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METABOLITE PROFILING OF Ganoderma-INFECTED OIL PALM TREE 

GROWN ON ULTISOL AND OXISOL SOIL 

 
ABSTRACT 

 
The oil palm industry is a pillar of the Malaysian economy and plays a pivotal role in feeding 

and fueling a growing global population. In 2018, oil palm contributed 37.9% or RM37.7 

billion to the country's' Gross Domestic Products (GDP) of agriculture sector. Despite 

achieving significant achievements in the industry, Ganoderma sp. infection that cause basal 

stem rot (BSR) and upper stem rot (USR) disease are considered a threat. The palm oil 

industry is expected to experience significant losses, thereby affecting yield production and 

ultimately the dead of trees. Some factors have been reported to affect the occurrence of the 

disease such as the cultivation of the previous crop, replanting technique, age and number of 

individual palms per planted area, type of soil series, inoculum potential, shading and soil 

temperature, but research conducted on weathered tropical soils in Malaysia is still lacking. 

In Malaysia, Ultisol and Oxisol soil are very common which occupy about 72% of the 

country’s land area.  This research is therefore conducted with the objective to determine soil 

physicochemical properties of Ultisol and Oxisol soil and profile metabolites of healthy and 

Ganoderma-infected oil palm grown on both soils. Biological samples were extracted using 

methanol and analyzed by using liquid chromatography time-of-flight mass spectrometry 

(LC-TOF-MS). Soil physicochemical properties analyzed using U-Mann Whitney revealed 

that Ultisol and Oxisol soil are different at pH and TC level but not for EC level. A chi-square 

test of independence classified Ultisol and Oxisol soil into sandy clay and clay respectively. 

For biological sample analysis, the initial Principal Component Analysis (PCA) model 

concluded that there was a difference between two main groups of metabolite profiles 

between healthy and Ganoderma-infected oil palm tree rachis samples. A strongly significant 

Partial Least Square-Discriminant Analysis (PLS-DA) model was acquired, indicating that 

the 12 biological variables indeed contained class separating information. The separation of 

the four classes was slightly superior compared with the previous PCA modelling attempts. 
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This model also fits the criteria for validity in permutation test. From the model, 17 potential 

biomarker panels with variable importance in project (VIP) more than 2.00 and p-value of 

analysis of variance (ANOVA) less than 0.05 were identified. Among metabolite of interest 

putatively identified are choline phosphate, p-fluorophenylalanine, 2-oxoglutaramate, 4-

oxoglutaramate, 4-amino-4-cyanobutanoic acid, 2-amino-4-cyanobutanoic acid, 5-

aminolevulinate, L-allohydroxyproline and N-acetyl-beta-alanine. These findings are crucial 

for further study on the pathogenicity characteristic of BSR and USR disease in penetrating 

oil palm tree in the future. 

Keywords: Metabolomics, Ganoderma, Oil Palm, Ultisol, Oxisol 
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PEMPROFILAN METABOLIT KELAPA SAWIT TERJANGKIT Ganoderma 

YANG DI TANAM PADA TANAH ULTISOL DAN OXISOL 

 
ABSTRAK 

 
Industri kelapa sawit merupakan tonggak ekonomi Malaysia dan memainkan peranan penting 

dalam kelangsungan bekalan makan terhadap populasi global yang semakin meningkat. Pada 

tahun 2018, kelapa sawit menyumbang 37.9% atau RM37.7 bilion kepada keluaran dalam 

negara kasar (KDNK) kepada sektor pertanian. Walaupun memperoleh pencapaian yang 

tinggi dalam industri ini, jangkitan kulat Ganoderma yang menyebabkan penyakit reput 

pangkal batang (RPB) dan reput batang atas (RBA) dianggap sebagai satu ancaman. Industri 

minyak sawit dijangka mengalami kerugian yang ketara disebabkan pengeluaran hasil 

berkurang dan kematian pokok. Beberapa faktor telah dilaporkan menjadi penyebab kepada 

penyakit tersebut seperti penanaman tanaman sebelumnya, teknik penanaman semula, umur 

dan bilangan sawit dalam satu kawasan, jenis siri tanah, potensi inokulum, teduhan dan suhu 

tanah, tetapi penyelidikan yang dijalankan ke atas tanah tropika berluluhawa di Malaysia 

masih kurang. Di Malaysia, tanah Ultisol dan Oxisol mendominasi kira-kira 72% kawasan 

tanah negara.  Oleh itu, kajian ini dijalankan dengan tujuan untuk menentukan sifat 

fizikokimia tanah Ultisol dan Oxisol dan memprofil metabolit kelapa sawit yang tumbuh pada 

kedua-dua tanah tersebut. Sampel biologi telah diekstrakkan dengan menggunakan metanol 

dan dianalisis dengan menggunakan Kromatografi Cecair-Spektroskopi Jisim Masa. Ciri-ciri 

fizikokimia tanah yang dianalisis menggunakan U-Mann Whitney mendedahkan bahawa 

tanah Ultisol dan Oxisol berbeza di tahap pH dan TC tetapi tidak untuk tahap EC. Ujian 

kebebasan chi-kuasa dua pula mengelaskan tanah Ultisol dan Oxisol masing-masing sebagai 

tanah liat berpasir dan tanah liat. Untuk analisis sampel biologi, model Analisis Komponen 

Utama (AKU) menyimpulkan bahawa terdapat perbezaan di antara dua kumpulan utama 

profil metabolit antara sampel pokok sawit yang sihat dan dijangkiti kulat Ganoderma. Model 

Kuasa Dua Terkecil Separa-Analisis Diskriminan (KDTS-AD) menunjukkan bahawa 12 

pembolehubah biologi memang mengandungi kelas pemisahan yang tersendiri. Pemisahan 
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empat kelas direkodkan lebih tinggi berbanding dengan percubaan model AKU sebelumnya. 

Model ini juga melepasi kriteria kesahihan dalam ujian permutasi. Dari model ini juga, 17 

panel penanda biologi yang berpotensi telah dikenalpasti berpandukan nilai VIP lebih 

daripada 2.00 dan p-nilai ANOVA kurang daripada 0.05. Antara metabolit yang dikenal pasti 

adalah kolin fosfat, p-fluorofenilalanina, 2-oxoglutaramat, 4-oxoglutaramat, asid 4-Amino-4-

cyanobutanoik, asid 2-Amino-4-cyanobutanoik, 5-Aminolevulinat, L-Allohidroksiprolin dan 

N- Acetyl-beta-alanina. Penemuan ini adalah penting untuk kajian selanjutnya berkaitan ciri 

patogenik penyakit RPB dan RBA dalam menembusi pokok kelapa sawit pada masa akan 

datang. 

Kata kunci: Metabolomik, Ganoderma, Kelapa Sawit, Ultisol, Oxisol 
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CHAPTER 1: INTRODUCTION 

 
The oil palm industry in Malaysia started more than 100 years ago. It was first introduced 

to Malaysia as a commercial plant in 1917 at the Tennamaram Estate in Selangor, which 

effectively laid the foundation for the development of the oil palm industry in Malaysia 

(Nambiappan et al., 2018). The oil palm plantation had expanded phenomenally from a mere 

55 000 ha in 1960, to 5.85 million hectares in 2018 (MPOB, 2013b).  

 

In tandem with the area expansion, the production of crude palm oil also grew significantly 

from less than 100 000 tons in 1960 to about 19.52 million tons in 2018 (MPOB, 2013c). 

Now, the Malaysian oil palm industry has transformed to become one of the key contributors 

to Malaysia’s GDP. Oil palm contributed 37.9% of the agriculture sector or RM37.7 billion 

to the country’s GDP in 2018 (DoS, 2018).   

 

Despite attaining significant achievements in both its palm oil production and exports, the 

oil palm industry is currently facing issues of the destructive diseases that can affect the 

continued growth of the oil palm industry. The oil palm ecosystems comprise a wide range 

of fungi, bacteria, insects, nematodes, and viruses that are significantly responsible for 

reducing crop productivity. One of the most destructive diseases of oil palm is BSR and USR 

diseases where the oil palm is infected by wood-decaying fungi known as Ganoderma 

boninense (Pornsuriya et al., 2013).  

 

The infection caused a reduction in oil palm Fresh Fruit Bunches (FFB) yield and 

sometimes the death of the palms (Roslan & Idris, 2012). Some factors have been reported to 

affect the occurrence of BSR and USR disease such as the cultivation of the previous crop, 

replanting technique, age and number of individual palms per planted area, type of soil series, 

inoculum potential, shading and soil temperature (Azahar et al., 2014; Parthiban et al., 2016; 

Rees et al., 2007). 
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In Malaysia, Ultisol and Oxisol soil containing kaolinite, gibbsite, goethite and hematite 

in the clay fraction are very common especially in the upland areas, occupying about 72% of 

the country’s land area. The soils are highly weathered as they exist under a tropical 

environment with high rainfall and temperature throughout the year, resulting in leaching of 

plant nutrients and accumulation of sesquioxides. They are by nature devoid of basic cations 

and available phosphorus and hence, their productivity is generally considered as low. The 

soils are mainly utilized for cultivation of oil palm and other economically important crops 

with great success due to excellent soil management practices (Shamshuddin & Daud, 2011). 

 

Plants use numerous defense mechanisms against different types of environmental stresses 

and microbial pathogens (Mazid et al., 2011). In terms of anti-microbial secondary 

metabolites, some exist constitutively inside plants while some are induced by infection 

(Pusztahelyi et al., 2015). Metabolomics, the global analysis of a broad class of metabolites, 

is an important tool enabling investigations of the molecular basis of plant immunity in plant-

pathogen interaction systems. The plant defense response is largely a product of the 

interaction of a diverse class of metabolites (Heuberger et al., 2014).  

 

Metabolite profiling experiments should be designed to maximize the coverage of 

chemical classes to simultaneously assay for events related to both cells signaling and primary 

and secondary metabolism (Heuberger et al., 2014). The metabolite profiling of oil palm may 

provide an opportunity to understand the plant responses to biotic and abiotic stresses. This 

could serve as a platform for additional exploration as well as identification of metabolite 

markers for the early detection of BSR and USR diseases (Zain et al., 2013).  

 

Metabolite profiling of oil palm has been carried out extensively to understand the BSR 

and USR diseases. Various palm tissues of both healthy and infected palms were used to 

analyze metabolites by using a metabolomics-based approach. Oil palm root, spear leaf and 

mesocarp tissues were used to compare metabolite profiles between partially tolerant and 
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susceptible palm extracts to uncover the biochemical pathway involved as well as in searching 

of metabolite biomarkers or phenotyping associated to BSR Disease in oil palm (Neoh et al., 

2013; Rozali et al., 2017; Zain et al., 2013). Until today, no research on metabolomics has 

been conducted related to weathered tropical soils in Malaysia. Study on plant disease severity 

from different soil types has been conducted and it is suggested that the mechanism of disease 

suppression of soil-borne plant pathogens may vary strongly according to the soil types 

(Messiha et al., 2007), therefore, this research is conducted with the following objectives: 

 

1. To determine soil physicochemical properties of Ultisol and Oxisol soil where healthy 

and Ganoderma-infected oil palm tree are grown. 

