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THERMODYNAMIC PROPERTIES OF TRANSVERSE FIELD QUANTUM 

ISING MODEL USING TENSOR NETWORK FORMALISM 

ABSTRACT 

Ising model has been successful in describing ferromagnetism and its phase transition to 

paramagnet. At the critical point, the free energy density function and its derivatives 

diverge. Their behaviour near the critical point are described by power-laws with 

associated critical exponents. In many cases, the critical exponents can be determined 

from analytic solutions via conventional renormalization groups methods or from Monte 

Carlo simulations. However, for quantum many-body systems, very few are tractable to 

analytical solutions. The quantum many-body wavefunction belongs to large dimensional 

Hilbert space that increases exponentially with system size. If the Hamiltonian is gapped 

and only local interaction is considered, then the wavefunction can be efficiently 

truncated. Tensor Network formalism provides a scheme to truncate the less important 

degrees of freedom via Singular Value Decomposition (SVD) of the density matrix. In 

this study, we investigated the thermodynamic properties and phase transition of one-

dimensional transverse-field quantum Ising model (1D-tQIM) under the finite-size effect 

and random coupling strength. Starting with Matrix Product States (MPS) as a 

wavefunction ansatz, the Density Matrix Renormalization Group algorithm is applied to 

the MPS. The variational algorithm, which iteratively performs SVDs and truncation at 

each bond, approximates the ground state MPS wavefunction. All quantum observables 

are calculated from the contraction of the resultant ground state MPS. Although 

theoretically, divergence at critical points only happen in an infinite system, one can 

obtain the critical exponents through simulation of finite-size 1D-tQIM. Using the 

analytic solution as a benchmark, we compared the finite-size effects of the system using 

finite-size scaling analysis and MPS methods. The critical exponents of 1D-tQIM are 

independently calculated and compared with the analytical results. Thermodynamic 
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quantities such as magnetization, susceptibility and correlation function are calculated for 

system sizes of 20, 40, 60, 80, 100 and 120 spins. We determined the respective critical 

exponents: 𝛽 𝜈⁄ = 0.1235(1), 𝛾 𝜈⁄ = 1.7351(2), and 𝜂 = 0.249(1) and these agreed 

well with the theoretical values from analytical solutions and satisfied the hyperscaling 

relation. Next, we studied the effect of fluctuation on critical dynamics by introducing 

random coupling strength with uniform distribution (mean zero and amplitude 𝜁) as to 

mimic disordered quantum Ising model. Averages of thermodynamic quantities of 100 

spins are calculated from 100 realizations for each transverse field reading. It is found 

that for fluctuation amplitude of 𝜁 < 1 , the phase transition is initiated faster in 

comparison to the standard 1D-tQIM with uniform coupling strength. This feature is lost 

for 𝜁 > 1, and the system showed highly fluctuating behaviour similar to quantum spin 

glass. In conclusion, we showed that one-dimensional Tensor Network formalism in the 

form of Matrix Product States serves as useful approach to characterize critical dynamics 

and thermodynamic properties of quantum many-body systems with some constraints, 

such as finite-size and disordered 1D-tQIM. The numerical procedures described here can 

be extended to higher-dimensional tQIM and thus serve as theoretical models for 

understanding quantum many-body systems.  

Keywords: Quantum Ising model, critical dynamics, Matrix Product States, finite-size 

scaling, noisy coupling   
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SIFAT-SIFAT TERMODINAMIK MODEL ISING KUANTUM MEDAN 

MELINTANG MENGGUNAKAN FORMALISME RANGKAIAN TENSOR 

ABSTRAK 

Ising model telah berjaya menjelaskan ferromagnetisme dan peralihan fasanya ke 

paramagnet. Pada titik kritikal, fungsi ketumpatan tenaga bebas dan hasil terbitannya 

mencapah. Tabiat mereka berhampiran titik kritikal diterangkan oleh hukum kuasa dan 

eksponen kritikal yang berkaitan. Dalam banyak kes, eksponen kritikal boleh ditentukan 

dari penyelesaian analitik melalui kaedah kumpulan renormalisasi konvensional atau dari 

simulasi Monte Carlo. Walau bagaimanapun, untuk sistem kuantum banyak jasad, sangat 

sedikit sistem yang boleh dikendalikan oleh penyelesaian analitik. Fungsi gelombang 

kuantum banyak jasad mempunyai dimensi ruang Hilbert besar yang membesar secara 

eksponen dengan saiz sistem. Sekiranya Hamiltonian mempunyai jurang dan hanya 

interaksi tempatan yang dipertimbangkan, maka fungsi gelombang dapat dikurangkan 

dengan cekap. Formalisme Rangkaian Tensor menyediakan skema untuk memangkas 

darjah kebebasan yang kurang penting melalui Penguraian Nilai Singular (SVD) bagi 

matriks ketumpatan. Dalam kajian ini, kita menyiasat sifat-sifat termodinamik dan fasa 

peralihan model Ising kuantum dengan medan melintang satu dimensi (1D-tQIM) di 

bawah kesan saiz terhingga dan kekuatan gandingan rawak. Bermula dengan Keadaan 

Produk Matriks (MPS) sebagai fungsi gelombang ansatz, algoritma Kumpulan 

Renormalisasi Matriks Ketumpatan digunakan ke atas MPS. Algoritma variasi, yang 

melakukan SVD secara berulang kali dan pemangkasan pada setiap ikatan, menghampiri 

keadaan asas bagi fungsi gelombang MPS. Semua kuantiti pemerhatian kuantum dikira 

dari penguncupan MPS keadaan asas yang dihasilkan. Walaupun secara teorinya, 

pencapahan di titik kritikal hanya berlaku dalam sistem tak terhingga, seseorang boleh 

memperolehi eksponen kritikal melalui simulasi saiz terhingga 1D-tQIM. Menggunakan 

penyelesaian analitik sebagai penanda aras, kami membandingkan kesan bersaiz 
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terhingga sistem dengan menggunakan analisis berskala saiz terhingga dan kaedah MPS. 

Eksponen kritikal 1D-tQIM dikira secara berasingan dan dibandingkan dengan hasil 

penyelesaian analitik. Kuantiti termodinamik seperti magnetisasi, kecenderungan magnet 

dan fungsi korelasi dikira untuk system bersaiz 20, 40, 60, 80, 100 dan 120 spin. Kami 

menentukan eksponen kritikal masing-masing: 𝛽 𝜈⁄ = 0.1235(1), 𝛾 𝜈⁄ = 1.7351(2), 

dan 𝜂 = 0.249(1) dan nilai-nilai ini bersetuju dengan baik dengan nilai teori daripada 

penyelesaian analitik dan memenuhi hubungan hiperskaling. Seterusnya, kita mengkaji 

kesan turun naik dinamik kritikal dengan memperkenalkan kekuatan gandingan rawak 

dengan pengagihan seragam (min sifar dan amplitude 𝜁 ) untuk meniru model Ising 

kuantum yang tidak teratur. Purata kuantiti termodinamik sebanyak 100 spin dikira 

daripada 100 realisasi bagi setiap bacaan medan melintang. Bagi amplitud turun naik 𝜁 <

1, didapati peralihan fasa berlaku lebih cepat berbanding dengan 1D-tQIM yang standard 

dengan kekuatan gandingan seragam. Ciri ini hilang untuk 𝜁 > 1 , dan sistem 

menunjukkan tingkah laku yang sangat tidak stabil, setara dengan sistem kaca spin 

kuantum. Sebagai kesimpulan, kami menunjukkan bahawa formalisme Rangkaian Tensor 

satu dimensi dalam bentuk Keadaan Produk Matriks berfungsi sebagai pendekatan yang 

berguna untuk mencirikan sifat dinamik kritikal dan termodinamik sistem kuantum 

banyak jasad dengan beberapa kekangan, seperti saiz terhingga dan 1D-tQIM yang tidak 

teratur. Prosedur berangka yang diterangkan di sini juga boleh diperluaskan kepada tQIM 

dimensi yang lebih tinggi dan dengan itu berfungsi sebagai model teori untuk memahami 

sistem kuantum banyak jasad. 

Kata kunci: Model Ising kuantum, dinamik kritikal, Keadaan Produk Matriks, 

penskalaan saiz terhingga, gandingan rawak 
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CHAPTER 1: INTRODUCTION 

1.1 Quantum Many-body Systems 

The advances of quantum physics allow us to study materials beyond the ordinary 

phases of matter, which are the solid, liquid and gas phases. These ordinary phases exist 

in a thermal environment, while near the absolute zero, other phases of matter such as the 

Bose-Einstein condensates, superfluids, quantum spin liquids, and superconducting phase 

can exist. The Bose-Einstein condensates (BEC) are formed by cooling gas of Bosons 

until it achieves highly condensed states near the absolute zero (Demokritov et. al., 2006; 

Klaers et. al., 2010). It is a generic phase of matter which serves as a crucial mechanism 

to explain other quantum phenomena such as superfluidity and superconductivity. The 

superfluid, which consists of Helium isotopes such as He-3 or He-4, is a phase with zero 

viscosity. This enables the fluid to flow without any loss of kinetic energy. It is an 

example of Bose-Einstein condensates where the isotopes form fermionic condensates 

(Cooper pair from two He-3 atoms) to achieve the superfluidity phase (Bogoliubov, 1947; 

Leggett, 1999). Similarly, for a superconductor, the electron Cooper pairs form within the 

conductor below a critical temperature and result in a conductor with null resistance 

(Bardeen et. al., 1957; Li et. al., 2014; Linder & Robinson, 2015). Quantum spin liquids, 

on the other hand, consists of quantum spins with frustrated interactions, form “liquid” of 

disordered spins with long-range entanglements and topological order (Wen, 2004; 

Misguich, 2005; Savary & Balents, 2017). These phases of matter do not break any 

symmetry and cannot be characterized by a fixed order parameter. In addition, there is 

the deconfined quantum criticality (Senthil et. al, 2004a; Senthil et. al, 2004b), such that 

phases separated by the quantum critical points has fundamentally different symmetries. 

For these ultracold systems, the quantum effects are dominant and the rules of quantum 

mechanics must be fully applied. The studies of these systems are collectively known as 

the quantum many-body systems.  
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The main challenge to study these phases of matter is that they cannot be understood 

within the Landau’s paradigm of phase transitions where a single order parameter 

characterizes the phase transition of the system. To truly study these quantum many-body 

problems, the quantum entanglement must be fully accounted for. White proposed the 

Density Matrix Renormalization Group (DMRG) algorithm (White 1992; White, 1993) 

which is the first numerical approach that selects the most optimally entangled eigenstates 

with respect to the ground state of one-dimensional quantum lattice model. The DMRG 

produces wavefunction in the form of product of matrices known as the Matrix Product 

States (MPS), which makes the correlation or equivalently the quantum entanglement 

between the spins explicit. For short-ranged systems, the MPS is described by a number 

of parameters that scale with its system size only, contrary to exponentially large Hilbert 

space in generic wavefunction. The generalization of the DMRG and MPS to higher 

dimension extends the methods into the tensor network formalism. Whenever the 

system’s interactions are sufficiently short-ranged and has a gap between its ground state 

and first excited state, the quantum wavefunction can be represented as a tensor network, 

whose number of parameters scales only polynomially with system size, and efficiently 

truncate less entangled eigenstates that are insignificant to the ground state. The tensor 

network has slowly evolved to become a standard formalism in the study of all quantum 

phenomena, even as a possible new framework for quantum field theory by generalizing 

the discrete tensors into continuous parameters (Verstraete & Cirac, 2010; Jennings, et. 

al., 2015; Haegeman, et. al., 2013). 

The tQIM and its variants such as the spin-1 Blume-Capel model, the mixed-spin Ising 

model or the anisotropic next-nearest-neighbour Ising (ANNNI) model are an important 

class of solvable and well-understood models in the quantum many-body problems 

(Strecka & Jascur, 2015; Suzuki et. al., 2012). Besides as a benchmark for various 

numerical approach for quantum lattice systems and as a framework for various 
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optimization problems (Fischer & Hertz, 1993), they have wide applications. Especially 

with the recent advances in optical and magnetic traps (Gross & Bloch, 2017; Dreon, 

2017; La Rooij, 2019), the theoretical insights of these lattice models are directly testable 

and applied to the Ising machines (Inagaki et. al., 2016; McMahon et. al., 2016) for 

combinatorial optimization problems such as travelling salesman problem, quantum 

computation and quantum information processing (Farhi et. al, 2000; Farhi et. al., 2001), 

and many other quantum optimizations and machine learning problems (Inoue, 2001; 

Venturelli et. al., 2015). In the advent of quantum computing and algorithms, the tQIM 

also becomes a standard model to study dynamical quantum processes such as quantum 

quenches (Sengupta et. al., 2004; Calabrese & Cardy, 2006; Rossini et. al., 2009), 

quantum annealing (Kadowaki & Nishimori, 1998; de Falco & Tamascelli, 2011) and 

quantum error correction codes (Jouzdani et. al., 2014).  

1.2 Motivation of Study 

The one-dimensional tQIM is chosen as the system of study because it is exactly 

solvable (Pfeuty, 1970) and at the same time a generic framework for optimizations and 

quantum information processing. As the tensor network formalism is becoming 

increasingly prominent, we are interested to apply it to the 1D tQIM to compare its 

properties with the analytic solutions. If the tensor network techniques agree well with 

the analytical solutions, one can confidently apply the said techniques to investigate the 

effect of fluctuations, which is the fundamental obstacles of implementing quantum 

algorithms and computation, on the phase transition and thermodynamic properties of 

tQIM.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



4 

 

1.3 Objectives  

In this numerical study, the 1D tensor network, the Matrix Product States (MPS) 

formalism will be used to study some interesting thermodynamics properties of the 1D 

tQIM under different generalizations. The objectives of this study are  

i. to benchmark the Matrix Product States formalism with the analytic solution of 

quantum Ising model. 

ii. to study the finite-size effects and obtain the critical exponents of the quantum 

Ising model using the Matrix Product States formalism and finite-size scaling 

analysis. 

iii. to determine the effect of fluctuations on the thermodynamic parameters and 

order-disorder phase transition of the quantum Ising model.   

1.4 Thesis Layout 

Following the introduction in Chapter 1, the phase transitions and critical phenomena 

of the Ising model are briefly reviewed in Chapter 2. The general tensor network 

formalism, examples of tensor networks and recent developments are introduced. In 

Chapter 3, we introduce the MPS formalism, the DMRG, its traditional and modern 

algorithms, and the finite-size scaling theory as the methodology of study. In Chapter 4 

the results of numerical calculations of 1D tQIM are presented and compared with the 

analytic solution. The critical exponents are determined from finite-size scaling analysis. 

The effect of fluctuations on the thermodynamic parameters and phase transition of 1D 

tQIM is reported and discussed. Lastly the conclusion and suggestions for future work 

are given in Chapter 5. An interesting application of the study on water-ice phase 

transition of single-file water in nanopores is proposed. 
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, we briefly review the concepts of phase transition and critical 

phenomena based on the classical Ising model, before introducing the quantum Ising 

model and its one-dimensional analytic solution. The tensor network formalism for 

quantum wavefunction approximation and calculations are described as the main 

theoretical formalism. Examples including the Matrix Product States (MPS), a 1D tensor 

network, the Projected Entangled Pair States (PEPS), a 2D version of MPS, and other 

recent developments of the formalism are introduced. 

