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CONJUGACY SEPARABILITY AND CYCLIC CONJUGACY SEPARABILITY
OF CERTAIN HNN EXTENSIONS, GENERALISED FREE PRODUCTS AND

TREE PRODUCTS

ABSTRACT

In this thesis, we study two interrelated strong residually finite properties of groups, namely
conjugacy separability and cyclic conjugacy separability. We extend them to certain HNN
extensions, generalized free products and tree products where the associated subgroups
and amalgamated subgroups are not necessarily cyclic. In the first part of the thesis,
we consider HNN extensions. We begin by establishing two criteria, one for conjugacy
separability and another for cyclic conjugacy separability. Using these two criteria we
establish conditions for HNN extensions where the associated subgroups are central or
they are a finite extension of a central subgroup or cyclic to be conjugacy separable and
cyclic conjugacy separable. In the second part of the thesis, we consider generalized free
products and tree products. We shall consider only cyclic conjugacy separability as results
on conjugacy separability are already known. Again we begin by establishing a criterion
for cyclic conjugacy separability. We then prove that certain generalized free products and
tree products where the amalgamated subgroups are central or they are a finite extension

of a central subgroup or cyclic are again cyclic conjugacy separable.

Keywords: Residually Finite, Conjugacy Separable, Cyclic Conjugacy Separable,

Generalized Free Products, HNN Extensions.
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KEBOLEHPISAHAN KONJUGASI DAN KEBOLEHPISAHAN KONJUGASI
KITARAN UNTUK PERLUASAN HNN, HASIL DARAB TERITLAK DAN

HASIL DARAB POKOK TERTENTU

ABSTRAK

Dalam tesis ini, kami mengkaji dua sifat kuat sisa terhingga yang saling terhubung, iaitu
kebolehpisahan konjugasi dan kebolehpisahan konjugasi kitaran. Kami memperluaskannya
ke perluasan HNN, hasil darab teritlak dan hasil darab pokok tertentu di mana subkumpulan-
subkumpulan bersekutu atau bergabung tidak semestinya kitaran. Di bahagian pertama
tesis ini, kami mempertimbangkan perluasan HNN. Kami mula dengan membuktikan dua
kriteria, satu untuk kebolehpisahan konjugasi dan satu lagi untuk kebolehpisahan konjugasi
kitaran. Dengan kedua-dua kriteria ini, kami menetapkan syarat-syarat bagi perluasan HNN
di mana subkumpulan-subkumpulan bersekutu adalah memusat atau lanjutan terhingga
subkumpulan memusat atau kitaran untuk menjadi konjugasi terpisah dan konjugasi
kitaran terpisah. Di bahagian kedua tesis, kami mempertimbangkan hasil darab teritlak
dan hasil darab pokok. Kami hanya akan mempertimbangkan kebolehpisahan konjugasi
kitaran sebab kebolehpisahan konjugasi sudah diketahui. Sekali lagi kami mulakan
dengan membuktikan kriteria untuk kebolehpisahan konjugasi kitaran. Kami kemudiannya
membuktikan bahawa hasil darab teritlak dan hasil darab pokok di mana subkumpulan-
subkumpulan yang bergabung adalah memusat atau lanjutan terhingga bagi subkumpulan

memusat atau kitaran adalah sekali lagi konjugasi kitaran terpisah.

Kata Kunci: Sisa Terhingga, Kebolehpisahan Konjugasi, Kebolehpisahan Konjugasi

Kitaran, Hasil Darab Teritlak, Perluasan HNN
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CHAPTER 1: INTRODUCTION

1.1 Introduction and Background

In this thesis, we shall study the related properties of conjugacy separability and cyclic
conjugacy separability in HNN extensions and generalized free products. These two

properties arise from certain fundamental problems in Combinatorial Group Theory.

Combinatorial Group Theory studies groups from the perspective of their presentations,
that is, their generators and relations. It is useful where finiteness assumptions are satisfied,
for example, finitely generated groups. Dehn (1911) raised three fundamental decision
problems in 1911. The problems are the word problem, the conjugacy problem and the
isomorphism problem. The word problem asks whether two words are effectively the same
group element. This is similar to the problem that we were given any arbitrary word, is it
the identity element in the group? The conjugacy problem asks whether two words are
conjugate in a group. It is clear that if a group has solvable conjugacy problem, then the

group will have solvable word problem but the converse is not necessarily true.

The property of residual finiteness is useful in order to study the word problem. A
finitely presented residually finite group has solvable word problem (Mostowski, 1966).
Philip Hall (1959) first introduced the term residually finite in 1955 whereas Gruenberg
was first to do a systematic study on residually finite groups. G. Baumslag (1963) was the
first to study the residual finiteness of generalized free products in detail. He proved that
free products of residually finite groups amalgamating a finite subgroup or, under certain
conditions, amalgamating a cyclic subgroup is again residually finite. Since then many

mathematicians have done research on residual finiteness and its various extensions.



The first topic we study is conjugacy separability. Following Mostowski (1966), a group
G is said to be conjugacy separable if for each pair of elements x, y in G such that x and y
are not conjugate in G, then there exists a finite homomorphic image G of G such that X and
7, the images of x and y in G respectively, are again not conjugate. Clearly, a conjugacy
separable group is residually finite. In 1966, Mostowski (1966) showed that finitely
presented conjugacy separable groups have solvable conjugacy problem. It is well known
that finitely generated torsion-free nilpotent groups and free groups are conjugacy separable
(Blackburn, 1965; Stebe, 1970). Surface groups are also conjugacy separable (Scott, 1978).
Building on these results, Dyer (1980), Formanek (1976) and Remeslennikov (1969)
and Fine and Rosenberger (1990) respectively showed that polycyclic-by-finite groups,
free-by-finite groups and Fuchsian groups (finite extension of surface groups) are conjugacy
separable. Stebe (1970) was the first to do a systematic study of conjugacy separability
on generalized free products. He proved that the free products of conjugacy separable
groups are conjugacy separable. Since then many mathematicians have done research on

conjugacy separability for generalized free products and various group extensions.

The second topic we study is cyclic conjugacy separability which was formally defined
by Tang (1995). Following Tang (1995), a group G is called cyclic conjugacy separable if
for each x € G and each cyclic subgroup (y) in G such that no conjugate of x in G belongs
to (y), then there exists a finite homomorphic image G of G such that no conjugate of X in
G belongs to (7). Clearly a cyclic conjugacy separable group is residually finite. Dyer
(1980) was first to prove that finitely generated nilpotent groups and free groups have this
property without giving it a name. Tang (1995) proved that surface groups are cyclic
conjugacy separable. Moldavansky (1993) showed that supersolvable groups are cyclic
conjugacy separable. In 1995, Kim and Tang (1995) showed that conjugacy separable

finite extensions of conjugacy separable residually finitely generated torsion-free nilpotent



groups are cyclic conjugacy separable. As consequences, surface groups and finitely

generated Fuchsian groups are cyclic conjugacy separable.

The importance of cyclic conjugacy separability lies in the fact that it is an essential
condition in extending conjugacy separability to generalized free products amalgamating
a cyclic subgroup. Indeed, Dyer (1980) first made use of this property to show that the
generalized free products of two finitely generated nilpotent groups or two free groups
amalgamating a cyclic subgroup are conjugacy separable. Tang (1995) similarly used
cyclic conjugacy separability to show the conjugacy separability of the generalized free
products of two surface groups. More recently, Kim and Tang in the papers (Kim &
Tang, 1996; Kim & Tang, 1999) established the criteria for the conjugacy separability of
generalized free products of two conjugacy separable groups with a cyclic amalgamated
subgroup and for the conjugacy separability of HNN extensions of a conjugacy separable
group with cyclic associated subgroups. One of the conditions in these criteria is that the
factor groups in the generalized free product must be cyclic conjugacy separable relative
to the amalgamated subgroup and the base group in the HNN extension must be cyclic

conjugacy separable relative to the associated subgroups.

1.2 General Description of All Chapters

We now give a brief description of all the chapters in this thesis.

This thesis is divided into two parts. In the first part, we study HNN extensions of
the form G = (¢, A|t"'Ht = K, ¢) where A is the base group and H, K are the associated

subgroups and ¢ is the isomorphism from H onto K.



In Chapter 2, we establish two criteria for G = (¢, A|t"'Ht = K, ¢) to be conjugacy

separable and cyclic conjugacy separable in Theorem 2.12 and Theorem 2.14 respectively.

From Chapter 3 to Chapter 5, we will use these two criteria to investigate the conjugacy
separability and cyclic conjugacy separability for G = (t, A|t"'Ht = K, ¢) where, A is
conjugacy separable or cyclic conjugacy separable with

(i) H = (h),K = (k) are infinite cyclic and »™ is conjugate to k*™ in A for some
positive integer m; or

(i) H,K are finite; or

(iii) H N K is central in A and H N K is a subgroup of finite index in A and in K; or

(iv) H, K are central in A.

Further conditions are imposed on the base group A and the associated subgroups
H,K in order to obtain conjugacy separability and cyclic conjugacy separability in
G = (t,A|lt"'Ht = K, $). Some applications to finitely generated nilpotent groups are

given.

In the second part, we study generalized free products of the form G = A;;B where A, B
are the factor groups and H is the amalgamated subgroup. We will only study the cyclic

conjugacy separability as the conjugacy separability were established by various authors.

In Chapter 6, we establish a criterion for G = A, B to be cyclic conjugacy separable in
Theorem 6.6. From Chapter 7 to Chapter 9, we will use this criterion to investigate the
cyclic conjugacy separability for G = A5 B where A, B are cyclic conjugacy separable
with

(1) H is cyclic; or

(i) H is finite; or

(iii) D is a subgroup of finite index in H and D is central in both A and B; or



(iv) H is central in both A and B.

In Chapter 9, we extend cyclic conjugacy separability to finite tree products where the
amalgamated subgroups are central. Again, further conditions are imposed on the factor

groups A, B and the amalgamated subgroup H in order to obtain positive results.

Finally in the last chapter, Chapter 10, we state some topics for further research.

We next give a brief description of generalized free products, tree products and HNN

extensions of groups.

1.3 Generalized Free Products

O. Schreier (1927) first introduced the concept of generalized free product in 1927.
Now we describe the concept of generalized free product of two groups. Let A, B be two
groups and H, K be subgroups of A and B respectively with ¢ : H — K an isomorphism.
Then the generalized free product G of A and B amalgamating the subgroups H of A and
K of B via the isomorphism ¢, is defined to be the group generated by the generators and
relations of the groups A and B with the extra relations ¢(h) = k where h € H, k € K.

Then we can write G as follows.

G =(A,B|¢p(h) =k),he H,k € K.

By abuse of notation, we shall write G in the commonly used form in this thesis.

G=A}B

A and B are called the factors of the group G and H is the amalgamated subgroup.



We let g be an element in G. We say that g is in reduced form if g = g1g2...8x
and no consecutive terms are from the same factor. The length of the reduced element

g =g8182...8n is denoted by ||g]|| and is defined as follows:

0, ifn=1andg; € H

llgll=1 1, ifn=1andg; e (AUB)\H

n, otherwise

The reduced element g = g1g> . .. g is called cyclically reduced if each of its cyclic

permutations g;g;+1 - - - 8n8182 - - - 8i—1 is reduced.

14 Tree Products

Let us give some facts about tree products. Tree products were first introduced by
Karrass and Solitar (1970). A description of tree products was given by Kim and Tang

(1998) as follows:

“Let T be a tree. To each vertex v of T, assign a group G,. To each edge e
of T, assign a group G, together with monomorphisms a,, 8, embedding
G into the two vertex groups at the end of the edge e. Then the tree product
G is defined to be the group generated by the generators and relations of
the vertex groups together with the additional relations a.(g.) = B.(g.)

for each g, € G..” (Kim & Tang, 1998, p. 323)

By abuse of notation, let G be a tree product of the vertex groups Aj, Ay, ..., Ay,
n > 2, amalgamating the edge subgroups H;; of A; and Hj; of Aj. We shall denote

G =(A1,Ay,...,Ap|H;j = Hj;).



1.5 HNN Extensions

Let A be a group and let H and K be subgroups of A such that ¢ : H — K is an
isomorphism. The HNN extension G of A relative to the subgroups H and K with the
isomorphism ¢ is defined to be the group generated by the generators and relations of the
group A with an extra generator ¢ and extra relation t 1At = ¢(h) for each h € H. We

write

G = (t,Alt ' ht = ¢(h),Vh € H)

We shall write G in the more commonly used form in this thesis.

G =(t,Alt 'Ht =K, ¢)

The group A is called the base group and ¢ is called the stable letter. H and K are called

the associated subgroups and ¢ is the associated isomorphism of G.

Let g € G. Then we have g = got°'g; ...1°»g, with ¢; = £1. The element g is said to
be in reduced form if there are no consecutive terms ¢~!g;z with g; € H or tg,t~! with
gn € K. Note that each element of G can be written in reduced form. The length of a

reduced element g = got°'g; . ..t°"g, is denoted by ||g|| and is defined as follows:
0, if g = go

llgll =
n, otherwise

If g € G is cyclically reduced, we write g = t¢1g1t®2...t°»g, where g; € A and
e;=x1,1 <i < n. Finally, ifx,y € G, then x ~4, y means x,y € A and either x ~4 y or

x€Handt xt=yorx € Kand txt™ ! = y.



1.6 Notations

Standard notations will be used in this thesis. In addition, we shall use the following.
Let G be a group.

N <y G means N is a normal subgroup of finite index in the group G.

Z(G) denotes the center of G.

X ~G y means x is conjugate to y in G for x,y € G.

{x}© denotes the conjugacy class of x in G.



CHAPTER 2: CONJUGACY SEPARABILITY AND CYCLIC CONJUGACY
SEPARABILITY OF HNN EXTENSIONS

21 Introduction

We begin this chapter by establishing two criteria which can be used to prove the
conjugacy separability and cyclic conjugacy separability on HNN extensions of conjugacy
separable and cyclic conjugacy separable groups respectively. These two criteria state
the common basic core conditions that are sufficient to prove these conjugacy properties.
These core conditions are simple and direct. However, to utilize them, we need to use the
special and unique properties belonging to the base group of the HNN extensions as well

as their relations to the associated subgroups.

The two criteria are given respectively in Theorem 2.12 and Theorem 2.14. They will

be used extensively from Chapter 3 to Chapter 5. We begin with some definitions.

2.2 Definitions

In this section, we state all the definitions which we are going to use later in this thesis.

Definition 2.1. A group A is said to be residually finite if, for each nontrivial element

x € A, there exists N <y A such thatx ¢ N.

Definition 2.2. A group A is called H-separable for the subgroup H of A if foreachx € A
such that x ¢ H, there exists N <y A such that x ¢ HN. A is called subgroup separable if

A is H-separable for every finitely generated subgroup H.



Definition 2.3. Let A be a group and H, K be subgroups of A. Then A is said to be
HK-double coset separable if for each x € A, A is HxK-separable. In particular, we say
that A is H-double coset separable if A is HxH-separable for all x € A. Suppose A, k are
elements of infinite order in A. Then A is said to be {#, k}-double coset separable if, for
each x € A and for each integer € > 0, A is (h€)x(h€)-separable, (h€)x(k€)-separable, and

(k€)x(k€)-separable.

The well known subgroup separable groups are free groups and polycyclic groups
(Hall, 1949; Mal’cev, 1983). Free-by-finite groups and polycyclic-by-finite groups are
subgroup separable since a finite extension of a subgroup separable group is again subgroup
separable. Note that A is (H, K)-double coset separable if and only if A is HK-separable

(Kim et al., 1995).

Definition 2.4. (Tang, 1995) Let A be a group and 4 be an element of infinite order in A.
Then A is said to be (h)-weakly potent if we can find a positive integer r with the property
that for every positive integer n, there exists a normal subgroup N of finite index in A such
that 2N has order exactly rn. A group A is called weakly potent if A is (h)-weakly potent

for all element A of infinite order in A.

For example, free groups and finitely generated nilpotent groups are weakly potent

(Evans, 1974; Tang, 1995).

Definition 2.5. Let A be a group and x € A. Then x is called self-conjugate if x* ~4 x/

then i = j for all integers i, j.

For each element x of infinite order in both free groups and finitely generated nilpotent

groups, x is self-conjugate (Dyer, 1980).

10



Definition 2.6. (Mostowski, 1966) Let x, y € A such that x »4 y. Then x, y are said to be
conjugacy distinguishable if there exists N <Is A such thatX »; yin A = A/N. A is said

to be conjugacy separable if A is conjugacy distinguishable for all x »4 y.

It is well known that finitely generated torsion-free nilpotent groups, free groups and
surface groups are conjugacy separable (Blackburn, 1965; Stebe, 1970; Scott, 1978).
Building on these results, free-by-finite groups, polycyclic-by-finite groups and Fuchsian
groups (finite extension of surface groups) are conjugacy separable by (Dyer, 1980;

Formanek, 1976; Remeslennikov, 1969; Fine & Roserberger 1990).

Definition 2.7. (Kim & Tang, 1995) A group A is said to be subgroup conjugacy separable
if for every x € A and subgroup H of A such that {x}* N H = 0, there exists N < A such
that {JE}“i NH=0in A = A/N. In particular if A is subgroup conjugacy separable for

every cyclic subgroup of A, then A is said to be cyclic conjugacy separable.

Clearly a cyclic conjugacy separable group is residually finite. Tang (1995) proved
that surface groups are cyclic conjugacy separable. Moldavansky (1993) showed that

supersolvable groups are cyclic conjugacy separable.

23 Conjugacy Separability of HNN Extensions

In this section, we give the essential lemmas and then we prove the criterion for

conjugacy separability of HNN extensions.

Lemma 2.8. (Collins, 1969) Let G = (¢, A|t"'Ht = K, @) be an HNN extension and x, y
be cyclically reduced in G. Suppose x ~g y. Then ||x|| = ||y|| and one of the following

holds:
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(@) |Ix|| = |lyl| = O and there is a finite sequence 21,722, . . .,2n € HU K such that

X ~AZ1 ~Ar 22 ~Ag .- VA Zn YA Y-

(ii) ||x|| = |lyll = 1 and x’ ~gug y where x’ is a cyclic permutation of x.

Definition 2.9. Let G = (¢, A|t"'Ht = K, ¢) be an HNN extension and x, y be cyclically
reduced in G with ||x|| = ||y|]| = » = 1. Suppose that x = ¢®x;...t°"x, and y =
tly...t"y, where x;,y; € Aand e; = = x1,1 <i < n.

Consider the following set of equations:

-1
Xi+1 = Uy Yy1Vi
— -1
Xi+2 = Uy Y2V2
(1%)

|
Xitn = Uy YnVn

A pair of elements p;, o of A is called an admissible solution of the j-th equation if and
only if x;y; = p]le,-O'j, where p;,05 € HUK.

A set of admissible solutions oy, p1, 071, . .., n, 0 € HUK to (1%) is said to be complete
if t™%0j_1t% = p; for each j and oy = 0. This is equivalent to x’ = oy lyop where
x" = Xj+1Xis2 . . . X; is @ cyclic permutation of x. So, x ~g y if and only if the system of
equations (1*) has a set of complete admissible solutions for some 0 < i < n.

For the case HN K = 1, p; € H or K according as e; = —1 or 1 respectively, and o; € H or

K according as e;;; = 1 or —1 respectively. (Here e,+1 = e;1.)
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Lemma 2.10. Let G = (t, A|lt"'Ht = K, ¢) be an HNN extension where A is finite. Then
G is subgroup separable (Wong, 1993), conjugacy separable (Dyer, 1980) and cyclic

conjugacy separable (Kim & Tang, 1995).
The following lemma is easy to obtain from Baumslag & Tretkoff (1978).

Lemma 2.11. Let G = (t, A|lt"'Ht = K, ¢) be an HNN extension. Suppose
(i) A is residually finite;
(if) A is H-separable and K-separable;
(iii) For each M <15 A, there exists N <\y A such that N € M and ¢(NNH) = NNK.

Then G is residually finite.

We now state and prove a criterion for conjugacy separability which will be used in

Chapter 3 to Chapter 4.

Theorem 2.12. Let G = (t, A|lt "' Ht = K, ¢) be an HNN extension where
(a) A is residually finite;
(b) A is H-separable and K-separable;
(c) For each M <1y A, there exists N <\y A suchthat N C M and ¢(NNH) = NN K;
(d) Forx,y € G such that ||x|| = ||y|| = 0 and x +G Yy, there exists Q <y G such that
xQ *gJg y0.

Then G is conjugacy separable.

Proof. Letx,y € G such that x »g y. Without loss of generality, we assume that x, y are
cyclically reduced and have the minimum length in their conjugacy classes. Since G is
residually finite by Lemma 2.11, we can assume x # 1 # y.

Case 1. Suppose ||x|| = n > 1,||y|| =m > 1. Let x = t1x1t%x;...1t°"x,,y =

tE1

yitB2y, .. .tEmy, where m,n > 1 and €;,E; = £1,x;,y; € Afori =1,...,n,j

1,...,m. Let p, denote those x;,y; € A\H, g5 denote those x;,y; € A\K and u; denote
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those x;, y; € (H N K)\{1}. Since A is residually finite, H-separable and K-separable by
(a) and (b), there exists M <1y A such that p, ¢ HM,q; ¢ KM and u; ¢ M.

Subcase la. Suppose n # m. By (c), there exists N <y A such that N € M
and g(NNH) = NNK. We form G = (t,A|t"'Ht = K, $) where A = A/N,H =
HN/N,K = KN/N and ¢ is the induced isomorphism from H to K. Then in G, we have
||x|| = n, ||y|| = m where n # m. This implies that ||x|| # ||¥|| and hence by Lemma 2.8,
we have ¥ »¢ . Since G is conjugacy separable by Lemma 2.10, there exists P < f G such
that £P +5,5 P. Let P be the preimage of P in G. Then P <Iy G such that xP +g,p yP.
Our result follows.

Subcase 1b. Suppose n = m. By (d), there exists Q <y G such that xQ +g/9 yQ. Let
P = MNQ. Then P<i¢A. By (c), there exists N<lyA suchthat N C Pand ¢(NNH) = NNK.
We form G as in Subcase 1a. Then in G, we have ||%|| = n, ||7|| = m,n =m and % #5 7.
We proceed as in Subcase 1a and the result follows.

Case 2. Suppose ||x|| = 0,]||y|| = 1 or ||x|| = 1,]||y|]| = 0. We consider the case
[lx|| = 0,]|y|| = 1. Asin Case 1, we can form G such that in G we have X # 1, ||%|| = 0

and ||| > 1. By Lemma 2.8(i), any conjugate of ¥ is either an element ¥’ of A or an

1 1

element of the form i~ '%i where i~ and i are reduced in G. Since j is cyclically
reduced and ||¥|| > 1, then by Lemma 2.8 we have ¥ »5 y. We now proceed as in Subcase
1a and our result follows.

Case 3. Suppose ||x|| = ||y|| = 0. This case follows from (d).

The proof for this theorem is now complete and hence G is conjugacy separable.

24 Cyclic Conjugacy Separability of HNN Extensions

In this section, we prove the criterion for cyclic conjugacy separability of HNN

extensions.
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Lemma 2.13. Let G = {t, A|t"'Ht = K, ¢) be an HNN extension and x,y € G such that

lIx[| = |ly**|| = 1for some positive integer k. Then {x}° N {y) = 0 if and only if x g y**.

Proof. Suppose {x}6 N (y) = 0. Then g7'xg ¢ (y) implies g"lxg # y*" for any
g € G,r € Z*. Thus, g~ 'xg # y**. Hence x g y**. Conversely, suppose x +g y**. We
have g~'xg # y** for any g € G. Since ||x|| # ||y*"|| for all n € Z*\{k}, x +g y*" by

Lemma 2.8(ii). Thus, x +¢ y*” for all » € Z*. Therefore, {x}° N (y) = 0.

We now state and prove our main criterion for cyclic conjugacy separability of HNN
extensions which will be used to prove our main results in Chapter 3, Chapter 4 and

Chapter 5.

Theorem 2.14. Let G = (¢, A|t"'Ht = K, ¢) be an HNN extension where

(a) A is residually finite;

(b) A is H-separable and K-separable;

(c) For each M <y A, there exists N <\y A suchthat N C M and ¢(NNH) = NNK;

(d) Forx,y € G such that ||x|| = ||y|| > 1 and x +g Yy, there exists Q <y G such that
xQ +g/g ¥Q;

(¢) Forx,y € G such that ||x|| = ||y|| = 0 and {x}® N (y) = 0, there exists P <y G
such that {xP}°/? n (yP) = 0.

Then G is cyclic conjugacy separable.

Proof. Letx,y € G such that {x}° N (y) = 0. Without loss of generality, we assume that
x,y are cyclically reduced and have the minimum length in their conjugacy classes. Since
G is residually finite by Lemma 2.11, we can assume x # 1 # y.

Case 1. Suppose ||x]| = n = 1, ||yll =m > 1. Letx = t1x1t%x; .. .t°"x,,y =

tElylthyz...tE'"ym where m,n > 1 and ¢;,Ej = +1,x;,,y; € Afori=1,...,n,j

1,...,m. Let p, denote those x;,y; € A\H, g, denote those x;, y; € A\K and u; denote
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those x;, y; € (H N K)\{1}. Since A is residually finite, H-separable and K-separable by
(a) and (b), there exists M <1y A such that p, ¢ HM,q; ¢ KM and u; ¢ M.

Subcase 1a. Suppose n # km for all positive integers k. By (c), there exists N <y A
such that N € M and (NN H) = NN K. We form G = (t,A|t"'Ht = K, §) where
A=A/N,H=HN/N,K = KN/N and ¢ is the induced isomorphism from H to K. Then
in G, we have ||%|| = n, ||¥|| = m where n # km for all positive integers k. This implies
that ||%|| # ||7%¥|| and hence by Lemma 2.8, X =5 y** for all positive integers k. Hence by
Lemma 2.13, we have {.f}G_ N (y) = 0. Since G is cyclic conjugacy separable by Lemma
2.10, there exists P <iy G such that {£P}5/F 0 (7P) = 0. Let P be the preimage of P in G.
Then P < G such that {xP}%/? n (yP) = 0. Our result follows.

