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CONJUGACY SEPARABILITY AND CYCLIC CONJUGACY SEPARABILITY

OF CERTAIN HNN EXTENSIONS, GENERALISED FREE PRODUCTS AND

TREE PRODUCTS

ABSTRACT

In this thesis, we study two interrelated strong residually finite properties of groups, namely

conjugacy separability and cyclic conjugacy separability. We extend them to certain HNN

extensions, generalized free products and tree products where the associated subgroups

and amalgamated subgroups are not necessarily cyclic. In the first part of the thesis,

we consider HNN extensions. We begin by establishing two criteria, one for conjugacy

separability and another for cyclic conjugacy separability. Using these two criteria we

establish conditions for HNN extensions where the associated subgroups are central or

they are a finite extension of a central subgroup or cyclic to be conjugacy separable and

cyclic conjugacy separable. In the second part of the thesis, we consider generalized free

products and tree products. We shall consider only cyclic conjugacy separability as results

on conjugacy separability are already known. Again we begin by establishing a criterion

for cyclic conjugacy separability. We then prove that certain generalized free products and

tree products where the amalgamated subgroups are central or they are a finite extension

of a central subgroup or cyclic are again cyclic conjugacy separable.

Keywords: Residually Finite, Conjugacy Separable, Cyclic Conjugacy Separable,

Generalized Free Products, HNN Extensions.
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KEBOLEHPISAHAN KONJUGASI DAN KEBOLEHPISAHAN KONJUGASI

KITARAN UNTUK PERLUASAN HNN, HASIL DARAB TERITLAK DAN

HASIL DARAB POKOK TERTENTU

ABSTRAK

Dalam tesis ini, kami mengkaji dua sifat kuat sisa terhingga yang saling terhubung, iaitu

kebolehpisahan konjugasi dan kebolehpisahan konjugasi kitaran. Kami memperluaskannya

ke perluasan HNN, hasil darab teritlak dan hasil darab pokok tertentu di mana subkumpulan-

subkumpulan bersekutu atau bergabung tidak semestinya kitaran. Di bahagian pertama

tesis ini, kami mempertimbangkan perluasan HNN. Kami mula dengan membuktikan dua

kriteria, satu untuk kebolehpisahan konjugasi dan satu lagi untuk kebolehpisahan konjugasi

kitaran. Dengan kedua-dua kriteria ini, kami menetapkan syarat-syarat bagi perluasan HNN

di mana subkumpulan-subkumpulan bersekutu adalah memusat atau lanjutan terhingga

subkumpulan memusat atau kitaran untuk menjadi konjugasi terpisah dan konjugasi

kitaran terpisah. Di bahagian kedua tesis, kami mempertimbangkan hasil darab teritlak

dan hasil darab pokok. Kami hanya akan mempertimbangkan kebolehpisahan konjugasi

kitaran sebab kebolehpisahan konjugasi sudah diketahui. Sekali lagi kami mulakan

dengan membuktikan kriteria untuk kebolehpisahan konjugasi kitaran. Kami kemudiannya

membuktikan bahawa hasil darab teritlak dan hasil darab pokok di mana subkumpulan-

subkumpulan yang bergabung adalah memusat atau lanjutan terhingga bagi subkumpulan

memusat atau kitaran adalah sekali lagi konjugasi kitaran terpisah.

Kata Kunci: Sisa Terhingga, Kebolehpisahan Konjugasi, Kebolehpisahan Konjugasi

Kitaran, Hasil Darab Teritlak, Perluasan HNN
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CHAPTER 1: INTRODUCTION

1.1 Introduction and Background

In this thesis, we shall study the related properties of conjugacy separability and cyclic

conjugacy separability in HNN extensions and generalized free products. These two

properties arise from certain fundamental problems in Combinatorial Group Theory.

Combinatorial Group Theory studies groups from the perspective of their presentations,

that is, their generators and relations. It is useful where finiteness assumptions are satisfied,

for example, finitely generated groups. Dehn (1911) raised three fundamental decision

problems in 1911. The problems are the word problem, the conjugacy problem and the

isomorphism problem. The word problem asks whether two words are effectively the same

group element. This is similar to the problem that we were given any arbitrary word, is it

the identity element in the group? The conjugacy problem asks whether two words are

conjugate in a group. It is clear that if a group has solvable conjugacy problem, then the

group will have solvable word problem but the converse is not necessarily true.

The property of residual finiteness is useful in order to study the word problem. A

finitely presented residually finite group has solvable word problem (Mostowski, 1966).

Philip Hall (1959) first introduced the term residually finite in 1955 whereas Gruenberg

was first to do a systematic study on residually finite groups. G. Baumslag (1963) was the

first to study the residual finiteness of generalized free products in detail. He proved that

free products of residually finite groups amalgamating a finite subgroup or, under certain

conditions, amalgamating a cyclic subgroup is again residually finite. Since then many

mathematicians have done research on residual finiteness and its various extensions.
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The first topic we study is conjugacy separability. Following Mostowski (1966), a group

� is said to be conjugacy separable if for each pair of elements G, H in � such that G and H

are not conjugate in�, then there exists a finite homomorphic image �̄ of� such that Ḡ and

H̄, the images of G and H in �̄ respectively, are again not conjugate. Clearly, a conjugacy

separable group is residually finite. In 1966, Mostowski (1966) showed that finitely

presented conjugacy separable groups have solvable conjugacy problem. It is well known

that finitely generated torsion-free nilpotent groups and free groups are conjugacy separable

(Blackburn, 1965; Stebe, 1970). Surface groups are also conjugacy separable (Scott, 1978).

Building on these results, Dyer (1980), Formanek (1976) and Remeslennikov (1969)

and Fine and Rosenberger (1990) respectively showed that polycyclic-by-finite groups,

free-by-finite groups and Fuchsian groups (finite extension of surface groups) are conjugacy

separable. Stebe (1970) was the first to do a systematic study of conjugacy separability

on generalized free products. He proved that the free products of conjugacy separable

groups are conjugacy separable. Since then many mathematicians have done research on

conjugacy separability for generalized free products and various group extensions.

The second topic we study is cyclic conjugacy separability which was formally defined

by Tang (1995). Following Tang (1995), a group � is called cyclic conjugacy separable if

for each G ∈ � and each cyclic subgroup 〈H〉 in � such that no conjugate of G in � belongs

to 〈H〉, then there exists a finite homomorphic image �̄ of � such that no conjugate of Ḡ in

�̄ belongs to 〈H̄〉. Clearly a cyclic conjugacy separable group is residually finite. Dyer

(1980) was first to prove that finitely generated nilpotent groups and free groups have this

property without giving it a name. Tang (1995) proved that surface groups are cyclic

conjugacy separable. Moldavansky (1993) showed that supersolvable groups are cyclic

conjugacy separable. In 1995, Kim and Tang (1995) showed that conjugacy separable

finite extensions of conjugacy separable residually finitely generated torsion-free nilpotent
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groups are cyclic conjugacy separable. As consequences, surface groups and finitely

generated Fuchsian groups are cyclic conjugacy separable.

The importance of cyclic conjugacy separability lies in the fact that it is an essential

condition in extending conjugacy separability to generalized free products amalgamating

a cyclic subgroup. Indeed, Dyer (1980) first made use of this property to show that the

generalized free products of two finitely generated nilpotent groups or two free groups

amalgamating a cyclic subgroup are conjugacy separable. Tang (1995) similarly used

cyclic conjugacy separability to show the conjugacy separability of the generalized free

products of two surface groups. More recently, Kim and Tang in the papers (Kim &

Tang, 1996; Kim & Tang, 1999) established the criteria for the conjugacy separability of

generalized free products of two conjugacy separable groups with a cyclic amalgamated

subgroup and for the conjugacy separability of HNN extensions of a conjugacy separable

group with cyclic associated subgroups. One of the conditions in these criteria is that the

factor groups in the generalized free product must be cyclic conjugacy separable relative

to the amalgamated subgroup and the base group in the HNN extension must be cyclic

conjugacy separable relative to the associated subgroups.

1.2 General Description of All Chapters

We now give a brief description of all the chapters in this thesis.

This thesis is divided into two parts. In the first part, we study HNN extensions of

the form � = 〈C, �|C−1�C =  , q〉 where � is the base group and �,  are the associated

subgroups and q is the isomorphism from � onto  .
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In Chapter 2, we establish two criteria for � = 〈C, �|C−1�C =  , q〉 to be conjugacy

separable and cyclic conjugacy separable in Theorem 2.12 and Theorem 2.14 respectively.

From Chapter 3 to Chapter 5, we will use these two criteria to investigate the conjugacy

separability and cyclic conjugacy separability for � = 〈C, �|C−1�C =  , q〉 where, � is

conjugacy separable or cyclic conjugacy separable with

(i) � = 〈ℎ〉,  = 〈:〉 are infinite cyclic and ℎ< is conjugate to :±< in � for some

positive integer <; or

(ii) �,  are finite; or

(iii) � ∩  is central in � and � ∩  is a subgroup of finite index in � and in  ; or

(iv) �,  are central in �.

Further conditions are imposed on the base group � and the associated subgroups

�,  in order to obtain conjugacy separability and cyclic conjugacy separability in

� = 〈C, �|C−1�C =  , q〉. Some applications to finitely generated nilpotent groups are

given.

In the second part, we study generalized free products of the form � = � ∗
�
� where �, �

are the factor groups and � is the amalgamated subgroup. We will only study the cyclic

conjugacy separability as the conjugacy separability were established by various authors.

In Chapter 6, we establish a criterion for � = � ∗
�
� to be cyclic conjugacy separable in

Theorem 6.6. From Chapter 7 to Chapter 9, we will use this criterion to investigate the

cyclic conjugacy separability for � = � ∗
�
� where �, � are cyclic conjugacy separable

with

(i) � is cyclic; or

(ii) � is finite; or

(iii) � is a subgroup of finite index in � and � is central in both � and �; or

4
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(iv) � is central in both � and �.

In Chapter 9, we extend cyclic conjugacy separability to finite tree products where the

amalgamated subgroups are central. Again, further conditions are imposed on the factor

groups �, � and the amalgamated subgroup � in order to obtain positive results.

Finally in the last chapter, Chapter 10, we state some topics for further research.

We next give a brief description of generalized free products, tree products and HNN

extensions of groups.

1.3 Generalized Free Products

O. Schreier (1927) first introduced the concept of generalized free product in 1927.

Now we describe the concept of generalized free product of two groups. Let �, � be two

groups and �,  be subgroups of � and � respectively with q : � →  an isomorphism.

Then the generalized free product � of � and � amalgamating the subgroups � of � and

 of � via the isomorphism q, is defined to be the group generated by the generators and

relations of the groups � and � with the extra relations q(ℎ) = : where ℎ ∈ �, : ∈  .

Then we can write � as follows.

� = 〈�, �|q(ℎ) = :〉, ℎ ∈ �, : ∈  .

By abuse of notation, we shall write � in the commonly used form in this thesis.

� = � ∗��

� and � are called the factors of the group � and � is the amalgamated subgroup.

5
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We let 6 be an element in �. We say that 6 is in reduced form if 6 = 6162 . . . 6=

and no consecutive terms are from the same factor. The length of the reduced element

6 = 6162 . . . 6= is denoted by | |6 | | and is defined as follows:

| |6 | | =



0, if = = 1 and 61 ∈ �

1, if = = 1 and 61 ∈ (� ∪ �)\�

=, otherwise

The reduced element 6 = 6162 . . . 6= is called cyclically reduced if each of its cyclic

permutations 6868+1 . . . 6=6162 . . . 68−1 is reduced.

1.4 Tree Products

Let us give some facts about tree products. Tree products were first introduced by

Karrass and Solitar (1970). A description of tree products was given by Kim and Tang

(1998) as follows:

“ Let ) be a tree. To each vertex E of ) , assign a group �E . To each edge 4

of ) , assign a group �4 together with monomorphisms U4, V4 embedding

�4 into the two vertex groups at the end of the edge 4. Then the tree product

� is defined to be the group generated by the generators and relations of

the vertex groups together with the additional relations U4 (64) = V4 (64)

for each 64 ∈ �4.” (Kim & Tang, 1998, p. 323)

By abuse of notation, let � be a tree product of the vertex groups �1, �2, . . . , �=,

= ≥ 2, amalgamating the edge subgroups �8 9 of �8 and � 98 of � 9 . We shall denote

� = 〈�1, �2, . . . , �= |�8 9 = � 98〉.

6
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1.5 HNN Extensions

Let � be a group and let � and  be subgroups of � such that q : � →  is an

isomorphism. The HNN extension � of � relative to the subgroups � and  with the

isomorphism q is defined to be the group generated by the generators and relations of the

group � with an extra generator C and extra relation C−1ℎC = q(ℎ) for each ℎ ∈ �. We

write

� = 〈C, �|C−1ℎC = q(ℎ),∀ℎ ∈ �〉

We shall write � in the more commonly used form in this thesis.

� = 〈C, �|C−1�C =  , q〉

The group � is called the base group and C is called the stable letter. � and  are called

the associated subgroups and q is the associated isomorphism of �.

Let 6 ∈ �. Then we have 6 = 60C
4161 . . . C

4=6= with 48 = ±1. The element 6 is said to

be in reduced form if there are no consecutive terms C−168C with 68 ∈ � or C6=C−1 with

6= ∈  . Note that each element of � can be written in reduced form. The length of a

reduced element 6 = 60C
4161 . . . C

4=6= is denoted by | |6 | | and is defined as follows:

| |6 | | =


0, if 6 = 60

=, otherwise

If 6 ∈ � is cyclically reduced, we write 6 = C4161C
42 . . . C4=6= where 68 ∈ � and

48 = ±1, 1 ≤ 8 ≤ =. Finally, if G, H ∈ �, then G ∼�,C H means G, H ∈ � and either G ∼� H or

G ∈ � and C−1GC = H or G ∈  and CGC−1 = H.

7
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1.6 Notations

Standard notations will be used in this thesis. In addition, we shall use the following.

Let � be a group.

# � 5 � means # is a normal subgroup of finite index in the group �.

/ (�) denotes the center of �.

G ∼� H means G is conjugate to H in � for G, H ∈ �.

{G}� denotes the conjugacy class of G in �.

8
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CHAPTER 2: CONJUGACY SEPARABILITY AND CYCLIC CONJUGACY

SEPARABILITY OF HNN EXTENSIONS

2.1 Introduction

We begin this chapter by establishing two criteria which can be used to prove the

conjugacy separability and cyclic conjugacy separability on HNN extensions of conjugacy

separable and cyclic conjugacy separable groups respectively. These two criteria state

the common basic core conditions that are sufficient to prove these conjugacy properties.

These core conditions are simple and direct. However, to utilize them, we need to use the

special and unique properties belonging to the base group of the HNN extensions as well

as their relations to the associated subgroups.

The two criteria are given respectively in Theorem 2.12 and Theorem 2.14. They will

be used extensively from Chapter 3 to Chapter 5. We begin with some definitions.

2.2 Definitions

In this section, we state all the definitions which we are going to use later in this thesis.

Definition 2.1. A group � is said to be residually finite if, for each nontrivial element

G ∈ �, there exists # � 5 � such that G ∉ # .

Definition 2.2. A group � is called �-separable for the subgroup � of � if for each G ∈ �

such that G ∉ �, there exists # � 5 � such that G ∉ �# . � is called subgroup separable if

� is �-separable for every finitely generated subgroup �.

9
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Definition 2.3. Let � be a group and �,  be subgroups of �. Then � is said to be

� -double coset separable if for each G ∈ �, � is �G -separable. In particular, we say

that � is �-double coset separable if � is �G�-separable for all G ∈ �. Suppose ℎ, : are

elements of infinite order in �. Then � is said to be {ℎ, :}-double coset separable if, for

each G ∈ � and for each integer n > 0, � is 〈ℎn〉G〈ℎn〉-separable, 〈ℎn〉G〈:n〉-separable, and

〈:n〉G〈:n〉-separable.

The well known subgroup separable groups are free groups and polycyclic groups

(Hall, 1949; Mal’cev, 1983). Free-by-finite groups and polycyclic-by-finite groups are

subgroup separable since a finite extension of a subgroup separable group is again subgroup

separable. Note that � is (�,  )-double coset separable if and only if � is � -separable

(Kim et al., 1995).

Definition 2.4. (Tang, 1995) Let � be a group and ℎ be an element of infinite order in �.

Then � is said to be 〈ℎ〉-weakly potent if we can find a positive integer A with the property

that for every positive integer =, there exists a normal subgroup # of finite index in � such

that ℎ# has order exactly A=. A group � is called weakly potent if � is 〈ℎ〉-weakly potent

for all element ℎ of infinite order in �.

For example, free groups and finitely generated nilpotent groups are weakly potent

(Evans, 1974; Tang, 1995).

Definition 2.5. Let � be a group and G ∈ �. Then G is called self-conjugate if G8 ∼� G 9

then 8 = 9 for all integers 8, 9 .

For each element G of infinite order in both free groups and finitely generated nilpotent

groups, G is self-conjugate (Dyer, 1980).

10

Univ
ers

ity
 of

 M
ala

ya



Definition 2.6. (Mostowski, 1966) Let G, H ∈ � such that G �� H. Then G, H are said to be

conjugacy distinguishable if there exists # � 5 � such that Ḡ ��̄ H̄ in �̄ = �/# . � is said

to be conjugacy separable if � is conjugacy distinguishable for all G �� H.

It is well known that finitely generated torsion-free nilpotent groups, free groups and

surface groups are conjugacy separable (Blackburn, 1965; Stebe, 1970; Scott, 1978).

Building on these results, free-by-finite groups, polycyclic-by-finite groups and Fuchsian

groups (finite extension of surface groups) are conjugacy separable by (Dyer, 1980;

Formanek, 1976; Remeslennikov, 1969; Fine & Roserberger 1990).

Definition 2.7. (Kim & Tang, 1995) A group � is said to be subgroup conjugacy separable

if for every G ∈ � and subgroup � of � such that {G}� ∩ � = ∅, there exists # � 5 � such

that {Ḡ} �̄ ∩ �̄ = ∅ in �̄ = �/# . In particular if � is subgroup conjugacy separable for

every cyclic subgroup of �, then � is said to be cyclic conjugacy separable.

Clearly a cyclic conjugacy separable group is residually finite. Tang (1995) proved

that surface groups are cyclic conjugacy separable. Moldavansky (1993) showed that

supersolvable groups are cyclic conjugacy separable.

2.3 Conjugacy Separability of HNN Extensions

In this section, we give the essential lemmas and then we prove the criterion for

conjugacy separability of HNN extensions.

Lemma 2.8. (Collins, 1969) Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension and G, H

be cyclically reduced in �. Suppose G ∼� H. Then | |G | | = | |H | | and one of the following

holds:

11
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(i) | |G | | = | |H | | = 0 and there is a finite sequence I1, I2, . . . , I= ∈ � ∪  such that

G ∼� I1 ∼�,C I2 ∼�,C . . . ∼�,C I= ∼� H.

(ii) | |G | | = | |H | | ≥ 1 and G′ ∼�∪ H where G′ is a cyclic permutation of G.

Definition 2.9. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension and G, H be cyclically

reduced in � with | |G | | = | |H | | = = ≥ 1. Suppose that G = C41G1 . . . C
4=G= and H =

Cn1H1 . . . C
n=H= where G8, H8 ∈ � and 48 = n8 = ±1, 1 ≤ 8 ≤ =.

Consider the following set of equations:

G8+1 = D
−1
1 H1E1

G8+2 = D
−1
2 H2E2

... (1∗)

G8+= = D
−1
= H=E=

A pair of elements d 9 , f9 of � is called an admissible solution of the 9-th equation if and

only if G8+ 9 = d−1
9
H 9f9 , where d 9 , f9 ∈ � ∪  .

A set of admissible solutions f0, d1, f1, . . . , d=, f= ∈ � ∪  to (1∗) is said to be complete

if C−4 9f9−1C
4 9 = d 9 for each 9 and f0 = f=. This is equivalent to G′ = f−1

0 Hf0 where

G′ = G8+1G8+2 . . . G8 is a cyclic permutation of G. So, G ∼� H if and only if the system of

equations (1∗) has a set of complete admissible solutions for some 0 ≤ 8 < =.

For the case � ∩  = 1, d8 ∈ � or  according as 48 = −1 or 1 respectively, and f8 ∈ � or

 according as 48+1 = 1 or −1 respectively. (Here 4=+1 = 41.)

12
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Lemma 2.10. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � is finite. Then

� is subgroup separable (Wong, 1993), conjugacy separable (Dyer, 1980) and cyclic

conjugacy separable (Kim & Tang, 1995).

The following lemma is easy to obtain from Baumslag & Tretkoff (1978).

Lemma 2.11. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension. Suppose

(8) � is residually finite;

(88) � is �-separable and  -separable;

(888) For each " � 5 �, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  .

Then � is residually finite.

We now state and prove a criterion for conjugacy separability which will be used in

Chapter 3 to Chapter 4.

Theorem 2.12. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where

(a) � is residually finite;

(b) � is �-separable and  -separable;

(c) For each " � 5 �, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  ;

(d) For G, H ∈ � such that | |G | | = | |H | | ≥ 0 and G �� H, there exists & � 5 � such that

G& ��/& H&.

Then � is conjugacy separable.

Proof. Let G, H ∈ � such that G �� H. Without loss of generality, we assume that G, H are

cyclically reduced and have the minimum length in their conjugacy classes. Since � is

residually finite by Lemma 2.11, we can assume G ≠ 1 ≠ H.

Case 1. Suppose | |G | | = = ≥ 1, | |H | | = < ≥ 1. Let G = C41G1C
42G2 . . . C

4=G=, H =

C�1H1C
�2H2 . . . C

�<H< where <, = ≥ 1 and 48, � 9 = ±1, G8, H 9 ∈ � for 8 = 1, . . . , =, 9 =

1, . . . , <. Let ?A denote those G8, H 9 ∈ �\�, @B denote those G8, H 9 ∈ �\ and DC denote

13
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those G8, H 9 ∈ (� ∩  )\{1}. Since � is residually finite, �-separable and  -separable by

(a) and (b), there exists " � 5 � such that ?A ∉ �", @B ∉  " and DC ∉ " .

Subcase 1a. Suppose = ≠ <. By (c), there exists # � 5 � such that # ⊆ "

and q(# ∩ �) = # ∩  . We form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ =

�#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to  ̄ . Then in �̄, we have

| |Ḡ | | = =, | | H̄ | | = < where = ≠ <. This implies that | |Ḡ | | ≠ | | H̄ | | and hence by Lemma 2.8,

we have Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma 2.10, there exists %̄� 5 �̄ such

that Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the preimage of %̄ in �. Then % � 5 � such that G% ��/% H%.

Our result follows.

Subcase 1b. Suppose = = <. By (d), there exists & � 5 � such that G& ��/& H&. Let

% = "∩&. Then%� 5 �. By (c), there exists#� 5 � such that# ⊆ % and q(#∩�) = #∩ .

We form �̄ as in Subcase 1a. Then in �̄, we have | |Ḡ | | = =, | | H̄ | | = <, = = < and Ḡ ��̄ H̄.

We proceed as in Subcase 1a and the result follows.

Case 2. Suppose | |G | | = 0, | |H | | ≥ 1 or | |G | | ≥ 1, | |H | | = 0. We consider the case

| |G | | = 0, | |H | | ≥ 1. As in Case 1, we can form �̄ such that in �̄ we have Ḡ ≠ 1̄, | |Ḡ | | = 0

and | | H̄ | | ≥ 1. By Lemma 2.8(i), any conjugate of Ḡ is either an element Ḡ′ of �̄ or an

element of the form D̄−1ḠD̄ where D̄−1ḠD̄ and D̄ are reduced in �̄. Since H̄ is cyclically

reduced and | | H̄ | | ≥ 1, then by Lemma 2.8 we have Ḡ ��̄ H̄. We now proceed as in Subcase

1a and our result follows.

Case 3. Suppose | |G | | = | |H | | = 0. This case follows from (d).

The proof for this theorem is now complete and hence � is conjugacy separable.

2.4 Cyclic Conjugacy Separability of HNN Extensions

In this section, we prove the criterion for cyclic conjugacy separability of HNN

extensions.
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Lemma 2.13. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension and G, H ∈ � such that

| |G | | = | |H±: | | ≥ 1 for some positive integer : . Then {G}� ∩ 〈H〉 = ∅ if and only if G �� H±: .

Proof. Suppose {G}� ∩ 〈H〉 = ∅. Then 6−1G6 ∉ 〈H〉 implies 6−1G6 ≠ H±A for any

6 ∈ �, A ∈ Z+. Thus, 6−1G6 ≠ H±: . Hence G �� H±: . Conversely, suppose G �� H±: . We

have 6−1G6 ≠ H±: for any 6 ∈ �. Since | |G | | ≠ | |H±= | | for all = ∈ Z+\{:}, G �� H±= by

Lemma 2.8(ii). Thus, G �� H±A for all A ∈ Z+. Therefore, {G}� ∩ 〈H〉 = ∅.

We now state and prove our main criterion for cyclic conjugacy separability of HNN

extensions which will be used to prove our main results in Chapter 3, Chapter 4 and

Chapter 5.

Theorem 2.14. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where

(a) � is residually finite;

(b) � is �-separable and  -separable;

(c) For each " � 5 �, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  ;

(d) For G, H ∈ � such that | |G | | = | |H | | ≥ 1 and G �� H, there exists & � 5 � such that

G& ��/& H&;

(e) For G, H ∈ � such that | |G | | = | |H | | = 0 and {G}� ∩ 〈H〉 = ∅, there exists % � 5 �

such that {G%}�/% ∩ 〈H%〉 = ∅.

Then � is cyclic conjugacy separable.

Proof. Let G, H ∈ � such that {G}� ∩ 〈H〉 = ∅. Without loss of generality, we assume that

G, H are cyclically reduced and have the minimum length in their conjugacy classes. Since

� is residually finite by Lemma 2.11, we can assume G ≠ 1 ≠ H.

Case 1. Suppose | |G | | = = ≥ 1, | |H | | = < ≥ 1. Let G = C41G1C
42G2 . . . C

4=G=, H =

C�1H1C
�2H2 . . . C

�<H< where <, = ≥ 1 and 48, � 9 = ±1, G8, H 9 ∈ � for 8 = 1, . . . , =, 9 =

1, . . . , <. Let ?A denote those G8, H 9 ∈ �\�, @B denote those G8, H 9 ∈ �\ and DC denote

15
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those G8, H 9 ∈ (� ∩  )\{1}. Since � is residually finite, �-separable and  -separable by

(a) and (b), there exists " � 5 � such that ?A ∉ �", @B ∉  " and DC ∉ " .

Subcase 1a. Suppose = ≠ :< for all positive integers : . By (c), there exists # � 5 �

such that # ⊆ " and q(# ∩ �) = # ∩  . We form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where

�̄ = �/#, �̄ = �#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to  ̄ . Then

in �̄, we have | |Ḡ | | = =, | | H̄ | | = < where = ≠ :< for all positive integers : . This implies

that | |Ḡ | | ≠ | | H̄±: | | and hence by Lemma 2.8, Ḡ ��̄ H̄±: for all positive integers : . Hence by

Lemma 2.13, we have {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma

2.10, there exists %̄� 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �.

Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅. Our result follows.

Subcase 1b. Suppose = = :< for some positive integer : . By Lemma 2.13, {G}�∩〈H〉 =

∅ implies that G �� H±: . By (d), there exists & � 5 � such that G& ��/& H±:&. Let

% = "∩&. Then%� 5 �. By (c), there exists#� 5 � such that# ⊆ % and q(#∩�) = #∩ .

We form �̄ as in Subcase 1a. Then in �̄, we have | |Ḡ | | = =, | | H̄ | | = <, = = :< and Ḡ ��̄ H̄±: .

Again by Lemma 2.13, we have {Ḡ}�̄ ∩ 〈H̄〉 = ∅. We proceed as in Subcase 1a and the

result follows.

Case 2. Suppose | |G | | = 0, | |H | | ≥ 1. As in Case 1, we can form �̄ such that in �̄

we have Ḡ ≠ 1̄, | |Ḡ | | = 0 and | | H̄ | | ≥ 1. By Lemma 2.8(i), any conjugate of Ḡ is either an

element Ḡ′ of �̄ or an element of the form D̄−1ḠD̄ where D̄−1ḠD̄ and D̄ are reduced in �̄.

Since H̄ is cyclically reduced and | | H̄ | | ≥ 1, then H̄±: is cyclically reduced and | | H̄±: | | ≥ :

for all positive integers : . Hence, by Lemma 2.8, we have Ḡ ��̄ H̄±: for all positive integers

: . Thus this implies that {Ḡ}�̄ ∩ 〈H̄〉 = ∅. We now proceed as in Subcase 1a and our result

follows.
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Case 3. Suppose | |G | | ≥ 1, | |H | | = 0. As in Case 1, we can form �̄ such that in �̄,

we have | |Ḡ | | ≥ 1, | | H̄ | | = 0 and H̄ ≠ 1̄. Since Ḡ is cyclically reduced and | |Ḡ | | ≥ 1, then

any conjugate of Ḡ, say Ī has length | | Ī | | ≥ | |Ḡ | | ≥ 1. Since H̄ ∈ �̄, then H̄±: ∈ �̄ for all

positive integers : . Hence by Lemma 2.8, we have Ḡ ��̄ H̄±: . Therefore, this implies that

{Ḡ}�̄ ∩ 〈H̄〉 = ∅. We now proceed as in Subcase 1a and our result follows.

Case 4. Suppose | |G | | = | |H | | = 0. The result follows from (e).

The proof for this theorem is now complete and hence� is cyclic conjugacy separable.
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CHAPTER 3: HNN EXTENSIONSWITH CYCLIC ASSOCIATED SUBGROUPS

3.1 Introduction

In this chapter, we extend the conjugacy separability and cyclic conjugacy separability

to certain HNN extensions with infinite cyclic associated subgroups. More precisely, we

shall show that the HNN extension � = 〈C, �|C−1ℎC = :〉 where ℎ, : be elements of infinite

order in � and ℎ< ∼� :±< for some positive integer < is conjugacy separable and cyclic

conjugacy separable when � is a free group or a finitely generated torsion-free nilpotent

group.

Recall that the Baumslag-Solitar group � = 〈C, 0 |C−102C = 03〉 is an example of an

HNN extension with cyclic associated subgroups which is not even residually finite.

This chapter is divided into three parts. In the first part, we gather all the lemmas

needed to prove the main results. We prove the conjugacy separability in the second part

and the cyclic conjugacy separability in the final part.

3.2 Lemmas Needed

In this section, we gather all the lemmas that we need to prove the main results later in

this chapter. We begin with the following remark.

Remark A. Let � be a group and ℎ, : be elements of infinite order in �. If � is 〈ℎ〉-weakly

potent and 〈:〉-weakly potent, then we can find positive integers A1, A2 such that for

each positive integer =, there exist &1 � 5 �,&2 � 5 � such that &1 ∩ 〈ℎ〉 = 〈ℎA1=〉 and

&2 ∩ 〈:〉 = 〈:A2=〉.
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Lemma 3.1. Let � be a group and ℎ, : be elements of infinite order in � and ℎ< ∼� :±<

for some positive integer <. Suppose that q : 〈ℎ〉 → 〈:〉 is an isomorphism such that

q(ℎ) = : . Suppose � is 〈ℎ〉-weakly potent and 〈:〉-weakly potent. Then for each " � 5 �,

there exists # � 5 � such that # ⊆ " and q(# ∩ 〈ℎ〉) = # ∩ 〈:〉.

Proof. Let " � 5 � be given. Suppose " ∩ 〈ℎ〉 = 〈ℎB1〉 and " ∩ 〈:〉 = 〈: B2〉 for

some positive integers B1, B2. Since � is 〈ℎ〉-weakly potent, 〈:〉-weakly potent and

by Remark A, we can find "1 � 5 �, "2 � 5 � such that "1 ∩ 〈ℎ〉 = 〈ℎA1A2B1B2<=〉 and

"2 ∩ 〈:〉 = 〈:A1A2B1B2<=〉. Let # = " ∩ "1 ∩ "2. Since ℎ< = 0−1:±<0 for some 0 ∈ �,

we have # � 5 � such that

# ∩ 〈ℎ〉 = " ∩ "1 ∩ "2 ∩ 〈ℎ〉

= "2 ∩ 〈ℎA1A2B1B2<=〉

= "2 ∩ 〈0−1:±A1A2B1B2<=0〉

= 0−1("2 ∩ 〈:±A1A2B1B2<=〉)0

= 0−1〈:±A1A2B1B2<=〉0

= 〈ℎA1A2B1B2<=〉

Similarly, we have #∩〈:〉 = 〈:A1A2B1B2<=〉. Therefore, q(#∩〈ℎ〉) = #∩〈:〉 as required.