2.1 Phase Transition and the Ising Model 

Matters exist in various phases characterized by thermodynamic parameters such as 

the vapour pressure for the liquid-gas phase or the spontaneous magnetization for 

magnetic materials. A statistical quantity called the order parameter summarizes the 

aggregate behaviour of the system and serves as an indicator of the phase. For example, 

the magnetic phase transition from paramagnetic to ferromagnetic phase, the order 

parameter is the zero-field magnetization 𝑀. In the absence of an external field, magnetic 

spins in a paramagnet are randomly aligned and thus have zero net magnetization. 

However, when one lowers the temperature of the material, the neighbouring spins start 

to align in a certain direction and forming domains, where each has net magnetization in 

one direction. These “macro” magnetic dipoles sum up their magnetization and form 

strong resultant magnetic field. The material is said to have undergone phase transition to 

ferromagnetic phase. To further illustrate the theory of phase transition, let us look at the 

Ising model, which consists of spins represented as arrows, each has only 2 degrees of 

freedom (pointing up or down), arranged in a regular lattice. Two neighbouring spins 

interact with each other via a coupling term in the Hamiltonian. The Hamiltonian of 

generic Ising model is given as follows: 

Univ
ers

ity
 of

 M
ala

ya



6 

 

𝐻 = −𝐽 ∑ 𝑆𝑖
𝑧

<𝑖,𝑗> 𝑆𝑗
𝑧 − 𝐵𝑧 ∑ 𝑆𝑘

𝑧
𝑘   (2.1) 

where 𝑆𝑖
𝑧 is the i-th spin along the z-axis, 𝐽 is the coupling strength, 𝐵𝑧 is the longitudinal 

magnetic field and Σ<𝑖,𝑗>  is the sum over all nearest neighbour spins. The coupling 

strength is dependant on the temperature of the system and by decreasing the temperature, 

one tunes the spins to align. As the temperature lowers, the system with zero net 

magnetization will come across a point where the order parameter suddenly increases 

with a steep gradient and has a non-zero value. This point is called the critical point where 

many interesting phenomena of phase transition is studied. 

For classical many-body systems, the macroscopic quantities such as the specific heat 

𝐶 , entropy 𝑆 , magnetization 𝑀 , and magnetic susceptibility 𝜒  are derivatives of the 

partition function 𝑄(𝐵𝑧 , 𝑇), a function which encodes the distribution of all possible 

configurational states of the system. The partition function, which is a function of 

longitudinal field and temperature for the Ising model, is defined as: 

𝑄(𝐵𝑧 , 𝑇) = ∑ exp (−
𝐻𝑖

𝑘𝐵𝑇
)𝑖   (2.2) 

where the sum is over all possible configurations and 𝑘𝐵 is the Boltzmann constant. The 

specific heat of a ferromagnet is given by:  

𝐶(𝐵𝑧 , 𝑇) =  𝑘𝐵𝜏2 𝜕2

𝜕𝜏2 [ln 𝑄(𝐵𝑧, 𝑇)]  (2.3) 

where τ = 1 𝑘𝐵𝑇⁄ . The magnetization is given by: 

𝑀(𝐵𝑧, 𝑇) =  
𝜕

𝜕𝐵𝑧
[ln 𝑄(𝐵𝑧 , 𝑇)]  (2.4) 

The 1D Ising model is shown to have no phase transition to an ordered ferromagnetic 

phase (Ising, 1925). However, it is incorrectly concluded that the model has no phase 

transition for higher dimensions. Bragg and Williams further improved the model by 

introducing a mean-field approximation to account for the collective magnetic effect on 

one spin by all other spins (Bragg & Williams, 1934; Williams, 1935). Bethe improved 
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Bragg & Williams approximation by including the thermal fluctuation. While the result 

of no phase transition for 1D is obtained, Bethe showed that there are phase transitions 

for 2D and 3D (Bethe, 1935). Around the same time, Peierls showed 2D and 3D Ising 

model has a phase transition at low temperature (Peierls, 1936). In 1941, Kramers and 

Wannier obtain the Curie temperature for the 2D Ising model and showed that the 

partition function 𝑄 is related to the largest eigenvalue of a certain matrix (Kramers & 

Wannier, 1941). In 1942, Lars Onsager successfully solved the 2D Ising model in zero 

magnetic field analytically (Onsager, 1944). The partition function is obtained as follows: 

lim
𝑁⟶∞

ln 𝑄(𝐵𝑧 = 0, 𝑇) = ln 2 cosh(2𝛽𝐽) + ∫ 𝑑𝜙
𝜋

0
[ln

1

2
(1 +

√1 − 𝜅2sin2𝜙)]  
(2.5) 

where 𝜅 ≡ 2 sinh(2𝛽𝐽) cosh2(2𝛽𝐽)⁄ . Kaufman (Kaufman, 1949) and Newell and 

Montroll (Newell & Montroll, 1953) further simplified Onsager’s method with ideas from 

spinors theory and Lie algebra respectively.  Newell and Montroll obtained the partition 

function for any 𝑛 × 𝑚  rectangular lattice in the form: 

lim
𝑛,𝑚⟶∞

ln 𝑄(𝐵𝑧=0,𝑇)

𝑚𝑛
= ln 2 + ∫ 𝑑𝜔

𝜋

0
∫ 𝑑𝜔′

𝜋

0
[ln(cosh 2𝐾 cosh 2𝐾′ −

sinh 2𝐾 cos 𝜔 − sinh 2𝐾′ cos 𝜔′)]  
(2.6) 

where 𝐾 = 𝐽 𝑘𝐵𝑇⁄  and 𝐾′ = 𝐽′ 𝑘𝐵𝑇⁄  while 𝐽  and 𝐽′  are interactions of vertical and 

horizontal interactions. In principle, knowing the partition function all properties of the 

systems can be determined.  

At the critical point, the order parameter changes from zero to non-zero at an infinitely 

steep gradient, which corresponds to diverging response functions of the system. 

Although the phase transition is characterized by a macroscopic order parameter, the 

critical phenomenon is explained by the microscopic correlation function between its 
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constituents. The two-point spin-spin correlation function is defined as the statistical 

correlation between the spins in sites 𝑖 and 𝑗: 

𝐺(𝑟𝑖, 𝑟𝑗) = 〈(𝑆𝑖 − 〈𝑆𝑖〉)(𝑆𝑗 − 〈𝑆𝑗〉)〉  (2.7) 

where 𝑟𝑖 is the position vector of site 𝑖 and 〈𝑆𝑖〉 denotes the thermal average of spin at site 

𝑖. In general, the correlation function decays exponentially to zero with distance and 

obeys the following relationship from the Ornstein-Zernike theory (Ornstein & Zernike, 

1914):  

𝐺(𝑟) ~ 𝑟−𝜏 exp(− 𝑟 𝜉⁄ )  (2.8) 

where 𝜉 is the correlation length of the system. However, close to the critical temperature, 

the correlation length diverges following an inverse-power law and is infinite at the 

critical point: 

𝜉 ~ |𝑡|−𝜈   (2.9) 

where 𝜈  is the correlation length critical exponent and 𝑡 =
𝑇−𝑇𝑐

𝑇𝑐
 is the normalized 

temperature from the critical temperature. (2.8) is then reduce to a simple power law.  

𝐺(𝑟) ~ 𝑟−𝜏  (2.10) 

with 𝜏 = 𝑑 − 2 + 𝜂 and 𝜂, also known as the anomalous critical exponent, is the Fisher’s 

correction (Fisher, 1964) to Ornstein-Zernike theory. The correlation function is also 

proportional to the response function via the following relation: 

 𝜒 ~ 𝑁 ∫ 𝐺(𝑟)𝑟𝑑−1𝑑𝑟   (2.11) 

Therefore, all observed divergence of thermodynamic response function at the critical 

point is related to the diverging correlation length. Near the critical point, these response 

functions scale with a power law, each with a unique critical exponent (see Table 2.1). 
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Table 2.1: Type of critical exponents, definitions and theoretical values for 2D classical 
Ising model. 

Type of Critical Exponents Definition Condition Theoretical 
Value 

Zero-field specific heat, 𝛼 𝐶𝐻~ |𝑡|−𝛼 𝑇 → 𝑇𝑐 , 𝐵𝑧 = 0 0 
Zero-field magnetization, 𝛽 𝑀𝑧~ (−𝑡)𝛽 𝑇 → 𝑇𝑐

−, 𝐵𝑧 = 0 1/8 
Zero-field isothermal 
susceptibility, 𝛾 𝜒𝑇~ |𝑡|−𝛾  𝑇 → 𝑇𝑐 , 𝐵𝑧 = 0 7/4 

Correlation length, 𝜈 𝜉 ~ |𝑡|−𝜈  𝑇 → 𝑇𝑐 , 𝐵𝑧 = 0 1 
Two-point correlation 
function at CP, 𝜂 𝐺(𝑟)~ 1 𝑟𝑑−2+𝜂⁄  𝑇 → 𝑇𝑐 , 𝐵𝑧 = 0 1/4 

Critical Isotherm, 𝛿 𝐵𝑧~|𝑀𝑧|𝛿𝑠𝑖𝑔𝑛(𝑀𝑧) 𝑇 = 𝑇𝑐 , 𝐵𝑧 → 0 15 
 

These critical exponents are not independent and related by exponent equalities (see 

Appendix A). The equalities, especially the hyperscaling relation, serves as a guideline 

for any numerical calculation of the critical exponents.  

2.2 The Transverse-field Quantum Ising Model  

While the classical Ising model consists of spins represented as an arrow in a 3-

dimensional space but only pointing along one axis, the transverse field quantum Ising 

model (tQIM) has quantum operators replacing classical spins, with respective 

eigenvalues and eigenstates. Instead of limiting the spins along a single axis, the non-

commutativity of the quantum operators allows non-zero magnetizations along all three 

axes through quantum observable averages, contrary to the classical Ising model. The 

Hamiltonian operator of the quantum Ising model is defined as follows: 

�̂� = −𝐽 ∑ �̂�𝑖
𝑧

<𝑖,𝑗> �̂�𝑗
𝑧 − ℎ ∑ �̂�𝑘

𝑥
𝑘 − 𝐵𝑧 ∑ �̂�𝑘

𝑧
𝑘   (2.12) 

where �̂�𝑖
𝑧 =

1

2
(

1 0
0 −1

) and �̂�𝑖
𝑥 =

1

2
(

0 1
1 0

)  are the 𝑧 and 𝑥-spin operators respectively. 

While 𝐵𝑧  and ℎ  are respectively the longitudinal and transverse fields. The reduced 

Planck’s constant, ℏ in the prefactor of the matrices are absorbed and effectively set to 

unity. The non-commutativity between the �̂�𝑖
𝑧 and �̂�𝑖

𝑥 operators introduces quantum 

fluctuations into the system, tuneable by the transverse field ℎ. Without exactly solving 

the system, we can deduce in the limit ℎ → ∞ the ground state is paramagnetic state while 
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in the limit ℎ → 0, long-range order is established and the system is in the ferromagnetic 

state (Sachdev, 2011).  

2.2.1 Exact Diagonalization 

The naïve approach to solving a quantum many-body system and finding the ground 

state is by exact diagonalization of its Hamiltonian matrix 𝑯 whose elements are defined 

by 

𝐻𝑖𝑗 = ⟨𝑖|�̂�|𝑗⟩  (2.13) 

where |𝑖⟩ is one of the 2𝐿 eigenstates corresponding to one classical configuration of the 

system. The Hamiltonian matrix is then diagonalized via methods such as the Lanczos 

(Lanczos, 1950; Paige, 1971; Paige 1972) or the Davidson algorithms (Davidson, 1975). 

However, the size of the matrix (2𝐿 × 2𝐿) is exponentially large and becomes impractical 

for a system size of order 2 and above, even for the Hamiltonian matrix in block diagonal 

form after considering parity conservation of Hamiltonian operator on the eigenvector 

basis. Finding the ground state eigenstate (the lowest eigenvalue and respective 

eigenvector), the thermodynamic quantities such as the specific heat, longitudinal 

magnetization, and its susceptibility, the two-point correlation length can be calculated 

by inner product multiplication between the ground state eigenvector |GS⟩ and quantum 

operator matrix �̂�: 

〈�̂�〉 = ⟨GS|�̂�|GS⟩  (2.14) 

where the elements, 𝑂𝑖𝑗 of the operator matrix is similarly defined as in (2.13).  

2.2.2 Analytic Solution 

For the one-dimensional tQIM, the analytical solution is found by mapping spin 

operators to fermionic variables using the Jordan-Wigner transformation and solve by 

exact diagonalization (Pfeuty, 1970; Elliott et. al., 1970). To transform the spin operators 
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to Jordan-Wigner fermions, periodic boundary condition (PBC) is imposed on the 

Hamiltonian (2.12). Therefore, Hamiltonian of 1D tQIM without longitudinal field is 

given by 

�̂� = −𝐽 ∑ �̂�𝑗
𝑧�̂�𝑗+1

𝑧𝐿
𝑗=1 − ℎ ∑ �̂�𝑘

𝑥𝐿
𝑘=1   (2.15) 

where �̂�𝐿+1
𝑧 = �̂�1

𝑧. The detailed derivation of the analytical solution is given in Appendix 

B. After solving the Hamiltonian, the ground state energy of 1D tQIM is given by 

𝐸0 = −
𝐿ℎ

2𝜋
∫ 𝜔𝑞𝑑𝑞

𝜋

0
  (2.16) 

Other thermodynamic quantities such as the magnetizations can be calculated using the 

Wick’s Theorem to evaluate the vacuum expectation value of fermion operators. 

Therefore, the longitudinal magnetization 𝑀𝑧 and transverse magnetization 𝑀𝑥 is given 

by 

𝑀𝑥 =
1

2
⋅

1

𝜋
∫

1+
𝐽

2ℎ
cos (𝑞)

𝜔𝑞
𝑑𝑞

𝜋

0
  (2.17) 

𝑀𝑧 =
1

2
(1 −

4ℎ2

𝐽2 )
1

8⁄

  (2.18) 

where 𝜔𝑞 = √1 +
𝐽2

4ℎ2 +
𝐽

ℎ
cos (𝑞) and the one-half prefactor for 𝑀𝑧 and 𝑀𝑥 is due to the 

convention of 𝑆𝑖
𝑧 and 𝑆𝑖

𝑥 in (2.15).  

2.3 Tensor Networks Formalism 

The analytical solutions for quantum many-body systems are rare and numerical 

simulations to obtain the quantum wavefunction face difficulties in the exponentially 

large Hilbert space dimension with system sizes. However, from insights of quantum 

information studies (Srednicki, 1993; Eisert et. al., 2010), it is found that for system with 

local interactions and gapped Hamiltonian (non-zero gap between the ground state and 

first excitation state), the wavefunction is highly constrained. The wavefunction obeys 

the Area Law of entanglement entropy which states the quantum entanglement shared 
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between two parts of a bipartite system scales with the boundary between the parts instead 

of the volume. This enforces the locality of entanglement where eigenstates that encode 

long-range entanglement have less or insignificant weightage. This indicates that the 

wavefunction in complete Hilbert space can be approximated accurately within a 

subspace instead. The tensor network formalism, which splits the large coefficient tensor 

of the wavefunction into a network of smaller tensors mirroring the lattice of the physical 

system, allows efficient search and truncation of the redundant eigenstates (Orús, 2014). 