Subcase 1b. Suppose n = km for some positive integer k. By Lemma 2.13, {x}° N {(y) =
0 implies that x g y**. By (d), there exists Q < 7 G such that xQ +g/o y**Q. Let
P = MNQ. Then P<i¢A. By (c), thereexists N<IyA suchthat N C Pand ¢(NNH) = NNK.
We form G as in Subcase 1a. Then in G, we have ||%|| = n, ||7|| = m,n = km and X +5 y**.
Again by Lemma 2.13, we have {i}é N (¥) = 0. We proceed as in Subcase 1a and the
result follows.

Case 2. Suppose ||x|| = 0, ||y|| = 1. As in Case 1, we can form G such that in G
we have X # 1, ||%|| = 0 and ||¥|| > 1. By Lemma 2.8(i), any conjugate of ¥ is either an

134 and @ are reduced in G.

element X’ of A or an element of the form i~ '%i where i~
Since ¥ is cyclically reduced and ||¥|| > 1, then 7** is cyclically reduced and ||5*¥|| > k
for all positive integers k. Hence, by Lemma 2.8, we have X +5 7** for all positive integers

k. Thus this implies that {JE}G N () = 0. We now proceed as in Subcase 1a and our result

follows.
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Case 3. Suppose ||x|]| > 1,]|y|| = 0. As in Case 1, we can form G such that in G,
we have ||X]| > 1,||¥|| =0 and 7 # 1. Since X is cyclically reduced and ||%|| > 1, then
any conjugate of X, say z has length ||z]| > ||X|| > 1. Since 7 € A, then y** € A for all
positive integers k. Hence by Lemma 2.8, we have ¥ + j*k. Therefore, this implies that
{JE}G N (y) = 0. We now proceed as in Subcase 1a and our result follows.

Case 4. Suppose ||x|| = ||y|| = 0. The result follows from (e).

The proof for this theorem is now complete and hence G is cyclic conjugacy separable.
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CHAPTER 3: HNN EXTENSIONS WITH CYCLIC ASSOCIATED SUBGROUPS

31 Introduction

In this chapter, we extend the conjugacy separability and cyclic conjugacy separability
to certain HNN extensions with infinite cyclic associated subgroups. More precisely, we
shall show that the HNN extension G = (¢, A|¢~'ht = k) where A, k be elements of infinite
order in A and K™ ~,4 k*™ for some positive integer m is conjugacy separable and cyclic

conjugacy separable when A is a free group or a finitely generated torsion-free nilpotent
group.
Recall that the Baumslag-Solitar group G = (¢, a|t"'a*t = a?) is an example of an

HNN extension with cyclic associated subgroups which is not even residually finite.

This chapter is divided into three parts. In the first part, we gather all the lemmas
needed to prove the main results. We prove the conjugacy separability in the second part

and the cyclic conjugacy separability in the final part.

3.2 Lemmas Needed

In this section, we gather all the lemmas that we need to prove the main results later in

this chapter. We begin with the following remark.

Remark A. Let A be a group and h, k be elements of infinite order in A. If A is (h)-weakly
potent and (k)-weakly potent, then we can find positive integers ry,ry such that for
each positive integer n, there exist Q1 <\y A, Q2 <y A such that Q1 N (h) = (K"'"") and

Q2 N (k) = (k™).
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Lemma 3.1. Let A be a group and h, k be elements of infinite order in A and h™ ~4 k*™
for some positive integer m. Suppose that ¢ : (h) — (k) is an isomorphism such that
¢(h) = k. Suppose A is (h)-weakly potent and (k)-weakly potent. Then for each M <1y A,

there exists N <y A such that N € M and ¢(N N (h)) = N N (k).

Proof. Let M <y A be given. Suppose M N (h) = (h*') and M N (k) = (k") for
some positive integers si,s2. Since A is (h)-weakly potent, (k)-weakly potent and
by Remark A, we can find M1 <y A, My <y A such that My N (h) = (h"172152"") and
M, N (k) = (k"725152mny T et N = M N M; N M,. Since h™ = a"1k*™q for some a € A,

we have N <y A such that

NN h)y=Mn M, N Myn<{h)
= M2 N <hr1r2s1szmn>
i M2 N <a—1kir1r2s1szmna>

— a—l (M2 N <k:|:r1r2s1szmn>)a

— a—l (k:trlrzslszmn>a

= (hr1r2s1s2mn>

Similarly, we have N N (k) = (k""25152m") Therefore, ¢(N N{h)) = NN (k) as required.

Theorem 3.2. (Wong & Gan, 1999) Let G = (t, A|t"'Ht = K, ¢) be an HNN extension
where A is a cyclic subgroup separable group. Suppose that

(a) A is H-separable and K-separable;

(b) for each M <i¢ A, there exists N <y A such that N C M and (N NH) = N N K,

Then G is cyclic subgroup separable.
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Lemma 3.3. Let G = (¢, A|t"'ht = k) be an HNN extension where h, k be elements of
infinite order in A and h™ ~ 4 k™ for some positive integer m. Suppose

(i) A is cyclic subgroup separable;

(ii) A is (h)-weakly potent and (k)-weakly potent.

Then G is cyclic subgroup separable.

Proof. Since A is cyclic subgroup separable, A is (h)-separable and (k)-separable. Thus,

the result follows from Lemma 3.1 and Theorem 3.2.

Lemma 3.4. (Kim & Tang, 1996) Let A be a group that is {h€)x{k€)-separable, where
x, h, k are elements in A such that h, k have infinite orders. If (x‘lhx) N (k) =1, then
there exists N <y A such that % Wiz = kJ only if €li, j, where %, h,k € A = A/N and

€i,j€Z

Lemma 3.5. Let A be a group where x, h, k are elements in A with h, k having finite
orders. Let €,i, j € Z.
(i) Ifx~'Wx = k/ only if €li, j, then €||h], |k|.

(ii) Ifx~'hix = k/ and €li, |h|, where |h| = |k|, then €|].

Proof. (i) Leti = |h| and j = |k|. Then x™'h’x = 1 = k/. Then €||h|, |k|.
(ii) Leti = e and |h| = |k| = ec where c is some positive integer. Since 1 = x~1h*¢x =

kJ¢, then ec|jc. Hence €|j.

Lemma 3.6. Let A be a group and h, k be elements of infinite order in A and h™ ~4 k*™
for some positive integer m. Suppose h, k are self-conjugate in A. If k™ ~4 k* for some

integersr, s, then r = +s.
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Proof. First suppose h™ ~4 k™. Let r = am for some integer @. Then k™" = k™" ~4
h®" = h" ~4 k°. Since k is self-conjugate, we have s = —r. Suppose r # am for all @ € Z.
Then k™™ ~4 h™™ ~4 k™. Again since k is self-conjugate, we have s = —r. For the case

h™ ~4 k™, the proof is similar and we will get s = r.

33 Conjugacy Separability on Certain HNN Extensions

In this section, we prove the two main results on conjugacy separability, that is Lemma

3.7 and Theorem 3.8.

Lemma 3.7. Let G = (t, A|t"'ht = k) be an HNN extension where h, k be elements of
infinite order in A and ™ ~ 4 k™ for some positive integer m. Let h, k be self-conjugate
in A. Suppose
(i) A is cyclic subgroup separable;
(ii) A is {h, k}-double coset separable;
(iii) A is (h)-weakly potent and (k)-weakly potent.
Then for each x,y € G such that ||x|| = ||yl| > 1 and x +g Yy, there exists Q <y G such

that xQ +g,9 yQ in G/Q.

Proof. We shall only consider the case /™ ~4 k™. The other case is similar. Let x, y be
cyclically reduced. We assume x = t°1x1t°2x; ... t?x, and y = t1y1t2y, ... t**y,, where
X;,yi € A,n > 1and e;, ¢ = =1. Since x *¢ Y, the system of equations (1*) of Definition
2.9 has no set of complete admissible solutions for each i, 1 < i < n. Therefore, we need to
show that, for each i, there exists P; <r G in G; = G/P; such that the corresponding system
of equations has no set of complete admissible solutions. Letting P to be the intersection
of all normal subgroups P;, we have X + 7 in G = G /P and the result follows. Hence it

is sufficient to show the case i = 0 in (1*) of Definition 2.9.
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Let u; denote those x;,y; € A\(h) and v; denote those x;,y; € A\(k). Since A is
(h)-separable and (k)-separable, there exist M1 <y A, M <y A such that u; ¢ M;(h) and
vi € My(k) for all i. By Lemma 3.1, there exists N <y A such that N C M; N M and
#(NN(h)) = Nn<(k). Let G = (¢t,A|t"'ht = k) where A = A/N and h = hN, k = kN.
Clearly G is a homomorphic image of G. Let g denote the image of any element g € G in
G. Then &, y are cyclically reduced and ||%|| = ||x|| = ||y|| = ||7]| in G.

Suppose there exists some i such that e; # €;. Then X +& 7 in G. Since G is conjugacy
separable by Lemma 2.10, there exists Q <y G such that £Q »5,5 Q. Let Q be the
preimage of Q in G. Then Q < £ G such that xQ +g,g yQ and the result follows.

Suppose e; = ¢; for all i. Since x +»¢ y, either some equations in (1*) of Definition 2.9
has no admissible solution or every set of admissible solutions to (1*) of Definition 2.9 is
incomplete.

First suppose there exists some j,1 < j < n, such that the j-th equation has no
admissible solution, that is, x; & (a;)y;{bj) where aj,bj € (h) U (k). Since A is {h, k}-
double coset separable, there exists M3 <y A such that X; ¢ (d;)7; (b j) in A= A/Ms.
Let M = My N M, N M3. By Lemma 3.1, we can find N <y A such that N C M and
#(N N (h)) = N N (k). Again, we form G as above. Then £,  are cyclically reduced and
1% = [IxIl, 117! = [ly|| in G. Furthermore, X; & (a;)y;{b;) where a;, b; € (h) U (k).
Hence, ¥ +5 y and we are done.

Suppose a}’, b‘lll, ...,aS, b% € (h) U (k) is a set of incomplete admissible solutions

to (1*) of Definition 2.9. Then we have the following:

-c d
x1 =a; 'y1b{'
—-c d.
X2 = a, *y2b5?

(2
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— 4—C d
Xn=a, "Ynby"

where a; = h or k accordingly as e; = —1 or 1 respectively and b; = h or k accordingly as
e;+1 = 1 or —1 respectively. Hence each equation x; = a; c"y,-bf" from (2) must take one of

the following forms:

Xi = h_ciy,'hdi or,
Xi = k_ciyikdi or,
Xi = h_ciyikdi (0) 8

Xi = k_ciyihdi.

Before continuing with the proof, we analyze the various possible subcases. We first
consider the equation x; = h~°y;k%. Then either (y;'hy;) N (k) =1 or (y; hy;) N (k) =
(k") where y; > 0.

Suppose (yl.‘lhy,-) Nn<k) = 1. If x; = h™Piy;k?% for some other h™Pi k%, then
y;ihPi=ciy; = k%% € (y7'hy;) N (k) = 1 and hence p; — ¢; = q; — d; = 0, that
is, p;i = ¢;i,q; = d;. This implies that c;, d; are uniquely determined in the equation
x; = h™¢ y,—kd".

Now suppose (yi‘lhyi)n(k) = (k”') where y; > 0. Let A; be the smallest positive integer
such that y; 1h%y; = k. Since h™ ~4 k™™, then y; 1Ay, = k™1 ~, h™™i_ Since h is
self-conjugate in A, we have y; = —4; and hence y; !h%y; = k=% and y;'h%y; ¢ (k) for
alll <g < 4.

Similarly for the equation x; = h™“ y,-hdi, either c;, d; are uniquely determined or

yi‘lhmiy,- = h™ and yl.‘lhqy,- g (h)forall1l < q < m;.
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We can now proceed with the proof. We will only consider the case when x =
tx1t°xy ... t°"x, and y = tyt®y,...t**y,. The proof for the other case when x =
t1x11%x, .. . t°*x, and y = t"1y(t®y, ... t°y, is similar. By Lemma 2.8(ii), we have
x »g yif and only if x # h™*yh* and x # k™*yk* for all z € Z.

Case 1. Suppose

(7 hy;)) N (h) = (h*),a; > 0, for all equations x; = h~"y;h%,
7 kyi) N (kY = (kP B; > 0, for all equations x; = k™'y;k%,
(7 Lhy;) 0 (k) = (k*), ; > 0, for all equations x; = A%y k%,

(7 ky;) N (hy = (h*'), p; > 0, for all equations x; = k™ iy;h%,

Lety = m(Iem{|ail, |Bil, |4:l, |pil}). Then

yi Wy = W if x; = h™%y;h%,
Ky = kY if x = Ky k%
Vi Yi=K 1L x = Yik™,
vy = kY if x; = By k%
yi yl - mx; = yl ’

Y k7 y; = BT if x; = k™%,

Subcase 1a. Suppose in the system of equations (2), the total number of the equations
y; 1pYy; = k™ together with the equations y; 1k7y; = h™ is zero or even. This implies that
ylhYy = y lt=en | .y;lt‘lhytyl ...t"y, = h?, that is, [y, h”] = 1. Hence h™*yh* =
h~*yh* for some 0 < u < |y|. So, x # h™%yh* for all z € Z implies that x # h™*yh* for all
0 <u<|y|, thatis, x 1A *yh* # 1 for all 0 < u < |y|. Similarly, yk?y~! = k7, that is
[y, kY] = 1. So, x # k™*yk* for all z € Z implies that x # k™yk* forall 0 < u < |y]|.

By Lemma 2.8(ii), x »¢ yifand onlyif x # A™*yh* andx # k™“yk“ forall0 < u < |y|.
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Since G is residually finite by Lemma 3.3, there exists M3 <l G such that x h Tyt ¢ My
and x 1k “yk* ¢ M3 forall 0 < u < |y|. Let M = M; N M, N M3. By Lemma 3.1, there
exists N <1y A such that N € M and ¢(N N (h)) = N N (k). We now form G as above.
Note that %, ¥ are cyclically reduced and ||x|| = ||x||, ||7|| = ||y|| in G. Clearly, x # A~*yh"
and X # k™*yk* for all 0 < u < |y|. Since [y, h?] = 1 and [y, k7] = 1, then by Lemma
2.8(ii), we have ¥ *5 ¥ and we are done.

Subcase 1b. Suppose in the system of equations (2) the total number of the equations
Y 1pYy; = k™ together with equations y; 1%7y; = h™ is odd. Then arguing as in Subcase
la, we have y"1h?y = h™ and yk?y~! = k77, that is, h™Yyh? = yh®¥ and k7 yk? = yk?".
So, x # h™*yh? and x # k~?yk? for all z € Z implies that x 1A “yh* ¢ (h*’) and
x k" yk* ¢ (k%) forall 0 < u < |y|.

By Lemma 2.8(ii), x »g y if and only if x 1A~*yh* ¢ (h*’) and x Lk “yk* ¢ (k??).
Since G is (h*)-separable and (k%")-separable by Lemma 3.3, there exists M3 < G
such that x 1A ~*yh* ¢ (h¥)M3 and x 1 k*yk* ¢ (k*')M3. Let M = M; N M> N M3. By
Lemma 3.1, there exists N </ A such that N € M and ¢(NN(h)) = NN (k). We now form
G as above. Then %, y are cyclically reduced and ||x|| = ||x||,|7]| = ||y|| in G. Clearly,
#1h7#yh* ¢ (h®)y and x Lk “5k* ¢ (k2V) forall 0 < u < |y|. Since A~Yyh? = yh*’ and
k~§k? = k>, then by Lemma 2.8(ii), we have X +s ¥ and we are done.

Case 2. Suppose (y]‘.lhy j) N (k) = 1 for one equation x; = h™%y jkdf. Since
(y]‘.lhy 7Y N (k) = 1, then c;, d; are uniquely determined in the equation x; = h™%/y ;k%.
Fixing this integer j, we consider the next equation x4, = A~y j+1kdj+1. We arrange if
possible so that cj4; = d;. Continuing this way, we see that this must eventually fail at
some equation, say x, = h‘c'y,kd' where ¢, # d,—1. Here the integer r is taken modulo n
and hence this may be the next equation or it may be the equation we started with.

Letx’ = t®ix;t®+ .. to-1x,_1t°x, and y’ =ty ;1841 11y, _11°7y,.
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Subcase 2a. x, = k~°r y,hd’. Then by substituting the values of x;, . . ., x,_1 from (2)
and x, into x’ and using the fact that we have arranged that cjy; = d;, j <i <r-1, we
obtain x’ = k=Citeiy te+t . . tor-ty, 1k-1=Cr¢ery hd% and hence x’ & (k)y’(h).

First we suppose (y,'ky,) N (k) = 1. Then c,,d, are uniquely determined in the
equation x, = k=°ry,h%. Let € = 2|d,_1 — c¢,;|. By Lemma 3.4, there exists M3 < FA
such that in A = A/ M3, we have i]‘.lﬁ"'ij = k* only if €|o, p and we have 7, 1k?¥, = hd
only if €|p,q. By Lemma 3.1, we can find N <y A such that N C My N M N M3 and
#(N N (h)) = N n (k). We now form G. Note that X, 7 are cyclically reduced and
[1%]] = IIxl1, |I7]] = ||y|| in G. By the choice of M3, we have )'7]‘.171"'&]- = kP only if |0, p
and we have 3, k73, = h? only if €|p, g in G.

First, we note that in G, we have ¥’ = k=/¢¢i NALACALINNS aias y,_lkdr-l‘cr teér y,i_zdr and
¥ =teiyte L 1915, 1% §,. Now we suppose X' € (k)7’(h). Then there exist integers

0j-1,6j,...,0, such that the following hold:

y; = h015,k%
ot = %1% pOM
Yi+1 = Yj+1 j+1
(3)

- ——8r 2= 76
Yr-1= ar—i zyr—lh 1

Edr—l_cr yr = E_ar—l yr ﬁ‘sr

From the first equation in (3), €|6,-1, ; by the choice of M3. Now by Lemma 3.5(), €||A|.
This together with |k| = |k| in G in applying Lemma 3.5(ii), from the second equation
to the second last equation, we have €|d; for all j +1 < k < r — 1. Now from the last
equation, we have y, = k~(dr-1=¢r+6r-1) y,ﬁ‘”. Hence €|d,_1 — ¢, + 6,1 by the choice of

M3. Since €|6,_1, we have €|d,_; — c,, which is a contradiction. Therefore ¥’ ¢ (k)y’(h)
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in G and thus X +5 .

Suppose (y:lky,) N (h) # 1. Let s, be the smallest positive integer such that
y-1k*y, € (h). This implies that y,'k9y, ¢ (h) forall 1 < q < s,. Since A is
(h)-separable, there exists M3 <y A such that y:lky, ¢ (WYMj forall1 < q < s,. As
the matching fails at the equation x, = k=" y,h%, we must have k%-17¢r ¢ (k°r), that
is, d,_1 — ¢, # zs, for all z € Z. Since (y]‘.lhyj) N (k) = 1 by Lemma 3.4, there exists
M, <y A such that in A = A/Mj, we have y;lﬁ“ij = k” only if s,|u,v. By Lemma 3.1,
we can find N <y A such that N C M1 N My N M3 N My and ¢(N N (h)) = N N (k).
We now form G. Then %, y are cyclically reduced and ||x|| = ||x||, ||| = |ly|| in G.
Furthermore, by the choice of My, }'7]‘.171” yi= kv only if s,|u, v whereas by the choice of
M3, 5, k93, ¢ (h) forall1 < g < s,in G.

Suppose %’ € (k)y’(h). Then we again have the system of equations (3) as above. From
the first equation in (3), s,|6;-1, 6} by the choice of M3. Now by Lemma 3.5(), s,||A|.
This together with |h| = |k| in G by applying Lemma 3.5(ii) from the second equation
to the second last equation, we have s,|6; for all j + 1 < k < r — 1. Now from the last
equation we have 7, = k~(@r-1=¢++6r-)5_hsr Hence, s,|d,_1 — ¢, + 6,-1 by the choice of
M3. Since s,|6,-1, we have s,|d,_1 — ¢,. So, d,_1 — ¢, = vs, for some v € Z. But this
contradicts the fact that d,_; — ¢, ¢ zs, for all z € Z. Therefore, ¥’ ¢ (k)y'(h) in G and
thus X +5 y.

The following subcases are similar and we can proceed as in Subcase 1a.

() x, = k™o y, k%,

(i) x, = h~ry,h%,

(iii) x, = k~°ry, k% .
Finally the following cases are similar and we can proceed as in Case 2.

Case 3. (yj‘.lhyj) N {(h) = 1, for one equation x; = h‘cfyjhdf, or
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Case 4. (yJ‘.lkyj) N (k) = 1, for one equation x; = k‘cfyjkdf, or
Case 5. (y;'ky;) N (h) = 1, for one equation x; = k™/y;h%.

This completes the proof of this lemma.

Theorem 3.8. Let G = (t, A|t " ht = k) be an HNN extension where h, k be elements of
infinite order in A and h™ ~4 k=" for some positive integer m. Let h, k be self-conjugate
in A. Suppose
(i) A is conjugacy separable;
(ii) A is cyclic subgroup separable;
(iii) A is (h)-conjugacy separable and {k)-conjugacy separable;
(iv) A is {h, k}-double coset separable;
(v) A is (h)-weakly potent and {k)-weakly potent;
(vi) for each integer s > 0, there exists My <y A such that M1 N (h) = (h°) and Ko+ i h
forall W # h in A = A/Mqy;
(vii) for eachinteger s > 0, there exists M <y A such that Mo N (k) = (k®) and Kt » i k7
forall k' # kJ in A = A/ M,.

Then G is conjugacy separable.

Proof. We apply Theorem 2.12 here. We only prove for the case h™ ~4 k™. The
other case is similar. Since A is conjugacy separable, (h)-separable and (k)-separable,
conditions (a) and (b) are satisfied. By Lemma 3.1, we have condition (c). We now show
condition (d).

Letx,y € G such that ||x|| = ||y|| =0 and x #¢ y.

Case 1. Suppose {x}2 N (k) = 0 and {x}* N (k) = 0. Note that x +g y implies that
x +4 y. Since A is conjugacy separable, (h)-conjugacy separable and (k)-conjugacy
separable, there exists M <Iy A such that xM +4,y yM,{xM YAM A (hM) = 0 and

{xM}A™M N (kM) = 0. By Lemma 3.1, there exists N <y A such that N C M and
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#(N N (h)) = N N (k). We now form G = (¢, A|t"'ht = k) where A = A/N, h = hN and
k=kN. Thenin G,wehave s # 1,5 # 1, {(&}4 n (W) = 0,{x} N (k) =0 and X +; ¥.
Suppose ¥ ~5 y. By Lemma 2.8(i), there exists a finite sequence of zZ; where
Z; € (h) U (k) such that X ~z Z1 ~4z, ... ~4; Zw ~4 y. Since {x}4 N (h) = 0 and
{%}4 N (k) = 0, the sequence reduces to ¥ ~5 7 or ¥ ~; 3. Since % ¢ (k) U (k), that is,
t~1xt,txt~! ¢ (h) U (k), the sequence further reduces to % ~; y which is a contradiction.
Thus, X +3 y. Since G is conjugacy separable by Lemma 2.10, there exists P < f G such
that £P +5,5 P. Let P be the preimage of P in G. Then P <Iy G such that xP +g/p yP.
Case 2. Either {x}4 N (h) # 0 or {x}4 N (k) # 0. Suppose {x}2 N (h) # 0. Then
x ~4 h" for some integer r. Since 4 is self-conjugate in A, then r is uniquely determined.
If " ~4 k°, then s = £r by Lemma 3.6. Similarly if K~ ~4 h°, then s = £r. So in this case,
x +g yimpliesthatx »4 y, h*" »4 y and k¥ 4 y. Since A is conjugacy separable, there
exists M <y A such that xM » 45 yM,h*"M +4,y yM and k*"M +4,y yM. Suppose
M N (h) = (h**) and M N (k) = (k*2) for some positive integers s1, s2. Let s = sysom.
By (vi), there exists M; <If A such that M; N (k) = (h*) and k' =z b/ for all B # B/ in
A = A/M,. Similarly with (vii), there exists M <y A such that M, N (k) = (k*) and
ki »; k/ forall k' # k/ in A = A/M,. Let N = M N M; N M,. Then N < A such that
N n (k) = (h*) = (k*) = N n (k). As above, we form G as in Case 1. Then in G we have

45 9, Wt +z 3 and k*" +7 j. Also we have &' +z b/ forall B # h/ and k' +z k/ for

]l

all k' # k/ in G.

Suppose X ~5 y. By Lemma 2.8(i), there exists a finite sequence of zZ; where
7 € (hy U (k) such that X ~4 Z1 ~z, ... ~4, Zw ~z y. Consider the first conjugation
relation ¥ ~; 7. Recall that x ~4 A" and hence X ~z k. Note that the integer r is unique
since h' +z b/ for all h' # h/ in A. Hence 7; = h". Now consider the second conjugation

relation 2y ~z, 2. If Zp = A%, then h® ~4, 71 = B". Again since h' +; h/ for all ' # h/
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in A, we have 7, = h”. Now suppose 7 = k*. Now if A" ~4 k°, then by Lemma 3.6,
s = 4r. So, K" ~4 k*" and hence #" ~; k*". Again r is unique since k' +; k/ for all
ki # k/ in A. Finally since h ~; k, we have h ~; k and so " ~; k. Hence, Zo = h*"
or 7, = k*". Continuing this way, we have z; = h*" or 7; = k*" fori = 3,...,w. Hence
Zw = h*" or Z,, = k*". This implies that #*" ~; § or k*" ~; %. This is a contradiction
since h*" +; y and k*" +4 y. Therefore X +5 ¥ and our result follows as in Case 1. The
case when {x}4 N (k) # 0 is similarly proved.

Hence we have condition (d) from Case 1, Case 2 and Lemma 3.7. This completes the

proof and thus G is conjugacy separable by Theorem 2.12.

Corollary 3.9. Let G = (¢, A|lt"'ht = k) be an HNN extension where h, k be elements of
infinite oder in A and k™ ~ 4 k*™ for some positive integer m. Suppose A is either finitely

generated torsion-free nilpotent or free. Then G is conjugacy separable.

Proof. Finitely generated torsion-free nilpotent groups and free groups are subgroup
separable, conjugacy separable, cyclic conjugacy separable and weakly potent.
Furthermore, both groups are H-double coset separable for each finitely generated
subgroup H (Lennox & Wilson, 1979; Ribes & Zalesskii, 1993) and (4)-self conjugate
for all element 4 of infinite order (Dyer, 1980). Conditions (vi) and (vii) in Theorem 3.8
are straightforward from Corollary 2.2 of Tang (1997). Then we have G is conjugacy

separable by Theorem 3.8.

