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DEVELOPMENT OF COMPUTATIONAL TOOLS FOR AFRICAN OIL PALM

GENOME AND GENE EXPRESSION ANALYSES

ABSTRACT

Continuing improvements in the yield of oil palm requires knowledge of the genes and

mechanisms that regulate oil accumulation. This is believed attainable with the sequencing

of the oil palm genome. However, Sime Darby’s oil palm genome assembly is far from

complete. Here I look at ways to improve the genome assembly quality by means of

computational tools developed to build exome contigs (GenSeed Pipeline Suite), detection

of potential regions of misassembly due to repeats (BridgeReader), and the use of molecular

markers as a means to arrange sca�olds into a physical map (MarkMyMap). I show that

with the use of these tools, the most recent assembly version, OPg3, had improved over the

first version in capturing the gene space (39% more mappable transcripts) and molecular

marker representation (3% increase in mappable SSRs and DArTs). Furthermore, the

constructed physical map representing the oil palm’s 16 chromosomes had improved

genome coverage from Sime Darby’s previous version by 79%. The improvements to

the genome draft in this work will assist future Genome-Wide Association Studies and

functional studies of genes. Besides that, I have developed a fast Bayesian method to

overcome analytical bottlenecks in RNA-Seq experiments with limited number of replicates

and low sequencing coverage, such as those found for oil palm studies. I incorporated a

previously unused sequencing coverage parameter determined from the concentration of an

RNA sample into a procedure to make di�erentially expressed gene calls. This method had

better or comparable performance with NOISeq and GFOLD, according to the results from

simulations and experiments with real unreplicated data. The method is called CORNAS
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(Coverage-dependent RNA-Seq), and I show that robust di�erentially expressed gene calls

can be made in an RNA-Seq study of oil palm inflorescences using CORNAS.

Keywords: Oil Palm, Genome, Transcriptome, Bioinformatics.
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PEMAJUAN PERALATAN PENGKOMPUTERAN UNTUK ANALISIS GENOM

DAN EKSPRESI GEN KELAPA SAWIT AFRIKA

ABSTRAK

Peningkatan berterusan dalam hasil kelapa sawit memerlukan pengetahuan tentang gen

dan mekanisme yang mengawal pengumpulan minyak dalam buah kelapa sawit. Hal ini

dipercayai mampu dicapai oleh penjujukan genom kelapa sawit. Namun, penyusunan genom

sawit Sime Darby masih tidak lengkap. Di sini saya mencari cara-cara bagi meningkatkan

kualiti penyusunan genom dengan memajukan kaedah-kaedah pengkomputeran untuk

membina kontig exom (GenSeed Pipeline Suite), pengesanan rantau yang mempunyai

masalah penyusunan akibat jujukan ulangan (BridgeReader), dan penggunaan penanda

molekul sebagai cara untuk mengatur perancah ke dalam peta fizikal (MarkMyMap). Saya

menunjukkan bahawa dengan menggunakan kaedah-kaedah ini, versi penyusunan terbaru,

OPg3, telah bertambahbaik berbanding dengan versi pertama dari segi liputan ruang gen

(39% lebih banyak transkrip yang dapat dipetakan) dan perwakilan penanda molekul

(peningkatan sebanyak 3% SSRs dan DArT yang dapat dipetakan). Selain itu, peta fizikal

yang dibina untuk mewakili 16 kromosom kelapa sawit telah meningkatkan liputan genom

sebanyak 79% berbanding dengan versi Sime Darby sebelumnya. Penambahbaikan draf

genom dalam penyelidikan ini akan membantu pengajian genome-wide association masa

depan dan kajian fungsi-fungsi gen. Di samping itu, saya telah mencipta kaedah Bayesian

yang cepat untuk mengatasi sekatan analisis akibat bilangan replikasi dan liputan jujukan

yang rendah dalam eksperimen RNA-Seq, seperti yang didapati untuk kajian kelapa sawit.

Saya memasukkan parameter liputan jujukan yang belum pernah digunakan sebelum ini

yang ditentukan daripada kepekatan sampel RNA ke dalam prosedur untuk membuat
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panggilan gen yang diekspresikan secara berbeza. Kaedah ini mempunyai prestasi yang

lebih baik atau setanding berbanding dengan NOISeq dan GFOLD, menurut keputusan

dari simulasi dan eksperimen dengan data nyata tanpa replikasi. Kaedah ini dipanggil

CORNAS (Coverage-dependent RNA-Seq), dan saya menunjukkan bahawa panggilan

gen yang diekspresikan secara berbeza yang teguh dapat dibuat dalam kajian RNA-Seq

perbungaan kelapa sawit dengan menggunakan CORNAS.

Kata kunci: Kelapa sawit, Genom, Transkriptom, Bioinformatik.
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CHAPTER 1: INTRODUCTION

1.1 The oil palm

The monocot native to Africa, Elaeis guineensis, is one of two species of oil palms that

flourish along the tropical belt of the world, the other being Elaeis oleifera, found mainly

in Central America. It was brought to Malaysia in the 1900s and the oil from its fleshy

mesocarp tissue is among the top export commodity of the country. Palm oil is used as an

ingredient for cooking, as emulsifier in food products and as a source for biofuel (Corley

& Tinker, 2008; Malaysian Palm Oil Council, 2019).

Global demands on food, healthcare and energy will continue to increase as the world’s

population grows. The requirement of oil for food production and transportation is quickly

depleting the world’s fossil fuel reserves. One way to meet the increase is to improve the

production of biological renewable energy sources, such as oil palm.

The common African oil palm (hereafter referred to as the oil palm) varieties are mainly

determined by the di�erence in kernel shell thickness found in the fruitlets (Hardon et al.,

1985; Corley & Tinker, 2008). The dura oil palm variety produces fruitlets with a thick

kernel shell (2 - 8 mm) and a low mesocarp to fruit ratio (M/F) of 35 - 55%; whereas

the pisifera oil palm does not have a kernel shell at all in its thick mesocarp fruitlets

(95% M/F). Just basing on the high M/F ratio, the pisifera variety would be considered

highly productive if not for the fact that pisiferas are female-sterile with bunches seldom

developing to maturity. The hybrid o�spring of a dura mother and a pisifera father is a

tenera oil palm that would grow to produce fruitlets that have thin kernel shells (0.5 - 4

mm) and a high M/F of 60 - 96%. It is this tenera oil palm that is the most widely planted

variety in commercial fields.

In comparison to other oil crops, oil palm is already the most e�cient oil producer
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per unit area, producing 6.3 times more oil-yield than the next highest oil producer,

rapeseed (MPOB, 2010). Oil palm contributes the largest portion (30%) of the oils and fats

produced worldwide (Chandran, 2010). The perennial oil palm is not only resilient, but

also continuously productive over 20 years. In comparison, annual crops, such as soybean,

have much shorter lifetime productivity.

While productive, oil palm cultivation requires a lot of space and can only be cultivated

in the limited landmass around the equator. Generally, an oil palm grows up to 20 metres

high and has a crown area of about three metres in diameter; a size that is considerably

larger than other oil-producing plants such as the two-metre tall soybean. Large areas

of rainforests are frequently converted into agricultural land for oil palm cultivation in

tropical countries. This practice has contributed to the negative perception that oil palm is

environmentally destructive (Vijay et al., 2016). If oil yield per hectare can be improved

substantially, demand for rainforest land for cultivation purpose may drop, thus mitigating

the negative impact to the environment whilst meeting the increasing demand for oil

resource in the world.

To improve the yield of oil palm requires integration of phenotypic and genetic

knowledge to understand the mechanisms that regulate oil accumulation. Scientists believe

this is attainable with the availability of an oil palm genome reference.

1.2 The rise of genomics, transcriptomics and bioinformatics

A genome is the complete set of deoxyribonucleic acid (DNA) sequences of an organism.

The term, genome, was initially coined by Hans Winkler in 1920, at a time when its

structure was not known. Geneticists of the time only depended on good phenotype and

pedigree data to infer trait associations and heredity. These “discrete units of inheritance”,

first suggested by Gregor Mendel, were later called genes by Wilhelm Johannsen in 1905.

We have since found that phenotypes are the product of gene expression (Kærn et al., 2005;
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Harper, 2008). So it became clear that understanding what genes are made of will allow

greater resolution in genetics studies.

The discovery of the molecular structure of DNA by Watson and Crick (1953) and the

ability to determine the sequence of DNA (Wu, 1972) had flung the doorway to genomics

wide open. Mankind can finally “read” genes and reconstruct the instruction manual for

the building blocks of life. The instructions are made out of only four letters: A, C, G

and T. These letters represent the sugar bases of DNA: adenine (A), cytosine (C), guanine

(G) and thymine (T). If a protein is a product of reading a sentence in the manual, then

the words are single amino acid molecules that can be represented by 3-letter long codes

made out of any of the four possible letters arranged in a specific sequence. A whole book

containing hundred thousands of sentences can be quite complex, since the complexity

generated by the varied combinations possible in a sequence increases exponentially as a

function of sequence length. A DNA sequence that is 100 letters long will already have

4100(1.61 ⇥ 1060) possible combinations. The prokaryote Escherichia coli genome, which

contains about five million letters, already codes for 4,288 proteins (Blattner et al., 1997).

How can we interpret this biological instruction manual, especially for eukaryotic genomes,

which are substantially larger and contain billions of letters, like the oil palm (Lynch &

Conery, 2003)?

According to the central dogma of molecular biology, ribonucleic acid (RNA) molecules

are the mediators of gene expression. It is this molecule that gets transcribed from DNA

sequences in the cell’s nucleus, that then travels to the cytoplasm to be part of the protein

synthesis process (Simmons et al., 2006). Transcription is performed by RNA polymerases

on the template strand of the double-stranded DNA, producing a single-stranded RNA

complementary coding transcript. Gene expression for protein-coding genes in eukaryotes

is more complex than in prokaryotes, because the transcripts undergo post-transcriptional
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modifications before they are translated into proteins. The modifications include 5’

capping, 3’ cleavage and polyadenylation, and RNA splicing. The 5’ and 3’ modifications

aid transport of the RNA molecule to the cytoplasm, and protect it from degradation

by enzymes. RNA splicing allows a single gene to code for a variety of transcript

isoforms by removing or retaining portions of coding sequences (exons) or non-coding

sequences (introns) before translation (Cech & Rio, 1979; Black, 2003). Consequently,

the alternative splicing mechanism enables eukaryotes to have greater protein diversity

compared to prokaryotes. Studying the transcriptome, with its spliced variants and RNA

species abundances, would further advance our understanding of how genotypes e�ect

phenotypes. Since RNA uses the same nucleobases as DNA, with the only di�erence

being the replacement of T by U (uracil), this makes the molecule amenable to sequencing,

thus creating the field of transcriptomics.

Current sequencing technologies now provide biologists with a deluge of data to process

and interpret (Schatz & Langmead, 2013). This would have been overwhelming if it were

not for the concurrent exponential growth of computer hardware according to Moore’s law

(Schaller, 1997). Now biologists have an avenue to address complex biological questions

with large multivariate datasets, but they need to learn how to manipulate the data with

computers (Stevens, 2013). The experiments also increasingly need to incorporate a

statistical framework for data analysis and interpretation. In order to perform new statistical

methodologies, new e�cient software are needed to run computations on the large amount

of data, and new infrastructure are required to manage the storage, flow and e�ciency of

handling the data. The interdisciplinary field of bioinformatics was thus born through this

melding of biology, computer science and statistics (Ouzounis & Valencia, 2003).

While it may be tempting to think that we can automate all analysis pipelines on

computers, in general, improvisations or even new methods may need to be developed on
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a case by case basis, depending on the peculiarities of a particular set of biological data.

Thus, there is no one-size-fits-all analysis that will work completely for every organism

or experiment. A bioinformatician is needed to identify the right computational methods

to address the technical challenges faced in such data-rich analyses. Furthermore, the

bioinformatician will need to know how to navigate and program computers to fully deploy

these computational methods e�ectively (Chang, 2015).

1.3 Oil palm whole genome assembly improvement

With new massively parallelised sequencing methods in pyrosequencing (454), se-

quencing by ligation (ABI SOLiD) and reversible dye-terminators on slides (Illumina)

technologies, eukaryotic genome drafts can now be completed in about two years instead of

a decade. These methods solved, to some degree, the time and cost problems, but created

new challenges with regards to assembling the enormous amounts of data generated. The

challenge stems from two major sources: short sequenced fragments, and errors in signal

detection and base calling (Kircher & Kelso, 2010).

In the case of Sime Darby’s oil palm genome that was completed in 2009 (unpublished

data), the 454 FLX sequencing technique provided relatively long and good quality reads

(⇡ 300 base pair (bp)) compared to Illumina sequencing (⇡ 30 bp) at the time. The first

draft assembly took 12 months to complete, with about 1.7 Gbp assembled to cover 93.8%

of the genome, at 30 times depth of coverage. Even so, Sime Darby’s oil palm genome

assembly is not finished.

The de novo assembly of a genome is akin to an attempt to build a finished product

without knowing what it actually looks like. Many of the current sequencing technologies

use methods that first select the DNA fragments according to size before sequencing.

Therefore the entire length of an organism’s DNA is not read in a single run. Even for

established long read third generation sequencers such as the PacBio RS II system, the
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average read is about 10,000 bp (Buermans & Den Dunnen, 2014) (see Chapter 2 for

details), while the smallest bacterial genome currently known is still 160,000 bp long

(Nakabachi et al., 2006).

Current sequencing processes require the fragmentation of the genome for sequencers

to read in a process called shotgun sequencing (Messing et al., 1981; Bankier, 2001).

This process generates random fragments of variable lengths that will contain redundant

overlaps from numerous cellular DNA in a tissue sample. A collection of fragments is

called a library and it is usually categorised according to its fragment lengths (e.g. 20

Kbp, 3 Kbp or 100 bp libraries). In addition, libraries can also be categorised according to

the methods used to sequence the fragments. Taking the Illumina sequencing platform as

an example, a genome is typically fragmented into 300 bp long pieces that are inserted

between adaptors. The sequencing of the insert from the two ends of the fragments creates a

pair of reads. This is known as a 300 bp paired-end (PE) read library. The sequenced reads

are shorter than the entire fragment (e.g. 75 bp). Singletons, also known as single-end

(SE) or orphaned reads, consist of reads that are sequenced only from one end of the DNA

insert. There is another pairing technique that is used to create libraries that span even

greater distances of between 1 Kbp to 150 Kbp. These are called mate-pair libraries and

are achieved by circularising the large inserts with the ends marked and joined together to

be sequenced (Edwards & Caskey, 1991; Roach et al., 1995).

Once the reads are generated from these libraries and trimmed to retain bases with

reliable quality, software called assemblers are used to assemble them - a process that is

similar to solving a jigzaw puzzle. The end results are sca�olds or contigs. A sca�old

is a portion of the genome reconstructed from contigs and contains gaps, while a contig

is a contiguous length of genomic sequence in which the order of bases is known to a

high confidence level. Gaps occur where information between contigs are unavailable.
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Figure 1.1: An illustration of assembly of singleton, paired-end and mate-pair reads to
form a sca�old

Possible causes for gaps are sequence repeats or unsequenced regions of the genome. The

unsequenced parts of the insert for PE and mate-pair reads become gaps in a sca�old when

no overlapping sequence can be found for the region. Figure 1.1 shows an overview of the

pieces in genome assembly.

The puzzle is rarely complete and is harder to solve if the genome in question is

complex. In general, the complexity of a genome increases with genome size, number of

chromosomes, higher GC content, and multiple repeats (Lynch & Conery, 2003). With

an estimated size of 1.8 Gbp covering 16 chromosomes, a GC content of about 40% and

approximately 60% repetitive elements, the oil palm genome is, without doubt, complex

(Castilho et al., 2000; Singh et al., 2013).

The key challenge in genome assembly is the ubiquity of repetitive sequence elements

(Treangen & Salzberg, 2012). Repeated sequences may range from large genomic

duplications of several kilo bases long to short monomeric repeats. The repeat motifs may

be structured in tandem, inverted and are not necessarily identical. It is also important to

note that the assembly of a genome is haploid, and the diploid nature of oil palm, with

its polymorphisms, further complicate the task of resolving contigs as alleles may be
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incorrectly assembled due to dissimilarities in the sequences. Thus, sequence assemblers

are rarely successful in correctly assembling repeated sequences, due to the many possible

combinations caused by ambiguity in matching sequences (Pop, 2009).

One way around the problem of repeats is to remove the repeats out of the equation.

Though programs such as Repeat Masker (Tarailo-Graovac & Chen, 2009) are available to

mask repeats, they are reliant on preexisting repeat databases like Repbase (Jurka et al.,

2005). In my study, I try to compartmentalise the repeats ab initio, by way of analysing the

regions where unique sites meet repeat sites alone (see Chapter 3 for details). Identification

of such regions allows us to remove the regions that are repeated and assemble non-repeated

regions first. By identification of unique repeat/non-repeat sections, known as bridges,

these can be added to the assembly, with the repeats themselves inserted between the

bridge regions. This way, we can correctly link the non-repeated portions of the genome

prior to adding the repeats. In this thesis, I will look at a post-hoc implementation, where

knowledge of bridge reads is used to correct post-assembled sca�olds.

Compared to genomic sequences, mRNAs (messenger ribonucleic acids) tend to be less

repeated. Transcripts are derived from the coding parts of the genome that are conserved

in order to preserve gene functions. These sequences could thus help in resolving assembly

issues in a genome assembly, by at least ensuring genomic portions that contain mRNA

sequences are represented in the genome. In this study, I suggest the use of a directed

assembly using a method of “fishing” for genome fragments with mRNA transcripts to

improve the reliability of the assembly of the coding regions. This process will generate

new contigs that give su�cient representation of the exons, with the potential to cover the

introns and regulatory elements of the gene, in what we call exome contigs.

An important determinant of the completeness of a genome is the proportion that one is

able to sequence. Su�cient reads are needed to cover all the gaps in an assembly. To do
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Figure 1.2: Sequencing depth versus genome coverage

that, it may be required to sequence deeply, that is, to sequence the genome many times

over to increase the chances of capturing all possible read overlaps. The sequencing depth,

or depth of coverage, is the number of times a sequence is covered by the total length of all

reads. Sometimes the term coverage is used interchangeably with depth (Sims et al., 2014)

but genome coverage only specifically means the percentage of the target genome size that

is actually captured by the sequences. For example, a genome with an average sequencing

depth of 30X may only have a genome coverage of 95% (Figure 1.2).

Even with the genome coverage metrics, how do we ensure the genome is complete

enough for practical use? An evolutionary basis can be used to ascertain the quality of the

genome draft by identifying the presence and completeness of basic genes all organism

of a clade share. Programs like CEGMA (Parra et al., 2007) and BUSCO (Simão et

al., 2015) evaluate completeness of genome drafts based on this evolutionary approach.

