala

ya



52 

CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Mcl-PHA properties  

 Shake flask technique was employed for bacterial synthesis of mcl-PHA with 

lauric acid as the sole carbon and energy source. The gas chromatography-mass 

spectrometry analysis (GCMS) of the purified PHA revealed the following monomer 

composition: 3.7 mol% hydroxyhexanoate, 40.7 mol% hydroxyoctanoate, 39.5 mol% 

hydroxydecanoate and 16.0 mol% hydroxydodecanoate. It’s composed of 136 ± 4 KDa 

weight-averaged molecular weight (Mw), 73 ± 2 KDa number-averaged molecular weight 

(Mn) and 1.9 ± 0 polydispersity index (PDI) based on gel-permeation chromatography 

(GPC) analysis. The extracted polymer was about 32.3% (w/w) from the dry biomass 

weight. 

4.2 Characterization of MA-PHA composite electrodes 

The functional groups of oxidized CNT, neat mcl-PHA, MA-PHA and its 

composite are shown in Figure 4.1 from FTIR spectroscopic analysis. The presence of –

OH groups in functionalized CNT spectra shows successful oxidization of multi-walled 

carbon nanotubes. The peak was significantly reduced in CC-CNT/MA-PHA electrode 

as the result of dispersion of CNT within the MA-PHA polymer matrix (Gumel et al., 

2014). The common observation in all samples is the symmetric and asymmetric vibration 

of –C-H stretch at 2928 cm-1 and 2860 cm-1 (Figure 4.1). In neat mcl-PHA polymer, the 

peak signal at 1736 cm-1 is assigned to –C=O stretch, which denotes the ester group. The 

same stretch is observed in the grafted polymer (MA-PHA) with a sharper peak indicating 

successful grafting of methyl acrylate monomers into mcl-PHA matrix. The presence of 

new absorption band at 827 cm-1 in MA-PHA polymer is assigned to the out-of-plane 

deformation of the C=C of acrylate groups (Salih et al., 2015). The side chain of mcl-

PHA polymer characterized by the presence of –CH2 is evidenced by the signal at 732 

cm-1 for both mcl-PHA and MA-PHA samples (Sánchez et al., 2003). The signal, 
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although weaker, is also present in CC-CNT/MA-PHA and shifted to 724 cm-1 from the 

layered composite on the CC surface.  

 

 

Figure 4.1: ATR-FTIR spectra of functionalized CNT, pristine mcl-PHA, MA-PHA, 
CC modified with CNT, and CC modified with CNT and MA-PHA  

 

The crystallinity of grafted polymer and its composites are shown in Figure 4.2. The 

diffraction peaks in neat mcl-PHA which appeared at 2θ values of 19.1 and 21.3 

correspond to the reflections of (110) and (111) with d-spacing of 0.46 and 0.42 nm 

respectively. These two distinct peaks represent the polymer backbone (Gumel et al., 

2014; Yusuf et al., 2018) and are also present in MA-PHA graft and CC-CNT/MA-PHA 

composite. A new peak at 2θ of 19.9 with d-spacing of 0.45 nm corresponds to a reflection 
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of 130, a property found in crystalline polymer (Muralidhar & Pillai, 1988; Yıldrım & 

Seçkin, 2014). The presence of CNT within the polymer matrix and on CC is evidenced 

by 2θ values of 25.5 (002) and 43.4 (101) with d-spacing of 0.35 and 0.21 nm respectively 

on the composite samples (CC-CNT/MA-PHA). The increased intensity of 25.5 (002) 

peak in CC-CNT/MA-PHA is attributed to the crystalline nature of methyl acrylate 

monomers in addition to the presence of dispersed CNT mass that subsequently increased 

its crystallinity (Hindatu et al., 2017b). 

 

Figure 4.2: X-ray diffractograms of functionalized CNT, pristine mcl-PHA, MA-
PHA, and CC modified with CNT and MA-PHA 
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The 1H NMR spectra for both neat mcl-PHA and grafted polymer are shown in Figure 

4.3 a and b respectively. Tetramethylsilane (TMS) was included as the internal standard 

with deuterated chloroform as the solvent. Chemical shifts 1, 2, 3, and 4 are assigned to 

α and β protons of CH-COO, O-CH, CH2, and CH2 respectively in mcl-PHA while the 

shift 5 represent the terminal methyl group of mcl-PHA side chain. In Figure 4.3b, shift 

x indicates the terminal methyl group of methyl acrylate monomer while the chemical 

shifts y and z represent the backbone of MA monomer viz. CH-COO and CH2 

respectively. The results are in accordance with previously reported literatures (Gumel & 

Annuar, 2014; Ward et al., 2015). The detection of chemical shifts x, y and z as shown in 

Figure 4.3b supported successful grafting of MA monomers into mcl-PHA matrix. 

 

 

Figure 4.3: Proton NMR spectra of, a neat mcl-PHA, and b MA monomers grafted 
with mcl-PHA 
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Visual observation of the nanomaterials on the electrode was made using FESEM as 

shown in Figure 4.4. The pristine CC (Fig. 4.4a) showed the absence of foreign bulk 

deposit compared to Figure 4.4b, where CNT was layered on the CC surface aided by 100 

l Nafion 117 solution as a binder. Ultrasonication of the grafted polymer and CNT 

resulted in dispersion the CNT within the polymer matrix as shown in Figure 4.4c. Here, 

the more complete coverage of CC surface by the grafted material owed to the higher 

mass fraction of MA-PHA used i.e. 20 mg. In contrast, CC-CNT/MA-PHA-cathode 

(Figure 4.4d) electrodes appeared less complete in its surface coverage as only 5 mg of 

grafted material was applied. This was also the reason for the calculated material loading 

of CC-CNT/MA-PHA-anode (6 mg/cm2) being twice that of CC-CNT (3 mg/cm2) and 

CC-CNT/MA-PHA-cathode (3 mg/cm2) electrodes. FESEM micrographs at lower and 

higher magnifications for studied electrodes before and after MFC application are 