It reduces the computational complexity from order of exponential with system size 

𝑂(exp(𝐿))  to only polynomial with system size 𝑂(poly(𝐿)) .  Next, we start with 

graphical representation of tensors and their mathematical operations to understanding 

the utility of tensor networks. 

2.3.1 Tensor Network Theory 

Let us first introduce mathematical notions of tensors, which are the fundamental 

building blocks of a tensor network. A tensor is a multidimensional array of complex 

numbers. The rank of a tensor is the number of indices or the “dimension” of the array. 

For example, a vector (𝑣𝛼) has only one index so it’s a rank-1 tensor. A matrix (𝑀𝛼𝛽) 

has two indices so it’s a rank-2 tensor. A scalar has no index so it is a rank-0 tensor. A 

tensor can be represented diagrammatically as a graph, with vertex and its indices as the 

edges as shown in Figure 2.1: 

 
Figure 2.1: (a) scalar, (b) vector, (c) matrix and (d) rank-3 tensor. Image retrieved from 
(Orús, 2014). 
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A scalar is just a vertex while a vector is a vertex with an open edge. In general, a rank-

𝑁 tensor has 𝑁 open edges. 

Various mathematical operations can be done between tensors to form a new tensor. 

For example, by contracting two tensors of their common indices one obtains a scalar: 

∑ 𝐴𝑖𝐵𝑖
𝐷
𝑖=1 = 𝐶  (2.19) 

where the index 𝑖 is summed over its 𝐷 possible values and 𝐶, in general, is a complex 

number. One can also obtain a new tensor by only contracting a subset of all indices: 

∑ 𝐴𝑖𝑗𝐵𝑗𝑘𝑗 =  𝐶𝑖𝑘   (2.20) 

In this case, the index 𝑗 is called the bond index while indices 𝑖 and 𝑘 are called open 

indices. If one multiplies different tensors without contracting any index, a higher rank 

tensor is produced: 

𝐴𝑖𝐵𝑗 =  𝐶𝑖𝑗  (2.21) 

In general, any tensor can be formed through the combination of contraction of indices 

and multiplications 

∑ 𝐷𝑖𝑚𝐸𝑘𝑛𝐹𝑗𝑚𝑛𝐺ℎ𝑚,𝑛 =  𝐶𝑖𝑗𝑘ℎ   (2.22) 

The diagrammatic summary of the contractions and multiplications mentioned above are 

summarized in Figure 2.2 
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Figure 2.2: Summary of tensors manipulations from (2.19) to (2.22): (a) Scalar by 
Contraction (b) Tensor by Contraction (c) Tensor by Multiplication (d) All combinations 
of (a), (b), and (c). 

 

A generic 𝐿 spins quantum wavefunction in the Hilbert space formalism is given by: 

|𝛹𝐿⟩ = ∑ 𝐶𝜎1𝜎2…𝜎𝐿|𝜎1𝜎2 … 𝜎𝐿⟩{𝜎𝑖}   (2.23) 

where 𝜎𝑖 = 𝑆𝑖
𝑧  is the 𝑧-spin eigenstate of the 𝑖 -th spin and Σ{𝜎𝑖}  is the sum over all 

possible combinations of eigenstates. For spins each with 𝑝 eigenstates 𝐶𝜎1𝜎2…𝜎𝐿 is a rank 

𝐿 tensor with 𝑝𝐿 components. In (2.20) tensors are contracted to form lower rank tensor. 

However, the reverse is also true and  𝐶𝜎1𝜎2…𝜎𝐿 can be split into contractions of many 

tensors along with the increase of many extra bond indices. The 𝐷 possible values of the 

bond indices can be truncated due to the Area Law. This is the essence of the utility of 

the tensor network states. The process of splitting a higher rank tensor to a network of 

lower rank tensors is done via the Singular Value Decomposition (SVD) or alternatively 

known as the Schmidt Decomposition. The SVD will be explained in Chapter 3.  
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2.3.2 Matrix Product States 

As mentioned earlier, the tensor network takes into account the entanglement structure 

of the system of interest. The entanglement structure, in turn, follows from the geometry 

of the system. For one-dimensional or pseudo-one-dimensional systems, the tensor 

network is known as the Matrix Product States (MPS). It resembles a connected one-

dimensional array of tensors mirroring the one-dimensional geometry of spins. For open 

boundary conditions (OBC), the MPS is 

|MPS⟩ = ∑ 𝐴𝑎1

𝜎1 𝐴𝑎1𝑎2

𝜎2 … 𝐴𝑎𝐿−1

𝜎𝐿 |𝜎1𝜎2 … 𝜎𝐿⟩{𝜎𝑖},{𝑎𝑖}   (2.24) 

For periodic boundary condition (PBC), 

|MPS⟩ = ∑ 𝐴𝑎𝐿𝑎1

𝜎1 𝐴𝑎1𝑎2

𝜎2 … 𝐴𝑎𝐿−1𝑎𝐿

𝜎𝐿 |𝜎1𝜎2 … 𝜎𝐿⟩{𝜎𝑖},{𝑎𝑖}   (2.25) 

Notice that for the open boundary condition, the first and last matrix has only 2 indices. 

However, for periodic boundary conditions, they have 3 indices because they are 

connected by an extra common edge to impose the periodic boundary condition. The 

MPSs for both boundary conditions are shown diagrammatically below: 

 
Figure 2.3: (a) MPS for OBC (b) MPS for PBC. Image retrieved from (Orús, 2014). 

 

Note that the rank-𝐿 tensor  𝐶𝜎1𝜎2…𝜎𝐿 is split into products of matrices. Hence the name 

Matrix Product State.  

The MPS has the following basic properties. First, it is not translational invariant 

because all tensors in a finite-size MPS can be different. However, one may impose 

translational invariance by choosing some fundamental unit cell of tensors that is repeated 

indefinitely. For instance, if the unit cell consists of one tensor, the MPS will be 
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translational invariant over a one-site shift. For unit cells of two tensors, it is translational 

invariant by two-site shifts and so on. Next, by increasing the value of 𝐷, MPS can 

represent any quantum state in many-body Hilbert space. Therefore, we say that MPS are 

“dense”. To cover all the states 𝐷 needs to be exponentially large in the system size. 

However, it is known that the low energy states of local and gapped 1D Hamiltonians can 

be approximated very well by an MPS with just finite value of 𝐷 (Verstraete & Cirac, 

2006). For 1D critical systems, 𝐷  tends to scale polynomially with the system size 

(Srednicki, 1993; Vidal et. al., 2003). The restriction of growth of 𝐷, in turn, explains the 

accuracy of MPS-based algorithms such as the Density Matrix Renormalization Group 

(DMRG). The MPS also satisfies the one-dimensional Area Law of entanglement entropy. 

The entanglement entropy is given by the following expression: 

𝑆(𝐿) = −𝑡𝑟(𝜌𝐿 log 𝜌𝐿) = 𝑂(log 𝐷)  (2.26) 

where 𝜌𝐿  is the reduced density matrix of the block size 𝐿. The entanglement entropy is 

restricted by the rank 𝐷 of the bond cut. For 1D critical systems with a polynomial scaling 

of 𝐷 with the system size mentioned above, the entanglement entropy also scales with 

𝑆(𝐿) ∝ log(𝐿). This shows that MPS can also approximate the critical states very well. 

To calculate the expectation values, one contract two MPSs (Bra and Ket MPS) 

sandwiching an operator tensor (see Figure 2.4). This calculation can always be done 

exactly in time 𝑂(𝐿𝑝𝐷3)  for open boundary condition and 𝑂(𝐿𝑝𝐷5)  for periodic 

boundary condition. The calculation for PBC is less efficient but it is expected because 

more tensor indices are carried at each calculation step. For an infinite MPS, the 

calculation can be done in a shorter time of 𝑂(𝑝𝐷3). More details of derivation and 

calculations involving MPS will be described in Chapter 3.  
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Figure 2.4: Diagrammatic representation of the expectation value of a local operator �̂�. 

 

Despite the simplicity of the MPS, many non-trivial quantum states can be represented 

by MPS using only a very small bond dimension 𝐷. The first example being the GHZ 

state. An 𝐿 spins-1 2⁄  GHZ state is given by  

|GHZ⟩ =
1

√2
(|0⟩⊗𝐿

+ |1⟩⊗𝐿
)  (2.27) 

where |0⟩ and |1⟩ are spin-up and spin-down eigenstates of Pauli spin operator. The GHZ 

state is highly entangled and violates certain N-partite Bell inequalities. However, it can 

be represented exactly by an MPS with bond dimension 𝐷 = 2 and periodic boundary 

conditions. Next, the ground state of the one-dimensional AKLT model (Affleck, et. al., 

1987), which is a spin-1 quantum chain, is given by the Hamiltonian 

𝐻 = ∑ (𝑆[𝑖]𝑆[𝑖+1] +
1

3
(𝑆[𝑖]𝑆[𝑖+1])

2
)𝑖   (2.28) 

where 𝑆[𝑖] is the vector of a spin-1 operator at site 𝑖. The AKLT model is a very important 

system which satisfies the Haldane’s conjecture: it has Heisenberg-like interactions but, 

at the same time, it also has a non-vanishing gap in the thermodynamic limit. Therefore, 

it has potential for quantum information processing. It has an interesting connection to 

the MPS because its ground state can be constructed by splitting entangled spin-1 2⁄  pairs 

and arrange each at two neighbouring sites. The two spins from different entangled pairs 

are at a single site and projected into spin-1 subspaces to form a spin-1 quantum chain. 

This results in an MPS with bond dimension 𝐷 = 2. Finally, the Majumdar-Ghosh model, 

which is a frustrated spin chain defined by the Hamiltonian 
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𝐻 = ∑ (𝑆[𝑖]𝑆[𝑖+1] +
1

2
𝑆[𝑖]𝑆[𝑖+2])𝑖   (2.29) 

where 𝑆[𝑖]  is the vector of a spin-1 2⁄  operator at site 𝑖 . Its ground state is given by 

singlets between nearest-neighbour spins, and the superposition of the ground state and 

its translation by one lattice site forms an MPS of bond dimension 𝐷 = 3. 

2.3.3 Projected Entangled Pair States 

The Projected Entangled Pair States (PEPS) is a natural generalization of the MPS to 

higher spatial dimensions (Cirac et. al., 2011). It can be constructed using the principle 

of projection to subspace similar to the AKLT model for quantum systems of any 

dimensions. For simplicity, here we only consider the two-dimensional (2D) case. 

Although in general, the 2D lattice could be of any shape, for example, the honeycomb 

lattice, triangular and kagome lattices, here we consider the simplest square lattice case 

to discuss the properties of PEPS.  

 For 2D PEPS, the generic wavefunction in Hilbert space formalism is no different 

from (2.23). However, when the rank 𝐿 tensor  𝐶𝜎1𝜎2…𝜎𝐿 is split into a 2D tensor network, 

the resultant tensor network states consist of tensors each with a single-site index but with 

a different number of bond indices. For example, 4 bond indices for square lattice and 3 

for the honeycomb lattice. For square lattice under open boundary condition, the edge and 

corner tensors will have 3 and 2 bond indices respectively, while for periodic boundary 

condition, all tensors have 4 bond indices (see Figure 2.5). 

 
Figure 2.5: 4 × 4 PEPS (a) Open boundary conditions (b) Periodic boundary conditions. 
Image retrieved from (Orús, 2014). 
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Like the MPS, the PEPS need not be translational invariant because each tensor can be 

different. However, one may impose translational invariance by choosing a fundamental 

unit cell of tensors to be repeated indefinitely. For higher dimensional systems, this needs 

to be done to all spatial directions of the lattice to impose translational invariance. Next, 

the PEPS are also “dense” such that given sufficiently large bond dimension 𝐷, PEPS can 

represent any quantum state. As was the case for MPS, the bond dimension must be 

exponentially large in the system size to cover the whole Hilbert space.  However, to 

apply the PEPS on interesting 2D quantum models, one expects reasonably small and 

finite bond dimension 𝐷 for lower energy states. In fact, PEPS can handle polynomial 

decaying correlations, which is in stark contrast with MPS. In fact, it is well known with 

only 𝐷 = 2  is sufficient to handle power-law correlation and hence critical states 

(Verstraete, et. al., 2006). Naturally, PEPS also satisfy the two-dimensional Area Law of 

entanglement entropy. In general, the entanglement entropy of a subsystem with 

boundary length 𝑙 of a PEPS with bond dimension 𝐷 is given as: 

𝑆(𝑙) = 𝑂(𝑙 log 𝐷)  (2.30) 

Despite the advantage of PEPS to simulate critical states, the exact contraction of two 

PEPS is an exponentially hard problem. Exact contraction of two PEPS of 𝐿 sites will 

always take a time 𝑂(exp(𝐿)), no matter the order in which we choose to contract the 

different tensors. Referring to computational complexity theory, the calculation belongs 

to the problem of complexity class #P-Hard (Schuch, et. al., 2007). However, the 

approximation of this contraction can be done accurately, at least for 2D PEPS of ground 

states of local, gapped Hamiltonian. The trick is to reduce the original 2D problem to a 

series of 1D problems, which in turn borrow the approximation advantages of MPS. The 

boundary rows of tensors are MPS while the inner rows are Matrix Product Operators 

(MPO), the quantum operator version of MPS. Contraction of two PEPS is done row by 

row and compression for each row, by bond dimension truncation, is done on the resulting 
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MPS and MPO to limit the complexity at each step. By this procedure, the contraction 

time is polynomial instead of exponential with system size. Another disadvantage of 

PEPS is that it has no exact canonical form. Unlike MPS with open boundary conditions, 

which a bond “cut” can split it into two separate parts, tensors in PEPS form closed loops. 

Therefore, one cannot define an orthonormal basis to the left and right part of a given 

bond index. Nevertheless, an approximate quasi-canonical form can be found for non-

critical PEPS using “simple update” approach involving Suzuki-Trotter decomposition 

(Jiang, et. al., 2008).  

Again, like the MPS, there are quantum states of 2D lattices that can be represented 

exactly using the PEPS. The first example being the Toric Code model, proposed by 

Kitaev (Kitaev, 2003). It is a spin-1 2⁄  model on the links of a 2D square lattice, which is 

the simplest known model whose ground state displays topological order. The 

Hamiltonian is defined as follows: 

𝐻 = −𝐽𝑎 ∑ 𝐴𝑠𝑠 − 𝐽𝑏 ∑ 𝐵𝑝𝑝   (2.31) 

where 𝐴𝑠 = ∏ 𝜎𝑥
[𝑟]

𝑟∈𝑠  and 𝐵𝑝 = ∏ 𝜎𝑧
[𝑟]

𝑟∈𝑝  are star and plaquette operators respectively. 