CEGMA (Core Eukaryotic Genes Mapping Approach) defines a set of conserved protein

families that occur in a wide range of eukaryotes. This set of Core Eukaryotic Genes

(CEGs) was built from the euKaryotic clusters of Orthologous Groups database of NCBI

(National Center for Biotechnology Information) (Tatusov et al., 2003). BUSCO, which is

a successor to CEGMA, uses the biological basis of universal single-copy orthologs to
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benchmark genome quality. However, at the time of writing, BUSCO did not have a plant

database that could be used for evaluating the oil palm genome.

So how do we improve the genome draft? The simple answer is to do more sequencing.

To improve the completeness of the genome, we could sequence deeper in order to capture

more parts of the genome that were missed by chance. However, this option would not

address the issues in regions of the genome that are repetitive. A better alternative would

be to generate sequences with longer reads, for example, using PacBio. Longer reads

that are in the ten of thousand bases will bridge most short tandem repeats, but the large

repetitive inserts will still be missed. Until sequencing technology is able to sequence a

single chromosome continuously, we will continue to struggle with the genome puzzle.

Arguably, if we do not bother to accurately capture the lengths of the repetitive elements,

the best current method to complete large sca�olds is to create large insert mate pairs, such

as Bacteria Artifical Chromosomes (BAC) end sequencing (Shizuya et al., 1992), which

can potentially be used to complete the chromosomal representation of the sca�olds.

For the Sime Darby oil palm genome, to do more sequencing would not be cost

e�ective. I believe that the current version can yet be improved with the existing data,

because I believe there is still untapped information in them that can be used to repair

and improve an assembly. The refinement work described in the preceding paragraphs is

part of the finishing process for the oil palm genome, a process that is arguably the most

time-consuming and relatively expensive step in assembling a genome. It includes closing

the gaps, contig rearrangements, sequencing error repair and physical map building. The

challenge then for me is to complete the Sime Darby oil palm genome up to the point of

having a draft physical map of the 16 chromosomes available, using information from

the annotation of repeats, available transcriptome sequences and experimentally validated

molecular markers such as SSR (Simple Sequence Repeats) and SNPs (Single Nucleotide
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Polymorphisms).

1.4 Identifying di�erentially expressed genes from oil palm RNA-Seq data

A systems understanding of the observed variation between two di�erent biological

states typically begins with di�erentially expressed gene (DEG) studies. RNA-Sequencing

(RNA-Seq) is the most recent high throughput technology in studying gene expression. The

method has several advantages over hybridization-based approaches like microarrays: (i) a

wider dynamic detection range; (ii) single nucleotide resolution; (iii) no prior dependency

on a reference genome (Wang et al., 2009). Additionally, in principle, RNA-Seq can detect

novel transcripts, thus allowing finer biological processes such as alternative splicing and

RNA editing to be studied. These advancements naturally spurred concurrent development

of data processing and analysis methods to extract biological meaning from RNA-Seq data.

At the basic level, making DEG calls is as simple as comparing the observed counts of

RNA species generated from RNA-Seq data (Wilhelm & Landry, 2009). However, the

observed counts are not actually the true counts found in the sample. The disparity is due

to e�ects of the library preparation and sequencing, thus requiring replication to cover the

distribution inherent in the sampling process. An ideal experiment would have su�cient

sample replication to have statistical confidence in making the DEG calls. However, many

RNA-Seq experiments are far from ideal due to expensive sequencing costs and the limited

availability of tissue samples.

There are practical di�culties in obtaining su�cient tissue samples for studying the

male and female immature inflorescences of the oil palm. The oil palm produces separate

male and female inflorescences in alternate cycles throughout a year (Corley & Tinker,

2008). An inflorescence primordium is formed in the axil of each leaf during leaf inititation

with the potential to develop into either a male or a female inflorescence (Verheye, 2010).

The sex of the inflorescence is not distinguishable from the ground until it blooms, 30
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months after inflorescence meristem initiation, because it will be covered by the prophyll

(Adam et al., 2005). In the study conducted by Ho et al. (2016), immature inflorescences

are classified to be 3-4cm long, corresponding to leaf +6 stage (the number after “+”

corresponds to the number of their axillary leaf on the palm) (Adam et al., 2005). Many

healthy palms at the end of their productive life need to be felled in order to harvest the

immature inflorescences due to the uncertainty of the sex of the inflorescence. Such

destructive sampling precludes the possibility of obtaining replicates from the same palm.

The alternative of harvesting from productive standing palms is not feasible. Such a

sampling process is dangerous to the sample collector, who must work at a height of no

less than 10 metres. For the palm, accidental over-sampling of the inflorescence can kill

it. Finally, very often, tissues from di�erent palms had to be pooled in order to obtain

su�cient RNA for sequencing.

At the time of writing, the cost of sequencing is still prohibitive, with each sequencing

run costing tens of thousands of ringgit. Ho et al. (2016) made two sequencing runs,

one male inflorescence pool and one female inflorescence pool with 454 sequencing.

With sequencing lengths of 500 bp, 454 sequencing was ideal in obtaining reads for

transcriptomes without a reference. The ability to identify unique mRNA sequences and

assemble them was more important than obtaining the abundances of the mRNA. The

abundances can be validated with more standard methods, such as quantitative polymerase

chain reaction (qPCR), once su�ciently long contigs are available for primers to be

designed. With a lack of replication in this experiment, a new robust method is needed to

make confident DEG calls for qPCR validation from the observed counts in RNA-Seq.

To this end, it is necessary to evaluate the statistical interpretability of observed count

data, leading to a procedure in which identification of DEGs between samples is done by

first determining the true counts. This procedure utilises the knowledge of the sequencing

12

Univ
ers

ity
 of

 M
ala

ya



coverage to model the possible true counts from which an observed count originates from.

Unlike current methods in which sequencing coverage for RNA-Seq refers to the mapped

read depth over a gene model of an organism, I propose that the true coverage should be

determined from the RNA concentration of a sample. To this end, I developed a method

that is useful in calling reliable DEGs in unreplicated experiments, such as those in oil

palm research, that are still prevalent due to cost and sample size limitations.

1.5 Aims and Objectives

I have two aims; The first is improvement of Sime Darby oil palm genome assembly

through the use of transcriptome data, reduction of number of erroneously assembled regions

caused by repeat sequences, repair of misassembled contigs, and sca�old consolidation

into chromosomes using molecular markers. The second aim is to detect di�erential gene

expression in the unreplicated RNA-Seq datasets of oil palm.

To achieve my aims, my objectives in this thesis are to design software tools and

methods to: (i) improve the gene-centric information in the genome using transcriptome

data; (ii) identify the repeated parts of the assembly and use the information to re-assemble

the genome; (iii) re-arrange the sca�olds to form a physical map using molecular markers;

and (iv) conduct di�erential gene expression analysis of RNA-Seq data generated from

unreplicated experiments.
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CHAPTER 2: LITERATURE REVIEW

2.1 Sequencing technology

The first attempt to sequence and construct a plant genome was successfully completed

for Arabidopsis thaliana by a consortium of research teams from across the globe

(Arabidopsis Genome Initiative, 2000). At the time, a large research body was needed

to sequence a genome that was only 120 Mbp large and spans just 5 chromosomes. The

completion, and subsequent availability of the Arabidopsis reference genome for the

research community, catalyzed progress in plant genomics (Bevan & Walsh, 2005).

The success of the Arabidopsis genome project spurred many research groups to find

means to generate their own reference genome for their plant of interest, including the oil

palm (Singh et al., 2013). Furthermore with domesticated plants generating multiple crop

varieties, research groups had to generate specific reference genomes for their variety of

interests, like rice (Go� et al., 2002; Yu et al., 2002). The last clear census conducted in

2014 showed that there had been 95 plant genomes sequenced and published, and the trend

seems to be growing exponentially (CoGe, 2015). This explosion of available reference

genomes is a consequence of the availability of higher throughput and more cost e�ective

sequencers in the instruments market at the turn of the twenty-first century.

The first technique that gained widespread use for DNA sequencing was the chain-

termination method developed by Frederick Sanger in 1977 (Sanger et al., 1977). As the

name suggests, the method employs dideoxynucleotide triphosphates (ddNTPs) which

terminate DNA strand elongation selectively during DNA replication of the single-stranded

DNA template strand. Subsequent innovation produced dye-tagged ddNTPs, thus enabling

the chromatogram representation of the entire sequence elongation process. Sanger

sequencing is capable of generating 1,000 bp long sequences. However, the quality of the
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base calls after 700 bases from the 5’ end deteriorates, as it becomes more di�cult to

resolve DNA length comparisons of only one nucleotide. Furthermore, the technique is

time-consuming and expensive. It took two decades before second generation sequencers

were introduced that further increased the throughput by several orders of magnitude and

reduced the cost of DNA sequencing by a hundred fold (Liu et al., 2012).

454 sequencing is a pyrosequencing technique developed by 454 Life Sciences, that was

later acquired by Roche (Margulies et al., 2005; Liu et al., 2012). The method depends on

polymerase chain reaction (PCR) amplification of DNA fragments fixed onto beads. The

amplification process generates inorganic pyrophosphates (PPi), which are released during

DNA synthesis, resulting in a conversion cascade from ATP to oxyluciferin and light in

the presence of sulfurylase and luciferase (King & Scott-Horton, 2007). 454 sequencing

can generate reads with lengths between 400 bp to 800 bp. The output lengths can vary in

a run due to the randomness of the nebulization method of fragmentation. 454 sequencing

is known to make homopolymer errors because it becomes di�cult to distinguish the light

intensity di�erence once the homopolymer length is more than six bases (Huse et al., 2007;

Liu et al., 2012).

Applied Biosystems’ (ABI) Sequencing by Oligonucleotide Ligation and Detection

(SOLiD) sequencing method does sequencing by ligation of oligonucleotide probes that

encode two bases (Valouev et al., 2008; Liu et al., 2012). Matching probes at the two-base

3’ end to the template strand are ligated together through a series of ligation, detection and

cleavage cycles. The cleavage of the fluorescent labelled 5’ end of the probe provides the

signal for the color-space coding in the system. The reads generated are about 25-50 bp

long, and are limited by the number of ligation cycles. The technique has the advantage of

reading each base twice, thus reducing the error of SNP miscalls significantly (McKernan et

al., 2009). However, it has been reported that palindromic sequences cannot be sequenced
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reliably with this technique (Huang et al., 2012).

The Illumina sequencing method was developed by Shankar Balasubramanian and

David Klenerman, the founders of Solexa, and was subsequently acquired by Illumina

(Liu et al., 2012). This sequencing-by-synthesis method uses reversible dye-terminators to

identify single bases as they are introduced into DNA strands during amplification (Ju et

al., 2006). Illumina reads are generally shorter than 454 sequencing, from 60 bp to 150 bp

(Liu et al., 2012). A fragment size selection during the library preparation phase ensures

the output lengths are fixed.

The second generation sequencers still have limits in the read lengths generated. To

overcome this limit, two new promising methods were developed: Pacific Biosciences’s

Single-Molecule Real-Time (SMRT) sequencing and Oxford Nanopore Technologies

(ONT) sequencing. SMRT Sequencing works by sequentially detecting the four di�erent

fluorescent signals released when phospholinked nucleotides are incorporated onto a single

DNA molecule template as it undergoes DNA strand elongation (Eid et al., 2009). The

detection is done with zero-mode waveguides (ZMWs) with the DNA polymerase/template

complex immobilised at the bottom of the well-like structure of the ZMWs (Levene et al.,

2003). The ZMWs structure allows light to only illuminate a tiny volume su�cient for

observing a single nucleotide addition at the bottom of the well. The technique is capable

of generating reads with lengths exceeding 5,000 bp. Furthermore, DNA polymerase

activity information can indicate whether a base is methylated since the data stream has a

time factor. Base call errors were reported to be high and distributed randomly, so deeper

sequencing is required to overcome this limitation (Korlach, 2013).

In DNA nanopore sequencing, a protein with a nanoscale hole (nanopore) is set in an

electrically resistant polymer membrane. Detection is done by passing the DNA template

through the nanopore and measuring the disruption in current for di�erent bases. Currently,
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bacterial porins are used as these nanopores (Clarke et al., 2009; Manrao et al., 2011).

The MinION sequencer developed by ONT is the first commercially available product

using nanopore technology. It is a relatively a�ordable and very portable device that has

been deployed for real-time diagnostics applications (Greninger et al., 2015; Lu et al.,

2016). The ONT sequencing method can generate reads with lengths similar to SMRT

sequencing, albeit at high error rate (30%), which is mainly caused by indels instead of

randomly distributed base call errors (Mikheyev & Tin, 2014).

As of May 2019, short read sequencing is relatively cheaper compared to long read

sequencing technologies. Researchers benefit from the massively parellel capabilities of

short read sequencers to generate a large amount of data in a short time. The technology

is useful for sequencing fragmented DNA samples that do not benefit from long read

sequencing, and the high sequencing depth of the sequencers allows base call error rates to

be reduced statistically (Diouf et al., 2018; Wittig et al., 2018). Long read sequencing,

on the other hand, allows researchers to read across repeated regions of the genome,

thus overcoming one of the key challenges in genome assembly. However, long read

sequencers currently require greater run time to increase accuracy of base calls by repeated

measurements. They can also be expensive because of the lower throughput compared to

short read sequencers (Travers et al., 2010). Most sequencing projects now combine short

and long read sequencing to overcome each technology’s limitations, where the long reads

improve contiguity, and the short reads are used to “polish" the base call quality (Fuselli et

al., 2018; Wang et al., 2018).

2.2 Sequence assemblers

Current sequencing technologies generate reads that need to be assembled in order

to infer the original sequence of the genome. Assemblers are software that uses special

algorithms to achieve this. There are two major algorithms:
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(a) Overlap-Layout-Consensus (OLC)

The classical method introduced by Staden in 1979 to assemble reads generated by

Sanger sequencing technology is known as the overlap-layout-consensus (OLC) algorithm

(Staden, 1979). The OLC algorithm first identifies pairs of reads that overlap (O) su�ciently

well, normally allowing mismatches of around 10%. Then, the layout (L) of the reads is

organised into a graph containing a node for every read and an edge between any pair of

reads that overlap each other. Contigs are generated as a consensus (C) by inferences from

information of all edges in the possible path. The heuristic is greedy, in which the assembly

progresses when a local optimal configuration is found. This configuration is solved by

adding reads sequentially based on the best overlap score found between the neighbouring

nodes. Currently, the algorithm powers most assemblers that are optimised for long reads

(> 300 bp), such as CAP3 (Huang & Madan, 1999), Celera Assembler (Myers et al., 2000),

Newbler (Margulies et al., 2005) and PHRAP (de la Bastide & McCombie, 2007).

(b) De Bruijn graph (DBG)

With the newer massively parallelised sequencing methods that generate short reads,

like Illumina sequencing, a new algorithm that uses De Bruijn graph theory (DBG) was

introduced by Idury and Waterman in 1995 to assemble the data e�ciently (Idury &

Waterman, 1995). First, all reads are sectioned into parts of fixed-lengths strings, called

k-mers. The DBG algorithm models the relationship between exact k-mers from the reads

with a directed graph. The nodes in the graph represent k-mers, that must be shorter than

the reads, and the edges represent the overlap of adjacent k-mers by k-1 letters. Assembly is

done by tracing the path with the most consistency through the graph. Thus, the consensus

is built indirectly by solving for the global optimal configuration. Some assemblers that are

based on DBG include EULER (Pevzner et al., 2001), Velvet (Zerbino & Birney, 2008),

SOAPdenovo (Li et al., 2010), IDBA (Peng et al., 2010) and AllPath-LG (Gnerre et al.,
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2011).

While both algorithms seek to address the assembly of reads, they are quite di�erent in

how e�ective they handle the type of datasets generated by sequencers (Li et al., 2012).

The OLC assemblers approach assembly as finding a path in an overlap graph and visiting

each node only once, as in a Hamiltonian Path Problem (Pevzner et al., 2001). This is a

non-deterministic polynomial-time complete (NP-complete) problem, which is a decision

problem with no known e�cient way to solve (Garey & Johnson, 1979). On the other

hand, DBG assemblers approach assembly as finding a path in the graph that visits every

edge only once, and therefore changes it into an Eulerian Path Problem, making it solvable

in linear-time (Fleischner & Fleischner, 1990). Therefore, the OLC assemblers would

be better suited at assembling long reads with low-depth coverage data sets, while DBG

assemblers assemble short reads with high-depth coverage data sets. The e�ectiveness of

both algorithms in successfully finding correct matches deteriorates when they encounter

sequencing errors, heterozygozity due to polyploid genomes, and repeats. Since overlap

detection can be made to allow mismatches, OLC assemblers will perform better than

DBG assemblers when it comes to consolidating base di�erences. DBG assemblers run

on the assumption of no sequencing errors to work e�ectively. Many attempts to address

the compounding e�ects of sequencing errors have been made over the years with error

correction steps such as techniques devised by Tammi et al. (Tammi et al., 2003, 2004;

Arner et al., 2006). However, the e�ectiveness of the error correction step depends on

the assumption that there is su�cient statistical power in the alignments for errors to be

detected. Under uneven sequence coverage and polyploid heterozygosity, this assumption

is unlikely to hold (Nagarajan & Pop, 2013).
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2.3 RNA-Seq and exome contigs

While the sequencing technologies detailed above were mainly developed for DNA se-

quencing, the same sequencing technologies can be adapted in ribonucleic acid sequencing

(RNA-Seq). The di�erence mainly lies in the library preparation stage. Essentially, RNA is

converted to double stranded complementary DNA (cDNA) through reverse transcription,

followed by the same procedures in DNA sequencing. The bulk of RNA molecules

expressed in cells are ribosomal RNA (rRNA), and are usually removed during sequencing

library preparation to enrich for the messenger RNA (mRNA) (Zhao et al., 2014).

Before the availability of high-throughput RNA-Seq library techniques, scientists could

only generate truncated cDNA sequences to represent the original mRNA molecule. These

Expressed Sequence Tags (ESTs) are the sequenced ends of cloned cDNA fragments,

usually sequenced with Sanger or 454 sequencers (Adams et al., 1991). ESTs are useful as

a means to count mRNA abundances, but the incompleteness of the information provided

by such relatively short reads (200 - 800 bp) hampers unambiguous gene assignments

(Nagaraj et al., 2006).

Current RNA-Seq library preparations that mimic the shotgun sequencing approach

allow us to assemble a sequence reference of an organism’s transcriptome to characterise

these intermediate messenger molecules, or transcripts, en masse (Wang et al., 2009). The

de novo assembly of the transcriptome, usually only the mRNA, has the advantage of

serving as a reference to enable transcript-counting in the absence of a reference genome.

