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IDENTIFICATION OF ALZHEIMER DISEASE-ASSOCIATED PATHWAYS 

AND NETWORK USING TRANSCRIPTOME ANALYSIS 

ABSTRACT 

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most 

common form of dementia. The disease mainly affects people aged 65 and older. The 

mechanisms underlying AD aetiology is still not clearly understood due to its complex 

nature. In this study, we integratively reanalyzed the publicly available transcriptome data 

sets of AD studies using human post-mortem brains. By using this method, the capability 

of detecting weak signals could be improved and novel biological insights which could 

not be obtained from the individual studies could be gained. In order to get reliable 

biological inference from the data, we compared and evaluated existing bioinformatic 

methods in transcriptomic analysis and selected the superior ones to be included in our 

data analysis pipeline. Since complex diseases like AD can be better understood from the 

perspective of network biology than at the individual gene level, we used NetDecoder, a 

state-of-the-art network-based transcriptomic analysis algorithm to capture genes that are 

associated with the differentially expressed genes in a network context. The networks 

established based on protein-protein interactions included key genes such as UBC, ABL1, 

YWHAZ, APP, TP53 and CTNNB1, which have also been reported by other AD studies. 

The networks potentially provide mechanistic insights to better understand how these 

genes interact and drive AD pathogenesis. Thus, the present study provides a workflow 

for mining promising target genes for further confirmatory experiments which can lead 

to more effective treatment of AD or better diagnostics for AD. 

Keywords: Alzheimer's disease, integrative analysis, microarray, RNA-seq 
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PENGENALPASTIAN LALUAN DAN RANGKAIAN BERKAITAN DENGAN 

PENYAKIT ALZHEIMER MENGGUNAKAN ANALISIS TRANSKRIPTOM 

ABSTRAK 

Penyakit Alzheimer (AD) suatu penyakit kemerosotan saraf yang progresif dan sejenis 

demensia yang biasa. Penyakit ini khasnya memberi kesan kepada orang yang berumur 

65 ke atas. Mekanisme asas etiologi AD tidak difahami jelas kerana AD sejenis penyakit 

kompleks. Dalam kajian ini, kami menganalisa data transkriptom awam daripada kajian-

kajian AD yang menggunakan tisu bedah siasat otak manusia. Dengan ini, keupayaan 

untuk mengesan isyarat yang lemah ditambahbaik dan pandangan biologi baru yang tidak 

dapat diperolehi daripada kajian individu terhasil. Bagi mendapatkan inferens biologi 

yang dipercayai daripada data, kita membanding dan menilai kaedah-kaedah 

bioinformatik sedia ada dalam analisis transkriptom dan memilih kaedah yang unggul 

untuk dimasukkan dalam perancangan analisis data. Oleh sebab penyakit kompleks 

seperti AD lebih senang difahami dari perspektif biologi rangkaian berbanding pada 

peringkat gen individu, kami menggunakan NetDecoder, suatu algoritma rangkaian baru 

untuk mengesan gen yang berkait dengan gen terekspres terbeza dalam konteks 

rangkaian. Rangkaian yang dikenalpasti berdasarkan interaksi protein termasuk gen-gen 

utama seperti UBC, ABL1, YWHAZ, APP, TP53 dan CTNNB1, yang telah dilaporkan 

kajian-kajian AD terdahulu. Rangkaian-rangkaian ini memberi pandangan mekanistik 

terhadap cara gen-gen berinteraksi dan menyumbang kepada patogenesis AD. Dengan 

demikian, kajian ini menyediakan satu aliran kerja perlombongan gen-gen sasaran untuk 

eksperimen pengesahan selanjutnya yang mampu menjana rawatan AD yang lebih 

berkesan mahupun diagnosis AD yang lebih baik. 

Kata kunci: penyakit Alzheimer, analisis integratif, mikroarray, RNA-seq 
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CHAPTER 1: INTRODUCTION 

1.1 Transcriptome 

The transcriptome is the full range of transcripts (RNAs expressed from the genome) 

and their quantity in a particular cell or population of cells at a particular time. The 

percentage of the human genome that is transcribed into RNAs was estimated to be less 

than 5% (Frith et al., 2005). According to Vogel and Marcotte (2012), 

In general, in both bacteria and eukaryotes, the cellular concentrations of proteins 

correlate with the abundances of their corresponding mRNAs, but not strongly. 

They often show a squared Pearson correlation coefficient of ~0.40, which implies 

that ~40% of the variation in protein concentration can be explained by knowing 

mRNA abundances. Higher correlations have also been observed. To explain the 

remaining ~60% of the variation, some combination of post-transcriptional 

regulation and measurement noise needs to be invoked. (p. 228) 

Transcriptomics is the study of the transcriptome. Studying the transcriptome is an 

important part of understanding a cell's entire story or perturbed systems — connecting 

the gap between the genetic code and the functional proteins. According to Wang et al. 

(2009), 

The key aims of transcriptomics are: to catalogue all species of transcript, 

including mRNAs, non-coding RNAs and small RNAs; to determine the 

transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, 

splicing patterns and other post-transcriptional modifications; and to quantify the 

changing expression levels of each transcript during development and under 

different conditions. (p. 57) 
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1.2 Microarray and RNA-sequencing for transcriptomics 

During the past decades the development and widespread use of microarray 

technology have encouraged the study of the transcriptome. Recently, the application of 

next-generation sequencing (NGS) technology to sequence steady-state RNA in a sample, 

termed RNA-sequencing (RNA-seq), has emerged as a powerful alternative approach for 

transcriptomics (Oshlack et al., 2010; Wang et al., 2009). In contrast to microarray, 

expression levels of genes are based on direct counts of transcripts rather than probe 

intensities. 

Microarray has several limitations, such as high background levels caused by cross-

hybridization, bias introduced by the variation of probe binding efficiency and 

dependence on existing genome sequence for probe design (Wang et al., 2009). 

Moreover, microarray lacks sensitivity for transcripts with low and very high expression 

levels owing to background and saturation of signals respectively. Consequently, it has a 

limited dynamic range of expression levels. 

Unlike microarray technology, RNA-seq is sequencing-based approach that has very 

low background levels and large dynamic range of detection with no upper limit, thus it 

is more predictive of true expression levels (Wang et al., 2009). RNA-seq allows the 

entire transcriptome to be surveyed and therefore it is capable of discovering novel 

transcripts and isoforms, capturing alternative splicing comprehensively, distinguishing 

allelic expression and RNA editing (Oshlack et al., 2010; Wang et al., 2009). Besides 

that, RNA-seq also has lower technical variation and higher resolution on expression 

levels compared to microarray. 

Nevertheless, RNA-seq technology faces several challenges. For instance, specific 

sequencing protocols create biases in the outcome (Oshlack et al., 2010). Furthermore, 

nucleotide sequence bias, transcript length bias and GC content bias have been observed 
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in RNA-seq data (Rung & Brazma, 2013; Zheng et al., 2011). Besides that, the presence 

of splicing events, paralogous sequences or repetitive sequences make mapping reads or 

alignment more difficult (Oshlack et al., 2010; Wang et al., 2009). 

 

1.3 Preprocessing of data 

Before apparent patterns of variation in microarray or RNA-seq data can be attributed 

to biological variation, it is crucial to first eliminate unwanted non-biological variations 

that are present in raw data. Failure to do so would introduce errors and these errors are 

retained throughout the ensuing analyses, which can consequently affect the results and 

conclusions of a study. Thus, preprocessing of raw data is pivotal step in the analysis of 

microarray or RNA-seq data. 

 

1.3.1 Preprocessing of microarray data 

Typically, preprocessing of microarray data aims to handle background noise, 

processing effects, between array variation and summarization of probes (McCall & 

Almudevar, 2012). The preprocessing steps: image-processing and data normalization are 

used to remove systematic variation (Allison et al., 2006). Other potential preprocessing 

steps consist of data transformation, data filtering and, for two-colour arrays, background 

subtraction. A lot of methods have been developed for preprocessing of microarray data. 

For example, RMA (Irizarry et al., 2003) and fRMA (McCall et al., 2010) are 

preprocessing algorithms for high density oligonucleotide microarrays which involve 3 

steps: background correction, normalization and summarization. 
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1.3.2 Preprocessing of RNA-seq data 

Generally, the major steps in preprocessing of RNA-seq data include removal of 

technical sequences, quality analysis, de novo assembly of short reads (without reference) 

or mapping short reads to a reference genome and/or a transcriptome, feature counting 

and normalization of raw counts. Many methods or tools have been developed for 

preprocessing of RNA-seq data. For instances, Trimmamatic (Bolger et al., 2014) is a 

tool for removal of technical sequences and quality filtering; Trinity (Haas et al., 2013) 

is a platform for de novo transcript sequence reconstruction; TopHat (Trapnell et al., 

2009) and OSA (Hu et al., 2012) are read mapping algorithms, htseq-count (Anders et al., 

2015) is a feature counting tool; TMM (Robinson & Oshlack, 2010) is a normalization 

method. 

 

1.4 Differential expression analysis 

A differentially expressed gene (DEG) is a gene that shows statistically significant 

difference in mean expression level between two phenotype classes. This involves the 

application of statistical methodology such as test for equality of two means for each 

gene. There are two possible approaches to generate a list of candidate DEG. The 

conceptually and practically simplest one is the single-gene approach, where we treat 

each gene as being independent of one another, apply a statistical test on the equality of 

mean between the two phenotype classes, and then control for false discovery rates 

(Tusher et al., 2001). An estimate of the biological significance in the form of fold-

change, and also the p-value (for measuring statistical significance), is returned. Using 

information from p-value (sometimes, jointly with fold-change), a final list of selected 

gene candidates is produced. Alternatively, a method that takes advantage of prior 

knowledge about the associations of genes (gene sets) available in curated databases 

potentially returns candidates that are more biologically relevant. The most popular 
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implementation is the Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; 

Subramanian et al., 2005) for microarray data. The method is based on score that is a 

modification of the Kolmogorov-Smirnov statistic. Computationally it is more expensive 

because it needs to simulate the null distribution. Furthermore, GSEA has a strong focus 

on cancer-related gene sets, and therefore may not be suitable as a general-purpose 

method for differential expression analysis. For these reasons, we will focus on the single-

gene approach for differential expression analysis. 

In general, although naïve methods such as the t-test can be applied for microarray and 

RNA-seq data, superior tests based on specific models of gene expression (e.g. linear 

model for microarray data; negative binomial distribution of gene counts of RNA-seq 

data) can provide additional statistical power for detecting DEG, if the model 

approximates the underlying data distribution well, and the statistic is robust to deviations 

from model assumptions. 