2. To extract and profile metabolites of Ganoderma-infected oil palm grown on Ultisol 

and Oxisol soil. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Malaysian Palm Oil 

The commercial variety of oil palm planted in Malaysia is Elaeis Guineensis which 

originates from West Africa. The genus Elaeis belongs to the palm Family Arecaceae, an 

important member of the monocot group under the Order Arecales. Figure 2.1 shows the 

photo and taxonomic tree of E. Guineensis which was taken from the sampling site. The oil 

palm tree originates from West Africa where it grows in the wild and later was developed into 

an agricultural crop. It was introduced to Malaysia, then Malaya, by the British in the early 

1870s as an ornamental plant.  

 

In 1917, the first commercial planting took place in Tennamaran Estate in Selangor, laying 

the foundations for the vast oil palm plantations and the palm oil industry in Malaysia. The 

cultivation of oil palm increased at a fast pace in the early 1960s under the government's 

agricultural diversification programmed, which was introduced to reduce the country's 

economic dependence on rubber and tin. Later in the 1960s, the government introduced land 

settlement schemes for planting oil palm to eradicate poverty for the landless farmers and 

smallholders.  

 

The oil palm plantations in Malaysia are largely based on the estate management system 

and the smallholder scheme (MPOC, 2019). Palm oil is now a major source of sustainable 

and renewable raw material for the world’s food, oleo chemical and biofuel industries. 

Involvement in cultivation or downstream activities has uplifted the quality of life of people 

and has helped alleviate poverty among landless farmers (Basiron, 2007). 
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Domain: Eukaryota 

Kingdom: Plantae 

Phylum: Spermatophyta 

Subphylum: Angiospermae 

Class: Monocotyledonae 

Order: Arecales 

Family: Arecaceae 

Genus: Elaeis 

Species: Elaeis guineensis 

Figure 2.1: Photo and taxonomic tree of Elaeis guineensis (ISC, 2020). 
 

 

2.1.1 Oil palm Properties 

Oil palm has the highest productivity compared to other cultivated oleaginous crops as it 

gives the highest yield of oil per unit area. This crop can fulfil the growing global demand for 

vegetable oils which is estimated to reach 240 million tons by the year 2050.  The oil palm 

produces two distinct oils called palm oil and palm kernel oil in which both are important in 

world trade (Barcelos et al., 2015). Palm oil and its products are very versatile edible oil which 

offers great potential both in food and non-food applications. Throughout the world, 90% of 

palm oil is used for edible purposes while the remaining 10% is used for soap and oleo-

chemical manufacturing.  
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The main uses of palm oil and its products in food applications are for cooking or frying, 

shortening, margarines, cocoa butter substitutes, dairy fat replacers and animal fat replacers. 

Palm oil is also used to produce intermediate and final oleo chemicals products such as soap, 

surfactants and detergents, cosmetic and personal care, agriculture and industrial products. 

Another new growth area of great potential is oil palm biomass that can enhance the industry’s 

growth, competitiveness and sustainability. Biomass from the oil palm can be used for 

manufacturing particle and medium density fiber board, plywood as well as fiber composites 

to make car body components (MPOB, 2013a). The saturated fatty acid to unsaturated fatty 

acid ratio of palm oil is close to unity with a high number of antioxidants, β-carotene, and 

vitamin E content. Palm oil also contains a high proportion of palmitic acid as well as 

considerable quantities of oleic and linoleic acids (Kouski et al., 2015).  

 
2.1.2 Palm Oil Production in Malaysia 

In Malaysia, oil palm planted area in 2018 reached 5.85 million hectares, an increase of 

0.7% as against 5.81 million hectares the previous year. Sarawak overtook Sabah as the 

largest oil palm planted state, with 1.57 million hectares or 26.9% of the total Malaysian oil 

palm planted area, followed by Sabah with 1.55 million hectares or 26.5% and Peninsular 

Malaysia with 2.73 million hectares or 46.6% (Table 2.1).  

 
The plantation area is dominated by private estates (61.0%), followed by independent 

smallholders (16.8%), Federal Land Development Authority or FELDA (12.3%), state 

schemes/government agencies (5.8%), Federal Land Consolidation and Rehabilitation 

Authority or FELCRA (3.1%) and Rubber Industry Smallholders Development Authority or 

RISDA (1.0%) ((MPOB), 2013b). The distribution of Malaysian oil palm planted area by 

category can be visualized as in Figure 2.2. Total Malaysian exports of oil palm products in 

2018 amounted to 24.88 million tons, higher by 3.8% from 23.97 million tons exported in 

2017 with total export revenue of RM67.49 billion. In 2018, palm oil export earnings alone 

are RM38.63 billion, with palm oil export volume of 16.49 million tons (MPOB, 2013a). 
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Table 2.1: Malaysian oil palm plantation area as at December 2018 (MPOB, 2013b). 

STATE MATURED % IMMATURED % TOTAL % 

Johor 680562 91 67000 9 747562 12.8 

Kedah 82287 91.1 8007 8.9 90294 1.5 

Kelantan 121085 77.9 34287 22.1 155372 2.7 

Melaka 51237 90.2 5574 9.8 56811 1 

Negeri Sembilan 167026 89.1 20425 10.9 187451 3.2 

Pahang 653535 86.4 102614 13.6 756149 12.9 

Perak 364090 88.1 49221 11.9 413311 7.1 

Perlis 641 94.1 40 5.9 681 0 

Pulau Pinang 14042 95.5 660 4.5 14702 0.3 

Selangor 123139 90.3 13222 9.7 136361 2.3 

Terengganu 149519 88.5 19395 11.5 168914 2.9 

Peninsular Malaysia 2403163 88.3 320445 11.7 2727608 46.6 

Sabah 1378655 89 170590 11 1549245 26.5 

Sarawak 1403526 89.3 168951 10.7 1572477 26.9 

Sabah & Sarawak 2782181 89.1 339541 10.9 3121722 53.4 

Malaysia 5189344 88.7 659986 11.3 5849330 100 
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2.1.3 Oil Palm Cultivation on Ultisol and Oxisol Soil 

Soil scientists have developed a soil classification or taxonomy system in order to identify, 

understand, and manage soils. The most general level of classification in the United States 

system is the soil order. There are 12 soil orders categorized by the U.S. Department of 

Agriculture (USDA). The 12 soil orders are Gelisols, Histosols, Spodosols, Andisols, Oxisols, 

Vertisols, Aridisols, Ultisols, Mollisols, Alfisols, Inceptisols and Entisols. Each order is 

classified based on dominant physical, chemical, or biological properties that differentiate 

one to another (Ditzler & Hempel, 2016). Table 2.2 shows the lists of Malaysian soil series 

classified by USDA belong to Ultisol and Oxisol soil orders. 

 

61%17%

12%

6%

3% 1%

Private Estates

Independent Smallholders

FELDA

State Schemes / Government
Agencies
FELCRA

RISDA

Figure 2.2: Malaysian oil palm plantation area by category 2018 (MPOB, 2013b) 
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Ultisol soil formed in humid areas and intensely weathered. It contains a subsoil horizon 

that has an appreciable amount of translocated clay and are relatively acidic. Most nutrients 

are held in the upper centimeters of Ultisol soil, and this soil has low fertility but can become 

productive with the additions of fertilizer and lime. Ultisol soil makes up about 8% of the 

glacier-free land surface. 

 

Oxisol soil originated from tropical and subtropical regions. It is dominated by iron oxides, 

quartz, and highly weathered clay minerals such as kaolinite. This soil can be found on gently 

sloping land surfaces of great age that have been stable for a long time.  For the most part, it 

is nearly featureless soil without clearly marked layers, or horizons. Like Ultisol, Oxisol soil 

is highly weathered, has low natural fertility but can be made productive through wise use of 

fertilizer and lime, and can be found over about 8% of the glacier-free land surface too (Ditzler 

& Hempel, 2016). 
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Table 2.2:  Malaysian Soil Series classified by USDA Soil Orders (Ultisol and Oxisol 
soil), Sub-orders and Great Groups (ARABIS, 2018). 

Order Sub-
Order Great Group Soil Series 

Ultisol 

Aquults 

Endoaquults Inanam, Jabil 

Kandiaquults Jabil, Lunas, Sogomana 

Kanhaplaquudults Cherang Hangus 

Paleaquults Inaanam/Poor, Jelutong 

Udults 

Hapludults 
Asahan, Batu Anam, Dagat, Durian, Kumansi, 

Pohoi 

Kandiudults 

Batang, Bungor, Gajah Mati, Harimau, 
Holyrood, Kasau, Lambak, Lanchang, 

Langkawai, Lelau, Merbau, Rengam, Serdang, 
Sitiawan, Tai Tak, Tavy, Tebok, Tungau, Ulu 

Dong 

Kanhapludults 
Apek, Gong Chenak, Kawang, Kening, Kuala 

Brang, Marang, Nami 

Paleudults 

Abok, Bedup, Berkenu, Inanam/Imp, Kapilit, 
Kinabutan, Kulai, Lumisir, Merit, Musang, 

Nyalau, Stom Tanjong Lipat, Tok Yong, Yong 
Peng 

Plinthudults Batang, Chuping, Sipit 

Rhodudults Jakar, Sarekei 

Oxisol Udox 

Acrudox 
Jerangau, Kampong Kolam, Kuantan, Prang, 

Segamat, Senai, Sungei Mas, Table 

Eutrudox Sagu, Sungei Mas 

Hapludox 
Apas, Gading, Jarangan, Katong, Malacca, 
Munchong, Nobusu, Patang, Pinianakan, 

Tandak, Tarat 

Kandiudox 
Batang Merbau, Bungor, Chat, Harimau, 
Lanchang, Rengam, Tai Tak, Ulu Dong 
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Malaysian soils dominantly fall into the Ultisol and Oxisol Orders in Soil Taxonomy. This 

is about 70% of the country's land area. These soils are acidic in nature, with pH values 

ranging from 4 to 5. These soils contain mainly sesquioxides and kaolinite both of which are 

essentially variable charge minerals. The phosphorus present in the soil system is highly fixed 

by the sesquioxides in the soil system. This means that these soils are lacking with 

phosphorus. In fact, phosphorus is considered as the most limiting nutrient for crop 

production in the tropics (Sung et al., 2017). Figure 2.3 shows the photos and classification 

of soils from Tai Tak and Segamat Series. 

