Perpustakaan SKTM

TRAVEL ROUTE ADVISOR WITH
ARTIFICIAL NEURAL NETWORK
(TRAANN)

Prepared by
AZNUR HAFEEZ BIN KASWURI
WEK 990179

Under Supervision of
MR. WOO CHAW SENG

Under Moderation of
MR. NOR RIDZUAN DAUD

Travel Route Advisor With Artificial Neural Network
(TRAANN)

By

AZNUR HAFEEZ BIN KASWURI
WEK 990179

A Thesis presented to the Faculty of Computer Science and Information
Technology of University of Malaya in partial fulfillment of the
requirement for the Degree of

BACHELOR OF COMPUTER SCIENCE

UNIVERSITY OF MALAYA

FEBRUARY 2003

Abstract

ABSTRACT

The aim of this project is to develop a Travel Route Advisor, which
apply Artificial Neural Network (ANN). The system has the ability to

predict the most efficient solution of the available routes.

The first chapter is the introduction. It gives an overview of the
project. It describes the objectives, scope and limitation of the project.
Chapter 2 is for the literature review. It contains a review of studies done
in related fields. It includes some studies in artificial intelligence and

artificial neural networks as well.

Chapter 3 is about system methodology. It describes the steps taken
to accomplish this project and development method taken. Chapter 4 is for
system analysis, which cover the system requirements and the project
schedule. Chapter 5 is about system design. It includes the design of the
system proposed. It contains the core modules of the system, namely

database, ANN and GUI modules.

Abstract

Chapter 6 is for the system implementation. It describes the
transformation of the modules into programming codes. Chapter 7 is for
system testing. Tests had been made to verify whether the system have
met the requirements. The discussion chapter, which is chapter 8, contains
the discussion on the results, the problem encountered, the solution taken

and the conclusion of the project.

Acknowledgement

Acknowledgement

Acknowledgement

ACKNOWLEDGEMENT

In the name of God, Most Gracious, Most Merciful.
AlhamduliLlah, thank to Allah, The Almighty for giving me the strength
and confidence to complete this project.

Firstly, I would like to thank Mr. Woo Chaw Seng, my supervisor
for giving me a chance to develop this system, which I proposed to him at
the beginning of the semester. Secondly, I would like to thank for his
constructive advice, generous guidance, encouragement, support and
supervision along the project. He is also the one who encouraged me to do
my project in English and using MATLAB, which I thought unattainable
at first. His hardworking and kindness in helping me throughout the
project is deeply appreciated.

Thanks to Mr. Mohd Nor Ridzuan bin Daud, who contributed
suggestion and comments to this project. He is so considering and I really
feel grateful, as he became my moderator for this project.

Besides, I would like to express my gratitude to my parent Mr.
Haji Kaswuri Keman and Mrs. Aminah Hamzah for the support,

understanding and inspiration as early form my birth until now,

Vil

Acknowledgement

My thanks go also to all my course mates & friends for their
valuable idea. Thanks to Mr. Mohd Shahidan Hassan, Mr. Kamarul Anwar
Abdul Aziz, Mr. Muhd Faez Lutpi & Mr Anwar Ahmad for their
comments and advice throughout the project.

Thank you very much.

“So, verily, with every difficulty, there is relief:
Verily, every difficulty there is relief.”
The Holy Quran,
Chapter 94 (Al Sharh),

Verses 5 & 6

Vil

Table of Contents

Title Page
ABSTRACT iii
ACKNOWLEDGEMENT vi
TABLE OF CONTENTS....cccvvssssssssasssssssssssoss sssessssaisasees ix
LIST OF TABLES xiv
LIST OF FIGURES XV
CHAPTER I: INTRODUCTION 1
PrOIECt VTV CW iz ss st tessrsvsrettdses Reisilhiviasdriieese s iy L B SO BN 2

Y OJ[=ndD T (T e P S e S e 3
Current Paradigm’s Weakness...................ooooooooo 3
Strength of Travel Route Advisor With ANN ... 4
Project Limitation and Its Goal 5
0 [T RO R RN A R e e s T 6
PTOJEOT SCOPES 1L chisi it iieteetterssThsshetesaisbist vovs e toitt e L AT Rt N P O S S 7
RENOLE OQURING. it tsexeisbivsssrs Tishisebilrsssttine oot st L T LT T 8
SUMMALY S cliessssnasnisssstinsacsssrsstésiibiabsbinnistisasrt s stirt it [T 9
CHAPTER II: LITERATURE REVIEW 11
IOANOOUCTION ./ ctheehaiassesKitistetos e (I I I IR et chasub s con L B TOE S e A 12

N) T UE GO e Te IR e o e O e et ot e 13

Definition fngmens A S Bl i e i i e R e 13
Artificial Intelligence Approaches In Prediction System 14
Artificial Neural Networks...........cccooviiiiiiiioiiiiiieeeeeeee oo, 16
BT (o] U e P R M i e L e o 16
B1010gY N CUR L N K e DLt eoae s s R sy 18
The Characters of The ANN ..o eeess s, 21
Neural Network’s Capabiliti€s...............ccceeuvvvierneoveesssiessssnss s, 24
Competitive NEIWOTKcssmserssissnssresssrsssessrneaftagNosastssssestsssessastes 27
Malaysian Transportation SyStem..............cc.ocociviiiiiiiscoeeeeel 29
TGTT AR T R T S S S R S ST bt e 29
RAUWAYRE . ihishetaaiiniristiosabtirsrose s e eat it v et v e L 31
A R T Cov sttt e T i T e v el 32
Sea iwater S RN IR it B R e] B e S 33

S U ATy e N T A TR i D T e o 34
CHAPTER IlI: METHODOLOGY 35
IEtTOTEOIOR S ThY i ihia5 s buishisssssabsessases iaiIIseebts ciat ot T EL TS Pl s I 36
ReSEATCHIMELION ..o iicis e ieri iinibgstasatssersessesteinssss sbatsssetorbor] it s i 36
LIOTRTYIN i oi6s isid ntesirniscrasebsstsiubtositisaorsiibitte tbreki arstierisnail T 36
1111 cq 1T ORI RO ST O P SHRL SR o e, st 5, 37
T\ (17 1T i R S SO s ot s o ot ol 37

Personal books and 1eCture NOteS...........covvvveveeeeoesoeoeoeeoeoe 37

System Development Life Cycle ..o 38
ALY SIS T L RN I NN i Tl T i 42
D170 T R G R SR B sty b oot e e R 42
CodigmnaIIRmtRItNG o ains o N o e 42
TESHINENT L feisiviss isneinitioesert s TRt e i3 e t ol b e T T o 42
Ml CmMENAtION iieiiesitisiiiitiessssnthasstassstrasssassasassesssssnssssesagliDusse s nsis 43
Operation and Maintenancecccouieiiereincncssiness e 43
Project SCREdUIC i, ceiiariniicsisssnnonsarissersssarisdls e Nesssbsrsrnesissossestes 43

NSO T Ty AR B S e et W e e 46

CHAPTER 1V: SYSTEM ANALYSIS 47
vid v 1170 e oot b STl SRR f R e T 48
Functional REqUITEMENTS-........ccoooiiiiiiiiieeeeeee oo 49

Functional Requirements Modules ... 50
Noft Buncti0pa R S e e S e et i esy o Tl e L 52
User-friendly interfaCe.c.oveviivriieirinierierenrenressesessesesnesessseesen, 52
RSO T L s f T e O ey et 53
REHBUIILY, ittt oviviuasssdbettariseie e e et s et L O A ey e 53
BIEICIENOY ;. /i Kics A S a AR LN kil rivieessstsoss ctbbiserisai s sitton 53
System Development Requirements ..o, 54
HATGWATS ROGUITCIIIIS, .. ooy e e s cinaie orsassinsnsbonto cibonsiniins 54

X1

SUMMMATYccoeninsesnsisissnisesessnsssssssssssssssssssiasssssssssssssssssssssssssssssssssssass 57
CHAPTER V: SYSTEM DESIGN 58
TITOAUCHION L. sohesesitrssssisessiasssiitiossisebrisiateiscsbaTRIb L EOot 438 L LEIT SRR ISLIDAEC 59
System Design OVETVIEW.........coumiuumississmismssissssisssisiismmsassisssssssnns 60
DALADASEY. . iiiercsioscbsaisisssserspesssssiagbiiasnesssarssisse et isistinissethe hesssitrtiesshe 62
TN | [P SN o by a L O 11 1ok T 4 B e R 63
Graphic User Interface (GUI) ... 65
DatafloW OLTRAANNI I c15isisairratsrissersisriirrMae Nt srhtseisiassisseesses 67
SUIMMIALYcoveseiesssissssenssasasassssssssnsnssnssssosgbingslyestissasssssssnssssassssssnssnasss 69
CHAPTER VI: SYSTEM IMPLEMENTATION 70
T L7 1175 [0 1 TSRPS0 BTG T, SEToupit, - LRI e i e 4, 1Ok ol 71
System Development DiSCUSSIONS ... 72
The System Design DISCUSSIONS ..ot 72

The Development Of The Database.............cccocoiiiiininnnnn. 73
TheDevelopment Of The ANN......cuciuiisissenssssmisssarssssnsaassinssasassnss 75
The Development Of The Graphic User Interface............................ 80
QUITIMATY ..ocvsueessssssssssssisssssasasesessassnsassassssasesasssssssssssssnisssssssnssnessssssasassins 82
CHAPTER 1V: SYSTEM TESTING 83
INETOAUCHION 1oiosisnsssesssstssassnsssrassossssonsanhisbansinsnsrsisssssssinesshisssssnssbsdorssosss 84
Functional Testing of Each Functional Module..................ocooovinnnn, 84

X1

ANN Module TEeSHNE ...ttt 87
QUIETESUDE .. viiiidecsisstsnm fessvsvisons sttt veas e RO T o TP 1T ET O 89
SUMMIATY 555 et sebbtiesirisesss boatd ot o Tl O et T L L L TR S 91
CHAPTER VIII: DISCUSSION 92
INtrOQUCHION: . 5. 8. s i sieefessisssaglnsiaisibineatiteitiismestotna e o e O 93
RESUIS 5105 b iz ih.didasntsvasiss 168 s R T LT E oy T T Ut O C i 94
Problems Encountered and Solutions Takenccooooovovi. 95
Lack of knowledge on ANNcooiiiiiiiiiiiieie e 95
[nexperience in the programming language used 96
QT L T T s e TR T L e s et o 97
SUMMIALY 528 1. i et rrtorars toareamass R o T TR T2y 1o T S U U) 98
User Manual Of TRAANN 99
APPENDIX 103
BIBLIOGRAPHY 156

X111

Chapter I : Introduction

Chapter I:
Introduction

Chapter I : Introduction

1.0OCHAPTER I: INTRODUCTION

1.1 Project Overview

The aim of this project is to develop a Travel Route Advisor, which
apply Artificial Neural Network (ANN). The system has the ability to
predict the most efficient solution of the available routes.