In other words, 𝐴𝑠  is product of 𝜎𝑥  operators around a star, and 𝐵𝑝  is product of 𝜎𝑧 

operators around a plaquette (see Figure 2.6). The ground state of an infinite 2D lattice 

Toric Code model can be represented with a PEPS with just 𝐷 = 2 bond dimensions 

(Verstrate, et. al., 2006). Another example is the 2D AKLT model on a honeycomb lattice, 

given by the Hamiltonian: 

𝐻 = ∑ (𝑆[𝑟]𝑆[𝑟′] +
116

243
(𝑆[𝑟]𝑆[𝑟′])2 +

16

243
(𝑆[𝑟]𝑆[𝑟′])3)〈𝑟,𝑟′〉   (2.32) 

where 𝑆[𝑟]  is the vector of spin- 3 2⁄  operator at site 𝑟 , 〈𝑟, 𝑟′〉  refers to the nearest 

neighbour spin pair. As one may suspect, the spin-3 2⁄  at each site is constructed from 3 

spin-1 2⁄  singlet pairs and projected to symmetric spin-3 2⁄  subspace. This resultant 

PEPS only requires bond dimension 𝐷 = 2. Finally, the 2D resonating valence bond 
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(RVB) state proposed to explain the mechanism of high-𝑇𝑐 superconductivity (Anderson, 

1987) can be represented with a PEPS with just 𝐷 = 3 bond dimensions. The RVB state 

corresponds to equal superpositions of all possible nearest neighbour dimer covering the 

2D lattice, where each dimer is an SU(2) singlet: 

|𝛷⟩ =
1

√2
(|0⟩⨂|1⟩ − |1⟩⨂|0⟩)  (2.33) 

This state is important as it is the archetypical example of a quantum spin liquid. 

 
Figure 2.6: The star (𝐴𝑠) and plaquette (𝐵𝑝) operators of the Toric code. Image 
retrieved on December 1, 2020 from URL 
https://topocondmat.org/w12_manybody/topoorder.html. 

 

2.3.4 Other Tensor Networks & Recent Developments 

MPS and PEPS are actually special cases of tensor networks without extra dimensions. 

In order to study renormalization procedures on the systems, extra dimensions are needed 

to encode the system at different scales of observation. These extra dimensions offer a 

built-in structure of the tensor networks to accommodate renormalization procedures. 

Examples of tensor networks with extra dimensions are the Tree Tensor Network (TTN) 

(Shi, et. al., 2006) and the Multiscale Entanglement Renormalization Ansatz (MERA) 

(Vidal, 2007). The TTN has tree-like structures starting with a “root” tensor and branches 
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off with a fixed number of tensors. By construction, the TTN is made up of isometric 

tensors, has finite correlation length and on average satisfies the 1D Area Law of 

entanglement entropy. Besides well suited for gapped 1D systems, it is also used on 1D 

critical systems (Silvi, et. al., 2010) and 2D systems (Tagliacozzo, et. al., 2009). Since 

TTN is loop-free, it has a canonical form like MPS and the computation of expectation 

value of an observable is exact. MERA, on the other hand, is essentially a TTN but with 

extra unitary “disentangler” tensors in between each layer, which account for 

entanglement between neighbouring sites. Therefore, it can handle the entanglement 

entropy of 1D critical systems (Evenbly & Vidal, 2013). Additionally, MERA has an 

extra holographic dimension that allows “entanglement renormalization” and is believed 

to be related to AdS/CFT correspondence in quantum gravity (Swingle, 2012). Lastly, 

MERA tensors form loops and thus have no canonical form. However, the computation 

of an observable’s expectation value is exact. 

Finally, to establish tensor network formalism as an alternative formalism for quantum 

field theories, the structures discussed above allow a continuum limit. Continuous tensor 

networks such as continuous MPS (cMPS) (Verstraete & Cirac, 2010), continuous PEPS 

(cPEPS) (Jennings, et. al., 2015), continuous MERA (cMERA) (Haegeman, et. al., 2013) 

are proposed.  
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CHAPTER 3: METHODOLOGY 

In this chapter, we will introduce in detail the Matrix Product States (MPS) formalism 

as the numerical technique to approximate the wavefunction in the form of a one-

dimensional tensor network and associated techniques to efficiently calculate the 

expectation values of quantum observables. Next, the Density Matrix Renormalization 

Group (DMRG), which is the ground state search algorithm that results in the ground 

state wavefunction in MPS form, is presented. The background of DMRG is briefly 

reviewed along with its traditional and modern variants. Finally, the finite-size scaling 

(FSS) theory that allows one to calculate the critical exponents from finite-size 

simulations is introduced. 

3.1 Matrix Product States Formalism 

As mentioned in expression (2.23) in Chapter 2, the many-body quantum 

wavefunction can be equivalently described by a rank-𝐿 tensor  𝐶𝜎1𝜎2…𝜎𝐿 where the 𝐿 is 

the system size. For spin-1 2⁄  system, the tensor has 2𝐿 components. This large tensor 

can be split into a network of connected tensors of smaller ranks through the method 

known as the Singular Value Decomposition (SVD). The SVD is the general case of 

eigenvalue decomposition which requires the matrix to be a square matrix. SVD, on the 

other hand, can be done on a matrix of any shape, from 2D rectangular matrices to 

multidimensional arrays. For simplicity, we introduce the SVD with a generic 𝑚 × 𝑛 

rectangular matrix.  

3.1.1 Singular Value Decomposition 

For an arbitrary rectangular 𝑚 × 𝑛  matrix 𝑴 it can be decomposed into a product of 

three matrices: 

𝑴 = 𝑼𝚲𝑽†  (3.1) 
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where 𝑼 is an 𝑚 × 𝑚 unitary matrix whose columns are orthonormal singular vectors, i.e. 

𝑼†𝑼 = 𝑰. 𝚲 is an 𝑚 × 𝑛 matrix with diagonal entries of non-negative real numbers. 𝑽 is 

an 𝑛 × 𝑛 unitary matrix who rows are orthonormal singular vectors, i.e. 𝑽𝑽† = 𝑰. The 

entries in 𝚲 are called the singular values 𝜆 where each 𝜆𝑖 corresponds to the left and right 

singular vector ( �⃑⃑�𝑖  and 𝑣𝑖 ) in columns and rows of 𝑼 and 𝑽 respectively. The total 

number of non-zero singular values 𝜒 = min (𝑚, 𝑛) and we say that matrix 𝑴 has rank 

𝜒. In descending order, the singular values and corresponding singular vectors signify the 

decrease in importance of certain components of the transformation matrix 𝑴. By only 

keeping 𝐷 < 𝜒  number of singular values, we can optimally approximate matrix 𝑴 with 

another matrix of lower rank 𝑴′.  

Although the SVD is an algorithm for the optimal approximation of an arbitrary matrix, 

it is closely related to the entanglement between bipartite quantum system. For a 

composite quantum system in a pure state |𝜓⟩, we can partition the system into two parts 

of 𝐴  and 𝐵  and determine the bipartite entanglement between them. There exist 

orthonormal states  |𝑖𝐴⟩ and |𝑖𝐵⟩ for system 𝐴 and 𝐵, respectively, such that 

|𝜓⟩ = ∑ 𝜆𝑖|𝑖𝐴⟩|𝑖𝐵⟩𝜒
𝑖=1   (3.2) 

Notice the similar notation of 𝜆𝑖 and 𝜒 with the explanation of SVD. (3.2) is known as 

the Schmidt decomposition of a quantum state and 𝜆𝑖, which satisfies the relation  

∑ 𝜆𝑖
2

𝑖 = 1  (3.3) 

is known as the Schmidt coefficients. For a quantum system with arbitrary partition 𝐴 

and 𝐵, let the orthonormal bases be |𝑗⟩ and |𝑘⟩ respectively. Then the quantum state of 

the composite system is written as 

|𝜓⟩ = ∑ 𝑎𝑗𝑘|𝑗⟩|𝑘⟩𝑗,𝑘   (3.4) 

for some matrix 𝑨  with complex element 𝑎𝑗𝑘 . By doing SVD on 𝑎𝑗𝑘 , (3.4) can be 

expressed as  
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|𝜓⟩ = ∑ 𝑢𝑗𝑖𝑑𝑖𝑖𝑣𝑖𝑘|𝑗⟩|𝑘⟩𝑖,𝑗,𝑘   (3.5) 

By defining |𝑖𝐴⟩ ≡ ∑ 𝑢𝑗𝑖|𝑗⟩𝑗 , |𝑖𝐵⟩ ≡ ∑ 𝑣𝑖𝑘|𝑘⟩𝑘  and 𝜆𝑖 ≡ 𝑑𝑖𝑖  we retrieve (3.2). Note that 

|𝑖𝐴⟩ and |𝑖𝐵⟩ are orthonormal bases due to unitary of matrix 𝑼 and 𝑽. For a composite 

quantum system 𝐴𝐵 with quantum state |𝜓⟩, the density matrix is given by 

𝜌 = |𝜓⟩⟨𝜓| = ∑ 𝜆𝑖
2

𝑖 |𝑖𝐴⟩⟨𝑖𝐴|⨂|𝑖𝐵⟩⟨𝑖𝐵|  (3.6) 

By performing a partial trace on 𝜌 the density matrix of partition 𝐴 and 𝐵 is obtained: 

𝜌𝐴 = 𝑇𝑟𝐵 𝜌 = ∑ 𝜆𝑖
2

𝑖 |𝑖𝐴⟩⟨𝑖𝐴|  (3.7) 

𝜌𝐵 = 𝑇𝑟𝐴 𝜌 = ∑ 𝜆𝑖
2

𝑖 |𝑖𝐵⟩⟨𝑖𝐵|  (3.8) 

The Von Neumann entanglement entropy 𝑆𝑣𝑁 between partition 𝐴 and 𝐵 is given by 

𝑆𝑣𝑁 = − ∑ 𝜆𝑖
2 log 𝜆𝑖

2𝜒
𝑖=1   (3.9) 

The constraint given by (3.3) enforces 𝜆𝑖 to follow a decaying spectrum for short-range 

interacting systems. Therefore, if 𝜆𝑖  decays exponentially, keeping just a few largest 

values of 𝜆𝑖 accurately approximates the quantum state (Schollwöck, 2005; Verstraete & 

Cirac, 2006).  

3.1.2  Derivation of Matrix Product States 

A generic quantum wavefunction of one-dimensional spin chain with 𝐿 sites and local 

state space {|𝜎𝑖⟩} of dimension 𝑝 can be written as  

|Ψ⟩ = ∑ 𝐶𝝈|𝝈⟩{𝝈}   (3.10) 

where |𝝈⟩ = |𝜎1𝜎2 … 𝜎𝐿⟩ and Σ{𝝈} is the sum over all combinations of local states. The 

rank- 𝐿  tensor 𝐶𝝈  can be split into smaller tensors iteratively by SVDs. Although 

conventionally coefficients representing a vector in Hilbert space are contravariant 

tensors with superscript indices, at the end of this section we will be allocating subscript 

and superscript indices to differentiate the bond indices and site indices respectively. First, 

we will conform to the subscript index notation of SVD used in Section 3.1.1. The 
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multidimensional tensor 𝐶𝝈  is reshaped into a two-dimensional rectangular matrix of 

dimension (𝑝 × 𝑝𝐿−1): 

𝐶𝜎1𝜎2…𝜎𝐿
= 𝐶𝜎1,(𝜎2…𝜎𝐿)  (3.11) 

After performing SVD on (3.11) the tensor is decomposed into the form: 

𝐶𝜎1,(𝜎2…𝜎𝐿) = ∑ 𝑈𝜎1,𝑎1
Λ𝑎1

𝑉𝑎1,(𝜎2…𝜎𝐿)
†

𝑎1
  (3.12) 

where 𝑎1  is the bond indices connecting site 1 and 2 and the matrix 𝑈𝜎1,𝑎1
 has a 

dimension of 𝑝 × 𝑝 because 𝜒 = min (𝑝, 𝑝𝐿−1). This operation can be diagrammatically 

represented as the figure below: 

 
Figure 3.1: Diagrammatic representation of tensor decomposition by SVD. 

 

Next, we multiply Λ𝑎1
𝑉𝑎1,(𝜎2…𝜎𝐿)

†  and reshape it into a new tensor of rank 𝐿 − 1 , 

𝐶(𝑎1𝜎2),(𝜎3…𝜎𝐿) with dimension (𝑝2 × 𝑝𝐿−2). By performing SVD again we obtain: 

𝐶(𝑎1𝜎2),(𝜎3…𝜎𝐿) = ∑ 𝑈(𝑎1𝜎2),𝑎2
Λ𝑎2

𝑉𝑎2,(𝜎3…𝜎𝐿)
†

𝑎2
  (3.13) 

where 𝑎2 is the bond indices connecting site 2 and 3 and with the matrix 𝑈(𝑎1𝜎2),𝑎2
 has a 

dimension of (𝑝2 × 𝑝2). By repeating this procedure until the last site of the chain, we 

transform (3.10) into a product of sequences of 𝑈 matrices: 

|Ψ⟩ = ∑ ∑ 𝑈𝜎1,𝑎1
𝑈(𝑎1𝜎2),𝑎2

… 𝑈(𝑎𝐿−2𝜎𝐿−1),𝑎𝐿−1
𝑈(𝑎𝐿−1𝜎𝐿),1|𝝈⟩𝑎1,…,𝑎𝐿−1{𝝈}   (3.14) 

The matrices beginning from site 1 to site 𝐿  has the following dimensions: (1 × 𝑝), 

(𝑝 × 𝑝2 ), …, (𝑝𝐿 2⁄ −1 × 𝑝𝐿 2⁄ ), (𝑝𝐿 2⁄ × 𝑝𝐿 2⁄ −1), …, (𝑝2 × 𝑝), (𝑝 × 1).  Here, a new 

tensor 𝐴 with a different rearrangement of indices is introduced to differentiate between 

bond and site indices with subscript and superscript respectively. Then (3.14) becomes: 
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|MPS⟩left = ∑ ∑ 𝐴𝑎1

𝜎1 𝐴𝑎1𝑎2

𝜎2 … 𝐴𝑎𝐿−2𝑎𝐿−1

𝜎𝐿−1 𝐴𝑎𝐿−1

𝜎𝐿 |𝝈⟩𝑎1,…,𝑎𝐿−1{𝝈}   (3.15) 

The diagrammatic representation of MPS is shown in Figure 3.2: 

 
Figure 3.2: Diagrammatic representation of Matrix Product States. 

 

The subscript "left" of (3.15) represents the left-canonical form of MPS by splitting the 

tensor from the left of the spin chain. Canonical forms greatly simplify computations of 

local expectation values as we shall see in the subsequent section. When the MPS is 

formed, regardless it is in full bond dimensions, compression can be done using the SVD. 

One can contract two tensors, perform the SVD and truncate the singular matrix 𝚲 by 

keeping only 𝑚 singular values. Alternatively, one can set the truncation error bound and 

keep a varying number of singular values kept at different bonds. 

