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ABSTRACT 

Cancer chemotherapy optimization problem one of the critical cases until now, the 

researchers still working on it, to find the optimal amount of the drug, that reduce the 

toxicity and the tumor size. That caused increasing in the number of objectives and 

constraints, so increasing in the complexity of the optimization problem. This research 

project proposes two hybrid techniques that’s combined between the optimal control 

theory (OCT) with the swarm intelligence (SI) and evolutionary algorithms (EA), and 

check the performance of this techniques, with the popular method that used purely SI 

and EA algorithms, such M-MOPSO, MOPOS, MOEAD, MODE. The comparison 

between these methods, is done by solved a constraints multi-objectives optimization 

problem CMOOP, for the optimization problem of cancer chemotherapy treatment. The 

results of the hybrid techniques appear more efficient than that discovered by the purely 

SI and EA method. That’s improve the ability of the hybrid methods for solving the 

CMOOP with a high performance more than used a purely swarm intelligence. This will 

be very helpful for the clinicians and oncologist to discover and find the optimum dose 

schedule of the chemotherapy that’s reduce the tumor cells and save the patients’ health 

at a safe level. 
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ABSTRAK 

Masalah pengoptimuman kemoterapi kanser salah satu daripada kes kritikal 

sehingga sekarang, para penyelidik masih mengusahakannya, untuk mencari jumlah ubat 

yang optimum, yang mengurangkan ketoksikan dan saiz tumor. Ini menyebabkan 

peningkatan dalam bilangan objektif dan kekangan, begitu meningkat dalam kerumitan 

masalah pengoptimuman. Projek penyelidikan ini mencadangkan dua teknik hibrid yang 

digabungkan antara teori kawalan optimum (OCT) dengan kecerdasan pintar (SI) dan 

algoritma evolusi (EA), dan menyemak prestasi teknik ini, dengan kaedah popular yang 

menggunakan algoritma SI dan EA semata , seperti M-MOPSO, MOPOS, MOEAD, 

MODE. Perbandingan antara kaedah ini dilakukan dengan menyelesaikan masalah 

pengoptimuman multi-objektif CMOOP, untuk masalah pengoptimalan rawatan 

kemoterapi kanser. Hasil teknik hibrida nampak lebih efisien daripada yang ditemui oleh 

metode SI dan EA murni. Ini meningkatkan keupayaan kaedah hibrida untuk 

menyelesaikan CMOOP dengan prestasi tinggi daripada menggunakan kecerdasan 

semata-mata. Ini akan sangat membantu para doktor dan ahli onkologi untuk mengetahui 

dan mencari jadual dos optimum kemoterapi yang mengurangkan sel-sel tumor dan 

menyelamatkan kesihatan pesakit di tahap yang selamat. 
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CHAPTER 1: INTRODUCTION AND LITREATURE REVIEW 

 

1.1 Introduction 

This chapter provide a general introduction under the Background, explanation of 

the problem statement and shown the objectives of this work, with the scope explanation, 

finally the organization of this work shown in the end of this chapter.    

1.2 Background  

 

Cancer is considered one of the most diseases that causes death around the world. 

According to the World Health Organization (WHO) (Organization, 2018), in 2015 the 

cancer causing 8.8 million deaths. With estimated 1,735,350 new cancer patients and 

609,640 deaths during 2018 in the united states (Siegel, Miller, & Jemal, 2018), whereas 

the cancer is considered the second caused of mortality there. Simply, the cancer is 

unbonded grow and spread for abnormal cells, that harm the patient body and almost 

causing the death if it doesn’t treat early.  

Chemotherapy, immunotherapy, radiation therapy and surgery, are the main 

treatments for the cancer disease. There are some criteria’s used for selecting the proper 

treatment, like patient health situation at the time of treatment, stage and the location of 

the tumor. Chemotherapy is the most commonly used treatment, that showed a high 

efficiency for treating the cancer (Galmarini, Galmarini, & Galmarini, 2012).  

Chemotherapy causing death for the cancer cells, but it's also causing death for the 

normal cells that may be caused patients death in some cases. so the chemotherapy must 

be delivered to the patient's body in ideal does that reduce the normal cells 

damage.(Galmarini et al., 2012; Harrold & Parker, 2009; Itik, Salamci, & Banks, 2009; 
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Ku-Carrillo, Delgadillo-Aleman, & Chen-Charpentier, 2017; Shi, Alagoz, Erenay, & Su, 

2014; Wu, Liu, Zhang, Cheng, & Xin, 2018).  

This negative side of chemotherapy caused another problem for the clinicians, 

where they need to know the best dose of treatment that should gave to the patient. 

Furthermore, there a big economic impact from this treatment, according to the Agency 

for Healthcare Research and Quality (AHRQ) in united states during 2015 the main costs 

of chemotherapy treatment reached $80.2 billion (Society, 2018).  

So, there is a need for finding the optimal dose of chemotherapy, that keep the 

treatment efficiency high, at the same time reduce the negative effects, that’s will also 

decrease the amount of financial expenses on the treatment.  

Solving of this problem needed a cooperation with the engineers, mathematicians, 

oncologist, and clinicians, to build a mathematical model that simulate that dynamics of 

the tumor cells and how it's affected with the chemotherapy, also shows the behaviors of 

normal cells with the treatment, then solving this model to discover the optimal dose of 

chemotherapy that kills the cancerous cells and reduce the toxicity level. And because 

they're a many of factors effect on the growth of the tumor cells, there are many of 

mathematical models depended on different factors. However, all of them simulate the 

pharmacokinetic that characterized the distribution and metabolism of the treatment dose, 

also the pharmacodynamic processes that describe the effects of the treatment dose on 

normal and malignant cells (Panetta & Fister, 2003).  

Previously, the mathematical model neglected the negative effects of the 

chemotherapy on the normal cells, whereas the optimal treatment analysis was focusing 

on reducing the tumor size by increasing the amount of chemotherapy, to avoid any drug 

resistance from the cancerous cells (Martin, 1992).  
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Later, the chemotherapy negative effects on the normal cells added inside the 

mathematical models, so it’s became a part of the optimal analysis of the chemotherapy 

that aimed to reduce the tumor size at the same time reduce the drug toxicity (Matveev & 

Savkin, 2000). 

