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AN IMPROVED BONE AGE ASSESSMENT USING ADVANCED IMAGE 

PROCESSING AND DEEP LEARNING APPROACH 

 
ABSTRACT 

Pediatricians often apply bone age assessment to measure the skeletal maturity of 

children and to predict the future height. These discrepancies are good indicators for 

diagnosing growth disorders. Normally, left hand skeletal is employed in this assessment. 

The low quality of ossification sites of carpals deteriorates the pediatrician’s visibility in 

inspecting the pertinent radiographic manifestations. This in turn affects the bone age 

assessment. Therefore, we have to enhance the quality before assessing them. Histogram 

equalization is one of the contrast enhancement techniques that suit this type of 

enhancement. Existing histogram equalizations, however, are confronting with problems 

in preserving the brightness and details as well as preventing the contrast from being over-

enhanced or under-enhanced simultaneously. The comprehensive histogram equalization 

was proposed by considering all criteria of the desired histogram-equalized image to 

produce moderately contrast enhanced carpals’ ossification sites. Qualitative results show 

that the determining features of maturity stages have been emphasized in some of the 

Pareto optimized image. The improvement for Pareto optimized image by bi-histogram 

equalization is significant for five stages from stage D to stage H with improvement 

accuracy of 7.16%, 12.47%, 16.03%, 21.21% and 18.51%, respectively.  Findings 

concluded that the Pareto optimized images able to improve the classifier accuracy that 

estimate the maturity stage of the carpal bones. 

Keywords: visual enhancement, bone age assessment, histogram equalization 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

iv 

PENINGKATAN PENILAIAN UMUR TULANG MELALUI PEMPROSESAN 

IMEJ TERMAJU DAN TEKNIK PEMBELAJARAN MENDALAM  

 

ABSTRAK 

Pediatrik sering memohon penilaian usia tulang untuk mengukur kematangan rangka 

kanak-kanak dan juga meramalkan ketinggian masa depan. Percanggahan ini adalah 

petunjuk yang baik untuk menguji ketidakseimbangan pertumbuhan. Biasanya, kerangka 

tangan kiri digunakan dalam penilaian ini. Kualiti rendah tapak-tapak ossifikasi carpals 

menyebabkan penurunan penglihatan pediatrik dalam memeriksa manifestasi radiografi 

yang berkaitan. Ini seterusnya memberi kesan kepada penilaian umur tulang. Oleh itu, 

kita perlu meningkatkan kualiti sebelum menilai mereka. Penyamaan histogram adalah 

salah satu teknik peningkatan kontras yang sesuai dengan peningkatan sedemikian. 

Walau bagaimanapun, penyamaan histogram sedia ada menghadapi masalah dalam 

memelihara kecerahan dan butiran serta menghindar kontras daripada terlalu tinggi atau 

rendah secara serentak. Penyamaan histogram yang komprehensif telah dicadangkan 

dimana semua kriteria imej histogram-yang disamakan telah dibentangkan untuk 

menghasilkan tapak ossifikasi yang berkontras sederhana. Keputusan kualitatif 

menunjukkan bahawa ciri-ciri yang menentukan peringkat kematangan telah ditekankan 

dalam beberapa imej yang dioptimumkan oleh Pareto. Peningkatan Pareto yang 

dioptimumkan untuk penyamaan dua histogram adalah ketara untuk lima peringkat, 

bermula dari peringkat D ke peringkat H dengan peratus peningkatan sebanyak 7.16%, 

12.47%, 16.03%, 21.21% dan 18.51%, masing-masing. Pencarian menyimpulkan bahawa 

imej yang dioptimumkan oleh Pareto dapat meningkatkan ketepatan klasifikasi yang 

menganggarkan tahap kematangan tulang carpal. 

Kata kunci: peningkatan visual, penilaian umur tulang, penyamaan histogram 
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CHAPTER 1: INTRODUCTION 

This chapter describes an overview of the project. The objective of this project is to 

derive an accurate quantitative measurement for measuring physical maturity, where this 

measurement is not a trivial task. The common approach that utilizing standing height as 

a maturity measurement is also not a suitable measurement for physical maturity. For 

example, a child that is taller than other children of the same age may not indicate that 

this particular child is having a higher maturity level from others. Thus, standing height 

measurement and chronological age are not appropriate to measure maturity. However, 

there is specific biological events that is more appropriate for maturity measurement. The 

biological events for both genders may include presence of tooth eruption, first menstrual 

period, appearance of pubic hair, breast and penile development. With the occurrence of 

these biological events, the maturity level for each child can be compared. For example, 

an individual that had undergone these biological events is more matured as compared to 

an individual that is yet to undergone these events. Therefore, the sequence of the 

occurrence of the biological events may become the good indicator of maturity pathway 

of a child.  

Although the occurrence of biological events may be used as an indicator to physical 

maturity measurement, the age development is considered as incomplete if the occurrence 

of these events that are not closely spaced (Tanner, 1994). With the incompleteness of the 

age development shown in occurrence of biological measurement as maturity indicator, 

bone measurement based on hand and wrist is gaining popularity as a better measurement 

technique (Tanner, Oshman et al., 1994). The suitability of this measurement is due to the 

nature of this type of bone has development sequence and its occurrence is closely spaced. 

In this bone development sequence, specific bones are exists during fetal life and other 

bones only appear after certain age of a child (Aicardi, Vignolo et al., 2000). Each specific 
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bone at each development stage is able to be recognized through radiograph image. Each 

development stage is differentiated by the invariant event sequences of the total of twenty 

bones in hand and wrist. The twenty bones includes radius, ulna, metacarpals, phalanges 

and carpals which are developed throughout the maturity pathway. Therefore, the 

maturity level is measureable by recognizing the evidences that are gathered from the 

skeletal development of hand and wrist bones. This type of inspection from hand bones 

development in order to measure the bone age of a children is known as Bone Age 

Assessment (BAA). Figure 1.1 illustrates a sample of hand bone image with its bone 

structures. 

 

Figure 1.1: Sample of hand bone image. 

BAA as a bone maturity assessment technique is applied to measure the skeletal 

development of a children and adolescents (Cao, Huang et al., 2000). The skeletal 

measure is used to gauge the skeletal maturity age as an indicator to any growth disorders 

of a children. This measurement also used as an indicator to predict the future height 

(Martin, Deusch et al., 2009). In addition, the discrepancy between the skeletal age and 

biological age is capable to detects endocrine disorder (Gertych, Piętka et al., 2007), 

chromosomal disorders (Hsieh, Liu et al., 2010), early sexual maturity and others 

abnormalities (Hsieh, Liu et al., 2010). With the availability of various skeletal bones, left 
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hand bone is chosen and proven to be highly suitable to be used in skeletal assessment. 

Thus, the inspection to the development of skeletal bones in left hand is assigned to 

measure the skeletal maturity. In this, the skeletal maturity is evaluated based on the 

manifestation that includes ossification area development and the position of calcification 

(Gertych, Piętka et al., 2007).  

In skeletal assessment, pediatricians is embracing two common methods (Hsieh, Liu 

et al., 2010): Greulich-Pyle atlas method (William W Greulich, 1959) and Tanner-

Whitehouse (TW2) methods (Landry, Raiside et al., 1979). In Greulich-Pyle method, 

pediatricians compare the left hand bone radiograph to the standard atlas in order to 

measure the skeletal age. On the other hand, TW2 method is an index system that measure 

the skeletal age through maturity point collection. Then, the TW2 method is extended to 

TW3 method. The differences between these two methods is depicted by the mechanism 

of the maturity points are collected. TW2 collects the maturity points from twenty bones 

score that consists of Radius, Ulna and Short bones (RUS) and Carpals. In contrast, TW3 

collects the maturity points from RUS and Carpals, separately.  It is claimed that the TW3 

is more superior to TW2 due to the collectiveness of the maturity points from twenty 

bones that are calculated in TW3.  

Although TW2 and TW3 is the current most promising skeletal measurement method, 

their efficiency and effectiveness are still limited to the physician background knowledge 

and excessive time consumption during measurement. This is due to the TW2 and TW3 

methods are still been carried out as a visual inspection way. With this limitation, many 

computer-aided systems of BAA have been established, recently. For this aided system, 

TW2 is mainly chosen as a method to be used as this method is more appropriate for 

computerization purpose.  However, most of the systems are still at its infancy due to its 

inability to measure skeletal age consistently and autonomously.  
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1.1 Overview 

Bone age assessment is used as a clinical inspection by the pediatricians in order to 

detect any early occurrence of growth disorder in children. This is done by assessing the 

discrepancy between skeletal bone age and their chronological age (Giordano, 

Spampinato et al., 2010, Zhang, 2007). The most suitable visual inspection method is 

Tanner-White method (Babalola, Cootes et al., 2008, Hsieh, Jong et al., 2007). In TW 

method, pediatricians accumulate maturity points according to a development stages in 

specified ossification sites of left hand bone, by using human visual system. The total 

accumulated points is transformed to skeletal bone age based on a defined transformation 

table.  

As the TW method is a manual visual inspection by human vision, the result obtained 

is subjective and time consuming. With this weaknesses, many research efforts is in place 

to measure the skeletal bone age, computationally. Computer-aided skeletal age scoring 

system (CASAS) as computer-aided systems (Thodberg, 2009) is created. CASAS is 

automatically gauge the skeletal bone age by interpreting the ossification sites in the 

radiograph image. However, there is very less works on enhancing the visibility of the 

ossification sites in radiograph image. The quality of the visibility of the ossification sites 

in radiograph image is important for manual and automated approach to measure the bone 

age. For automated system, the quality of the radiograph image is crucial for the internal 

processes in CASAS to work well. The internal process includes segmentation and 

classification functionalities. With inferior quality of the ossification sites, CASAS may 

make a wrong decision on the maturity stage of the ossification sites. On the other hand, 

the improved quality of the ossification sites in the radiograph image also will assist the 

pediatricians to perform manual visual inspection using GP or TW methods. The existing 

visual quality of ossification sites in radiograph image may deteriorates the perception of 

pediatricians in measuring accurate skeletal bone age through manual visual inspection.  
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Contrast enhancement as one of the approaches used in enhancing the quality of 

radiography image. This approach shows the ability to enhance images to an acceptable 

quality in medical image processing. In this thesis, the histogram equalization (HE) as a 

contrast enhancement technique is chosen as a focus approach. This technique increases 

the contrast of the analyzed image by stretching the dynamic range of histogram of the 

input image. HE is chosen from other heuristic approaches due to this technique is 

mathematically proven as a uniform distributed contrast enhancement technique that 

performs intensity remapping to entire image intensity range. However, it is known that 

the common limitation of this enhancement technique is the brightness shift, loss of detail, 

and under or over enhanced contrast. Thus, a significant number of literatures is focusing 

in improving limitations of HE.  

From the literatures that is related to HE, the major problem of this enhancement 

technique is its improvement is too focusing on certain criterion. For example, Minimum 

Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) (Soong-Der and Ramli, 

2003) focuses on brightness shift by minimizing the absolute mean value of the brightness 

error. However, MMBEBHE has minimum consideration on the enhanced contrast and 

detail loss. Hence, the processed image may still poor quality as the over enhanced image 

contains undesired washed out artifacts that will obstruct important details in the image. 

The loss in detail has affected the quality of the skeletal age assessment as the important 

details at the ossification sites resembles the skeletal development stage. The second 

problem of HE is the metric definition that calculates the efficiency of HE is not 

resembling human visual perception. Although there is a number of proposed metric such 

as PNSR, AMBE and Entropy (Sundaram, Ramar et al., 2011, Soong-Der and Ramli, 

2003, Rajavel, 2010), the alignment of the metric definition to human visual perception 

is still neglected by researchers and practitioners in contrast enhancement field. 
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It is a desire to design an optimized and holistic histogram equalization that is able to 

take comprehensive consideration on the detail loss, brightness and enhanced contrast 

simultaneously. It is also highly crucial for the histogram equalization to align to the 

human visual perception in order to emphasize the pertinent information of the input 

image and remove the unwanted noises (Chai, Swee et al., 2013). This thesis aims to 

deliver the optimum enhancement solution by deriving a comprehensive histogram 

equalization technique and at the same, focusing on the new direction in achieving a 

natural visual effect of the enhanced image that resembles human visual perception. In 

this thesis, the scope is restricted to histogram equalization enhancement on carpals 

ossification sites in bone age assessment. Figure 1.2 depicts the examples of resultant 

images from contrast enhancement on radius ossification site: (a) Original Image (b) 

Histogram equalized image that exhibits an undesired background noise (c) Histogram 

equalized image that exhibits an undesired intensity saturation and mean brightness shift 

(d) Histogram equalized image that moderately enhanced the important ossification site 

without exhibiting any unwanted artifacts.  

(a) (b) 

(c) (d) 

Figure 1.2: Contrast enhancement on radius ossification site (a) Original Image (b) 
Histogram equalized image that exhibits an undesired background noise (c) 

Histogram equalized image that exhibits an undesired intensity saturation and 
mean brightness shift (d) Histogram equalized image that moderately enhanced 

the important ossification site without exhibiting any unwanted artifacts. 
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1.2 Problem Statement 

In bone age assessment, the low quality of the ossification sites in the radiograph image 

affects the visibility of the pediatrician in inspecting the pertinent manifestation that 

related to bone maturity and also the accuracy of the classification results from computer-

assisted skeletal age assessment. Due to the low visibility, pediatrician may derives an 

incorrect maturity stage of the bone assessment. Therefore, it is highly important to 

enhance the quality of the ossification sites appearing in the radiographic image. From 

vast research studies, histogram equalization (HE) is known as the most suitable 

enhancement technique for this purpose. In this thesis, two histogram equalizations: bi-

histogram equalization and clipped histogram equalization are examined. These two 

equalization techniques flat the bins height of the histogram that is computed from the 

standard radiograph image. In order to do the flattening, the decision variables that are 

related to these two equalization techniques are determined. However, the common 

practice is that these two decision variables are determined arbitrarily. The decision 

variables is determined by using brute-force method. However, this method utilizes high 

computation resources as it involves computation of dual objectives with dual decision 

variables. Therefore, feasible computation complexity technique is necessary to solve the 

problem of finding the optimal decision variables.   

The hand bone radiograph image suffers from various noise artifacts that include low 

background brightness, low contrast and over-enhanced contrast. This variation impacts 

the rating of the bone age assessment in classifying maturity stage. The Global Histogram 

equalization (Bull, Edwards et al., 1997) is highly adopted image contrast enhancement 

technique for the purpose of noise removal. However, this technique does not deliver 

satisfying results. In the recent research studies, a histogram equalization that preservers 

the brightness, contrast and details are in high demands.  Nevertheless, producing a well-
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balanced histogram equalized radiograph in terms of its brightness preservation, detail 

preservation and contrast enhancement is a challenging task. 

In this thesis, we hypothesize that optimal decision variables from the bi-histogram 

equalization and clipped histogram equalization will preserve the mean brightness, details 

and contrast without over or under enhancement. Both optimal decision variables are 

obtained within feasible computational complexity. These optimal decision variables are 

used to generate enhanced ossification sites of the hand bone radiographic image. This 

enhancement is significant to either computer-assisted skeletal age assessment system 

and radiologist clinical examination.  

Another problem that arises subsequent from the abovementioned problem is the 

segmentation in order to determine the ossification sites. This is known as segmentation 

of sub-images. The sub-image contains the pertinent manifestation of ossification sites. 

Within this problem context, various research works in performing automated 

segmentation is studied so that this automated method is relatively more effective than 

fundamental segmentation techniques. The segmentation problem is a challenging task 

due to various factors and will be explained in details, subsequently. Firstly, the intensity 

variation in hand radiograph image reduces the precision consistency of the segmentation 

technique. The variation in hand radiograph image is caused by different input sources 

and different age groups of the hand bone provider. Secondly, the intensity distribution 

in the hand bone image is inconsistent due to the various anatomical density at different 

parts in the hand bone. This inconsistency intensity property has low inter-variance and 

high intra-variance of the intensity distribution. For low inter-variance intensity 

distribution, it is observed that there is an overlapping range of intensity that appears in 

some parts of the hand bone, such as the cancellous bones, soft tissues regions and the 

compact bones. For high intra-variance intensity distribution, even the same parts in the 
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hand bone may exhibits non-uniform intensity range. This non-uniformity of intensity is 

found in cancellous bone or the cortical bone. In addition, the brightness difference 

between edge border of compact bone and soft-tissue regions is small. The similar small 

brightness difference also appeared at the edges between soft-tissue regions and 

background. The small brightness difference at the edge further complicates the 

segmentation problem. With the above mentioned challenging factors, most of 

segmentation technique in the bone age assessment is done in manual way that is time 

consuming.   

 

1.3 Aim and Objectives  

In this thesis, the enhancement framework is designed and demonstrated in order to 

enhance the visual quality of the ossification sites in left hand bone in radiographic image. 

The aim of this visual quality enhancement is to obtain a resultant image that takes three 

objectives into considerations, which is the contrast enhancement, brightness preservation 

and detail preservation. In addition, this enhancement framework needs to be parallel to 

human perception that is capable of emphasizing the pertinent information and expelling 

the unwanted noises. The enhancement framework is specifically design in such a manner 

in order to derive an input image for the following procedure that highlights all the 

pertinent information, which is the segmentation procedure. 

 After the contrast enhancement procedure, the design framework requires the area of 

the ossification sites to be segmented (Michael and Nelson, 1989, Levitt, Hedgcock Jr et 

al., 1993, Manos, Cairns et al., 1993, Manos, Cairns et al., 1994, Morris and Walshaw, 

1994). It is noted that the aim of the segmentation process is to remove background, noise 

and any regions in the image that do not contains any important information for the 

maturity classification purpose. As segmentation process is one of the significant initial 
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stages of the BAA system, the accuracy and effectiveness of the resultant from 

segmentation process is highly important as the segmentation output determines the 

accuracy of the maturity classification results. 

The objectives of this thesis are further specified as following: 

1) Derive a contrast enhancement framework that enhances the quality of the hand 

bone image that simultaneously considers brightness preservation, contrast 

enhancement and detail preservation.  

2) Derive an effective and automated segmentation framework that segments the 

ossification sites with computationally feasible and less demanding large dataset 

for training. 

 

1.4 Research Scope 

In this thesis, the research scope includes major points that contributes to the outcome 

of the thesis. The major points include the used datasets for experimental analysis, 

deployed methodology and result analysis are discussed and clarified. The scope of this 

thesis project is defined as follows.  

1) Research focuses on the design and implementation of multi-objective contrast 

enhancement and segmentation framework on specific bones such as Carpals of 

left hand bone radiographs for computer-aided skeletal age scoring system (TW). 

The left hand bone radiograph image is in gray scale mode. 

2) Algorithms developments for the proposed contrast enhancement and 

segmentation framework are developed using the commercialized software 
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MATLAB version R2017b.  The developed algorithm focuses on spatial domain 

image analysis.  

3) In the algorithm design, development, testing and analysis of the multi-objective 

contrast enhancement framework, the image dataset comprises of 1390 hand bone 

radiograph images. This online hand bone images are collected and contributed 

from Children’s Hospital Los Angeles (CHLA). They are downloaded from the 

available online hand bone database (Joseph, L., 2005). This online hand bone 

image includes two genders and four ethnicity categories, which is Caucasian, 

African American, Hispanic, and Asian. The images contain ages range between 0 

to 18 years old. The hand bone images various from clear to blur quality and the 

available format is DICOM and JPEG. In this research work, only JPEG image is 

used. The resolution of the JPEG format is various from approximate 928 x 1218 

to 1904 x 2653. The distribution of number of hand bone image for different 

ethnicity group and gender is depicted in Appendix A. 

4) With regards to the testing result and analysis comparison, the efficiency of 

proposed algorithm is evaluated with two approaches:  

(a) Analytical evaluations that compare the major objectives of the proposed 

algorithms within the scope of this thesis. 

(b) Empirical evaluations that accesses the quality of the processed image from the 

proposed contrast enhancement and segmentation framework with the 

reference to standard image quality metrics. 
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1.5 Thesis Organization 

The outline of the thesis is organized into five chapters as follows. 

Chapter 1 describes an introduction overview to the background of the research 

problem, research motivation and problem statements in this thesis. This chapter also 

provides the objective statements to be achieved by this thesis in research mode. It defines 

the boundaries of the research and lastly signify the contribution of the research to the 

community that works in the similar research topic. 

Chapter 2 provides an overview of the bone age assessment, contrast enhancement and 

segmentation. This chapter explains and reviews previous studies on automated skeletal 

bone age assessment as well as various type of contrast enhancement and segmentation 

techniques. This chapter covers the literature review of the fundamental background, 

mathematical formulation and proposition comparison of various related contrast 

enhancement and segmentation techniques. Critical appraisal on the usability and 

efficiency towards quality enhancement and segmentation output of the hand bone 

radiographs is given for a number of related techniques.  The aim of this chapter is to 

delivers sufficient background in order to understand and appreciate the research 

problems. 

Chapter 3 describes the novel algorithm method for multi objective contrast 

enhancement and segmentation for bone age assessment purpose. This chapter presents 

the design and implementation of the proposed algorithm framework. This framework 

consists of few modules.  First module is devoted to the identification of the desired 

properties of desired contrast. The next module describes the method in creating the 

histogram equalization technique that take into consideration of several critical criteria.  

In the last module, the technique for setting the optimum decision variable value that 

influence the optimum quality of the bone image is illustrated. The purpose of this chapter 
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is to establish the methodology of the proposed multi-objective contrast enhancement that 

is crucial to the success of an automated skeletal age assessment system. This chapter also 

elaborates the proposed segmentation approach used in bone age assessment system. 

Chapter 4 presents the results from various qualitative and quantitative analysis 

generated by the proposed algorithm that is described in Chapter 3. This chapter focuses 

on delivering the qualitative and quantitative analysis result in order to justify the 

achievement of the claimed objective. The aim of this chapter is to evaluate the 

performance of each proposed module and the overall automated contrast enhancement 

and segmentation framework. Each experimental result is analyzed and followed by 

discussion on the impact of the result towards the research outcome in this chapter. 

Chapter 5 concludes the thesis and highlights the main conclusions that are delivered 

from this research. This chapter illustrates the contributions of the current research works 

and potential future direction works. The aim of Chapter 5 is to summarize the research 

findings and suggestions for future research exploration that is relevant and crucial for 

the development and extension of the proposed framework. 
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CHAPTER 2: LITERATURE REVIEW 

This section is devoted to an overview of the standard histogram equalization method 

and segmentation techniques that are adopted in medical applications. The fundamental 

concept, advantages and limitations of each technique are discussed. This section also 

illustrates the unsuitability of the standard techniques of histogram equalization and 

segmentation technique in the context of computer-aided skeletal age scoring system. The 

standard technique is analyzed in the hand bone images for suitability evaluation. This 

evaluation and implementation of previous techniques in hand bone image enhancement 

and segmentation are crucial to motivate the objective of this thesis and subsequently, 

justify the contribution of this thesis. This section ends with the conclusion that there is a 

need to have better technique of hand bone image enhancement and segmentation for 

skeletal age assessment purpose instead of using the standard enhancement and 

segmentation techniques.  

 

2.1 Bone Age Assessment 

Bone age assessment (BAA) is a clinical application. The purpose of this application 

is to evaluate the skeletal development of a person especially in children and adolescents 

(Liu, Qi et al., 2008). As the chronological age is not suitable to determine the growth 

maturity of a person, skeletal age is gaining popularity as an indicator to measure the 

maturity stage of a person. With the known maturity stage, any growth disorder can be 

early determined. On the other hand, the skeletal age is used to predict the body height of 

a person. The left hand radiograph image is commonly used as a reliable indicator to 

measure the bone maturity. The development of ossification area and calcium position in 

the ossification area in the left hand determines the maturity stage. The discrepancy 

between the computed skeletal age and its corresponding biological age is useful to detect 
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diseases that includes endocrine disorders, chromosomal disorders and early sexual 

maturation (Gerstenfeld, 2003). In the following section, the skeletal development is 

further discussed prior to the explanation on maturity measurement.  

In the context of measuring the stage of skeletal maturity, it is common to relate this 

type of maturity to bone characteristic and bone mineralization (Mahmoodi, Sharif et al., 

2000, Pietka, Gertych et al., 2001, Sebastian, Tek et al., 2003, Mentzel, Vilser et al., 2005). 

Example of bone characteristic is size and shape of the bone. In measuring the skeletal 

development, it is highly important to consider the bone development progress. In this 

development, there is one type of the growth that known as longitudinal growth. This 

growth happened at the long bones where the process called “endochondral ossification” 

is occurred (Chai, Swee et al., 2013). The primary ossification is a process take place in 

the bone growth where the bone tissue is formed at the middle of the long bones. For the 

other long bones, the ossification is developed from the secondary center, which is located 

at the cartilage of bone extremities (Sato, Ashizawa et al., 1999). Another obvious bone 

development is the growth of bone width, which the growth is according to the increase 

of tissues from the fibrous membrane. The bone growth also can be noticed at flat bones 

of pelvis, ossification of the calvarium and scapulae (Verma, Peltomäki et al., 2009). It is 

known that the majority of the flat bone undergo ossification that is originated from the 

primary center.  

In the bone development, there is two main parts in the long bone. Two main parts are 

known as diaphysis and epiphysis, respectively. Diaphysis refers to the bones where the 

ossification happens from the primary center, while epiphysis is from secondary center. 

The diaphysis and epiphysis are continue to grow until the epiphyseal plate is stop 

growing. Epiphyseal plate is a thin layer of cartilage at the end of the bone. At the end of 

the bone development, the bone cells will stop multiplying themselves and the ossification 
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of epiphyseal plate will starts. At the end of the growth of epiphyseal plate, diaphysis and 

epiphysis are combined and this process marks the end of the bone growth. 

It is also an interest in the bone development study to further investigate the bone 

growth at the fetal stage. At this stage, the possibility of prematurity is detected by 

monitoring the skeletal growth during fetal stage. The fetal stage started when the 

embryonic period ended. At this fetal period, majority of the primary centers at the tubular 

bones are formed into diaphysis. This period takes about 13 weeks for completion. Within 

this period, the diaphysis is ossified, however epiphyses remains being cartilaginous. For 

secondary center, it is only complete in development at the infant stage. At the 40 week 

of fetal growth, the proximal epiphysis ossification center begins to develop. However, 

epiphysis at femur and tibia are yet to develop until the baby is born. After the baby is 

born, the epiphysis begins its growth with the ossification process and progressively 

combining with the main parts of the bone. The following section describes the 

explanation on skeletal maturity measurement.  

In skeletal maturity measurement, the measurement is evaluated base on the growth 

level of the epiphysis to the standard reference growth. Although the determinant factor 

towards bone growth is yet to be clearly identified, it is related to the genetics and 

hormones. Studies highlighted that the gene of the estrogen receptor plays a crucial role 

towards the growth of epiphysis. However, estrogen may not be the only factor that 

determines the bone growth. This type of maturity measurement is known as bone age or 

skeletal age.  

There are two established evaluation system in the skeletal maturity measurement. The 

two systems are Greulich-Pyle and Tanner-Whitehouse atlas (TW2). In Greulich-Pyle 

system, the patient’s hand bone radiograph is manually compared with the reference atlas. 

The outcome of the comparison determine the skeletal age. TW2 is different from 
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Greulich-Pyle system, as TW2 determines skeletal maturity base on point collection 

index. Both system utilizes the left hand and wrist radiographs. This type of radiograph 

image is used due to few reasons. The first reason is due to the hand and wrist comprises 

of high number and type of bones. The next obvious reason comes from its easiness to 

acquire the radiograph as compared to others body parts of the body. The left hand and 

wrist is not chosen from the right side due to the possibility of injury at the right side as 

it is common used in accomplishing daily tasks. Left side is preferred due to the legacy 

selection done in the early 1900s where the physical anthropologists preferred the left 

side as the element to be used in the physical measurement purpose. However, the 

reliability and efficiency of both the skeletal evaluation system are still in questions as 

both system is carried out base on manual visual inspection. This type of inspection is 

subjective, high time consumption and the accuracy is highly dependent to the knowledge 

background of the physician. Thus, a number of automated bone age assessment (BAA) 

system are developed for this purpose. The BAA system is mainly built base on the TW2 

method, which is more appropriate in terms of index value computation. However, the 

automated system is still at its infancy stage due to its insufficient stability in the system. 

Apart of the efficiency in evaluation the maturity index from the BAA system, it is 

crucial to ensure the appropriate and correct steps are undertaken during the radiograph 

images are acquired. There exists a proper guideline for taking hand radiographs, where 

the position of the hand is very important. Incorrect hand position during acquisition stage 

will impacts the visibility of some of the important features of the bone in the resultant 

radiograph. In the guideline, the correct side of the hand to be taken for radiograph is the 

left side of the hand. During the acquisition process, the palm face of the left hand has to 

be in downward position and it has to be in contact with the cassette. The right contact is 

determine by the axis of the middle finger has to be aligned with the axis of the forearm. 

Meanwhile, the upper arm and forearm are aligned in the same horizontal plane. In terms 
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of finger positions, all fingers are separated evenly and the thumb finger is positioned at 

the comfortable rotation angle, which is about 30 degree with the first index finger. 

Additional aids such as bandage or tape can be applied to the children during acquisition 

of hand radiograph images. In the following sections, the details of the two popular 

skeletal age assessment system is elaborated.  

 

2.1.1 Greulich-Pyle Method   

Bone age is one of the main indicators to reflect the skeletal development of children. 

The bone age or also known as biological age is a good indicator for growth disorder in 

children. For example, it is a strong indicator of abnormal growth of a children if the 

chronological age of this children is 8 years old and the bone age is only 5 years old. This 

kind of assessment is called bone age assessment. Bone age is also useful in sorting out 

legal issues for children criminal case and estimating the age of children refugees, which 

the birth date of this children is not available for reference. For legal cases, bone age is 

important to determine the correct age as the legal punishment is sentenced base on the 

age of the criminal. For refugee cases, school misplacement can be happened if the bone 

age is wrongly measured.  

The standard way of measuring the skeletal age is using Greulich-Plye (GP) method. 

In this method, the measurement is conducted base on the reference atlas. This reference 

atlas was originated by Dr. Sarah Idell Pyle together with Dr. William Walter Greulich in 

1959. The atlas is created with the data that is obtained from Professor Wingate Todd, 

which lead to a project called as the “Brush Foundation Study of Human Growth and 

Development”. This project focuses on Caucasian children in the United States of 

America. The atlas comprises of x-ray left hand images of children with both genders and 

their age is ranged from zero to 19 years old. With the atlas, the left hand radiographic 
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image is compared with the reference atlas. The bone age is assessed base on the nearest 

similarity found between the inspected radiograph and reference atlas. In this method, the 

comparison can be done due to the concept that the ossification sites in the hand and wrist 

bones are formed in a specific sequential order. Therefore, the bone age is determined by 

comparing the most similar matched of the ossification sites in the hand and wrist bones 

radiographic image with the reference atlas.  