34 Cyclic Conjugacy Separability on Certain HNN Extensions

In this section, we study the related property of cyclic conjugacy separability in HNN
extensions. Recall that this property was used by Dyer (1980), Kim & Tang (1996), Kim

& Tang (1999) and Tang (1997) to prove the conjugacy separability in certain generalized
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free products and HNN extensions. This property was formally defined by Tang (1997).

Recall that a group A is called cyclic conjugacy separable if for any pair of elements
x, b of A such that {x}* N (k) = 0, then there exists N <l A such that {¥}4 N (k) = 0 in

A = A/N. The proof of Theorem 3.10 is similar to the proof of Theorem 3.8.

Theorem 3.10. Let G = (¢, A|t ' ht = k) be an HNN extension where h, k be elements of
infinite order in A and h™ ~4 k=" for some positive integer m. Let h, k be self-conjugate
in A. Suppose
(i) A is cyclic conjugacy separable;
(ii) A is cyclic subgroup separable;
(iii) A is {h, k}-double coset separable;
(iv) A is (h)-weakly potent and {k)-weakly potent;
(v) foreach integer s > 0, there exists M1 <y A such that M1 N\ (h) = {h*) and H o+ i hi
for all R+hiinA= A/M;y;
(vi) for eachinteger s > 0, there exists M <y A such that M, N (k) = (k°) and ki » i 2
forall k' # k/ in A = A/ M,.

Then G is cyclic conjugacy separable.

Proof. We apply Theorem 2.14 here. We prove the case when h™ ~4 k™. Since A is
cyclic conjugacy separable, (h)-separable and (k)-separable, conditions (a) and (b) are
satisfied. By Lemma 3.1 and Lemma 3.7, we have conditions (c) and (d). We only need to
show that condition (e) holds.

Let x,y € G such that ||x|| = ||y|| =0 and {x}° N (y) = 0.

Case 1. Suppose {x}4 N (k) = 0 and {x}*4 N (k) = 0. Then {x}° N (y) = 0 implies
that {x} N (y) = 0. Since A is cyclic conjugacy separable, there exists M </s A such

that {xM}A™ N (kM) = 0, {xM}*™ N (kM) = 0 and {xM}*/™ N (yM) = 0. By
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Lemma 3.1, there exists N <y A such that N € M and ¢(N N (h)) = N N (k). We now
form G = (¢, A|t"'ht = k) where A = A/N,h = hN and k = kN. Then in G, we have
s+ Ly# 1, {EAN () =0,{x2n (k) =0and {£}2 N (F) = 0.

Suppose {JE}G N(y) # 0. Thenx ~; 7* for some integer k. By Lemma 2.8(i), there
exists a finite sequence of z; where Z; € (h) U (k) such that ¥ ~z 7; ~ Ao ~Ar 2w ~A y*.
Since {£}AN (k) = O and {x} N (k) = 0, the sequence reduces to ¥ ~; y* or ¥ ~; y*. Since
% ¢ (h) U (k), that is, "%, tx¢~1 ¢ (h) U (k), the sequence further reduces to X ~ ; y*.
But this contradicts the fact that {JE}’i N (y) = 0. Thus, {JE}G N (7) = 0. Since G is cyclic
conjugacy separable by Lemma 2.10, there exists P </ G such that {xP}6/P n (3P) = 0.
Let P be the preimage of P in G. Then P <5 G such that {xP}¢/F n (yP) = 0.

Case 2. Either {x}4 N (h) # 0 or {x}* N (k) # 0. Suppose {x}4 N (h) # 0.
Then x ~4 h" for some integer r. Since h is self-conjugate in A, then r is uniquely
determined. If A" ~4 k%, then s = +r by Lemma 3.6. Similarly if k" ~4 A®, then s = +r.
So in this case, {x}¢ N (y) = 0 implies that {x}2 N (y) = 0,{A*7}* N (y) = 0 and
{k*"}4 N (y) = 0. Since A is cyclic conjugacy separable, there exists M < £ A such that
{xM}A™M N (yM) = 0, (k" M}A™M 0 (yM) = 0 and {k*” M}4/M N (yM) = 0. Suppose
M N (h) = (h*') and M N (k) = (k*2) for some positive integers s1, s2. Let s = sysom.
By (v), there exists M; <If A such that My N (h) = (h*) and h' =z h/ for all A* # hJ
in A = A/M;. Similarly with (vi), there exists M, < £ A such that M, N (k) = (k*) and
ki +; k/ forall k' # &/ in A = A/M,. Let N = M 0 M; N M,. Then N <5 A such
that N N (k) = (h*) = (k%) = N N (k). As above, we form G = (¢, A|t"1ht = k) where
A =A/N,h=hN and k = kN. Then in G, we have {x}2 N (5) = 0, {*"}A N (5) = 0
and {k*"}4 N (§) = 0. Also we have i »; h/ forall b # b/ and k' » ; k for all k¥ # k/
inG.

Suppose {JE}G N(y) # 0. Thenx ~; 7* for some integer k. By Lemma 2.8(i), there
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exists a finite sequence of Z; where Z; € (h)U (k) suchthat X ~4 Z1 ~4; ... ~4; Zw ~4 J*-
Since x ~4 k', then ¥ ~; h". Note that the integer r is unique since A* +z h/ for all
k' # h/ in A. Hence, 7; = h". Next we determine 7,. Using the same argument, if
h™ ~; ', then A" = h*. Now if A" ~4 k®, then by Lemma 3.6, s = +r. Hence, h" ~z k*".
Now r is unique since k* + ; k7 for all k& # k7 in A. Finally since & ~; k, we have h ~; k
and so i" ~; k”. Hence, 7o = h*" or 7z, = k*". Continuing this way, we have 7; = h*"
orz; = k* fori =3,...,w. Hence Z, = h*" or 7, = k*". This implies that #*" ~; 7*
or k* ~; y*. This is a contradiction since {#*"}4 N (F) = 0 and {k*'}4 N ) = 0.
Therefore {JE}G N (¥) = 0 and our result follows as in Case 1. This completes the proof

and thus G is cyclic conjugacy separable by Theorem 2.14.

Corollary 3.11. Let G = (¢, A|t"'ht = k) be an HNN extension where h, k be elements of
infinite oder in A and h™ ~ 4 k*™ for some positive integer m. Suppose A is either finitely

generated torsion-free nilpotent or free. Then G is cyclic conjugacy separable.

Proof. As in the proof of Corollary 3.9, we have G is cyclic conjugacy separable by

Theorem 3.10.
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CHAPTER 4: HNN EXTENSIONS OF FINITELY GENERATED NILPOTENT
GROUPS

4.1 Introduction

It has been established that the HNN extension G = (¢, A|t"'Ht = K, ¢) is conjugacy
separable and cyclic conjugacy separable if A is finite. Dyer (1980) and Kim & Tang
(1995) showed that these HNN extensions are free-by-finite and free-by-finite groups are

conjugacy separable and cyclic conjugacy separable.

Collins (1969) showed that G = (¢, A|t"'Ht = K, ¢) is conjugacy separable if A is

conjugacy separable and H, K are finite.

In this chapter, we shall show that G = (¢, A|t "L Ht = K, ) is cyclic conjugacy separable
if A is conjugacy separable and cyclic conjugacy separable and H, K are finite. This is

given in Theorem 4.13.

By using these results, we shall study the conjugacy separability and cyclic conjugacy
separability of G = (¢, A|t"'Ht = K, ¢) where H N K is a non-trivial finitely generated
subgroup in the center of A and H N K has finite index in H and in K and ¢ is the identity
map on H N K. First we shall establish a criterion for such HNN extension to be conjugacy

separable (Theorem 4.7).

We shall use the criterion to show the conjugacy separability for G = (¢, A|t "1 Ht = K, ¢)
where H and K are each a direct product of a finite group and the subgroup H N K. Then
we shall show the cyclic conjugacy separability of these HNN extensions and extend the

result to finitely generated nilpotent groups.
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4.2 Lemmas Needed
In this section, we gather and prove the lemmas needed in this chapter.

Lemma 4.1. Let A be a group and H be a subgroup of A. Suppose that there exists a
finitely generated subgroup R C H such that |H : R| < oo and R < A. If A is R-separable,

then A is H-separable.

Proof. Since A is R-separable, then A = A/R is residually finite. Let x € A\H. Then
X ¢ H = H/R. Since H is finite, there exists N </s A such that N N ¥H = 0. Let N be the

preimage of N in A. Then N <y A such thatx ¢ HN.

Next, we prove Lemma 4.2 and Lemma 4.3. These two lemmas are technical in nature

and they will facilitate the proofs in the later theorems.

Lemma 4.2. Let A be a group and H,K be subgroups of A where HN K # 1. Let

¢ : H — K be an isomorphism such that $(H N K) = HN K. Let N <y A such that

#(NNH)=NNK. Thenin A = A/N, we have $(HNK) = HN K where ¢ is the

induced isomorphism from H to K.

Proof. First we note that the induced isomorphism ¢(H) = K is defined by ¢(AN) = ¢(h)N

for all # € H. We will show that §(HNK) = HN K.
Let @ € ¢(HNK). Then @ = ¢(uN) where u € HN K. So, @ = ¢(u)N. Since

u € HNK, we have ¢(u) € ¢(H N K) = HN K. This implies that « € (H N K)N/N and

thusae e HNK. So,p(HNK) C HNK.
LetB € HN K. Then B =vN where v € HNK. Since ¢(H NK) = HN K, there exists

w € H N K such that ¢(w) =v. So, B = ¢(w)N. This implies that 8 = ¢(wN) and thus

BedpHNK). So,HNK C ¢(HNK). Therefore, J(HNK) =HNK.
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Lemma 4.3. Let A be a group and H,K be subgroups of A where HN K # 1. Let
¢ : H — K be an isomorphism such that (H N K) = H N K. Suppose H N K is finitely
generated and |H : HNK| < 00, |K : HNK| < oo. Let A be subgroup separable. Then for
each M ¢ A, there exists N <y A such that N C M and ¢(N N H) = NNK. Furthermore,
in A= AN, we have HNK = HN K and $(H N K) = H N K where ¢ is the induced

isomorphism from H to K.

Proof. Welet HN K =S and M <1y A be given. Since M N S has finite index in S and S
is finitely generated, there exists R € M N § such that R is a characteristic subgroup of
finite index in S. Since ¢ is an automorphism of S, ¢(R) = R. Let A = A/R. Since A is
residually finite and HK is finite, there exists N1 </¢ A such that Ny N HK = 1. Let N be
the preimage of Niin A. Then NN HK =R. Let N =M N N;. Then N <y A. Next,
weneedtoshow NNH=R. Leta e NNH. Thena € NNNH C NN HK =R and
hence @ € R. Now let B € R. Then 8 € N since R C N;. Furthermore 8 € M N H since
RcMnNnSCMnH. Therefore e MNNiNH=NNH. Thus NN H = R. Similarly,
we can show that NN K = R. Hence (NN H) = NNK.

Now let A= A/N. Note that HNK = (HNK)N/N € (HN NnKN)/N = (HN/N) n
(KN/N)=HNnK. Since NNH=NNK,HnK = (HN/N) N (KN/N) = (H/Hn

N)N(K/KNN)=(HNK)/(HNKNN) = (HNK)N/N = HN K. Note that H, K and

H N K are finite. Since HFNK CHNKand HNK=2=HNK,wehave HNK=HNK.

By Lemma 4.2, we have ¢(H N K) = H N K. Thus, N is the required subgroup.

Lemmad.d. Let G = (t, A|t"'Ht = K, ¢) be an HNN extension where HNK # 1. Suppose
H N K is a finitely generated subgroup of Z(A) and |H : HN K| < 0,|K : HNK| < 00

such that p(H N K) = H N K. Let A be subgroup separable. Then G is residually finite.
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Proof. By Lemma 4.3, for each M <y A, there exists N <y A such that N € M and
¢#(N N H) = NN K. Note that A is H-separable and K-separable by Lemma 4.1. Since
subgroup separable groups are also residually finite, we have G is residually finite by

Lemma 2.11.

Lemma4.5. Let G = (t, A|lt"\Ht = K, ¢) be an HNN extension where HNK # 1. Suppose
H N K is a finitely generated subgroup of Z(A) and |H : HN K| < 00, |K : HN K| < o0.
Further suppose ¢(HNK) = HN K and ¢(s) = s forall s € HN K. Let A be subgroup
separable. Then for each x,y € G such that ||x|| = ||y|| = 1 and x +¢ Yy, there exists

P <¢ G such that xP +g/p yP.

Proof. We assume x = t°1xy ...t°"x, and y = tF1y, ...tEy, where ¢;, E; = +1,x;,y; € A
and n > 2. Let a; denote those x;,y; € A\H, b; denote those x;,y; € A\K and c¢;
denote those x;,y; € (H N K)\{1} for all i. Since A is H-separable, K-separable and
residually finite, there exists M <y A such that a; ¢ HMy,b; ¢ KM; and c; ¢ M;. By
Lemma 2.8(ii), x »¢ y if and only if x" »yyg y for all cyclic permutations x’ of x. Let
X = {u''ulu € (HUK)\(HNK) and x’ is a cyclic permutation of x}. Note that
|H: HNK| < 0,|K : HNK| < o0 and HN K c Z(A). Furthermore, ¢~'st = s since
¢(s) = sforall s € HN K. Hence it follows that X is finiteand y ¢ X. Since G is residually
finite by Lemma 4.4, there exists L <y G such that yLN{zL|z € X} =0. Let M = M1 N L.
By Lemma 4.3, there exists N <y A such that N € M and ¢(N N H) = N N K. We now
form G = (¢t,Alt"'Ht = K, ¢) where A = A/N,H = HN/N,K = KN/N and ¢ is the
induced isomorphism from H to K. Note that in G, we have ||%|| = ||x|| = ||y|| = ||7|| and
%" *gug y- Hence by Lemma 2.8(ii), we have X »5 3. Since G is conjugacy separable by
Lemma 2.10, there exists P <y G such that P +,5 yP. Let P be the preimage of P in G.

Then P <y G such that xP +g;p yP.
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Theorem 4.6. Let G = (t, A|lt"\Ht = K, ¢) be an HNN extension where H, K are finite.
Suppose A is residually finite (conjugacy separable). Then G is residually finite (Baumslag

& Tretkoff, 1978) (conjugacy separable (Collins, 1969)).

4.3 Conjugacy Separability of Certain HNN Extensions of Finitely Generated
Nilpotent Groups

In this section, we prove our criterion for the HNN extension to be conjugacy separable.

Theorem 4.7. Let G = (t, A|lt"'Ht = K, ¢) be an HNN extension where HN K # 1.
Suppose H N K is a finitely generated subgroup of Z(A) and |H : HN K| < oo, |K :
H N K| < oo. Further suppose $(HNK)=HNK and ¢(s) =sforalls € HNK. Let
(i) A be subgroup separable;

(ii) A be conjugacy separable;

(iii) A be H-conjugacy separable and K-conjugacy separable;

(iv) A/(H N K) be conjugacy separable.
Then G is conjugacy separable if and only if,

(A) foru e HUK\(HNK) and c € HN K, ifu +¢ uc, there exists N <y A such
that (N N H) = N N K and we have ii +p Uc, in G = (t,Alt"'Ht = K, §) where

A=A/N,H=HN/N,K =KN/N and @ is the induced isomorphism from H to K.

Proof. Suppose G is conjugacy separable. Let u € H\(H N K) and ¢ € H N K such that
u +¢ uc. Then there exists P <y G such thatin G = G/P, ii +; ic. Let M = PN A. By
Lemma 4.3, there exists N <y A such that N C M and ¢(N N H) = N N K. We now form
G = (t,A|t"'Ht = K, §) where A = A/N,H = HN/N,K = KN/N and ¢ is the induced
isomorphism from A to K. By Lemma 2.10, G is conjugacy separable. Since there is a
natural homomorphism from G to G, we have i + ¢ uc.

Conversely, suppose condition (A) is satisfied.
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We apply Theorem 2.12 here. Since A is conjugacy separable, condition (a) holds. By
Lemma 4.1 and Lemma 4.3, we have conditions (b) and (c).

We now show condition (d). We only need to consider the case when ||x|| = 0 = ||y||
and x »g y. The case when ||x|| = ||y|| = 1 follows from Lemma 4.5.

Case 1. Suppose {x}A N H = 0 and {x}4 N K = 0. Note that x +~g y implies
that x +4 y. Since A is conjugacy separable, H-conjugacy separable and K-conjugacy
separable, there exists M <y A such that xM +4,ur yM, {xM YAM N HM/M = 0 and
{xM}A™M 0 KM/M = 0. By Lemma 4.3, there exists N <I5 A such that N € M and
#(NNH) = NNK. We now form G = (t,A|lt"'Ht = K, $) where A = A/N,H =
HN/N,K = KN/N and ¢ is the induced isomorphism from H to K. Note that in G, we
have %, # 1, {(F}JANH =0, {x}* N K =0 and % +5 .

Suppose X ~5 y. By Lemma 2.8(i), there exists a finite sequence of Z; where z; € HUK
such thatX ~; 71 ~1, 22 ~4; --- ~4; Zn ~z J. Since F¥*NHA=0and {x}A N K =0,
the sequence reduces to ¥ ~; 7 or ¥ ~; y. Since ¥ ¢ H U K, this further reduces to
% ~7 7. But this contradicts the fact that X = ; . Therefore, ¥ +& ¥. Since G is conjugacy
separable by Lemma 2.10, there exists P <y G such that £P +5,5 yP. Let P be the
preimage of P in G. Then P <s G such that xP +g/p yP.

Case 2. Suppose {x}4A N (HUK) # 0but {x}* N (HNK) =0. Suppose {x}*NH # 0.
The proof is similar for the other case. Let S = HN K. Then S € Z(A) and ¢(SN H) =
#(S) =S =SNK. Weform G = (¢, A|t 1At =K, §) where A = A/S,H =H/S,K =K/S
and ¢ is the induced isomorphism from A to K. By assumption, A is conjugacy separable.
Then G is conjugacy separable by Theorem 4.6. If % +& ¥, then we are done. Suppose
% ~5 ¥. Then § = §7%g for some g € G. Hence y = g~lxgc = g7lxcg for some
ce HNK c Z(A). Since x *g y, we have x »g xc. By Condition (A), there exists

N <y A such that ¢(N N H) = NN K and we have X »g ¥¢in G = (t, A|t"'Ht = K, )
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where A = A/N,H = HN/N,K = KN/N and ¢ is the induced isomorphism from H to
K.

Suppose ¥ ~; 7. Then j = g7'xg; for some g; € G. Since y = g™'xcg, this implies
that §~'%¢g = g7'%Z1. Hence, x¢ = g,'%g, where g, = §1§™". Thus, we have X¢ ~; %, a
contradiction. Hence ¥ = j. By Lemma 2.10, G is conjugacy separable. Thus, we have
X +g y and the result follows as in Case 1.

Case 3. Suppose {x}* N (HNK) # 0. Since HN K C Z(A), without loss of generality
we can assume x € HN K. Hence x #g y implies that x # y and t™"xt" # y for all integers
n. Since ¢(H N K) = HN K with ¢(s) = s forall s € HN K, we have t "xt" = x # y.
Since A is residually finite, there exists M <7 A such that xy~! ¢ M. By Lemma 4.3, there
exists N <1y A such that N € M and ¢(N N H) = N N K. We now form G as in Case 1.
Then in G, we have X, 7 # 1 and ¥ # .

Suppose X ~; ¥. By Lemma 2.8(i), there exists a finite sequence of Z; where z; € HUK
such thatx ~z Z1 ~5, 22 ~4; --- ~4+ Zn ~4 ¥- From the first conjugation relation, since
% € HNK C Z(A), we have X = Z;. From the second conjugation relation, X = z1 ~ 4, Z2,
we obtain Zp = X if 7o ~5 Z1 and Zp = ¥ if Zo ~; 71 since ¢(s) = s for all s € H N K. Thus,
Zp = X. Continuing this way, we have z; = x fori = 3, ..., n. Hence Z, = x. This implies
that ¥ ~z y. Since X € Z(A), we have X = 3. This contradicts the fact that ¥ # 7. Hence
X + y and the result follows as in Case 1. Thus, we have (d).

The proof is now complete and hence G is conjugacy separable by Theorem 2.12.

Note that finitely generated nilpotent groups are subgroup separable, conjugacy separable
and cyclic conjugacy separable. Furthermore, the quotient groups of nilpotent groups are
again nilpotent. Thus, we extend our criterion, Theorem 4.7 to finitely generated nilpotent

group in this section. We begin with the next lemma.
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Lemma 4.8. Let A be a finitely generated nilpotent group and C < A. If C < H < A and

|H/C)| is finite, then A is H-conjugacy separable.

Proof Leta € A such that {a} N H = 0. Let A = A/C. Then {a}AnH = 0.
Since A is cyclic conjugacy separable and H is finite, there exists M < f A such that
{aM}A™ A (h) = @ for all h € H. Let M be the preimage of M in A. Then we have

{aM}AM NHM/M = 0.

By Lemma 4.8, the following corollary is straightforward from Theorem 4.7.

Corollary 4.9. Let G = (t,A|t"'Ht = K, ¢) be an HNN extension where HN K # 1.
Suppose H N K is a finitely generated subgroup of Z(A) and |H : HN K| < oo, |K :
H N K| < oo. Further suppose $(HNK) = HN K and ¢(s) = s foralls e HNK. Let A
be finitely generated nilpotent. Then G is conjugacy separable if and only if,

(A) foru € (HUK)\(HNK) and c € HNK, if u *g uc, there exists M <y A
such that $(M N H) = M N K and we have i +4 ¢, in G = (t,A|lt" YAt = K, §) where

A=A/M,A =HM/M,K = KM/M and § is the induced isomorphism from H to K.

Next we can have the following application.

Theorem 4.10. Let G = (¢, A|t"'Ht = K, ¢) where H = PxC, K = Q xC with P, Q being
finite and C C Z(A) is finitely generated. Suppose PN Q =1 and $(P) = Q,¢(C) =C
with ¢(c) = c forall c € C. Let A be finitely generated nilpotent. Then G is conjugacy

separable.

Proof. Since C is a finitely generated abelian group, C = K; X C; where K] is finite and
C is torsion-free. Hence we may assume that C is torsion-free.
We apply Theorem 4.7. here. Let u € H\C and ¢ € C such that u +g uc. The proof is

similar when u € K\C. Since H = P X C, then u = poco uniquely where pg € P, po # 1
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and co € C. So, we have pocg ~4 pococ and thus pocy = a1 pococa where a € A. Since
co € C C Z(A), we then have py = a 'poca. Hence, without loss of generality, we
may assume u € P. Since C is residually finite, there exists R <Iy C such that ¢ ¢ R.
Since R has finite index in the finitely generated subgroup C, we can find a subgroup
S C R such that S is characteristic and finite index in C. Furthermore, note that ¢(S) = §
with ¢(s) = sforall s € S and ¢ ¢ S. We now form G = (¢, A|lt"'Ht = K, ) where
A=A/S,H=H/S,K =K|/S and ¢ is the induced isomorphism from H to K.

Suppose @ ~¢ #é. By Lemma 2.8(i), there exists a finite sequence 71, ...,z, € HUK
such that @ ~5 Z1 ~4; Z2 ~4; --- ~Ay Zn ~z #C. Since H = Px C,K = Q x C,
we have Z; = p;¢; uniquely where p; € PU Q,é € C. Hence, ii ~; P1C1 ~j,
P2C2 ~A; -+ ~A; PnCn ~4 uC. From the first conjugation relation i ~; p1Ci, we have
p1€ PUQ,é € C. So, i = aj'pici1a, for some a; € A and thus 7~'a;'pra, = &7’
It follows that u~'a;! p1a1S = c'S and this implies that u~'a;'pia; € C since S < C.
We let u‘laflplal = w;p € C, then uwq = a[lplal. Since P and Q are finite, we let
m1 = lem{|u|, |p1|}. Then (uwy)™ = (a[lplal)ml which implies that w"' = 1. Since C
is torsion-free, we have wy = 1. It follows that u™'a'pia; = 1, thus é; = 1 and z; = p1.
So, now we can write # ~z p1 ~4, P2€2 ~5; - -- ~As PnCn ~j UC.

From the second conjugation relation, we have p; ~ As P202. If p1 ~z p2C2, we have
¢y =1 and 7, = p, as above. Now suppose p; ~; p2Ca2. Then p; =t prcot” for some
integer r and so we have p;, 14 p1t™" = &,. Hence P, 14 p1t7"S = c,S. This implies that
p,'f'pit™ = wy € C. Since P and Q are finite, we let mp = Icm{|p1|,|p2|}. Then
(" p1t™")™ = (paw2)™ which implies that w;"z = 1 and thus w, = 1. Hence, we have
¢2 = 1 and 75 = p; for this case as well.

Proceeding in this way, we have &; = 1,7; = p; where p; € P U Qforalli=3,...,n.

Now we can write & ~5 P1 ~z; P2 ~4; --- ~4s Pn ~4 #C. From the last conjugation
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relation p, ~4 i#c, we have ¢ = 1 and p,, ~; i as above. This is a contradiction since
c ¢ S. Therefore, we have & » @c in G.

Since i + ¢ and G is conjugacy separable, there exists L<17G such thatiiL +g,; @cL.
Let L be the preimage of Lin G. Let M = LNA. AsinLemma4.3, there exists N </ A such
that N C M. We now form G = (t, A|t At = K, §) where A = A/N,A = HN/N, K =
KN/N and ¢ is the induced isomorphism from A to K. It is clear that 7 +¢& €. Therefore,

G is conjugacy separable by Corollary 4.9.

4.4 Cyclic Conjugacy Separability of Certain HNN Extension with Finite

Associated Subgroups

In this section, we study the cyclic conjugacy separability of HNN extensions with finite
associated subgroups. In Collins (1969), Collins has shown the conjugacy separability
of such HNN extensions. We shall now show the cyclic conjugacy separability of such

groups. We begin with the following lemma.

Lemma 4.11. Let A be a group and H be a finite subgroup of A. If A is residually finite,

then A is H-separable.

Proof. Letx € A\H. Since A is residually finite and H is finite, there exists M <1y A such

that M N xH = (. Therefore, A is H-separable.