The strength of the immune system, it’s an important factor in the cancer treatment 

that effects on the response of cancerous cells with the treatment. The mathematical 

model that proposed in 2003 by Pillis and Radunskaya (De Pillis & Radunskaya, 2003), 

considered the dynamics of the immune cells with the drug, normal cells and the tumor 

cells, besides, the response of the tumor cells and normal cells with the chemotherapy, 

this is to increase the efficiency of the drug optimal analysis. Other researchers 

considering another factors, besides, the response of immune, tumor and normal cells, 

like the mathematical model proposed in this article (Ku-Carrillo et al., 2017), taken into 

account the obesity to check the effects of the diet on the efficiency of chemotherapy 

treatment, the result was, losing weight leads to improving the efficiency of 

chemotherapy. 

With this improvement on the mathematical models, the optimization problem also 

shifted from a single objectives optimization problem to the multi-objective optimization 

problem, addition to a constraints to be constrained multi-objective optimization problem 

(CMOOP), that aimed to maximize or minimize two or more of objectives at the same 

time achieve the constraints, from here the needs for robust optimization method appears, 

to solve this kind of optimization problem and find the optimum results.  

The two main conventional approaches for solving the optimal control optimization 

problem, first one called direct or stochastic approach, whereas the optimal control 

problem converted into Non-linear programming (NLP). The second one called in-direct 

or deterministic approach, that based on the Maximum/Minimum Pontryagin Principle, 
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whereas the optimal control problem converts into boundaries values problem, both use 

some numerical methods like single and multiple shooting methods, for solving the 

problem. Some of researchers used un-conventional methods, like method proposed in 

this article (Khadraoui et al., 2016), whereas it’s used two PID (Proportional  - Integral – 

Derivative) controllers, to keep the dose of chemotherapy in acceptable level, that’s to 

reduce the drug concentration as possible. Another one used the linear time varying 

approximation (LTV) method to solve the multi objective optimization problem for 

chemotherapy treatment  that aimed to minimize the tumor size and the drug 

concentration (Itik et al., 2009). 

Nowadays, most of  engineering and the real life optimization problems are 

CMOOP, and because the Increasing in the number of objectives, constraints, states and 

variables in the mathematical model of the optimization problem, the researchers move 

toward using the SI’s and EA’s algorithms, to solve the CMOOP, replacement for the 

conventional approaches, for example, Dhiman and Kumar (Dhiman & Kumar, 2018) 

solving a CMOOP by using a multi-objective spotted hyena optimizer (MOSHO), to 

check the validity of this optimizer for real life optimization problem. Lobato, Machado 

and Steffen (Lobato, Machado, & Steffen, 2016) used the multi objective optimization 

differential evolution algorithm (MODE) for solving CMOOP for cancer chemotherapy 

treatment. A modified multi-objectives particle swarm optimization algorithm (M-

MOPSO) proposed by Zihin et. al. (Mohd Zain, Kanesan, Chuah, Dhanapal, & Kendall, 

2018), to solve the CMOOP, and explained how it’s avoid the weakness of MOPSO 

algorithm especially for optimization problem with high dimension. That’s because the 

increasing in the complexity of optimization problem put many of challenges for using 

conventional approaches.  
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1.3 Problem Statement 

For an effective chemotherapy treatment, the dose must reach the site of the 

cancer in an optimal amount that caused the death of cancerous cells and reducing the 

tumor size, at the same time avoiding the drug resistance that happens at low 

concentration but increasing in the drug concentration will caused the death for the 

normal cells, that influence negatively on the patient's health. 

 

1.4 Objectives of Research 

The main objectives of this work: 

1. Minimize the drug concentration and the tumor cells. 

2. Validate the hybrid method (optimal control theory combined with swarm and 

evolutionary algorithm) improve the quality of the result. 

 

 

1.5 Scope of Study 

The scope of this work is solving a selected mathematical model for cancer 

chemotherapy optimization problem, by three optimization methods, that aimed to reduce 

the tumor size and the drug concentration, to check the validate of the hybrid proposed 

methods, comparing with the current methods that used purely SI and EA algorithms to 

solve CMOOP. 
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1.6 Thesis Organization 

After given an introduction and explained the research project objectives in chapter 

one, the rest of this work organized as follows, chapter two has the literature review, 

chapter three contains the methodology and explain the mathematical calculations that 

used in this work, chapter four have the results and that discussion, finally the conclusion 

and the recommendations for future work explained in chapter five.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

This chapter explain the different approaches of the optimal control, some of 

numerical methods, and the multi objectives optimization problem, also show the 

pseudocode for the SI and EA algorithms that used in this work. 

2.2 Optimal Control  

Optimal control, it’s an extension from the calculus of variations, whereas the 

optimal control dealing with maximization or minimization problem to find the optimum 

result. Mainly the optimal control problem consisting of two kind of functions: 

a- Cost Function or objective function. 

0

( , ) ( ( ), ( ), )
ft

f f

t

J x t L x t u t t dt= +                                                                (2.1) 

b- Dynamical system or states Functions: that’s describe the behaviors of the states 

with the time. 

( ( ), ( ), )x f x t u t t=                                                                                  (2.2) 

Whereas the 1 2[ , ,......, ]T
nx x x x=  is a states vector with 𝑛 of states functions, and 

1 2[ , ,....., ]mu u u u=   is the control vector with 𝑚 control functions, 𝑥𝑓 is the final values 

for the state vector, 𝑡0 and 𝑡𝑓 are the initial and final time. 

Subject to kind of functions add to the previous functions called path constraints 

functions: 

 0( ( ), ( )) 0, [ ]fh x t u t t t t                                                                      (2.3) 
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Simply, the optimal control is finding the optimum result of the control function 

that maximize/minimize the cost function, at the same time achieving the path and states 

constraints as shown in Figure 2.1. 

  

Figure 2.1: Explained Optimal Control Problem 

The optimal control methods basically classified into two approaches, direct and 

indirect methods, the following Figure 2.2 shows these approaches and the popular 

numerical methods that are using in each approach. 