GP method classifies radiographic images to bone age group, where each group 

corresponds to specific age. This is done by referring to the reference atlas, which is 

developed by Greulich and Pyle in 1959. The characteristic of this atlas includes a series 

of standard radiographs of children that is labelled with specific maturity scale. In the 

implementation, the inspected radiograph is similar match with the series of standard 

radiographs in the atlas. The best match standard radiograph represents the corresponding 

bone age in the atlas. Although the GP is the potential method to be used in the skeletal 

age assessment, this method has three limitations. The first limitations is the best match 

radiographs in the atlas may also contains major differences in the inspected radiograph. 

The limited guidance to perform the matching is the second limitation in this method. 

Guidance is crucial in this method as manual matching is prone to errors. The third 

limitation is due to the validity of the series of standard radiographs in the atlas. The 

validity is questionable as these radiographs are taken between 1931 and 1942. The old 

radiographs do not represent the current changes of bone structure in today children.   Due 

to the limitations, GP method are seldom in use.  
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2.1.2 TW Method (TW2 and TW3) 

TW method measures maturity score of each bone in the hand and wrist structure. 

Thus, the understanding about the anatomical structure in the hand and wrist is highly 

correlated with the maturity score of each bone. The anatomical structure of human hand 

and wrist consist of radius, ulna, 19 short bones (5 metacarpals and 14 phalanges) and 7 

carpals. The main substance in radius, ulna and short bones is the endochondral 

ossification, while intramembranous ossification forms the carpal bones. The rate of 

skeletal maturation at carpal bones has high variability from one individual to another 

individual. The carpal bones reach the full maturity rate faster than the long and short 

bones.  

TW2 method comprises of three type of measurement method that is involves with 

different set of bones. The first set of TW2 method involves the 13 bones that consists of 

radius, ulna and short bones (RUS). The second set of TW2 method comprises of the 7 

carpal bones. The third set of TW2 method is the combination of the first and second set, 

which contains 20 bones of radius, ulna, short bones and carpal bones. In general, TW2 

method measures bone age base on scoring technique. In this scoring technique, each 

bone is classified to different maturity stage where each stage consist of a score. After the 

score for each bone is determined and accumulated, the final score is mapped to a 

reference graph and the bone age is calculated from the mapping. In TW2 method, the 

matching graph is created base on the radiographs that are obtained from United Kingdom 

children from 1950 to 1960. In 2001, the maturity score and bone age in the matching 

graph are updated. The update is known as Tanner-Whitehouse 3 (TW3) method. The 

standard deviation between TW2 and TW3 is approximately about 12 months. 

The Table 2.1 illustrates the weighted maturity scores of Radius, Ulna and short bones 

(RUS) for boy category (Tanner et al., 2001):  
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Table 2.1: Weighted maturity scores of Radius, Ulna and short bones (RUS) for 
boy category 

 A B C D E F G H I 
Radius 0 16 21 30 39 59 87 138 213 
Ulna 0 27 30 32 40 58 107 181  

Metacarpal          
I 0 6 9 14 21 26 36 49 67 

III 0 4 5 9 12 19 31 43 52 
V 0 4 6 9 14 18 29 43 52 

Proximal 
Phalanx 

         

I 0 7 8 11 17 26 38 52 67 
III 0 4 4 9 15 23 31 40 53 
V 0 4 5 9 15 31 30 39 51 

Middle 
Phalanx 

         

III 0 4 6 9 15 22 32 43 52 
V 0 6 7 9 15 23 32 42 49 

Distal 
Phalanx 

         

I 0 5 6 11 17 26 38 46 66 
III 0 4 6 8 13 18 28 34 49 
V 0 5 6 9 13 18 27 34 48 

 

The Table 2.2 illustrates the maturity scores of Carpal bones for boy category (Tanner 

et al., 2001):  

Table 2.2: Maturity scores of Carpal bones for boy category: 

 A B C D E F G H I 
Capitate 0 100 104 106 113 133 160 214  
Hamate 0 73 75 79 100 128 159 181 194 

Triquetral 0 10 13 28 57 84 102 124  
Lunate 0 14 22 39 58 84 101 120  

Scaphoid 0 26 36 52 71 85 100 116  
Trapezium 0 23 31 46 66 83 95 108 117 
Trapezoid 0 27 32 42 51 77 93 115  

 

The Table 2.3 illustrates the weighted maturity scores of Radius, Ulna and short bones 

(RUS) for girl category (Tanner et al., 2001):  
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Table 2.3: Weighted maturity scores of Radius, Ulna and short bones (RUS) for 
girl category 

 A B C D E F G H I 
Radius 0 23 30 44 56 78 114 160 218 
Ulna 0 30 33 37 45 74 118 173  

Metacarpal          
I 0 8 18 18 24 31 43 53 67 

III 0 5 8 12 16 23 37 47 53 
V 0 6 9 12 17 23 35 48 52 

Proximal 
Phalanx 

         

I 0 9 11 14 20 31 44 56 67 
III 0 5 7 12 19 27 37 44 54 
V 0 6 7  18 26 35 42 51 

Middle 
Phalanx 

         

III 0 6 8 12 18 27 36 45 52 
V 0 7 8 12 18 28 35 43 49 

Distal 
Phalanx 

         

I 0 7 9 15 22 33 48 51 68 
III 0 7 8 11 15 22 33 37 49 
V 0 7 8 11 15 22 32 36 47 

 

The Table 2.4 illustrates the weighted maturity scores of Carpal bones for girl category 

(Tanner et al., 2001):  

Table 2.4: Weighted maturity scores of Carpal bones for girl category: 

 A B C D E F G H I 
Capitate 0 84 88 91 99 121 149 203  
Hamate 0 72 74 78 102 131 161 183 194 

Triquetral 0 11 16 31 56 80 104 126  
Lunate 0 16 24 40 59 84 106 122  

Scaphoid 0 24 35 51 71 88 104 118  
Trapezium 0 20 27 42 60 80 95 111 119 
Trapezoid 0 21 30 43 53 77 97 118  
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2.2 Automated Bone Age Assessment Methods 

The result from bone age scoring as observed in TW method is subjective, time 

consuming, tedious, domain knowledge dependency and inconsistent evaluation from 

different physicians. These limitations from manual inspection of bone age scoring 

approach motivate an automatic method to measure bone age, precisely. The automatic 

bone age assessment method is also motivated by the nature of the TW2 measurement 

method, which the score calculation is executed at higher speed and more accurate by 

computer as compared to human judgement. The motivations inspire the invention of 

digital CASAS in which the digital radiograph is used. The digital radiograph is produced 

from medical equipment as an input to the CASAS for bone age assessment.  

As compared to GP method and TW method, CASAS is performed better in terms of 

minimizing the gaps of intra-observer variability and inter-observer variability. From one 

of the observation studies done by Tanner and others in 1994, three observers are involved 

in the evaluation of 57 radiographs of normal children with bone age between 4.5 years 

old to adult year. From the evaluation result, the discrepancy rate for manual evaluation 

is 17% within the same observers and 5% from the CASAS. The same result pattern also 

is found between observers, where the discrepancy rate for manual evaluation is 27% as 

compared to 9% if the evaluation is done using CASAS. From this study, it is a clear 

indication that CASAS is better and more reliable in assessing bone age as compared to 

manual evaluation as the perceived bone age in the latter evaluation is inconsistency 

although repetition is made.  

The digital CASAS at the early stage is still operating in the semi-automatic mode. In 

this mode, the human operator needs to select the radial epiphyseal area on the digitized 

inspected radiograph that is displayed on the viewing screen. After the area selection, 

each of the bone template from the reference template set is overlayed on the inspected 

radiograph. For each overlay, the human operator needs to manually fit the template onto 
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the inspected radiograph by resizing and rotating steps. Once the matching template is 

found, the available grading button will be pressed in order to obtain the corresponding 

bone age with the chosen template, automatically. Therefore, the infancy stage of CASAS 

still demands human operator to intervene at the initial process and the system will 

perform the final alignment of the template to the inspected radiograph and grading score 

is calculated, automatically. Apart of tedious manual intervention, the initial system may 

deviates from the actual bone maturity score if the inspected radiographs has more than 

one most similar template to be matched. For this semi-automatic CASAS, there is no 

intermediate bone maturity score for two most similar template. In addition, this CASAS 

demands high definition quality of the radiograph image where the hand is properly 

positioned during acquisition process. Due to the current limitation of CASAS, various 

improvement efforts are continue to be proposed and explored with the intention to build 

a reliable CASAS for bone age assessment purpose. 

Other than CASAS, exists other bone age assessment methods that utilizing different 

image modalities. The image modalities include ultrasonography and computerized 

magnetic resonance imaging. In the article entitled “Bone age: assessment methods and 

clinical applications”, Mari Satoh summarizes the details of other bone age assessment 

methods (Satoh, 2015).  

For ultrasonography method, there is an instrument known as “BoneAge®” from the 

Sunlight Medical Ltd, Tel Aviv, Israel to calculate bone age.  In this method, the hand is 

placed at the arm rest between two transducers in order to allow ultrasonic waves to 

permits through the ulnar epiphysis and distal radius of the hand bone. With this, the bone 

age is calculated by adopting algorithm in analyzing the sound velocity and distance 

between the transducers. 
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In article by Mari Satoh, there is a study between BoneAge® and standard methods 

includes GP and TW (Mentzel, Vilser et al., 2005). The study indicates there is a high 

correlations exist between the BoneAge® and standard methods. Besides, report by 

(Khan, Miller et al., 2009) stated that the accuracy of the BoneAge® in measuring bone 

age is inaccurate for samples with delayed or advanced bone age. BoneAge® has the 

tendency to compute higher age value for delayed bone age, meanwhile lower age value 

for advanced bone age. This report indicates that the BoneAge® may not be the most 

appropriate and reliable technique in measuring bone age. However, continuous research 

efforts are conducted using ultrasonography method are seen in the recent years. 

Aside from CASAS, other computerized methods in assessing bone age exists (Rucci, 

Coppini et al., 1995). Although CASAS had the automation procedures in grading the 

bone age, the time taken to calculating the age may be longer than manual grading by GP 

or TW methods (Przelaskowski, 2008). Therefore, other computerized method to 

automate the grading process of skeletal age does exists. For example, (Sato, Ashizawa 

et al., 1999) introduces a new approach for this purpose and the system is tested on 

Japanese children. This computerized method is known as Computer-Aided Skeletal 

Maturity System (CASMAS). Grading process in CASMAS does not rely on TW method. 

In CASMAS, the third phalanges is segmented from the digital radiograph, automatically. 

Pertinent features are extracted from the segmented area of third phalanges. The features 

are epiphyses’s width, metaphases and the overlapping areas of the epiphysis or 

metaphysis of the third phalanges. The final skeletal age is computed by using multiple 

regression analysis (Tanner, Oshman et al., 1994). 

In 2009, a software known as BoneXpert are developed by a group of researcher from 

Denmark (Thodberg, 2009, Thodberg, Kreiborg et al., 2009, Thodberg and Sävendahl, 

2010). The software is further developed and maintained by Visiana. BoneXpert 
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performed enhancement on the border of 13 RUS bones by reconstructing the bone 

borders. The enhanced border of RUS bones are used as an input to intrinsic parameter 

extraction process, where the parameters include shape, density and texture scores. These 

parameters are used to compute the bone age. The BoneXpert has superior enhancement 

technique that has the ability to filter the poor quality images or images with abnormal 

bone morphology. 1559 radiographic images from 2 years old to 17 years old are used to 

develop BoneXpert and these images are validated by using GP atlas. As compared to GP 

atlas, the standard deviation of the result reported in BoneXpert is 0.42 years with 95% 

confidence level. BoneXpert also been tested with TW method. The test is conducted with 

84 radiographs, which are rated with TW method, initially. With TW method, BoneXpert 

gives standard deviation of 0.80 years with 95% confidence level.  The efficiency of 

BoneXpert is further validated using data from Caucasian children, which the children 

suffers from short statures (Thodberg and Sävendahl, 2010) and precocious puberty 

(Thomas, Flores-Tapia et al., 2011).  This system is further tested with variety of ethnic 

categories (Thodberg, Böttcher et al., 2016, Thodberg and Martin, 2016, Thodberg, 

Sørensen et al., 2016, Thodberg, Sørensen et al., 2016, Thodberg, van Rijn et al., 2017). 

Researchers claim five contributions from BoneXpert as a computerized skeletal age 

assessment system. The first contribution is devoted to the novelty of bone reconstruction 

by using active appearance model. Second contribution is due to the new extracted 

intrinsic features in predicting bone age with principal component analysis. Thirdly, the 

bone age for each bone is correlated together in order to determines the final age value. 

The fourth contribution is the introduction of one general model for bone age calculation 

regardless the gender of the perceived skeletal. The last contribution is the unified 

assessment model for both GP and TW models.  The following section is devoted to the 

background review for contrast enhancement.  
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2.3 Contrast Enhancement 

Image enhancement is one of the most crucial and active topic in the digital image 

processing field. Image enhancement is categorized to two categories where either the 

processing process is taken place in spatial domain or frequency domain. Enhancement 

in spatial domains means pixels in the two dimensional space in the image are 

manipulated. Meanwhile, frequency domain processing manipulates the intensity values 

in the Fourier Transform space in the image (Thung & Raveendran, 2009). 

From the past decades, researchers are searching the exact definition of contrast in 

image as different researcher has its own description and understanding on this research 

topic. It is common understanding that contrast of an image is considered good if the 

intensity values in the image spans in the full intensity range, which is from zero to 255. 

However, image contrast is known as visibility as it changed by scale while maintaining 

the average luminance to be constant in Michelson definition (Peli, 1990). Nevertheless, 

Michelson definition on contrast may not be appropriate and it is sensitive to extreme 

change of intensity value in the image. For example, a small number of pixels with either 

extreme brightness or darkness is able to change the total contrast of an image. The 

perceived contrast in image may be low although the contrast value in Michelson 

definition is high with some extreme intensity value changes happen in the image.  

Contrast enhancement has become a necessity as a preliminary pre-processing process 

for medical images prior to the following analysis processes in the advancement of 

medical imaging field (Gonzalez and Woods, 2002, Gonzalez and Woods, 2007). For 

contrast enhancement in medical imaging, histogram equalization (HE) is the most 

established contrast enhancement method to be applied (Qing and Ward, 2007). 

Histogram equalization is an image manipulation technique that remap the intensity value 

to a new intensity value for each pixel in the image according to a specific function. This 
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specific function is commonly known as cumulative distribution function. The 

cumulative distribution function represents the statistical information of the intensity 

distribution of an image. The purpose of intensity remapping is to ensure the intensity 

range of the resultant image covers the entire intensity range. With the histogram 

equalization, the intensity difference between neighboring pixels is higher and this will 

makes the object of interest in the image is obviously highlighted. This type of visual 

enhancement is known as contrast enhancement. 

Histogram equalization demands a low computation resources due to its simplicity in 

its algorithm structure. However, the resultant image from the histogram equalization 

comes with visual artifacts due to its simplicity. The visual artifacts include washed out 

effects. This effect is due to the incorrect brightness shift, detail loss and over-

enhancement of contrast. The following paragraphs illustrates the computation of 

histogram equalization in detail descriptions (Gonzalez and Woods, 2002). 

Histogram equalization determines the new intensity value for the resultant image 

based on a single-indexed mapping function, T[n]. This mapping function is computed 

from the new generated histogram (Arici, Dikbas et al., 2009). The new generated 

histogram represents the uniform distribution of the resultant image, which captures the 

optimum dynamic range of intensity. Let h(r) denotes the histogram prior to the 

enhancement of the input image, which describes the pixel intensity value in terms of 

discrete probability mass function. Let p(r) denotes the normalized histogram of h(r) that 

is normalized by the total number of pixels in the image. In this context, p(r) is the 

approximation of probability density function (PDF) of the intensity distribution in the 

image. With the probability density function, the approximated cumulative distribution 

function (CDF) is computed and denoted as c(r). The final mapping function is a scaled 

CDF denoted by c(n).   
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In the continuous form, the scaled c(n) is denoted as T(n) in continuous form when r= 

𝑛𝑥 is illustrated in Equation (2.1). 

 
𝑇(𝑛𝑥) = (𝐿 − 1) ∫ 𝑝𝑋(𝑟)𝑑𝑟

𝑛𝑥

0

 (2.1) 

In the discrete form, the scaled c(n) is denoted as T(n) where r = 𝑛𝑥 is illustrated in 

Equation (2.2). 

 
𝑇(𝑛𝑥) = 𝑓𝑙𝑜𝑜𝑟((𝐿 − 1) ∑ 𝑝𝑋(𝑟)

𝑛𝑥

𝑛=0

) (2.2) 

The mapping transformation are derived, respectively by representing the intensities 

of input image and transformed image as continuous random variables, 𝑋and 𝑌 on [0, L 

− 1] with 𝑛𝑦 defined by Equation () and Equation (2.4) where 𝑛𝑦 =  𝑇(𝑛𝑥), respectively: 

 
𝑛𝑦 = 𝑇(𝑛𝑥) = (𝐿 − 1) ∫ 𝑝𝑋(𝑟)𝑑𝑟

𝑛𝑥

0

 (2.3) 

 
𝑛𝑦 = 𝑇(𝑛𝑥) = 𝑓𝑙𝑜𝑜𝑟((𝐿 − 1) ∑ 𝑝𝑋(𝑟)

𝑛𝑥

𝑛=0

) (2.4) 

Mathematically, 𝑛𝑦 that is defined by T(𝑛𝑥) is uniformly distributed (𝑛𝑦 =
1

𝐿−1
 ) on 

[0, L-1] range of the input image PDF, independently as described in Equation (2.5): 

 
∫ 𝑝𝑌(𝑠)

𝑛𝑦

0

𝑑𝑠 = 𝑝(0 ≤ 𝑌 ≤ 𝑛𝑦) 

= 𝑝 (0 ≤ 𝑋 ≤ 𝑇−1(𝑛𝑦))  

= ∫ 𝑝𝑋(𝑟)
𝑇−1(𝑛𝑦)

0

𝑑𝑟  

 

 

(2.5) 

From Equation (2.5), it is defined as ∫ 𝑝𝑌(𝑠)
𝑛𝑦

0
𝑑𝑠 = ∫ 𝑝𝑋(𝑟)

𝑇−1(𝑛𝑦)

0
𝑑𝑟 
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For left-hand side (LHS) of Equation (2.5),  ∫ 𝑝𝑌(𝑠)
𝑛𝑦

0
𝑑𝑠, derivative of integral is 

applied to ∫ 𝑝𝑌(𝑠)
𝑛𝑦

0
𝑑𝑠 with respect to 𝑛𝑦 as defined in Equation (2.6). 

 𝑑(∫ 𝑝𝑌(𝑠)
𝑛𝑦

0
𝑑𝑠)

𝑑𝑛𝑦
=  𝑝𝑌(𝑛𝑦) (2.6) 

For right-hand side (RHS) of Equation (), derivative of integral is applied to 

∫ 𝑝𝑋(𝑟)
𝑇−1(𝑟)

0
𝑑𝑟 with respect to 𝑟. Equation (2.7) is derived based on the theorem of 

chain rule of derivatives. 

 𝑑(∫ 𝑝𝑋(𝑟)
𝑇−1(𝑦)

0
𝑑𝑟 )

𝑑𝑟
=  

𝑑𝑇−1(𝑛𝑦)

𝑑𝑟
.
𝑑(∫ 𝑝𝑋(𝑟)

𝑇−1(𝑛𝑦)

0
𝑑𝑟) 

𝑑𝑇−1(𝑛𝑦)
 

 

(2.7) 

Let F(r) =  ∫ 𝑝𝑋(𝑟)
𝑇−1(𝑛𝑦)

0
𝑑𝑟 , derivative with respect to 𝑛𝑦  is applied to get the 

following equation. 

𝐹′(𝑟) = 𝑝𝑋(𝑟) 

∫ 𝑝𝑋(𝑟)
𝑇−1(𝑛𝑦)

0

𝑑𝑟 = 𝐹[𝑇−1(𝑛𝑦)] − 𝐹[0] = 𝐹[𝑇−1(𝑛𝑦)] 

𝑑 (∫ 𝑝𝑋(𝑟)
𝑇−1(𝑦)

0
𝑑𝑟 )

𝑑𝑛𝑦
=

𝑑𝑇−1(𝑛𝑦)

𝑑𝑛𝑦
.
𝑑(𝐹[𝑇−1(𝑛𝑦)])

𝑑𝑇−1(𝑛𝑦)
 

If 𝐹′(𝑟) = 𝑝𝑋(𝑟), Equation (2.8) is defined as follows: 

𝑑(𝐹[𝑇−1(𝑛𝑦)])

𝑑𝑇−1(𝑛𝑦)
= 𝑝𝑋 (𝑇−1(𝑛𝑦)) 
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 𝑑(∫ 𝑝𝑋(𝑟)
𝑇−1(𝑦)

0
𝑑𝑟 )

𝑑𝑛𝑦
=  

𝑑𝑇−1(𝑛𝑦)

𝑑𝑛𝑦
. 𝑝𝑋 (𝑇−1(𝑛𝑦)) 

(2.8) 

 

By integrating LHS and RHS results, Equation (2.9) is achieved. 

 

 
𝑝𝑌(𝑛𝑦) =

𝑑𝑇−1(𝑛𝑦)

𝑑𝑛𝑦
. 𝑝𝑋 (𝑇−1(𝑛𝑦)) 

(2.9) 

 

From Equation (2.3), the following equations are derived: 

𝑛𝑦 = 𝑇(𝑛𝑥) = (𝐿 − 1) ∫ 𝑝𝑋(𝑟)𝑑𝑟
𝑛𝑥

0

 

𝑛𝑥 = 𝑇−1(𝑛𝑦) 

𝑇 (𝑇−1(𝑛𝑦)) = (𝐿 − 1) ∫ 𝑝𝑋(𝑟)𝑑𝑟
𝑇−1(𝑛𝑦)

0

 

LHS and RHS on the above equation is differentiated with respect with 𝑛𝑦 , the 

following equation is obtained: 

𝐿𝐻𝑆 =  
𝑑(𝑇 (𝑇−1(𝑛𝑦)))

𝑑𝑛𝑦
=

𝑑(𝑛𝑦)

𝑑𝑛𝑦
= 1 

𝑅𝐻𝑆 = (𝐿 − 1)
𝑑 ∫ 𝑝𝑋(𝑟)𝑑𝑟

𝑇−1(𝑛𝑦)

0

𝑑𝑛𝑦
 

The above RHS equation is updated with Equation (2.8) in order to obtain the 

following equation: 
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𝑅𝐻𝑆 = (𝐿 − 1)
𝑑𝑇−1(𝑛𝑦)

𝑑𝑛𝑦
. 𝑝𝑋 (𝑇−1(𝑛𝑦)) 

By matching the above RHS equation with LHS equation, the following equation is 

achieved: 

1 = (𝐿 − 1)
𝑑𝑇−1(𝑛𝑦)

𝑑𝑛𝑦
. 𝑝𝑋 (𝑇−1(𝑛𝑦)) 

From Equation (2.9), the above equation is updated as follows: 

1 = (𝐿 − 1)𝑝𝑌(𝑛𝑦) 

Therefore, the mapping function in the histogram equalization is uniformly distributed 

as illustrated in Equation (2.10). 

 
𝑝𝑌(𝑛𝑦) =

1

𝐿 − 1
 

(2.10) 

In the research study, there is another variation of histogram equalization. This 

variation is known as histogram specification. In histogram specification, the input image 

is transformed to the resultant image by matching the histogram of the resultant image 

with the specified histogram (Alemán-Flores, Álvarez et al., 2007, Thomas, Flores-Tapia 

et al., 2010, Thomas, Flores-Tapia et al., 2011). Histogram specification consists three 

standard steps in obtaining enhanced image. The first step involves equalization process 

onto the histogram of the input image. The second step equalizes the specified histogram. 

In the third step, the two equalized histograms are matched in order to generate a lookup 

table for mapping purpose. By performing intensity mapping from the generated lookup 

table, the enhanced image is computed. Although the histogram specification allows 

adjustment on the shape of the histogram for different type of application, this approach 

suffers from major limitation that it needs user intervention in determining the specified 
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histogram. Therefore, HE is still considered as the most convenient approach to be used 

in order to generate enhanced image as no parameters needed to be set. In this thesis, 

histogram equalization is chosen to be the focus as the contrast enhancement approach. 

 

2.3.1 Global Histogram Equalization 

In general, histogram equalization is classified into two major approaches. The 

approaches are Global Histogram Equalization (GHE) (Bull, Edwards et al., 1999) and 

Local Histogram Equalization (LHE). This section describes the GHE and the latter will 

be elaborated in the following section. In GHE, all the pixels in the images are considered 

in generating the cumulative distribution function, which is the remapping function.  

Although GHE demands a very low computation resources, research works shown that 

the GHE is not able to preserve the visual perception of the enhanced image. Therefore, 

this over-simplified approach is not widely used in major application area, especially in 

medical field (Chen Hee and Isa, 2010, Chen Hee and Isa, 2010). The resultant image that 

is generated from GHE contains unwanted artifacts that include incorrect mean brightness 

shift, loss of detail and over contrast enhancement. Either partial or full unwanted artifacts 

are commonly seen in the resultant image by GHE. With these artifacts, the resultant 

image does not contain the similar visual properties as the original input image. The 

negative effect of this enhancement will be more critical if prominent features are washed 

out in the resultant image. The appearance of unwanted artifacts is due to the nature of 

the GHE in transforming the image, where the equalized histogram is not balance as there 

is a possibility that the high intensity level dominates the low intensity level in the 

histogram. In addition, the flattening effect of GHE on the histogram of the original image 

may trigger incorrect mean brightness shift. This artifact carries unnatural visual quality 

on the enhanced image (Chen and Rahman Ramli, 2004).  
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As the research works on histogram equalization is keep progressing, researchers 

enhance the histogram equalization with reference to the three specific limitation of this 

approach that includes incorrect mean brightness shift, loss of detail and over or under 

contrast enhancement. Many variation type of histogram equalization are recommended 

in the literature review (Sang-Yeon, Dongil et al., 1999). In general, there is three 

characteristic type of the variation of histogram equalization. The first type of histogram 

equalization considers plateau limit in the histogram equalization approach. This 

approach introduces a specific limit of the total number of a pixel intensity value in the 

mapping operation (Kim and Min, 2008, Kim and Paik, 2008, Sengee and Heung, 2008, 

Sengee, Bazarragchaa et al., 2009, Se-Hwan, Jin Heon et al., 2010, Sengee, Sengee et al., 

2010, Se-Hwan, Jin Heon et al., 2011). The first enhancement type is known as clipped 

histogram equalization approach. The second type of histogram equalization divides the 

histogram of the input image into few sub-histograms. Each sub-histogram undergoes a 

standard equalization histogram process and all the equalized sub-histogram is combined 

as a single resultant histogram (Yeong-Taeg, 1997, Yeong-Taeg, 1997, Yeong-Taeg, 

1997, Soong-Der and Ramli, 2003). The second type of enhancement is referred as sub-

histogram equalization approach. The third type of histogram equalization is the output 

of the mixture  of different variation of histogram equalization approaches such as plateau 

limit histogram equalization approach (Chen Hee, Kong et al., 2009, Kong, Ibrahim et 

al., 2009, Chen Hee and Isa, 2010, Chen Hee and Isa, 2010), sub-histogram equalization 

approach (Kim and Min, 2008), weighted histogram equalization approach (Se-Hwan, Jin 

Heon et al., 2010) and dynamic range reallocation approach (Abdullah-Al-Wadud, Kabir 

et al., 2007, Abdullah-Al-Wadud, Kabir et al., 2008). This thesis is devoted to the mixture 

type by combining first and second type of histogram equalization variation, which is the 

bi-histogram equalization approaches and clipped histogram equalization.  
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The initial research works on sub-histogram equalization approach is known as Bi-

Histogram Equalization (BBHE) (Yeong-Taeg, 1997). In this research work, this 

particular equalization approach determines the mean value of the intensity distribution 

of the image, statistically. This mean value is used as a cutting point value to separates 

the histogram of the original image into two sub-histograms. Then, histogram 

equalization is implemented into each of the sub-histogram. The intention of histogram 

equalization implementation on the individual separated histogram is to minimize the 

visual artifact that is caused by incorrect mean brightness shift. The minimization is 

possible due to the intensity distribution is separated into two groups, where each group 

contains the distribution of lower intensity and the other group remains with the higher 

intensity. Another similar sub-histogram equalization approach to BBHE is introduced as 

Dualistic Sub-Image Histogram Equalization (DSIHE) (Yu, Qian et al., 1999). Both 

approaches shared high similarity in terms of histogram equalization implementation on 

separated sub-histogram. The only difference occurred in the value used as the cutting 

point. In this context, DSIHE utilizes the median value as compared to mean value in 

BBHE as a cutting point. DSIHE claimed to be better than BBHE in terms of addressing 

the effects of incorrect mean brightness shift of the resultant image. Chen and Ramli 

proposes an improvement version of BBHE and this improvement approach is termed as 

Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) (Soong-Der 

and Ramli, 2003, Soong-Der and Ramli, 2003). The effectiveness of BBHE approach is 

determined by the cutting point value that separates histogram into two sub-histograms. 

The cutting point value is optimum if the error value of the mean brightness shift of the 

resultant image from BBHE approach is minimum. In MMBEBHE, the optimum 

separating point value is determined with the error value of the mean brightness shift in 

the resultant image is minimum. The mean brightness shift is measured by using an image 

quality metric known as absolute mean brightness error (AMBE).  
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The extension works on sub-histogram equalization involves more than one cutting 

points of histogram from the input image into multiple sub-images. The variation also 

depends on the cutting point value whether it is computed based on the mean or median 

of the statistical intensity information of the input image. Chen and Ramli (Soong-Der 

and Ramli, 2003) proposed to divide the histogram into multiple histograms by using 

mean as the cutting point, continuously. The stated approach is known as Recursive 

Mean-Separate Histogram Equalization (RMSHE). It can be seen that RMSHE is the 

generalized and recursive solution for the BBHE where the number of sub-histogram is 

in power of two. The valid range of the number of sub-histogram is from one to less than 

the maximum number of intensity level in the image. The separation of histogram of input 

image recursively based on mean value is known as RMSHE. On the other hand, the 

approach is known as Recursive Sub-Image Histogram Equalization (RSIHE) (Sim, Tso 

et al., 2007) if the separation of histogram of input image recursively based on median 

value. It is claimed that the recursive solution for BBHE is not only addressing the mean 

brightness shift issue, but also the outcome of this variation of BBHE gives a more natural 

resultant image.  