 

 

 

 

Soil Classification 
FAO Unesco Legend: Typic Paleudult 

USDA Soil Taxonomy: Clayey, 
kaolinitic, isohyperthermic, Dystric 

Nitosol 

Soil Classification 
FAO Unesco Legend: Haplic Acrisol 
USDA Soil Taxonomy: Very Fine, 
Kaolinitic, isohyperthemic, Typic 

Hapludox 
 

Figure 2.3: Physical characteristics and soil classification of Ultisol and Oxisol soil; (A) 
Ultisol soil and (B) Oxisol soil (JPM, 2008). 
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Ultisol and Oxisol soil also have very low basic cation status and effective cation exchange 

capacity (CEC). Accessions of acidity by these soils contribute to soil degradation as a result 

of reactions which liberate toxic levels of aluminum and manganese ions, reduce the CEC, 

increase the anion exchange capacity, and promote the loss of basic cations by leaching. The 

activities of soil organisms are generally reduced under such conditions. This can take a toll 

on crop yield and impair biological nitrogen fixation. Therefore, amelioration involves both 

the neutralization of exchangeable aluminum and manganese ions and restoration of higher 

levels of exchangeable basic cations such as calcium ion throughout the soil profile (Sung et 

al., 2017). 

 
Figure 2.4 illustrates the industrial oil palm and other plantations in Peninsular Malaysia. 

The yield of oil palm grown on Ultisol and Oxisol soil ranges from 20 to 30 tons FFB 

/hectare/year with the rate of oil extracted is 20% of the FFB. The natural canopy of oil palm 

tree has maintained the soil moisture for optimum palm growth. Prior to cutting, the oil palm 

fronds are placed in between the planting rows so that the organic matter will decompose 

naturally. The increase in this soil nutrients composition could enhance susceptibility to other 

disorders and diseases from soil-borne plant pathogens (Shamshuddin & Daud, 2011). 
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Figure 2.4: Industrial oil palm and other plantations in Peninsular Malaysia (Shevade & 
Loboda, 2019). 
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2.1.4 Oil Palm Ecosystem 

Oil palm ecosystems comprise a wide range of fungi, bacteria, insects, nematodes, and 

viruses that are significantly responsible for reducing crop productivity. One of the most 

destructive diseases of oil palm caused by G. boninense, a wood-decaying fungus, is BSR. 

The BSR causes the reduction of oil palm FFB yield and the collapse of the palms (Sahebi et 

al., 2017).  

 

2.1.5 Economic Loss Due to BSR and USR Disease 

The economic loss due to the infection is reported to be at 43.32% of the potential yields 

(Assis et al., 2016). The BSR Disease incidence rate in 1994 was estimated at 1.51% or 0.03 

million hectares of affected areas from 2.14 million hectares of total matured plantation area 

as published in the Malaysian Palm Oil Board, MPOB Basal Stem Rot Census 1994-1995 

Report. In 2009, the estimated BSR Disease incidence rate was estimated at 3.71% or 0.15 

million hectares of affected areas from 4.70 million hectares of total matured plantation area. 

Therefore, the yearly growth rate of area affected over the 15-year period was 10.3% per year. 

If oil palm estates do not apply treatment and the disease infection follows the same growth 

pattern, it is estimated that the total oil palm plantation area affected by BSR Disease in 2020 

would be around 0.44 million hectares involving about 65.6 million oil palm trees (Roslan & 

Idris, 2012). The never-ending problem of BSR and USR disease has affected the production 

of oil palm and burden planters especially smallholders and farmers (Chong et al., 2017). 

 

2.1.6 BSR and USR Disease Caused by Ganoderma Sp. Infection  

The genus Ganoderma belongs to the Family of Ganodermataceae, Order Polyporales and 

Class Agaricomycetes. The fungus is economically important and reported of being as helpful 

for medicinal purpose to as harmful as a pathogen of some precious crop plant including oil 

palm (Lee & Chang, 2016). In Malaysia, three common species of Ganoderma namely 

Ganoderma boninense, Ganoderma zonatum and Ganoderma miniatocinctom are the causal 

agents of BSR Disease in which the G. boninense has been reported to be the most harmful 
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that causes a great economical effect in oil palm industry (Wong, Bong, & Idris, 2012). Figure 

2.5 shows the photo of G. boninense as captured at the sampling site as well as the taxonomic 

tree of the fungus. 

  

 

 

Taxonomic Tree: 

Domain: Eukaryota 

Kingdom: Fungi 

Phylum: Basidiomycota 

Subphylum: Agaricomycotina 

Class: Agaricomycetes 

Subclass: Agaricomycetidae 

Order: Polyporales 

Family: Ganodermataceae 

Genus: Ganoderma 

Species: Ganoderma 

boninense 

Figure 2.5: Photo and taxonomic tree of G. boninense. The arrows show the fruiting bodies 
of the G. boninense at the bottom of oil palm tree (ISC, 2020). 
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2.1.7 Mode of Infection and Symptoms of BSR and USR Disease 

There are numerous modes of infection associated with the epidemiology of G. boninense 

in oil palm plantation, including in-contact roots with nearby infected palms and through 

airborne basidiospores. Deep insight on the route of infection and mycological pathogenicity 

behavior of the pathogen is the greatest priority in order to successfully develop effective 

management practices for disease control (Chong et al., 2017). The symptoms of BSR disease 

are decay of the bottom of the stem from where basidiocarps emerge and sometimes also 

decay of the roots. The rotting stem restricts the water and nutrients uptake from roots to the 

fronds and cause chlorosis. When the disease is more severe, the older fronds wilt and hang 

down to form a skirt around the trunk (Hushiarianet al., 2013). Other observable symptoms 

include flattening of the crown and spear leaves that have not opened. In some cases, the stem 

might even fracture (Rees et al., 2012). On the other hand, USR disease has symptoms like 

those of spear rot, bud rot and bunch rot in which lower leaves first become yellow and die 

from the tip to the base. This condition progresses to the middle of the crown, finally affecting 

the spear leaves. The stem tissues show a brown rot even when the roots of the palm are not 

affected (Hasan et al., 2005). 

 

2.1.8 Control Measures for BSR and USR Disease 

Some possible ways of controlling the disease have been implemented which includes soil 

mounding, surgery, sanitation or removal of diseased material, ploughing and harrowing, 

fallowing, planting legume cover crops, chemical treatments, application of fertilizer 

combination as well as biological control, but no single method has yet been able to halt the 

continuing spread of the disease (Hushiarian et al., 2013). 

 

2.1.9 Factors affecting BSR and USR Disease 

There are various factors were reported to influence the incidence of BSR and USR disease 

such as the cultivation of the previous crop, replanting technique, age and number of 

individual palms per planted area, inoculum potential, shading and soil temperature (Azahar 
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et al., 2014; Rees et al., 2007). Previous research visualized the geographical distribution of 

BSR disease incidence among oil palm smallholders in Selangor using Geographical 

Information System. Distribution pattern of the BSR disease revealed that most of the 

incidences were confined along the coastal area which might be due to the planting of oil 

palm in previous coconut stands. Meanwhile, the low pH of soil series showed a higher BSR 

incidence compared to the high pH of soil series that showed slightly lower BSR incidence. 

This research reported that the distribution of BSR was mostly confined to the coastal areas 

which might be due to the planting of oil palm in previous coconut stands rather than any 

relationship with the type of soil series (Parthiban et al., 2016). Other than that, research 

conducted on soil-borne plant host-pathogen interaction also suggested that the disease 

suppression could be affected by different type of soil due to the natural ecosystem in the soil 

and rhizosphere (Messiha et al., 2007).  

 

Plants can respond to such soil condition due to the roots that are responsible for water and 

nutrients uptake. When there are difficult conditions of the restrictive environment in the soil, 

the roots will send inhibitory signals to the shoots. This behavior can be interpreted as 

feedforward responses to roots becoming infected with pathogens. The inhibitory signals may 

affect stomatal conductance, cell expansion, cell division and the rate of leaf appearance. A 

network of hormonal and other responses is involved in attuning growth and development of 

a plant to its environment (Passioura, 2002). 

 

2.2 Metabolomics 

The plant defense response is largely a product of the interaction of a diverse class of 

metabolites. Metabolite profiling experiments should be designed to maximize the coverage 

of chemical classes to simultaneously assay for events related to both cells signaling and 

primary and secondary metabolism. Metabolomics, the global analysis of a broad class of 

small molecule compounds, is, therefore, an important tool enabling investigations of the 

molecular basis of plant immunity in plant-pathogen interaction systems (Heuberger et al., 
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2014). Metabolomics can be defined as a study that analyses endogenous and exogenous low 

molecular mass metabolites within a cell, tissue, or bio fluid of an organism in response to an 

external stressor such as disease, contaminant exposure, or nutritional imbalances (Saito & 

Matsuda, 2010). This field of science can generate comprehensive data sets of the sample 

being analyzed (Riekeberg & Powers, 2017).  

 

Metabolomics strategies have been divided into untargeted and targeted metabolomics. 

Both approaches have their own inherent advantages and disadvantages. Untargeted 

metabolomics approach aims to gather information on as many metabolites as possible in 

each extract analyzed. In such untargeted approaches, all analytical information present in the 

profiles will be first transformed into coordinates based on mass, retention time and signal 

amplitude. These coordinates are then aligned across all samples. By applying appropriate 

statistical and multivariate analysis tools, differential mass peaks or mass peaks correlating 

with a specific trait can be filtered out and identified to some degree by using accurate mass, 

tandem mass spectrometry (MS/MS) fragmentation and then confirmed with standards when 

available (De Vos et al., 2007).  

 

Targeted metabolomics is a measurement of defined groups of chemically characterized 

and biochemically annotated metabolites. The analysis can be carried out in a quantitative or 

semi-quantitative manner using internal standards. This approach takes advantage of the 

comprehensive understanding of a vast array of metabolic enzymes, their kinetics, end 

products, and the known biochemical pathways to which they contribute. When utilizing 

targeted metabolomics sample preparation can be optimized to reduce the dominance of high-

abundance molecules in the analyses. In addition, since all analyzed species are clearly 

defined, analytical artefacts are not carried through to downstream analysis. When predefined 

lists of analytes are studied, novel associations between metabolites may be illuminated in the 

context of specific physiological states (Roberts et al., 2012). 
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2.2.1 NMR-based Metabolomics 

Plants are rich with chemically diverse metabolites which are usually present in a large 

range of concentrations, and no single analytical technique is currently capable of extracting 

and detecting all the metabolites (Hall, 2006). Two main analytical techniques used in 

metabolomics study are nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

(Kopka et al., 2004). Several methodologies within these two analytical techniques are 

currently being developed specifically to deal with the types of complex samples analyzed in 

metabolomics studies. NMR spectroscopy is known as one of the premier methods for the 

analyses of multi-component mixtures as it requires little or no sample preparation. This 

technique provides a high reproducible result, is rapid, non-destructive and non-invasive. 

Peaks in the NMR spectra can be reliably assigned to specific metabolic species based on 

their chemical shifts and multiple patterns which directly provide a wealth of information on 

the identity and quantity of many metabolites in parallel from a single experiment (Gowda et 

al., 2008). 

