

 AGENT ARCHITECTURES (BUILDING CHATTERBOT)

 UMI AIMAH ABU BAKAR

FACULTY OF COMPUTER SCIENCE & INFORMATION

TECHNOLOGY

 UNIVERSITY OF MALAYA

KUALA LUMPUR

2002/2003

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Abstract
Agent Architectures (l311ilding Chatterbot)

A chattcrbot named Ml LAI I is a chat robot that mteract '"th user by chatting.

The main idea of this project is to build a chattcrbot that can speak. learn and understand

Malay lnng11agc, and to study more about the chattcrbot architectme. MILA! I uses

AU CE bot technology and a special markup language, AIML (Artificial Intelligence

Markup Language). ·111c difference between MILAll and other chatterbot, other

chattcrbot use complex and difficult Al techniques and it is difficult for botmaster or the

administrator to maintain. While MILAH, it has no neural network , no complex

knowledge presentation, no fu1_zy logic, no genetic algorithm and no maJor parsing.

MILAH uses Case Based Reasoning (CBR)

There arc a few advantages that are cnicial to ensure the success of this kind of

chattcrbot. Most importantly, user can speak Malay with MILAI 1. MILAll will entertain

user as if she's a real person using its very own knowledge and sometimes, MILAll can

give surprising answers to users as if it can think. This chatterbot is another new modern

way of entertainment for new generation.

TI1is report introduces the project and provides a descnpt1on on the topics studied

and researched during the literature survey. The methodology for the system development

is also discussed, "luch 1s the Waterfall Model with Protot pmg hnally, this report also

mcludcd the system dc,clopmcnt tools chosen plus. the details of sy-;tcm design for

Mll .Al I chatterbot

nachclo1 of Computc1 Science

0)

Univ
ers

ity
 of

 M
ala

ya

ACKNO\VLEDGEME T

t1ck1 wwl c< Jgeme11 r
Agent Architectures (Building Chatterbot)

During the development of the project' s report , \ have been fortuna1e w have

many sources or inspiration :111d support . niroughout the du ration of the prOJCCI

development, 111any people had been very kind and helpful , giving invaluable advice and

encouragement .

First and foremost, I would like to thank my supervisor, Mr. Ridzuan and my

moderator, Dr. Syed Malek Fakar Duani Syed Mustapha, for without msight f ul ideas and

guidance, the success of this project would not have been possible.

To my partner, Shari1rn Ros Kamal, thank you for your constant commitment and

patient towards our project, I wouldn ' t be able to do it without you. To my family, thank

you for your support and encouragement. And lastly, I would also like to express my

gratitude to my friends and fellow course-mates who have helped me in one way or

another.

Thank you.

Um1 A1mah b11111 Abu l3akar

\l, l· 0002 17

Bachclrn of C omputcr • c1cncc I I

Univ
ers

ity
 of

 M
ala

ya

CONTENT

l'uhle <f ('011te111

Agent Architectures (Building Chatterbot)

PAGE

A BS'f RA ("I'.. I

ACKNO\VLEDGEMENT ii

LIS'f OF FIGl l l"tE •..... viii

LIS'I' OF 'l'ABLES viii

C HAPTER I : INTRODUCTION

I. I Project Ovcrvic'v I

1.2 Project Objective 6

1 .3 Project cope 7

1.4 Tar~et User 8

1.5 Project chedulc 9

1.6 C ha pter Sun11nary 11

1.7 Sun•nulry 12

C HAPTER 2: LITERATURE RESEA RC H

2.1 Introduction 13

2.2 Research Method 14

2.2.1 Collected Data Method 14

2.2.2 Wntmg Method 14

2.3 Definitions 16

2.4 Rcsc<trch on Bots Development Tools 17

2 4 I Al ICI

2 4. 1 I lntrnduct1on to ALICE

.. 17

. 17

2.4. 1.2 ALICE Bot Development Probrrarn 19

Buclu.: lor of Co111putc1 Science
..

111

Univ
ers

ity
 of

 M
ala

ya

/'ahle <~l('0111e111

/\gent Architectures (Bui lding Chatterbot)

2.4.2 ELIZ/\ 22

2.4.2. 1 Introduction to ELIZ/\ . .. 22

2.4.2.2 ELIZ/\ Bot Development Program 25

2.5 C urrent Existing C hatterbot.. 25

2.5. 1 Sabrina The NLP Multibot ... 25

2.5.2 Leo the Smart Chatterbot ... 28

2.5.3 Bi lly and Dais 32

2.5.4 John Lennon .. 33

2.6 Existing C hatterbot Drawback 34

2.7 Advantages of MILAll Using ALICE 35

2.8 Sun1rnary 37

CHAPTER 3 : M ETHODOLOGY

3.1 Introduction 38

3.2 Methodology C hosen-The W!1te rfoll Model with Prototy pin t?, 38

3.2. 1 The Waterfall Model ... 39

3.2.2 The Waterfall Model with Prototyping 41

3.2.2.1 Uses of Prototyping 48

3.3 Summary 48

C HAPTE R 4: SYST EM ANALYSIS

4.1 Introduction....................49

4.2 Analysis Procedures. 49

4.2.1 Problem Identification 50

4.2.2 Evaluation and Synthesis.. 50
1 .,_ ... Mdl "i o c mg

" 1
4 2 4 Spcc1 ficauon 51

-t 3 Requirement Analvsis 5 I

Bachdor of Computer Science I\

Univ
ers

ity
 of

 M
ala

ya

/'ahle of ('0111e111

Agent Architectures (Bui lding Chattcrbot)

4.3. 1 Functional Requirements S2

4.3. 1. 1 User 52

4.3. 1.2 Bot master. 52

-L3.2 Non - Functional RequirementsS3

4.4 Problem Analysis SS

4.4. 1 Information Searching Method................. SS

4.5 Ocvcl<>1unent Tools Analysis S6

4.S. l Alice Program D 56

4.S.2 Java S7

4.S.3 XML S9

4.5.4 AIML 60

4.S.S Macromedia Flash 63

4.S.6 Adobe Photoshop 6 64

4.6 ummary 66

C HAPTER 5: SYSTEM DESIGN

5.1 Introduction 67

5.2 Architecture Design 68

5.3 Brain/Knowledge Base Design 7 1

5.3. l MILAH Work Flow Process .. 7 1

5.3.2 Theory and Leaming Model in MILAH 77

5.3.3 AIML 79

5.4 Interface Design 81

5 4. 1 General Interaction 81

) 4 2 lnfom1ation Display. 82

5.4 .., l)ata Input 83

.-:; 4 4 User lntafacc Design of Chancrb01 83

5.5 Sun•n•ary 84

Bachdor or Computer Science

Univ
ers

ity
 of

 M
ala

ya

Tu hie of ('0111e111

Agent Archi tectures (Building Chattcrbot)

C llAPTER 6: SYSTEM IMPLEMENTATION

6.1 Introduction

6.2 System Implementation Phase

6.2. 1 Data Collecting and Knowledge Base Preparation

.85

85

86

6 2.2 Testing and Dt:veloping Program 86

6.2.3 Installation and New System Testing...........87

6.2.4 Delivering the New System for Operation 87

6.3 Developing Milah The Malay Speaking C ha tterl>ot 88

6.3. 1 Coding Phase..................88

6.3.2 Coding Style...89

6.4 Development Tools Implementation ... 89

6.4. 1 Development Tools and the Setup Steps 90

6.4. l.1 Alice Program D from www.aliccbot.org 90

6.4. 1.2 JavaTM Runtime Environment (JRE) 10 1

6.5 Coding Implementation 102

6.5.1 Al ML Implementation 102

6.5.2 Checking for Errors in Coding ... 107

6.6 Summary ... 108

CHAPTER 7 : SYSTEM TESTING

7.1 Introduction 109

7.2 System Testing 11 O

7 2 I Unit Testing.. 112

7:.. 1 I Unit Testing l: xamplc 11 2

7 2 ~ Integration rcstmg 11 3

7 ")" - _, hmctional ·1 csting 11 3

I ~achdor of Computer Science \I

Univ
ers

ity
 of

 M
ala

ya

'/'a hie cf ('oll/e11/
/\gent /\rch itecturcs (Building Chatterbot)