The system’s main purpose is to generate the best route for users
who are planning to travel by road, air or sea within Peninsular Malaysia.
The solution generated by the system will consider such aspects as

distance, time consumed and cost.

o

Chapter I : Introduction

1.2 Project Definition

1.2.1 Current Paradigm’s Weakness

The similar systems available today are based on real-time

operation. They have to analyze current situation before giving the

solution to the users. The weaknesses of these systems are:

1) They need the information of current situation to come out with

solutions. Of course they need agents to provide the input data.
In the case of Traffic.com, an online system that provide traffic
update for major cities of the USA, they are using speed
sensors located at the roadsides to detect congestions for every
60 seconds. They also have the traditional ways to collect
information; using the helicopters and phone calls. It means, a
large amount of money have to be allocated for the system.
They only warn users after the traffic jams occur. They could
not predict the traffic situation for the next hours or days. Users
can’t do their travel planning with the system.

They only focus on road traffic. In the real situation, we might

use air and water transport also to get us to places.

w

Chapter I : Introduction

1.2.2 Strength of Travel Route Advisor With ANN

Travel Route Advisor with Artificial Neural Network (TRAANN)
is a system that predicts the best route using the power of artificial neural
network. They do the predicting job based on the information it have, not
reporting the situation like conventional system. The advantages of this

system compared to others are:

1) It doesn’t need information on current traffic situation. The
system are much more economical than the others since it don’t
need speed sensors, helicopters or effort from the traffic
watcher that surely not cheap.

2) It predicts the most efficient route before any traffic
congestions or incidents happens. It helps user to plan their
travel wisely.

3) This system is not only covering the road situation, but it also
considers the air and sea transportation to come out with the

best solution.

Chapter I : Introduction

1.2.3 Project Limitation and Its Goal

TRAANN may not give the best solution for the routes, but
acceptable. It is because it does not consist enough parameters needed to
predict the traffic situation. It is a project to prove that Artificial Neural
Networks could be used to problems of this kind. Even if it has enough
parameters to deal with, it still, will not give the real situation of the traffic
since it only doing the predicting job, not reporting the traffic situation.

The project will be considered succeed if it could gives rational
solutions to users on how to travel within five cities of Peninsular

Malaysia; whether by road, by air or by sea.

Chapter I : Introduction

1.3 Project Objectives

The objectives of this project are:

1

2)

3)

To develop a system that advises users on travel routing
which implement artificial neural network.

To apply the concept of artificial neural network in
prediction system to travel route advisor.

To predict the most efficient route according to parameters

like distance, time consumed and cost.

Chapter I : Introduction

1.4 Project Scopes

The project objectives of TRAANN are to develop a system that
could advises users with the power of artificial neural network. The
artificial neural network will give a solution based on the parameters that
it have. The parameters are:

1. Distance between cities by road, air and sea

2. Time consumed for each route

3. Cost for each route

4. The origin cities and destination.

Solutions will be figured out by evaluating these parameters. The
artificial neural network will be trained to give the optimum values for
each parameter so it will produce the best solution.

The project will cover at least 5 major cities in Peninsular Malaysia

but it is expandable.

Chapter I : Introduction

1.5 Report Outline

The main purpose of this report is to state in full the processes
involved in the development of TRAANN. The report consists of several
chapters.

The first chapter is the introduction. It gives an overview of the
project. It covers project overview, project definition, the objectives and
project scopes. Project definition consists the current paradigm’s weakness
of similar system, the strengths of TRAANN, project limitations and
project’s goals.

Chapter 2 is the literature review. It contains a critical review of
studies done in related fields. Specifically, it includes some studies in
artificial intelligence and ANN as well as other artificial intelligence
approaches relevant to this project.

Chapter 3 is a chapter on system analysis and design. It describes the
development model chosen and steps taken to accomplish this project. The
discussion of the system requirements, the project schedule and
preliminary design of the system are attached.

The conclusion is done in Chapter 4 which is contains the summary

of important points that discussed in each chapter.

Chapter I : Introduction

1.6 Summary

This chapter gives the concept of the system. Briefly, it describes the
aim, main purpose, current paradigm’s weakness of similar system, the
strengths of TRAANN, project limitations and project’s goals, the
objectives, the scopes and the outline for the report.

The concept is, it will implement the artificial neural networks to
generate the best solution to travel by air, road or sea within Peninsular
Malaysia. It is generated by the artificial neural network, which weighs up
parameters such as travel cost, time consumed and distance.

The major advantage of TRAANN is it predicts the best route
economically compared to the current available systems, which report the
traffic situations. Though, the solution given won’t give the exact current
situation, as it is a routing system based on prediction, not from reports.

TRAANN is considered achieved its goal if it could predict the
travel solution among five cities in Peninsular Malaysia rationally.

This report will consist of eight chapters including the introduction,
literature review, methodology, system analysis, system design, system

implementation, system testing and discussion.

Chapter [: Introduction

The next chapter will be the literature review, which contains

researches and studies on the related field of the system.

10

Chapter II : Literature Review

Chapter 11:
[iterature Review

Chapter II : Literature Review

2.0CHAPTER I : LITERATURE REVIEW

2.1 Introduction

This chapter reviews the related topics that have been studied. It
cover the artificial intelligence and the approaches that might be used to
develop the project. Then, the discussion is about the artificial neural
network since the approach has been chosen to complete the system. On
the last part, Malaysian transportation system will be reviewed to have the

understanding of Malaysian transportation networks.

Chapter II : Literature Review

2.2 Artificial Intelligence

2.2.1 Definition

According to John McCarthy, a pioneer of Al whom suggested the
name Artificial Intelligence at the 1956 conference, “It (artificial
intelligence) is the science and engineering of making intelligent machine,
especially intelligent computer programs. It is related to the similar task of
using computers to understand human intelligence, but Artificial
Intelligence does not have to confine itself to methods that are biologically
observable.” (McCarthy,2002)

As a conclusion from the quote of John McCarthy, we understand

that artificial intelligence is a field of study that imitates human’s thinking

ability to make intelligent machines.

13

Chapter II : Literature Review

2.2.2 Artificial Intelligence Approaches In Prediction System

Two artificial intelligence approaches have been found which can be

applied in the prediction system are the expert system and ANN.

Expert System

Definition

An Expert System is an artificial intelligence program
incorporating a knowledge base and an inference system. It is a highly
specialized piece of software that attempts to duplicate the function of an
expert in some field of expertise (Frenzel, 1987). The program acts as an
intelligent consultant or advisor in the domain of interest, capturing
knowledge of one or more experts. Non-experts can then tap the expert

system to answer questions, solve problems, and make decisions in the

domain.

The Components of Expert System
The key components of expert system are the knowledge base, the

inference engine and the user interface.

Chapter II : Literature Review

The knowledge base is the place where the knowledge of the experts
is stored. There are different methods for representing knowledge in the
expert system. The designer can choose among predicate calculus, lists,
frames, semantic networks, scripts and production rules. The knowledge
can be acquires from two sources, the primary and the secondary. The
primary source comes directly from the experts. The secondary source is
from printed or electric materials such as the literatures, web pages, case
studies etc.

The inference engine is the software that implements a search and
pattern-matching operation. We can say that the function of the inference
engine is hypothesis proving. The inference engine uses the heuristic
algorithm to search for the solution. The solution sometimes is not the best
but it can solve the problem.

The user interface is software that lets the users communicate with
the system. The user interface asks questions or presents menu choices for
entering initial information in the database. The user interface contains
planned questions, statements, or menu sequences. It helps the experts
systems to narrow the scope by logical deduction. Then, it displays the

answer or solution for the problem as the output.

15

Chapter II : Literature Review

2.3 Artificial Neural Networks

2.3.1 Definition

According to W.S. Sarle, “There is no universally accepted
definition of an artificial neural network. But perhaps most people in the
field would agree that a neural network of many simple processors
(“units”), each possibly having a small amount of local memory. The units
are connected by communication channels (“connections™) which usually
carry numeric (as opposed to symbolic) data, encoded by any of various
means. The units operate only on their local data and on the inputs they
receive via the connections. The restriction to local operations is often
relaxed during training.”(WS Sarle)

Artificial neural networks have been developed as generalizations of
mathematical models of human neural biology, based on the assumption
that:

1. Information processing happens at many simple elements

called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection links has an associated weight, which in a

typical neural net, multiplies the signal transmitted.

16

Chapter II : Literature Review

4, Each neuron applies an activation function to its net input to

determine its output signal.

17

Chapter II : Literature Review

2.3.2 Biology Neural Network

A brief discussion of some features of biological neurons may help
clarifying the most important characteristics of artificial neuron. There is a
close analogy between the structure of a biological neuron and the
artificial neuron or processing element.

A biological neurons has three types of components :

1. Dendrites

2. Cell body / soma

3. Axon

Dendrites receive electric impulse signals from other neurons. The
signals are transmitted across a synaptic gap by a chemical process. The
cell body or soma, sums the incoming signals. When sufficient input
received, the cell fires. It transmits a signal over its axon to other cells. A

biological neuron is illustrated in Figure 1.1.

18

Chapter II : Literature Review

_ Dendrites
‘.:“; :'l"': N
N ‘;. = l.- ! N\
S y (L)
¥ . Nucleus Gl
[e — S Axon =" \
\" / { ~ B g e S et ey
N Ty, Can
) TR S
< P Cell body
= S

Figure 2.1 Biological neuron

Several features of the processing elements of artificial neural
networks are suggested by these properties of biological neurons
(Fausette,1994):

1. The processing elements receives many signals.

2. Signals may be modified by a weight at the receiving synapse.

3. The processing element sums the weighted inputs.

4. Under appropriate circumstances (sufficient input), the neuron

transmits a single output.

5. The output from a particular neuron may go to many other

neurons.

6. Information processing is local.

19

Chapter II : Literature Review

7. Memory is distributed :
a. Long term memory — in the neurons’ synapses or
weights.
b. Short-term memory — signal sent to the neurons.
8. A synapse’s strength may be modified by experience.

9. Neurotransmitters for synapses may be excitatory or inhibitory.

20

Chapter II : Literature Review

2.3.3 The Characters of The ANN

A neural network consists of a large number of simple processing
elements called neurons, unit, cell or nodes. Each neuron is connected to
other neurons by means of directed communication links, each with an
associated weight. The weights represent information being used by the
net to solve the problem.