presented in Figures 4.5, 4.6 and 4.7. 
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Figure 4.4: FESEM micrographs of plain electrode and modified electrodes prior to 
MFC analysis, a Pristine CC, b CC modified with CNT (CC-CNT), c CC modified with 
CNT (20 mg) and MA-PHA (20 mg) as anode electrode (CC-CNT/MA-PHA-anode), d 
CC modified with CNT (20 mg) and MA-PHA (5 mg) as cathode electrode (CC-
CNT/MA-PHA-cathode) and biofilm formation of electrodes after MFC analysis, e CC-
CNT-anode, f CC-CNT/MA-PHA-anode, g CC-CNT-cathode, h CC-CNT/MA-PHA-
cathode 
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Figure 4.5: FESEM images of plain and modified electrodes prior to MFC analysis at 
different magnifications, a Pristine CC at 1.0mm, b Pristine CC at 10.0µm, c CC modified 
with CNT at 1.0mm, d CC modified with CNT at 10.0µm e CC modified with CNT (20 
mg) and MA-PHA (20 mg) as anode electrode (CC-CNT/MA-PHA-anode) at 1.0mm, f 
CC modified with CNT (20 mg) and MA-PHA (20 mg) as anode electrode (CC-
CNT/MA-PHA-anode) at 10.0µm, g CC modified with CNT (20 mg) and MA-PHA (5 
mg) as cathode electrode (CC-CNT/MA-PHA-cathode) at 1.0mm, and h CC modified 
with CNT (20 mg) and MA-PHA (5 mg) as cathode electrode (CC-CNT/MA-PHA-
cathode) at 10.0µm 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



59 

 

Figure 4.6: FESEM images of modified electrodes after MFC analysis at different 
magnifications. a,b,c represent anode electrode of CC modified with CNT at 1.0mm, 
200µm and 10µm respectively, d,e,f represent cathode electrode of CC modified with 
CNT at 1.0mm, 200µm and 10µm respectively, while g,h,i represent cathode electrode 
of CC modified with CNT (20 mg) and MA-PHA (5 mg) at 1.0mm, 200µm and 10µm 
respectively 

 

 

Figure 4.7: FESEM images of biofilm formation on CC-CNT/MA-PHA modified 
anode electrode at a 1.0mm, b 20.0µm, c 10.0µm, and d 5.0µm 
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4.2.1 Electrochemical performance of the electrodes 

4.2.1.1 Conductivity 

The neat mcl-PHA and MA-PHA graft materials showed negligible conductivity 

(Table 4.1) when tested as electrode modifier in the MFC. When neat mcl-PHA is 

composited with CNT (PHA/CNT), the conductivity recorded was 0.11 mS/cm. The 

reading was doubled when grafted copolymer composited with CNT was tested. Layering 

the PHA/CNT onto CC resulted in a significant conductivity reading at 4.20 ± 0.2 mS/cm 

(Table 4.1). The conductivity reading increased by two-fold to 8.48 ± 0.3 mS/cm when 

CNT/MA-PHA was surface-layered on CC (CC-CNT/MA-PHA). This strongly 

demonstrated that MA-grafted mcl-PHA composited with CNT is an efficient electrode 

modifier material in MFC application.   

Table 4.1: Conductivities of the neat mcl-PHA and grafted copolymer composited 
with carbon nanotubes 

Material Conductivity (mS/cm) 
mcl-PHA 

MA-PHA 

PHA/CNT 

CNT/MA-PHA 

CC-PHA/CNT 

CC-CNT/MA-PHA 

0.01 ± 0.0 

0.02 ± 0.0 

0.11 ± 0.0 

0.26 ± 0.0 

4.20 ± 0.2 

8.48 ± 0.3 
  Values are average of triplicate measurements ± standard deviation 

 

Table 4.2 shows the conductivity measurements of electrodes at different MA-PHA 

loading amounts. When 5 – 10 mg was used in CC-CNT/MA-PHA modifier material, 

comparable conductivity readings were recorded. The highest electrode conductivity of 

38.0 ± 1.5 mS/cm was achieved at 20 mg of MA-PHA. The decrease in the conductivity 

measurements thereafter could be due to increased thickness of modifier material on the 
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anode electrode that curtails electron conduction. Therefore, 1:1 w/w of MA-PHA to CNT 

(20 mg, Table 2) was chosen for subsequent studies. For cathode electrode, 0.25:1 w/w 

of MA-PHA-to-CNT (5 mg) was chosen to be applied in order to minimize biofilm 

colonization on its surface as it needs to be exposed to dissolved oxygen. 

 

Table 4.2: Conductivities of the anode electrode at different MA-PHA loading 
amounts and constant CNT amount at 20 mg 

MA-PHA in 

CC-CNT/MA-PHA  

(mg) 

Apparent deposition of MA-
PHA within CC-CNT/MA-

PHA 

(%) 

Conductivity  

(mS/cm) 

5 

10 

20 

40 

60 

80 

100 

94 

92 

96 

83 

84 

78 

82 

17.5 ± 1.4 

12.6 ± 0.1 

38.0 ± 1.5 

9.2 ± 0.1 

5.4 ± 0.2 

4.9 ± 0.9 

1.9 ± 0.2 
  Values are average of triplicate ± standard deviation 

 

4.2.1.2 Cyclic Voltammetry (CV) 

To investigate electrochemical activities of the electrodes in MFC, they were 

subjected to cyclic voltammetry (CV). CV curves for different MA-PHA loading amount 

ranging from 20 mg to 100 mg with a fixed amount of CNT (20 mg) is shown in Figure 

4.8. From the figure, 20 mg MA-PHA showed the highest electrochemical activities 

compared to the other loadings. Therefore, 20 mg MA-PHA loading was chosen as the 

anode electrode modifier. Figure 4.9a shows the CV curves of anode electrodes with 
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biofilm formation while Figure 4.9b shows the stability of the modified electrode in 

electrolyte. The anodic peak of the modified electrode (CC-CNT/MA-PHA) located at a 

potential of 305 mV generated a current of 5.7 mA, while the cathodic peak located at -