7.2.4 Regression Testing I I 4

7 2.5 Stability Testing I 14

7.2.6 Usabi lity Testing 1I4

7.3 System Testing Technique I 14

7.4 S111nrnary I 15

CllAPTER 8: SYSTEM MAINTENANCE & EVAI .l lATION

8. t Introduction - System Maintenance I 16

8.2 Maintenance l~equirements I I 6

8.2. I System Maintenance Methodology .. I 17

8.3 Introduction - System Evaluation 11 8

8.4 Problems Encountered and Solutions 11 8

8.5 ystcm , trengths 121

8.6 ystem Limitations/Constrnints 121

8.7 Future Enhancement.. 122

8.8 Knowledge and Experience Gained 122

8.9 Surnn1ary 123

APPENDIX

Appendix A.. 124

Appendix ll 125

REFFERENCES 126

Bachclrn of Co111put1.:1 Sc1cncc VII

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURE

/'ahle of'('0111e111

Agcnl Architectures (Building Challerbol)

Figure 1.1 . System Development Chart 9

Figure 1.2 : Proposal Timcline I 0

figure 2 I Alice Bol. 17

Figure 2.2 : EUZA Bol. 23

Figure 2 3 John Lennon Bot 33

Figure 3. 1 : The Waterfall Model. ... 39

Figure 3.2 : The Waterfa ll Model with Prototyping 43

Figure 5.1 : Overall System Architecture Diagram 68

Figure 5.2 . Work Flow Process Diagram 71

Figure 5.3 : Pallem Matching Algorithm Diagram .. 75

Figure 5.4 : Interface Design for Chatting Windows .. 84

Figure 6. 1: Program D that have been installed .. 92

Figure 6.2 : Window console when the bot start ... 99

Figure 6.3 : Windows showing the logs folder. I 00

Figure 6.4 : Window showing the fTm folder IO I

Figure 6.5: Window showing error logs in the AIML documents I 07

Figure 7.1: Testing Steps .. 111

Figure 7.2: Unit Testing Scheme .. 11 5

LIST OFT ABLES

Table 5.1 : Guidelines For Gcneral lnlcraclion 82

Table 6.1 : Alice Program D Components 91

Table 7.1 : Unit Testing Example. 11 3

I h1d1d0t or Computa Sc11.:11cc \ 111

Univ
ers

ity
 of

 M
ala

ya

/ 111 roduc:r um
Agent Architectures (Building Chatterbot)

CHAPTER 1: INTRODUCTION

This chapter features a full description of the proJl.!Ct including the delinillon, th t.:

goal, the objectives and the scope of the project. It also features the outline of the

project's implc111c11rntion chart with all diagrams and timetables necessary.

1.1 Project Overview

Communication must have been one of the most complex art or science, whatever

we might call it, practiced and developed by humans. Exchange of ideas and thoughts

make (<md always did) possible the accumulation of knowledge, which is certainly the

single most important factor for the advancements that we are always proud of. One thing

that's done for most of human seconds around the world is, of course, chatting (of course

in different flavours, "talking", "discussing", "debating", "delivering", as you like it).

Though purists would not shore this view but we hold that one can' t chat to "himself'.

Thus we all need to be chatting to '"someone". Rut, humans come with a host of

attributes, have their constraints, limitations, are moody and tend to get irritated when

told something they don ' t relish. This was an observation recognized long ago. We had

made movies exhibiting a sensible tal!.. between men and 111achi11e. ·1 his is really cxc1tmg

bccCtuse fo11unatcl ' the machine is built devoid or the limitations that exist by virtue of

human nature A machme '' ould talk 10 us as and \\hen we ''ant to Humankind really

Bachelor of Computer Science

Univ
ers

ity
 of

 M
ala

ya

Int r od11ct1011
Agent Architectures (Building Chatterbot)

graduated on this path, when some really talented computer scientist set out to find an

implementation that is no longer mere fiction, that is to build a chattcrbot

What is a chmtcrbot? /\ chatterbot is a computer program for simulating

conversation between a human and a machine. A user input a question rn statement of

any kind, and the chatterbot replies, just as a person would by using its own version of

logic. Chatterbots try to create the illusion that an authentic exchange is taking place

between two thinking, living entities. Sometimes, chatterbot can trick human by posing

its intelligent.

The ongms of chatterbots can be traced back to 1950, when the British

mathematician Alan Turing famously asked the question: "Can machines think?" It was a

good question, and many people have since spent considerable amounts of time and effort

in trying to prove that the answer is 'yes' . Researchers in artificial intelligence have

devoted much time and effort to trying to understand human cognitive capacities and

adapt them to machines. Chatterbots represent just one aspect of this research.

TI1e first chatterbot, named Eliza, appeared all the way back in 1966. Eliza was

created by Dr. Joseph WeiL.enbaum of the Massachusetts Institute of Technology, and

was intended to rcscmbk a Rogcnan psychologist. When a human spoke to Eliza, she

returned the sentence 111 thc: fonn of a question, thus inviting the user to give further

C'Xplan<111cm, ad 111li111tum 0.ot c: \act l~ a high level of con' ersanon, but nonetheless

Bachelor of Computer Sc11.:ncc 2

Univ
ers

ity
 of

 M
ala

ya

I 111roduct1011

Agent Architectures (Ouilding Chattcrbot)

ingenious and sufficiently 'intelligent' to cause conf us1on at a time when people were not

used to interacting with computers.

Some say that chattcrbots have struggled to go beyond the lc\d of Eliza. But if

we consider the question in tenns of ckvcloping applications, rather than robotic h11111:111

beings, we can sec that chatterbots increasingly have a role to play in humanizing the

Internet. With the explosion of the Web, more and more chatterbots arc making their

appearance on-line . So have they risen to the challenge lain down by Turing? Can

machines think yet?

Chauerbots, it must be remembered, are pieces of software. Using natural

language processing, their probrram attempts to identify what a user says - the input - then

applies a variety of different methods, from pattern matching and keyword identification

to neural networks and fuzzy logic, to produce an appropriate answer. No chatterbot can

claim to have human capacities of reasoning and deduction, and by no means are yet able

to reproduce all the complexity of the human brain.

How intelligent user find them will depend on:

• the technology on which the chatterbot is based

• the quality of the knowledge bnse - the brain - that has been developed by the

bo1mas1cr

• "hat vou expect from them

Bachelor of Computer Science

Univ
ers

ity
 of

 M
ala

ya

lntrod11ct1011
Agent Architectures (13uilding Chatterbot)

Developers have found a number of solutions which enable chattcrbots to imitate

human conversational ability, based upon a range of tricks for avoiding difficult

questions and sticking to areas that they can handle, which in some ways is a proof of

intelligence in itself. These include, but nre not limited to:

• making controversial statements to provoke a response

• agreeing with the user, rather than being non-committal

• repeating user input in their answers to make it seem as if they are following the

conversation

• remembering and reusing past topics of conversation

• changing the topic when they don't understand

• being random, just as humans arc

• being abusive, just as hwnans are

AU chatterbots are not the same. Here is a brief topology of the different bots

available:

• On or ofT-\ine

Chnttcrbots can be pan of a web site and you can chat with them on-line. This

1s the mo t common fonn of access at the current t11ne ome people even put

their bots on Instant Messenger or IRC

B,1chclor of Computer Science

Univ
ers

ity
 of

 M
ala

ya

/111rod11ct1011
Agent Architectures (Building Chatterbot)

Conversational chatterbots aim is just that, to chat. They arc often the

result of the work of academic search, or a passion<1te individual or groups

seeking to push back the barriers in communication between men and

machines. This is no way excludes conversational chattcrbots from

having commercial applications, or being able to provide cc11ain services

such as law1ching programs on your computer.