The development of recursive histogram equalization in bi-histogram is continue to 

progress, where Kim and Min (Kim and Min, 2008) introduced a weighted version of 

recursive histogram equalization, which this version is termed as the Recursively 

Separated and Weighted Histogram Equalization (RSWHE). In RSWHE approach, 

different weight value is assigned to each separated sub-histogram. The weight is assigned 

with a normalized power law function. The final step involves implementation of 

histogram equalization into each weighted sub-histogram, accordingly. The variation of 

RWSHE approach is based on the type of cutting point value used. If the cutting point 

value is computed using mean, the weighted recursive HE is known as RSWHE-M. 

Otherwise, it is refers as RSWHE-D if the cutting point value is derived from median. 
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The result comparison shown that the RSWHE-M is superior to RSWHE-D in having the 

lowest error value of the mean brightness shift. 

With relation to the brightness preservation, another histogram equalization technique 

is explored towards this direction and this technique is known as the Brightness-

Preserving Dynamic Histogram Equalization (BPDHE) (Ibrahim and Kong, 2007). 

BPDHE is an extension works to two previous sub-histogram equalization variation 

techniques, which is the variation approach to Multi-Peak Histogram Equalization With 

Brightness Preserving (MPHEBP) (Wongsritong, Kittayaruasiriwat et al., 1998) and 

Dynamic Histogram Equalization (DHE) (Abdullah-Al-Wadud, Kabir et al., 2007, 

Abdullah-Al-Wadud, Kabir et al., 2008). The main difference that distinguish between 

MPHEBP and DHE approaches is the technique used to separates the histogram into sub-

histograms. MPHEBP performs the separation base on the identified high peaks in the 

histogram. This high peaks are known as local maxima. On the other hand, DHE separates 

the histogram base on the local minima points found in the histogram. In BPDHE, this 

approach determines the sub-histograms using local maxima points as similar to 

MPHEBP approach. In order to preserve the mean brightness of the resultant image 

closely similar to the input image, BPDHE maps each sub-histogram into a new dynamic 

range prior to the standard equalization technique. This initial mapping procedure is 

resembles with the DHE approach.  

Another approach in preserving mean brightness of the input image is proposed by 

(Abdullah-Al-Wadud, Kabir et al., 2007). This approach is refers to A Dynamic 

Quadrants Histogram Equalization Plateau Limit (DQHEPL). DQHEPL separates the 

histogram of the input image into two sub-histogram based on mean intensity value. The 

two sub-histogram is continue to be separated into another four sub-histograms. The 

number of separation of sub-histogram can be continued with power of 2.  During the 
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continuous separation, the plateau limit is calculated. With the calculated plateau limit, 

each of the separated sub-histograms are clipped. Prior to the equalization process, a new 

dynamic range is assigned to each sub-histogram. The resultant image based on DQHEPL 

approach is promising as it able to maintain the mean brightness of the input image. 

Another histogram equalization approach that devoted to mean brightness preservation is 

proposed by (Thomas, Flores-Tapia et al., 2011). This approach combines two 

approaches, which is Brightness-Preserving Histogram Equalization with the Maximum 

entropy (BPHEME) (Chao and Zhongfu, 2005) and Piecewise linear transformation 

(PLT) (Abdullah-Al-Wadud, Kabir et al., 2008). BPHEME includes maximum entropy 

concept into the mean brightness preservation technique. In BPHEME, a histogram with 

maximum entropy is specified. BPHEME is a variation approach from histogram 

specification that incorporates maximum entropy knowledge into the histogram. On the 

other hand, PLT is useful in ensuring small difference value between the mean brightness 

of the input image and resultant image. With combination of these two approaches, the 

resultant image has high potential in preserving the mean brightness of the input image, 

precisely.  

The above described histogram equalization approaches are mainly focus in 

minimizing visual artifacts caused by mean brightness shift. It is also exist other 

histogram equalization that consider minimization of other visual artifacts too. Weighted 

Clustering Histogram Equalization (WCHE) (Sengee and Heung, 2008) not only consider 

the mean brightness shift but also the artifacts caused by over-enhancement. WCHE 

incorporates clustering concept in its technique in determining the sub-histogram. WCHE 

groups each pixel in the input image into different cluster group. As the number of cluster 

group is very high, these clusters are re-grouped together into more prominent group. The 

grouping criteria is based on the grouping weight for each cluster, distance between the 

vicinity clusters and ratio information of the cluster. The resultant image from this 
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approach is obtained by transforming the cluster information into image form. Although 

WCHE is able to preserve the overall brightness and contrast of the original image, this 

approach still suffers from loss of detail. The pertinent information in the image is loss 

due to the equalization process on the clusters that contains high number of intensity bins 

into narrow intensity range.  

It is a non-trivial task in the visual enhancement study with the objective in preserving 

the details of the pertinent information in the image. This task is even difficult if the 

pertinent information only appears in the small areas in the image. With regards to this 

challenge, Bi-Histogram with Plateau Limit (BHEPL) is introduced by (Chen Hee, Kong 

et al., 2009). In addition, BHEPL is known as a fast sub-histogram equalization approach 

by reducing the computational burden in each computed sub-histograms. BHEPL 

separates the histogram of the input image into two sub-histogram by using mean intensity 

value in the image. For each separated sub-histogram, a “clipping” process is carried out. 

The purpose of clipping is to limit the total number of pixels at each bins in the sub-

histogram. After the clipping process is completed, general histogram equalization 

process is implemented.  

From the intensive reviews of GHE as described above, the objective of all the 

histogram equalization approaches is focus in minimizing issue of visual artifacts caused 

by mean brightness shift, loss of details and over-enhancement. Majority of the proposed 

histogram equalization technique mainly focuses on addressing only single issue, while 

neglecting the others two issues. For example, standard histogram equalization enhances 

the contrast quality of the image but neglecting the mean brightness shift and detail loss 

issues. The well-known sub-histogram equalization approach intended to focus into issue 

of mean brightness shift but neglecting the issues of detail loss and contrast enhancement. 

Meanwhile, histogram equalization that utilizes plateau limit concept only focus on detail 
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loss issue but not consider the issues of brightness mean shift and contrast enhancement. 

To address the limitation of the common histogram equalization approaches, (Chen Hee, 

Kong et al., 2009) and (Chen Hee and Isa, 2010) attempt to tackle both the mean 

brightness shift and detail loss issues. Although the attempts shown improvement on 

reducing the artifacts, but the minimization of the three visual artifact issues 

simultaneously is still remain as a high challenging problem. 

Therefore, there is a need to establish a holistic histogram equalization algorithm that 

able to consider the three visual artifact issues, simultaneously. It is a predicted behaviour 

that an introduced solution to improve one issue, will affect the improvement criteria on 

the other issue. This behaviour is known as trade-offs.  Hence, to address this challenges, 

a novel model of histogram equalization is proposed. This proposed model is an extension 

variation to clipped histogram equalization and bi-histogram equalization approaches by 

utilizing optimization technique in multiple criteria. In this model, the histogram is 

separated using an optimal separating point value and clipped limit is introduced to each 

sub-histogram. 

 

2.3.2 Local Histogram Equalization (LHE) 

LHE is also known as Adaptive Histogram Equalization (AHE). LHE performs 

equalization process from a group of pixels that are located in the small region in the input 

image. Equalization process is performed through windowing technique where the center 

of this window will move from one pixels to another adjacent pixels for processing 

purpose. The advantage of LHE is its ability to preserve the details of the specific area in 

the input image as the enhancement is done locally and not on the whole image as 

compared to GHE approach. Due to the nature of local processing mechanism, the 
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resultant image is less suffering from over enhancement effects although the input image 

had non-uniform intensity distribution.  

LHE is also a contrast enhancement technique that use remapping technique base on a 

transformation function as similar to GHE approach (Chen Hee, 2010). As compared to 

GHE, LHE applies histogram equalization process at different area of the input image, 

continuously. In GHE approach, there is only one transformation function throughout the 

equalization approach. However, LHE computes more than one transformation function, 

where each transformation function is computed at different processing area in the input 

image. LHE is an adaptive enhancement technique due to each computed transformation 

represents the intensity distribution of the particular area of the image only. Therefore, 

the resultant image is generated base on different unique transformation function at each 

different region in the input image. If the image contains non-uniform intensity 

distribution, LHE is preferred as compared to GHE in enhancing contrast of the image, 

whereby artifact likes over-enhance or under-enhance is suppressed. With this inherent 

strength, LHE is regarded as robust approach to be used to improve the contrast of the 

image, specifically for non-uniform intensity image.  

Although the strength of LHE is able to perform better enhancement on non-uniform 

intensity image, this approach has its disadvantages due to its local processing 

methodology. One of the major disadvantages of LHE is this approach tends to amplify 

existing noises that appear in the image, specifically if the noise is located at the region 

of the image that contains uniform intensity. Due to this disadvantage, Contrast Limited 

Adaptive Histogram Equalization (CLAHE) is the most popular LHE approach. The 

popularity is due to CLAHE is able to minimize the noise amplification effect. This is 

done by introducing a clipping method at the maximum height of each local processing 

step (Pizer, Amburn et al., 1987, Kim and Paik, 2008, Chen Hee, Kong et al., 2009, Chen 
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Hee and Isa, 2010). Despite CLAHE able to reduce the effect of noise amplification, the 

resultant image still contains noises at the region where the intensity distribution is 

homogeneous (Josephus and Remya, 2011). This limitation had motivated researchers to 

continue to improve the method used in CLAHE and there is also exist of approach that 

combines CLAHE with other variation of HE for enhancement improvement purpose. 

(Mohan and Ravishankar, 2013). 

As CLAHE is still suffering from over contrast and unwanted noise amplification, the 

author (Lidong, Wei et al., 2015) addresses a method known as CLAHE-discrete wavelet 

transform (CLAHEDWT). This method utilizes the advantage of DWT into CLAHE. 

CLAHEDWT comprises of three major computation steps. The first step involves the use 

of discrete wavelet transform to divides the input image into low and high frequency 

components. Secondly, CLAHE is used to improve the low frequency coefficients and 

the high frequency coefficients remain unchanged. By remaining the high frequency 

components unchanged, the important details in the image is preserved and to mitigate 

the presence of unwanted noises. The improved low coefficients are inversed by discrete 

wavelet transform (DWT) and at the same time the inverse results are averaged with a 

weighting factor. The final resultant image is obtained with less noise and highlighting 

the pertinent information in the image. The weighted averaging procedures enhances the 

dark region more than the brightness regions. Therefore, CLAHEDWT enhances the low 

frequency component while maintaining the value of the high frequency components.  

There is another variation of LHE that is applied to MMBEBHE. This variation is 

known as the Local MMBEBHE or LMMBEBHE (Tian, Wan et al., 2007). For this 

algorithm, the MMBEBHE procedure is applied to multiple regions in the image. 

However, there is a need to decide the number of blocks and step size of the movement 

blocks. After all the blocks are processed by MMBEBHE, the output of each of the block 
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will be divided by the frequency matrix of the image histogram. Although this approach 

is exhibiting local information, the efficiency of this method is still low as compared to 

the origin method, MMBEBHE.  

Arici introduced a new framework for histogram equalization. This framework is 

referred as Histogram Modification Framework (HMF) (Arici, 2009). HMF enhances the 

contrast of the image by optimizing a contrast model which is mathematically modelled 

with a cost function. The author emphasizes that this framework is flexible to suit various 

application where the cost function is able to be manipulated with different constraint 

terms.  

It is noted that majority of the LHE approaches are mainly addresses the issue of noise 

amplification in the resultant image. The noise amplification issue is due to the nature of 

intensity remapping technique. In LHE, the outlier intensity either is too high or too low 

in the homogeneous region will change the overall pattern of the cumulative distribution 

function. This type of cumulative distribution function resulting the new intensity has a 

major difference from the original intensity. The major difference of intensity is referred 

as noise in the resultant image. Due to this limitation, LHE is not commonly used in 

practical application in enhancing the quality of the image as it will change the appearance 

of the pertinent information in the original image.  
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2.4 State-of-the-art Contrast Enhancement Algorithms 

The mentioned contrast enhancement methods discussed under GHE approach are 

presented in Table 2.5, chronologically. In Table 2.5, GHE approach started with the 

general procedure of flattening the histogram of the image into full intensity range. 

Therefore, the standard GHE is a single equalized histogram method with the aim of 

preserving the overall contrast of the image. The limitation of this standard approach is 

consideration of brightness shift and detail loss are neglected. Throughout the years, GHE 

approach is improved from single histogram to two histograms where the original 

histogram is divided into two parts via a separating point. This separating point can be 

the mean, median, peak, local minima or value in the valid intensity range that has 

minimum error of the brightness shift. This GHE approach is categorized as bi-histogram 

via a separating point, where the aim of this type of approach is mainly preserving the 

brightness shift and contrast. However, the detail loss is not been considered in this 

improved GHE approach. From bi-histogram, recursive histogram is introduced where 

multiple histograms are recursively generated using valid separating points. Other 

variation of recursive histogram includes weightage recursive histogram and clustering 

method. Although multiple histogram is generated with the intention of preserving the 

brightness shift and contrast, the prominent details are still not been considered. The 

advancement of GHE approach is extended to applying clipped limit to recursive 

histogram. With the introduction of clipping procedure in the recursive histogram, the 

detail loss and brightness shift are considered, but the contrast is not enhanced optimally. 

In this thesis, the proposed contrast enhancement framework does not extend from the 

mentioned approaches in Table 2.5, but the method of using separating points to divide 

histogram into multiple histogram and applying clipped limit to each divided histogram 

are applied. In this proposed contrast enhancement framework, the separating point and 

clipped limit are determined, optimally.  
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Table 2.5: A comparison of GHE approaches in contrast enhancement 

Approach Method Aim Limitation 
Standard GHE Single equalized 

histogram 
Preserve overall 

contrast 
Not consider 

brightness shift and 
detail loss 

BBHE Bi-histogram via 
mean value 

Preserve brightness 
shift 

Not consider detail 
loss  

MPHEBP Bi-histogram via 
peak value 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

DSIHE Bi-histogram via 
median value 

Preserve brightness 
shift 

Not consider detail 
loss 

MMBEBHE Bi-histogram via 
minimum 

brightness error 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

RMSHE Recursive 
histogram via 
mean value 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

DQHEPL Recursive 
histogram with 

clipping 

Preserve brightness 
shift 

Not consider detail 
loss 

RSIHE Recursive 
histogram via 

median 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

RWSHE Weighted 
recursive 
histogram 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

DHE Bi-histogram via 
local minima 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

WCHE Recursive 
histogram via 

clustering 

Preserve brightness 
shift and contrast (not 

optimal) 

Not consider detail 
loss 

BHEPL Recursive 
histogram with 

clipping 

Preserve detail and 
brightness shift(not 

optimal) 

Contrast is not optimal 

 

Other than HE approaches, new direction of contrast enhancement approach is 

introduced, lately. Although this new approach delivers promising enhancement result, 

this method is more suitable to natural colour image rather than medical image, 

specifically hand bone image. The following section is devoted to this new direction of 

contrast enhancement. 
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In the paper of “An Effective Gaussian Fitting Approach for Image Contrast 

Enhancement” (Sun, Xu et al., 2019), the authors utilized and adopted 24 Kodak test 

images and retinex database in order to assess the performance of the proposed algorithm 

with other contrast enhancement techniques (Sazonova and Schuckers, 2010, Tsai, 2013). 

The database is retrieved from the following links: (www.cs.tut.fi/~lasip/cfai) and 

(https://dragon.larc.nasa.gov/retinex/), respectively. The objective of this method is to 

enhance image details at specific region-of-interest area in the image. This enhancement 

step exploited the high frequency distribution of an image by estimating the intensity 

weighting matrix. With the estimated intensity weighting matrix, the contrast gain 

distribution is obtained by manipulating the Gaussian fitting curve on the matrix. This 

method can be summarized with three major steps that includes the extraction process of 

region-of-interest area, generation of intensity weighting matrix and finally, the Gaussian 

fitting transformation. The objective assessment is performed with three metrics although 

there is a lack of an acceptable objective criteria towards obtaining good enhancement 

results for all images. The three used metrics are peak signal-to-noise (PSNR) (Horé and 

Ziou, 2010), structural similarity (SSIM) (Zhou, Bovik et al., 2004) and entropy. PSNR 

is a measurement metric to compare the ratio of signal to background noises. Main focus 

of SSIM is to measure the preservation of original content in the image. On the other 

hand, entropy measures the richness of the preserved information after enhancement.  

In the paper “Contrast Enhancement Based on Intrinsic Image Decomposition” (Yue, 

Yang et al., 2017), the authors proposed a framework to improve contrast enhancement 

of the input image by utilizing retinex theory (Land and McCann, 1971). Retinex-based 

contrast enhancement approach decomposes the original image into two layers, which is 

the illumination and reflectance layers, respectively. According to the human visual 

system, it is assumed that the visual image is resembling the product of illumination and 

reflectance layers. In this context, the illumination is the reflected brightness from the 
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surface objects in the scene and the reflectance is the measure of the proportion brightness 

that is reflected from the surface objects in the scene (Wang and Luo, 2018). In human 

visual system, the colour sensation is correlated to the reflectance (Land and McCann 

1971). In this paper, the decomposition approach can be divided into three types, which 

is Poisson equation based, filtering based and variational based. The proposed contrast 

enhancement approach comprises of four major steps. The first step involves colour 

transformation where the RGB colour model of the input image is transformed to HSV 

colour model. The second step utilizes modified intrinsic decomposition technique to 

separate the HSV colour model into two different layers, which is the illumination and 

reflectance layers. Then, the illumination layer undergoes an intensity adjustment prior to 

the integration with reflectance layer. The authors introduced a weighted L1 norm 

constraint on the neighborhood pixels based on colour similarity. The purpose of this 

constraint is to reduce the effect of illumination on the reflectance layer. Finally, the last 

step is devoted to an enhancement process on the integrated image by applying CLAHE. 

The enhanced image in HSV colour format is retransformed back to RGB colour format 

as the final resultant image. The optimization technique used in this paper is Split 

Bregman algorithm (Goldstein and Osher, 2009). In this optimization process, three 

image quality measurement metrics are applied in order to evaluate the quality of the 

contrast enhancement. The three metrics are no-reference image quality metric for 

contrast distortion (NIQMC) (Gu, Lin et al., 2017), reference based colourfulness-based 

Patch-based Contrast Quality index (PCQI) known as (CPCQO) (Wang, Ma et al., 2015), 

and reference based edge visibility (EV) enhancement ratio (Gu, Tao et al., 2018). 

In the paper “Naturalness Preserved Image Enhancement Using a Priori Multi-Layer 

Lightness Statistics” (Wang and Luo, 2018), the authors proposed a framework with an 

objective to solve the issue of over enhancement and effect of unnaturalness on the 

resultant image after contrast enhancement process. The introduced solution is utilizing 

Univ
ers

ity
 of

 M
ala

ya



 

48 

the priori multi-layer lightness statistics technique in which this statistic information is 

extracted from high quality image. There is three main contributions from this paper in 

the context of contrast enhancement approach. The first and second contribution of this 

paper is devoted to the generation of multi-layer image enhancement model and multi-

layer lightness statistics of high quality outdoor images. The multi-layer lightness 

statistics will be combined to the multi-layer image enhancement model at the latter stage. 

The third contribution is demonstrated by the effectiveness of the proposed approach in 

ensuring consistent and high quality rating of the all the resultant images. In order to 

achieve the stated efficiency, two assumptions are made. The first assumption is highly 

important where the details of the image are across the spatial frequency bands. Based on 

the first assumption, the authors applied low-pass filter continuously towards the image 

in order to separate the image into multiple frequency bands. The low-pass filter iteration 

is terminated when the outcome of the lowest frequency band shows non-uniform 

characteristic. This type of filtering is different from the known multi-scale retinex (MSR) 

model, where the existing MSR estimates reflectance at several scales. The second 

assumption made is that the used high-quality images inherits standard statistical 

characteristic information in the lightness properties. The lightness properties are related 

to multiple scale layer and the statistical characteristics are different from the non-uniform 

illuminated images.  

The authors in “Graph-Based Joint Dequantization and Contrast Enhancement of 

Poorly Lit JPEG Images” (Liu, Cheung et al., 2019) paper performs improvement on the 

images that suffers from poor lighting condition. This type of inferior image has unwanted 

artifacts in terms of luminance contrast and it exhibits quantization effects due to lossy 

compression. The authors claimed that dequantization and contrast enhancement 

technique using separate back-back steps will reduces the low visual quality of the image 

that is caused by undesirable compression effect. Based on the recent developed graph 
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signal processing, the authors adopted single graph-signal restoration framework by 

dequantizing and contrast-enhancing images. Based on Retinex theory, observed pixel 

patch is separated into reflectance and illuminance properties in which generalized 

smoothness prior and signed graph smoothness prior are obtained. The author computes 

the robust edge weights by using transform-coded image patch. Low pass filtering in the 

dual graph domain is used for the computation of robust edge weights. In this paper, 

Accelerated Proximal Gradient (APG) algorithms in transform domain is adopted in order 

to have illumination and reflectance components. One of the major limitations of this 

approach is the manual user intervention is needed to determine the positive and negative 

edge weights. If manual tune is needed, then the final resultant image may not be optimal.  

 

2.5 State-of-the-art Segmentation Algorithms 

Object segmentation is regarded as one of the important processes in the medical 

image processing and it is widely studied. Its contribution is able to augment the power 

of clinical analysis. One of the well-known and popular segmentation approaches is 

referred as active contour. One of the latest active contour algorithms by Wang (Qian, 

Wang et al., 2013) is a family member of learning active contour model that improve the 

performance of the current pixel wise segmentation method. The objective of this 

algorithm is to solve the presence limitations of active contour. The introduced method 

by Wang considers the area within and outside of the region of interest of the 

segmentation as well as the learning size of segmented boundaries. This consideration is 

done by having a design of a new loss function that include area and size information, 

where this information is further incorporated into a deep learning model. In this paper, 

the segmented results are analyzed and assessed using a comprehensive dataset that 

contains more than 2000 cardiac MRI scan images. From the analysis and assessment, 
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the loss function has a better and robust performance if this function incorporates hyper 

parameters in the design. The performance of this function is better as compared to other 

loss function such as cross-entropy on two common segmentation networks. 

As artificial intelligence field is progressing, deep learning has been adopted to 

perform image segmentation in medical field. The segmentation applications include 

optic disc segmentation, lung segmentation and cell outline segmentation. This type of 

object segmentation using deep learning method is known as semantic segmentation.  

Semantic segmentation is a process of assigning each pixel in the image to a predefined 

set of classes. Deep learning becomes popular as Alexnet (Krizhevsky, 2012) is 

introduced as a convolutional neural network (CNN). This model of CNN shows a high 

accuracy result on image classification on ImageNet dataset. Due to its tremendous 

success in image classification field, various extensible techniques are designed and 

developed from CNN. These sophisticated deep learning models include R-CNN 

(Girshick, 2014), Faster R-CNN (Ren, 2016), VGG (Simonyan, 2014) and ResNet (He, 

2016). All this model depicts up trending accuracy results. In term of image segmentation 

perspective in the medical field, it is always remain high demands to develop an 

automated segmentation technique that able to segment region of interest, precisely. Good 

segmentation result permits improvement in disease inspection and diagnosis, such as 

osteoarthritis assessment through segmented knee’s cartilage (Prasoon, 2013, Faisal, 

2015) and determination of prostate’s volume from 3D prostate segmentation (Milletari, 

2016). For image segmentation in medical imaging field, the recent two well-established 

and active explored neural network model are fully convolutional neural network (FCN) 

(Abadi, 2016) and Mask R-CNN (He, 2017). 

The U-net (Falk, Mai et al., 2019) is one of the promising type of convolutional 

network architectures that is aiming to achieve rapid and accurate image segmentation 
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results. U-net successfully outperforms past segmentation results on the IEEE 

International Symposium on Biomedical Imaging (ISBI) challenge. This challenge relates 

to the task of segmenting the neuronal structures in electron microscopic stacks. In 

addition, U-net also won the grand challenge at ISBI 2015, which dedicated to the task of 

Computer-Automated Detection of Caries in Bitewing Radiography. Besides, U-net also 

shows its segmentation ability in the two most challenging transmitted light microscopy 

categories which are the phase contrast and DIC microscopy. U-net is developed from the 

convolutional neural network and shows tremendous result in the realm of pixel-based 

image segmentation. The early use case of U-net is first demonstrated on biomedical 

images. Each approach may has its own limitation and U-net is not excluded from this 

too. The limitation of U-net is further improved and inspired with others state-of-the-art 

including the CE-net: The U-net and its similar variations (Shaziya, Shyamala et al., 2018, 

Yang and Song, 2018, Zhang and Xu, 2018, Zhang, Chen et al., 2018, Waktola, Grudzien 

et al., 2019). The variations of U-net is a series of operations of pooling and convolution 

that mitigate the feature resolution in order to achieve higher level of feature 

representations.  

The CE-net (Gu, Cheng et al., 2019), enhances the limitations of existing U-net based 

segmentation, which includes loss of spatial information from consecutive pooling and 

convolutional operations. The authors proposed a context encoder network or also known 

as CE-net, to exploit high-level information as well as preserve spatial information for 

2D medical image segmentation. The CE-net comprises of three processing parts. The 

first part is the feature encoder module, the second part is the context extractor and the 

third part is the feature decoder module. The above mentioned context extractor module 

is established by the proposed design of dense atrous convolution (DAC) (Zhang and Xu, 

2018) block and also the residual multi-kernel pooling (RMP) block.  The authors 

experimented and analyzed the CE-net on variety of segmentation tasks that involves two 
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–dimensional medical images. The experiment result shows the CE-net performs better 

than the compared state-of-the-art methods. In this paper, the carried out experiments 

include optic disc segmentation, lung segmentation, cell outline segmentation and retinal 

optical coherence tomography layer segmentation. 

Segmentation advancement is also contributed by the recent development of neural 

network based image classification such as Auto-DeepLab. This advancement is known 

as semantic segmentation. Prior to the detail discussion on Auto-DeepLab, NASNet 

search space (Zoph, Vasudevan et al., 2017) by the paper of “Learning Transferable 

Architectures for Scalable Image Recognition” is firstly discussed.  NASNet search space 

is a method that has the ability to automatically learn the model architectures based on 

the targeted dataset. Due to the learning mechanism is based on the amount of dataset, 

the introduced method is highly computational expensive if the size of the dataset is large. 

This disadvantage cost motivates the authors to design a new searching method. In this 

method, the first search is devoted to smaller dataset in order to form an initial 

architectural building block. This block is transferable to form a new block to match a 

larger dataset. This type of search space is known as NASNet search space that permits 

transferability ability. The author carried out experiments on CIFAR-10 dataset in order 

to seek the optimum convolutional layer in which known as cell. In the following process, 

the cell layer is applied to the ImageNet dataset by stacking multiple cells together with 

its own individual parameter in order to form a convolutional architecture. The author 

addresses this convolutional architecture as NASNet architecture. Besides, the author also 

developed a new regularization technique known as ScheduleDropPath, which able to 

generalize into NASNet models. On CIFAR-10 dataset, NASNet is able to achieved 2.4% 

error rate which is already considered a low error rate as compared to others state-of-the-

art methods. Besides, authors constructed a NASNet from the best cell, and recorded 1.2% 

better rate and also recorded 28% reduction in computational resource as compared to the 
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previous best human designed architectural model. In addition, the author also assessed 

the performance of NASNets at different computational cost and the accuracies of 

NASNets aces.  NASNets also has been applied on object detection, the learned features 

by NASNet together with Faster-RCNN framework, the result surpasses state-of-the-art 

by 4%. Next we will discuss the application of NASNet in image semantic segmentation. 

This work of Auto-DeepLab (Liu, Chen et al., 2019) is done together with John 

Hopkins Hospital, Google and Stanford University. Basically, this work utilized Neural 

Architecture Search (NAS) onto the work of semantic image segmentation. Semantic 

image segmentation associates each pixel in an image with a class label. NAS is chosen 

due to its recent report of NAS that documented high success on large-scale image 

classification. This work started by reviewing the existing works and discovered that 

existing works invariably put their interest on capturing repeatable cell and lack of 

automated outer network structure that manipulates the changes in spatial resolution. 

From the review, NAS exhibits difficulty in dense image prediction although it is able to 

simply searching space. It is known that dense image prediction contains multitude of 

variations in network level architecture. Therefore, the authors propose searching of 

network level structure other than the cell level structure. By doing this, a hierarchical 

architecture search space is formed. This presented network level search space comprises 

multitude state-of-the-art designs as well as formulates robust architecture search based 

on gradient. The success of this work has been proven by using several datasets that 

includes ADE20K datasets, Cityscapes, PASCAL VOL 2012. The authors named this 

search architecture as Auto-DeepLab. It is claimed that this method outperforms state-of-

the-art methods even without pre-training using any ImageNet.  The authors also claimed 

that this is the first attempt in extending the NAS other than application of image 

classification into dense image prediction problems.  They stressed the significance of 

spatial resolution changes instead of fixating on cell level. In addition, they consider the 
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architectural variations by combining the network level with search space. A 

differentiable formulation has also been developed by the authors that permit effective 

architecture search for the two level hierarchical search space and the claimed speed is 

thousand times faster than DPC (Chen, Collins et al., 2018). The latest version of Auto-

DeepLab is DeepLabv3+ (Chen et al., 2018). DeepLabv3+ extends DeepLabv3 by 

introducing an effective decoder module in order to enhance the segmentation results, 

targeting the outline of the objects. DeepLabv3+ combines Atrous Spatial Pyramid 

Pooling (ASPP) that is able to encode multi-scale contextual information with Encode-

Decoder architecture, in which the location or spatial information is recovered. In this 

version, a faster and stronger network is developed by utilizing Modified Aligned 

Xception and Atrous Separable Convolution. The effectiveness of DeepLabv3+ is tested 

in PASCAL VOC 2012 and Cityscapes datasets. The performance is achieved at 89% and 

82.1% without any post-processing on the two datasets, respectively.  

 

2.6 Summary of Literature Review of Contrast Enhancement and Segmentation 

From the review of the literature works in HE, the first observation is the GHE is a 

preferable approach in the HE field, as the nature of the GHE is simple and efficient in 

terms of computation resources. This makes the GHE is suitable to be used in real time 

applications. On the other hand, LHE is not favorable to be used in real time application 

as this approach demands a high computation time. Despite the high computation time of 

LHE, this approach is still an active research topic due to its advantage in preserving local 

information in the image. Thus, GHE and LHE have its own advantages and limitation. 