Such an assembly is relatively cheaper and easier to build than a genome reference (Martin

& Wang, 2011). Transcriptome assemblies have the advantage of revealing novel protein

isoforms due to alternative splicing events that would otherwise lay hidden in a genome

draft. Further benefits in doing RNA-Seq includes the ability to detect post-transcriptional

modifications, gene fusion, mutations and changes in gene expression over time, or between
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di�erent treatments (Wang et al., 2009).

While transcriptome assembly does not encounter challenges due to repetitive elements

found in genomes, challenges in resolving ambiguity caused by genes with spliced isoforms

and minor variations within a gene family need to be addressed. The basic algorithms used

for genomic assembly are still used, with slight modification to account for wide variation

in sequencing depths in a transcriptome due to di�erent gene expression abundances,

and strand specificity inherent for mRNA. Therefore, modified and/or special assemblers

dedicated to overcoming this challenge were developed, such as SOAPdenovo-Trans

(Xie et al., 2014), Velvet (Zerbino & Birney, 2008), ABySS (Birol et al., 2009) and

Trinity (Grabherr et al., 2011). Long read sequencing in RNA-Seq experiments has also

been used to overcome the challenges of true isoform identification (Byrne et al., 2019).

Long reads, such as those produced by PacBio circular consensus sequencing, have very

low base call errors and do not require assembly (Cheng et al., 2017). Recently, new

library preparation methods that use unique molecular identifiers (UMIs) as barcodes

to di�erentiate between PCR duplicates and transcripts in short read sequencers enable

accurate isoform identification and abundance counts in human tissues (Wu & Ben-

Yehezkel, 2019). The method, called LoopSeq Synthetic Long Read Sequencing, can

either be used for reconstructing long RNA transcripts or for counting transcripts at low

coverage.

Since a transcriptome assembly contains the expression units of the genome of the

same organism, it can be used to estimate the completeness of a genome assembly. Of

course, the caveat is that the transcriptome assembly should be built from a heterogenous

community of cells at various times on the life cycle of the organism in question to obtain

a su�ciently comprehensive set of expressed genes. This is because transcript expression

is dynamic, and RNA-Seq only captures a snapshot of expression at a point of time and
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place. Moreover, transcript expression is also tissue-specific. Many RNA-Seq studies on

plants have substantially improved our understanding of gene regulation and expression

(Martin et al., 2013).

Besides using transcriptomes for assessment of the genome assembly quality, transcrip-

tome contigs can be used to direct improvement of the genome assemblies. A seed-driven

iterative assembly approach could be used to assemble missing or incomplete fragments

of the genome. GenSeed (Sobreira & Gruber, 2008) was the first tool designed for such

a task, albeit without the actual use of transcriptome contigs as the starting material.

Since its release, only a few approaches based on the same concept were proposed for the

assembly of viral sequences from metagenomic data (Smits et al., 2015). The same team

that developed GenSeed had recently published an updated version of their algorithm using

Hidden Markov Model (HMM) profiles as starting seeds for target-driven reconstruction

called GenSeed-HMM (Alves et al., 2016). The algorithm for GenSeed is straighforward

- given a starting sequence of su�cient length for conducting local alignment, it will

identify similar contigs/reads from a pool, and proceed to construct a consensus with

these sequences. The ends of the completed contig are then used to repeat the search

and assembly process with additional similar sequences from the pool, until no further

similarity can be found.

2.4 The repeat problem

One of the biggest challenges in sequencing and the cause of many gaps in an assembly

is the presence of many repeats in the genome. Repeats in the genome can be categorised

into two broad categories: tandem repeats and interspersed repeats.

Tandem repeats are DNA element patterns of one or more nucleotides repeated

consecutively. Tandem repeats that occur in isolated islands in the genome with 1-5

nucleotide (nt) motifs repeated up to 50 times are known as microsatellites (Richard et al.,
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2008). DNA microsatellites, or alternatively known as simple sequence repeats (SSRs), are

used widely in genetic diversity and population studies because of their high heritability

and measureable mutation rates (Roewer et al., 1992; Jarne & Lagoda, 1996; Ellegren,

2004). SSRs are known to be highly variable in the number of repetition of its motif from

organism to organism, allowing its use as molecular markers in genetic profiling. Tandem

repeats that have longer motifs of up to 100 bp are known as minisatellites (Vergnaud

& Denoeud, 2000). Minisatellites are prominent in the centromeres and telomeres of

chromosomes (Tran et al., 2015).

Interspersed repeats have motifs that are dispersed throughout the genome and do not

occur in tandem. This type of repeat occurs when DNA sequences known as transposable

elements (TE), produce a duplication error during transposition. When DNA sequences are

duplicated via the mediation of transposase enzymes, they are known as Class II type TE.

However, the majority of interspersed repeats are caused by retrotransposons, or Class I

type TEs, which are mediated with an RNA intermediate. Retrotransposons can be further

grouped into three types (Xiong & Eickbush, 1990; Schmidt, 1999): Long terminal repeats

(LTRs), which encode reverse transcriptase, similar to retroviruses; long interspersed

nuclear elements (LINEs), which encode reverse transcriptase but lack LTRs, and are

transcribed by RNA polymerase II; and short interspersed nuclear elements (SINEs), which

do not encode reverse transcriptase and are transcribed by RNA polymerase III.

Current established methods that detect repeats require an assembled draft genome.

If the query species’ genome is available, repeats are identified with a pattern signature

database specific to the genome. The most popular software for identifying repeats in DNA

sequences is Repeat Masker (Tarailo-Graovac & Chen, 2009). It performs an e�cient

implementation of the Smith-Waterman-Gotoh algorithm, developed by Phil Green, called

Cross Match (Tarailo-Graovac & Chen, 2009). Once identified, the repeated sequence is
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usually replaced by Ns, hence the masking e�ect implied. Repeat Masker depends on a

manually curated repeat consensus version of the RepBase database (Jurka et al., 2005).

If a repeat database is not available for the query species’ genome, one can either

use a closely-related species to predict repeats based on homology with Repeat Masker,

or compile a new repeat library using de novo methods. RECON identifies repeats by

conducting multiple sequence alignments of reads against a genome, and uses a heuristic

process to determine boundaries of repeats (Bao & Eddy, 2002). RepeatScout uses a similar

approach with the improvement in accuracy and computational speed with a greedy seeding

protocol to identify repeats from the multiple sequence alignments (Price et al., 2005).

REPuter (Kurtz et al., 2001) and Repseek (Achaz et al., 2006) both adopt a seed-and-extend

paradigm to identify identical and degenerate repetitive sequence. P-clouds (de Koning

et al., 2011) determines repetitive motifs by clustering similar but divergent sequences

together.

The above methods still require an assembled genome for repeat detection. The software,

ReAS, on the other hand, generates repeat libraries directly from sequenced reads rather

than assembled contigs (Li et al., 2005). The method requires reads longer than 100 bp for

the seed size. Another method, Tallymer (Kurtz et al., 2008), was made for plant genomes

that does k-mer counting and indexing using enhanced su�x arrays on assembled genomes.

Sequence reads can be used to generate the k-mer indices for searches in a draft genome.

This method is not restricted to repeat identification, and is memory e�cient (Manekar &

Sathe, 2018). Another software called RepARK uses reads to build a de novo repeat library

(Koch et al., 2014). RepARK identifies k-mers that occur more than once genome-wide

and proceeds to build consensuses from the reads. RepARK determines the occurrence

threshold of a k-mer with a linear function fitting the k-mer index frequencies.

Another way to find repeats is with assemblers during genome assembly, such as the
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Celera Assembler (Myers et al., 2000; Denisov et al., 2008). It is possible to detect

high coverage regions, which may be caused by collapsed repeats. However, the random

selection process of shotgun sequencing fragments results in the coverage being distributed

according to a Poisson distribution; which means that the coverage can vary widely, and

high coverage regions may simply be caused by the random selection process, and not

because it is a repeat region.

2.5 Completing the genome map

A genome is considered truly complete if an organism’s genome can be represented

unambiguously by a contiguous sequence. This is achievable for bacterial genomes, but

not for genomes of multicellular organisms. Our current sequencing technology has yet to

allow us to overcome computational complexities arising from the genomic architecture

of eukaryotes, such as the subdivision of genomes into multiple chromosomes, and the

repetitive nature of centromeres and telomeres. Still, one can argue that a genome draft is

complete when it becomes useful in genetic studies (Mardis et al., 2002).

A genetic map, or linkage map (LM), is made by identifying the locus of genetic

markers and their relative distances by means of an inheritance study. The first such map

was developed by Alfred Sturtevant for Drosophila (Sturtevant, 1913). The nearer two

genetic markers are on a chromosome, the more likely they are to be inherited together in

the progenies. This is because the close proximity of two markers, which are said to be

linked, reduces the chance of recombination happening between them during the meiosis

phase of sexual reproduction. Genetic linkage is measured in centimorgan (cM). When

two markers are said to be 1cM apart, it means that the markers are at a distance that has

the potential rate of recombination to occur on average once per 100 meioses. A good

quality genetic map would have a large amount of genetic markers and a large mapping

population (a population of controlled crosses).
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Any sequence feature that can be faithfully distinguished from the parents can be used

as a genetic marker. Historically, traits were used as genetic markers. Now, we use DNA

sequences that we call molecular genetic markers (molecular markers). The most popular

types of molecular markers used to date are: (i) restriction fragment length polymorphism

(RFLP) markers; (ii) random amplified polymorphic DNA (RAPD) markers; (iii) amplified

fragment length polymorphism (AFLP) markers; (iv) diversity array technology (DArT)

markers; (v) SSR markers; and (vi) single nucleotide polymorphism (SNP) markers.

RFLP markers are detected by identifying di�erent sequence lengths generated by

restriction enzyme digestion on DNA (Botstein et al., 1980). RAPD markers are based on

the varying result caused by sequence variation at primer binding sites and DNA length

di�erences between primers when amplification of random DNA segments are conducted

(Williams et al., 1990). AFLP markers are generated by selective Polymerase Chain

Reaction (PCR) amplification with restriction-site-specific primers of digested DNA (Vos

et al., 1995). DArT markers are identified using microarray hybridizations that detect the

presence or absence of a DNA sequence fragments from a genomic representation (Jaccoud

et al., 2001). SSR markers are repetitive sequences that are highly variable in length, and

can be identified by PCR amplification using unique primers flanking the repeat sequence.

(Tautz, 1989; Gulcher, 2012).

SNP is a variation in a single nucleotide that occurs at a specific position in the genome.

SNPs can be used as molecular markers when the variation occurs with su�cient frequency

in the population due to its heritability, especially in plants (Gupta et al., 2001; Syvänen,

2001). SNPs can occur anywhere in the genome. If a base di�erence causes a di�erent

amino acid to be translated in the protein synthesis process, it is known as a nonsynonymous

SNP, while a synonymous SNP does not cause any di�erence.

The complete sequence of a genome is a physical map (PM) where all the position of
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the bases are known without ambiguity. Another way to look at it is that a PM is a map of

the locations of genetic markers along DNA where the distance is absolute and measured

in base pairs. The ideal PM represents a chromosome from end to end. In its fragmentary

form, the physical map of current eukaryote genome drafts can be built with the aid of

molecular markers. In 2015, the melon genome draft was improved with the use of a

SNP-based genetic map to orient and anchor the sca�olds according to the chromosomes

(Argyris et al., 2015). More recently, a restriction site associated DNA (RAD)-based

genetic map for bitter gourd assisted in anchoring 85.48% of the assembled genome (Cui

et al., 2018). As of May 2019, only Chromonomer (Catchen & Amores, 2016) had been

developed to rearrange genome sca�olds according to a genetic map. Chromonomer had

been used in the assembly of the Gulf pipefish and Platyfish (Amores et al., 2014; Small

et al., 2016). These physical maps of chromosome-level genome assemblies were also

referred to as “chromonomes” (Braasch et al., 2015).

Another step towards a complete genome is gap-filling of the assembly. Currently,

programs such as ABACAS (Assefa et al., 2009) automate the pipeline that extends the

gaps with unused reads during the prior assembly process, and design primers for further

walking and sequencing validation. However, this program requires a reference genome

for such tasks.

Sommer et al. (2007) suggested that a simpler algorithm is needed for gap filling

compared to current whole genome shotgun assemblers. To that end, his team developed

the Minimus assembler which utilises a Smith-Waterman hash-overlap to compute all

pair-wise alignments between input sequences in its Overlap-Layout-Consensus (OLC)

method of assembly. Minimus does not utilise quality values for its assembly and assumes

the input sequences have already been trimmed or filtered of poor reads.

Another means to fill gaps is by combining multiple assemblies generated from di�erent
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assembly pipelines. This approach was used in the assembly of the rhesus macaque genome

(Gibbs et al., 2007). The process of mapping the three intermediate assemblies and human

genome reference done by the authors was likely tedious and time-consuming, as they had

to conduct three di�erent assembly pipelines sequentially. Now, programs such as the

updated Minimus, and GAM-NGS (Vicedomini et al., 2013) make this task simpler.

Minimus2 is a modified version of the Minimus pipeline meant to merge two sequence

sets together. It uses a faster overlap detector than Minimus called nucmer (Delcher et al.,

2002). Nucmer (NUCleotide MUMmer) is a multiple DNA sequence aligner that is part

of the MUMmer suite (Delcher et al., 1999; Kurtz et al., 2004). The algorithm improves

speed and memory e�ciency by first finding maximal unique matches (MUMs) using

su�x trees for one set of input sequence, and have the second set added via a streaming

behaviour before using a modified Smith–Waterman dynamic programming algorithm to

align the sequences.

Further refinement steps to achieve a completed physical map of the genome currently

use two additional technologies that leverage on structural information of the genome to

sca�old the sequenced contigs: Hi-C sequencing, and optical mapping. Hi-C sequencing

is a relatively new approach for arranging sca�olds with a technique originally designed to

study the three-dimensional structure of the genome in the nucleus of a cell (Lieberman-

Aiden et al., 2009; Kaplan & Dekker, 2013; Marie-Nelly et al., 2014; Bickhart et al., 2017;

Dudchenko et al., 2017; Mascher et al., 2017). The technique provides linkage information

that can span tens of megabases by measuring the frequency of contact between intra-

or inter-chromosomal pairs of loci. Briefly, the process involves cutting cross-linked

chromatin with restriction enzymes first, then labelling the linked pieces with biotin,

ligating the ends, and finally, sequencing the biotin-labeled regions.

Optical maps, on the other hand, are generated by digesting the genome with specific
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restriction enzymes and adding di�erent intercalating dyes to each fragments to make

them visually discernable under a fluorescent microscope for realignments (Schwartz et

al., 1993; Valouev et al., 2008). Subsequent advancement with nanochannel arrays is used

to digitise these patterns, and an assembly algorithm using an OLC approach is used to

assemble the restriction map contigs (Levy-Sakin & Ebenstein, 2013; Chaney et al., 2016;

Tang et al., 2016; Yuan et al., 2017; Udall & Dawe, 2018). The resulting map is then used

as a reference to sca�old the contigs from sequence assembly.

Typically, Hi-C sequencing is followed by optical mapping in order to verify the results,

as well as assist in modifying the draft genome (Burton et al., 2013; Korbel & Lee, 2013).

Hi-C sequencing is capable of only providing arbitrary size estimates of gaps, while optical

mapping can provide the final accurate gap sizes for N-filling.

2.6 Current methods for calling di�erentially expressed genes

Since the publication of the first RNA-Seq paper (Lister et al., 2008), which was based on

the 454 sequencing platform, extensive interest in RNA-Seq has resulted in the development

of additional platforms such as Illumina sequencing. The bioinformatics landscape for

RNA-Seq analysis is large, with many di�erent methods to infer gene expression from the

sequencing data (Soneson & Delorenzi, 2013). The methods deal mostly in normalizing

and applying robust statistical analyses to identify significant di�erentially expressed genes

(DEG) in a general RNA-Seq analysis workflow (Oshlack et al., 2010). As Bullard et al.

(2010) had indicated, the choice of normalisation procedure vastly influences the outcome

of a DEG analysis. Most of the bewildering number of data normalization techniques

currently deal with Illumina RNA-Seq data (Dillies et al., 2013). The methods can be

categorised broadly as either parametric or nonparametric.

29

Univ
ers

ity
 of

 M
ala

ya



2.6.1 Parametric methods

Parametric methods model the distribution of read count data using appropriate statistical

distributions. Currently, the most popular methods for making DEG calls using RNA-Seq

data are parametric methods that assume a negative binomial distribution on the count data.

In the description of the methods that follow, a lane refers to the data column of a sample.

DESeq and DESeq2 (Anders & Huber, 2010; Love et al., 2014) scaling factor for a

given lane is computed as the median of the ratio, for each gene, of its read count over

its geometric mean across all lanes. The underlying idea is that non-DEGs should have

similar read counts across samples, leading to a ratio of 1. Assuming that most genes are

non-DEGs, the median of this ratio for the lane provides an estimate of the correction

factor that should be applied to all read counts of this lane to fulfill the hypothesis. DESeq

is very conservative in generating DEGs, with a computation time that increases with the

sample size.

EdgeR (Robinson et al., 2010), on the other hand, computes the Trimmed Mean of

M-values (TMM) factor for each lane, with one lane being considered as a reference

sample and the others as test samples. For each test sample, TMM is computed as the

weighted mean of log ratios between this test and the reference, after exclusion of the most

expressed genes and the genes with the largest log ratios. An empirical Bayes procedure

is used to moderate the degree of overdispersion across genes by borrowing information

between genes. An exact test analogous to Fisher’s exact test but adapted to overdispersed

data is used to assess di�erential expression for each gene. EdgeR is less conservative in

calling DEGs compared to DESeq with a high true positive rate, and the computation time

is independent of the sample size.

BaySeq (Hardcastle & Kelly, 2010) employs a selection of scaling factors (TMM/quan-

tile/total) for normalizing the read counts. A Bayesian approach is then used to asses
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di�erential gene expression based on posterior probabilities. BaySeq’s algorithm makes it

less susceptible to outliers. Its computation time is relatively long compared to DESeq,

but it o�ers the possibility of parallel computing.

2.6.2 Nonparametric methods

Nonparametric methods do not model the distribution of the count data explicitly, and

relies on more general data permutation approaches to evaluate statistical significance.

NOISeq (Tarazona et al., 2011) is a nonparametric method that first employs a selection

of scaling factors (TMM/upper quartile/RPKM) for normalizing the read counts. Then,

a null distribution is simulated by permutation to become the base for comparisons by

contrasting the fold changes and absolute di�erences within a condition. NOISeq performs

well when count distribution of di�erent phenotypic conditions have varying dispersion

patterns. It’s computation time is dependent on the sample size.