This topic was chosen because it was never been constructed in such way usmg

Bahasa Melayu ever. By building this chatterbot, contribution can be made in the IT

world in Malaysia by doing something new rather than mundane.

In tl1e IT scope, this chatterbot will appear as one of the competitors among other

chatterbot out there. It will also give a new dimension since 1t wll l be constructed in

Bahasa Melayu.

l.2 Project Objective

This project would be an attempt to realize the fancies tl1at spring up after reading

the project title. I hope to come up with a chat robot that can wtderstand, speaks and team

Malay language and is capable on intelligent taJk.

The objective of the thesis itself is to give some exposure and to give the

opponurn~ tO ach1e' c more experience to the students. Thus, enhancing the knov. ledge

th:u I'> alread\ th~rc inside the students. In doing the research about the topics given for

the thc~ 1s, d 1 sc 1plme~ and ethics will slowly be assimilated.

Bachelor of Computer Science 6

Univ
ers

ity
 of

 M
ala

ya

/111 rod11c1to11
Agent Architectures (13uilding Chatterbot)

Others can be downloaded to your computer.

• Type of interface

I low do we communicate with a chatterbot? Frequently, by typing a text into

text box . This method is effective but not very convivial, so ma11y chattcrbots

have an animated ligure to encourage interaction, using a photo-realistic

image, a cartoon or some other graphic. Some chatterbots have a Text-To-

Speech interface, so that you can talk them through a microphone and hear

their replies. This conversational interface can add the illusion of the reality.

• Role

Chattcrbots available today have two main roles:

I . Commercial

Commercial chatterbots are designed to fulfil specific function, for

example to be part of a Web-based customer relation management

strategy. A tireless employee, workjng 24/7 , they offer a pleasant and

useful first contact to customers, and are able to deal with the most

common problem or requests for infom1ation. The objective of these

chattcrbot is to be good at their particular job. rather than to be an expert

in general conversation, though once again, nothing prevents them from

being able to talk about a wide rang.e of top1.: , 1f their wishe ·

., (\,11 , cr ·a11011al

Bachelor nf Compuh:r Science s

Univ
ers

ity
 of

 M
ala

ya

/ 111 roductum
Agent Architectures (Building Chat1erbo1)

By choosing chattcrbot as a research for the third year thesis, student will be

exposed to the convention of machine agent 1Irn1 can communicate with human using

methods, which will be elaborate, f'urihcr more in this thesis . Through this, student will

also learn ho'' 10 adapt words, sentences and even grammars to the machine language.

Lots of art ificial intell igent concepts will be penncatcd here and in the mean rime this

will give more infon11ation and knowledge about things, which have been educated in the

lecture hall . Furthennore, this research will introduce an artificial intelligent student to

the world of 3-dimension animation, which was never been taught in the lecture before.

Below are summary of my project objective written in point fomt for better

understanding:

• To develop a chattcrbot that can speak, team and understand Malay language

• To do research and study about the chattcrbot architecture

• To minimize or simplify all those complex Al techniques implement in

developing a chatterbot

• To introduce my Malay language speaking chatterbot to tl1c IT world

t.3 Project Scope

A small scope will be given to the chatterbot about the area it will hold. This is

b1:cause if a big scope 1 • c1vcn then it will be fas tidious to dctcnnmc and arrange all the
~ -

" ord:i and grammar- h " 111 abo take more time to be developed.

B<ichclor of Computer Science 7

Univ
ers

ity
 of

 M
ala

ya

/ 111 roduction
Agent Architectures (Building Chatterbot)

This chattcrbot will mirror an image of a girl who can speak, learn and understand

Malay language She hope that user will zealously enlighten her more in favor of

adapting this language.

It will also put her forth effort to answer all the enquired by pertaining to the

knowledge adtr1ittcd in her brain by the botmastcr or the users earlier.

The scope of building this chatterbot also is mainly to study the architecture. This is

also a stand-alone system and not a web based system.

Also. I named my chatterbot MILAH.

1.4 Target User

This chatterbot is expected to be the first Malay speaking chatterbot. Its target user

1s:

• All genre of society who love to chat, unconditionally whether it' s a human or not

• Everybody especially Students who would like to learn or teach this chatterbot

Malay language

• Computer Science or Al students who would like to discover and deepen their

knowledge about chatterbot

• All Malaysian who would like to try chatting with a bot that can speak Malay

Bnchclor of Computer Science 8

Univ
ers

ity
 of

 M
ala

ya

1.5 Project Schedule

Figure 1. 1: System development chart

Introduction
Agent Architectures (Building Chatterbot)

JUN JUL AUG SEPT OCT DIS JAN FEB (Months)
MAR

~ Prepare proposal

Project Implementation

Bachelor of Computer Science 9

Univ
ers

ity
 of

 M
ala

ya

/ /11 roduc11011
Agent Architectures (Building Chattcrbot)

Figure 1. 2: Proposal t imeline

1 2 3 4 5 6

Preliminary investigating

Survey and interview

Assemble data
collection

Bachelor of Computer Science

7 8 9

J l

10 11 12 13

Specify system requirements

Specify system design

Writing proposal

10

Univ
ers

ity
 of

 M
ala

ya

l.6 Chapter summary

Chapter I : 1 ntroduct ion

Int roductum
Agent Architectures (Building Chatterbot)

This chnptcr introduces & fully describes the "chatterbot'' including the objectives,

scopes and also the entire system development schedule.

Chapter 2 : Literature review

This chapter explains the literature review that has been done to gel the infonnation

required by the system, how the data gained & collected & also the comparison between

tl1e current available systems with the developing system.

Chapter 3 : Methodology

This chapter explains the methodology & approaches that have been chosen to develop

the system. This chapter also explains about what are the reasons of using the

methodology chosen to develop the system.

Chapter 4 : System Analysis

This chapter is about analyzing the system requirements including the functional &

nonfunctional requirements and software & hardware requirements. This chapter also

explains about why these requirements arc needed

Bachelor or Computer Ctence I l

Univ
ers

ity
 of

 M
ala

ya

Chapter 5 : System Design

Int rod11c11011
Agent Architectures (Building Chattcrbot)

This chapter explains the concepts & design techniques of the system. It includes

structure chart , Df-D, process flow chart, user interfaces & database design.

1.7 Summary

From this fi rst chapter, the objectives, scopes, purpose & full description of the

project have been explained. The system development project is also included.

'

Bachelor of Computer Science 12

Univ
ers

ity
 of

 M
ala

ya

l.itera111re Research
Agent Architectures (Building Chatterbot)

CHAPTER 2: LITERATURE RESEARCH

This chapter wi ll describe in detail the various studies and research done of the

topics or existing chatterbot, the websites, the internet, software and technologies. It is

the objective of this chapter to outline systematically all these studies so that it will assist

in the proper selection tools and development methods plus to understand the strength,

weakness, opportunities, potential and current issues about chatterbot.