Theorem 3.2. (Wong & Gan, 1999) Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension

where � is a cyclic subgroup separable group. Suppose that

(a) � is �-separable and  -separable;

(b) for each " � 5 �, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  ,

Then � is cyclic subgroup separable.
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Lemma 3.3. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite order in � and ℎ< ∼� :±< for some positive integer <. Suppose

(i) � is cyclic subgroup separable;

(ii) � is 〈ℎ〉-weakly potent and 〈:〉-weakly potent.

Then � is cyclic subgroup separable.

Proof. Since � is cyclic subgroup separable, � is 〈ℎ〉-separable and 〈:〉-separable. Thus,

the result follows from Lemma 3.1 and Theorem 3.2.

Lemma 3.4. (Kim & Tang, 1996) Let � be a group that is 〈ℎn〉G〈:n〉-separable, where

G, ℎ, : are elements in � such that ℎ, : have infinite orders. If 〈G−1ℎG〉 ∩ 〈:〉 = 1, then

there exists # � 5 � such that Ḡ−1 ℎ̄8 Ḡ = :̄ 9 only if n |8, 9 , where Ḡ, ℎ̄, :̄ ∈ �̄ = �/# and

n, 8, 9 ∈ Z.

Lemma 3.5. Let � be a group where G, ℎ, : are elements in � with ℎ, : having finite

orders. Let n, 8, 9 ∈ Z.

(8) If G−1ℎ8G = : 9 only if n |8, 9 , then n | |ℎ|, |: |.

(88) If G−1ℎ8G = : 9 and n |8, |ℎ|, where |ℎ| = |: |, then n | 9 .

Proof. (i) Let 8 = |ℎ| and 9 = |: |. Then G−1ℎ8G = 1 = : 9 . Then n | |ℎ|, |: |.

(ii) Let 8 = nU and |ℎ| = |: | = n2 where 2 is some positive integer. Since 1 = G−1ℎnU2G =

: 92, then n2 | 92. Hence n | 9 .

Lemma 3.6. Let � be a group and ℎ, : be elements of infinite order in � and ℎ< ∼� :±<

for some positive integer <. Suppose ℎ, : are self-conjugate in �. If ℎA ∼� : B for some

integers A, B, then A = ±B.
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Proof. First suppose ℎ< ∼� :−<. Let A = U< for some integer U. Then :−A = :−U< ∼�

ℎU< = ℎA ∼� : B. Since : is self-conjugate, we have B = −A . Suppose A ≠ U< for all U ∈ Z.

Then :−A< ∼� ℎA< ∼� : B<. Again since : is self-conjugate, we have B = −A . For the case

ℎ< ∼� :<, the proof is similar and we will get B = A.

3.3 Conjugacy Separability on Certain HNN Extensions

In this section, we prove the two main results on conjugacy separability, that is Lemma

3.7 and Theorem 3.8.

Lemma 3.7. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite order in � and ℎ< ∼� :±< for some positive integer <. Let ℎ, : be self-conjugate

in �. Suppose

(i) � is cyclic subgroup separable;

(ii) � is {ℎ, :}-double coset separable;

(iii) � is 〈ℎ〉-weakly potent and 〈:〉-weakly potent.

Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 1 and G �� H, there exists & � 5 � such

that G& ��/& H& in �/&.

Proof. We shall only consider the case ℎ< ∼� :−<. The other case is similar. Let G, H be

cyclically reduced. We assume G = C41G1C
42G2 . . . C

4=G= and H = Cn1H1C
n2H2 . . . C

n=H=, where

G8, H8 ∈ �, = ≥ 1 and 48, n8 = ±1. Since G �� H, the system of equations (1∗) of Definition

2.9 has no set of complete admissible solutions for each 8, 1 ≤ 8 ≤ =. Therefore, we need to

show that, for each 8, there exists %8� 5 � in �̄8 = �/%8 such that the corresponding system

of equations has no set of complete admissible solutions. Letting % to be the intersection

of all normal subgroups %8, we have Ḡ ��̄ H̄ in �̄ = �/% and the result follows. Hence it

is sufficient to show the case 8 = 0 in (1∗) of Definition 2.9.
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Let D8 denote those G8, H8 ∈ �\〈ℎ〉 and E8 denote those G8, H8 ∈ �\〈:〉. Since � is

〈ℎ〉-separable and 〈:〉-separable, there exist "1 � 5 �, "2 � 5 � such that D8 ∉ "1〈ℎ〉 and

E8 ∉ "2〈:〉 for all 8. By Lemma 3.1, there exists # � 5 � such that # ⊆ "1 ∩ "2 and

q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. Let �̄ = 〈C, �̄|C−1 ℎ̄C = :̄〉 where �̄ = �/# and ℎ̄ = ℎ#, :̄ = :# .

Clearly �̄ is a homomorphic image of �. Let 6̄ denote the image of any element 6 ∈ � in

�̄. Then Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | in �̄.

Suppose there exists some 8 such that 48 ≠ n8. Then Ḡ ��̄ H̄ in �̄. Since �̄ is conjugacy

separable by Lemma 2.10, there exists &̄ � 5 �̄ such that Ḡ&̄ ��̄/&̄ H̄&̄. Let & be the

preimage of &̄ in �. Then & � 5 � such that G& ��/& H& and the result follows.

Suppose 48 = n8 for all 8. Since G �� H, either some equations in (1∗) of Definition 2.9

has no admissible solution or every set of admissible solutions to (1∗) of Definition 2.9 is

incomplete.

First suppose there exists some 9 , 1 ≤ 9 ≤ =, such that the 9-th equation has no

admissible solution, that is, G 9 ∉ 〈0 9 〉H 9 〈1 9 〉 where 0 9 , 1 9 ∈ 〈ℎ〉 ∪ 〈:〉. Since � is {ℎ, :}-

double coset separable, there exists "3 � 5 � such that G̃ 9 ∉ 〈0̃ 9 〉 H̃ 9 〈1̃ 9 〉 in �̃ = �/"3.

Let " = "1 ∩ "2 ∩ "3. By Lemma 3.1, we can find # � 5 � such that # ⊆ " and

q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. Again, we form �̄ as above. Then Ḡ, H̄ are cyclically reduced and

| |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Furthermore, Ḡ 9 ∉ 〈0̄ 9 〉 H̄ 9 〈1̄ 9 〉 where 0̄ 9 , 1̄ 9 ∈ 〈ℎ̄〉 ∪ 〈:̄〉.

Hence, Ḡ ��̄ H̄ and we are done.

Suppose 021
1 , 1

31
1 , . . . , 0

2=
= , 1

3=
= ∈ 〈ℎ〉 ∪ 〈:〉 is a set of incomplete admissible solutions

to (1∗) of Definition 2.9. Then we have the following:

G1 = 0
−21
1 H11

31
1

G2 = 0
−22
2 H21

32
2

... (2)
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G= = 0
−2=
= H=1

3=
=

where 08 = ℎ or : accordingly as 48 = −1 or 1 respectively and 18 = ℎ or : accordingly as

48+1 = 1 or −1 respectively. Hence each equation G8 = 0−288
H81

38
8
from (2) must take one of

the following forms:

G8 = ℎ
−28 H8ℎ

38 or,

G8 = :
−28 H8:

38 or,

G8 = ℎ
−28 H8:

38 or,

G8 = :
−28 H8ℎ

38 .

Before continuing with the proof, we analyze the various possible subcases. We first

consider the equation G8 = ℎ−28 H8:38 . Then either 〈H−1
8
ℎH8〉 ∩ 〈:〉 = 1 or 〈H−1

8
ℎH8〉 ∩ 〈:〉 =

〈:W8〉 where W8 > 0.

Suppose 〈H−1
8
ℎH8〉 ∩ 〈:〉 = 1. If G8 = ℎ−?8 H8:@8 for some other ℎ−?8 , :@8 , then

H−1
8
ℎ?8−28 H8 = :@8−38 ∈ 〈H−1

8
ℎH8〉 ∩ 〈:〉 = 1 and hence ?8 − 28 = @8 − 38 = 0, that

is, ?8 = 28, @8 = 38. This implies that 28, 38 are uniquely determined in the equation

G8 = ℎ
−28 H8:38 .

Now suppose 〈H−1
8
ℎH8〉∩〈:〉 = 〈:W8〉where W8 > 0. Let_8 be the smallest positive integer

such that H−1
8
ℎ_8 H8 = :

W8 . Since ℎ< ∼� :−<, then H−1
8
ℎ<_8 H8 = :

<W8 ∼� ℎ−<W8 . Since ℎ is

self-conjugate in �, we have W8 = −_8 and hence H−1
8
ℎ_8 H8 = :

−_8 and H−1
8
ℎ@H8 ∉ 〈:〉 for

all 1 ≤ @ < _8.

Similarly for the equation G8 = ℎ−28 H8ℎ38 , either 28, 38 are uniquely determined or

H−1
8
ℎ<8 H8 = ℎ

<8 and H−1
8
ℎ@H8 ∉ 〈ℎ〉 for all 1 ≤ @ < <8.
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We can now proceed with the proof. We will only consider the case when G =

CG1C
42G2 . . . C

4=G= and H = CH1C
42H2 . . . C

4=H=. The proof for the other case when G =

C−1G1C
42G2 . . . C

4=G= and H = C−1H1C
42H2 . . . C

4=H= is similar. By Lemma 2.8(ii), we have

G �� H if and only if G ≠ ℎ−IHℎI and G ≠ :−IH: I for all I ∈ Z.

Case 1. Suppose

〈H−1
8 ℎH8〉 ∩ 〈ℎ〉 = 〈ℎU8〉, U8 > 0, for all equations G8 = ℎ−28 H8ℎ38 ,

〈H−1
8 :H8〉 ∩ 〈:〉 = 〈: V8〉, V8 > 0, for all equations G8 = :−28 H8:38 ,

〈H−1
8 ℎH8〉 ∩ 〈:〉 = 〈:_8〉, _8 > 0, for all equations G8 = ℎ−28 H8:38 ,

〈H−1
8 :H8〉 ∩ 〈ℎ〉 = 〈ℎd8〉, d8 > 0, for all equations G8 = :−28 H8ℎ38 .

Let W = <(;2<{|U8 |, |V8 |, |_8 |, |d8 |}). Then

H−1
8 ℎ

WH8 = ℎ
W if G8 = ℎ−28 H8ℎ38 ,

H−1
8 :

WH8 = :
W if G8 = :−28 H8:38 ,

H−1
8 ℎ

WH8 = :
−W if G8 = ℎ−28 H8:38 ,

H−1
8 :

WH8 = ℎ
−W if G8 = :−28 H8ℎ38 .

Subcase 1a. Suppose in the system of equations (2), the total number of the equations

H−1
8
ℎWH8 = :

−W together with the equations H−1
8
:WH8 = ℎ

−W is zero or even. This implies that

H−1ℎWH = H−1
= C
−4= . . . H−1

1 C
−1ℎWCH1 . . . C

4=H= = ℎ
W, that is, [H, ℎW] = 1. Hence ℎ−IHℎI =

ℎ−DHℎD for some 0 ≤ D < |W |. So, G ≠ ℎ−IHℎI for all I ∈ Z implies that G ≠ ℎ−DHℎD for all

0 ≤ D < |W |, that is, G−1ℎ−DHℎD ≠ 1 for all 0 ≤ D < |W |. Similarly, H:WH−1 = :W, that is

[H, :W] = 1. So, G ≠ :−IH: I for all I ∈ Z implies that G ≠ :−DH:D for all 0 ≤ D < |W |.

By Lemma 2.8(ii), G �� H if and only if G ≠ ℎ−DHℎD and G ≠ :−DH:D for all 0 ≤ D < |W |.
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Since� is residually finite by Lemma 3.3, there exists "3 � 5 � such that G−1ℎ−DHℎD ∉ "3

and G−1:−DH:D ∉ "3 for all 0 ≤ D < |W |. Let " = "1 ∩ "2 ∩ "3. By Lemma 3.1, there

exists # � 5 � such that # ⊆ " and q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. We now form �̄ as above.

Note that Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Clearly, Ḡ ≠ ℎ̄−D H̄ ℎ̄D

and Ḡ ≠ :̄−D H̄ :̄D for all 0 ≤ D < |W |. Since [ H̄, ℎ̄W] = 1 and [ H̄, :̄W] = 1, then by Lemma

2.8(ii), we have Ḡ ��̄ H̄ and we are done.

Subcase 1b. Suppose in the system of equations (2) the total number of the equations

H−1
8
ℎWH8 = :

−W together with equations H−1
8
:WH8 = ℎ

−W is odd. Then arguing as in Subcase

1a, we have H−1ℎWH = ℎ−W and H:WH−1 = :−W , that is, ℎ−WHℎW = Hℎ2W and :−WH:W = H:2W .

So, G ≠ ℎ−IHℎI and G ≠ :−IH: I for all I ∈ Z implies that G−1ℎ−DHℎD ∉ 〈ℎ2W〉 and

G−1:−DH:D ∉ 〈:2W〉 for all 0 ≤ D < |W |.

By Lemma 2.8(ii), G �� H if and only if G−1ℎ−DHℎD ∉ 〈ℎ2W〉 and G−1:−DH:D ∉ 〈:2W〉.

Since � is 〈ℎ2W〉-separable and 〈:2W〉-separable by Lemma 3.3, there exists "3 � 5 �

such that G−1ℎ−DHℎD ∉ 〈ℎ2W〉"3 and G−1:−DH:D ∉ 〈:2W〉"3. Let " = "1 ∩ "2 ∩ "3. By

Lemma 3.1, there exists #� 5 � such that # ⊆ " and q(#∩〈ℎ〉) = #∩〈:〉. We now form

�̄ as above. Then Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Clearly,

Ḡ−1 ℎ̄−D H̄ ℎ̄D ∉ 〈ℎ̄2W〉 and Ḡ−1 :̄−D H̄ :̄D ∉ 〈:̄2W〉 for all 0 ≤ D < |W |. Since ℎ̄−W H̄ ℎ̄W = H̄ ℎ̄2W and

:̄−W H̄ :̄W = H̄ :̄2W, then by Lemma 2.8(ii), we have Ḡ ��̄ H̄ and we are done.

Case 2. Suppose 〈H−1
9
ℎH 9 〉 ∩ 〈:〉 = 1 for one equation G 9 = ℎ−2 9 H 9 :3 9 . Since

〈H−1
9
ℎH 9 〉 ∩ 〈:〉 = 1, then 2 9 , 3 9 are uniquely determined in the equation G 9 = ℎ−2 9 H 9 :3 9 .

Fixing this integer 9 , we consider the next equation G 9+1 = ℎ−2 9+1H 9+1:3 9+1 . We arrange if

possible so that 2 9+1 = 3 9 . Continuing this way, we see that this must eventually fail at

some equation, say GA = ℎ−2A HA :3A where 2A ≠ 3A−1. Here the integer A is taken modulo =

and hence this may be the next equation or it may be the equation we started with.

Let G′ = C4 9G 9 C4 9+1 . . . C4A−1GA−1C
4A GA and H′ = C4 9 H 9 C4 9+1 . . . C4A−1HA−1C

4A HA .
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Subcase 2a. GA = :−2A HAℎ3A . Then by substituting the values of G 9 , . . . , GA−1 from (2)

and GA into G′ and using the fact that we have arranged that 28+1 = 38, 9 ≤ 8 ≤ A − 1, we

obtain G′ = :−2 9 C4 9 H 9 C4 9+1 . . . C4A−1HA−1:
3A−1−2A C4A HAℎ3A and hence G′ ∉ 〈:〉H′〈ℎ〉.

First we suppose 〈H−1
A :HA〉 ∩ 〈ℎ〉 = 1. Then 2A , 3A are uniquely determined in the

equation GA = :−2A HAℎ3A . Let n = 2|3A−1 − 2A |. By Lemma 3.4, there exists "3 � 5 �

such that in �̃ = �/"3, we have H̃−1
9
ℎ̃f H̃ 9 = :̃

d only if n |f, d and we have H̃−1
A :̃

? H̃A = ℎ̃
@

only if n |?, @. By Lemma 3.1, we can find # � 5 � such that # ⊆ "1 ∩ "2 ∩ "3 and

q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. We now form �̄. Note that Ḡ, H̄ are cyclically reduced and

| |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. By the choice of "3, we have H̄−1
9
ℎ̄f H̄ 9 = :̄

d only if n |f, d

and we have H̄−1
A :̄

? H̄A = ℎ̄
@ only if n |?, @ in �̄.

First, we note that in �̄, we have Ḡ′ = :̄−2 9 C4 9 H̄ 9 C4 9+1 . . . C4A−1 H̄A−1:
3A−1−2A C4A H̄A ℎ̄3A and

H̄′ = C4 9 H̄ 9 C4 9+1 . . . C4A−1 H̄A−1C
4A H̄A . Now we suppose Ḡ′ ∈ 〈:̄〉 H̄′〈ℎ̄〉. Then there exist integers

X 9−1, X 9 , . . . , XA such that the following hold:

H̄ 9 = ℎ̄
−X 9−1 H̄ 9 :̄

X 9

H̄ 9+1 = ℎ̄
−X 9 H̄ 9+11̄

X 9+1
9+1

... (3)

H̄A−1 = 0̄
−XA−2
A−1 H̄A−1 ℎ̄

XA−1

:̄3A−1−2A H̄A = :̄
−XA−1 H̄A ℎ̄

XA

From the first equation in (3), n |X 9−1, X 9 by the choice of "3. Now by Lemma 3.5(i), n | |ℎ|.

This together with |ℎ| = |: | in �̄ in applying Lemma 3.5(ii), from the second equation

to the second last equation, we have n |X: for all 9 + 1 ≤ : ≤ A − 1. Now from the last

equation, we have H̄A = :̄−(3A−1−2A+XA−1) H̄A ℎ̄XA . Hence n |3A−1 − 2A + XA−1 by the choice of

"3. Since n |XA−1, we have n |3A−1 − 2A , which is a contradiction. Therefore Ḡ′ ∉ 〈:̄〉 H̄′〈ℎ̄〉
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in �̄ and thus Ḡ ��̄ H̄.

Suppose 〈H−1
A :HA〉 ∩ 〈ℎ〉 ≠ 1. Let BA be the smallest positive integer such that

H−1
A :

BA HA ∈ 〈ℎ〉. This implies that H−1
A :

@HA ∉ 〈ℎ〉 for all 1 ≤ @ < BA . Since � is

〈ℎ〉-separable, there exists "3 � 5 � such that H−1
A :

@HA ∉ 〈ℎ〉"3 for all 1 ≤ @ < BA . As

the matching fails at the equation GA = :−2A HAℎ3A , we must have :3A−1−2A ∉ 〈: BA 〉, that

is, 3A−1 − 2A ≠ IBA for all I ∈ Z. Since 〈H−1
9
ℎH 9 〉 ∩ 〈:〉 = 1 by Lemma 3.4, there exists

"4 � 5 � such that in �̃ = �/"4, we have H̃−1
9
ℎ̃D H̃ 9 = :̃

E only if BA |D, E. By Lemma 3.1,

we can find # � 5 � such that # ⊆ "1 ∩ "2 ∩ "3 ∩ "4 and q(# ∩ 〈ℎ〉) = # ∩ 〈:〉.

We now form �̄. Then Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄.

Furthermore, by the choice of "4, H̄−1
9
ℎ̄D H̄ 9 = :̄

E only if BA |D, E whereas by the choice of

"3, H̄−1
A :̄

@ H̄A ∉ 〈ℎ̄〉 for all 1 ≤ @ < BA in �̄.

Suppose Ḡ′ ∈ 〈:̄〉 H̄′〈ℎ̄〉. Then we again have the system of equations (3) as above. From

the first equation in (3), BA |X 9−1, X 9 by the choice of "3. Now by Lemma 3.5(i), BA | |ℎ|.

This together with |ℎ| = |: | in �̄ by applying Lemma 3.5(ii) from the second equation

to the second last equation, we have BA |X: for all 9 + 1 ≤ : ≤ A − 1. Now from the last

equation we have H̄A = :̄−(3A−1−2A+XA−1) H̄A ℎ̄BA . Hence, BA |3A−1 − 2A + XA−1 by the choice of

"3. Since BA |XA−1, we have BA |3A−1 − 2A . So, 3A−1 − 2A = EBA for some E ∈ Z. But this

contradicts the fact that 3A−1 − 2A ∉ IBA for all I ∈ Z. Therefore, Ḡ′ ∉ 〈:̄〉 H̄′〈ℎ̄〉 in �̄ and

thus Ḡ ��̄ H̄.

The following subcases are similar and we can proceed as in Subcase 1a.

(i) GA = ℎ−2A HA :3A ,

(ii) GA = ℎ−2A HAℎ3A ,

(iii) GA = :−2A HA :3A .

Finally the following cases are similar and we can proceed as in Case 2.

Case 3. 〈H−1
9
ℎH 9 〉 ∩ 〈ℎ〉 = 1, for one equation G 9 = ℎ−2 9 H 9ℎ3 9 , or

27

Univ
ers

ity
 of

 M
ala

ya



Case 4. 〈H−1
9
:H 9 〉 ∩ 〈:〉 = 1, for one equation G 9 = :−2 9 H 9 :3 9 , or

Case 5. 〈H−1
9
:H 9 〉 ∩ 〈ℎ〉 = 1, for one equation G 9 = :−2 9 H 9ℎ3 9 .

This completes the proof of this lemma.

Theorem 3.8. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite order in � and ℎ< ∼� :±< for some positive integer <. Let ℎ, : be self-conjugate

in �. Suppose

(i) � is conjugacy separable;

(ii) � is cyclic subgroup separable;

(iii) � is 〈ℎ〉-conjugacy separable and 〈:〉-conjugacy separable;

(iv) � is {ℎ, :}-double coset separable;

(v) � is 〈ℎ〉-weakly potent and 〈:〉-weakly potent;

(vi) for each integer B > 0, there exists"1� 5 � such that"1∩〈ℎ〉 = 〈ℎB〉 and ℎ̃8 ��̃ ℎ̃ 9

for all ℎ̃8 ≠ ℎ̃ 9 in �̃ = �/"1;

(vii) for each integer B > 0, there exists"2� 5 � such that"2∩〈:〉 = 〈: B〉 and :̂ 8 ��̂ :̂ 9

for all :̂ 8 ≠ :̂ 9 in �̂ = �/"2.

Then � is conjugacy separable.

Proof. We apply Theorem 2.12 here. We only prove for the case ℎ< ∼� :−<. The

other case is similar. Since � is conjugacy separable, 〈ℎ〉-separable and 〈:〉-separable,

conditions (a) and (b) are satisfied. By Lemma 3.1, we have condition (c). We now show

condition (d).

Let G, H ∈ � such that | |G | | = | |H | | = 0 and G �� H.

Case 1. Suppose {G}� ∩ 〈ℎ〉 = ∅ and {G}� ∩ 〈:〉 = ∅. Note that G �� H implies that

G �� H. Since � is conjugacy separable, 〈ℎ〉-conjugacy separable and 〈:〉-conjugacy

separable, there exists " � 5 � such that G" ��/" H", {G"}�/" ∩ 〈ℎ"〉 = ∅ and

{G"}�/" ∩ 〈:"〉 = ∅. By Lemma 3.1, there exists # � 5 � such that # ⊆ " and
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q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. We now form �̄ = 〈C, �̄|C−1 ℎ̄C = :̄〉 where �̄ = �/#, ℎ̄ = ℎ# and

:̄ = :# . Then in �̄, we have Ḡ ≠ 1̄, H̄ ≠ 1̄, {Ḡ} �̄ ∩ 〈ℎ̄〉 = ∅, {Ḡ} �̄ ∩ 〈:̄〉 = ∅ and Ḡ ��̄ H̄.

Suppose Ḡ ∼�̄ H̄. By Lemma 2.8(i), there exists a finite sequence of Ī8 where

Ī8 ∈ 〈ℎ̄〉 ∪ 〈:̄〉 such that Ḡ ∼�̄ Ī1 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄. Since {Ḡ} �̄ ∩ 〈ℎ̄〉 = ∅ and

{Ḡ} �̄ ∩ 〈:̄〉 = ∅, the sequence reduces to Ḡ ∼�̄ H̄ or Ḡ ∼C H̄. Since Ḡ ∉ 〈ℎ̄〉 ∪ 〈:̄〉, that is,

C−1ḠC, CḠC−1 ∉ 〈ℎ̄〉 ∪ 〈:̄〉, the sequence further reduces to Ḡ ∼�̄ H̄ which is a contradiction.

Thus, Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma 2.10, there exists %̄ � 5 �̄ such

that Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the preimage of %̄ in �. Then % � 5 � such that G% ��/% H%.

Case 2. Either {G}� ∩ 〈ℎ〉 ≠ ∅ or {G}� ∩ 〈:〉 ≠ ∅. Suppose {G}� ∩ 〈ℎ〉 ≠ ∅. Then

G ∼� ℎA for some integer A. Since ℎ is self-conjugate in �, then A is uniquely determined.

If ℎA ∼� : B, then B = ±A by Lemma 3.6. Similarly if :A ∼� ℎB, then B = ±A . So in this case,

G �� H implies that G �� H, ℎ±A �� H and :±A �� H. Since � is conjugacy separable, there

exists " � 5 � such that G" ��/" H", ℎ±A" ��/" H" and :±A" ��/" H" . Suppose

" ∩ 〈ℎ〉 = 〈ℎB1〉 and " ∩ 〈:〉 = 〈: B2〉 for some positive integers B1, B2. Let B = B1B2<.

By (vi), there exists "1 � 5 � such that "1 ∩ 〈ℎ〉 = 〈ℎB〉 and ℎ̃8 ��̃ ℎ̃ 9 for all ℎ̃8 ≠ ℎ̃ 9 in

�̃ = �/"1. Similarly with (vii), there exists "2 � 5 � such that "2 ∩ 〈:〉 = 〈: B〉 and

:̂ 8 ��̂ :̂
9 for all :̂ 8 ≠ :̂ 9 in �̂ = �/"2. Let # = " ∩ "1 ∩ "2. Then # � 5 � such that

# ∩ 〈ℎ〉 = 〈ℎB〉 = 〈: B〉 = # ∩ 〈:〉. As above, we form �̄ as in Case 1. Then in �̄ we have

Ḡ ��̄ H̄, ℎ̄
±A ��̄ H̄ and :̄±A ��̄ H̄. Also we have ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9 and :̄ 8 ��̄ :̄ 9 for

all :̄ 8 ≠ :̄ 9 in �̄.

Suppose Ḡ ∼�̄ H̄. By Lemma 2.8(i), there exists a finite sequence of Ī8 where

Ī8 ∈ 〈ℎ̄〉 ∪ 〈:̄〉 such that Ḡ ∼�̄ Ī1 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄. Consider the first conjugation

relation Ḡ ∼�̄ Ī1. Recall that G ∼� ℎA and hence Ḡ ∼�̄ ℎ̄A . Note that the integer A is unique

since ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9 in �̄. Hence Ī1 = ℎ̄
A . Now consider the second conjugation

relation Ī1 ∼�̄,C Ī2. If Ī2 = ℎ̄
B, then ℎ̄B ∼�̄,C Ī1 = ℎ̄

A . Again since ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9
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in �̄, we have Ī2 = ℎ̄
A . Now suppose Ī2 = :̄

B. Now if ℎA ∼� : B, then by Lemma 3.6,

B = ±A. So, ℎA ∼� :±A and hence ℎ̄A ∼�̄ :̄±A . Again A is unique since :̄ 8 ��̄ :̄ 9 for all

:̄ 8 ≠ :̄ 9 in �̄. Finally since ℎ ∼C : , we have ℎ̄ ∼C :̄ and so ℎ̄A ∼C :̄A . Hence, Ī2 = ℎ̄
±A

or Ī2 = :̄
±A . Continuing this way, we have Ī8 = ℎ̄±A or Ī8 = :̄±A for 8 = 3, . . . , F. Hence

ĪF = ℎ̄
±A or ĪF = :̄±A . This implies that ℎ̄±A ∼�̄ H̄ or :̄±A ∼�̄ H̄. This is a contradiction

since ℎ̄±A ��̄ H̄ and :̄±A ��̄ H̄. Therefore Ḡ ��̄ H̄ and our result follows as in Case 1. The

case when {G}� ∩ 〈:〉 ≠ ∅ is similarly proved.

Hence we have condition (d) from Case 1, Case 2 and Lemma 3.7. This completes the

proof and thus � is conjugacy separable by Theorem 2.12.

Corollary 3.9. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite oder in � and ℎ< ∼� :±< for some positive integer <. Suppose � is either finitely

generated torsion-free nilpotent or free. Then � is conjugacy separable.

Proof. Finitely generated torsion-free nilpotent groups and free groups are subgroup

separable, conjugacy separable, cyclic conjugacy separable and weakly potent.

Furthermore, both groups are �-double coset separable for each finitely generated

subgroup � (Lennox & Wilson, 1979; Ribes & Zalesskii, 1993) and 〈ℎ〉-self conjugate

for all element ℎ of infinite order (Dyer, 1980). Conditions (vi) and (vii) in Theorem 3.8

are straightforward from Corollary 2.2 of Tang (1997). Then we have � is conjugacy

separable by Theorem 3.8.

3.4 Cyclic Conjugacy Separability on Certain HNN Extensions

In this section, we study the related property of cyclic conjugacy separability in HNN

extensions. Recall that this property was used by Dyer (1980), Kim & Tang (1996), Kim

& Tang (1999) and Tang (1997) to prove the conjugacy separability in certain generalized
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free products and HNN extensions. This property was formally defined by Tang (1997).

Recall that a group � is called cyclic conjugacy separable if for any pair of elements

G, ℎ of � such that {G}� ∩ 〈ℎ〉 = ∅, then there exists # � 5 � such that {Ḡ} �̄ ∩ 〈ℎ̄〉 = ∅ in

�̄ = �/# . The proof of Theorem 3.10 is similar to the proof of Theorem 3.8.

Theorem 3.10. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite order in � and ℎ< ∼� :±< for some positive integer <. Let ℎ, : be self-conjugate

in �. Suppose

(i) � is cyclic conjugacy separable;

(ii) � is cyclic subgroup separable;

(iii) � is {ℎ, :}-double coset separable;

(iv) � is 〈ℎ〉-weakly potent and 〈:〉-weakly potent;

(v) for each integer B > 0, there exists"1� 5 � such that"1∩〈ℎ〉 = 〈ℎB〉 and ℎ̃8 ��̃ ℎ̃ 9

for all ℎ̃8 ≠ ℎ̃ 9 in �̃ = �/"1;

(vi) for each integer B > 0, there exists"2� 5 � such that"2∩〈:〉 = 〈: B〉 and :̂ 8 ��̂ :̂ 9

for all :̂ 8 ≠ :̂ 9 in �̂ = �/"2.

Then � is cyclic conjugacy separable.

Proof. We apply Theorem 2.14 here. We prove the case when ℎ< ∼� :−<. Since � is

cyclic conjugacy separable, 〈ℎ〉-separable and 〈:〉-separable, conditions (a) and (b) are

satisfied. By Lemma 3.1 and Lemma 3.7, we have conditions (c) and (d). We only need to

show that condition (e) holds.

Let G, H ∈ � such that | |G | | = | |H | | = 0 and {G}� ∩ 〈H〉 = ∅.