Lemma 4.12. Let A be a group and H be a finite subgroup of A. If A is cyclic conjugacy

separable, then A is H-conjugacy separable.

Proof. Letx € A such that {x}* N H = 0. Since A is residually finite and H is finite, there
exists Mo <!y A such that Mo N H = 1. It s clear that {x}A N (h;) = 0 forall h; € H. Since
A is cyclic conjugacy separable, there exists M; <I A such that {xM;}*/™: 0 (h,)M; = 0

for all i. Let M = (; M; 0 M. Then M < A such that {xM}*M n HM /M = 0.
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Theorem 4.13. Let G = (t, A|t"'Ht = K, ¢) be an HNN extension where H, K are finite.
Suppose A is conjugacy separable and cyclic conjugacy separable. Then G is cyclic

conjugacy separable.

Proof. We apply Theorem 2.14 here. By assumption, we have condition (a). By Lemma
4.11 and Theorem 4.6, we have conditions (b) and (d) respectively.

Let M <1y A be given. Since A is residually finite and H, K are finite subgroups, there
exists Mo <l Asuchthat Mo NH =1=MoN K. Let N = M N Mp. Then N <y A such
that N € M and ¢(N N H) = N N K. Thus, we have condition (c).

Now we only need to prove condition (¢). Let x, y € G such that ||x|| = ||y|| = 0 and
x}n{y)=o0.

Case 1. Suppose {x}* N H = 0 and {x}* N K = 0. Now {x}° N (y) = 0 implies that
{x}4 n (y) = 0. Since A is cyclic conjugacy separable, H-conjugacy separable and K-
conjugacy separable by Lemma 4.12, there exists M1 <y A such that {xM; YAMA (yMy) =
0, {(xM}A™M ~ HM;/M; = 0 and {xM;}*/"1 N KM;/M; = 0. Since A is residually
finite and H, K are finite, there exists M, <y A suchthat M, N H =1 = M N K. Let
N =M NM,. Then N <y A and ¢(NNH) =¢(1) =1=NnNK. We now form
G = (t,A|t"'Ht = K, §) where A = A/N,H = HN/N,K = KN/N and ¢ is the induced
isomorphism from H to K. Then in G, we have {x}A N () = 0,{x}A N H = 0 and
{x} nK=0.

Suppose {JE}G N (F) # 0. Then X ~ y* for some integer k. By Lemma 2.8(i), there
exists a finite sequence Z; € HUK such that¥ ~4 71 ~4, 22 ~4; - -- ~A; Zn ~% Y- Since
{£}A N H = 0 and {7}* N K = 0, the sequence reduces to ¥ ~; y* or  ~; y*. Since
% ¢ HUR, this further reduces to ¥ ~; ¥*. But this contradicts the fact that {£}4 N (3) = 0.
Therefore {£}¢ N (§) = 0. Since G is cyclic conjugacy separable by Lemma 2.10, there

exists P <1y G such that {xP}C/P 0 (§P) = 0. Let P be the preimage of P in G. Then
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P <t G such that {xP}C¢/? N (yP) = 0. Our result follows.

Case 2. Either {x}A N H # 0 or {x}* N K # 0. Suppose {x}* N H # 0. The proof
is similar for {x}* NK # 0. Letu; e HUK,i=1,...,m be all the elements in H U K
such that u; ~4 x. Since {x}4 N (y) =0, we have {u;}* N (y) =0,i=1,...,m. Since A
is cyclic conjugacy separable, there exists My <I5 A such that {xM;}A/M1 0 (yM;) = 0
and {u; M }A/M N (yM;)=0,i=1,...,m. Since A is conjugacy separable, there exists
M; <y A such that p,M> +4/um, psM> for all pairs of elements p,, p; € H U K where
Dr *4 DPs. Since G is residually finite by Theorem 4.6, there exists Q <1y G such that
uyQ *; u,,Q for all pairs of elements u,,u,, € HU K where u, +; u,,. Again since H, K
are finite and A is residually finite, there exists M3 <\ Asuchthat MsNH =1=M3N K.
Let N=MinM>NM3NQ. Then NdfAand ¢(NNH) =¢(1) =1=NnNK. We
now form G as in Case 1. Then in G, we have {x}2 N (5) = 0, {i;}2 N (F) = 0 for all
u,i=1,...,m, p, +z ps for all pairs p,,ps € HUK, p, +4 ps and &, +; i, for all
pairs u,,u,, € HU K, u, +; u,,.

Suppose {JE}G N (F) # 0. Then X ~ 7* for some integer k. By Lemma 2.8(i), there
exists a finite sequence z; € HU K suchthat X ~5 2 ~z, 22 ~4; - ~4; Zn ~4 J*. From
the first conjugation relation X ~; Z;, we have xN ~4 /5 z1N. Now suppose x +4 z1. Then
we have xMy +4/p, z1M1. But this contradicts to xN ~4,y z1N. Hence x ~4 z;. Since
{x}4 n (y) =0, we have {z:}4 N (y) = 0. So in G, we have {21}’4 N (y) = 0. Without
loss of generality, we assume z; € H.

From the second conjugation relation 7; ~ Az 22, We have Z, ~z Z1 or Zp ~; z1. If
Z2 ~4 21, then 7o ~7 X. Arguing as above, we have x ~4 z,. Hence {z2}4 N (y) = 0. Now
suppose Z ~; Z1. Then Zp ~; 71 ~4 X. Again arguing as above, we have z; ~; 71 ~4 x. We
now show that {z2}4 N (y) = 0. Suppose {z2}4 N (y) # 0. Then z» ~4 y* for some integer

I. Hence y! ~4 25 ~ 21 ~4 x. This implies that {x}° N (y) # 0, a contradiction. Hence
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{z2}A N (y) = 0. So in both cases, {z2}4 N (y) = 0. Hence in G, we have {22}5 N{y) =0.
Proceeding from the third to the second last conjugation relation, we obtain z; € H U K
such that {z;}A N (y) = 0,i = 3,...,n. Soin G, we have {Z}A N (j) = 0,i =3,...,n.
From the last conjugation relation z, ~; 7*, we have {Zn}A N (y) # 0. This contradicts
the fact that {Zn}“; N (¥) = 0. Hence {JE}G N (¥) = 0 and the result follows as in Case 1.

This completes the proof and hence G is cyclic conjugacy separable by Theorem 2.14.

4.5 Cyclic Conjugacy Separability of Certain HNN Extensions of Finitely

Generated Nilpotent Groups

In this section, we give two criteria on cyclic conjugacy separability of HNN extensions.
Then apply these two criteria to finitely generated nilpotent groups. We apply Theorem

4.13 in Theorem 4.14.

Theorem 4.14. Let G = (t,A|lt"'Ht = K, $) where H = P x C,K = Q x C with P,Q
being finite and C C Z(A) is finitely generated torsion-free. Suppose PN Q =1 and
o(P) = Q, ¢(C) = C with ¢(c) = c for all c € C. Suppose
(i) A is subgroup separable;
(if) A is conjugacy separable;
(Zii) A is cyclic conjugacy separable;
(iv) A is H-conjugacy separable and K-conjugacy separable;
(v) A/S is conjugacy separable and cyclic conjugacy separable for any S <y C.

Then G is cyclic conjugacy separable.
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Proof. We apply Theorem 2.14 here. Since A is subgroup separable, we have condition
(a). By Lemma 4.1, Lemma 4.3 and Lemma 4.5, we have conditions (b), (c) and (d). Now
we only need to prove condition (e).

Let x,y € G such that ||x|| = ||y|| =0 and {x}° N (y) = 0.

Case 1. Suppose {x}* N H = 0 and {x}* N K = 0. Note that {x}° N (y) = 0
implies that {x}* N (y) = 0. Since A is cyclic conjugacy separable, H-conjugacy
separable and K-conjugacy separable, there exists M <1y A such that {xM YAM A (yM) =
0, {xM}¥*™M NHM/M = 0 and {xM}*' 0N KM/M = 0. By Lemma 4.3, there exists
N<fAsuchthat N C M and ¢(NNH) = NNK. Wenow form G = (t, A|t"'Ht = K, ¢)
where A = A/N,H = HN/N,K = KN/N and ¢ is the induced isomorphism from H to
K. Note that in G, we have %, # 1, {x}A N H =0, {x}A N K = 0 and {x}2 N () = 0.

Suppose {X}Gﬂ(}'f) # 0. Then¥ ~g y* for some integer k. By Lemma 2.8(i), there exists
a finite sequence of Z; where Z; € HU K suchthat X ~5 21 ~z, 22 ~4; -+ ~4; Zn ~1 "
Since {z}4 N A = 0 and {}4 N K = 0, the sequence reduces to & ~; y* or £ ~; y*. Since
% ¢ HUR, this further reduces to ¥ ~ ; 7*. But this contradicts the fact that {¥}4 N (y) = 0.
Therefore, {JE}G N (3) = 0. Since G is cyclic conjugacy separable by Lemma 2.10, there
exists P < G such that {tP}%/? n (§P) = 0. Let P be the preimage of P in G. Then
P <5 G such that {xP}¢/? n (yP) = 0.

Case 2. Suppose {x}A N (HUK) #0but {x}ANC =0.

Subcase 2a. Suppose {x}*NH # 0, {x}*NK = 0. Thisimplies that {x}*NC = 0. Since
A is cyclic conjugacy separable, K-conjugacy separable and subgroup separable, there exists
M, <y A such that x ¢ CMy, {xM;}*/" 0 KM, /M; = 0 and {xM;}*/"1 0 (yM;) = 0.
Letr; € PUQ such that x ~4 r;. Since {x}4 N (y) = 0, we have {r;}2 N (y) = 0. Since A
is cyclic conjugacy separable, there exists M, <y A such that {(riM}A ™2 0 (yM,) = 0

for all ; € PU Q. Since A is conjugacy separable, there exists M3 <1y A such that
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urM3 +4/m, usM3 for all pairs of elements u,,u; € P U Q where u, +4 us. Since G is
residually finite by Lemma 4.4, there exists L <y G such that v;L +; v; L for all pairs
of elements v;,vy € PUQ where vj +; vi. Let S = MiNn My N M3 N LNC. Then
S <y C and thus S <r H, S <iy K with ¢(S) = S. We now form G = (¢, A|t "' Ht = K, §)
where A = A/S,H = H/S,K = K/S and ¢ is the induced isomorphism from H to
K. Thenin G, we have x ¢ C,{x}A N K = 0,{x}* n ) = 0, {7;}A N (5) = 0 for all
ri € PUQ,x ~4 1, ily +; g for all pairs u,,us € PU Q,u, *4 ug and v; +, vy for all
pairs v;,vi € PUQ,v; #; Vg.

Suppose {X}Gﬂ()'f) # 0. Thenk ~; * for some integer k. By Lemma 2.8(i), there exists
a finite sequence of Z; where 7; € HU K such that X ~4 Z1 ~4, 22 ~z; -+ ~As Zn ~41 J*-
Since H = Px C,K = Q x C, we have z; = p;¢; uniquely where p; € PUQ,¢; € C.
Hence, X ~4 p1C1 ~4; P2C2 ~&; --- ~As PnCn ~3 7*. From the first conjugation relation
% ~z P1€1, we have py € P, &, € C since {(£ANK =0. So, % = a;'p1¢1a; for some
aj € A and thus i‘ldflp'ldl = c';l. It follows that x‘laflplalS = c;lS and this implies
that x"'a7'pia; € C since S <y C. We letx™'a7!p1ai = wo € C, then xwo = a7’ p1a;.

Since {x}2 N H # 0, we have a"'xa = poco for some a € A,pg € P,co € C and

Lo = a[lplal, that is apoa‘lcowo = a[lplal. Since P is finite, we let

thus apocoa™
m1 = lem{|pol, |p1|}. Then (xwo)™ = (apocoa " wo)™ = (az[lplatl)’”1 which implies
that wg“ = 1. Since C is torsion-free, we have wg = 1. It follows that x‘laf1 piai = 1, thus
¢1 =1and z; = p;. So, now we can write X ~z p1 ~ag D22 ~Fy oo ~Ay PnCn ~4 }—,k.
From the second conjugation relation, we have py ~;, p2Ca. If p1 ~z p2Ca, we have
¢2 = 1 and Z, = p; as above. Now suppose p; ~; p2C2. Then p1 = t77 pacat” for some
integer r and so we have p,'#"p1t™" = ¢&;. Hence p;'t"p1t™"S = c,S. This implies that

pglt’plt" = wy € C. Since P and Q are finite, we let my = Icm{|p1|, |p2|}. Then

(t"p1t™")™ = (paw2)™ which implies that w;”Z = 1 and thus w, = 1. Hence, we have
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¢2 =1 and 7, = p, for this case as well.

Proceeding in this way, we have ¢; = 1, Z; = p; where p; € PuQforalli=3,...,n.
Now we can write X ~z p1 ~4, P2 ~A; --+ ~As Pn ~3 y*. From the first conjugation
relation X ~; p1, we have xS ~4/s p1S. Suppose x »4 pi, then xM3 +4,u, p1M3.
But this contradicts to xS ~4/s p1S. Hence x ~4 p;. Since {x}4 n (y) = 0, we have
{p1}2 N (y) = 0. So in G, we have {p1}2 N (y) = 0.

From the second conjugation relation p; ~ At D2, We have p; ~5 p2 or p1 ~ pa. If
P1 ~; D2, then ¥ ~z pa. Arguing as above, we have x ~4 p,. Hence {p2}4 N (y) = 0.
Now suppose p; ~; p2. Then pp ~; p1 ~4 X. Again arguing as above, we have
P2 ~: D1 ~4 x. We now show that {p2}4 N (y) = 0. Suppose {p2}2 N (y) # 0. Then
p2 ~4 ¥ for some integer I. Hence y' ~4 pa ~; p1 ~a x. This implies that {x}° N (y) # 0,
a contradiction. Hence {p2}4 N (y) = 0. So in both cases, {p2}4 N (y) = 0. Hence in G,
we have {7} N (5) = 0.

Proceeding from the third to the second last conjugation relation, we have { p',-}“i N{F) =
0,i = 3,...,n. From the last conjugation relation p, ~; y*, we have {ﬁn}‘; N () # 0.
This contradicts the fact that { p‘,,}"i N (y) = 0. Hence {f}G_ N (7 = 0. Since G is cyclic
conjugacy separable by Theorem 4.13, the result follows as in Case 1.

The following subcases can be proved similarly.

Subcase 2b. {x} A NH=0,{x}"NK #0and {x}4ANC=0.
Subcase 2c. {x}* NH £ 0,{x}*NK #0and {x}*NC=0.

Case 3. Suppose {x}* N C # 0. Since C C Z(A), we can assume x € C. Hence
we have x ¢ (y),t"xt" ¢ (y) for all integers n. Since ¢(c) = c¢ for all ¢ € C, we have
t™"xt" = x ¢ (y). Since A is subgroup separable, there exists M <y A such thatx ¢ (y)M.
As in Case 1, we can find N <1y A such that N € M and ¢(N N H) = N N K. We now

form G as in Case 1. Then X ¢ (7) in G.
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Suppose {i}éﬂ()'f) # 0. Thenkx ~; * for some integer k. By Lemma 2.8(i), there exists
a finite sequence of Z; where 7Z; € HU K suchthat X ~4 Z1 ~4, 22 ~4; -+ ~As Zn ~41 J*-
From the first conjugation relation, since x € C C Z(A), we have x = z; and thus x = 7;.
From the second conjugation relation, X = Z; ~ Az 22, We obtain Zp = X if Z ~7 Z1. Since
#(c) = c for all ¢ € C, we have Z; = X if Zp ~; 71. Thus, Z = X. Continuing this way, we
have z; = % foralli = 3, ..., n. Hence Z, = x. This implies that ¥ ~ 7 ¥. Since ¥ € Z(A),
we have ¥ = y*. This contradicts the fact that ¥ ¢ (¥). Hence {X}é N () = 0 and the
result follows as in Case 1.

This completes the proof and thus condition (e) is satisfied. Therefore, G is cyclic

conjugacy separable by Theorem 2.14.

We now apply the results to finitely generated nilpotent groups. By Lemma 4.8 and

Theorem 4.14, we can obtain the following result.

Corollary 4.15. Let G = (t,A|lt"'Ht = K, ¢) be an HNN extension where H = P X
C,K = Q x C with P,Q are finite and C C Z(A) is finitely generated. Suppose
PNnQ=1,¢(P)=Q,d(C) =C with ¢(c) =cforall c € C. Let A be finitely generated

nilpotent. Then G is cyclic conjugacy separable.

Proof. Since C is a finitely generated abelian group, C = K; X C; where K] is finite and
C is torsion-free. Hence we may assume C is torsion-free. Then G is cyclic conjugacy

separable by Theorem 4.14.
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CHAPTER 5: HNN EXTENSIONS WITH CENTRAL ASSOCIATED
SUBGROUPS

51 Introduction

The HNN extensions G = (t, A|t"'Ht = K, ¢) where A is polycyclic-by-finite and H
and K are finitely generated subgroups in the center of A are conjugacy separable where
HN K =1 orwhen HN K has finite index in H and in K and ¢(H N K) = H N K. This

was proven in Wong & Tang (2000).

In this chapter, we explore the cyclic conjugacy separability of these HNN extensions
where A is cyclic conjugacy separable and subgroup separable. First, we show that G
is cyclic conjugacy separable when H N K = 1. When H N K # 1, but H N K has finite
index in H and in K, then we can show G is cyclic conjugacy separable for the case when

#(HNK)=HNK and ¢(s) =s*! forall s €e HN K.

5.2 HNN Extensions with Trivial Intersection Associated Subgroups

In this section, we shall discuss HNN extensions G = (t, A|t"'Ht = K, ¢) where

H N K = 1. We apply Theorem 2.14 to prove the main theorem (Theorem 5.3) here.

Lemma 5.1. Let A be a group and H, K be finitely generated subgroups of Z(A) such
that HNK = 1. Let ¢ : H — K be an isomorphism. Let A be subgroup separable.
Then for each M <y A, there exists N <ly A such that N C M,¢(NNH)=NNK and

NHNNK = N.

Proof. Let M <y A be given. Let R=M NHand S = MNK. Let Ry = RN ¢~1(S)
and S1 = ¢(R) N S. Then Ry <y H, $1 <y K and ¢(R1) = S1. Since R, S € Z(A), we

can form A = A/R;S;. Since A is subgroup separable and Ry, S; are finitely generated,
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then A is residually finite. Since H = H/R; and K = K/S; are finite, there exists
M; <y A such that M; N HK = 1. This implies that M N H = 1, M; N K = 1 and
MH N MK = M;. Let M; be the preimage of M; in A. Then M; <y A such that
MiNH=R,MiNK =S8 and M\iHNMK =M. Let N=MnNM,. Then N <5 A
suchthat N C M,¢(NNH) =¢(Ry) =S =NnNKand NHN NK = N. Therefore, N is

the required subgroup.

The proof of the following lemma is modified from Theorem 3.2 of Wong & Tang

(2000).

Lemma 5.2. Let G = (¢, A|lt"'Ht = K, $) be an HNN extension where H and K are
finitely generated subgroups in Z(A) such that HN K = 1. Let A be subgroup separable.
Then for each x,y € G such that ||x|| = ||y|| > 1 and x +g Yy, there exists Q <y G such

thatx +¢ 5 in G = G/Q.

Proof. We let x = tE1xtP2xy .. . tEmx,,, y = t91y11%y, . . . t°my,, where x;,y; € A,m > 1
and E;, e; = +1. Let a; denote those x;, y; € A\H and b; denote those x;, y; € A\K. Since
A is subgroup separable, we can find My <y A such that a; ¢ HM, b; ¢ KM for all i. By
Lemma 5.1, there exists N <y A such that N € Mo, ¢(NNH) = NNKand NHNNK = N.
Let G = (t,A|lt"'Ht = K, ) where A = A/N,H = HN/N,K = KN/N with AN K =1
and @ is the induced isomorphism from H to K. Clearly, G is a homomorphic image of G.
Let g denote the image of any element g of G in G. Then ¥, y are cyclically reduced and
|11l = [lx[l = Iyl = I3]l-

Suppose E; # e; for some i. Then X #¢ j. Since G is conjugacy separable by Lemma
2.10, there exists Q <If G such that ¥Q +5 Q. Let Q be the preimage of Q. Then Q <If G

such that xQ +G/g yQ and the result follows.
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Now suppose E; = e; for all i. Since x +¢ Yy, either some equations in (1*) of Definition
2.9 has no admissible solution or every set of admissible solutions to (1*) of Definition 2.9
is incomplete.

Suppose that the equation x; = ul.‘ly,-v,- has no admissible solution in A. This implies
that x; ¢ L1y;L, where L; is either H or K. Since H,K C Z(A), we have x,-yi‘1 ¢ Li1L,.
Since A is subgroup separable, there exists M; <y A such that Jc,-yl.‘1 ¢ LiLoyM;. Let
M = MyN M;. By Lemma 5.1, there exists N <y Asuchthat N C M,¢(NNH)=NNK
and NH N NK = N. We now form G. Note that ¥; ¢ L1y;L, and A N K = 1. Thus, we
have X + y and the result follows.

Now suppose r1,81,...,"m,Sm € H U K is a set of incomplete solution to (1*) of
Definition 2.9.

(a) Now suppose x; = r; 1y,-s,- where r; € H,s; € K for some 1 < i < m. Since
HNK =1,r,s; are unique in the equation x; = r; 1y;s;.

Since the set of admissible solutions is incomplete, we have tEig;_1tEi # r; for some i.
We let z = t~Eis;_1#Fir; 1. Since G is residually finite by Lemma 2.11, there exists P <y G
such that z ¢ P. By Lemma 5.1, there exists N € My N P suchthat §(NNH) = NNK
and NH N NK = N. We form G now. Then ¢t £i5;,_1tf # ;;and HN K =11in G. Since
HNK =1, the expression %; = 7, ' 5;5; is unique in A. Thus, ¥ #5 7 and the result follows.

(b) Suppose x; = rl.‘ly,-si where r;,s; € H or r;,s; € K for all i. Note that this
case only occur when E; = —E;;; and e; = —e;y for all i. We assume r1,51 € H.
Then r, 50 € K,r3,s3 € H, and so on, that is E1,e; = —1,E>,e52 = 1,.... Hence,
x =t xx,. .. t"lxm,y = t"lyltyz e t"lym if m is odd or x = tIxitx,... Xm,y =

tIy1tys ... tym if mis even.
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Suppose ||x|| = ||y|| = m is odd. Then ts,,t~! # ry since ts,,t ™ ¢ Hand ry € H. We
can proceed as above and the result follows.

Suppose ||x|| = ||y|| = m is even. We have the following from (1*) of Definition 2.9:

-1
X1=r; Yisi

-1
X2 =Ty Y282
(2)
_ -1
Xm =Ty YmSm
Since H,K C Z(A), we assume ¢ it = ro,tsot L =73, ..., t sy 1t = 1y DUt ts,t 1 #

ri since x g y.

Recall that x; = rl‘lylsl where 1,51 € H. Since H C Z(A), then ry, s1 are not unique.
If we replace r; by 71 = ra, for some a € A, then s; is replaced by §; = s1a. This implies
that r,, s, are replaced by 7 = 7181t = rot lat, §, = 5ot~ 'at and so on. Continuing in

this way, we obtain the following from (2):

x1 = 'y =ri'a y1s1a
Xy = i“z_lyzﬁz = r;l (tla7lt)yr50 (7 Lar)
3)

Xm = P ymbm = 1 (a7 ) y s (L at)

This implies that 1817 = 7o, 87! = F3,..., 67 8y 1t = Py but 8,717 =
tsm(tlat)t Va7 = tsut1r7! # 1. Let z = tsmt™!r]). Since G is residually finite by
Lemma 2.11, there exists P <1y G such that z ¢ P. By Lemma 5.1, there exists N € MoN P

such that (N N H) = NN K and NH N NK = N. We form G now. Then 7 # 1 and
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HNK=1inG. Thus, X +; 7 and the result follows.

Theorem 5.3. Let G = (t, Alt"'Ht = K, ¢) be an HNN extension where H and K are
finitely generated subgroups in Z(A) such that HN K = 1. Let A be cyclic conjugacy

separable and subgroup separable. Then G is cyclic conjugacy separable.

Proof. We apply Theorem 2.14 here. Since A is cyclic conjugacy separable, H-separable
and K-separable, we have conditions (a) and (b). By Lemma 5.1 and Lemma 5.2, we have
conditions (c) and (d).

We now prove condition (). Let x, y € G such that |[x|| = ||y]| = 0 and {x}° N (y) = 0.

Case 1. Suppose x ¢ HUK. Note that {x}° N (y) = 0 implies that {x}*N(y) = 0. Since
A is cyclic conjugacy separable, there exists M; <I A such that {xM;}*/M1 0 (yM) = 0.
Now since A is subgroup separable, there exists M» <1y A such thatx ¢ (H U K)M>. Let
M = M; N M,. By Lemma 5.1, there exists N <y Asuchthat N C M,¢(NNH)=NNK
and NH N NK = N. As before, we form G = (¢, A|t"'Ht = K, §) where A = A/N, H =
HN/N,K = KN/N and ¢ is the induced isomorphism from H to K. Then in G, we have
H,KEcZ(A),HnK =1,x ¢ HUK and {£}A N () = 0.

Suppose {X}Gﬂ(}'f) # 0. Thenx ~5 ¥ for some integer k. By Lemma 2.8(i), there exists
a finite sequence of Z; where z; € HU K such that £ ~5 71 ~4, 22 ~4; -+ ~4s Tw ~41 V*-

Since ¥ ¢ H U K and H, K C Z(A), the sequence reduces to ¥ ~ ;7 y* or ¥ ~, y*. Since

=

¢ H UK, that is, ¢ 'xt,¢xt~! ¢ H U K, this further reduces to ¥ ~; y*. But this
contradicts the fact that {X}A N (y) = 0. Hence {JE}G N (y) = 0. Since G is cyclic
conjugacy separable by Lemma 2.10, there exists P <Iy G such that {£P}°/? n (5P) = 0.
Let P be the preimage of P in G. Then P <I5 G such that {xP}C/P N (yP) = 0.