In this thesis, bi-histogram equalization and clipped histogram equalization approaches 

are chosen as an enhancement approach due to its high computation efficiency and at the 

Univ
ers

ity
 of

 M
ala

ya



 

55 

same time maintains the local information of the original image. The local information is 

maintained without performing the windowing technique in LHE approach.  

The second observation is the majority of research works focus in enhancing the image 

by solving a single objective. For example, the single objective is devoted to brightness 

preservation and this is done by utilizing the mean brightness metric. Another example is 

endorsing entropy metric in preserving the details in the original image. In medical image 

application, an enhanced image with solving a single objective is not sufficient, and it 

demands an enhancement result that considers all factors. All factors are highly important 

in terms of enhancement perspective. A holistic enhancement approach is highly needed 

to produce a resultant image, where the contrast is enhanced, brightness is preserved and 

details is maintained. Therefore, in this thesis, a contrast enhancement framework based 

on histogram equalization that consider all these three factors is needed. 

From the review of the literature works in segmentation, the early promising approach 

before the arrival of deep learning approach is to use active contour to obtain the outline 

of the objects in the image. One of the successful criteria in active contour approach is to 

initialize the primary object shape at the right location of the targeted object in the image. 

Therefore, the segmentation result of the targeted object is not accurate if the initialization 

of the primary object shape is not correct. The effectiveness of the active contour is also 

dependent to the complexity of the target objects in terms of shape, number of objects 

and the degree of overlapping of all the targeted object for segmentation. In active contour 

approach, the accuracy of the segmentation result is lower if the shape of the targeted 

object is complex, high number of objects in the image to be segmented and high 

overlapping degree between the targeted object. Due to this limitation of active contour, 

this approach is not suitable to be used in segmenting bone structures in the hand bone 

image. For example, carpals in hand bone image has high number of bone structures and 
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the shape of all the bone structure in the carpal is almost similar as well as they are 

overlapping to each other.  

With the advancement of deep learning approach, active research based on this 

approach is showing significant improvement in segmenting objects in the medical 

images. Due to the dense architecture of the deep learning approach, the prominent 

features that is related to the targeted object for segmentation is automatically computed. 

Prior to the advancement in deep learning approach, the suitable and best features that 

represent the targeted object needs to be defined. From the past research works in finding 

the best feature, there is no single best representation features and each feature has its 

own trade off. In deep learning approach, the convolutional neural network able to extract 

mixture of good features, automatically. With this advantage, deep learning approach able 

to segments the bone structures in the hand bone image, successfully. 

In general, the overall semantic segmentation approach is based on the encoder-

decoder architecture. The encoder is expected to mitigate gradually the feature spatial 

dimension and learn more high-level semantic features. Meanwhile, the decoder acts to 

recover the objects spatial dimension. Although the higher level of feature representation 

is crucial for object classification and detection related tasks, this representation is an 

obstacle to dense prediction task in which this task demands detail spatial information. 

Despite the high level of feature representation is an important component in contributing 

to higher segmentation accuracy, the high volume of feature map will impede the training 

speed and increase the complexity of optimization. Due to this challenge, various 

semantic segmentation architecture is explored and introduced. The promising semantic 

segmentation approach includes some early method such as R-CNN (Regions with CNN 

feature) and FCN (Fully Convolutional Network), to more complicated architecture such 

as U-net, CE-net and AutoDeepLab approaches. As the semantic segmentation approach 
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is getting more advance, high accuracy of the segmentation results is successfully 

obtained although the image contains complex, high number and high overlapping of 

objects in the image. However, this advanced methods such as U-net, CE-net and 

AutoDeepLab demands extensive computation and large dataset for training. In addition, 

these methods suffers from parameter value ambiguity. In medical image analysis field, 

it is common that the number of available dataset is small and limited. Although the 

semantic segmentation with complex architecture able to segment the targeted object in 

the medical image, it is not suitable to be used due to its demand of large dataset for 

training. Therefore, an effective and automated segmentation technique with 

computationally feasible and less demanding large dataset for training is needed.
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CHAPTER 3: METHODOLOGY 

This chapter is devoted to the methodology of the proposed contrast enhancement and 

segmentation framework for the purpose of skeletal age assessment.  

 

3.1 Overview of the Contrast Enhancement Methodology   

With an intention to create a holistic histogram equalization framework, the principle 

objectives of the histogram equalization is studied. It is very clear direction that the 

contextual purposes are focused into having an enhancement framework that considers 

brightness preservation, detail preservation and enhanced contrast, simultaneously. Once 

the contextual purposes are clear, various mechanism in histogram equalization is 

evaluated in order to achieve the stated purposes. The evaluated mechanism includes bi-

histogram equalization approach and clipped histogram equalization approach. In order 

to optimize each of these techniques, the value of the stopping criteria for each of the 

mechanism technique is determined. For example, separating point value is one of the 

stopping criteria need to be determine in the bi-histogram equalization approach. On the 

other hands, clipped histogram equalization approach needs to determine the value of the 

clipped limit.  

The derivation of holistic contrast enhancement framework is motivated with four 

principle steps that is illustrated in Figure 3.1. In this figure, the formulation of multiple 

objective functions is identified as the first step. The second step involves modelling of 

analytical functions that comprised of multiple objective functions that are corresponding 

to preservation of brightness shift, contrast and detail loss. The third step is devoted to 

optimization of analytical functions. Lastly, the last step of this proposed framework is 

the selection of optimized solutions.  

Univ
ers

ity
 of

 M
ala

ya



 

59 

 

Figure 3.1: Work flow of holistic contrast enhancement framework 

 

3.1.1 Formulation of Multiple Objective Functions 

As opposed to the typical approach on using one objective for problem formulation as 

seen in the literature review chapter, approach of utilizing multiple objectives is put in 

focus in this thesis. Contrast enhancement is a complex problem and the nature of this 

type of problem is depending to various consideration factors in order to obtain substantial 

solution. The consideration factor includes correlation relationship between multiple 

objectives, type of parameters in each objective and their parameter values of the chosen 

objective. With the intention to enhance the visual appearance of the skeletal image for 

evaluation of maturity score, the principal objectives for histogram equalization 

implementation are designed for this context. With this context, three principal objectives 

are defined as the desired outcome of output image that is processed by histogram 

equalization. The objectives are i) enhanced contrast, ii) low mean brightness deviation 

and iii) low detail loss. The three principal objectives are defined systematically to 

resemble the human visual perception. In this thesis, the three principal objectives guide 
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the computation of histogram equalization approach towards improving the visibility of 

the carpal ossification sites in the radiograph hand bone image. Figure 3.2 depicts the 

identification of principal objectives towards enhancing the quality appearance of the 

hand bone image. 

 

Figure 3.2: Identification of principal objectives 

 

Once the principal objectives are identified, it is crucial to determine the quantitative 

measurement technique for each identified principal objective. The measurement 

technique formulates a mathematical model, which it is able to evaluate and quantify the 

effectiveness of the histogram equalization implementation in achieving the aim of each 

principal objective. From the existing research works, there is a range of metric 

techniques that can be used and adopted as a measurement technique for each principal 

objective. Each of its metric technique has its individual strengths and limitations. In this 

thesis, mechanism to select the best metric to be adopted for each principal objectives is 

not the main contribution of this thesis. The main focus of this thesis is the framework 

that optimize the multiple objectives instead of a single objective that has the ability to 

enhance the appearance quality of the hand bone image. However, the metric is not only 

properly chosen to provide measureable quantifier for each principal objective but also 

ensuring that the final resultant image is correlated to human visual perception. The 

quantitative measurement of the three principal objectives are described in the following 

sub-sections. Figure 3.3 illustrates the summary of the chosen quantitative measurement 
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on the principal objectives that are focus in terms of contrast, brightness and detail 

considerations.  

 

Figure 3.3: Quantitative measurement for contrast, brightness and detail 
considerations 

 

3.1.1.1 The Measurement of the Enhanced Contrast 

In this sub-section, few classical quantitative measurement technique on contrast are 

discussed. The classical techniques include Michelson Contrast Enhancement (MCM) 

(Michelson, 1927), Weber contrast enhancement (Peli, 1990) and Measurement of Image 

Enhancement (EME) (Sos S. Agaian, 2000; Sundaram, Ramar et al., 2011). From the 

three classical contrast measurement, researchers also combines the three techniques 

together with an intention to leverage the strengths from each contrast measurement 

technique. The combination technique comprises of Weber contrast based EME, 

Michelson contrast based EME and Weber-Michelson contrast based EME (Hossain and 

Alsharif, 2007). In this thesis, the contrast measurement technique is reviewed and the 

relevant technique is chosen based on its ability to enhance the visual appearance of the 

hand bone image and resemblance of the human visual perception, subsequently.  

MCM is designed to measure contrast of the input image that contains periodic 

intensity patterns. MCM does not exhibits the characteristic of human visual perception 
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due to its sensitivity to extreme low or high intensity values, which these extreme intensity 

values may appear only on a small number of pixels in the image. In this context, human 

is highly robust in terms of slight changes of high or low intensity in the image. The 

changes do not affect the overall contrast quality of the image in human perception. For 

Weber contrast enhancement technique, it works well in the image that has homogeneous 

intensity at the background of the image and the interest object does not covers the entire 

space of the image. However, hand bone image does not exhibits the characteristic of the 

image that able to fulfills the criteria that is stated in the Weber contrast enhancement 

(Hossain and Alsharif, 2007). Therefore, Weber contrast enhancement may not be the 

most suitable contrast measurement technique for the enhancement of hand bone image. 

Equation (3.1) describes the MCM definition for contrast measurement. 

 
𝑀𝐶𝑀 =

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
 

 

(3.1) 

 

where Imax and Imin denotes the maximum value of the pixel intensity and minimum value 

of the pixel intensity throughout the image, respectively. From the MCM definition, it is 

clear that the contrast value measured by MCM is very sensitive to the change of 

maximum or minimum intensity value, even the outlier value only happened in one single 

pixel of the image. Due to this over sensitivity to intensity change, MCM is not the most 

optimum contrast measurement technique if it is used independently and not resembling 

the human visual perception.  

Although global contrast measurement technique such as MCM is very simple to be 

implemented but this technique is not suitable to be standalone measurement used as 

contrast difference always appeared in various location in the image. In this thesis, 

contrast measurement is locally measured using combination of previous adopted contrast 

measurement techniques in the research works. The combination technique involves 
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mixture technique of MCM, Weber contrast measurement and EME (MWEME). The 

local contrast measurement technique, MWEME is defined in Equation (3.2). 

 

𝑀𝑊𝐸𝑀𝐸

=
1

𝑘1𝑘2
∑ ∑ 𝛼 [

𝐼𝑚𝑎𝑥;𝑚,𝑛
𝑆 − 𝐼𝑚𝑖𝑛;𝑚,𝑛

𝑆

𝐼𝑚𝑎𝑥;𝑚,𝑛
𝑆 + 𝐼𝑚𝑖𝑛;𝑚.𝑛

𝑆 + 𝑐
]

𝛼

𝑙𝑛 [
𝐼𝑚𝑎𝑥;𝑚,𝑛

𝑆 − 𝐼𝑚𝑖𝑛;𝑚,𝑛
𝑆

𝐼𝑚𝑎𝑥;𝑚,𝑛
𝑆 + 𝐼𝑚𝑖𝑛;𝑚.𝑛

𝑆 + 𝑐
]

𝑘2

𝑛=1

𝑘1

𝑚=1

 

 

(3.2) 

 
 
where 𝑘1𝑘2 denote the totals number of sub-images in terms of row and column; m by n 

denotes each sub-image horizontal and vertical size. 𝐼𝑚𝑎𝑥;𝑚,𝑛
𝑆  and  𝐼𝑚𝑖𝑛;𝑚,𝑛

𝑆  denote the 

maximum pixel intensity and minimum pixel intensity of each sub-image 𝐼𝑆(𝑚,𝑛) , 

respectively. The fraction formula of
𝐼𝑚𝑎𝑥;𝑚,𝑛

𝑆 −𝐼𝑚𝑖𝑛;𝑚,𝑛
𝑆

𝐼𝑚𝑎𝑥;𝑚,𝑛
𝑆 +𝐼𝑚𝑖𝑛;𝑚.𝑛

𝑆 +𝑐
 represents the MCM formula. The 

constant c value is included within the formula in order to ensure the stability in the 

numerical computation. One of the most determinant factors in this MWEME is the 

parameter 𝛼, which this parameter determines the desired range of the most optimum of 

the output of the contrast enhancement. Thus, 𝛼 value is defined based on the application 

objective and problem context. For contrast enhancement on hand bone image, 𝛼 value is 

defined in a way to focus to the pertinent features in the image. The 𝛼 value is also 

considered with other principal objectives in order to ensure optimal contrast is blended 

well with others enhancement in terms of brightness and detail. This harmonization is 

important as these three principal objectives are highly correlated and each enhancement 

has its own trade-off.  

Figure 3.4 illustrates the correspondence value between MCM and MWEME by using 

different 𝛼 value. The purpose of this mapping is to illustrate the corresponding intuitive 

relationship value of MCM and MWEME for different used weight value of 𝛼. In Figure 

3.4, five 𝛼  values are used to examine the relationship between value of MCM and 

MWEME. The 𝛼 values are 0.5, 1.0, 1.5, 2.0 and 6.5. Other 𝛼 values are not shown in 

Figure 3.4 as they show almost similar relationship curve with the five chosen 𝛼  values. 
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Thus, only five 𝛼  values is sufficient to study the relationship between MCM and 

MWEME as contrast measurement technique. For example at 𝛼 = 0.5, MWEME value 

is highest at the MCM value approximate to 0.1. The highest MWEME value is reflected 

at different MCM value if different 𝛼 is used. For instance, the highest MWEME value 

is located at MCM value of 0.5 if 𝛼 = 1.5 is used, as compared to the previous example 

of the highest MWEME value is at 𝛼 = 0.5 for MCM value of 0.1. With this observation 

of the MWEME value by different 𝛼  value, the setting of 𝛼  value is dynamic in the 

development of holistic equalization. The 𝛼 value is chosen based on the characterisctic 

of the input image and also the correlation with others principal objectives. 

 

Figure 3.4 The correspondence value between MCM and MWEME with 𝜶 variation 
values 

 

Figure 3.5 illustrates the original image of radius ossification site and three resultant 

images with different visual artifacts from enhancement. The implication of visual 

artifacts is observed from various parameters, such as 𝑘1, 𝑘2 , 𝛼  of MWEME. The 

observation also motivates the usefulness of local contrast enhancement as compared to 

the global enhancement and at the same time, relationship of MWEME to human visual 
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perception is observed. From Figure 3.5, it is observed that histogram equalization 

generates visual artifacts on the enhanced image. This visual artifacts hinder practitioner 

to inspect the radiographic image and also degraded the performance of the automated 

skeletal age assessment system in measuring the development stage of the skeletal bone.  

(a) (b) 

     
                           (c) (d) 

Figure 3.5 (a) Original Image of radius ossification sites (b) Amplified background 
noise found at the histogram equalized image (c) Unwanted intensity saturation and 
high mean brightness shift of the histogram equalized image (d) Well enhanced 
image without obvious unwanted artifacts. 

 

Table 3.1 describes the contrast measurement value using MWEME and MCM 

technique for each sub-figure (a) to sub-figure (d) from Figure 3.5, where different 

parameters value of 𝑘1, 𝑘2 and 𝛼 are used. As described in previous paragraph, MCM is 

the partial input to the MWEME formula. As MCM does not have 𝛼 value, there is no 

variation for MCM as illustrated in Table 3.1. However, the 𝛼 value in MWEME reflects 

the relative importance of this value in emphasizing pertinent information in the image 

for contrast enhancement purpose.  

In this table, it is noted that contrast measurement using 𝑘1 = 1, 𝑘2 = 1 equivalents to 

global measurement technique. For global measurement technique, the majority of the 

contrast measurement result value is either close to zero (0) or one (1). This result value 
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is expected as the MCM considers the minimum and maximum intensity values only for 

contrast measurement value. If the whole image is under consideration, it is common to 

obtain the contrast measurement result value is either close to zero (0) or one (1) as the 

minimum and maximum intensity value is zero and 255, respectively. Therefore, the 

contrast measurement value using MCM will be close to one and MWEME will returns 

value closely to zero. As the four sub-figures has different visual qualities, the value of 

the global contrast measurement is almost the same (zero or one) reflects that this global 

technique is not reflecting human visual perception. For example, the global contrast 

measurement value in Figure 3.5(b) and Figure 3.5(d) is identical although the image 

quality in these two sub-figure is different as perceived by human perception. Therefore, 

the local processing that perform contrast measurement at different region in the image is 

more favor to visual human perception.  

From Figure 3.5, it is observed that the local MWEME value for the four sub-figures 

fall within the specific minimum MWEME (𝑘1, 𝑘2,𝛼) value and maximum MWEME 

(𝑘1, 𝑘2,𝛼) value, regardless the quality of the image as perceived by human. Therefore, a 

typical histogram technique that only put focus in improving the contrast quality of the 

image may not able to obtain the output image that is equivalent to visual human 

perception. It is clearly reflected by the local contrast measurement value at Figure 3.5(c), 

where the value is almost identical to Figure 3.5(d) although the image in Figure 3.5(c) is 

suffers from brightness and detail preservation. The observation from the results in Table 

3.1 strengthen the motivation of this thesis, which is to develop a holistic histogram 

equalization approach for the enhancement of hand bone image.  
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Table 3.1 Contrast measurement value with MWEME and MCM with different 
𝒌𝟏, 𝒌𝟐 and 𝜶 values 

Figure 

3.5 

Configuration of 

Contrast Metrics 

i. k1 = 1; 

k2 = 1 

ii. k1 = 5; 

k2 = 5 

iii. k1 = 10; 

k2 = 10 

iv. k1 = 15; 

k2 = 15 

v. k1 = 20; 

k2 = 20 

vi. k1 = 40; 

k2 = 40 

(a) MWEME (𝛼 =0.5) 0.0693 0.3066 0.3372 0.3464 0.3479 0.3407 

MWEME (𝛼 =1.0) 0.1286 0.2834 0.2647 0.2417 0.2257 0.1816 

MWEME (𝛼 =1.5) 0.1790 0.2117 0.1675 0.1351 0.1173 0.0777 

MWEME (𝛼 =2.0) 0.2215 0.1548 0.1047 0.0747 0.0609 0.0338 

MCM 0.8613 0.3128 0.2098 0.1593 0.1349 0.0867 

(b) MWEME (𝛼 =0.5) 0 0.1785 0.2397 0.2740 0.2891 0.3227 

MWEME (𝛼 =1.0) 0 0.2469 0.3013 0.3179 0.3186 0.3061 

MWEME (𝛼 =1.5) 0 0.2659 0.2966 0.2904 0.2772 0.2337 

MWEME (𝛼 =2.0) 0 0.2615 0.2677 0.2444 0.2232 0.1680 

MCM 1 0.6307 0.4959 0.4148 0.3766 0.2744 

(c) MWEME (𝛼 =0.5) 0.0078 0.2901 0.3262 0.3305 0.3350 0.3199 

MWEME (𝛼 =1.0) 0.0154 0.2877 0.2818 0.2590 0.2502 0.2014 

MWEME (𝛼 =1.5) 0.0230 0.2225 0.1925 0.1611 0.1487 0.1027 

MWEME (𝛼 =2.0) 0.0304 0.1611 0.1243 0.0952 0.0844 0.0508 

MCM 0.9844 0.3656 0.2537 0.1945 0.1723 0.1125 

(d) MWEME (𝛼 =0.5) 0 0.2591 0.3121 0.3332 0.3412 0.3496 

MWEME (𝛼 =1.0) 0 0.2995 0.3092 0.2964 0.2856 0.2432 

MWEME (𝛼 =1.5) 0 0.2674 0.2383 0.2064 0.1880 0.1352 

MWEME (𝛼 =2.0) 0 0.2188 0.1697 0.1339 0.1159 0.0717 

MCM 1 0.4512 0.3165 0.2491 0.2169 0.1451 

 

3.1.1.2 The Measurement of the Mean Brightness Deviation 

Brightness preservation is indicated by the low value of mean brightness deviation. 

Mean brightness deviation is one of the measurement of the artifacts that caused by the 

histogram equalization. High value of the mean brightness deviation in the enhanced 
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image deteriorates the quality of the input image and at the same time creates unnatural 

visual effects. The effect of mean brightness deviation is reflected in the resultant image 

at Figure 3.5(c) compared to original image in Figure 3.5(a), where the increase 

brightness of the resultant image reduces the contrast of the original image. The contrast 

reduction of the resultant image at Figure 3.5(c) as compared to Figure 3.5(d) is illustrated 

in Table 3.1. 

In order to address this problem, various approaches on histogram equalization are 

introduced to minimize the enhancement artifacts that related to mean brightness 

deviation. The introduced histogram equalization approaches include brightness 

preserving bi-histogram equalization (BBHE) (Yeong-Taeg, 1997, Yeong-Taeg, 1997), 

dualistic sub-image histogram equalization (DSIHE) (Yu, Qian et al., 1999), minimum 

mean brightness error bi-histogram equalization (MMBEBHE) (Soong-Der and Ramli, 

2003), brightness preserving histogram equalization with maximum entropy (BPHEME) 

(Chao and Zhongfu, 2005), recursive mean-separate histogram equalization (RMSHE) 

(Sim, Tso et al., 2007) and brightness preserving dynamic histogram equalization 

(BPDHE) (Ibrahim and Kong, 2007). 

The above mentioned proposed histogram equalization approaches use brightness 

preservation measurement method in order to evaluate the effectiveness of the 

enhancement approach in preserving the brightness of the image. The brightness 

preservation measurement method includes absolute mean brightness error (AMBE) or 

the Mean of AMBE (MAMBE). The equation of AMBE and MAMBE is illustrated in 

Equation (3.3) and Equation (3.4), respectively.  

 𝐴𝑀𝐵𝐸(𝑋, 𝑌) = |𝐸(𝑋) − 𝐸(𝑌)| 

  

(3.3) 
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where E(X) denotes the mean brightness of input image and E(Y) denotes the mean 

brightness of resultant image. For multiple resultant images, N involve form the 

computation of the histogram equalization, the mean of the AMBE (MAMBE) is 

computed to measure the overall effectiveness of the proposed algorithm in terms of 

brightness preservation: 

 𝑀𝐴𝑀𝐵𝐸(𝑋, 𝑌) =
1

𝑁
∑ |𝐸(𝑋) − 𝐸(𝑌)|

𝑁

𝑖=1
 

 

(3.4) 

 

At the early days of research works, low value of AMBE and MAMBE show high 

brightness preservation in the enhanced image. There is also findings about the 

importance of brightness preservation while performing contrast enhancement. Thus, this 

group of researcher designed various histogram equalization algorithms that will enhance 

the input image with minimum value of AMBE. However, this is only partly true due to 

few reasons. Firstly, the resultant image with low value of AMBE may insignificantly 

enhanced. The second reason is devoted to the resultant image that just focus in brightness 

preservation might not produce perceptually meaningful enhanced image to human vision 

system (Singh and Vikram, 2002, Zuo, Chen et al., 2013).  

The authors in the paper (Chen Hee and Isa, 2010) who designed MMBEBHE method 

used AMBE as the metric for brightness preservation. They claimed and justified that the 

AMBE as the brightness preservation metric does not resemble human visual perception 

in terms of quality measurement of histogram equalization. Despite to this drawbacks of 

AMBE (Konak, Coit et al., 2006), the measurement metric for the brightness preservation 

is still adopting AMBE technique in this thesis. This adoption is reasonable due to the 

following justifications: 
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1) The limitation of AMBE in achieving enhancement result that resembling human 

visual perception is compensated by introducing optimization of multiple 

objectives that includes enhancement on contrast, detail lost and occurrences of 

other artifacts. In this thesis, the aggregation of various standard measurement 

metric as a constraint to each principal objective is one of the contributions in 

order to solve the limitation of the standard metric by performing optimization 

on the aggregated multiple objective function.  

2) The simplicity of AMBE compared to other brightness preservation metrics that 

requires a number of user-specified parameters is one of the important factors to 

be considered as a metric measurement in the optimization of multiple objective 

function. AMBE does not contain user-specified parameters and can be executed 

automatically without human intervention. These two properties make the 

execution of histogram equalization is practical to be used in the image 

enhancement process as it is done without any presence of human expert. In 

addition, the simplicity of AMBE assures feasibility in terms of computational 

complexity in solving the optimization of multiple objectives. 

 

3.1.1.3 The Measurement of Detail Loss 

For the artifacts that related to detail loss, it can be described by the artifacts caused 

by intensity saturation and amplification of background noise in the enhanced image. In 

this context, the details represent the highly important information of the interest objects 

in the processed image. The loss of this highly important information contributes to the 

failure of visual inspection or automatic classification of skeletal age assessment system 

due to the pertinent information does not exist in the processed image. For skeletal age 

assessment, the pertinent information exists in the ossification sites of the hand bone 

Univ
ers

ity
 of

 M
ala

ya



 

71 

image. Thus, artifacts that lead to loss of information at the ossification sites will directly 

hinder radiographer or pediatrician to perform visual inspection in order to make bone 

age decision if GP method is used. For automated system such as CASAS, the loss of this 

information hinders the right features to be extracted from this region of interest and 

subsequently causing the inaccurate of the prediction of actual bone age. Therefore, it is 

obvious that consideration to preserve the details in the enhanced image is highly crucial 

in skeletal age assessment and construction of multiple objectives function is necessary 

to ensure the resultant image from histogram equalization is resemble visual human 

perception. Due to the urgency to preserve the details in the ossification sites, a 

measurement metric for detail loss is needed for this purpose. Firstly, various possible 

measurement metric related to detail loss that is adopted by previous researchers is 

studied. Then, the most suitable detail loss measurement is chosen as the metric 

component in the multiple principal objectives function. 

Shannon entropy (Chao and Zhongfu, 2005) is used as a measurement metric to 

determine the efficiency of histogram equalization in highlighting details, although this 

metric also been used for contrast preservation. In (Chen Hee and Isa, 2010) research 

work, they claimed that the higher value of entropy indicates the better contrast 

enhancement or detail preservation. Besides entropy, authors in this paper (Sengee, 

Bazarragchaa et al., 2009) evaluate the detail preservation after the enhancement process 

by using the Peak noise signal ratio (PNSR). Research work claimed that the higher value 

of PSNR represents a better visual effect. It is also noted that PSNR also been used to 

evaluate the efficiency of contrast enhancement (Rajavel, 2010). Therefore, detail loss 

measurement metric such as entropy and PSNR may not be directly correlated to the detail 

preservation as the metrics are generic for overall contrast measurement metric. Thus, 

entropy and PSNR are not chosen as metric for measuring the degree of detail loss in this 

thesis. In this context, structure comparison function (Zhou and Bovik, 2002) is adopted 
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for detail loss measurement in histogram equalization. Structure comparison function is 

termed as SCF. It is one of the essential components from the structural similarity index 

(Zhou, Bovik et al., 2004). SCF is described as follows in Equation (3.5) and Equation 

(3.6). 

  𝑆𝐶𝐹(𝑋, 𝑌) =
𝜎𝑋𝑌 + 𝐶

𝜎𝑋𝜎𝑌 + 𝐶
 

(3.5) 

 

 
𝜎𝑋𝑌 =

1

𝑁 − 1
∑ (𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)

𝑁

𝑖=1
 

(3.6) 

 

𝑋𝑖 and 𝑌𝑖 denote the i-th pixel intensity in input image and output image, respectively. 𝜇𝑋 

and 𝜇𝑌  denote the mean intensity of input image and output image, respectively. 𝐶 

denotes a small constant value that ensures computational stability.  

From the literature reviews, histogram equalization that has a single objective in 

removing specific artifact in the image fails to ensure high visual quality of the enhanced 

image. The single objective can be the minimization of mean brightness shift or 

maximization of contrast in the image. One of the reasons is that the adopted metrics such 

as entropy and AMBE fail to reflect the actual perceived visual effect that corresponding 

to human visual perception. Therefore, majority of the previous histogram equalization 

focuses on one single objectives while neglecting others important objective. BPHEME 

does consider both objectives of contrast and brightness for the optimal histogram 

equalization result using histogram specification technique. However, simultaneous 

consideration of two objectives is not sufficient for enhancement purpose in complex 

images such as medical images, specifically to hand bone image.  
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3.1.2 Modelling of Analytical Functions 

The general principle to evaluate the performance of each objective function is to 

compares the fitness results of each computed objective function. However, independent 

comparison of the fitness value for each objective function is not an effective method as 

all this objective functions are correlated to each others. Therefore, the overall fitness 

value is determined from a single solution, where this single fitness solution is computed 

by aggregating the objective functions. The aggregation of multiple objective functions 

is known as modelling of analytical functions. Figure 3.6 illustrates the three major 

components that model the analytical function. The three components are the objective 

functions, decision variables and constraints. In Figure 3.6, the objective functions 

defines the effectiveness of the possible feasible solutions in the proposed approach. 

Meanwhile, the decision variables values generates all the possible feasible solutions 

based on the proposed approach. In the optimization process in getting the feasible 

solution, there is no ideal solution that is able to simultaneously optimize all the objective 

function. In fact, there is a certain trade-off exists in each optimized objective function. 

This trade-off is defined by the initial constraint set based on the desired goal of the 

optimization. The constraint set reduces the searching space in obtaining feasible 

solution. Therefore, the searching space is clearly defines only certain range of solutions 

are feasible to the problem, where not all range contains possible solution. This feasibility 

is defined by the problem constraints according to desired goal, which greatly reduces the 

searching space in order to ensure a feasible solution is obtained. The goal of optimization 

is to obtain a solution that is feasible by adhering to the constraints. It can be concluded 

that the constraints for each of the objective functions and their trade-off are ideally set 

in accordance to the problem context. 
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Figure 3.6: Formulation of analytical function model by objective functions, decision 
variables and constraints. 

 

In the proposed contrast enhancement framework, histogram equalization (HE) is 

chosen as the approach to enhance the visibility of the hand bone image. Thus, the 

analytical function model is defined as histogram equalization model. Figure 3.7 

describes the histogram equalization model, which this model is formed from three 

objective functions, two decision variables and two constraints. In Figure 3.7, the three 

objective functions are the principal objectives that are formulated in Section 3.1.1. These 

objective functions are enhanced contrast, low mean brightness deviation and low detail 

loss. Due to the proposed contrast enhancement framework is utilizing bi-histogram 

equalization approach and clipped histogram equalization approach, the two decision 

variables are separating point and clipped limit values. In order to limit the searching 

range of the decision variable that reflects the possible feasible solutions, two constraints 

are introduced in the histogram equalization model. The constraints are search range 

separating point and search range clipped limit. The following section describes the 

details of the decision variables and constraints used in the proposed contrast 

enhancement framework. 
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Figure 3.7: Formulation of histogram equalization model. 