 

With advanced high-throughput NMR methodology, up to 200 samples can be measured 

within a day with the assistance of flow-injection probes and automated liquid handlers. The 

detection limit can also be decreased to 10’s of nanogram using high field magnets, 

cryogenically cooled probes, micro coil probes equipped to handle very small samples, and 

methodologies that couple NMR to liquid chromatography and solid phase extraction (Gowda 

et al., 2008). Although NMR is in principle the most uniform detection technique and is 

essential for the unequivocal identification of unknown compounds, NMR-based 

metabolomics approaches still suffer from a relatively low sensitivity (Commisso et al., 

2013). 

 

2.2.2 MS-based Platforms 

MS-based platforms have been the more popular choice in plant metabolomics (Jorge et 

al., 2016). The intrinsic high sensitivity of MS detection makes it an important method for 
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measuring metabolites in complex bio fluids. A variety of MS methods in combination with 

separation techniques such as gas and liquid chromatography or their variants have been used 

in numerous metabolomics investigations. This analytical technique covers a large variety of 

non-volatile metabolites, mainly those involved in primary metabolism, including organic 

and amino acids, sugars, sugar alcohols, phosphorylated intermediates in the polar fraction of 

extracts, lipophilic compounds such as fatty acids and sterols in the polar fraction, as well as 

plant secondary metabolites such as alkaloids, saponins, phenolic acids, phenylpropanoids, 

flavonoids, glucosinolates, polyamines and derivatives thereof (De Vos et al., 2007; Lisec et 

al., 2006).  

 

Plants produce an extensive chemical diversity of metabolites, estimated to be between 

100,000 and 200,000 compounds (Hill & Roessner, 2014). Gas chromatography-mass 

spectrometry (GC-MS) platform facilitates the identification and robust quantification of a 

few hundred metabolites in a single plant extract resulting in comprehensive coverage of the 

central pathways of primary metabolism. The main advantages of this technology are that it 

has long been used for metabolite profiling and thus there are therefore stable protocols for 

machine setup and maintenance, and chromatogram evaluation and interpretation (Lisec et 

al., 2006). Although no single analytical system can cover the whole metabolome, GC-MS 

has a relatively broad coverage of compound classes, including organic and amino acids, 

sugars, sugar alcohols, phosphorylated intermediates and lipophilic compounds. Recovery 

experiments of all measurable classes of compounds have been done during method 

validation. For unknown compounds, recovery rates can be determined by recombination 

experiments in which extracts of two plant species are evaluated both independently and after 

mixing (Lisec et al., 2006).  

 

Liquid chromatography-mass spectrometry (LC–MS) is one of the major untargeted 

platforms to determine global metabolite profiles which aims at the identification and relative 

quantitation of all peaks from the ion chromatograms that are initially defined by retention 

Univ
ers

ity
 of

 M
ala

ya



 

21 
   

time and molecular mass (Hill & Roessner, 2014). The LCMS-based platform is expected to 

be of importance in plants research and is capable of analyzing a broad range of metabolites 

of plants which covers many semi-polar compounds not involved in primary metabolism in 

which several have been shown to have phenotypic and physiological importance (Goh et al., 

2016; Zain et al., 2013). This includes the large and often economically important group of 

secondary metabolites such as alkaloids, benzoids, flavonoids, terpenes, isoprenes, 

glucosinolates and phenylpropanoids as well as highly polar and higher molecular weight 

molecules such as oligosaccharides and lipids (Hill & Roessner, 2014). 

 

2.2.3 LC-TOF-MS 

Beginning with the earliest concept of separating ionized molecules based on their flight 

times, time-of-flight mass spectrometry (TOF-MS) has shown valuable utility and uniqueness 

in its ability to perform extremely high-speed full-spectral measurements. Early work 

established the basic conditions to accomplish this intrinsic performance feature, spectral 

acquisition rate, with high resolving power. Over the past few years key developments in 

ionization, atmospheric sampling and ion optic and detection systems have led to the 

commercial success of analytical TOF systems capable of supporting the most demanding 

high-resolution chromatographic separations. 

 

In addition to ongoing improvements in one-dimensional separations, multidimensional 

chromatography and ion mobility are adding additional analytical capabilities for which TOF 

is ideally suited. Concurrent to these instrumental developments researchers in many fields 

have made substantial progress in the development of non-targeted methodologies for the 

screening of low-level analytes in diverse matrices. Leveraging speed, dynamic range and 

resolution, TOF-MS has become well positioned to address a wide range of growing 

analytical needs (Fjeldsted, 2016). 
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2.2.4 Biotic Stress in Plants 

Plants are faced with numerous biotic stresses and adverse environmental conditions. They 

respond to these stresses through several morphological, biochemical, and molecular 

mechanisms and evidence suggests that there are interactions among their respective 

signaling pathways (Nejat & Mantri, 2017). Among the downstream signaling pathways 

induced by effector-triggered and pathogen-associated molecular patterns-triggered 

immunity, three hormones stand out: salicylic acid (SA), jasmonic acid (JA) and ethylene 

(ET). While the SA pathway stimulates resistance responses to biotrophic and hemi-

biotrophic pathogens, the JA and ethylene pathways are generally induced against 

necrotrophic pathogens and chewing insects (De Vleesschauwer et al., 2014).  

 

SA, in turn, activates a systemic resistance response called Systemic Acquired Resistance 

that promotes the expression of pathogen related genes and provides long-term defense 

against a broad spectrum of pathogens (Grant & Lamb, 2006). Although SA, JA and ET 

defense signaling pathways have substantial differences in gene expression, they interact to 

help the plant choose the best defense strategy (Glazebrook, 2005). Other hormones such as 

abscisic acid, auxin, brassinosteriods, cytokinin, gibberellic acid and peptide hormones have 

also been reported as important regulators of immune responses (Bari & Jones, 2009).  

 

Metabolite profiling of oil palm may provide an opportunity to understand the plant 

biosynthetic pathways in response to biotic and abiotic stresses and could serve as a platform 

for additional exploration as well as identification of metabolite markers for the early 

detection of BSR Disease (Sahebi et al., 2017). 

 

2.3 Data Analysis 

Metabolite profiling using LC-MS consists of a series of experiments which includes data 

pre-processing, statistical analysis, compound identification and data interpretation (Perez et 

al., 2017). Profile Analysis software provides an efficient pre-processing of complex LC-
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TOF-MS data sets. The find molecular feature (FMF) makes use of a peak finding algorithm 

for quantitatively pinpointing relevant information as well as eliminates noise and outliers.  

 

The system will later create bucket tables of data based on the extracted FMF compounds. 

The retention time alignment makes use of a shifting vector algorithm which will adjust all 

retention times in a representative run from the runs analyzed together. The software also 

provides different filtering, normalization and scaling options. All the data pre-processing 

steps will complete the basis for successful subsequent statistical analysis (Spicer et al., 2017). 

 

2.3.1 Univariate Analysis: One-way ANOVA 

The identification of significantly perturbed metabolites or metabolite peaks is probably 

the most basic task in metabolomic data analysis. A variety of strategies have been 

implemented in MetaboAnalyst 2.0 to help researchers select or identify compounds of 

interest and to facilitate different research objectives. Differential expression analysis has 

been extended to support multiple group analysis, can be used by users to identify compounds 

that are significantly different between two or more sets of experimental conditions or two or 

more populations under study. 

 

MetaboAnalyst 2.0 supports both ordinary univariate methods and moderated t-statistic 

methods to compare means or medians of one variable across two or more groups. Because 

of the multiple-testing issue, Bonferroni corrected P-values (FDR) are also computed for 

these functions. Many standard statistical algorithms such as t-tests and ANOVA tests work 

under the assumption that the data being analyzed are normally distributed. If the data are not 

normally distributed or cannot be transformed into a normal distribution, then most standard 

statistical tests become unreliable. In addition to improving reliability and interpretability, 

data normalization can also help reduce any systematic bias in the data that may have arisen 

from instrumental or sampling problems (Xia et al., 2012). 
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2.3.2 Multivariate Analysis: PCA and PLSDA 

Multivariate analysis such as PCA and PLS-DA will be implemented to study the multiple 

interactions between metabolites. The techniques provide an essential platform for rapid 

interpretation of information-rich spectral datasets for inferring biological conclusions 

(Worley & Powers, 2013). This research makes use of multivariate analysis software called 

SIMCA-P+ which uses soft independent modelling of class analogies (SIMCA). SIMCA is a 

classification method constructing separate PCA and PLS-DA models for each group 

enabling categorization of samples into groups.  
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CHAPTER 3: MATERIAL AND METHOD 

3.1 Sampling Site 

The soils used for this pot experiment were the Tai Tak and Segamat Series, which are 

classified as Ultisol and Oxisol soil respectively. Sample collections were carried out in June 

2017, at Felda Ulu Belitong in Kluang (N1.91647° E103.48219°) and FGVPM Palong Timur 

5 in Segamat (N2.79264° E102.70189°). The coordinate distance between study areas is 80.82 

miles or 130.07 km. The study areas show very similar climatic conditions and the palms are 

grown under standard estate management practice. The climate in Kluang and Segamat are 

classified as tropical wet (Af) by the Kopper-Geiger system where precipitation occurs all 

year long. The monthly temperature variations in this climate are less than 3°C. Both study 

areas experienced the driest condition in July and wettest condition in December (CDO, 

2019). 

 

3.2 Soil Sample Analysis 

Soil samples were collected from three different depths of 0-15 cm, 15-30 cm and 30-45 

cm beneath the soil surface where the same biological samples of healthy and Ganoderma-

infected palm trees were grown. Four technical replicates were chosen, and the soil samples 

were mixed, sealed and labelled accordingly. The soil samples were left to dry naturally for 

two months until analysis. The dried soil samples were ground using pestle and mortar, before 

sieved using 1.0 mm sieve as in Figure 3.1. Univ
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Figure 3.1: Soil sample preparation. A) The ground soil sample. B) The sieved soil 
samples. 
 

3.2.1 Soil pH and EC 

About 10 g of the soil sample was mixed with 25 ml of distilled water (dH2O) following 

the ratio of soil:dH2O of 1:2.5. The mixture was then stirred for 30 minutes and left to rest for 

another 30 minutes.  Prior to the calibration process, the pH value was measured using pH 

meter (Eutech pH 2700 Meter). After that, 25 ml of dH2O was added to the mixture to measure 

its EC value. The reading was measured using an EC meter (HI-2211 Bench Top pH & mV 

Meter). The same steps were repeated for all soil samples and all data collected were 

tabulated. 

 

3.2.2 Soil TC 

The CNS LECO TruMac (Figure 3.2) Method system utilized a combustion technique that 

provided a result for carbon element within five minutes for each sample. Prior to soil sample 

analysis, 2,5-(Bis(5-tert-butyl-2-benzo-oxazol-2-yl) thiophene (BBOT) was used as the 

A B 
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certified reference material where its carbon% was 72.48 ± 0.25. The dried soil samples were 

sieved again using 60 µm sieve. Each soil sample weighed 0.2 mg was placed into a large 

ceramic boat and loaded into the purge chamber located in the front of the horizontal ceramic 

high temperature furnace. The step was repeated until all soil samples were loaded 

accordingly. 