Each neuron has an internal state, called its activation or activity
level. It is a function of the inputs it has received. A neuron can send only
one signal at a time, although that signal is broadcast to several other
neurons.

A neural network is characterized by:

1. Architecture — pattern of connections between the neurons.

2. Training algorithm-methods of determining weight on the

connections

3. Activation function

Architecture
The architecture or the pattern of connections between the neurons

refers to network’s wiring detail. It includes the detail of connecting units,

21

Chapter II : Literature Review

the direction of connection and the value of the weighted connections. The
steps to determine the pattern of connectivity are:
1. System designer specifies which units are connected and which

direction.

-~

2. The weight values are learnt during a training phase.

Training algorithm
The method of setting the values of the weights (training) is an important
characteristic of different neural nets. We will discuss two types of

training — supervised and unsupervised — for a neural network.

Supervised learning

In this mode of training, training is accomplished by presenting a
sequence of training vectors or patterns, each with associated target output
vector. The weights are then adjusted according to a learning algorithm to
minimize errors. This type of learning is similar to teacher’s learning. The
teacher may be training set of data or being an observer who grades the
performance of the students. Reinforcement will be given to help the
students,

The tasks that suitable for supervised learning include decision-

making, map associations, memorizing information and generalization.

22

Chapter II : Literature Review

Unsupervised learning

In this mode of training, a sequence of input vectors is provided,
but no target vectors are specified. The net modifies the weights so that the
similar input vectors are assigned to the same output unit. The neural net
will produce a representative vector for each cluster formed. The daily
example for unsupervised learning is learning by doing, without a teacher.

Unsupervised learning is not well understood and is still the
subject of much research. It is a great interest to the government of big
countries, because many military situations don’t have a data set available
until a conflict arises. Supervised learning technique, on the other hand,

has achieved a reputation for producing good result in practice and

applications.

Activation function

Activation function refer to the basic operation of an artificial
neuron involves summing its weighted input signal and applying an
output. For the input units, this function is the identity function. Typically,
the same activation function is used for all neurons in any particular layer

of a neural net, although this is not required. In most cases, a nonlinear

activation function 1§ used.

Chapter II : Literature Review

2.3.4 Neural Network’s Capabilities

Below are the example ranges from commercial successes to areas

of active research of the neural network.

Signal processing

One of the first commercial applications was to suppress noise on a
telephone line. The neural net used for this purpose is a form of
ADALINE (Adaptive Linear Elements). The need for adaptive echo
cancellers has become more pressing with the development of
transcontinental satellite links for long distance telephone circuits. The
adaptive noise cancellation idea is quite simple. At the end of a long
distance line, the incoming signal is applied to both the telephone system
component and the adaptive filter (the ADALINE type of neural net). The
difference between the output of the hybrid and the output of the
ADALINE is the error. It is then used to adjust the weights on ADALINE.

The ADALINE is trained to remove the noise from the hybrid’s output

signal.

Control

As an example of the application of the neural networks to control

problems, consider the task of training neural “truck backer-upper” to

24

Chapter II : Literature Review

provide steering directions to a trailer truck attempting to back up to a
loading dock. The neural net is able to learn how to steer the truck in order
for the trailer to reach the dock, starting with the truck and trailer in any

initial configuration that allows enough clearance for a solution to be

possible.

Pattern recognition

One specific area in which neural network applications have been
developed is the automatic recognition of handwritten characters. The

variation in sizes, positions, and styles of writing make this a difficult

problem for traditional techniques.

Medicine

One of many example of the application of neural networks to medicine
was an application called “Instant Physician”. The idea behind this
application is to train an auto associative memory neural network to store
a large number of medical records, including information on symptoms,
diagnosis, and treatment for a particular case. After training, the net can be
presented with input consisting of a set of symptoms; it will then find the

full stored pattern that represents the best diagnosis treatment.

Chapter II : Literature Review

Prediction

A very common problem is that predicting value of a variable given
historic value of it. Economic and meteorological models spring to mind.
Neural networks have frequently been shown to out perform traditional

techniques like ARIMA and frequency domain analysis.

Chapter II : Literature Review

2.3.5 Competitive network

The neurons in a competitive layer distribute themselves to

recognize frequently presented input vectors.

Architecture

Y

L

Rxl

Input

Competitive Layer

-

S1xR

W

iy

|l ndist Il

1—P

bt

Sixd

Sixl

nt

Sixl

N\

al

S’xil

Sl

.

Figure 2.2: The architecture for a competitive network.

The |dist| box in this figure accepts the input vector p and the input

weight matrix IW1,1, and produces a vector having S1 elements. The

Chapter II : Literature Review

elements are the negative of the distances between the input vector and

vectors iIW1,1 formed from the rows of the input weight matrix.

The net input nl of a competitive layer is computed by finding the
negative distance between input vector p and the weight vectors and
adding the biases b. If all biases are zero, the maximum net input a neuron

can have is 0. This occurs when the input vector p equals that neuron's

weight vector.

The competitive transfer function accepts a net input vector for a
layer and returns neuron outputs of 0 for all neurons except for the winner,
the neuron associated with the most positive element of net input nl. The
winner's output is 1. If all biases are 0, then the neuron whose weight
vector is closest to the input vector has the least negative net input and,
therefore, wins the competition to output a 1.

The competitive with unsupervised learning net had been chosen

as the artificial neural network type for the system.

28

Chapter II : Literature Review

2.4 Malaysian Transportation System

Malaysian transportation is developing rapidly day by day.
Malaysian major transportation includes transportation by road, railway,
air and sea. The new integrated public transport system is expected to

alleviate traffic congestion problem in the city and provide a more

efficient transportation system for the public.

2.4.1 Road

In this region, Malaysian roads are among the best. Driving
through the North-South Highway on the West Coast or through the East-
West Highway on the east coast could make journey to Malaysia from
Thailand and Singapore. Many other highways are connecting places in
Malaysia especially in Klang Valley and West Coast of Peninsular
Malaysia. They include KESAS highway, SPRINT highway, Kerinchi

Link and the new-elevated PROLINTAS highway. Buses, taxis and rent

car service available widely for the traveling purpose.

29

Chapter II : Literature Review

Figure 2.3 Peninsular Malaysia Road Map

30

Chapter II : Literature Review

2.4.2 Railway

The railway runs all the way into Singapore in the south and to
Padang Besar in the north, at the Thai-Malaysian border. There is also an
eastern link that takes to the East Coast states of the PeninsulaCommuters
are also able to travel between Sentul Timur, Ampang and the National
Stadium Bukit Jalil via the STAR-LRT line, and between Lembah Subang
and Gombak using PUTRA-LRT line or from Klang Valley to Rawang

and Seremban with KTM Commuter.

31

Chapter II : Literature Review

2.4.3 Air

Langkawy

Kota Kinabsiu

)

Labuan

Figure 2.4 Malaysian airway map.

Numerous regional airports in 13 state capitals as well is in other
strategic locations serve Malaysia. Penang, Langkawi, Alor Setar, Ipoh,
Kota Baru, Kuala Terengganu, Kuantan, Johor Bahru, Kuching, Kota
Kinabalu Labuan, Tawau, and Sandakan.could be connected from Kuala
Lumpur daily by air. Airlines companies also serve the community by
operating many services in some of Malaysia's remote towns and villages
especially in North Borneo. This services are provided by local airline

companies include Malaysia Airlines, Air Asia and Pelangi Air.

32

Chapter II : Literature Review

2.4.4 Sea/ water

Sea transportation is an alternative way to travel in Malaysia. Ferries
serve most of the country’s islands. Other towns like Malacca, Port Klang,
Penang and Kuantan also could be reached by sea. Water transportation is
used by and large in remote area in Sabah and Sarawak as there are no

roads connecting these places.

33

Chapter II : Literature Review

2.5 Summary

The chapter contains the review of the related studied field.
Artificial intelligence approach has been chosen to develop the system.
Then, the artificial neural network has been chosen rather than the expert
system for the system’s orientation. Among the types of the neural
networks, competitive net with unsupervised learning rule had been

chosen. A review on Malaysian transportation also had been done in this

chapter.

34

Chapter III:
Methodology

Chapter III : Methodology

3.0CHAPTER III : METHODOLOGY
3.1 Introduction

This chapter explain the research approaches taken during the
system development. It also discusses the system development life cycle

chosen to complete the system.

3.2 Research Method

There are 4 major types of resources referred to carry out the

research including the library, the Internet, individuals and personal books

or lecture notes.

3.2.1 Library

References had been done in the library to give a clear
comprehension on ANN, the ANN approaches taken to solve similar
problems and to gain knowledge on researches done by the ANN’s
pioneers. There are also a number of projects related to ANN developed
by the computer science and engineering students that helped to create
new solution to complete this project. The references had been done in

University Malaya’s Main Library, the faculty’s document room and

Engineering Faculty’s Library.

Chapter III : Methodology

3.2.2 Internet

The Internet is one of the major resources to gain information.
Information gathered from the Internet includes the information on
currently available traffic routing system, traveling information and
programming techniques. The traveling information includes distances
from each city in Peninsular Malaysia, available transportation services,

fares and estimated time for each route.

3.2.3 Individuals

Some individuals had been referred to gain the personal knowledge
on their fields of interest. Mostly the knowledge is gained from the
lecturers, tutor, friends and there about the concept of ANN, the project

development, and some on the transportation information.

3.2.4 Personal books and lecture notes
Personal books and lecture notes are referred to review some
knowledge that helps on the development of the system. They include the

Matlab programming guide and project management knowledge.

37

Chapter III : Methodology

3.3 System Development Life Cycle

The waterfall model with prototyping has been chosen as the
development process model to complete the system. Discussion on two
models, which inspired the waterfall with prototyping; the waterfall model

and the prototyping model, will be discussed first.

Waterfall Model

The advantages of using waterfall model for this project is:
= [t is useful in helping system designer to lay out what he/she needs
to do in the project. This model presents a very high level view of
what goes on during development.
» |t suggest the sequence of events that system designer should
expect to encounter.
While the advantage of using this development model is :
= |t does not reflect the way code is really developed except for very
well understood problems. A system is usually developed with a
great deal of iteration.
Conclusion: Inflexible partitioning of the project into these distinct stages.

Received system sometimes unusable, as they do not meet the customer’s

requirement,

38

Chapter III : Methodology

Prototyping Model
The superior of the prototyping model is:
=]t is an approach where a simple running program will be
developed first, modified and changed to suit the objective and
target.
Although, the feature that not suitable for the project is
» [t is more suitable for the system, which is needed to be developed
and use urgently.
Conclusion: Problem with prototyping model is in planning, costing &

estimating a project. Although the project can be developed faster, but it is

outside of the system developer’ experience.