Many methods have been proposed for differential expression analysis of 

transcriptome data. The examples of these methods for microarray data are linear models 

and empirical Bayes Methods (Smyth, 2004) implemented in the limma software package 

(Ritchie et al., 2015), Significance Analysis of Microarrays (SAM; Tusher et al., 2001), 

VarMixt (Delmar et al., 2005), whereas the examples for RNA-seq data are DESeq 

(Anders & Huber, 2010), DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010). 

While the p-value can be used to determine which genes pass the selection criteria as 

DEGs, a more balanced approach is to consider statistical significance jointly with 

biological significance, as estimated using the fold change. Such a joint filtering criteria 

was proposed by Li (2012). Specifically, let p denote the p-value of a statistical test, and 

let FC denote the fold change. According to the method of Xiao et al. (2014), a reciprocal 

function decision boundary for filtering DEGs using statistical and biological significance 
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can be obtained in the following way. Suppose we require p < 0.01 and FC ≥ 2 to call for 

up-regulated genes, and p < 0.01 and FC ≤ 1/2 to call for down-regulated genes. The 

product of –log10p > 2 and |log2FC| ≥ 1 yields the inequality –log10p > 2/|log2FC|. Thus, 

genes that fall in the region defined by –log10p > 2/log2FC are differentially up-regulated; 

those in the region of –log10p > −2/log2FC are differentially down-regulated. The union 

of the sets of differentially up and down-regulated genes constituted the set of DEGs. The 

p and FC cut offs for selection of DEGs can be different with p < 0.01 and FC ≥ 2. Thus, 

the final form of the decision boundary would be more general in the form of –log10p > 

c/|log2FC| + k, where c is a constant for controlling the stretching (c > 1) or shrinking (0 

< c < 1) of the reciprocal function, and k is a vertical translation. 

 

1.5 Integrative analysis 

With the exceptional growth of transcriptome data sets in public repositories, new 

possibilities lie in integrative analysis of multiple data sets to increase the statistical power 

of transcriptome analysis (Taminau et al., 2012). By using this method, the capability of 

detecting weak signals could be improved and novel biological insights which could not 

be obtained from the individual studies could be captured (Rung & Brazma, 2013). 

According to Jiang and Liu (2015), 

There are also studies integrating expression data sets from GEO to make new 

discoveries. For example, expression compendia integration identified the 

conditional activity of expression modules in cancer, expression outlier analysis 

predicted the frequent fusion of the TMPRSS2 and ETS transcription factor genes 

in prostate cancer and mutual information has been used to infer post-translational 

modulators of transcription factor activity. The current study by Fehrmann et al. 

represents a fresh angle for big data integration and novel discovery. (p. 103) 
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Meta-analysis and data merging are the two different strategies of integrative analysis 

(Lazar et al., 2013). Meta-analysis consists in analyzing each data set independently and 

the results or summary-level data such as p-values are then combined (Lazar et al., 2013; 

Rung & Brazma, 2013). In contrast, data merging involves merging different data sets 

into a bigger data set and the subsequent analysis being performed using the new 

integrated data set (Lazar et al., 2013). 

Meta-analysis is prone to high false-negative rates upon the statistical hypothesis test 

when data sets contain only a few samples but it is often a better option for better control 

of between-laboratory heterogeneity (Lazar et al., 2013; Rung & Brazma, 2013). The 

main advantage of data merging over meta-analysis is more robust inference can be made 

owing to the higher statistical relevance of the results. However, removing generic 

sources of unwanted variation is the main challenge for data merging. Batch effect is the 

main source that obscures meaningful biological information with non-biological 

perturbations. Methods that remove or adjust batch variation, which enable the merging 

of multiple microarray data sets into a bigger data set, have been developed. 

 

1.6 Network analysis 

Network biology refers to the network that characterizes biological system. Here we 

define the most basic network nomenclature with Figure 1.6.1. Undirected network 

(Figure 1.6.1 (a)) has edges that connect nodes without direction whereas directed 

network (Figure 1.6.1 (b)) has edges that connect nodes with direction. Optionally, nodes 

can be in different colour, shape or size to add more information with appropriate 

annotation. Similarly, edges can be in different colour or width to add more information 

with appropriate annotation. 
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Figure 1.6.1: Network nomenclature. (a) Undirected network and (b) directed network 
with nodes A, B, C, D and edges E, F, G. 

 

According to Barabási et al. (2011), 

Given the functional interdependencies between the molecular components in a 

human cell, a disease is rarely a consequence of an abnormality in a single gene, 

but reflects the perturbations of the complex intracellular and intercellular 

network that links tissue and organ systems. The emerging tools of network 

medicine offer a platform to explore systematically not only the molecular 

complexity of a particular disease, leading to the identification of disease modules 

and pathways, but also the molecular relationships among apparently distinct 

(patho)phenotypes. Advances in this direction are essential for identifying new 

disease genes, for uncovering the biological significance of disease-associated 

mutations identified by genome-wide association studies and full-genome 

sequencing, and for identifying drug targets and biomarkers for complex diseases. 

(p. 56) 

These advances thus may lead to potential therapeutic targets or better biomarkers with 

predictive and diagnostic values. 
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1.6.1 NetDecoder 

Recently, a network biology platform called NetDecoder (da Rocha et al., 2016) for 

finding a context-specific biological network from a protein-protein interaction (PPI) 

network, given the gene expression profiles and associated genes (such as DEGs), has 

been developed. Proof-of-concept of the utility of NetDecoder as a network analysis tool 

was shown in the form of its success in deriving meaningful biological results from three 

case studies involving microarray data from breast cancer, dyslipidemia, and Alzheimer’s 

disease (AD). There, NetDecoder successfully recovered subnetworks whose gene 

members had functions well-known to be associated with the disease phenotype. 

Here, we briefly look at core computational biology ideas that underly NetDecoder. 

NetDecoder uses the iRefIndex version 14.0 to construct a PPI network containing 15 608 

proteins and 180 044 interactions. Starting from a set of source genes (usually DEG) and 

transcriptome data (microarray or RNA-seq) defined by the user, NetDecoder runs a 

process-guided flow algorithm to identify interaction paths that connect the source genes 

to the target genes (transcriptional regulators as the default). In doing so, it finds a 

subnetwork consisting of the source genes, target genes, and importantly, intermediary 

genes that modulate context-specific information flows between source and target genes. 

These intermediary genes are usually not differentially expressed, but function as 

important determinants of information flow paths that result in particular biological 

phenotypes (Jacunski & Tatonetti, 2013). The contextual nature of the subnetwork thus 

discovered implies that genes in disease-specific subnetwork would be enriched in 

disease-related signaling pathways, thus highly interpretable from a biological 

perspective. 

A schematic overview of NetDecoder workflow is given in Figure 1.6.1.1. Given the 

gene expression profile consisting of two phenotypes (such as control and disease) 
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(Figure 1.6.1.1 a), gene-wise Pearson correlation coefficients (PCCs) are calculated 

across samples of the same phenotype for all possible pairs of genes (Figure 1.6.1.1 b and 

c). In the PPI network, the absolute value of the PCC is used to set the edge weight of 

each interaction and the negative of its logarithm (-logPCC) is used to set the cost of the 

edge. Red colour of edges represents positive PCC and blue colour of edges represents 

negative PCC. Thus, an edge-weighted PPI network is obtained for each of the two classes 

(Figure 1.6.1.1 d). Then, NetDecoder uses the process-guided flow algorithm to find paths 

through the PPI network to obtain a sparse subnetwork beginning from source genes to 

target genes with minimum cost (minimum-cost flow optimization) (Figure 1.6.1.1 e). 

The two subnetworks specific to the control and the disease phenotype classes are then 

compared. NetDecoder uses a novel scoring scheme to identify key players (Figure 

1.6.1.1 f) that contribute to a disease phenotype: (i) Network routers are “intermediary 

proteins that have influence over many genes and show high flow differences between 

two phenotypes” (da Rocha et al., 2016, p. 4). (ii) Key targets are “the target/sink nodes 

(genes related to transcriptional regulation) with high flow differences” (da Rocha et al., 

2016, p. 4). (iii) High impact genes are “genes that experience a significant change in 

regulation between control and disease conditions including flow differences, 

establishment of new inflows and change of directionality of gene expression correlations 

(i.e. from positive correlation to negative correlation or vice versa) between two 

phenotypes” (da Rocha et al., 2016, p. 4). NetDecoder “developed a novel scoring 

scheme, termed impact score (IP), to rank and assess genes based on their importance in 

mediating differences in information flow profiles between two given phenotypes” and 

“define genes with high IP scores as high impact genes” (da Rocha et al., 2016, p. 4). In 

the disease-specific subnetwork, NetDecoder further selects “paths enriched with at least 

two types of key genes and termed these paths as prioritized subnetworks” (da Rocha et 

al., 2016, p. 9) (Figure 1.6.1.1 g). 

Univ
ers

ity
 of

 M
ala

ya



 

 

11

 

Figure 1.6.1.1: Schematic overview of NetDecoder workflow. (a) Given a gene expression data consisting of control and disease biological replicates, 
(b) PCCs are calculated for all possible pairs of genes across samples of the same phenotype (control and disease) and (c) thus a pairwise PCC matrix is 
obtained for each of the two phenotypes (control and disease). (d) Integrating the PPI network with the absolute values of the PCC (edge weight) and the 
PCC directionality (red edge for positive PCC and blue edge for negative PCC) produces edge-weighted PPI network for each of the two phenotypes 
(control and disease). (e) Source genes such as DEGs or any other gene list of interest is required as input to NetDecoder. By default, target genes (sinks) 
are genes involved in transcriptional regulation. Target genes can also be defined by the user based on study goal. The process-guided flow algorithm is 
used to select paths, which start at source genes (diamond shape of nodes), passing through intermediary genes (circle shape of nodes) and end at target 
genes (square shape of nodes), along the edge-weighted PPI networks. In the resulting subnetworks, edge width represents the amount of flow through 
an edge. Red edge represents positive PCC and blue edge represents negative PCC. Node size represents the total flow (the in and out flows) at a node. 
Nodes are coloured according to the node flow difference – red represents high flow in disease but low flow in control; conversely, blue represents low 
flow in disease but high flow in control. (f) The two subnetworks specific to the control and the disease phenotypes are then compared. The following 
key genes are identified: (i) network routers (ii) key targets (iii) high impact genes. (g) In the disease-specific subnetwork, NetDecoder further selects 
paths that include at least two types of key genes and the resulting subnetwork is termed as prioritized disease-specific subnetwork. Network images in 
(e) and (g) are from da Rocha et al. (2016). 
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1.7 Enrichment analysis 

In general, a gene seldom affects the phenotype of interest on its own, but through 

interaction of its product with the products of other genes. Thus, for a phenotype of 

interest, we can imagine that it is associated with a network of genes whose products 

interact with each other to bring about the manifestation of the phenotype. The inverse 

problem is that, given a gene list (such as DEG) obtained from microarray or RNA-seq 

experiments, how can one know what biological process is most likely associated with 

members of the gene list? 