 

After the entrained atmospheric gas was purge from the sample, the ceramic boat was 

introduced into the furnace regulated at a temperature of 1350℃. Complete oxidation of the 

soil sample was ensured by a pure oxygen environment within the furnace, with additional 

oxygen being directed onto the sample via a ceramic lance. The ceramic boat and all ash from 

the sample were removed from the furnace at the end of combustion, leaving the furnace free 

of ash build-up. The moisture was removed from the furnace by Anhydrone. The remaining 

combustion gases were collected and equilibrated in ballast where aliquot gases were swept 

through an infrared detector for carbon determination. External PC Windows-based operating 

software managed all the quantitative calculations and all data were displayed as a weight 

percentage and tabulated. 
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Figure 3.2: The CNS LECO TruMac analyzer used for soil TC analysis 

 

3.2.3 Soil Particle Size 

The method used for particle-size analysis is the pipet method. The same dried and sieved 

soil samples were used where 20 g of the soil sample was put into a tall beaker of 1000 ml. 

About 100 ml of hydrogen peroxide, H2O2, was added and leaved overnight. After that, the 

beaker was heated on a hot plate and further quantities of H2O2 were added until no more 

frothing occurs. A total of 100 ml 0.2 N HCl was added, followed by distilled water until the 

volume reached 400 ml. The mixture was heated again on the hot plate for 15 minutes and 

allowed to cool. The supernatant liquid was siphoned off and washed three times with 400 ml 

of dH2O. About 50 ml Calgon Solution was added into the contents of the beaker and stirred 

for 15 minutes using a mechanical stirrer. 
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After that, the contents were sieved through a 50 µm sieve and transferred into 1000 ml 

cylinder. The contents in the cylinder were the clay and silt particles while the particles left 

on the 50 µm sieve were the sand fraction. The mechanical stirrer blades were washed with 

distilled water until no traces of the soil were left and the washed water was introduced in the 

cylinder through the sieve. The content of the cylinder was made up to 1000 ml. The cylinder 

was introduced in the water bath at a constant 23℃ temperature. A plunger was used to mix 

the contents thoroughly for one minute. The suspension was left to settle for six hours and 39 

minutes. A pipette was introduced at a depth of 10 cm to pipet an aliquot. The contents of the 

pipette were transferred into an aluminum dish and oven-dried at 105℃ for 24 hours. The 

weight recorded as A. 

 

After oven-dried, the aluminum dish could cool in a desiccator before weighing. 

Meanwhile, the sand fraction on the 50 µm sieve was oven-dried at 105℃ and were then 

transferred onto a nest of sieves arranged from top to bottom with decreasing sizes of 1000-, 

500-, 250-, 100-, and 50 µm.  All sieves were shaken for five minutes using a mechanical 

stirrer. Each sand fraction in the nest of sieves was weighed and the total weight of all sand 

fractions was recorded as B. As Calgon Solution was added before, the weight of clay 

particles was corrected by pipetting 50 ml of Calgon Solution into three separate dishes. They 

were placed in oven to be dried and cooled. The mean weight of the replicates was recorded 

as C. The calculations to determine % of clay, sand and silt are as follow: 

 

% clay = ((A ×1000)/ (volume of pipette) -C) ×100/ (weight of soil)  

% sand =B×100/ (weight of soil)  

% silt =100-% sand -% clay 
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3.2.4 Data Analysis for Soil Physico-chemical Properties 

Mann-Whitney U test is a non-parametric statistical technique. It is used to analyses 

differences between the medians of two data sets. It can be used in place of a t-test for 

independent samples in cases where the values within the sample do not follow the normal or 

t-distribution but also when the distribution of values is unknown. For the Mann-Whitney U 

test to be applied, values need to be measurable on an ordinary scale and comparable in size. 

The fact that all values are compared makes it distinct from the t-test, which compares the 

sample means.  

 

The Mann-Whitney U is also used to test the null hypothesis, subject to both samples 

coming from the same basic set or having the same median value.  The Mann-Whitney U test 

in the SPSS statistical program is performed in two parts. The first part represents the main 

part of the Mann-Whitney U test, and the second part the calculation of the median of each 

group (Milenovic, 2011). In this study, the Mann-Whitney U test will be carried out to see 

whether there are significant differences between Ultisol and Oxisol soil based on selected 

physico-chemical properties such as soil pH, EC, TC. The statistical data analyses will be 

performed using SPSS version 21.0 (SPSS, 2012). 

 

3.3 Biological Sample Preparation 

The study was carried out by using three biological replicates and three technical replicates 

(Figure 3.3). Biological replicates were harvested from oil palm of healthy and Ganoderma-

infected 12-years old palms. The biological replicate means the sample was harvested from 

different oil palm tree while the technical replicate means three samples were collected from 

the same biological sample. For field experiment, the oil palm frond number 17 basal fronds 

or commonly known as rachis has been selected as biological sample. This is because it 

absorbed the most nutrients from the roots where the infection started (Jayaselan et al., 2018). 
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Figure 3.3: The number of biological and technical replicates used in this research. 

 

Prior to harvesting, the excised rachises were wrapped using aluminum foil before storing 

at -80°C freezer in the laboratory on the same day of harvesting. For oil palm rachis sample 

preparation (Figure 3.4), the oil palm rachises were cut into smaller pieces and ground into 

powdered form using pestle and mortar. Liquid nitrogen was poured in between grinding 

process to prevent samples from thawing. The samples were left to dry via freeze-dry method 

to remove the remaining water. The samples were then stored in -80°C until extraction. 
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Figure 3.4: Oil palm rachis sample preparation. A) Sample was cut into smaller pieces. B) 
Sample was ground into powdered form.  
 

3.4 Extraction Method 

Three experimental designs with slight modifications were selected based on the 

established literature review on plant metabolomics protocols to choose the best extraction 

method for oil palm rachis samples. The similarities and differences between extraction 

methods are summarized as in Table 3.1. Extraction efficiencies of these three methods were 

evaluated. 

 

For first method, metabolite extraction from oil palm rachis sample was performed 

according to Tatli (2015). Pre-cooled 4.25 ml extraction medium of 

chloroform:methanol:water (1:2.5:1 v/v/v) was added to 500 mg samples. All mixtures were 

vortexed and left on ice for 30 minutes. Approximately 2 ml of pre-cooled dH2O was added 

and vortexed again. The mixtures were then centrifuged at a setting of 4000 rpm for 30 

minutes. The supernatant was collected, and the pellet was re-extracted again using the same 

amount of extraction medium. The resulting supernatant was collected and combined with 

the first one collected into vials. 

A B 
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For second method, metabolites were extracted from samples according to the protocol of 

Cadahía (2015). About 500 mg samples were extracted using 2 ml pre-cooled chloroform 

following ultrasonication bathing for 15 minutes at 30 °C. A total of 8 mL of pre-cooled 75% 

aqueous methanol was added, and the mixtures were put into ultrasonication bathing again 

for 20 minutes at 30 °C. The mixtures were then centrifuged at a setting of 4000 rpm for 15 

minutes at 25 °C. A total of 2 ml of supernatant (clear solution) from each sample was 

collected and evaporated using nitrogen stream.  The resulting dried supernatants were mixed 

with 4 ml 50% aqueous methanol and centrifuged again. Every 1 ml of the supernatant was 

collected and put into vials. 

 

For third method, metabolites extraction from samples followed from Zain (2013). About 

500 mg samples were extracted using 5 ml pre-cooled 80% aqueous methanol following 

ultrasonication bathing for 30 minutes at 30 °C. The mixtures were then centrifuged at a 

setting of 4000 rpm for 15 minutes at 25 °C. 2 ml of supernatant from each sample was 

collected and evaporated using nitrogen stream.  The resulting dried supernatants were mixed 

with 3 ml dH2O and centrifuged again. Every 1 ml of the supernatant was collected and put 

into vials. 

 

Table 3.1: The similarities and differences between extraction methods. 

Reference Method 1 Method 2 Method 3 

Sample mass (mg) 500 500 500 

Solvent ratio (v/v/v) 
chloroform:methanol:dH2O 

1:2.5:1 

chloroform:methanol:dH2O 

1:1:3 

methanol:dH2O 

1:4 

Ultrasonification bath Absent Present Present 

Centrifugation Present Present Present 
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3.5 Metabolomics Data Analysis 

Metabolite profiling using LC-MS consists of a series of experiments which includes data 

pre-processing, statistical analysis, compound identification and data interpretation (Perez et 

al., 2017). Profile Analysis software provides an efficient pre-processing of complex LC-

TOF-MS data sets. The FMF makes use of a peak finding algorithm for quantitatively 

pinpointing relevant information as well as eliminates noise and outliers.  

 

The system will later create bucket tables of data based on the extracted FMF compounds. 

The retention time alignment makes use of a shifting vector algorithm which will adjust all 

retention times in a representative run from the runs analyzed together. The software also 

provides different filtering, normalization and scaling options. All the data pre-processing 

steps will complete the basis for successful subsequent statistical analysis (Spicer et al., 2017). 

 

For LC-TOF-MS Analysis, the separation was performed on Thermo Scientific C18 

column (AcclaimTM Polar Advantage II, 3 x 150mm, 3um particle size) on an UltiMate 3000 

UHPLC system (Dionex). Gradient elution was performed at 0.4ml/minute and 40°C using 

H2O + 0.1% Formic Acid (A) and 100% Acetonitrile (B) with 22 minutes total run time. The 

injection volume of sample was 1µL. The gradient started at 5% v/v B (0-3minutes); 80% v/v 

B (3-10minutes); 80% B (10-15minutes) and 5% B (15-22minutes). High-resolution MS was 

carried out using a MicroTOF QIII Bruker Daltonic (Bremen, Germany) using an electrospray 

positive ionization with the settings of 4500 V capillary voltage, 1.2 bar nebulizer pressure, 

and 8 L/min drying gas at 200 °C. The mass range was at 50-1000 m/z. For data processing, 

the accurate mass data of the molecular ions, provided by the TOF analyzer, were processed 

by Compass Data Analysis software (Bruker Daltonik GmbH) set at signal to noise ratio of 5 

and smoothing width of 1. 
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3.5.1 Univariate Analysis: One-way ANOVA 

Univariate analysis methods are the most common methods used for exploratory data 

analysis. For multigroup analysis, MetaboAnalyst provides one-way ANOVA. As ANOVA 

only tells whether the overall comparison is significant or not, it is usually followed by post-

hoc analyses to identify which two levels are different. MetaboAnalyst provides two most 

commonly used methods for this purpose - Fisher’s least significant difference method 

(Fisher’s LSD) and Tukey’s Honestly Significant Difference (Tukey’s HSD). The univariate 

analyses provide a preliminary overview about features that are potentially significant in 

discriminating the conditions under study. Figure 2 shows the important features identified 

by ANOVA analysis. Table 2 shows the details of these features. The post-hoc Sig. 

Comparison column shows the comparisons between different levels that are significant given 

the p value threshold. 

