

| Acknowledgement          |                                                   | ii       |
|--------------------------|---------------------------------------------------|----------|
| Abstro                   |                                                   | iii      |
| Chapter One Introduction |                                                   |          |
| 1.1                      | Background of Project                             | 1        |
| 1.2                      | Short Wavelength Radiation                        | 2        |
| 1.3                      | Sources of VUV and XUV Radiation                  | 3        |
| 1.4                      | Applications of Short Wavelength Lasers           | 4        |
| 1.5                      | Generation of Short Wavelength Radiation          | 6        |
| 1.6                      | Objective of Research                             | 8        |
| 1.7                      | Content of Thesis                                 | 8        |
| Chan                     | ter Two Short Wavelength Laser                    | -        |
| 2.1                      | Criteria for VUV & XUV Laser                      | 10       |
| 2.2                      | Laser Produced Plasma                             | 10       |
| 2.3                      | Electrical Discharge Excitation                   | 12       |
| 2.4                      | Hydrogen Laser                                    | 14       |
| 2.5                      | Requirements Towards Shorter Wavelength           | 17       |
| 2.6                      | Capillary Discharge                               | 18       |
| 2.7                      | Scalability Limits                                | 19       |
| 2.8                      | Proposed Works                                    | 20       |
|                          | <u>.</u>                                          | 20       |
| 3.1                      | ter Three Transverse Arc Array Laser Introduction | 22       |
| 3.2                      | Design Consideration                              | 22<br>23 |
| 3.3                      | Laser System                                      |          |
| 3.4                      | High Voltage Power Supply                         | 24<br>25 |
| 3.5                      | Excitation Circuitry                              | 26       |
| 3.6                      | Laser Channel                                     |          |
| 3.7                      | Pulse Triggering System                           | 30       |
| 3.8                      | Spark Gap                                         | 32<br>33 |
| 3.9                      | Gas Handling System                               | 35       |
|                          |                                                   | 33       |
| 4.1                      | ter Four Experimental Results                     |          |
| 4.1                      | Experimental Approach                             | 36       |
| 4.2                      | Diagnostic Methods                                | 37       |
| 4.4                      | Experimental Results: 2 nF capacitors             | 38       |
| 4.4                      | Experimental Results: 5 nF capacitors             | 45       |
|                          | Experimental Results: Multi Pin Spark Gap         | 50       |
|                          | ter Five Discussions                              |          |
| 5.1                      | Lasing Action in Nitrogen                         | 52       |
| 5.2                      | Variation of Laser Output Power                   | 53       |
| 5.3                      | Enhancement of Charge Transfer                    | 55       |
| 5.4                      | Peaking Capacitor's Discharge Waveform            | 56       |
| 5.5                      | Discharge Current                                 | 59       |
| 5.6                      | Laser Output Pulse                                | 61       |
| 5.7                      | The Role of Spark Gap                             | 61       |
| Chapter Six Conclusion   |                                                   |          |
| 6.1                      | Demonstration of New Pumping Method               | 63       |
| 6.2                      | Suggestions for Future Studies                    | 65       |