To do so, we first note that a gene can be associated with various biological terms such 

as Gene Ontology (GO), KEGG pathways. The task of a functional enrichment algorithm 

is to determine which process is over-represented or under-represented in the gene list, 

thus providing the critical biological context for gene lists discovered from analyses of 

microarray or RNA-seq data. By far, the DAVID (Huang et al., 2009) Gene Functional 

Classification Tool remains the method of choice in the bioinformatic community for 

performing functional enrichment analysis (~15,000 citations as of January 2018). 

DAVID is based on an agglomerative algorithm that clusters members in a gene list into 

classes of related biology (biological modules). By doing so, it groups functionally-

related genes and terms into manageable number of biological modules, so that the 

network and biological context of a gene list can be inferred. 

 

1.8 Alzheimer’s disease 

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most 

common form of dementia. The disease mainly affects people aged 65 and older (Evans 

et al., 1989). Globally, an estimated 35.6 million people are affected by dementia (of 

which AD forms a significant subset) in 2010. This figure is expected to double to 65.7 
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million in 2030, and 115.4 million in 2050 (Prince et al., 2013). From a public health 

perspective, AD presents a challenging problem to manage by all countries in the future 

as the world population ages. 

AD is characterized clinically by cognitive impairment and often accompanied by non-

cognitive symptoms (Twine et al., 2011). Physically, the presence of neuropathologies in 

the form of neurofibrillary tangles, senile plaques, neuropil threads, specific neuron loss, 

and synapse loss (Terry, 1994) is found in the brain of AD patients (Murphy & LeVine, 

2010). The mechanisms underlying AD aetiology is still not clearly understood due to its 

complex nature (Kavanagh et al., 2013). 

The pathogenesis of AD involves the dysregulated production and deposition of the β-

amyloid peptide (Aβ). Indeed, diagnosis of AD requires two hallmark pathologies: 

presence of extracellular plaque deposits of the Aβ in the brain, and the flame-shaped 

neurofibrillary tangles of the microtubule binding protein tau (Murphy & LeVine, 2010). 

In heritable early onset AD cases, mutations are observed in either the β-amyloid 

precursor protein (APP) for Aβ, or in presenilin-1 (PS1) or presenilin-2 (PS2), which 

function as the catalytic subunit of γ-secretase. The latter enzyme is the final endoprotease 

in the biochemical pathway that produces the Aβ peptide. The Aβ peptide is a 4 kDa 

molecule which is derived from the larger APP molecule. It was first discovered as the 

main component of amyloid deposits in the brain and cerebrovasculature of patients with 

AD and Down’s Syndrome (Glenner & Wong, 1984a; Masters, Multhaup et al., 1985; 

Masters, Simms et al., 1985). 

The pathogenesis, diagnosis and therapy of AD remain challenging to research efforts 

(Twine et al., 2011). Over the years, our understanding of the key players involved in AD 

pathogenesis has been gradually improving. For example, Miller et al. (2008) applied the 

weighted gene coexpression network analysis method (WGCNA) (Horvath et al., 2006; 
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Oldham et al., 2006; Zhang & Horvath, 2005) on microarray data, and successfully 

identified the signaling molecule YWHAZ for the first time as hub in both aging and AD 

patients, in addition to recovering presenilin 1 (PSEN1) which is known to be a catalytic 

subunit of γ-secretase. Blair et al. (2013) found age-associated increases in FKBP51 

which interacts with Hsp90 to promote neurotoxic tau accumulation in AD brains. Using 

RNA-seq data, Twine et al. (2011) identified APOE splice variants in AD brains which 

are postulated to be associated with neurodegeneration progression. More recently, Mills 

et al. (2013) reported upregulation of the diazepam-binding inhibitor (DBI) in the parietal 

cortex of AD brains, and Satoh et al. (2014) reported downregulation of NeuroD6 as a 

biomarker in AD brains. 

 

1.9 Transcriptome data mining for Alzheimer’s disease 

Global research efforts have been dedicated to understand biology of AD by 

comparing the gene expression profiles between healthy individuals and individuals 

diagnosed with AD using microarray and RNA-seq technology, contributing to an ever-

growing of disparate transcriptome data sets that are deposited in public archives. In this 

issue, the publicly available transcriptome data sets from AD studies using human post-

mortem brains can be collected and reanalyzed. Microarray data merging can be done to 

discover new insights on AD. This big data mining can also be used to draw conclusions 

about the general properties of gene expression in large sample groups, such as broad 

transcriptional patterns of AD regardless of the brain region studied and the stage of 

disease. Differential expression analyses of the merged microarray data set and RNA-seq 

data sets can be performed to identify differentially expressed genes. Complex diseases 

like AD can be better understood from the perspective of network biology than at the 

individual gene level. Network analyses can be carried out to decode AD-specific 

networks. Finally, enrichment analyses can be done to identify enriched biological 

Univ
ers

ity
 of

 M
ala

ya



 

15 

pathways. A lot of computational methods or bioinformatic tools are available for 

transcriptome analysis. In order to extract the maximum biological information and get 

reliable biological inference from the data, the existing methods or tools can be studied, 

examined, compared or evaluated and finally the superior one be included in the data 

analysis pipeline. 

 

1.10 Research aims and objectives 

The aim of this thesis is to develop a coherent bioinformatic workflow for converting 

integrative analyzed public transcriptome AD data from microarray and RNA-seq 

platforms into new insights of biological processes involved in AD pathogenesis. 

Towards this aim, several objectives are set. Firstly, the relevant AD microarray and 

RNA-seq data sets are identified from the literature. Secondly, comparing of the relevant 

existing bioinformatic methods or tools is done and the optimal one is selected to build a 

robust data analysis pipeline. Thirdly, data merging of microarray data sets is done with 

batch effects removal and the suitability of the resulting merged data set for downstream 

analysis is determined. Fourthly, differential expression analyses between normal and AD 

conditions are carried out to identify differentially expressed genes (DEGs). Fifthly, 

network analyses are done to identify AD-associated networks. Finally, enrichment 

analyses are done to extract the biological context of the DEG lists and the AD-associated 

networks. 
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CHAPTER 2: METHODOLOGY 

2.1 Data collection 

Twelve raw Affymetrix microarray data sets from AD studies using human post-

mortem brains were obtained from the Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo). Table 2.1.1 shows the metadata of these data sets. In 

total, the 12 microarray data sets contain 670 samples (326 AD samples and 344 control 

samples). 

Two raw Illumina RNA-seq data sets from AD studies using human post-mortem 

brains were obtained from the Sequence Read Archive (SRA; www.ncbi.nlm.nih.gov/sra; 

www.ebi.ac.uk/ena; trace.ddbj.nig.ac.jp). Table 2.1.2 shows the metadata of these data 

sets. In total, the 2 RNA-seq data sets contain 21 samples (11 AD samples and 10 control 

samples). 
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Table 2.1.1: Metadata of the 12 microarray data sets used in the current study. 

GEO accession Source 
Sample size 

Platform Reference 
AD Control

GSE1297 Hippocampal CA1 22 9 Affymetrix Human Genome U133A Array (Blalock et al., 2004) 

 Total 22 9   

GSE4757 Entorhinal cortex 10 10 Affymetrix Human Genome U133 Plus 2.0 Array (Dunckley et al., 2006) 

 Total 10 10   

GSE5281 Entorhinal cortex 10 13 Affymetrix Human Genome U133 Plus 2.0 Array (Liang, Dunckley et al., 
2008; Liang et al., 2007; 
Liang, Reiman et al., 
2008) 

Hippocampus 10 13 

Medial temporal gyrus 16 12 

Posterior cingulate 9 13 

Superior frontal gyrus 23 11 

Primary visual cortex 19 12 

 Total 87 74   
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Table 2.1.1, continued. 

GEO accession Source 
Sample size 

Platform Reference 
AD Control

GSE9770 Entorhinal cortex 6 0 Affymetrix Human Genome U133 Plus 2.0 Array (Liang et al., 2010) 

Hippocampus 6 0 

Middle temporal gyrus 6 0 

Posterior cingulate cortex 5 0 

Superior frontal gyrus 6 0 

Primary visual cortex 5 0 

 Total 34 0   

GSE12685 Frontal cortex synaptoneurosome 6 8 Affymetrix Human Genome U133A Array (Williams et al., 2009) 

 Total 6 8   

GSE16759 
Parietal lobe cortex 4 4 

Affymetrix Human Genome U133 Plus 2.0 Array (Nunez-Iglesias et al., 
2010) 

 Total 4 4   

 

Univ
ers

ity
 of

 M
ala

ya



 

 

19

Table 2.1.1, continued. 

GEO accession Source 
Sample size 

Platform Reference 
AD Control

GSE26972 Entorhinal cortex 3 3 Affymetrix Human Exon 1.0 ST Array (Berson et al., 2012) 

 Total 3 3   

GSE28146 Hippocampus 22 8 Affymetrix Human Genome U133 Plus 2.0 Array (Blalock et al., 2011) 

 Total 22 8  

GSE29652 Temporal cortex astrocytes 18 0 Affymetrix Human Genome U133 Plus 2.0 Array (Simpson et al., 2011) 

 Total 18 0   

GSE36980 Frontal cortex 15 18 Affymetrix Human Gene 1.0 ST Array (Hokama et al., 2014) 

Temporal cortex 10 19 

Hippocampus 7 10 

 Total 32 47   

GSE37263 Temporal cortex 8 8 Affymetrix Human Exon 1.0 ST Array (Tan et al., 2010) 

 Total 8 8   
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Table 2.1.1, continued. 

GEO accession Source 
Sample size 

Platform Reference 
AD Control

GSE48350 Entorhinal cortex 15 39 Affymetrix Human Genome U133 Plus 2.0 Array (Blair et al., 2013) 

Hippocampus 19 43 

Post-central gyrus 25 43 

Superior frontal gyrus 21 48 

 Total 80 173   
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Table 2.1.2: Metadata of the 2 RNA-seq data sets used in the current study. 

SRA 
accession 

Source 
Sample size 

Platform 
Library 
layout 

Read 
length 

Strand-
specific 
assay 

Reference 
AD Control 

SRP004879 Total brain 1 1 Illumina Genome Analyzer 
(GAII) 

Single 
end 

35 bp / 
36 bp 

No (Twine et al., 2011) 

Frontal lobe 1 1 

Temporal lobe 1 1 

 Total 3 3      

SRP056863 Frontal cortex 8 7 
Illumina HiSeq 2000 Paired 

end 
90 bp / 
101 bp 

No (Bai et al., 2013) 

 Total 8 7      
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2.2 Determination of the methods/tools to be used in the current study 

A lot of computational methods or bioinformatic tools are available for transcriptome 

analysis. In order to extract the maximum biological information and get reliable 

biological inference from the data, existing methods or tools were studied, examined, 

compared or evaluated and finally the superior one was included in the data analysis 

pipeline of this study. 