 

Univariate One-way ANOVA is performed using Metaboanalyst Software where 

significant m/z features were found based on the selected p-value cut off 0.05. Metabolite 

putative identification of the oil palm rachis is determined by using METLIN database search 

functions. In addition to more than 1 million metabolites and other small molecules in the 

database, METLIN has incorporated tools to automate the identification process of known 

and unknown molecules by use of experimental MS/MS data. For example, once the m/z of 

a feature of interest is defined, the Simple Search menu allows users to perform an exact mass 

search and thus obtain putative molecules within a user-defined mass tolerance window. This 

search menu also offers the possibility to take into consideration different adducts of the 

molecule that could match the selected m/z. 

 

Normalized m/z features from previous analysis are used for multivariate data analysis. 

The PCA and PLS-DA was performed with the SIMCA-P+ Software (v. 12.0, Umetrics, 

Umea, Sweden) using scaling based on Pareto to enhance slow abundant peaks without 

significant amplification of noise. The analysis conducted is based on the first two 
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components, will reveal the cluster distribution of metabolites detected to present in between 

groups. 

 

3.5.2 Multivariate Analysis: PCA and PLSDA 

In SIMCA-P+ m/z and retention time are selected as primary and secondary variable IDs 

respectively in order to carry out multivariate analysis. PCA is unsupervised multivariate 

analysis where the modelling does not involve any user intervention and is based only on the 

explanatory variables leaving any responses optional for later stages of data analysis. PLS-

DA on the other hand is a supervised multivariate analysis where the user can predefine the 

groups within the samples in order to see how the underlying variables affect the separation 

between two groups (Trivedi & Iles, 2012). 

 

3.5.3 Permutations Plot for PLS-DA Model 

The Permutations Plot helps to assess the risk that the current PLS or PLS-DA model is 

spurious. The idea of this validation is to compare the goodness of fit (R2 and Q2) of the 

original model with the goodness of fit of several models based on data where the order of 

the Y-observations has been randomly permuted, while the X-matrix has been kept intact. R2 

is the percent of variation of the training set-X with PCA - explained by the model. It is a 

measure of fit, i.e. how well the model fits the data. Q2 is the percent of variation of the 

training set - X with PCA - predicted by the model according to cross validation. Q2 indicates 

how well the model predicts new data. A large Q2 (Q2 > 0.5) indicates good predictivity. 

 

The plot shows, for a selected Y-variable, on the vertical axis the values of R2 and Q2 for 

the original model (far to the right) and of the Y-permuted models further to the left. The 

horizontal axis shows the correlation between the permuted Y-vectors and the original Y-

vector for the selected Y. The original Y has the correlation 1.0 with itself, defining the high 

point on the horizontal axis. 
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The criteria for validity are: 

i) All blue Q2-values to the left are lower than the original points to the right. 

or 

ii) The blue regression line of the Q2-points intersects the vertical axis (on the left) 

at, or below zero. 
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Figure 3.5: General method workflow of this research. This figure summarizes the steps 
used in this research. 
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CHAPTER 4: RESULTS 

4.1 Soil Physico-chemical Properties 

For analyzing the physico-chemical properties of Ultisol and Oxisol soil, four parameters 

were tested which are soil pH, TC, EC and texture. Soil pH, EC and TC data sets were 

analyzed using U-Mann Whitney since the sample size was small, n=9, and not normally 

distributed. The statistical data analyses were performed using SPSS version 21.0 (Spss, 

2012) in between three parameters of: 1) Oxisol soil where control and infected oil palm were 

grown, 2) Ultisol soil where control and infected oil palm were grown and 3) Ultisol and 

Oxisol soil where infected oil palm were grown. The third parameter was used in order to 

standardize the physico-chemical properties of soil as both soil orders were collected from 

Ganoderma-infected oil palm. A significant value was set at α=0.05 and based on the 

findings, there is a significant difference in soil pH (p=0.017) and TC (0.001) between Ultisol 

and Oxisol soil while there is no significant difference in soil EC (p=0.691) between the soil 

orders. The results were tabulated in Table 4.1. For soil texture analysis, a chi-square test of 

independence revealed a significant association (p=0.000) between soil order and texture. 

Ultisol soil samples were classified as sandy clay while Oxisol soil samples were classified 

as clay. The soil particle size analysis between the groups was tabulated as in Table 4.2. 
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Table 4.1: U-Mann Whitney test on soil pH, EC and TC. 

Parameter Soil Order/Group Soil Properties Mean Median p-value 

1 Oxisol soil 

Control 
pH 

4.28 4.27 
0.965 

Infected 4.26 4.23 

Control 
EC 

130.67 123.00 
0.171 

Infected 152.00 135.00 

Control 
TC 

1.19 1.18 
0.965 

Infected 1.23 1.11 

2 Ultisol soil 

Control 
pH 

4.41 4.37 
0.401 

Infected 4.45 4.48 

Control 
EC 

167.89 168.00 
0.145 

Infected 146.67 143.00 

Control 
TC 

0.66 0.54 
0.895 

Infected 0.58 0.55 

3 Infected 

Oxisol soil 
pH 

4.26 4.23 
0.017 

Ultisol soil 4.45 4.48 

Oxisol soil 
EC 

152.00 135.00 
0.691 

Ultisol soil 146.67 143.00 

Oxisol soil 
TC 

1.23 1.11 
0.001 

Ultisol soil 0.58 0.55 
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Table 4.2: Chi-square Test of Independence on soil texture. 

Texture analysis 

Control Infected 

Oxisol soil Ultisol soil Oxisol soil Ultisol soil 

Soil depth (cm) Soil depth (cm) Soil depth (cm) Soil depth (cm) 

 0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45 

Rep 1 

%Sand 7.15 5.60 4.89 38.81 36.74 39.40 24.48 21.87 16.49 48.87 48.30 47.99 

%Clay 75.15 85.00 86.70 47.95 51.15 48.48 54.53 57.93 65.80 36.90 43.40 40.92 

%Silt 17.70 9.40 8.41 13.24 12.11 12.13 21.00 20.21 17.71 14.23 8.30 11.08 

Total 100.00 100.00 100.00 100.00 100.00 100.01 100.01 100.01 100.00 100.00 100.00 99.99 

Texture Clay Clay Clay Clay Clay Clay Clay Clay Clay Sandy Clay Sandy Clay Sandy Clay 

Rep 2 

%Sand 7.52 6.68 6.15 42.48 33.23 35.45 5.51 3.74 3.71 48.08 46.78 47.81 

%Clay 79.02 81.88 83.07 43.30 54.40 52.23 77.35 81.90 81.60 40.80 41.28 41.25 

%Silt 13.45 11.45 10.78 14.22 12.37 12.33 17.14 14.36 14.69 11.12 11.94 10.94 

Total 99.99 100.01 100.00 100.00 100.00 100.01 100.00 100.00 100.00 100.00 100.00 100.00 

Texture Clay Clay Clay Clay Clay Clay Clay Clay Clay Sandy Clay Sandy Clay Sandy Clay 

Rep 3 

%Sand 5.56 4.83 4.76 38.10 37.11 37.44 4.18 3.94 3.79 50.21 51.36 47.51 

%Clay 81.77 83.70 83.90 48.75 51.30 50.37 76.68 78.65 74.92 37.25 37.03 39.68 

%Silt 12.67 11.47 11.34 13.15 11.59 12.19 19.15 17.41 21.28 12.54 11.62 12.81 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.01 100.00 99.99 100.00 100.01 100.00 

Texture Clay Clay Clay Clay Clay Clay Clay Clay Clay Sandy Clay Sandy Clay Sandy Clay 
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4.2 Extraction Method 

The three established literature reviews describing plant metabolomics protocols were 

chosen because the metabolite profiling of plant samples from all protocols revealed a wide 

range of plants sugars and phenolics such as hydrocinnamic acid derivatives, flavon-3-ols, 

proanthocyanidins, flavonols, sedoheptulose, procyanidin B1, pinocembrin malonyl hexoside 

and many other identified and unidentified secondary metabolites. From all protocols, 

different solvents combination and technical steps have resulted in a different number of 

metabolites detected by LC-TOF-MS. Thus, it is important to choose the right solvents 

combination when targeting certain groups of plant secondary metabolites. Table 4.3 

summarized the number of base peaks of biological samples runs in LC-TOF-MS. The base 

peak chromatogram can be found from Appendix A. 

 

Table 4.3: Number of base peaks from three extraction methods. 

Extraction 

method 
1 2 3 

Number of base 

peaks 

Control Infected Control Infected Control Infected 

138 144 416 458 541 572 

 

 

4.3 Overview on PCA and PLS-DA Models 

The PCA score plot of the two first PCs of the metabolites datasets provides a map of how 

the samples relate to each other. In the t/t, score plot (Figure 4.1) the four categories of 

biological samples are not well separated. The model shows that the samples of healthy oil 

palm rachis from both Ultisol and Oxisol soil cluster in groups near the origin. Group contains 

samples of Ganoderma-infected oil palm rachis from Ultisol soil cluster in the upper right-

hand quadrant while group contains samples from Oxisol soil cluster in the lower left-hand 

quadrant (except for IU3).  
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Figure 4.2 and 4.3 show the t/t, score plot and loading plots of the PLS-DA model. The 

score plot is a summary of the relationships among the observations (biological samples) and 

the loading plot a similar summary of the variables (plant metabolites). The loading plot is a 

means to interpret the patterns seen in the score plot. The two plots are complementary and 

superimposable, and a direction in one plot corresponds to the same direction in the other 

plot. On the other hand, to validate the PLS-DA model, the results of the permutation tests 

(after 200 permutations) of the two-component model are plotted in Figure 4.4. 

 

 

Figure 4.1: PCA score plot of the two first PCs of the biological sample datasets of control 
Ultisol (CU), infected Ultisol (IU), control Oxisol (CO) and infected Oxisol (IO). Univ
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Figure 4.2: PLS-DA score plot containing biological replicates of control Ultisol (CU), 
infected Ultisol (IU), control Oxisol (CO) and infected Oxisol (IO). The four classes of 
biological samples are clearly discriminated. 
 

 

Figure 4.3: PLS-DA loading plot corresponds to the score plot of the PLS-DA model. 
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Figure 4.4: Permutation test to validate PLS-DA model. 

 

4.4 Profiling Potential Metabolites 

Prior to ANOVA test, list of VIP values had been identified. Figure 4.5 shows the VIP 

values more than 2.00. The sum of squares of all VIP's is equal to the number of terms in the 

model. Hence, the average VIP is equal to 1. Larger VIP-values indicate "important" X-

variables, and lower values indicate "unimportant" X-variables. The VIP plot is sorted from 

high to low, and shows confidence intervals for the VIP values, normally at the 95% level. 

Among all potential biomarker metabolites, those with VIP more than 2.00 and p-value of 

ANOVA less than 0.05 are shown in Table 4.4. The post-hoc Sig. Comparison column shows 

the comparisons between different levels that are significant given the p-value threshold. 