Case 1. Suppose {G}� ∩ 〈ℎ〉 = ∅ and {G}� ∩ 〈:〉 = ∅. Then {G}� ∩ 〈H〉 = ∅ implies

that {G}� ∩ 〈H〉 = ∅. Since � is cyclic conjugacy separable, there exists " � 5 � such

that {G"}�/" ∩ 〈ℎ"〉 = ∅, {G"}�/" ∩ 〈:"〉 = ∅ and {G"}�/" ∩ 〈H"〉 = ∅. By
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Lemma 3.1, there exists # � 5 � such that # ⊆ " and q(# ∩ 〈ℎ〉) = # ∩ 〈:〉. We now

form �̄ = 〈C, �̄|C−1 ℎ̄C = :̄〉 where �̄ = �/#, ℎ̄ = ℎ# and :̄ = :# . Then in �̄, we have

Ḡ ≠ 1̄, H̄ ≠ 1̄, {Ḡ} �̄ ∩ 〈ℎ̄〉 = ∅, {Ḡ} �̄ ∩ 〈:̄〉 = ∅ and {Ḡ} �̄ ∩ 〈H̄〉 = ∅.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 2.8(i), there

exists a finite sequence of Ī8 where Ī8 ∈ 〈ℎ̄〉 ∪ 〈:̄〉 such that Ḡ ∼�̄ Ī1 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄: .

Since {Ḡ} �̄∩〈ℎ̄〉 = ∅ and {Ḡ} �̄∩〈:̄〉 = ∅, the sequence reduces to Ḡ ∼�̄ H̄: or Ḡ ∼C H̄: . Since

Ḡ ∉ 〈ℎ̄〉 ∪ 〈:̄〉, that is, C−1ḠC, CḠC−1 ∉ 〈ℎ̄〉 ∪ 〈:̄〉, the sequence further reduces to Ḡ ∼�̄ H̄: .

But this contradicts the fact that {Ḡ} �̄ ∩ 〈H̄〉 = ∅. Thus, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic

conjugacy separable by Lemma 2.10, there exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅.

Let % be the preimage of %̄ in �. Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. Either {G}� ∩ 〈ℎ〉 ≠ ∅ or {G}� ∩ 〈:〉 ≠ ∅. Suppose {G}� ∩ 〈ℎ〉 ≠ ∅.

Then G ∼� ℎA for some integer A. Since ℎ is self-conjugate in �, then A is uniquely

determined. If ℎA ∼� : B, then B = ±A by Lemma 3.6. Similarly if :A ∼� ℎB, then B = ±A.

So in this case, {G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 = ∅, {ℎ±A}� ∩ 〈H〉 = ∅ and

{:±A}� ∩ 〈H〉 = ∅. Since � is cyclic conjugacy separable, there exists " � 5 � such that

{G"}�/" ∩ 〈H"〉 = ∅, {ℎ±A"}�/" ∩ 〈H"〉 = ∅ and {:±A"}�/" ∩ 〈H"〉 = ∅. Suppose

" ∩ 〈ℎ〉 = 〈ℎB1〉 and " ∩ 〈:〉 = 〈: B2〉 for some positive integers B1, B2. Let B = B1B2<.

By (v), there exists "1 � 5 � such that "1 ∩ 〈ℎ〉 = 〈ℎB〉 and ℎ̃8 ��̃ ℎ̃ 9 for all ℎ̃8 ≠ ℎ̃ 9

in �̃ = �/"1. Similarly with (vi), there exists "2 � 5 � such that "2 ∩ 〈:〉 = 〈: B〉 and

:̂ 8 ��̂ :̂
9 for all :̂ 8 ≠ :̂ 9 in �̂ = �/"2. Let # = " ∩ "1 ∩ "2. Then # � 5 � such

that # ∩ 〈ℎ〉 = 〈ℎB〉 = 〈: B〉 = # ∩ 〈:〉. As above, we form �̄ = 〈C, �̄|C−1 ℎ̄C = :̄〉 where

�̄ = �/#, ℎ̄ = ℎ# and :̄ = :# . Then in �̄, we have {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {ℎ̄±A} �̄ ∩ 〈H̄〉 = ∅

and {:̄±A} �̄ ∩ 〈H̄〉 = ∅. Also we have ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9 and :̄ 8 ��̄ :̄ 9 for all :̄ 8 ≠ :̄ 9

in �̄.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 2.8(i), there
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exists a finite sequence of Ī8 where Ī8 ∈ 〈ℎ̄〉 ∪ 〈:̄〉 such that Ḡ ∼�̄ Ī1 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄: .

Since G ∼� ℎA , then Ḡ ∼�̄ ℎ̄A . Note that the integer A is unique since ℎ̄8 ��̄ ℎ̄ 9 for all

ℎ̄8 ≠ ℎ̄ 9 in �̄. Hence, Ī1 = ℎ̄A . Next we determine Ī2. Using the same argument, if

ℎ̄A ∼�̄ ℎ̄B, then ℎ̄A = ℎ̄B. Now if ℎA ∼� : B, then by Lemma 3.6, B = ±A . Hence, ℎ̄A ∼�̄ :̄±A .

Now A is unique since :̄ 8 ��̄ :̄ 9 for all :̄ 8 ≠ :̄ 9 in �̄. Finally since ℎ ∼C : , we have ℎ̄ ∼C :̄

and so ℎ̄A ∼C :̄A . Hence, Ī2 = ℎ̄
±A or Ī2 = :̄

±A . Continuing this way, we have Ī8 = ℎ̄±A

or Ī8 = :̄±A for 8 = 3, . . . , F. Hence ĪF = ℎ̄±A or ĪF = :̄±A . This implies that ℎ̄±A ∼�̄ H̄:

or :̄±A ∼�̄ H̄: . This is a contradiction since {ℎ̄±A} �̄ ∩ 〈H̄〉 = ∅ and {:̄±A} �̄ ∩ 〈H̄〉 = ∅.

Therefore {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and our result follows as in Case 1. This completes the proof

and thus � is cyclic conjugacy separable by Theorem 2.14.

Corollary 3.11. Let � = 〈C, �|C−1ℎC = :〉 be an HNN extension where ℎ, : be elements of

infinite oder in � and ℎ< ∼� :±< for some positive integer <. Suppose � is either finitely

generated torsion-free nilpotent or free. Then � is cyclic conjugacy separable.

Proof. As in the proof of Corollary 3.9, we have � is cyclic conjugacy separable by

Theorem 3.10.
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CHAPTER 4: HNN EXTENSIONS OF FINITELY GENERATED NILPOTENT

GROUPS

4.1 Introduction

It has been established that the HNN extension � = 〈C, �|C−1�C =  , q〉 is conjugacy

separable and cyclic conjugacy separable if � is finite. Dyer (1980) and Kim & Tang

(1995) showed that these HNN extensions are free-by-finite and free-by-finite groups are

conjugacy separable and cyclic conjugacy separable.

Collins (1969) showed that � = 〈C, �|C−1�C =  , q〉 is conjugacy separable if � is

conjugacy separable and �,  are finite.

In this chapter, we shall show that� = 〈C, �|C−1�C =  , q〉 is cyclic conjugacy separable

if � is conjugacy separable and cyclic conjugacy separable and �,  are finite. This is

given in Theorem 4.13.

By using these results, we shall study the conjugacy separability and cyclic conjugacy

separability of � = 〈C, �|C−1�C =  , q〉 where � ∩  is a non-trivial finitely generated

subgroup in the center of � and � ∩  has finite index in � and in  and q is the identity

map on � ∩ . First we shall establish a criterion for such HNN extension to be conjugacy

separable (Theorem 4.7).

We shall use the criterion to show the conjugacy separability for� = 〈C, �|C−1�C =  , q〉

where � and  are each a direct product of a finite group and the subgroup � ∩  . Then

we shall show the cyclic conjugacy separability of these HNN extensions and extend the

result to finitely generated nilpotent groups.
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4.2 Lemmas Needed

In this section, we gather and prove the lemmas needed in this chapter.

Lemma 4.1. Let � be a group and � be a subgroup of �. Suppose that there exists a

finitely generated subgroup ' ⊆ � such that |� : ' | < ∞ and ' � �. If � is '-separable,

then � is �-separable.

Proof. Since � is '-separable, then �̄ = �/' is residually finite. Let G ∈ �\�. Then

Ḡ ∉ �̄ = �/'. Since �̄ is finite, there exists #̄ � 5 �̄ such that #̄ ∩ Ḡ�̄ = ∅. Let # be the

preimage of #̄ in �. Then # � 5 � such that G ∉ �# .

Next, we prove Lemma 4.2 and Lemma 4.3. These two lemmas are technical in nature

and they will facilitate the proofs in the later theorems.

Lemma 4.2. Let � be a group and �,  be subgroups of � where � ∩  ≠ 1. Let

q : � →  be an isomorphism such that q(� ∩  ) = � ∩  . Let # � 5 � such that

q(# ∩ �) = # ∩  . Then in �̄ = �/# , we have q̄(� ∩  ) = � ∩  where q̄ is the

induced isomorphism from �̄ to  ̄ .

Proof. First we note that the induced isomorphism q̄(�̄) =  ̄ is defined by q̄(ℎ#) = q(ℎ)#

for all ℎ ∈ �. We will show that q̄(� ∩  ) = � ∩  .

Let U ∈ q̄(� ∩  ). Then U = q̄(D#) where D ∈ � ∩  . So, U = q(D)# . Since

D ∈ � ∩  , we have q(D) ∈ q(� ∩  ) = � ∩  . This implies that U ∈ (� ∩  )#/# and

thus U ∈ � ∩  . So, q̄(� ∩  ) ⊆ � ∩  .

Let V ∈ � ∩  . Then V = E# where E ∈ � ∩ . Since q(� ∩ ) = � ∩ , there exists

F ∈ � ∩  such that q(F) = E. So, V = q(F)# . This implies that V = q̄(F#) and thus

V ∈ q̄(� ∩  ). So, � ∩  ⊆ q̄(� ∩  ). Therefore, q̄(� ∩  ) = � ∩  .

35

Univ
ers

ity
 of

 M
ala

ya



Lemma 4.3. Let � be a group and �,  be subgroups of � where � ∩  ≠ 1. Let

q : � →  be an isomorphism such that q(� ∩  ) = � ∩  . Suppose � ∩  is finitely

generated and |� : � ∩ | < ∞, | : � ∩ | < ∞. Let � be subgroup separable. Then for

each "� 5 �, there exists #� 5 � such that # ⊆ " and q(# ∩�) = # ∩ . Furthermore,

in �̄ = �/# , we have � ∩  = �̄ ∩  ̄ and q̄(�̄ ∩  ̄) = �̄ ∩  ̄ where q̄ is the induced

isomorphism from �̄ to  ̄ .

Proof. We let � ∩  = ( and " � 5 � be given. Since " ∩ ( has finite index in ( and (

is finitely generated, there exists ' ⊆ " ∩ ( such that ' is a characteristic subgroup of

finite index in (. Since q is an automorphism of (, q(') = '. Let �̄ = �/'. Since �̄ is

residually finite and � is finite, there exists #̄1 � 5 �̄ such that #̄1 ∩ � = 1̄. Let #1 be

the preimage of #̄1 in �. Then #1 ∩ � = '. Let # = " ∩ #1. Then # � 5 �. Next,

we need to show # ∩ � = '. Let U ∈ # ∩ �. Then U ∈ #1 ∩ � ⊆ #1 ∩ � = ' and

hence U ∈ '. Now let V ∈ '. Then V ∈ #1 since ' ⊆ #1. Furthermore V ∈ " ∩ � since

' ⊆ " ∩ ( ⊆ " ∩ �. Therefore V ∈ " ∩ #1 ∩ � = # ∩ �. Thus # ∩ � = '. Similarly,

we can show that # ∩  = '. Hence q(# ∩ �) = # ∩  .

Now let �̄ = �/# . Note that � ∩  = (� ∩  )#/# ⊆ (�# ∩  #)/# = (�#/#) ∩

( #/#) = �̄ ∩  ̄. Since # ∩ � = # ∩  , �̄ ∩  ̄ = (�#/#) ∩ ( #/#) � (�/� ∩

#) ∩ ( / ∩ #) = (� ∩ )/(� ∩ ∩ #) � (� ∩ )#/# = � ∩  . Note that �̄,  ̄ and

� ∩  are finite. Since � ∩  ⊆ �̄ ∩  ̄ and �̄ ∩  ̄ � � ∩  , we have � ∩  = �̄ ∩  ̄.

By Lemma 4.2, we have q̄(�̄ ∩  ̄) = �̄ ∩  ̄ . Thus, # is the required subgroup.

Lemma 4.4. Let� = 〈C, �|C−1�C =  , q〉 be an HNN extension where�∩ ≠ 1. Suppose

� ∩  is a finitely generated subgroup of / (�) and |� : � ∩  | < ∞, | : � ∩  | < ∞

such that q(� ∩  ) = � ∩  . Let � be subgroup separable. Then � is residually finite.

36

Univ
ers

ity
 of

 M
ala

ya



Proof. By Lemma 4.3, for each " � 5 �, there exists # � 5 � such that # ⊆ " and

q(# ∩ �) = # ∩  . Note that � is �-separable and  -separable by Lemma 4.1. Since

subgroup separable groups are also residually finite, we have � is residually finite by

Lemma 2.11.

Lemma 4.5. Let� = 〈C, �|C−1�C =  , q〉 be an HNN extension where�∩ ≠ 1. Suppose

� ∩  is a finitely generated subgroup of / (�) and |� : � ∩  | < ∞, | : � ∩  | < ∞.

Further suppose q(� ∩  ) = � ∩  and q(B) = B for all B ∈ � ∩  . Let � be subgroup

separable. Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 1 and G �� H, there exists

% � 5 � such that G% ��/% H%.

Proof. We assume G = C41G1 . . . C
4=G= and H = C�1H1 . . . C

�=H= where 48, �8 = ±1, G8, H8 ∈ �

and = ≥ 2. Let 08 denote those G8, H8 ∈ �\�, 18 denote those G8, H8 ∈ �\ and 28

denote those G8, H8 ∈ (� ∩  )\{1} for all 8. Since � is �-separable,  -separable and

residually finite, there exists "1 � 5 � such that 08 ∉ �"1, 18 ∉  "1 and 28 ∉ "1. By

Lemma 2.8(ii), G �� H if and only if G′ ��∪ H for all cyclic permutations G′ of G. Let

- = {D−1G′D |D ∈ (� ∪  )\(� ∩  ) and G′ is a cyclic permutation of G}. Note that

|� : � ∩  | < ∞, | : � ∩  | < ∞ and � ∩  ⊂ / (�). Furthermore, C−1BC = B since

q(B) = B for all B ∈ �∩ . Hence it follows that - is finite and H ∉ - . Since� is residually

finite by Lemma 4.4, there exists !� 5 � such that H! ∩ {I! |I ∈ -} = ∅. Let " = "1∩ !.

By Lemma 4.3, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  . We now

form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ = �#/#,  ̄ =  #/# and q̄ is the

induced isomorphism from �̄ to  ̄ . Note that in �̄, we have | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and

Ḡ′ ��̄∪ ̄ H̄. Hence by Lemma 2.8(ii), we have Ḡ ��̄ H̄. Since �̄ is conjugacy separable by

Lemma 2.10, there exists %̄� 5 �̄ such that Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the preimage of %̄ in �.

Then % � 5 � such that G% ��/% H%.
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Theorem 4.6. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where �,  are finite.

Suppose � is residually finite (conjugacy separable). Then� is residually finite (Baumslag

& Tretkoff, 1978) (conjugacy separable (Collins, 1969)).

4.3 Conjugacy Separability of Certain HNN Extensions of Finitely Generated

Nilpotent Groups

In this section, we prove our criterion for the HNN extension to be conjugacy separable.

Theorem 4.7. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � ∩  ≠ 1.

Suppose � ∩  is a finitely generated subgroup of / (�) and |� : � ∩  | < ∞, | :

� ∩  | < ∞. Further suppose q(� ∩  ) = � ∩  and q(B) = B for all B ∈ � ∩  . Let

(i) � be subgroup separable;

(ii) � be conjugacy separable;

(iii) � be �-conjugacy separable and  -conjugacy separable;

(iv) �/(� ∩  ) be conjugacy separable.

Then � is conjugacy separable if and only if,

(Λ) for D ∈ � ∪  \(� ∩  ) and 2 ∈ � ∩  , if D �� D2, there exists # � 5 � such

that q(# ∩ �) = # ∩  and we have D̂ ��̂ D̂2̂, in �̂ = 〈C, �̂|C−1�̂C =  ̂, q̂〉 where

�̂ = �/#, �̂ = �#/#,  ̂ =  #/# and q̂ is the induced isomorphism from �̂ to  ̂ .

Proof. Suppose � is conjugacy separable. Let D ∈ �\(� ∩  ) and 2 ∈ � ∩  such that

D �� D2. Then there exists % � 5 � such that in �̄ = �/%, D̄ ��̄ D̄2̄. Let " = % ∩ �. By

Lemma 4.3, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  . We now form

�̂ = 〈C, �̂|C−1�̂C =  ̂, q̂〉 where �̂ = �/#, �̂ = �#/#,  ̂ =  #/# and q̂ is the induced

isomorphism from �̂ to  ̂. By Lemma 2.10, �̂ is conjugacy separable. Since there is a

natural homomorphism from �̄ to �̂, we have D̂ ��̂ D̂2̂.

Conversely, suppose condition (Λ) is satisfied.
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We apply Theorem 2.12 here. Since � is conjugacy separable, condition (a) holds. By

Lemma 4.1 and Lemma 4.3, we have conditions (b) and (c).

We now show condition (d). We only need to consider the case when | |G | | = 0 = | |H | |

and G �� H. The case when | |G | | = | |H | | ≥ 1 follows from Lemma 4.5.

Case 1. Suppose {G}� ∩ � = ∅ and {G}� ∩  = ∅. Note that G �� H implies

that G �� H. Since � is conjugacy separable, �-conjugacy separable and  -conjugacy

separable, there exists " � 5 � such that G" ��/" H", {G"}�/" ∩ �"/" = ∅ and

{G"}�/" ∩  "/" = ∅. By Lemma 4.3, there exists # � 5 � such that # ⊆ " and

q(# ∩ �) = # ∩  . We now form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ =

�#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to  ̄. Note that in �̄, we

have Ḡ, H̄ ≠ 1̄, {Ḡ} �̄ ∩ �̄ = ∅, {Ḡ} �̄ ∩  ̄ = ∅ and Ḡ ��̄ H̄.

Suppose Ḡ ∼�̄ H̄. By Lemma 2.8(i), there exists a finite sequence of Ī8 where Ī8 ∈ �̄∪  ̄

such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄. Since {Ḡ} �̄ ∩ �̄ = ∅ and {Ḡ} �̄ ∩  ̄ = ∅,

the sequence reduces to Ḡ ∼�̄ H̄ or Ḡ ∼C H̄. Since Ḡ ∉ �̄ ∪  ̄, this further reduces to

Ḡ ∼�̄ H̄. But this contradicts the fact that Ḡ ��̄ H̄. Therefore, Ḡ ��̄ H̄. Since �̄ is conjugacy

separable by Lemma 2.10, there exists %̄ � 5 �̄ such that Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the

preimage of %̄ in �. Then % � 5 � such that G% ��/% H%.

Case 2. Suppose {G}� ∩ (� ∪ ) ≠ ∅ but {G}� ∩ (� ∩ ) = ∅. Suppose {G}� ∩� ≠ ∅.

The proof is similar for the other case. Let ( = � ∩  . Then ( ⊆ / (�) and q(( ∩ �) =

q(() = ( = (∩ . We form �̃ = 〈C, �̃|C−1�̃C =  ̃, q̃〉 where �̃ = �/(, �̃ = �/(,  ̃ =  /(

and q̃ is the induced isomorphism from �̃ to  ̃ . By assumption, �̃ is conjugacy separable.

Then �̃ is conjugacy separable by Theorem 4.6. If G̃ ��̃ H̃, then we are done. Suppose

G̃ ∼�̃ H̃. Then H̃ = 6̃−1G̃6̃ for some 6 ∈ �. Hence H = 6−1G62 = 6−1G26 for some

2 ∈ � ∩  ⊂ / (�). Since G �� H, we have G �� G2. By Condition (Λ), there exists

# � 5 � such that q(# ∩ �) = # ∩  and we have Ḡ ��̄ Ḡ2̄ in �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉
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where �̄ = �/#, �̄ = �#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to

 ̄ .

Suppose Ḡ ∼�̄ H̄. Then H̄ = 6̄−1
1 Ḡ6̄1 for some 6̄1 ∈ �̄. Since H = 6−1G26, this implies

that 6̄−1Ḡ2̄6̄ = 6̄−1
1 Ḡ6̄1. Hence, Ḡ2̄ = 6̄−1

2 Ḡ6̄2 where 6̄2 = 6̄16̄
−1. Thus, we have Ḡ2̄ ∼�̄ Ḡ, a

contradiction. Hence Ḡ ��̄ H̄. By Lemma 2.10, �̄ is conjugacy separable. Thus, we have

Ḡ ��̄ H̄ and the result follows as in Case 1.

Case 3. Suppose {G}� ∩ (� ∩ ) ≠ ∅. Since � ∩ ⊆ / (�), without loss of generality

we can assume G ∈ � ∩ . Hence G �� H implies that G ≠ H and C−=GC= ≠ H for all integers

=. Since q(� ∩  ) = � ∩  with q(B) = B for all B ∈ � ∩  , we have C−=GC= = G ≠ H.

Since � is residually finite, there exists " � 5 � such that GH−1 ∉ " . By Lemma 4.3, there

exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  . We now form �̄ as in Case 1.

Then in �̄, we have Ḡ, H̄ ≠ 1̄ and Ḡ ≠ H̄.

Suppose Ḡ ∼�̄ H̄. By Lemma 2.8(i), there exists a finite sequence of Ī8 where Ī8 ∈ �̄∪  ̄

such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄. From the first conjugation relation, since

Ḡ ∈ �̄ ∩  ̄ ⊆ / ( �̄), we have Ḡ = Ī1. From the second conjugation relation, Ḡ = Ī1 ∼�̄,C Ī2,

we obtain Ī2 = Ḡ if Ī2 ∼�̄ Ī1 and Ī2 = Ḡ if Ī2 ∼C Ī1 since q(B) = B for all B ∈ � ∩  . Thus,

Ī2 = Ḡ. Continuing this way, we have Ī8 = Ḡ for 8 = 3, . . . , =. Hence Ī= = Ḡ. This implies

that Ḡ ∼�̄ H̄. Since Ḡ ∈ / ( �̄), we have Ḡ = H̄. This contradicts the fact that Ḡ ≠ H̄. Hence

Ḡ ��̄ H̄ and the result follows as in Case 1. Thus, we have (d).

The proof is now complete and hence � is conjugacy separable by Theorem 2.12.

Note that finitely generated nilpotent groups are subgroup separable, conjugacy separable

and cyclic conjugacy separable. Furthermore, the quotient groups of nilpotent groups are

again nilpotent. Thus, we extend our criterion, Theorem 4.7 to finitely generated nilpotent

group in this section. We begin with the next lemma.
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Lemma 4.8. Let � be a finitely generated nilpotent group and � � �. If � ≤ � ≤ � and

|�/� | is finite, then � is �-conjugacy separable.

Proof. Let 0 ∈ � such that {0}� ∩ � = ∅. Let �̄ = �/�. Then {0̄} �̄ ∩ �̄ = ∅.

Since �̄ is cyclic conjugacy separable and �̄ is finite, there exists "̄ � 5 �̄ such that

{0̄"̄} �̄/"̄ ∩ 〈ℎ̄〉 = ∅ for all ℎ̄ ∈ �̄. Let " be the preimage of "̄ in �. Then we have

{0"}�/" ∩ �"/" = ∅.

By Lemma 4.8, the following corollary is straightforward from Theorem 4.7.

Corollary 4.9. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � ∩  ≠ 1.

Suppose � ∩  is a finitely generated subgroup of / (�) and |� : � ∩  | < ∞, | :

� ∩  | < ∞. Further suppose q(� ∩  ) = � ∩  and q(B) = B for all B ∈ � ∩  . Let �

be finitely generated nilpotent. Then � is conjugacy separable if and only if,

(Λ) for D ∈ (� ∪  )\(� ∩  ) and 2 ∈ � ∩  , if D �� D2, there exists " � 5 �

such that q(" ∩ �) = " ∩  and we have D̂ ��̂ D̂2̂, in �̂ = 〈C, �̂|C−1�̂C =  ̂, q̂〉 where

�̂ = �/", �̂ = �"/",  ̂ =  "/" and q̂ is the induced isomorphism from �̂ to  ̂ .

Next we can have the following application.

Theorem 4.10. Let� = 〈C, �|C−1�C =  , q〉 where � = %×�,  = &×� with %,& being

finite and � ⊆ / (�) is finitely generated. Suppose % ∩& = 1 and q(%) = &, q(�) = �

with q(2) = 2 for all 2 ∈ �. Let � be finitely generated nilpotent. Then � is conjugacy

separable.

Proof. Since � is a finitely generated abelian group, � =  1 × �1 where  1 is finite and

�1 is torsion-free. Hence we may assume that � is torsion-free.

We apply Theorem 4.7. here. Let D ∈ �\� and 2 ∈ � such that D �� D2. The proof is

similar when D ∈  \�. Since � = % × �, then D = ?020 uniquely where ?0 ∈ %, ?0 ≠ 1
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and 20 ∈ �. So, we have ?020 ∼� ?0202 and thus ?020 = 0
−1?02020 where 0 ∈ �. Since

20 ∈ � ⊆ / (�), we then have ?0 = 0
−1?020. Hence, without loss of generality, we

may assume D ∈ %. Since � is residually finite, there exists ' � 5 � such that 2 ∉ '.

Since ' has finite index in the finitely generated subgroup �, we can find a subgroup

( ⊆ ' such that ( is characteristic and finite index in �. Furthermore, note that q(() = (

with q(B) = B for all B ∈ ( and 2 ∉ (. We now form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where

�̄ = �/(, �̄ = �/(,  ̄ =  /( and q̄ is the induced isomorphism from �̄ to  ̄ .

Suppose D̄ ∼�̄ D̄2̄. By Lemma 2.8(i), there exists a finite sequence Ī1, . . . , Ī= ∈ �̄ ∪  ̄

such that D̄ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ D̄2̄. Since �̄ = %̄ × �̄,  ̄ = &̄ × �̄,

we have Ī8 = ?̄8 2̄8 uniquely where ?̄8 ∈ %̄ ∪ &̄, 2̄8 ∈ �̄. Hence, D̄ ∼�̄ ?̄12̄1 ∼�̄,C

?̄22̄2 ∼�̄,C . . . ∼�̄,C ?̄=2̄= ∼�̄ D̄2̄. From the first conjugation relation D̄ ∼�̄ ?̄12̄1, we have

?̄1 ∈ %̄ ∪ &̄, 2̄1 ∈ �̄. So, D̄ = 0̄−1
1 ?̄12̄10̄1 for some 01 ∈ � and thus D̄−10̄−1

1 ?̄10̄1 = 2̄
−1
1 .

It follows that D−10−1
1 ?101( = 2

−1
1 ( and this implies that D−10−1

1 ?101 ∈ � since ( � 5 �.

We let D−10−1
1 ?101 = F1 ∈ �, then DF1 = 0

−1
1 ?101. Since % and & are finite, we let

<1 = ;2<{|D |, |?1 |}. Then (DF1)<1 = (0−1
1 ?101)<1 which implies that F<1

1 = 1. Since �

is torsion-free, we have F1 = 1. It follows that D−10−1
1 ?101 = 1, thus 2̄1 = 1 and Ī1 = ?̄1.

So, now we can write D̄ ∼�̄ ?̄1 ∼�̄,C ?̄22̄2 ∼�̄,C . . . ∼�̄,C ?̄=2̄= ∼�̄ D̄2̄.

From the second conjugation relation, we have ?̄1 ∼�̄,C ?̄22̄2. If ?̄1 ∼�̄ ?̄22̄2, we have

2̄2 = 1 and Ī2 = ?̄2 as above. Now suppose ?̄1 ∼C ?̄22̄2. Then ?̄1 = C
−A ?̄22̄2C

A for some

integer A and so we have ?̄−1
2 C

A ?̄1C
−A = 2̄2. Hence ?−1

2 C
A ?1C

−A( = 22(. This implies that

?−1
2 C

A ?1C
−A = F2 ∈ �. Since %̄ and &̄ are finite, we let <2 = ;2<{|?1 |, |?2 |}. Then

(CA ?1C
−A)<2 = (?2F2)<2 which implies that F<2

2 = 1 and thus F2 = 1. Hence, we have

2̄2 = 1 and Ī2 = ?̄2 for this case as well.

Proceeding in this way, we have 2̄8 = 1, Ī8 = ?̄8 where ?̄8 ∈ %̄ ∪ &̄ for all 8 = 3, . . . , =.

Now we can write D̄ ∼�̄ ?̄1 ∼�̄,C ?̄2 ∼�̄,C . . . ∼�̄,C ?̄= ∼�̄ D̄2̄. From the last conjugation
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relation ?̄= ∼�̄ D̄2̄, we have 2̄ = 1 and ?̄= ∼�̄ D̄ as above. This is a contradiction since

2 ∉ (. Therefore, we have D̄ ��̄ D̄2̄ in �̄.

Since D̄ ��̄ D̄2̄ and �̄ is conjugacy separable, there exists !̄� 5 �̄ such that D̄ !̄ ��̄/!̄ D̄2̄!̄.

Let ! be the preimage of !̄ in�. Let" = !∩�. As in Lemma 4.3, there exists #� 5 � such

that # ⊆ ". We now form �̂ = 〈C, �̂|C−1�̂C =  ̂, q̂〉 where �̂ = �/#, �̂ = �#/#,  ̂ =

 #/# and q̂ is the induced isomorphism from �̂ to  ̂ . It is clear that D̂ ��̂ D̂2̂. Therefore,

� is conjugacy separable by Corollary 4.9.

4.4 Cyclic Conjugacy Separability of Certain HNN Extension with Finite

Associated Subgroups

In this section, we study the cyclic conjugacy separability of HNN extensions with finite

associated subgroups. In Collins (1969), Collins has shown the conjugacy separability

of such HNN extensions. We shall now show the cyclic conjugacy separability of such

groups. We begin with the following lemma.

Lemma 4.11. Let � be a group and � be a finite subgroup of �. If � is residually finite,

then � is �-separable.

Proof. Let G ∈ �\�. Since � is residually finite and � is finite, there exists " � 5 � such

that " ∩ G� = ∅. Therefore, � is �-separable.

Lemma 4.12. Let � be a group and � be a finite subgroup of �. If � is cyclic conjugacy

separable, then � is �-conjugacy separable.

Proof. Let G ∈ � such that {G}� ∩� = ∅. Since � is residually finite and � is finite, there

exists "0 � 5 � such that "0 ∩� = 1. It is clear that {G}� ∩ 〈ℎ8〉 = ∅ for all ℎ8 ∈ �. Since

� is cyclic conjugacy separable, there exists "8 � 5 � such that {G"8}�/"8 ∩ 〈ℎ8〉"8 = ∅

for all 8. Let " =
⋂
8 "8 ∩ "0. Then " � 5 � such that {G"}�/" ∩ �"/" = ∅.
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Theorem 4.13. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where �,  are finite.

Suppose � is conjugacy separable and cyclic conjugacy separable. Then � is cyclic

conjugacy separable.

Proof. We apply Theorem 2.14 here. By assumption, we have condition (a). By Lemma

4.11 and Theorem 4.6, we have conditions (b) and (d) respectively.

Let " � 5 � be given. Since � is residually finite and �,  are finite subgroups, there

exists "0 � 5 � such that "0 ∩ � = 1 = "0 ∩  . Let # = " ∩ "0. Then # � 5 � such

that # ⊆ " and q(# ∩ �) = # ∩  . Thus, we have condition (c).

Now we only need to prove condition (e). Let G, H ∈ � such that | |G | | = | |H | | = 0 and

{G}� ∩ 〈H〉 = ∅.