SAMSeq (Li & Tibshirani, 2013) is another nonparametric method that normalises

the read count by taking the mean read count over the null features (genes that do not

correlate significantly with any condition) of the dataset. A resampling strategy is used

to build a distribution for comparisons before subjecting the results to a Wilcoxon rank

statistic. SAMSeq performs well even with large sample sizes, and its computation time is

dependent on the sample size.
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2.6.3 Assumptions in RNA-Seq

All of the current RNA-Seq analysis methods assume the statistical noise in observed

count data caused by sequence sampling and read mapping steps to be negligible compared

to biological variation. Most biologists prioritise biological replicates over technical ones

to ensure that a RNA-Seq experiment has su�cient statistical power to detect DEG (Liu

et al., 2014; GierliÒski et al., 2015; Schurch et al., 2016). Furthermore, the majority of

normalisation strategies assume that most genes are not di�erentially expressed, and that

for those di�erentially expressed there is an approximately balanced proportion of over-

and under-expression.

Current RNA-Seq methods also assume more or less homogeneous gene expression

levels among single population of cells, and the average expression in RNA-Seq provides

a good estimate of gene activity level in the same tissue (Fu et al., 2009). This notion

had been challenged by Sanchez et al. (2013), who showed that the relative proportions

of mRNA species between cells can be highly variable. Furthermore, in genetically

identical yeast cells, variation of more than 800 copies of an mRNA species per cell has

been observed (Marguerat et al., 2012). This insight has resulted in growing numbers

of RNA-Seq experiments that are at the single cell level (Saliba et al., 2014). Thus, in

most RNA-Seq studies where multicellular samples are used, accurate sample-to-sample

comparisons require reliable transcript counts in each cell.

The non-homogeneity of gene expression levels in cells a�ects the calculation of

transcriptome sequencing coverage. Unlike genome sequencing where the genome size

can be estimated quite accurately, transcriptome size is much harder to estimate, varying

greatly between cells and tissue types of the same organism (Lovén et al., 2012). For

accurate quantification of 95% of transcripts in a human cell line, up to 700 million reads

are needed (Blencowe et al., 2009). In contrast, Genohub and ENCODE Consortium
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recommend that a typical RNA-Seq experiment for quantification only needs at most 30

million reads (Genohub, 2015; ENCODE, 2011). Consequently, in most experiments,

the sequenced reads that constitute the observed counts for each RNA species represent

but a tiny fraction of the true count in a sample. Observed counts are therefore subject

to potentially large stochastic e�ects, particularly if the corresponding true count is large.

Compounding the problem of interpretability of count data are biases inherent in technical

RNA-Seq library preparation and sequencing (Sendler et al., 2011), a problem that has

since received serious attention (Lahens et al., 2014).
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CHAPTER 3: METHODOLOGY

3.1 Oil palm whole genome assembly improvement

3.1.1 Initial resource

(a) Genome

A Sime Darby commercial tenera hybrid palm (EKONA descent), identified as Palm 99,

was sequenced using Roche 454 GS-FLX by an external service provider. The generated

238,151,400 reads were between 200 bp - 400 bp in length. The first oil palm draft in

2009 (OPg1) was assembled using proprietary methods that generated 37,882 sca�olds

(unpublished results).

(b) Transcriptome

Sime Darby also conducted RNA-Seq sequencing with Roche 454 GS-FLX sequencers

for six di�erent types of oil palm tissues: mesocarp, root, leaf, meristem, male inflorescence

and female inflorescence. The mesocarp tissues were taken at three time points of fruit

growth since pollination, which were week 12, week 16, and week 18. Eight transcriptome

data sets with over 20 million 454 reads with an average read length of 400 bp were

generated.

(c) Molecular markers

I used 75 SSRs published by Billotte et al. (2005), as well as 501 polymorphic SSRs

developed and experimentally validated to be polymorphic internally by Sime Darby

(unpublished results). I also used 101 DArT markers that were developed internally by

Sime Darby (unpublished results). Additionally, Sime Darby had developed a SNP array

that consisted of 170,860 informative SNPs called OP200K (Kwong et al., 2016). Of these

markers, 26,240 SNPs make up Sime Darby’s Linkage Map.
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(d) Computational resource

The experiments were conducted in four IBM System x3650 M3 (2x6 core Xeon 5600)

machines with 96 GB RAM, running on the RedHat 6 operating system. The machines

were set up in a High Performance Computing (HPC) environment facilitated by Sun Grid

Engine (SGE) at Sime Darby Technology Centre, Serdang, Selangor. I further deployed

Rackspace cloud servers when additional bursts of computation power were required.

3.1.2 External programs used

In this study, I used various bioinformatics tools that were available at the time for my

analyses. Table 3.1 summarises the tools that make up crucial parts of my computational

pipeline. All result graphs were generated using R (R Core Team, 2018).

3.1.3 Sime Darby’s transcriptome reference

(a) EGrefseq assembly

A consensus transcriptome assembly, which I named EGrefseq, was built by combining

the reads generated from male inflorescence, female inflorescence, apical meristem,

mesocarp, leaf and root of oil palm. The reads generated by Roche 454 GS-FLX were

used as input to the Newbler program package V2.5 (454 Life Sciences, Roche Diagnostics

Corporation, Branford, CT, USA). Sequences originating from organelles and rRNA were

removed. The assembly process used default settings with the addition of the ‘-urt’ option

that assembles transcripts with low-read coverage. In post-processing, I used in-house

Perl scripts to remove redundant sequences and sequences smaller than 200 bp (accepted

length of NCBI data repository and annotation). The resulting assembled sequences are

known as isotigs or contigs. The Newbler program was used to cluster the isotigs into

isogroups. The notion of a gene corresponds to an isogroup, while the splice variants were
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Table 3.1: External programs used

Name Version Description and reference

BLAST 2.2.25
A suite of tools used to find regions of similarity
between biological sequences.
(Altschul et al., 1990)

BLAT 34
BLAT is an alignment tool like BLAST that
search matches with indexes kept in memory.
(Kent, 2002)

BWA 0.7.12
Fast and accurate short read alignment
with Burrows-Wheeler transform.
(Li & Durbin, 2009)

CAP3 10/15/07
A sequence assembly program utilizing OLC
method mainly for Sanger sequences.
(Huang & Madan, 1999)

CEGMA 2.4
A pipeline to accurately annotate core
genes in eukaryotic genomes.
(Parra et al., 2007)

GenSeed 1.0.22 A seed-driven progressive assembly program.
(Sobreira & Gruber, 2008)

IDBA 1.1.0
An iterative De Bruijn graph de novo
assembler for sequence assembly.
(Peng et al., 2010)

Minimus2 3.1.0
A program pipeline meant to merge two
sequence sets together.
(Sommer et al., 2007)

PHRAP 20
A program for assembling shotgun DNA
sequence data.
(de la Bastide & McCombie, 2007)

SAMtools 0.1.18
A program suite that provide various utilities for
manipulating alignments in the SAM format.
(Li et al., 2009)

SSPACE 2011
A program for sca�olding pre-assembled
contigs using NGS paired-read data.
(Boetzer et al., 2011)
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represented as isotigs or contigs. In the following sections, both contigs and isotigs are

referred to as EGrefseq contigs.

(b) Functional annotation and quality assessment of EGrefseq contigs

Using BLASTX with an E-value threshold of 1⇥10�10, the EGrefseq sequence functions

were annotated using the Swiss-Prot database (October 2013 release) (Boutet et al., 2007),

the TAIR10 database (Swarbreck et al., 2007), the RGAP 7 database (Kawahara et al.,

2013) and the KEGG database (Kanehisa & Goto, 2000). I identified the best match

(minimum length of 200 bp) with the highest score in bits to annotate each contig. I also

adapted CEGMA (see Section 3.1.4) to assess the reliability of the assembly.

3.1.4 Genome quality assesment

(a) Genome draft statistics

Throughout the study, I evaluated the di�erent iterations of the genome draft by

collecting basic statistics on the total size, length and N50 for comparison.

(b) Evolutionarily-conserved genes evaluation

I used an evolutionary framework to evaluate the completeness of the genome assembly

by using the program pipeline CEGMA (Core Eukaryotic Genes Mapping Approach) (Parra

et al., 2007). The approach evaluates the number and completeness of 458 evolutionary

conserved genes, known as Core Eukaryotic Genes (CEGs), present in the assembly. I

also added CEGMA analyses for six highly-cited plant genomes as comparison to the

oil palm drafts: grape (Jaillon et al., 2007), two rice varieties (Go� et al., 2002; Yu et

al., 2002), sorghum (Paterson et al., 2009), poplar (Tuskan et al., 2006), and Arabidopsis

(Arabidopsis Genome Initiative, 2000).
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Table 3.2: Publicly available oil palm ESTs from GenBank

Researchers (Year) Number of contigs Tissues

Ho et al. (2007) 14,537
root, shoot apical meristem, young
flower, mature flower, suspension cell
culture, zygotic embryo.

Bourgis et al. (2011) 41,695 mesocarp (weeks after pollination: 15,
17, 19, 21 and 23) and leaves.

Tranbarger et al. (2011) 29,034 mesocarp (day after pollination: 100,
120, 140, 160).

(c) Exome completeness evaluation

EGrefseq contigs were mapped against the genome assembly using the program BLAT

(Kent, 2002) with default parameters. To mitigate the e�ects of possible biases due to

solely using in-house transcript data, ESTs (Expressed Sequence Tags) from published

datasets (Ho et al., 2007; Bourgis et al., 2011; Tranbarger et al., 2011) were also mapped

with the same BLAT parameters (Table 3.2).

(d) Molecular marker representation evaluation

SSR primers and DArT markers that had been experimentally validated to be polymorphic

were mapped by applying a BLAST search against the genome assembly, with low

complexity filters turned o� (Altschul et al., 1990). The location and statistics of

succesfully mapped markers were identified with the MarkMyMap program I developed

(Section 3.1.8).

3.1.5 Improvement by additional sequencing

The first draft, OPg1, was improved by conducting further sequencing with new pair-

mated libraries. The library preparation, sequencing and assembly were conducted by

an external service provider according to Illumina sequencing protocols. Briefly, new

pair-mated libraries of 300 bp, 5 Kbp, 8 Kbp and 40 Kbp were sequenced from samples

38

Univ
ers

ity
 of

 M
ala

ya



derived from Palm 99. The programs IDBA (Peng et al., 2010), PHRAP (de la Bastide

& McCombie, 2007) and SSPACE (Boetzer et al., 2011) were used to assemble the new

reads with OPg1 sca�olds. This produced the newer iteration of the genome draft called

OPg2. The additional sequencing reads were not made available by the service provider.

3.1.6 Improvement by adding exome contigs with GenSeed Pipeline Suite

I developed a program pipeline (Appendix B) expanding the capabilites of the program

GenSeed (Sobreira & Gruber, 2008). The pipeline requires the following dependencies:

1. GenSeed program

2. BLAST program suite

3. CAP3 program

4. BioPerl & modules: Bio::SearchIO, Getopt::Long, GD, Number::Range

Two files were used as input for the pipeline:

1. Individual transcriptome contigs in fasta

2. BLAST database of genome reads, indexed (./formatdb -o T -p F)

A single shell script wrapper was executed to run the pipeline. I first identified EGrefseq

contigs that did not map at least 60% of total length in the results of Section 3.1.4 with

OPg2. These were compiled into a single multi-sequence fasta format file. Then, the

program proceeds to identify genome reads that matches to each EGrefseq contig via

BLAST. CAP3 was then called to assemble the matched reads. The resulting contig was

further used to find additional genome reads in the same database. This process of search

and assemble iterates until no further reads can be found that match well. I used BLAST

with the low complexity filters turned o� and the E-value threshold set at 1 ⇥ 10�3 in the

matching steps. The contig assembly process was run with CAP3 using default parameters.

Finally, the program compiles all generated exome contigs as output in fasta format.
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Figure 3.1: Concept of bridge reads in sequence assembly

The exome contigs and OPg2 sca�olds were then assembled together using the program

SSPACE (Boetzer et al., 2011), with the use of all available pair-mated libraries from both

the Illumina and 454 sequencing, to produce OPg3.

3.1.7 Bridge read detection with BridgeReader

A program called BridgeReader was developed by Martti Tammi and I (Appendix B) to

detect reads that span over unique-repeat and repeat-unique regions of a genome, which

we call bridge reads (Figure 3.1). Briefly, a genome read is segmented into six regions and

indexed. False overlaps are detected by comparing the middle sections of one read against

all flanking sections of other reads by a sliding window search. A depth of coverage profile

of each read is then made to detect the exact point where unique and repeat regions end.

The unique portions of these reads are then mapped back against the genome to identify

the positions on the physical map.

This program is optimised for use on 454 sequenced reads, which are longer than

Illumina’s. The split to six regions is practical for reads that are 100 bp or longer, and

provides improved sensitivity.

The following subsections give a more detailed look at the algorithm contained in the
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two modules that make up BridgeReader.

3.1.7.1 iCountDBMate

This module creates a database that contains a unique index of every word of user-defined

length, and in which read it appears. The output consists of text files containing a list

of rows with read identities (IDs) ordered by the word index. The number of text files

corresponds to the number of sections each read is divided into. For example, if a read is

divided into five sections, five separate database files will be created.

Reads were trimmed to equal lengths for the partitioning to work e�ectively. Only

454 sequencing reads of the genome were used, and these were clipped to 100 bp size

fragments. Only fragments with contiguously high-quality base calls (Phred score � 30)

were selected. Reverse-complemented duplicates of the reads were made, and the total

number of reads was indexed in a database for searches in the next step. The database

contains word indices of each read partitioned into six sections (Sn, where n = 6):

1. S1 - base 1 to base 15

2. S2 - base 16 to base 31

3. S3 - base 32 to base 47

4. S4 - base 48 to base 63

5. S5 - base 64 to base 79

6. S6 - base 80 to base 100

3.1.7.2 RepeatCandyMate

This module reads the word index database constructed using iCountDBmate and uses

the information to discover bridge reads. The algorithm is based on assessment of word

matches on a read. Each read in the raw dataset is analyzed by the quantity and position

of matching words by a sliding window method. A pair of sliding windows is used to
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detect a candidate break point within pre-set margins. If a candidate break point is found,

a coverage ratio of both sides of this break point is computed with the number of matching

words over the total length of a read. If a pre-set threshold for this ratio is exceeded, the

read is labelled a candidate bridge.

To improve the time taken to complete this search, the reads were randomised and

divided into 10 runs, each run having approximately 7 million reads. These runs were

searched against the database built in step Section 3.1.7.1. The following parameters were

set in the definition file (def.h):

1. Maximum and minimum word length: 100

2. Index word size: 11

3. Step size: 2

4. Begin Margin: 15

5. End Margin: 21

6. Breakpoint Sum Threshold: 50

7. Breakpoint Range: 20

The preceeding algorithm and parameters were used to identify the overlaps of reads

with one another. Given two reads (read A and read B), there are four categories of overlaps

possible:

1. An overlap begins at the beginning of read B and end at the end of read A.

2. An overlap begins at the beginning of read A and end at the end of read B.

3. Read A is contained within read B.

4. Read B is contained within read A.

Only true overlaps between reads are found to have the above characteristics. A false

overlap on the other hand will exhibit what we call False Ends and False Begins, which
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occurs when the end sections of a read do not match another read when its middle section

does.

The algorithm that finds these False Ends and False Begins are as follows:

1. Read begin margin (S1), into computer memory (RAM) from _BEGIN file.

2. Each read is sequentially read from the original fasta file as a reference read. This

file also contains the reverse complements of each read.

3. Using a sliding window at each corresponding middle section (S2 to S5) the word

indices are computed on the reference read and mapped against S1. It is faster to

re-compute the word indices than to look up reference read IDs in the database,

since all the rows and IDs must be read in that case. By re-computing the indices,

we only need to look at the specific rows having the matching indices.

4. Read in Section S2 to Section S5, one at a time and search for read IDs that end in

each Section.

5. S1 is in the RAM, therefore, it is fast to check whether a read that ends in any of the

following Sections also overlaps in S1, otherwise label as a False Begin.

6. Replace S1 with End Margin database, S6.

7. Read in S2 to Section S5, one at a time and looks for read IDs that begins in each

Section.

8. S6 is in the RAM, therefore, it is fast to check whether a read that begins in any of

the following Sections also overlaps in S6, otherwise labeled as a False End.

9. All False Begins and False Ends are stored as overlap counts of the corresponding

section in the reference read, as well as overlaps that are determined to be true. Total

number of overlaps is determined by the number of ends and beginnings found to

overlap the reference read.

10. Any read that has the number of true overlaps that is less than a set threshold (the
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Breakpoint Sum Threshold) is removed from the analysis and stored in a file for

investigation. Such reads may not have additional coverage information and may be

a result of contamination, sequencing errors, or sequencing artifacts.

Reads that contained the false overlaps were marked as candidate bridge reads, which

were then mapped against OPg3 using BLAST.

3.1.8 Consolidating the oil palm genome physical map

3.1.8.1 Fragmenting sca�olds and arrangement with MarkMyMap

I developed a program called MarkMyMap (Appendix B), that is able to fragment and

re-arrange sca�olds according to information from a linkage map with molecular markers.

The algorithm for fragmenting a sca�old is as follows:

1. Index the start and end positions of bridge regions on a sca�old with bridge read

candidates from Section 3.1.7.2.

2. Index molecular marker positions of sca�old.

3. Identify and index the start and end positions of any N-gap filled regions present

(generated during sca�old assembly process from Section 3.1.5).

4. Sort all the position index per sca�old. Each position is a potential start and end of

a fragment.

5. Splits in a sca�old are made by working through the position index, starting with 1

(sca�old start) and ending at an index position (bridge or N-gap start) after at least

one molecular marker position index is accounted for. The next fragment begins

with the end position of either a bridge or N-gap region. Process continues until the

sca�old end position is reached.

Figure 3.2 shows a representation of the process. The split will only be made if there is

at least one marker available on the generated fragments. Molecular markers that fall into
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M1 NNNNNNNNNNNNNNNNM3     M4M2 M5 BRIDGE

M1 M3      M4 M5 BRIDGE

Figure 3.2: Example of the sca�old splitting process of MarkMyMap, with the top block
representing the original OPg3 sca�old, while the bottom 3 blocks are the fragmented
result. The red regions are bridge regions, the Ns are N-gaps, and the M1 to M5 are
molecular markers.

the bridge regions can be chosen to be removed together with the split (default) or not.

The first Sime Darby oil palm genome physical map used 26,240 Sime Darby Linkage

Map SNPs that had been mapped in a linkage study conducted internally by Sime Darby.

This is known as the Sime Darby Physical Map. I wanted to seek improvement of the

physical map with the available genome sca�olds published by Singh et al. (2013). In the

publication, Singh et al.’s oil palm genome sca�olds (MPOB sca�olds) had already been

arranged into their MPOB Physical Map representation with their own Linkage Groups.