 

Figure 2.2: Flow Chart for the Different Approaches of The Optimal Control 
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The direct method process starts by discretizing the control problem, after that using 

the NLP techniques to solve the problem and find the results, for that it’s called stochastic 

approach. But in the indirect approach, the optimal control problem converted to a 

boundary value problem by building the Hamiltonian equation: 

( , , , ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( ( ), ( ), )T TH x u t L x t u t t t f x t u t t t h x t u t t  = + +                        (2.4) 

Then derive it with respect to states variables to find the co-states functions Eq 2.5, 

and the control functions Eq 2.6, now the problem became a boundary value problem 

(BVP), whereas it’s consists of ODEs equations combined from the states and co-states 

functions, after that, the indirect numerical methods use to solve the BVP and find the 

optimal results for the control variables, for that it’s called a deterministic method.  

n

H
n

x



=


                                                                                                                                (2.5) 

m
m

H
Hu

u


=


                                                                                                                 (2.6) 

2.3  Multi Objectives Optimization Problem (MOOP) 

Nowadays the complexity of the optimal control problem increases for different 

applications, whereas the optimal control problems shifted from a single objective 

optimization problem that aimed to minimized or maximized only one objective, to 

CMOOP that aimed to minimized or maximized two or more of objectives and achieve 

the constraints. 

1 2max/ min ( ) [ ( ) ( ) ( )]nJ x j x j x j x=                                          (2.7) 

subject to inequality and equality constraints: 

0, 1,2,..........,ih i r =                                                                                                          (2.8) 
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0, 1,2,..........,ig i e= =                                                                                                           (2.9) 

Whereas 𝐽(𝑥) is the objectives vector, 𝑛 is the number of the objectives function.  

Nowadays, most of engineering and real-life optimal control problem are CMOOP, 

this kind of problems have a group of solutions called pareto optimal set, as shown in 

Figure 2.3 the pareto front or the set of pareto optimal solutions appeared in red points, 

are a combination form the non-dominated solutions by any other feasible solutions. 

 

Figure 2.3: Pareto Optimal Front 

Solving the CMOOP not easy by the traditional ways, so with the development and 

the ability increasing for the computers, the researchers start using unconventional 

methods that based on swarm and evolutionary algorithms, that based on the stochastic 

method to solve CMOOP and finding the Pareto optimal front.   

2.4 PSO Algorithms 

Particle Swarm Optimizer (PSO) proposed first time in 1995 by Kennedy and 

Eberhart, PSO algorithm uses the swarm intelligence (SI) that inspired from the swarm 

bird’s movement during searching on the food, mathematically it simulates this social 

behavior to find the best results that achieves the objectives within the path constraints. 

Figure 2.4 shown the flow chart of the basic PSO algorithm. 
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PSO can be applied for verity range of applications like neural network training, 

structural optimization, and nowadays it’s uses to solve CMOOP for the optimal control 

applications.  

 

Figure 2.4: Particle Swarm Optimizer PSO 

 

MOPSO and M-MOPSO algorithms, that have been used in this research project 

and explained later in this section are basing on some of PSO algorithm, that build to 

solve the MOOP. 

2.4.1 MOPSO Algorithm 

Multi-Objectives Particle Swarm Optimization (MOPSO) a mathematical 

algorithm based on PSO, with some of modifications on the basic PSO algorithm, the 

MOPSO algorithm formed to be able for handling with MOOP and finding the pareto 

optimal set. Following are the main modifications that have been applied on PSO to build 

the MOSPO algorithm happened on: External archive Maintenance, Select Global 

Leaders, Update personal best, Mutation operator (perturbation).  
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MOPSO proposed first time in 2002 by Coello and Lechuga, and for more 

information you can check this reference (Coello & Lechuga, 2002), Following is the 

pseudocode of the MOPSO algorithm: 

BEGIN 

 

For 𝒊=1 to 𝒏 (Amount of particles) 
                   Initialize Position (𝑖)  
                     Initialize Velocity (𝑖) 

          End For 
                    Initialize External Archive 

                      Penalty = 0 

 

Do While (stopping criterions not be satisfied)  

         
 For 𝒊=1 to 𝒏 (Amount of particles) 
                   Select Members for External Archive 

                     Calculate New Position (𝑖) and new Velocity (𝑖) 
                     Update Best Position 

          End For 

 

End While  

 

As shown, MOPSO start initialization for the position and the velocity of each 

particle and initialize the external archive extra on the normal procedure of PSO, then 

start the searching procedure until reached stopping criteria’s, like maximum number of 

iterations. 

2.4.2 M-MOPSO Algorithm 

Modify Multi-Objectives Particle Swarm Optimization (M-MOPSO), almost have 

the same procedure of MOPSO algorithm, but with some enhancements and 

modifications on the searching and archiving system, to increase the efficiency and avoid 

the weak points of MOPSO like constraints handling capability and convergence 

especially for dealing with the high dimensional problems. For more information, Zihin 

et. al.(Mohd Zain et al., 2018) explained in details the procedure of M-MOPSO and 

discussed the differences points with the MOPSO.   
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2.5 EA Algorithms  

Evolutionary Algorithms (EA), one of the important algorithms in the optimization 

world, and it's can be using to solve a wide range of problems for different life 

applications. EA algorithms it’s a mathematical simulation for the mechanism of natural 

selection to solve a hard problem that almost can't be solved by a conventional method 

(Yu & Gen, 2012). The following Figure 2.5, shown the flowchart of basic EA algorithm. 

 

Figure 2.5: Evolutionary Algorithm EA 

As it’s appeared, EA mainly has four steps:  

1- Initialization: Randomly population initialization.  

2- Selection: Evaluate members of the population according to fitness function 

and find the best members. 

3- Genetic operators: The Crossover and Mutation processes are using in this 

step to build the new next generation. 

4- Termination: Stopping creations, like maximum number of iterations. 