Case 1. Suppose {G}� ∩ � = ∅ and {G}� ∩  = ∅. Now {G}� ∩ 〈H〉 = ∅ implies that

{G}� ∩ 〈H〉 = ∅. Since � is cyclic conjugacy separable, �-conjugacy separable and  -

conjugacy separable by Lemma 4.12, there exists "1� 5 � such that {G"1}�/"1∩〈H"1〉 =

∅, {G"1}�/"1 ∩ �"1/"1 = ∅ and {G"1}�/"1 ∩  "1/"1 = ∅. Since � is residually

finite and �,  are finite, there exists "2 � 5 � such that "2 ∩ � = 1 = "2 ∩  . Let

# = "1 ∩ "2. Then # � 5 � and q(# ∩ �) = q(1) = 1 = # ∩  . We now form

�̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ = �#/#,  ̄ =  #/# and q̄ is the induced

isomorphism from �̄ to  ̄. Then in �̄, we have {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ḡ} �̄ ∩ �̄ = ∅ and

{Ḡ} �̄ ∩  ̄ = ∅.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 2.8(i), there

exists a finite sequence Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄: . Since

{Ḡ} �̄ ∩ �̄ = ∅ and {Ḡ} �̄ ∩  ̄ = ∅, the sequence reduces to Ḡ ∼�̄ H̄: or Ḡ ∼C H̄: . Since

Ḡ ∉ �̄∪  ̄ , this further reduces to Ḡ ∼�̄ H̄: . But this contradicts the fact that {Ḡ} �̄∩ 〈H̄〉 = ∅.

Therefore {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma 2.10, there

exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �. Then
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% � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅. Our result follows.

Case 2. Either {G}� ∩ � ≠ ∅ or {G}� ∩  ≠ ∅. Suppose {G}� ∩ � ≠ ∅. The proof

is similar for {G}� ∩  ≠ ∅. Let D8 ∈ � ∪  , 8 = 1, . . . , < be all the elements in � ∪  

such that D8 ∼� G. Since {G}� ∩ 〈H〉 = ∅, we have {D8}� ∩ 〈H〉 = ∅, 8 = 1, . . . , <. Since �

is cyclic conjugacy separable, there exists "1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅

and {D8"1}�/"1 ∩ 〈H"1〉 = ∅, 8 = 1, . . . , <. Since � is conjugacy separable, there exists

"2 � 5 � such that ?A"2 ��/"2 ?B"2 for all pairs of elements ?A , ?B ∈ � ∪  where

?A �� ?B. Since � is residually finite by Theorem 4.6, there exists & � 5 � such that

DE& �C DF& for all pairs of elements DE, DF ∈ � ∪  where DE �C DF. Again since �,  

are finite and � is residually finite, there exists "3 � 5 � such that "3 ∩ � = 1 = "3 ∩  .

Let # = "1 ∩ "2 ∩ "3 ∩ &. Then # � 5 � and q(# ∩ �) = q(1) = 1 = # ∩  . We

now form �̄ as in Case 1. Then in �̄, we have {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {D̄8} �̄ ∩ 〈H̄〉 = ∅ for all

D8, 8 = 1, . . . , <, ?̄A ��̄ ?̄B for all pairs ?A , ?B ∈ � ∪  , ?A �� ?B and D̄E �C D̄F for all

pairs DE, DF ∈ � ∪  , DE �C DF.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 2.8(i), there

exists a finite sequence Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄: . From

the first conjugation relation Ḡ ∼�̄ Ī1, we have G# ∼�/# I1# . Now suppose G �� I1. Then

we have G"1 ��/"1 I1"1. But this contradicts to G# ∼�/# I1# . Hence G ∼� I1. Since

{G}� ∩ 〈H〉 = ∅, we have {I1}� ∩ 〈H〉 = ∅. So in �̄, we have {Ī1} �̄ ∩ 〈H̄〉 = ∅. Without

loss of generality, we assume I1 ∈ �.

From the second conjugation relation Ī1 ∼�̄,C Ī2, we have Ī2 ∼�̄ Ī1 or Ī2 ∼C Ī1. If

Ī2 ∼�̄ Ī1, then Ī2 ∼�̄ Ḡ. Arguing as above, we have G ∼� I2. Hence {I2}� ∩ 〈H〉 = ∅. Now

suppose Ī2 ∼C Ī1. Then Ī2 ∼C Ī1 ∼� Ḡ. Again arguing as above, we have I2 ∼C I1 ∼� G. We

now show that {I2}� ∩ 〈H〉 = ∅. Suppose {I2}� ∩ 〈H〉 ≠ ∅. Then I2 ∼� H; for some integer

;. Hence H; ∼� I2 ∼C I1 ∼� G. This implies that {G}� ∩ 〈H〉 ≠ ∅, a contradiction. Hence
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{I2}� ∩ 〈H〉 = ∅. So in both cases, {I2}� ∩ 〈H〉 = ∅. Hence in �̄, we have {Ī2} �̄ ∩ 〈H̄〉 = ∅.

Proceeding from the third to the second last conjugation relation, we obtain I8 ∈ � ∪  

such that {I8}� ∩ 〈H〉 = ∅, 8 = 3, . . . , =. So in �̄, we have {Ī8} �̄ ∩ 〈H̄〉 = ∅, 8 = 3, . . . , =.

From the last conjugation relation Ī= ∼�̄ H̄: , we have {Ī=} �̄ ∩ 〈H̄〉 ≠ ∅. This contradicts

the fact that {Ī=} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the result follows as in Case 1.

This completes the proof and hence� is cyclic conjugacy separable by Theorem 2.14.

4.5 Cyclic Conjugacy Separability of Certain HNN Extensions of Finitely

Generated Nilpotent Groups

In this section, we give two criteria on cyclic conjugacy separability of HNN extensions.

Then apply these two criteria to finitely generated nilpotent groups. We apply Theorem

4.13 in Theorem 4.14.

Theorem 4.14. Let � = 〈C, �|C−1�C =  , q〉 where � = % × �,  = & × � with %,&

being finite and � ⊆ / (�) is finitely generated torsion-free. Suppose % ∩ & = 1 and

q(%) = &, q(�) = � with q(2) = 2 for all 2 ∈ �. Suppose

(8) � is subgroup separable;

(88) � is conjugacy separable;

(888) � is cyclic conjugacy separable;

(8E) � is �-conjugacy separable and  -conjugacy separable;

(E) �/( is conjugacy separable and cyclic conjugacy separable for any ( � 5 �.

Then � is cyclic conjugacy separable.
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Proof. We apply Theorem 2.14 here. Since � is subgroup separable, we have condition

(a). By Lemma 4.1, Lemma 4.3 and Lemma 4.5, we have conditions (b), (c) and (d). Now

we only need to prove condition (e).

Let G, H ∈ � such that | |G | | = | |H | | = 0 and {G}� ∩ 〈H〉 = ∅.

Case 1. Suppose {G}� ∩ � = ∅ and {G}� ∩  = ∅. Note that {G}� ∩ 〈H〉 = ∅

implies that {G}� ∩ 〈H〉 = ∅. Since � is cyclic conjugacy separable, �-conjugacy

separable and  -conjugacy separable, there exists " � 5 � such that {G"}�/" ∩ 〈H"〉 =

∅, {G"}�/" ∩ �"/" = ∅ and {G"}�/" ∩  "/" = ∅. By Lemma 4.3, there exists

# � 5 � such that # ⊆ " and q(# ∩�) = # ∩ . We now form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉

where �̄ = �/#, �̄ = �#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to

 ̄ . Note that in �̄, we have Ḡ, H̄ ≠ 1̄, {Ḡ} �̄ ∩ �̄ = ∅, {Ḡ} �̄ ∩  ̄ = ∅ and {Ḡ} �̄ ∩ 〈H̄〉 = ∅.

Suppose {Ḡ}�̄∩〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . ByLemma2.8(i), there exists

a finite sequence of Ī8 where Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄: .

Since {Ḡ} �̄ ∩ �̄ = ∅ and {Ḡ} �̄ ∩  ̄ = ∅, the sequence reduces to Ḡ ∼�̄ H̄: or Ḡ ∼C H̄: . Since

Ḡ ∉ �̄∪  ̄ , this further reduces to Ḡ ∼�̄ H̄: . But this contradicts the fact that {Ḡ} �̄∩ 〈H̄〉 = ∅.

Therefore, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma 2.10, there

exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �. Then

% � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. Suppose {G}� ∩ (� ∪  ) ≠ ∅ but {G}� ∩ � = ∅.

Subcase 2a. Suppose {G}�∩� ≠ ∅, {G}�∩ = ∅. This implies that {G}�∩� = ∅. Since

� is cyclic conjugacy separable, -conjugacy separable and subgroup separable, there exists

"1 � 5 � such that G ∉ �"1, {G"1}�/"1 ∩  "1/"1 = ∅ and {G"1}�/"1 ∩ 〈H"1〉 = ∅.

Let A8 ∈ % ∪& such that G ∼� A8. Since {G}� ∩ 〈H〉 = ∅, we have {A8}� ∩ 〈H〉 = ∅. Since �

is cyclic conjugacy separable, there exists "2 � 5 � such that {A8"2}�/"2 ∩ 〈H"2〉 = ∅

for all A8 ∈ % ∪ &. Since � is conjugacy separable, there exists "3 � 5 � such that
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DA"3 ��/"3 DB"3 for all pairs of elements DA , DB ∈ % ∪ & where DA �� DB. Since � is

residually finite by Lemma 4.4, there exists ! � 5 � such that E 9! �C E:! for all pairs

of elements E 9 , E: ∈ % ∪ & where E 9 �C E: . Let ( = "1 ∩ "2 ∩ "3 ∩ ! ∩ �. Then

( � 5 � and thus ( � 5 �, ( � 5  with q(() = (. We now form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉

where �̄ = �/(, �̄ = �/(,  ̄ =  /( and q̄ is the induced isomorphism from �̄ to

 ̄. Then in �̄, we have Ḡ ∉ �̄, {Ḡ} �̄ ∩  ̄ = ∅, {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ā8} �̄ ∩ 〈H̄〉 = ∅ for all

A8 ∈ % ∪ &, G ∼� A8, D̄A ��̄ D̄B for all pairs DA , DB ∈ % ∪ &, DA �� DB and Ē 9 �C Ē: for all

pairs E 9 , E: ∈ % ∪&, E 9 �C E: .

Suppose {Ḡ}�̄∩〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . ByLemma2.8(i), there exists

a finite sequence of Ī8 where Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄: .

Since �̄ = %̄ × �̄,  ̄ = &̄ × �̄, we have Ī8 = ?̄8 2̄8 uniquely where ?̄8 ∈ %̄ ∪ &̄, 2̄8 ∈ �̄.

Hence, Ḡ ∼�̄ ?̄12̄1 ∼�̄,C ?̄22̄2 ∼�̄,C . . . ∼�̄,C ?̄=2̄= ∼�̄ H̄: . From the first conjugation relation

Ḡ ∼�̄ ?̄12̄1, we have ?̄1 ∈ %̄, 2̄1 ∈ �̄ since {Ḡ} �̄ ∩  ̄ = ∅. So, Ḡ = 0̄−1
1 ?̄12̄10̄1 for some

01 ∈ � and thus Ḡ−10̄−1
1 ?̄10̄1 = 2̄

−1
1 . It follows that G−10−1

1 ?101( = 2
−1
1 ( and this implies

that G−10−1
1 ?101 ∈ � since ( � 5 �. We let G−10−1

1 ?101 = F0 ∈ �, then GF0 = 0
−1
1 ?101.

Since {G}� ∩ � ≠ ∅, we have 0−1G0 = ?020 for some 0 ∈ �, ?0 ∈ %, 20 ∈ � and

thus 0?0200
−1F0 = 0

−1
1 ?101, that is 0?00

−120F0 = 0
−1
1 ?101. Since % is finite, we let

<1 = ;2<{|?0 |, |?1 |}. Then (GF0)<1 = (0?0200
−1F0)<1 = (0−1

1 ?101)<1 which implies

that F<1
0 = 1. Since� is torsion-free, we have F0 = 1. It follows that G−10−1

1 ?101 = 1, thus

2̄1 = 1 and Ī1 = ?̄1. So, now we can write Ḡ ∼�̄ ?̄1 ∼�̄,C ?̄22̄2 ∼�̄,C . . . ∼�̄,C ?̄=2̄= ∼�̄ H̄: .

From the second conjugation relation, we have ?̄1 ∼�̄,C ?̄22̄2. If ?̄1 ∼�̄ ?̄22̄2, we have

2̄2 = 1 and Ī2 = ?̄2 as above. Now suppose ?̄1 ∼C ?̄22̄2. Then ?̄1 = C
−A ?̄22̄2C

A for some

integer A and so we have ?̄−1
2 C

A ?̄1C
−A = 2̄2. Hence ?−1

2 C
A ?1C

−A( = 22(. This implies that

?−1
2 C

A ?1C
−A = F2 ∈ �. Since %̄ and &̄ are finite, we let <2 = ;2<{|?1 |, |?2 |}. Then

(CA ?1C
−A)<2 = (?2F2)<2 which implies that F<2

2 = 1 and thus F2 = 1. Hence, we have
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2̄2 = 1 and Ī2 = ?̄2 for this case as well.

Proceeding in this way, we have 2̄8 = 1, Ī8 = ?̄8 where ?̄8 ∈ %̄ ∪ &̄ for all 8 = 3, . . . , =.

Now we can write Ḡ ∼�̄ ?̄1 ∼�̄,C ?̄2 ∼�̄,C . . . ∼�̄,C ?̄= ∼�̄ H̄: . From the first conjugation

relation Ḡ ∼�̄ ?̄1, we have G( ∼�/( ?1(. Suppose G �� ?1, then G"3 ��/"3 ?1"3.

But this contradicts to G( ∼�/( ?1(. Hence G ∼� ?1. Since {G}� ∩ 〈H〉 = ∅, we have

{?1}� ∩ 〈H〉 = ∅. So in �̄, we have { ?̄1} �̄ ∩ 〈H̄〉 = ∅.

From the second conjugation relation ?̄1 ∼�̄,C ?̄2, we have ?̄1 ∼�̄ ?̄2 or ?̄1 ∼C ?̄2. If

?̄1 ∼�̄ ?̄2, then Ḡ ∼�̄ ?̄2. Arguing as above, we have G ∼� ?2. Hence {?2}� ∩ 〈H〉 = ∅.

Now suppose ?̄1 ∼C ?̄2. Then ?̄2 ∼C ?̄1 ∼� Ḡ. Again arguing as above, we have

?2 ∼C ?1 ∼� G. We now show that {?2}� ∩ 〈H〉 = ∅. Suppose {?2}� ∩ 〈H〉 ≠ ∅. Then

?2 ∼� H; for some integer ;. Hence H; ∼� ?2 ∼C ?1 ∼� G. This implies that {G}�∩〈H〉 ≠ ∅,

a contradiction. Hence {?2}� ∩ 〈H〉 = ∅. So in both cases, {?2}� ∩ 〈H〉 = ∅. Hence in �̄,

we have { ?̄2} �̄ ∩ 〈H̄〉 = ∅.

Proceeding from the third to the second last conjugation relation, we have { ?̄8} �̄ ∩ 〈H̄〉 =

∅, 8 = 3, . . . , =. From the last conjugation relation ?̄= ∼�̄ H̄: , we have { ?̄=} �̄ ∩ 〈H̄〉 ≠ ∅.

This contradicts the fact that { ?̄=} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic

conjugacy separable by Theorem 4.13, the result follows as in Case 1.

The following subcases can be proved similarly.

Subcase 2b. {G}� ∩ � = ∅, {G}� ∩  ≠ ∅ and {G}� ∩ � = ∅.

Subcase 2c. {G}� ∩ � ≠ ∅, {G}� ∩  ≠ ∅ and {G}� ∩ � = ∅.

Case 3. Suppose {G}� ∩ � ≠ ∅. Since � ⊆ / (�), we can assume G ∈ �. Hence

we have G ∉ 〈H〉, C−=GC= ∉ 〈H〉 for all integers =. Since q(2) = 2 for all 2 ∈ �, we have

C−=GC= = G ∉ 〈H〉. Since � is subgroup separable, there exists " � 5 � such that G ∉ 〈H〉" .

As in Case 1, we can find # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  . We now

form �̄ as in Case 1. Then Ḡ ∉ 〈H̄〉 in �̄.
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Suppose {Ḡ}�̄∩〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . ByLemma2.8(i), there exists

a finite sequence of Ī8 where Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C Ī= ∼�̄ H̄: .

From the first conjugation relation, since G ∈ � ⊆ / (�), we have G = I1 and thus Ḡ = Ī1.

From the second conjugation relation, Ḡ = Ī1 ∼�̄,C Ī2, we obtain Ī2 = Ḡ if Ī2 ∼�̄ Ī1. Since

q(2) = 2 for all 2 ∈ �, we have Ī2 = Ḡ if Ī2 ∼C Ī1. Thus, Ī2 = Ḡ. Continuing this way, we

have Ī8 = Ḡ for all 8 = 3, . . . , =. Hence Ī= = Ḡ. This implies that Ḡ ∼�̄ H̄: . Since Ḡ ∈ / ( �̄),

we have Ḡ = H̄: . This contradicts the fact that Ḡ ∉ 〈H̄〉. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the

result follows as in Case 1.

This completes the proof and thus condition (e) is satisfied. Therefore, � is cyclic

conjugacy separable by Theorem 2.14.

We now apply the results to finitely generated nilpotent groups. By Lemma 4.8 and

Theorem 4.14, we can obtain the following result.

Corollary 4.15. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � = % ×

�,  = & × � with %,& are finite and � ⊆ / (�) is finitely generated. Suppose

% ∩& = 1, q(%) = &, q(�) = � with q(2) = 2 for all 2 ∈ �. Let � be finitely generated

nilpotent. Then � is cyclic conjugacy separable.

Proof. Since � is a finitely generated abelian group, � =  1 × �1 where  1 is finite and

�1 is torsion-free. Hence we may assume � is torsion-free. Then � is cyclic conjugacy

separable by Theorem 4.14.
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CHAPTER 5: HNN EXTENSIONS WITH CENTRAL ASSOCIATED

SUBGROUPS

5.1 Introduction

The HNN extensions � = 〈C, �|C−1�C =  , q〉 where � is polycyclic-by-finite and �

and  are finitely generated subgroups in the center of � are conjugacy separable where

� ∩  = 1 or when � ∩  has finite index in � and in  and q(� ∩  ) = � ∩  . This

was proven in Wong & Tang (2000).

In this chapter, we explore the cyclic conjugacy separability of these HNN extensions

where � is cyclic conjugacy separable and subgroup separable. First, we show that �

is cyclic conjugacy separable when � ∩  = 1. When � ∩  ≠ 1, but � ∩  has finite

index in � and in  , then we can show � is cyclic conjugacy separable for the case when

q(� ∩  ) = � ∩  and q(B) = B±1 for all B ∈ � ∩  .

5.2 HNN Extensions with Trivial Intersection Associated Subgroups

In this section, we shall discuss HNN extensions � = 〈C, �|C−1�C =  , q〉 where

� ∩  = 1. We apply Theorem 2.14 to prove the main theorem (Theorem 5.3) here.

Lemma 5.1. Let � be a group and �,  be finitely generated subgroups of / (�) such

that � ∩  = 1. Let q : � →  be an isomorphism. Let � be subgroup separable.

Then for each " � 5 �, there exists # � 5 � such that # ⊆ ", q(# ∩ �) = # ∩  and

#� ∩ # = # .

Proof. Let " � 5 � be given. Let ' = " ∩ � and ( = " ∩  . Let '1 = ' ∩ q−1(()

and (1 = q(') ∩ (. Then '1 � 5 �, (1 � 5  and q('1) = (1. Since ', ( ⊆ / (�), we

can form �̄ = �/'1(1. Since � is subgroup separable and '1, (1 are finitely generated,
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then �̄ is residually finite. Since �̄ = �/'1 and  ̄ =  /(1 are finite, there exists

"̄1 � 5 �̄ such that "̄1 ∩ �̄ ̄ = 1̄. This implies that "̄1 ∩ �̄ = 1̄, "̄1 ∩  ̄ = 1̄ and

"̄1�̄ ∩ "̄1 ̄ = "̄1. Let "1 be the preimage of "̄1 in �. Then "1 � 5 � such that

"1 ∩ � = '1, "1 ∩  = (1 and "1� ∩ "1 = "1. Let # = " ∩ "1. Then # � 5 �

such that # ⊆ ", q(# ∩ �) = q('1) = (1 = # ∩  and #� ∩ # = # . Therefore, # is

the required subgroup.

The proof of the following lemma is modified from Theorem 3.2 of Wong & Tang

(2000).

Lemma 5.2. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � and  are

finitely generated subgroups in / (�) such that � ∩  = 1. Let � be subgroup separable.

Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 1 and G �� H, there exists & � 5 � such

that Ḡ ��̄ H̄ in �̄ = �/&.

Proof. We let G = C�1G1C
�2G2 . . . C

�<G<, H = C
41H1C

42H2 . . . C
4<H< where G8, H8 ∈ �, < ≥ 1

and �8, 48 = ±1. Let 08 denote those G8, H8 ∈ �\� and 18 denote those G8, H8 ∈ �\ . Since

� is subgroup separable, we can find "0 � 5 � such that 08 ∉ �"0, 18 ∉  "0 for all 8. By

Lemma 5.1, there exists #� 5 � such that # ⊆ "0, q(# ∩�) = # ∩ and #�∩# = # .

Let �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ = �#/#,  ̄ =  #/# with �̄ ∩  ̄ = 1

and q̄ is the induced isomorphism from �̄ to  ̄ . Clearly, �̄ is a homomorphic image of �.

Let 6̄ denote the image of any element 6 of � in �̄. Then Ḡ, H̄ are cyclically reduced and

| |Ḡ | | = | |G | | = | |H | | = | | H̄ | |.

Suppose �8 ≠ 48 for some 8. Then Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma

2.10, there exists &̄� 5 �̄ such that Ḡ&̄ ��̄ H̄&̄. Let& be the preimage of &̄. Then&� 5 �

such that G& ��/& H& and the result follows.
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Now suppose �8 = 48 for all 8. Since G �� H, either some equations in (1∗) of Definition

2.9 has no admissible solution or every set of admissible solutions to (1∗) of Definition 2.9

is incomplete.

Suppose that the equation G8 = D−1
8
H8E8 has no admissible solution in �. This implies

that G8 ∉ !1H8!2 where !8 is either � or  . Since �,  ⊆ / (�), we have G8H−1
8
∉ !1!2.

Since � is subgroup separable, there exists "1 � 5 � such that G8H−1
8
∉ !1!2"1. Let

" = "0 ∩"1. By Lemma 5.1, there exists # � 5 � such that # ⊆ ", q(# ∩�) = # ∩ 

and #� ∩ # = # . We now form �̄. Note that Ḡ8 ∉ !̄1 H̄8 !̄2 and �̄ ∩  ̄ = 1̄. Thus, we

have Ḡ ��̄ H̄ and the result follows.

Now suppose A1, B1, . . . , A<, B< ∈ � ∪  is a set of incomplete solution to (1∗) of

Definition 2.9.

(a) Now suppose G8 = A−1
8
H8B8 where A8 ∈ �, B8 ∈  for some 1 ≤ 8 ≤ <. Since

� ∩  = 1, A8, B8 are unique in the equation G8 = A−1
8
H8B8.

Since the set of admissible solutions is incomplete, we have C−�8 B8−1C
�8 ≠ A8 for some 8.

We let I = C−�8 B8−1C
�8A−1

8
. Since � is residually finite by Lemma 2.11, there exists %� 5 �

such that I ∉ %. By Lemma 5.1, there exists # ⊆ "0 ∩ % such that q(# ∩ �) = # ∩  

and #� ∩ # = # . We form �̄ now. Then C−�8 B̄8−1C
�8 ≠ Ā8 and �̄ ∩  ̄ = 1̄ in �̄. Since

�̄ ∩  ̄ = 1̄, the expression Ḡ8 = Ā−1
8
H̄8 B̄8 is unique in �̄. Thus, Ḡ ��̄ H̄ and the result follows.

(b) Suppose G8 = A−1
8
H8B8 where A8, B8 ∈ � or A8, B8 ∈  for all 8. Note that this

case only occur when �8 = −�8+1 and 48 = −48+1 for all 8. We assume A1, B1 ∈ �.

Then A2, B2 ∈  , A3, B3 ∈ �, and so on, that is �1, 41 = −1, �2, 42 = 1, . . .. Hence,

G = C−1G1CG2 . . . C
−1G<, H = C−1H1CH2 . . . C

−1H< if < is odd or G = C−1G1CG2 . . . CG<, H =

C−1H1CH2 . . . CH< if < is even.
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Suppose | |G | | = | |H | | = < is odd. Then CB<C−1 ≠ A1 since CB<C−1 ∉ � and A1 ∈ �. We

can proceed as above and the result follows.

Suppose | |G | | = | |H | | = < is even. We have the following from (1∗) of Definition 2.9:

G1 = A
−1
1 H1B1

G2 = A
−1
2 H2B2

... (2)

G< = A
−1
< H<B<

Since �,  ⊆ / (�), we assume C−1B1C = A2, CB2C
−1 = A3, . . . , C

−1B<−1C = A< but CB<C−1 ≠

A1 since G �� H.

Recall that G1 = A
−1
1 H1B1 where A1, B1 ∈ �. Since � ⊆ / (�), then A1, B1 are not unique.

If we replace A1 by Â1 = A10, for some 0 ∈ �, then B1 is replaced by B̂1 = B10. This implies

that A2, B2 are replaced by Â2 = C
−1 B̂1C = A2C

−10C, B̂2 = B2C
−10C and so on. Continuing in

this way, we obtain the following from (2):

G1 = Â
−1
1 H1 B̂1 = A

−1
1 0−1H1B10

G2 = Â
−1
2 H2 B̂2 = A

−1
2 (C

−10−1C)H2B2(C−10C)

... (3)

G< = Â
−1
< H< B̂< = A

−1
< (C−10−1C)H<B< (C−10C)

This implies that C−1 B̂1C = Â2, C B̂2C
−1 = Â3, . . . , C

−1 B̂<−1C = Â< but C B̂<C−1Â−1
1 =

CB< (C−10C)C−1A−1
1 0−1 = CB<C

−1A−1
1 ≠ 1. Let I = CB<C−1A−1

1 . Since � is residually finite by

Lemma 2.11, there exists %� 5 � such that I ∉ %. By Lemma 5.1, there exists # ⊆ "0∩%

such that q(# ∩ �) = # ∩  and #� ∩ # = # . We form �̄ now. Then Ī ≠ 1̄ and
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�̄ ∩  ̄ = 1̄ in �̄. Thus, Ḡ ��̄ H̄ and the result follows.

Theorem 5.3. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � and  are

finitely generated subgroups in / (�) such that � ∩  = 1. Let � be cyclic conjugacy

separable and subgroup separable. Then � is cyclic conjugacy separable.

Proof. We apply Theorem 2.14 here. Since � is cyclic conjugacy separable, �-separable

and  -separable, we have conditions (a) and (b). By Lemma 5.1 and Lemma 5.2, we have

conditions (c) and (d).

We now prove condition (e). Let G, H ∈ � such that | |G | | = | |H | | = 0 and {G}� ∩ 〈H〉 = ∅.

Case 1. Suppose G ∉ �∪ . Note that {G}�∩〈H〉 = ∅ implies that {G}�∩〈H〉 = ∅. Since

� is cyclic conjugacy separable, there exists "1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅.

Now since � is subgroup separable, there exists "2 � 5 � such that G ∉ (� ∪  )"2. Let

" = "1 ∩"2. By Lemma 5.1, there exists # � 5 � such that # ⊆ ", q(# ∩�) = # ∩ 

and #� ∩ # = # . As before, we form �̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄ = �/#, �̄ =

�#/#,  ̄ =  #/# and q̄ is the induced isomorphism from �̄ to  ̄ . Then in �̄, we have

�̄,  ̄ ⊆ / ( �̄), �̄ ∩  ̄ = 1̄, Ḡ ∉ �̄ ∪  ̄ and {Ḡ} �̄ ∩ 〈H̄〉 = ∅.

Suppose {Ḡ}�̄∩〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . ByLemma2.8(i), there exists

a finite sequence of Ī8 where Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄: .

Since Ḡ ∉ �̄ ∪  ̄ and �̄,  ̄ ⊆ / ( �̄), the sequence reduces to Ḡ ∼�̄ H̄: or Ḡ ∼C H̄: . Since

Ḡ ∉ �̄ ∪  ̄, that is, C−1ḠC, CḠC−1 ∉ �̄ ∪  ̄, this further reduces to Ḡ ∼�̄ H̄: . But this

contradicts the fact that {Ḡ} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic

conjugacy separable by Lemma 2.10, there exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅.

Let % be the preimage of %̄ in �. Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. Suppose G ∈ � ∪  . Note that {G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 =

∅, C−1GC ∉ 〈H〉 if G ∈ � or CGC−1 ∉ 〈H〉 if G ∈  . Given �,  ⊆ / (�) and � ∩  = 1, we

have G, C−1GC ∉ 〈H〉 or G, CGC−1 ∉ 〈H〉. Since � is subgroup separable, there exists " � 5 �
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such that G ∉ 〈H〉", C−1GC ∉ 〈H〉" and CGC−1 ∉ 〈H〉". As in Case 1, we can find # � 5 �

such that # ⊆ ", q(# ∩ �) = # ∩  and #� ∩ # = # and thus we can form �̄. Then

�̄,  ̄ ⊆ / ( �̄), �̄ ∩  ̄ = 1̄, Ḡ ∈ �̄ ∪  ̄ and Ḡ, C−1ḠC, CḠC−1 ∉ 〈H̄〉.

Suppose {Ḡ}�̄∩〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . ByLemma2.8(i), there exists

a finite sequence Ī8 where Ī8 ∈ �̄ ∪  ̄ such that Ḡ ∼�̄ Ī1 ∼�̄,C Ī2 ∼�̄,C . . . ∼�̄,C ĪF ∼�̄ H̄: .

From the first conjugation relation Ḡ ∼�̄ Ī1, we obtain Ī1 = Ḡ since Ḡ ∈ �̄ ∪  ̄ ⊆ / ( �̄).

From the second conjugation relation Ḡ = Ī1 ∼�̄,C Ī2, we obtain Ī2 = Ḡ or Ī2 = C
−1ḠC

or Ī2 = CḠC
−1. Continuing this way, we have Ī8 = Ḡ or C−1ḠC or CḠC−1 for 8 = 3, . . . , F.

Hence ĪF = Ḡ or C−1ḠC or CḠC−1. This implies that Ḡ ∼�̄ H̄: or C−1ḠC ∼�̄ H̄: or CḠC−1 ∼�̄ H̄: .

Since �̄,  ̄ ⊆ / ( �̄), we obtain Ḡ, C−1ḠC, CḠC−1 ∈ 〈H̄〉. This is a contradiction since

Ḡ, C−1ḠC, CḠC−1 ∉ 〈H̄〉. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the result follows as in Case 1.

Therefore we have condition (e) and this completes the proof. Thus, � is cyclic

conjugacy separable by Theorem 2.14.

5.3 Cyclic Conjugacy Separability on Certain HNN Extensions

In this section, we show our main result (Theorem 5.6) by using Theorem 2.14. Here

we study the HNN extensions with � ∩  ≠ 1 and q(� ∩  ) = � ∩  .

Lemma 5.4. (Wong & Wong, 2008) Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension.

Suppose � and  are finitely generated subgroups in / (�) and � ≠ � ≠  . Then � is

subgroup separable if and only if � is subgroup separable and � ∩  is a subgroup of

finite index in � and  and there exists a finitely generated subgroup ( such that ( has

finite index in � ∩  and q(() = (.
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The proof of the following lemma is modified from Theorem 3.5 of Wong & Tang

(2000).

Lemma 5.5. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � ∩  ≠ 1.

Suppose � and  are finitely generated subgroups in / (�) such that |� : � ∩  | <

∞, | : � ∩  | < ∞. Further suppose q(� ∩  ) = � ∩  . Let � be subgroup separable.

Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 1 and G �� H, there exists & � 5 � such

that Ḡ ��̄ H̄ in �̄ = �/&.

Proof. We let G = C�1G1C
�2G2 . . . C

�<G<, H = C
41H1C

42H2 . . . C
4<H< where G8, H8 ∈ �, < ≥ 1

and �8, 48 = ±1. Let 08 denote those G8, H8 ∈ �\�, 18 denote those G8, H8 ∈ �\ and 28

denote those G8, H8 ∈ � ∩  \{1}. Since � is subgroup separable, we can find #0 � 5 �

such that 08 ∉ �#0, 18 ∉  #0 and 28 ∉ #0.