3.1.3 Canonical Form and Variational Compression of Matrix Product States 

The tensor is split from the left of the spin chain from (3.12) to (3.14). At each step the 

matrix 𝑼, or in the present notation matrix 𝑨, is left-normalized, i.e.:  

∑ 𝐴𝜎𝑖†
𝜎𝑖

𝐴𝜎𝑖 = 𝐼  (3.16) 

where the bond indices are implicit. Diagrammatically (3.16) can be represented as: 

 
Figure 3.3: Diagrammatic representation of left-normalized tensor contraction. 
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Therefore, (3.15) is called the left-canonical form. However, if the tensor is split from the 

right of the spin chain, then (3.12) would instead be:  

𝐶(𝜎1 … 𝜎𝐿−1),𝜎𝐿
= ∑ 𝑈(𝜎1… 𝜎𝐿−1),𝑎𝐿−1

Λ𝑎𝐿−1
𝑉𝑎𝐿−1,𝜎𝐿

†
𝑎𝐿−1

  (3.17) 

By repeating SVDs one site at a time one obtains a right-canonical form: 

|MPS⟩right = ∑ ∑ 𝐵𝑎1

𝜎1𝐵𝑎1𝑎2

𝜎2 … 𝐵𝑎𝐿−2𝑎𝐿−1

𝜎𝐿−1 𝐵𝑎𝐿−1

𝜎𝐿 |𝝈⟩𝑎1,…,𝑎𝐿−1 {𝝈}   (3.18) 

where 𝑩 is right-normalized matrix:  

∑ 𝐵𝜎𝑖𝐵𝜎𝑖†
𝜎𝑖

= 𝐼  (3.19) 

with the bond indices implicit. Similarly, (3.19) can be diagrammatically represented as: 

 
Figure 3.4: Diagrammatic representation of right-normalized tensor contraction. 

 

The advantage of the canonical form is obvious when the mix-canonical form is 

introduced. By splitting the tensor from both left and right of the spin chain until a site 𝑗, 

the MPS has the mix-canonical form: 

|MPS⟩mix = ∑ ∑ 𝐴𝑎1

𝜎1 … 𝐴𝑎𝑗−2𝑎𝑗−1

𝜎𝑗−1 Ψ𝑎𝑗−1𝑎𝑗

𝜎𝑗 𝐵𝑎𝑗𝑎𝑗+1

𝜎𝑗+1 … 𝐵𝑎𝐿−1

𝜎𝐿 |𝝈⟩𝑎1,…,𝑎𝐿−1 {𝝈}   (3.20) 

where the site 𝑗 is called the orthogonality center. To compute the expectation value of a 

single site operator at site 𝑗, one only needs to contract three tensors due to (3.16) and 

(3.19): 
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⟨MPS|�̂�𝑗|MPS⟩ = ∑ Ψ𝑎𝑗−1𝑎𝑗

𝜎𝑗 �̂�𝜎𝑗,𝜎𝑗
′

Ψ𝑎𝑗−1𝑎𝑗

𝜎𝑗
′ †

𝑎𝑗−1,𝑎𝑗,𝜎𝑗 ,𝜎𝑗
′

 
  (3.21) 

This greatly simplifies the computation cost which is just 𝑝2𝐷2  without scaling with 

system size. The canonical forms are actually special cases of gauge freedom. The MPS 

is invariant under gauge transformation by treating a bond as an identity tensor and split 

it into two invertible matrices:  

𝕀 = 𝑿𝑿−1  (3.22) 

The gauge transformation between tensor at site 𝑖 and 𝑖 + 1 is: 

𝐴𝜎𝑖 → 𝐴𝜎𝑖𝑋                𝐴𝜎𝑖+1 → 𝑋−1𝐴𝜎𝑖+1  (3.23) 

The gauge degree of freedom can simplify manipulations drastically, setting the 

orthogonality center as we wish without starting from 𝐶𝝈 through the procedures in (3.11) 

to (3.15). This is especially important after we obtain the ground state wavefunction in 

MPS because all computations using (3.21) require MPS in mixed canonical form. 

Manipulation methods to set the orthogonality center is needed without reverting back to 

large tensor 𝐶𝝈. 

Now that the canonical forms are introduced, the MPS can also be compressed with 

the variational method, which is the basis of modern DMRG as a variational ground state 

search algorithm. Let’s say we want to compress an MPS wavefunction |𝜓⟩ with bond 

dimension 𝐷 into a new MPS |�̃�⟩ with smaller bond dimension �̃�, minimizing the square 

of two-norm ‖|𝜓⟩ − |�̃�⟩‖
2

2
. This means that we want to minimize the two-norm squared 

with respect to all the tensors of the new MPS: 

min
�̃�

{ (⟨𝜓| − ⟨�̃�|) (|𝜓⟩ − |�̃�⟩) } = min
�̃�

(⟨𝜓|𝜓⟩ − ⟨�̃�|𝜓⟩ − ⟨𝜓|�̃�⟩ + ⟨�̃�|�̃�⟩)  (3.24) 

However, this is a highly nonlinear optimization problem. A more feasible way is to find 

the gradient of the two-norm squared with respect to one tensor only, equate the gradient 

to be zero in order to evaluate the optimum single tensor and repeat for all sites. This is 
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done by finding the new �̃�𝜎𝑖  via extremizing with respect to �̃�𝑎𝑖−1𝑎𝑖

𝜎𝑖∗ , the i-th tensor in 

⟨MPS|, which only shows up in −⟨�̃�|𝜓⟩ + ⟨�̃�|�̃�⟩ (Schollwöck, 2011). Explicitly, the 

expression is as follows: 

𝜕

𝜕�̃�𝑎𝑖−1𝑎𝑖

𝜎𝑖∗ (⟨�̃�|�̃�⟩ − ⟨�̃�|𝜓⟩) =

∑ (�̃�𝜎1∗ … �̃�𝜎𝑖−1∗)
1,𝑎𝑖−1

𝝈∗ (�̃�𝜎𝑖+1∗ … �̃�𝜎𝐿∗)
𝑎𝑖,𝐿

�̃�𝜎1 … �̃�𝜎𝑖 … �̃�𝜎𝐿 −

∑ (�̃�𝜎1∗ … �̃�𝜎𝑖−1∗)
1,𝑎𝑖−1

(�̃�𝜎𝑖+1∗ … �̃�𝜎𝐿∗)
𝑎𝑖,𝐿

𝐴𝜎1 … 𝐴𝜎𝑖 … 𝐴𝜎𝐿
𝝈∗ = 0  

(3.25) 

where 𝝈∗  refers to sum over all indices except those connected to �̃�𝑎𝑖−1𝑎𝑖

𝜎𝑖∗ . While the 

algebraic expression is explicit, the diagrammatic representation is more intuitive (see 

Figure 3.5). 

 
Figure 3.5: Diagrammatic representation of finding the gradient of a 3-site tensor 
network contraction with respect to the 2nd site. 

 

Expression (3.25) can be simplified by grouping all other tensors except �̃�𝜎𝑖  as large 

tensor: 

∑ �̃�𝑎𝑖−1𝑎𝑖𝑎𝑖−1
′ 𝑎𝑖

′�̃�
𝑎𝑖−1

′ 𝑎𝑖
′

𝜎𝑖
𝑎𝑖−1

′ ,𝑎𝑖
′ = 𝑂𝑎𝑖−1𝑎𝑖

𝜎𝑖   (3.26) 

By reshaping �̃�𝜎𝑖  as a vector 𝑣, �̃� as a matrix 𝑷 and 𝑂𝜎𝑖  as a vector �⃑⃑� we get 

𝑷𝑣 = �⃑⃑�  (3.27) 
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Therefore, the variational compression is reduced to a problem of solving a system of 

linear equations, which can be efficiently solved by methods of linear algebra. 

 
Figure 3.6: Diagrammatic representation of expression (3.26) and (3.27). 

 

Note that if the MPS is in the mix-canonical form with orthogonal center at site 𝑖, the 

reshaped matrix 𝑷 becomes an identity matrix. Therefore, (3.27) is further reduced to  

𝑣 = �⃑⃑�  (3.28) 

The procedures described above for variational compression are done iteratively on all 

the sites, sweeping across the 1D tensor networks. Multiple sweeps can be done until the 

tensors converge. 

3.1.4 Quantum Operator as Matrix Product Operator 

Similarly, a generic quantum observable operator is also rank-2𝐿 tensor defined as 

follows:  

�̂� = ∑ 𝑂𝝈′
𝝈 |𝝈⟩⟨𝝈′|{𝝈},{𝝈′}   (3.29) 

where 𝑂𝝈′
𝝈  is explicitly 𝑂

𝜎1
′𝜎2

′ …𝜎𝐿
′

𝜎1𝜎2…𝜎𝐿. (3.29) can be represented diagrammatically as shown in 

Figure 3.7: 
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Figure 3.7: Diagrammatic representation of generic quantum observable operator. 

 

Next, by repeatedly performing SVD on 𝑂
𝜎1

′𝜎2
′ …𝜎𝐿

′
𝜎1𝜎2…𝜎𝐿 , one obtains the Matrix Product 

Operator (MPO): 

MPO = ∑ 𝑊𝑏1

𝜎1𝜎1
′

𝑊𝑏1𝑏2

𝜎2𝜎2
′

… 𝑊𝑏𝐿−1

𝜎𝐿𝜎𝐿
′

{ 𝜎𝑖} ,{𝜎𝑖
′},{𝑏𝑖} |𝝈⟩⟨𝝈′|  (3.30) 

where 𝑏𝑖  is the bond indices of the MPO. The singular value tensors for (3.30) are 

absorbed by neighbouring site tensors. The MPO can be diagrammatically represented as 

shown in Figure 3.8: 

 
Figure 3.8: Diagrammatic representation of a Matrix Product Operator. 

 

The advantage of expressing a quantum operator as MPO is the form invariance of 

applying the MPO to an MPS (see Figure 3.9): 

MPO|MPS⟩ = ∑ (𝑊𝜎1𝜎1
′
𝑊𝜎2𝜎2

′
… )(𝐴𝜎1

′
𝐴𝜎2

′
… )|𝝈⟩{𝜎𝑖} ,{𝜎𝑖

′}   

= ∑ ∑ (𝑊𝑏1

𝜎1𝜎1
′

𝑊𝑏1𝑏2

𝜎2𝜎2
′

… ) (𝐴𝑎1

𝜎1
′

𝐴𝑎1𝑎2

𝜎2
′

… ) |𝝈⟩{𝑎𝑖},{𝑏𝑖}{𝜎𝑖} ,{𝜎𝑖
′}   

= ∑ ∑ (𝑊𝑏1

𝜎1𝜎1
′

𝐴𝑎1

𝜎1
′

) (𝑊𝑏1𝑏2

𝜎2𝜎2
′

𝐴𝑎1𝑎2

𝜎2
′

) … |𝝈⟩{𝑎𝑖},{𝑏𝑖}{𝜎𝑖} ,{𝜎𝑖
′}   

=  ∑ 𝑁𝜎1𝑁𝜎2 … |𝝈⟩{𝜎𝑖}   

(3.31) 
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Figure 3.9: Diagrammatic representation of applying an MPO to an MPS. 

 
The new MPS has bond dimensions 𝐷 = 𝑎𝑖𝑏𝑖 , which can be compressed to lower 

dimensions. This allows one to time-evolve an MPS by expressing the time evolution 

operator as an MPO and repeatedly apply it to the MPS. The form invariance ensures the 

quantum state remains as MPS, which has polynomial complexity, at each time step. Next, 

an MPO can also be compressed like an MPS, either via SVDs or variational compression 

by treating two site indices (𝜎𝑖 , 𝜎𝑖′)  as one, to ensure polynomial complexity. For 

complicated global operator as in (3.29), one can convert it into MPO, compresses it and 

compute the expectation value via contracting the ⟨MPS|MPO|MPS⟩ sandwiched tensor 

network (see Figure 3.10). 

 
Figure 3.10: Diagrammatic representation of ⟨MPS|MPO|MPS⟩  tensor network 
contraction. 

 

Again, like an MPS, the MPO can also be converted to left, right or mix-canonical form 

by splitting the original operator tensor from different directions or via gauge freedom 

transformation. 
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3.2 Density Matrix Renormalization Group 

In order to study the thermodynamic properties of tQIM in the ground state, the MPS 

must be representing the ground state wavefunction. The density matrix renormalization 

group (DMRG) is the numerical method that iteratively finds the ground state 

wavefunction by selecting and keeping the most important eigenstates that maximize the 

entanglement entropy and truncate the rest. It is first proposed by White in 1992 (White, 

1992; White, 1993) to solve for the one-dimensional quantum spin chain when the 

previous Numerical Renormalization Group (NRG) method fails.  

3.2.1 Wilson’s Numerical Renormalization Group 

Wilson proposed the Real-Space Numerical Renormalization Group (NRG) to solve 

the Kondo problem of magnetic impurity (Wilson, 1975). Despite the success of NRG 

with the Kondo problem, it performs very poorly in other quantum lattice models. In the 

context of DMRG on the quantum Ising spin system, to study a system in the 

thermodynamic limit, the infinite system is first described by the Hamiltonian of a 

subsystem, here defined as a “block”. The Hamiltonian matrix defined by a certain basis 

is formed and diagonalized, and the few lowest eigenstates are kept. The new subsystem 

is formed with the diagonalized block combined with its own copy to obtain the new 

subsystem of double the original scale, here defined as the “superblock”. The formation 

of the superblock is represented diagrammatically in Figure 3.11. 

 
Figure 3.11: Two blocks A combined to form a superblock AA of twice the size. 
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The new Hamiltonian of the enlarged system is 

�̂�AA = �̂�A
left⨂ 𝕀right + 𝕀left⨂�̂�A

right
 + (interaction between blocks)  (3.32) 

where ⨂ is the tensor product of the Hilbert spaces and 𝕀 is the identity matrix with 

dimension matching the size of the block. Naturally, the Hilbert space dimension of the 

system also increases after each iteration. In fact, it increases exponentially with each 

iteration. To solve this problem, truncated diagonalization is proposed where before each 

iteration, Hamiltonian is diagonalized and only a fixed number of low-lying energy 

eigenstates is kept. The Hamiltonian is truncated and all the quantum operators are 

updated with the new truncated basis before the next iteration: 

�̂�new = �̂�†�̂�old�̂�  (3.33) 

where �̂� is the truncation matrix whose columns are the kept eigenvectors. This way, the 

system is studied by iteratively increasing the scale of observation, starting from a block 

consists of just a single site, giving a renormalization framework. However, the seemingly 

logical proposition performs poorly for the quantum lattice system in general for two 

reasons. Firstly, higher energy eigenstates are not necessarily unimportant and may play 

a role in describing other quantum properties of the ground state system. Second, the 

combination of two blocks, each already in their ground states, may not result in the 

ground state of the superblock. Intuitively, two-particles-in-a-box of length 2𝐿  has 

different ground state wavefunction and energy compared to the combination of two 

connected single-particle-in-a-box of length 𝐿 in their ground states. When the two blocks 

are combined, the boundary of the connection is neglected but it imposes the 

wavefunction to be zero at the boundary. This large boundary errors cannot be solved by 

imposing certain boundary conditions. White and Noack explicitly demonstrated the 

problems of the NRG with the 1D tight-binding lattice model (White & Noack, 1992).  
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3.2.2 Traditional Density Matrix Renormalization Group Algorithm 

The two problems stated arise due to the neglect of the multipartite quantum 

entanglement of the system between its subsystems. The two blocks of the superblock are 

entangled with each other and the ground states of each block combined do not reflect the 

entanglement between the two blocks. Therefore, in the DMRG, the density matrix is 

formed at the beginning of each iteration and the SVD, or equivalently the Schmidt 

Decomposition, is done to select the eigenstates with the highest Schmidt coefficients. To 

address the second problem, instead of forming new superblock which doubles the size, 

the superblock is split into the “system” and the “environment”, and the new superblock 

is grown by increasing only single site per block, for both the “system” and 

“environment”, with each iteration. The diagonalization is done at the “system” block 

without neglecting the “environment” block. This ensures the ground state of the “system” 

will contribute to the ground state of the entire superblock. These amendments of the 

algorithm are called the infinite-DMRG (iDMRG) algorithm. It grows the system by two 

sites per iteration and stops when the desired quantum state of an infinite system, which 

is the ground state in our case, is obtained. Assuming the system is reflection symmetric, 

the steps are described as follows: 

The infinite-DMRG algorithm: 

1. Start with two blocks, each containing a single site, where the left block is the system 

block, the right block is the environment block.  