 

2.2.1 Data analysis pipeline for microarray 

2.2.1.1 Preprocessing of data 

The effect of microarray preprocessing methods on certain multivariate analyses was 

examined by a study (McCall & Almudevar, 2012). According to the study, typical trade-

off between bias and precision was observed in nine preprocessing methods with an 

exception, where frozen Robust Multiarray Analysis (fRMA) was found to have better 

accuracy, given its precision. For this reason, fRMA was selected to participate in the 

present study. 

 

2.2.1.2 Integrative analysis 

Taminau et al. (2014), in their validation analysis using microarray data from six lung 

cancer studies, showed that data merging identified all DEGs that were also identified 

through meta-analysis, in addition to many more genes missed by the latter approach. 

Literature review further showed that the DEGs identified using data merging and also 

meta-analysis were corroborated by other studies with respect to their involvement in 

lung cancer development. 

Certain microarray data sets used in the current study have low sample size, which 

puts meta-analysis at a disadvantage since meta-analysis is prone to high false-negative 
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rates in this situation. Furthermore, certain microarray data sets have no control samples 

and thus these data sets are unable to be included in meta-analysis. For all the reasons 

above, meta-analysis was not considered and data merging was performed in the present 

study. 

Removing batch effects is essential in data merging. A comparative study of six batch 

effect removal methods using multiple measures of precision, accuracy and overall 

performance reported that ComBat (empirical Bayes method) outperformed the other five 

candidates (Chen et al., 2011). ComBat had satisfactorily performance on all measures 

whereas each of the others had at least one major drawback. Besides that, only ComBat 

was found to be robust when adjusting small batches. For these reasons, ComBat was 

chosen to be the batch effect removal method in the present study. 

 

2.2.1.3 Differential expression analysis 

A comparative study of differential expression analysis methods for microarray data 

reported that the empirical Bayes statistic implemented in limma was the most robust 

method across all sample sizes (Jeffery et al., 2006). Another comparative study of eight 

statistical tests with variance modeling strategies reported that limma and VarMixt 

offered significant improvement when compared to the t-test (Jeanmougin et al., 2010). 

Additionally, limma shows several practical advantages. For these reasons, limma was 

selected to participate in differential expression analysis of microarray data in the current 

study. 
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2.2.2 Data analysis pipeline for RNA-seq 

2.2.2.1 Preprocessing of data 

A comparative analysis of several adapter and quality filtering tools showed that 

Trimmomatic had the best performance, particularly in Maximum Information mode 

(Bolger et al., 2014). Thus, Trimmomatic with Maximum Information mode was selected 

to participate in adapter and quality filtering process. 

A comparative study of fifty gene profiling pipelines (the combinations of alignment 

and quantification tools) showed that the pipeline with OSA and htseq-ine (htseq-count 

with intersection-nonempty mode) is in the top of the overall rankings based on two 

metrics (relative error and Spearman correlation) (Fonseca et al., 2014). Therefore, OSA 

and htseq-ine were selected as the alignment and quantification tools respectively in the 

current study. 

 

2.2.2.2 Differential expression analysis 

The two RNA-seq data sets used in the current study have small sample size. Since 

there is no comparative study of differential expression analysis methods using small data 

sets in the literature, such a comparative study was done to find out which method should 

be used in the current study. 

As of 22 September 2015, a survey of the methods for performing differential 

expression analysis using RNA-seq data showed that there were 22 methods available 

(Khang & Lau, 2015). These methods vary in their effectiveness for calling DEG when 

sample size is small, which is the situation for the two RNA-seq data sets in the current 

study. Because of this, it is unclear as to which was the best one to choose. Besides sample 

size, an additional consideration is the ability of the differential expression analysis to 

detect DEG is also a function of the biological effect size between the phenotype classes 
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under consideration. In the context of AD versus control phenotype classes, the biological 

effect can be assumed to be strong. 

In order to select the most appropriate method, an empirical assessment of method that 

received the most attention from the scientific community (i.e. high citations per year) 

such as edgeR, DESeq and its new version, DESeq2, was carried out. These methods are 

parametric, since they explicitly model the distribution of gene counts using the negative 

binomial distribution. To be balanced, we included the well-known non-parametric 

NOISeq for additional contrast. Furthermore, Zhang et al. (2014) showed that edgeR had 

slightly superior performance in the receiver operating characteristic curve compared to 

DESeq and Cuffdiff2. Thus, edgeR was included in this comparison. Two methods with 

high citations per year: Cuffdiff2 and DEGSeq were not included, based on conclusions 

from recent method comparative analyses. For example, Cuffdiff2 was found to have very 

low precision when replicate size increased in the analysis of two large RNA-seq data 

sets from mouse and human (Seyednasrollah et al., 2015). Another comparative study 

involving DESeq, DEGseq, edgeR, NBPSeq, TSPM and baySeq showed that DEGseq 

had the largest false positive rate among them (Guo et al., 2013). 

 

 Benchmarking 

The Recount database (Frazee et al., 2011) contains raw RNA-seq count data sets from 

18 major studies which have been assembled from raw reads using the Myrna (Langmead 

et al., 2010) pipeline. A search through Recount database identified the Bottomly data set 

(Bottomly et al., 2011) as a suitable benchmarking data set. This data set contains gene 

expression data (22 million Illumina reads per sample, read length of ∼30 bases) obtained 

from the brain striatum tissues of two mice strains: C57BL/6J (n = 10) and DBA/2J (n = 

11). These two strains of mice are known to show large, strain-specific variation in 
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neurological response (Grice et al., 2007; Korostynski et al., 2006; Korostynski et al., 

2007), and thus mimic the strong biological effect between control and AD phenotypes 

in the present study. 

 

 Constructing a reference DEG set 

To construct a reference DEG set for which the result of differential expression 

analysis from edgeR, DESeq, DESeq2, and NOISeq could be compared, voom (Law et 

al., 2014; Ritchie et al., 2015) was used. Whereas the differential expression analysis 

methods considered either model the mean–variance relationships in the count data 

nonparametrically, or parametrically using the Poisson/negative binomial distributions, 

voom log-transforms count data into a microarray-like data type. This transformed data 

can then be handled using the robust limma algorithm (Ritchie et al., 2015; Smyth, 2004) 

developed for microarray analysis. Since voom is based on a different algorithmic 

architecture, using it to set the reference DEG set can avoid the issue of calling similar 

DEG due to algorithmic similarities. Nonetheless, the validity of using voom to set the 

reference DEG sets requires empirical justification. One way to do this is to compare its 

performance with other DEG call methods on some RNA-seq data set where qPCR 

validation results are available for sufficiently large numbers of genes. Such type of data 

set is scarce in the literature, and only one data set was found to be suitable. The Rajkumar 

data set (Rajkumar et al., 2015) consists of gene expression count data (26,119 genes; 

minimum of 10 million Illumina reads per sample, read length of ∼50 bases) from the 

amygdala tissues of C57BL/6NTac strain mice. There are two phenotype classes: wild 

type (n = 8), and heterozygotes for the Brd1 gene deletion (n = 8). A total of 115 genes 

were selected for qPCR validation (additional Table 5 in (Rajkumar et al., 2015)), and 60 

of them were found to have differential expression. The differential expression analysis 

methods considered were voom, edgeR, DESeq, DESeq2, and NOISeq. 
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A simple requirement for a differential expression method that is reasonable for setting 

the reference DEG set is that it should not return extreme results (too few (tens) or too 

many (thousands)). When this requirement is satisfied, the differential expression method 

that shows relatively higher positive predictive value (PPV; the complement of the false 

discovery rate) is preferable. Let NTP be the number of observed true positives, and NFP 

the number of observed false positives, and Ng the number of DEG called by a differential 

expression method. Since only 115 out of 26,119 genes had qPCR validation, it is not 

possible to estimate PPV, but only its expectation. 

Technically, the actual number of true positives consists of an observed part (NTP), and 

an unobserved part (N*
TP). The number of DEG (i.e. total predicted positives) that lacks 

validation is U = Ng −NFP −NTP. The expected number of unobserved true positives can 

be computed as N*
TP = [NTP / (NTP + NFP)] x U, and the expected PPV is then given by 

PPV* = (NTP + N*
TP) / Ng. 

 

 Simulation and performance evaluation 

To simulate low sample size scenarios (100 instances), 3 and 6 individuals within each 

phenotype class were randomly sampled (without replacement) respectively. The 

performance of the DEG call methods: edgeR, DESeq, DESeq2, NOISeq was assessed 

using sensitivity and positive predictive value (PPV). For each DEG call method, 

sensitivity was computed as the proportion of reference DEG called. PPV was computed 

as the proportion of DEG called belonging the reference DEG set. The mean and the 

standard deviation of these metrics were given. For ranking the methods, the F-score was 

used. This score combines information from both PPV and sensitivity, in the form of by 

F-score=2(PPV x sensitivity) / (PPV + sensitivity). The F-score lies between 0 and 1. A 

high F-score is desirable because it indicates good balance of PPV and sensitivity. 
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2.3 Microarray data analysis 

Each raw data set was preprocessed using frozen robust multiarray analysis (fRMA). 

During this process, background correction, normalization and summarization of the 

probes in each probe set were done. A single gene may be detected by multiple probe sets 

referred to as set of probe sets. For genes that are detected by more than one probe set, 

the probe set with the highest mean expression in each set of probe sets was selected to 

represent its corresponding gene. 

The twelve data sets were merged into a single dataset and only genes that are present 

in all the data sets were retained. The newly merged data set, which consists of expression 

levels of 8673 genes in 326 AD samples and 344 control samples, was adjusted for batch 

effects using empirical Bayes method (ComBat). In order to assess the effectiveness of 

ComBat, multidimensional scaling (MDS) plots and relative log expression (RLE) plots 

were constructed from the merged data set before and after applying ComBat. 

Differential expression analysis of the merged data set was performed with linear 

models and empirical Bayes methods. Genes with -log10p ≥ 16/│log2FC│-17 were 

identified as differentially expressed genes, where p is the p-value from linear models and 

empirical Bayes methods, log2FC is the estimate of log2 fold change from linear models 

and empirical Bayes methods. 

Table 2.3.1 shows the implementation of the above methods or algorithms. 
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Table 2.3.1: Implementation of the methods/algorithms used in the microarray data analysis. 