Case 2. Suppose x € H U K. Note that {x}% N (y) = 0 implies that {x}4 N (y) =
0,t 'xt ¢ (y)ifxe Hortxt™! ¢ (y)ifx € K. Given HL K C Z(A)and HNK =1, we

have x, " 1xt ¢ (y) or x, txt™! ¢ (y). Since A is subgroup separable, there exists M < rA
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such that x ¢ (y)M,t xt ¢ (y)M and txt™! ¢ (y)M. As in Case 1, we can find N < A
such that N € M,¢(NNH) =NNK and NH N NK = N and thus we can form G. Then
H,KCZ(A),HNnK=1,x€c HUK and x,t %, txt™' ¢ (3).

Suppose {X}Gﬂ()':) # (. Thenk ~; 7k for some integer k. By Lemma 2.8(i), there exists
a finite sequence Z; where z; € H UK such that £ ~4 Z) ~z, Z2 ~4; -« ~As Zw ~4 J*-
From the first conjugation relation X ~; Z;, we obtain z; = X since x € HUK c Z(A).
From the second conjugation relation X = z; ~;, Z2, we obtain z = X or z; = 15t
or 7 = txt~!. Continuing this way, we have z; = X or t"\&t or txt! fori = 3,...,w.
Hence Z,, = X or ¢"Lxt or tx¢~!. This implies that X ~z ¥ or t Lkt ~; 7* or txt~! ~; y.
Since H,K < Z(A), we obtain X,z '%¢,tx¢t~! € (¥). This is a contradiction since
%,t 'xt, x5! ¢ (7). Hence {f}G_ N (y) = 0 and the result follows as in Case 1.

Therefore we have condition (e) and this completes the proof. Thus, G is cyclic

conjugacy separable by Theorem 2.14.

53 Cyclic Conjugacy Separability on Certain HNN Extensions

In this section, we show our main result (Theorem 5.6) by using Theorem 2.14. Here

we study the HNN extensions with HN K # land 9(HNK) =HNK.

Lemma 5.4. (Wong & Wong, 2008) Let G = (t, A|t"'Ht = K, ¢) be an HNN extension.
Suppose H and K are finitely generated subgroups in Z(A) and H #+ A # K. Then G is
subgroup separable if and only if A is subgroup separable and H N K is a subgroup of
finite index in H and K and there exists a finitely generated subgroup S such that S has

finite index in H N K and ¢(S) = S.
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The proof of the following lemma is modified from Theorem 3.5 of Wong & Tang

(2000).

Lemma 5.5. Let G = (t,A|lt"'Ht = K, ) be an HNN extension where HN K # 1.
Suppose H and K are finitely generated subgroups in Z(A) such that |H : H N K| <
00, |K : HN K| < oo. Further suppose $(H N K) = H N K. Let A be subgroup separable.
Then for each x,y € G such that ||x|| = ||yl| > 1 and x +g Yy, there exists Q <y G such

thatx +& 5 in G = G/Q.

Proof. We letx = tEix tE2x, . .. tmem,y = t1y11?y, .. .t°my,, where x;,y; € A,m > 1
and E;,e; = £1. Let a; denote those x;, y; € A\H, b; denote those x;,y; € A\K and ¢;
denote those x;, y; € H N K\{1}. Since A is subgroup separable, we can find No <y A
such that a; ¢ HNy, b; ¢ KNy and c; ¢ Np.

As in Lemma 5.2, we may assume E; = ¢; for all i. Since x »¢ Yy, either some equations
in (1*) of Definition 2.9 has no admissible solution in A or every set of admissible solutions
to (1*) of Definition 2.9 is incomplete. If one of the equations in (1*) of Definition 2.9
has no admissible solution in A, the proof may proceed as in Lemma 5.2. So suppose
80,715 -->"m,Sm € HU K is a set of incomplete admissible solutions to (1*) of Definition
2.9.

Let u; = t°xp...x;—1t% and v; = t®'y;...y;1t%,1 <i < m. If x ~g y, then there

1

exists an element z € H U K such that z7lxz = y, that is x"1zy = z. This implies

u[lzvl, u;lzvz, cees u,‘nlzvm € HUK and x;,lu;fzvmym = z. Since x +¢ Y, then for each
element w € H U K, either there exists an integer j, 1 < j < m, such that u]‘.lwv j €EHUK
but u]‘.ilwv j+1 € A or u]".lwv 7 € HUK but x,'u,'wvmym # w. We have the following
cases.

Case 1. Suppose for each element w € H U K, we can find the largest integer n such

that 1 < n <m and u,‘llwvn € HUK but u;ilwvml ¢ A. Then u;ilhvm.l ¢ A for all
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he HUK.
Subcase la. Suppose e, = 1 = e,y1. Since x, =1}, ly,.s, where rp,s, € HUK

and H,K C Z(A) such that HN K # 1, we assume that s, € H and r, € K. We first

1

show that u,r,'v,;! ¢ HU K. Suppose u,r,'v,! = w’ for some w’ € HU K. Then

u W = Tl waynt = lx eyt = 171s; 1t € A, a contradiction since
n+1hv,,+1 g Aforall h €e HUK. So, u,r, v 1 ¢ HUK. Since G is H-separable
and K-separable by Lemma 5.4, there exists P <y G such that u,r, vl ¢ HPUKP.
Let N* = Non PN A. By Lemma 4.3, there exists N <lf A such that N € N* and
#(NNH) = NnK. Now we form G. Then |||| = ||x|| = ||y|| = ||7]| and &7, 7, ¢ HUK
in G.

Suppose ¥ ~5 y. Then there exists a complete set of admissible solutions
P0:G1s---»Gm:Pm € H UK to (1*) of Definition 2.9 such that X = g;'¥px and
t % pr_1t®%* = gy for 1 < k < m, where pgp = p,. Let dy = 1'% ...Xr-12°* and
Ve = t31... Je-12*. Then ;' py'vx = qx. Furthermore, v;'5%; € H N K for all
se€ HNK since (ANK) = HNK and H,K c Z(A). Since t~*"p,_1t*" = g, and
ten ptént = G, where e, = 1 = eny, we have p, € H and §, € K. Since %, =

1

7 5080 = @, $upn, we have p,5,' = G,7,' € HN K. This gives us 7,! = g, 5 for some

€ HnK. Ttfollows that i, 7, 'v;! = #,3,'59;" = (4., 'v;") (9,59;1) = py's’ € HUK

=1}

for some s’ € H N K, a contradiction. Therefore, X +5 y and the result follows. Similarly
if en = _1 = en+1.

Subcase 1b. Suppose e, = 1 = —e,+1. Now let w be an element, where u;lwv,, € HUK

-1

but u ! wvn ¢ A. Since u;, 1

wv, € HUK, and u;lwvn has the form u,"wv, =

-1,-1 -1 -1
t Xp1U,-

WVn-1Yn-1t, we have u;, -1

wv, € K. Since u;ilwvnﬂ = tx;lun wv,,ynt‘l éA,
we have x,'u,'wv,y, ¢ K. This implies that x,'y, ¢ K since K C Z(A). Since A is

subgroup separable, there exists N1 <ly A such that x, 1 yn € KNj. As above, there exists
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N < A such that N € No N Ny and ¢(N N H) = N N K. We can form G now. Clearly
[I%]] = llxIl = lIy!l = |7]| and %;'5, ¢ K in G.

Suppose ¥ ~5 y. Then there exists a complete set of admissible solutions
P0:G1s---»Gm:Pm € H UK to (1*) of Definition 2.9 such that % = g;'¥pr and
17 % pr_1t®%* = g for 1 < k < m, where po = p,. Since t~*"p,_1t» = g, and
ten+1p et = g1 where e, = 1 = —ep,1, we have p, € K and g, € K. Since
Xn = Gp'FnPn> X, 9n = Gnp,' € K, a contradiction. Therefore, ¥ # ¥ and the result
follows. Similarly if —e, = 1 = e,41.

Case 2. Suppose there exists an element w € H U K such that uJ‘.lwv j € HUK but

1,,-1

Xy Uy WV Ym F W.

Subcase 2a. Let e; = 1 = e,,. Note that x,,, = r,;lymsm, where r,,,, sm € H U K. Since
H,K ¢ Z(A) and HN K # 1, we assume s, € H and r,, € K. Suppose umr;,lv,‘n1 ¢ H.
Since G is H-separable, there exists P <G such that u,,r;,'v,! ¢ HP. Let N* = NonPNA.
Then N* <y A. As above, there exists N <|y A such that N € N* and ¢(NNH) = NNK.
We now form G. Then ||%|| = ||x|| = |[y|| = ||7]| and @7V, ¢ Hin G.

Suppose ¥ ~5 y. Then there exists a complete set of admissible solutions
P0:G1s---»Gm:Pm € H UK to (1*) of Definition 2.9 such that % = g;'¥pr and
17 pr_qt%* = qr for 1 < k < m, where po = p,. Since t °1pot°t = g, and
£ pm_1t°™ = G, We must have po € H and G, € K. Since X, = 7, §mSm =
G- ImPms PmSy = @mFp,- € H N K, which implies that 7,,! = §,,'5 for some § € H N K.
1

Thus, @7, 0, = Gmdy 5, = (Gmdy V) Pmsv,)) = p,ls’ for some s’ € H N K. We

1

can see that i, 7, v,,! = p,.s’ € H, a contradiction. Therefore, ¥ +5 ¥ and the result

follows.

1

Now suppose u,r,'v,! € H, say u,r,;'v,! = h;l for some h; € H. Hence x‘lhfly =

1

X u;}h;lvmym = s;,l, and therefore x = h;lysm. Since x *g y, we have s, # h;.
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Suppose x = h; lyhy is another expression of x, where hy,hs € H.
Then y‘lhzhfly = h3s;,1, i.e., x;,lt‘em .. .x[lt‘elhthltelxl Xy = h3s;11.
This implies that t‘elhghfltel € HUK. Since H, K C Z(A), we have
xplemem  x7l e g xy L t9m % = h3sy!. We must obtain ¢~(€1+e2) pyprlz(erved) ¢
H U K. Continuing this, we have t®hyh['1° = hss;!, where e = e1 +.. . + em.

If e = 0, then hzhfl = h3s;,1. Thus, h;lsm = h;lhg. Let z = h[lsm. Since 7z # 1
and A is residually finite, there exists N1 <\y A such that z ¢ N;. As above, there exists
N <y A such that N € NoN N; and ¢(N N H) = NN K. We now form G. Then
1% = ||x|| = llyll = ||| and Z # 1in G. It follows that ¥ + 7 and we are done.

If e # 0, from t~°hyh[ 't = hss,!, we have r~°h;'ts,, = t=°h;'t°h3. Furthermore,
hohi' € HN K and hss,! € H N K since hohi', h3s,! € Hand ¢(HNK) = HNK.
Since x G y, x # hlya for all h € H. This implies that t‘ehfltesm # t~¢h~1t°h, for all
h € H, where hhi' € HNK. Let z = t°h{'t¢s, and L = {t"*h~'t°h|hh;' € HN K}.
Then z ¢ L.

Let L' = {t°h~'1°hlh € HN K} and w = r~°h]'t°hy. Then L = wL’. To see this,
let x € L. Then x = t"¢h~'t°h, where hh{' = s € HNK. Sox = r*h's '°hys =
t‘ehfltet‘es‘ltehls = t‘ehfltehlt‘es‘lt"s € wL’. Hence, L C wL’, and similarly,
wL’ C L.

Note that L’ is a finitely generated subgroup of A since L’ € HNK. Since z ¢ L, we have
w1z ¢ L. Since A is subgroup separable, there exists N1 < £ A such that wlz ¢ L'Ny.
As above, there exists N <y A such that N € No N Ny and ¢(N N H) = N N K. We now
form G. Clearly ||%|| = ||x|| = |ly|| = ||7|| and w1z ¢ L’ in G. This implies that 7 ¢ L
and hence X + y. The result follows. Similarly if e; = —1 = ep,.

Subcase 2b. Suppose e = 1 = —e,,,. We assume x~'wy ¢ H. Since u,'wv,, e HUK

-1

-1 B
and u,, wvy, has the form u, wv,, = tx, " u

m—1

1

WVm-1Ym—1t"1, we have U, wvy, € H.
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Y 'Wvmym € H and H C Z(A), we have x,!y,, ¢ H. Since A is subgroup

Since x,
separable, there exists N1 < A such that x;,l Ym & HN;. As above, there exists N <y A
such that N € Ng N Ny and ¢(N N H) = N N K. We now form G. Clearly ||x]| = ||x|| =
|yl = 1151| and %' 5 ¢ H in G.

Suppose ¥ ~z y. Then there exists a complete set of admissible solutions
P0:G1s---»Gm:Pm € H UK to (1*) of Definition 2.9 such that X = g;'¥rpr and
1% pr_1t* = g for 1 < k < m, where pg = p,. Since t mp,_1t°" = §, and
171 pt®t = g1, we have po € H and g, € H. Since X = G, YmPm> Xy Im = GmP,, € H,
a contradiction. Therefore, X +5 y and the result follows.

Now suppose x~'wy € H. Then x~'wy = h for some 4 € H. Thus x = wyh~!. Since

x *g y, we have w # h. The result now follows as in Subcase 2a.

Theorem 5.6. Let G = (t, A|lt"'Ht = K, ¢) be an HNN extension where HN K # 1.
Suppose H and K are finitely generated subgroups in Z(A) such that |H : HNK| < o0, |K :
H N K| < co. Further suppose $(H N K) = HN K with ¢(s) = s*' forall s e HNK. Let
A be cyclic conjugacy separable and subgroup separable. Then G is cyclic conjugacy

separable.

Proof. We apply Theorem 2.14 here. Since A is cyclic conjugacy separable and subgroup
separable, we have conditions (a) and (b). By Lemma 4.3 and Lemma 5.5, conditions (c)
and (d) are satisfied.

We now prove for condition (¢). Let x,y € G such that ||x|| = |[|y|]| = 0 and
x}n@y=0.

Case 1. Suppose x ¢ H U K. The proof for this case is similar to Case 1 of
Theorem 5.3 except that in this case we use Lemma 4.3 instead of Lemma 5.1 where
G = (t,Alr"'Ht =K, ) withH,K € Z(A), HNK = ANK, % ¢ HUK and {£}2n(5) = 0.
The proof follows as in Case 1 of Theorem 5.3.
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Case 2. Suppose x € H U K\(H N K). The proof of this case is similar to Case 2

of Theorem 5.3. As in Case 1 above, we use Lemma 4.3 instead of Lemma 5.1 where

G = (t,A|t"'Ht = K, ¢) where H, K C Z(A), HN K = Hn K. Furthermore, ¥ ¢ HN K
and %, t71xt ¢ () if X € H, %, 157! ¢ () if x € K.

Case 3. Suppose x € H N K. Note that {x}° N (y) = 0 implies that {x}* N (y) =0
and t"xt" ¢ (y) for all integers n. Since H,K C Z(A) and ¢(s) = s*! foralls € HNK,
then {x}* N (y) = 0 implies that x,x™! ¢ (y). We can now proceed as in Case 2 above
and the result follows.

Therefore we have condition (e) and this completes the proof. Thus, G is cyclic

conjugacy separable by Theorem 2.14.

54 Applications

We extend Theorem 5.3 and Theorem 5.6 here.

Corollary 5.7. Let G = (¢, A|lt"'Ht = K, ¢) be an HNN extension where H, K are finitely
generated in Z(A). Let A be free-by-finite. Suppose one of the following holds:
(e) HNK =1;
(b) H=K;
(c) thereexists HNK <y HLHNK <y K and ¢(H N K) = H N K where ¢(s) = s or
#(s) =s' foralls e HN K.

Then G is cyclic conjugacy separable.

Proof. Free-by-finite groups are cyclic conjugacy separable and subgroup separable. Thus,
(a) and (c) are straightforward from Theorem 5.3 and Theorem 5.6 respectively. As for (b),
when H = K, we have ¢(H) = H is an automorphism and the result follows from Theorem

5.6.
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Corollary 5.8. Let G = (t,A|t"'Ht = K, ¢) be an HNN extension. Let A be finitely
generated abelian. Suppose one of the following holds:
(e) HhK =1;
(b) H=K;
(c) thereexists HNK <y HLHNK <y K and ¢(H N K) = H N K where ¢(s) = s or
#(s) =s"foralls e HNK.

Then G is cyclic conjugacy separable.

Theorem 5.9. (Meskin, 1972) The group G = {(a, bla~*bPa®b™") is residually finite if

andonlyif B+y=0or|B|=1or|y| =1

Theorem 5.10. Let G = (t, A|t"'at = b) be an HNN extension where {(a), (b) are infinite
cyclic subgroups of Z(A). Let A be non-cyclic, cyclic conjugacy separable and subgroup
separable. Then G is cyclic conjugacy separable if and only if (a) N (b) =1 or a™ = b*"

for some positive integer m.

Proof. Note that G is an HNN extension with base group A, associated subgroups (a), (b)
and ¢ : (a) — (b) where ¢(a) = b. If (a) N (b) = 1, then G is cyclic conjugacy separable
by Theorem 5.3. If a™ = b*™ for some positive integer m, then (a) N (b) = (a™) = (b*™).
Thus, the result follows from Theorem 5.6.

Conversely, suppose G is cyclic conjugacy separable. Then G is residually finite. Then

the result follows from Theorem 5.9.

Corollary 5.11. Let G = (t, A|t"'at = b) be an HNN extension where {a) and {(b) are
infinite cyclic subgroups in Z(A). Let A be non-cyclic, free-by-finite. Then G is cyclic
conjugacy separable if and only if {(a) N (b) = 1 or a™ = b™™ for some positive integer m.
Proof. Since free-by-finite groups are cyclic conjugacy separable and subgroup separable,

the result follows from Theorem 5.10.
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Corollary 5.12. Let G = (t, A|t"'at = b) be an HNN extension where {a) and {(b) are
infinite cyclic subgroups in Z(A). Let A be non-cyclic finitely generated abelian. Then G
is cyclic conjugacy separable if and only if (a) N (b) = 1 or a™ = b*™ for some positive

integer m.
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CHAPTER 6: CYCLIC CONJUGACY SEPARABILITY OF GENERALIZED
FREE PRODUCTS

6.1 Introduction

In the second part of this thesis, we will study the cyclic conjugacy separability of
generalized free products and tree products with various amalgamated subgroups. As in
Chapter 2, we establish a criterion which state the basic core conditions in order to be

applied to the generalized free products. This criterion is given in Theorem 6.6.

6.2 Cyclic Conjugacy Separability of Generalized Free Products
We give the essential lemmas needed before we prove the criterion.

Lemma 6.1. (Magnus et al., 1966) Let G = A B and let x € G be of minimal length in
its conjugacy class. Suppose that y € G is cyclically reduced and y ~¢ x.
(@) If ||x|]| = O, then ||y|| < 1 and if y € A say, there exists a finite sequence
hi, ha, ..., hy of elements of H such that'y ~o hy ~p ha ~a ... ~B(a) hn ~a(B) X.
(b) If ||x]| = 1, then ||y|| = 1 and either x,y € A and x ~4 y or else x,y € B and
X ~p Y.

(c) If|Ix]| = 2, then ||yl| = ||x|| and y ~g x’ where X’ is a cyclic permutation of x.

Definition 6.2. Let G = A/ B and x, y are cyclically reduced elements in G with |[x|| =

lly]| =n = 2. Suppose x =x1x2...Xp, Y =Y1Y2 ... Vn.

Consider the following set of equations:
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xiv1 = kg y1k
X2 = k]'y1ko
(D

-1
Xitn = kn_lynkn

where 0 < i < n and the integer i + j is taken modulo 7.

A pair of elements h;_1, h; of H is called an admissible solution of the j-th equation if
and only if x;;; = h]‘.llyjhj. A set of admissible solutions A, A1, ..., h, of H to (1) is
said to be complete if and only if kg, Ay, ..., h, satisfy (1) simultaneously and kg = h,,.

This is equivalent to x’ = ha 1yho where x’ = x;;41X;42 . . . X; is a cyclic permutation of
x. So x ~¢ y if and only if the system of equations (1) has a set of complete admissible

solutions for some 0 < i < n.

Lemma 6.3. Let G = A B where A and B are finite. Then G is subgroup separable
(Allenby & Gregorac, 1973), conjugacy separable (Dyer, 1980) and cyclic conjugacy

separable (Tang, 1997).

Lemma 6.4. Let G = A;B and x,y € G where x has minimal length in its conjugacy
class and y is cyclically reduced. Suppose ||x|| = ||y**|| > 2 for some positive integer k.

Then {x}° N (y) = 0 if and only if x +¢ y*F.

Proof. Suppose {x}¢ N (y) = 0. Then g"'xg ¢ (y) for any g € G. This implies that
g lxg # y*" for all r € Z*. Thus, g~'xg # y**. Hence x g y**. Conversely, suppose
x +g y**. We have g~ lxg # y** for any g € G. Since ||x|| # ||y*"|| for all n € Z*\{k},

x g y*" by Lemma 6.1(c). Thus, x »g y*” for all r € Z*. Therefore, {x}° N (y) = 0.
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We simplify the results in Baumslag (1963) and obtain the following lemma.

Lemma 6.5. Let G = A;B. Suppose
(i) A and B are residually finite;
(ii) A and B are H-separable;
(iii) For each R <y H, there exist M <y A,N <y Bsuchthat MNH=NNH CR.

Then G is residually finite.

We now state and prove our main criterion which will be used to prove our main results

in Chapter 7, Chapter 8 and Chapter 9.

Theorem 6.6. Let G = Ay B. Suppose

(a) A and B are cyclic conjugacy separable;

(b) A and B are H-conjugacy separable;

(¢) A and B are H-separable;

(d) Foreach R <y H, there exist M <\y A,N <y Bsuchthat MNH=NNHCR;

(e) Forx,y € G suchthat ||x|| = [|y|| = 2 and x +¢ y, there exists Q <y G such that
xQ *G/o YO,

(f) Forx,y € G such that ||x|| =0, ||y|| <1 and {x}° N (y) = 0, there exists P s G
such that {xP}°/? n (yP) = 0.

Then G is cyclic conjugacy separable.

Proof. Letx,y € G such that {x}° N (y) = 0. Without loss of generality, we assume that
x has minimal length in its conjugacy class and y is cyclically reduced in G. Since G is
residually finite by Lemma 6.5, we can assume x # 1 # y.

Case 1. Suppose ||x|| = 2,||y|| = 2. Letx = a1ay...a,,y = b1b,...b, where

n>2,m > 2. Let u, denote those a;, bj € A\H and v, denote those a;, b; € B\H. Since
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A and B are H-separable, there exist My <y A, N1 <y B such that u, ¢ HM{ and vy ¢ HN,
for all u,, v;.

Subcase 1a. Suppose n # km for all positive integers k. Let R = M; N Ny N H. Then
R <y H. By (d), there exist M <\ A,N, <y Bsuchthat M\,NH =N, NH =Ry CR.
Let M =MiNMyand N =Ny NNy. Then M <y Aand N < B.

We now show that M N H = NN H C R. Recall that R = M1 N Ni N H and
MNnH=NyNH=R; CR. Let M{NH =Ry, Ny N H=R3 where R C R, N R3. Then
MNnH=MNMynH=(M;nH)n(Myn H) =Ry N Ry = R;. Similarly, we have
NNH=R;.

Thus M <y A,N <y B such that M N H = NN H. We form G = A’B where
A=A/M,B=B/N and H = HM/M = HN/N. Then in G, we have ||%|| = ||x|| #
kl|yll = k||7]] = ||7*¥|| for all positive integers k. Hence by Lemma 6.1(c), & *G yt* for
all positive integers k and so {JE}G N (7Y = 0. Since G is cyclic conjugacy separable by
Lemma 6.3, we can find P <7 G such that {£P}5/P N (3P) = 0. Let P be the preimage of
PinG. Then P « 7 G such that {xP}°/P 1 (yP) = 0. The result now follows.

Subcase 1b. Suppose n = km for some positive integer k. Since {x}¢ N (y) = 0, then
by Lemma 6.4, x »g y**. By (e), there exists Q < ¢ G such that xQ *g/o y**Q. Let
R=0NM;nNNyNH. Then R <y H. By (d), there exist M <y A, N, <y B such that
MyNnH=N NH=R{CR. LetM=QNM; NM;and N =0 N N;NN>.

We now show that M N H = NN H C R. Recall that R = Q N My N N; N H and
MyNH=NyNH=R; CR.LetQNnMiNH =Ry, 0N N;NH = R; where R C R, N R5.
Then MNH=0NM NM,NH=(QNMiNnH)N(M,NH)=R;NR; = R;. Similarly,
we have N N H = R;.

Thus M <1y A,N <y B suchthat M N H = N N H. We form G as in Subcase 1a. Then

in G, we have ||%|| = [|x|| = k||y|| = k||7]| = ||7**|| for some positive integer k and also
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% +& y**. By Lemma 6.4, we have {£}6 N (y) = 0. Since G is cyclic conjugacy separable
by Lemma 6.3, our result follows as in Subcase 1a.

Case 2. Suppose ||x|| < 1,||y]] = 2. Letx € Aand y = byb,...b,, where m > 2.
As in Case 1, let u, denote those b; € A\H and v, denote those b; € B\H. Since A
is residually finite and A, B are H-separable, there exist M1 <1y A, N1 <y B such that
x ¢ My,u, ¢ HM1 and vy € HN for all u,,vs. Let R= M1 NNy N H. Then R <y H. By
(d), there exist My <y A, N, <\g Bsuchthat M,NH = NoNH = Ry C R. LetM = MiNM,
and N =N;NNp. Then M <y A,N <y Band M N H = N N H as in Subcase 1a.

As in Subcase 1a, we form G. Then in G we have x # 1, ||%|| < 1 and ||7|| > 2. By

Lemma 6.1(a), any conjugate of % in G is either any element ¥’ € A U B or of the form

1 1

#~ %' where @~ %@ and @ are the reduced words with ¥’ € A U B. Since  is cyclically
reduced and ||7|| > 2, then 5*¥ is cyclically reduced and ||3**|| > 2 for all positive integers
k. Hence by Lemma 6.1(c), we have X + y** for all positive integers k. So, we have
{i}é N (¥) = 0. We now proceed as in Subcase 1a and the result follows.

Case 3. Suppose ||x|| = 2,||y|| < 1. Let y € A. As in Case 2, we can form G = AF*}B
suchthat 1 £ 5 € A, ||J]| < 1 and ||X|| = 2. As§ € A, then y** € A for all positive
integers k. Since ||X|| > 2, then by Lemma 6.1(c), X »5 y** for all positive integers k.
Hence, we again proceed as in Subcase 1a and the result follows.