118 mV generated about 3.6 mA of current (Figure 4.9a). The redox peaks of the control 

electrode were much weaker compared to modified electrode. About 2.7 mA of current 

was generated by the CC-CNT electrode at the anodic peak while the cathodic peak 

generated a current of -2.2 mA, located at a potential of -105 mV. The superiority in redox 

peaks of modified electrode is attributed to prominent microbial growth and film 

attachment to the electrode surface (see Figure 4.4f). The close proximity allows for 

higher chances of successful electron transfer via mediators or electrochemically active 

metabolites secreted by the biocatalyst to the anode (Zhang et al., 2008). The stability of 

the modified electrode was evidenced by subjecting the electrode material to 10 cycles 

(Figure 4.9b). Both the anodic and cathodic peaks of all cycles generated similar current, 

thereby indicating the stability of the electrode. 

Figure 4.9c shows the CV curves of cathode electrodes while Figure 4.9d shows the 

stability of the modified cathode electrode in ferricyanide. Peak sensitivity indicates the 

effectiveness of the electrodes for oxygen reduction function at the cathode (Papiya et al., 

2018). In comparison with control electrode (CC-CNT), the modified electrode showed 

a higher oxygen reduction reaction (Figure 4.9c). The CC-CNT electrode generated an 

anodic current of 5.6 mA at a potential of 401 mV in the absence of corresponding 

cathodic peak. The anodic current of modified electrode shifted to a potential of 472 mV, 

emitting an anodic current of 7.3 mA and recorded a cathodic potential of 451 mV, with 

a current of -3.2 mA. It can therefore be concluded that the modified electrode exhibited 

better catalytic activity than the control electrode. The proven stability of the electrode in 

electrolyte is evidenced in Figure 4.9d.  
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Figure 4.8: Cyclic voltammetry curves of different MA-PHA loading amount with 
constant CNT amount (20 mg) at 50 mV/s 

 

 

 

Figure 4.9: Cyclic voltammetry curves of (a) anode electrodes for CC-CNT and CC-
CNT/MA-PHA-anode at 5 mV/s, (b) 10 cycles of CC-CNT/MA-PHA-anode at 50 mV/s, 
(c) cathode electrodes for CC-CNT and CC-CNT/MA-PHA-cathode at 5 mV/s, (d) 10 
cycles of CC-CNT/MA-PHA-cathode at 50 mV/s 
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4.2.1.3 Internal resistance 

To investigate the internal resistance of the MFC, the device operated with 

different electrodes were subjected to EIS as shown in Figure 4.10. The charge transfer 

resistance of the device operated with CC-CNT/MA-PHA-anode-cathode (MFC 3, Figure 

4.10c) represented with a larger semi-circle was 42 Ω while the MFC operated with CC-

CNT anode versus CC-CNT/MA-PHA cathode (MFC 2, Figure 4.10b) was 56 Ω, and 44 

Ω was recorded for CC-CNT anode versus CC-CNT cathode (MFC 1, Figure 4.10a). 

Electrolyte resistance is in direct proportion to the overall internal resistance (He et al., 

2006; Hindatu et al., 2017b). The higher the electrolyte resistance, the higher the internal 

resistance. In this experiment, the electrolyte resistance of MFC 1 was the highest at 402 

Ω which gives overall internal resistance of 447 Ω, while MFC 2 and 3 showed electrolyte 

resistances of 131 Ω and 63 Ω, respectively, corresponding to overall internal resistance 

of 190 Ω and 107 Ω. The high electrolyte resistance is governed by many factors e.g. 

biofilm concentration, temperature, ion concentration in the electrolyte (Sekar & 

Ramasamy, 2013). Nevertheless, the polymeric modified electrodes (MFC 2 and 3) 

showed significantly lower internal resistance compared to MFC 1 (unmodified 

electrode). About 76 % decrease in internal resistance was observed in MFC 3 and 58 % 

decrease in MFC 2. The highest percentage in MFC 3 when compared with other two 

MFC and with earlier polymeric studies (Hindatu et al., 2017b; Hou et al., 2015; Wang 

et al., 2014) was attributed to the successful colonization of electrode surface by the 

microorganism as indicated in Figure 4.4f (FESEM), as well as low electrolyte impedance 

of un-replenished MFC 3. Both MFC 1 and 2 received nutrient replenishment as they 

underwent several cycles within 30 days of MFC operation, whereas MFC 3 with its 

single cycle did not require nutrient replenishment. Since EIS was recorded at replenished 

nutrient state, high electrolyte resistance was expected in MFC 1 and 2. 

Univ
ers

ity
 of

 M
ala

ya



65 

 

Figure 4.10: Nyquist plot for MFC set up with a CC-CNT-anode vs. CC-CNT-cathode 
(MFC 1), b CC-CNT-anode vs. CC-CNT/MA-PHA-cathode (MFC 2), c CC-CNT/MA-
PHA-anode vs. CC-CNT/MA-PHA-cathode (MFC 3) 

 

4.2.2 MFC operation 

During the 30 days of MFC operation, the voltage generated was monitored every 

single hour. Figure 4.11 showed the voltage generated over time for the three MFC set-

ups. For MFC 1 (Figure 4.11a), which served as a control, the initial voltage recorded 

(start-up time) was 15 mV at 0th hour. The voltage steadily increased to reach a maximum 

of 460 mV at 32nd hour of the first cycle. Similar maximum voltage of about 460 ± 20 

mV was observed in the four subsequent cycles resulting in a total of five cycles during 

30 days of operation. For MFC 2 (Figure 4.11b), the number of total cycles was reduced 

to four maximum voltage generation i.e. 478, 495, 493, and 729 mV in 1st, 2nd, 3rd, and 

4th cycles respectively with a start-up voltage of 54 mV at 0th hour. The increase in the 

maximum voltage generated as the cycle progresses was attributed primarily to improved 

O2 reduction by the transferred electrons at the modified cathode. More importantly, O2 

reduction activities of the modified cathode electrodes did not appear to be affected by 
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marginal biofilm formation on them (Figure 4.4g and 4.4h). Longevity and stability in 

voltage production are the most important features in making MFC a practical system. 