Analysis step Method/Algorithm 
R implementation 

Reference 
R function R package 

Preprocessing fRMA frma frma (McCall et al., 2010) 

Collapsing multiple probe sets for 
a single gene 

MaxMean collapseRows WGCNA (Miller et al., 2011) 

Adjusting batch effects ComBat merge inSilicoMerging (Johnson et al., 2007; Taminau et al., 2012) 

Differential expression analysis 
Linear models and 
empirical Bayes 

lmFit, contrasts.fit, 
eBayes, topTable 

limma (Ritchie et al., 2015; Smyth, 2004) 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

30 

2.4 RNA-seq data analysis 

For each raw data set, removal of technical sequences and quality filtering were 

applied to each read/read pair using Trimmomatic 

(http://www.usadellab.org/cms/index.php?page=trimmomatic). Subsequently, read 

mapping was performed using Omicsoft sequence aligner (OSA; 

http://omicsoft.com/osa) with Omicsoft-provided genome (Human.B38) and gene model 

(Ensembl.R83). Next, htseq-count (http://www-huber.embl.de/HTSeq) with intersection-

nonempty mode and Homo_sapiens.GRCh38.83.gtf file 

(ftp://ftp.ensembl.org/pub/release-

83/gtf/homo_sapiens/Homo_sapiens.GRCh38.83.gtf.gz) was used to count for each gene 

how many aligned reads overlap its exons. 

Differential expression analyses of the per-gene counts were performed with DESeq2 

(http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html). For the 

SRP004879 data set, genes with -log10p ≥ 38/│log2FC│-16 were identified as 

differentially expressed genes; for the SRP056863 data set, genes with -log10p ≥ 

15/│log2FC│-5 were identified as differentially expressed genes; where p is the Wald 

test p-value from DESeq2, log2FC is the log2 fold change (MAP, maximum a posteriori) 

from DESeq2. Subsequently, the genes with differences in median normalized counts 

between AD and control below 20 were omitted from the list of differentially expressed 

genes. 
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2.5 Network analysis 

Network analyses were performed using NetDecoder (http://www.NetDecoder.org). 

Each of the analyses was given the DEG set and its corresponding gene expression profile. 

NetDecoder parameters were set as -corThreshold 0.5 -ratioThreshold 5 -top 10 -g none 

and -overlap was not provided. 

 

2.6 Enrichment analysis 

Enrichment analyses were performed using the Database for Annotation, Visualization 

and Integration Discovery (DAVID) Functional Annotation Tool 

(http://david.abcc.ncifcrf.gov/summary.jsp). Each of the analyses was given the DEG list 

or the list of genes contained in prioritized AD-specific subnetwork and its corresponding 

gene population background with KEGG_PATHWAY annotation category to identify the 

most relevant biological pathways associated with the given gene list. 
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CHAPTER 3: RESULTS 

3.1 Comparisons of RNA-seq differential expression analysis methods 

For the analysis of the Rajkumar data set, the DEG set size and expected PPV of each 

method are given in Table 3.1.1. Only voom and edgeR produced gene sets with sizes 

that had reasonable order of magnitude, whereas the rest either returned too few (DESeq2, 

NOISeq) or too many (DESeq). However, voom had relatively higher expected PPV over 

edgeR. In addition, the DEG set size called using voom had standard error (SE) that was 

about 4 times smaller than that of edgeR’s (1000 iterations of bootstrap sampling with 

replacement of biological replicates). For these reasons, voom was considered to be the 

better choice for constructing the reference DEG set, and was therefore used to set the 

reference DEG set for the Bottomly data set. 

An interesting observation in Table 3.1.1 relates to the fact that DESeq2 called 

substantially less DEGs compared to DESeq. It is possible that the implementation of a 

shrinkage estimation of dispersion parameter and fold change to improve the performance 

of DESeq for DESeq2 can lead to over-correction that yields too few DEGs. 

 

Table 3.1.1: DEG set sizes and PPVs of the five differential expression analysis methods 
considered with respect to the Rajkumar data set. The values given are means ± standard 
errors. 

Method DEG set size PPV (%) 

voom 287  43 88.9  4.1 

edgeR 564  694 72.6  15.0 

DESeq 3384 Not relevant 

NOISeq 31 Not relevant 

DESeq2 10 Not relevant 
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Table 3.1.2 shows the behaviour of the four differential expression analysis methods 

considered with respect to the Bottomly data set (see also Figure 3.1.1). For n=3 and n=6, 

DESeq2 was found to have the best PPV and sensitivity balance as indicated by the top 

F-score of DESeq2. The second rank of methods was edgeR, followed by NOISeq, and 

finally DESeq. Comparing DESeq2 with its closest competitor, DESeq2 returned DEG 

sets with sizes that were reasonably large (270 ± 128 for n=3; 390 ± 84 for n=6), whereas 

DEG sets returned by edgeR were too large in size (780 ± 199 for n=3; 854 ± 118 for 

n=6). Note also that doubling the sample size from 3 to 6 for each method led to ~49% 

increase in F-score for DESeq2, but only ~21% for edgeR, ~26% for NOISeq, and ~33% 

for DESeq. 

 

Table 3.1.2: PPVs, sensitivities, DEG set sizes and F-scores of the four differential 
expression analysis methods considered with respect to the Bottomly data set and the two 
simulation scenarios (n=3 and n=6). The values given are means ± standard deviations. 

 DESeq2 edgeR NOISeq DESeq 

n = 3     

PPV (%) 52.5  10.8 28.7  4.1 40.2  13.8 10.9  0.7 

Sensitivity (%) 36.0  5.7 59.8  5.4 20.1  9.9 48.7  4.9 

DEG set size 270  128 780  199 268  297 1619  97 

F-score 0.43 0.39 0.27 0.18 

n = 6     

PPV (%) 62.1  7.7 33.9  3.0 50.4  8.6 14.7  0.5 

Sensitivity (%) 65.1  4.5 79.0  4.6 26.2  6.8 67.8  3.5 

DEG set size 390  84 854  118 208  140 1671  66 

F-score 0.64 0.47 0.34 0.24 
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Figure 3.1.1: Scatter plots of PPV against sensitivity for the four differential expression 
analysis methods considered with respect to the Bottomly data set and the two simulation 
scenarios (n=3 and n=6). Scatter plot for the n = 3 scenario is given in upper panel and 
scatter plot for the n=6 scenario is given in lower panel. The diameters of circles are 
proportional to the DEG set sizes. The brown colour represents DESeq2, the red colour 
represents edgeR, the green colour represents NOISeq and the pink colour represents 
DESeq. 
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To summarize, DESeq2 is the clear method of choice for differential expression 

analysis when sample size is small. Hence, for the two RNA-seq data sets (SRP004879: 

3 AD and 3 control samples; SRP056863: 8 AD and 7 control samples), DESeq2 was 

used to identify DEGs. 

 

3.2 Assessing the effectiveness of ComBat 

Figure 3.2.1 shows the RLE plots for assessing the effectiveness of ComBat. The top 

panel shows the presence of batch effects before applying ComBat, since the median of 

the samples were not all sampled at 0, and the variances were not approximately constant 

as indicated by the large variation in the length of the box plot whiskers. The bottom panel 

shows that most samples have median centered at 0 after applying ComBat. The box plot 

whisker lengths were also relatively similar compared to before application of ComBat. 

Based on the comparison, the batch effect removal by ComBat appeared to be effective. 

Figure 3.2.2 further supports this conclusion. The left panel shows that the clustering of 

samples was by experiment before applying ComBat. The right panel shows the presence 

of two approximate clusters defined by disease condition after applying ComBat. The 

overlap between the two clusters is expected, since distances between samples were 

computed using the entire vector of expression level, which is affected by other sources 

of variation such as age, sex, ethnicity, comorbidity, and brain tissue source, which are 

unrelated to disease condition. 
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Figure 3.2.1: Relative log expression (RLE) plots for the merged microarray data set before (top) and after (bottom) applying ComBat. 
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Figure 3.2.2: Multidimensional scaling (MDS) plots for the merged microarray data set before (left) and after (right) applying ComBat. Univ
ers
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3.3 Differential expression analyses 

The volcano plots show the joint distribution of log2FC and –log10p of each gene are 

given in Figure 3.3.1 (for the merged microarray data set), Figure 3.3.2 (for SRP004879 

data set) and Figure 3.3.3 (for SRP056863 data set). Table 3.3.1 shows the acceptance 

region used to select DEG. For the merged microarray data set, the genes at the acceptance 

region were identified as DEG. For SRP004879 and SRP056863 data sets, the genes at 

the acceptance region were further filtered as described in Chapter 2.4 and the remainder 

of genes were identified as DEG. In general, the number of DEG ranged from 100 to 300. 

For the merged microarray data set and SRP056863 data set, there are about 4 times and 

2 times more downregulated genes, respectively. In contrast, for SRP004879 data set, the 

number of upregulated genes was about 50% more than downregulated genes. 

 

Table 3.3.1: DEG acceptance region and the number of DEG (upregulated and 
downregulated genes). 

Data set 
DEG acceptance 
region 

Number of 
DEG 

Upregulated 
in AD 

Downregulated 
in AD 

Merged 
microarray 

-log10p ≥ 
16/│log2FC│-17 

269 52 217 

SRP004879 
-log10p ≥ 
38/│log2FC│-16 

226 140 86 

SRP056863 
-log10p ≥ 
15/│log2FC│-5 

112 37 75 
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Figure 3.3.1: Volcano plot for the merged microarray data set. Dash line represents -
log10p = 16/│log2FC│-17. Brown dots represent genes with -log10p ≥ 16/│log2FC│-17 
and red dots represent genes with -log10p < 16/│log2FC│-17. 

 

 

Figure 3.3.2: Volcano plot for SRP004879 data set. Dash line represents -log10p = 
38/│log2FC│-16. Brown dots represent genes with -log10p ≥ 38/│log2FC│-16 and red 
dots represent genes with -log10p < 38/│log2FC│-16. 
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Figure 3.3.3: Volcano plot for SRP056863 data set. Dash line represents -log10p = 
15/│log2FC│-5. Brown dots represent genes with -log10p ≥ 15/│log2FC│-5 and red dots 
represent genes with -log10p < 15/│log2FC│-5. 

 

For the merged microarray data set, the DEG signature profile of the control group 

appeared qualitatively to have sufficient dissimilarity with that of the AD group (Figure 

3.3.4). For the two RNA-seq data sets, the DEG set selected using the present 

methodology allowed unambiguous association of DEG signature with disease status 

(Figure 3.3.5 and Figure 3.3.6). 

For complete lists of DEGs, see Appendix A for the merged microarray data set, 

Appendix B for SRP004879 data set and Appendix C for SRP056863 data set. 
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Figure 3.3.4: Heat map of DEG expression profile for the merged microarray data set. 