As in Lemma 5.2, we may assume �8 = 48 for all 8. Since G �� H, either some equations

in (1∗) of Definition 2.9 has no admissible solution in � or every set of admissible solutions

to (1∗) of Definition 2.9 is incomplete. If one of the equations in (1∗) of Definition 2.9

has no admissible solution in �, the proof may proceed as in Lemma 5.2. So suppose

B0, A1, . . . , A<, B< ∈ � ∪  is a set of incomplete admissible solutions to (1∗) of Definition

2.9.

Let D8 = C41G1 . . . G8−1C
48 and E8 = C41H1 . . . H8−1C

48 , 1 ≤ 8 ≤ <. If G ∼� H, then there

exists an element I ∈ � ∪  such that I−1GI = H, that is G−1IH = I. This implies

D−1
1 IE1, D

−1
2 IE2, . . . , D

−1
< IE< ∈ � ∪  and G−1

< D
−1
< IE<H< = I. Since G �� H, then for each

element F ∈ � ∪ , either there exists an integer 9 , 1 ≤ 9 < <, such that D−1
9
FE 9 ∈ � ∪ 

but D−1
9+1FE 9+1 ∉ � or D−1

9
FE 9 ∈ � ∪  but G−1

< D
−1
< FE<H< ≠ F. We have the following

cases.

Case 1. Suppose for each element F ∈ � ∪  , we can find the largest integer = such

that 1 ≤ = < < and D−1
= FE= ∈ � ∪  but D−1

=+1FE=+1 ∉ �. Then D−1
=+1ℎE=+1 ∉ � for all
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ℎ ∈ � ∪  .

Subcase 1a. Suppose 4= = 1 = 4=+1. Since G= = A−1
= H=B= where A=, B= ∈ � ∪  

and �,  ⊆ / (�) such that � ∩  ≠ 1, we assume that B= ∈ � and A= ∈  . We first

show that D=A−1
= E
−1
= ∉ � ∪  . Suppose D=A−1

= E
−1
= = F′ for some F′ ∈ � ∪  . Then

D−1
=+1F

′E=+1 = C−1G−1
= D
−1
= F

′E=H=C = C−1G−1
= A
−1
= H=C = C−1B−1

= C ∈ �, a contradiction since

D−1
=+1ℎE=+1 ∉ � for all ℎ ∈ � ∪  . So, D=A−1

= E
−1
= ∉ � ∪  . Since � is �-separable

and  -separable by Lemma 5.4, there exists % � 5 � such that D=A−1
= E
−1
= ∉ �% ∪  %.

Let #∗ = #0 ∩ % ∩ �. By Lemma 4.3, there exists # � 5 � such that # ⊆ #∗ and

q(#∩�) = #∩ . Nowwe form �̄. Then | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and D̄=Ā−1
= Ē
−1
= ∉ �̄∪ ̄

in �̄.

Suppose Ḡ ∼�̄ H̄. Then there exists a complete set of admissible solutions

?̄0, @̄1, . . . , @̄<, ?̄< ∈ �̄ ∪  ̄ to (1∗) of Definition 2.9 such that Ḡ: = @̄−1
:
H̄: ?̄: and

C−4: ?̄:−1C
4: = @̄: for 1 ≤ : ≤ <, where ?̄0 = ?̄<. Let D̄: = C41 Ḡ1 . . . Ḡ:−1C

4: and

Ē: = C41 H̄1 . . . H̄:−1C
4: . Then D̄−1

:
?̄−1

0 Ē: = @̄: . Furthermore, Ē−1
:
B̄Ē: ∈ �̄ ∩  ̄ for all

B̄ ∈ �̄ ∩  ̄ since q̄(�̄ ∩  ̄) = �̄ ∩  ̄ and �̄,  ̄ ⊂ / ( �̄). Since C−4= ?̄=−1C
4= = @̄= and

C−4=+1 ?̄=C4=+1 = @̄=+1 where 4= = 1 = 4=+1, we have ?̄= ∈ �̄ and @̄= ∈  ̄. Since Ḡ= =

Ā−1
= H̄= B̄= = @̄

−1
= H̄= ?̄=, we have ?̄= B̄−1

= = @̄=Ā
−1
= ∈ �̄ ∩  ̄ . This gives us Ā−1

= = @̄−1
= B̄ for some

B̄ ∈ �̄ ∩  ̄ . It follows that D̄=Ā−1
= Ē
−1
= = D̄=@̄

−1
= B̄Ē

−1
= = (D̄=@̄−1

= Ē
−1
= ) (Ē= B̄Ē−1

= ) = ?̄−1
0 B̄′ ∈ �̄ ∪  ̄

for some B̄′ ∈ �̄ ∩  ̄ , a contradiction. Therefore, Ḡ ��̄ H̄ and the result follows. Similarly

if 4= = −1 = 4=+1.

Subcase 1b. Suppose 4= = 1 = −4=+1. Now let F be an element, where D−1
= FE= ∈ �∪ 

but D−1
=+1FE=+1 ∉ �. Since D−1

= FE= ∈ � ∪  , and D−1
= FE= has the form D−1

= FE= =

C−1G−1
=−1D

−1
=−1FE=−1H=−1C, we have D−1

= FE= ∈  . Since D−1
=+1FE=+1 = CG

−1
= D
−1
= FE=H=C

−1 ∉ �,

we have G−1
= D
−1
= FE=H= ∉  . This implies that G−1

= H= ∉  since  ⊆ / (�). Since � is

subgroup separable, there exists #1 � 5 � such that G−1
= H= ∉  #1. As above, there exists
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# � 5 � such that # ⊆ #0 ∩ #1 and q(# ∩ �) = # ∩  . We can form �̄ now. Clearly

| |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and Ḡ−1
= H̄= ∉  ̄ in �̄.

Suppose Ḡ ∼�̄ H̄. Then there exists a complete set of admissible solutions

?̄0, @̄1, . . . , @̄<, ?̄< ∈ �̄ ∪  ̄ to (1∗) of Definition 2.9 such that Ḡ: = @̄−1
:
H̄: ?̄: and

C−4: ?̄:−1C
4: = @̄: for 1 ≤ : ≤ <, where ?̄0 = ?̄<. Since C−4= ?̄=−1C

4= = @̄= and

C−4=+1 ?̄=C4=+1 = @̄=+1 where 4= = 1 = −4=+1, we have ?̄= ∈  ̄ and @̄= ∈  ̄. Since

Ḡ= = @̄
−1
= H̄= ?̄=, Ḡ−1

= H̄= = @̄= ?̄
−1
= ∈  ̄, a contradiction. Therefore, Ḡ ��̄ H̄ and the result

follows. Similarly if −4= = 1 = 4=+1.

Case 2. Suppose there exists an element F ∈ � ∪  such that D−1
9
FE 9 ∈ � ∪  but

G−1
< D
−1
< FE<H< ≠ F.

Subcase 2a. Let 41 = 1 = 4<. Note that G< = A−1
< H<B<, where A<, B< ∈ � ∪  . Since

�,  ⊆ / (�) and � ∩  ≠ 1, we assume B< ∈ � and A< ∈  . Suppose D<A−1
< E
−1
< ∉ �.

Since� is�-separable, there exists %� 5 � such that D<A−1
< E
−1
< ∉ �%. Let #∗ = #0∩%∩�.

Then #∗ � 5 �. As above, there exists # � 5 � such that # ⊆ #∗ and q(# ∩ �) = # ∩  .

We now form �̄. Then | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and D̄<Ā−1
< Ē
−1
< ∉ �̄ in �̄.

Suppose Ḡ ∼�̄ H̄. Then there exists a complete set of admissible solutions

?̄0, @̄1, . . . , @̄<, ?̄< ∈ �̄ ∪  ̄ to (1∗) of Definition 2.9 such that Ḡ: = @̄−1
:
H̄: ?̄: and

C−4: ?̄:−1C
4: = @̄: for 1 ≤ : ≤ <, where ?̄0 = ?̄<. Since C−41 ?̄0C

41 = @̄1 and

C−4< ?̄<−1C
4< = @̄<, we must have ?̄0 ∈ �̄ and @̄< ∈  ̄. Since Ḡ< = Ā−1

< H̄< B̄< =

@̄−1
< H̄< ?̄<, ?̄< B̄

−1
< = @̄<Ā

−1
< ∈ �̄ ∩  ̄, which implies that Ā−1

< = @̄−1
< B̄ for some B̄ ∈ �̄ ∩  ̄.

Thus, D̄<Ā−1
< Ē
−1
< = D̄< @̄

−1
< B̄Ē

−1
< = (D̄< @̄−1

< Ē
−1
< ) (Ē< B̄Ē−1

< ) = ?̄−1
< B̄
′ for some B̄′ ∈ �̄ ∩  ̄. We

can see that D̄<Ā−1
< Ē
−1
< = ?̄−1

< B̄
′ ∈ �̄, a contradiction. Therefore, Ḡ ��̄ H̄ and the result

follows.

Now suppose D<A−1
< E
−1
< ∈ �, say D<A−1

< E
−1
< = ℎ−1

1 for some ℎ1 ∈ �. Hence G−1ℎ−1
1 H =

G−1
< D
−1
< ℎ
−1
1 E<H< = B

−1
< , and therefore G = ℎ−1

1 HB<. Since G �� H, we have B< ≠ ℎ1.
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Suppose G = ℎ−1
2 Hℎ3 is another expression of G, where ℎ2, ℎ3 ∈ �.

Then H−1ℎ2ℎ
−1
1 H = ℎ3B

−1
< , i.e., G−1

< C
−4< . . . G−1

1 C−41ℎ2ℎ
−1
1 C

41G1 . . . C
4<G< = ℎ3B

−1
< .

This implies that C−41ℎ2ℎ
−1
1 C

41 ∈ � ∪  . Since �,  ⊆ / (�), we have

G−1
< C
−4< . . . G−1

1 C−41ℎ2ℎ
−1
1 C

41G1 . . . C
4<G< = ℎ3B

−1
< . We must obtain C−(41+42)ℎ2ℎ

−1
1 C
(41+42) ∈

� ∪  . Continuing this, we have C−4ℎ2ℎ
−1
1 C

4 = ℎ3B
−1
< , where 4 = 41 + . . . + 4<.

If 4 = 0, then ℎ2ℎ
−1
1 = ℎ3B

−1
< . Thus, ℎ−1

1 B< = ℎ−1
2 ℎ3. Let I = ℎ−1

1 B<. Since I ≠ 1

and � is residually finite, there exists #1 � 5 � such that I ∉ #1. As above, there exists

# � 5 � such that # ⊆ #0 ∩ #1 and q(# ∩ �) = # ∩  . We now form �̄. Then

| |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and Ī ≠ 1̄ in �̄. It follows that Ḡ ��̄ H̄ and we are done.

If 4 ≠ 0, from C−4ℎ2ℎ
−1
1 C

4 = ℎ3B
−1
< , we have C−4ℎ−1

1 C
4B< = C

−4ℎ−1
2 C

4ℎ3. Furthermore,

ℎ2ℎ
−1
1 ∈ � ∩  and ℎ3B

−1
< ∈ � ∩  since ℎ2ℎ

−1
1 , ℎ3B

−1
< ∈ � and q(� ∩  ) = � ∩  .

Since G �� H, G ≠ ℎ−1H0 for all ℎ ∈ �. This implies that C−4ℎ−1
1 C

4B< ≠ C
−4ℎ−1C4ℎ, for all

ℎ ∈ �, where ℎℎ−1
1 ∈ � ∩  . Let I = C

−4ℎ−1
1 C

4B< and ! = {C−4ℎ−1C4ℎ|ℎℎ−1
1 ∈ � ∩  }.

Then I ∉ !.

Let !′ = {C−4ℎ−1C4ℎ|ℎ ∈ � ∩  } and F = C−4ℎ−1
1 C

4ℎ1. Then ! = F!′. To see this,

let G ∈ !. Then G = C−4ℎ−1C4ℎ, where ℎℎ−1
1 = B ∈ � ∩  . So G = C−4ℎ−1

1 B−1C4ℎ1B =

C−4ℎ−1
1 C

4C−4B−1C4ℎ1B = C−4ℎ−1
1 C

4ℎ1C
−4B−1C4B ∈ F!′. Hence, ! ⊆ F!′, and similarly,

F!′ ⊆ !.

Note that !′ is a finitely generated subgroup of � since !′ ⊆ �∩ . Since I ∉ !, we have

F−1I ∉ !′. Since � is subgroup separable, there exists #1 � 5 � such that F−1I ∉ !′#1.

As above, there exists # � 5 � such that # ⊆ #0 ∩ #1 and q(# ∩ �) = # ∩  . We now

form �̄. Clearly | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and F̄−1 Ī ∉ !̄′ in �̄. This implies that Ī ∉ !̄

and hence Ḡ ��̄ H̄. The result follows. Similarly if 41 = −1 = 4<.

Subcase 2b. Suppose 41 = 1 = −4<. We assume G−1FH ∉ �. Since D−1
< FE< ∈ � ∪  

and D−1
< FE< has the form D−1

< FE< = CG−1
<−1D

−1
<−1FE<−1H<−1C

−1, we have D−1
< FE< ∈ �.
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Since G−1
< D
−1
< FE<H< ∉ � and � ⊆ / (�), we have G−1

< H< ∉ �. Since � is subgroup

separable, there exists #1 � 5 � such that G−1
< H< ∉ �#1. As above, there exists # � 5 �

such that # ⊆ #0 ∩ #1 and q(# ∩ �) = # ∩  . We now form �̄. Clearly | |Ḡ | | = | |G | | =

| |H | | = | | H̄ | | and Ḡ−1
< H̄< ∉ �̄ in �̄.

Suppose Ḡ ∼�̄ H̄. Then there exists a complete set of admissible solutions

?̄0, @̄1, . . . , @̄<, ?̄< ∈ �̄ ∪  ̄ to (1∗) of Definition 2.9 such that Ḡ: = @̄−1
:
H̄: ?̄: and

C−4: ?̄:−1C
4: = @̄: for 1 ≤ : ≤ <, where ?̄0 = ?̄<. Since C−4< ?̄<−1C

4< = @̄< and

C−41 ?̄<C
41 = @̄1, we have ?̄0 ∈ �̄ and @̄< ∈ �̄. Since Ḡ< = @̄−1

< H̄< ?̄<, Ḡ−1
< H̄< = @̄< ?̄

−1
< ∈ �̄,

a contradiction. Therefore, Ḡ ��̄ H̄ and the result follows.

Now suppose G−1FH ∈ �. Then G−1FH = ℎ for some ℎ ∈ �. Thus G = FHℎ−1. Since

G �� H, we have F ≠ ℎ. The result now follows as in Subcase 2a.

Theorem 5.6. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where � ∩  ≠ 1.

Suppose � and  are finitely generated subgroups in / (�) such that |� : �∩ | < ∞, | :

� ∩  | < ∞. Further suppose q(� ∩  ) = � ∩  with q(B) = B±1 for all B ∈ � ∩  . Let

� be cyclic conjugacy separable and subgroup separable. Then � is cyclic conjugacy

separable.

Proof. We apply Theorem 2.14 here. Since � is cyclic conjugacy separable and subgroup

separable, we have conditions (a) and (b). By Lemma 4.3 and Lemma 5.5, conditions (c)

and (d) are satisfied.

We now prove for condition (e). Let G, H ∈ � such that | |G | | = | |H | | = 0 and

{G}� ∩ 〈H〉 = ∅.

Case 1. Suppose G ∉ � ∪  . The proof for this case is similar to Case 1 of

Theorem 5.3 except that in this case we use Lemma 4.3 instead of Lemma 5.1 where

�̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉with �̄,  ̄ ⊆ / ( �̄),� ∩  = �̄∩ ̄ , Ḡ ∉ �̄∪ ̄ and {Ḡ} �̄∩〈H̄〉 = ∅.

The proof follows as in Case 1 of Theorem 5.3.
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Case 2. Suppose G ∈ � ∪  \(� ∩  ). The proof of this case is similar to Case 2

of Theorem 5.3. As in Case 1 above, we use Lemma 4.3 instead of Lemma 5.1 where

�̄ = 〈C, �̄|C−1�̄C =  ̄, q̄〉 where �̄,  ̄ ⊆ / ( �̄), � ∩  = �̄ ∩  ̄ . Furthermore, Ḡ ∉ �̄ ∩  ̄

and Ḡ, C−1ḠC ∉ 〈H̄〉 if Ḡ ∈ �̄, Ḡ, CḠC−1 ∉ 〈H̄〉 if Ḡ ∈  ̄ .

Case 3. Suppose G ∈ � ∩  . Note that {G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 = ∅

and C−=GC= ∉ 〈H〉 for all integers =. Since �,  ⊆ / (�) and q(B) = B±1 for all B ∈ � ∩  ,

then {G}� ∩ 〈H〉 = ∅ implies that G, G−1 ∉ 〈H〉. We can now proceed as in Case 2 above

and the result follows.

Therefore we have condition (e) and this completes the proof. Thus, � is cyclic

conjugacy separable by Theorem 2.14.

5.4 Applications

We extend Theorem 5.3 and Theorem 5.6 here.

Corollary 5.7. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension where �,  are finitely

generated in / (�). Let � be free-by-finite. Suppose one of the following holds:

(0) � ∩  = 1;

(1) � =  ;

(2) there exists � ∩  � 5 �, � ∩  � 5  and q(� ∩  ) = � ∩  where q(B) = B or

q(B) = B−1 for all B ∈ � ∩  .

Then � is cyclic conjugacy separable.

Proof. Free-by-finite groups are cyclic conjugacy separable and subgroup separable. Thus,

(a) and (c) are straightforward from Theorem 5.3 and Theorem 5.6 respectively. As for (b),

when � =  , we have q(�) = � is an automorphism and the result follows from Theorem

5.6.
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Corollary 5.8. Let � = 〈C, �|C−1�C =  , q〉 be an HNN extension. Let � be finitely

generated abelian. Suppose one of the following holds:

(0) � ∩  = 1;

(1) � =  ;

(2) there exists � ∩  � 5 �, � ∩  � 5  and q(� ∩  ) = � ∩  where q(B) = B or

q(B) = B−1 for all B ∈ � ∩  .

Then � is cyclic conjugacy separable.

Theorem 5.9. (Meskin, 1972) The group � = 〈0, 1 |0−U1V0U1−W〉 is residually finite if

and only if V ± W = 0 or |V | = 1 or |W | = 1.

Theorem 5.10. Let � = 〈C, �|C−10C = 1〉 be an �## extension where 〈0〉, 〈1〉 are infinite

cyclic subgroups of / (�). Let � be non-cyclic, cyclic conjugacy separable and subgroup

separable. Then � is cyclic conjugacy separable if and only if 〈0〉 ∩ 〈1〉 = 1 or 0< = 1±<

for some positive integer <.

Proof. Note that � is an HNN extension with base group �, associated subgroups 〈0〉, 〈1〉

and q : 〈0〉 → 〈1〉 where q(0) = 1. If 〈0〉 ∩ 〈1〉 = 1, then � is cyclic conjugacy separable

by Theorem 5.3. If 0< = 1±< for some positive integer <, then 〈0〉 ∩ 〈1〉 = 〈0<〉 = 〈1±<〉.

Thus, the result follows from Theorem 5.6.

Conversely, suppose � is cyclic conjugacy separable. Then � is residually finite. Then

the result follows from Theorem 5.9.

Corollary 5.11. Let � = 〈C, �|C−10C = 1〉 be an �## extension where 〈0〉 and 〈1〉 are

infinite cyclic subgroups in / (�). Let � be non-cyclic, free-by-finite. Then � is cyclic

conjugacy separable if and only if 〈0〉 ∩ 〈1〉 = 1 or 0< = 1±< for some positive integer <.

Proof. Since free-by-finite groups are cyclic conjugacy separable and subgroup separable,

the result follows from Theorem 5.10.
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Corollary 5.12. Let � = 〈C, �|C−10C = 1〉 be an �## extension where 〈0〉 and 〈1〉 are

infinite cyclic subgroups in / (�). Let � be non-cyclic finitely generated abelian. Then �

is cyclic conjugacy separable if and only if 〈0〉 ∩ 〈1〉 = 1 or 0< = 1±< for some positive

integer <.
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CHAPTER 6: CYCLIC CONJUGACY SEPARABILITY OF GENERALIZED

FREE PRODUCTS

6.1 Introduction

In the second part of this thesis, we will study the cyclic conjugacy separability of

generalized free products and tree products with various amalgamated subgroups. As in

Chapter 2, we establish a criterion which state the basic core conditions in order to be

applied to the generalized free products. This criterion is given in Theorem 6.6.

6.2 Cyclic Conjugacy Separability of Generalized Free Products

We give the essential lemmas needed before we prove the criterion.

Lemma 6.1. (Magnus et al., 1966) Let � = � ∗
�
� and let G ∈ � be of minimal length in

its conjugacy class. Suppose that H ∈ � is cyclically reduced and H ∼� G.

(0) If | |G | | = 0, then | |H | | ≤ 1 and if H ∈ � say, there exists a finite sequence

ℎ1, ℎ2, . . . , ℎ= of elements of � such that H ∼� ℎ1 ∼� ℎ2 ∼� . . . ∼�(�) ℎ= ∼�(�) G.

(1) If | |G | | = 1, then | |H | | = 1 and either G, H ∈ � and G ∼� H or else G, H ∈ � and

G ∼� H.

(2) If | |G | | ≥ 2, then | |H | | = | |G | | and H ∼� G′ where G′ is a cyclic permutation of G.

Definition 6.2. Let � = � ∗
�
� and G, H are cyclically reduced elements in � with | |G | | =

| |H | | = = ≥ 2. Suppose G = G1G2 . . . G=, H = H1H2 . . . H=.

Consider the following set of equations:
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G8+1 = :
−1
0 H1:1

G8+2 = :
−1
1 H1:2

... (1)

G8+= = :
−1
=−1H=:=

where 0 ≤ 8 < = and the integer 8 + 9 is taken modulo =.

A pair of elements ℎ 9−1, ℎ 9 of � is called an admissible solution of the 9-th equation if

and only if G8+ 9 = ℎ−1
9−1H 9ℎ 9 . A set of admissible solutions ℎ0, ℎ1, . . . , ℎ= of � to (1) is

said to be complete if and only if ℎ0, ℎ1, . . . , ℎ= satisfy (1) simultaneously and ℎ0 = ℎ=.

This is equivalent to G′ = ℎ−1
0 Hℎ0 where G′ = G8+1G8+2 . . . G8 is a cyclic permutation of

G. So G ∼� H if and only if the system of equations (1) has a set of complete admissible

solutions for some 0 ≤ 8 < =.

Lemma 6.3. Let � = � ∗
�
� where � and � are finite. Then � is subgroup separable

(Allenby & Gregorac, 1973), conjugacy separable (Dyer, 1980) and cyclic conjugacy

separable (Tang, 1997).

Lemma 6.4. Let � = � ∗
�
� and G, H ∈ � where G has minimal length in its conjugacy

class and H is cyclically reduced. Suppose | |G | | = | |H±: | | ≥ 2 for some positive integer : .

Then {G}� ∩ 〈H〉 = ∅ if and only if G �� H±: .

Proof. Suppose {G}� ∩ 〈H〉 = ∅. Then 6−1G6 ∉ 〈H〉 for any 6 ∈ �. This implies that

6−1G6 ≠ H±A for all A ∈ Z+. Thus, 6−1G6 ≠ H±: . Hence G �� H±: . Conversely, suppose

G �� H
±: . We have 6−1G6 ≠ H±: for any 6 ∈ �. Since | |G | | ≠ | |H±= | | for all = ∈ Z+\{:},

G �� H
±= by Lemma 6.1(c). Thus, G �� H±A for all A ∈ Z+. Therefore, {G}� ∩ 〈H〉 = ∅.
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We simplify the results in Baumslag (1963) and obtain the following lemma.

Lemma 6.5. Let � = � ∗
�
�. Suppose

(i) � and � are residually finite;

(ii) � and � are �-separable;

(iii) For each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � ⊆ '.

Then � is residually finite.

We now state and prove our main criterion which will be used to prove our main results

in Chapter 7, Chapter 8 and Chapter 9.

Theorem 6.6. Let � = � ∗
�
�. Suppose

(0) � and � are cyclic conjugacy separable;

(1) � and � are �-conjugacy separable;

(2) � and � are �-separable;

(3) For each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � ⊆ ';

(4) For G, H ∈ � such that | |G | | = | |H | | ≥ 2 and G �� H, there exists & � 5 � such that

G& ��/& H&;

( 5 ) For G, H ∈ � such that | |G | | = 0, | |H | | ≤ 1 and {G}� ∩ 〈H〉 = ∅, there exists % � 5 �

such that {G%}�/% ∩ 〈H%〉 = ∅.

Then � is cyclic conjugacy separable.

Proof. Let G, H ∈ � such that {G}� ∩ 〈H〉 = ∅. Without loss of generality, we assume that

G has minimal length in its conjugacy class and H is cyclically reduced in �. Since � is

residually finite by Lemma 6.5, we can assume G ≠ 1 ≠ H.

Case 1. Suppose | |G | | ≥ 2, | |H | | ≥ 2. Let G = 0102 . . . 0=, H = 1112 . . . 1< where

= ≥ 2, < ≥ 2. Let DA denote those 08, 1 9 ∈ �\� and EB denote those 08, 1 9 ∈ �\�. Since
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� and � are �-separable, there exist "1 � 5 �, #1 � 5 � such that DA ∉ �"1 and EB ∉ �#1

for all DA , EB.

Subcase 1a. Suppose = ≠ :< for all positive integers : . Let ' = "1 ∩ #1 ∩ �. Then

' � 5 �. By (d), there exist "2 � 5 �, #2 � 5 � such that "2 ∩ � = #2 ∩ � = '1 ⊆ '.

Let " = "1 ∩ "2 and # = #1 ∩ #2. Then " � 5 � and # � 5 �.

We now show that " ∩ � = # ∩ � ⊆ '. Recall that ' = "1 ∩ #1 ∩ � and

"2 ∩ � = #2 ∩ � = '1 ⊆ '. Let "1 ∩ � = '2, #1 ∩ � = '3 where ' ⊆ '2 ∩ '3. Then

" ∩ � = "1 ∩ "2 ∩ � = ("1 ∩ �) ∩ ("2 ∩ �) = '2 ∩ '1 = '1. Similarly, we have

# ∩ � = '1.

Thus " � 5 �, # � 5 � such that " ∩ � = # ∩ �. We form �̄ = �̄ ∗
�̄
�̄ where

�̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Then in �̄, we have | |Ḡ | | = | |G | | ≠

: | |H | | = : | | H̄ | | = | | H̄±: | | for all positive integers : . Hence by Lemma 6.1(c), Ḡ ��̄ H̄±: for

all positive integers : and so {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by

Lemma 6.3, we can find %̄� 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of

%̄ in �. Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅. The result now follows.

Subcase 1b. Suppose = = :< for some positive integer : . Since {G}� ∩ 〈H〉 = ∅, then

by Lemma 6.4, G �� H±: . By (e), there exists & � 5 � such that G& ��/& H±:&. Let

' = & ∩ "1 ∩ #1 ∩ �. Then ' � 5 �. By (d), there exist "2 � 5 �, #2 � 5 � such that

"2 ∩ � = #2 ∩ � = '1 ⊆ '. Let " = & ∩ "1 ∩ "2 and # = & ∩ #1 ∩ #2.

We now show that " ∩ � = # ∩ � ⊆ '. Recall that ' = & ∩ "1 ∩ #1 ∩ � and

"2∩� = #2∩� = '1 ⊆ '. Let&∩"1∩� = '2, &∩#1∩� = '3 where ' ⊆ '2∩ '3.

Then " ∩� = & ∩"1 ∩"2 ∩� = (& ∩"1 ∩�) ∩ ("2 ∩�) = '2 ∩ '1 = '1. Similarly,

we have # ∩ � = '1.

Thus " � 5 �, # � 5 � such that " ∩ � = # ∩ �. We form �̄ as in Subcase 1a. Then

in �̄, we have | |Ḡ | | = | |G | | = : | |H | | = : | | H̄ | | = | | H̄±: | | for some positive integer : and also
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Ḡ ��̄ H̄
±: . By Lemma 6.4, we have {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable

by Lemma 6.3, our result follows as in Subcase 1a.

Case 2. Suppose | |G | | ≤ 1, | |H | | ≥ 2. Let G ∈ � and H = 1112 . . . 1< where < ≥ 2.

As in Case 1, let DA denote those 1 9 ∈ �\� and EB denote those 1 9 ∈ �\�. Since �

is residually finite and �, � are �-separable, there exist "1 � 5 �, #1 � 5 � such that

G ∉ "1, DA ∉ �"1 and EB ∉ �#1 for all DA , EB. Let ' = "1 ∩ #1 ∩ �. Then ' � 5 �. By

(d), there exist"2� 5 �, #2� 5 � such that"2∩� = #2∩� = '1 ⊆ '. Let" = "1∩"2

and # = #1 ∩ #2. Then " � 5 �, # � 5 � and " ∩ � = # ∩ � as in Subcase 1a.

As in Subcase 1a, we form �̄. Then in �̄ we have Ḡ ≠ 1̄, | |Ḡ | | ≤ 1 and | | H̄ | | ≥ 2. By

Lemma 6.1(a), any conjugate of Ḡ in �̄ is either any element Ḡ′ ∈ �̄ ∪ �̄ or of the form

D̄−1Ḡ′D̄ where D̄−1Ḡ′D̄ and D̄ are the reduced words with Ḡ′ ∈ �̄ ∪ �̄. Since H̄ is cyclically

reduced and | | H̄ | | ≥ 2, then H̄±: is cyclically reduced and | | H̄±: | | ≥ 2 for all positive integers

: . Hence by Lemma 6.1(c), we have Ḡ ��̄ H̄±: for all positive integers : . So, we have

{Ḡ}�̄ ∩ 〈H̄〉 = ∅. We now proceed as in Subcase 1a and the result follows.

Case 3. Suppose | |G | | ≥ 2, | |H | | ≤ 1. Let H ∈ �. As in Case 2, we can form �̄ = �̄ ∗
�̄
�̄

such that 1̄ ≠ H̄ ∈ �̄, | | H̄ | | ≤ 1 and | |Ḡ | | ≥ 2. As H̄ ∈ �̄, then H̄±: ∈ �̄ for all positive

integers : . Since | |Ḡ | | ≥ 2, then by Lemma 6.1(c), Ḡ ��̄ H̄±: for all positive integers : .

Hence, we again proceed as in Subcase 1a and the result follows.

Case 4. Suppose | |G | | = 1, | |H | | ≤ 1.

Subcase 4a. Suppose G ∈ �\�, H ∈ �. Note that {G}� ∩ 〈H〉 = ∅ implies that

{G}� ∩ 〈H〉 = ∅. Since � is cyclic conjugacy separable, there exists "1 � 5 � such that

{G"1}�/"1 ∩ 〈H"1〉 = ∅. Given that G is of minimal length in its conjugacy class, we

have {G}� ∩ � = ∅. Since � is �-conjugacy separable, there exists "2 � 5 � such that

{G"2}�/"2 ∩ �"2/"2 = ∅. Let ' = "1 ∩ "2 ∩ �. Then ' � 5 �. By (d), there exist

"3 � 5 �, #1 � 5 � such that "3 ∩ � = #1 ∩ � = '1 ⊆ '. Let " = "1 ∩ "2 ∩ "3 and
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# = #1. Then " � 5 � and # � 5 �.

We now show that " ∩ � = # ∩ � ⊆ '. Recall that ' = "1 ∩ "2 ∩ �. Then

" ∩ � = "1 ∩ "2 ∩ "3 ∩ � = ("1 ∩ "2 ∩ �) ∩ ("3 ∩ �) = ' ∩ '1 = '1. Similarly,

# ∩ � = #1 ∩ � = '1.

Thus"� 5 �, #� 5 � such that"∩� = #∩�. We form �̄ as in Subcase 1a. Then in �̄,

we have | |Ḡ | | = 1, | | H̄ | | ≤ 1 where Ḡ ∈ �̄\�̄, H̄ ∈ �̄ and also {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ḡ} �̄ ∩ �̄ = ∅.