 

In sub-histogram equalization approach, the separating point is a threshold value that 

is used to separate the histogram of the input image into two sub-histograms. For each 

sub-histogram, histogram equalization is performed independently over each sub-

histogram. The suitability of the calculated separating point is highly important as the 

intention of having separated sub-histogram is to preserve the mean brightness of the 

input image. The second decision variable, which is the “Clipped Limit” clips both the 

sub-histograms prior to histogram equalization process. The clipping step is highly crucial 

in order to prevent over-enhancement and detail loss that may effects the output image 

after histogram equalization process (Chen Hee, Kong et al., 2009, Pizer, Amburn et al., 

1987).  The “Clipped Limit” consists of “Clipped Limit-L” and “Clipped Limit-R”. 

“Clipped Limit-L” depicts the clipped limit that is applied into the first sub-histogram 

after histogram separation. On the other hand, “Clipped Limit-R” is computed for the 

clipped limit for the second sub-histogram after histogram separation. In this thesis, Non-

dominated Sorting Genetic Algorithm (known as NSGA-II) (Deb, Pratap et al., 2002) is 

adopted as solution to the multi-objective optimization problem. The output of the 

NSGA-II is the non-dominated decision variables vector, which is denoted as 𝑿𝒔. Once 
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the non-dominated decision variables vector is obtained, a set of enhanced resultant 

images by using 𝑿𝒔 is generated.  

The average intensity of an image, I, is defined as 𝐴𝐼 : 

 𝐴𝐼 =
1

(𝑖𝑚𝑎𝑥)(𝑗𝑚𝑎𝑥)
∑ ∑ 𝐼(𝑖, 𝑗)

𝑗𝑚𝑎𝑥

𝑗=1

𝑖𝑚𝑎𝑥

𝑖=1
 

(3.7) 

 

where 𝐼(𝑖, 𝑗) describes the intensity values at coordinate (i,j) of a two-dimensional 

grayscale image. The multiplication of 𝑖𝑚𝑎𝑥 and 𝑗𝑚𝑎𝑥 resemble the total number of pixels 

in the image. The computed value of 𝐴𝐼  is used to define the sub-images and their 

constraints. The sub-histograms are defined as following: 

 𝐻𝐼 = 𝐻𝐿 ⋃ 𝐻𝑈 
(3.8) 

 

In Equation (3.8), 𝐻𝐼 describes the histogram distribution of intensity of image I. 𝐻𝐿 

resembles the lower sub-histogram with bin index that is distributed from 0 to 𝐴𝐼. 𝐻𝑈 

represents the upper sub-histogram with bin index that is distributed from 𝐴𝐼 + 1  to 

maximum gray level. In intensity histogram context, the histogram with bin index, B 

describes the gray level intensity value, where the value of this specific bin, describes the 

total number of pixels in the image that having the same gray level intensity value, B. The 

value of the histogram bin, which denoted as 𝑛𝐵 is actually represents the height of the 

histogram bin. Let 𝐴𝐿 denotes the average pixel value of intensity in 𝐻𝐿. It is defined as 

the summation value of all the multiplication of each bin index with its bin value, then 

divided by the total number of bin values within 𝐻𝐿 denoted as 𝑁𝐿.  

 𝐴𝐿  =
1

𝑁𝐿
∑ (𝑛𝐵)

𝐵=𝐴𝐼

𝐵=1

(𝐵) 
(3.9) 
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The average pixel value of intensity in 𝐻𝑈 is computed similar as 𝐻𝐿, and it is denoted 

as 𝐴𝑈. In this definition, 𝑁𝑈 represents the total bin values across 𝐻𝑈 and 𝐿𝑚𝑎𝑥 is the 

maximum gray level intensity value. 𝐴𝑈 is illustrated in Equation (3.10) as follows: 

 𝐴𝑈  =
1

𝑁𝑈
∑ (𝑛𝐵)

𝐵=𝐿𝑚𝑎𝑥

𝐵=𝐴𝐼+1

(𝐵) 
(3.10) 

 

 

The solutions 𝒙𝒔 subject to three constraints, denoted as 𝑔1(𝑿𝒔) , 𝑔2(𝑿𝒔) and 𝑔3(𝑿𝒔): 

 

𝑔1(𝑿𝒔) 𝑖𝑠 𝑡𝑒𝑟𝑚𝑒𝑑 𝑎𝑠: 

𝐴𝐿  < 𝑥1
𝑠 < 𝐴𝑈 

(3.11) 

 

 

Let 𝑁𝑏𝐿 is defined as total number of bins in 𝐻𝐿 ,    

𝑔2(𝑿𝒔)𝑖𝑠 𝑡𝑒𝑟𝑚𝑒𝑑 𝑎𝑠: 

𝐴𝑏𝐿 − 𝜎𝐿 < 𝑥2
𝑠 < 𝐴𝑏𝐿 + 𝜎𝐿 

where 

𝜎𝐿 = √
1

𝑁𝑏𝐿
∑ (𝐴𝑏𝐿 − 𝑛𝐵)2

𝐵=𝐴𝐼

𝐵=1

 

𝐴𝑏𝐿 =
1

𝑁𝑏𝐿
∑ 𝑛𝐵

𝐵=𝐴𝐼

𝐵=1

 

(3.12) 

 

 

Let 𝑁𝑏𝑈 is defined as total number of bins in 𝐻𝑈, 

,𝑔3(𝑿𝒔) 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠: 

𝐴𝑏𝑈 − 𝜎𝑈 < 𝑥3
𝑠 < 𝐴𝑏𝑈 + 𝜎𝑈 

(3.13) 
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where 

𝜎𝑈 = √
1

𝑁𝑏𝑈
∑ (𝐴𝑏𝑈 − 𝑛𝐵)2

𝐵=𝐿𝑚𝑎𝑥

𝐵=𝐴𝐼+1

 

𝐴𝑏𝑈 =
1

𝑁𝑏𝑈
∑ 𝑛𝐵

𝐵=𝐿𝑚𝑎𝑥

𝐵=𝐴𝐼+1

 

𝑥1
𝑠  , 𝑥2

𝑠  and 𝑥3
𝑠  represent the three non-dominated decision variable, which is 

representing “Separating point”, “Clipped Limit-L” and “Clipped Limit-R”, respectively. 

The notation “𝜎𝐿" and “𝜎𝑈" denote the standard deviation of bin value for 𝐻𝐿 and 𝐻𝑈 

respectively. The notation “𝐴𝑏𝐿" and “𝐴𝑏𝑈" represent the average bin value for 𝐻𝐿 and 

𝐻𝑈, respectively. It is highly crucial to introduce constraint to the decision variables in 

order to limit the feasible search space for optimization purpose. With this limitation, the 

duration for optimization is accelerated and optimization result is directed to the initial 

set objectives. For standard deviation of 𝑔2(𝑿𝒔) and 𝑔3(𝑿𝒔), both values provide an 

adaptive search space with the reference at the average bin value for both lower and upper 

sub-histogram, respectively. For sub-histogram with less variation, standard deviation is 

adjusted to allow narrower search space as compared to the sub-histogram with bigger 

variation. Therefore, the adjustment of the standard deviation of 𝑔2(𝑿𝒔) and 𝑔3(𝑿𝒔) is 

highly dependent to the characteristic of the sub-histogram in different input image.  Univ
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Figure 3.8: Pre-determined decision variables search ranges of “Clipped Limit – L” 
(ranges from 𝑨𝒃𝑳 − 𝝈𝑳 to 𝑨𝒃𝑳 + 𝝈𝑳),  “Clipped Limit – R” (ranges from 𝑨𝒃𝑼 − 𝝈𝑼 to 
𝑨𝒃𝑼 + 𝝈𝑼) and “Separating Point”(ranges from 𝑨𝑳 to 𝑨𝑼). 

 

 

Figure 3.9: Solution Space, X. 

 

In Figure 3.8, the search space for the decision variables are prior determined for 

optimization purpose. The “Clipped Limit-L” is ranged from 𝐴𝑏𝐿 − 𝜎𝐿 to 𝐴𝑏𝐿 + 𝜎𝐿 and 

“Clipped Limit-R” is ranged from 𝐴𝑏𝑈 − 𝜎𝑈 to 𝐴𝑏𝑈 + 𝜎𝑈. For “Separating Point”, it is 
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ranges from 𝐴𝐿 to 𝐴𝑈. Figure 3.9 illustrates the solution space, X, within the search space 

of three decision variables, which are the “Separating Point”, “Clipped Limit-L” and 

“Clipped Limit-R”. In this thesis, the dimension of decision variable is further reduce 

with the intention to enhance the efficiency of the optimization process and also reduce 

the computation time to obtain the optimum decision variables. The two decision 

variables: “Clipped Limit-L” and “Clipped Limit-R” to only one decision variable, known 

as “Clipped Limit”. These two decision variables are valid to be combined as the gray 

level intensity distribution in the region of interest of the carpal bone radiographic image 

is almost symmetrical in histogram representation. As the objective of the clipping 

process is to reduce the disadvantage of over enhancement that may results washed out 

effect, this over enhancement effect is mainly contributed by intensity bin with high 

excess value. With this understanding, the objective of the clipping process is still 

achievable by having one clipping limit value for both the lower and upper histograms. 

By reducing one decision variable, the computation time to obtain optimum decision 

variable values is faster as the computation time for additional decision variables is at the 

exponential rate. Therefore, only two decision variables are considered in the 

optimization, which is the 𝑥1  as “Separating Point” and 𝑥2 as “Clipped Limit”. The range 

of Clipped Limit is termed in Equation (3.14).  

 (𝐴𝑏𝐿 + 𝐴𝑏𝑈)

2
−

(𝜎𝐿 + 𝜎𝑈)

2
< 𝑥2

𝑠 <
(𝐴𝑏𝐿 + 𝐴𝑏𝑈)

2
+

(𝜎𝐿 + 𝜎𝑈)

2
 

 

(3.14) 

 

Prior to optimization process in obtaining the optimized solutions, it is an essential 

step to compute the defined analytical function, which it describes the relationship 

between each determined objective function with the decision variables. It has four 

fundamental steps to compute this analytical function. The first step involves the 

processing operation of the input image with specific values of separating point, 𝑥1 and 
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clipped limit, 𝑥2. The second step is devoted to the computation of the corresponding 

objective functions with 𝑿 = {𝑥1, 𝑥2} . The corresponding objective functions are 

represented as 𝑧1(𝑿), 𝑧2(𝑿) and 𝑧3(𝑿) for contrast, brightness preservation and detail 

preservation, respectively. The third step involves the sampling process of 𝑿 = {𝑥1, 𝑥2} 

in order to obtain a set 𝑥1 and 𝑥2 values with the final objective in mind to obtain the 

optimized solution. Optimized solution is termed as 𝑿𝑠 = {𝑥1
𝑠, 𝑥2

𝑠}  where the first 

solution is labelled as 𝑿𝑠=1 = {𝑥1
𝑠=1, 𝑥2

𝑠=1} and the following solution is labelled with the 

similar representation. The size of the 𝑿 = {𝑥1, 𝑥2} is depending to the resolution of the 

sampling. Higher resolution sampling corresponds to the higher accuracy estimation of 

the relationship between the objective functions with the decision variables. However, 

the balance of the resolution sampling and the relationship accuracy is justified as the 

higher resolution sampling demands a longer computation time. After decision of the 

sampling resolution and subsequent generation of the corresponding objective value, 

curve fitting process is generated to model the relationship between the decision variables 

and objective functions in the fourth step. The final outcome of the curve fitting process 

is an analytical function. This analytical function is used in performing the multi-objective 

optimization. Figure 3.10 illustrates the three figures of the generated values of objective 

functions for a region of interest in carpal bone, Hamate. For example of Figure 3.10(a), 

each point in this figure represents the contrast value of the resultant image of bi-

histogram equalization, where the image is equalized using a certain value of Clipped 

Limit and Separating Point. Figure 3.10(b) illustrates the brightness preservation value of 

the resultant image from equalization and Figure 3.10(c) shows the detail preservation 

value of the similar resultant image. The total number of points in each figure is 

corresponding to the defined sampling resolution for each decision variable as well as the 

intensity attributes of the input image that determine the searching range. The searching 

range includes 𝜎𝐿, 𝜎𝑈, 𝐴𝐿 , 𝐴𝑈. 
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(a) 

 

 

(b) 

 

(c) 

Figure 3.10: Computation of each objective value of the resultant image after 
histogram equalization process with the sampled decision variables values (a) 
Contrast value (b) Brightness Preservation value (c) Detail Preservation value. 

 

 

(a) 

 

(b) 

  
Figure 3.11: Fitted curve plane for each objective (a) Contrast (b) 

Brightness Preservation (c) Detail Preservation (d) Combinations of all 
fitted curve planes in the same Cartesian space. 
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Figure 3.11 illustrates the three figures of the fitted curve plan of the three objective 

functions as depicted in Figure 3.10. Figure 3.11 (d) combines all the fitted curve plans 

in the same Cartesian space. 

For each computed set of values of objective function, a curve fitting procedure is 

applied to these points in order to obtain an analytical surface. This analytical surface fits 

the points, optimally. Optimum fitting of the analytical surface is the most practical 

solution to describe the relationship between the objective function and the decision 

variables. This is due to the natural characteristic of the data point values that may contain 

noises, which known as outlier points. A well fitted analytic surface may include these 

noises into the fitting function. With the noise presence in it, the relationship between the 

objective function and the decision variables is not well represented. Thus, an 

approximate function that is able to describe the data points as an overall representation 

is a better solution with a broader perspective sense. This approach is termed as curve 

fitting process. In this curve fitting process, a vector of points that is equally spaced in the 

interval is generated. This vector of points is represented by a plane function, 𝑝(. ). The 

plane function is generated to fit the points of objective function that corresponding with 

the two decision variables. The plane function is a three dimensional polynomial curve 

function with a degree N that utilizes least square method to perform the fitting onto the 

vector of points. The implementation of this procedure generates coefficients for a 

polynomial curve (or “plane” for 3 dimensional) of degree N that fit optimally with least 

square method onto the generated data points. The coefficients of the polynomial function 

that is represented as m parameters, 𝑟1, … , 𝑟𝑚  are in the order of descending powers and 

the length of the polynomial function is described as m. The functionality of the least 

squares method is as an optimizer by adjusting the values of m parameters, 𝑟1, … , 𝑟𝑚, for 

a certain functional form 𝑝(𝑿, 𝑟1, … , 𝑟𝑚) such that to attempt fitting onto the given set of 

points 𝑿 = {𝑥1
𝑖  , 𝑥2

𝑖 , 𝑜𝑧
𝑖 }𝑖=1

𝑛+1,z=1,2,3. 𝑜𝑧
𝑖  denotes objective function, where 𝑜𝑧=1

𝑖  represents 
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contrast objective, 𝑜𝑧=2
𝑖  represents brightness preservation objective and 𝑜𝑧=3

𝑖  represents 

detail preservation, respectively. In this formulation, n+1 represents total number of data 

in the vector points. The curve fitting is performed by minimizing the error term of 

𝑒2=∑ (𝑝(𝑥1
𝑖  , 𝑥2

𝑖 , 𝑜𝑧
𝑖 , 𝑟1, … , 𝑟𝑚) − 𝑥1

𝑖  , 𝑥2
𝑖 , 𝑜𝑧

𝑖 )2𝑛+1
𝑖=1 .  The following illustrates the example 

of description of fitted function for contrast objective function. Let the m coefficient 

parameters for contrast objective function to be denoted as {𝑟1
𝑧=1, … , 𝑟𝑚

𝑧=1}, the fitted 

function is illustrated as below. The fitted function for another two objectives, which is 

brightness preservation and detail preservation is similar as contrast but with different 

value of parameters. 

𝑝(𝑥1, 𝑥2)𝑧=1 = 𝑟1
𝑧=1 + 𝑟2

𝑧=1𝑥1 + 𝑟3
𝑧=1𝑥2 + 𝑟4

𝑧=1𝑥1
2 + 𝑟5

𝑧=1𝑥1𝑥2 + 𝑟6
𝑧=1𝑥2

2

+ +𝑟7
𝑧=1𝑥1

3+𝑟8
𝑧=1𝑥1

2𝑥2 + 𝑟9
𝑧=1𝑥1𝑥2

2 + 𝑟10
𝑧=1𝑥2

3 + 𝑟11
𝑧=1𝑥1

4

+ 𝑟12
𝑧=1𝑥1

3𝑥2 + 𝑟13
𝑧=1𝑥1

2𝑥2
2 + 𝑟14

𝑧=1𝑥1𝑥2
3 + 𝑟15

𝑧=1𝑥2
4 + 𝑟16

𝑧=1𝑥1
5

+ 𝑟17
𝑧=1𝑥1

4𝑥2 + 𝑟18
𝑧=1𝑥1

3𝑥2
2 + 𝑟19

𝑧=1𝑥1
2𝑥2

3 + 𝑟20
𝑧=1𝑥1𝑥2

4 + 𝑟21
𝑧=1𝑥1

5 

 

3.1.3 Optimization of Analytical Function 

Optimization method is applied to the defined analytical function model in order to 

obtain optimum solutions for the defined problem context. In the proposed contrast 

enhancement framework, the histogram equalization model is optimized. In mathematical 

expression, this model is constructed prior to the optimization (Srinivas and Deb, 1994, 

Zitzler and Thiele, 1999) as follows: 

  𝒛 = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑧1(𝑿), 𝑧2(𝑿), 𝑧3(𝑿), … , 𝑧𝐾(𝑿)] 
(3.15) 

 

K denotes the number of objectives, 𝑧𝑖(. ). 𝑿 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁)𝑇 denotes the vector 

of N number of decision variables. In this optimization, a set of optimum preference for 
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each objective is searched by emphasizing the features contain in the carpal ossification 

sites. The outcome of this optimization is to determine the favorable trade-offs that 

compromise all the desired criteria of the objective functions instead of finding the global 

optimized solution. The outcome of the multiple objectives optimization is a set of 

preference solutions. However, a set of preference solutions is not applicable to the 

process of histogram equalization as this enhancement process only demands a single set 

of solution. Therefore, a set of relative preference solution from each criteria in the 

multiple objective functions is computed for this purpose. This relative preference 

solution is dependents to the chosen problem context. For this thesis, the problem context 

is to enhance the visual effect of the pertinent features lies in the ossification sites of the 

carpals.  In this thesis, GHE (Bull, Edwards et al., 1999) is chosen as the contrast 

enhancement approach to be used.  

In this thesis, an evolutionary algorithm method, which is known as Non-Dominated 

Sorting Genetic Algorithm (NSGA II) technique (Deb, Pratap et al., 2002) is chosen as 

an optimization technique to be applied to the histogram equalization model. The output 

of the NSGA-II is the non-dominated solution, which is also known as Pareto-optimal 

solution. In the Pareto-optimal solution, this is the most ideal and optimum solution as 

any further improvement towards the overall fitness value of the objective functions will 

degrade the fitness value of one of the objective functions. In the proposed contrast 

enhancement framework, the Pareto-optimal solution is the vector of decision variables 

that optimally enhance the hand bone image by considering the preservation of contrast, 

brightness and detail. The following section addresses the non-dominated solution in 

mathematical expression.  

In general, optimization of the objective function is classified as either minimization 

process or maximization process. In minimization process, the optimization is carried out 
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in order to achieve the lowest value of the objective function. On the other hand, 

maximization process is executed in order to achieve the highest value of the objective 

function. Given a N-dimensional decision variable vector 𝑿 = {𝑥1, … , 𝑥𝑁} in the solution 

space 𝑿, find a vector 𝑿𝒔 that optimizes a given set of K objective functions in order to 

obtain non-dominate solutions: 𝒁(𝑿𝒔) = {𝑧1(𝑿𝒔), … , 𝑧𝐾(𝑿𝒔)} for 𝒔 = 1, … , 𝑇, where T 

represents the total number of non-dominated solutions. The solution space X is designed 

to be restricted by M number of constraints, such as 𝑔𝑗(𝑿𝒔), where 𝑗 = 1, … , 𝑀, which 

bounds on the decision variables: 𝑿 = {𝑿 ∈  𝑅𝑁|𝑔𝑗(𝑿𝒔) ≤ 0, 𝑗 = 1, … , 𝑀} . In the 

minimization of the objective functions, a feasible solution 𝑿𝟏 is defined to dominate 

another feasible solution 𝑿𝟐 (which can be expressed as 𝑿𝟏 ≻ 𝑿𝟐 ), if and only if 𝒁(𝑿𝟏) 

is partially less than 𝒁(𝑿𝟐),i.e., if and only if 𝑧𝑖(𝑿𝟏) ≤ 𝑧𝑖(𝑿𝟐)∀𝑖 = 1, … , 𝐾  and ∃𝑖 ∈

{1, … , 𝐾}  with 𝑧𝑖(𝑿𝟏) < 𝑧𝑖(𝑿𝟐) . The solution space X is generally restricted by M 

constraints, such as 𝑔𝑗(𝑿𝒔) ≤ 0 for  𝑗 = 1, … , 𝑀   bounds on the decision variables: 𝑿 =

{𝑿 ∈  𝑅𝑁|𝑔𝑗(𝑿𝒔), 𝑗 = 1, … , 𝑀}. This relationship is expressed as following:  

 (𝑿𝟏 ≻ 𝑿𝟐)↔(∀𝑖)( 𝑧𝑖(𝑿𝟏) ≤ 𝑧𝑖(𝑿𝟐)) ˄ (∃𝑖)(𝑧𝑖(𝑿𝟏) < 𝑧𝑖(𝑿𝟐)) 
(3.16) 

 

In Equation (3.16), decision variable, 𝑿𝟏 is said to dominate another decision variable, 

𝑿𝟐, if and only if there is no objective value of 𝑿𝟏 is worse than the objective value of 

𝑿𝟐 and there is at least one objective value of 𝑿𝟏 is better than the objective value of 𝑿𝟐. 

In the following section, the background of the NSGA II and the process flow of the 

algorithm to obtain non-dominated solutions are addressed. 

The former technique of this evolutionary algorithm is referred as NSGA I, which is 

introduced in 1994 (Srinivas and Deb, 1994). This evolutionary algorithm utilizes genetic 

algorithm in searching and determining optimal solutions. NSGA II is chosen from NSGA 

I as the latter technique able to solve the associated drawbacks that are found in the former 
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technique (Srinivas, 1994, Konak, 2006). There is three drawbacks that is encountered in 

the NSGA I. The first drawback is related to the high computation resources needed in 

performing the NSGA I. In NSGA I, intensive resources needed to computes the sorting 

process in order to obtain the non-dominated solutions. This type of sorting comes with 

high computation complexity of 𝑂(𝑀𝑁3), where M is the number of objective functions 

and N is the number of decision variables. High computation complexity exists in the 

sorting process is due to each of the solution needs to be compared with other solutions 

at the precede position in order to examine the non-domination criteria. Therefore, any 

increase of the M and N value will contributes to the tremendous increase in computation 

complexity. On the other hand, NSGA II has lower computation complexity due to its 

quick non-dominated sorting technique. It only requires 𝑂(𝑀𝑁2 ) complexity as 

compared to 𝑂(𝑀𝑁3 ) complexity as observed in NSGA I. However, the quick non-

dominated sorting technique in NSGA II demands a higher space complexity, in which 

NSGA II needs 𝑂(𝑁2) memory requirement as compared to 𝑂(𝑁) from NSGA I. Despite 

this fact, NSGA II is chosen as preferred approach as compare to NSGA I as it is able to 

shorten the running time of the process algorithm. At the same time, NSGA exhibits 

additional advantages as a robust optimization approach in finding optimum solution.  

The second drawback of NSGA I is related to weakness of this approach in 

emphasizing the quality candidates in the searching process, where it neglects elitism. 

This neglection slows down the searching speed in obtaining non-dominated solution via 

genetic algorithm. Due to this drawback, NSGA II has the ability to identifies and retains 

the best possible of non-dominated solution from parent at one generation to the next 

child generation. The best retainment is possible in NSGA II due to its elitist-preserving 

algorithm in its technique.  
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The third drawback of NSGA I is related to user intervention in specifying parameter 

that assures the diversity in each population cycle in the genetic algorithm. Diversity 

attributes in genetic algorithm is highly important in order to ensure the Pareto optimal 

solution is optimum and widely spread. This parameter is known as sharing parameter 

and labelled as 𝜎𝑠ℎ𝑎𝑟𝑒. In NSGA I, this sharing parameter needs to be specified, explicitly.  

If there is a parameter need to specified, means the success criteria for the optimal solution 

is also dependent to the suitability of this specified parameter value. Therefore, NSGA I 

is more complicated to be used as optimization approach. For NSGA II, the diversity in 

the population cycle is preserved without needs any user specified parameter values. With 

the advantages upon the three drawbacks from NSGA I, NSGA II is chosen as the 

optimization approach used in this thesis. 

This section describes the process flow of NSGA II algorithm. Figure 3.12 illustrates 

this algorithm until the non-dominated solutions are achieved. In NSGA II, it is initiated 

with a population, 𝑃𝑡=0 for each objective function. This first population is generated with 

a random values. With these random values, the solutions are calculated, accordingly. For 

each calculated solution, fast sorting technique and crowding distance evaluation are used 

to assigns the fitness value and non-dominated level. Subsequently, offspring population, 

which is denoted as 𝑄𝑡=0 is derived through genetic algorithm operators. The operators 

includes crossover, mutation and elitism rating steps. The resultant of 𝑃𝑡=0 and 𝑄𝑡=0 are 

combined as 𝑅𝑡=0. The subsequent process is followed by ranking step into front F via 

non-dominated sorting technique. With reference to the sorted front F, non-dominated 

solution is selected from the best rank of front F, which is denoted as 𝐹1. The size of 𝐹1 

is compared with the size of the initial population. If the size of 𝐹1 is smaller, size of 𝐹1 is 

expanded until the size is equivalent to the size of the initial population. Otherwise, if the 

size of  𝐹1 is not smaller than initial population, the above process above is repeated into 
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second generation, 𝑡 = 𝑡 + 1. For the next generation, the population, 𝑃𝑡=1 is determined 

from the selected non-dominated set in first generation. This process loop for each 

subsequent generation is continued until the pre-set maximum generation is reached. The 

resultant solution from the maximum generation is known as the Pareto-optimal solutions. 

With this Pareto-optimal solutions, their corresponding generated image from the set of 

solution in the objective space is referred as Pareto front. The Pareto-optimal solution 

refers to the non-dominated solutions that fulfills the trade-offs among all the objective 

functions.  

 

Figure 3.12: Process flow of NSGA II in obtaining non-dominated solutions 

 

3.1.4 Selection of Optimized Solutions 

Figure 3.13 illustrates the overall process in the proposed contrast enhancement 

framework. Figure 3.13 describes the determination of search range of the decision 

variables, which is the separating point and clipped limit. The search range is correspond 

to the three objective functions, which are Contrast, Brightness Preservation and Detail 

Preservation. The desired value of the decision variables for these three objective 
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functions are modelled using a curve fitting process, where three analytical functions for 

the three objective functions are computed. These three analytical functions are combined 

into a Cartesian space. From these analytical functions, Pareto-optimal solution or known 

as non-dominated solution is computed via NSGA II. At the end of the NSGA II process, 

selection process is carried out from the set of non-dominated solution in order to 

determine the desired non-dominant solution that is suitable for the enhancement of hand-

bone image. This desired non-dominant solution is selected to compute enhanced version 

of the hand bone image via histogram equalization. The desired non-dominant solution is 

selected from the set of non-dominated solution that has the highest fitness value of each 

principal objective, in terms of preservation of contrast, brightness and detail. 

 

Figure 3.13: Illustration of the overall procedures including the search ranges 
determination, objective function modelling, multi-objective optimization solver 
searching for non-dominated solutions, and selection of representative solutions 

out of the non-dominated solutions. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

91 

3.2 Denoising of the Hand Bone 

In the context of denoising process, it is important to remove or eliminate non-bone 

blobs after the binarization stage. Binarization will highlight the object of interest as 

foreground and other non-object of interest as background. However, the highlighted 

foreground may still contains unwanted noise that does not belong to the object of interest. 

Therefore, it is highly important to include a denoising step that able to eliminate 

anomalies in the detected region. The proposed anomalies elimination method consists of 

three major steps. The first step involves fitting procedure of the emphasis density 

distribution onto the detected region and follow by the second step that comprises of 

reference point computation.  The third step will identify and eliminate the anomalies. 

The details of each step is further elaborated in the following section.  

Generally, the proposed anomalies elimination in detected region from bone detection 

stage is a combination of two significant procedures, which is the anomalies 

accommodation and anomalies identification. The functionality of the anomalies 

accommodation process is to amplify the effect of anomalies from the object of interest, 

which is known as true signal. In anomalies identification process, it determines whether 

the detected region is anomalies or not.  

Anomalies accommodation procedure is a series of steps of assigning a value to each 

pixel in the hand bone image. This value resembles the degree of relevancy of this pixel 

been emphasis as a bone blob or not. In another words, this value will categorize each 

pixel to bone pixel (true signal) or non-bone pixel (anomalies). In this procedure, a 

reference point is introduced and the computation of this point is based on the 

involvement of true signal and anomalies. Therefore, the intention of the anomalies 

accommodation is to increase the involvement of the true signal in the computation of 

reference point as compared to the involvement by the anomalies. In order for the 
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reference point has better approximation of true signal, weight distribution function 

known as emphasis distribution function (EDD) is introduced. EDD is designed with the 

assumption that the anomalies are located around the true signals. With this assumption, 

three steps are introduced for this purpose. The first step is devoted to the pre-selection 

of a continuous parametric distribution model based on hand bone properties. This is 

followed by the computation of the parameters that is related to the distribution model. 

The third step involves the discretization of the continuous distribution with value 

assignment on each pixel of the hand bone image.  