I first consolidated the chromosome representation between Sime Darby’s and MPOB’s

Linkage Groups (LG). The Sime Darby Linkage Map SNPs (with their 60 nt flanks) that

are in LG in Sime Darby’s linkage map were mapped against the MPOB’s 16 chromosome

sca�olds using BLAST and the MarkMyMap program. I then grouped our LGs according

to MPOB’s by determining the majority of Sime Darby’s LG SNPs mapping to MPOB

physical map sca�olds. The LG’s were subsequently referred to MPOB’s original indexing

for ease of future reference.

The MarkMyMap program was then used to fragment OPg3 sca�olds to generate Sime

Darby fragments. I then collected MPOB sca�olds that were unlinked but contained Sime

Darby LG SNPs, and Sime Darby fragments according to MPOB LGs. Subsequently,

I used MarkMyMap to re-order and arrange the sca�olds, and to remove redundancies

(Figure 3.3), thus generating the MarkMyMap Physical Map.
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Figure 3.3: Conceptual example of sca�old fragment binning using molecular markers
into collections representing available Linkage Groups (LG).

3.1.8.2 Improvement of the oil palm physical map by merging using Minimus2

I further tested a merged assembly between the Sime Darby and MPOB physical maps

using Minimus2, a modified version of Minimus (Sommer et al., 2007) found in the

AMOS assembly package (Treangen et al., 2011). The process of merging relies on finding

overlaps between two sca�olds and fusing both together. I collected MPOB sca�olds and

contigs that Sime Darby Linkage Map SNPs map in a non-redundant manner, i.e. only

uniquely mapping SNPs were used, and prioritised sca�olds over contigs should a SNP

matches both datasets. I then binned sca�olds from the Sime Darby oil palm genome with

the rest according to LG, and run the Minimus2 program to merge the sca�olds. The base

calls were optimised to prioritise Sime Darby’s sequences, thus yielding the result called

the Minimus2 Physical Map.
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3.2 Identifying di�erentially expressed genes from oil palm RNA-Seq data

3.2.1 Definition of true gene count and sample coverage

I first define the true gene count as the total number of mRNA copies of a gene, in a

sample prepared for a sequencing run. This definition holds for a sample containing single

or multiple cells. This value cannot be known with certainty solely from the observed gene

count, since the latter can, in principle, be derived from multiple di�erent true gene counts.

However, information about sample coverage can lead to more accurate estimates of the

true gene count, as I shall show in this study.

3.2.2 Estimating the RNA-Seq coverage from sample concentration

3.2.2.1 Illumina’s sequencing procedure

Illumina’s platform is widely used for di�erential gene expression analyses due to its

ability to sequence deeper than 454 sequencing at lower costs. Briefly, I describe six

important steps during the library preparation process that contribute to variations in

observed RNA-Seq gene count:

(a) Starting material

For an Illumina run using TrueSeq stranded mRNA sequencing library preparation,

1 µg of total RNA is usually needed.

(b) mRNA isolation

Most RNA-Seq studies are conducted on mRNA. Less than 1% of the total RNA

survives mRNA isolation (poly-dT beads), including mRNA. Usually, the loss of mRNA

in the wash is due to degraded mRNA, i.e. poor total RNA quality.
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(c) Fragmentation

This process produces approximately 500 bp long fragments. The process is followed

by a size selection procedure which further increases mRNA loss.

(d) cDNA preparation

The next phase is then cDNA preparation with random hexamer priming which

introduces priming biases.

(e) PCR

This step is needed to increase the amount of RNA. It is noted that overloading (too

concentrated) the flow cell produces no results, and underloading (too diluted) can cause

very skewed results. Most cases require PCR, because underloading is common in

most RNA samples. Furthermore, the amount is greatly a�ected by the starting sample

concentration, e.g. 200 ng, which is not the same for all samples. One sample may need

PCR, while another does not, so doing PCR for both will introduce equal duplication

events to cancel out comparison bias. However, to reduce duplication bias, the cycle is

kept as low as possible, which is generally 14 cycles.

(f) Loading volume for sequencing

The final product of PCR yield approximately 40 µL of 200 nM (nanoMolar). The

amount then gets diluted 20,000 times to a loading amount of 120 µL for the flow cell. The

40 µL is first diluted 100 times to 2-3 nM, and then further diluted 200 times as aliquots.

3.2.2.2 What is the total mRNA found in a sample?

To identify a sample’s sequencing coverage, we will need to first identify what is the

size of the mRNA population to compute the sample’s sequenced proportion. While it

is ideal to obtain the number of total mRNA available prior to library preparation, the
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biases mentioned above make it di�cult, if not impossible, to allow accurate estimates of

the total mRNA in the sample. I reasoned that the amount of cDNA produced at the step

prior to PCR would provide us the most reliable means for computation for three reasons.

Firstly, the fragmentation step causes homogeneity of the cDNA molecule sizes. Secondly,

the volume and concentration after PCR is known. Finally, the number of PCR cycles is

known.

3.2.2.3 What is the original amount of cDNA before PCR?

We can calculate this quantity since the cDNA molecules would have similar molecular

weights after size selection (⇡ 500 bp). The PCR final volume of 40 µL has 200 nM (200

nmol/L) concentration of 500 bp cDNA molecules, which translates to 4.818⇥ 1012 cDNA

molecules. Assuming complete replication e�ciency, a cDNA molecule is amplified 214

(16,384) times for 14 cycles of PCR. Therefore, in the ideal case where all cDNA are

amplifiied, the number of cDNA before PCR is 4.818⇥1012

214 = 294, 067, 382.

3.2.3 Simulation of the fragment sampling process and the relationship between
coverage and the ratio of mean to variance of observed counts

When cDNA fragments are loaded into a sequencing run, short reads are assumed

to be generated randomly from the loaded cDNA fragments. Thus, a true gene count

induces a probability distribution of observed gene count. To find a probabilistic model

that best describes the latter, I made a series of simulations to determine the mean-variance

relationship of the observed gene counts.

Consider a population of N cDNA fragments of the same length. In this study, I set

N = 300 ⇥ 106 (300M). I used the following numbers of sequenced reads (S): 150 M, 120

M, 75 M, 30 M, 3 M and 0.3 M for simulating coverages (S/N) of 0.5, 0.4, 0.25, 0.1, 0.01

and 0.001, respectively.
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call, we require p+(1�↵)/2/p
�
(1+↵)/2 � �, where the superscript + and � indicate the posterior

distribution with higher and lower mean, respectively. The default settings are ↵ = 0.99

and � = 1.5. These values can be changed to make CORNAS more conservative (e.g.

increasing ↵ and/or �), or more liberal (e.g. lowering ↵ and/or �).

NOISeq was run with a q=0.9 cut-o�. GFOLD was run with a 0.01 significance cut-o�

for fold changes. The expression of a gene was considered up-regulated if the GFOLD

value was 1 or greater and down-regulated if the GFOLD value was -1 or smaller.

(b) Performance metrics

In the context of di�erential gene expression analysis, a true positive (TP) is a true DEG

call that is correctly flagged as being di�erentially expressed by a DEG method. False

DEG calls are false positives (FP), while false negatives (FN) are missed true DEG calls.

For a DEG call method, its positive predictive value (PPV) is the proportion of calls that

are true DEG (TP/(TP+FP)); and its sensitivity is the proportion of true DEGs that are

called (TP/(TP+FN)). The sensitivity and PPV of each method were jointly considered for

Tests 2, 3 and 4. The F-score, which is the harmonic mean of sensitivity and PPV, was

calculated for each comparison as 2 ⇥ (sensitivity⇥PPV)/(sensitivity+PPV). The mean

F-score for each method was reported.

For Test 1, the false positive rate (FPR) is determined from the no-fold change scenario

as the true negatives (TN) are explicitly known (FP/(FP+TN)), while the sensitivity is

calculated similarly as that in Tests 2, 3 and 4 for the weak and strong e�ect scenarios.

(c) Test 1: Detection of di�erentially expressed genes in simulated true gene count
data

For this simulation, I tested CORNAS using four coverages: 0.5, 0.25, 0.1 and 0.01, and

three scenarios of biological e�ects were considered: no fold change (no e�ect), 1.5-fold

change (weak e�ect), 2-fold change (strong e�ect). The maximum true counts considered
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under these three scenarios were 10,000, 6,666 and 5,000, respectively. Each true gene

count is assumed to be expressed by a gene, so that the set of all true gene counts under all

three scenarios corresponded to a total of 21,666 genes. The observed counts for each

gene was generated following the procedure described in the simulation of the fragment

sampling process (Section 3.2.3). A total of 100 iterations were made to account for

sampling variability in observed gene counts. Where gene length information is required

for a particular method, we set it at 1,000 bases.

(d) Test 2: compcodeR simulation

I generated the simulated data set B_625_625 according to the example provided in

Soneson (2014) to create a control-treatment comparison (five replicates in each group),

with 624 up-regulated genes and 625 down-regulated genes in the control group for a

simulated transcriptome of 12,498 genes. From this data matrix, a total of 25 unreplicated

data sets were constructed. Gene lengths were assumed to be equal and set at 1,000

bases. For CORNAS, I evaluated the outcome of two di�erent coverages on the sample

comparisons; one estimated at 10 times less than compcodeR coverage (CORNAS_10xless),

and another at 100 times less (CORNAS_100xless). I made two separate NOISeq runs,

one without length normalization (NOISeq_nln), and another using the trimmed mean of

M-values normalization (NOISeq_tmmnl).

(e) Test 3: Human sex-specific gene expression

For the Pickrell (2010) study consisting of 29 females and 25 males from Nigeria, I used

the number of total sequenced reads from the published paper. The RNA-Seq count data

was obtained from the ReCount database (Frazee et al., 2011). The sequencing coverage for

each sample was calculated as the number of total reads reported divided by the standard

300M cDNA fragment size. For samples with more than one sequencing run, I took the
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average of the total reads generated. The di�erentially expressed genes were identified as

19 genes with Y chromosome-related expression (Khang & Lau, 2015). Genes that are

not di�erentially expressed on biological grounds include 61 X-inactivated (XiE) genes

(Carrel & Willard, 2005; Esnaola et al., 2013) and 11 housekeeping genes (Eisenberg &

Levanon, 2013).

(f) Test 4: Coverage e�ects in tissue-specific gene expression data

In the Marioni (2008) data set, the same human liver and kidney samples were

sequenced in seven lanes each, with five lanes loaded at an RNA concentration of 3 pM,

and another two with 1.5 pM. The 14 lanes were sequenced in two separate runs. To

reduce technical variation, I used only data from run 2, where loadings with di�erent

concentrations were run under the same conditions and time. I estimated the number of

cDNA fragments representing the sample’s transcriptome as the product of the loading

concentration, the loading volume (assumed as standard 120 µL), and the Avogadro

constant 6.022 ⇥ 1023mol�1. The set of true DEGs used was identified based on curated

information extracted from the TISSUES database (Santos et al., 2015) on the 14th of

June 2016. I selected 737 human kidney genes and 4,126 human liver genes that have

supporting experimental validation results and are identifiable with Ensembl gene ID.

(g) E�ect of PCR amplification e�ciency on sensitivity

The evaluation was conducted with the same dataset used for Test 1. To simulate the

e�ect of PCR amplification e�ciency in the study, I recalculated the sequencing coverages

for each CORNAS run by reducing the assumed total number of fragments prior to PCR

caused by di�erent PCR amplification e�ciencies (70%, 49%, 34%, 23% of total fragments

for 95%, 90%, 85%, 80% amplification e�ciency respectively).

Let X be a random variable that represents the proportion of DNA fragments unamplified

54

Univ
ers

ity
 of

 M
ala

ya



Univ
ers

ity
 of

 M
ala

ya



Table 3.3: The expected proportion (mean = E(Sa/Sp), SD = Standard Deviation) of DNA
fragments amplified by PCR under a beta model with mean ↵/(↵ + �) relative to perfect
amplification

↵ � E(Sa/Sp) E(Sa/Sp) ± 2SD
5 95 0.70 0.64 - 0.76
10 90 0.49 0.43 - 0.55
15 85 0.34 0.29 - 0.38
20 80 0.23 0.19 - 0.27

For the variance of Sa/Sp, we have
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Table 3.3 gives the expected proportion of fragments under a beta model of amplification

variation relative to perfect amplification. As an example, a sample that had perfect

amplification but had a sequencing coverage of 0.25 would have 300M fragments prior to

PCR and 75M reads produced. Supposed the reads produced remain unchanged, but the

PCR amplification e�ciency is now 95%, the sequencing coverage estimated will then be

0.36 (75M / (300M ⇥ 0.7)). The new coverage is then used in the 0.25 coverage CORNAS

run with 95% PCR amplification e�ciency. For each coverage, the FPR was calculated

from the number of DEG called in the no e�ect scenario, and sensitivity was calculated

from the DEG called from the strong e�ect scenario. I generated the Receiver Operating

Characteristic (ROC) curves using the ROCR R package (Sing et al., 2005). The cut-o�s

for making a di�erential expression call were obtained by fixing ↵ = 0.99 and then varying

� from 1.5 to 0.75, and by fixing � = 0.75 and then varying ↵ from 0.99 to 0.01.

3.2.6 CORNAS on oil palm male and female inflorescence unreplicated samples

(a) RNA extraction from samples

Oil palm inflorescences (male and female) were sampled from Elaeis guineensis tenera

hybrid palms (GH500 series dura ⇥ pisifera). Each tissue sample was collected on the

same day from six di�erent 20-year-old oil palms from the same estate in Carey Island,

Selangor, Malaysia. These were healthy palms that were at the end of their production

cycle and marked for culling. The inflorescences of each palm were sampled by removing

the fronds from the felled palms followed by dissection of the stem to reach the tissues,

which were then immediately placed in liquid nitrogen. The length of male and female

inflorescences ranged between 3–4 cm corresponds to leaf +6 stage (Adam et al., 2005).

Total RNA from these tissues were extracted and pooled as detailed in Ho et al. (2016).
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(b) Sequencing and making counts

The cDNA libraries were sequenced using a 454 GS-FLX Sequencing System (Roche

Molecular Diagnostics, Indianapolis, IN, USA). The generated reads were mapped to

EGrefseq using bwasw of the BWA package (Li & Durbin, 2010). Uniquely mapped reads

were counted from the reference alignment using SAMtools (Li et al., 2009) in each sample

dataset.

(c) Validation with nCounter method

The nCounter analysis system (NanoString Technologies, Seattle, WA, USA) was used

to determine the expression level of 16 sex-specific transcripts in male inflorescence and

female inflorescence of oil palm. These 16 candidates were chosen by considering whether

the transcript had at least 10 observed counts in the male inflorescence RNA-Seq sample

and no observed count in the female inflorescence RNA-Seq sample as male-specific,

while the reverse was considered as female-specific (Ho et al., 2016). In order to obtain

su�cient RNA for analysis, pooled RNA samples were used (the RNA for each tissue

type was extracted from six di�erent palms and was then combined in equal amounts). A

transcript was considered sex-specific when it showed a sex-predominant expression pattern

(log2-transformed fold-change ratios � 0.50) between male and female inflorescences.

Pre-mRNA splicing factor SLU7 and glutaredoxin genes that had been shown to stably

express in di�erent oil palm tissues (Yeap et al., 2014) were used as the housekeeping gene

controls. Standard negative and positive controls were spiked into the samples according

to the manufacturer’s protocol. Four technical replicates for each tissue type were used.

The raw counts were normalised using the geometric mean of the positive controls and

the two housekeeping genes in the nSolver Analysis Software provided by NanoString

Technologies (Seattle, WA, USA).
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(d) CORNAS parameter setup

To apply CORNAS, I work on the assumption that the coverage could never achieve

> 0.01 and is therefore Poisson distributed (Section 4.2.2). This is because 454 sequencing

generates far fewer reads per sample run, which therefore leads to lower expected coverages

than Illumina sequencing. This lower coverage is the consequence of the length/depth

limitation: longer lengths are generated at the expense of sequencing depth. Transcript

expression profiles of oil palm male (Mi) and female (Fi) inflorescences were compared

using CORNAS with ↵ = 0.99 and � = 1.

(e) Comparison with NOISeq and GFOLD

I also ran NOISeq and GFOLD with the same configuration in Section 3.2.5 to

benchmark against the CORNAS results.
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CHAPTER 4: RESULTS

4.1 Oil palm whole genome assembly improvement

4.1.1 Sime Darby’s transcriptome reference

The consensus transcriptome assembly built from various oil palm tissues, called

EGrefseq, was instrumental for the rest of my analyses throughout the study. EGrefseq

comprises of 60,210 non-redundant contigs (Table 4.1) which have been deposited at

DDBJ/EMBL/GenBank under the accession GCKD00000000 (Ho et al., 2016).

About 45% of EGrefseq transcripts are longer than 1,000 bp. I found 37,737 and

40,162 transcripts to have significant matches against TAIR10 and RGAP 7 databases

respectively. A total of 30,192 transcripts had BLAST matches in the Swiss-Prot database

and 40,208 transcripts had significant matches in the KEGG database. Transcripts for

all 458 CEGs were represented in EGrefseq, with 453 out of the total (98.9%) having

alignments with lengths exceeding 60% of either the CEG or the EGrefseq sequence.

These statistics validate the EGrefseq as likely to have good representation of the genome

and as a comprehensive reference set.

4.1.2 Comparison of Sime Darby oil palm genome assemblies

In this study, I sought to improve the first draft of Sime Darby’s oil palm genome

(OPg1). This assembly was built using 454 sequencing reads. Additional sequencing from

Table 4.1: Overview of EGrefseq consensus assembly

EGrefseq attributes Statistic
Number of contigs 60,210
Number of genes 38,981
Total transcriptome size (bp) 70,422,832
Longest contig length (bp) 11,413
Shortest contig length (bp) 200
Average contig length (bp) 1,169
N50 (bp) 1,652
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Table 4.2: N-statistics on OPg1, OPg2 and OPg3

Genome statistics Genome version
OPg1 OPg2 OPg3

Total draft size (bp) 1,680,286,271 1,819,755,685 1,779,709,065
Number of sca�olds 37,882 246,587 117,574
Largest sca�old size (bp) 21,372,121 71,844,751 71,844,751
Percentage of N bases 9 11 10
N50 (bp) 134,844 91,160 95,157

the Illumina platform was implemented in the second iteration of the draft (OPg2), while

the third OPg3 version was the culmination of the technique to add exome contigs to the

assembly. There is an overall improvement of the genome draft sizes with each iteration as

it approach closer to the estimated DNA size of 1.8 Gbp (Table 4.2). OPg1 seemed to be

under-representing the size, while OPg2 was larger than the other two. The number of

sca�olds generated increased 5.5 times more from OPg1 to OPg2 with additional Illumina

sequencing, but saw a reduction from OPg2 to OPg3 once the sequences were consolidated

using exome contigs. With the inclusion of new paired-end sequences to consolidate the

contigs, the largest sca�old size was increased to 72 Mbp in OPg2, compared to OPg1,

which was just about 21 Mbp. The longest sca�old recorded for OPg2 remained the same

in the OPg3 iteration. The percentage of unknown bases in the three draft genomes were

only marginally di�erent (between 9 to 11 %). The N50 of OPg1 indicates it had the best

contiguous genome representation (135 Kbp), followed by OPg3 (95 Kbp) and OPg2 (91

Kbp). Interestingly, the N50 statistic fell by 30% in OPg2.