Waterfall Model with Prototyping

The advantages of using waterfall model with prototyping method

compared to other model are:

= [t combines the advantages of some other models, the waterfall
model and the prototyping model.
» Better solution for the problem that occurs on their own.

» The development process more visible for the users and designers.

39

Chapter III : Methodology

= System prototype can be developed to give end udders a concrete
impression of the system capability. The prototype may therefore
help in establishing & validating systems requirements.

» Validation and verification are enabled. Validation will ensures
that the system has implemented all the requirements, so that each
system’s function can be traced back to a particular requirement in
the specification. Verification will ensure that each function works
correctly. It is made in order to get the high quality of the

implementation on the system.

40

Chapter III : Methodology

Analysis

Design

\\ . . \
A Verification),
\ \

\

|

\ |
\ I
I

!

e
-

Testing

Prototyping

V Implementation

Operation
maintenance

and

Time

Figure 3.1 Waterfall model with prototyping

4]

Chapter III : Methodology

3.3.1

3.3.2

3.3.3

3.34

Analysis

This is the first phase in the system development. This is a
critical phase and the success of a system is mainly depends on this
phase. The main purpose of this phase is to understand the

proposed system according to users requirements.(Gordon,1995)

Design
The design phase is where identified requirements are
translated to system representative. Collected information will be

used to develop system’s logical design. (Kendall,1998)

Coding
This is the phase which translation and implementation of
system’s design representative to programming syntax took place.

(Kendall, 1998)

Testing

This is an important phase to ensure the quality of the
system that will be developed is satisfying the user’s requirements,
and efficiently functional. The specification, design and system

coding will be reexamined. This is where the verification and

42

Chapter III : Methodology

3.3.6

3.3.7

validation process will be done. This phase is considered success

when the system functions well. (Kendall,1998)

Implementation

The developed system will be implemented in hardware
and software environment that will be used. The whole system will

be tested to ensure the system run without error. (Kendall,1998)

Operation and Maintenance

This is the final phase of the system development process.
The maintenance of the system will be done constantly.

Observations and modification will be done currently to ensure the

developed system really satisfying. (Kendall,1998)

Project Schedule
Table 3.1 shows the project schedule for the system while

figure 3.2 shows the system development Gannt Chart.

43

Chapter III : Methodology

Table 3.1 Project schedule

‘ Date
Activities ,
e | From To
Literature review 1/6/2002 10/7/2002
System analysis 1/6/2002 10/7/2002
Methodology 11/7/2002 20/8/2002
System Design 21/8/2002 31/9/2002
Phase 11 27/5/2002 15/10/2002
System design 1/10/2002 20/10/2002
Coding 21/10/2002 20/12/2002
System testing 21/12/2002 31/1/2003
Documentation 1/6/2002 31/1/2003

44

Chapter III : Methodology

Month |
Task

Literature

Review

System Analysis

Methodology

10

11

System Design

Phase 11

System Design

Coding

System Testing

Documentation

Figure 3.2 Gannt Chart for the development of the system

45

Chapter III : Methodology

3.4 Summary

This chapter describes the research methods and the system
development life cycle. The research has been done from four resources,
which are the library, the Internet, discussions with the related personals

of their interests and books or lecture notes.

Three system development life cycle models have been discussed.
They are waterfall model, prototyping model and waterfall with
prototyping model, which is the hybrid of two model discussed earlier. As
the waterfall model with prototyping combines the advantages of waterfall

model and prototyping model, it has been chosen as the system

development life cycle for the system.

46

Chapter IV: System Analysis

Chapter 1V:
System Analysis

47

Chapter IV: System Analysis

4.0CHAPTER IV: SYSTEM ANALYSIS

4.1 Introduction

This chapter describes all of the requirements needed for the system
development. It consists of functional requirements, non-functional
requirements and development requirements. The development

requirements cover both hardware and software requirements.

48

Chapter IV: System Analysis

4.2 Functional Requirements-

The functional requirements consist of a set of tasks that the
software is required to perform. From this requirement list, a guideline on
the overall layout of the software can be planned. The functional

requirements defined for this system are:

4.2.1 Able to predicts the most efficient route by air, sea and

road.
The system has the ability to predict the most efficient solution of
the available routes. The solution generated by the system will

consider such aspects as distance, time consumed and cost.

4.2.2 Able to accepts and stores distances, travel times and costs

as its parameters.

The system has the ability to store distances, travel times and costs
in the database as its parameters. The parameters also should be
editable from time to time to meet the changes on the parameters

especially on costs and travel times.

49

Chapter IV: System Analysis

4.2.3 Functional Requirements Modules

The functional requirements are broken into sub-components or

modules. These modules taken together represent the actual whole

software package. These modules are :

Database

The database is where the information on distance, time consumed

and cost for every route are stored. It send the traveling data to the ANN

for the learning purpose.

ANN

The neural networks receive the parameters as the input from
database module. It will count the parameters and send an output, to

represent the solution, whether to travel by air, road or sea.

50

Chapter IV: System Analysis

Graphic User Interface (GUI)

GUI module will receive a query from user. The input will be the
origin place and the destination that user would like to go. The module
then sends a query to the ANN to seek for the relevant data. If the
information is there, it will send the solution from the ANN. The solution

given is in numeric form. This module then translates it to either traveling

by air, road or sea and displays it to the user.

51

Chapter IV: System Analysis

4.3 Non Functional Requirements

Non-functional requirements refer to functions that are essential but

which are not directly related to the core function. For TRAANN, the non-

functional requirements defined are:

4.3.1 User-friendly interface.

The interface of the system will be made as user friendly as
possible. The interface will be specially modeled for ease of learning. The
concept of ease of learning is that a user will not be using this software
often (like office software) and therefore will not be able to memorize the
functions of too much buttons or complex navigation. Its goal will be to
make the software’s functions easy to recognize with visual cues. This is
slightly different from ease of use where the goal is to make completing
easy and fast. Ease of use includes a lot of features that allow work to be
done as quick as possible but at the expense of being complex. Some of

the features of ease of learning are the exact opposite of ease of use.

Chapter IV: System Analysis

4.3.2 Response Time
Response time involves the time it takes from the computer

processing the user’s request. The goal of this is analysis is to determine

the best compromise between features and the time it takes for something

to happen.

4.3.3 Reliability

The system must be made stable on the target operating system

specifications

4.3.4 Efficiency

Efficiency is defined here as making optimal use of space, time and

other resources.

53

Chapter IV: System Analysis

4.4 System Development Requirements

The functional requirements consist of a set of tasks that the software is
required to perform. The requirement is divided into two component; the

hardware requirements and the software requirements.

4.4.1 Hardware Requirements

The hardware requirement of the system is as follows:

= 233 MHz microprocessor (any type)
= 128 MB RAM
* 4 GB Hard Disk Drive

= Standard PC device (CD-ROM, Floppy Drive, etc)

The hardware requirement is based on the minimum

requirements for the software that will be used to develop the

system.

54

Chapter IV: System Analysis

4.4.2 Software Requirements

4.4.2.1 MATLAB 6.1

MATLAB is a software package that is powerful in numeric
computation, data analysis and graphics. It is a programming language that
is capable of performing a wide variety of engineering computation.
MATLAB is stands for '"MATrix LABoratory’. With its- matrix-based
techniques problems can be solve easily without having to write detailed
program codes as in traditional languages like C, Basic and Fortran. Under
its easy to use environment, MATLAB has the capability to perform
numerical analysis, matrix computation, signal processing, and plant
control. There are two elements of MATLAB that are used for the

development; Neural Network Toolbox and Graphical User Interface

Development.

Chapter IV: System Analysis

MATLAB Neural Network Toolbox (NNT)
The MATLAB Neural Network Toolbox is an all-purpose neural
network environment. It is a powerful tool in creating neural network as it

includes almost everything for the neural network environment purpose. It

also include high level network in the toolbox.

Graphical User Interface Design Environment (GUIDE)
GUIDE which stands for Graphical User Interface Development

Environment is a set of MATLAB tools designed to make building GUIs

(Graphical User Interface) easier and faster.

56

Chapter IV: System Analysis

4.5 Summary

The requirements needed for the system development consists of
functional requirements, non-functional requirements and development
requirements. The development requirements include both hardware and
software requirements.

There are two functional requirements decided for the system. It
should have the ability to predict the most efficient route by air, sea and
road, and it should be able to accept and stores distances, travel times and
costs as its parameters. The functional requirements are broken into three
modules. There are the database, ANN and GUI module.

The non-functional requirements aimed for the system includes
user-friendly interface, quick response time, reliable and efficiency.

The system development requires a personal computer with

minimum specification needed to run MATLAB as it is the software used

to develop the system.

57

Chapter V : System Design

Chapter V:
System Design

58

Chapter V : System Design

5.0 CHAPTER V: SYSTEM DESIGN

5.1 Introduction

This chapter describes the components of the system,
which hold the specific functions that should be done by the

system. It involves the system design overview, major components

of the system and the data flow of the system.

This chapter also describes how the components are joined

together to make the system runs.

59

Chapter V : System Design

5.2 System Design Overview

Back-end
system

Front-end
system

Database

ANN

Graphic
User
Interface

Figure 5.1 System design of Travel Route Advisor with artificial Neural

Networks

60

Chapter V : System Design

Travel Route Advisor with artificial Neural Networks is a system

designed to generate the best solution or route. The functions of the

system are:

.

)

Receive the information on distance, time consumed and cost
from the database.
ANN analyzes the parameters.

Save the solution in a file.

Receive query (origin cities and destination) from the user.

Display the solution.

There are three components that work together to achieve the

system’s functions as stated above. The components are the database, the

ANN module and the GUL

61

Chapter V : System Design

5.2.1 Database

The ANN module functions to store the information on
transportation such as the distances between cities, fares and time
consumed for each route; air, road and sea. Using this information, the
ANN runs to make solution for the best route.

The database is where the information on distance, time consumed
and cost for every route are stored. It will keep the numerical data in the
form of matrices. The ANN will access these data as the parameters.

The traveling fare data that will be used for the parameters are
referred to Malaysian Airlines for air route, bus fare for road route and any

various cruise and ferry fare for sea route.

This module is the back-end system for TRAANN. It will not be

available for the end user to view the module.

Chapter V : System Design

Parameters
X ’ Result
S P
ANN e Y
X3
X4

Figure 5.2: ANN design for TRAANN

5.2.2 ANN

The neural networks receive the parameters from the database. It
will count the parameters and send numeric output, to represent the
solution, whether to travel by air, road or sea.