2.1 Introduction

Literature research is an overall research that had been done to a system that will

be develop. The purpose of this research is to :

• collect infonnation about the system that will be develop

• research and evaluate all those system that has been developed, and have the

same concept or relevant , so that we can detect the weak points and the

advantages of the system and also to improve those weakness on our system

that will be develop

• get a clear and better understanding about the concept involved in the system

that ''ill be develop and to compare few software that might be use during

the system development so that the best solution can be decided

Bachelor of Computer Science 13

Univ
ers

ity
 of

 M
ala

ya

2.2 Research Method

L1terat11re Uesearc/1
Agent Architectures (Building Chattcrbot)

Generally, system development will not be complete without gathered information

and research on the system that will be developed. Thus, the gathered mfonnation is vital

for the system to achieve its vision and objectives. This information can be obtained

through several sources and each sources give different infonnation plus it needs

different searching techniques. Several methods have been used for the research and the

analysis towards the ready-made system and the system that will be develop. Among the

method arc collected data and writing method.

2.2. l Collected Data Method

• Internet Surfing

Internet has been a lot of help in this chancrbot development. By surfing the

internet, a wide variety of infonnation can be obtained for the purpose of this

research towards the existed system for comparison.

2.2.2 Writing Method

• Written Items Analys i"

Bachelor of Computer Science 14

Univ
ers

ity
 of

 M
ala

ya

/,1terat11re Uesearch
Agent Architectures (Building Chatterbot)

Analysis has been conducted towards the collected data by sun1111arizc back the

data and the infonnation to make it easy to understand and correctly match the

object ivcs of the project development.

• Comparative

Results and summnry is made by the comparison done towards the existed system

and the system that will be developed using the obtained data.

• Documentations I Books and Magazines

Analysis and research have been done towards the documents and tl1e written

items that have related topics with the system that will be developed. Collected

infonnation from books and magazines is done for better the results or the

research. These documents arc obtained from the University Malaya's library for

references, through personal collection and friends.

Bachelor of Com put er Scicnce 15

Univ
ers

ity
 of

 M
ala

ya

2.3 Definitions

• Bot

/,1tera111re Research
Agent Architectures (Building Chattcrbot)

/\ word short of robot, 1s a sofiwarc tool for digging data. You give bot

directions and it bring back answers.

• Agent

/\ program that perf onn some infonnation gathering or processing task in the

background. Typically an agent is given a very small and well define task.

The tcm1 bot has become interchangeable with agent, to indicate that the

sofiware can be sent out on a mission, usually to find infomiation and report

back. So, an agent is a bot that goes on a mission.

• Chatterbot

A chatterbot, or a chat robot is a computer program for simulating conversation

between a lnunan and a machine

Bachelor of Computer Science 16

Univ
ers

ity
 of

 M
ala

ya

Luerature Research
Agent Architectures (Building Chatterbot)

2.4 Research on Bots Development Tools

2.4.1 ALICE

2.4.1. l Introduction to ALICE

Please e nte r your name b e low
to start your chat with A. L. I. c. E.:

.•. then click here!

Figure 2.1 : ALICE bot

A.L. l.C.E (Artificial Linguistic Internet Computer Entity) is a natural language

interface which is connected to a telerobotic camera eye. And one of the great things

about her is that she will cxplam a lot about herself in response to questions like 'who

made you?' and 'whm is your purpose. She attempts to paint a small picntre of what Han

I3achclor of Computer Science 17

Univ
ers

ity
 of

 M
ala

ya

Literature Uesearch
Agent Architectures (Building Chatterbot)

Moravec and Arthur C. Clarke predicted. The abi lity for hwnans to transfer the contents

of their minds into computers and thereby transfonn themselves into immortal robots.

The /\lice program was designcrl by Dr. Richard S. Wallace of Lehigh University.

Dr. Wallace wrote the program ln Java and released the source code as Open Source in

eff 0 11 to let the curious people learn how /\lice worked, as well as to let other people

refine and enhance the program.

The basis for Alice's incredible life-likeness is surprisingly simple : AIML, or

"Artificial Intelligence Markup Language". Allv1L is a simple markup language based on

XML, that allows a person to tell Alice how to respond to various input statement. By

creating a file that contains AIML describing how Alice should respond to a variety of

sentences, we can make our own chat robot.

Her knowledge base consists of thousands of facts, quotes and ideas that were

"transferred" (by typing and OCR) from brain storage into storage on the server by Dr.

Richard S. Wallace. Part of the interface is natural language: so there is no such thing as

an 'error message' as Alice (with a vocabulary of about 5000 words), attempts to reply to

any remark, question or request.

The Alice Web interface is somewhat like a chat-line designed to nom1alize the

difference bl!t\\ ccn human and machtnl! intelligence. As the name suggests, tt 1s

technically possible tech111call: possible for a human to go on line and reply to Alice's

Bachelor of Computer • c1cncc 18

Univ
ers

ity
 of

 M
ala

ya

/,llera111re l?esearch
Agent Architectures (Building Chatterbot)

queries himself. Most of the time the server nms autonomously, but a super-user can

monitor conversations and interrupt Alice if he wants to talk li ve, though in practice this

seldom occurs. Thus, Alice is designed to confuse the client's feelings abou1 whether it is

a person or n machine.

Alice bot development pro!,rram can be downloaded to a computer from the

internet. User can start creating their own chat robot from scratch, or can simply add their

own AIML to Alice's current personality.

2.4. l.2 ALICE Bot Development Program

• Program A

The first cditjon of A.L. I.C.E. was implemented in 1995 using SETL, a widely

unknown language based on set theory and mathematical logic. Although the

original A.L.I.C.E. was available as free software (often misnamed "open

source 11
), it attracted few contributors mltil migrating to the platform-

independent Java language in 1998. The first implementation of A.L. l.C.E. and

AIML in Java was codenamed "Program A".

Bachelor of Computer Science 19

Univ
ers

ity
 of

 M
ala

ya

• Program B

/,1tera111re Uesearch
Agent Architectures (Building Chatterbot)

Launched in I 999, Program B was a breakthrough in A.L. I.C.E. free sof1ware

development. More than 300 developers contributed to A.L.I.C.E. Program B.

/\ IML transitioned to a fully XML-compliant grammar, opening up a whole

class of editors and tools for /\IML development. /\.L.l.C.E. Program B won

the Loebner Prize, an annual Turing Test, in January 2000. Progrnm 13 was the

first widely adopted free /\IML software.

• Program C

Jacco Bikker created the first CIC++ implementation of A1ML in 2000. This

was fo llowed by a number of development threads in C/C+-1 that brought the

/\licebot engine to CG I-scripts, IRC (Anthony Taylor), WxWindows (Philippe

Rax.hon), AOL Instant Messenger (Vlad Zbarskiy), and COM (Conan Callen).

TI1is collection of code has come to be known as "Program C", the CIC++

implementations of t11e Alicebot engine and AIML.

• Program D

Program B Java edition was based on pre-Java 2 technology. Although the

program ran on many difTerent platfonns, it did not take advantage of newer

Java fcanircs such as Swing and Collections Jon Baer recoded Program B with

Java 2 tcchnolo!,.~ , and added many nc" features TIHs giant leap in the

interface and thl! core, plus the fact that Jon named his bot "DAN Y", justified

Bachelor of Computer Sc1i.!nce 20

Univ
ers

ity
 of

 M
ala

ya

Literature Research
Agent Architectures (Building Chatterbot)

granting the next code letter "D" to his latest Aliccbot Java edition. Bcginni11g

in November 2000, Program D is the only the Java edition of the Alicebot

engine actively supported. The currently actively supported, actively developed

Java implementation of the Alicebot engine. This is the version to get if you

want to use the latest tcchnolot,ry, especially if you want to participate in

Alice· s development.