MFC 3 (Figure 4.11c) underwent a single cycle without nutrient replenishment 

requirement. The start-up voltage generated at 0th hour by MFC 3 (398 mV) was seven 

times higher than that of MFC 2 (54 mV) and 27 times higher than the control, MFC 1 

(15 mV), primarily attributed to superior electron charge transfer at the modified anode 

(MFC 3). Significant increase in the voltage generation for MFC 3 was observed within 

the first 58 hours until a maximum and stable voltage of 685 mV was achieved. The 

voltage was stable for 225 hours. The longevity and stability of maximum voltage 

generated was ascribed to mature and established biofilm colonization on modified anode 

electrode, consequently translated to more efficient electron transfer relative to the 

unmodified anode electrode (CC-CNT) with minimal biofilm colonization (Figure 4.4e). 

It is also suggested that the amphiphilic nature of MA-PHA encourages strong biofilm 

growth and attachment on modified electrode (Figure 4.4f). Interestingly, the nutrient may 

have been exhausted after 18 days of MFC operation as observed from the disappearance 

of culture medium turbidity (data not shown). The microorganism was able to survive 

and sustained the voltage generation most likely by metabolizing the modifier material 

(grafted copolymer) on the electrode as its carbon source since it primarily comprised of 

a biological product (mcl-PHA). The results of this study showed superior stability and 

longevity in terms of generated maximum voltage compared to other studies (Cui et al., 

2015; Hou et al., 2015; Kang et al., 2015; Wang et al., 2014; Yusuf et al., 2018).  
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Figure 4.11: Voltage curves recorded during 30 days MFC operation for a CC-CNT-
anode vs. CC-CNT-cathode (MFC 1), b CC-CNT-anode vs. CC-CNT/MA-PHA-cathode 
(MFC 2), c CC-CNT/MA-PHA-anode vs. CC-CNT/MA-PHA-cathode (MFC 3) 

 

Voltage measurements at different external resistances provide useful information on 

current and power densities (Yusuf et al., 2018). These data were used in the 

determination of polarization curve and power density as shown in Figure 4.12. The 

polarization data was taken at a maximum and stable voltage. MFC 1 generated a 

maximum power density of 289 mW/m2 at a current density of 695 mA/m2. The other 

two modified MFC show improvement in power density viz. 339 mW/m2 at current 

density of 751 mA/m2 for cathode modified MFC (MFC 2). The highest power density 

was observed in MFC 3 containing modified anode and cathode with power density of 

351 mW/m2 at 765 mA/m2 current density, higher than previously reported (Liu et al., 

2015; Roh & Woo, 2015; Wang et al., 2014). Rapid drop in voltage generation at lower 

currents was observed in MFC 1 due to high activation loss. Similar loss was not observed 

in modified MFCs from improved O2 reduction performance at the cathode electrode 
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(MFC 2), and improved electron transfer between the anode and the biocatalyst (MFC 3) 

(Logan, 2008).  

 

 

Figure 4.12: Polarization curve and power density recorded for a CC-CNT-anode vs. 
CC-CNT-cathode (MFC 1), b CC-CNT-anode vs. CC-CNT/MA-PHA-cathode (MFC 2), 
c CC-CNT/MA-PHA-anode vs. CC-CNT/MA-PHA-cathode (MFC 3) 

 

4.2.3 Polymer degradability 

The biodegradable nature of PHA and PHA-based materials calls for testing the 

susceptibility of the grafted polymer to (bio)degradation in MFC. This was examined by 

the change in molecular weight before and after its application as an electrode 

nanocomposite modifier in MFC (Table 4.3). No drastic changes were observed in the 

weight-averaged molecular weight (Mw) and the number-averaged molecular weight (Mn) 

values between neat mcl-PHA and MA-PHA. However, significant increase in the 

polydispersity index (PDI) was observed after grafting the MA monomers into the mcl-

PHA matrix. It is suggested that the grafted copolymer exhibits wider distribution of 
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molecular weight (Anis et al., 2017). When applied as composite material for electrode 

modification, negligible difference was observed in the Mw after 30 days of MFC 

operation. It is suggested that the CNT incorporated in the matrix of the grafted polymer 

played a role in reducing the degradation rate of the polymer (Yusuf et al., 2018). The Mn 

after 30 days significantly increased while the PDI significantly reduced compared to neat 

MA-PHA. Prolonged exposure to biofilm growth and operation conditions in MFC up to 

60 days resulted in significant reduction in Mw, indicating utilization of the copolymer by 

the attached microorganism as major carbon source. Both the Mn and PDI values at day 

60 showed no significant difference corresponding values on day 30. Monomer 

composition, morphology and microstructure of the polymer may account for low 

percentage decrease (11 %) in the Mw of the copolymer even after 60 days. These factors 

are known to determine the degradation rate of PHA-based materials (Li & Loh, 2015).  

 

Table 4.3: Molecular weights of neat mcl-PHA, MA-PHA prior to- and after 30 and 
60 days of MFC operation 

 

Sample 

Molecular weight (kDa) 
Mw Mn PDI 

mcl-PHA 

MA-PHA at day 0 

CNT/MA-PHA at day 30 

CNT/MA-PHA at day 60 

136 ± 4a 

129 ± 4a,b 

123 ± 2b,c 

114 ± 2c 

73 ± 2a,b 

60 ± 0b 

77 ± 9a 

70 ± 1a,b 

1.9 ± 0.0b 

2.2 ± 0.1a 

1.6 ± 0.2b 

1.6 ± 0.0b 
  Values are average of duplicate ± standard deviation 
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Table 4.4 shows the results of the current study and other reported studies in MFC 

electrode modification. While Wang et al. (2014) and Li et al. (2019) reported slightly 

improved maximum voltage potential compared to the current study, nonetheless, the 

maximum voltage recorded in this study was comparatively better than other reported 

studies (Table 4.4). The ability of MFC to generate stable electrical current for extended 

period of time is of most important in practical application of MFC technology. The 

current study exhibited comparable longevity in maximum voltage potential when 

compared with those reported by Fraiwan et al. (2014) while superior to other studies 

(Table 4.4). The maximum power density of the current study was within reasonable 

range when compared with other literatures. 