The results is stored is an .m type file. It receives the numeric
solutions given by the ANN learning. There are 10 numeric values to

represent the solution routes. The numeric solutions are stored ina 10 x 1

matrix.

The numeric data stored will be accessed by the graphic
user interface to be displayed later. The GUI to display the solution will

access this file.

63

Chapter V : System Design

Competitive network is chosen as the ANN type for the Travel
Route Advisor.
This module is the back-end system for TRAANN. It will not be

available for the end user to view the module.

Chapter V : System Design

5.2.3 Graphic User Interface (GUI)

GUI is the only module of TRAANN that visible to the end user.
The module accesses the file that contains the solutions stored by the ANN
processing module. The solutions received are in numeric form. The GUI
module then transfers them into texts so for the users viewing.

The interface consists of two pop menus for the lists of departure
and destination cities, a text box to display the route suggestions, the Enter

button to trigger the selection and the clear button to wipe out the

suggestion displayed.

Chapter V : System Design

“ TIHRAANN : Houte

-

4

wggestion

- Travel Route Advisorwith

 Artificial Neural Network

Departure Destination

Foos B [ewm

Suggested Route
H Please select departure and destination city then click Enter. J

pp-rars
B
\

" 5 Ent
R g‘l‘fﬁ' i:f»‘.:t LR

Figure 5.3: Graphic user interface for TRAANN

66

Chapter V : System Design

5.3 Data flow of TRAANN

Travel information

in matrices. Database

Soll{tlons n ANN
numeric value

Suggestions in text GUIT

Figure 5.4: Data flow diagram for TRAANN

The data flow of TRAANN starts from the database where it keeps
information on traveling within 5 cities; Penang, Kuala Terengganu,
Kuantan, Kuala Lumpur and Johor Bahru, in 10 matrices. It consists the

information on distances, time consume and fares between each cities and

each route; by air, by road and by sea.

67

Chapter V : System Design

Then, the ANN for the learning process will access the data. The
process then returns a value, which represents the solution for the travel
method; either by air, by road or by sea.

The results then saved in a file in matrices form. There are 10
matrices altogether, each matrix for a route, as example from Penang to
Kuala Lumpur or from Terengganu to Johor Bahru.

Finally, the GUI then accesses the numeric value of results. It

translates the numeric value into texts, which is recognizable by the users.

68

Chapter V : System Design

5.4 Summary

This chapter described the system design of TRAANN. The
description includes the system design overview and the data flow of the
system.

The system design overview elaborates the main modules of
TRAANN. The main modules of the system namely the database, ANN
module and graphic user interface. Every module has their own functions
to run the system. The database contains the traveling information. The
ANN processing module runs the ANN to generate the solution and saved

in the result storage. The GUI interact the system with the user.

The data flow of the system start from the database where the
information on travels is kept. The data the transferred to the ANN as the

parameter and saved. Finally, the data is transferred to the GUI for the

users’ viewing.

69

Chapter VI : System Implementation

Chapter VI:
System
[mplementation

70

Chapter VI : System Implementation

6.0 CHAPTER VI : SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter shows the development of the system. It refers to the

transformation process of modules and algorithms into executable

computer commands.

The computer command is in MATLAB as it is the program that had

been chosen to run the system.

Chapter VI : System Implementation

6.2 System Development Discussions

6.2.1 The System Design Discussions

Database —p] ANN

GUI

Figure 6.1: Overview of Travel Route Advisor with Artificial Neural

Network System Design.

Chapter VI : System Implementation

6.2.2 The Development Of The Database
The database contains data on distances between cities, fare rates,

and time consumed for each route on each destination. The data is stored

in matrices.

As an example, Table 6.1 shows the traveling data from Kuantan

to Kuala Lumpur. There is no sea transportation for connecting these two

cities.
Table 6.1: Traveling Data from Kuantan to Kuala Lumpur
Fare Traveling Time
g (RM) (Hour)
Route i
Q
c
% = 8 S 8= 8 S
() < Oo.’. 175} < é N
Kuantan —
274 112 | 142 | - 0.7 3 -
Kuala Lumpur

A 4 x 2 matrix represents the travel information as shown in figure
62 Each element in the matrix represents a travel data. The value -1
located in sea fare and sea’s travel time mark that there is no sea

transportation for the route. While the ‘0’ element (labeled as null value in

73

Chapter VI : System Implementation

Figure 6.2) does not represent any value. It only placed to complete the

matrix’s element.

travel time by:

distance road sea

e |

p=[27411214.2-1;0 40 3 -1]

il

air fare .
road fare sea fare null valne

Figure 6.2: Travel data representation in a matrix

After each declaration of variable p, the module calls the function

ann.m to activate the ANN simulation using the parameters. The function

is called by the command:

R(8) = ann(p)

R(8) refers to the location of the element where the solution will be

placed in R, a 10 x 1 matrix which store the solutions simulated by the

ANN,

74

Chapter VI : System Implementation

6.2.3 The Development of The ANN
This part describes the development process of the ANN. It
includes the ANN type chosen, the programming tools chosen, the main

objective of the ANN and the implementation of the ANN.

6.2.3.1 The ANN Type Chosen

Two layers competitive network had been used for the neural
network architecture. It is because the ability of the competitive neural
network’s neurons in learning to recognize groups of similar input vectors.
It also has the ability to select a winner among the parameters given. It is
the important property of a neural network that TRAANN needed, as it
has to generate the best route as the winner among others.

The network will learn itself with the unsupervised learning rules.
Using the unsupervised learning rules, it is not a necessary to give a target
and supervise the neural networks’ performance. The neurons train
themselves as training by doing. The neurons of competitive networks
learn to recognize groups of similar input vectors and set a method on how
to manipulate them to produce the output.

For the competitive network, it uses random order incremental

training with learning functions. It trains a network with weight and bias

75

Chapter VI : System Implementation

learning rules with incremental updates after each presentation of an input

and the inputs are presented in random order. (MATLAB Help,2001)

6.2.3.2 The Programming Tool Chosen

MATLAB has been chosen as the programming tool for the
project. It is because MATLAB has the Neural Network Toolbox

integrated in the program. The Neural Network Toolbox has all the

functions and the properties of the ANN needed.
6.2.3.3 The Objective of The ANN

The objective of the ANN chosen is to generate the best route as
the winner using the parameters given. The parameters help the ANN as

the information it needs to judge to produce the best route among others.
6.2.3.4 The Implementation Of The ANN

The ANN is developed as a function named ann.m. The database

module will call this function after each declaration of parameters for each

route,

As an example, after declaring the Kuantan to Kuala Lumpur

route’s parameter, p = [274 112 14.2 -1; 040 3 -1], the program called the

76

Chapter VI : System Implementation

ann.m function. The ann.m function receives matrix p, as the parameter to

run the ANN. The process will be repeated for every parameter, from the

first to the last.

After receiving the parameter, the ANN function create a new
competitive two-neuron layer with two input elements using the
command:

net = newc([0 1; 0 1],2)

Then, it initializes the weights to the center of the input ranges.
The weight initialized will be the initial weight it uses. It will be increased
or decreased by the ANN to suit the parameters. The initialization of the
weight use the command :

wts = net IW{1,1}

The ANN modules then set the network for training while the
system developer sets the value of the epoch. The 300 epochs time has
been chosen as it shows the stability of the result when reaching this point
and above. As it reached the constancy, the larger value of epochs are not
necessary as it increases the time response of the system. The command to
set the network training is represented by:

net.trainParam.epochs = 300

net = train(net,p)

Chapter VI : System Implementation

Epoch

Figure 6.3: Learning result up to 500 epochs

The ANN module then set the training function for competitive
networks with the command:

net.trainFen

After the original vectors as the input to the network is provided,
the ANN module simulate the network and convert its output vectors to
class indices. The commands are:
a = sim(net,p)
ac = vec2ind(a)

result = sum (ac)

78

Chapter VI : System Implementation

The results from the ANN simulation is sent to a .mat file named
result.m. They are sent to this file by the command:
save result R
The file stores the solution in a 10 x 1 matrix. As the example,

R=[5§ 6 6 6 7 7 6 6 S5 6],

where each element represent the solution generated by the ANN for each

route.

The matrix then accessed by the GUI module to display the

solution to users.

79

Chapter VI : System Implementation

6.2.4 The Development of Graphic User Interface

The graphic user interface of the system is developed using the
Graphic User Interface Development Environment (GUIDE) provided in
MATLAB. GUIDE will generate its source code in an .m file while the
developer’s part is as easy as drag and drop the elements such as the scroll
bar, button and text then writing the source code for the callback function
of the elements.

The graphic user interface of the system contains two list boxes;
each for the departing location and destination, two push button, each to
display the solution and to wipe out the display and an edit text column to

display the solution suggested by the system.

It main tasks is receive user inputs of departure and destination
cities, and converting the numeric value passed by the ANN into
understandable text for user viewing. Table 6.2 shows the text

representation of the numeric value for the GUL

It also contain help menu at the top of the interface to guide users.

80

Chapter VI : System Implementation

) PP,

Vi e,

oo e by o SO

I L Gk L e

D@#@ | ew -

(S0 ||

()| R . ‘

KIEl Travel Route Advisor with

IS Artiticlal Neural Network

| ;

gﬁ. \ ‘» ‘ s

e \ Departure § Destination ;‘

i | [Penang - Penang 7
‘Sugqe;todRm

B‘mwu on
queve

>|on

[Please select departure and destination city then click Enter]

questFcn clasersq

Rl

0
}02.0077]

wlor

Atraanndimain g
ol

* Figure 6.4: Graphic User Interface D

e, % § masann

velopment Environme

PRSI

nt

Table 6.2: Text Representation of Numeric Value

Numeric value from the | Representation of text form
ANN displayed by GUi
5 By Air
6 By Road
7 By Sea

81

Chapter VI : System Implementation

6.3 Summary

This chapter discussed the system development process. It includes
the development of the database, the development of the ANN and the
development of the GUL

The development of the ANN is the main discussion of this chapter.
It includes the ANN type chosen, the programming tools chosen, the main
objective of the ANN and the implementation of the ANN.

The competitive neural network is the type of the ANN that had
been chosen for the system. The development of the ANN will be using
the MATLAB Neural Network Toolbox. The ANN is developed to
generate solution on the best route to travel with information given on
travel distances, fares and time taken for each route. The implementation
shows on how the proposed ANN had being implemented to the system
using MATLAB commands.

The development of the GUI is based on the Graphic User Interface

Development Environment (GUIDE) integrated with MATLAB.

Chapter VII : System Testing

Chapter VII:
System Testing

Chapter VII : System Testing

7.0 CHAPTER IV : SYSTEM TESTING

7.1 Introduction

This chapter describes whether the system developed meets the

functional requirements and specification predetermined for the system.