MODE and MOEAD algorithms, that have been used in this research project and 

explained later in this section are basing on some of EA algorithms that build to solve 

and find the pareto optimal front for MOOP. 
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2.5.1 MODE Algorithm 

Multi-Objective Differential evolution (MODE), one of the algorithms that 

employed the EA’s to solve MOOP. This algorithm based on Differential evolution 

algorithm (DE) that proposed first time by Storn and Price (Storn & Price, 1997), and it’s 

one of EA’s algorithms. Basically, DE is a structure for generating the trial parameters 

vectors, that by adding the weighted difference between two vectors of the population, to 

a third vector. 

Figure 2.6 shows the flowchart of MODE algorithm. Simply, it begins with random 

initialization for the populations, then DE procedure starts for selection and the generating 

for the next generation, then through the non-dominated step, all the dominated solutions 

are removed from the populations, and this procedure repeated until meet one of stopping 

creation.  

 

Figure 2.6:  Flowchart of the MODE Algorithm 
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2.5.2 MOEAD Algorithm  

Multi-Objective Evolutionary Algorithm based on decomposition (MOEAD), 

proposed first time by Zhang and Lie (Zhang & Li, 2007). Simply, MOEAD decomposes 

the multi-objective optimization problem into of many single-objective problems and 

solve them at the same time.  

MOEAD algorithm has less computational cost compared with non-dominated 

sorting genetic algorithm, whereas It uses the information of solutions of neighborhood 

subproblems. Has many of successful applications in many fields, like smart phone, and 

social network problems, flowshop and scheduling problems…etc.    

MOEAD basically has this procedure: 

1- Decomposed the MOOP into several scalar subproblems, and the weighting 

sum approach is the most commonly method that can be used. 

2- Then, all scalar subproblems are optimizing at the same time.  

3- The information’s are taking from its neighboring subproblems, the 

optimization of those decomposed subproblems results in a low computational 

cost.  

4- This procedure repeated until reached one of stopping creations. 

For more information about MOEAD, Taghian el. Al. (Taghian, 2015) explained 

in details the work principle of MOEAD with addition of the flowchart, and described 

the different methods that can be used for decomposition process.  
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2.6 Penalty Approach to Handling Inequality State Constraint 

Handling with the inequality constraints, it’s one of the big challenges faced SI’s 

and EA’s algorithms for solving CMOOP, to deal with this there is a need to convert the 

CMOOP to un-constrained optimization problem. Penalty approach is the most popular 

method for solving the constrained optimization problem until now, because of its 

simplicity and theoretical reliability (Luenberger, 2003).  

The main idea for penalty approach is converting the constrained optimization 

problem to un-constrained optimization problem, based on the amount of constraint 

violation that present in a certain solution, there is a certain value will add or subtract 

from the objective function. 

Mathematically, Eq 2.7 subject to inequality constraint Eq 2.8, by applying the 

penalty approach it becomes: 

 max/ min, . ( )z zJ p x = +                                                                        (2.10) 

Where, 𝐽𝑧 it’s the objective function, 𝑧 it’s the number of objectives functions, 𝜇 

multiplier factor, and 𝑝(𝑥) the amount of penalty subject to: 

  

0, if constraint is satisfied
( )

, if constraint is violated
p x

d


= 


                                                   (2.11) 

Whereas, 𝑑 is the amount of constraint violation at a certain point. 

However, the penalty has two approaches, first one is interior method that penalize 

infeasible solutions, whereas, the value of penalty term is chosen to be small at points 

away from the constraint boundaries and it’s will goes to infinity when approached the 

constraint boundaries, second one is the exterior approach, which penalize feasible 
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solutions, it’s start with an infeasible solution and then move towards the feasible region. 

Most of researchers prefer using the exterior approach, because there is no need for initial 

feasible solution (Coello Coello, 2002).  
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CHAPTER 3: METHODOLOGY 

 

3.1 Introduction 

This chapter explain the Methodology of this work, shows the solution procedure, 

and presents the Mathematical model, also describe the controller design steps, and shows 

the value of main parameters for the PSO and EA algorithms that have been used in this 

work. 

3.2 Mathematical Model  

This work  used the mathematical model that proposed by (De Pillis & Radunskaya, 

2003), the reasons for selecting this model being in the main characteristic of this model 

whereas this mathematical model doesn't simulate a behavior of a specific type of cancer, 

also there many of research used this mathematical model with or without addition. This 

mathematical model is very important and according to this research (Itik et al., 2009) for 

developing an effective schedule of the chemotherapy treatment. 

1 1 2 3 2

2 2 4 3

1 1 1

(1 )

(1 )

T r T b T c IT c TN a u

N r N b N c TN a u

IT
I s c IT d I a u

T




= − − − −

= − − −

= + − − −
+

              

0

0

0

(0)

(0)

(0)

T T

N N

I I

=

=

=

                                     

(3.1)

(3.2)

(3.3)

                           

The situation of tumor cells is simulating by 𝑇, whereas as the behavior of the 

normal cells represented by symbol 𝑁, and the amount of immune cells is representing 

by 𝐼, with the time 𝑡. While 𝑢 denote to the drug concentration with the time.  

The different properties in this model represented by a different group of 

parameters, whereas, 𝑎𝑖 represented the cells death rate caused by the chemotherapy, 

carrying capacity represented by group parameters 𝑏𝑖, group parameters 𝑐𝑖 represented 
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the cells competition rates, cells growing rate appeared by group parameters 𝑟𝑖, immune 

influx, threshold rates and  response are represented by 𝑠, 𝛼, 𝜌 respectively.  

The following Table 3.1 explain and shows the rang of the different parameters that 

used in the mathematical model, whereas the values of all parameters are positive. 

Table 3.1: Range of The Different Parameters of The Mathematical Model 

Parameters Description Range 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑 Cells Death Coefficients 

Response by the chemotherapy. 