2. Form two enlarged blocks by adding a single site to the right and left of the system and 

environment block, respectively.  

3. Form the superblock by connecting the system block to the environment block with the 

following Hamiltonian transformation: 

 �̂�super = �̂�sys⨂ 𝕀env + 𝕀sys⨂�̂�env + (interaction between blocks)  
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4. Diagonalize the superblock to find the targeted state vector |𝜓⟩, which can be any 

desired state that we want to obtain.  

5. Form the density matrix of the superblock 𝜌super = |𝜓⟩⟨𝜓| and then partial trace over 

the environment to obtain the reduced density matrix of the enlarged system block 

𝜌sys = Trenv(𝜌super). 

6. Diagonalize 𝜌sys and order the eigenvectors in descending weight. Keep only the 𝑚 

eigenvectors with the largest weights. 

7. Form the truncation operator �̂� from the 𝑚 eigenvectors and project all operators onto 

this truncated basis: �̂�new = �̂�†�̂�old�̂� 

8. Reflect the new system block to obtain the new environment block. 

9. Repeat steps 2 to 8 until the algorithm converges.  

The one iteration of the infinite-DMRG algorithm is given in Figure 3.12. The truncation 

error of the observable’s expectation value is 

|〈�̂�〉 − 〈�̂�〉approx| ≤ 𝑐𝑂(1 − ∑ 𝜔𝛼
𝑁−𝑚
𝛼=1 )  (3.34) 

where 𝑁 is the total number of eigenstates and 𝑐𝑂 = max𝛼(⟨𝜓𝛼|�̂�|𝜓𝛼⟩)  is the maximum 

expectation value of �̂� for one of the truncated eigenstates. 
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Figure 3.12: Graphical representation of one iteration of the infinite DMRG algorithm. 

 

Next, another variant of the DMRG is the finite-DMRG which sweeps across the spin 

chain of fixed size to perform the Schmidt Decomposition at every bond. This implies the 

system block will grow and the environment block shrinks and vice-versa while the size 

of superblock remains constant. The reason for the sweep is because in iDMRG the 

superblock is grown from two single-site blocks. The environment block of just a few 

sites is insufficient to accurately represent the embedding in the final system. Therefore, 

the finite-DMRG functions to refine the calculation to remove the large “environmental” 

errors in iDMRG. Assuming the system consists of even number of sites, the finite-

DMRG algorithm is described as follows: 
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The finite-DMRG algorithm: 

1. Carry out the steps in iDMRG until the superblock has the desired size 𝐿. The system 

block should have size 𝑙 = 𝐿/2 and environment block of size 𝐿 − 𝑙. Blocks of all 

sizes, from 𝑙 = 1 to 𝑙 = 𝐿/2, is stored for future use. 

2. The sweep begins by growing the system block to size 𝑙 + 1 and retrieve the block of 

size 𝐿 − (𝑙 + 2) from storage to be reflected to get an environment block. Grow the 

environment block to size 𝐿 − (𝑙 + 1). 

3. Carry out the steps 3 to 7 of the iDMRG algorithm. 

4. Store the truncated block as the new block. 

5. Set 𝑙 = 𝑙 + 1. 

6. Repeat the steps 2 to 5 until 𝑙 = 𝐿 2⁄ − 2. Then, set 𝑙 = 1 and retrieve a block of size 

1 as the new system block. 

7. Repeat the steps 2 to 5 until 𝑙 = 𝐿/2 and this concludes a single “sweep”. 

8. Repeatedly sweep over the system (steps 2 to 7) until the algorithm converges.  
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Figure 3.13: Graphical representation of one sweep of the finite DMRG algorithm. 

 

3.2.3 The Modern Density Matrix Renormalization Group Algorithm 

The DMRG, which iteratively optimizes the wavefunction one site at a time, will 

naturally produce wavefunction in the form of MPS. Therefore, conversely, the MPS can 

be made as a wavefunction ansatz and apply DMRG to it (Schollwöck, 2011). The 

modern DMRG in the context of MPS is a variational optimization algorithm which is 
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essentially the method of compression described in Section 3.1.3. The energy of an 

unnormalized MPS is given by: 

𝐸 =
⟨𝜓|�̂�|𝜓⟩

⟨𝜓|𝜓⟩
  (3.35) 

Therefore, to find the ground state of the system one needs to minimize (3.35) with respect 

to the wavefunction: 

𝐸0 = min
𝜓

(⟨𝜓|�̂�|𝜓⟩ − 𝐸⟨𝜓|𝜓⟩)  (3.36) 

This is done by setting the gradient of ⟨𝜓|�̂�|𝜓⟩ − 𝐸⟨𝜓|𝜓⟩ to zero 

𝜕

𝜕𝐴𝜎𝑖∗ ⟨𝜓|�̂�|𝜓⟩ − 𝐸⟨𝜓|𝜓⟩ =

∑ (𝐴𝜎1∗ … 𝐴𝜎𝑖−1∗)1,𝑎𝑖−1𝝈∗ (𝐴𝜎𝑖+1∗ … 𝐴𝜎𝐿∗)𝑎𝑖,𝐿 (𝑊𝜎1𝜎1
′

… 𝑊𝜎𝑖𝜎𝑖
′

… 𝑊𝜎𝐿𝜎𝐿
′
) ×

(𝐴𝜎1 … 𝐴𝜎𝑖 … 𝐴𝜎𝐿) −

𝐸 ∑ (𝐴𝜎1∗ … 𝐴𝜎𝑖−1∗)1,𝑎𝑖−1
(𝐴𝜎𝑖+1∗ … 𝐴𝜎𝐿∗)𝑎𝑖,𝐿(𝐴𝜎1 … 𝐴𝜎𝑖 … 𝐴𝜎𝐿)𝝈∗ = 0  

(3.37) 

where 𝝈∗ refers to sum over all indices except those connected to 𝐴𝜎𝑖∗. The result of (3.37) 

is diagrammatically represented in Figure 3.14: 

 

Figure 3.14: Diagrammatic representation of minimizing ⟨𝜓|�̂�|𝜓⟩ − 𝐸⟨𝜓|𝜓⟩. 

 

Next, (3.37) can be simplified by grouping all other tensors except 𝐴𝜎𝑖  as large tensor: 

∑ �̃�
𝑎𝑖−1

′ 𝑎𝑖
′𝑎𝑖−1𝑎𝑖

𝜎𝑖𝜎𝑖
′

𝐴
𝑎𝑖−1

′ 𝑎𝑖
′

𝜎𝑖
′

𝜎𝑖
′,𝑎𝑖−1

′ ,𝑎𝑖
′ = 𝐸 ∑ �̃�𝑎𝑖−1

′ 𝑎𝑖
′𝑎𝑖−1𝑎𝑖

𝐴
𝑎𝑖−1

′ 𝑎𝑖
′

𝜎𝑖
𝑎𝑖−1

′ ,𝑎𝑖
′   (3.38) 

By reshaping 𝐴𝜎𝑖  as a vector 𝑣, �̃� as a matrix 𝑯 and �̃� as a matrix 𝑷, we get 
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𝑯𝑣 = 𝐸𝑷𝑣  (3.39) 

which is again a problem that can be solved with linear algebra methods. The conversion 

of (3.38) to (3.39) is diagrammatically shown in Figure 3.15. 

 
Figure 3.15: Diagrammatic representation of expression (3.38) and (3.39). 

 

Again, if the MPS is in the mix-canonical form with site 𝑖 as orthogonality center, 𝑷 

becomes an identity matrix, simplifying (3.39) to be an eigenvalue problem: 

𝑯𝑣 = 𝐸𝑣  (3.40) 

Solving for 𝑣, the elements of tensor 𝐴𝜎𝑖  at site 𝑖 is obtained. After the procedures are 

repeated for all sites, one “sweep” is said to be completed. Multiple sweeps can be done 

to improve the result since 𝑯 depends on the “environment” tensors and they are all re-

evaluated after one “sweep”.  

In conclusion, the modern DMRG essentially treat one tensor as a variational 

parameter at a time while keeping the “environment” constant, and iteratively compress 

the MPS with respect to a targeted quantum operator in MPO form. In our case, the 

quantum operator is the Hamiltonian of the tQIM and the resultant MPS represents the 
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ground state of the system. The calculations in this thesis are done using the modern 

DMRG algorithm via the ITensor C++ library package available at itensor.org. 

3.3 Finite-Size Scaling Theory 

For the phase transition to occur, the system size must be infinite to produce 

divergence of the response functions, such as magnetization, magnetic susceptibility, and 

specific heat capacity. However, for numerical simulations without imposing certain 

boundary conditions one can only study a system of finite sizes. The availability of real 

finite-size systems due to optical and magnetic traps makes numerical simulations and 

studies essential. As mentioned in Chapter 2, the phase transition happens at the critical 

point is essentially due to the divergence of the correlation length. As the transverse field 

is getting closer to the critical point, the correlation increases without bound and diverges 

at the critical point. However, for a finite system, the correlation is bounded by the size 

of the system. Before the critical point, the entire bulk of spins are strongly correlated due 

to 𝜉 ≈ 𝐿 and undergoes a pseudo-phase transition. It is not a real phase transition because 

the response functions are not divergent but still the order parameter changes from non-

zero to zero and vice versa across the pseudo-critical point. The finite-size scaling (FSS) 

ansatz proposes that the thermodynamic quantities scale relative to the system size and 

the correlation length near the critical point. 

For an arbitrary thermodynamic quantity Ω near the critical point, it has the following 

asymptotic behaviour: 

Ω ~ |𝜖|−𝜔  (3.41) 

where ω is the critical exponent of quantity Ω and 𝜖 is the distance from the critical point. 

By substituting the scaling relation of correlation length from (2.9) into (3.41) Ω diverges 

with the correlation length 𝜉 following the relation: 
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Ω ~ 𝜉𝜔 𝜈⁄    (3.42) 

The only relevant length scale near the critical point is the correlation length. Since the 

correlation length is bounded by the system size, the thermodynamic behaviour is 

restricted by the system size 𝐿. The deviation of behaviour from the thermodynamic limit 

depends on the ratio 𝜉 𝐿⁄ . (3.42) is scaled by a dimensionless scaling function to 

accommodate this observation:  

Ω ~ 𝜉𝜔 𝜈⁄ Ω0(𝐿 𝜉⁄ )   (3.43) 

where Ω0(𝑥) is the scaling function with the following asymptotic properties: 

lim
𝑥→∞

Ω0(𝑥) = const.    (3.44) 

and  

lim
𝑥→0

Ω0(𝑥) ~ 𝑥𝜔 𝜈⁄     (3.45) 

Equation (3.44) and (3.45) represent the limiting behaviour of infinite system size and 

finite-size effect respectively. When the correlation length is much smaller compared to 

the system size, (3.43) is preserved. Contrary, when the correlation length outgrows the 

system size, finite-size scaling occurs and Ω scales with system size 𝐿. In principle, (3.43) 

contains all the information needed to describe finite-size effects. However, in practice, 

we rarely know the correlation length 𝜉 at temperature 𝑇 in the infinite system. Therefore, 

it is convenient, and conventional, to reorganize the equation by defining a new 

dimensionless function Ω̃: 

Ω̃(𝑥) =  𝑥−𝜔Ω0(𝑥𝜈)   (3.46) 

where Ω̃(𝑥) follows similar behaviour to Ω0(𝑥). After substitution of (3.46) into (3.43), 

we get 

Ω =  𝐿𝜔 𝜈⁄ Ω̃(𝐿1/𝜈|𝜖|)   (3.47) 

At the critical point, (3.47) reveals the scaling behaviour of Ω with the system size 𝐿: 
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Ω|ℎ𝑐
 ~ 𝐿𝜔 𝜈⁄     (3.48) 

For an arbitrary thermodynamic quantity Ω  with critical exponent 𝜔 , the finite-size 

scaling allows one to calculate the critical exponent by determining Ω at the critical point 

for various system sizes. 
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CHAPTER 4: RESULTS & DISCUSSION 

In this chapter, first, the numerical simulation is benchmarked with the known 

analytical results to demonstrate its validity. Next, we show that the critical point is 

determined using the Binder’s cumulant and each selected critical exponent is calculated 

from the respective thermodynamic quantity of various system sizes at the critical point. 

The finite-size effects of the thermodynamic quantities in both open and periodic 

boundary conditions are also discussed. Finally, the effect of noisy coupling strength on 

the thermodynamic parameters is shown. Observations such as faster phase transition 

before the critical point and transition to disordered spin glass phase above certain noise 

levels are discussed.  

4.1 Benchmark of Numerical Simulation with Analytical Results 

The analytical solution of the 1D quantum Ising model is well known and serves as a 

benchmark for many other models which slightly departs from it such as those with next-

nearest-neighbour couplings but still short-ranged models. Here we benchmark our 

numerical simulation of 100 spins in open boundary condition (OBC) with the analytical 

solutions from equation (2.16), (2.17) and (2.18).  Besides, the mean-square longitudinal 

magnetization and magnetic susceptibility are also calculated. The formulas are explicitly 

given in Table 4.1: 

Table 4.1: Mathematical expressions for thermodynamic quantities. 