 

 

Figure 3.3.5: Heat map of DEG expression profile for SRP004879 data set. 
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Figure 3.3.6: Heat map of DEG expression profile for SRP056863 data set. 

 

3.4 Network analyses using NetDecoder 

The prioritized AD-specific subnetworks returned by NetDecoder provide clues for 

the aetiology of AD. They are shown in Figure 3.4.1 (for the merged microarray data set), 

Figure 3.4.2 (for SRP004879 data set) and Figure 3.4.3 (for SRP056863 data set). The 

identities of the source, intermediary and target genes in the prioritized AD-specific 

subnetworks returned by NetDecoder are shown in Table 3.4.1. Key genes returned by 

NetDecoder are shown in Figure 3.4.4 (high impact genes) and Figure 3.4.5 (network 

routers and key targets). In the literature, a number of genes have been reported to be 

associated with AD (Table 3.4.2). 
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Figure 3.4.1: Prioritized AD-specific subnetwork for the merged microarray data set. These paths start at source genes (diamond shape of nodes), passing through intermediary genes (circle shape of nodes) and 
end at target genes (square shape of nodes). Edge width represents the amount of flow through an edge. Red edge represents positive PCC and blue edge represents negative PCC. Node size represents the total flow 
(the in and out flows) at a node. Nodes are coloured according to the node flow difference – red represents high flow in AD but low flow in control; conversely, blue represents low flow in AD but high flow in 
control. 
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Figure 3.4.2: Prioritized AD-specific subnetwork for SRP004879 data set. These paths 
start at source genes (diamond shape of nodes), passing through intermediary genes 
(circle shape of nodes) and end at target genes (square shape of nodes). Edge width 
represents the amount of flow through an edge. Red edge represents positive PCC and 
blue edge represents negative PCC. Node size represents the total flow (the in and out 
flows) at a node. Nodes are coloured according to the node flow difference – red 
represents high flow in AD but low flow in control; conversely, blue represents low flow 
in AD but high flow in control. 
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Figure 3.4.3: Prioritized AD-specific subnetwork for SRP056863 data set. These paths start at source genes (diamond shape of nodes), passing through intermediary genes (circle shape of nodes) and end at target 
genes (square shape of nodes). Edge width represents the amount of flow through an edge. Red edge represents positive PCC and blue edge represents negative PCC. Node size represents the total flow (the in and 
out flows) at a node. Nodes are coloured according to the node flow difference – red represents high flow in AD but low flow in control; conversely, blue represents low flow in AD but high flow in control. 
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Table 3.4.1: Source, intermediary, and target genes in the prioritized AD-specific 
subnetworks. 

Data set 
Gene

Source Intermediary Target 
Merged 
microarray 

ATP5B 
CRMP1 
EFNB3 
FOXO1 
IARS 
MAPK9 
MSH2 
PAK1 
PRKCZ 
PSMA5 
PSMB7 
PSMD8 
SRRM2 
TUBB 
TUBB4B 
YAP1 
YWHAZ 

ACTN4 
CDC42 
CDK1 
CDK2 
CDKN1A 
CFL1 
EPHB3 
FANCC 
FUS 
HNRNPL 
HNRNPU 
HRAS 
LARS 
MUTYH 
NPM1 
OTUB1 
PLK1 
PSMD2 
PSMD6 
PSMD7 
PSME3 
RYK 
SHC1 
SRC 
TRAF6 
UBC 
UBE2D1

ABL1 
APEX1 
CETN2 
CREBBP 
CTNNB1 
HDAC2 
HNRNPD 
STAT3 
TGFBR1 
TP53 
WASL 

Total 17 27 11 
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Table 3.4.1, continued. 

Data set 
Gene

Source Intermediary Target 
SRP004879 BCL3 

CA12 
HSPA1A 
HSPB1 
MID1IP1 
NFKB2 
STARD10 
TRIP10 

ACTG1 
APP 
ARHGAP32 
ASAP1 
CCDC8 
CCT5 
CCT7 
COMMD1 
CRYAB 
CUL7 
DAB2 
DAZAP2 
DYRK1A 
FBXW8 
GLMN 
GRB2 
HAUS8 
KIT 
MARS 
MDM2 
NAP1L1 
NCK1 
PIK3R1 
PSEN2 
PTK2B 
RBX1 
SNCA 
UBC 
VCP

AR 
CSNK2A1 
MED1 
PARP1 
RBFOX2 
SAMHD1 
TERF2IP 
ZNF506 

Total 8 29 8 
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Table 3.4.1, continued. 

Data set 
Gene

Source Intermediary Target 
SRP056863 CAMK4 

COL1A2 
GAD1 
GNG4 
HPRT1 
NCALD 
NLRP2 
NMNAT2 
NSF 
PAK1 
PENK 
PPEF1 
ROBO2 
S100A12 
SST 
SYTL5 

ACTB 
AKT1 
APP 
BAX 
BCL2L1 
CACYBP 
CALM1 
CASP1 
CD81 
CDC42 
CDK5 
COL1A1 
EGFR 
EXOC3 
FN1 
FYB 
GAPDH 
GNAO1 
GNB4 
GRB2 
GRIA2 
GRIA3 
GRIP1 
GRM7 
HSP90AB1 
ITGA2B 
MYO5A 
NCF1 
NCK1 
NF2 
OPRM1 
PICK1 
PINK1 
PLCB3 
PMS2 
PYCARD 
RAB27A 
RAF1 
SIRT7 
SLC9A3R2 
SLIT2 
SNTA1 
SSTR1 
UBC 
UBE2M 
XPO1

ABL1 
DYNLL1 
EEF1D 
FLNA 
KEAP1 
MAPK8IP1 
NOTCH1 
PHB 
VAV1 
YWHAZ 

Total 16 46 10 
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Figure 3.4.4: High impact genes for the merged microarray, SRP004879 and SRP056863 
data sets. Impact score (IP) returned by NetDecoder ranks genes based on their 
importance in mediating differences in flow profiles between control and AD states. 
Genes with high IP scores (positive or negative) are defined as high impact genes. Genes 
with larger magnitudes of IP scores are more likely to be involved in AD aetiology. Heat 
maps for top 10 genes with high positive IP scores and top 10 genes with high negative 
IP scores are shown. 

 

Merged microarray 

SRP004879 

SRP056863 
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Figure 3.4.5: Network routers and key targets for the merged microarray, SRP004879 
and SRP056863 data sets. Network routers are intermediary genes that show high flow 
differences (positive or negative) between control and AD states. Key targets are target 
(or sink) genes (transcriptional regulators) that show high flow differences (positive or 
negative) between control and AD states. Heat maps for top 10 genes with high positive 
flow differences and top 10 genes with high negative flow differences are shown. 

 

Merged microarray                  SRP004879                         SRP056863 

Merged microarray                  SRP004879                         SRP056863 
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Table 3.4.2: Fifteen genes known to be associated with AD. Genes that are included in the prioritized AD-specific subnetworks are represented by ticks. 
Key gene types (high impact gene, network router, key target) are shown in parentheses. 

Gene Merged microarray SRP004879 SRP056863
ABL1 √ (key target)   (key target) √ (high impact gene, key target)
AKT1 √ (high impact gene)
APP √ (high impact gene, network router) √ (high impact gene, network router)
CSNK2A1 √ (key target)
CTNNB1 √ (high impact gene, key target)   (high impact gene, key target)
DYNLL1 √ (high impact gene, key target)
HSPB1 √
NPM1 √ (network router)
NSF √
PAK1 √ √
PSME3 √ (network router)
SIRT7 √ (high impact gene, network router)
TP53 √ (high impact gene, key target)   (high impact gene, key target)
UBC √ (high impact gene, network router) √ (high impact gene, network router) √ (high impact gene, network router)
YWHAZ √   (high impact gene, key target) √ (key target)
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In the prioritized AD-specific subnetworks of all three data sets, UBC (polyubiquitin-

C) is present as high impact gene and network router (Table 3.4.2). UBC is involved in 

the ubiquitin-proteasome complex which targets proteins for degradation (Vilchez et al., 

2014). Protein aggregation is a hallmark of AD brains (Ross & Poirier, 2004) and occurs 

when defects in UBC prevents clearance of misfolded proteins. The resulting protein 

plaques lead to cellular cytoskeletal pathologies in AD (Bamburg & Bloom, 2009). 

APP recovery (as high impact gene and network router) in the prioritized AD-specific 

subnetworks of the RNA-seq data sets (Table 3.4.2) adds confidence that the subnetworks 

are biologically meaningful, since APP is the known precursor molecule of the Aβ 

peptide, which makes up the neuritic deposits found in AD brain. 

YWHAZ is a ubiquitous signaling protein in numerous essential cellular processes 

(Aitken, 2006) and Miller et al. (2008) showed that this protein was correlated with AD 

and aging and recommended its continued study. 

NPM1 (nucleophosmin) is a nucleolar protein with histone-binding property and is 

involved in chromatin organization (Tamada et al., 2006). Importantly, altered NPM1 

gene expression was observed in the CA1 region of the hippocampus during early stage 

AD, suggesting of nucleolar stress (Hernández-Ortega et al., 2016). Impaired nucleolar 

activity can contribute to the pathogenesis of neurodegenerative diseases (Erickson & 

Bazan, 2013). 

HSPB1 has been reported to be protective against the neurotoxic effect of Aβ peptides, 

as well as involved in modulating cellular APP levels, though the exact mechanism is 

unclear (Conway et al., 2014). 

NSF (N-ethylmaleimide-sensitive factor) is associated with the SNARE (Soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) proteins which are essential 
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components that regulate neurotransmitter exocytosis at the presynaptic site (Söllner et 

al., 1993). Presynaptic dysfunction produces cognitive alterations in AD (Terry et al., 

1991). 

AKT1 is a serine/threonine kinase that regulates the activity of glycogen synthase 

kinase-3 (GSK-3), which is involved in hyperphosphorylation of tau proteins that form 

neurofibrillary tangles, and Aβ peptide production and deposition (Bhat & Budd, 2002). 

Increased activities were found to be significantly increased in the soluble fractions of the 

mid-temporal cortex of AD brains, compared to non-AD controls (Rickle et al., 2004). 

PAK1 (p21-activated kinase) is an important regulator of actin cytoskeleton, and 

influences dendritic spine morphogenesis. Loss of PAK1 is associated with cognitive 

defects in AD patients (Zhao et al., 2006). 

CTNNB1 encodes the well-known beta-catenin protein, which is a member of the Wnt 

signaling pathway (Logan & Nusse, 2004), and interacts with presenilin-1, a known 

subunit of the -secretase which cleaves the APP protein (Haass & De Strooper, 1999). 