Since H̄±: ∈ �̄ for all positive integers : and {Ḡ} �̄ ∩ �̄ = ∅, then by Lemma 6.1(a) and (b),

we have Ḡ ��̄ H̄±: . So, this implies that {Ḡ}�̄ ∩ 〈H̄〉 = ∅. We now proceed as in Subcase

1a and our result follows.

Subcase 4b. Suppose G ∈ �\�, H ∈ �\�. Given that G is of minimal length in its

conjugacy class, we have {G}� ∩ � = ∅. Since � is �-conjugacy separable, there exists

"1 � 5 � such that {G"1}�/"1 ∩ �"1/"1 = ∅. Since � is �-separable, there exists

#1 � 5 � such that H ∉ �#1. Let ' = "1 ∩ #1 ∩ �. Then ' � 5 �. By (d), there exist

"2 � 5 �, #2 � 5 � such that "2 ∩ � = #2 ∩ � = '1 ⊆ '. Let " = "1 ∩ "2 and

# = #1 ∩ #2. Then " � 5 �, # � 5 � and " ∩ � = # ∩ � as in Subcase 1a.

As in Subcase 1a, we form �̄. Then in �̄, | |Ḡ | | = 1 = | | H̄ | | where Ḡ ∈ �̄\�̄, H̄ ∈ �̄\�̄

and also we have {Ḡ} �̄ ∩ �̄ = ∅. Since H̄±: ∈ �̄ and {Ḡ} �̄ ∩ �̄ = ∅, then by Lemma 6.1(a)

and (b), we have Ḡ ��̄ H̄±: for all positive integers : . So, this implies that {Ḡ}�̄ ∩ 〈H̄〉 = ∅.

We now proceed as in Subcase 1a and the result follows.

Case 5. Suppose | |G | | = 0, | |H | | ≤ 1. The result follows from (f).

The proof of the theorem is now completed.
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CHAPTER 7: FREE PRODUCTS AMALGAMATING CYCLIC SUBGROUPS

7.1 Introduction

The conjugacy separability of the generalized free products of two finitely generated

nilpotent groups amalgamating a cyclic group was shown by Dyer (1980). One of the

requirement in that proof was that each of the factor group is cyclic conjugacy separable.

So, the first step to extend conjugacy separability to tree products amalgamating cyclic

subgroups, we will need the requirement that such generalized free products are cyclic

conjugacy separable. Thus, this is the main result (Theorem 7.6) of this chapter.

7.2 Lemmas Needed

We now state and prove the lemmas needed in this chapter.

Lemma 7.1. Let � be a group and ℎ an element of infinite order in �. Suppose � is

〈ℎ〉-weakly potent. If ℎB ∼� ℎC for some integers B, C, then B = ±C.

Proof. Since � is 〈ℎ〉-weakly potent, we can find a positive integer A such that for each

positive integer =, there exists " � 5 � such that " ∩ 〈ℎ〉 = 〈ℎA=〉. We choose = = |B | |C |

and denote the image of ℎ in �̄ = �/" by ℎ̄. Then | ℎ̄B | = A |C | and | ℎ̄C | = A |B |. Since

ℎ̄B ∼�̄ ℎ̄C , we have A |B | = A |C |. This implies |B | = |C | and hence B = ±C.

Lemma 7.2. Let � = � ∗〈ℎ〉� where ℎ has infinite order. Suppose � and � are 〈ℎ〉-weakly

potent. Then for any '� 5 〈ℎ〉, there exist"� 5 �, #� 5 � such that"∩〈ℎ〉 = #∩〈ℎ〉 ⊆ '.

Proof. Let ' � 5 〈ℎ〉 be given. Then ' = 〈ℎB〉 for some positive integer B. Since � and �

are 〈ℎ〉-weakly potent, we can find some positive integers A1, A2 such that for each positive

integer =, there exist "1 � 5 �, #1 � 5 � such that "1∩ 〈ℎ〉 = 〈ℎA1=〉 and #1∩ 〈ℎ〉 = 〈ℎA2=〉.
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Thus, there exist " � 5 �, # � 5 � such that " ∩ 〈ℎ〉 = 〈ℎA1A2B〉 and # ∩ 〈ℎ〉 = 〈ℎA1A2B〉.

Furthermore, " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉 = 〈ℎA1A2B〉 ⊆ '.

Theorem 7.3. (Kim & Tang, 1993) Let � = � ∗
�
�. Suppose that

(a) � and � are �-separable;

(b) for each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � ⊂ '.

Then � is cyclic subgroup separable.

Lemma 7.4. Let � = � ∗〈ℎ〉� where ℎ has infinite order.

(8) � and � are cyclic subgroup separable;

(88) � and � are 〈ℎ〉-weakly potent.

Then � is cyclic subgroup separable.

Proof. By Lemma 7.2, there exist " � 5 �, # � 5 � such that " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. Since

� and � are cyclic subgroup separable and 〈ℎ〉-separable, we have � is cyclic subgroup

separable by Theorem 7.3.

Lemma 7.5. Let � = � ∗〈ℎ〉� where ℎ has infinite order. Suppose

(8) � and � are cyclic subgroup separable;

(88) � and � are 〈ℎ〉-double coset separable;

(888) � and � are 〈ℎ〉-weakly potent.

Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 2 and G �� H, there exists % � 5 � such

that G% ��/% H%.

Proof. Let G = G1G2 . . . G= and H = H1H2 . . . H= be cyclically reduced in � where = ≥ 2.

Since G �� H, the system of equations (1) of Definition 6.2 has no solution for all 8.

Therefore we need to show that, for each 8, there exists %8 � 5 � such that in �̄8 = �/%8,

the corresponding system of equations has no solution. Letting % be the intersection of all
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the normal subgroups %8, we have Ḡ ��̄ H̄ in �̄ = �/% and the result follows. Hence it is

sufficient to show the case 8 = 0 in (1) of Definition 6.2.

Since � and � are 〈ℎ〉-separable, there exist "1 � 5 �, #1 � 5 � such that G8, H8 ∉ 〈ℎ〉"1

for those G8, H8 ∈ �\〈ℎ〉 and G8, H8 ∉ 〈ℎ〉#1 for those G8, H8 ∈ �\〈ℎ〉.

Since G �� H, either some equations in (1) of Definition 6.2 has no admissible solution

in 〈ℎ〉 or every set of admissible solutions to (1) of Definition 6.2 is incomplete. First

suppose there exists some :, 1 ≤ : ≤ =, such that the :-th equation has no admissible

solution, that is, G: ∉ 〈ℎ〉H: 〈ℎ〉 where G: , H: ∈ �\〈ℎ〉. The proof for the case where

G: , H: ∈ �\〈ℎ〉 is similar. Since � is 〈ℎ〉-double coset separable, there exists "2 � 5 �

such that G: ∉ 〈ℎ〉H: 〈ℎ〉"2. Let ' = "1 ∩ "2 ∩ #1 ∩ 〈ℎ〉. By Lemma 7.2, we can find

"3 � 5 �, #2 � 5 � such that "3 ∩ 〈ℎ〉 = #2 ∩ 〈ℎ〉 ⊆ '. Let " = "1 ∩ "2 ∩ "3 and

# = #1 ∩ #2. Then " � 5 �, # � 5 � and " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. We now form �̄ = �̄ ∗〈ℎ̄〉 �̄

where �̄ = �/", �̄ = �/# and ℎ̄ = ℎ" = ℎ# . Clearly �̄ is a homomorphic image

of �. Then Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Furthermore,

Ḡ: ∉ 〈ℎ̄〉 H̄: 〈ℎ̄〉 in �̄. Hence Ḡ ��̄ H̄. Since �̄ = �/", �̄ = �/# are finite, then �̄ is

conjugacy separable by Lemma 6.3 and the result follows.

Suppose ℎ01 , ℎ11 , . . . , ℎ0A , ℎ1A is a set of incomplete admissible solutions to (1) of

Definition 6.2. Then we have the following.

G1 = ℎ
−01H1ℎ

11

G2 = ℎ
−02H2ℎ

12

... (2)

GA = ℎ
−0A HAℎ

1A

Suppose H−1
8
〈ℎ〉H8 ∩ 〈ℎ〉 = 〈ℎW8〉 where each W8 ≥ 0, 1 ≤ 8 ≤ A.
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Case 1. Suppose W8 ≠ 0 for all 8. Suppose H−1
8
ℎX8 H8 = ℎ

W8 for some integer X8. Since

� and � are 〈ℎ〉-weakly potent, we have W8 = ±X8 by Lemma 7.1. Hence we have

H−1
8
ℎW8 H8 = ℎ

±W8 for all 8. Let W = ;2<{W8 |1 ≤ 8 ≤ A}. Clearly, H−1
8
ℎWH8 = ℎ

±W for all 8.

Subcase 1a. Suppose in the system of equations (2), the total number of equations

H−1
8
ℎWH8 = ℎ

−W is zero or is even. This implies that H−1ℎWH = H−1
A . . . H−1

1 ℎWH1 . . . HA = ℎ
W,

that is [H, ℎW] = 1. Hence ℎ−IHℎI = ℎ− 9 Hℎ 9 for some 0 ≤ 9 < |W |. So, G ≠ ℎ−IHℎI for all

I ∈ Z implies that G ≠ ℎ− 9 Hℎ 9 for all 0 ≤ 9 < |W |. Hence by Lemma 6.1(c), G �〈ℎ〉 H if and

only if G ≠ ℎ− 9 Hℎ 9 for all 0 ≤ 9 < |W |. Since � is residually finite by Lemma 7.4, there

exists & � 5 � such that G−1ℎ− 9 Hℎ 9 ∉ & for all 0 ≤ 9 < |W |. Let ' = "1 ∩ #1 ∩& ∩ 〈ℎ〉.

By Lemma 7.2, we can find "2 � 5 �, #2 � 5 � such that "2 ∩ 〈ℎ〉 = #2 ∩ 〈ℎ〉 ⊆ '. Let

" = "1 ∩"2 ∩& and # = #1 ∩ #2 ∩&. Then " � 5 �, # � 5 � and " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉.

We now form �̄ as above. Then Ḡ, H̄ are cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in

�̄. Furthermore, Ḡ ≠ ℎ̄− 9 H̄ ℎ̄ 9 for all 0 ≤ 9 < |W |. Since ℎ̄−W H̄ ℎ̄W = H̄, then Ḡ ��̄ H̄ and the

result follows as above.

Subcase 1b. Suppose in the system of equations (2), the total number of equations

H−1
8
ℎWH8 = ℎ

−W is odd. Then arguing as in Subcase 1a, we have H−1ℎWH = ℎ−W, that is

ℎ−WHℎW = Hℎ2W. Hence, G ≠ ℎ−IHℎI for all I ∈ Z implies that G−1ℎ− 9 Hℎ 9 ∉ 〈ℎ2W〉 for

all 0 ≤ 9 < |W |. Hence by Lemma 6.1(c), G �〈ℎ〉 H if and only if G−1ℎ− 9 Hℎ 9 ∉ 〈ℎ2W〉

for all 0 ≤ 9 < |W |. Since � is cyclic subgroup separable by Lemma 7.4, there exists

& � 5 � such that G−1ℎ− 9 Hℎ 9 ∉ 〈ℎ2W〉& for all 0 ≤ 9 < |W |. As for Subcase 1a, we can

find " � 5 �, # � 5 � and " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. We now form �̄ as above. Then Ḡ, H̄ are

cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Furthermore, Ḡ−1 ℎ̄− 9 H̄ ℎ̄ 9 ∉ 〈ℎ̄2W〉 for

all 0 ≤ 9 < |W |. Since ℎ̄−W H̄ ℎ̄W = H̄ ℎ̄2W, then Ḡ ��̄ H̄ and the result follows as above.

Case 2. Suppose W8 = 0 for some 8, that is H−1
8
〈ℎ〉H8∩ 〈ℎ〉 = 1. Recall that G8 = ℎ−08 H8ℎ18

and suppose G8 = ℎ−UH8ℎV for some other ℎU, ℎV. Then H−1
8
ℎU−08 H8 = ℎV−18 ∈ H−1

8
〈ℎ〉H8 ∩
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〈ℎ〉 = 1 and hence U = 08, V = 18. This implies that the equation G8 = ℎ−08 H8ℎ18 has unique

solution ℎ−08 , ℎ18 . Fixing 8, we consider the next equation G8+1 = ℎ−08+1H8+1ℎ18+1 and arrange

if possible, so that 08+1 = 18. Continuing this way, since G �� H, we see that this matching

must eventually fail at some equation, say G 9 = ℎ−0 9 H 9ℎ
1 9 where 0 9 ≠ 1 9−1. Here the

integer 9 is taken modulo A and hence this equation may be the next equation or the equation

we started with. Let G′ = G8G8+1 . . . G 9−1G 9 and H′ = H8H8+1 . . . H 9−1H 9 . Then, by substituting

the value of each G8 from (2) into G′, we obtain G′ = ℎ−08 H8H8+1 . . . H 9−1ℎ
1 9−1−0 9 H 9ℎ

1 9 .

Hence G′ ∉ 〈ℎ〉H′〈ℎ〉. We shall only consider the case H8 ∈ �\〈ℎ〉 and H 9 ∈ �\〈ℎ〉. The

other cases are similar.

Subcase 2a. Suppose W 9 = 0, that is H−1
9
〈ℎ〉H 9 ∩ 〈ℎ〉 = 1. Then as above, the equation

G 9 = ℎ
−0 9 H 9ℎ

1 9 has unique solution ℎ−0 9 , ℎ1 9 . Let n = 2|0 9 − 1 9−1 |. Since � is 〈ℎ〉-double

coset separable, then by Lemma 3.4, there exists "2 � 5 � such that H−1
8
ℎ0H8"2 = ℎ

1"2

only if n |0, 1. Similarly, there exists #2 � 5 � such that H−1
9
ℎ2H 9#2 = ℎ

3#2 only if n |2, 3.

Let ' = "1 ∩ "2 ∩ #1 ∩ #2 ∩ 〈ℎ〉. By Lemma 7.2, we can find "3 � 5 �, #3 � 5 � such

that "3 ∩ 〈ℎ〉 = #3 ∩ 〈ℎ〉 ⊆ '. Let " = "1 ∩ "2 ∩ "3 and # = #1 ∩ #2 ∩ #3. Then

" � 5 �, # � 5 � and " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. We can now form �̄ as above. Then Ḡ, H̄ are

cyclically reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Furthermore, by the choice of "2,

H̄−1
8
ℎ̄0 H̄8 = ℎ̄

1 only if n |0, 1 whereas, by the choice of #2, H̄−1
9
ℎ̄2 H̄ 9 = ℎ̄

3 only if n |2, 3.

Note that Ḡ′ = Ḡ8 Ḡ8+1 . . . Ḡ 9−1Ḡ 9 = ℎ̄−08 H̄8 H̄8+1 . . . H̄ 9−1 ℎ̄
1 9−1−0 9 H̄ 9 ℎ̄

1 9 and H̄′ =

H̄8 H̄8+1 . . . H̄ 9−1 H̄ 9 . Suppose Ḡ′ ∈ 〈ℎ̄〉 H̄′〈ℎ̄〉. Then there exist integers U, V and X8, . . . , X 9−1

such that the following holds:

H̄8 = ℎ̄
U H̄8 ℎ̄

X8

H̄8+1 = ℎ̄
−X8 H̄8+1 ℎ̄

X8+1

... (3)
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H̄ 9−1 = ℎ̄
−X 9−2 H̄ 9−1 ℎ̄

X 9−1

ℎ̄1 9−1−0 9 H̄ 9 = ℎ̄
−X 9−1 H̄ 9 ℎ̄

V

From the first equation in (3), n |U, X8 by the choice of "2. Now by Lemma 3.5(i), n | |ℎ|.

By applying Lemma 3.5(ii), from the second equation to the second last equation, we have

n |X: for all 8+1 ≤ : ≤ 9−1. Now from the last equation, we have H̄ 9 = ℎ̄−(1 9−1−0 9+X 9−1) H̄ 9 ℎ̄V.

Hence n |1 9−1 − 0 9 + X 9−1 by the choice of #2. Since n |X 9−1, we have n | − (0 9 − 1 9−1),

which is a contradiction. Therefore Ḡ′ ∉ 〈ℎ̄〉 H̄′〈ℎ̄〉 and thus Ḡ ��̄ H̄.

Subcase 2b. Suppose W 9 ≠ 0, that is H−1
9
〈ℎ〉H 9 ∩ 〈ℎ〉 = 〈ℎA 9 〉. Since � is 〈ℎ〉-weakly

potent, then by Lemma 7.1, H−1
9
ℎW 9 H 9 = ℎ±W 9 and H−1

9
ℎ@H 9 ∉ 〈ℎ〉 for all 1 ≤ @ < W 9 .

Since � is 〈ℎ〉-separable and H−1
9
ℎ@H 9 ∉ 〈ℎ〉 for all 1 ≤ @ < W 9 , there exists #2 � 5 �

such that H−1
9
ℎ@H 9 ∉ 〈ℎ〉#2 for all 1 ≤ @ < W 9 . Since the matching fails at the equation

G 9 = ℎ
−0 9 H 9ℎ

1 9 , we further must have ℎ1 9−1−0 9 ∉ 〈ℎW 9 〉, that is 0 9 ≠ 1 9−1+=W 9 for all = ∈ Z.

Since � is 〈ℎ〉-double coset separable, then by Lemma 3.4, there exists "2 � 5 � such

that H−1
8
ℎ0H8"2 = ℎ

1"2 only if W 9 |0, 1. As before, we form �̄. Then Ḡ, H̄ are cyclically

reduced and | |Ḡ | | = | |G | |, | | H̄ | | = | |H | | in �̄. Furthermore, by the choice of"2, H̄−1
8
ℎ̄0 H̄8 = ℎ̄

1

only if W 9 |0, 1 whereas, by the choice of #2, H̄−1
9
ℎ̄@ H̄ 9 ∉ 〈ℎ̄〉 for all 1 ≤ @ < W 9 .

Suppose that Ḡ′ ∈ 〈ℎ̄〉 H̄′〈ℎ̄〉. Then we have the system of equations (3) as above. From

the first equation in (3), W 9 |U, X8 by the choice of "2. Now by Lemma 3.5(i), W 9 | |ℎ|. By

applying Lemma 3.5(ii) from the second equation to the second last equation, we have

W 9 |X: for all 8 + 1 ≤ : ≤ 9 − 1. Now from the last equation we have H̄ 9 = ℎ̄0 9−1 9−1−X 9−1 H̄ 9 ℎ̄
V.

Hence, W 9 |0 9 − 1 9−1 − X 9−1 by the choice of #2. Since W 9 |X 9−1, we have W 9 |0 9 − 1 9−1. So,

0 9 − 1 9−1 = EW 9 for some E ∈ Z. But this contradicts the fact that 0 9 − 1 9−1 ∉ IW 9 for all

I ∈ Z. Therefore, Ḡ′ ∉ 〈ℎ̄〉 H̄′〈ℎ̄〉 in �̄ and thus Ḡ ��̄ H̄.
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7.3 Free Products with Cyclic Amalgamated Subgroups

In this section, we first prove our main result Theorem 7.6 and then extend the result to

free groups and finitely generated torsion-free nilpotent groups.

Theorem 7.6. Let � = � ∗〈ℎ〉� where ℎ has infinite order. Suppose

(8) � and � are cyclic conjugacy separable;

(88) � and � are cyclic subgroup separable;

(888) � and � are 〈ℎ〉-double coset separable;

(8E) � and � are 〈ℎ〉-weakly potent;

(E) For each integer B > 0, there exist " � 5 �, # � 5 � such that " ∩ 〈ℎ〉 = 〈ℎB〉 =

# ∩ 〈ℎ〉 with ℎ̃8 ��̃ ℎ̃ 9 for all ℎ̃8 ≠ ℎ̃ 9 in �̃ = �/" and ℎ̂D ��̂ ℎ̂E for all ℎ̂D ≠ ℎ̂E in

�̂ = �/# .

Then � is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since � and � are cyclic conjugacy separable and

〈ℎ〉-double coset separable, then conditions (a), (b) and (c) are satisfied. By Lemma 7.2

and Lemma 7.5, we have conditions (d) and (e). Now we show condition (f). Let G, H ∈ �

such that | |G | | = 0, | |H | | ≤ 1 and {G}� ∩ 〈H〉 = ∅.

Case 1. Suppose | |G | | = 0 = | |H | |. In this case, {G}� ∩ 〈H〉 = ∅ implies that

{G}� ∩ 〈H〉 = ∅ and {G}� ∩ 〈H〉 = ∅. Since � and � are cyclic conjugacy separable, there

exist "1 � 5 �, #1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅ and {G#1}�/#1 ∩ 〈H#1〉 = ∅.

Let "1 ∩ 〈ℎ〉 = 〈ℎB1〉 and #1 ∩ 〈ℎ〉 = 〈ℎB2〉 for some positive integers B1, B2. Let B = B1B2.

By the hypothesis, there exists "2 � 5 � such that "2 ∩ 〈ℎ〉 = 〈ℎB〉 and ℎ̃8 ��̃ ℎ̃ 9 for all

ℎ̃8 ≠ ℎ̃ 9 in �̃ = �/"2. Similarly, there exists #2 � 5 � such that #2 ∩ 〈ℎ〉 = 〈ℎB〉 and

ℎ̂D ��̂ ℎ̂
E for all ℎ̂D ≠ ℎ̂E in �̂ = �/#2. Let " = "1 ∩ "2 and # = #1 ∩ #2. Then

" � 5 �, # � 5 � such that " ⊆ "1, # ⊆ #1 and " ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. We now form
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�̄ = �̄ ∗〈ℎ̄〉 �̄ where �̄ = �/", �̄ = �/# and ℎ̄ = ℎ" = ℎ# . Note that {Ḡ} �̄ ∩ 〈H̄〉 = ∅ and

{Ḡ}�̄ ∩ 〈H̄〉 = ∅. Furthermore, we have ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9 in �̄ = �/" and ℎ̄D ��̄ ℎ̄E

for all ℎ̄D ≠ ℎ̄E in �̄ = �/# .

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a),

there exists a finite sequence ℎ̄A1 , ℎ̄A2 , . . . , ℎ̄A= where ℎ̄A8 ∈ 〈ℎ̄〉 for all 8 such that Ḡ ∼�̄

ℎ̄A1 ∼�̄ ℎ̄A2 ∼�̄ . . . ∼�̄(�̄) ℎ̄A= ∼�̄( �̄) H̄: . Without loss of generality, we can assume that

Ḡ ∼�̄ ℎ̄A1 ∼�̄ ℎ̄A2 ∼�̄ . . . ∼�̄ ℎ̄A= ∼�̄ H̄: . Note that each A8 is uniquely determined since

ℎ̄8 ��̄ ℎ̄
9 for all ℎ̄8 ≠ ℎ̄ 9 in �̄ and ℎ̄D ��̄ ℎ̄E for all ℎ̄D ≠ ℎ̄E in �̄ = �/# . Thus from

the first conjugation relation, Ḡ ∼�̄ ℎ̄A1 implies that Ḡ = ℎ̄A1 in �̄ and hence G" = ℎA1".

This implies that G" = ℎA1", ℎA1# = ℎA2#, . . . , ℎA=−1# = ℎA=#, ℎA=" = H:" . From the

second equality ℎA1# = ℎA2# , we have ℎA1−A2 ∈ # ∩ 〈ℎ〉 = " ∩ 〈ℎ〉 and thus ℎA1" = ℎA2" .

Continuing in this way, we have G" = ℎA1" = ℎA2" = . . . = ℎA=−1" = ℎA=" = H:" and

this implies that Ḡ = ℎ̄A1 = ℎ̄A2 = . . . = ℎ̄A= = H̄: in �̄. So, Ḡ = H̄: , that is {Ḡ} �̄ ∩ 〈H̄〉 ≠ ∅, a

contradiction. Hence, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma

6.3, we can find %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �.

Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. Suppose | |G | | = 0, | |H | | = 1. Let H ∈ �\〈ℎ〉. The proof for case H ∈ �\〈ℎ〉 is

similar. In this case, {G}�∩〈H〉 = ∅ implies that {G}�∩〈H〉 = ∅. Since � is cyclic conjugacy

separable and 〈ℎ〉-separable, there exists "1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅

and H ∉ 〈ℎ〉"1. As in Case 1, there exist " � 5 �, # � 5 � such that " ⊆ "1 and

" ∩ 〈ℎ〉 = # ∩ 〈ℎ〉. We now form �̄ as in Case 1. Note that {Ḡ} �̄∩ 〈H̄〉 = ∅ and H̄ ∈ �̄\〈ℎ̄〉.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a), there

exists a finite sequence ℎ̄A1 , ℎ̄A2 , . . . , ℎ̄A= where ℎ̄A8 ∈ 〈ℎ̄〉 for all 8 such that Ḡ ∼�̄ ℎ̄A1 ∼�̄

ℎ̄A2 ∼�̄ . . . ∼�̄ ℎ̄A= ∼�̄ H̄: . Arguing as in Case 1, we have Ḡ = ℎ̄A1 = ℎ̄A2 = . . . = ℎ̄A= in �̄

since Ḡ, ℎ̄A8 ∈ 〈ℎ̄〉. From the last conjugation relation, we only have ℎ̄A= ∼�̄ H̄: . Hence
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Ḡ = ℎ̄A= ∼�̄ H̄: , that is Ḡ ∼�̄ H̄: . This implies that {Ḡ} �̄ ∩ 〈H̄〉 ≠ ∅, a contradiction. So,

{Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the result follows as in Case 1. Thus, we have condition (f).

This completes the proof. Hence � is cyclic conjugacy separable by Theorem 6.6.

Free groups and finitely generated nilpotent groups are cyclic subgroup separable and

cyclic conjugacy separable. Furthermore, we have both free and finitely generated nilpotent

groups are �-double coset separable for each finitely generated subgroup � (Lennox &

Wilson, 1979; Ribes & Zalesskii, 1993) and weakly potent (Evans, 1974; Tang, 1995).

We can see that free groups and finitely generated torsion-free nilpotent groups satisfy

Condition (v) of Theorem 7.6 by Corollary 2.2 of Tang (1997). Thus, we extend Theorem

7.6 to free groups and finitely generated torsion-free nilpotent groups, then obtaining the

following results by Tang (1997).

Corollary 7.7. (Tang, 1997) Let � = � ∗〈ℎ〉� where ℎ has infinite order in both � and �.

Suppose � and � are free groups. Then � is cyclic conjugacy separable.

Corollary 7.8. (Tang, 1997) Let � = � ∗〈ℎ〉� where ℎ has infinite order in both � and �.

Suppose � and � are finitely generated torsion-free nilpotent groups. Then � is cyclic

conjugacy separable.
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CHAPTER 8: GENERALIZED FREE PRODUCTS OF FINITELY GENERATED

NILPOTENT GROUPS

8.1 Introduction

It has been established that the generalized free product � = � ∗
�
� is conjugacy

separable and cyclic conjugacy separable if � and � are finite. Dyer (1980) and Tang

(1997) showed that these generalized free products are free-by-finite and free-by-finite

groups are conjugacy separable and cyclic conjugacy separable.

Dyer (1980) also showed that� = � ∗
�
� is conjugacy separable if � and � are conjugacy

separable and � is finite.

In this chapter, we shall show that � = � ∗
�
� is cyclic conjugacy separable if � and

� are conjugacy separable and cyclic conjugacy separable and � is finite. This is given

in Theorem 8.2. We then apply our result to show that � = � ∗
�
� is cyclic conjugacy

separable when � =  × � where  is finite and � is central in � and in �. We further

apply our result to free products of finitely generated nilpotent groups.

8.2 Free Products with Finite Amalgamated Subgroups

In this section, we show that the free products of two cyclic conjugacy separable and

conjugacy separable groups amalgamating a finite subgroup are cyclic conjugacy separable

(Theorem 8.2).

Theorem 8.1. (Dyer, 1980) Let � = � ∗
�
� where � is finite. Suppose � and � are

conjugacy separable (residually finite). Then � is conjugacy separable (residually finite).
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Theorem 8.2. Let � = � ∗
�
� where � is finite. Suppose �, � are conjugacy separable and

cyclic conjugacy separable. Then � is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. By assumption, we have condition (a). Next by

Lemma 4.11 and Lemma 4.12, we obtain conditions (b) and (c) respectively. By Theorem

8.1, we have condition (e).

Suppose ' � 5 � be given. Since �, � are residually finite and � is finite, there exist

" � 5 �, # � 5 � such that " ∩ � = # ∩ � = 1 ⊆ '. Thus, we have condition (d).

Now we only need to prove condition (f). Let G, H ∈ � such that {G}� ∩ 〈H〉 = ∅

and | |G | | = 0, | |H | | ≤ 1. Let H ∈ �. The proof for the case H ∈ � is similar. Now

{G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 = ∅ and {G}� ∩ 〈H〉 = ∅. Since � and � are cyclic

conjugacy separable, there exist "1 � 5 �, #1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅

and {G#1}�/#1 ∩ 〈H#1〉 = ∅.

Now let ℎ8 ∈ �, 8 = 1, . . . , ? be all the elements in � ⊆ � such that ℎ8 ∼� G. Since

{G}� ∩ 〈H〉 = ∅, we have {ℎ8}� ∩ 〈H〉 = ∅, 8 = 1, . . . , ?. Since � is cyclic conjugacy

separable, there exists "2 � 5 � such that {ℎ8"2}�/"2 ∩ 〈H"2〉 = ∅, 8 = 1, . . . , ?. Now

let : 9 ∈ �, 9 = 1, 2, . . . , @ be all the elements in � ⊆ � such that : 9 ∼� G. Since

{G}� ∩ 〈H〉 = ∅, we have {: 9 }� ∩ 〈H〉 = ∅, 9 = 1, 2, . . . @. Since � is cyclic conjugacy

separable, there exists #2 � 5 � such that {: 9#2}�/#2 ∩ 〈H#2〉 = ∅, 9 = 1, 2, . . . , @. Now

since � is conjugacy separable, for all pairs of 0D �� 0E where 0D, 0E ∈ � ⊆ �, there exists

"3 � 5 � such that 0D"3 ��/"3 0E"3. Similarly, since � is conjugacy separable, for all

pairs of 1A �� 1B where 1A , 1B ∈ � ⊆ �, there exists #3 � 5 � such that 1A#3 ��/#3 1B#3.

Furthermore, since �, � are residually finite and � is finite, there exist "4 � 5 �, #4 � 5 �

such that "4∩� = 1 = #4∩�. Let " = "1∩"2∩"3∩"4 and # = #1∩#2∩#3∩#4.

Then " � 5 �, # � 5 � such that " ∩ � = 1 = # ∩ �.

We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# .
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Then in �̄, we have {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ḡ}�̄ ∩ 〈H̄〉 = ∅, {ℎ̄8} �̄ ∩ 〈H̄〉 = ∅, ℎ8 ∼� G, 8 =

1, . . . , ?, {:̄ 9 }�̄ ∩ 〈H̄〉 = ∅, : 9 ∼� G, 9 = 1, . . . , @ and 0̄D ��̄ 0̄E for all pairs of 0D, 0E ∈

�, 0D �� 0E, 1̄A ��̄ 1̄B for all pairs of 1A , 1B ∈ �, 1A �� 1B.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅, say Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a), there exists

a finite sequence ℎ̄8 ∈ �̄ such that Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄(�̄) ℎ̄= ∼�̄( �̄) H̄: . Without loss

of generality, we assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: . From the first conjugation

relation Ḡ ∼�̄ ℎ̄1, we have G" ∼�/" ℎ1" . Suppose G and ℎ1 are not conjugate in �. Then

G"3 ��/"3 ℎ1"3. But this contradicts the fact that G" ∼�/" ℎ1". Hence G ∼� ℎ1.

Since {G}� ∩ 〈H〉 = ∅, we have {ℎ1}� ∩ 〈H〉 = ∅. So in �̄, we have {ℎ̄1} �̄ ∩ 〈H̄〉 = ∅.