• Program E

Program E (formerly known as "Pl liljP") is a PHP implementation of Alicebot

engine that inspiring a lot of excitement. Although it is still in its very early

stages, it is generally compliant with AIM L and has a fast-growing user

community.

• Program V

Program V is a Perl implementation of an AIML interpreter. It is AIML 10.1

compliant. V relies on tbe industry- standard use of mod _per! (for Apache) so

that web server can handle many of the non- Al ML-related tasks that other

interpreters (like Program 0) handle themselves.

• J -Alicc

J-Ahcc IS an Aliccbot engme wnttcn Ill c-T. Unlike Program D, it doesn't

ha ca web server, nor can it yet be incorporated into a website. It does,

Bachelor of Computer Science 21

Univ
ers

ity
 of

 M
ala

ya

Lllerature Research
Agent Architectures (Building Chatterbot)

however, have a built in IRC Client , so that it can chat on IRC.

• AliceMac

/\lice Mac is a Mac OS implementation of the /\liccbot engine. It is not

currently /\ IML 1.0.x compliant.

2.4.2 ELIZA

2.4.2.1 Introduction to ELIZA

Eliza is was the first psychologist program in the world, and in fact, the first

program that allowed a human to converse with a computer. Its mission was to

attempt to replicate the conversation between a psychoanalyst and a patient. It used

Artificial Intelligence (Al) in order to try and imitate a real human psychologist. Joseph

Weisenbaum at MlT was the head of that project in 1967. lt used an algorithm called

CBR, or case based reasoning. The original Eliza program and all the ones who followed

it were mostly crappy little programs, which would repeat themselves after a few minutes

of conversation. /\not her problem was their very limited understanding of the user's

replies. /\II in all , those attempts were quite futile, but they did in fact lay the foundations

for modem more advanced Al programs.

Bachelor of Computer Science 22

Univ
ers

ity
 of

 M
ala

ya

Or

Literature Research
Agent Architectures (Building Chatterbot)

ELIZA - a friend you could never have before
Eli?.a: Hello. I am ELIZA. How can I help you?

SubmrtOuery

Figure 2.2 : ELIZA bot

Eliza works by turning everything you say around. For example:

If you type in: l am having a very bad day

She may reply: did you come to me because you were having a very bad day?

If you type in: I have come to talk to you.

She may reply: oh, you have come to talk to me ?

By doing this Eliza is able to talk you in to giving her your deepest feelings. She

does not remember it and keeps no recollection of anything you say, but sociologist

Sherry Turkle noted that people actually became protective of their relationship witl1 her,

mainly because everything you say becomes a personal question.

ll11s can lead to a very interesting conversation tliat makes her seem so friendly

and undcnandmg I lo\\ ever this does have some pitfalls:

Bachelor of Computer Science 23

Univ
ers

ity
 of

 M
ala

ya

Literature Uesearch
Agent Architectures (Building Chatterbot)

If you type in: I am doing fine thank you.

She may reply: how long have you been doing fine thank i?

So every now and again,Eliza displays a severe lack of understanding.Which docs

not seem too bad as you can soon team your way around this problem. However, once

Eliza has repeated a modified version of your sentence for the fifth time in a row you do

begin.

How does it work.

The human side :

I hunans expect what they see to be true. When using a computer to chat to

"someone" else, particularly if they've neve1 met the person, they are very willing to tell a

lot about themselves. usually the conversations can be very long and tiresome,

The computer side:

The computer patiently sits and "listens" to the entire conversation. When certain

keywords come up, it will respond with some catchy remarks. If the list of keywords and

responses are thorough, the computer should be able to fool the user in thinking they're

talking to a real machine.

Fooling the user? :

That's correct. This project is not about creating Artificial Intelligence as such,

nor 1s 11 about creaung thmking machines, n's about fooling the user in thinking the~ are

talking to a real person Computers can't have emotion or personality. but they sure can

simulate 1t, and that's where this project comes in.

Oachelor of Computer ciencc 24

Univ
ers

ity
 of

 M
ala

ya

Not fooling the user? :

Uteraf/lre Uesearch
Agent Architectmcs (Building Chatterbot)

In some cases, the user is not fooled in thinking they're talking to a rea l person. In

some cases, they want to talk to a computer, and try and have a conversation with it.

2..t.2.2 ELIZA Bot Development Program

The system has been developed to run in Perl. Most Unix and Linux platfonns

have Perl installed. If you're from a Windows platfonn, you can download ActiveState

Perl and still use all tJ1e scripts on tJ1is site. I'm busy investigating a compiler for Perl

scripts, that will allow you to nm the code without the need for AetiveState Perl.

2.5 Current Existing Chatterbot

2.5.1 Sabrina -The NLP Multibot

Sabrina is an artificially intelligent computer program. She's a bot, meaning she

can act on her own and perf onn tasks for humans. In fact, she's a bot made up of many

smaller bots. Sabrina is also a hrrand illusion. A piece of software isn't a "she"

She's a '~ o r!.. in progress They've been surfing the net and camping out 111 the

libraf! for month~ nO\\ . gathering all kinds of great ideas about what artificial

13achdor of Computer Science 25

Univ
ers

ity
 of

 M
ala

ya

Literature Research
Agent Architectures (Building Chatterbot)

intell igence can be. They've found that there's a lot of great ideas out there that no one in

this comer of the Al field - the comer where software meets human language - is really

paying attention to.

Like .lorn Barger's anti-math and fractal thickets. Like frizzy logic. Like hypnosis,

neuro-linguistic programming, and speed seduction. Like hypertext and client-server

architecture. Like genetic algorithms, expert systems, and neural nets. Or, on a difTerent

logical level, like open source software.

It seems most of the other programs like her tend to be rehashed Eliz.as . Well,

Eliza's fine for what she was. There's a lot of good that can come out of an Eliza-like

prot,tram. In fact, that's how Sabrina started out. But Eliza only gets so far into a

conversation before her illusion falls apart . She doesn't work for what we want her to do.

Well, in NLP, we have a philosophy. If what we're doing isn't getting us the results we

want, we do something different.

Sabrina puts all tl1is technolo1:,iy that's been lying around - and more - to good use.

The goal in creating her is to build ilie most advanced Al program in existence: a virtual

person capable of learning, exploring, uuderstanding and telling stories. And that's just

the beginning.

Sabrina's mission in life is simple. She's going to convince the world she's human.

Some characteristics:

• A 6-t-b~1e array of short integers representing an internal "state"

• A d1ct1ona~ containing a word list and a variety of corresponding 64-b)1e

"Anchors"

Bachelor of Computer Science 26

Univ
ers

ity
 of

 M
ala

ya

L1terat11re Research
Agent Architectures (Building Chatterbot)

• Abi lity to take input (a word (in any language!)) Then updates the word's

anchor to this new state.

• A Markov Chain for states: given state x, what is the most appropriate

response? Or perhaps for each sub modality? chunks of the 64-state .. A big

64x256x256 army of percentages? Or given this state, what's the most likely

change?

• System that acts, based on current state.

• Integration with MOO virtual reality. Able to walk around, talk, explore, etc.

• or perhaps state compression or generalization "compressed" or generalized

states. That is: 00000 I is more or less like 000000 unless that last digit is

either-or .