Ghanevati and Miller (2005) observed that phospho-beta-catenin accumulation in AD is 

a consequence of impaired proteosome function. 

CSNK2A1 encodes casein kinase 2 alpha 1, which is a serine/threonine protein kinase 

involved in the phosphorylation of acidic proteins such as casein. Pigino et al. (2009) 

found that intraneuronal soluble intracellular oligomeric Aβ causes abnormal activation 

of CSNK2A1 in the axons, leading to excessive phosphorylation of kinesin-1 which 

removes the anterograde motor from vesicles. Consequently, fast axonal transport is 

inhibited. Dysregulated fast axonal transport has been suggested as a pathological 

mechanism in AD (Morfini et al., 2002; Pigino et al., 2003). 
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TP53 encodes the well-known tumor protein p53, which is involved in inducing cell 

cycle arrest and apoptosis (Levine et al., 1991). Its association with AD was reported by 

Hooper et al. (2007), who found that p53 could indirectly phosphorylate the tau proteins. 

Hyperphosphorylated tau proteins lose their ability to regulate axonal transport which 

then causes neurofibrillary tangles and toxic soluble tau species to accumulate, leading to 

neurodegeneration (Grundke-Iqbal et al., 1986; Iqbal et al., 2016; Iqbal et al., 2010). 

SIRT7 is a member of a class of enzymes called sirtuins, which function as 

deacetylases that depend on nicotinamide adenine dinucleotide (NAD+) for activity. 

Sirtuin modulation has been found influence the progression of neurodegenerative 

disorders such as AD, Parkinson’s disease, Huntington’s disease, amyotrophic lateral 

sclerosis, and spinal and bulbar muscular atrophy, through its action on modulating 

transcription factor activity, as well as direct action on deacetylating proteotoxic species 

(Herskovits & Guarente, 2013). 

ABL1 is one of the most well-studied tyrosine kinase in AD. The ABL1 protein is 

known to phosphorylate tau proteins. In adult mouse neurons, overexpression of ABL1 

results in neurodegeneration and neuroinflammation (Schlatterer et al., 2011). 

DYNLL1 encodes the dynein light chain 1 which is involved in axonal transport in 

neurons. Its homologue in Drosophila melanogaster - DDLC1, has been shown to be 

necessary for protein clearance by autophagy which prevents neurodegeneration (Batlevi 

et al., 2010). 

PSME3 encodes the proteasome activator subunit 3 (PA28), which functions as a 

regulator of the 20S proteasome in the cytoplasm to regulate oxidative stress (i.e. enhance 

the degradation of oxidized protein). As Aβ proteins accumulate, they inhibit 20S 
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Proteasome activity, eventually leading to neuron cell death due to the homeostatic 

breakdown in the cell (Gillardon et al., 2007). 

While listing down the known biological functions of the individual genes with respect 

to AD pathogenesis can provides useful biological context, the resulting information may 

nonetheless be fragmentary. Instead of examining the biological functions of individual 

genes in Table 3.4.2, focusing on sets of genes linked in a path (Table 3.4.3) and gene 

pairs with biologically important PCCs (Table 3.4.4) in the prioritized AD-specific 

subnetworks may yields additional biological insights. 

 
Table 3.4.3: Selected paths in the prioritized AD-specific subnetworks. 

Data set Selected path 

Merged microarray PSMA5-PLK1-NPM1-HDAC2 

SRP004879 HSPB1-CRYAB-SNCA-DYRK1A-APP 

SRP056863 PAK1-CASP1-UBC-PHB 

 

Table 3.4.4: Gene pairs with notable PCCs in the prioritized AD-specific subnetworks. 

Data set Gene pair with notable PCC PCC directionality 

Merged microarray CDK2-TP53 Positive 

SRP004879 DYRK1A-APP 

PSEN2-APP 

Positive 

Negative 

SRP056863 UBC-PHB Positive 
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We now relate the selected paths in Table 3.4.3 and gene pairs with notable PCCs in 

Table 3.4.4 to known association with AD in the literature. If a gene in Table 3.4.3 or 

Table 3.4.4 has appeared also in Table 3.4.2, its association with AD in the literature will 

not be repeated. 

(i) PSMA5-PLK1-NPM1-HDAC2 

PSMA5 encodes the Proteasome subunit alpha type-5 protein which forms one of the 

subunits of the 20S proteasome complex. A dysfunctional ubiquitin-proteasome system 

leads to defective protein clearance, resulting in aberrant protein accumulation in 

neurodegenerative diseases such as AD (Oddo, 2008). Song et al. (2011) showed that 

inhibition of Plk1 kinase activity or depletion of Plk1 using RNA interference in the 

hippocampal tissues of AD patients reduces Aβ-induced neuronal cell death, suggesting 

that Plk1 might be a potential therapeutic target for AD treatment. Feng et al. (2001) 

found that Plk1 phosphorylates the proteasome subunits, and enhance the proteolytic 

activity of proteasomes (of which PSMA5 is a member). HDAC2 has recently been 

shown to cooperate with the transcription factor Sp3 to regulate synaptic gene function. 

Since overexpression of HDAC2 results in the turning off of genes that are important for 

memory creation, hence inhibition of the HDAC2-Sp3 complex may be useful for 

ameliorating cognitive impairment in AD (Yamakawa et al., 2017). 

(ii) CDK2-TP53 

The positive correlation between CDK2 and TP53 is supported by the findings of Yu 

et al. (2005), who found that when neuroblastoma cells suffer DNA-damage, they induce 

a p53-mediated inhibition of cell cycle progression, and induction of cdk2-cyclin E which 

eventually leads to cell death. 
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(iii) HSPB1-CRYAB-SNCA-DYRK1A-APP 

This path suggests that the intermediate molecules between HSPB1 and APP may be 

useful therapeutic targets in AD treatment. It was recently shown that the protein product 

of CRYAB (αB-crystallin) when attached to the endoplasmic-reticulum, prevents protein 

aggregate formation (Yamamoto et al., 2014). SNCA (alpha-synuclein) has been reported 

to have pathogenic interaction with Aβ peptide (Suh & Checler, 2002). Finally, DYRK1A 

inhibition was recently proposed as a potential therapeutic strategy for treatment of AD 

(Stotani et al., 2016). Overexpressed DYRK1A contributes to neurofibrillary 

degeneration via enhanced phosphorylation of APP, resulting in aggregation of Aβ 

plaques in brain tissues which leads to early-onset neurodegeneration, neuronal loss, and 

dementia in patients with Down’s Syndrome (Wegiel et al., 2011). Patients who have 

Down’s Syndrome suffer from mental retardation, and can show similar neuropathology 

as AD (Glenner & Wong, 1984a, 1984b). The positive correlation between DYRK1A and 

APP is therefore consistent with what is known in the literature. 

(iv) PSEN2-APP 

PSEN2 encodes the major component of the y-secretase enzyme. This enzyme 

functions in the sequential proteolytic cleavages of APP, and the subsequent formation of 

Aβ peptides. It was found to be significantly downregulated in the auditory cortex of AD 

patients relative to controls (Delabio et al., 2014). The negative correlation between 

PSEN2 and APP is then consistent with elevated APP, which is a hallmark of AD. 
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(v) PAK1-CASP1-UBC-PHB 

CASP1 encodes caspase-1. Caspases belong to a family of endoproteases that play key 

links in cellular apoptosis and inflammation (McIlwain et al., 2013). Using a mouse 

model, Heneka et al. (2013) showed that when the NLRP3 inflammosome detects 

inflammatory Aβ aggregates, it responds by secreting caspase-1, which activates the 

cytokine IL-1β (interleukin 1 beta). As a result of the inflammatory environment 

surrounding the Aβ plaque, APP degradation is downregulated, and destruction of Aβ 

plaques by microglia is decreased. The association of PAK1 with CASP1 is interesting 

here, because it has been shown that PAK-1 induced phosphorylation is crucial for 

CASP1 activation, which in turns activates IL-1β (Basak et al., 2005). Prohibitins (PHB), 

which consist of the PHB1 and PHB2 subunits, function as membrane scaffolds. They 

are localized at the inner membrane of the mitochondria and mitochondrial cristae (folds 

of the inner membranes) are known to be sites of Aβ accumulation (Hansson Petersen et 

al., 2008). It is known that mitochondrial dysfunction characterizes AD disease pathology 

(Bonet-Costa et al., 2016; Castellani et al., 2002). Merkwirth et al. (2012) found that 

inactivation of Phb2 in the mouse forebrain induces early onset tau hyperphosphorylation 

and formation of filaments in the hippocampus, which result in behavioral and cognitive 

impairments. Thus, the positive correlation between UBC and PHB implies that 

downregulation of UBC, which occurs in AD, would reduce PHB expression and 

eventually lead to AD symptoms. 
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3.5 Enrichment analyses using DAVID 

Table 3.5.1 shows the most enriched KEGG pathways extracted by DAVID. 

Enrichment analyses of genes in the prioritized AD-specific subnetworks yielded 

interesting pathways that have been discussed in the AD literature. For both the merged 

microarray data set and SRP004879 data set, the most enriched KEGG pathway is 

Epstein-Barr virus (EBV) infection. For SRP056863 data set, focal adhesion is the most 

enriched KEGG pathway. 

In contrast, enrichment analysis of DEG set for the merged microarray data set 

recovered two enriched KEGG pathways that are synapse-related, with reported 

relevance to AD (Sheng et al., 2012). The most enriched pathway is synaptic vesicle 

cycle. This pathway is implicated in Parkinson’s Disease, but is noted to be also 

associated with AD (Abeliovich & Gitler, 2016). No hits were returned for SRP004879 

data set. For SRP056863 data set, GABAergic synapse is the most enriched pathway. 

Limon et al. (2012) reported the loss of functional GABAA receptors in the brains of AD 

patients. The implications of GABAergic neurotransmission in AD were recently 

discussed by Li et al. (2016). 
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Table 3.5.1: The most enriched KEGG pathways extracted by DAVID. 