𝑎2 ≥ 𝑎1 ≥ 𝑎3 

0 < 𝑎𝑖 < 0.5 

𝒃𝟏, 𝒃𝟐 Carrying Capacities per Capita 𝑏1 ≤ 𝑏2 

𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒 Cells Competition Rates 𝑐𝑖 ≥ 0 

𝒅𝟏 Cells Death Rate 𝑑𝑖 ≥ 0 

𝒓𝟏, 𝒓𝟐 Cells Growth Rate 𝑟2 < 𝑟1 <
𝑐2𝑠

𝑑1
+ 𝑐3 

𝒔 Influx Rate of Immune cells 0 ≤ 𝑠 ≤ 0.5 

𝜶 Immune Threshold Rate 0 ≤ 𝛼 ≤ 0.5 

𝝆 Immune response per capita 0 ≤ 𝜌 ≤ 1 

 

 

3.3 Objectives Functions 

As mentioned before this work aimed to minimize the tumor size and the drug 

concentration: 

𝑚𝑖𝑛 ∫ 𝑇 𝑑𝑡                                                                                                                  (3.4)    

𝑚𝑖𝑛 ∫ 𝑢 𝑑𝑡                                                                                                               (3.5) 

At the same time keep the concentration of the normal cells in a safe level by adding 

a state constraint: 

𝑁 ≥  0.75                                                                                                                     (3.6) 
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3.4 Optimization Methods Description 

Solving CMOOP it’s not an easy job especially by using the classical methods for 

that many of researchers used un-conventional methods that based on Particle Swarm 

Optimization (PSO) and Evolutionary Algorithms (EA) to solve this kind of multi 

objectives optimization problem as a replacement for the conventual method optimal 

control theory. 

 As mentioned before this work aimed to solve the CMOOP by a hybrid methods 

that combined between swarm intelligence (SI) algorithms and the optimal control theory 

(OCT). There three methods used in this work: 

1- Method 1: The CMOOP solved by untraditional methods that used purely SI 

and EA algorithms, (M-MOPSO, MOPSO, MOEAD, MODE). 

2- Method 2: The CMOOP solve by using a hybrid algorithm, that combined 

between OCT with SI and EA algorithms, but the state constraint will be 

achieve by the SI and EA. 

3- Method 3: The CMOOP will solve by using the hybrid algorithm, but this time 

the state constraint included in the optimal control theory, whereas the only job 

for the SI and EA algorithms is finding the Pareto Optimal set.  

In the first method the objectives function and the state constraint will achieve by 

the SI and EA algorithms, but in the second and third method the hybrid algorithm will 

be use, in method 3 the objectives or performance index and state constraint will achieve 

by the indirect method, while in method 2, indirect method will be achieve the 

performance index, while the state constraint achieved by the SI’s and EA’s algorithms.  
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The following Figure 3.1 have the methodology flow chart for this research project: 

Figure 3.1: Methodology Flow Chart 
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3.5 Optimal Controller Design and Necessary Conditions  

The optimal control theory as explained before in section 2.3 has two approaches, 

this work used Bang-Bang controller that classified under the indirect approach 

(Deterministic Method) that’s take the benefit from Pontryagin maximum / minimum 

principle (PMP). 

The following steps are explaining the Calculations of the optimal control theory:  

• The two objectives functions Eq 3.4 and Eq 3.5 combined together in a single 

equation by using the weighting method. 

               1 2minK w Tdt w udt= +                                                                         (3.7) 

Whereas;  1 21w w= −                                                                                             (3.8) 

• Converted the Eq 3.7 from Bolza form to Mayer form, by supposed another 

state: 

                  1 2K w T w u= +                                                                                            (3.9) 

• The inequality Eq 3.6 state constraint became: 

                  0.75 0C N= −                                                                                            (3.10) 

• The Hamiltonian equation for method 2: 

                2 1 2 1 2 3 4MH w T w u T N I K   = + + + + +                                                   (3.11) 

• Hamiltonian equation for Method 3: 

              3 2M MH H C= +                                                                                       (3.12) 
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• Co-states functions for Method 2: 

         
1 2 1 2 2 1 1 4 2 32

H
r r b N c T c T

N
    


= − = − + + +


                                                              (3.13) 

( )
2 1 1 4 2 1 2 1 1 2 2 2 3 3 3 1 1 422

H I
w c N r r b T c I c N c I w

T T


        



 
= − = − + − + + + − + − 

  + 

          (3.14) 

3 2 2 3 3 1 3 1

H T
c T c T d

I T


    



  
= − = − + + 

 + 
                                                      (3.15) 

4 0
H

K



= − =


                                                                                                        (3.16) 

• The co-states of method 3 are the same of method 2, only the first co-state 

function has the constraint multiplier:  

           1 2 1 2 2 1 1 4 2 32
H

r r b N c T c T
N

     


= − = − + + + +


                                                      (3.17) 

 

• Control or switching function, that found by deriving the Hamiltonian equation 

with respect to control variable 𝑢 : 

  2 4 3 1 2 2 1 3_ (1 )
H

switching function w a a a
u

   


= = + − − −


                                  (3.18)                                 

• The value of the constraint multiplier   , that found by deriving the switching 

function once with the time. 

 

 

 (3.19) 

( )

( )

1 1 1 4 2 1 2 1 1 2 2 2 3 3 3 1 1 42
3

2 2 3 3 1 3 1 2 1 2 2 1 1 4 2 3

1
2 2

1 2

I
a w c N r r b T c I c N c I w

a T

T
a c T c T d r r b N c T c T

T


        




       



   
  = − − + − + + + − + − 

  +   

  
− − + + − − + + +   

+  
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• Whereas:  

    
1, 0.75 0

0,

N

otherwise




− 
= 


                                                                               (3.20) 

• Bang-bang control to minimize the objectives function: 

min

max

, _ 0

, 0

, _ 0
b

u switching function

u u C

u switching function




= 
 

                                                       (3.21)

 

• The control value inside the boundary arc period, when the state value reached 

the state constraint, 0C  equal: 

 2 2 4
3

1
(1 )bu r N b N c TN

a
= − −                                                                                 (3.22) 

 

• The value of control variable  min maxiu u u  between or equal the minimum 

𝑢𝑚𝑖𝑛= 0, and the maximum limit 𝑢𝑚𝑎𝑥=0.1, inside time periods of  the 

simulation time 1[ ]i i it t t +  that discretized into N  of intervals from the first 

day 0t  until the final day ft   of the treatment period such that: 

     0 0 1 ..... ..i N ft t t t t t=      =   

    1,2,.........,i N=   
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3.6 Constraint Handling Technique for Method 1 and Method 2 