I further compared the oil palm genome drafts to evaluate their degree of completeness of

their gene content. Out of 458 Core Eukaryotic Genes (CEGs), OPg1 had 182 CEGs missing

(39.7%), which indicates considerably low gene representation (Figure 4.1, Supplementary

Table A.3). With additional sequencing, the draft improved with a reduction in missing

CEGs to 81 in OPg2 (17.7%). The addition of the exome contigs further in the assembly
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Figure 4.1: Percentage of missing Core Eukaryotic Genes (CEGs) across various genome
assemblies. There are 458 CEGs in total.

decreased the missing CEGs to 58 in OPg3 (12.7%). The improvements seen in OPg3

approaches, but does not quite reach, the completeness of other plant genome references

that had been published. The next plant ranked with poor CEG representation is the grape

genome, Vitis vinifera, which has about 8% less missing CEGs compared to OPg3.

Since the EGrefseq resource is available, I was able to further determine the extent of

the expression landscape covered in the oil palm genome drafts. This dataset does not limit

us with only 458 highly-conservative genes. We see that EGrefseq representation improved

with each iteration, from OPg1 to OPg3 (Figure 4.2); with 39% improvement from OPg1 to

OPg3 of transcripts mappable at 80% of their lengths. Since publicly available ESTs were

also available, I compared them to the OPg3, which exhibits the best gene representation.

With the exception of the public ESTs from Ho et al. (2007), the rest of the ESTs mapped

to OPg3 with comparable standards as EGrefseq (Figure 4.3).

I further assessed if the genome assemblies contain su�cient molecular marker

information for genetic studies. I observed an overall 3% increase of total markers mapping

62

Univ
ers

ity
 of

 M
ala

ya



0

25

50

75

100

25 50 75 100
% Transcript Length

%
 T

ra
ns

cr
ip

ts
 M

ap
pe

d

Type
OPg1

OPg2

OPg3

Figure 4.2: Coverage of 60,210 EGrefseq contigs against OPg1, OPg2 and OPg3

0

25

50

75

100

25 50 75 100
% Transcript Length

%
 T

ra
ns

cr
ip

ts
 M

ap
pe

d Type
EGrefseq

EST Bourgis (leaf)

EST Bourgis (mesocarp)

EST Ho

EST Tranbarger

Figure 4.3: Coverage of various published oil palm transcriptome sequences over OPg3.
EGrefseq consists of 60,210 consensus contigs generated from various tissues; EST Ho
contained 14,537 contigs from root, shoot apical meristem, young flower, mature flower,
suspension cell culture and zygotic embryo; EST Tranbarger contained 29,034 contigs
from mesocarp; EST Bourgis (mesocarp) contained 33,841 contigs from mesocarp and
EST Bourgis (leaf) contained 7,854 contigs from leaves.
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Table 4.3: Statistics of mappable SSR and DArT markers against OPg1, OPg2 and OPg3.
The number in brackets next to marker types denote the total markers used for evaluation.

Molecular Marker statistics Genome version
OPg1 OPg2 OPg3

Billotte et al. SSRs (75) 44 58 58
Sime Darby SSRs (501) 467 428 450
Sime Darby DArT (101) 48 72 72
Total markers 559 558 580
Total % ( over 677 markers) 82.6 82.4 85.7
Total uniquely mapped sca�olds 330 301 309
Total length of uniquely mapped sca�olds 70,293,744 350,954,987 352,118,750

to the genome after improvements, from 82.6% in OPg1 to 85.7% in OPg3 (Table 4.3).

Except for a reduction of 22 SSRs developed by Sime Darby found in OPg2, the rest of the

mapped markers were the same between OPg2 and OPg3. There was a slight reduction

of 12 markers from OPg1 to OPg3. The number of uniquely mapped sca�olds had also

reduced but the total length of those sca�olds became about 5 times larger in OPg3 (352

Mbp) compared to OPg1 (70 Mbp), an indication that the sca�olds became joined in the

new assembly.

4.1.3 Improvement by adding exome contigs with GenSeed Pipeline Suite

I developed a program pipeline, written in Perl, (Section 3.1.6) that expands the

capabilites of the program GenSeed (Sobreira & Gruber, 2008). With my program, I found

13,582 EGrefseq contigs that did not match OPg2 with identities more than 60%. Of these

contigs, 95.4% (12,958 contigs) were able to seed a total of 22,652 exome contigs (Table

4.4). The general lengths of the exome contigs were 84% shorter on average compared to

the largest exome contig of 18 Kbp. Also, EGrefseq contigs seemed to seed two exome

contigs on average.
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Table 4.4: Statistics of completed exome contigs built from EGrefseq with less than 60%
match identity to OPg2

Exome contigs attributes Statistic
Total contigs 22,652
Most contig per EGrefseq 16
Least contig per EGrefseq 1
Average contig per EGrefseq 2
Longest contig (bp) 17,770
Shortest contig (bp) 91
Average contig length (bp) 2,836

4.1.4 Bridge read detection with BridgeReader

BridgeReader was developed to detect bridge reads (Section 3.1.7). The program

was written in C++ (for optimal computation) and Perl. BridgeReader identified a total

of 10,152,549 candidate bridge reads in the 454 sequencing reads data set. With these

annotated against OPg3 genome, 27,375 potential break sites were identified on OPg3

sca�olds. Figure 4.4 shows a visual result of annotating the genome with bridge reads.

The ‘NGS Reads’ track consists of raw reads from Illumina sequencing. The bridge reads

track, ‘greads101_aln’, indicates a gap in the ‘NGS Reads’ mapping. The two di�erences

in coverage seen on the left and right of the bridge reads are an indication of a possible

misassembled region.

4.1.5 Consolidating the oil palm genome physical map

With the latest iteration of Sime Darby’s oil palm genome (OPg3), an in-house linkage

map based on 26,240 SNPs, and the annotation of bridge reads, I proceeded to build Sime

Darby’s oil palm genome physical map. Taking advantage of the release of the MPOB oil

palm genome (Singh et al., 2013), I further used their physical map to assist in improving

the contiguity and completeness of genetic marker content of Sime Darby’s physical map.

During the linkage group (LG) consolidation exercise, the Sime Darby’s LG was able to

map to MPOB’s LGs with more than 90% confidence (Table 4.5). This confidence metric
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Figure 4.4: Example of bridge read annotation on OPg3

is derived from the number of SNPs I found matching between the mapped LGs, giving us

the degree of similarity between Sime Darby’s LG to MPOB’s LGs.

I developed a Perl program called MarkMyMap (Section 3.1.8), that is able to fragment

and re-arrange sca�olds according to information from a linkage map with molecular

markers. The results from the MarkMyMap program yielded the largest physical map (PM)

size, nearly doubling the similarly sized Sime Darby and MPOB physical maps from about

658 Mbp to 1.2Gbp (79% increase). The Minimus2 PM reduced the number of sca�olds

and increased the mean sca�old lengths per LG compared to Sime Darby PM, with median

improvements of 30% and 46% respectively (Supplementary Table A.2), with only two

Sime Darby Linkage Map SNP markers missing (Table 4.6). However, the Minimus2 PM

66

Univ
ers

ity
 of

 M
ala

ya



Table 4.5: Linkage group (LG) comparison between MPOB and Sime Darby physical
maps (PM). Matched SNPs: Number of Sime Darby LG SNPs found in MPOB PM.

MPOB PM ID MPOB LG Sime Darby LG Matched SNPs % Matched SNPs
gb|CM002081.1| LG1 LG08 1782 99.26
gb|CM002082.1| LG2 LG04 1547 99.42
gb|CM002083.1| LG3 LG01 1960 98.20
gb|CM002084.1| LG4 LG11 381 96.21
gb|CM002085.1| LG5 LG12 705 92.40
gb|CM002086.1| LG6 LG10 1086 99.91
gb|CM002087.1| LG7 LG06 969 100.00
gb|CM002088.1| LG8 LG02 1282 90.41
gb|CM002089.1| LG9 LG07 896 92.66
gb|CM002090.1| LG10 LG15 1428 97.81
gb|CM002091.1| LG11 LG14 555 99.64
gb|CM002092.1| LG12 LG13 769 98.72
gb|CM002093.1| LG13 LG09 427 96.83
gb|CM002094.1| LG14 LG03 766 98.21
gb|CM002095.1| LG15 LG16 545 99.82
gb|CM002096.1| LG16 LG05 188 100.00

Table 4.6: Comparisons between physical maps generated. Note that LG 17 is just a
placeholder for unlinked sca�olds, and does not represent an actual chromosome in oil
palm. There are 26,240 LM SNPs (Sime Darby linkage map) and 170,860 OP200K SNPs.

Physical map statistics Physical map version
Sime Darby MPOB Minimus2 MarkMyMap

Total size (bp) 657,211,498 657,968,836 733,454,586 1,177,588,601
Number of LG 17 16 17 16
Number of sca�olds 25,285 16 16,930 4,383
Mean size (bp) 25,992 41,123,052 43,322 268,671
Number of LM SNPs 26,240 16,330 26,238 22,641
Number of OP200K SNPs 91,562 82,854 88,176 113,210

only had relatively smaller di�erence in the number of CEGs represented, from 43.2% in

Sime Darby PM to 32.3% in Minimus2 PM (Supplementary Table A.3), and I have found

evidence of assembly errors (Figure 4.5). The MarkMyMap PM, on the other hand, had a

reduction of 3,599 Sime Darby linkage map SNP markers (LM SNPs) compared to Sime

Darby PM, but had the highest recovery of Sime Darby’s OP200K SNPs (Kwong et al.,

2016) with 21,648 additional informative SNPs (Table 4.6). Furthermore, MarkMyMap

PM had the lowest amount of CEGs missing at 9.2% (Supplementary Table A.3).
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4.2 Identifying di�erentially expressed genes from oil palm RNA-Seq data

4.2.1 The true coverage of RNA-Seq experiments

The coverage of a sample (b) is defined as the number of cDNA fragments sequenced (S)

divided by the total cDNA fragment population size (N). Single-end sequencing produces

one read to represent one cDNA sequenced, while paired-end sequencing produces two

reads to represent one cDNA sequenced. The calculation of sample coverage in the context

of the Illumina sequencing protocol can be based on mRNA sample concentration. The

amount of cDNA produced at the step prior to PCR provides the key to a reasonable

estimate of sample coverage because: 1) the fragmentation step during sample library

preparation causes homogeneity of the cDNA molecule sizes (500bp); 2) the volume and

concentration after PCR is known (40 µL of 200nM cDNA) and; 3) the number of PCR

cycles is known (14 cycles). The cDNA fragments undergo PCR to improve the chance of

getting at least a sequencing coverage of one. Assuming perfect amplification e�ciency,

each cDNA fragment is amplified 214 times during PCR. Thus, I calculated the number

of cDNA fragments prior to PCR as ⇡ 300 M. I used this quantity as the estimated N to

determine coverage, since it most closely resembles the mRNA amount we expect to start

o� with.

4.2.2 Chance mechanism generating a Generalised Poisson distribution for ob-
served gene counts

I simulated the sampling e�ect that occurs in the sequencing run to find a probabilistic

model that best describes the probability distribution of observed counts. For each coverage,

I generated an empirical distribution of the observed counts for true count values ranging

from 1 to 100,000.

The simulation results provided three important observations: the mean of observed

counts is proportional to the coverage, underdispersion occurs (i.e. variance less than mean)
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(a) 0.5X (b) 0.4X

(c) 0.25X (d) 0.1X

(e) 0.01X (f) 0.001X

Figure 4.6: Mean vs variance of observed counts in 2,000 replicates for the following
coverages (a): 0.5X, (b): 0.4X, (c): 0.25X, (d): 0.1X, (e): 0.01X, (f): 0.001X. The black
line is where mean is equal to variance. The red line is the fitted linear model.
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(a) Gm (b) Im

(c) Gs (d) Is

Figure 4.7: The relationship of the sequencing coverage with the slope and intercept
parameters of linear models of the posterior mean and posterior variance; where (a): Gm,
(b): Im, (c): Gs, (d): Is are respectively modelled in the equations of Section 3.2.4 and
Section 4.2.3. The open circles represent the simulated data used to estimate the model.
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4.2.4 COverage-dependent RNA-Seq (CORNAS)

A statistical test for calling di�erentially expressed genes in the case of unreplicated

RNA-Seq experiments can be based on the posterior distribution of the true gene count (Eq.

4.2) as follows: For a single control and a single treatment sample, if we have information

about sequencing coverage for the control sample (b0) and the treatment sample (b1),

then, given the observed gene count for the control (x0) and the treatment (x1) group, the

posterior distribution of their true gene count is approximately gamma (Eq. 4.5). A gene

is declared to be di�erentially up-regulated in the treatment group if the latter has a larger

posterior mean, and its 0.5th percentile is at least 1.5 fold (default) larger than the 99.5th

percentile of the control group. Conversely, a gene is di�erentially down-regulated in

the treatment group if the latter has a smaller posterior mean, and its 99.5th percentile is

at least 1.5 fold (default) smaller than the 0.5th percentile of the control group (Figure

4.8). This procedure is fast because the percentiles of the gamma distribution are easily

computed. Furthermore, declaring genes to be di�erentially expressed using this procedure

implies there is a 0.9952 ⇡ 0.99 probability that the true gene count in the two samples

di�er by at least 1.5 fold. I call this algorithm CORNAS (COverage-dependent RNA-Seq)

and wrote the program to perform CORNAS analysis in R (Low, Khang, & Tammi, 2017).

4.2.5 Performance evaluation of CORNAS

I conducted a series of tests comparing the performance of CORNAS against NOISeq

(Tarazona et al., 2011) and GFOLD (Feng et al., 2012) using both simulated and real data

sets. I chose GFOLD and NOISeq, because both have been reported to return relatively

small number of false positives among the genes flagged as di�erentially expressed when

applied to unreplicated RNA-Seq data sets compared to other popular methods such as

DESeq2 and edgeR (Khang & Lau, 2015).

75

Univ
ers

ity
 of

 M
ala

ya



Table 4.7: The mean F-score calculated for each method for Test 2, Test 3 and Test 4 cases

Method F-score
Test 2
GFOLD 0.31
NOISeq_tmmnl 0.30
CORNAS_100xless 0.30
CORNAS_10xless 0.30
NOISeq_nln 0.28

Test 3
GFOLD 0.51
CORNAS 0.45
NOISeq 0.22

Test 4
CORNAS 0.36
GFOLD 0.31
NOISeq 0.19

(a) Test 1: Detection of di�erentially expressed genes in simulated true gene count
data

I tested CORNAS, NOISeq and GFOLD on simulated true gene counts for the scenario

of no-fold change (no e�ect), 1.5-fold change (weak e�ect) and 2-fold change (strong

e�ect) between control and treatment. The false positive rate (FPR) was estimated as the

DEG call rate in the scenario of no-fold change. The true positive rate (TPR), or sensitivity,

is the DEG call rate in the weak and strong e�ect scenarios.

In general, a decreased false positives and increased DEG call rates with increasing

coverage and increasing number of true gene counts were observed (Figure 4.9). Compared

to GFOLD and CORNAS default, NOISeq produced the largest FPR when true gene

counts are low. NOISeq’s sensitivity is generally good except at low coverage of 0.01;

its DEG call rate begins to fall when true counts are over 1,000. GFOLD showed very

low sensitivity, which is consistent with its conservative behaviour reported in (Khang

& Lau, 2015). CORNAS showed excellent control of FPR and a dependence on the fold

change threshold for detecting DEG under weak and strong signal scenarios. For example,
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Figure 4.9: DEG detection using simulated true count data. The Y-axis is the proportion
of DEG called in 100 replicates. The X-axis is the true count of Sample 1. Comparison is
made against Sample 2, which either has the same (False positives), 1.5 times more (Weak
signals), or 2 times more (Strong signals) true counts. The numbers at the top left of each
plot denotes the Y-axis maximum. The maximum true counts for false positive, weak
signal and strong signal conditions are 10,000, 6,666 and 5,000 respectively. CORNAS
set1 refers to CORNAS with � = 1, while CORNAS refers to the default � = 1.5.

CORNAS default (� = 1.5) performed very poorly under the weak signal scenario, so that

if the detection of such genes are of interest, then � should be adjusted to a lower value

such as 1 (CORNAS set1). In general, the sensitivity of CORNAS increases with larger

true count, and converges to 1 quickly for coverage values of 0.1 or more.
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(b) Test 2: compcodeR simulation

The distribution of observed gene counts is popularly modelled using the negative

binomial distribution, and the compcodeR R package (Soneson, 2014) provides a simulator

for simulating RNA-Seq count data based on this distribution. I generated a dataset of

12,498 genes 10% DEGs to be tested.

Positive predictive value (PPV) and sensitivity were low for all methods; nonetheless,

CORNAS showed relatively greater sensitivity than the other methods, whereas GFOLD

had relatively better PPV (Figure 4.10a). The F-scores for all methods were very similar

(Table 4.7). CORNAS called a larger DEG set size compared to other methods. Unlike

NOISeq_nln, the larger DEG set size called by CORNAS did not substantially reduce its

PPV. Both CORNAS_100xless and CORNAS_10xless showed similar performance.

Average runtimes for the comparisons were about three minutes for NOISeq_nln and

NOISeq_tmmnl, one minute for GFOLD, and three seconds for CORNAS_10xless and

CORNAS_100xless.

(c) Test 3: Human sex-specific gene expression

The evaluation of the applicability of CORNAS on real data is based on the human

lymphoblastoid cell RNA-Seq data set from Pickrell’s study (Pickrell et al., 2010). In this

data set, male and female gender constitute the two phenotype classes, so the true DEG

can be determined purely using biological reasoning using sex-specific genes.

I randomly chose 100 single female-single male pairs from a total of 725 possible

pairs (29 females, 25 males), and compared the performance of GFOLD, NOISeq and

CORNAS. The results indicated that NOISeq performed poorly compared to CORNAS

and GFOLD, while GFOLD performed slightly better than CORNAS (Figure 4.10b, Table

4.7). However, similar to the compcodeR simulation result, CORNAS called larger DEG

sets.
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Average runtimes were about two minutes for NOISeq, thirty seconds for GFOLD and

ten seconds for CORNAS.