Case 4. Suppose ||x|| = 1,||y]] < 1.

Subcase 4a. Suppose x € A\H,y € A. Note that {x}° N (y) = 0 implies that
{x}4 N (y) = 0. Since A is cyclic conjugacy separable, there exists M; <Is A such that
{(xM}A™™1  (yM;) = 0. Given that x is of minimal length in its conjugacy class, we
have {x}* N H = 0. Since A is H-conjugacy separable, there exists M, < £ A such that

{xM}A™2 "\ HM, /M, = 0. Let R = M; N M, N H. Then R <y H. By (d), there exist

M3 <]fA,N1 <]fBSllChthatM3ﬂH=NlﬂH=R1 CR. LetM =M NM; N M; and
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N =N;. Then M <y Aand N <y B.

We now show that M N H = NN H C R. Recall that R = M; N M, N H. Then
MNH=MiNnM,NnM3snH= (M, nM,nH)n (M3 N H) =RN Ry = Ry. Similarly,
NNH=N; NH=R,.

Thus M <1y A, N <z Bsuchthat MNH = NNH. We form G as in Subcase 1a. Thenin G,
we have ||%|| = 1, ||| < 1 where x € A\H,y € Aandalso {x}A N () =0, {x} N H = 0.
Since 7** € A for all positive integers k and {JE}“i N H = 0, then by Lemma 6.1(a) and (b),
we have ¥ 5 y**. So, this implies that {JE}G N (¥) = 0. We now proceed as in Subcase
1a and our result follows.

Subcase 4b. Suppose x € A\H,y € B\H. Given that x is of minimal length in its
conjugacy class, we have {x}* N H = 0. Since A is H-conjugacy separable, there exists
M; <y A such that {xM}A'"™ n HM;/M; = 0. Since B is H-separable, there exists
N1 <f Bsuchthaty ¢ HNy. Let R = My N Ny N H. Then R <y H. By (d), there exist
M> <y A,N> <y Bsuchthat M,NH = NNH =Ry C R. Let M = My N M, and
N=N1NN,;. Then M <y A,N <y Band M N H = N N H as in Subcase la.

As in Subcase 1a, we form G. Then in G, ||%|| = 1 = ||7|| where X € A\H,y € B\H
and also we have {¥}4 N H = 0. Since y** € B and {#}2 N A = 0, then by Lemma 6.1(a)
and (b), we have ¥ ¢ 7= for all positive integers k. So, this implies that {JE}G N {y)=0.
We now proceed as in Subcase 1a and the result follows.

Case 5. Suppose ||x|| =0, ||y|| < 1. The result follows from (f).

The proof of the theorem is now completed.
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CHAPTER 7: FREE PRODUCTS AMALGAMATING CYCLIC SUBGROUPS

71 Introduction

The conjugacy separability of the generalized free products of two finitely generated
nilpotent groups amalgamating a cyclic group was shown by Dyer (1980). One of the
requirement in that proof was that each of the factor group is cyclic conjugacy separable.
So, the first step to extend conjugacy separability to tree products amalgamating cyclic
subgroups, we will need the requirement that such generalized free products are cyclic

conjugacy separable. Thus, this is the main result (Theorem 7.6) of this chapter.

7.2 Lemmas Needed
We now state and prove the lemmas needed in this chapter.

Lemma 7.1. Let A be a group and h an element of infinite order in A. Suppose A is

(h)-weakly potent. If h* ~4 W' for some integers s,1, then s = +t.

Proof. Since A is (h)-weakly potent, we can find a positive integer r such that for each
positive integer n, there exists M <1y A such that M N (h) = (k™). We choose n = |s||¢|
and denote the image of #in A = A/M by h. Then |h*| = r|t| and |K!| = r|s|. Since

h* ~; h', we have r|s| = r|t|. This implies |s| = |¢| and hence s = +t.

Lemma7.2. LetG=A,”

(h)B where h has infinite order. Suppose A and B are {h)-weakly

potent. Then for any R <y (h), there exist M <y A, N <y B such that MN{h) = NN(h) C R.

Proof. Let R <Iy (h) be given. Then R = (h*) for some positive integer s. Since A and B
are (h)-weakly potent, we can find some positive integers 1, 7, such that for each positive

integer n, there exist M1 <y A, N1 <y B such that M1 N (h) = (A"'") and N1 N {h) = (h"").
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Thus, there exist M <y A, N <y B such that M N (k) = (W"1"?*) and N N (h) = (A""?).

Furthermore, M N (h) = N N (h) = (h"1"2°) C R.

Theorem 7.3. (Kim & Tang, 1993) Let G = A B. Suppose that
(a) A and B are H-separable;
(b) for each R <y H, there exist M <y A,N <y Bsuchthat MNH=NNH CR.

Then G is cyclic subgroup separable.

Lemma74. Let G =A <Z>B where h has infinite order.
(i) A and B are cyclic subgroup separable;
(if) A and B are (h)-weakly potent.

Then G is cyclic subgroup separable.

Proof. By Lemma 7.2, there exist M <{y A, N <y B such that M N (h) = N N (h). Since
A and B are cyclic subgroup separable and (k)-separable, we have G is cyclic subgroup

separable by Theorem 7.3.

Lemma7.5. LetG=A;

( h)B where h has infinite order. Suppose

(i) A and B are cyclic subgroup separable;
(if) A and B are {h)-double coset separable;
(Zif) A and B are (h)-weakly potent.
Then for each x,y € G such that ||x|| = ||y|| > 2 and x +¢ Yy, there exists P <y G such

that xP *G/P yP

Proof. Letx = x1x2...x,and y = y1y> ...y, be cyclically reduced in G where n > 2.
Since x +»¢g Yy, the system of equations (1) of Definition 6.2 has no solution for all i.
Therefore we need to show that, for each i, there exists P; <y G such that in Gi=G /P;,

the corresponding system of equations has no solution. Letting P be the intersection of all
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the normal subgroups P;, we have X +5 ¥ in G = G/P and the result follows. Hence it is
sufficient to show the case i = 0 in (1) of Definition 6.2.

Since A and B are {h)-separable, there exist My <Iy A, N1 <y B such that x;, y; ¢ (h)M
for those x;, y; € A\(h) and x;, y; ¢ (h)N; for those x;, y; € B\(h).

Since x *¢ Y, either some equations in (1) of Definition 6.2 has no admissible solution
in (h) or every set of admissible solutions to (1) of Definition 6.2 is incomplete. First
suppose there exists some k,1 < k < n, such that the k-th equation has no admissible
solution, that is, x; ¢ (h)yi(h) where x¢,yr € A\(h). The proof for the case where
Xk, Yk € B\(h) is similar. Since A is (h)-double coset separable, there exists M, <1y A
such that x; ¢ (h)yr(h)M>. Let R = M1 N M N N1 N (h). By Lemma 7.2, we can find
M3 <y A, Ny <y B such that M3 N (h) = NoN(h) € R. Let M = My N M N M3 and
N =N;NN,. Then M <5 A,N <y Band M N (k) = N N (h). We now form G = AU;)B
where A = A/M,B = B/N and h = hM = hN. Clearly G is a homomorphic image
of G. Then X, y are cyclically reduced and ||%|| = ||x||,||7]| = ||y|| in G. Furthermore,
%; ¢ (h)yx(h) in G. Hence ¥ + ¥. Since A = A/M,B = B/N are finite, then G is
conjugacy separable by Lemma 6.3 and the result follows.

Suppose h*1, Kb, ..., k% hPr is a set of incomplete admissible solutions to (1) of

Definition 6.2. Then we have the following.

X1 = h_alylhbl
X = h_azyzhb2

)

X, = k™% y,hbr

Suppose y; '(h)y; N (h) = (h"") where eachy; > 0,1 <i <r.
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Case 1. Suppose y; # 0 for all i. Suppose y; Ipdiy; = hYi for some integer 6;. Since
A and B are (h)-weakly potent, we have y; = +6; by Lemma 7.1. Hence we have
y; 'hYiy; = h*% for alli. Let y = Iem{y;|1 <i < r}. Cleatly, y;'h"y; = h*" for all i.

Subcase la. Suppose in the system of equations (2), the total number of equations
y;\1y; = h™ is zero or is even. This implies that y'h?y = y;1...y[1WYy1 ...y, = A7,
that is [y, »¥] = 1. Hence h%yh? = h™/yh/ for some 0 < j < |y|. So, x # h~?yh? for all
z € Zimplies thatx # h™/yh/ forall 0 < j < |y|. Hence by Lemma 6.1(c), x #(zy y if and
only if x # h™/yh/ forall 0 < j < |y|. Since G is residually finite by Lemma 7.4, there
exists Q <If G such that x"1h~/yh/ ¢ Q forall0 < j < |y|. Let R = M; N N1 N Q N (h).
By Lemma 7.2, we can find M, <1y A, N> <y B such that M, N (h) = No N (h) C R. Let
M=MinMxNQand N =N NN,NQ. Then M <1y A,N <y Band M N (h) = N N<(h).
We now form G as above. Then %, y are cyclically reduced and ||%|| = ||x||, ||7]| = ||y|| in
G. Furthermore, X # h=/§h/ for all 0 < j < |y|. Since hYFh” = j, then X +; ¥ and the
result follows as above.

Subcase 1b. Suppose in the system of equations (2), the total number of equations
y;'hYy; = k™7 is odd. Then arguing as in Subcase 1a, we have y~'4%y = h™7, that is
h~Yyh? = yh®’. Hence, x # h~%yh? for all z € Z implies that x 1h~7yh/ ¢ (h?') for
all 0 < j < |y|. Hence by Lemma 6.1(c), x +y y if and only if x"'h=/yh/ ¢ (h?)
forall 0 < j < |y|. Since G is cyclic subgroup separable by Lemma 7.4, there exists
Q <y G such that x~'h~/yh/ ¢ (h**)Q for all 0 < j < |y|. As for Subcase la, we can
find M <ty A, N <y Band M N (h) = N N {h). We now form G as above. Then x,  are
cyclically reduced and | ||| = ||x||, ||¥]| = ||y|| in G. Furthermore, 1A~/ 5h/ ¢ (h2") for
all0 < j < |y|. Since A7$h = §h*, then X +  and the result follows as above.

Case 2. Suppose y; = 0 for some i, that is yi‘l(h)y,ﬂ (h) = 1. Recall that x; = h~%y;h>

and suppose x; = h™%y;hP for some other h%, h?. Then y;1h®~%y; = h¥~b € y~1(h)y; N
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(h) =1 and hence @ = a;, B = b;. This implies that the equation x; = h~%y;h% has unique
solution A%, K1, Fixing i, we consider the next equation x;;1 = A~%+1y;4g hb#1 and arrange
if possible, so that a;;; = b;. Continuing this way, since x +g y, we see that this matching
must eventually fail at some equation, say x; = h™%y; h’i where a j # bj_1. Here the
integer j is taken modulo r and hence this equation may be the next equation or the equation
we started with. Let x” = x;x;41 ... xj_1xj and ¥’ = y;yir1 . .. yj-1y;. Then, by substituting
the value of each x; from (2) into x’, we obtain x’' = h™%y;y;yq ...y -1hP1"%y b,
Hence x” ¢ (h)y’(h). We shall only consider the case y; € A\(h) and y; € B\(h). The
other cases are similar.

Subcase 2a. Suppose y; = 0, that is yJ‘.l(h)y j N {h) = 1. Then as above, the equation
xj=h"%y J-hbf has unique solution 4~%, hbi. Let € = 2|a j—bj_1|. Since A is (h)-double
coset separable, then by Lemma 3.4, there exists Mz <y A such that y; 1h“y,~M2 = h'M,
only if €|a, b. Similarly, there exists Nz <iy B such that y;'h°y; N, = h?N; only if ec, d.
Let R = M1 N M2 NNy NNy N (h). By Lemma 7.2, we can find M3 <y A, N3 <y B such
that Ms N (h) = N3N {h) C R. Let M = My N M N M3 and N = N1 N N; N N3. Then
M <y A,N <y Band M N {h) = N N (h). We can now form G as above. Then %, y are
cyclically reduced and ||x|| = ||x||, ||7|| = ||y]| in G. Furthermore, by the choice of M,,
57 'h*3: = h® only if €|a, b whereas, by the choice of N2, j;'h°5; = h* only if €|c, d.

Note that X' = XiFu1...X,_1%; = A %9 Ju1...9;-1h017%5;hb and y' =
Fi¥ir1 - .. ¥j-17;. Suppose &’ € (h)y’(h). Then there exist integers @, S and &, . .., 6,1

such that the following holds:

}_’i+1 = }_l_(si)_7i+1}_l6i+1

(3)
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yj-1 = R0y (RO

Rbi-178i5; = =015 pP

From the first equation in (3), €|a, §; by the choice of M;. Now by Lemma 3.5(i), €||A|.
By applying Lemma 3.5(ii), from the second equation to the second last equation, we have
€|0x foralli+1 < k < j—1. Now from the last equation, we have j; = A~ (bi-1=4/5;-0)5 . 4B,
Hence €|b;_1 —a; + §;_1 by the choice of N;. Since €|6;_1, we have €| — (a; — bj_1),
which is a contradiction. Therefore X’ ¢ (h)y’(h) and thus X +5 ¥.

Subcase 2b. Suppose y; # 0, that is y]‘.l(h)y j N (h) = (h'7). Since B is (h)-weakly
potent, then by Lemma 7.1, y;'h?y; = h*YJ and y;'hly; ¢ (h) forall 1 < g < ;.
Since B is (h)-separable and y;lhqy j € (h)forall 1 < g < v;, there exists N, <y B
such that y]‘.lhq yj € (h)N, for all 1 < g < ;. Since the matching fails at the equation
xXj= h‘“fyjhbf, we further must have h2i-1-4; ¢ (hY7), that is aj # bj_1+nyjforalln € Z.
Since A is (h)-double coset separable, then by Lemma 3.4, there exists M, <1y A such
that y;1h%; M, = h® M, only if y;|a, b. As before, we form G. Then X, y are cyclically
reduced and ||%]| = ||x||, [|I7]| = |ly|| in G. Furthermore, by the choice of My, ;1 h%y; = h®
only if y;|a, b whereas, by the choice of Ny, y;liﬂy,- ¢ (h)forall1 < g <7;.

Suppose that ¥’ € (h)y’(h). Then we have the system of equations (3) as above. From
the first equation in (3), ¥;|a, 6; by the choice of M. Now by Lemma 3.5(@), v;||k|. By
applying Lemma 3.5(ii) from the second equation to the second last equation, we have
y;|6x foralli+1 < k < j — 1. Now from the last equation we have 7; = h%~bi-1=0i-15; hP.
Hence, yj|laj — bj_1 — 6;-1 by the choice of N;. Since y;|6;_1, we have y;j|a; — bj_1. So,
aj—bj_1 =vy; for some v € Z. But this contradicts the fact that a; — b;_; ¢ zy; for all

z € Z. Therefore, ¥’ ¢ (h)7'(h) in G and thus X #5 .
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7.3 Free Products with Cyclic Amalgamated Subgroups

In this section, we first prove our main result Theorem 7.6 and then extend the result to

free groups and finitely generated torsion-free nilpotent groups.

Theorem 7.6. Let G = A (,’;)B where h has infinite order. Suppose
(/) A and B are cyclic conjugacy separable;
(if) A and B are cyclic subgroup separable;
(iii) A and B are (h)-double coset separable;
(iv) A and B are {h)-weakly potent;
(v) For each integer s > O, there exist M <y A, N <y B such that M N (h) = (h®) =
N (k) with b +5 bJ forall i # b/ in A = A/M and h* +3 b for all h* # b’ in
B =BJN.

Then G is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since A and B are cyclic conjugacy separable and
(h)-double coset separable, then conditions (a), (b) and (c) are satisfied. By Lemma 7.2
and Lemma 7.5, we have conditions (d) and (e). Now we show condition (f). Letx,y € G
such that |[x|| = 0, [|y|| < 1 and {x}° N (y) = 0.

Case 1. Suppose ||x|| = 0 = ||y||. In this case, {x}¢ N (y) = 0 implies that
{x}* N (y) = 0 and {x}B N (y) = 0. Since A and B are cyclic conjugacy separable, there
exist My <y A, Ny < B such that {xM;}4/M1 n (yM;) = 0 and {xN;}2/¥ 0 (yNy) = 0.
Let M1 N (h) = (h*') and N1 N (h) = (h*2) for some positive integers s, s7. Let s = 5157.
By the hypothesis, there exists M, <l A such that My N (k) = (h*) and A’ +; A/ for all
B # k/ in A = A/M,. Similarly, there exists N> <y B such that N N (h) = (h°) and
h* +5 Y for all ?* # h* in B = B/N,. Let M = My N M, and N = N; N N,. Then

M <y A,N <y Bsuchthat M C M;,N C Ny and M N (h) = N N (h). We now form
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G = AU’_;)B where A = A/M, B = B/N and h = hM = hN. Note that {x}2 N (3) = 0 and
{£}3 N (§) = 0. Furthermore, we have 7’ = ; h/ forall b’ # h/ in A = A/M and h* +5 R
for all h* # h” in B = B/N.

Suppose {i}é N (¥) # 0. Then X ~; y* for some integer k. By Lemma 6.1(a),
there exists a finite sequence "™, h™, ..., h™» where A" € (h) for all i such that ¥ ~4
Bt ~g B2 ~5 ...~z H™ ~pz ¥*. Without loss of generality, we can assume that
X~z A ~5 W2~z ... ~5 " ~; *. Note that each r; is uniquely determined since
R +z W for all B # h/ in A and h* +5 h’ for all h* # R’ in B = B/N. Thus from
the first conjugation relation, ¥ ~; 4™ implies that X = A" in A and hence xM = h"' M.
This implies that xM = h"*M,h"'N = h"™?N,...,h’/* N = h'»"N,h'"M = ykM. From the
second equality A"'N = h"2N, we have "2 € NN (h) = M N {h) and thus "' M = h">M.
Continuing in this way, we have xM = "M = kM = ... = h"»'M = h'»M = y*M and
this implies that ¥ = A"t = b2 = ... = h™ = j* in A. So, % = y*, thatis {£}A N (J) # 0, a
contradiction. Hence, {}C N (¥) = 0. Since G is cyclic conjugacy separable by Lemma
6.3, we can find P < G such that {¥P}5/? n (5P) = 0. Let P be the preimage of P in G.
Then P <1y G such that {xP}°/? n (yP) = 0.

Case 2. Suppose ||x|| =0, ||y|| = 1. Let y € A\(h). The proof for case y € B\(h) is
similar. In this case, {x}°N(y) = 0 implies that {x}*N(y) = 0. Since A is cyclic conjugacy
separable and (h)-separable, there exists M; <ly A such that {(xM}AMi N (yMy) = 0
and y ¢ (h)M;. As in Case 1, there exist M <y A,N <y B such that M C M; and
M (k) = Nn{h). We now form G as in Case 1. Note that {¥}AN(5) = 0 and y € A\(h).

Suppose {i}é N(y) # 0. Thenx ~; y* for some integer k. By Lemma 6.1(a), there
exists a finite sequence k™, h"2,..., K™ where h"i € (h) for all i such that ¥ ~; A"t ~;
2 ~g. .. ~p B~ y*. Arguing asin Case 1, wehave X = /"' = h2 =...=h"in A

since ¥, 't € (h). From the last conjugation relation, we only have A’» ~; y*. Hence
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% = W' ~z y*, thatis X ~z y*. This implies that {x}2 N (5) # 0, a contradiction. So,
{i}é N (7) = 0 and the result follows as in Case 1. Thus, we have condition (f).

This completes the proof. Hence G is cyclic conjugacy separable by Theorem 6.6.

Free groups and finitely generated nilpotent groups are cyclic subgroup separable and
cyclic conjugacy separable. Furthermore, we have both free and finitely generated nilpotent
groups are H-double coset separable for each finitely generated subgroup H (Lennox &
Wilson, 1979; Ribes & Zalesskii, 1993) and weakly potent (Evans, 1974; Tang, 1995).
We can see that free groups and finitely generated torsion-free nilpotent groups satisfy
Condition (v) of Theorem 7.6 by Corollary 2.2 of Tang (1997). Thus, we extend Theorem
7.6 to free groups and finitely generated torsion-free nilpotent groups, then obtaining the

following results by Tang (1997).

Corollary 7.7. (Tang, 1997) Let G = A (,’;)B where h has infinite order in both A and B.

Suppose A and B are free groups. Then G is cyclic conjugacy separable.

Corollary 7.8. (Tang, 1997) Let G = A (,’:)B where h has infinite order in both A and B.
Suppose A and B are finitely generated torsion-free nilpotent groups. Then G is cyclic

conjugacy separable.
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CHAPTER 8: GENERALIZED FREE PRODUCTS OF FINITELY GENERATED
NILPOTENT GROUPS

8.1 Introduction

It has been established that the generalized free product G = A;B is conjugacy
separable and cyclic conjugacy separable if A and B are finite. Dyer (1980) and Tang
(1997) showed that these generalized free products are free-by-finite and free-by-finite

groups are conjugacy separable and cyclic conjugacy separable.

Dyer (1980) also showed that G = A B is conjugacy separable if A and B are conjugacy

separable and H is finite.

In this chapter, we shall show that G = A B is cyclic conjugacy separable if A and
B are conjugacy separable and cyclic conjugacy separable and H is finite. This is given
in Theorem 8.2. We then apply our result to show that G = A; B is cyclic conjugacy
separable when H = K X D where K is finite and D is central in A and in B. We further

apply our result to free products of finitely generated nilpotent groups.

8.2 Free Products with Finite Amalgamated Subgroups

In this section, we show that the free products of two cyclic conjugacy separable and
conjugacy separable groups amalgamating a finite subgroup are cyclic conjugacy separable

(Theorem 8.2).

Theorem 8.1. (Dyer, 1980) Let G = A;B where H is finite. Suppose A and B are

conjugacy separable (residually finite). Then G is conjugacy separable (residually finite).
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Theorem 8.2. Let G = A B where H is finite. Suppose A, B are conjugacy separable and

cyclic conjugacy separable. Then G is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. By assumption, we have condition (a). Next by
Lemma 4.11 and Lemma 4.12, we obtain conditions (b) and (c) respectively. By Theorem
8.1, we have condition (e).

Suppose R <y H be given. Since A, B are residually finite and H is finite, there exist
M <y A,N <y Bsuchthat M N H =N N H =1 C R. Thus, we have condition (d).

Now we only need to prove condition (f). Let x,y € G such that {x}° N (y) = 0
and ||x|| = 0,]|y]]| £ 1. Lety € A. The proof for the case y € B is similar. Now
{x}¢ N (y) = 0 implies that {x}* N (y) = 0 and {x}Z N (y) = 0. Since A and B are cyclic
conjugacy separable, there exist M; <y A, Ny <l B such that {xM;}*/M1 n (yM;) = 0
and {xN;}B/M n (yN;) = 0.

Now let h; € H,i = 1,..., p be all the elements in H C A such that h; ~4 x. Since
{x}* N (y) =0, we have {B;}2 N (y) = 0,i = 1,...,p. Since A is cyclic conjugacy
separable, there exists M <I A such that {h;M>}4/M2 1 (yMy) = 0,i = 1,..., p. Now
let k; € H,j = 1,2,...,q be all the elements in H C B such that k; ~p x. Since
{x}2 N (y) = 0, we have {k;}¥ N (y) = 0,j = 1,2,...q. Since B is cyclic conjugacy
separable, there exists N, <I¢ B such that {k;N2}B/N2 0 (yN,) =0, j = 1,2,...,q. Now
since A is conjugacy separable, for all pairs of a, *4 a, where a,,a, € H C A, there exists
M3 <7 A such that a,M3 + 4y, ayM3. Similarly, since B is conjugacy separable, for all
pairs of b, +p bs where b,, bs € H C B, there exists N3 <y B such that b,N3 +g/n, bsN3.
Furthermore, since A, B are residually finite and H is finite, there exist M4 <\f A, N4 <y B
suchthat MuyNH =1=NsNH. Let M = MiNnMyNMsNMgand N = N1 NNoN N3N Ny.
Then M <y A,N <y Bsuchthat MNH=1=NNH.

We now form G = A’B where A = A/M,B = B/N and H = HM/M = HN/N.
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Then in G, we have {x}4 N (§) = 0,{x}8 N (F) = 0,{h}A N F) = O, h; ~4 x,i =
L...,p. kY20 (G =0,kj ~g x,j =1,...,q and G, +; G, for all pairs of a,,a, €
H,a, +4 ay,b, +3 by for all pairs of b,, by € H, b, +p by.

Suppose {i}é N(y) # 0,say x ~5 ¥ for some integer k. By Lemma 6.1(a), there exists
a finite sequence ; € H such that X ~5 hy ~5 hy ~z ...~z hn ~5z) . Without loss
of generality, we assume X ~; hy ~5 hy ~4 ... ~5 hn ~z y*. From the first conjugation
relation X ~ 7 hq, we have xM ~4 /m h1M. Suppose x and h; are not conjugate in A. Then
XM3 +4/m, h1M3. But this contradicts the fact that xM ~4,y hiM. Hence x ~4 h;.
Since {x}% N (y) = 0, we have {h1}* N (y) = 0. So in G, we have {h1}2 N (7) = 0.

From the second conjugation relation hy ~ B hy, we have hiN ~p /N haoN. Arguing as
above, we obtain /; ~g hy. Suppose {h2}4 N (y) # 0, say hy ~4 y' for some integer I.
Hence y' ~4 hy ~p hy ~4 x. This implies that {x}© N (y) # 0, a contradiction. Hence
{h2}2 N (y) = 0. Soin G, we have {h}2 N (5) = 0.

Proceeding from the third to the second last conjugation relation, we obtain 4#; € H such
that {h;}A N {(y) =0,i=3,...,n. Soin G, we have {h;}A N (§) =0,i = 3,...,n. From
the last conjugation relation %, ~; 7¥, we obtain {%,}A N (¥) # 0. But this contradicts the
fact that {i_zn}“i N (y) = 0. Hence {JE}G_ N (7) = 0. Since G is cyclic conjugacy separable
by Lemma 6.3, we can find P <i7 G such that {xP}G/? n (3P) = 0. Let P be the preimage
of Pin G. Then P <1y G such that {xP}S/P n (yP) = 0. Thus we have (f).