From the second conjugation relation ℎ̄1 ∼�̄ ℎ̄2, we have ℎ1# ∼�/# ℎ2# . Arguing as

above, we obtain ℎ1 ∼� ℎ2. Suppose {ℎ2}� ∩ 〈H〉 ≠ ∅, say ℎ2 ∼� H; for some integer ;.

Hence H; ∼� ℎ2 ∼� ℎ1 ∼� G. This implies that {G}� ∩ 〈H〉 ≠ ∅, a contradiction. Hence

{ℎ2}� ∩ 〈H〉 = ∅. So in �̄, we have {ℎ̄2} �̄ ∩ 〈H̄〉 = ∅.

Proceeding from the third to the second last conjugation relation, we obtain ℎ8 ∈ � such

that {ℎ8}� ∩ 〈H〉 = ∅, 8 = 3, . . . , =. So in �̄, we have {ℎ̄8} �̄ ∩ 〈H̄〉 = ∅, 8 = 3, . . . , =. From

the last conjugation relation ℎ̄= ∼�̄ H̄: , we obtain {ℎ̄=} �̄ ∩ 〈H̄〉 ≠ ∅. But this contradicts the

fact that {ℎ̄=} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable

by Lemma 6.3, we can find %̄� 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage

of %̄ in �. Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅. Thus we have (f).

This completes the proof and thus � is cyclic conjugacy separable by Theorem 6.6.

8.3 Generalized Free Products of Finitely Generated Nilpotent Groups

In this section, we apply our result(Theorem 8.2) to Theorem 8.7. We start with some

lemmas.

Lemma 8.3. Let � be a group and � be a subgroup of �. Suppose that there exists a

82

Univ
ers

ity
 of

 M
ala

ya



finitely generated subgroup ' ⊆ � such that |� : ' | < ∞ and ' � �. If � is '-separable,

then

(i) � is �-separable; and

(ii) there exists # � 5 � such that # ∩ � = '.

Proof. Since � is '-separable, then �̄ = �/' is residually finite. Let G ∈ �\�. Then

Ḡ ∉ �̄ = �/'. Since �̄ is finite, there exists #̄ � 5 �̄ such that #̄ ∩ Ḡ�̄ = ∅ and #̄ ∩ �̄ = 1̄.

Let # be the preimage of #̄ in �. Then # � 5 � such that G ∉ �# and # ∩ � = '.

Lemma 8.4. Let � = � ∗
�
� and let � ⊆ � such that � is a finitely generated normal

subgroup of � and � with |� : � | < ∞. Suppose � and � are subgroup separable. Then

for each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � ⊆ '.

Proof. Let ' � 5 � be given. Let ( = ' ∩ �. Then ( � 5 �. Suppose ( has finite index A

in �. Since � is finitely generated, then there exist only a finite number of subgroups of

finite index A in �. Let � be the intersection of all these subgroups. Then � ⊂ � and � is

a characteristic subgroup of finite index in �. Since � � 5 �, we have � � 5 �. Since � is

�-separable, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � = � ⊆ ' by Lemma

8.3(ii).

The following lemma is modified from Lemma 2.6 of Zhou et al. (2010).

Lemma 8.5. Let � = � ∗
�
� and let � ⊆ � such that � ⊂ / (�) is finitely generated with

|� : � | < ∞. Suppose � and � are subgroup separable groups. Then � is residually

finite.
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Proof. Let 6 ∈ � be nontrivial.

Case 1. 6 ∈ �. There exists ( � 5 � such that 6 ∉ (. Let �̄ = �̄ ∗
�̄
�̄ where

�̄ = �/(, �̄ = �/( and �̄ = �/(. Then 6̄ ≠ 1. Since �/(, �/( are residually finite and

�/( is finite, �̄ is residually finite by Theorem 8.1. Then there exists !̄ � 5 �̄ such that

6̄ ∉ !̄. Let ! be the preimage of !̄ in �. Then ! � 5 � such that 6 ∉ !.

Case 2. 6 ∉ �. Then we form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/�, �̄ = �/� and �̄ = �/�.

Note that 6̄ ≠ 1. Since �/�, �/� are residually finite and �/� is finite, �̄ is residually

finite by Theorem 8.1. As before, we can find ! � 5 � such that 6 ∉ !.

Lemma 8.6. Let � = � ∗
�
� and let � ⊆ � such that � ⊂ / (�) is finitely generated with

|� : � | < ∞. Suppose � and � are subgroup separable groups. Suppose G, H ∈ � such

that | |G | | = | |H | | ≥ 2 and G �� H. Then there exists % � 5 � such that G% ��/% H%.

Proof. Let G, H be cyclically reduced. We assume G = 0111 . . . 0=1= and H = 2131 . . . 2=3=

where 08, 28 ∈ �\�, 18, 38 ∈ �\� for 1 ≤ 8 ≤ = and = ≥ 2. Since � and � are �-separable

by Lemma 8.3(i), there exist "1 � 5 �, #1 � 5 � such that 08, 28 ∉ �"1, 18, 38 ∉ �#1 for

all 8. Now, by Lemma 6.1(c), G �� H if and only if G∗ �� H, for all cyclic permutation G∗

of G. Let - = {ℎ−1G∗ℎ|ℎ ∈ � and G∗ is a cyclic permutation of G}. Since |� : � | < ∞ and

� ⊂ / (�), it follows that - is finite and H ∉ - . Since � is residually finite by Lemma

8.5, there exists ! � 5 � such that H! ∩ {I! |I ∈ -} = ∅. Let ' = "1 ∩ #1 ∩ ! ∩�. Then

' � 5 �. By Lemma 8.4, there exist "2 � 5 �, #2 � 5 � such that "2 ∩ � = #2 ∩ � ⊆ '.

Let " = "1 ∩"2 ∩ ! and # = #1 ∩#2 ∩ !. Then " � 5 �, # � 5 � and " ∩� = # ∩�.

We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Note

that | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and Ḡ∗ ��̄ H̄ for all cyclic permutation Ḡ∗ of Ḡ. This implies

that Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma 6.3, there exists %̄ � 5 �̄ such that

Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the preimage of %̄ in �. Then % � 5 � such that G% ��/% H%.
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Theorem 8.7. Let � = � ∗
�
� where � =  × � such that  is finite and � ⊆ / (�) is

finitely generated torsion-free. Suppose

(8) � and � are subgroup separable;

(88) � and � are conjugacy separable;

(888) � and � are cyclic conjugacy separable;

(8E) � and � are �-conjugacy separable;

(E) �/( and �/( are conjugacy separable and cyclic conjugacy separable for any

( � 5 �.

Then � is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since � and � are both cyclic conjugacy separable

and �-conjugacy separable, conditions (a) and (b) are satisfied. By Lemma 8.3, Lemma

8.4 and Lemma 8.6, conditions (c), (d) and (e) are satisfied.

We only need to prove condition (f). Let G, H ∈ � such that | |G | | = 0, | |H | | ≤ 1 and

{G}� ∩ 〈H〉 = ∅.

Case 1. Suppose G ∈ �, H ∈ � ∪ �. Let G ∈ �, H ∈ �. The proof is similar if

G ∈ �, H ∈ �. Since G ∈ � ⊆ / (�), then {G}� ∩ 〈H〉 = ∅ implies that G ∉ 〈H〉. Since �

and � are subgroup separable, there exist "1 � 5 �, #1 � 5 � such that G ∉ 〈H〉"1 and

G ∉ 〈H〉#1. Let ' = "1∩#1∩�. Then by Lemma 8.4, we can find"2� 5 �, #2� 5 � such

that "2 ∩� = #2 ∩� ⊆ '. Let " = "1 ∩"2 and # = #1 ∩ #2. Then " � 5 �, # � 5 �

such that " ∩ � = # ∩ �. Now we form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and

�̄ = �"/" = �#/# . Note that Ḡ ∉ 〈H̄〉 in �̄.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a),

there exists a finite sequence ℎ̄1, ℎ̄2, . . . , ℎ̄= ∈ �̄ such that Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄(�̄)

ℎ̄= ∼�̄( �̄) H̄: . Without loss of generality, we assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: .

Since Ḡ ∈ / (�̄), we have Ḡ = ℎ̄1 = ℎ̄2 = . . . = ℎ̄= = H̄
: . So Ḡ = H̄: , contradicting the fact
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that Ḡ ∉ 〈H̄〉. Hence, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma

6.3, there exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �.

Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. Suppose G ∈  \�, H ∈ �. In this case, {G}� ∩ 〈H〉 = ∅ implies that

{G}� ∩ 〈H〉 = ∅ and {G}� ∩ 〈H〉 = ∅. Since �, � are subgroup separable and cyclic

conjugacy separable, there exist "1 � 5 �, #1 � 5 � such that G ∉ �"1, G ∉ �#1

and {G"1}�/"1 ∩ 〈H"1〉 = ∅, {G#1}�/#1 ∩ 〈H#1〉 = ∅. By Lemma 8.4, we can find

" � 5 �, # � 5 � such that " ⊆ "1, # ⊆ #1 and " ∩ � = # ∩ �. We now form �̄ as

above. Then in �̄, we have Ḡ ∉ �̄ and {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ḡ}�̄ ∩ 〈H̄〉 = ∅.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . As in Case 1, we can

assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: . Since H̄ ∈ / (�̄), we have Ḡ = ℎ̄1 = ℎ̄2 =

. . . = ℎ̄= = H̄
: . So Ḡ = H̄: , a contradiction. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic

conjugacy separable by Lemma 6.3, we again obtain our result as in Case 1.

Case 3. Suppose G, H ∈  \�. In this case, {G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 = ∅

and {G}� ∩ 〈H〉 = ∅. Since �, � are subgroup separable and cyclic conjugacy separable,

there exist "1 � 5 �, #1 � 5 � such that G, H ∉ �"1, G, H ∉ �#1, {G"1}�/"1 ∩ 〈H"1〉 = ∅

and {G#1}�/#1 ∩ 〈H#1〉 = ∅.

Now let ?8 ∈  , 8 = 1, . . . , A be all the elements in  such that ?8 ∼� G. Since

{G}� ∩ 〈H〉 = ∅, we have {?8}� ∩ 〈H〉 = ∅, 8 = 1, . . . , A. Since � is cyclic conjugacy

separable, there exists "2 � 5 � such that {?8"2}�/"2 ∩ 〈H"2〉 = ∅, 8 = 1, . . . , A . Now let

@ 9 ∈  , 9 = 1, . . . , B be all the elements in  such that @ 9 ∼� G. Since {G}� ∩ 〈H〉 = ∅, we

have {@ 9 }� ∩ 〈H〉 = ∅, 9 = 1, . . . , B. Since � is cyclic conjugacy separable, there exists

#2 � 5 � such that {@ 9#2}�/#2 ∩ 〈H#2〉 = ∅, 9 = 1, . . . , B.

Now since � is conjugacy separable, for all pairs of 0D �� 0E where 0D, 0E ∈  ,

there exists "3 � 5 � such that 0D"3 ��/"3 0E"3. Similarly, since � is conjugacy
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separable, for all pairs of 1A �� 1B where 1A , 1B ∈  , there exists #3 � 5 � such

that 1A#3 ��/#3 1B#3. Let ( =
⋂3
8=1 "8 ∩

⋂3
8=1 #8 ∩ �. Then ( � 5 � and thus

( � 5 �. We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/(, �̄ = �/( and �̄ = �/(. Then

in �̄, we have Ḡ, H̄ ∉ �̄, {Ḡ} �̄ ∩ 〈H̄〉 = ∅, {Ḡ}�̄ ∩ 〈H̄〉 = ∅, { ?̄8} �̄ ∩ 〈H̄〉 = ∅, ?8 ∼�

G, 8 = 1, . . . , A, {@̄ 9 }�̄ ∩ 〈H̄〉 = ∅, @ 9 ∼� G, 9 = 1, . . . , B, and 0̄D ��̄ 0̄E for all pairs of

0D, 0E ∈  , 0D �� 0E and 1̄A ��̄ 1̄B for all pairs of 1A , 1B ∈  , 1A �� 1B.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . As in Case 1, we can

assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: . Since � =  × �, we can write ℎ̄8 = :̄8 3̄8

uniquely, where :8 ∈  , 38 ∈ � for 8 = 1, 2, . . . , =. Then we have Ḡ ∼�̄ :̄13̄1 ∼�̄ :̄23̄2 ∼�̄

. . . ∼�̄ :̄= 3̄= ∼�̄ H̄: . From the first conjugation relation Ḡ ∼�̄ :̄13̄1, we have Ḡ = 0̄−1
1 :̄13̄10̄1

for some 01 ∈ � and thus Ḡ−10̄−1
1 :̄10̄1 = 3̄

−1
1 . It follows that G−10−1

1 :101( = 3
−1
1 ( and

this implies that G−10−1
1 :101 ∈ � since ( � 5 �. We let G−10−1

1 :101 = I ∈ �, then

GI = 0−1
1 :101. Since  is finite, we let < = ;2<{|:1 |, |G |}. Thus, (GI)< = (0−1

1 :101)<

implies that I< = 1. Since � is torsion-free, we have I = 1. It follows that G−10−1
1 :101 = 1,

thus 3̄1 = 1 and ℎ̄1 = :̄1. So, now we have Ḡ ∼�̄ :̄1 ∼�̄ :̄23̄2 ∼�̄ . . . ∼�̄ :̄= 3̄= ∼�̄ H̄: .

Similarly, since now we have :̄1 ∼�̄ :̄23̄2, then 3̄2 = 1 and ℎ̄2 = :̄2. Continuing this way,

we can write Ḡ ∼�̄ :̄1 ∼�̄ :̄2 ∼�̄ . . . ∼�̄ :̄= ∼�̄ H̄: .

From the first conjugation relation Ḡ ∼�̄ :̄1, we have G( ∼�/( :1(. Suppose G and

:1 are not conjugate in �. Then G"3 ��/"3 :1"3. But this contradicts the fact that

G( ∼�/( :1(. Hence G ∼� :1. Since {G}� ∩ 〈H〉 = ∅, we have {:1}� ∩ 〈H〉 = ∅. So in �̄,

we have {:̄1} �̄ ∩ 〈H̄〉 = ∅.

From the second conjugation relation :̄1 ∼�̄ :̄2, we have :1( ∼�/( :2(. Arguing as

above, we obtain :1 ∼� :2. Suppose {:2}� ∩ 〈H〉 ≠ ∅, say :2 ∼� H; for some integer ;.

Hence H; ∼� :2 ∼� :1 ∼� G. This implies that {G}� ∩ 〈H〉 ≠ ∅, a contradiction. Hence

{:2}� ∩ 〈H〉 = ∅. So in �̄, we have {:̄2} �̄ ∩ 〈H̄〉 = ∅.
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Proceeding from the third to the second last conjugation relation, we obtain :8 ∈  such

that {:8}� ∩ 〈H〉 = ∅, 8 = 3, . . . , =. So in �̄, we have {:̄8} �̄ ∩ 〈H̄〉 = ∅, 8 = 3, . . . , =. From

the last conjugation relation :̄= ∼�̄ H̄: , we obtain {:̄=} �̄ ∩ 〈H̄〉 ≠ ∅. But this contradicts

the fact that {:̄=} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �/(, �/( are both conjugacy

separable and cyclic conjugacy separable with �/( is finite, we have �̄ is cyclic conjugacy

separable by Theorem 8.2. Then the result follows as in Case 1.

Case 4. Suppose G ∈  \�, H ∈ �\� or G ∈  \�, H ∈ �\�. We shall prove for the

case G ∈  \�, H ∈ �\�. The proof is similar to the proof in Case 3. For completeness,

we shall write the proof in full.

In this case, {G}� ∩ 〈H〉 = ∅ implies that {G}� ∩ 〈H〉 = ∅. Since �, � are subgroup

separable and cyclic conjugacy separable, there exist "1 � 5 �, #1 � 5 � such that

G ∉ �"1, G ∉ �#1, H ∉ �"1 and {G"1}�/"1 ∩ 〈H"1〉 = ∅. Now let ?8 ∈  , 8 = 1, . . . , A

be all the elements in  such that ?8 ∼� G. Since {G}� ∩ 〈H〉 = ∅, we have {?8}� ∩ 〈H〉 =

∅, 8 = 1, . . . , A. Since � is cyclic conjugacy separable, there exists "2 � 5 � such that

{?8"2}�/"2 ∩ 〈H"2〉 = ∅, 8 = 1, . . . , A .

As in Case 3, for all pairs of 0D �� 0E where 0D, 0E ∈  , there exists "3 � 5 � such

that 0D"3 ��/"3 0E"3. Similarly, for all pairs of 1A �� 1B where 1A , 1B ∈  , there exists

#2� 5 � such that 1A#2 ��/#2 1B#2. Let ( =
⋂3
8=1 "8

⋂2
8=1 #8∩�. Then (� 5 � and thus

( � 5 �. We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/(, �̄ = �/( and �̄ = �/(. Then in �̄, we

have Ḡ ∉ �̄, H̄ ∉ �̄, {Ḡ} �̄ ∩ 〈H̄〉 = ∅, { ?̄8} �̄ ∩ 〈H̄〉 = ∅, ?8 ∼� G, 8 = 1, . . . , A, and 0̄D ��̄ 0̄E

for all pairs of 0D, 0E ∈  , 0D �� 0E and 1̄A ��̄ 1̄B for all pairs of 1A , 1B ∈  , 1A �� 1B.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . As in Case 1, we can

assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: . Since � =  × �, we can write ℎ̄8 = :̄8 3̄8

uniquely, where :8 ∈  , 38 ∈ � for 8 = 1, 2, . . . , =. Then we have Ḡ ∼�̄ :̄13̄1 ∼�̄ :̄23̄2 ∼�̄

. . . ∼�̄ :̄= 3̄= ∼�̄ H̄: . As in Case 3, we can write Ḡ ∼�̄ :̄1 ∼�̄ :̄2 ∼�̄ . . . ∼�̄ :̄= ∼�̄ H̄:
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since 3̄8 = 1 and ℎ̄8 = :̄8 for all 8. Again as in Case 3, we obtain :8 ∈  such that

{:8}� ∩ 〈H〉 = ∅, 8 = 1, 2, . . . , =. So in �̄, we have {:̄8} �̄ ∩ 〈H̄〉 = ∅, 8 = 1, 2, . . . , =. From

the last conjugation relation :̄= ∼�̄ H̄: , we obtain {:̄=} �̄ ∩ 〈H̄〉 ≠ ∅. But this contradicts

the fact that {:̄=} �̄ ∩ 〈H̄〉 = ∅. Hence, {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the result follows as in Case 3.

From all the cases above, we obtain condition (f). This completes the proof and hence

� is cyclic conjugacy separable by Theorem 6.6.

Note that finitely generated nilpotent groups are subgroup separable, conjugacy separable

and cyclic conjugacy separable. Furthermore, the quotient groups of nilpotent groups are

again nilpotent. Thus, we can apply Lemma 4.8 and Theorem 8.7 to finitely generated

nilpotent groups. We have the next result.

Corollary 8.8. Let � = � ∗
�
� where � =  × � such that  is finite and � ⊆ / (�).

Suppose � and � are finitely generated nilpotent groups. Then � is cyclic conjugacy

separable.

Proof. Since � is a finitely generated abelian group, � =  1 × �1 where  1 is finite and

�1 is torsion-free. Hence we may assume � is torsion-free. Then � is cyclic conjugacy

separable by Theorem 8.7.
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CHAPTER 9: TREE PRODUCTS AMALGAMATING CENTRAL SUBGROUPS

9.1 Introduction

The tree products of finitely many free groups or surface groups or polycyclic-by-finite

groups amalgamating cyclic subgroups are conjugacy separable (Kim & Tang, 1996; Kim

& Tang, 1999; Ribes et al., 1998). Also the tree products of finitely many conjugacy

separable and (central) subgroup separable groups amalgamating central subgroups are

conjugacy separable (Wong & Tang, 1999; Kim & Tang, 2002). Hence the tree product of

polycyclic-by-finite groups amalgamating central subgroups are conjugacy separable.

In this chapter, we shall study the cyclic conjugacy separability of tree product of finitely

many cyclic conjugacy separable and subgroup separable groups amalgamating central

subgroups (Theorem 9.18). We then apply our result to tree products of free-by-finite

groups and finitely generated abelian groups.

9.2 Free Products Amalgamating Central Subgroups

In this section, we show that the generalized free product of two cyclic conjugacy

separable and subgroup separable groups amalgamating central subgroups are cyclic

conjugacy separable (Theorem 9.3).

Lemma 9.1. Let � be subgroup separable. Suppose ' � 5 � ⊆ / (�). Then there exists

" � 5 � such that " ∩ � = '.

Proof. Let ' � 5 � ⊆ / (�) be given. Since � is subgroup separable, we have �̄ = �/'

is residually finite. Since �̄ is finite, there exists "̄ � 5 �̄ such that "̄ ∩ �̄ = 1̄. Let " be

the preimage of "̄ in �. Then " ∩ � = ' as required.
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Lemma 9.2. Let � = � ∗
�
� where � ⊆ / (�) ∩ / (�) is a finitely generated subgroup.

Suppose � and � are subgroup separable. Then for each G, H ∈ � such that | |G | | = | |H | | ≥ 2

and G �� H, there exists & � 5 � such that G& ��/& H&.

Proof. Let G, H ∈ � be cyclically reduced. We assume G = 0111 . . . 0=1= and H =

2131 . . . 2=3= where 08, 28 ∈ �\�, 18, 38 ∈ �\� for 1 ≤ 8 ≤ = and = ≥ 2. Since � and �

are �-separable, there exist "1 � 5 �, #1 � 5 � such that 08, 28 ∉ �"1, 18, 38 ∉ �#1 for

all 8. Now, by Lemma 6.1(c), G �� H if and only if G �� H∗, for all cyclic permutations H∗

of H. Since � ⊆ / (�) ∩ / (�), we have GH∗−1 ≠ 1 for all cyclic permutations H∗ of H. By

Lemma 6.5,� is residually finite. Since there is only a finite number of cyclic permutations

H∗ of H, we can find ! � 5 � such that GH∗−1 ∉ ! for all cyclic permutations H∗ of H. Let

' = "1∩#1∩!∩�. Then '� 5 �. By Lemma 9.1, there exist"2� 5 �, #2� 5 � such that

"2∩� = ' = #2∩�. Let " = !∩"1∩"2 and # = !∩#1∩#2. Thus"∩� = #∩�.

We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Note

that | |Ḡ | | = | |G | | = | |H | | = | | H̄ | | and Ḡ H̄∗−1 ≠ 1̄ for all cyclic permutations H∗ of H. This

implies that Ḡ ��̄ H̄∗ and thus Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma 6.3,

there exists &̄ � 5 �̄ such that Ḡ&̄ ��̄/&̄ H̄&̄. Let & be the preimage of &̄. Then & � 5 �

such that G& ��/& H&.

Theorem 9.3. Let � = � ∗
�
� where � ⊆ / (�) ∩ / (�) is a finitely generated subgroup.

Suppose � and � are cyclic conjugacy separable and subgroup separable. Then � is

cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since � and � are cyclic conjugacy separable and

subgroup separable with � finitely generated, the conditions (a) and (c) are satisfied. By

Lemma 9.1 and Lemma 9.2, conditions (d) and (e) are satisfied.
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To show (b), we let G ∈ � such that {G}� ∩ � = ∅. Since � ⊆ / (�), we have

{G}� ∩ � = ∅ if and only if G ∉ �. Now, since � is subgroup separable, there exists

" � 5 � such that G ∉ �". Let ' = " ∩ �. By Lemma 9.1, we can find # � 5 �

such that # ∩ � = '. We now form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and

�̄ = �"/" = �#/# . Since Ḡ ∉ �̄ and �̄ ⊆ / ( �̄) in �̄, we have {Ḡ} �̄ ∩ �̄ = ∅.

Therefore, � is �-conjugacy separable and similarly for �. Thus, we have condition (b).

We show (f) now. Let G, H ∈ � such that | |G | | = 0, | |H | | ≤ 1 and {G}� ∩ 〈H〉 = ∅.

Suppose H ∈ �. The proof is similar if H ∈ �. For this case {G}� ∩ 〈H〉 = ∅ implies that

G ∉ 〈H〉 since � ⊆ / (�) ∩ / (�). Since � is subgroup separable, there exists " � 5 �

such that G ∉ 〈H〉" . Let ' = " ∩ �. Then ' � 5 �. By Lemma 9.1, there exists # � 5 �

such that # ∩ � = '. Now we can form �̄ as above.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅, say Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a), there exists

a finite sequence of ℎ̄1, ℎ̄2, . . . , ℎ̄= ∈ �̄ such that Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄(�̄) ℎ̄= ∼�̄( �̄) H̄: .

Since H ∈ �, without loss of generality, we assume Ḡ ∼�̄ ℎ̄1 ∼�̄ ℎ̄2 ∼�̄ . . . ∼�̄ ℎ̄= ∼�̄ H̄: .

Since �̄ ⊆ / ( �̄) ∩ / (�̄), we have Ḡ = ℎ̄1 = ℎ̄2 = . . . = ℎ̄= = H̄
: . So, Ḡ = H̄: , contradicting

Ḡ ∉ 〈H̄〉. Therefore, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma

6.3, there exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �.

Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

This completes the proof and therefore � is cyclic conjugacy separable by Theorem

6.6.

Corollary 9.4. Let � = � ∗
�
� where � ⊆ / (�) ∩ / (�) is a finitely generated subgroup.

Suppose � and � are free-by-finite groups. Then � is cyclic conjugacy separable.

Corollary 9.5. Let � = � ∗
�
� where � and � are finitely generated abelian groups. Then

� is cyclic conjugacy separable.
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9.3 Lemmas Needed

Now we extend Theorem 9.3 to tree products of finitely many subgroup separable and

cyclic conjugacy separable groups. We note that Lemma 9.6, Lemma 9.7, Lemma 9.8,

Lemma 9.9 and Lemma 9.17 are modified from Wong & Tang (1999).

Lemma 9.6. Let � = � ∗
�
� and  < �. Suppose

(8) for each ' � 5 �, there exists " � 5 � such that " ∩ � = ';

(88) for each ( � 5  , there exists # � 5 � such that # ∩  = (.

Then there exists % � 5 � such that % ∩  = (.

Proof. Let ( � 5  < � be given such that there exists # � 5 � with # ∩  = (. Let

' = # ∩�. By (i), there exists "� 5 � such that " ∩� = '. Now we can form �̄ = �̄ ∗
�̄
�̄

where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Since �̄ is residually finite by

Lemma 6.3 and  ̄ =  #/# is finite, there exists %̄ � 5 �̄ such that %̄ ∩  ̄ = 1̄. Let % be

the preimage of %̄ in �. Then % � 5 � such that % ∩  = (.

Lemma 9.7. Let � = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of �1, �2, . . . , �=

amalgamating the subgroups �8 9 of �8 and � 98 of � 9 . Let  < �A . Suppose

(8) for each '8 9 � 5 �8 9 , there exists "8 � 5 �8 such that "8 ∩ �8 9 = '8 9 ;

(88) for each ( � 5  , there exists # � 5 �A such that # ∩  = (.

Then there exists % � 5 � such that % ∩  = (.

Proof. We use induction on =. The case when = = 2 follows from Lemma 9.6. Let

= > 2. The tree product � has an extremal vertex, say �=, which is joined to a unique

vertex, say �=−1. The subgroup of � generated by �1, �2, . . . , �=−1 is just the tree

product of themselves. Let � denote this subgroup. Then we write � = � ∗
�
�= where

� = �(=−1)= = �=(=−1) .
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Case 1.  < �A < �. By induction, for each ( � 5  , there exists " � 5 � such that

" ∩ = (. By (i), for each '� 5 �=(=−1) , there exists # � 5 �= such that # ∩�=(=−1) = '.

Then the result follows from Lemma 9.6.

Case 2.  < �=. By (ii), for each ( � 5  , there exists # � 5 �= such that # ∩  = (.

By induction, for each ' � 5 �(=−1)=, there exists " � 5 � such that " ∩ � = '. We now

form �̄ as above and the result follows from Lemma 9.6.

Lemma 9.8. Let � = � ∗
�
� and  < �. Suppose

(8) � and � are �-separable;

(88) for each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = ' = # ∩ �;

(888) � is  -separable.

Then � is  -separable.

Proof. Let 6 ∈ �\ .

Case 1. 6 ∈ �\�. Since � is �-separable, we can find " � 5 � such that 6 ∉ �" . Let

" ∩ � = '. By (ii), we can find # � 5 � such that # ∩ � = '. We now form �̄ = �̄ ∗
�̄
�̄

where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Note that  ̄ < �̄ and 6̄ ∈ �̄\�̄.

Thus, 6̄ ∉  ̄ . Since �̄ is subgroup separable by Lemma 6.3, we can find %̄ � 5 �̄ such that

6̄ ∉  ̄ %̄. Let % be the preimage of %̄ in �. Then 6 ∉  %.

Case 2. 6 ∈ �\ . Since � is  -separable, there exists # � 5 � such that 6 ∉  # . Let

# ∩ � = '. As above, we can find " � 5 � such that " ∩ � = '. We now form �̄ as in

Case 1. It is clear that 6̄ ∉  ̄ . The result follows as in Case 1.

Case 3. | |6 | | ≥ 2. WLOG, we assume 6 = 01110212 . . . 0=1= where 08 ∈ �\�, 18 ∈

�\� and = ≥ 2. Since � and � are �-separable, there exist "1 � 5 �, #1 � 5 � such

that 08 ∉ �"1 and 18 ∉ �#1. Suppose "1 ∩ � = '1 and #1 ∩ � = '2. Then we can

find "2 � 5 �, #2 � 5 � such that "2 ∩ � = '1 ∩ '2 = #2 ∩ �. Let " = "1 ∩ "2 and

94

Univ
ers

ity
 of

 M
ala

ya



# = #1 ∩ #2. We now form �̄ as in Case 1. Since | |6̄ | | = | |6 | |, it is clear that 6̄ ∉  ̄ . The

result follows as in Case 1.

Lemma 9.9. Let � = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of �1, �2, . . . , �=

amalgamating the subgroups �8 9 of �8 and � 98 of � 9 . Let  < �A . Suppose

(8) �8 is �8 9 -separable;

(88) for each '8 9 � 5 �8 9 , there exists "8 � 5 �8 such that "8 ∩ �8 9 = '8 9 ;

(888) �A is  -separable.

Then � is  -separable.

Proof. We use induction on =. The case when = = 2 follows from Lemma 9.8. Let

= > 2. The tree product � has an extremal vertex, say �=, which is joined to a unique

vertex, say �=−1. The subgroup of � generated by �1, �2, . . . , �=−1 is just the tree

product of themselves. Let � denote this subgroup. Then we write � = � ∗
�
�= where

� = �(=−1)= = �=(=−1) . By induction, � is �(=−1)=-separable. By Lemma 9.7, for each

'� 5�(=−1)=, there exists"� 5 � such that"∩�(=−1)= = '. By (i), �= is�=(=−1)-separable.

By (ii), for each ( � 5 �=(=−1) , there exists # � 5 �= such that # ∩ �=(=−1) = (.

Case 1.  < �A < �. By induction, � is  -separable. Thus, � is  -separable by

Lemma 9.8.

Case 2.  < �=. Since �= is  -separable, the result follows from Lemma 9.8.

Lemma 9.10. Let � = � ∗
�
� and  < �. Suppose

(8) for each ' � 5 �, there exists " � 5 � such that " ∩ � = ' and ℎ̄8 ��̄ ℎ̄ 9 for

ℎ̄8 ≠ ℎ̄ 9 in �̄ of �̄ = �/";

(88) for each (� 5  , there exists # � 5 � such that # ∩ = ( and :̄8 ��̄ :̄ 9 for :̄8 ≠ :̄ 9

in  ̄ of �̄ = �/# .

Then there exists % � 5 � such that % ∩  = ( and :̄8 ��̄ :̄ 9 for :̄8 ≠ :̄ 9 in �̄ = �/%.
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Proof. Let (� 5  be given. By (ii), there exists #� 5 � such that # ∩ = ( and :̄8 ��̄ :̄ 9

for :̄8 ≠ :̄ 9 in  ̄ of �̄ = �/# . Let # ∩ � = '. By (i), there exists " � 5 � such that

" ∩ � = ' and ℎ̄8 ��̄ ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄ of �̄ = �/". We now form �̄ = �̄ ∗
�̄
�̄ where

�̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . Note that :̄8 ��̄ :̄ 9 for :̄8 ≠ :̄ 9 . Since

�̄ is conjugacy separable by Lemma 6.3 and  ̄ is finite, there exists %̄ � 5 �̄ such that

:̄8 %̄ ��̄/%̄ :̄ 9 %̄ and %̄ ∩  ̄ = 1. Let % be the preimage of %̄ in �. Then % � 5 � such that

% ∩  = ( and :8% ��/% : 9% for :8 ≠ : 9 .