7.2 Functional Testing of Each Functional Module

7.2.1 Database Testing

The functions that should be done by the database are:
1. Send parameters to ANN for learning
2. Send result matrix to result.mat

Send parameters to ANN for learning

Before the ANN learning take place, the database should send the
data needed by the ANN as the parameter. Table 7.2 shows whether the

data sent to the ANN are the same as the data that stored in the database.

84

Chapter VII : System Testing

Table 7.1 : Comparison between data stored in database and data

045 4 36

0 45.0000 4.0000 36.0000

received by the ANN
Data stored in :

O

§ TN Data received by the ANN §

A

1 | [826-1454-1; 826.0000 -1.0000 45.4000 -1.0000 OK
0-111.8-1] 0 -1.0000 11.8000 -1.0000

2 | [60926933.5-1; |609.0000 269.0000 33.5000 -1.0000 | OK
00.75 6.8 -1] 0 0.7500 6.8000 -1.0000

3 | [382 158 22.7 590; | 382.0000 158.0000 22.7000 590.0000 | OK
00.75 4.2 8] 0 0.7500 4.2000 8.0000

4 | [747 270 41 1070; | 1.0e+003 * 0.7470 0.2700 0.0410 OK
018.316] 1.0700

0 0.0010 0.0083 0.0160

5 [[219-112-1; 219.0000 -1.0000 12.0000 -1.0000 OK
0-12.5-1] 0 -1.0000 2.5000 -1.0000

6 | [491 15825-1; 491 158 25 -1 OK
0457-1] 0%, Y -l

7 | [54022629.7-1; | 540.0000 226.0000 29.7000 -1.0000 | OK
00.87.8-1] 0 0.8000 7.8000 -1.0000

8 |[27411214.2-1; |274.0000 112.0000 14.2000 -1.0000 | OK
0403-1] 0 40.0000 3.0000 -1.0000

9 |[320-117.6-1; 320.0000 -1.0000 17.6000 -1.0000 OK
0-13.6-1] 0 -1.0000 3.6000 -1.0000

10 | [365 141 20.2 590; | 365.0000 141.0000 20.2000 590.0000 | OK

85

Chapter VII : System Testing

The result shows that the data stored in database and the data
received by the ANN is identical. Even there are some differences in the

numbers of decimal points; they do not affect the value of the data.

Send result matrix to result.mat

The next test is to identify whether the module could send the
result generated by the ANN in matrix form to result.mat file, the file that

keeps the ANN generated solutions.

Table 7.2 : Comparison between generated by the ANN and data stored in
result.mat file

Result generated by the Data stored in result. mat file Status
ANN

5 6 6 6 5 G 6 6 6 5

7 6 6 7 6 7.6 6 7 6 s

Table 7.2 shows the data stored in result.mat file are as the same as
the data generated by the ANN.
From the tests that have been done, they show that the database

module successfully meet the requirement.

86

Chapter VII : System Testing

7.2.2 ANN Module Testing

The function that should be done by the ANN module is to recognize
the parameters given and simulates them to generate the best solution for
each route.

Table 7.3 shows the results of the overall ANN testing to identify
any defect during the ANN learning process.

From the results, it clearly shows that the ANN is able to generate
routes as the solution. The discussion whether the solution it simulates can
be determined as the best solution or not will be discussed when all of the

tests are done.

87

Chapter VII : System Testing

Table 7.3 : ANN Module Testing Result

Route Result Status
Penang <-> K Terengganu 5 Success
Penang <-> Kuantan 6 Success
Penang <-> K Lumpur 6 Success
Penang <-> Johor Bahru 6 Success
K Terengganu <-> Kuantan 5 Success
K Terengganu <-> K Lumpur 6 Success
K Terengganu <-> J Bahru 6 Success
Kuantan <-> K Lumpur 6 Success
Kuantan <-> J Bahru 7 Success
K Lumpur <-> J Bahru 6 Sﬁccess

Chapter VII : System Testing

7.2.3 GUI Testing

The GUI functions to interact with the users using the
understandable representations of text. It receives the preferred departure
and destination cities from the users. Then, it converts the related numeric

value of solutions generated by the ANN to texts.

Table 7.4 shows the GUI test to check whether it could convert the
numeric value from the ANN to a text form that understandable by users.

The result shows that the GUI manages to do the task excellently without

any fault.

89

Chapter VII : System Testing

Table 7.4: GUI Testing For Numeric Representation of Solution

Numeric Text
Route (From (Converted Status
ANN) by GUI)

Penang <-> K Terengganu 5 By Road Success
Penang <-> Kuantan (1 B By Air Success
Penang <-> K Lumpur 6 By Air Success
Penang <-> Johor Bahru 6 By Air Success
K Terengganu <-> Kuantan 5 By Road Success
K Terengganu <-> K Lumpur 6 By Air Success
K Terengganu <-> J Bahru 6 By Air Success
Kuantan <-> K Lumpur 6 By Air Success
Kuantan <-> J Bahru 7 By Sea - Success
K Lumpur <-> J Bahru 6 By Air Success

Chapter VII : System Testing

7.3 Summary

From a series of test that had been done to the system, it proved that
the system had meet the requirements defined. Even it is hard to evaluate
whether the results it generate are the best route or not, as there are many
factors to put into account for (e.g. limited time, money constraints), we

noticed that the results it generates are reasonable.
For an example, the Penang to Terengganu or vice versa route. The

solution ‘By Road’ that it generates is considered the best route since there

is no air transportation between the cities.

91

Chapter VIII:
Discussion

Chapter VIII : Discussion

8.0 CHAPTER VIII: DISCUSSION

8.1 Introduction

This chapter discusses the gathered results from the tests done in the
previous chapter, the problem encountered, the solution taken, the

advantages, the weakness, future improvement, ideas and conclusion for

the project.

Chapter VIII : Discussion

8.2 Results

The tests done in the previous chapter proved that the system meet
the functional requirements defined during the system development. All of
the modules namely the database, the ANN and the GUI module work
successfully.

As a revision the objectives of the system are:

1) To develop a system that advises users on travel routing

which implement artificial neural network.

2) To apply the concept of artificial neural network in
prediction system to travel route advisor.

3) To predict the most efficient route according to parameters
like distance, time consumed and cost.

From the results on the last chapter, it is likely to say that the

objectives of the system had been satisfied.

94

Chapter VIII : Discussion

8.3 Problems Encountered and Solutions Taken

Many problems had been encountered during the development of the
project. Steps have been taken in solving the problems. The major

problems encountered and the solutions taken during the project progress

include:

8.3.1 Lack of knowledge on ANN

ANN could be considered as a complex and hard topic. It involves
a lot of terms and mathematics calculation. Even some biological
approaches have to be leamned. A lot of time taken to choose the right
ANN type and the development of the ANN module. The references on

the topic is also very limited as it is considered a new field.

Solution

The only way to solve the lack of knowledge problem is to do a lot
of researches and readings. Books and websites had been read and

browsed to make a clear definition on the ANN. As the enrichment,

guidance from the supervisor also important.

95

Chapter VIII : Discussion

8.3.2 Inexperience in the programming language used

Persons who have the hands-on experience with MATLAB will
consider it as an easy programming language. Differently as a beginner, it
seems to be a very hard task. The programming time taken also increased,

as there is problems occurred due to the lack of knowledge in the

programming language.

Solution

The most effective way to solve this problem is to begin the study of the
programming language from the very basic part. At this stage a beginner’s

handbooks for programming language are very helpful. The

documentations and other related program source code also could help to

boost the knowledge.

96

Chapter VIII : Discussion

8.4 Further Research

Belows are suggestions on the enhancement of this system that
could be done in future.
1. Enlarge the system by increasing the numbers of cities. By widen
the scope of the system; we could also learn the behavior of the

ANN.

Increase other consideration to put into account such the time

)

constraints, budget and the number of persons to go for the travel.
The constraints and consideration should come from the user’s
input.

3. Upgrade the route advisor as a web based system.

97

Chapter VIII : Discussion

8.5 Summary

The thesis has proved to be a very unique experience and will
probably on of the most challenging course throughout the degree
program. It let students feel the whole development process as well as deal
with many of the management issues. It presents it self as a test to practice
all of the theoretical skills that have been ‘taught in the other courses.

The students fill many shoes of many people during the whole
development process from writing requirements, designing, coding and
testing. This will greatly help the student in preparing them to the real
world scenarios once in the working arena.

Throughout the development, many problems have arisen that
requires solving. Many of these problems may be the first time
encountering such problems and provides excellent exposure. Others
happened to be problems dealing lack of experience and knowledge.

Taken as a whole this course has succeeded in providing a useful
training ground for undergraduates to test the mettle with problems that

they will face as they go out into the working world.

98

aaaaaaaaaa

User Manual of
TRAANN

User Manual

When you started Travel Route Advisor with Artificial Neural

Network (TRAANN), you will find a display box. It display

5 Please select departure and destination city then click Enter.

l}

It means you are ready to start your TRAANN session.

¢) FFAA

NIV - IO 62 SO B
M”.“w.l“' Saaliate i I

S GOV R A sy
R R

) 442504
‘_Mﬂ‘fm’““”

3: Travel Route Advisor with
% Artificial Neural Network
Departure Destination
— |Penang =l {Kuantan _ 5]
Suggested Route
Please select departure and destination city then click Enter. v

A

Dgpanure Enter Clear Display Destination
list box button button textbox list box

100

User Manual

1. Click the arrow on departure list box and the box expands. It
displays the available departure cities. Click a city to choose for

the origin city.

2, Then click the arrow on destination list box and the box expands. It
displays the available departure cities. Click a city to choose for

the destination city.

3 Then click Enter button to view the route suggested by TRAANN

for the selected origin city and destination.

Departure city and destination city cannot be the same. If this

happen, TRAANN displays

Error. Departure and destination should be differ.

4, To select for another route, click Clear button to erase any text on

the display box. Then redo the step 1, 2 & 3.

101

User Manual

51 To finish the TRAANN session, click Exit menu on the top of the

TRAANN windows.

Notes:
* ‘Using TRAANN’ menu in ‘Help® menu display the help on using
Travel Route Advisor with Artificial Neural Network.

* ‘About’ menu in ‘Help’ menu display the version, date and

programmer data..