As mentioned in the beginning of this chapter, the state constraint in method 1 and 

method 2 achieved by SI’s and EA’s algorithm, by using the penalty method that 

explained before in section 2.6, whereas the CMOOP, converted to un-concentrated 

MOOP. After applied the penalty method on the Eq 3.4 and Eq 3.5 with the state 

constraint Eq 3.6 became: 

1 1min( ( )) ( ) ( ( ))t J t p C t = +                                                                                     (3.23) 

2 2min( ( )) ( ) ( ( ))t J t p C t = +                                                                                       (3.24) 

Whereas, 𝐽1 is the first objective function Eq 3.4, 𝐽2 is the second objective function 

Eq 3.5, and 𝜇 is the penalty factor. 𝑝(𝐶(𝑡)) it’s the penalty value such that: 

0, 0
( )

,
i

i

C
p t

C else


= 


                                                                                                   (3.25) 

Whereas, [1 ]i N  , 𝑁 is the number of time discretization.   
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter explain the equipment’s that have been used in this work, also present 

and discuss the results of the three Cases Study, the pareto optimal front and the results 

of the best point combining with the number of iterations that used to discover out. 

 

4.2 Equipment’s: 

The results of this work carried out by using a desktop computer, core i7 with 8G 

RAM, and MATLAB R2016a is the software that had been used. 

 

4.3 Case Study 1:  

The mathematical model that used in this work has 14 parameters there are shown 

and explained in section 3.2, the values of some these parameters are the main differences 

with the three cases. The following Table 4.1 show the values that have been used in case 

study 1: 

 

Table 4.1: Parameter Values for Case Study 1 

Parameter 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑐1 𝑐2 𝑐3 𝑐4 𝑟1 𝑟2 𝑑1 α ρ 𝑠 

Value 0.2 0.3 0.1 1 1 1 0.5 1 1 1.5 1 0.2 0.3 0.01 0.33 

           

The following Figure 4.1 shows the Pareto Optimal Front (POF) of case study 1 for 

the three methods that mentioned before in section 3.4 by using M-MOPSO algorithm, 

Figure 4.2 presents the results of POF using MOPSO algorithm, figure 4.3 display the 
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POF results for the three methods using MOEAD algorithm, and the POF results that 

generated by using MODE algorithm shown in figure 4.4. The red points represent the 

results of POF for method 1, the green points represent the results of POF for method 2 

and POF of method 3 represented by blue points. 

The POF curves for each method of the three almost the same with the all used 

algorithms. In general, the results of POF for method 3 are the closest to the origin point 

comparing with the POF results of other two methods, followed by the results of method 

2 that’s apparently better than the POF curve of method 1 that used purely SI and EA 

algorithms to solve the CMOOP. This result appeared in the all figures (4.1- 4.4) of POF 

for the first case study.  

This result shows increasing in the results efficiency by the hybridization between 

the Augmented Lagrangian Approach (ALA) and the SI and EA algorithm, especially in 

method 3 whereas the state constraint achieved by the optimal control theory, this thing 

removed all the challenges that face the SI and EA for dealing with the sate constraint, 

and that’s make the search space smaller than in method 1. Despite of this, the 

hybridization in Method 2 also shows results improvement comparing with purely 

algorithms in method 1. 
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Figure 4.1: Pareto Optimal Set for Case1 By Using M-MOPSO 

 

 

 

Figure 4.2: Pareto Optimal Set for Case1 By Using MOPSO 
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Figure 4.3: Pareto Optimal Set for Case1 By Using MOEAD 

 

 

Figure 4.4: Pareto Optimal Set for Case 1 By Using MODE 
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Figures (4.5 - 4.8), shows the curves of the best point with the number of iterations 

for the three methods that explained before in section 3.4 using M-MOPSO, MOPSO, 

MOEAD, and MODE sequentially. Whereas the results of method 1 appears by the red 

line, the results of method 2 represent by the green line, and the blue line shows the results 

of method 3. 

Method 1 by using M-MOPSO have taken more than 120 iterations until discovered 

the best point as appears in Figure 4.5, as shown in Figure 4.6 method 1 needed 150 

iterations using MOPSO to find the best point, and more than 50 iterations have been 

used for method 1 by using MOEAD as display in Figure 4.7, finally, around 30 iterations 

needed for MODE in method 1 to figured out  the best point of its own, while the 

hybridizations methods 2 and 3 they used just two iterations within all algorithms until 

discovered the best point. 

As shown, Method 2 and 3 have used a number of iterations much less than used 

by Method one. This result shows how the hybridizations methods reached the best point 

faster than that used a purely SI and EA algorithms. 

 

Figure 4.5: Best Point vs Iterations Case 1 By Using M-MOPSO 
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Figure 4.6: Best Point vs Iterations Case 1 By Using MOPSO 

 

 

Figure 4.7: Best Point vs Iterations Case 1 By Using MOEAD 
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Figure 4.8: Best Point vs Iterations Case 1 By Using MODE 

 

The following Table 4.2, summarized the best point results of case study 1, for the 

three methods, and it’s shows the best points for each method, and the distance between 

the origin point and the best point, the number of iterations that used, also the tumor size 

and chemotherapy concentration for that point. 

As appears, method 3 have the lowest point between the three methods, followed 

by the best point of method 2 that’s shown better than of method 1.  Also, the results 

difference between SI’s and EA’s algorithms, for the chemotherapy and tumor 

concentrations in method 1 is clearly appeared, while in method 2 and 3 the results almost 

the same regardless the algorithm that have been used. This improved how the 

hybridizations methods became robust more than the purely method.  
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Table 4.2: Final Results for Case Study 1 

Method Algorithm 
Best 

Distance 

No. 