Modes and Models :

I . Conversational Framework I Strategies

• consultant

• therapeutic

• chattery

• storytelling

2 . entcncc-b\' Sentence

• Metamodel mode

Bachelor of Computer Science 27

Univ
ers

ity
 of

 M
ala

ya

• Eliza mode

• Milton mode

• Jeffries mode

Llferature Research
Agent Architectures (Building Chatterbot)

Try to surf the website and test Sabrina yourself : httn://fu ry.com/osa b rina

2.5.2 Leo the Smart Chatterbot

I r-----=-.:,l;:::L.J=L~e::....;o==-..;:T=h=e=S=m=a=r=t=-=~'=-h A-~t-=a-~=~-=· r:.__~-=:~~9
The author calls Leo "by far the most advanced learning bot on the web". Leo

does not have a complicated set of rules dictating what to say when certain predefined

key words are triggered like many chatter bots on The Simon Laven Page. That is the

way Instead Leo learns from the users who converse with Leo on their own computer.

Leo is the revolutionary new chatterbot from the creator of Co LIN . Although

based on CoLIN, Leo represents a quantwn leap in tenns of conversational quality.

Leo also has the abthl) to handle conversation topics better. He can easily refer to

so111eth111g that was discussed a f e'' replies ago but was not mentioned in the

Bachelor of Computer Science 28

Univ
ers

ity
 of

 M
ala

ya

/,1/erawre Research
Agent Architectures (Building Chatterbot)

submitted sentence. Grammatical accuracy is also greatly improved.

Leo is by far the most advanced learning bot on the web. I le is so good tJ1at it can

be hard to believe that some responses arc not preprogrammed. Everything Leo knows

comes purely from conversations with the user. I le also retains Co LI Ns ability to learn

any language.

lnstrnction. Leo does not have a complicated set of rules dictating what to say

when certain predefined key words are triggered. That is the way most chatterbots are

written. Instead Leo learns from the user as the user converses with Leo. Thus Leo gets

better over time, and will team about subjects that you are interested in .

When you first start Leo, it aJrcady has some infonnation in the database. This

enables you to jump right in and start talking. It is possible to clear the database using the

option on the file menu. Use this option with caution. You may want to do this if you

want Leo to talk in a different language.

Starting from a clear database can be frustrating. Because Leo doesn't know much

it will only repeat back what you say to it. After a while it will start to use sentences from

further back in the database. Eventually the database will be large enough for Leo to fom1

its own sentences. This takes time which is why Leo is supplied with demo data. Try to

stick to on~ sentence at a tune. A vo id one '' ord replies.

Bachelor of Computer Science 29

Univ
ers

ity
 of

 M
ala

ya

Literature Uesearch
Agent Architectures (Building Chatterbot)

If you want to teach Leo something then just type lots of facts at it and ignore the

replies, cg :

Tony Blair is a politician.

I le is the prime minister.

The Labour party is in government.

The prime minister heads the government.

The leader of the Labour party is Tony Blair.

If what the pro1:,rram says really docs not make sense, just make a guess at what it

means. If you get bored, start insulting it.

History. Leo is based on CoLIN. Unfortunately it wasn't very good. I came up

with a few ideas on how to improve CoUN and tried them out. The result was such a

radical improvement that I felt it really wasn't Co LIN anymore. Thus the change of name

to Leo. That and I discovered and older bot named Colin on the net and I wanted to avoid

confusion.

Download. The file is 3. 7 megabytes in size and will take around 12 minutes to

download on a 56k modem Once the download has completed, click on the file and the

setup files will uncompres and begin installing the program automarically. This program

"1ll 1t111 on Windows q5 , 98. ME. N r 4 and :WOO.

l3achclo1 of Computer Science 30

Univ
ers

ity
 of

 M
ala

ya

/,l/erature Research
Agent Architectures (Building Chatterbot)

Leo Engine. Leo is now built using LeoEngine, the new DLL based method for

accessing Leos functionality. Installing Leo automatically gives you the ability to use

LeoEngine in your own probrrams. In Vl3 start a new project and in the project menu click

references. Scroll down to "Leo Chatterbot Engine" and check it. The foll owing code is

an example of how to use Leo Engine :

option explicit

public le as leoengine

private sub fonn_load()

set le = new lcoenginc

le.leodatabasc = "c:\Jnyprobrram\lvd.mdb"

text2 = le.leotalk(text I)

end sub

Other methods include leorcplace and wipeleo. The read only property stops new

sentences going into the database. If you use the LeoEngine DLL in an application then

you must display the Leo logo (if your app is graphical) or the Leo website address along

w11h "LeoEnginc ·>2002 Alan J Brow

Leo can be downloaded from http://www.ba rcOde.demon.eo.uk/leo/

Bachelor of Computer Science 31

Univ
ers

ity
 of

 M
ala

ya

2.5.3 Billy and Daisy

Uterature Research
Agent Architectures (Building Chatterbot)

Although Billy and Daisy are technically two different chanerbots, they are rea lly

evolutions of the same code, hence my decision to put them together.

Bi lly, much like other chatterbots works by taking the user input and breaking it

down to individual words, thus is able to identify certain parts of language. It then uses

this knowledge to try and generate a set of pre-def med keywords that should be included

in the final response. These keywords are then given to a subsystem that is able to

analyze every1hing that has ever been said to Billy, and so can synthesize a free-fonn

sentence of its ow11 creation which contains the keywords and has a high probability of

being grammatically and contextually intelligent.

Other features include au ability to stay on subject during a conversation, and an

enhanced system for answering questions and learning facts. The current version of Billy

also introduces the concept of mind files which contain his knowledge, language, and

personality. These can be easily transferred to other users of Billy via the internet or disk.

Daisy, however, has no pre-programmed language of any kind. Whi le Billy

contains many responses, which are programmed to be said if the user types in certain

sequences of words. Daisy contains no built-in responses. She starts witJ1 no knowledge

of ru1ything, but then is able to gain knowledge as she observes what humans say.

Bachelor of Computer Science 32

Univ
ers

ity
 of

 M
ala

ya

Uterature Research
Agent Architectures (Building Chat1erbot)

It can take a little while before Daisy has gained enough knowledge to be able to

create her own sentences. To get you started, the Daisy distribution fi le contains one

memory file, which was built by having Daisy talk to me. However, you arc always able

to create a new file and start !Tom scratch. You can download both Billy and Daisy from

Greg Leedberg's website at httu://lccdbcrg.com/glsoft /daisy/indcx.html .

2.5.4 John Lennon

John Lennon Artificial Intelligence Project (JLAIPTM) is recreating the personality

of the late Beatie, John Lennon, by programming an Artificial Intelligence (Al) engine

with Lennon's own words and thoughts.

The website : http://triumphuc.com/johnlennon/indcx.shtml

~
~tek:t! There's a place where I can go ...

Some questions to ask John:

- Who broke up the Beat les?
- Do you lik e Paul?
- What is y our fav ourite Beatie song?

> H ey, t his i.s ·Joh n speakin g (wit h his fi nger s). Whot' s y our flrst name ?

You say : I Reply I

John Ono Lennon by David Maggln, n.t.p., c.w.o.

Figure 2.3 :John Lennon bot

Bachelor of Computer Scienc~ 33

Univ
ers

ity
 of

 M
ala

ya

2.6 Existing Chatterbot Drawback

Uterat11re Research
Agent Architectures (Building Chatterbot)

There is hundreds of chatterbots, whether on line or you downloaded from CD or

internet. There arc few chatterbots, I have to admit that it is quite competitor to my future

chatterbot. But I have to add, from all the chatterbots I observe and learn, there is one

common purpose between us and that is to educate people, provide knowledge about the

architecture and to introduce our own chauerbot personality.

Below arc summaries of what l found out on the existing chatterbot drawback.

They are all in point fonn for better understanding.