Based on the assumption of the observation that the anomalies are commonly located 

at the vicinity of the true signals, a two dimensional Gaussian distribution is chosen. This 

type of distribution is estimated by two parameters, which are covariance and mean. In 

this, covariance consists of variance and correlation coefficients. A 2D Gaussian 

distribution is fitted into the hand bone image by overlaying this joint density function 

according to 𝑓(𝑥|𝜇, ∑) for pixels in the image, where R is the pixel on the detected region 

and 0 is in other region other than R such that: 

𝐺(𝐶, 𝐿)

= {
𝑓(𝑋|𝜇, ∑) =  

1

√| ∑ | (2𝜋)𝑑
𝑒−0.5(𝑋−𝜇)∑

−1
(𝑋−𝜇)𝑇

0 

 

𝑖𝑓 (𝐶, 𝐿) ∈ 𝑅

𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.17) 

where 𝐺(𝐶, 𝐿)  resembles the EDD in coordinate (C,L) of the detected region. In 

Equation (3.17), C and L represents column and row in R, respectively, 𝑋 refers to 1-by-

2 vectors, [C L] describing C and L coordinates of the rectangle detected region, R and 

∑ represents covariance of vector 𝑋, and ∑ is a symmetric positive definite matrix. In 

the example of two (2) properties of blob that are available in bone image, which referred 

as P1 and P2, then 𝑋 = [P1 P2] and the 𝜇 in Equation (3.17) is determined as the center 
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point of the region of interest. In 𝜇, the x-coordinate of the center point is calculated as 

(bone  width/2) and y-coordinate of the center point is measured as (bone height/2). The 

center point as described above is chosen as 𝜇 and this selection fulfills the assumption 

where the pixels near to the center point should be given a higher weight from the pixels 

that far from the center point, for example the side pixels in the bone image. Higher 

weight means higher tendency to be true signal and the anomalies are scattered around 

the center point. The decision in making the center point as 𝜇 is still valid for hand bone 

image without anomalies due to the reason that the side pixels that are away from the 

center point is susceptible to uneven illumination. In terms of correlation, this technique 

can be enhanced by adding the correlation variable, which this variable is calculated from 

the analysis on the directions of the blob. In this thesis, correlation variable is not added 

as the detected region in the hand bone image is assumed to be well-skewed already. 

Thus, correlations are defined as zero. In terms of variance at vertical side and horizontal 

side of the hand bone image, both variance value is dependent to the bone width and bone 

height, respectively.  

This section describes the computation of the reference point vector, which 

considering all the blobs in the hand bone image. In this context, a reference point is a 

point in D-dimensional feature space that exhibits central tendency properties. This 

reference point serves as an approximation reference to true signal or near to true signal. 

This reference point may exist in any of the blobs in the hand bone image if D-

dimensional properties or blob features are computed. One of the possible intuitive ways 

to calculate this reference point is by computing either the mean, median or mode value 

of all the available feature points. However, each of this computed value has its own 

limitation. For example, mean value will include anomalies in the final output. For 

median, this value does not include other data points except the median point itself in 

which the important data point that belongs to the detected region may be missing in the 
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calculation too. It is also known that mode value always fail in the scenario that has 

datasets with low standard deviation distribution. Although mean value maybe the best 

approximation to the reference point, a better reference point should be computed with 

the motivation that this reference point is further away from the anomalies as compared 

to the conventional mean value. This new reference point has the tendency to alleviate 

the difference between central tendency and anomalies. The following section is devoted 

to detail explanation of mechanism to compute EDD that is overlayed on the detected 

region in order to derive a new reference point that fulfills the above stated motivation. 

In order to simplify the explanation of the computation of the reference point, two 

blobs are to be considered as compared to all blobs that exists in the hand bone image. 

These two blobs are referred as P1 and P2. In order to compute the reference point, one 

of the initial steps is performing binarization onto the hand bone image. The output image 

from the binarization process is having two colour pixels, which is white pixels with 

value equals to one and black pixels with value equals to zero. In binarization process, 

the term “blob” is introduced and this term means a group of connected pixels having the 

same properties in the detected region. Second term to introduce is 𝐼(𝐶, 𝐿)𝐵  where 

subscript, 𝐵  describes the blob index in which 𝐵 ∈ [1,2,3 … , 𝑡𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑏𝑠] , C and L 

depict column or x-coordinate and row or y-coordinate in detected region, R, 

respectively. For example, 𝐼(23,44)2 depicts the pixel value in image coordinate (23, 44) 

and this pixel belongs to second blob; if that particular pixel is a white pixel, then 

𝐼(23,44)2 = 1 or otherwise,  𝐼(23,44)2 = 0.   

 
Reference point = E[E[𝐺𝐵,𝑃1,𝑃2 ]] 

in which 
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𝐸[𝐸[𝐺𝐵,𝑃1,𝑃2 ]]

=
1

(𝑇1)(𝑇2)
∑(𝑃1𝐵

𝑇2

𝐵=1

+ 𝑃2𝐵) ∑ ∑ 𝐼(𝐶, 𝐿)𝐵𝐺𝐵,𝑃1,𝑃2(𝐶, 𝐿)

𝐿=𝑦2𝐵

𝐿=𝑦1𝐵

𝐶=𝑥2𝐵

𝐶=𝑥1𝐵

 

(3.18) 

 

in which, 

T1  = total density on all white pixels =

∑ ∑ ∑ 𝐼(𝐶, 𝐿)𝐵𝐺𝐵,𝑃1,𝑃2(𝐶, 𝐿)𝐿=𝑦2𝐵
𝐿=𝑦1𝐵

𝐶=𝑥2𝐵
𝐶=𝑥1𝐵

𝑇2
𝐵=1  

𝐺𝐵,𝑃1,𝑃2(𝐶, 𝐿) = (𝑃1𝐵 + 𝑃2𝐵) [𝐼(𝐶, 𝐿)𝐵][𝐺(𝐶, 𝐿)] 

𝐼(𝐶, 𝐿)𝐵 {
1
0

𝑖𝑓 𝐼(𝐶, 𝐿)𝑖𝑠 𝑎 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

S = total number of blobs 

It can be further generalized as: 

 

 
𝐸[𝐸[𝐺𝐵,𝑃(𝑖) ]] =

1

(𝑇1)(𝑆)
∑(𝑃(𝑖)𝐵) ∑ ∑ 𝐼(𝐶, 𝐿)𝐵𝐺𝐵,𝑃(𝑖)(𝐶, 𝐿)

𝐿=𝑦2𝐵

𝐿=𝑦1𝐵

𝐶=𝑥2𝐵

𝐶=𝑥1𝐵

𝑇2

𝐵=1

 
(3.19) 

 

where 𝑥1𝐵  , 𝑥2𝐵  , 𝑦1𝐵  , 𝑦2𝐵represent the coordinates of the bounded rectangle of the 

particular blob B; 𝑃(𝑖)𝐵 represents the ith feature of Bth blob in which 𝐵 ∈ [1,2,3, … , S]. 

The last procedure of anomalies identification intended to identify blobs that are 

categorized as anomalies. Anomalies identification is a challenging procedure. This is 

due to characteristic of the anomalies where their existence, number of anomalies and 

type of anomalies is unknown. The unknown status of the anomaly existence is 

challenging to certain extent. If the existence is known, a proper identification algorithm 

is designed to allocate them only. If the existence is unknown, the identification 

algorithm can be complicated. Similarly, this procedure is less complicated if the number 

of anomalies is known, where the fix number of unlikely-to-be-bone can be identify. By 

knowing the type of anomalies, whether the anomalies are extreme anomalies (exists gap 
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difference between feature value extracted from the anomalies and bone blob) or bone-

resembled anomalies gives a very important clue for the design of effective identification 

algorithm. With the presence of all these unknown about anomalies, identification of 

anomalies turns into a non-trivial problem. In this thesis, a framework that deal with these 

unknown in detection anomalies is proposed. 

With the reference to the early computed reference point, hierarchical anomalies 

identification framework is designed in which the extreme anomalies will be first 

eliminated prior to the removal of bone-resembled anomalies. This hierarchical 

framework is also effective for bone image without anomalies as actual bone blob has a 

gap difference from the extreme anomalies.  

The anomalies identification method is proposed based on Chebyshev’s inequality. 

Once the reference point is determined, the discrepancy between each two-dimensional 

feature point from the blob (𝑃𝐵
1, 𝑃𝐵

2) (of each Bth blob) and reference point (𝑟𝑝1, 𝑟𝑝2) in 

the vector space is calculated. Let 𝐷𝐵  denotes the real-valued random variable that 

depicts the calculated discrepancy in Euclidean distance, which subscripts 𝐵 ∈

[1,2,3, …  𝑇𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑏 (𝑆)] . The computed Euclidean distance between each feature 

vector and reference point is depicted in Equation (3.20): 

 

𝐷𝐵 = √(|𝑃𝐵
1 − 𝑟𝑝1|)(|𝑃𝐵

2 − 𝑟𝑝2|) 

𝑤ℎ𝑒𝑟𝑒 𝐵 ∈ [1,2,3, … 𝑇𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑏] 

(3.20) 

Equation (3.21) illustrates the discrepancy in Euclidean distance between N-

dimensional feature point, (𝑃𝐵
1, 𝑃𝐵

2, 𝑃𝐵
3, … , 𝑃𝐵

𝑁) (of each Bth blob) and reference point 

(𝑟𝑝1, 𝑟𝑝2, 𝑟𝑝3, … , 𝑟𝑝𝑁) in the vector space.  
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𝐷𝐵 = √∏(|𝑃𝐵

𝑛 − 𝑟𝑝𝑛|)

𝑛=𝑁

𝑛=1

 

𝑤ℎ𝑒𝑟𝑒 𝐵 ∈ [1,2,3, … 𝑇𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑏] 

(3.21) 

After the discrepancy in Euclidean distance is computed, a measure of spread 𝑀(𝐷) 

and expected value of D, E(D) are calculated based on the following equations. 

 𝐸(𝐷) =
1

𝑆
∑(𝐷𝐵)

𝐵=𝑆

𝐵=1

 (3.22) 

 𝑀(𝐷) = √
1

𝑆
∑(𝐷𝐵 − 𝐸(𝐷))

𝐵=𝑆

𝐵=1

 (3.23) 

Further analysis is done on the computed measure of spread 𝑀(𝐷) and expected value 

of D, E(D) in order to eliminate different type of anomalies. Extreme anomalies that have 

big gap difference from true signal in the detected region will be eliminated by the 

following inequality:   

 

𝑃[ 𝐷𝐵 ≥ 𝑘] = 𝑃[ 𝐷𝐵 ≥ [𝐸(𝐷) + |𝑘 − 𝐸(𝐷)|] ] 

≤  
𝑀(𝐷)2

𝑀(𝐷)2 + |𝑘 − 𝐸(𝐷)|2
 

(3.24) 

One of the constraints in Chebyshev’s inequality is not assume any underlying 

probability distribution of the data. As the number of discrepancies is usually appears in 

small number, law of large number might not be applicable as a suitable estimation to 

assume normal distribution on discrepancies. Decision rule is defined with C percent 

confidence interval as follows: 
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 Reject if 𝑃[ 𝐷𝐵 ≥ 𝑘] ≤ (1 −
𝐶

100
) (3.25) 

In this thesis, all the features from the hand bone image will be considered 

simultaneously in order to detect an accurate anomalies. If each feature is considered 

individually, the accuracy of identifying anomalies maybe drop as the anomaly may not 

be distinguish able by certain specific feature. For example, if a single height feature 

height is used to differentiate bone blob and anomalies, the detection will be fail as the 

height of the anomalies is similar to actual bone blob. Therefore, discrepancy of all the 

relevant features should be considered in multivariate setting in order to have higher 

successful rate in detecting anomalies. For example, even the height of some anomalies 

blob resembles the true bone blob, the width of the anomalies blob might be different 

from true bone blob. With this, anomalies is successfully detected as outlier to the hand 

bone image. From empirical observation, good features for anomalies identification 

consists of confidence level of blob recognition by classifier, texture of blobs and shape 

properties of blobs. These features demonstrate high discriminative ability in practical 

implementation. Therefore, relevant multiple features and simultaneous consideration is 

an important strategy to ensure the successful of the algorithm in detecting anomalies. In 

the feature space, each point in this space resembles the feature vector that is obtained 

from each blob in the detected region.  

One of the most promising techniques in identifying anomalies with multiple good 

features is multivariate feature vector approach. In this thesis, Mahalanobis distance is 

chosen as the multivariate feature vector approached to be used for this purpose. 

Mahalanobis distance is a significant distance metric in statistical field been introduced 

since 1936 by P.C. Mahalanobis.  In term of considering the correlation and difference 

between multiple features, Mahalanobis distance shows better consideration as compared 

to Euclidean distance. In this section, Mahalanobis distance, 𝐷𝑀  with T dimensional 
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feature vector = [𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑇] in which is blob properties feature, the mean vector 

for the features vector 𝑍̅ = [𝑍̅1, 𝑍2, 𝑍̅3, … , 𝑍̅𝑇] , and covariance depicted as ∑, is defined 

as  

 𝐷𝑀(𝑖)=√(𝑌𝑖 − 𝑍̅)𝑇∑−1(𝑌𝑖 − 𝑍̅) (3.26) 

 where  ∑ =
1

(𝑁−1)
(𝑍 − 𝑍̅)𝑇(𝑍 − 𝑍̅)  

𝐷𝑀(𝑖)  represents the Mahalanobis distance of ith blob features vector in the 

distribution of features vector data 𝑍. Let the features vector is a T-dimensional vector 

and the number of blobs in the detected region represented by T2. Meanwhile, ∑−1 is a 

T x T matrix depicting the inverse covariance of data, 𝑌𝑖 is a 1 x T matrix corresponding 

to features value of ith blob in the detected region. 𝑍̅ is a 1 x T matrix as defined in 

Equation (3.27) . 

 𝑍̅

= [𝐸 [𝐸[𝐺𝐵,𝑃(1)]] , 𝐸 [𝐸[𝐺𝐵,𝑃(2)]] , 𝐸 [𝐸[𝐺𝐵,𝑃(3)]] , … , 𝐸 [𝐸[𝐺𝐵,𝑃(𝑇)]]] 
(3.27) 

 

As similar to the reconstruction of reference point concept, the influence of anomalies 

should be reduced in the covariance, ∑ if the anomalies are considered during the forming 

of the Mahalanobis distance. ∑ is defined by the following equation: 

 ∑ =
1

(𝑁 − 1)
(𝑍 − 𝑍̅)𝑇(𝑍 − 𝑍̅)  

 where 𝑍 ∈ ℝ𝑇−𝑏𝑦−𝑇2  

 
∑𝑃(𝑖)𝑃(𝑖)

𝑊 =
1

(𝑁 − 1)
(𝑍𝑃(𝑖)𝐵

𝑊 − 𝑍𝑃(𝑖)
𝑊̅̅ ̅̅ ̅̅ )

𝑇
(𝑍𝑃(𝑖)𝐵

𝑊 − 𝑍𝑃(𝑖)
𝑊̅̅ ̅̅ ̅̅ ) 

(3.28) 
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where ∑𝑃(𝑖)𝑃(𝑖)
𝑊  ∈  ℝ1−𝑏𝑦−1, ∑𝑊 ∈  ℝ𝑇−𝑏𝑦−𝑇 

𝑊𝐵 =
1

(𝑋𝐵
2 − 𝑋𝐵

1)(𝑌𝐵
2 − 𝑌𝐵

1)
∑ ∑ 𝐺(𝐶, 𝐿)

𝑌𝐵
2

𝐿=𝑌𝐵
1

𝑋𝐵
2

𝐶=𝑋𝐵
1

 

𝑁𝑊𝐵
=

𝑊𝐵

∑ 𝑊𝐵
𝑆
𝐵=1

 

so that 

∑ 𝑁𝑊𝐵

𝑆

𝐵=1

= 1 

where S = total blob, 𝑋𝐵
2𝑋𝐵

1𝑌𝐵
2𝑌𝐵

1 

 

 
𝑍𝑃

𝑊̅̅ ̅̅ = [𝐸 [𝐸[𝐺𝐵,𝑃(𝑖)]]] as defined in Equation (3.19)  

 

in which 

𝑍𝑃(𝑖)𝐵
𝑊 = 𝑁𝑊𝐵

𝑍𝑃(𝑖)𝐵  

for i = 1,2,3,…,T, B = 1,2,3,...,T2 

 

 

 

where 𝑍𝑃(𝑖)𝐵
𝑊  depicts element in matrix 𝑍𝑊 in index i row and index B column, 

the subscripts 𝑊 is an indicator representing that it is a weighted Z 

∴ Equation (3.26) is modified to 
 

𝐷𝑀
𝑊(𝑖)=√(𝑌𝑖 − 𝑍𝑊̅̅ ̅̅ )

𝑇
∑𝑊−1

(𝑌𝑖 − 𝑍𝑊̅̅ ̅̅ ) 

 

 

(3.29) 
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 𝑫𝑴
𝑾(𝒊) shows the Mahalanobis distance of ith blob features vector in the distribution 

of weighted features vector data 𝒁𝑾 for i = 1,2,3,…,T2. 

Equation (3.28) depicts the elements of the covariance matrix in which they form the 

covariance matrix, ∑𝑊. Next, an inverse of this covariance matrix is calculated in order 

to define a new distribution of Mahalanobis distance for each blob’s feature vector, 𝑌𝑖, 

with regards to this distribution center. This new defined distribution of Mahalanobis 

distance is proven to less effect from the anomalies feature vector. Less effect is due to 

the weight of each feature vector is represented by corresponding EDD as defined in 

Equation (3.19). 

Finally, the anomalies are determined by comparing 𝐷𝑀
𝑊(𝑖) of each ith blob feature 

vector in Equation (3.29) with a calculated threshold. This threshold is calculated with 

respects to the standard deviation of the 𝐷𝑀
𝑊(𝑖) for all blob feature vector: 

𝑆𝑀
𝑊 =

1

𝑁 − 1
∑[𝐷𝑀

𝑊(𝑖) −
1

𝑁
∑ 𝐷𝑀

𝑊(𝑖)]

𝑇2

𝑖=1

𝑇2

𝑖=1

2

 
(3.30) 

 

The anomalies identification decision rule is defined in Equation (3.31). 

𝑖 − 𝑡ℎ 𝑏𝑙𝑜𝑏 =  {
𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑓 𝐷𝑀

𝑊(𝑖) > 𝐾(𝑆𝑀
𝑊) 

𝑆𝑖𝑔𝑛𝑎𝑙  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.31) 

 

K in Equation (3.31) serves as a constant regulator in order to manipulate the tolerance 

level in anomalies elimination procedure. Higher K value means has higher tolerance to 

anomalies and higher possibility of identifying anomaly as true signal. On the other hand, 

lower K value resembles intolerance to anomalies and higher possibility of identifying 

true signal as anomaly. 

  

Univ
ers

ity
 of

 M
ala

ya



 

102 

3.3 Segmenting the Hand Bone 

In this thesis, fully convolutional neural network (FCN) is chosen as deep learning 

model for hand bone segmentation. FCN-8 is chosen as specific network type of FCN to 

be used for segmentation purpose. The focus segment is at the carpal bones. Current bone 

age assessment is commonly carried out through qualitative visual inspection. Due to the 

limitation of this manual visual inspection, automated bone age assessment system is in 

active research. One of the procedures that impacts the accuracy of the bone age 

assessment system is the accuracy of the segmented bone structure in the hand bone 

image. A good segmentation output provides physician with a better visual representation 

for bone age determination. Due to the importance of accurate bone segmentation for 

bone age assessment system, the applicability of deep learning neural network model is 

demonstrated with hands and wrist radiograph image. This radiograph image consists of 

both gender, which is female and male and their age is ranging from zero to 18. The 

segmentation technique is applied to entire hand bone image in the database and its 

accuracy is illustrated in the result session.  

The training and testing dataset used to compute the segmentation results are obtained 

from open database of hand bone radiograph image. The radiograph images are collected 

from Children’s Hospital Los Angeles with effort of University of Southern California. 

This collection is funded by National Institutes of Health (NIH). This training and testing 

utilizes 348 left hand and wrist radiograph images. Selected hand bone images is extracted 

from this database according to their suitability to the objective of segmentation. From 

348 images, 290 images is selected as training set, while the remaining 58 images are 

reserved for testing and evaluation purpose. The adopted images are belongs to normal 

children together with patients’ demographic data and radiologists’ reading. This data is 

distributed to 19 age groups that include newborn and age 1 to age 18. It also covers two 

genders, male and female as well as four ethnicity group, which is Caucasian, African-
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American, Hispanic and Asian. The distribution of number of hand bone image for 

different ethnicity group and gender is depicted in Appendix A. This database contains 

1390 hand bone images, various from clear to blur quality and the available format is 

DICOM and JPEG. In this research work, only JPEG image is used. The resolution of the 

JPEG format is various from approximate 928 x 1218 to 1904 x 2653. This database is 

generated for research and academic use and it is available for download (Joseph, L., 

2005). 

Prior to the dataset training using FCN model, data preparation need to be carried out. 

This preparation consists of two main steps in order to setup the relevant dataset for 

training purpose, which comprises of extraction of the region of interests of the bone 

structures in the carpal bone and removal of unwanted object from the radiograph image.  

A masking process is carried out on the original image in order to get nine classes, where 

the nine classes include eight (8) bone structure of carpal bone and one (1) background. 

In the masking process, the region of interest of each bone structure in the carpal bone is 

assigned to different colour that each unique colour is corresponds to each respective class 

of the bone structure and background.  Figure 3.14 illustrates the distribution of age and 

gender in the training dataset. In this figure, the number of training sample for male 

gender and female gender in each age category is quite balance. It is also can be noticed 

that the training sample for newborn is limited due to the hand bone image acquisition for 

newborn is challenging and inconvenient.  Univ
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Figure 3.14: Age and gender distribution in the selected training dataset 

 

Left image in Figure 3.15  depicts the original radiographic image used in the training 

and right image Figure 3.15  illustrates the labelled image. The labelled image shows the 

region of interest of the nine classes in different colour that corresponding to respective 

bone structures in the carpal bone and the background of the hand bone image.  

 

Figure 3.15: Original hand bone radiographic image  (left image) and the labelled 
image (right image). 
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The following section describes the training architecture and training environment of 

FCN model in performing segmentation of carpal bone in the hand bone image. FCN is 

derived from one of the classification architectures, which known as VGG-16. VGG-16 

that comprises of 16 convolutional layers and 3 fully connected layers is enhanced into 

convolutional layers with one kernel size, which resulting into FCN. In FCN, the 

convolutional layers is a fully connected layers and the process in computing the weighted 

sum is different from VGG-16. FCN computes the weighted sum is at per receptive field 

while the weighted sum computation of VGG-16 is happened at per image (Long, 

Shelhamer et al., 2015). The motivation of FCN in computing the weighted sum at per 

receptive field is to conduct the abstraction process that not only consider the extracted 

features at the labelled region of interest but also with its location information. In this 

thesis, FCN-8 is chosen from the other two versions of FCN, which is FCN-16 and FCN-

32. This is due to FCN-8 exhibits ability to process various sizes of input images, where 

prediction happened at small scales of 8x8 kernels. Figure 3.16 illustrates the network 

architecture of FCN-8. In this figure, FCN-8 consists of 19 convolutional layers and 

performs dense predictions. Due to the characteristic of dense prediction process, loss of 

information is unavoidable throughout the training process. Thus, skip connections are 

utilized by adding up all the final prediction layers in FCN-8 with the earlier layers. By 

doing this, the loss information is able to be retrieved back. From Figure 3.16, the output 

from conv7 is upsampled with a stride 2 transposed convolution. The upsampled result is 

summed up with pool4. The following skip connection process is to upsampled them with 

a stride 2 transposed convolution, and followed by summing them with pool3. The final 

segmentation map is obtained by applying a transposed convolution layer with stride 8 

on the resulting feature map.  
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Figure 3.16: Network architecture of FCN-8  

 

In this thesis, a transfer learning technique using FCN-8 heavy pascal caffemodel (Jia, 

Shelhamer et al., 2014) is employed in obtaining segmentation model. Transfer learning 

technique is used due to the limited labelled hand bone image. The chosen number of 

epoch for carrying out the training process is 50 and base learning rate is set at 0.0001. 

The training process of FCN-8 is executed via Nvidia DIGITS 6.0 in which is a Deep 

Learning GPU Training System. Nvidia DIGITS 6.0 is running on GPU machine with the 

specification of Intel(R) Xeon (R) CPU E5-26200, 2.00 GHz processing speed and GPU 

Nvidia card of GTX 1080Ti 11GB. 

For testing and evaluation of the resultant model from the FCN-8 model training using 

290 labelled image with transfer learning technique, the segmentation accuracy on 58 

labeled image is obtained by comparing the segmentation result with the ground truth 

image. The segmented contours of the resultant image of FCN-8 segmentation model and 

ground truth image is compared using two statistical validation metric. The two metrics 

are Dice similarity coefficient (DSC) and Hausdorff distance (HD). The output of these 

two validation metrics are important in order to gauge the effectiveness of the trained 

FCN-8 model in performing segmentation on carpal bone of the hand bone image. The 
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computed validation metric value indicates the similarity value of the segmented result 

from the FCN-8 segmentation model with the segmented outlines from the ground truth 

image.  

The DSC measures the spatial overlap index value between region of interest in 

labelled image and the region of interest in ground truth image. The spatial overlap index 

indicates the overlapping area of the two regions in terms of location and region size. The 

DSC is formulated as: 

  

BA

BA

RR

RR
DSC






2
 

(3.32) 

 

where RA and RB resemble the region of interest of image A and image B, respectively. 

DSC metric value falls in the range between zero to one. Zero value depicts the condition 

of total no area overlapping between two regions. Meanwhile, DSC value of one 

resembles 100 percent overlapping match between the two regions.  

On the other hand, HD measures the mutual proximity between two regions, where the 

proximity value is indicated by the maximum distance between any point in the first 

region with any point in the second region.  The HD metric is formulated as: 

       ABhBAhBAH ,,,max,   (3.33) 
   
   baBAh

BbAa



minmax,  (3.34) 

   

where A and B depicts two set of contour points in image A and image B, respectively. 

The overall workflow of the proposed segmentation approach in outlining the region of 

bone structure in carpal bone in hand bone image is illustrated in Figure 3.17. In this 

figure, the evaluation of FCN-8 model by testing the segmentation accuracy with the 

ground truth image is implemented in MATLAB (vR2014a, Mathworks, Natick, USA) 
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with processing machine that runs on an Intel(R) Xeon (R) CPU E5-26200 @ 2.00 GHz 

processing speed.  

 

Figure 3.17: Workflow for image segmentation of carpal bones. 

 

In the training the proposed FCN-8 model stage, the computed model for each epoch 

will be tested by validation dataset. For this training, one epoch equals to one full training 

cycle where all the provided training dataset had gone through the training for 

optimization. Number of epoch is set to standard value that is equals to 50. For each 

training cycle, the training lost rate, the accuracy rate, and validation loss rate are 

computed and their values are illustrated in Figure 3.18. Based on the GPU machine with 

the stated specification at the previous section, the training time of FCC-8 model is 

recorded at 175 minutes by completing 50 epochs of training and the total training images 

is 290.   
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Figure 3.18: Training loss rate (blue), accuracy rate (orange) and validation loss 
rate (green) with respect to epochs. 

 

Figure 3.19 illustrates the variation of the learning rate been used and set during the 

training stage of FCN-8 model at each epoch. In order to obtain the most optimal model 

from the training, it is always a good practice to control and adjust learning rate at 

different epoch. DIGITS allows the flexibility in adjusting the learning rate during the 

training. By adjusting the learning rate, the time taken for the training to achieve optimum 

solution is shorter as the weights of the deep learning model are optimized better without 

falls into the local minima of optimization. As illustrated in Figure 3.18 and Figure 3.19, 

it is observed that the training model is optimized and ready to be stopped from further 

training at epoch beginning from 17. In Figure 3.18, the performance of trained model is 

already at the optimum when the training reached at 17 epoch. From epoch of 17 onwards, 

the accuracy rate and validation loss rate is already stagnant and reach plateau behaviour.  
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Figure 3.19: Learning Rate variation during the training of FCN-8 model. 

 

Figure 3.20 illustrate the results of the carpal bone segmentation using the trained 

model of FCN-8. For each segmented result, DIGITS display each carpal bone with a 

different colour based on its corresponding segmented classes. In Figure 3.20, the outline 

of the carpal bone will be highlighted if the particular carpal bone exists in the hand bone 

radiographic image.   

 

Figure 3.20: Segmented carpal bone using the trained FCN-8 model 
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From the DSC and HD metric values from 58 labelled hand bone image that is used 

for testing, the mean of DSC and HD with its corresponding standard deviation are 

calculated and tabulated in Table 3.2. 

Table 3.2 Validation of segmentation accuracy as measured using DSC and HD 

Number of 

images 
DSC (mean ±SD) HD (mean  ± SD ) 

58 0.78 ± 0.06  1.56 ±0.30 mm 

 

From the evaluation results on the testing dataset using the trained FCN-8 model, the 

model performance in carpal segmentation with regards to the age is accessed. The DSC 

and HD accuracy results are compared with respect to age since the visualization of carpal 

bones quantity varies with the age variation. It is known that the difficulty level for model 

training increases with the increasing number of feature class and parameter.  

 

Figure 3.21 Comparison of (a) DSC and (b) HD with respect to age. 

 

Thus, it is make sense that the accuracy of the training performance is dropped with 

the increasing of age. As the age increase, the number of carpal bones in the hand bone 

image will increase. Figure 3.21(a) and Figure 3.21(b) depicts the DSC and HD values 

with respect to age, respectively. In Figure 3.21(a), the highest value of DSC metric is 
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found at the age of 12 and the corresponding DSC value is recorded as 0.85. Meanwhile, 

the lowest value of DSC metric is found at the age of 6 and the corresponding DSC value 

is recorded as 0.67. In DSC metric, the higher the value then the better the network 

performance is. The result illustrated in Figure 3.21(a) has indicate that the network 

performance is improved as the age increases. This improve performance may due to the 

imbalance number of training data for age below of 11, which is only had 15 images as 

compared to the 20 images for the age ranges from 12 to 18. The information related to 

the number of training data is depicted in Figure 3.14. Therefore, the number of images 

used for training plays an important role in determining the performance of the network 

model.  

In the future enhancement, it is important to ensure that the number of training and 

testing images is almost equal in order to obtain consistency in the segmentation 

performance. Besides, there is also an observation that the HD metric value is higher 

when the age is increasing as illustrated in Figure 3.21(b). Higher HD metric values 

means the maximal distance is between the two regions is bigger, which indicating the 

network performance is dropping. Network performance in both Figure 3.21(a) and 

Figure 3.21(b) is not consistent as the network performance increases with increasing age 

for DSC metric. For HD metric value, the network performance is opposite to DSC metric 

performance. The inconsistency of the HD metric performance is due to its measurement 

is not based on the coefficient with respect to the total contour. Thus, a bigger contour 

derives a higher HD value. Thus, additional evaluation metric is recommended in order 

to improve the evaluation method. Possible evaluation method is Intersection over Union 

(IoU). 
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CHAPTER 4: RESULTS AND ANALYSIS 

In this chapter, quantitative and qualitative evaluation of the enhancement result are 

established. These two evaluation results are presented and discussed, individually.  In 

terms of qualitative result, visual quality of the resultant image from the proposed 

enhancement framework is illustrated. For this section, visual analysis is described in 

order to elaborate the significance of the enhancement framework in highlighting the 

pertinent information in the carpal bone image for better judgement on the bone age and 

at the same time, suppressing unwanted noises that impacting the manual and automatic 

bone age assessment techniques. In addition, the visual analysis of the resultant image 

also includes the explanation of specific resultant image is preferable in the bone age 

assessment as this enhancement produces unique characteristics according to assessment 

standard. 