(d) Test 4: Coverage e�ects in tissue-specific gene expression data

The Marioni data set (Marioni et al., 2008) consists of RNA-Seq data from human liver

and kidney sequenced at two di�erent loading concentrations, 3 pM (high) and 1.5 pM

(low). I used a set of 4,863 genes identified to be uniquely expressed in either human liver

or kidney tissues catalogued in the tissue expression database, TISSUES (Santos et al.,

2015) as DEGs.

I investigated whether CORNAS would be misled into making DEG calls simply on the

basis of di�ering concentration, when both samples are taken from the same tissue. False

positive rates were low in CORNAS, with no DEG calls made for comparisons within

the same tissue samples with equal concentrations (Table 4.8). However, for samples

with di�erent concentrations, GFOLD showed fewer false positives than CORNAS. In all

instances, NOISeq returned the highest FPR.

For DEG evaluation, NOISeq again performed poorly compared to CORNAS and

GFOLD, while CORNAS performed the best (Figure 4.10c, Table 4.7). For all 12

comparisons between di�erent tissue types, the largest DEG sets were called by CORNAS,

and the smallest ones by NOISeq.

Generally for di�erent tissue types, the DEG sets called by NOISeq and GFOLD showed

poor overlap, compared to overlaps between GFOLD and CORNAS, and between NOISeq

and CORNAS (Figure 4.11). CORNAS indicated more unique DEG calls for di�erent

tissue types. At the same time, a large percentage of DEG calls from GFOLD or NOISeq

were also called by CORNAS.

Average runtimes were about five minutes for NOISeq, thirty seconds for GFOLD, and

five seconds for CORNAS.
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Figure 4.10: Scatterplots of PPV against sensitivity. The size of each dot is proportional
to the DEG set size.
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Table 4.8: DEG calls made by NOISeq, GFOLD and CORNAS between two samples
from Marioni’s data. The sample combinations consisted of two human tissue types (Liver
and Kidney) with two loading concentrations, 3 pM (high) and 1.5 pM (low).

Concentration Type Sample A Sample B NOISeq GFOLD CORNAS
low vs low same tissue R2L4Kidney R2L8Kidney 275 0 0
high vs high same tissue R2L2Kidney R2L6Kidney 333 1 0
low vs high same tissue R2L4Kidney R2L2Kidney 329 0 42
low vs high same tissue R2L8Kidney R2L2Kidney 335 0 29
low vs high same tissue R2L4Kidney R2L6Kidney 356 1 124
low vs high same tissue R2L8Kidney R2L6Kidney 325 0 82
low vs high same tissue R2L1Liver R2L3Liver 324 0 105
low vs high same tissue R2L7Liver R2L3Liver 308 1 46
low vs low same tissue R2L1Liver R2L7Liver 307 1 0
low vs high di�erent tissue R2L4Kidney R2L3Liver 2347 2616 2588
low vs high di�erent tissue R2L8Kidney R2L3Liver 2288 2570 2619
high vs high di�erent tissue R2L3Liver R2L2Kidney 2366 2972 3761
high vs high di�erent tissue R2L3Liver R2L6Kidney 2348 3051 3937
low vs low di�erent tissue R2L1Liver R2L4Kidney 2113 3143 3484
low vs low di�erent tissue R2L1Liver R2L8Kidney 2135 3083 3517
low vs high di�erent tissue R2L1Liver R2L2Kidney 2285 4185 6000
low vs high di�erent tissue R2L1Liver R2L6Kidney 2273 4134 6284
low vs low di�erent tissue R2L7Liver R2L4Kidney 2202 2956 3392
low vs low di�erent tissue R2L7Liver R2L8Kidney 2163 3022 3405
low vs high di�erent tissue R2L7Liver R2L2Kidney 2283 3993 5810
low vs high di�erent tissue R2L7Liver R2L6Kidney 2385 3918 6083
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Figure 4.12: The area under the curve (AUC) of Receiver Operating Characteristic (ROC)
analysis for CORNAS runs on data simulated to have 100% 95%, 90%, 85% and 80% PCR
amplification e�ciencies. The Expected Coverages are the original coverage estimate at
100% PCR amplification e�ciency (0.5, 0.25, 0.1 and 0.01).

(e) E�ect of PCR amplification e�ciency on sensitivity

While I assumed perfect PCR amplification e�ciency in building the model, the

possible e�ects of 95%, 90%, 85% and 80% PCR e�ciencies on the sensitivity and FPR

of CORNAS were still evaluated. CORNAS appeared to be robust to small violation of

perfect PCR amplification e�ciency, as no substantial changes to sensitivity and FPR,

even at 80% PCR e�ciency, were found. The area under the curve (AUC) of the Receiver

Operating Characteristic (ROC) graphs of all four tested expected coverages had less than

5% di�erence (Figure 4.12 and 4.13).

4.2.6 Application of CORNAS in the analysis of unreplicated transcriptomes of
male and female oil palm inflorescences

I proceeded to use CORNAS to detect DEGs in the oil palm RNA-Seq data set which

consists of 454 platform sequenced reads of oil palm male and female inflorescence tissues

mapped against EGrefseq. CORNAS made 1,218 DEG calls for comparison of male and

female inflorescence transcriptomes.

To validate the candidate DEGs obtained using CORNAS, a probe-based method,

nCounter analysis system (NanoString Technologies, Seattle, WA, USA), was used to

validate the expression levels of 16 sex-specific transcripts in male inflorescence and
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Figure 4.13: CORNAS sensitivity against false positive rates (FPR) for data simulated to
have 100% 95%, 90%, 85% and 80% PCR amplification e�ciencies, facetted according to
the expected coverage estimates at 100% PCR amplification e�ciency (0.5, 0.25, 0.1 and
0.01).

female inflorescence of oil palm found in the CORNAS results (Section 3.2.6). The

validation results showed that four transcripts had significantly higher mean abundance in

the female inflorescence, four were more abundant in the male inflorescence and eight did

not show significant di�erence between male and female inflorescences. Among the 16

transcripts, isotig40710 (putative DEFICIENS), isotig53408 (putative acid phosphatase),

isotig59228 (unannotated) and isotig67634 (unannotated), were more highly expressed in

male inflorescence in comparison with female inflorescence; whereas isotig23091 (putative

TASSELSEED1), isotig28587 (unannotated), isotig40414 (putative bZIP transcription

factor) and isotig54309 (unannotated), were more highly expressed in female inflorescence

in comparison to male inflorescence (Figure 4.14).

With the validated expression values of the 16 sex-specific transcripts, I evaluated

the PPV and sensitivity of CORNAS, GFOLD and NOISeq. I found that CORNAS had

the highest F-score (0.3), followed by NOISeq (0.12) and then GFOLD (0.1), which

respectively had PPV/sensitivity scores of 0.5/1, 0.22/0.25 and 1/0.1. Table 4.9 shows

the DEG call rates for the 16 sex-specific transcripts; GFOLD made only one significant
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call, while NOISeq had nine significant calls of which only two matched the nCounter

validation results. CORNAS identified all 16 transcripts as DEG.

Figure 4.14: Di�erential expression levels of sex-specific transcripts in male and female
inflorescences of oil palm. Values represent log2-transformed fold-change ratios of
relative expression between male and female inflorescences. Only the transcripts that have
log2-transformed fold-change ratios � 0.50 were shown. a Indicates putative function
based on ORF prediction. b Indicates that the transcript also showed inflorescence-specific
expression.

Table 4.9: DEG calls comparison for 16 sex-specific transcripts. CORNAS, GFOLD and
NOISeq called DEG high either in the female inflorescence (Fi) or male inflorescence (Mi)
similarly (High in). While all 16 were called significant DEG by CORNAS (Y), only the
ones noted with a "*" is significant in GFOLD or NOISeq (see Section 3.2.5) and in our
nCounter validation (nCounter high).

Gene Name High in CORNAS DEG GFOLD value NOISeq q nCounter high
isotig23091 Fi Y 0.3 0.5 Fi*
isotig40414 Fi Y 0.9 0.8 Fi*
isotig54309 Fi Y 0.6 0.8 Fi*
isotig28587 Fi Y 0.5 0.7 Fi*
isotig63768 Fi Y 0.9 1.0* Fi
isotig69051 Fi Y 0.5 1.0* Mi
isotig58939 Mi Y -0.7 0.9* Mi
isotig40710 Mi Y -0.4 0.7 Mi*
isotig53408 Mi Y -0.4 0.8 Mi*
isotig67634 Mi Y -0.7 1.0* Mi*
isotig59228 Mi Y -0.4 0.9* Mi*
isotig49719 Mi Y -0.5 0.7 Mi
isotig70480 Mi Y 1.0* 1.0* Fi
isotig70872 Mi Y -0.7 1.0* Fi
isotig42197 Mi Y -0.5 0.9* Fi
isotig70874 Mi Y -0.5 1.0* Fi
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CHAPTER 5: DISCUSSION

5.1 Oil palm whole genome assembly improvement

5.1.1 Sime Darby oil palm genome assemblies comparison

The measure of sca�old sizes is a common statistic used by many researchers to evaluate

the quality of a genome assembly (Bradnam et al., 2013). The standard statistic used is

typically the N50, which is the minimum sca�old length in a draft assembly needed to

cover 50% of the total genome length, which also means 50% of the genome is made

out of sca�olds with N50 lengths or longer (International Human Genome Sequencing

Consortium, 2001). Consequently, it is believed that the larger the N50, the better the

genome assembly is likely to be. It is expected that as more information is available to

assist in long-range contiguous sequence construction, such as large-insert paired-end

libraries, the improved sizes of the sca�olds generated should increase the N50. However,

this is not necessarily so as the N50 is only the median of sca�old lengths. The results in

Section 4.1.2 show that the largest sca�old of OPg1 is smaller than OPg2 and OPg3, yet it

has the highest N50 score. This is likely due to OPg2 and OPg3 having only a few large

sca�olds generated, so that their sca�old length distribution is skewed to the right.

Di�erent sequencing platforms have specific biases and limitations. Having reads

generated from another di�erent sequencing technology on the same organism allows one

to overcome the shortcomings of another technology. In OPg2, Illumina paired-end reads

with large inserts was used to improve the assembly because it was more cost-e�ective than

454 sequencing. However, the short reads generated by the Illumina sequencing technique

produce ambiguity in matching corresponding contigs for sca�olding (Pop & Salzberg,

2008). This may account for the few sca�old size improvements in OPg2 that did not push

the N50 higher than anticipated.
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Therefore ideally, we should employ additional sequencing technologies that produce

longer reads such as PacBio and Nanopore to further improve the oil palm assembly

(Levene et al., 2003; Branton et al., 2008; Bleidorn, 2016). Additional large insert mate

pairs, such as BAC (Bacterial Artifical Chromosome) end sequencing could potentially

further improve the sca�old sizes. Such techniques have been deployed for improving

the rice (Kawahara et al., 2013), medicago (Tang et al., 2014) and even the MPOB oil

palm genome (Singh et al., 2013) (Supplementary Table A.1). However, conducting such

projects is costly, and potentially leads to marginal improvements as this study seemed to

indicate with each iteration of the Sime Darby oil palm genome.

While the N50 may be useful for measuring the contiguity of the assembly, this statistic

is insu�cient in informing useful completeness of the genome assembly. A genome draft

may have a high N50, but could exhibit incomplete genomic content, e.g. missing or

incomplete genes, or even be incorrectly represented in misassemblies caused by overly

aggressive joining of contigs (Salzberg & Yorke, 2005). Therefore, it is important to

evaluate genome assembly quality by an evolutionary-based metric with the identification

of highly conserved genes expected to occur in the organism under study. This is the case

for the Sime Darby oil palm genome assemblies, where OPg1 exhibited a higher N50 than

the other versions, but has very poor gene representation.

I used CEGMA (Parra et al., 2007) with its reference gene set of 458 genes (CEGs)

that are highly conserved in six eukaryotic species (Arabidopsis thaliana, Homo sapi-

ens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and

Schizosaccharomyces pombe) to evaluate their presence and completeness in the oil palm

genome assembly. This gene set is conserved across the abovementioned species because

these genes most likely comprise the bulk of housekeeping genes known. In comparison

to CEGMA, BUSCO (Simão et al., 2015) defined reference gene sets separately by

87

Univ
ers

ity
 of

 M
ala

ya



phylogenetic clades. Each gene set per clade consists of genes that are expected to be found

as a single-copy in the genome; 3,023 genes for vertebrates, 2,675 for arthropods, 843 for

metazoans, 1,438 for fungi and 429 for eukaryotes. At the time this study was conducted,

the plant database was still under development. Once released, the gene set could provide

a better assessment of assembly quality for the oil palm genome with greater sensitivity

compared to CEGs. I believe plant polyploidy may be a reason it is di�cult to generate a

robust BUSCO gene set and apply it. Identifying single-copy genes when the actual genome

consists of heterogeneous alleles can be di�cult with our current sequencing technologies

to di�erentiate true single-copy genes from chimeric, mis-read or pseudo-gene results

(Cai et al., 2012). Thus, using CEGMA to ascertain genome assembly quality of plant

genomes such as wheat (hexaploid) may be a better alternative. However, this may not be

an evident disadvantage for the diploid oil palm genome, since the ploidy level is not high.

In any case, the CEGMA authors had conceded that future evolutionary-based evaluation

of genome assembly quality should use BUSCO, as they had discontinued CEGMA code

maintenance due to the lack of funding. Since 2017, the latest version of BUSCO (version

3) now has plant databases, but are split into seven lineages: Embryophyta, Viridiplantae,

Chlorophyta, Embryophyta, Liliopsida, Eudicotyledons and Solanaceae (Waterhouse et al.,

2017).

While we see an improvement of the quality of the genome assembly by an evolutionary-

based criteria from OPg1 to OPg3, OPg3 is not yet complete, with about 12% of the CEGs

still missing. Understandably, the genome statistics show that OPg3 still has 10% unknown

bases in the genome, which translates to roughly 180,000,000 bases unaccounted for.

The information available in the 454 and Illumina sequencing may have been exhausted

with the application of the exome contig process (Section 3.1.6). Therefore, it is likely

that we will need to use a combination of PacBio sequencing to get long sequences, and
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polish the results with deep Illumina sequencing reads to further improve the assembly.

Such a technique was recently applied to the grass, Oropetium thomaeum, to achieve a

chromosome-scale assembly (VanBuren et al., 2018).

Besides using CEGMA, I also evaluated the gene space with published oil palm

expression data. Ideally, a complete reference genome should contain all the codes for

expressed mRNA. Therefore, a reference transcriptome, such as EGrefseq, can be used to

identify gaps in the gene content of the genome assembly. Yet, the reference transcriptome

may not cover exactly every gene possible, since RNA-Seq captures the mRNA expression

as snapshots in space and time; which means that di�erent tissues (space) have di�erent

gene sets expressed at di�erent development stages (time). I sought to reduce this limitation

by ensuring many di�erent tissue types were represented in EGrefseq (mesocarp, root,

leaf, meristem, male inflorescence and female inflorescence), with some associated with

di�erent time points (mesocarp). Besides that, I further utilised published ESTs in my

evaluations. I had used EGrefseq contigs to improve OPg3 in Section 3.1.6, which

comprises of RNA-Seq results from multiple mature oil palm tissues, so we would expect

the results of EGrefseq mapping to OPg3 to be good. With at least 73% mapping 80%

of their lengths, Ho et al.’s ESTs (Ho et al., 2007) had the least transcripts mapped to

OPg3 compared to the other EST data. This result is not surprising as their ESTs were

generated from embryonic callus and thus, would have very di�erent genes expressed

compared to the other tissues. The regions where these genes are in the genome may not

have been captured during the exome contig assembly process in Section 3.1.6. Ho et al.’s

EST dataset also contained many unannotated sequences and more strings of unidentified

bases compared to the other public ESTs, which also probably contributed to the poorer

mapping results.

Besides the improvement in gene content for the latest iteration of Sime Darby’s oil palm
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genome draft (OPg3), we also saw an improvement in the molecular marker representation

available. There was a slight decrease in the Sime Darby SSR markers in OPg3 compared

to OPg1, and this is likely due to these primers being specifically designed from the OPg1

draft. The new assembly parameters used in Section 3.1.5 for OPg2 may have collapsed

these SSRs, since they are technically tandem repeats. This assembly step also reduced the

number of uniquely mapped sca�olds but increased the total length of those sca�olds, an

indication of sca�olds joined in the new assembly. The slight improvement of Sime Darby

SSR recovery from OPg2 to OPg3 may be attributed to the addition of the exome contig

step in Section 3.1.6.

The metrics I used to evaluate the improvements in the genome assembly are not the

only ones. Competitions such as the Assemblathon 1 and Assemblathon 2 had set the

benchmarks in evaluating the results of assemblers (Earl et al., 2011; Bradnam et al., 2013).

In Assemblethon 2, real world datasets from various sequencing platforms were used to

evaluate the capabilities of various assembly techniques. Twenty one teams took part

in the challenge to assemble a bird (Melopsittacus undulatus), a snake (Boa constrictor

constrictor) and a fish (Maylandia zebra) genome. There were ten key metrics that the

authors of Assemblathon 2 had used to evaluate the results, of which four had been covered

in this study. The other metrics require additional information that I do not have, such as

validated fosmid regions (VFRs) and optical maps. VFRs are 1 to 40 Kbp sized contigs

assembled from genome fragment inserts of bacterial F-plasmid cloning vectors, while

optical maps provide genome structural information (Dimalanta et al., 2004; Valouev et

al., 2006). The authors generated VFRs and optical maps for each of the three species as

references to compare against the assemblers’ results. These methods do have their caveats

however, with VFRs relying on the fosmid sequencing and assembly to be accurate, and

optical maps limiting evaluation to sca�olds larger than 300 Kbp. Another metric, called
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the REAPR analysis, measures errors in assembly by evaluating how paired-end reads map

against the genome drafts (Hunt et al., 2013). I was unable to use this measure, due to

restrictions in the data access for the paired-end reads generated at the time.