Ground state energy per spin, 〈𝐸0〉 〈𝐸0〉 = ⟨𝜓| (
1
𝐿

∑ −𝐽�̂�𝑖
𝑧�̂�𝑖+1

𝑧 − ℎ�̂�𝑖
𝑥

𝑖 ) |𝜓⟩ 

Longitudinal magnetization, 〈𝑀𝑧〉 〈𝑀𝑧〉 = ⟨𝜓| (
1
𝐿

∑ �̂�𝑖
𝑧

𝑖 ) |𝜓⟩ 

Mean-square longitudinal magnetization, 
〈𝑀𝑧

2〉 〈𝑀𝑧
2〉 = ⟨𝜓| (

1
𝐿

∑ (�̂�𝑖
𝑧)

2

𝑖 ) |𝜓⟩ 

Transverse magnetization, 〈𝑀𝑥〉 〈𝑀𝑥〉 = ⟨𝜓| (
1
𝐿

∑ �̂�𝑖
𝑥

𝑖 ) |𝜓⟩ 

Longitudinal magnetic susceptibility, 𝜒𝑧 𝜒𝑧 ∝ 𝐿2(〈𝑀𝑧
2〉 − 〈𝑀𝑧〉2) 

 
where for a 𝑑-dimensional quantum system, the magnetic susceptibility 𝜒𝑧 is defined as: 
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𝜒𝑧 ∝  𝐿(𝑑+𝑧)(〈𝑀𝑧
2〉 − 〈𝑀𝑧〉2)   (4.1) 

The exponent 𝑧 is the dynamical critical exponent. For the transverse field quantum Ising 

model, 𝑧 = 1 (Sachdev, 2011). Therefore, (4.1) for 1D quantum Ising model is reduced 

to  

𝜒𝑧 ∝  𝐿2(〈𝑀𝑧
2〉 − 〈𝑀𝑧〉2)   (4.2) 

Note that the wavefunctions and operators in Table 4.1 are in MPS and MPO form 

respectively. The calculation is the contraction of ⟨MPS|MPO|MPS⟩ tensor networks. The 

benchmarks are plotted in Figure 4.1 to 4.3.  

Referring to Figure 4.1, the simulation results obtained for ground state energy 

conforms reasonably well with the analytic solution. For longitudinal magnetization, the 

simulation drops to zero sooner than expected, that is, before the critical point, ℎ𝑐 = 0.5. 

This is due to the finite-size effect of 100 spins simulation and it drops to zero at ℎ =

0.49, which is the pseudo-critical point of the finite-size system. Lastly, the simulation 

results for transverse magnetization also fit reasonably well with the analytic solution. 

However, notice the very small deviation around the pseudo-critical point. This is because 

at the critical point, the correlation of the system, in the form of entanglement entropy, 

diverges and the system does not follow the Area Law. As the system approaches the 

critical point, the entanglement entropy slowly deviates from the Area Law. Since the 

MPS and DMRG are methods whose advantage lies in the validity of the Area Law, the 

deviation is reasonable. This also shows that MPS can approximate the wavefunction very 

well at the critical point, with the fact that the entanglement entropy scales only with the 

log of system size: 𝑆(𝐿)~log (𝐿).  
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Figure 4.1: Benchmarking simulation results with analytic solution (Pfeuty, 1970) for 
ground state energy, 〈𝐸0〉. 

 
Figure 4.2: Benchmarking simulation results with analytic solution (Pfeuty, 1970) for 
longitudinal magnetization, 〈𝑀𝑧〉. 
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Figure 4.3: Benchmarking simulation results with analytic solution (Pfeuty, 1970) for 
transverse magnetization, 〈𝑀𝑥〉. 

 

4.2 Determination of Critical exponents 

The finite-size scaling theory described in Section 3.3 allows one to extract the critical 

exponent corresponding to its thermodynamic parameter if we know the finite-size values 

of the parameter at the critical point. With that knowledge, one may plot the log-log graph 

of thermodynamic quantity at the critical point and system size and obtain the ratio of 

exponents from the gradient of the plot according to (3.48). 

4.2.1 Binder’s 4th Order Reduced Cumulant 

However, in order to use (3.48) to determine the critical exponents, we need to know 

the exact location of the critical point. The Binder’s 4th order reduced cumulant 𝑈𝐿 , 

defined as follows, is invariant with the system size 𝐿 (Binder, 1990): 
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𝑈𝐿 = 1 −
〈𝜙4〉𝐿

3〈𝜙2〉𝐿
2   (4.3) 

where 〈𝜙4〉𝐿  and 〈𝜙2〉𝐿 are the 4th and 2nd moments of the order parameter of system size 

𝐿. For our case, where the longitudinal magnetization 𝑀𝑧  is the order parameter, the 

Binder’s cumulant is defined as: 

𝑈𝐿 = 1 −
〈𝑀𝑧

4〉𝐿

3〈𝑀𝑧
2〉𝐿

2   (4.4) 

It follows from the finite-size scaling ansatz that the ratio 〈𝑀𝑧
4〉𝐿 〈𝑀𝑧

2〉𝐿
2⁄  is not dependent 

on the system size at the critical point: 

〈𝑀𝑧
4〉𝐿|ℎ𝑐

〈𝑀𝑧
2〉𝐿

2|ℎ𝑐

~ 
𝐿−4𝛽 𝜈⁄

(𝐿−2𝛽 𝜈⁄ )2 = const.  (4.5) 

Therefore, determining the crossing of 𝑈𝐿  for various system sizes is a very reliable 

method to determine the critical point (Godoy & Figueiredo, 2002; Merdan & Erdem, 

2004; Hasenbusch, 2008).  

4.2.2 Finite-size Effects on Thermodynamic Parameters 

In this study, the simulations are done for 6 system sizes of 20, 40, 60, 80, 100 and 

120 spins for both open boundary condition (OBC) and periodic boundary condition 

(PBC). The Binder’s cumulant and average thermodynamic quantities such as the ground 

state energy, longitudinal magnetization and its root-mean-square (r.m.s.), transverse 

magnetization, and the magnetic susceptibility, whose expressions are listed in Table 4.1, 

are calculated across the whole range of transverse field and plotted in Figure 4.4 to 4.9 

respectively. Besides, the two-point correlation at the critical point is also calculated. To 

determine the thermodynamic critical point, the Binder’s cumulant 𝑈𝐿  is plotted for 

various system sizes. By inspecting the intersection of both plots (Figure 4.4), the critical 

point is uniquely determined to be ℎ𝑐 = 0.5. This agrees exactly with the prediction of 

the analytic solution.  
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Figure 4.4: Binder’s cumulant vs transverse field strength with increasing system size. 
OBC (top) and PBC (bottom). The intersection happens at ℎ = 0.5 for both boundary 
conditions. 

 

                             
                   

 

   

   

   

   

   

   

   

   
   

   
   

   
  

   
 

        
        
        
        
         
         

                             
                   

 

   

   

   

   

   

   

   

   
   

   
   

   
  

   
 

        
        
        
        
         
         

Univ
ers

ity
 of

 M
ala

ya



52 

 

 
Figure 4.5: Ground state energy vs transverse field strength with increasing system size. 
OBC (top) and PBC (bottom). 
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Figure 4.6: Longitudinal magnetization vs transverse field strength for various system 
sizes. OBC (top) and PBC (bottom). 
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Figure 4.7: Root-mean-square longitudinal magnetization vs transverse field strength for 
various system sizes. OBC (top) and PBC (bottom). 
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Figure 4.8: Transverse magnetization vs transverse field strength for various system sizes. 
OBC (top) and PBC (bottom). 
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Figure 4.9: Magnetic susceptibility vs transverse field strength for various system sizes. 
OBC (top) and PBC (bottom). 
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In general, the differences in thermodynamic quantities between OBC and PBC are 

due to the difference in correlation of the entire system. For OBC, for the whole system 

to be correlated, the correlation length must grow to approximately the system size: 𝜉 ~ 𝐿. 

While for PBC, 𝜉 ~ 𝐿/2 because the system forms a chain and, thus, the correlation 

builds up from both sides. Therefore, the thermodynamic parameters of systems with 

OBC exhibit deviations near the critical point where systems of different sizes achieve 

full correlations at different pseudo-critical fields. The average thermodynamic quantities 

are intensive quantities. For average ground state energy, this is clearly observed in PBC 

case where the plots all converge into single plot for all sizes. However, at small 

transverse fields far away from the critical point, the plots for OBC slowly deviates from 

-0.25 for decreasing system size. The increase in energy or equivalently the decrease in 

the magnitude of the energy with decreasing system size is due to the lack of −𝐽�̂�1
𝑧�̂�𝐿

𝑧 

coupling term in the Hamiltonian. As transverse field increases, the weightage of the 

coupling terms in Hamiltonian gradually loses out to the transverse terms. Therefore, the 

deviation vanishes for large transverse fields and only obvious for small fields. Besides, 

the deviation in energy reduces with increasing system size is due to the division of 

−𝐽�̂�1
𝑧�̂�𝐿

𝑧 by an increasingly larger number in the averaging calculation. 

From Figure 4.6, the longitudinal magnetization as the order parameter drops to zero, 

indicating a phase transition at the corresponding critical transverse field. A phase 

transition occurs when the entire system becomes fully correlated, that is the correlation 

length is longer than the system size: 𝜉 > 𝐿, resulting in all spins effectively pointing in 

the longitudinal directions. Therefore, smaller system achieves full correlation at smaller 

transverse field and undergoes pseudo-phase transition sooner. In addition, systems in 

PBC undergo phase transition sooner than in OBC for the same reason of achieving full 

correlation at lower critical fields than in OBC. The r.m.s. longitudinal magnetizations 

also showed similar behaviour, but it does not drop to zero after the critical point. This is 
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because the randomized spins are individually squared before summed up for averaging. 

Note that the larger system has lower r.m.s. magnetization because the averaged quantity 

is divided by a greater number of spins. Besides, to obtain the critical exponents using the 

finite-size scaling theory, non-zero values of thermodynamic parameters at the critical 

point are required. Thus, the r.m.s. magnetizations are included for future calculation of 

critical exponent.  

Next, the finite-size effects are not that obvious for transverse magnetization. For PBC, 

there seems to have no finite-size effects on the average quantity. This means at each 

transverse field, the system’s overall correlation is the same for all sizes. For OBC, there 

is deviation at the point of inflection, also due to the difference in attaining full correlation 

at different critical fields. From Figure 4.9, we can observe that the peak of longitudinal 

magnetic susceptibility, whose corresponding transverse field is the pseudo-critical point, 

gradually shifts to the left with decreasing system size. This is consistent with the previous 

observation of sooner phase transition for smaller systems from longitudinal 

magnetization. However, note that the heights of the peaks for PBC is always higher than 

OBC for every system size. This is due to higher total correlation of the system in PBC. 

4.2.3 Critical Exponents 

To extract the critical exponents, we use the thermodynamic parameters calculated 

from periodic boundary conditions (PBC). The advantage of studying an Ising ring is to 

eliminate the edge effects and solely study the finite-size effects. The critical exponents 

which are independently calculated are 𝛽 𝜈⁄ , 𝛾 𝜈⁄  and 𝜂 . Since the longitudinal 

magnetization of small system sizes drops to zero before the critical point, (3.48) cannot 

be applied. Instead, to obtain the critical exponent 𝛽 we use the r.m.s. magnetization as 

the order parameter and it obeys the following relation: 

√〈𝑀𝑧
2〉|ℎ𝑐

 ~ 𝐿−𝛽 𝜈⁄    (4.6) 

Univ
ers

ity
 of

 M
ala

ya



59 

 

By plotting log-log graph, we determine the ratio 𝛽 𝜈⁄ = 0.1235(1) (see Figure 4.10). 

This is in good agreement with 𝛽 = 0.125 if we assume 𝜈 = 1. 

 

Figure 4.10: Log-log plot of root-mean-square magnetization √〈𝑀𝑧
2〉  at ℎ𝑐 vs system 

size 𝐿. 

 

Next, the critical exponent 𝛾 is obtained from the log-log plot of magnetic susceptibility 

(see Figure 4.11) because it obeys the following relation: 

𝜒𝑧|ℎ𝑐
 ~ 𝐿𝛾 𝜈⁄    (4.7) 

The ratio is determined to be 𝛾 𝜈⁄ = 1.7351(3). This is, again, with good agreement with 

𝛾 = 1.75 if we assume 𝜈 = 1. 
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Figure 4.11: Log-log plot of magnetic susceptibility 𝜒𝑧 at ℎ𝑐 vs system size 𝐿. 

 

Finally, the critical exponent 𝜂 cannot be determined by applying (3.48) because 𝜂 is 

defined only at the critical point. However, for periodic boundary condition and close to 

the critical point, the two-point correlation function 𝐺(𝑟)  at distance 𝑟  obeys the 

following expression: 

 𝐺(𝑟, 𝐿) ∝
1

𝑟𝑑−2+𝜂 +
1

(𝐿−𝑟)𝑑−2+𝜂   , 𝑟 ≫ 1  (4.8) 

It is the sum of two terms because the correlation builds up from both sides of the ring. 

As (4.8) is not a simple power law, one cannot extract the critical exponent 𝜂 by plotting 

the log-log graph. However, 𝐺 obeys the following finite-size scaling ansatz (Zhang et. 

al., 2018):  

 𝐺(𝑟, 𝜖, 𝐿) ∝ |𝑟|−(𝑑−2+𝜂)�̃�(𝑟 𝐿⁄ , 𝜖𝐿1 𝜈⁄ )   (4.9) 

At the critical point, the scaling function is only a function of the ratio 𝑟 𝐿⁄ . 
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𝐺(𝑟, 𝐿)|𝑟|(𝑑−2+𝜂) ∝ �̃�(𝑟 𝐿⁄ )  (4.10) 

Therefore, by plotting 𝐺(𝑟, 𝐿)|𝑟|(𝑑−2+𝜂) vs 𝑟 𝐿⁄  with the correct value of 𝜂, one expects 

plots of various sizes to collapse into the same graph. We plotted with multiple guesses 

of 𝜂 around 𝜂 = 0.250, its theoretical value. Finally, the plots collapse the best for 𝜂 =

0.249 as shown in Figure 4.12. 

 

Figure 4.12: Graph of 𝐺(𝑟, 𝐿)|𝑟|(𝑑−2+𝜂)  vs 𝑟 𝐿⁄  for different system sizes with 𝜂 =
0.249. 

 

Note that in Figure 4.12 the plots start to deviate from a single graph when 𝑟 𝐿⁄  is small. 

For the scaling ansatz (4.10) to be valid, the correlation function must be in power law. 

However, the power-law is only valid for large 𝑟. Therefore, the plots deviate at small 

distances. In conclusion, we determined that 𝜂 = 0.249(1).  

The critical exponents we obtained obey the following scaling relations: 

𝛾 = 𝜈(2 − 𝜂)   (4.11) 
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and 

2𝛽 + 𝛾 = 𝜈(𝑑 + 𝑧)  (4.12) 

Relation (4.12) is the hyperscaling relation. It is particularly significant because the 

correct theory of phase transition below the critical dimension of the mean-field theory 

must obey (4.12). From our results, we can see the critical exponents calculated conforms 

with these relations. As the exponents are each found independently, we showed that the 

finite-size scaling and matrix product states formalism can be used to study the critical 

dynamics of 1D Ising-like models. 

4.3 Effect of Noisy Coupling Strength on Thermodynamic Parameters 

The d-dimensional quantum Ising model is closely related to the d+1-dimensional 

classical Ising model. In the limit of zero temperature (𝑇 → 0), the partition function of 

d-dimensional tQIM can be converted to the partition function of d+1-dimensional CIM. 