This completes the proof and thus G is cyclic conjugacy separable by Theorem 6.6.

8.3 Generalized Free Products of Finitely Generated Nilpotent Groups

In this section, we apply our result(Theorem 8.2) to Theorem 8.7. We start with some

lemmas.

Lemma 8.3. Let A be a group and H be a subgroup of A. Suppose that there exists a

82



finitely generated subgroup R C H such that |H : R| < oo and R <1 A. If A is R-separable,
then
(i) A is H-separable; and

(ii) there exists N <y A suchthat NN H = R.

Proof. Since A is R-separable, then A = A/R is residually finite. Let x € A\H. Then
% ¢ H = H/R. Since H is finite, there exists N <y A suchthat NNXH =Qand NN H = 1.

Let N be the preimage of N in A. Then N <y A such thatx ¢ HN and NN H = R.

Lemma 8.4. Let G = A;B and let D C H such that D is a finitely generated normal
subgroup of A and B with |H : D| < co. Suppose A and B are subgroup separable. Then

Jor each R <y H, there exist M <y A,N <y Bsuchthat MNH=NNHCR.

Proof. Let R <y H be given. Let S = RN D. Then S <y D. Suppose S has finite index r
in D. Since D is finitely generated, then there exist only a finite number of subgroups of
finite index r in D. Let E be the intersection of all these subgroups. Then £ C D and E is
a characteristic subgroup of finite index in D. Since E <y D, we have E <y H. Since A is
E-separable, there exist M <y A,N <y Bsuchthat MNH =NNH = E C R by Lemma

8.3(1i).

The following lemma is modified from Lemma 2.6 of Zhou et al. (2010).

Lemma 8.5. Let G = A;;B and let D C H such that D C Z(G) is finitely generated with
|H : D| < . Suppose A and B are subgroup separable groups. Then G is residually

Sinite.
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Proof. Let g € G be nontrivial.

Case 1. g € D. There exists § <y D such that g ¢ S. Let G = A’B where
A=A/S,B=B/Sand H=H/S. Then g # 1. Since A/S, B/S are residually finite and
H/S is finite, G is residually finite by Theorem 8.1. Then there exists L < f G such that
g ¢ L. Let L be the preimage of L in G. Then L <y G such that g ¢ L.

Case 2. g ¢ D. Then we form G = AE*{B where A = A/D,B = B/D and H = H/D.
Note that g # 1. Since A/D, B/D are residually finite and H/D is finite, G is residually

finite by Theorem 8.1. As before, we can find L <iy G such that g ¢ L.

Lemma 8.6. Let G = Aj;B and let D C H such that D C Z(G) is finitely generated with
|H : D| < co. Suppose A and B are subgroup separable groups. Suppose x,y € G such

that ||x|| = ||yl| = 2 and x +¢ y. Then there exists P <y G such that xP +gp yP.

Proof. Let x,y be cyclically reduced. We assume x = a1b;...asbp,andy =c1d; ... cpdy
where a;,c; € A\H, b;,d; € B\Hfor1 <i <nandn > 2. Since A and B are H-separable
by Lemma 8.3(i), there exist M1 <r A, N1 <y B such that a;, c; ¢ HM1, b;, d; ¢ HN; for
all i. Now, by Lemma 6.1(c), x #¢ y if and only if x* »g y, for all cyclic permutation x*
of x. Let X = {h~'x*h|h € H and x* is a cyclic permutation of x}. Since |H : D| < oo and
D c Z(G), it follows that X is finite and y ¢ X. Since G is residually finite by Lemma
8.5, there exists L <|y G suchthat yL N {zL|z € X} = 0. Let R = Mi NNy N LN H. Then
R <y H. By Lemma 8.4, there exist M <1y A, N> <\y Bsuchthat M,NH =N, NH C R.
LetM =MiNnM,NLand N =N1NN2NL. Then M <fA,N<\fBand MNH=NNH.
We now form G = AB where A = A/M,B = B/N and H = HM/M = HN/N. Note
that ||%|| = [|x]| = [|y]| = ||¥|| and X* »g ¥ for all cyclic permutation x* of X. This implies
that ¥ + . Since G is conjugacy separable by Lemma 6.3, there exists P < f G such that

XP +5,5 P. Let P be the preimage of P in G. Then P <5 G such that xP +g/p yP.
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Theorem 8.7. Let G = A;B where H = K X D such that K is finite and D C Z(G) is
finitely generated torsion-free. Suppose
(i) A and B are subgroup separable;
(if) A and B are conjugacy separable;
(Zii) A and B are cyclic conjugacy separable;
(iv) A and B are H-conjugacy separable;
(v) A/S and B/S are conjugacy separable and cyclic conjugacy separable for any
S <y D.

Then G is cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since A and B are both cyclic conjugacy separable
and H-conjugacy separable, conditions (a) and (b) are satisfied. By Lemma 8.3, Lemma
8.4 and Lemma 8.6, conditions (c), (d) and (e) are satisfied.

We only need to prove condition (f). Let x,y € G such that ||x|| = 0, ||y]| < 1 and
{x}ny)=0.

Case 1. Suppose x € D,y € AUB. Letx € D,y € A. The proof is similar if
x €D,y € B. Since x € D C Z(G), then {x}° N (y) = 0 implies that x ¢ (y). Since A
and B are subgroup separable, there exist M1 <iy A, N1 <y B such that x ¢ (y)M; and
x & (y)N1. Let R = M; NNy N H. Then by Lemma 8.4, we can find M, <y A, N, <I1 B such
that M,NH=N>NHCR. LetM =MiNMzand N = NyNN>. Then M < A,N <y B
such that M N H = N N H. Now we form G = A}B where A = A/M, B = B/N and
H=HM/M =HN/N. Note that x ¢ (y) in G.

Suppose {X}G N (¥) # 0. Then X ~; y* for some integer k. By Lemma 6.1(a),

S

there exists a finite sequence k1, ko, ..., h, € Hsuchthatx ~z hy ~5 hy ~5 ... ~A(B)
hn ~3z) ¥ Without loss of generality, we assume X ~z ki ~5 hy ~ ... ~5 hn ~z 7*.

Since X € Z(G), wehave X = hy = hy = ... = h, = y*. So % = 7, contradicting the fact
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that X ¢ (¥). Hence, {£}° N (§) = 0. Since G is cyclic conjugacy separable by Lemma
6.3, there exists P <1 G such that {xP}6/P  (P) = 0. Let P be the preimage of P in G.
Then P <1y G such that {xP}°/? n (yP) = 0.

Case 2. Suppose x € K\D,y € D. In this case, {x}° N (y) = 0 implies that
{x}* N (y) = 0 and {x} N (y) = 0. Since A, B are subgroup separable and cyclic
conjugacy separable, there exist M1 <y A,N; <y B such that x ¢ DM;,x ¢ DN
and {xM}A™ N (yM;) = 0, {xN1}B/¥1 n (yN;) = 0. By Lemma 8.4, we can find
M < A,N <yBsuchthat M C M, NC Njand MNH=NNH. We now form G as
above. Then in G, we have ¥ ¢ D and {JE}“i N{y) =0, {JE}E Nn{y) =0.

Suppose {JE}G N(y) # 0. Then ¥ ~ y* for some integer k. As in Case 1, we can
assume X ~ hy ~5 hy ~f - ~B h, ~i 7*. Since y € Z(G), we have ¥ = hy = hy =

k a contradiction. Hence {JE}G_ N (y) = 0. Since G is cyclic

ce.=h, =55 Sox =7
conjugacy separable by Lemma 6.3, we again obtain our result as in Case 1.

Case 3. Suppose x,y € K\D. In this case, {x}° N (y) = 0 implies that {x}4 N (y) = 0
and {x}Z N (y) = 0. Since A, B are subgroup separable and cyclic conjugacy separable,
there exist My <iy A, N1 < B such thatx,y ¢ DMi,x,y ¢ DNy, {xM;}*/M 0 (yM;) = 0
and {xN;}8/¥ N (yN;) = 0.

Now let p; € K,i = 1,...,r be all the elements in K such that p; ~4 x. Since
{x}A N {y) =0, we have {p;}* N (y) =0,i =1,...,r. Since A is cyclic conjugacy
separable, there exists M» <1y A such that {piM}AM2\ (yM,) =0,i = 1,...,r. Now let
gj €K,j=1,...,sbe all the elements in K such that g; ~p x. Since {x}8n (y) =0, we
have {g;}¥ N (y) =0, = 1,...,s. Since B is cyclic conjugacy separable, there exists
N < B such that {g;N2}8/V2 N (yN,) =0,/ = 1,...,5.

Now since A is conjugacy separable, for all pairs of a, *4 a, where a,,a, € K,

there exists M3 <y A such that a,M3 +4/y, ayM3. Similarly, since B is conjugacy
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separable, for all pairs of b, +p bs; where b,,b; € K, there exists N3 <y B such
that b,N3 +p/y, bsN3. Let § = L, M; NN, NiND. Then S <iy D and thus
S <y H. We now form G = A;IB where A = A/S,B = B/S and H = H/S. Then
in G, we have £,3 ¢ D,{£} N () = 0.{B N (5) = 0,{B}* N ) = O.pi ~a
x,i = 1,...,r,{q'j}B N{y) =0,9; ~px,j=1,...,s5 and a, +; a, for all pairs of
ay,a, € K,a, +4 a, and b, +3 by for all pairs of b,, bs € K, b, +p by.

Suppose {i}é N(y) # 0. Then X ~5 y* for some integer k. As in Case 1, we can
assume ¥ ~z by ~5 by ~z ... ~5 by ~z 7*. Since H = K X D, we can write k; = k;d;
uniquely, where k; € K,d; € D fori =1,2,...,n. Then we have X ~; k1dy ~5 kads ~;

.. ~ knd, ~z ¥*. From the first conjugation relation % ~; k1d, we have ¥ = a;'k1d1d;
for some a; € A and thus X‘ldfllzldl = Jl‘l. It follows that x‘laflklalS = dl‘lS and
this implies that x‘laflklal € D since S <y D. We let x‘laflklal = z € D, then
xz = a[lklal. Since K is finite, we let m = lem{|k1|, |x|}. Thus, (xz)™ = (a[lklal)’”
implies that z” = 1. Since D is torsion-free, we have z = 1. It follows that x‘laflklal =1,
thus dy = 1 and ; = k;. So, now we have X ~z k1 ~5 kody ~; ... ~5 knd, ~; F*.
Similarly, since now we have k; ~3 koda, then dy = 1 and hy = ky. Continuing this way,
we can write ¥ ~7 k1 ~5 k2 ~4 ... ~5 kn ~1 7.

From the first conjugation relation ¥ ~7 ki, we have xS ~4 /s k1S. Suppose x and
k1 are not conjugate in A. Then xM3 +4/p, k1M3. But this contradicts the fact that
xS ~ass k1S. Hence x ~4 k. Since {x}* N (y) = 0, we have {k;}* N (y) = 0. Soin G,
we have {k1}A N (5) = 0.

From the second conjugation relation ki~ B k,, we have k1S ~p /s k2S. Arguing as
above, we obtain k1 ~g ka. Suppose {k2}4 N (y) # 0, say ky ~4 y' for some integer /.
Hence y' ~4 ko ~g k1 ~4 x. This implies that {x}¢ N (y) # 0, a contradiction. Hence

{k2}2 N (y) = 0. Soin G, we have {k»}2 N (3) = 0.
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Proceeding from the third to the second last conjugation relation, we obtain k; € K such
that {k;}A N (y) =0,i=3,...,n. Soin G, we have {k;}2 N (§) =0,i = 3,...,n. From
the last conjugation relation k, ~ ; 7*, we obtain {k,}4 N (¥) # 0. But this contradicts
the fact that {IE,,}A N (y) = 0. Hence {i}é N (y) = 0. Since A/S, B/S are both conjugacy
separable and cyclic conjugacy separable with H/S is finite, we have G is cyclic conjugacy
separable by Theorem 8.2. Then the result follows as in Case 1.

Case 4. Suppose x € K\D,y € A\H or x € K\D,y € B\H. We shall prove for the
case x € K\D,y € A\H. The proof is similar to the proof in Case 3. For completeness,
we shall write the proof in full.

In this case, {x}¢ N (y) = 0 implies that {x}4 N (y) = 0. Since A, B are subgroup
separable and cyclic conjugacy separable, there exist M; <1y A,N1 <y B such that
x ¢ DMy,x ¢ DNy, y ¢ HM; and {xM}A/"1 0 (yM;) =0. Nowlet p; e K,i=1,...,r
be all the elements in K such that p; ~4 x. Since {x}4 N (y) = 0, we have {p;}* N (y) =
0,i=1,...,r. Since A is cyclic conjugacy separable, there exists M, <1y A such that
{p:iM}AMa N (yMy)Y =0,i=1,...,r.

As in Case 3, for all pairs of a, 4 a, where ay, a, € K, there exists M3 <y A such
that a,M3 + /M, ayM3. Similarly, for all pairs of b, »p by where b,, by € K, there exists
N> <y Bsuchthat b,N, »g/n, bsN>. Let S = ﬂ?=1 M; ﬂizzl N;ND. Then S <7 D and thus
S <1y H. We now form G = A;‘_IB where A = A/S,B=B/S and H = H/S. Thenin G, we
have ¥ ¢ D,y ¢ H,{JE}’i N{F) = (Z),{p',-}‘; NGF)=0,p;i ~ax,i=1,...,r,and a, +; ay
for all pairs of a,, a, € K,a, +4 a, and b, +5 b; for all pairs of b,, bs € K, b, +p by.

Suppose {i}é N(y) # 0. Then x ~; y* for some integer k. As in Case 1, we can
assume X ~5 by ~5 ha ~7 ... ~5 hy ~; *. Since H = K x D, we can write h; = k;d;
uniquely, where k; € K,d; € D fori =1,2,...,n. Then we have X ~; kid; ~5 kod, ~
k

e ~p kndy ~z $*. Asin Case 3, we can write X ~5 k1 ~5 ko ~z ... ~g kn ~5 ¥

2>

88



since d; = 1 and h; = k; for all i. Again as in Case 3, we obtain k; € K such that
(k32N {(y)=0,i=1,2,...,n. Soin G, we have {k;}A N (3) =0,i=1,2,...,n. From
the last conjugation relation k, ~ ; 7*, we obtain {k,}4 N (¥) # 0. But this contradicts
the fact that {IE,,}’i N (y) = 0. Hence, {i}é N (¥) = 0 and the result follows as in Case 3.

From all the cases above, we obtain condition (f). This completes the proof and hence

G is cyclic conjugacy separable by Theorem 6.6.

Note that finitely generated nilpotent groups are subgroup separable, conjugacy separable
and cyclic conjugacy separable. Furthermore, the quotient groups of nilpotent groups are
again nilpotent. Thus, we can apply Lemma 4.8 and Theorem 8.7 to finitely generated

nilpotent groups. We have the next result.

Corollary 8.8. Let G = A;;B where H = K X D such that K is finite and D C Z(G).
Suppose A and B are finitely generated nilpotent groups. Then G is cyclic conjugacy

separable.

Proof. Since D is a finitely generated abelian group, D = K; X D1 where K] is finite and
D; is torsion-free. Hence we may assume D is torsion-free. Then G is cyclic conjugacy

separable by Theorem 8.7.
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CHAPTER 9: TREE PRODUCTS AMALGAMATING CENTRAL SUBGROUPS

9.1 Introduction

The tree products of finitely many free groups or surface groups or polycyclic-by-finite
groups amalgamating cyclic subgroups are conjugacy separable (Kim & Tang, 1996; Kim
& Tang, 1999; Ribes et al., 1998). Also the tree products of finitely many conjugacy
separable and (central) subgroup separable groups amalgamating central subgroups are
conjugacy separable (Wong & Tang, 1999; Kim & Tang, 2002). Hence the tree product of

polycyclic-by-finite groups amalgamating central subgroups are conjugacy separable.

In this chapter, we shall study the cyclic conjugacy separability of tree product of finitely
many cyclic conjugacy separable and subgroup separable groups amalgamating central
subgroups (Theorem 9.18). We then apply our result to tree products of free-by-finite

groups and finitely generated abelian groups.

9.2 Free Products Amalgamating Central Subgroups

In this section, we show that the generalized free product of two cyclic conjugacy
separable and subgroup separable groups amalgamating central subgroups are cyclic

conjugacy separable (Theorem 9.3).

Lemma 9.1. Let A be subgroup separable. Suppose R <\f H C Z(A). Then there exists

M <y A suchthat M N H = R.

Proof. Let R <y H C Z(A) be given. Since A is subgroup separable, we have A = A/R
is residually finite. Since A is finite, there exists M <1 A such that ¥ N H = 1. Let M be

the preimage of M in A. Then M N H = R as required.
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Lemma 9.2. Let G = AjB where H C Z(A) N Z(B) is a finitely generated subgroup.
Suppose A and B are subgroup separable. Then for eachx,y € G suchthat ||x|| = ||y|| = 2

and x +g Yy, there exists Q <y G such that xQ +g ;g y0O.

Proof. Let x,y € G be cyclically reduced. We assume x = ajb;...a,b, and y =
cidi ...cnd, where a;,c; € A\H, b;,d; € B\H for1 <i <nandn > 2. Since A and B
are H-separable, there exist My <y A, N <y B such that a;,c; ¢ HM1, b;, d; ¢ HN, for
all i. Now, by Lemma 6.1(c), x »¢ y if and only if x »5 y*, for all cyclic permutations y*
of y. Since H C Z(A) N Z(B), we have xy*~! # 1 for all cyclic permutations y* of y. By
Lemma 6.5, G is residually finite. Since there is only a finite number of cyclic permutations
y* of y, we can find L <y G such that xy*~1 ¢ L for all cyclic permutations y* of y. Let
R=M;NNiNLNH. Then R<\yH. By Lemma 9.1, there exist M, <\y A, N> <y B such that
MyNH=R=NynH.LetM = LNnM;NnMyand N = LAN;NN,. Thus MNH = NnH.
We now form G = A}I‘B where A = A/M,B = B/N and H = HM/M = HN/N. Note
that ||%]| = [|x|| = [IyI| = ||7|| and ¥5*~1 # 1 for all cyclic permutations y* of y. This
implies that ¥ »5 ¥* and thus ¥ =5 y. Since G is conjugacy separable by Lemma 6.3,
there exists Q <Iy G such that ¥Q +g,5 7Q. Let Q be the preimage of 0. Then Q <Iy G

such that xQ +g /9 yO.

Theorem 9.3. Let G = A;;B where H C Z(A) N Z(B) is a finitely generated subgroup.
Suppose A and B are cyclic conjugacy separable and subgroup separable. Then G is

cyclic conjugacy separable.

Proof. We apply Theorem 6.6 here. Since A and B are cyclic conjugacy separable and
subgroup separable with H finitely generated, the conditions (a) and (c) are satisfied. By

Lemma 9.1 and Lemma 9.2, conditions (d) and (e) are satisfied.
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To show (b), we let x € A such that {x}* N H = 0. Since H C Z(A), we have
{x}4 N H = 0 if and only if x ¢ H. Now, since A is subgroup separable, there exists
M <y A suchthatx ¢ HM. Let R = M N H. By Lemma 9.1, we can find N <y B
such that NN H = R. We now form G = A*B where A = A/M,B = B/N and
H = HM/M = HN/N. Since ¥ ¢ H and H C Z(A) in G, we have {x}A n H = 0.
Therefore, A is H-conjugacy separable and similarly for B. Thus, we have condition (b).

We show (f) now. Let x,y € G such that ||x|| = 0,]|y|]| < 1 and {x}° N (y) = 0.
Suppose y € A. The proof is similar if y € B. For this case {x}° n (y) = 0 implies that
x ¢ (y) since H € Z(A) N Z(B). Since A is subgroup separable, there exists M <y A
such that x ¢ (y)M. Let R = M N H. Then R <y H. By Lemma 9.1, there exists N <y B
such that N N H = R. Now we can form G as above.

Suppose {)E}é N(J) # 0, say X ~ y* for some integer k. By Lemma 6.1(a), there exists
afinite sequence of hy, ha, . .., by, € H suchthat ~5 by ~5 by ~5 ... ~z3) hn ~502) 7*-
Since y € A, without loss of generality, we assume X ~z hy ~5 by ~7 ... ~5 by ~5 J*.
Since H € Z(A) N Z(B), wehave ¥ = hy = hy = ... = h, = ¥*. So, ¥ = 7*, contradicting
X ¢ (y). Therefore, {X}G_ N (y) = 0. Since G is cyclic conjugacy separable by Lemma
6.3, there exists P <iy G such that {£P}/? N (7P) = 0. Let P be the preimage of P in G.
Then P < G such that {xP}/" n (yP) = 0.

This completes the proof and therefore G is cyclic conjugacy separable by Theorem

6.6.

Corollary 9.4. Let G = A;;B where H C Z(A) N Z(B) is a finitely generated subgroup.

Suppose A and B are free-by-finite groups. Then G is cyclic conjugacy separable.

Corollary 9.5. Let G = A;;B where A and B are finitely generated abelian groups. Then

G is cyclic conjugacy separable.
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9.3 Lemmas Needed

Now we extend Theorem 9.3 to tree products of finitely many subgroup separable and
cyclic conjugacy separable groups. We note that Lemma 9.6, Lemma 9.7, Lemma 9.8,

Lemma 9.9 and Lemma 9.17 are modified from Wong & Tang (1999).

Lemma 9.6. Let G = A B and K < B. Suppose
(i) for each R <y H, there exists M <y A such that M N H = R;
(ii) for each S <y K, there exists N <y B such that NN K = §.

Then there exists P <y G suchthat PN K = §.

Proof. Let § <y K < B be given such that there exists N <y Bwith NN K = §. Let
R =NnNH. By (i), there exists M <I¢ A such that M N H = R. Now we can form G = AE,B
where A = A/M,B = B/N and H = HM /M = HN/N. Since G is residually finite by
Lemma 6.3 and K = KN/N is finite, there exists P <y G such that PN K = 1. Let P be

the preimage of P in G. Then P <|f G such that PN K = S.

Lemma 9.7. Let G = (A1, Ay, ..., An|H;j = Hj;) be a tree product of Ay, Ay, ..., A,
amalgamating the subgroups H;j of A; and Hj; of A;. Let K < A,. Suppose

(i) for each R;j <y H;j, there exists M; <y A; such that M; N\ H;j = R;j;

(i) foreach S <y K, there exists N <y A, suchthat NN K = S.

Then there exists P <y G suchthat PN K = §.

Proof. We use induction on n. The case when n = 2 follows from Lemma 9.6. Let
n > 2. The tree product G has an extremal vertex, say A,, which is joined to a unique
vertex, say A,—;. The subgroup of G generated by A1, Az,...,A,—1 is just the tree
product of themselves. Let A denote this subgroup. Then we write G = Aj A, where

H= H(n—l)n = Hn(n—l)-
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Case 1. K < A, < A. By induction, for each § <¢ K, there exists M <1y A such that
MNK =S. By (i), for each R <y Hy, (1), there exists N <y A, such that NN H,(,_1) = R.
Then the result follows from Lemma 9.6.

Case 2. K < A,. By (ii), for each S < K, there exists N <y A, suchthat NN K = §.
By induction, for each R <y H(,_1),, there exists M <y A such that M N H = R. We now

form G as above and the result follows from Lemma 9.6.

Lemma 9.8. Let G = A;B and K < B. Suppose
(i) A and B are H-separable;
(i) for each R <y H, there exist M <y A,N <y Bsuchthat MNH =R=NNH;
(iii) B is K-separable.

Then G is K-separable.

Proof. Letg € G\K.

Case 1. g € A\H. Since A is H-separable, we can find M <y A such thatg ¢ HM. Let
M N H = R. By (ii), we can find N <Iy B such that N N H = R. We now form G = AE’;B
where A = A/M,B = B/N and H = HM/M = HN/N. Note that K < Band g € A\H.
Thus, g ¢ K. Since G is subgroup separable by Lemma 6.3, we can find P < f G such that
g & KP. Let P be the preimage of P in G. Then g ¢ KP.

Case 2. g € B\K. Since B is K-separable, there exists N <|y B such that g ¢ KN. Let
N N H =R. As above, we can find M <y A such that M N H = R. We now form G as in
Case 1. It is clear that § ¢ K. The result follows as in Case 1.

Case 3. ||g|| = 2. WLOG, we assume g = a1bjazb; ...a,b, where a; € A\H, b; €
B\H and n > 2. Since A and B are H-separable, there exist M1 <y A, N1 <y B such
that a; ¢ HM; and b; ¢ HN,. Suppose M1 N H = Ry and N1 N H = R,. Then we can

find M, < AN, <y Bsuchthat M,NH =Ry NR, =N, NH. Let M = M N M, and

94



N = N1 N N,. We now form G as in Case 1. Since ||g|| = ||g]|, it is clear that g ¢ K. The

result follows as in Case 1.

Lemma 9.9. Let G = (A1, Ay, ..., An|H;j = Hj;) be a tree product of Ay, Ay, ..., A,
amalgamating the subgroups H;j of A;j and Hj; of Aj. Let K < A,. Suppose
(i) Aiis H;j-separable;
(i) for each R;; <y H;j, there exists M; <y A; such that M; N H;j = R;j;
(7ii) A, is K-separable.

Then G is K-separable.

Proof. We use induction on n. The case when n = 2 follows from Lemma 9.8. Let
n > 2. The tree product G has an extremal vertex, say A,, which is joined to a unique
vertex, say A,—1. The subgroup of G generated by A1, Az,...,A,—1 is just the tree
product of themselves. Let A denote this subgroup. Then we write G = A/ A, where
H = H;_1)n = Hp(n-1). By induction, A is H(,_1),-separable. By Lemma 9.7, for each
R<yH(;_1)n, there exists M <y A such that MNH (,_1), = R. By (i), A, is Hy(,—1)-separable.
By (ii), for each S <1y Hy(,-1), there exists N <y A, such that N N Hy(,—1) = S.

Case 1. K < A, < A. By induction, A is K-separable. Thus, G is K-separable by
Lemma 9.8.

Case 2. K < A,,. Since A, is K-separable, the result follows from Lemma 9.8.

Lemma 9.10. Let G = A/ ;B and K < B. Suppose
(i) for each R <5 H, there exists M <\y A such that M N H = R and h; +; h; for
hi # hjin H of A= A/M;
(i) for each S <t K, there exists N <y B such that NN K = S and ki 3 Ejfor ki # IEJ-
inK of B=B/N.