Iterations 

Tumour 

Concentration 

Drug 

Concentration 

1st 

Method 

M-MOPSO 10.68 160 6.303 8.622 

MOPSO 10.67 123 6.127 8.375 

MOEAD 10.68 376 5.891 8.848 

MODE 10.71 165 5.911 8.911 

2nd 

Method 

M-MOPSO 10.39 2 6.44 8.159 

MOPSO 10.39 2 6.44 8.159 

MOEAD 10.39 2 6.44 8.159 

MODE 10.39 2 6.44 8.159 

3ed  

Method 

M-MOPSO 9.875 2 5.68 8 

MOPSO 9.82 2 5.69 8 

MOEAD 9.875 2 5.789 8 

MODE 9.82 2 5.69 8 

 

 

4.4 Case Study 2:  

In Case Study 2, the values of the parameters are the same that have been used in 

case study 1, only with a change in the value of the influx rate 𝑠 to became equal 0.31. 

The main difference between case study 1 and 2 is the value of source rate of immune 

cells. 

The following figures shows the results of the POF for case study 2, that generated 

for all Methods, but every time assisted with different algorithm, Figure 4.9 have the POF 

by Using M-MOPSO, the results in Figure 4.10 by using MOPSO, Figure 4.11 present 

the results of the pareto optimal front by using MOEAD, Finally the results in Figure 4.12 

by using MODE. 
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As appears, the hybrid methods have a better POF results comparing with that’s in 

purely method, whereas, the curve of POF for method 3 has the shortest distance with the 

origin point, followed by the POF of method 2, while the results of POF for method 1 has 

the longest distance with the origin point.  

 

Figure 4.9 Pareto Optimal Set for Case 2 By Using M-MOPSO 

 

Figure 4.10: Pareto Optimal Set for Case 2 By Using MOPSO 
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Figure 4.11: Pareto Optimal Set for Case 2 By Using MOEAD 

 

 

Figure 4.12: Pareto Optimal Set for Case 2 By Using MODE 

 

Figures (4.13 – 4.16), shows the curves of the best point with the number of 

iterations of case study 2 for the three methods that explained before in section 3.4 using 

M-MOPSO, MOPSO, MOEAD, and MODE sequentially. Whereas the results of method 
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1 appears in the red line, the results of method 2 represent by the green line, and the blue 

line shows the results of method 3. 

As appears in Figure 4.13, M-MOPSO have taken more than 120 iterations in 

method 1 until discovered the best point, as shown in Figure 4.14 method 1 needed 90 

iterations using MOPSO to find the best point, and around 35 iterations have been used 

for method 1 by using MOEAD algorithm as display in Figure 4.15. Finally, more than 

600 iterations needed for MODE in method 1 to figured out the best point of its own as 

appear in Figure 4.16, while the hybrid methods 2 and 3 used just two iterations within 

all algorithms until discovered the best point.  As shown, Method 2 and 3 have used a 

number of iterations much less than used by Method one. This result shows how the 

hybridizations methods reached the best point faster than that used a purely SI and EA 

algorithms. 

 

 

Figure 4.13:  Best Point vs Iterations Case 2 By Using M-MOPSO 
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Figure 4.14:  Best Point vs Iterations Case 2 By Using MOPSO 

 

 

Figure 4.15: Best Point vs Iterations Case 2 By Using MOEAD Univ
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Figure 4.16: Best Point vs Iterations Case 2 By Using MODE 

 

The following Table 4.3, summarized the best point results of case study 2, for the 

three methods that explained before in section 3.4, and it’s shows the best points for each 

method, and the distance between the origin point and the best point, the number of 

iterations that used, also the tumor size and chemotherapy concentration at that point. 

As appears, the best point of method 3 has the lowest distance with the origin point, 

between the results of best points for the three methods, followed by the best points of 

method 2, while the best points of method 1 have the longest distance with the origin. 

This result shows how the efficiency of the results increased by hybridization between 

optimal control theory and un-conventional methods (SI and EA algorithms). 

Another result, as appears from Table 4.3, The reduction in the immune source rate 

in case study 2, caused increases in the volume of chemotherapy compared with that have 

been found in case study 1, that shown in Table 4.2, whereas the job of chemotherapy is 

assisting the immune system. The chemotherapy will be deliver to the tumor site until the 

immune system becomes strong enough to kill and fight against the tumor alone. 
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Table 4.3: Final Results for Case Study 2 

Method Algorithm 
Best 

Distance 

No. 

Iterations 

Tumour 

Concentration 

Drug 

Concentration 

1st 

Method 

M-MOPSO 12.714 118 6.235 11.08 

MOPSO 12.70 155 6.234 11.06 

MOEAD 12.71 39 6.309 11.047 

MODE 12.756 640 5.838 11.341 

2nd 

Method 

M-MOPSO 12.47 2 5.63 11.124 

MOPSO 12.47 2 5.641 11.12 

MOEAD 12.48 2 7.198 10.198 

MODE 12.52 2 7.634 10.13 

3ed  

Method 

M-MOPSO 11.87 2 4.479 11 

MOPSO 11.96 2 4.7 11 

MOEAD 11.65 2 5.88 10 

MODE 11.96 2 4.71 11 

 

 

4.5 Case Study 3 

 

The parameters values in case study 3 are the same in case study 1, just with 

changing in the value of immune response rate ρ reduced to became equal to 0.02. 

The following figures (4.17 – 4.20) shows the results of the POF’s for case study 

3, that generated for all three methods, but every time assisted with different algorithm, 

M-MOPSO, MOPSO, MOEAD and MODE sequentially. The results of POF for method 

1 represented by red points, the green pointes represent the results of POF for method 2, 

and the blue points represent the results of POF for method 3. 

The results of the hybrids methods 2 and 3 shown more efficient than un-hybrid 

method Whereas the results of POF for method 1 are the worst between the POF’s results 

of the three methods, where it has the longest distance with the origin point, and the POF 
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of method 3 has the lowest distance with the origin point, followed by the POF results of 

method 2. This proved how the hybridization between un-conventional method's (SI, EA) 

and the conventional method (OCT) increase the results quality. 