• Boring and dull interfaces

• Most programming languages used in other chattcrbots are complex and

difficult to maintain

• Can only be progranuned to speak one language, mostly English and can' t handle

multiple language simultaneously

• Some chatterbots are very dwnb, they don ' t really interact with users

• Replying time by a chanerbot is too long

• It ' s not suitable for every level of intellect, because some chattcrbot can speak

har h word and this is not sui table for public especially for children

• Old chatterbots are computationally expensi\'e

• Slow at parsing nnd generate weak results

Bachelor of Computer Science 34

Univ
ers

ity
 of

 M
ala

ya

2.7 Advantages of MILAll Using ALICE

Uterature Research
Agent Architectures (Building Chatterbot)

There is a recurring issue concerning the study of Artificial l11tclligcnce especially

everything that applies to a chatterbot, that is what arc the limits to which we want to

build a bot. But, as we all know, compare to any other chatterbots, Alice bot has a lot of

benefits to off er to society.

Below arc summaries of what l found out on Milah using the Alice bot

advantages. They arc all in point fonn for better understanding.

• Because Alice's creator knew that the bot would be served up on the web, and

children would have desire to talk to a robot, Wallace wanted Alice to stay away

from certain topics of discussion, for example sex. When you talk about such a

topic with Alice she tries to change the subject with gossip and randomness.

• Can be programmed to speak any language and can handle multiple languages

simultaneously (and thus could be used as an i11terpreter or an interactive

dictionary).

• Conversation trainer for use in second language acquisition

• The first and only chatterbot that can speak, learn and understand Malay

language.

Bachelor of Computer Science 35

Univ
ers

ity
 of

 M
ala

ya

L11erat11re Research
Agent Architectures (Building Chat1erbot)

• XML-based. Unlike chatter bots that require you to learn a proprietary language

or toolset, Milah is coded in "AIML", an XML-based language that can be edited

and maintained using any number of available tools, including several editors

developed by the Alice open source community. An XML basis opens up myriad

possibilities 10 easily re-purpose existing content for Aliccbots.

• Extensibility. Milah architecture allows for extremely easy extensibility. The

openness of the code means that no tweak is too small, or no customization too

big, to consider.

• It learns. The Alicebot engine includes the capability to learn from its

conversations. Information provided by a user can literally be immediately

reincorporated into the conversation, unlike systems that require a botmaster to

cont inuously analyze logs and manually change the bat's knowledge. The degree

to which an Alicebot uses learned knowledge is up to the bat's owner.

• Tnteresting interface and animation. Interface in the main ingredient in a

chatterbot to attract people to use them. Milah will have interesting and animated

interface to show users her feeling, emotions, etc.

• As an entertainment.

Bachelor of Computer Science 36

Univ
ers

ity
 of

 M
ala

ya

2.8 Summary

/,1/crature Uesearch
Agent Architectures (Building Chatterbot)

This chapter outlined and described in detail the various issues and topics

researched throughout the project. The infonnation was derived mainly from books

and websites, which were both popular and reliable.

The research was important because it enable better understanding of the different

products. This allowed the best combination of platfon11, sofiware and technologies to

be selected to design, develop and implement the Chatterbot project. However, it is to

be mentioned that there remain many more products and technologies that mere not

recovered in the literature research. The topics covered in this chapter were only some

of the more popular products. Nevertheless, the research done was sufficient for tl1e

purpose of choosing the appropriate tools to develop and implement this project.

The next chapter, methodology will attempt to explain in detail the method to be

used in developing a chatterbot.

Bachelor of Computer Science 37

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

CHAPTER3 :METHODOLOGY

3.1 Introduction

Methodology is the science or how a system is developed. This chapter will

describe the methodology used while developing the Milah chatterbot project.

3.2 Methodology Chosen - Waterfall Model with Prototyping

As for the mctJ10d that I chose to develop my system is the "Waterfall model with

prototyping". But before I go on with the waterfall model with prototyping, let's sec what

goes on in the waterfall model first. One of the first models to be proposed is the

"waterfall model", where the stages arc depicted as cascading from one to another. As the

figure impl ies, one development stage should be completed before the next begins. Thus,

when all of the requirements are eljcited from tJ1e customer, analyzed for completeness

and consistency, and docm11ented in a requirements docwnent, then the development

team can go on to system design activities. The waterfall model presents a very high level

view of what goes on during development, and it suggests to developers tJ1e sequence of

events they should expect to encounter.

B<1chclor of Computer Science 38

Univ
ers

ity
 of

 M
ala

ya

3.2. 1 The Waterfa ll Model

Requirement
Definition ,..

Requirement
Oefmition

...

Methodology
Agent Architectures (Building Chatterbot)

..... ,
Implementation and
Unit Testing

Integration and
System Testing ,
"''

Integration and .. System Testing r

Figure 3.1 :The Waterfall Model

TI1e waterfall model has been used to prescribe software development activities in

a variety of contexts. Associated with each process acti vity were milestones and

deliverables, so that project managers could use the model to gauge how close the project

was to completion at a given time. For instance, "unit and integration testing" in the

"aterfall ends \\i th the milestone "code modules written, tested and integrated:'· The

intenncd1atc deh' erable is a copy of the tested code. Next , the code can be turned over to

Bachelor of Computer Science 39

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

the system testers so it can be merged with other system components (hardware or

software) and tested as a larger whole. The waterfall model can be very useful in helping

developers lay out what they need to do. lts simplicity makes it easy to explain to

customers who arc not familiar with software development; it makes explicit which

intenncdiate products arc necessary in order to begin the next stage of development .

Many other, more complex models arc really just embellishments of the waterfall,

incorporating feedback loops and extra activities.

The biggest problem with the waterfall model is that it does not reflect the way

code is really developed. Except for very well understood problems, software is usually

developed with a great deal of iteration. Often, software is used in a solution to a problem

that has never before been solved or whose solution must be upgraded to reflect some

change in business climate or operating environment. For example, an airplane

manufacturer may require software for a new airframe that will be bigger or faster than

existing models, so there are new challenges to address, even though the software

developers have a great deal of experience in building aeronautical software . Neither the

users nor the developers know all the key factors that affect tJ1e desired outcome, and

much of the time spent during requirement analysis, may be devoted to understanding the

items and the processes affected by the system and its software, as well as the

relationship between the system and the environment in which it will operate. Thus, the

actual oftwarc development process. if uncontrolled, may look like Figure 3. I,

developers may thrash from one acn\i ty 10 the next and then back again, as they strive to

gather knowledge about the problem and how the proposed solution addresses it.

Bacht:lor of Computer Science 40

Univ
ers

ity
 of

 M
ala

ya

3.2.2

Methodology
Agent Architectures (Building Chatterbot)

The Waterfall Model with Prototyping

The software development process can help to control the trashing by including

activities and sub processes that enhance understanding. Prototyping is such a sub

process; a prototype is a partially developed product that enables customers and

developers to examine some aspect of the proposed system and decide if it is a suitable or

appropriate for the finished product. For example, developers may build a system to

implement a small portion of some key requirements to ensure that the requirements are

consistent, feas ible and practical; if not, revisions are made at Ute requirement stage,

rather than at Ute more costly testing stage. Similarly, parts of the design may be

prototyped, as shown in Figure 3.2. Design prototyping helps developers assess

alternative design strategies and decide which is best for a particular project. The

designers may address the requirements with several radically different designs to see

which has the best properties. For instance, a network may be built as a ring in one

prototype and a star in another, and performance characteristics evaluated to see which

structure is better at meeting performance goals or constraints.