From the potential biomarkers, 12 has been putatively identified using metlin and their 

general informations were tabulated as in Table 4.5. 
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Figure 4.5: VIP values more than 2.00 identified from ANOVA test.
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Table 4.4: List of potential biomarker metabolites. 

No. Peaks (mz/rt) f.value p.value -log10(p) FDR Tukey's HSD 

1 0.27min  634.873m/z 5.9394 0.019664 1.7063 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

2 1.25min  250.937m/z 6.194 0.017583 1.7549 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

3 1.62min  185.006m/z 4.6337 0.036827 1.4338 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

4 1.69min  212.102m/z 4.4051 0.041542 1.3815 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

5 1.73min  129.066m/z 7.6414 0.009812 2.0082 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

6 1.75min  148.061m/z 26.494 0.000166 3.7807 0.086076 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

7 1.78min  132.066m/z 33.361 7.16E-05 4.1448 0.045865 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

8 1.78min  295.111m/z 7.4893 0.010393 1.9833 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

9 1.80min  184.072m/z 8.9966 0.006077 2.2163 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

10 1.85min  343.121m/z 24.355 0.000224 3.6498 0.086076 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

11 1.95min  472.202m/z 5.5489 0.023489 1.6291 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

12 1.96min  130.086m/z 12.791 0.002024 2.6939 0.46265 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

13 14.56min  156.144m/z 8.2236 0.007931 2.1007 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

14 17.41min  153.138m/z 5.2277 0.027353 1.563 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

15 2.47min  146.044m/z 19.38 0.000501 3.3005 0.16024 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

16 2.56min  321.960m/z 4.74 0.034863 1.4576 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 

17 8.35min  579.147m/z 4.7313 0.035018 1.4557 0.65139 2-1; 3-1; 4-1; 3-2; 4-2; 4-3 
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Table 4.5: List of putatively identified metabolites. 

No. m/z Exact 
mass 

Name Formula Structure 

1 250.937 249.9355 2-(4'-Chlorophenyl)-
3,3-dichloropropenoate 

C9H5Cl3O2 

 
2 185.006 184.0008 2-Pyrone-4,6-

dicarboxylate 
C7H4O6 

 
 185.006 184.0008 Chelidonic acid C7H4O6 

 
3 212.102 211.0957 Zalcitabine 

 
C9H13N3O3 

 
 212.102 211.0997 Mebenil 

 
C14H13NO 

 
 129.066 128.0586 4-Amino-4-

cyanobutanoic acid 
 

C5H8N2O2 

 
 129.066 128.0586 2-Amino-4-

cyanobutanoic acid 
 

C5H8N2O2 

 
5 148.061 147.0532 L-Glutamate C5H9NO4 

 
 148.061 147.0532 Glutamate C5H9NO4 
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Table 4.5, continued. 

 148.061 147.0532 O-Acetyl-L-serine 
 

C5H9NO4 

 
6 132.066 131.0582 5-Aminolevulinate 

 
C5H9NO3 

 
 132.066 131.0582 L-Allohydroxyproline 

 
C5H9NO3 

 
      
 132.066 131.0582 N-Acetyl-beta-alanine 

 
C5H9NO3 

 
7 295.111 294.1063 N-Glycosyl-L-

asparagine 
C10H18N2O8 

 
 295.111 294.1103 Tutin 

 
C15H18O6 

 
 295.111 294.0951 Tuliposide B C11H18O9 

 
 184.072 184.0739 Choline phosphate 

 
 
 

C5H15NO4P  

 184.072 183.0696 p-Fluorophenylalanine 
 

C9H10FNO2 
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Table 4.5, continued. 

9 343.121 342.1162 Sucrose 
 

C12H22O11 

 
 343.121 342.1162 Cellobiose C12H22O11 

 
 343.121 342.1162 Maltose 

 
C12H22O11 

 
10 130.086 129.079 L-Pipecolate C6H11NO2 

 
 130.086 129.079 DL-Pipecolate C6H11NO2 

 
 130.086 129.079 Cycloleucine C6H11NO2 

 
11 146.044 145.0375 2-Oxoglutaramate 

 
 
 
 

C5H7NO4  

 146.044 145.0375 4-Oxoglutaramate C5H7NO4 

 
12 579.147 546.1526 Procyanidin B3 C30H26O10 
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Table 4.5, continued. 

 579.147 578.1424 Procyanidin B1 C30H26O12 

 
 579.147 578.1424 Procyanidin B4 C30H26O12 
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CHAPTER 5: DISCUSSION 

5.1 Soil Physico-chemical Properties 

This research carried out revealed that the physicochemical properties of soil such as soil 

TC, texture and pH between Ultisol and Oxisol soil were significantly different. The results 

suggested that these soil properties might affect the distribution of metabolites between the 

different types of soil orders. Soils affect plant activities by supplying organic matter and play 

a vital role in weathering rocks and minerals. Many plant species have a distinct ecological 

amplitude that shows restriction to specific soil types. In the numerous interactions between 

plants and soil, microorganisms also play a key role (Lambers et al., 2009). The abundance 

of microorganisms present in the soil is critical for decomposing organic residues and 

recycling soil nutrients (Hoorman, 2010). Soil organisms decomposed the organic matter and 

make some of the nutrients available for plants and secreted glue-like substances that bound 

soil particles together which improved soil structure. The improved soil structure allowed the 

root growth and movement of air and water through the soil (Shen & Yang, 2008). 

 

This research reported that the TC content in Oxisol soil was significantly higher compared 

to Ultisol soil. The TC content is the sum of organic, inorganic and elemental carbon. Carbon 

is the main element present in soil organic matter which makes up about 58% by weight 

(Bianchi et al., 2008). As part of soil TC, organic carbon is a vital component of productive 

agriculture which measures carbon content within the soil organic matter (Schumacher, 

2002). The amount and type of organic matter in soils played a critical role in the extent to 

which a plant was affected by certain diseases. In some cases, organic matter may increase 

the incidence and severity of a disease caused by fungi as well as other microbes.  Previous 

research found that organic matter and nutrients in coffee industrial residue influenced 

Cassava Root Rot disease caused by soil-borne fungus Fusarium solani. The incorporation of 

organic matter in the soil generated the effect of volatile compounds that killed the fungus in 

the soil and resulted in the suppression of the soil-borne pathogens (Silva et al., 2017).  
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Another research found that the soil organic matter influenced the severity of hazelnut 

Cytospora Canker disease caused by a fungus known as Cytospora corylicola. The research 

also found a strong negative correlation between soil organic matter and the disease severity 

index (Lamichhane et al., 2014). 

 

This research also reported that soil pH in Oxisol soil was more acidic compared to Ultisol 

soil that was less acidic. Soils acidify naturally as they weathered over millions of years. The 

acidity of any soil varies according to the type of rock it came from, the length of time it had 

weathered and the local climate. As a result, some soils could be naturally very acidic while 

others were more alkaline (Fageria & Nascente, 2014). Soil pH was another important factor 

that influenced the development of soil-borne diseases. One of the examples was the Clubroot 

disease which is caused by the obligate parasite Plasmodiophora brassicae Woronin. This 

disease is one of the most serious soil-borne diseases of cruciferous crops and a major problem 

in highly acidic soil. The research has found that the resting spore germination of the P. 

brassicae was higher at low pH values than at high pH values (Rashid et al., 2013). Another 

research found that the pH of medium affecting the growth of G. boninense, the same 

pathogen studied in this research. Abundant mycelial growth was found to be in the pH range 

of 3.7 to 5 and as the acidity of the medium decreased its growth became poor (Nawawi & 

Ho, 1990). Recently, another research illustrated the impacts of soils with different chemical 

compositions where the soil pH was reported to be associated with about 50% of disease 

severity index and necrotic bole tissues due to Ganoderma sp. (Goh et al., 2017). These 

findings were on par with this research that revealed the same result where both soil orders 

were found to be acidic. This factor could be one of the reasons Ganoderma sp. infection to 

happen as the acidic pH environment is favorable for the soil-borne fungus to live. 

 

Even though there is no significant difference between soil EC of Ultisol and Oxisol soil, 

the mean value of soil EC in Oxisol soil was reported to be slightly higher compared to Ultisol 

soil. The distribution of water within soils played a crucial role in governing fungal 
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development and activity (Ritz & Young, 2004). The EC of soil was influenced by the 

concentration and composition of dissolved salts. Salts increased the ability of a solution to 

conduct an electric current, so a high EC value indicated a high salinity level (Slinger & 

Tenison, 2007). Little was known about how salinity stress in the plant might affect its 

susceptibility to pathogens. One previous research elucidated the effects of water salinity and 

Fusarium oxysporum f. sp. lycopersici on tomato growth. The research reported that the 

increase in salinity stress to the inoculated tomato plants enhanced the severity of Fusarium 

wilt disease and resulted in a significant increase in the leaf damage index recorded from 35 

to 62 days post-planting (Daami et al., 2009). 

 

5.2 Extraction Method 

The research found that the solvent combination of chloroform, methanol and water 

resulted in lower number of peaks detected compared to the solvent combination of methanol 

and water. Extraction is the first step to separate the desired natural products from the raw 

materials.  The selection of the solvent is crucial for solvent extraction. Many solvents, 

including methanol, ethanol, acetone, and water, have been used for extracting bioactive 

compounds from the plant material. Due to the variety of bioactive compounds contained in 

plant materials and their differing solubility properties in different solvents, the optimal 

solvent for extraction depends on the plant materials and the compounds that are to be isolated 

(Truong et al., 2019). Most study reported that methanol was the best solvent for extracting 

bioactive compounds from the plant since it resulted in the highest extraction yield and the 

highest content of phenolics, alkaloids, flavonoids, and terpenoids. This could be because the 

plant material contains high levels of polar compounds that are soluble in solvents with a high 

polarity such as water and methanol (Zhang et al., 2018).  

 

The polarity, from least polar to most polar, among the three solvents used in this research, 

is as follows: Chloroform < Methanol < Water. Mostly methanol is used for extracting various 

polar compounds, but a certain group of non-polar compounds is soluble in methanol if not 
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readily soluble. Therefore, methanol is commonly used for the extraction of bioactive 

compounds (Altemimi et al., 2017). Water is called the "universal solvent" because it can 

dissolve more substances than any other liquid. It is water's chemical composition and 

physical attributes that make it such an excellent solvent. Water molecules have a polar 

arrangement of oxygen (negative charge) and hydrogen (positive charge). This allows the 

water molecule to become attracted to many other different types of molecules (Sharp, 2001). 

 

The other parameter needed for extracting more secondary metabolites in plants is the 

additional step of homogenization method using ultrasonication bath. Ultrasonication bath 

facilitates the extraction process of metabolites from the plant by generating high shear forces 

and microbubbles that enhances surface erosion, fragmentation and mass transfer. This will 

result in high yield of extracted metabolites and fast rate of extraction (Awad et al., 2012). 