Figure 4.17:  Pareto Optimal Set for Case 3 By Using M-MOPSO 

Figure 4.18: Pareto Optimal Set for Case 3 By Using MOPSO 
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Figure 4.19:  Pareto Optimal Set for Case 3 By Using MOEAD 

 

  

Figure 4.20: Pareto Optimal Set for Case 3 By Using MODE 

The curves of the best point with the number of iterations for case study 3 shown 

in Figures (4.21 – 4.24), using M-MOPSO, MOPSO, MOEAD, and MODE sequentially, 

for the three methods. Whereas the results of method 1 appear in the red line, the results 

of method 2 represent by the green line, and the blue line shows the results of method 3. 
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As shown, method 1 by using M-MOPSO have taken more than 100 iterations until 

discovered the best point as appears in Figure 4.21, method 1 needed 80 iterations using 

MOPSO to find the best point as shown in Figure 4.22, and around 75 iterations have 

been used for method 1 by using MOEAD as display in Figure 4.23. Finally, more than 

120  iterations needed by MODE in method 1 to figured out the best point of its own, as 

shown in Figure 4.24, while the hybridizations methods 2 an 3 they just used two 

iterations within all algorithms until discovered the best point. This results as like the 

previous, shows and proves how the hybridizations methods became faster than the pure 

method, and the quality of the best point points became higher. 

 

Figure 4.21:  Best Point vs Iterations Case 3 By Using M-MOPSO 
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Figure 4.22: Best Point vs Iterations Case 3 By Using MOPSO 

 

 

 

Figure 4.23: Best Point vs Iterations Case 3 By Using MOEAD 
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Figure 4.24:  Best Point vs Iterations Case 3 By Using MODE 

 

The results summary of the best point for case study 3, shown in the following 

Table 4.4, it shows the best points for each method, and the distance between the origin 

point and the best point, the number of iterations that used, also the tumor size and 

chemotherapy concentration at that point. 

As shown in Table 4.4, the best points of method 1 are the farthest from the origin 

point, while the best points of method 3 are the lowest to the origin point, followed by 

the results of method 2. The best point's result for the hybridization methods has the 

lowest amount of chemotherapy and tumor size, these results show and proved how the 

integration between the augmented Lagrangian in OCT with the SI's and EA's algorithms 

reducing the searching efforts and increase the results efficiency. 
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Table 4.4: Final Results for Case Study 3 

Method Algorithm 
Best 

Distance 

No. 

Iterations 

Tumour 

Concentration 

Drug 

Concentration 

1st 

Method 

M-MOPSO 10.28 101 6.209 8.199 

MOPSO 10.27 122 6.193 8.199 

MOEAD 10.27 95 6.191 8.199 

MODE 10.28 91 6.126 8.265 

2nd 

Method 

M-MOPSO 9.994 2 5.772 8.159 

MOPSO 9.994 2 5.772 8.159 

MOEAD 9.994 2 5.772 8.159 

MODE 9.994 2 5.772 8.159 

3ed  

Method 

M-MOPSO 9.578 2 5.267 8 

MOPSO 9.513 2 6.441 7 

MOEAD 9.578 2 5.267 8 

MODE 9.513 2 6.441 7 

 

The following Figures (4.25 – 4.27) show the best point for method 1, method 2 

and method 3, sequential, of case study 3, by using MODE algorithm that used the lowest 

number of iterations compared with other algorithms in method 1, part A presented the 

cells concentrations, red line presented the tumor cells, blue line represent the 

concentration of normal cells, and yellow line represents the immune cells concentration. 

Part B shows the time schedule for the chemotherapy. 
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Figure 4.25: Best Point of Case 3, Cells Concentrations (A) and Drug 

Concentration (B) for Method 1 Using MOEAD 

 

 

Figure 4.26: Best Point of Case 3, Cells Concentrations (A) and Drug 

Concentration (B) for Method 2 Using MOEAD Univ
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Figure 4.27: Best Point of Case 3, Cells Concentrations (A) and Drug 

Concentration (B) for Method 3 Using MOEAD 

As shown, the chemotherapy applied and that caused death of the tumor cells, until 

the immune system become strong enough to fight alone against the tumor cells. As 

appears in Figure 4.25 (B) and Figure 4.26 (B) dose schedule of method 1 and 2, the 

chemotherapy applied continuously without any break. While, as appears in Figure 4.27 

for method 3, when the normal cells concentration reached the safe limit and the state 

constraint Eq 3.6 became true, chemotherapy treatment stopped to give a chance for the 

normal cells to grow and the concentration of normal cells become beyond the safe level, 

for reducing the toxicity, then the chemotherapy applied again until the end of the 

treatment period. 

Method 3 chemotherapy profile Figure 4.27 (B) is more real than in method 1 and 

2, it’s similar to the real life chemotherapy schedule that called chemotherapy protocol 

maximum tolerated dose (MTD) , whereas, drug dose is apply in a maximum allowable 

level followed by break after each round of the treatment, to reduce the toxicity and give 

time for the normal cells for growing (Ledzewicz, Schattler, Gahrooi, & Dehkordi, 2013). 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 

This research project proposed a hybrid optimal control swarm intelligence to solve 

a CMOOP, two hybrid methods proposed, and the performance of these methods 

compared to the usual method (purely SI’s and EA’s algorithms), by solved a cancer 

chemotherapy mathematical model that proposed by Pillis and Radunskaya (De Pillis & 

Radunskaya, 2003), to minimize the drug and tumor cells concentrations with a state 

constraint to keep the concentration of the normal cells above some safe level. M-

MOPSO, MOPSO, MODE, MOEAD are the four algorithms that have been used in this 

research project, the main results show as follow:  

1- The hybrid methods (Method 2 & 3) used a much smaller number of iterations 

compared with that used by the purely SI and EA algorithms (Method 1).  

2- Method 3, whereas the constrains including in calculations of the optimal control 

theory, got the best results comparing with that found by Method 1 and 2. 

3- The results of method 2 are best than in Method 1. 

This is leading to say the performance of hybrid techniques that combined between 

the optimal control theory and SI and EA algorithms is better than the performance of the 

usual methods that used purely SI and EA algorithms, for solving CMOOP. Hope these 

results will be helpful for clinicians or other people who are doing research on the 

chemotherapy treatment, that’s finally aimed to reduce the suffering of the patients during 

the treatment period and save they lives. 
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5.2 Future Work 

Using these hybrid methods to build an effective schedule for the chemotherapy 

treatment. And compare the result with treatment schedule that used in real life.  
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