 

Table 4.4: Comparison of results in current study with previous studies on electrode 
modification 

Electrode 

Maximum 
voltage 

potential 
(mV) 

Longevity 
of maximum 

voltage 
potential 
(hours) 

Maximum 
power 
density 

(mW/m2) 

References 

Mcl-PHA-co-methyl 
acrylate/MWCNT 700 225 351 Current 

study 
Gold/polycaprolactone 

microfiber 600 240 65 (Fraiwan et 
al., 2014) 

Chitosan/CNT 
hydrogel 132 45 132 (Liu et al., 

2014) 

PANI/MWCNT 967 100 286 (Wang et 
al., 2014) 

rGO/Polyacrylamide 
hydrogel 512 80 782 (Chen et 

al., 2019) 
Titanium 

suboxides/graphene/PANI  980 72 2073 (Li et al., 
2019) 

PANI/CNT 450 210 48 (Yellappa 
et al., 2019) 

PANI/TiO2 555 168 813 (Yin et al., 
2019) 

Mcl-PHA-co-
PEGMA/MWCNT 678 87 466 (Yusuf et 

al., 2018) 

Mcl-PHA/MWCNT 409 60 254 (Hindatu et 
al., 2017) 
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4.3 Characterization of membranes 

4.3.1 FTIR and XRD 

 Both the synthesized mcl-PHA and commercially sourced PHB belong to 

polyhydroxyalkanoates family, representing medium chain length- and short chain length 

polyhydroxyalkanaotes, respectively. This resulted in similar FTIR spectra as shown in 

Figure 4.13. The successful composition of PHB into PHA matrix was confirmed by the 

increase in peak intensities in mcl PHA-PHB composites (Figure 4.13). The presence of 

symmetric and asymmetric vibration of –C-H stretch at 2930 cm-1 and 2854 cm-1 were 

evidenced in all composite samples. These vibrations were absent in Nafion membrane. 

The peak signal located at 1729 cm-1 in mcl-PHA and PHB indicate the presence of ester 

group –C=O. Similar peaks between 1730 – 1740 cm-1 were observed in the blended 

membranes (PHB5%, PHB10% and PHB15%) with sharper peaks as the PHB content 

increases, indicating successful incorporation of PHB within PHA matrix. The stretching 

vibrations between 1160 – 1210 cm-1 and at 759 cm-1 in mcl PHA-PHB samples represent 

the C-O-C stretch and CH2 from PHA side chains, respectively. The intensity of the peaks 

was more pronounced in 15% sample due to higher PHB content present. In Nafion 

sample, two distinct peaks at 1152 cm-1 and 1050 cm-1 represent the sulfones (S=O) and 

the sulfoxides (-SO3). The findings are in accordance with earlier literature (Abid et al., 

2016; Biradar et al.,  2018; Gumel et al., 2012). 
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Figure 4.13: FTIR spectra of PHA100%, PHB100%, PHB5%, PHB10%, PHB15% and 
Nafion membranes 

 

Figure 4.14 shows the XRD patterns of Nafion, pure mcl-PHA and its composites with 

PHB. The two broad peaks on Nafion located at 16.8º and 38.8º represent the backbone 

of polyfluorocarbon chains (Dai et al., 2019; Maiti et al., 2018; Ozden et al., 2017). Mcl-

PHA and its composites showed two distinct diffraction peaks appearing at 19.1º and 

20.7º, corresponding to (021) and (111) reflections. The appearance of new peaks in all 

PHB composites at 2θ values of 13.5, 16.9, and 25.5 with respective reflections of (020), 

(110) and (121) evidenced. The assignments are in agreement with earlier reports 

(Anbukarasu et al., 2015; Liau et al., 2014). 
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Figure 4.14: X-ray diffractogram of Nafion, PHA100%, PHB5%, PHB10%, and 
PHB15% membranes 

 

4.3.2 FESEM 

 Figure 4.15 shows the surface and cross-sectional morphology of all membranes 

at different magnifications. The surface morphology of all membranes appeared smooth 

(Figure 4.15 (a1,b1,c1,d1,e1)) even after PHB incorporation. On the other hand, the cross-

sectional view shows different morphologies. Nafion appeared cracked at higher and 

lower magnifications (Figure 4.15 (a2 and a3). Similar observation was reported by (Xue 

& Chan, 2015; Yusuf et al., 2018). The incorporation of PHB into mcl-PHA matrix 

introduced irregularities that roughened the membranes as shown in Figure 4.15 

(c2,c3,d2,d3,e2,e3). These observations were absent in pristine PHA morphology. Higher 
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fraction of rough morphologies was observed in PHB15% membrane compared to 

PHB5% and PHB10%. The observed morphologies of the composited materials could 

explain the efficiency of the membrane to function as PEM in MFC.   
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Figure 4.15: FESEM images of the surface morphologies at 10 µm ( 10,000) of a1 
Nafion; b1 PHA100%; c1 PHb5%; d1 PHB10%; e1 PHB15%. The cross-sectional 
morphologies at 100 µm ( 1,000) of a2 Nafion; b2 PHA100%; c2 PHB5%; d2 PHB10%; 
e2 PHB15% and cross-sectional morphologies at higher magnification of 20 µm ( 5,000) 
of a3 Nafion; b3 PHA100%; c3 PHB5%; d3 PHB10%; e3 PHB15% 
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4.3.3 Oxygen diffusion test and water uptake by membrane  