In terms of quantitative result, the significance of the enhancement output with 

optimization is justified by evaluating the accuracy of the classification result of the 

maturity stage via automated recognition classifier. The enhancement output contains the 

pertinent information that has been emphasized from the enhancement process with 

optimization.  The automated recognition classifier is trained using convolutional neural 

network with standard hyper parameter values. The chosen database that is used in the 

training and testing is extracted from hand bone online database (Joseph, L., 2005). In 

this database, the hand bone images comprise from both genders in four populations. The 

four population consists of Caucasian, African American, Hispanic, and Asian. The age 

of children ranges from 0 to 18 years old. This database is collected from Children’s 

Hospital Los Angeles (CHLA). In this quantitative evaluation, three types of input image 

set that is generated from the same set of images is used in the automated recognition 

classifier for maturity stage.  The first type of input image is the original image, while the 
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second type of input image is the output of the proposed enhancement framework without 

optimization, which is the random image with clipped bi-histogram equalization. The 

second type of input images, which are generated from random value of separating point 

and clipped limit represents all the possible outcome for all the approaches that is 

discussed in Section 2.3.1 (literature review of global histogram equalization). In this 

quantitative evaluation, there is no comparison with specific approach of global histogram 

equalization due to two reasons. Firstly, it is not comparable as the proposed contrast 

enhancement uses Pareto optimization that will generate multiple enhanced solutions, 

while other methods usually generate only one enhanced solutions. Secondly, other 

methods focus only one of the preservation factors, while the proposed enhancement 

framework considers the three preservation factors in terms of contrast, brightness and 

detail. Therefore, direct comparison is not meaningful and invalid. The third type consists 

of enhanced image with optimization. The enhanced image with optimization is Pareto 

optimized selected input image with clipped bi-histogram equalization. Based on the final 

evaluation result, the accuracy of the recognition is higher if the input image are those 

that have been enhanced with optimization as compared to enhanced image without 

optimization. 
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4.1 Qualitative Analysis on Visual Appearance of the Resultant Images 

This session is devoted to illustration of resultant image after deploying the proposed 

enhancement framework with optimization. With this illustration, the quality of the visual 

appearance of the resultant image is analysed and discussed. For example, the following 

figures depicts the image of the carpal bones that has been processed using the proposed 

enhancement approach with optimization. This figure shows the set of Pareto Front or the 

Pareto optimized bi-histogram equalized resultant image of the Hamate structure in the 

carpal bone. Each resultant image is an output of the enhancement with the two 

corresponding decision variable values and its three targeted objective function values. 

The two corresponding decision variables are annotated with 𝑥1  and 𝑥2 , which is the 

separating point and clipped limit, respectively. The three objective values are referred as 

C, B and D, which is the contrast objective, mean brightness preservation and detail 

preservation, respectively. The illustration is followed by detail discussion and analysis 

on the quality of the visual appearance of the image in order to measure the effect of the 

proposed approach in deriving the set of Pareto images.  

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

116 

 
Hamate Bone Image (Before Enhancement) 

     
𝑥1=222 
𝑥2=2021            
C=0.1404                
B=0.9609                    
D=0.6757 

𝑥1=100 
𝑥2=1000            
C=0.3932                
B=0.0359                    
D=1.0000 
 

𝑥1=192 
𝑥2=1812            
C=0.0831                
B=0.6048                    
D=0.8052 
 

𝑥1=113 
𝑥2=1458            
C=0.4679                
B=0.1481                    
D=0.9656 
 

𝑥1=172 
𝑥2=1221            
C=0.2517                
B=0.3149                    

 D=0.9483 
 

     
𝑥1=187 
𝑥2=1882            
C=0.1088                
B=0.5343                    
D=0.8384 
 

𝑥1=203 
𝑥2=1324            
C=0.0603                
B=0.7720                    
D=0.7340 
 

𝑥1=176 
𝑥2=1341            
C=0.2072                
B=0.3680                    
D=0.9207 
 

𝑥1=222 
𝑥2=2021            
C=0.1404                
B=0.9609                    
D=0.6757 
 

𝑥1=104 
𝑥2=1378            
C=0.4077                
B=0.0425                    
D=0.9918 
 

     
𝑥1=250 
𝑥2=1465            
C=0.0003                
B=0.6717                    
D=0.7943 

𝑥1=11 
𝑥2=1160            
C=0.4512                
B=0.1313                   
D=0.9670 

𝑥1=182 
𝑥2=1797            
C=0.1501                
B=0.4526                    
D=0.8781 

𝑥1=177 
𝑥2=1480           
C=0.1957                
B=0.3833                    
D=0.9129 

𝑥1=210 
𝑥2=1662            
C=0.0762                
B=0.8647                    
D=0.6998 

     
Figure 4.1: Output set of Pareto optimized bi-histogram equalized resultant images 

of the Hamate bone with its corresponding decision variables and each objective 
function values, in which 𝒙𝟏 represents the separating point, 𝒙𝟐 represents the 

clipped limit, C represents Contrast objective, B represents the mean brightness 
preservation and D  represents the detail preservation, respectively. 
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Figure 4.1 illustrates Pareto optimized resultant images of Hamate bone.  One of the 

measurement attribute in maturity assessment is the existence of calcium deposit or 

multiple deposits at the center position in the Hamate bone. This attribute is clearly 

highlighted in the shown Pareto optimized image as compared to the visibility of the 

similar attribute in the original image before enhancement of Hamate bone. In maturity 

assessment, the border attribute of the bone structure also represents the growth degree 

of a bone. The sharpness, smoothness and continuity of the border line are the maturity 

attributes shown in the enhanced image as compared to the original image before 

enhancement. In the enhancement image, the clarity of the border ensures the diameter 

measurement is successfully done, accurately. In bone age scoring system, the maturity 

stage is classified as stage D if the measured diameter is half or more than the width of 

the radial metaphysis. Apart of the diameter measurement, the border shape is also 

contributing to the decision of the maturity stage. In Hamate bone, stage D is clearly 

highlighted if the clear outline of the border is displaying the shape similar to character 

“D” in which the straight line appears diagonally to the long axis of the hand. Accurate 

classified maturity stage is highly important for the final maturity score. For example in 

Hamate bone, stage D carries score value of 79 and if it is classified wrongly to stage C 

due to unclear border, then the maturity score only has value of 75. Thus, the contribution 

of resultant image from the proposed enhancement approach is highly critical in 

measuring the accurate maturity stage. 

The clarity of the border in Hamate bone image is crucial for the classification of higher 

maturity stage, such as stage E, F and stage above. The border of Hamate bone that is 

adjacent to capitate bone is used to determine the presence of stage E. This stage is 

reflected by the border formation with a slight bulge of half to two-third of the border and 

its flattened edges. Stage F is observed by appearance of concavity along the border that 

is near to triquetral bone. The subsequent higher stage is dictated by the existence of white 
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lines that are thickening along the distal border of Hamate bone and at the ulnar border 

of the hook, which is adjacent to metacarpals IV and metacarpals V. All the presence of 

thickening white lines at specific location in the Hamate bone is the pertinent features to 

be observed for maturity stage assessment. In Figure 4.1, the resultant image from the 

optimized Pareto is successfully observed in order to assist in the rating of maturity stage. 

This is due to the important cue of the shape characteristic and the contrast of the visual 

appearance of the Hamate bone are emphasized in the resultant image after undergone 

the proposed enhancement approach.  

In Figure 4.1, selective images from the Pareto optimized resultant images of Hamate 

bone is selected to be the input images to the segmentation process, where this process is 

executed using deep learning approach. The images are selected based on their most 

optimum value for each objective values: C, B and D, where their value is near to 1.   
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Lunate Bone Image (Before Enhancement) 

 

     
𝑥1=235 
𝑥2=1811            
C=0.0475                
B=1.0000                    
D=0.5919 

𝑥1=22 
 𝑥2=1840            
C=0.0390                
B=0.9895                    
D=0.6171 

𝑥1=153 
𝑥2=1913            
C=0.6776                
B=0.0445                    
D=1.0000 

𝑥1=118 
𝑥2=1941            
C=0.4053                
B=0.1249                    
D=0.9124 

𝑥1=128 
𝑥2=1926            
C=0.5128                
B=0.0924                    
D=0.9354 

     
𝑥1=155 
𝑥2=1972            
C=0.6764                
B=0.0441                    
D=1.0000 

𝑥1=208 
𝑥2=1885            
C=0.1283                
B=0.6084                    
D=0.8053 

𝑥1=222 
𝑥2=1855            
C=0.0452                
B=0.9042                    
D=0.6592 

𝑥1=185 
𝑥2=1859            
C=0.3987                
B=0.2177                    
D=0.9813 

𝑥1=13 
𝑥2=1891            
C=0.5632                
B=0.0800                    
D=0.9473 

     
𝑥1=194 
𝑥2=1883            
C=0.2824                
B=0.3434                    
D=0.9289 

𝑥1=214 
𝑥2=1879           
C=0.0785                
B=0.7475                    
D=0.7371 

𝑥1=202 
𝑥2=1838           
C=0.1853                
B=0.4926                    
D=0.8607 

𝑥1=161 
𝑥2=1900           
C=0.6544                
B=0.0500                  
D=1.0000 

𝑥1=197 
𝑥2=1870           
C=0.2500                
B=0.3896                 
D=0.9083 

Figure 4.2: Output set of Pareto optimized bi-histogram equalized resultant images 
of the Lunate bone with its corresponding decision variables and each objective 
function values, in which 𝒙𝟏 represents the separating point, 𝒙𝟐 represents the 

clipped limit, C represents Contrast objective, B represents the mean brightness 
preservation and D  represents the detail preservation, respectively. 

 

Figure 4.2 depicts partial of the Pareto optimized resultant images for Lunate bone. In 

this figure, the Pareto optimized resultant images clearly exhibit significant improvement 

Univ
ers

ity
 of

 M
ala

ya



 

120 

on the contrast between the bone and the background. The border in the enhanced image 

is enhanced to certain extent, where the enhanced border is clearly delineated. As 

described in the previous section where resultant image of Hamate bone is shown, the 

border provides sufficient information details that can be analyzed to dictate the stage of 

maturation of the particular bone. The information related to maturity includes shape, 

border diameter, inherent border properties, flattening effect at specific side of the bone; 

the border saliency border and border shape is significantly useful in assisting in maturity 

rating for Lunate bone. For example, higher maturity stage of Lunate bone is identified 

by the definite saddle for articulation with outgrowth capitate of lunate dorsal part towards 

the scaphoid is formed at the distal surface of the Lunate bone. In this, the dorsal part 

extends out beyond the lateral edge of the palmar part of the saddle, which this extension 

is from the palmar edge to scaphoid edge. In Figure 4.2, the shown Lunate bone is 

classified as stage E due to major attributes that are observed in the shown Pareto 

optimized resultant images. The first attribute is the appearance of the flattening effect at 

the border that is adjacent to the upper side of radius bone. Meanwhile, the second 

attribute is the existence of the thicker white line at the distal border of the Lunate bone.  

 In Figure 4.2, the shown Pareto optimized resultant image exhibits enhanced image 

in which favor to specific enhancement objectives that had been discussed in the previous 

chapter in this thesis. From the enhanced images in Figure 4.2, exist image that displayed 

the white line at the distal part of the bone and also depicted low mean brightness 

difference with enhanced contrast as compared to over saturated original image. In other 

words, the set of Pareto optimized resultant image contains a number of enhanced image 

that successfully emphasizes the three enhancement objective that were previously 

discussed. The resultant image shows a well balance enhancement that considers the 

preservation of contrast, mean brightness and details. Some of the noises in the resultant 

image is easily been filtered away with some standard filtering techniques such as 
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anisotropic diffusion approach. This filtering technique can be implemented to the 

original image before the proposed enhancement approach is imposed. However, this 

filtering algorithm is not implemented in the experiment in order to avoid additional effect 

in the resultant image caused by other methods that is not related to the proposed 

approach.  

In Figure 4.2, selective images from the Pareto optimized resultant images of Lunate 

bone is selected to be the input images to the segmentation process, where this process is 

executed using deep learning approach. The images are selected based on their most 

optimum value for each objective values: C, B and D, where their value is near to 1.   
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Capitate Bone Image (Before Enhancement) 

 

     
𝑥1=233 
𝑥2=1294            
C=0.1469                
B=1.0000                    
D=0.6225 

𝑥1=250 
𝑥2=1679            
C=0.0540                
B=0.7383                    
D=0.7681 

𝑥1=117 
𝑥2=1697           
C=0.4359                
B=0.0825                    
D=0.9435 

𝑥1=145 
𝑥2=1829           
C=0.6490                
B=0.0595                    
D=1.0000 

𝑥1=233 
𝑥2=1294           
C=0.1469                
B=1.0000                    
D=0.6225 

     
𝑥1=199 
𝑥2=1575           
C=0.1378                
B=0.4813                    
D=0.8408 

𝑥1=205 
𝑥2=1694           
C=0.1010                
B=0.6057                    
D=0.7863 

𝑥1=221 
𝑥2=1669           
C=0.1008                
B=0.9132                    
D=0.6631 

𝑥1=130 
𝑥2=1715           
C=0.5682                
B=0.0662                    
D=0.9789 

𝑥1=213 
𝑥2=1794           
C=0.0859               
B=0.7598                    
D=0.7222 

     
𝑥1=217 
𝑥2=1580           
C=0.0900               
B=0.8401                    
D=0.6905 

𝑥1=178 
𝑥2=1596           
C=0.3745               
B=0.1811                  
D=0.9805 

𝑥1=190 
𝑥2=1586           
C=0.2206               
B=0.3321                  
D=0.9095 

𝑥1=172 
𝑥2=1480          
C=0.6268              
B=0.0648                 
D=1.0000 

𝑥1=210 
𝑥2=1662          
C=0.4019              
B=0.1626                 
D=0.9916 

Figure 4.3: Output set of Pareto optimized bi-histogram equalized resultant images 
of the Capitate bone with its corresponding decision variables and each objective 

function values, in which 𝒙𝟏 represents the separating point, 𝒙𝟐 represents the 
clipped limit, C represents Contrast objective, B represents the mean brightness 

preservation and D  represents the detail preservation, respectively. 

Univ
ers

ity
 of

 M
ala

ya



 

123 

Figure 4.3 depicts partial of the Pareto optimized resultant images for Capitate bone. 

In this figure, overall contrast of the original image is clearly enhanced as compared to 

the original image, where the region of interest of the Capitate bone is substantially visible 

from the background. In addition, the Pareto optimized resultant image exhibits enhanced 

internal contrast of the bone content in Capitate bone. It is also can be observed that the 

border shape, border outline and the contrast within the bone are improved, significantly. 

Besides, certain images in the set of Pareto optimized image has low mean brightness 

difference and this outcome is expected as the proposed approach has the ability to fulfills 

the preservation objectives in an optimal manner during the enhancement process.  

Similar to other carpal bones that was previously discussed in the previous section, the 

enhanced properties such as the shape, border outline and the internal contrast within the 

bone is crucial for the maturity rating for TW3 system. For example, specific 

characteristics at the Capitate bone are referred as maturity stage D, which includes the 

maximum diameter is half or more from the radial metaphysis’ width, the border outline 

that is beside the Hamate bone is flat and slightly convex and lastly, the border outline 

that is adjacent to the second metacarpal bone is distinct away from the Hamate bone in 

order to form a D shape. In Figure 4.3, the characteristics shown in the set of Pareto 

optimized resultant images of Capitate bone indicates maturity stage of E. In this set of 

images, the characteristics that resembles maturity stage of E are clearly visible. The 

displayed characteristics include the concavity of the bone border, thicken bone border 

and its longitudinal diameter that substantially greater than the transverse but less than 

the distance from its proximal border to the radial metaphysis. Visual observation on the 

resultant images in Figure 4.3 clearly indicates that all the features that resembles the 

maturity stage is easily identified and subsequently improving the efficient in maturity 

stage rating.  
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In Figure 4.3, selective images from the Pareto optimized resultant images of Capitate 

bone is selected to be the input images to the segmentation process, where this process is 

executed using deep learning approach. The images are selected based on their most 

optimum value for each objective values: C, B and D, where their value is near to 1. 

 
Scaphoid Bone Image (Before Enhancement) 

 

     
𝑥1=236 
𝑥2=2492            
C=0.0831                
B=1.0000                    
D=0.5992 

𝑥1=155 
𝑥2=1835            
C=0.6777                
B=0.0461                    
D=1.0000 

𝑥1=222 
𝑥2=2222            
C=0.0565                
B=0.9040                    
D=0.6635 

𝑥1=166 
𝑥2=2014            
C=0.6082                
B=0.0633                    
D=1.0000 

𝑥1=201 
𝑥2=2234            
C=0.1703                
B=0.4615                    
D=0.8665 

     
𝑥1=151 
𝑥2=2347           
C=0.6831               
B=0.0477                    
D=1.0000 

𝑥1=191 
𝑥2=2340           
C=0.2857               
B=0.2932                    
D=0.9417 

𝑥1=226 
𝑥2=2259           
C=0.0588               
B=0.9603                    
D=0.6378 

𝑥1=228 
𝑥2=2349          
C=0.0614               
B=0.9841                    
D=0.6271 

𝑥1=209 
𝑥2=2267         
C=0.1031               
B=0.6199                    
D=0.7940 

     
𝑥1=195 
𝑥2=2188         
C=0.2429               
B=0.3467                    
D=0.9181 
 

𝑥1=174 
𝑥2=2126         
C=0.5176               
B=0.1045                   
D=1.0000 
 

𝑥1=230 
𝑥2=2284         
C=0.0666               
B=1.0130                    
D=0.6142 
 

𝑥1=220 
𝑥2=2296       
C=0.0581            
B=0.8535                    
D=0.6866 
 

𝑥1=164 
𝑥2=2215         
C=0.6255               
B=0.0575                    
D=1.0000 
 

Figure 4.4: Output set of Pareto optimized bi-histogram equalized resultant images 
of the Scaphoid bone with its corresponding decision variables and each objective 

function values, in which 𝒙𝟏 represents the separating point, 𝒙𝟐 represents the 
clipped limit, C represents Contrast objective, B represents the mean brightness 

preservation and D  represents the detail preservation, respectively. 
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In Figure 4.4, the resultant images in the set of Pareto optimized image exhibits various 

type of enhancement that fulfills the three objective functions, which is preservation of 

the contrast, mean brightness and details. Some of the images preserves the mean 

brightness of the original image with substantial enhancement on contrast. There are 

images that prone to the contrast objective in which the contrast of the Scaphoid bone is 

large as compared to the background. Enhanced images that prone to contrast are suitable 

to be used in evaluating higher maturity stage such as stage E, F, G and H. For each stage, 

specific attributes from the bone is identified as indicator to the specific maturity stage. 

For example, visibility of thicken white line that resembles the palmar articular surface is 

an indicator to stage E. At stage F, the maturity indicators are the concavity attribute of 

the surface facing the capitate and the flattened border next to the trapezium and trapezoid 

bones. The bone growth at the proximal and medial direction in which the dorsal surface 

is extending beyond the thickened white line towards the lunate, the proximal part of the 

capitate as well as the distinct border near to the lunate are the distinct indicator for 

maturity stage G. Lastly for the identification of maturity stage H, the enhanced image 

shows the distal portion of the bone has lateral enlargement and differentiation of the 

radial styloid articular surface appears in two location. The two locations are the distal 

part of its lateral border and distinct distal head.  

In Figure 4.4, selective images from the Pareto optimized resultant images of Scaphoid 

bone is selected to be the input images to the segmentation process, where this process is 

executed using deep learning approach. The images are selected based on their most 

optimum value for each objective values: C, B and D, where their value is near to 1. 

From Figure 4.1 to Figure 4.4, the set of Pareto optimized resultant images for the 

Carpal bone is visually enhanced to fulfill the three preservation objectives. The enhanced 

image exhibits clear border and contrast within the bone material, which is an essential 
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requirement in ensuring effectiveness of the maturity stage assessment.  Pareto optimized 

images provide optimal enhanced output image that highlights various pertinent 

information in the bone material to the observer.  

 

4.2 Improved Segmentation Result due to Enhanced Contrast 

The definition of accurate segmentation of anatomical structures of hands bones means 

that the most of the regions of hand bones have been classified as truth class and the rest 

of the pixels are classified as background class. Accurate segmentation of this hand bone 

structure is instructive for subsequent steps in analyzing and determining bone age. It is 

known matter in image segmentation communities that the accuracy of segmentation is 

assessed by comparing the extent of overlapping between the ground truth areas and 

segmented areas. At first glance, the most intuitive measurement is pixel accuracy. Pixel 

accuracy here means the percentage of pixels that are classified correctly to truth class. 

This type of measurement is problematic when the ground truth area is only appears at a 

small percentage of the entire image. High percentage of accuracy in segmentation is still 

achievable if all the pixels in the image is classified into background. For example, if only 

1% of the entire image is ground truth area, then the naive scheme by classifying all pixels 

into background pixels will derive segmentation accuracy as 99%. This is due to all 

background pixels are classified as background pixels and there are 99% of them. This 

issue is regarded as a class imbalance issue of pixel accuracy calculation. The domination 

of pixels of certain class will make this measurement fails.  

Therefore, overlapping schemes that can avoid this problem are often being used such 

as the Intersection-Over-Union (IOU). IOU is also named as the “Jaccard Index”. IOU is 

currently the most conventionally adopted segmentation accuracy measurement since it 

is also a straightforward metric. IOU is defined as the ratio between the area of overlap 
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between the segmented pixels and the ground truth pixels, to the area of union between 

the segmented pixels and the ground truth pixels. The second segmentation accuracy 

metric that is also commonly adopted is Dice Coefficient or also known as 𝐹1 score. Dice 

Coefficient is also based on overlapping scheme as well but different from IOU. Dice 

coefficient is just a ratio of two portions of areas of overlapping between the ground truth 

and the segmented pixels to the total number of pixels in both ground truth and segmented 

pixels. Dice Coefficient is different from IOU as the denominator of metric is not the 

union of ground truth and segmented pixels but the sum of these two areas instead. Dice 

Coefficient (DC) is adopted as segmentation metric to measure the computed hand bone 

segmentation result.  

The Dice Coefficient (DC) is defined by the following formula 

 
𝐷𝐶 =

2|𝐴⋂𝐵|

|𝐴| + |𝐵|
 

(4.1) 

 

In the DC definition, the symbol “A” denotes the ground truth areas represented by the 

ground of pixels that are identified as the targeted area. In the hand bone context, these 

ground truth is defined by the areas that were delineated by three medical experts whereas 

the symbol “B” denotes the segmented pixels or the areas that are identified as hand-bone 

related. For each value in “A”, the value is either “0” or “1” in which “0” represent not 

ground truth, and “1” represents it is ground truth. Again the ground truth here represents 

delineated area of each hand bone image by experts. It is mathematically define |𝐴| as 

|𝐴| = ∑ 𝑎𝑖
𝑡𝑜𝑡𝑎𝑙 𝑖 
𝑖  in which 𝑎𝑖 denoted the ith pixel in area “A”. Similarly, the background 

area |𝐵| can be defined as |𝐵| = ∑ 𝑏𝑗
𝑡𝑜𝑡𝑎𝑙 𝑗 
𝑗  in which 𝑏𝑖 denoted the jth pixel in area “B”. 

Therefore, the nominator of DC representation, |𝐴⋂𝐵|  can be defined as |𝐴⋂𝐵| =

∑ ∑ 𝑎𝑖𝑏𝑗𝑗𝑖 . In other words, there is an entry in the summation if and only if both 𝑎𝑖 and 
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𝑏𝑗 equals to 1. Please note that since both images in which consists of ground truth image 

and the segmented image are of same dimensions, therefore 𝑖 = 𝑗 and thus definition of 

|𝐴| as  |𝐴| = ∑ 𝑎𝑖𝑖  and |𝐵| as|𝐵| = ∑ 𝑏𝑖𝑖 , and|𝐴⋂𝐵| =  ∑ 𝑎𝑖𝑏𝑖𝑖 . 

Dice coefficient also known as  𝐹1 score as stated. Our hand bone segmentation can be 

regarded as binary classification of each pixel. In statistical analysis for binary 

classification, the 𝐹1  score is viewed as a measurement of accuracy in test. This 

measurement of test accuracy comprises of two components: 1) precision, p and 2) recall, 

r. First, the precision is defined as the ratio of true positive to the total positive results, 

which is the summation of true positive and false positive. In other words, precision can 

be viewed as “given the output is positive, how precise this positive result” or “out of all 

positive results, how many of them is truly a positive result” or “how many of the selected 

result are relevant”. On the other hands, the recall is calculated by the ratio of the number 

of true positive to the number of all true positive available in which is summation of true 

positive and false negative. In other words, recall can be viewed as “of all true positive 

results, how many of them will be identified correctly as true positive result” or “how 

many relevant results are selected”. The 𝐹1 score is defined to be the harmonic mean of 

both these components (precision, denoted as p and recall denoted as r) as following:  

 
𝐹1 =

2

𝑝−1 + 𝑟−1
 

(4.2) 

   

And thus can be then rearranged to become the following:  

 
𝐹1 =

2 𝑝𝑟

𝑝 + 𝑟
 

(4.3) 
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Note the subscript “1” in 𝐹1 can be generalized to any positive real number if different 

emphasis on p and r is assigned. If r is 𝛽 times more important than p, then the general 

formula is as following:  

 
𝐹𝛽 =

(1 + 𝛽2) 𝑝𝑟

𝛽2𝑝 + 𝑟
 

(4.4) 

   

In the proposed hand bone segmentation measurement, 𝐹1 metric is adopted such that 

both recall and precision is equally important. In the context of segmentation, precision 

here represents the ratio of pixels which are predicted correctly as bone to the total pixels 

which are ground truth as bones.  On the other hand, the recall here represents the ratio 

of pixels which are predicted correctly as background to the total pixels of bone. In the 

hand bone segmentation context, true positive for |𝐴| and |𝐵| is different. Besides, it is 

important to note that the maximum value of DC is 1 and the minimum is 0 or ranges 

from 0 to 1 in which being 1 means that all the pixels predicted as bones are all actually 

bones as delineated by experts and being 0 means that all the pixels predicted as bones 

are all not bones.  

The dataset that is adopted to generate the segmentation result is the database of hand 

bone, which acquired from an open database of hand images specifically for research 

purposes (Joseph, L., 2005). Experiments are conducted for images before and after the 

proposed contrast enhancement scheme. The experiments are designed in this way with 

the intention to emphasize the impact of the contrast of the image on the segmentation 

result. For each age group and gender group, most of the images in database are used to 

generate the segmentation result by using the segmentation quality metrics, dice 

coefficient with equal weight on p and r. In other words, one pixel misclassified as bone 

is the same penalty of one pixel misclassified as background and vice versa. All results 
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require ground truth and we obtained it from three experts by delineating the images for 

real areas of bones. For each age group and gender group, the median, 25th and 75th 

percentiles, maximum and minimum values of dice coefficient are computed in order to 

identify any performance discrepancy of the proposed segmentation in different age and 

gender group. Boxplot is used to demonstrate the result. Note that the soft tissue region 

is considered as background as well in this context and in fact this is actually the main 

challenge in the segmentation.  

Table 4.1 shows the experimental result and the associated overall mean and standard 

deviation.  
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Table 4.1: Experimental result for segmentation using Dice Coefficient across 19          
age groups for male category. The value of each cell represents the mean dice 

coefficient of a particular age group using the segmentation scheme against the 
ground truth by a particular expert. 

Age Group 
(male) 

Before Contrast Enhancement After Contrast Enhancement 

Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3 

0 0.9911 0.9937 0.9901 0.9925 0.9912 0.9929 

1 0.9917 0.9936 0.9904 0.9963 0.9911 0.9985 

2 0.9749 0.9632 0.9764 0.9571 0.9715 0.9933 

3 0.9654 0.9559 0.9636 0.9612 0.9521 0.9874 

4 0.8986 0.8871 0.8970 0.8982 0.8846 0.8791 

5 0.8816 0.8481 0.8834 0.8640 0.8742 0.8409 

6 0.8544 0.8320 0.8573 0.8541 0.8649 0.8493 

7 0.8636 0.8147 0.8650 0.8736 0.8596 0.8551 

8 0.8307 0.8177 0.8325 0.8305 0.8347 0.8343 

9 0.7283 0.7662 0.7301 0.7705 0.7644 0.7307 

10 0.7465 0.7565 0.7434 0.7831 0.7715 0.7428 

11 0.7350 0.7328 0.7346 0.7821 0.7730 0.7432 

12 0.7200 0.7309 0.7177 0.7774 0.7411 0.7509 

13 0.7231 0.7227 0.7236 0.7790 0.7515 0.7314 

14 0.7265 0.7115 0.7260 0.7853 0.7618 0.7438 

15 0.7157 0.7025 0.7219 0.7702 0.7533 0.7659 

16 0.7344 0.7407 0.7368 0.7730 0.7430 0.7405 

17 0.7401 0.7216 0.7408 0.7689 0.7597 0.7202 

18 0.7376 0.7531 0.7369 0.7648 0.7646 0.7652 

Overall 
Mean  0.8189 0.8129 0.8193 0.8411 0.8320 0.8245 

Overall 
Standard 
Deviation 

0.1048 0.1005 0.1044 0.0829 0.0901 0.1017 

 

Table 4.1 shows the experimental result for the proposed segmentation scheme using 

Dice Coefficient across 19 age groups for male category. The value of each cell represents 
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the mean dice coefficient of a particular age group using the segmentation scheme against 

the ground truth by a particular expert. From the table, there are several interesting results 

can be observed. First of all, the overall mean value is the first observation key point. This 

value indicates the average DC value of the segmented bone across all the age group in 

which ranging from 0 to 18, and for each of the three expert delineation of bone 

anatomical structure on the hand bone radiographic images. Firstly, it is observed that the 

overall mean for across the three expert is consistent (0.8189, 0.8129, 0.8193 in images 

without contrast enhancement and 0.8411, 0.8320, 0.8245 in images with contrast 

enhancement) which standard deviation results is only 0.036 for images without contrast 

enhancement and 0.083 for images with contrast enhancement. In other words, the inter-

variability of ground truth delineated from the three experts are very consistent. This in 

turn also implies that segmentation from human vision system of the hand bone are 

consistent. By comparing these two inter-variability values, the observer’s inter-

variability for images with contrast enhancement is although small but higher than the 

observer’s inter-variability for images without contrast enhancement. This result is 

expected since the image after contrast enhancement is not comparable to natural image 

from x-ray. However, the interesting result is that the overall mean across three experts 

for images after contrast enhancement is significantly higher than those without contrast 

enhancement, where mean of overall mean for three experts before contrast enhancement 

is 0.8170 whereas the mean of the overall mean for three experts after contrast 

enhancement is 0.8325. Figure 4.5 shows the overall mean before and after enhancement 

for each expert. In Figure 4.5, it is clearly highlighted that the overall mean for each expert 

is higher in the scenario after enhancement as compared to before enhancement. Hence, 

the contrast enhancement is noticed to be having the effect of enhancing the segmentation 

result as well. Lastly from this table, another important implication is that by using the 

segmentation scheme, the standard deviation is only around 0.1 although the hand bone 

Univ
ers

ity
 of

 M
ala

ya



 

133 

image across 19 age group is of enormous difference. This results are a promising 

indicator to the robustness of the proposed segmentation scheme. Last but not least from 

this table is that the standard deviation of DC values for images after contrast 

enhancement is consistently lower than the standard deviation for images before contrast 

enhancement indicating that although the observer’s inter-variability is higher using 

human visual system, the most important is the analysis from machine can benefit more 

from the contrast enhancement scheme in segmentation performance.  