Then there exists P <y G such that PNK = S and k; +¢ kj for k; # kj in G = G/P.
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Proof. Let S <If K be given. By (ii), there exists N <z B such that NN K = S and k; » k;
for k; # kj in K of B = B/N. Let NN H = R. By (i), there exists M <I A such that
MNH=Randh; +; hjfor h; # hj in H of A= A/M. We now form G = A;IE where
A=A/M,B=B/Nand H=HM/M = HN/N. Note that k; »; k; for k; # k;. Since
G is conjugacy separable by Lemma 6.3 and K is finite, there exists P <y G such that
kiP +gp k;P and PN K = 1. Let P be the preimage of P in G. Then P <y G such that

PNK =S and k;P *G/P ijfOI'ki + kj.

Lemma 9.11. Let G = (A1, Ay, ..., Ay|H;j = Hj;) be a tree product of Ay, Ay, ..., A,
amalgamating the subgroups H;j of A;j and Hj; of A;. Let K < A,. Suppose
(i) for each R;j <y H;j, there exists M; <y A; such that M; N H;; = R;j and h; * 4, 711-
for h; # hjin H;j of A; = Ai/ M;;
(ii) for each S <y K, there exists N <y A, such that NN K = S and k; +; k; for
ki # kjinK of A, = A,/N.

Then there exists P <y G suchthat PN K = S and k; e IEjfor k; # IE]- inG =G/P.

Proof. We use induction on n. The case when n = 2 follows from Lemma 9.10. Let
n > 2. The tree product G has an extremal vertex, say A,, which is joined to a unique
vertex, say A,—1;. The subgroup of G generated by A1, Az,...,A,—1 is just the tree
product of themselves. Let A denote this subgroup. Then we write G = A A, where
H = Hp_1yn = Hy(n-1)-

Case 1. K < A, < A. By induction, for each § <y K, there exists Q <15 A such that
ONK =S andk; +* 5 IE,- for k; # IEJ- in K where A = A/Q. By (i), for each R < Hy(n-1),
there exists N <y Ay such that N N Hy(,—1), = R and h; +;_h; for h; # hj in Hyg,p)
where A, = A,/N. Then the result follows from Lemma 9.10.

Case 2. K < A,. By (ii), for each § <1y K, there exists N <r A, suchthat NN K =S

and k; +; kj for k; # k; in K where A, = A,/N. By induction, for each R <y H(s—1)n,
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there exists M <15 A such that M N H(,_1), = R and h; +z h; for h; # h; in H(—1), Where

A = A/M. The result now follows from Lemma 9.10.

Lemma 9.12. Let G = A;B and K < B. Suppose
(i) A and B are H-separable;
(it) for each R <y H, there exist M <\f A,N <y B suchthat MNH =R =N N H and
h; + I_zj,ﬁ,- *5 l_zjfor h; # ﬁj inHof A=A/M,B = B/N;
(iii) A and B are H-conjugacy separable;
(iv) B is K-conjugacy separable.

Then G is K-conjugacy separable.

Proof. Let x € G be of minimal length in its conjugacy class and {x}° N K = 0.

Case 1. x € A\H. Since x is of minimal length in its conjugacy class, we have
{x} N H = 0. Since A is H-conjugacy separable, there exists M < 7 A such that
{xM}A'M N HM /M = 0. By (ii), we can find N <i7 B such that NN H = M N H. We now
form G = A} B where A= A/M,B = B/N and H = HM/M = HN/N. 1t is clear that
{x}ANH =0and K < B. Thus, {x}6 n K = 0. Since G is cyclic conjugacy separable by
Lemma 6.3 and K is finite, there exists 2 <i; G such that {tP}5/? N KP/P = 0. Let P be
the preimage of P in G. Then P < G such that {xP}5/? N KP/P = 0.

Case 2. x € B. Since {x}° NK = 0, we have {x}? NK = 0. By (iv), there exists N </s B
such that {xN}8/¥ N KN/N = 0. By (ii), we can find M <y A suchthat MNH=NNH
and h; + hj for h; # hjin H of A = A/M. We form G as in Case 1. Since {£}3 N K = 0
and A; *3 i_zj for h; # i_zj in H, we have {JE}G N K = 0 and the result follows as in Case 1.

Case 3. x ¢ AU B. WLOG we assume x = a1 b, ...a,b, where a; € A\H, b; € B\H
for 1 <i < n. By (i) and (ii), there exist M <\y A, N <y B such thata; ¢ HM,b; ¢ HN
foralliand M N H = NN H. We form G as in Case 1. Since ||x|| = ||x||, we have

{i}é N K = 0 and the result follows as in Case 1.
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Lemma 9.13. Let G = (A1, A, ..., An|H;j = Hj;) be a tree product of Ay, Ay, ..., A,
amalgamating the subgroups H;j of A;j and Hj; of Aj. Let K < A,. Suppose
(i) A;is H;j-separable;
(i) for each R;j <y H;j, there exists M; <y A; such that M; N H;; = R;j and h; *, ﬁj
for h; # hj in H;j of A; = Ai/ M;;
(iii) A; is H;j-conjugacy separable;
(iv) A, is K-conjugacy separable.

Then G is K-conjugacy separable.

Proof. We use induction on n. The case when n = 2 follows from Lemma 9.12. Let
n > 2. The tree product G has an extremal vertex, say A,, which is joined to a unique
vertex, say A,-1. The subgroup of G generated by Ay, Az, ..., A,—1 is just the tree
product of themselves. Let A denote this subgroup. Then we write G = A A, where
H = H(p_1)n = Hy(n—1). By Lemma 9.9, we have A is H(,_1),-separable. By Lemma 9.11,
for each R <y H,—1)n, there exists M <I A such that M N H(,—1), = R and h; + h; for
hi # hjin H(,1), in A = A/M. By induction, A is H,-1),-conjugacy separable. By (i),
Ap 18 Hyn_1)-separable. By (ii), for each S <1y Hy(,-1), there exists N <y A, such that
NN Hyn-1y = Sand b; 5 h; for h; # h; in Hy(,—1) where A, = A,/N. By (iii), Ay, is
Hy(,—1)-conjugacy separable.

Case 1. K < A, < A. By the induction hypothesis, A is K-conjugacy separable. Then
G is K-conjugacy separable by Lemma 9.12.

Case 2. K < A,. By (iv), A, is K-conjugacy separable. Then G is K-conjugacy

separable by Lemma 9.12.

Lemma 9.14. Let A be a subgroup separable group and H,K be finitely generated
subgroups of Z(A) such that HN K = 1. Then for each R <\y H, there exists M <y A such

that MNH=Rand HM N KM =M.
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Proof. Let R <y H be given. Since A is subgroup separable and R is finitely generated
in Z(A), we have A = A/R is residually finite. Since H = H/R is finittand HNK =1,
there exists M <iy A such that M N H =1 and HM N KM = M. Let M be the preimage of

M in A. Then M <y A suchthat M N H = R and HM N KM = M as required.

Lemma 9.15. (Wong & Tang, 1999) Let G = (A1, A, . . ., Au|H;j = Hj;) be a tree product
of A1, Ay, ..., A, amalgamating the subgroups H;; of Z(A;) and Hj; of Z(Aj), where
H;jNHyx = 1forj # k. Let A, Ay, ..., A, be residually finite groups and K1, K be finitely
generated subgroups of Z(A;), Z(As), respectively, such that K1 N H,; =1 = K, N Hy;.
Suppose that
(a) A;is H;j-separable, A, is K1-separable, and A, is K>-separable;
(b) for each R;jx <y H;j, there exists Myj; <y A; such that M;jx N H;; = R;jx and
H;jM;jx N HygM;jp = M;ji;
(c) for each R,; <\ Hy;, there exists My; <\ A, such that M;; N H,; = R,; and
KiM,; N Hyi My = My;;
(d) for each Ry <y Hy;, there exists My <y As such that Mg N Hy; = Ry and
KoM N HgM; = M;;
(e) foru & JivJy whereu,v € A; and J1,J2 C Z(A;), there exists L; <y A; such that
i ¢ 1vdpin A; = A;/Li;
(f) for each R;j <y Hyj, there exists N; <y A; such that N; N H;j = R;j.
Let x & K1yK», where x,y € G. Then there exists P <\ G such that X ¢ K,yK; in

G =G/P.

Lemma 9.16. (Wong & Tang, 1999) Let G = (A1, Aa, . .., A,|H;; = Hj;) be a tree product
of A1, Az, ..., A, amalgamating subgroups H;; of Z(A;) and Hj; of Z(A;). Let K be a

subgroup of Z(A,) such that H,; N K = 1. Suppose that

99



(a) A;is H;j-separable;
(b) foreach S <y K, there exists M <y A, suchthat MNK = S and H.M NKM = M;
(c) for each R;j <y H;j, there exists M; <y A; such that M; N\ H;j = R;;.

Then K*NK =1 for all z € G\A, and for each S <y K and x,y € G\A,, there exists

P s G suchthat PNK C Sand KPNKP =P,K’PNKP=P.

Lemma 9.17. Let G = (A1, Ay, ... Ayx|H;; = Hj;) be a tree product of subgroup separable
groups Ay, As, . .., A, amalgamating finitely generated subgroups H;; of Z(A;) and H;
of Z(Aj) where H;j N Hy; = 1. Let x +g y where x,y € G are cyclically reduced and

lIx|| = ||y|| = 2. Then there exists P <5 G such that% +z y in G = G /P.
f G

Proof. We use induction on n. The case n = 2 follows from Lemma 9.2. Letn > 2. The
tree product G has an extremal vertex, say A,, which is joined to a unique vertex, say A,_1.
The subgroup of G generated by Ay, As, . .., A,—1 is just their tree product. Let A denote
this subgroup. Then we write G = A5 A,, where H = H(,_1), = Hy(»-1). By induction,
for each a; +4 a for any a1, a; € A, there exists M <1y A such that aiM 4,y a2 M.

Letx =x1x2...x,and y = y1ys ...y, be cyclically reduced in G, r > 2. Since x +¢g y,
the system of equations (1) of Definition 6.2 has no solution in H for all 0 < i < r.
Therefore we need to show that, for each i, there exists N; <\ G such that in G; = G/N;, the
corresponding system of equations (1) has no solution in H. Letting N be the intersection
of the normal subgroups N; in G, we have ¥ #5 7 in G = G/N and the result follows.
Hence it is sufficient to show the case i = 0 in (1) of Definition 6.2.

Since A is H(,_1),-separable and A, is H,(,_1)-separable, there exist M1 s A, M2 <rAn
such that x;,y; € H(,—1)oMy if xi,y; € A\H(,—1), and x;,y; & H,-1)M> if x;,y; €
Ap\Hp(n-1).

Since x *¢g Yy, either some equations in (1) of Definition 6.2 has no admissible solution
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in H or every set of admissible solutions to (1) of Definition 6.2 is incomplete. First
suppose there exists some ¢,1 < t < r, such that the ¢-th equation has no admissible
solution, that is, x; ¢ Hy;H, where x;,y; € A or x;,y; € A,.

First suppose x;,y; € A. By Lemma 9.14 and Lemma 9.15, there exists 77 <y A such
that %; ¢ H-1)n¥tHn-1yn in A = A/Ti. By Lemma 9.1 and Lemma 9.7, there exist
N1 <y A, Ny <y Ap such that Ny € My N Ty, Ny € Mz and N1 N Hy—1)n = N2 N Hy(—1).
Now we form G = AI;An, where A = A/Ny,A, = Ay/N, and H = H(y_1),N1 /Ny =
Hy(n-1)N2/N;. Clearly G is a homomorphic image of G. Then %; € H(n-1)nY:H(n-1)n
in G and hence ¥ +5 y. Since G is conjugacy separable by Lemma 6.3, there exists
P <5 G such that £P +,5 P. Let P be the preimage of P in G. Then P <y G such that
xP +g/p yP.

Now suppose x;, y; € Ay. Since Hy(,—1) € Z(A,), we have x,fy,‘1 ¢ Hy(n_1). Since A,
is Hy(,—1)-separable, there exists 7> <1y A, such that x;y; lg Fln(n_l) in A, = A,/T». This
implies that x; ¢ Hn(n_l) ytﬁn(n_l) and thus X +5 y. Therefore, the result follows as above.

Suppose ay, by, ...,a,, b, € H is a set of incomplete admissible solutions to (1) of

Definition 6.2. Then we have the following.

-1
x1 =aj yib:

= avb
X2 = Ay Y202

-1
xr=a, y:b,

Recall that y = y1y3 ... y,, where y; € A\H(,_1), Ot y; € Ap\Hy(»-1). First suppose that
all the y; from A\H,_1), are actually in A,_1\H(,_1),. So each of these y; commutes

with every element of H(,_1), since H(,_1), € Z(A,-1). In this case, x ~g y if and only
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if x = y. As before, we can find Ny <ty A, N, <If A, such that in G = A}}An, where
A = A/N1,A, = Ap/N, and H = H(;_1)sN1/N1 = Hy(n-1)N2/ N2, we have ||| = ||3]|
and x # y. Hence, X +5 y and we are done.

So we may assume that for at least one i, the y; from A\H(,_1), is notin A,_1\Hs_1).
Then by Lemma 9.14 and Lemma 9.16, we have H(y;_l)n N Hp-1), = 1 and hence the
equation x; = a; ly:b; has unique solutions ai‘l, b;. Fixing this i, we consider the next
equation x;;; = ai_+11 vi+1bi+1 and arrange, if possible, so that a;;+; = b;. Continuing this
way, we see that this matching must eventually fail at some equation, say x; = aj‘.ly ibj,
where a; # bj_;. This equation may be the equation we started with. Furthermore,

yj € An-1\H(,_1)n, or otherwise, this y; commutes with every element of H,_1), and we

canmatcha; = b;_;. Againby Lemma9.14 and Lemma 9.16, WehaveHyj_

(n l)an(n—l)n =1

and the equation x; = aj‘.l y;jbj has unique solutions a]‘.l, bj. Now since H is residually
finite, there exists L <y H such that ajb]_-ll ¢ L. Let R=M; N My N L. Then R <if H.
By Lemma 9.14 and Lemma 9.16, there exists 71 <|y A such that 7y N H = Ry C R and

H)_\ TiNHp-1aTi = T1, HY,_ |, TiNH(z-1)aT1 = T1. Let N1 = MiNTy. Then N1 < A

such that NyNH(,_1), = R and Hf,{_l N1NH(u_1),N1 = Ni, H)' |\ N\NH(,_1),N1 = N1.

) (n-1)

Now, by Lemma 9.1, we can find 7> <y A, such that > N Hy(,—1) = Ry. Let Ny = Mo N 1.

Then Nz <If A, and N2 N Hy(s—1) = R1. As above, we form G. Then H?r]l'_

( l)nnH(n—l)n = L

H(y;;_l)n N H-1yn = 1in G. This implies that both the equations x; = d]‘.ly jbj and

%; = a; '5;b; have unique solutions. Since @; # b;_; in G, the matching of a; with b;_;

fail at the equation x; = d]‘.l)'f ;ibj. Therefore X + ¥ and our result follows.
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94 Cyclic Conjugacy Separability of Tree Products

In this section, we show that the tree products of finitely many cyclic conjugacy separable
and subgroup separable groups amalgamating finitely generated central subgroups are

cyclic conjugacy separable.

Theorem 9.18. Let G = (A1, A ... Ax|H;; = Hj;) be a tree product of cyclic conjugacy
separable and subgroup separable groups A1, A, . . ., A, amalgamating finitely generated
subgroups H;j of Z(A;) and Hj; of Z(Aj) where H;; N Hy = 1. Then G is cyclic conjugacy

separable.

Proof. We use induction on n. The case when n = 2 follows from Theorem 9.3. Let
n > 2. The tree product G has an extremal vertex, say A,, which is joined to a unique
vertex, say A,—1. The subgroup of G generated by A1, Az,...,A,—1 is just the tree
product of themselves. Let A denote this subgroup. Then we write G = A/ A, where
H = H_1)n = Hy(n-1)-

We prove this theorem by using Theorem 6.6. By the induction hypothesis, A is
cyclic conjugacy separable and by assumption, A, is cyclic conjugacy separable. Since
Hyn-1) € Z(A,) and A, is Hy(,-1)-separable, we have A, is also H,(,-1)-conjugacy
separable. By Lemma 9.9 and Lemma 9.13, we have A is H(,_1),-separable and H,_1),-
conjugacy separable. Thus, conditions (a), (b) and (c) hold. By Lemma 9.1, Lemma 9.7
and Lemma 9.17, conditions (d) and (e) are satisfied.

Now we only need to prove for condition (f). Let x, y € G such that ||x|| = 0, ||y|| < 1
and {x}° N (y) = 0.

Case 1. ||x|| = 0 = ||y||. Clearly, {x}* N (y) = 0 and {x}*" N (y) = 0. Since
A and A, are cyclic conjugacy separable, there exist My <y A, M> <y A, such that

{xM YA 0 (yMy) = 0 and {xMp}*/™2 N (yMp) = 0. Let Riy-1yn = Ru(n-1) =
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MiNM>NH. Since Ay, Aa, . .., Ay_1 are subgroup separable and H;; € Z(A;j), by Lemma
9.11, for each R(,_1), <y H(n_1)n, there exists Q1 <r A such that 01 N H_1)n = R(n—1)n
and h; #a,0, hj for h; # hjin H(,_1), of A = A/Q;. Since A, is subgroup separable
and H,(,-1) € Z(A,) is finitely generated, by Lemma 9.10, for each Ry (n—1) <y Hu(n-1),
there exists Q2 <If A, such that Oy N Hy(y—1) = Ru(n-1) and h; #4, /9, hj for h; # h; in
Hn(,,_l) of A, = An/Q>. By Lemma 9.1 and Lemma 9.7, there exist N1 <y A, N2 <y A,
such that Ny € M; N Q1, N2 € M> N Q5 and N1 N H(,_1), = N2 N Hyn1). Now we form
G = A;IA,,, where A = A/N1, A, = Ay/N; and H = H(y-1),N1/N1 = Hp(n-1)N2/N>.
Note that {¥}4 N (§) = 0 and {x}*" N (5) = 0.

Suppose {X}G_ N(y) # 0. Then ¥ ~g y* for some integer k. By Lemma 6.1(a),

there exists a finite sequence hy, hy, . . . , hy, where h; € H = H(,—1), = Hy(n-1) such that
Z~ghi~g ho~g ...~z hw ~4, §°- Without loss of generality, we assume
X~ghy~z hy~z...~z hy~z y*. Note that each &; is uniquely determined since

h; +z hj for all h; # hj in A and h, +z_h, for all h, # h, in A,. From the first
conjugation relation ¥ ~; hy implies that X = h; in A and hence xN; = h;N;. This
implies that xN1 = h1Ni, hiNy = haNo, ..., h,N1 = y*Ni. From the first equality
xN1 = hi1 N1, we have xh[1 € N1NH = NN H and thus xN, = h1N;. Continuing
in this way, we have xN; = hiN; = hpN; = ... = hy,Np = ysz and this implies that
¥=hi=hy=...=h, =7 So, &=k thatis {4 N &) # 0, {F}" N (F) # 0, a
contradiction. Hence, {JE}G N (¥) = 0. Since G is cyclic conjugacy separable by Lemma
6.3, we can find P <5 G such that {£P}4/P n (§P) = 0. Let P be the preimage of P in G.
Then P < G such that {xP}/? n (yP) = 0.

Case 2. ||x|| =0, ]|yl| = 1. We assume y € A\H(,_1),. The other case is similar. In this
case {x}¢ N (y) = 0 implies that {x}* N (y) = 0. By the induction hypothesis, we have A is

cyclic conjugacy separable. Then there exists M; <1y A such that {xM; YAM A (yMy) = 0.
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Since A is H,_1),-separable by Lemma 9.9, there exists L; <y A such thaty ¢ H,_1),L1.
Let R(n—1)n = Rp(n-1) = M1 N L1 N Hp_1yn. Then Rp_1)n <y Hn—1)n and Ry(,_1) <y H.
Since A1, A, ..., Ap_1 are subgroup separable and H;; € Z(A;;), by Lemma 9.11, for each
R(n-1)n < H(n_1)n, there exists Q1 <1y A such that Q1 NH,_1), = R(»—1)» and fz,- +*A/0; }Azj
for h; # h jin Fl(n_l)n of A= A/Q;. Since A, is subgroup separable and Hy(,—1) C Z(A,),
there exists Qs <y A, such that Oy N H,(,-1) = Rp(n-1) and hi + An/Q> ﬁj for h; # h jin
Hyn-1) of A, = An/Q,. By Lemma 9.1 and Lemma 9.7 there exist Ny <y A, N, < Ay
such that Ny € M1 N Ly N Q1,N> € Q2 and N1 N H(,_1), = N2 N Hy(,—1). Now we form
G as above. Note that {¥}A N (§) =0 and 7 ¢ A.

Suppose {X}G_ N(y) # 0. Then ¥ ~g y* for some integer k. By Lemma 6.1(a),
there exists a finite sequence hy, hy, . . . , hy, where h; € H = H(,—1), = Hy(n-1) such that
X~gh~z ho~z ... ~aay hw ~4,) Y5 Sincey € A\H, we have & ~z hy ~;,

hy ~4...~4 hy ~z y*. Arguing asin Case 1, we have X = h; = hy = ... = h,,. Thus,
% ~7 7%, a contradiction to the fact that {JE}A N (¥) = 0. Hence {i}é N (¥) = 0 and the

result follows as in Case 1.

This completes the proof and hence G is cyclic conjugacy separable by Theorem 6.6.

Corollary 9.19. Let G = (A1, A, ..., Ax|H;j = Hj;) be a tree product of free-by-finite
groups A1, A, ..., A, amalgamating finitely generated subgroups H;; of Z(A;) and Hj;

of Z(A;) where H;; N Hy;, = 1 for j # k. Then G is cyclic conjugacy separable.

Corollary 9.20. Let G = (A1, Aa, ..., Ax|H;; = Hj;) be a tree product of finitely generated
abelian groups A, A, ..., A, amalgamating subgroups H;; of A; and Hj; of Aj where

H;; N Hy =1 for j # k. Then G is cyclic conjugacy separable.

105



CHAPTER 10: CONCLUSION

10.1 Conclusion and Brief Summary

In this thesis, we have extended conjugacy separability and cyclic conjugacy separability
to generalized free products and HNN extensions subject to certain conditions. These
results are new although the conditions, though some what restrictive, are present in finitely

generated nilpotent groups.

The property of cyclic conjugacy separability played an important role in the proof
of the conjugacy separability in generalized free products and HNN extensions by Dyer
(1980), Kim & Tang (1996), Kim & Tang (1999) and others. We feel that cyclic conjugacy
separability deserves more attention as this property is the starting point in the study of
H-conjugacy separability for finitely generated subgroups H. We have used this property
in Chapter 4 and Chapter 8. The property of H-conjugacy separability is like subgroup

separability, is difficult to be proved.

To put our research in perspective, we give an example of a generalized free product
cum HNN extension which is not even residually finite. Let A = (¢, a|t 'at = a?) and
B = (b). Then A and B are conjugacy separable groups (Kim et al., 1995). Let G be the
generalized free products of A and B amalgamating the cyclic subgroup (@) of A and (b?)

of B. Then G = Aa:sz = (t, b|t"1b%t = b*) is not even residually finite (Meskin, 1972).

10.2 Some Ongoing Work

In Chapter 4 and Chapter 8, we have studied the groups G1 = (¢, A|¢"'Ht = K, ¢) where
H=PXxC,K=Q xC where P, Q are finite, PN Q =1and C C Z(A) and G, = A};B

where H = K X D where K is finite and D C Z(A) N Z(B).
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In 2013, Kim and Tang (2013) showed that G = A B with H = {(h) X C where |h| = oo
and C € Z(A) N Z(B), C is finite, is conjugacy separable. We propose to show that G is
also cyclic conjugacy separable. The following two lemmas have been proved by Asri et

al., (2019) and Asri et al., (2020).

Lemma 10.1. (Asri et al., 2019) Let A be a group with subgroup H = (h) X C such that

|h| = oo and C is finite. If A is (h)-separable, then A is H-separable.

Lemma 10.2. (Asri et al., 2020) Let G = Aj;B where H = {h) X C such that |h| = oo and
C is finite. Suppose A and B are (h)-separable and (h)-weakly potent. Then for each

R <t H, there exist M <\f A,N <\f Bsuchthat MNH=NNHCR.

We note that Lemma 10.1 and Lemma 10.2 satisfy conditions (c) and (d) of Theorem
6.6. If we assume that A and B are both cyclic conjugacy separable, then we have condition
(a). Since G is conjugacy separable, condition (e) can be easily shown. We only need to

work on conditions (b) and (f) here. This will complete the proof.

Similarly, we can further investigate on the HNN extension, G = (¢, A|t "' Ht = K, ¢)
where H = (h) X C,K = (k) X D,C,D € Z(A),C N D =1 such that |h| = o0, |k| = 00
and C, D are finite. We can apply Theorem 2.12 and Theorem 2.14 to investigate if this
type of HNN extension is both conjugacy separable and cyclic conjugacy separable. Again

we have the following from Asri et al., (2019).

Lemma 10.3. (Asri et al., 2019) Let A be a group with subgroups H = (h) X C and
K = (k) X D such that |h| = o0, |k| = co and C, D are finite subgroups. Suppose that A is
(h)-separable and (k)-separable, and ¢ : H — K is an isomorphism such that ¢$(h) = k
and ¢(C) = D. Suppose

(1) h ~4 k; or

(2) A is (h)-weakly potent, {k)-weakly potent and h™ = k*™ for some m € Z*.
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Then for any M <y A, there exists N <y A suchthat N € M and (NN H) = NNK.

Lemma 10.1 and Lemma 10.3 satisfy conditions (b) and (c) of both Theorem 2.12 and
Theorem 2.14. Again we assume that A is both conjugacy separable and cyclic conjugacy
separable. Then, we have condition (a). We first need to prove condition (d) of Theorem
2.12 and Theorem 2.14, then finally we work on condition (e) of Theorem 2.14. This will

complete the proof.

The proof given in Kim & Tang (2013) are difficult and complex. They showed many
interesting and deep properties in those groups in Kim & Tang, (2013). We are currently

studying the techniques developed in this and other papers.
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