5.1.2 Improvement by adding exome contigs with GenSeed Pipeline Suite

The GenSeed Pipeline Suite I developed expands the capabilities of the program

GenSeed for use with this study’s unique dataset. It automated the progressive assembly

of missing genome contigs that are arguably vital, since these are parts of the genome

that are transcribed to RNA. With this program, I was also able to speed up the process

by introducing parallelisation capabilities over SGE, as GenSeed can take quite long to

complete due to the iterative nature of the seed-driven assembly. Interestingly, not all

the EGrefseq contigs seeded assemblies with genome reads. This may yet be due to

unsequenced regions of the genome, as we do see an inadequate amount of polishing

possible with the current dataset. We also cannot rule out the possibility of transcriptome

misassemblies in the EGrefseq, which can happen due to splicing variants that complicate

the assembly process. One can imagine this seed-driven assembly process building large

contigs, but once the contig reaches a region containing repeats, the seeding process will

stall (Figure 5.1). The limitation of length of the short genome reads (⇡ 300 bp) makes

it di�cult for the programs used for finding matches (BLAST) and assembly (CAP3) to

complete accurately. This may have led to the generation of more contigs than seeded on

average in our results in Section 4.1.3. Alves et al. (2016) released an updated version of

GenSeed in 2016 that uses HMM profiles in the seeding process, as well supports a greater

number of assemblers for the task. This update improved the overall speed and sensitivity

of the program, and can be replaced into my pipeline suite with minimal modifications.
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Transcripts (mRNA) used to 
fish out genome raw reads that 
map to it.

The raw reads (seed reads) are 
used to further pick out other 
reads that map/overlap to it.

A compartmentalized directed 
assembly of the reads collected. Result: Exome contigs.

Seed	read

Genome	
raw	reads

Exome contig

Figure 5.1: An exome contig built with the GenSeed pipeline

5.1.3 Bridge read detection with BridgeReader

The annotation of bridge reads allows the detection of possible misassemblies due to

repeats. This allows us to use these regions as candidate breakpoints for rearranging the

sca�old correctly with the aid of loci-based information, such as molecular markers.

In order to analyse overlaps, each read needs to be aligned to every other read. Due to

the huge number of reads generated by the whole genome shotgun project, the alignment

step is expected to take longer time or more resources than desired. One rapid way is to

compare the sequences by using a k-mer sliding window method, where a unique integer

for each k-mer is assigned and all overlaps are determined by solely using k-mer indices.

As the preceding process is sequential, the data can be read and written to a hard disk after

each read is processed, thus requiring a minimal amount of computer memory (RAM).

Ideally the position of each k-mer is stored, but this potentially puts pressure on computer

storage space. Nevertheless, stored on the hard disk, the database of k-mer positions would

significantly increase the computing time in the next step due to slower read speeds of hard

disks compared to RAM. Therefore, each and every position is not stored, but the read is
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partitioned into a number of sections and only each k-mer is assigned into an appropriate

section given by its position on a read. This way, a lot of computing time is saved in

subsequent modules because the data does not contain positional information for each

k-mer; instead the database can now be partitioned into corresponding sections. While this

approach is not as accurate as base-by-base indexing, it attains a good tradeo� between

speed and accuracy.

The problem with non-identical repeats is the false collapsing or expanding of the

overlap region, which leads to incorrectly assembled regions. A sliding window approach

allows the search to account for sequencing error in those determined to have false overlaps.

The sensitivity and specificity of the approach depend on: (i) the sequencing error rate; (ii)

the k-mer length and the resolution of the sectioning; and (iii) the step size of the sliding

window. In my study, only the 454 sequencing reads were used, as they provided longer

reads for the partitioning compared to the Illumina paired-end dataset. This partitioning

method increases the speed in which we can run the analysis by parallelisation, but does

have the potential drawback of increased false positive rates. The program parameters o�er

some control over false positive rates, but some prior knowledge on the actual genome

sequencing coverage and the length of the repeats will be needed to assist in controlling

the method’s sensitivity.

While BridgeReader was being developed and used in this study, a great deal of work

on other methods to study repeats had been published. BridgeReader is primarily designed

to identify bridge reads, which are reads that contain a unique part and a repeat part, to

be removed from assemblies. With that goal in mind, a consensus repeat contig was not

implemented in the pipeline, and therefore di�ers from de novo methods such as RECON

and RepeatScout. RECON and RepeatScout principally tackles the problem of defining

repeat boundaries in sequences but take pairwise alignments as input, thus requiring
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additional data preparation while BridgeReader uses only reads directly.

ReAS uses reads directly to identify repeats and even uses a sliding window with a fixed

k-mer length (default used is 17 mer). In BridgeReader, a similar approach is used, but I

further segmented the 100 bp fragment into smaller fragments in order to narrow down the

identification of repeat boundaries. This segmentation of reads also means BridgeReader

is not limited to requiring reads of more than 500 bp to identify repeats, unlike ReAS.

For the Sime Darby oil palm genome, BridgeReader was used to determine bridge reads

in order to map and annotate the draft with potential sites of missasemblies. Consequently,

I did not annotate these repeats in this study.

5.1.4 Consolidating the oil palm genome physical map

During the time this study was conducted, Singh et al. (2013) had sequenced and

published the MPOB oil palm reference genome. MPOB’s published oil palm physical

map consists of only 45% of the genome successfully sca�olded into 16 chromosomes.

With the aid of this public dataset and the MarkMyMap program, I successfully increased

Sime Darby’s oil palm physical map sca�old representation to 67%. Although Singh et

al. used similar sequencing technologies as Sime Darby, the one notable addition in the

MPOB genome sequencing project was that they conducted BAC-end sequencing. With it,

they were able to recover larger sca�olds than Sime Darby’s oil palm genome, with an N50

that is 100x larger. The Sime Darby physical map is twice as large as the MPOB physical

map, but 100 times more fragmentary. As the results seem to indicate, the Sime Darby oil

palm genome would benefit in having BAC end sequencing conducted to improve the PM

representation.

Minimus2 was used as the program of choice as it was able to work with large

sca�olds, implement low-level optimisation and does not require an additional reference

genome to merge between two drafts. However, I found that the merging process using
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Minimus2 yielded less optimal results than the non-redundant combination method

with a total assembly size that was not substantially larger than either Sime Darby’s or

MPOB’s physical map. Merging also did not produce more favourable informative SNP

representation compared to the MarkMyMap results. This is probably due to the sequences

originating from di�erent palms.

The MPOB oil palm genome is of the highly inbred pisifera variety, while the Sime

Darby oil palm genome is a tenera; the latter being a hybrid cross between a pisifera and a

dura (Noh et al., 2012). This means the Sime Darby oil palm genome is likely to have

greater heterogeneity in content compared to the MPOB oil palm genome, and therefore

contain greater complexity for the assemblers to deal with. As a genome reference, the

Sime Darby oil palm genome may contain a more comprehensive set for use in genetic

studies, as well as having more relevance to commercial application since the tenera type

is the productive variety of palms. However, the MPOB genome may yet exhibit less errors

caused by assemblies, and therefore have greater reliability.

The poor Minimus2 result may be due to large-scale variations that confound the

merging algorithm. I found that the simpler non-redundant combination employed in

my MarkMyMap program worked better. The results showed an increase in the physical

map total size and representation of informative Sime Darby SNPs. While MarkMyMap

consolidated sca�olds based on non-redundancy of Sime Darby molecular markers and

careful fragmentation based on annotated bridge reads, we may still be retaining gene

content redundancies that were erroneous. Even with the fragmentation steps undertaken

during the process, I have yet to ascertain if the fragments generated have high degree of

homology with other fragments. The program assumed that the assemblies did not produce

these redundancies, which can be a wrong. Conducting a more comprehensive genome

comparison of the physical maps would give us better insight, but for this study, it is
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su�cient to observe that the MarkMyMap program can be used to consolidate assembled

sca�olds e�ectively with molecular markers.

Chromonomer (Catchen & Amores, 2016) is a C++ program that was designed with

similar objectives with MarkMyMap. It was released for public use at a time MarkMyMap

had already been developed for the work in this study. Chromonomer currently implements

the latest formats dealing with marker alignments, and is capable of producing visualisations

for the results generated.

5.2 Identifying di�erentially expressed genes from oil palm RNA-Seq data

5.2.1 CORNAS as a framework for estimating the true gene count

Currently, the mapped read depth over a gene model of an organism is used to estimate

coverage in RNA-Seq experiments. This is in fact not true, as the true coverage should

be based on the actual amount of mRNA in a sample, and therefore related directly with

sample concentration. This therefore leads us to dispel the assumption that transcriptome

sizes can be similar from one sample to the next, and that similar sequencing depth can be

applied for a comparative study. We know that the total amount of mRNA in a sample

is not captured in Illumina sequencers, which have a fixed finite saturation amount that

can over- or under-represent sample concentrations. The coverage is generally accepted

as an under-representation, a limitation that is usually thought to be rectifiable by deep

sequencing, which is used to detect genes that have very low mRNA expression (Blencowe

et al., 2009; Haas et al., 2012; Liu et al., 2014). The coverage parameter (between 0 and

1) in CORNAS should cover most practical cases where deep sequencing is not done.

Outside of this range, the usefulness of CORNAS is unclear.

A completely e�cient PCR amplification process is one of the several simplifying

assumptions used in constructing the model. PCR is required to improve the chance of one

cDNA to be picked for sequencing by having it copied ten thousand times. The chance of
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picking the original amount for each cDNA species prior to PCR should be very high if

the dilutions are perfectly homogenous after PCR. If we work with the assumptions above

as the ideal case, we are able to calculate the coverage of sequencing, based on the number

of sequenced reads obtained over the number of cDNAs available before PCR. The e�ect

of PCR amplification e�ciency I simulated does indicate that the sensitivity and FPR

increases when I over-estimate the coverages, but the di�erence is not adversely significant.

The assumption of ideal random cDNA fragment sampling in the current work was made

in order to keep the observed count model (hence the posterior distribution) su�ciently

simple for us to study the e�ect of introducing the coverage parameter into the DEG call

procedure. Since real RNA-Seq experiments contain library preparation biases, the e�ect

of such biases may be better explored by full sequencing process simulators such as rlsim

(Sipos et al., 2013).

The GP model is being increasingly studied as an alternative to the negative binomial

distribution in RNA-Seq count data modelling (Srivastava & Chen, 2010; Li & Jiang,

2012; Zhang et al., 2014; Wang et al., 2015). In my simulations, I found the GP as a

suitable model for observed gene count data. By relating the parameters of GP to the

true gene count and sequencing coverage using RNA sample concentration, I was able to

determine the posterior distribution of the true gene count. This distribution forms the

basis for making DEG calls in unreplicated RNA-Seq experiments.

A potential source of variation in the observed gene count that was not explicitly handled

in my simulation concerns the way di�erent algorithms map the short reads to a reference

genome (e.g. using BWA (Li & Durbin, 2009), OSA (Hu et al., 2012), TopHat (Trapnell

et al., 2012) and Bowtie (Langmead & Salzberg, 2012)), and how such mapped reads

are quantified (e.g. using HTSeq (Anders et al., 2015), and Cu�inks (Trapnell et al.,

2012)). I suggest that variation in the observed gene count due to this source of variation
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is relatively unimportant, and hence does not severely a�ect the posterior distribution of

the true gene count. Firstly, algorithms that improve the quality of read alignment (Le et

al., 2013), and thus minimise counting errors, are available. Furthermore, combinations of

read-mapper and gene count quantification have been empirically studied, and optimal

recommendations are available to obtain the most reliable observed gene count (e.g. OSA

+ HTSeq as suggested by Fonseca et al. (2014)).

5.2.2 Robustness of CORNAS

CORNAS showed comparable performance as GFOLD and NOISeq in the compcodeR

simulation, despite being based on a di�erent data model for the observed gene counts

(i.e. Generalised Poisson vs. Negative Binomial). This finding provides confidence

in integrating the CORNAS framework into current RNA-Seq data analysis protocols.

Furthermore, despite the fact that the coverages were estimated, and thus subject to errors,

both CORNAS settings (10xless and 100xless) showed similar performance on average.

CORNAS struck a good compromise between sensitivity, PPV and DEG set size compared

to GFOLD and NOISeq. In real world experiments, CORNAS can outperform competing

methods when coverage is more reliably ascertained, such as from the Marioni dataset in

Test 4.

Without incorporating information from the coverage parameter, traditional methods

such as GFOLD and NOISeq for analysing unreplicated RNA-Seq count data are either

too conservative, making very few calls but most of which are true positives (GFOLD), or

making relatively more false positive calls (NOISeq) under very low coverage scenario

(e.g. b = 0.01) (Figure 4.9). On the other hand, I showed that CORNAS controlled the

FPR well and had high TPR when coverages are not too small (e.g. b � 0.1). Furthermore,

if detection of weak fold change di�erence is of interest, then the fold-change parameter

(�) can be reduced from 1.5 to, say, 1.0 (details in the Methods Section). The TPR profiles
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of CORNAS at fold-change parameter of 1.0 becomes similar to that of NOISeq for weak

and strong signals, except when coverage is very low. With increasing true gene count,

CORNAS continued to show a general increase in TPR, whereas NOISeq showed decline.

At present, most RNA-Seq experiments do not report an estimate of the actual amount of

RNA in the starting material prior to sequencing. As a result, I could only study the e�ect

of correcting the observed gene count using the posterior mean by simulations. Given

the encouraging results, researchers may wish to collect information about the coverage

parameter in the future to take advantage of CORNAS in the analysis of real RNA-Seq

data sets.

A major problem in analysing unreplicated RNA-Seq count data is the lack of e�ective

normalisation methods in the absence of biological replicates. The Bayesian framework

on which CORNAS is based on in this study avoids the normalisation problem by working

with the posterior distribution of the gene’s true count. As a result, transcript length

information is not required. This makes CORNAS suitable for organisms with incomplete

or evolving transcriptome reference data, as new transcript information will not change

how true counts are estimated over time.

My results suggest that CORNAS can be used to overcome analytical bottlenecks

in experiments with limited replicates and low sequencing coverage by enabling the

detection of DEGs with better prospects of downstream validation, using platforms such as

quantitative PCR and NanoString nCounter (Kulkarni, 2011). However, good experimental

design requires replication to derive robust biological interpretations. If cost is prohibitive

and there are no limitations to obtaining samples, prioritising more biological replicates is

more beneficial than increasing sequencing depth per sample. Liu et al. (2014) showed

that increasing the number of replicates rather than sequencing depth is more e�ective at

increasing the statistical power for detecting DEGs. Another good practice in experimental
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design is the addition of controls in the assays. Synthetic spike-in standards, such as the

External RNA Controls Consortium (ERCC) synthetic RNAs, can be added before library

preparation to assist in measuring the performance of the sequencing protocol, and to

normalise the count data (ENCODE, 2011; Jiang et al., 2011).

5.2.3 Application to oil palm samples

My simulation results indicated that as sequencing coverage approaches one, the

variance of observed counts began to reduce dramatically (Section 4.2.2). This is logical,

as the probability to pick what is intended during a random sampling will drop as the

population size increases. Since the variance becomes the same as the mean when sample

coverage is less than 0.01, this would mean that a gene with high mRNA copies in the

sample will have a higher observed count variance across samples compared to a gene

with lower mRNA copies. Therefore it becomes less likely to ascertain a good distinction

between two samples if their coverages are lower than 0.01. In fact, in cases of low

coverage samples, it would be more desirable to study di�erential expression on genes

with low observed count numbers. This seems to be the case if we wish to apply CORNAS

on RNA-Seq results from 454 sequencing.

RNA-Seq with 454 sequencing is known to produce generally less sequenced reads

compared to Illumina sequencing, with about 2 M reads in one run. The library preparation

is more straightforward and does not contain a PCR step that may bias random sampling

events prior to loading (454LifeSciences, 2014). However, I chose to build the model used

by CORNAS on the Illumina sequencing platform because the Illumina sequencing library

preparation includes size selection. The 454 sequencing library preparation does not have

this size selection step, which does not allow us to calculate concentration reliably. Figure

5.2 briefly summarises the library preparation process. While the library preparation

may be di�erent, the same coverage principal in Illumina sequencing can be applied to
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these runs, albeit with coverages lower than 0.01. Therefore, my results indicated that 454

sequencing can produce reliable results when comparing very low counts in a di�erential

gene expression analysis (Section 4.2.6).

The results from the nCounter validation of 16 DEGs indicated that CORNAS is

sensitive to 454 sequencing data, but is unclear as to how specific in can be with such

high false positives. Whether this is acceptable is still in question, as there has yet been

su�cient published results that show RNA-Seq DEG calls are 100% accurate. Arguably I

did not test the whole CORNAS DEG list, but selected the nCounter candidates based on

other criteria, such as biological significance, potential novelty, relation to future/current

projects, availability of samples and cost to validate.

It may seem logical that we should look at a consensus approach to making a DEG

list that would be more specific, such as filtering significant DEGs that overlap in all, or

the majority, of multiple DEG call programs, i.e. in CORNAS, GFOLD and NOISeq.

However, my results seem to indicate that this will not work if the nCounter was used

to validate the results: Only one transcript, isotig70480, was flagged as significant in all

three programs, but not significant in nCounter; Only two transcripts, isotig67634 and

isotig59228, were flagged as statistically significant in nCounter, NOISeq and CORNAS

(Table 4.9).
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Figure 5.2: 454 transcriptome library preparation briefly explained (454LifeSciences,
2014)

102

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 6: CONCLUSIONS

The Sime Darby oil palm genome assembly had made major improvements over the

course of this study. The latest genome assembly, OPg3, has improved gene space

representation by 39% over the first version. This was achieved by improving the gene-

centric information in the genome using transcriptome data to build back parts of the

genome that was incomplete or missing. Furthermore, Sime Darby’s physical map coverage

of the oil palm’s 16 chromosomes was able to improve by 79%, with the method of using

molecular markers and annotation of bridge reads, to aid fragmentation and rearrangement

of both OPg3 and MPOB oil palm’s physical map sca�olds. I believe OPg3 is of su�ciently

quality to be deployed for genome-wide association studies (GWAS) and fuctional genomic

studies. In the process of improving the oil palm genome, three new computational

methods were developed to overcome the challenges in assembly. These are (i) GenSeed

Pipeline Suite; (ii) BridgeReader; and (iii) MarkMyMap.

While su�cient for genetics studies, OPg3 is not complete. To make progress, I suggest

to employ the newer sequencing technologies that generate longer read lengths to overcome

the challenges in contiguity and repeats. It may not be necessary to sequence deep, but

to use these long reads as sca�olds. Then, the aforementioned computational methods

can be used to further polish the genome assembly. This time however, the BridgeReader

program can be deployed to identify and remove bridge reads prior to assembly to improve

the non-repetitive regions in the genome.

Finally, I have developed CORNAS (COverage-dependent RNA-Seq), a fast Bayesian

method that incorporates a novel coverage parameter to estimate the posterior distribution

of the true gene count. Under the CORNAS framework, orthogonal information from

sequence coverage that is determined from the concentration of an RNA sample can
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be used to improve the accuracy of calling DEG. Through simulations and analyses of

real data sets, the performance of CORNAS was shown to be comparable or superior to

GFOLD and NOIseq in the case of unreplicated RNA-Seq experiments. While CORNAS

was developed based on Illumina sequencing, I have shown that CORNAS can provide

reliable results on 454 sequenced unreplicated comparison of oil palm male inflorescences

and female inflorescences.
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