 Oxygen flux from the cathode chamber to anode chamber is known to decrease 

coulombic efficiencies, reduce anaerobes population inside anode chamber and 

subsequently affect the overall MFC performance. An ideal membrane must be very much 

less conducive to oxygen diffusion (Logan, 2008). The rate of oxygen diffusion over time 

in all tested membranes is shown in Figure 4.16. The decreasing order of resistivity to 

oxygen flux is as follows: PHA100% < PHB15% < PHB10% < Nafion < PHB5%. The 

inability of oxygen to diffuse through PHA100% membrane could be attributed to its 

hydrophobic nature thereby making it difficult for dissolve oxygen in water to pass 

through. The composition of PHB crystals into PHA matrix allowed oxygen passage to 

some extent, most likely related to the observed roughness of the membrane as shown by 

FESEM earlier (Figure 4.15). Nevertheless, PHB10% and PHB15% membranes showed 

better resistivity to oxygen diffusion than the control, Nafion. Similar trend was observed 

in the oxygen mass transfer coefficient (Ko) and diffusion coefficient (Do) as shown in 

Table 4.5 with PHB10% and PHB15% showing better Do and Ko values than Nafion.  
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Figure 4.16: Oxygen gas flux from cathode chamber to anode chamber over time for 
Nafion, PHA100%, PHB5%, PHB10% and PHB15% membranes  

 

Table 4.5: Membrane thickness (Mt), oxygen mass transfer coefficient (Ko) and 
diffusion coefficient (Do) of Nafion, PHA100%, PHB5%, PHB10%, and PHB15% 
membranes 

Membrane Mt (cm) Ko ( 10-5 
cm/s) 

Do ( 10-6 
cm2/s) 

Nafion 

PHA100% 

PHB5% 

PHB10% 

PHB15% 

0.0179 ± 0.001 

0.0152 ± 0.002 

0.0125 ± 0.001 

0.0128 ± 0.002 

0.0149 ± 0.001 

16.7 ± 0.2 

3.9 ± 0.2 

20.9 ± 0.1 

8.0 ± 0.3 

7.6 ± 0.1 

3.1 ± 0.04 

0.6 ± 0.03 

2.7 ± 0.02 

1.0 ± 0.04 

1.1 ± 0.01 
  Values are average of duplicate ± standard deviation 
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Proton conductivity is in direct proportion with the amount of water held by a polymer 

matrix. Two phenomena are employed for proton movement in solution. The first is 

known as proton hopping via protonated sulfonate groups (-SO3H), transferring protons 

from one water molecule to another by means of hydrogen bonding. The other 

phenomenon known as vehicle diffusion contributed about 22 % of the total proton 

passage via protonated water molecules in form of H3O+ or H9O4+ (Rangel-Cárdenas & 

Koper, 2017). Figure 4.17 shows the percentage water uptake of different membranes. 

PHA100% has the lowest water uptake owing to its hydrophobic nature. Composition of 

hydrophobic mcl-PHA with PHB crystals improved the water uptake significantly (Figure 

4.17) supposedly through water capillary action, with PHB15% showing the highest 

swollen percentage (22 %) compared to Nafion (16 %). It is hypothesized that the 

hydrophobic part of the composited membranes allows for morphological stability and 

oxygen diffusion resistivity, while the incorporated PHB crystals plays important role in 

facilitating proton passage.  

 

Figure 4.17: Percentage of water uptake for Nafion, PHA100%, PHB5%, PHB10%, 
and PHB15% membranes 
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4.4 MFC fabrication and operation 

 The six MFC set-ups contained composite membranes, Nafion and PHA100% as 

control were operated in a batch mode MFC cycle. Figure 4.18 shows the voltage-time 

curve of the MFC set-ups. PHA100% serving as negative control showed an initial 

voltage of 16 mV at 0th hour. The voltage remained level with maximum voltage of 19 

mV generated at 192nd hour. This suggests the inability of proton to efficiently pass 

through the matrix due to its highly hydrophobic nature, and since proton conduction 

occurs mainly in association with water molecules, insignificant voltage generation is 

expected in PHA100% membrane. On the other hand, the incorporation of PHB crystals 

into mcl-PHA matrix showed significant voltage generation (Figure 4.18). For PHB5% 

membrane, an initial voltage of 24 mV was recorded. The voltage steadily increased to a 

maximum and stable potential of 403 ± 15 mV at 54th hour. The voltage remained steady 

till 90th hour prior to declination. Nafion membrane initially recorded a voltage of 119 

mV with a gradual increase until a stable current of 594 ± 10 mV at 70th hour was achieved 

(Figure 4.18a). Longevity in the stability of maximum current generation (59 hours) was 

more pronounced in Nafion than in PHB5% membrane (34 hours). PHB10% and 

PHB15% membranes outperformed Nafion membrane both in the initial current 

generated and maximum voltage potential. An initial voltage of 364 mV was recorded for 

PHB10% and 436 mV for PHB15%. The maximum voltage potential of 988 ± 21 mV for 

PHB10% was achieved at 17th hour while PHB15% attained its maximum voltage 

potential of 1001 ± 9 mV at 11th hour of MFC operation. The initial voltage at start-up 

time recorded by PHB10% (364 mV) and PHB15% (436 mV) were far superior to the 

control, Nafion (119 mV). The ability of PHB10% and PHB15% membranes to achieved 

better start-up time voltage, and huge maximum voltage potentials at shorter time could 

be attributed to increased PHB crystals present as seen by FESEM cross-sectional images 

(Figure 4.15), better water uptake percentage (Figure 4.17) which allowed for better 
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proton conduction, and minimal gas diffusion to anode chamber (Figure 4.16), which 

translated to efficient biofilm growth and colonization on anode surface. Importantly, 

PHB has been reported to channel ions by forming pore structures and selectively 

allowing ion passage in mammals (Das et al., 1999; Elustondo et al., 2013; Reusch, 2014). 