Data set Input of DAVID KEGG pathway Genes in pathway 

Merged 

microarray 

Genes in prioritized AD-

specific subnetwork 
Epstein-Barr virus infection 

CDK1, YWHAZ, CREBBP, TP53, CDK2, STAT3, CDKN1A, HDAC2, 

PSMD2, MAPK9, PSMD6, TRAF6, PSMD7, PSMD8 

DEGs Synaptic vesicle cycle 

SYT1, STX1A, ATP6V1H, ATP6V1B2, ATP6V1D, ATP6V0B, 

SLC17A7, ATP6V1C1, ATP6V1A, ATP6V1E1, VAMP2, ATP6V0D1, 

SNAP25, NSF, AP2M1 

SRP004879 

Genes in prioritized AD-

specific subnetwork 
Epstein-Barr virus infection CSNK2A1, MDM2, HSPB1, HSPA1, NFKB2, PIK3R1 

DEGs - - 

SRP056863 

Genes in prioritized AD-

specific subnetwork 
Focal adhesion 

ACTB, EGFR, GRB2, RAF1, VAV1, FLNA, AKT1, CDC42, COL1A2, 

PAK1, COL1A1, ITGA2B, FN1 

DEGs GABAergic synapse SLC32A1, GAD2, GABRA4, GNG4, GAD1, NSF 
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CHAPTER 4: DISCUSSION AND CONCLUSION 

4.1 Pipeline robustness 

Even supposing that ComBat provided effective cross-platform normalization to 

remove batch effects due to different study, there remains considerable heterogeneity 

introduced into the gene expression levels after data merging. These sources of variation, 

such as sex, age, ethnicity, comorbidity, and source of brain tissue, can potentially reduce 

the statistical power of detecting differentially expressed genes under a marginal gene 

candidate selection approach, which is used in the present work. On the other hand, the 

increased sample size may offset this loss of statistical power. Here, the DEG detected 

from the merged microarray data set produced an interesting hypothesis (together with 

SRP004879) about the involvement of EBV infection (see section 4.3) after NetDecoder 

and DAVID enrichment analysis. Since EBV infection has only been speculated recently 

(Carbone et al., 2014; Licastro & Porcellini, 2016; Mawanda & Wallace, 2013) as a 

possible process involved in AD pathogenesis, the agreement between the outcome of the 

in silico analysis and the literature appears to support the robustness of the proposed 

bioinformatic pipeline. 

 

4.2 Biological interpretation of prioritized AD-specific subnetworks 

It is important to remember that, while the subnetworks produced in NetDecoder are 

directed, the directedness does not imply any causative relationship between two 

interacting genes, and merely serves as a convenience for obtaining the minimum cost 

path from the source genes to the target genes through intermediary genes. If evidence 

from the literature is available, directedness of edges between two genes in a path of 

interest can be inferred, and this would allow the integration of numerous disjointed 

results in the AD literature into more coherent, testable network-oriented hypotheses. 
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Interestingly, in the prioritized AD-specific subnetwork of SRP004879, there is a path 

from the well-known proinflammation nuclear factor NFKB2 to APP, through a path with 

highly correlated genes: NFKB2-COMMD1-VCP-CCT5-GRB2-ACTG1-PSEN2-APP. 

While currently the linkage between inflammation and AD is unclear, researchers have 

already considered the possible connection (Granic et al., 2009). Interestingly, copper 

dyshomeostasis is found in AD patients (Lovell et al., 1998; Squitti & Polimanti, 2013), 

and COMMD1 is the gene involved in copper metabolism. The usefulness of such paths 

that connect well-known key genes in AD pathogenesis is that it allows the subject matter 

expert to make use of biochemistry knowledge to infer causality, or design experiments 

that could allow such conclusions to be made. 

To summarise, genes that are known to be associated with AD pathogenesis in the 

literature were successfully recovered among the intermediary genes in the prioritized 

AD-specific subnetworks. Furthermore, paths connecting well-known genes in AD can 

be recovered from the prioritized AD-specific subnetworks, and they provide a basis for 

integrating known experimental results in the literature. Finally, correlations between 

genes known to be involved in AD are also consistent with results in the literature. The 

rich results obtained support NetDecoder as a useful tool for harvesting biologically 

meaningful subnetworks. 

 

4.3 Enrichment analyses of gene sets 

Enrichment analyses of gene sets that define the prioritized AD-specific subnetworks 

revealed rich results, recovering pathways that have been discussed in the AD literature. 

Two major pathways were identified from Chapter 3.5, namely focal adhesion 

(SRP056863) and EBV infection (merged microarray; SRP004879). Focal adhesions 

(Chen et al., 2003) are macromolecular structures containing integrins that function as 
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mechanical links connecting the cellular cytoskeleton to the extra-cellular matrix (ECM). 

Integrins are transmembrane receptors that mediate cell-cell and cell-ECM adhesions 

(Howe et al., 1998). Focal adhesions are known to regulate beta-amyloid peptide 

signaling and cell death in AD (Caltagarone et al., 2007). A viral association with AD is 

more puzzling, but not totally implausible (Mawanda & Wallace, 2013). While an early 

study did not detect EBV in peripheral blood cells and post-mortem brain tissues from 

AD patients and normal controls (Kittur et al., 1992), the most recent evidence suggest 

EBV infection could be an environmental risk factor for AD progression in elderly 

patients (Carbone et al., 2014; Licastro & Porcellini, 2016). Thus, it is interesting that the 

current in-silico analysis points to a line of investigation that has until now received very 

little attention from experimental scientists. It is noteworthy that EBV is also reported to 

be associated with multiple sclerosis (Zivadinov et al., 2009), another neurodegenerative 

disease. 

In contrast, although enrichment analyses of DEG sets also revealed some pathways 

associated with AD, the pathways seemed to be more peripheral. For example, in the 

merged microarray data set, the most enriched pathway is synaptic vesicle cycle, which 

has been reported to be associated with AD (Sheng et al., 2012). While associated with 

AD, this pathway is primarily implicated in the pathogenesis of Parkinson’s Disease 

(Abeliovich & Gitler, 2016). For SRP056863, GABAergic synapse is the most enriched 

pathway. Limon et al. (2012) reported the loss of functional GABAA receptors in the 

brains of AD patients. The implications of GABAergic neurotransmission in AD were 

recently discussed by Li et al. (2016). No pathways were found significantly enriched for 

SRP004879. 
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4.4 Limitations and future study 

Although the data merging process appeared to indicate the success of ComBat (see 

Figure 3.2.1, Figure 3.2.2) in removing batch effects from the 12 independent microarray 

data sets, there is not yet any systematic analysis of how successful data merging may be 

in general when applied to other experiments. One possible future work is to focus on 

empirical assessment of data merging as a feasible integrative analysis approach for gene 

expression profiles. The two RNA-seq data sets were analyzed separately, since currently 

there are no algorithms that could reliably remove batch effects arising from the merging 

of multiple RNA-seq data sets. 

There might be some concerns about the stability of results from NetDecoder for 

SRP004879, which has 3 controls and 3 AD. The reason is because the gene-wise PCCs 

can only be estimated using 3 data points for each phenotype class. Consequently, the 

correlation estimates have large standard errors. Because of this, it is reasonable to expect 

this situation to affect the identification of appropriate subnetworks through a minimum-

cost optimization process, since the edge weights and edge costs are functions of the 

correlation estimate. It is therefore reasonable to be less optimistic about the NetDecoder 

result for this data set. Surprisingly, the result of enrichment analysis of genes in the 

prioritized AD-specific subnetwork for SRP004879 (involvement of EBV) is similar to 

that from the one obtained from the merged microarray, in which the correlation estimates 

had much lower standard error due to the large sample size (326 AD; 344 control). A 

possible future work is to perform enrichment analysis of the genes from the subnetwork 

obtained from ESSNet (Lim et al., 2015), a recent tool for handling analysis of small 

sample gene expression data sets. If EBV is recovered too, then this additional support 

suggests a surprising new direction for AD research. 
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Assuming that the association of AD with EBV infection is not a false positive, we 

expect to detect EBV gene expression in the transcriptome data of (age-matched) AD 

subjects, but not in the control subjects. Unfortunately, we were not able to test this 

expectation in the only RNA-seq data set SRP004879 where genes of the AD-specific 

prioritized subnetwork were found to be enriched in EBV infection pathway, because the 

control (n=3, average about 30 years old) and the AD subjects (n=3, all above 80 years 

old) were not age-matched. It was also not possible to test this expectation using the 

merged microarray data, as the platforms were all optimized to be specific to human 

genes. 

 

4.5 Conclusion 

In this thesis, I aimed to identify pathways and network associated with Alzheimer’s 

Disease via a bioinformatic analysis of publicly available transcriptomic data. The 

integrative analysis of these data has the potential to generate new hypotheses regarding 

the molecular aspects of AD pathogenesis that is not possible from previous analyses of 

multiple single transcriptomic data sets. I showed that multiple microarray data sets could 

be successfully (i.e. with batch effects removed) merged into a super data set (326 AD 

and 344 control samples) using the ComBat algorithm, thus greatly increasing the 

statistical power to detect DEGs (using limma) in AD condition that are not possible in 

the analysis of single data sets. Furthermore, I showed DESeq2 to be optimal for calling 

DEGs in RNA-seq data sets. Using the DEGs obtained from the merged microarray data 

set and RNA-seq data sets as input genes in the recently proposed NetDecoder algorithm. 

I found that the AD-specific prioritized subnetworks contain genes that have been 

validated in the AD literature, such as UBC, ABL1, YWHAZ, APP, TP53 and CTNNB1. 

The recovery of known key genes in AD is an important validation of the interpretability 

of the data mining work flow in producing biologically meaningful results. Additionally, 
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the novel paths recovered such as PSMA6-PLK1-NPM1-HDAC2, HSPB1-CRYAB-

SNCA-DYRK1A-APP, and PAK1-CASP1-UBC-PHB potentially generate practical 

hypotheses for inferring previously unsuspected linkages in the systems biology of AD 

pathogenesis, as all members in the paths have been reported in the AD literature. 

Importantly, functional enrichment analysis of the genes in the prioritized subnetworks 

supports the involvement of EBV viral infection with AD progression. A viral hypothesis 

for AD has only been considered recently (Carbone et al., 2014; Licastro & Porcellini, 

2016; Mawanda & Wallace, 2013), so the concordance between the present in silico result 

with opinions in the literature may not be a coincidence. 

Since the subnetwork search step of the NetDecoder algorithm relies on edge weights 

and costs that are a function of the Pearson correlation, transcriptome data sets with small 

sample size may have unreliably estimated correlation values (e.g. SRP004879 – 3 AD 

and 3 control samples), which could affect what subnetworks are recovered. Additionally, 

it should be remembered that causality cannot be inferred from the prioritized 

subnetworks, but must be inferred from evidence in the literature, or experimentally 

tested. Despite these concerns, biologically meaningful pathways and functions have been 

inferred from the present analysis, much more than what is possible traditionally using 

only DEGs. 

To summarize, I believe the integrative analysis of transcriptome data proposed in this 

thesis has produced biologically meaningful candidate genes for AD research, together 

with hypotheses about connections between these genes that biologists may find 

meaningful to explore further. It seems that the work flow can be feasibly extended to 

similar two-phenotype class problems (e.g. in the study of various cancers, other 

neurodegenerative diseases, etc.) where publicly available transcriptome data is abundant. 
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