Therefore, at the theoretical absolute zero temperature, the d-dimensional tQIM is in the 

same universality class as d+1-dimensional CIM. Similar classical-quantum 

correspondence is also suspected between classical and quantum spin glasses (Sondhi, 

1997; Chakrabarti, 1981; Dos Santos, 1985). Kryzhanovsky et. al. (2018) studied 2D 

classical Ising model with noisy interactions to investigate temperature sensitivity of free 

energy optimization learning algorithms for different noise levels. They observe 

qualitative changes to the behaviours of thermodynamic parameters with different noise 

levels and a regime change after a certain threshold noise level. Knowing the close 

relationship between d+1-dimensional classical systems and corresponding d-

dimensional quantum systems, we are interested to investigate how adding noise to the 

couplings of 1D tQIM will affect its thermodynamic behaviour.  
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The Hamiltonian of 1D tQIM is generalized by introducing site dependant coupling 

strength 𝐽𝑖, where 𝐽𝑖 = 1 + 𝜀𝑖 and 𝜀𝑖 = [−𝜁, 𝜁] is a uniformly distributed noise with mean 

zero and amplitude 𝜁. As a result, the Hamiltonian becomes: 

𝐻 = − ∑ 𝐽𝑖𝑆𝑖
𝑧𝑆𝑖+1

𝑧𝐿−1
𝑖=1 − ℎ ∑ 𝑆𝑗

𝑥𝐿
𝑗=1   (4.13) 

Now, the system with random nearest neighbour couplings is quenched disordered for 

each different realization. For each transverse field ℎ , 100 different realizations are 

simulated and the disorder averages of thermodynamic quantities are calculated. By 

increasing 𝜁 , some behavioural change to the averaged thermodynamic quantities is 

expected.  

The thermodynamic quantities such as ground state energy, transverse and longitudinal 

magnetizations, and the variance of longitudinal magnetization, which corresponds to the 

magnetic susceptibility, are calculated for noise level 𝜁 = 0.0, 0.5, 1.0, 1.5 and 2.0. In 

addition, the Edward-Anderson order parameter for spin glass is also calculated. The 

results are plotted in Figure 4.13 – 4.18. For Figure 4.13 – 4.16, the analytic solution is 

plotted as a reference for departure from the noiseless case.  

The ground state energy of a pure (noiseless) tQIM decreases monotonically with 

increasing quantum fluctuation (transverse field) and is non-analytic at the critical point 

(ℎ𝑐 = 0.5) (Pfeuty, 1970). The region before and after the critical point exhibit different 

functional behaviour. For the transverse field greater than the critical point, the energy 

decreases linearly with increasing transverse field as the spins are all already aligned in 

the transverse direction. The linear decrease of energy corresponds to the linear increase 

of the transverse field. When noise is introduced to the coupling, we observe that the 

energies decrease or equivalently the magnitudes of the energies increase with increasing 

noise. The plots are still following similar behaviour of pure tQIM except with an 

additional fluctuation in the plot. However, the plot in general still preserves distinct non-
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linear and linear behaviour before and after the critical point, respectively. Note that for 

𝜁 > 1.0 and particularly obvious for 𝜁 = 2.0, fluctuations before the critical point is 

bigger compared to after the critical point. As the fluctuations introduced only affect the 

z-component of the spin polarization, the observation is reasonable. The dominant 

eigenstate before the critical point is the ferromagnetic state |Φ𝑧⟩ so the ground state 

energies are more affected by the fluctuation, while |Φ𝑧⟩ is less dominant after the critical 

point so it is less affected.  

While the ground state energies show expected behaviour, the transverse 

magnetizations 〈𝑀𝑥〉, however, does not (see Figure 4.14). One expects the behaviour of 

any thermodynamic quantities to gradually deviate monotonically from pure tQIM as 𝜁 

increases. However, we observe that before and after the critical point, 〈𝑀𝑥〉 exhibits 

different behaviours. Zooming into a different region of the plot (see Figure 4.15), we see 

that after the critical point, 〈𝑀𝑥〉 decreases as 𝜁 increases. This is reasonable as the noise 

disturbs the ordering of the spins in the transverse direction. However, before the critical 

point, 〈𝑀𝑥〉 increases as 𝜁  increases but decreases when 𝜁 = 2.0. The transverse field 

introduces quantum fluctuations which destroy the long-range order formed by the 

couplings. However, in this case, 𝜁 also introduces fluctuations which only disturbs the 

long-range order. It does not align the spins in 𝑥 -direction but instead assists the 

transverse field to increase 〈𝑀𝑥〉. This in effect amplifies the quantum fluctuations for 

constant transverse field reading. If the noise is too great the fluctuations do not assist the 

effect of the transverse field. There is an optimum 𝜁 that maximizes this effect in the 

range of 1.0 < 𝜁 < 2.0.  
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Figure 4.13: Ground state energy, 〈𝐸0〉 vs transverse field, ℎ with increasing noise level. 

 
Figure 4.14: Transverse magnetization, 〈𝑀𝑥〉 vs transverse field, ℎ with increasing noise 
level.  
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Figure 4.15: Transverse magnetization, 〈𝑀𝑥〉 vs transverse field, ℎ with increasing noise 
level: a) 0.1 < ℎ < 0.4  b) 0.6 < ℎ < 0.9. 
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Figure 4.16: Longitudinal magnetization, 〈𝑀𝑧〉 vs transverse field, ℎ  with increasing 
noise level. The plot is shown until ℎ = 0.7 only because 〈𝑀𝑧〉 = 0 for ℎ > 0.7. 

 

Next, the longitudinal magnetization 〈𝑀𝑧〉 which is the order parameter for tQIM. 

Referring to Figure 4.16, there are two distinct deviations in the region before the critical 

point. Note that for ℎ close to zero 〈𝑀𝑧〉 drops sharply while for ℎ close to the critical 

point 〈𝑀𝑧〉 deviates gradually with increasing noise. Up until 𝜁 ~ 1.0, 〈𝑀𝑧〉 has a profile 

with a peak with a steep decrease at the left and smooth gradual behaviour at the right. 

When 𝜁 > 1.0, the profile is lost to intense fluctuations (𝜁 = 1.5 & 2.0) as seen in Figure 

4.16. The left deviation is due to competition between the transverse term and fluctuating 

term. For very small ℎ, the fluctuating term dominates and destroys the order of the 

system. For ℎ close to the critical point, the fluctuating terms assist the system towards 

phase transition. Thus 〈𝑀𝑧〉 deviates and decreases to zero sooner than pure tQIM. From 

Figure 4.16 we observe that as 𝜁 increases, 〈𝑀𝑧〉 goes to zero at a smaller transverse field. 

However, when 𝜁 = 2.0  〈𝑀𝑧〉 falls to zero at ℎ ~ 0.5 which is close to the critical point.  
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This supports our speculation that there is an optimum noise level which assists the 

system towards phase transition. We tried to locate where does the unimodal profile lost 

to fluctuation occurs and traced it to be roughly at 𝜁 ~ 1.05.  

By comparing the average over 10 disordered realizations with 100, we observe that 

the fluctuations for 〈𝐸0〉, 〈𝑀𝑥〉 and 〈𝑀𝑧〉 in general, are smaller with a bigger number of 

realizations. For 𝜁 = 1.5 & 2.0 , we observe that the fluctuations of 〈𝑀𝑧〉  before the 

critical point is smaller for 100 realizations as compared to 10 realizations. This agrees 

with the spin glass theory that 〈𝑀𝑧〉 = 0 for all transverse fields in the thermodynamic 

limit. With a larger and increasing number of realizations, we expect the 〈𝑀𝑧〉 

fluctuations for 𝜁 = 1.5 & 2.0 to subside and 〈𝑀𝑧〉 goes to zero. This observation also 

suggests that 〈𝑀𝑧〉 is not a proper order parameter for 𝜁 ≫ 1.0. 

The variance of longitudinal magnetization, Var(𝑀𝑧) is proportional to the magnetic 

susceptibility per spin:   

Var(𝑀𝑧) ∝ 𝜒 𝐿⁄   (4.14) 

The peak of 𝜒 is another parameter used to determine the critical point of the system. 

From Figure 4.17 we see that 100 spins tQIM has pseudo-critical point at ℎ𝑐 = 0.49. As 

the noise increases, the peak also decreases and shifts to the left. This supports our earlier 

argument that fluctuation in coupling will assist the spin of the system towards aligning 

in the transverse direction. This “speeds up” the phase transition with a lower critical field, 

ℎ𝑐. However, there seems to have no apparent peak when 𝜁 > 1. This is consistent with 

the previous observation that for 𝜁 ≫ 1.0, 〈𝑀𝑧〉  and its moments are not good parameters 

to study its phase transition. 
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Figure 4.17: Variance of longitudinal magnetization, Var(𝑀𝑧) vs transverse field, ℎ with 
increasing noise level. 

 

We calculated the Edward-Anderson order parameter 𝑞, which is defined for spin glass 

systems (Young, 1990): 

𝑞 = [
1

𝐿
 ∑ 〈𝜎𝑖〉

2𝐿
𝑖=1 ]

av
  (4.15) 

where [… ]av is the disordered average over 100 realizations. 𝑞 has consistent plots for all 

noise amplitudes and less fluctuations overall (see Figure 4.18). It is a better order 

parameter compared to  〈𝑀𝑧〉 . 𝑞  validates previous observations where increasing 𝜁  

assists the phase transition. For 𝜁 ≤ 1.5 𝑞 drops to zero sooner than the noiseless case. 

For 𝜁 = 2.0 𝑞, instead, drops to zero later at ℎ~0.5. These observations are consistent 

with the previous one but with a much less fluctuating order parameter. Systems with a 

smaller size of 60 spins are simulated to test for finite-size effects of the noise. There is 

no obvious deviation from the behaviour of 100 spins chain. In addition, we replaced 

uniformly distributed noise with normally distributed noise. As normal distribution is 
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more concentrated about the mean and has extreme value beyond the standard deviation, 

there are observable differences in the functional behaviour of thermodynamic quantities. 

However, the qualitative behaviour remains the same.  

 
Figure 4.18: Edward-Anderson Order Parameter, 𝑞 vs transverse field, ℎ with increasing 
noise level. 

 

Finally, a general conclusion can be drawn from the above observations. For noise 

level between 𝜁 = 1.0  and 𝜁 = 1.5, the tunnelling effects introduced by the transverse 

field before the critical point is amplified and assists the system towards phase transition. 

This suggests introducing noise with certain amplitudes to the couplings may improve the 

performance of quantum annealing. Future work can be done on more general graph 

topologies and non-uniform initial couplings.   

Univ
ers

ity
 of

 M
ala

ya



71 

 

CHAPTER 5: CONCLUSION 

In this work, the one-dimensional transverse field quantum Ising model (tQIM) is 

simulated and studied. In order to study its thermodynamic properties, thermodynamic 

quantities are calculated using techniques in the tensor network formalism. The quantum 

wavefunction is cast in the form of Matrix Product States (MPS) and the ground state 

wavefunction is obtained via the Density Matrix Renormalization Group (DMRG) 

algorithm. The quantities of interest are obtained by tensor network contraction of the 

ground state Matrix Product States and corresponding quantum operators in the form of 

Matrix Product Operators (MPO). 

5.1 Summary 

Conventionally, numerical studies such as Monte Carlo simulations (Binder, 1990; 

Landau, 1990) and phenomenological renormalization group methods (Nightingale, 1990) 

studies the phase transition without directly obtaining the analytic solutions or the 

quantum wavefunction. Using the MPS as a variational wavefunction ansatz with built-

in approximation structure, the ground state wavefunction, albeit not exact, of short-

ranged interacting quantum Ising model is obtained in the MPS form. Thermodynamic 

quantities such as the ground state energy, transverse and longitudinal magnetizations, 

magnetic susceptibility and correlation function are calculated for various system sizes of 

20, 40, 60, 80, 100 and 120 spins. Among these quantities, the longitudinal magnetization 

and its magnetic susceptibility and the correlation functions are selected to apply the 

finite-size scaling ansatz in order to obtain the critical exponents 𝛽, 𝛾, and 𝜂. The values 

determined are 𝛽 𝜈⁄ = 0.1235(1), 𝛾 𝜈⁄ = 1.7351(2), and 𝜂 = 0.249(1) which conform 

with the theoretical value from the analytic solution of 1D quantum Ising model. This 

also verifies that 1D quantum Ising model is in same universality class as 2D classical 

Ising model. They also fulfil the hyperscaling relation which is obeyed by systems below 
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their upper critical dimension. Given the critical exponents are independently calculated 

and fulfil the hyperscaling relation, the Matrix Product States formalism and finite-size 

scaling ansatz combined can reliably study the critical dynamics of one-dimensional 

quantum Ising-like models below upper critical dimension. 

Next, with the addition of noise to the uniform nearest-neighbour coupling strength of 

the 1D tQIM, the system is found to transit from an ordered to a disordered system after 

a certain noise level. The study is mainly done by introducing uniformly distributed noise 

with amplitude 𝜁 ranging from 𝜁 = 0.5, 1.0, 1.5, and 2.0. The order-disorder transition 

happens at 𝜁 ~ 1.0 because the Hamiltonian is frustrated for 𝜁 > 1.0. In the ordered state, 

the thermodynamic quantities preserve the behaviour of pure tQIM albeit increasing 

deviation with noise. We find that for 𝜁 ≲ 1.5 the noise assists the system towards phase 

transition. However, this feature is lost for 𝜁 = 2.0. For the disordered state, the quantities 

are highly fluctuating and do not exhibit any clear functional behaviour. In addition, we 

calculated the Edward-Anderson order parameter 𝑞  and found it to be much less 

fluctuating and better characterize the system as an order parameter. In addition, no 

qualitative change of behaviour is observed for smaller size system and normally 

distributed noise. For noise level at 𝜁 = 1.0 and 1.5, the tunnelling effect introduced by 

the transverse field before the critical point is amplified and assists the system towards 

phase transition. This suggests introducing noise within a range of amplitudes to the 

couplings may improve the performance of quantum annealing.  

5.2 Suggestion for Future Work  

In the first part of the work, to obtain the critical exponents of the ideal quantum Ising 

model, the periodic boundary condition is imposed on the system. This eliminates the 

edge effects so that purely finite-size effects remain. In the future, the work can be 

extended to higher dimensions such as 2D or 3D. However, one needs to utilize higher-
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dimensional tensor networks such as the Projected Entangled Pair States (PEPS) with 

different ground state searching algorithm and tensor contraction techniques. Besides the 

finite-size and edge effects, the corner effects can be studied on these higher dimensional 

systems. In the second part of the work, the effect of noise can be investigated in more 

realistic situations such as on general graph topologies (Rodríguez-Laguna, 2007) and 

non-uniform couplings.  

Lastly, we propose to use the 1D tQIM and MPS formalism to study the water-ice 

phase transition of single-file water in nanopore. When confined to one-dimensional 

structure, the water molecules have effective short-ranged interactions (Köfinger & 

Dellago, 2010). Narrower diameter of the nanopore seems to introduce order to the water 

molecules to form “ice phase” (Koga et. al., 2001; Maniwa et. al., 2002). By replacing 

the spin variables with occupancy of water molecule in the nanopore, the 1D tQIM can 

study the water-ice phase transition with the transverse field inversely related to the 

nanopore diameter. Experimentally the nanopore diameter is not a tuneable parameter. 

Thus, this model can provide a theoretical study on how continuously adjusting the 

diameter affects the phase diagram of the transition. 
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