Interestingly, these attributes could also be responsible for observed proton passage in 

composite membrane set-ups used in this study. Measured pHs, optical densities and 

conductivities in anode chambers for all membranes studied were obtained (Figures 4.19, 

4.20, 4.21 respectively). Significant H+ generation in anode chamber within the first 24 

hours is indicated by a clear decrease in pH value (Figure 4.19). PHB10% and PHB15% 

membranes were able to conduct much of the proton than Nafion, which later translated 

to elevated generation of maximum voltage potential. 

 

Figure 4.18: Voltage-time curve of MFC set-ups operated with a Nafion b PHB5% c 
PHB10% d PHB15% e mMFC f PHA100% membranes 

 

Although, PHB10% and PHB15% membranes were far superior in maximum voltage 

potential compared to other membranes, instability of generated voltage necessitates 
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electrode modification. Both anode and cathode electrodes were modified with 

composites of mcl-PHA-co-methyl acrylate carbon nanotube (details provided in section 

3.3.1). The modified electrodes together with PHB15% as PEM were utilized in MFC 

designated as mMFC. The mMFC recorded a stable maximum voltage of 958 ± 7 mV 

which lasted for 88 hours as evidenced in Figure 4.18e. The stability and longevity in 

maximum voltage potential was attributed to efficient colonization of the anode electrode 

by biocatalyst and superior reduction of oxygen at the cathode. The results obtained were 

demonstrated to be far superior to earlier reports (Ayyaru & Dharmalingam, 2011; Kim 

et al., 2007; Sevda et al., 2013; Yusuf et al., 2018).  

 

 

Figure 4.19: Measured pH values of anolytes during the MFC operation for Nafion, 
PHB5%, PHB10%, PHB15% and mMFC membranes 

 

Univ
ers

ity
 of

 M
ala

ya



82 

 

Figure 4.20: Optical densities at 600 nm (OD600nm) of anolytes during the MFC 
operation for Nafion, PHB5%, PHB10%, PHB15% and mMFC membranes 

 

 

Figure 4.21: Conductivities (µS/cm) of anolytes during the MFC operation for Nafion, 
PHB5%, PHB10%, PHB15% and mMFC membranes 
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The determination of polarization data provides an insight into the MFC potential to 

maintain a voltage at a specific current. The data were recorded for different resistances 

at maximum voltage potential during MFC operation (Figure 4.22). The power densities 

for all tested membranes were in the following decreasing order: mMFC > PHB15% > 

Nafion > PHB10% > PHB5%. The lowest power density of 265 mW/m2 was recorded by 

PHB5% at a current density of 665 mA/m2. This was attributed to low PHB content in 

the hydrophobic mcl-PHA matrix, translating to low voltage potential (Figure 4.18b) and 

subsequently low power density. PHB10% recorded a power density of 322 mW/m2 at 

current density of 733 mA/m2 (Figure 4.22c), which was still lower than Nafion 

membrane (520 mW/m2 at current density of 931 mA/m2) (Figure 4.22a). PHB15% and 

mMFC were superior in both power and current densities compared to Nafion. PHB15% 

recorded a power density of 601 mW/m2 at current density of 1402 mA/m2 (Figure 4.22d) 

while mMFC recorded a power density of 912 mW/m2 at a current density of 1233 mA/m2 

(Figure 4.22e). At lower currents, sharp decline in voltage were observed in all MFC set-

ups except in mMFC set-up (Figure 4.22). The observation is attributed to activation loss 

(Logan, 2008). The absence of voltage loss in mMFC at higher and lower currents 

stemmed from improved electron transfer at the anode and improved oxygen reduction at 

the cathode. The maximum power densities recorded in this study were higher than that 

reported by (Ayyaru & Dharmalingam, 2011; Ghasemi et al., 2012; Rudra et al., 2017; 

Sevda et al., 2013) and comparable to that reported by Leong et al., (2015) (902 mW/m2).  
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Figure 4.22: Polarization data and power density of MFC set-ups operated with a 
Nafion b PHB5% c PHB10% d PHB15% e mMFC f PHA100% membranes 

 

4.4.1 Wastewater characterization during MFC operation 

 Although food wastewater can be characterized as non-hazardous since it 

contained little toxic compound, its high organic matter content calls for effective 

treatment prior to discharge (Oh & Logan, 2005). Table 3.2 shows the characteristics of 

the raw and supplemented wastewater. About seven-fold increase in the conductivity of 

wastewater was observed after the addition of supplements. Figure 4.23 shows the COD 

removal efficiencies, coulombic efficiencies (CE) and ammoniacal nitrogen (NH3-N) 

removal rate of all MFC set-ups. The COD removal rate were in the following decreasing 

order: PHB15% (76.3 %) > PHB10% (72.7 %) > mMFC (70 %) > PHB5% (65.6 %) > 

Nafion (64.3 %). The observed order is expected since the composite membranes allow 

for better passage of proton from anode chamber to cathode chamber as shown earlier by 

voltage-time curve (Figure 4.18) and polarization curve (Figure 4.22). Electron recovery, 

known as coulombic efficiency (CE) is crucial to overall power output of MFC. The CE 

Univ
ers

ity
 of

 M
ala

ya



85 

was highest in both PHB15% (63 %) and mMFC (64 %) (Figure 4.22). Nafion recorded 

CE of 50 % while PHB10% and PHB5% recorded 38 % and 20 % CE respectively. When 

the CE is greater than 50 %, it is a good indicator that most of the substrate in anode 

chamber goes to cell respiration with efficient energy generation (Logan, 2008). The 

composite membranes helped to recover energy far superior than earlier reports (Angioni 

et al., 2016; Angioni et al., 2017; Ghasemi et al., 2012) and close to that reported by Kim 

et al. (2007) (72 %). 