 
Figure 4.5: Overall mean for three experts for before and after enhancement  

 

The significance difference before and after contrast enhancement for each expert is 

further verified using a statistical test, known as paired T-test. In this test, the null 

hypothesis refers to the mean before enhancement is equivalent to after enhancement with 

5% significant level. In this paired T-test evaluation, it is assumed that the data follows 

bivariate normal distribution. The T-test is of the form sample mean difference/sample 

standard deviation of the sample mean difference. Table 4.2 illustrates the paired T-test 

sample for Expert 1.  
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Table 4.2: T-test: Paired two sample for means for Expert 1 for male category. 

  Before Enhancement After Enhancement 

Mean 0.818905263 0.841147368 
Variance 0.010977081 0.006864858 
Observations 19 19 
Pearson Correlation 0.987306068  
Hypothesized Mean Difference 0  
df 18  
t Stat -3.662453026  
p(T<=t) one-tail 0.000890777  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 0.001781554  
t Critical two-tail 2.10092204   

 

Table 4.2 shows the p value for Expert 1 is 0.001781554. This value depicts strong 

evidence (<0.05) to reject the null hypothesis. In other words, the difference between 

before and after enhancement is significant and not likely to occur by chance. Similarly, 

the same test is performed on Expert 2. Table 4.3 depicts the paired T-test sample for 

Expert 2. 

    Table 4.3: T-test: Paired two sample for means for Expert 2 for male category. 

  Before Enhancement After Enhancement 

Mean 0.812868421 0.831989474 
Variance 0.010097142 0.008122645 
Observations 19 19 
Pearson Correlation 0.985368655  
Hypothesized Mean Difference 0  
df 18  
t Stat -4.319498021  
p(T<=t) one-tail 0.000206431  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 0.000412863  
t Critical two-tail 2.10092204   

 

In Table 4.3, the null hypothesis for Expert 2 result on before and after enhancement 

images is that both means are equal, 𝐻0: 𝜇𝑏𝑒𝑓𝑜𝑟𝑒 = 𝜇𝑎𝑓𝑡𝑒𝑟 . The p value obtained is 

0.000412, showing strong evidence to reject the null hypothesis. For Expert 3, paired T-

test is conducted too.  
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    Table 4.4: T-test: Paired two sample for means for Expert 3 for male category. 

  Before Enhancement After Enhancement 

Mean 0.819342105 0.824494737 
Variance 0.010895891 0.010340388 
Observations 19 19 
Pearson Correlation 0.98086553  
Hypothesized Mean Difference 0  
df 18  
t Stat -1.104542694  
p(T<=t) one-tail 0.14195228  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 0.283904561  
t Critical two-tail 2.10092204   

 

In Table 4.4, the p value obtained is 0.283904561 showing strong evidence to accept 

null hypothesis. From the statistical analysis, two out of three expert’s validation results 

show significant difference before and after enhancement. Therefore, this significant 

difference shows the enhancement able to improve the segmentation results of hand bone 

image and contribute substantially in bone age assessment.  
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(a) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 1 across all male hand bones with ages ranging from 0 to 18. 

 
(b) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 2 across all male hand bones with ages ranging from 0 to 18. 

 

(C) Boxplot of DC for hand bone segmentation with ground truth delineated by 
expert 1 across all male hand bones with ages ranging from 0 to 18. 

 

Figure 4.6: Boxplot of Dice Coefficient for hand bone segmentation with ground 
truth delineated by expert 1, 2 and 3 across all male hand bones with ages ranging 

from 0 to 18, before applying the contrast enhancement scheme. 
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Figure 4.6 shows the boxplot of Dice Coefficient for hand bone segmentation with 

ground truth delineated by expert1, 2 and 3 across all male hand bones with ages ranging 

from 0 to 18, before applying the contrast enhancement scheme. Figure 4.6 (a) shows the 

boxplot of Dice Coefficient for hand bone segmentation with ground truth delineated by 

expert 1 across all male hand bones with ages ranging from 0 to 18. Figure 4.6 (b) shows 

boxplot of dice coefficient for hand bone segmentation with ground truth delineated by 

expert 2 across all male hand bones with ages ranging from 0 to 18. Figure 4.6 (c) shows 

boxplot of dice coefficient for hand bone segmentation with ground truth delineated by 

expert 3 across all male hand bones with ages ranging from 0 to 18. From these boxplots, 

it can be noticeable that the across 19 age groups, the median of DC drops sharply from 

age 4 to age 5 and from age 8 to age 9.  Another finding from the three plots is that the 

DC drops consistently that from age 0 to age 8 (mean drops from 0.9911 to 0.8307 for 

expert 1, mean drops from 0.9937 to 0.8177 for expert 2, mean drops from 0.9901 to 

0.8325 for expert 3). After age 8, it can be noticeable that the DC value is rather 

consistent. For example, the standard deviation for expert 1 from age 0 to age 8 is 0.0638 

and the standard deviation for expert 1 from age 8 to age 18 is 0.0315; 0.0760 and 0.0318 

for expert 2, 0.0626 and 0.0316 for expert 3. This result is aligned to the complexity of 

the anatomical structures in the hand bone throughout the growth period. From the hand 

bone radiographic image, it can be observed that age 8 onwards, as compared to age 7, 

differs much in the anatomical structure such that age 8 onwards, carpals and epiphyseal 

sites begins to overlap with each other. For the age 4 to age 5, the underlying reasons 

might be the appearance of epiphyseal plates in which the difficulty in segmentation of 

epiphyseal plates is higher than other anatomical structure of hand bone.  
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(a) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 1 across all male hand bones with ages ranging from 0 to 18. 

 
(b) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 2 across all male hand bones with ages ranging from 0 to 18. 

 
(c) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 3 across all male hand bones with ages ranging from 0 to 18. 
 

Figure 4.7 boxplot of Dice Coefficient for hand bone segmentation with ground 
truth delineated by expert 1, 2 and 3 across all male hand bones with ages 

ranging from 0 to 18, after applying the contrast enhancement scheme. 
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Figure 4.7 shows the boxplot of Dice Coefficient for hand bone segmentation with 

ground truth delineated by expert 1, 2 and 3 across all male hand bones with ages 

ranging from 0 to 18, after applying the contrast enhancement scheme. Figure 4.7(a) 

shows the boxplot of Dice Coefficient for hand bone segmentation with ground truth 

delineated by expert 1 across all male hand bones with ages ranging from 0 to 18, after 

applying the contrast enhancement scheme. Figure 4.7(b) shows boxplot of dice 

coefficient for hand bone segmentation with ground truth delineated by expert 2 across 

all male hand bones with ages ranging from 0 to 18, after applying the contrast 

enhancement scheme. Figure 4.7(c) shows boxplot of dice coefficient for hand bone 

segmentation with ground truth delineated by expert 3 across all male hand bones with 

ages ranging from 0 to 18, after applying the contrast enhancement scheme. From these 

boxplots, it can be noticeable that the across 19 age groups, the median of DC drops 

also sharply from age 4 to age 5 and from age 8 to age 9 and the DC drops also 

consistently that from age 0 to age 8 similarly to previous result before applying 

contrast enhancement. After age 8, it can also be noticeable that the DC value is rather 

consistent. From the boxplots, it can be noticed that almost all the medians, for 

example, age group from age 8 onwards consistently stays above 0.75 for hand bone 

radiographic image after contrast enhancement, on the other hand, for hand bone x-ray 

image before contrast enhancement, for age group from age 8 onwards, DC value 

consistently stays before 0.75. From these result, we find that DC value is higher for 

images that have undergone contrast enhancement; or in other words, segmentation 

result is enhanced for hand bone radiographic image that have undergone contrast 

enhancement.  
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Table 4.5: Experimental result for segmentation using Dice Coefficient across 19 
age groups for female category. The value of each cell represents the mean dice 
coefficient of a particular age group using the segmentation scheme against the 

ground truth by a particular expert. 

Age Group 
(Female) 

Before Contrast Enhancement After Contrast Enhancement 

Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3 

0 0.9929 0.9949 0.9931 0.9923 0.9960 0.9963 

1 0.9827 0.9873 0.9970 0.9930 0.9913 0.9906 

2 0.9469 0.9757 0.9879 0.9848 0.9733 0.9826 

3 0.9245 0.9424 0.9328 0.9722 0.9768 0.9875 

4 0.8725 0.8886 0.8651 0.9135 0.9220 0.9410 

5 0.8664 0.8516 0.8417 0.8970 0.9060 0.9355 

6 0.8430 0.8337 0.8349 0.8853 0.8942 0.8927 

7 0.8295 0.8313 0.8209 0.8801 0.8601 0.8883 

8 0.7592 0.7440 0.7194 0.7869 0.7354 0.7565 

9 0.7411 0.7326 0.7320 0.7703 0.7413 0.7306 

10 0.7338 0.7461 0.7433 0.7557 0.7531 0.7464 

11 0.7218 0.7306 0.7399 0.7399 0.7299 0.7241 

12 0.7308 0.7395 0.7386 0.7502 0.7305 0.7403 

13 0.7114 0.7192 0.7313 0.7299 0.7407 0.7323 

14 0.7337 0.7448 0.7150 0.7570 0.7264 0.7534 

15 0.7447 0.7542 0.7331 0.7427 0.7556 0.7641 

16 0.7090 0.7300 0.7210 0.7401 0.7596 0.7527 

17 0.7415 0.7331 0.7427 0.7488 0.7536 0.7324 

18 0.7258 0.7263 0.7450 0.7443 0.7458 0.7260 

Overall 
Mean  0.8059 0.8108 0.8071 0.8307 0.8259 0.8302 

Overall 
Standard 
Deviation 

0.0978 0.1000 0.1018 0.1012 0.1053 0.1105 
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Table 4.5 shows the experimental result for segmentation using Dice Coefficient 

across 19 age groups for female category. The value of each cell represents the mean dice 

coefficient of a particular age group using the segmentation scheme against the ground 

truth by a particular expert. From the table, several findings are observed. First of all, the 

overall mean value discrepancy between male and female result. It is noted that this 

overall mean value indicates the average DC value of the segmented bone across all the 

age group in which ranging from 0 to 18, for each of the three expert delineation of bone 

anatomical structure on the radiographic images. For male, without contrast 

enhancement, the overall mean of DC value is 0.8189, 0.8129, 0.8193 respectively for 

each expert ground truth, while for female, without contrast enhancement, the overall 

mean is 0.8059, 0.8108, 0.8071. From the results in term of DC value, it is observed that 

the result for male is slightly consistently higher than DC value of female hand bone 

radiographic images. This result is fascinating but not surprising since the female bone 

maturity development is faster than male and therefore the overlapping of bones of 

epiphyseal sites occur more frequently in the dataset. On the other hand, for male, with 

contrast enhancement, 0.8411, 0.8320, 0.8245 respectively for each expert ground truth, 

while for female, the overall mean is 0.8307, 0.8259, 0.8302. The average of the overall 

mean for male, with contrast enhancement is therefore 0.83525 while the average if the 

overall mean for female, with contrast enhancement is 0.8289. This results in turn implies 

that either with or without contrast enhancement, the segmentation accuracy for female 

hand bone radiographic image correspond to the complexity of the anatomical structure 

of the hand bone. The standard deviation of the DC value for both male and female is 

around 0.1. From the obtained results, this standard deviation value is astoundingly small 

according to the prominent change of anatomical structure of bone across 18 age group. 
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For female category, the significance difference before and after contrast enhancement 

for each expert is also verified using paired T-test. Table 4.6 illustrates the paired T-test 

sample for Expert 1.  

Table 4.6: T-test: Paired two sample for means for Expert 1 for female category. 

  Before Enhancement After Enhancement 

Mean 0.805852632 0.830736842 
Variance 0.009574223 0.01025176 
Observations 19 19 
Pearson Correlation 0.989158123  
Hypothesized Mean Difference 0  
df 18  
t Stat -7.208698259  
p(T<=t) one-tail 5.225E-07  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 1.045E-06  
t Critical two-tail 2.10092204   

 

Table 4.6 shows the p value for Expert 1 is 1.045E-06. This value depicts strong 

evidence (<0.05) to reject the null hypothesis that both means for before and after 

enhancement is equal. In other words, the difference between before and after 

enhancement is significant. Similarly, the same test is performed on Expert 2. Table 4.7 

depicts the paired T-test sample for Expert 2. 

    Table 4.7: T-test: Paired two sample for means for Expert 2 for female category. 

  Before Enhancement After Enhancement 

Mean 0.810836842 0.825873684 
Variance 0.010008519 0.011076625 
Observations 19 19 
Pearson Correlation 0.979561258  
Hypothesized Mean Difference 0  
df 18  
t Stat -3.064442606  
p(T<=t) one-tail 0.003339306  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 0.006678612  
t Critical two-tail 2.10092204   

 

Univ
ers

ity
 of

 M
ala

ya



 

143 

In Table 4.7, the p value obtained is 0.006678612 (<<0.05), showing strong evidence 

to reject the null hypothesis. For Expert 3, paired T-test is conducted too.  

    Table 4.8: T-test: Paired two sample for means for Expert 3 for female category. 

  Before Enhancement After Enhancement 

Mean 0.807089474 0.830173684 
Variance 0.010355691 0.012218172 
Observations 19 19 
Pearson Correlation 0.951713865  
Hypothesized Mean Difference 0  
df 18  
t Stat -2.95022288  
p(T<=t) one-tail 0.004281256  
t Critical one-tail 1.734063607  
p(T<=t) two-tail 0.008562512  
t Critical two-tail 2.10092204   

 

In Table 4.8, the p value obtained is 0.008562512 showing strong evidence to reject 

null hypothesis. From the statistical analysis, three expert’s validation results show 

significant difference before and after enhancement. Therefore, this significant difference 

shows the enhancement able to improve the segmentation results of hand bone image in 

female category and contribute substantially in bone age assessment.  
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(a) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 1 across all female hand bones with ages ranging from 0 to 18. 

 
(b) Boxplot of DC for hand bone Segmentation with ground truth delineated by 

expert 2 across all female hand bones with ages ranging from 0    to 18. 

 
(c) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 3 across all female hand bones with ages ranging from 0 to 18. 

Figure 4.8 Boxplot of Dice Coefficient for hand bone segmentation with ground 
truth delineated by expert 1, 2 and 3 across all female hand bones with ages 

ranging from 0 to 18, before applying the contrast enhancement scheme. 
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Figure 4.8 shows the boxplot of Dice Coefficient for hand bone segmentation with 

ground truth delineated by expert 1, 2 and 3 across all female hand bones with ages 

ranging from 0 to 18, before applying the contrast enhancement scheme. Figure 4.8(a) 

shows the boxplot of Dice Coefficient for hand bone segmentation with ground truth 

delineated by expert 1 across all female hand bones with ages ranging from 0 to 18, before 

applying the contrast enhancement scheme. Figure 4.8(b) shows boxplot of dice 

coefficient for hand bone segmentation with ground truth delineated by expert 2 across 

all female hand bones with ages ranging from 0 to 18, before applying the contrast 

enhancement scheme. Figure 4.8(c) shows boxplot of dice coefficient for hand bone 

segmentation with ground truth delineated by expert 3 across all female hand bones with 

ages ranging from 0 to 18, before applying the contrast enhancement scheme. From these 

boxplots, it can be noticeable that the across 19 age groups, the median of DC drops 

sharply from age 7 to age 8 as opposed to the previous result for male in which the median 

of DC drops sharply from age 8 to age 9.  Another finding from the three plots is that the 

result corresponds well with the previous result of male such that before the DC value 

drop sharply, the mean value drops consistently in which mean drops from 0.9929 to 

0.8295 for expert 1, mean drops from 0.9949 to 0.8313 for expert 2, mean drops from 

0.9931 to 0.8209 for expert 3. However, the mean value drop happens earlier as compared 

to the male in term of the DC value. This result corresponds well with development 

expectation such that the bone age development of female children is faster than the male 

children. The segmentation result is therefore records a drop since 7 from the radiographic 

image. This is due to the rapid anatomical bone structure development and all the carpals, 

phalanges and metacarpals started to overlap with each other and pose serious issue to 

clear-cut segmentation. 
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(a) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 1 across all female hand bones with ages ranging from 0 to 18. 

 
(b) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 2 across all female hand bones with ages ranging from 0 to 18. 

  
(c) Boxplot of DC for hand bone segmentation with ground truth delineated by 

expert 3 across all female hand bones with ages ranging from 0 to 18. 

 
Figure 4.9 Boxplot of Dice Coefficient for hand Bone segmentation with ground 

truth delineated by expert 1, 2 and 3 across all female hand bones with ages 
ranging from 0 to 18, after applying the contrast enhancement scheme. 
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Figure 4.9 shows the boxplot of dice coefficient for hand bone segmentation with 

ground truth delineated by expert 1, 2 and 3 across all female hand bones with ages 

ranging from 0 to 18, after applying the contrast enhancement scheme. Figure 4.9 (a) 

shows the boxplot of Dice Coefficient for hand bone segmentation with ground truth 

delineated by expert 1 across all female hand bones with ages ranging from 0 to 18, after 

applying the contrast enhancement scheme. Figure 4.9 (b) shows boxplot of dice 

coefficient for hand bone segmentation with ground truth delineated by expert 2 across 

all male hand bones with ages ranging from 0 to 18, after applying the contrast 

enhancement scheme. Figure 4.9 (c) shows boxplot of dice coefficient for hand bone 

segmentation with ground truth delineated by expert 3 across all female hand bones with 

ages ranging from 0 to 18, after applying the contrast enhancement scheme. From these 

boxplots, it can be noticeable that the across 19 age groups, the median of DC drops also 

sharply from age 4 to age 5 and from age 7 to age 8 and the DC drops also consistently 

that from age 0 to age 7 similarly to previous result before applying contrast enhancement. 

After age 7, it can also be noticeable that the DC value is rather consistent. From the 

boxplots, it can be noticed that almost all the medians, for example, age group from age 

8 onwards consistently stays between 0.75 for hand bone radiographic image after 

contrast enhancement. On the other hand, for hand bone radiographic image before 

contrast enhancement, for age group from age 8 onwards, DC value although consistently 

stays between 0.75 as well, but in overall the DC value range is slightly higher than before 

contrast enhancement. Besides there are some outliers found which are believed cause by 

extreme conditioned radiographic images in the dataset in which the contrast is washed-

out even before contrast enhancement and therefore there is a few outliers in some age 

group.  

 

Univ
ers

ity
 of

 M
ala

ya



 

148 

4.3 Quantitative Analysis using Classifier 

For this quantitative analysis, five maturity stage are considered, which are stage D, 

stage E, stage F, stage G and stage H. These stages indicate the level of maturity for 

ossification sites of bones. These five stages possess quite similar features with each 

others and it is challenging to identify them. Therefore, these five stages are chosen in 

order to measure the effect of the improved visual quality from the proposed enhancement 

scheme onto the classification result. In this experiments, 2500 images with the cropped 

ossification sites are used. In this experiments, the images are balance distributed to the 

five stages, where each stage has 500 images. From the 2500 images, three different sets 

of training images are created. The first set of training images are the original images 

without any enhancement. The second set of training images are the enhanced images that 

are generated by using the bi-histogram equalization algorithm with random values of the 

separating point and clipped limit. By using random value on separating point and clipped 

limit, the output of the enhanced image includes all the possible outcome for all the 

approaches that is discussed in Section 2.3.1. The third set of training images are the 

enhanced images that are computed by using the proposed Pareto optimized bi-histogram, 

where the separating point and clipped limit are optimally determined. With these three 

set of training images, classifiers are trained with the same setting in order to get the 

optimum classifiers. The training parameter settings are made standardize throughout the 

experiments. The classification result from the classifier that is trained from the first set 

of training images (original image without enhancement) is tabulated in Table 4.9. The 

classification results from the classifier that adopts random values of separating point and 

clipped limit is illustrated in Table 4.10. Table 4.11 depicts the classification result that 

is obtained from the classifier that is trained using Pareto optimized bi-histogram images.  

Prior to the discussion on the three classification results, the metrics that used in the 

experiment that includes precision, recall and F1 score will be described and explained.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(4.5) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(4.6) 

 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4.7) 

 

The precision value as defined by Equation (4.5) is the ratio of true positive to the total 

number of positive recognized result. Therefore, the precision value of the classifier 

quantifies the reliability of the classifier result if the result is positive. It means the higher 

the precision value, the more reliable the classifier result is, and vice versa. The recall 

value as defined by Equation (4.6) is the ratio of true positive to the total number of 

positive assigned images. On the other hand, the recall value, represents the confidence 

to recognize a test image with positive label. It means the higher the recall value, the 

higher the chance a particular image of positive label will be recognized correctly, and 

vice versa. The F1 score represents the harmonic mean between precision and recall as 

indicated by Equation (4.7). The F1 score indicates the classifier accuracy by considering 

both precision and recall. 

Table 4.9: Classification Accuracy of Test Images without Enhancement 

 Stage D Stage E Stage F Stage G Stage H 

True Positive 378 357 312 298 305 

False Positive 122 143 188 202 195 

False Negative 114 141 232 216 147 

Precision 0.756 0.714 0.624 0.596 0.610 

Recall 0.768 0.717 0.574 0.578 0.675 

F1 Score 0.762 0.715 0.598 0.587 0.641 
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Table 4.10: Classification Accuracy of Test Images with Bi-Histogram 
Equalization using Random Values of Separating Points and Clipped Limit 

 Stage D Stage E Stage F Stage G Stage H 

True Positive 398 384 342 321 341 

False Positive 102 116 158 179 159 

False Negative 86 145 173 172 138 

Precision 0.796 0.768 0.684 0.642 0.682 

Recall 0.822 0.726 0.689 0.651 0.712 

F1 Score 0.809 0.746 0.686 0.646 0.697 
 

Table 4.11: Classification Accuracy of Test Images with Pareto Optimized Bi-
Histogram Equalization 

 Stage D Stage E Stage F Stage G Stage H 

True Positive 421 419 402 398 413 

False Positive 79 81 98 102 87 

False Negative 51 80 108 118 87 

Precision 0.842 0.838 0.804 0.796 0.826 

Recall 0.892 0.840 0.789 0.771 0.826 

F1 Score 0.867 0.839 0.796 0.783 0.826 
 

In order to obtain the classification result, the test image need to be assigned to 

respective skeletal maturity stage from TW method prior performing automatic 

recognition using classifier. True positive count increases by one when the classifier result 

of maturity stage matches with pre-assigned maturity stage. For instance in Table 4.9, the 

number “378” of stage D means that there is 378 result out of 500 ossification sites test 

image that match the assigned or labelled maturity stage which is D. In other words, the 

classifier agree with the pre-assigned maturity stage for 378 labelled test images out of 

500 test images as stage D. On the other hand, false positive is the number of test images 
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that have not matched the labelled result. For instance in Table 4.9, the false positive 

amounts to 122 representing that 122 of them, out of 500 images of stage D, have been 

recognized as various maturity stage except stage D. In other words, it is noted that the 

number of false negative amounts to the total number of test ossification sites (which are 

previously assigned as any maturity stage but not stage D) that have been wrongly 

classified as stage D.  

As shown in Table 4.9 for test images without undergoing any enhancement, the F1 

score of stage D, stage E, stage F, stage G and stage H are respectively calculated as 

0.762, 0.715, 0.598, 0.587 and 0.641. As shown in Table 4.10, the F1 scores for images 

with different values of separation point and also the clipped limit for stage D, stage E, 

stage F, stage G and stage H are calculated respectively as 0.809, 0.746, 0.686, 0.646, and 

0.697. From these two tables, we can compute the improvement by using bi-histogram 

equalization as a control set. It is observed that the improvement are recorded as 6.16%, 

4.33%, 1.47%, 10.05%, and 8.73%, respectively. In other words, these are the 

improvement values before applying our proposed Pareto optimized bi-histogram 

equalization. So these improvement values reflected that even solely using bi-histogram 

equalization, there are improvement in all stages of maturity level. Table 4.11 reviews 

that the higher improvement value is obtained in the classification accuracy if the 

classifier is trained using image that have undergone the proposed Pareto Optimized Bi-

Histogram Equalization. The improvement value is shown in Table 4.11. By comparing 

the F1 scores between Table 4.9 and Table 4.11, the improvement for all stages is 

significant with improvement values are recorded as 7.16%, 12.4%, 16.03%, 21.21% and 

18.51%, respectively for stage D to stage H. It can be observed that for each stage, after 

using the Pareto optimized framework, the improvement is further magnified.  
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Figure 4.10 illustrates the F1 score for five stages from Stage D to Stage H where the 

classification accuracy is obtained from the test images without enhancement, 

enhancement using random value of separating point and clipped limit and finally with 

enhancement using Pareto-optimized bi-histogram equalization. From Figure 4.10, the F1 

score of test images with the proposed contrast enhancement framework (Pareto-

optimized bi-histogram equalization) is higher as compared to other test images with 

enhancement using random value of separating point and clipped limit and without 

enhancement. 

   
Figure 4.10 F1 score of classification accuracy without enhancement, enhancement 
using random value of separating point and clipped limit and enhancement using 

Pareto-optimized 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This chapter presents the contribution of this thesis, conclusion and suggestions for 

future research.  

 

5.1 Thesis Contribution  

The two principal contributions that devoted to the contrast enhancement and 

segmentation of this thesis are described as following: 

1) The development of a contrast enhancement framework to enhance the visual 

quality of ossification sites of hand bone radiograph with the purpose to increase 

the accuracy of bone age assessment.  

2) The development of a bone segmentation framework which adopts the Gaussian 

mapping method to assign different weights for each pixel according to bone 

texture characteristic to optimize the binary transformation operation.  

3) The first attempt (to the best of our knowledge) of applying convolutional neural 

network in ossification sites delineation for bone age assessment purpose. 

4) The design of overall framework of bone age assessment spatial based 

preprocessing to facilitate subsequent process of bone age assessment. 

 

5.2 Conclusion  

The present thesis presents the design and demonstration of procedures to improve the 

visual quality of the region of interest that is the ossification sites of hand bone 

radiographic image with the purpose to increase the accuracy of classifier in identifying 

the maturity stage. The objective of this visual quality improvement is to obtain holistic 
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result that take several objectives into considerations such as the contrast, brightness 

preservation and detail preservation, using bi-histogram equalization with two variables 

which are the separating points and the clipped limits. To achieve that, the selected 

variables values of the non-dominated solutions are obtained. These solutions are termed 

as Pareto solutions and the resultant images using these variables values are regarded as 

Pareto optimized image. Qualitative results have shown that the visual quality has been 

improved and the most excited part is that the important visual features that can be used 

to identify maturity stage has been emphasized in different images of the non-dominated 

solutions. Quantitative result supports the result of qualitative result in which the classifier 

trained by Pareto optimized images significantly outperform the classifier trained by 

image without enhancement and image with enhancement but without the Pareto 

optimization procedure. Thus we can conclude that the Pareto optimized solutions 

contribute in improving the performance of classifier. 

 

5.3 Future Work  

This research work can be extended to improve the bone age assessment in two main 

approaches. First approach is devoted to the framework design that can be adopted 

directly in the computer assisted bone age assessment system. The overall process of bone 

age assessment is enhanced by improving the segmentation performance of the hand bone 

prior to the bone age categorization of the segmented hand bone or ossification sites. The 

second approach is that the proposed enhancement framework on visual appearance of 

hand bone image can facilitate the inspection by doctors that are adopting GP methods in 

bone age assessment, in which the enhanced image contain sharper ossification sites that 

emphasize more on the pertinent information that matter to the bone age assessment. To 

further extend both capabilities in this approach, the designed approach will be tested on 
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different type of computer assisted system that have been applied in the hospital as well 

as conducting more visual tests with more pediatrics. One of the main tasks that can be 

performed in near future is to further complement the designed approach with the 

expertise knowledge and experiences from different pediatrics by modelling their 

thinking process and decision-making criteria into the proposed approach. The purpose 

is to reduce the assumptions and number of parameters.  

In terms of algorithm execution in reducing the qualitative evaluation by experts, the 

number of manually determined parameters in the entire framework can be further 

minimized by using machine learning method. This can be done by collecting more data 

from different experts. Once the amount of data is sufficient, a modelling can be defined 

using current advancement of machine learning approach in order to automate the manual 

assignment of parameters. By the time the process is modelled by machine learning 

model, the qualitative evaluation by experts can be minimized.  

In order to translate the current framework to real clinical environment, the algorithm 

should be verified with more data and the standardization of data format to the current 

computer assisted bone age assessment system must be performed. Incorporation of the 

proposed design algorithm into current computer assisted bone age assessment will be the 

main focus for near future attempt to accelerate the process of applying the research 

outputs to the real clinical environment. If the research output has been adopted by various 

experts in clinical settings, the further improvement that can be considered is the adaptive 

nature of the algorithm itself. It is crucial to equip the current algorithm with the ability 

to adapt to changes such as the change of the external factors that include various quality 

of image from new X-ray machines with different technologies. The adaptation also 

applied to different ethnic groups without much bias. Thus, it can be concluded that there 

are still many more to be done as future attempt to further improve the current approach. 
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However, the current performance of the approaches have shown us that the approach 

holds great potential to contribute in the area of bone age assessment.  
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