Some researchers have reported on the combination of aqueous methanol and ultrasonication 

bath for better metabolomic analysis in the plant sample which is on par with the findings of 

this study (Annegowda et al., 2012; Awad et al., 2012). 

 

5.3 Overview on PCA and PLS-DA Models 

Classification and discriminant analysis are an important area of multivariate data analysis. 

Multivariate data analysis methods can utilize the information in highly multicollinear data 

for exploring within-class similarity and between-class diversity. This is of relevance in the 

area of spectrometry and 'omics' data analysis such metabolomics where the number of 

variables can be very large and the correlation among them substantial. In PCA the scores 

plot shows correlations between observations. When PCA results in clustering of 

observations, it is sometimes worth trying to further resolve such groupings by means of PLS-

DA where a dummy matrix of three Y-variables expressing class identity of the biological 

samples was created. In PLS-DA, the number of model classes must not be too high. 

Experience shows that PLS-DA is useful with 2-4 classes, but when the number of classes 

exceeds four, discrimination results may become incomprehensible and difficult to overview. 
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Prior to the data analysis, the 12 biological samples were log-transformed in order to obtain 

a more normal distribution of the data. From Figure 4.1, the PCA modelling yielded a two-

component model with no outliers as all observations situated inside the ellipse. The first 

component explains 19% (Q2X = 0.19) of the variation and the second component 17% (R2X 

= 0.17). The PCA score plot shows groups thus it is advisable to understand the differences 

between the groups by doing a PLS-DA. PLS-DA was then performed, which gave a four-

component model with R2X[1] = 0.17 and R2X[2] = 0.15. The ellipse for each group 

represented Hotelling’s T2 95% confidence interval. In PLS-DA, score plots of the t/t-type 

are interesting because one wants to overview the class discriminating ability of a developed 

model. 

 

As shown by the Figure 4.2, the four classes of biological samples are clearly separated 

and displayed the relationships between all 12 variables at the same time. Variables 

contributing similar information are grouped: that is, they are correlated. CU2 and CU3 are 

examples of variables that are positively correlated. When the numerical value of one variable 

increase or decrease, the numerical value of the other variable tends to change in the same 

way. The variables IU1 and IO1 are inversely correlated, meaning that when IU1 increases, 

IO1 decreases, and vice versa. These variables are negatively or inversely correlated as they 

are positioned on opposite sides of the plot origin, in diagonally opposed quadrants. 

Furthermore, the distance to the origin also conveys information. The further away from the 

plot origin a variable lies, the stronger impact that variable has on the model. This means, for 

instance, that the variables CU1 separate the groups from the others. Moreover, the model 

interpretation suggests that biological samples like CO2 and IO2 share some metabolites. 

Biological samples close to each other have similar properties whereas those far from each 

other are dissimilar concerning metabolites distribution profiles. Biological samples of IU1, 

IU2 and IU3 are located together in the lower right-hand corner, this representing a group of 

to the center (origin) of the plane, which indicates that they have average properties. 
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From Figure 4.3, the R2 value is 0.899 while the Q2 value is -0.0925. This model fits the 

criteria for validity, in which all blue Q2-values to the left are lower than the original points 

to the right and the blue regression line of the Q2-points intersects the vertical axis at below 

zero. The R2-values always show some degree of optimism. All green R2-values to the left 

are lower than the original point to the right, this is also an indication for the validity of the 

original model. The large R2 (close to 1) is a necessary condition for a good model, but it is 

not enough. Poor models may occur (models that cannot predict) even with a large R2. A poor 

R2 arise when there is poor reproducibility (much noise) in the training data set, meanwhile 

a poor Q2 arise when the data have much noise, or when the model is dominated by a few 

scattered outliers. 

 

5.4 Profiling Potential Metabolites 

Biomarker discovery is the critical step for metabolomics studies. Selection of the 

informative metabolites is of great importance for metabolic pathways analysis and biological 

interpretation. In PLS-DA model, potential biomarker candidates were selected based on 

values of VIP of all variables. The VIP value of each variable in the model was calculated to 

indicate the most appropriate combination of metabolites which can produce an effective 

prediction power and indirectly reflects the correlation of metabolites with plant disease. A 

higher VIP value represents a stronger contribution to classification between groups. From 

all 17 significant m/z values (representing metabolites present in biological samples grown in 

Ultisol soil), six m/z values were identified to increase significantly in metabolite peak 

intensity. Their respective m/z values are 212.102, 148.061, 184.072, 472.202, 130.086 and 

321.960. As for biological samples from Oxisol soil, 11 m/z values increased significantly, 

namely 185.006, 159.066, 295.111, 184.072, 343.121, 472.202, 130.086, 153.138, 146.044, 

321.960 and 579.147. The rest m/z values reported decreasing significantly in metabolites 

intensity (refer to appendix C for the increase and decrease of the peak intensity of putatively 

identified metabolites where the bar plots on the left show the original values (mean +/-sd) 

and the box and whisker plots on the right summarize the normalized values). Two m/z values 
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of biological samples from Oxisol soil (184.072 and 146.0440) were recorded to increase 

significantly in Ganoderma-infected oil palm rachis and at the same time absent in its healthy 

samples. The plant metabolites were then putatively identified as choline phosphate or p-

fluorophenylalanine and 2-oxoglutaramate or 4-oxoglutaramate. Another interesting finding 

includes, the m/z values of biological samples from Oxisol soil increased significantly and at 

the same time absent in biological samples from Ultisol soil, namely 129.066, 132.066 and 

146.044. This indicates that there are metabolites responsible for the stress mechanism present 

in plants grown on the different types of soil orders. The three plant metabolites were 

putatively identified as 4-Amino-4-cyanobutanoic acid or 2-Amino-4-cyanobutanoic acid, 5-

Aminolevulinate or L-Allohydroxyproline or N-Acetyl-beta-alanine and 2-oxoglutaramate or 

4-oxoglutaramate. 

 

5-Aminolevulinic acid (ALA) is a common precursor of tetrapyrroles as well as a crucial 

growth regulator in higher plants. ALA has been proven to be effective in improving 

photosynthesis and alleviating the adverse effects of various stresses in higher plants. ALA 

also increased plant tolerance to low-temperature stress, but the physiological and 

biochemical mechanisms that underlie its effects are not fully understood. A research 

suggested that the up-regulation of antioxidant enzyme activities, nutrient contents, and 

hormone accumulation with the application of ALA increases tolerance to low-temperature 

stress. Chlorophyll biosynthesis pathway enhanced by exogenous ALA also improved the 

tolerance of plant under salinity (Wu et al., 2018). 

 

Although underappreciated, the non-proteinogenic amino acid β-alanine has important 

roles in plant physiology and metabolism. This compound acts as a defense compound that 

enables plants to withstand various stresses and as a precursor to the other compounds which 

are involved in a variety of functions. Furthermore, the amino acid is converted into β-alanine 

betaine, which has additional protective functions such as salt tolerance and homoglutathione 

that are critical for nitrogen fixation (Parthasarathy et al., 2019). 
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Plant glutamate metabolism (GM) plays a pivotal role in amino acid metabolism and 

orchestrates crucial metabolic functions, with key roles in plant defense against pathogens. 

These functions concern three major areas: nitrogen transportation via the glutamine 

synthetase and glutamine-oxoglutarate aminotransferase cycle, cellular redox regulation and 

tricarboxylic acid cycle-dependent energy reprogramming. During interactions with 

pathogens, the host GM is markedly altered leading to either a metabolic state where cell 

viability is maintained or to an opposite metabolic state where the process of cell death is 

facilitated. Collectively, alterations in the host GM in response to different pathogenic 

scenarios appear to function in two opposing ways, either backing the ongoing defense 

strategy to ultimately shape an efficient resistance response or being exploited by the 

pathogen to promote and facilitate infection (Seifi et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



  

60 
   

CHAPTER 6: CONCLUSIONS 

6.1 Conclusions 

Soil physicochemical properties analyzed using U-Mann Whitney revealed that the 

physico-chemical properties of Ultisol and Oxisol soil are different at pH and TC level but 

not for EC level. A chi-square test of independence revealed that there is significant 

association between soil order and texture where the Ultisol soil was classified into sandy 

clay while Oxisol soil was classified into clay. For biological sample analysis, the initial PCA 

model revealed weak groupings among the four categories of biological samples. It was found 

that the CU1 reflected the level of cultural disturbance in the biological samples. Furthermore, 

it was concluded that there was a difference between two main groups of metabolite profiles 

between healthy and Ganoderma-infected oil palm tree rachis samples. In the last modelling 

stage, PLS-DA was attempted. A strongly significant PLS model was acquired, indicating 

that the 12 biological variables indeed contained class separating information. The separation 

of the four classes was slightly superior compared with the previous PCA modelling attempts. 

This model also fits the criteria for validity in permutation test. All blue Q2-values to the left 

are lower than the original points to the right and the blue regression line of the Q2-points 

intersects the vertical axis at below zero. From the model, 17 potential biomarker panels with 

VIP more than 2.00 and p-value of ANOVA less than 0.05 were identified. Two m/z value of 

biological samples from Oxisol soil (184.072 and 146.0440) were recorded to increase 

significantly in Ganoderma-infected oil palm rachis and at the same time absent in its healthy 

samples. The plant metabolites were putatively identified as choline phosphate or p-

fluorophenylalanine and 2-oxoglutaramate or 4-oxoglutaramate. Another interesting finding 

includes, three m/z value of biological samples from Oxisol soils increased significantly and 

at the same time absent in biological samples from Ultisol soil (129.066, 132.066 and 

146.044). The three plant metabolites were putatively identified as 4-Amino-4-cyanobutanoic 

acid or 2-Amino-4-cyanobutanoic acid, 5-Aminolevulinate or L-Allohydroxyproline or N-

Acetyl-beta-alanine and 2-oxoglutaramate or 4-oxoglutaramate. This indicates that there are 
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metabolites responsible for the stress mechanism present in plants grown on the different 

types of soil orders. 

 

6.2 Suggestions for Improvement 

One of the major bottle-neck in LC-MS based metabolomics investigations is metabolite 

identification. Future work must focus on metabolite identification using a suitable approach 

such as computer-assisted metabolite identification, ion annotation using peak intensity 

correlation across LC-MS runs in addition to correlations between extracted ion 

chromatograms and spectral libraries that provide high-resolution ESI-MS/MS spectra that 

are useful for spectral matching. To understand how plants are affected by a specific biotic or 

abiotic stress or combinations thereof, the choice of appropriate growth conditions requires 

more careful attention. It is suggested that the research is repeated using biological samples 

grown under controlled environment conditions in greenhouses. For scientists who study a 

given plant species under optimal growth conditions, a simple preliminary experiment 

exploring various light, temperature and nutrient conditions will provide proper 

environmental conditions for further experimentation. Another important issue is the nature 

and an appropriate number of biological, technical and analytical replicates. Biological 

replication is significantly more important than technical replication and it is suggested to 

involve more replicates to ensure the robustness of the metabolite data obtained. 
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