Organic compounds that are rich in protein, nucleic acid etc. could lead to ammonia 

accumulation, which could hinder the growth of the biocatalyst at anode (Chen et al., 

2016). The ability of the MFC set-ups to degrade ammoniacal nitrogen (NH3-N) during 

current generation was investigated. Nafion and mMFC membranes were superior in 

NH3-N removal percentage at 59.8 % and 58.5 % respectively (Figure 4.23). PHB10% 

and PHB15% recorded similar NH3-N removal of 37.8 % and 39.0 %, respectively. The 

lowest NH3-N removal was recorded by PHB5% at 31.7 %. Ammonia, sulfate together 

with other species could diffuse through ion exchange membrane to the cathode chamber, 

resulting in increased electricity generation (Kim et al., 2008). Since PHB5% recorded 

the lowest maximum voltage potential, low NH3-N removal percentage is expected.   
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Figure 4.23: Percentage of COD removal, CE recovery and percentage of NH3-N 
removal of the MFC set-ups with Nafion, PHB5%, PHB10%, PHB15% and mMFC 
membranes  

 

4.4.2 Comparison studies of membranes 

 The results obtained in current study were compared with previously reported 

membrane composite in MFC (Table 4.6). In terms of maximum voltage potential and 

power density, results reported in this study were far superior to other literatures (Table 

4.6). On the other hand, COD removal efficiency was comparable to that reported by Di 

Palma et al. (2018) and lesser than other studies. Apart for the CE reported by Elongovan 

& Dharmalingam (2016), the composite membrane in present study was superior to 

earlier studies (Table 4.6). It should be pointed out that unbiased comparison between 

different MFC studies is almost impossible due to wide variation in applied MFC size, 

type, configuration, membrane thickness, and environmental conditions amongst other 

factors. 
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Table 4.6: Comparison of results in the current study with reported literatures on 
membrane modification 

Membrane 
composite 

Maximum 
voltage 

potential 
(mV) 

Maxim
um power 

density 
(mW/m2) 

COD 
removal 

(%) 

CE 
(%) Reference 

mcl-PHA/PHB 958 912 70 64 Current 
study 

Nafion/silica 26 750 95 34 (Angioni et 
al., 2016) 

PEEK 765 603 - 76 

(Elongovan 
& 

Dharmalingam 
2016) 

mcl-
PHA/MWCNT 760 361 91 26 (Yusuf et 

al., 2018) 
Polysulfone/SPE

EK 800 68.64 91 26 (Ghasemi et 
al., 2016b) 

Polybenzimidaz
ole/SBA-15 

mesostructured 
silica  

600 110 90 31 (Angioni et 
al., 2017) 

Chitosan/montm
orillonite 832 119 88.5 43.64 (Yousefi et 

al., 2018) 

 Fe3O4/PES  552 9.59 75 11.36 (Di palma et 
al., 2018) 

Graphene 
oxide/SPEEK 757 902 83 16.88 (Leong et 

al., 2015) 
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CHAPTER 5: CONCLUSION  

5.1 Conclusion 

The present study investigated the utilization of renewable biopolymer for 

innovative anode/cathode/proton exchange membrane (PEM) modifications in microbial 

fuel cell (MFC). 

Investigation on the utilization of radical-mediated copolymerized medium chain 

length-polyhydroxyalkanoates-co-methyl acrylate (mcl-PHA-co-MA) graft as electrode 

modifier material in MFC was carried out. Spectroscopic analyses revealed extensive 

copolymerization of MA monomers with the mcl-PHA. Its utilization in MFC set-ups as 

both anode and cathode electrode modifier when composited with carbon nanotubes 

outperformed the control MFC in terms of maximum power and current densities, 

protracted voltage generation, low internal resistance and superior biofilm formation. 

Negligible bio(degradation) of the copolymer after 60 days of MFC operation was 

evidenced by slight decrease (11 %) in the weight-averaged molecular weight (Mw). The 

decrease is attributed to utilization of copolymer material by microbial colonizers as 

potentially assimilable carbon source. 

Polyhydroxybutyrate (PHB) crystals at different weight percentages were composited 

into mcl-PHA matrix and utilized as PEM in MFC. The composite membrane with 15% 

PHB and mMFC (modified anode/cathode electrodes together with 15% PHB membrane) 

set-ups exhibited superior water uptake, high proton passage, maximum voltage 

potentials and improved power densities. The resistivity of composite membranes to 

oxygen gas flux resulted in almost complete anaerobic environment in anode chamber, 

thereby improving chemical oxygen demand (COD) removal and better coulombic 

efficiency (CE) recovery. 
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In summary, the study demonstrated that renewable biopolymer mcl-PHA plays a 

crucial role in enhancing power density and sustained voltage generation when utilized 

as an integral component of MFC. The use of environmental-friendly biopolymer 

eliminates the green disposal concern and serves as effective alternative towards practical 

MFC application. The important findings from this study open up a new research 

dimension for bringing MFC practical applications closer to reality. 

5.2 Future studies 

 Composite nanomaterials of MA-PHA/CNT as electrodes modifier proved to be 

superior in enhancing MFC performance in a fed-batch mode MFC operation. Future 

work should focus on continuous mode of MFC operation for higher and stable current 

generation over a longer period of time. 

Further grafting of MA-PHA/CNT with conducting polymer such as polypyrrole (PPy) 

or polyaniline (PANI) should be investigated to increase its conductivity, reduce the 

internal resistance and enhance its resistivity to bio(degradation) for prolonged 

reusability. 

Multifunctional free-standing three-dimensional hydrogel electrode of MA-PHA/CNT 

should also be investigated. This can be achieved through radical polymerization with 

cross-linker such as acrylic acid. 

Whilst mcl PHA-PHB composite membrane as PEM effectively prevents gas diffusion 

from cathode compartment to anode compartment over 6 hours of operation, long-term 

oxygen flux across the composite membrane should be investigated. In addition, the 

conduction of other ions apart from protons across the membrane should also be studied 

since native PHB is known to be permeable to them in vivo. Equally important to 

investigate is the composite membrane operation-dependent mechanical stability, 
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biofouling effect and its long-term utilization focusing on biodegradability effects 

towards the overall MFC performance.    
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