102

PPPPPPPP

APPENDIX

APPENDIX

ann.m coding ~ANN Module

function result = ann (p)

% create a two-neuron layer with two input elements
net = newc([0 1; 0 1],2)

% initialize the weights to the center of the input ranges
wits = net.IW{1,1}

% train the network for 300 epochs
net.trainParam.epochs = 300

net = train(net,p)

% the training function for competitive networks
net.trainFen

% supply the original vectors as input to the network,
% simulate the network, and convert its output vectors
% to class indices.

a = sim(net,p)

ac = vec2ind(a)

% return the value for solution

result = sum (ac)

104

APPENDIX

db.m coding — Database Module

% resetting the result values
R=[0000000000]
save result R

% travelling information
% p = [distance, fare (air, road, sea); 0, time consumed (air, road, sea)]
% & send to ANN for learning

% penang <-> k terengganu
p=[826-1454-1;0-111.8-1]
R(1) = ann(p)

% penang <-> kuantan
p = [609 269 33.5-1;00.75 6.8 -1]
R(2) = ann(p)

% penang <-> k lumpur
p=[38215822.7 590; 0 0.75 4.2 8]
R(3) = ann(p)

% penang <-> j bahru
p=[747 270 41 1070, 0 1 8.3 16]
R(4) = ann(p)

% k terengganu <-> kuantan
p=[219-112-1,0-125-1]
R(5) = ann(p)

% k terengganu <-> k lumpur
p=[49115825-1;0457-1]
R(6) = ann(p)

% k terengganu <-> j bahru
p=[54022629.7-1,00878-1]
R(7) = ann(p)

% kuantan <-> k lumpur
p=[274112142-1;0403 -1]
R(8) = ann(p)

105

APPENDIX

% kuantan <-> j bahru
p=[320-117.6-1;0-13.6 -1]
R(9) = ann(p)

% k lumpur <-> j bahru
p=[365 141 20.2 590; 0 45 4 36]
R(10) = ann(p)

% send result matrix to result.m
save result R

106

APPENDIX

Vi 7] ar
z8e ™
609 uejueny
oz8 nuebBusaia] Hy
Bueusad
aoue)sip
ar| |e8 ar ar
™I |ICY ™ |SP i
uejueny| |g'o ueuenyy usjueny
nuebBuaia)l M| 8711 nuebBusia]) nuebbBusia] W
Bueuad Bueuad Bueuad
awl}
0401 ar| |y ar| |02 ar
065 ™| |L22 ™| 8BSt ™
uejuenyl| |g'ee uejuenyj| |9z Uy
nuebBusia] M| |y nuebBusaia])y nueBBusia] Wy
Bueusd Bueusd Bueusy
aley
eas Ag | | peoJ Aq 10E Jse Aq

Bueuad

107

APPENDIX

(0) 2%} ar
L6¥ ™
612 ueuENy
azg Bueuay
nuebBuaia])y
aouejsip
ar| 18’2 ar ar
™ |2 ™| |SP ™
ueyueny|| g’z uejueny usjuemy
Bueuad| 811 Bueuad Bueuay
nuebbuala] nuebbuaia| Wy nuebBBusia] Wy
awn
ar| (26 ar| |9zee ar
™| |S2 ™| |8GL ™
ueyueny|| |zL uejueny usjuenyy
Bueuad| |y'si Bueuad Busuayg
™)| nuebBusia] M
ale}
Bas Aq |] peol Aq | | Jie Ag

nuebbuaia])

108

APPENDIX

(0745 ar
| XA ™
6lc nuebBusia] ¥
609 Bueuad
uejuenyy
aouejsip
ar| |9¢ ar ar
™| |€ ™| |0 ™
nuebBuaia] M| |sz nuebBusaia|) nuebbusia] W
Bueuad| |89 Bueusd Bueusd
uejuEenNy uejueny uBjuEnNyy
awl
ar| [9°4L ar| |yl ar
™| |2l ™| |2t ™
nuebBbuaia] 3| (zL nueBBuaia]) nueBBuaia] M
Bueusad| |g'ee Bueusad| |69z Buesuad
uejueny uejueny uBjuEny
aley}
eas Aq 2l peod Aq |] e Aq

109

APPENDIX

Goe ar
KA ugjuEenNyy
L6% nuebbusia] ¥y
Z8¢ Bueuad
™
aoue)sip
o€ ar| |y ar| (St ar
uejueny| e ueyueny| oy usjuenyy
nuebBuaia] M| |2 nueBBuaia) M| st nuebBuaia] M
vz Bueusd| (z'v Bueusd| |sp Bueuay
™ ™ ™
awy
068 ar| (2oc ar| |yl ar
uejueny|| |2yl uejuemy| 211 ugjueny
nuebBuaia] M| |5z nuebBuaia] M| |85L nuebBuasa) H
06S Bueusd| |2zzZ Bueuad| |85t Bueuay
™ ™ ™
aJe}
eas Aq | | peol Aq |] ne Ag

110

APPENDIX

Sog ™
0zZe ujuENy
oS nuebBusaia]
vl Bueusd
ar
aouejsip
o€ ™| |P ™| |SP ™
uejueny|| |9°¢ uejueny| usjueny
nuebbualta] M| |82 nuebBusia] Hy nuebBbusia)] o
vz Bueuad| |8 Bueusd Buesuayg
ar ar ar
auwl}
068 ™| |20c ™| |LPl ™
uejueny| 9721 ueueny| {11 usjusmy
nuebBuaia] M| |262 nuebbusia] M| |gzz nuebBuaia] W
001 Bueusd| |1 Bueusd| |0z Bueuad
ar ar ar
ale}
eas Aq peol Aq | | Je AqQ

ar

111

APPENDIX

Full Coding Track of ANN learning module

p=

826.0000 -1.0000 45.4000 -1.0000
0 -1.0000 11.8000 -1.0000

net =
Neural Network object:
architecture:

numinputs: 1
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: 'trainr’

parameters:
adaptParam: .passes

initParam: (none)
performParam: (none)

112

APPENDIX

trainParam: .epochs, .goal, .show, .time
weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other;

userdata: (user stuff)

WLS§ =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: O (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: { 1x1 cell} containing | output

targets: { 1x1 cell} containing no targets

biases: { 1x1 cell} containing | bias
inputWeights: { 1x1 cell} containing | input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

113

APPENDIX

adaptFcn: 'trains'

initFen: 'initlay’
performFcen: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:

numlinputs: |
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]

114

APPENDIX

targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’
performFen: (none)
trainFcn: 'trainr’
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix

LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

ans =

trainr

(1,1) |

115

APPENDIX

(2,2) 1
(2,3) 1
(2,4) 1
ac =
1RO B |
result =
5
R =

5 M0N0 0 S0 RN 0B OSSO NS 0RO

p:‘

609.0000 269.0000 33.5000 -1.0000
0 0.7500 6.8000 -1.0000

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:
inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers
outputs: {1x1 cell} containing 1 output

116

APPENDIX

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFcn: (none)

trainFen: 'trainr'

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix

LW: {1x] cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

wis =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numinputs: |
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

117

APPENDIX

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlnputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: { 1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFcn: (none)

trainFcn: 'trainr'

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing | bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300

TRAINR, Epoch 50/300

TRAINR, Epoch 75/300

TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300

118

APPENDIX

TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFcn: (none)

trainFen: 'trainr'

parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)

trainParam: .epochs, .goal, .show, .time

weight and bias values:

119

APPENDIX

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

—_~

—

-

3°)

Nt
Bt et et gt

result =

5.6 0a0L:06%::0 0k 0500

p"_':

382.0000 158.0000 22.7000 590.0000
0 0.7500 4.2000 8.0000

net =
Neural Network object:

architecture:

numlinputs: |

120

APPENDIX

numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]

outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’
performFcn: (none)
trainFcn: 'trainr’
parameters:
adaptParam: .passes
initParam: (none)

performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x] cell} containing 1 input weight matrix

LW: {1x] cell} containing no layer weight matrices
b: { 1x1 cell} containing | bias vector

other:

userdata: (user stuff)

wis *

0.5000 0.5000

121

APPENDIX

0.5000 0.5000

net =
Neural Network object:
architecture:

numlInputs: 1
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x] cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices

APPENDIX

b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:

numlinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: | (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

123

APPENDIX

functions:

adaptFen: 'trains'

initFen: 'initlay'
performFcn: (none)

trainFen: 'trainr’

parameters:
adaptParam: .passes
initParam: (none)

performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

_—~
i
0o
~
—— — p—

result =

O

R=

124

APPENDIX

SGme s 0a0f= 0 080 SR (280

p =
1.0e+003 *

0,7470 02700 0.0410 1.0700
0 0.0010 0.0083 0.0160

net =
Neural Network object:

architecture:

numlinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFen: 'trains'
initFen: ‘initlay’
performFen: (none)
trainFen: 'trainr’

parameters:

5

APPENDIX

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

wits =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlInputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: { 1x1 cell} of layers

outputs: {1x1 cell} containing | output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

126

APPENDIX

functions:

adaptFen: 'trains'

initFen: 'initlay'
performFcn: (none)

trainFen: 'trainr'

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:
numinputs: |

numLayers: |
biasConnect: [1]

127

APPENDIX

inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: ‘initlay’
performFen: (none)
trainFen: ‘trainr’

parameters:
adaptParam: .passes
initParam: (none)

performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix

LW: {1x] cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata; (user stuff)

ans”

trainr

128

APPENDIX

(L)
(2,2)
(2,3)
(1,4)

[S —

ac =

result =

Sun 6 a6 Di6 m0as 0 050" 50
p=

219.0000 -1.0000 12.0000 -1.0000
0 -1.0000 2.5000 -1.0000

net =
Neural Network object:
architecture:

numlInputs: 1
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs
layers: {1x1 cell} of layers

0

APPENDIX

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay'
performFcn: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix

LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

wts =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlinputs: |
numLayers: |
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

130

APPENDIX

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlnputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300

TRAINR, Epoch 50/300

TRAINR, Epoch 75/300

TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300

131

APPENDIX

TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:

numinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFen: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: ‘trainr’

parameters:
adaptParam: passes
initParam: (none)
performParam: (none)

trainParam: .epochs, .goal, show, time

weight and bias values:

132

APPENDIX

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

ans =

trainr

2,1
(1,2)
(1,3)
(1,4)

bt

ac =

result =

5 6 6 0% 0

p:

491 158 25 -l
0 45 7 -l

net =
Neural Network object:

architecture:

0 0 0 O

133

APPENDIX

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOQutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: { 1x1 cell} of layers

outputs: { 1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’

performFcn: (none)
trainFen: 'trainr’

parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x] cell} containing 1 input weight matrix

LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata; (user stuff)

wis =

134

APPENDIX

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’
performFen: (none)
trainFen: 'trainr’'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, show, time

weight and bias values:

IW: {1x] cell} containing 1 input weight matrix

135

APPENDIX

LW: {1x1 cell} containing no layer weight matrices

b: {1x1 cell} containing 1 bias vector
other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: { 1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight

136

APPENDIX

layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFcn: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix

LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

(1L,1)
(22)
(2,3)
(2,4)

— — — —

ac =

result =

9

137

APPENDIX

SN O I 6 B O S S i) B0 S ORISR)

p:

540.0000 226.0000 29.7000 -1.0000
0 0.8000 7.8000 -1.0000

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFen: 'trains'
initFen: 'initlay'
performFen: (none)
trainFen: 'trainr’

parameters:

adaptParam: passes

138

APPENDIX

initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1xI cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

wis =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: { 1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: { 1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

139

APPENDIX

functions:

adaptFcn: 'trains'

initFen: 'initlay'
performFcn: (none)

trainFen: 'trainr'

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x] cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:
numlinputs: |
numlLayers: |

biasConnect: [1]
inputConnect: [1]

140

APPENDIX

layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay'
performFcn: (none)
trainFen: 'trainr'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

ans =

trainr

141

APPENDIX

(2,1)
(2.2)
(1,3)
(1,4)

ac =

result =

DIRRLORNE O N O S B 70 6 Sl O O S ()

p:

274.0000 112.0000 14.2000 -1.0000
0 40.0000 3.0000 -1.0000

net=
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQOutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:

inputs: {1x1 cell} of inputs

142

APPENDIX

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay'

performFen: (none)
trainFcn: 'trainr'

parameters:
adaptParam: .passes
initParam: (none)

performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

wis =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numinputs: |
numLayers: |
biasConnect: | 1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]

143

APPENDIX

targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFcn: 'trains'

initFen: 'initlay'
performFcn: (none)

trainFcn: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x] cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300

144

APPENDIX

TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =

Neural Network object:

architecture:

numlInputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: O (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFen: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: 'trainr’

parameters;

adaptParam; passes
initParam: (none)
performParam: (none)
trainParam: .epochs, goal, show, time

145

APPENDIX

weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

—~
—
-
S
~—
bt ikt ek

result =

6

S HHONTOMRG S N 7506, #6050

p=
320.0000 -1.0000 17.6000 =-1.0000
0 -1.0000 3.6000 -1.0000
net =
Neural Network object:

architecture:

146

APPENDIX

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: { 1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’
performFcn: (none)
trainFen: 'trainr'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x] cell} containing no layer weight matrices
b: { 1x1 cell} containing 1 bias vector

other:

userdata; (user stuff)

wi§ =

147

APPENDIX

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlInputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:

adaptFen: 'trains'

initFen: 'initlay’
performFen: (none)

trainFen: ‘trainr’

parameters:
adaptParam: passes
initParam: (none)
performParam: (none)

trainParam: .epochs, .goal, show, .time

weight and bias values:

148

APPENDIX

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

ner =
Neural Network object:
architecture:

numinputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {I1x1 cell} containing 1 output
targets: { 1x1 cell} containing no targets
biases: {1x] cell} containing 1 bias

149

APPENDIX

inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay'
performFcn: (none)
trainFcn: 'trainr'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:

userdata: (user stuff)

—_
0
8
~
[N

result =

7

150

APPENDIX

SERRO N G O O SN /SO B O W7 i)

p:

365.0000 141.0000 20.2000 590.0000
0 45.0000 4.0000 36.0000

net =
Neural Network object:
architecture:

numlnputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numOutputs: 1 (read-only)

numTargets: 0 (read-only)
numlInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: {1x1 cell} containing no targets

biases: { 1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing 1 input weight
layerWeights: { 1x1 cell} containing no layer weights

functions:
adaptFen: 'trains'
initFen: 'initlay'
performFen: (none)

trainFen; 'trainr’'

parameters:

151

APPENDIX

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix

LW: {1x1 cell} containing no layer weight matrices

b: {1x1 cell} containing 1 bias vector
other:

userdata: (user stuff)

wis =

0.5000 0.5000
0.5000 0.5000

net =
Neural Network object:
architecture:

numlInputs: 1
numLayers: 1
biasConnect: [1]
inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlnputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: { 1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: { 1x1 cell} containing | input weight
layerWeights: { 1x1 cell} containing no layer weights

152

APPENDIX

functions:

adaptFcn: 'trains'

initFen: 'initlay’
performFcn: (none)

trainFen: 'trainr’

parameters:

adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other:
userdata: (user stuff)

TRAINR, Epoch 0/300
TRAINR, Epoch 25/300
TRAINR, Epoch 50/300
TRAINR, Epoch 75/300
TRAINR, Epoch 100/300
TRAINR, Epoch 125/300
TRAINR, Epoch 150/300
TRAINR, Epoch 175/300
TRAINR, Epoch 200/300
TRAINR, Epoch 225/300
TRAINR, Epoch 250/300
TRAINR, Epoch 275/300
TRAINR, Epoch 300/300
TRAINR, Maximum epoch reached.

net =
Neural Network object:
architecture:
numlinputs; |

numLayers: |
biasConnect: [1]

153

APPENDIX

inputConnect: [1]
layerConnect: [0]
outputConnect: [1]
targetConnect: [0]

numQutputs: 1 (read-only)

numTargets: 0 (read-only)
numlinputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)

subobject structures:

inputs: {1x1 cell} of inputs

layers: {1x1 cell} of layers

outputs: {1x1 cell} containing 1 output

targets: { 1x1 cell} containing no targets

biases: {1x1 cell} containing 1 bias
inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

functions:
adaptFcn: 'trains'
initFen: 'initlay’
performFen: (none)
trainFcn: 'trainr’
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .show, .time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x] cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

other;

userdata: (user stuff)

ans -’

trainr

154

APPENDIX

(1,1)
(2.2)
(2,3)
(1,4)

ac =

result =

>>

6

5

7 6 6

7

6

155

Bibliography

Bibliography

BIBLIOGRAPHY

Acculraffic http://www.accuweather.com/www/accutraffic/traffic.html

Date last referred: 5.7.2002
Artificial Neural Networks. Saint Louis University School Of Business &

Adminstration http://hem.hj.se/~de96klda/NeuralNetworks. htm Date

last referred : 12.02.2003
Artificial Neural Networks Technology.

http://psychology.about.com/gi/dvnamic/offsite.htm?site=http%3 A %?2

F%2Fwww.dacs.dtic.mil%2Ftechs%2Fneural%2Fneural ToC html

last date referred : 12.2.2003

Attrasoft digital nervous system. http://attrasoft.com/whatisnn.htm Date
last referred: 31.8.2002

Azree Idris (1999). MATLAB for Engineering Students. Pren;ice Hall

Artificial Neural Networks Technology
http://www.dacs.dtic.mil/techs/neural/neural ToC.html Date last
referred: 5.7.2002

Competitive learning

http://www.shef.ac, uk/psychology/gurney/notes/I 7/section3 2.html#S

ECTION0O002000000000000000 Date last referred : 12.02.2003

Danaco, Eric (1991). Neural Networks. MacMillan, London.

157

Bibliography

Fausette, Laurene (1994), Fundamentals of Neural Networks
Architecture, Algorithms and Applications. Prentice Hall International,
Inc. New Jersey.

Frenzel, Louis E. (1987). Crash Course in Artificial Intelligence and
Experts Systems. Howard W. Sams & Co. Indianapolis.

Gordon, V. S., and Bieman, J. M(1995). Rapid Prototyping: Lessons
Learned. IEEE Software. (pp 86-87)

Hawryszkiewyez, Igor (1998), Introduction to System Analysis and
Design, 4th Edition, Prentice Hall Australia Pty. Ltd. Sydney.

Heng Soon Leng (2001), Network Traffic Controller Using Artificial
Neural Network. B.Comp.Sc. Thesis, Faculty of Computer Science &
Information Technology, University of Malaya, Kuala Lumpur.

J Scheikoff, Robert (1997) , Artificial Neural Networks. McGraw-Hill,
New York.

Kendall, Kenneth E. and Kendall, Julie E(1998). System‘Analysis and
Design 4th Edition. Prentice Hall Inc.

Lim Kian Sinn, Vincent (2002), Smart Electronic Travel Agency Back-
End System. B.Comp. Sc. Thesis, Faculty of Computer Science &
Information Technology, University of Malaya, Kuala Lumpur.

Mari Mari.com

http.//www.marimari.com/content/malaysia/transport/main html Date last

referred: 6.9.2002

158

Bibliography

MATLAB Help (2001) The MathWork Inc.

McCarthy, John (2000). Basic Question. What is Artificial Intelligent ?
URL : http://www.formal.stanford.edu/jmc/whatisai/node1.html.Date
last referred: 3.12.2002

My Web Travel Channel

http://www.myweb.com.my/travel/l 6malaysia/malaysia.html Date last

referred: 30.9.2002

Neural Networks

http://www.accurate-automation.com/products/nnets.htm Date last
referred: 3.12.2002

Neural Networks : What are Neural Networks ?

http://www.emsl.pnl.gov:2080/proj/neuron/neural/neural.ann.html Date
last referred: 3.12.2002

Pfleeger, Shari Lawrence (1998), Sofiware Engineering — Theory and
Practice, Prentice Hall International, Inc, New Jersey. |

Road Transport Department Homepage http://www.jpj.gov.my/hiway. htm

Date last referred: 6.9.2002
Smith, Leslie (1998), An Introduction to Neural Networks. URL -
http://www.cs.stir.ac.uk/~1ss/NNIntro/InvSlides.html Date last

referred: 30.9.2002

159

Bibliography

Subject: What does unsupervised learning learn?

ftp:/ftp.sas.com/pub/neural/[FAQ2 . html#A_unsup Date last referred :

12.2.2003

TrafficCast - The Power of Prediction
URL:http://www.trafficcast.com/corporate/about.html Date last
referred: 30.9.2002

TrafficLing - Traffic Information
URL:http://www.trafficlinq.com/trafficinformation.htm Date last
referred: 6.9.2002

Turban, Efram (), Expert System and Applied Artificial Intelligence.
MacMillan Publishing Company, New York.

Winston, Patrick Henry (), Artificial Intelligence, 3rd Edition. Addison-

Wesley Publishing Co, Massachusetts.

W.S. Sarle, editor. Neural Network FAQ. Newsgroup : comp.ai.neural-
nets, 1998. URL:ftp:/ftp.sas.com/pub/neural/FAQ.html.Date last
referred: 5.1.2002

Yap Hui Sun (2001), /ntelligent Agent For Electronic Commerce.
B.Comp. Sc. Thesis, Faculty of Computer Science & Information

Technology, University of Malaya, Kuala Lumpur.

160