Lemma 9.11. Let � = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of �1, �2, . . . , �=

amalgamating the subgroups �8 9 of �8 and � 98 of � 9 . Let  < �A . Suppose

(8) for each '8 9 � 5 �8 9 , there exists "8 � 5 �8 such that "8 ∩ �8 9 = '8 9 and ℎ̄8 ��̄8 ℎ̄ 9

for ℎ̄8 ≠ ℎ̄ 9 in �̄8 9 of �̄8 = �8/"8;

(88) for each ( � 5  , there exists # � 5 �A such that # ∩  = ( and :̄8 ��̄A :̄ 9 for

:̄8 ≠ :̄ 9 in  ̄ of �̄A = �A/# .

Then there exists % � 5 � such that % ∩  = ( and :̄8 ��̄ :̄ 9 for :̄8 ≠ :̄ 9 in �̄ = �/%.

Proof. We use induction on =. The case when = = 2 follows from Lemma 9.10. Let

= > 2. The tree product � has an extremal vertex, say �=, which is joined to a unique

vertex, say �=−1. The subgroup of � generated by �1, �2, . . . , �=−1 is just the tree

product of themselves. Let � denote this subgroup. Then we write � = � ∗
�
�= where

� = �(=−1)= = �=(=−1) .

Case 1.  < �A < �. By induction, for each ( � 5  , there exists & � 5 � such that

& ∩  = ( and :̄8 ��̄ :̄ 9 for :̄8 ≠ :̄ 9 in  ̄ where �̄ = �/&. By (i), for each ' � 5 �=(=−1) ,

there exists # � 5 �= such that # ∩ �=(=−1)= = ' and ℎ̄8 ��̄= ℎ̄8 for ℎ̄8 ≠ ℎ̄ 9 in �̄=(=−1)

where �̄= = �=/# . Then the result follows from Lemma 9.10.

Case 2.  < �=. By (ii), for each ( � 5  , there exists # � 5 �= such that # ∩  = (

and :̄8 ��̄= :̄ 9 for :̄8 ≠ :̄ 9 in  ̄ where �̄= = �=/# . By induction, for each ' � 5 �(=−1)=,
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there exists " � 5 � such that " ∩�(=−1)= = ' and ℎ̄8 ��̄ ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄(=−1)= where

�̄ = �/" . The result now follows from Lemma 9.10.

Lemma 9.12. Let � = � ∗
�
� and  < �. Suppose

(8) � and � are �-separable;

(88) for each ' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = ' = # ∩ � and

ℎ̄8 ��̄ ℎ̄ 9 , ℎ̄8 ��̄ ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄ of �̄ = �/", �̄ = �/#;

(888) � and � are �-conjugacy separable;

(8E) � is  -conjugacy separable.

Then � is  -conjugacy separable.

Proof. Let G ∈ � be of minimal length in its conjugacy class and {G}� ∩  = ∅.

Case 1. G ∈ �\�. Since G is of minimal length in its conjugacy class, we have

{G}� ∩ � = ∅. Since � is �-conjugacy separable, there exists " � 5 � such that

{G"}�/" ∩�"/" = ∅. By (ii), we can find # � 5 � such that # ∩� = " ∩�. We now

form �̄ = �̄ ∗
�̄
�̄ where �̄ = �/", �̄ = �/# and �̄ = �"/" = �#/# . It is clear that

{Ḡ} �̄ ∩ �̄ = ∅ and  ̄ < �̄. Thus, {Ḡ}�̄ ∩  ̄ = ∅. Since �̄ is cyclic conjugacy separable by

Lemma 6.3 and  ̄ is finite, there exists %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩  ̄ %̄/%̄ = ∅. Let % be

the preimage of %̄ in �. Then % � 5 � such that {G%}�/% ∩  %/% = ∅.

Case 2. G ∈ �. Since {G}� ∩ = ∅, we have {G}�∩ = ∅. By (iv), there exists #� 5 �

such that {G#}�/# ∩  #/# = ∅. By (ii), we can find " � 5 � such that " ∩ � = # ∩ �

and ℎ̄8 ��̄ ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄ of �̄ = �/" . We form �̄ as in Case 1. Since {Ḡ}�̄ ∩  ̄ = ∅

and ℎ̄8 ��̄ ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄, we have {Ḡ}�̄ ∩  ̄ = ∅ and the result follows as in Case 1.

Case 3. G ∉ � ∪ �. WLOG we assume G = 0111 . . . 0=1= where 08 ∈ �\�, 18 ∈ �\�

for 1 ≤ 8 ≤ =. By (i) and (ii), there exist " � 5 �, # � 5 � such that 08 ∉ �", 18 ∉ �#

for all 8 and " ∩ � = # ∩ �. We form �̄ as in Case 1. Since | |Ḡ | | = | |G | |, we have

{Ḡ}�̄ ∩  ̄ = ∅ and the result follows as in Case 1.
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Lemma 9.13. Let � = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of �1, �2, . . . , �=

amalgamating the subgroups �8 9 of �8 and � 98 of � 9 . Let  < �A . Suppose

(8) �8 is �8 9 -separable;

(88) for each '8 9 � 5 �8 9 , there exists "8 � 5 �8 such that "8 ∩ �8 9 = '8 9 and ℎ̄8 ��̄8 ℎ̄ 9

for ℎ̄8 ≠ ℎ̄ 9 in �̄8 9 of �̄8 = �8/"8;

(888) �8 is �8 9 -conjugacy separable;

(8E) �A is  -conjugacy separable.

Then � is  -conjugacy separable.

Proof. We use induction on =. The case when = = 2 follows from Lemma 9.12. Let

= > 2. The tree product � has an extremal vertex, say �=, which is joined to a unique

vertex, say �=−1. The subgroup of � generated by �1, �2, . . . , �=−1 is just the tree

product of themselves. Let � denote this subgroup. Then we write � = � ∗
�
�= where

� = �(=−1)= = �=(=−1) . By Lemma 9.9, we have � is �(=−1)=-separable. By Lemma 9.11,

for each ' � 5 �(=−1)=, there exists " � 5 � such that " ∩ �(=−1)= = ' and ℎ̄8 ��̄ ℎ̄ 9 for

ℎ̄8 ≠ ℎ̄ 9 in �̄(=−1)= in �̄ = �/" . By induction, � is �(=−1)=-conjugacy separable. By (i),

�= is �=(=−1)-separable. By (ii), for each ( � 5 �=(=−1) , there exists # � 5 �= such that

# ∩ �=(=−1) = ( and ℎ̄8 ��̄= ℎ̄ 9 for ℎ̄8 ≠ ℎ̄ 9 in �̄=(=−1) where �̄= = �=/# . By (iii), �= is

�=(=−1)-conjugacy separable.

Case 1.  < �A < �. By the induction hypothesis, � is  -conjugacy separable. Then

� is  -conjugacy separable by Lemma 9.12.

Case 2.  < �=. By (iv), �= is  -conjugacy separable. Then � is  -conjugacy

separable by Lemma 9.12.

Lemma 9.14. Let � be a subgroup separable group and �,  be finitely generated

subgroups of / (�) such that � ∩  = 1. Then for each '� 5 �, there exists " � 5 � such

that " ∩ � = ' and �" ∩  " = " .
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Proof. Let ' � 5 � be given. Since � is subgroup separable and ' is finitely generated

in / (�), we have �̄ = �/' is residually finite. Since �̄ = �/' is finite and �̄ ∩  ̄ = 1̄,

there exists "̄ � 5 �̄ such that "̄ ∩ �̄ = 1̄ and �̄"̄ ∩  ̄ "̄ = "̄ . Let " be the preimage of

"̄ in �. Then " � 5 � such that " ∩ � = ' and �" ∩  " = " as required.

Lemma 9.15. (Wong & Tang, 1999) Let� = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product

of �1, �2, . . . , �= amalgamating the subgroups �8 9 of / (�8) and � 98 of / (� 9 ), where

�8 9∩�8: = 1 for 9 ≠ : . Let �1, �2, . . . , �= be residually finite groups and 1,  2 be finitely

generated subgroups of / (�A), / (�B), respectively, such that  1 ∩ �A8 = 1 =  2 ∩ �B8.

Suppose that

(0) �8 is �8 9 -separable, �A is  1-separable, and �B is  2-separable;

(1) for each '8 9 : � 5 �8 9 , there exists "8 9 : � 5 �8 such that "8 9 : ∩ �8 9 = '8 9 : and

�8 9"8 9 : ∩ �8:"8 9 : = "8 9 : ;

(2) for each 'A8 � 5 �A8, there exists "A8 � 5 �A such that "A8 ∩ �A8 = 'A8 and

 1"A8 ∩ �A8"A8 = "A8;

(3) for each 'B8 � 5 �B8, there exists "B8 � 5 �B such that "B8 ∩ �B8 = 'B8 and

 2"B8 ∩ �B8"B8 = "B8;

(4) for D ∉ �1E�2 where D, E ∈ �8 and �1, �2 ⊆ / (�8), there exists !8 � 5 �8 such that

D̄ ∉ �̄1Ē �̄2 in �̄8 = �8/!8;

( 5 ) for each '8 9 � 5 �8 9 , there exists #8 � 5 �8 such that #8 ∩ �8 9 = '8 9 .

Let G ∉  1H 2, where G, H ∈ �. Then there exists % � 5 � such that Ḡ ∉  ̄1 H̄ ̄2 in

�̄ = �/%.

Lemma 9.16. (Wong & Tang, 1999) Let� = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product

of �1, �2, . . . , �= amalgamating subgroups �8 9 of / (�8) and � 98 of / (� 9 ). Let  be a

subgroup of / (�A) such that �A8 ∩  = 1. Suppose that
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(0) �8 is �8 9 -separable;

(1) for each (� 5  , there exists " � 5 �A such that " ∩ = ( and �A8" ∩ " = ";

(2) for each '8 9 � 5 �8 9 , there exists "8 � 5 �8 such that "8 ∩ �8 9 = '8 9 .

Then  I ∩  = 1 for all I ∈ �\�A and for each ( � 5  and G, H ∈ �\�A , there exists

% � 5 � such that % ∩  ⊆ ( and  G% ∩  % = %,  H% ∩  % = %.

Lemma 9.17. Let� = 〈�1, �2, . . . �= |�8 9 = � 98〉 be a tree product of subgroup separable

groups �1, �2, . . . , �= amalgamating finitely generated subgroups �8 9 of / (�8) and � 98

of / (� 9 ) where �8 9 ∩ �8: = 1. Let G �� H where G, H ∈ � are cyclically reduced and

| |G | | = | |H | | ≥ 2. Then there exists % � 5 � such that Ḡ ��̄ H̄ in �̄ = �/%.

Proof. We use induction on =. The case = = 2 follows from Lemma 9.2. Let = > 2. The

tree product � has an extremal vertex, say �=, which is joined to a unique vertex, say �=−1.

The subgroup of � generated by �1, �2, . . . , �=−1 is just their tree product. Let � denote

this subgroup. Then we write � = � ∗
�
�=, where � = �(=−1)= = �=(=−1) . By induction,

for each 01 �� 02 for any 01, 02 ∈ �, there exists " � 5 � such that 01" ��/" 02" .

Let G = G1G2 . . . GA and H = H1H2 . . . HA be cyclically reduced in �, A ≥ 2. Since G �� H,

the system of equations (1) of Definition 6.2 has no solution in � for all 0 ≤ 8 < A.

Therefore we need to show that, for each 8, there exists #8� 5 � such that in �̄8 = �/#8, the

corresponding system of equations (1) has no solution in �. Letting # be the intersection

of the normal subgroups #8 in �, we have Ḡ ��̄ H̄ in �̄ = �/# and the result follows.

Hence it is sufficient to show the case 8 = 0 in (1) of Definition 6.2.

Since � is�(=−1)=-separable and �= is�=(=−1)-separable, there exist"1� 5 �, "2� 5 �=

such that G8, H8 ∉ �(=−1)="1 if G8, H8 ∈ �\�(=−1)= and G 9 , H 9 ∉ �=(=−1)"2 if G 9 , H 9 ∈

�=\�=(=−1) .

Since G �� H, either some equations in (1) of Definition 6.2 has no admissible solution
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in � or every set of admissible solutions to (1) of Definition 6.2 is incomplete. First

suppose there exists some C, 1 ≤ C ≤ A, such that the C-th equation has no admissible

solution, that is, GC ∉ �HC�, where GC , HC ∈ � or GC , HC ∈ �=.

First suppose GC , HC ∈ �. By Lemma 9.14 and Lemma 9.15, there exists )1 � 5 � such

that ḠC ∉ �̄(=−1)= H̄C �̄(=−1)= in �̄ = �/)1. By Lemma 9.1 and Lemma 9.7, there exist

#1 � 5 �, #2 � 5 �= such that #1 ⊆ "1 ∩ )1, #2 ⊆ "2 and #1 ∩ �(=−1)= = #2 ∩ �=(=−1) .

Now we form �̄ = �̄ ∗
�̄
�̄=, where �̄ = �/#1, �̄= = �=/#2 and �̄ = �(=−1)=#1/#1 =

�=(=−1)#2/#2. Clearly �̄ is a homomorphic image of �. Then ḠC ∉ �̄(=−1)= H̄C �̄(=−1)=

in �̄ and hence Ḡ ��̄ H̄. Since �̄ is conjugacy separable by Lemma 6.3, there exists

%̄ � 5 �̄ such that Ḡ%̄ ��̄/%̄ H̄%̄. Let % be the preimage of %̄ in �. Then % � 5 � such that

G% ��/% H%.

Now suppose GC , HC ∈ �=. Since �=(=−1) ⊆ / (�=), we have GCH−1
C ∉ �=(=−1) . Since �=

is �=(=−1)-separable, there exists )2 � 5 �= such that ḠC H̄−1
C ∉ �̄=(=−1) in �̄= = �=/)2. This

implies that ḠC ∉ �̄=(=−1) H̄C �̄=(=−1) and thus Ḡ ��̄ H̄. Therefore, the result follows as above.

Suppose 01, 11, . . . , 0A , 1A ∈ � is a set of incomplete admissible solutions to (1) of

Definition 6.2. Then we have the following.

G1 = 0
−1
1 H111

G2 = 0
−1
2 H212

...

GA = 0
−1
A HA1A

Recall that H = H1H2 . . . HA , where H8 ∈ �\�(=−1)= or H8 ∈ �=\�=(=−1) . First suppose that

all the H8 from �\�(=−1)= are actually in �=−1\�(=−1)=. So each of these H8 commutes

with every element of �(=−1)= since �(=−1)= ⊆ / (�=−1). In this case, G ∼� H if and only
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if G = H. As before, we can find #1 � 5 �, #2 � 5 �= such that in �̄ = �̄ ∗
�̄
�̄=, where

�̄ = �/#1, �̄= = �=/#2 and �̄ = �(=−1)=#1/#1 = �=(=−1)#2/#2, we have | |Ḡ | | = | | H̄ | |

and Ḡ ≠ H̄. Hence, Ḡ ��̄ H̄ and we are done.

So we may assume that for at least one 8, the H8 from �\�(=−1)= is not in �=−1\�(=−1)=.

Then by Lemma 9.14 and Lemma 9.16, we have �H8
(=−1)= ∩ �(=−1)= = 1 and hence the

equation G8 = 0−1
8
H818 has unique solutions 0−1

8
, 18. Fixing this 8, we consider the next

equation G8+1 = 0−1
8+1H8+118+1 and arrange, if possible, so that 08+1 = 18. Continuing this

way, we see that this matching must eventually fail at some equation, say G 9 = 0−1
9
H 91 9 ,

where 0 9 ≠ 1 9−1. This equation may be the equation we started with. Furthermore,

H 9 ∉ �=−1\�(=−1)=, or otherwise, this H 9 commutes with every element of �(=−1)= and we

canmatch 0 9 = 1 9−1. Again byLemma9.14 andLemma9.16, we have�H 9

(=−1)=∩�(=−1)= = 1

and the equation G 9 = 0−1
9
H 91 9 has unique solutions 0−1

9
, 1 9 . Now since � is residually

finite, there exists ! � 5 � such that 0 91−1
9−1 ∉ !. Let ' = "1 ∩ "2 ∩ !. Then ' � 5 �.

By Lemma 9.14 and Lemma 9.16, there exists )1 � 5 � such that )1 ∩ � = '1 ⊆ ' and

�
H 9

(=−1)=)1∩�(=−1)=)1 = )1, �
H8
(=−1)=)1∩�(=−1)=)1 = )1. Let #1 = "1∩)1. Then #1� 5 �

such that #1∩�(=−1)= = '1 and�
H 9

(=−1)=#1∩�(=−1)=#1 = #1, �
H8
(=−1)=#1∩�(=−1)=#1 = #1.

Now, by Lemma 9.1, we can find )2 � 5 �= such that )2 ∩�=(=−1) = '1. Let #2 = "2 ∩)2.

Then #2 � 5 �= and #2∩�=(=−1) = '1. As above, we form �̄. Then �̄ H̄ 9

(=−1)=∩ �̄(=−1)= = 1̄,

�̄
H̄8
(=−1)= ∩ �̄(=−1)= = 1̄ in �̄. This implies that both the equations Ḡ 9 = 0̄−1

9
H̄ 9 1̄ 9 and

Ḡ8 = 0̄
−1
8
H̄8 1̄8 have unique solutions. Since 0̄ 9 ≠ 1̄ 9−1 in �̄, the matching of 0̄ 9 with 1̄ 9−1

fail at the equation Ḡ 9 = 0̄−1
9
H̄ 9 1̄ 9 . Therefore Ḡ ��̄ H̄ and our result follows.
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9.4 Cyclic Conjugacy Separability of Tree Products

In this section, we show that the tree products of finitely many cyclic conjugacy separable

and subgroup separable groups amalgamating finitely generated central subgroups are

cyclic conjugacy separable.

Theorem 9.18. Let � = 〈�1, �2 . . . �= |�8 9 = � 98〉 be a tree product of cyclic conjugacy

separable and subgroup separable groups �1, �2, . . . , �= amalgamating finitely generated

subgroups �8 9 of / (�8) and � 98 of / (� 9 ) where �8 9 ∩�8: = 1. Then� is cyclic conjugacy

separable.

Proof. We use induction on =. The case when = = 2 follows from Theorem 9.3. Let

= > 2. The tree product � has an extremal vertex, say �=, which is joined to a unique

vertex, say �=−1. The subgroup of � generated by �1, �2, . . . , �=−1 is just the tree

product of themselves. Let � denote this subgroup. Then we write � = � ∗
�
�= where

� = �(=−1)= = �=(=−1) .

We prove this theorem by using Theorem 6.6. By the induction hypothesis, � is

cyclic conjugacy separable and by assumption, �= is cyclic conjugacy separable. Since

�=(=−1) ⊆ / (�=) and �= is �=(=−1)-separable, we have �= is also �=(=−1)-conjugacy

separable. By Lemma 9.9 and Lemma 9.13, we have � is �(=−1)=-separable and �(=−1)=-

conjugacy separable. Thus, conditions (a), (b) and (c) hold. By Lemma 9.1, Lemma 9.7

and Lemma 9.17, conditions (d) and (e) are satisfied.

Now we only need to prove for condition (f). Let G, H ∈ � such that | |G | | = 0, | |H | | ≤ 1

and {G}� ∩ 〈H〉 = ∅.

Case 1. | |G | | = 0 = | |H | |. Clearly, {G}� ∩ 〈H〉 = ∅ and {G}�= ∩ 〈H〉 = ∅. Since

� and �= are cyclic conjugacy separable, there exist "1 � 5 �, "2 � 5 �= such that

{G"1}�/"1 ∩ 〈H"1〉 = ∅ and {G"2}�=/"2 ∩ 〈H"2〉 = ∅. Let '(=−1)= = '=(=−1) =
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"1∩"2∩�. Since �1, �2, . . . , �=−1 are subgroup separable and�8 9 ⊆ / (�8 9 ), by Lemma

9.11, for each '(=−1)= � 5 �(=−1)=, there exists &1 � 5 � such that &1 ∩ �(=−1)= = '(=−1)=

and ℎ̂8 ��/&1 ℎ̂ 9 for ℎ̂8 ≠ ℎ̂ 9 in �̄(=−1)= of �̂ = �/&1. Since �= is subgroup separable

and �=(=−1) ⊆ / (�=) is finitely generated, by Lemma 9.10, for each '=(=−1) � 5 �=(=−1) ,

there exists &2 � 5 �= such that &2 ∩ �=(=−1) = '=(=−1) and ℎ̃8 ��=/&2 ℎ̃ 9 for ℎ̃8 ≠ ℎ̃ 9 in

�̄=(=−1) of �̃= = �=/&2. By Lemma 9.1 and Lemma 9.7, there exist #1 � 5 �, #2 � 5 �=

such that #1 ⊆ "1 ∩&1, #2 ⊆ "2 ∩&2 and #1 ∩ �(=−1)= = #2 ∩ �=(=−1) . Now we form

�̄ = �̄ ∗
�̄
�̄=, where �̄ = �/#1, �̄= = �=/#2 and �̄ = �(=−1)=#1/#1 = �=(=−1)#2/#2.

Note that {Ḡ} �̄ ∩ 〈H̄〉 = ∅ and {Ḡ} �̄= ∩ 〈H̄〉 = ∅.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a),

there exists a finite sequence ℎ̄1, ℎ̄2, . . . , ℎ̄F where ℎ̄8 ∈ �̄ = �̄(=−1)= = �̄=(=−1) such that

Ḡ ∼�̄ ℎ̄1 ∼�̄= ℎ̄2 ∼�̄ . . . ∼�̄( �̄=) ℎ̄F ∼�̄= ( �̄) H̄
: . Without loss of generality, we assume

Ḡ ∼�̄ ℎ̄1 ∼�̄= ℎ̄2 ∼�̄ . . . ∼�̄= ℎ̄F ∼�̄ H̄
: . Note that each ℎ8 is uniquely determined since

ℎ̄8 ��̄ ℎ̄ 9 for all ℎ̄8 ≠ ℎ̄ 9 in �̄ and ℎ̄D ��̄= ℎ̄E for all ℎ̄D ≠ ℎ̄E in �̄=. From the first

conjugation relation Ḡ ∼�̄ ℎ̄1 implies that Ḡ = ℎ̄1 in �̄ and hence G#1 = ℎ1#1. This

implies that G#1 = ℎ1#1, ℎ1#2 = ℎ2#2, . . . , ℎF#1 = H:#1. From the first equality

G#1 = ℎ1#1, we have Gℎ−1
1 ∈ #1 ∩ � = #2 ∩ � and thus G#2 = ℎ1#2. Continuing

in this way, we have G#2 = ℎ1#2 = ℎ2#2 = . . . = ℎF#2 = H
:#2 and this implies that

Ḡ = ℎ̄1 = ℎ̄2 = . . . = ℎ̄F = H̄
: . So, Ḡ = H̄: , that is {Ḡ} �̄ ∩ 〈H̄〉 ≠ ∅, {Ḡ} �̄= ∩ 〈H̄〉 ≠ ∅, a

contradiction. Hence, {Ḡ}�̄ ∩ 〈H̄〉 = ∅. Since �̄ is cyclic conjugacy separable by Lemma

6.3, we can find %̄ � 5 �̄ such that {Ḡ%̄}�̄/%̄ ∩ 〈H̄%̄〉 = ∅. Let % be the preimage of %̄ in �.

Then % � 5 � such that {G%}�/% ∩ 〈H%〉 = ∅.

Case 2. | |G | | = 0, | |H | | = 1. We assume H ∈ �\�(=−1)=. The other case is similar. In this

case {G}� ∩ 〈H〉 = ∅ implies that {G}�∩ 〈H〉 = ∅. By the induction hypothesis, we have � is

cyclic conjugacy separable. Then there exists "1 � 5 � such that {G"1}�/"1 ∩ 〈H"1〉 = ∅.
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Since � is �(=−1)=-separable by Lemma 9.9, there exists !1 � 5 � such that H ∉ �(=−1)=!1.

Let '(=−1)= = '=(=−1) = "1 ∩ !1 ∩ �(=−1)=. Then '(=−1)= � 5 �(=−1)= and '=(=−1) � 5 �.

Since �1, �2, . . . , �=−1 are subgroup separable and�8 9 ⊆ / (�8 9 ), by Lemma 9.11, for each

'(=−1)=� 5 �(=−1)=, there exists&1 � 5 � such that&1∩�(=−1)= = '(=−1)= and ℎ̂8 ��/&1 ℎ̂ 9

for ℎ̂8 ≠ ℎ̂ 9 in �̄(=−1)= of �̂ = �/&1. Since �= is subgroup separable and �=(=−1) ⊆ / (�=),

there exists &2 � 5 �= such that &2 ∩ �=(=−1) = '=(=−1) and ℎ̃8 ��=/&2 ℎ̃ 9 for ℎ̃8 ≠ ℎ̃ 9 in

�̄=(=−1) of �̃= = �=/&2. By Lemma 9.1 and Lemma 9.7 there exist #1 � 5 �, #2 � 5 �=

such that #1 ⊆ "1 ∩ !1 ∩&1, #2 ⊆ &2 and #1 ∩ �(=−1)= = #2 ∩ �=(=−1) . Now we form

�̄ as above. Note that {Ḡ} �̄ ∩ 〈H̄〉 = ∅ and H̄ ∉ �̄.

Suppose {Ḡ}�̄ ∩ 〈H̄〉 ≠ ∅. Then Ḡ ∼�̄ H̄: for some integer : . By Lemma 6.1(a),

there exists a finite sequence ℎ̄1, ℎ̄2, . . . , ℎ̄F where ℎ̄8 ∈ �̄ = �̄(=−1)= = �̄=(=−1) such that

Ḡ ∼�̄ ℎ̄1 ∼�̄= ℎ̄2 ∼�̄ . . . ∼�̄( �̄=) ℎ̄F ∼�̄= ( �̄) H̄
: . Since H ∈ �\�, we have Ḡ ∼�̄ ℎ̄1 ∼�̄=

ℎ̄2 ∼�̄ . . . ∼�̄= ℎ̄F ∼�̄ H̄
: . Arguing as in Case 1, we have Ḡ = ℎ̄1 = ℎ̄2 = . . . = ℎ̄F. Thus,

Ḡ ∼�̄ H̄: , a contradiction to the fact that {Ḡ} �̄ ∩ 〈H̄〉 = ∅. Hence {Ḡ}�̄ ∩ 〈H̄〉 = ∅ and the

result follows as in Case 1.

This completes the proof and hence � is cyclic conjugacy separable by Theorem 6.6.

Corollary 9.19. Let � = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of free-by-finite

groups �1, �2, . . . , �= amalgamating finitely generated subgroups �8 9 of / (�8) and � 98

of / (� 9 ) where �8 9 ∩ �8: = 1 for 9 ≠ : . Then � is cyclic conjugacy separable.

Corollary 9.20. Let� = 〈�1, �2, . . . , �= |�8 9 = � 98〉 be a tree product of finitely generated

abelian groups �1, �2, . . . , �= amalgamating subgroups �8 9 of �8 and � 98 of � 9 where

�8 9 ∩ �8: = 1 for 9 ≠ : . Then � is cyclic conjugacy separable.
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CHAPTER 10: CONCLUSION

10.1 Conclusion and Brief Summary

In this thesis, we have extended conjugacy separability and cyclic conjugacy separability

to generalized free products and HNN extensions subject to certain conditions. These

results are new although the conditions, though some what restrictive, are present in finitely

generated nilpotent groups.

The property of cyclic conjugacy separability played an important role in the proof

of the conjugacy separability in generalized free products and HNN extensions by Dyer

(1980), Kim & Tang (1996), Kim & Tang (1999) and others. We feel that cyclic conjugacy

separability deserves more attention as this property is the starting point in the study of

�-conjugacy separability for finitely generated subgroups �. We have used this property

in Chapter 4 and Chapter 8. The property of �-conjugacy separability is like subgroup

separability, is difficult to be proved.

To put our research in perspective, we give an example of a generalized free product

cum HNN extension which is not even residually finite. Let � = 〈C, 0 |C−10C = 02〉 and

� = 〈1〉. Then � and � are conjugacy separable groups (Kim et al., 1995). Let � be the

generalized free products of � and � amalgamating the cyclic subgroup 〈0〉 of � and 〈12〉

of �. Then � = � ∗
0=12� = 〈C, 1 |C−112C = 14〉 is not even residually finite (Meskin, 1972).

10.2 Some Ongoing Work

In Chapter 4 and Chapter 8, we have studied the groups�1 = 〈C, �|C−1�C =  , q〉 where

� = % × �,  = & × � where %,& are finite, % ∩ & = 1 and � ⊆ / (�) and �2 = �
∗
�
�

where � =  × � where  is finite and � ⊆ / (�) ∩ / (�).
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In 2013, Kim and Tang (2013) showed that � = � ∗
�
� with � = 〈ℎ〉 ×� where |ℎ| = ∞

and � ⊆ / (�) ∩ / (�), � is finite, is conjugacy separable. We propose to show that � is

also cyclic conjugacy separable. The following two lemmas have been proved by Asri et

al., (2019) and Asri et al., (2020).

Lemma 10.1. (Asri et al., 2019) Let � be a group with subgroup � = 〈ℎ〉 × � such that

|ℎ| = ∞ and � is finite. If � is 〈ℎ〉-separable, then � is �-separable.

Lemma 10.2. (Asri et al., 2020) Let � = � ∗
�
� where � = 〈ℎ〉 × � such that |ℎ| = ∞ and

� is finite. Suppose � and � are 〈ℎ〉-separable and 〈ℎ〉-weakly potent. Then for each

' � 5 �, there exist " � 5 �, # � 5 � such that " ∩ � = # ∩ � ⊆ '.

We note that Lemma 10.1 and Lemma 10.2 satisfy conditions (c) and (d) of Theorem

6.6. If we assume that � and � are both cyclic conjugacy separable, then we have condition

(a). Since � is conjugacy separable, condition (e) can be easily shown. We only need to

work on conditions (b) and (f) here. This will complete the proof.

Similarly, we can further investigate on the HNN extension, � = 〈C, �|C−1�C =  , q〉

where � = 〈ℎ〉 × �,  = 〈:〉 × �,�, � ⊆ / (�), � ∩ � = 1 such that |ℎ| = ∞, |: | = ∞

and �, � are finite. We can apply Theorem 2.12 and Theorem 2.14 to investigate if this

type of HNN extension is both conjugacy separable and cyclic conjugacy separable. Again

we have the following from Asri et al., (2019).

Lemma 10.3. (Asri et al., 2019) Let � be a group with subgroups � = 〈ℎ〉 × � and

 = 〈:〉 × � such that |ℎ| = ∞, |: | = ∞ and �, � are finite subgroups. Suppose that � is

〈ℎ〉-separable and 〈:〉-separable, and q : � →  is an isomorphism such that q(ℎ) = :

and q(�) = �. Suppose

(1) ℎ ∼� :; or

(2) � is 〈ℎ〉-weakly potent, 〈:〉-weakly potent and ℎ< = :±< for some < ∈ Z+.
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Then for any " � 5 �, there exists # � 5 � such that # ⊆ " and q(# ∩ �) = # ∩  .

Lemma 10.1 and Lemma 10.3 satisfy conditions (b) and (c) of both Theorem 2.12 and

Theorem 2.14. Again we assume that � is both conjugacy separable and cyclic conjugacy

separable. Then, we have condition (a). We first need to prove condition (d) of Theorem

2.12 and Theorem 2.14, then finally we work on condition (e) of Theorem 2.14. This will

complete the proof.

The proof given in Kim & Tang (2013) are difficult and complex. They showed many

interesting and deep properties in those groups in Kim & Tang, (2013). We are currently

studying the techniques developed in this and other papers.
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