Often, the user interface is built and tested as a prototype, so the users understand

what the new system will be like, and the designers get a better sense of how the users

like to interact with the system. Thus, major kinks in the requirements are addressed and

fixed "'ell before the requirements are officially validated during system tesring:

validation ensures that the system has implemented all of the requirements, so that each

system function can be traced back to a particular requirement in the specification.

Bachelor of Computer Science 41

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

System testing also verifies the requirements; verifications ensure that each funct ions

works correctly. That is, validation makes sure that the developer is building the right

product (according to the specification), and verification checks the quality of the

implementation. Prototyping is useful for verification and validation.

• Requirement Analysis

When a customer requests that we build a system, the customer has some notion

of what the system will do. In the chatterbot system, the customers need to understand t11C

ideas and the concept of tJ1e developing project. No matter whether its functionality is old

or new, each software-based system has a purpose, usually expressed in what the system

can do. A requirement is a feature of the system or a description of something the system

is capable of doing in order to fu lfill the system's purpose. First, we work with our

customers to elicit the requirements, by asking questions, demonstrating similar systems,

and developing prototypes of all or part of the purposed system. Next, we capture those

requirements in a document or database. The requirements are written first so that we and

our customers agree on what the system should do. Then, the requirements are often

rewritten, usually in a more mathematical representation, so that the designers can

transform the requirements into a good design. A verification step ensures tJ1at the

requirements are correct, and consistent, and a \·alidation step makes sure that we have

described "hat the customer intends to see m the final product.

Hachelor of Computer Science 42

Univ
ers

ity
 of

 M
ala

ya

I
I
I
I
I •

........

Methodology
Agent Architectures (Building Chatterbot)

Jlali<Jate
' ·, ... , '

' ',
Program Design',, ' ... ,,
: + ~ ' ... ,,, ' ... ,,

I
I
I
I
I
I
I
I
I
I
I

+:

C:odin~ Ve•ifY ',,,::-,',,,

' \

Unit & ',, \
' I

Integration \ :
I I

Testine ~ / ,'
; ;

; ;

System Tc~

Acc~nce Testing

Operat~& Maintenance

Figure 3.2 : The Waterfall Model with Prototyping.

• System Design

Our customers usually want a new system either because there is no existing

system or because there arc undesirable aspects of the old system. In either case, the

requirements documents tell us all about the problem that the system is to solve. Design

is the creative process of transfom1ing the problem into a solution: the description of a

solut ion is also called design. /\s for this '" Interactive 30 Hwnan Head Multimedia

Bachelor of Computer Science 43

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

System", the problems that rise can be quite a burden considering a whole wide of

di1Tcrc11t people perspectives. System design is the best way to find the solution for these

problems.

We use the requirements specification to define the problem. Then, we declare

something to be a solution to a problem if it satisfies all the requirements in the

specification.

• Program Design

During pro&rram design, we must also specify the features of each object's interface

with the rest of the world. In particular, we need to know the operation signature for each

operation. That is, we name each operation, the objects it takes as parameters and the

values returned by the operation. ln many cases, we can derive this infonnatioo from the

sequence diagram. An object's interface is the collection of all its operation's signatures.

Once we have defined the interfaces, we can classify them by type and build a hierarchy

of interface types where some interfaces inherit properties from other interfaces. This

hierarchy has special importance, since objects are visible and accessible to other objects

only through their interfaces.

Bachelor or Computer Science 44

Univ
ers

ity
 of

 M
ala

ya

• Coding

Methodology
Agent Architectures (Building Chatterbot)

Coding involves algorithms and data structures and the components are

programming language primitives such as numbers, characters, pointers and control

threads. In tum, there are primitive operators, including the language's arithmetic and

data manipulation primitives, and composition mechanisms such as arrays, files and

procedures. For this project, I use AIML (Artificial lntelligence Markup Language)

coding.

• Unit & Integration Testing

In developing a system, testing usually involves several stages. First, each

program component is tested on its own, isolated the other components in the system.

Such testing, known as module testing, component testing or unit testing, verifies that the

component functions properly with the types of input expected from studying the

component's design. Unit testing is done in a controlled environment whenever possible,

so the test team can feed a predetem1ined set of data to the component being tested and

observe what output actions and data are produced. In addition, the test team checks the

internal data structures, logic, and boundary conditions for the input and output data.

When collections of components ha\ c been unit-tested, the next step is ensuring that the

interfaces among the components are defined and handled properly. Integration testing is

Bachelor of Com put er Science 45

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

the process of verifying that the system components work together as described in the

system and program specification.

• System Testing

Testing the system is very different from unit and integration testing. When you

unit test your components, you have complete control over the testing process. You

create your own test data, design your own test cases and nm the tests yourself. When

you integrate components, you sometimes work by yoltrself but often you collaborate

with a small part of the test or development team. However, when you test a system, you

work with the entire development team, coordinating what you do and being directed by

the test team leader. The objective is to ensme that the system does what the customer

wants it to do. To understand how to meet this objective, we first must understand where

faults in the system come from.

• Acceptance Testing

So far, all the tests have been rw1 by the developers, based on their understanding of

the system and ns objectives. The customer also test the system. making sure that it meets

their understanding of the requirements, which may be different from the developers '.

This test, called an acceptance test, assures tJ1 e customers that the system they requested

Bachelor of Computer Science 46

Univ
ers

ity
 of

 M
ala

ya

Methodology
Agent Architectures (Building Chatterbot)

is the system that was built for them. The acceptance test is sometimes run in its actual

cnvironml!nt but often is nm at a test facility different from the target location. For this

reason, we may nm a final installation test to allow users to exercise system functions and

document additional problems that result from being at the actual site.

• Operation & Maintenance

When we develop systems, our main focus is on producing code that implements the

requirements and works correctly. At each stage of development, 1 continually refer to

work produced earlier stages. The design components are tied to the requirements

specification, the code components are cross-referenced and reviewed for compliance

with the design, and the tests are based on finding out whetller functions and constraints

are working according to the requirements and design. Thus, development involves

looking back in a careful, controlled way.

Maintenance is different. I look back at development products, but also at tl1e

present by establishing a working relationship with users and operators to find out how

satisfied they are with the way the system works. 1 'm also looking forward, too, to

anticipate things that might go wrong, to consider functional changes required by a

changing business need. and to consider system changes required by changing hard\\ are.

sortwnre or interfaces.

Bachelor of Computer Science

Univ
ers

ity
 of

 M
ala

ya

3.2.2.1 Uses of Prototyping

I . Verifying user needs.

2. Verifying that design = specifications.

3. Select ing the "best" design.

Methodology
Agent Architec1ures (Building Chattcrbot)

4. Developing a conceptual understanding of novel situations.

5. Testing a design under varying environments.

6. Demonstrating a new product to upper management.

7. implementing a new system in the user environment.

3.3 Summary

This chapter explains the methodology used in developing my Milah chatterbot

project along with the explanation about why I've chosen the method. The description

about each phases arc also included.

Bachelor of Computer Science 48

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

CHAPTER 4: SYSTEM ANALYSIS

4.1 Introduction

A complete understanding of software requirement is essential to the success of a

software development effort. The requirement analysis task is a process of discovery,

refinement, modeling and specification. With requirement analysis, system engineer is

able to specify software function and performance, indicates sof1ware's interface witl1

other system elements and establish constraints that software must meet.

4.2 Analysis Procedures

The process of analysis involves tl1e following procedures:

• Problem identification

• Evaluation and synthesis

• Modeling

• Specification

l3achelor of Computer Science 49

Univ
ers

ity
 of

 M
ala

ya

4.2. l Problem Identification

System Analysis
Agent Architectures (Building Chatterbot)

Before a new system can be built, we must identify the problem that needs to be

solved in order to ensure the success of this project. For a chatterbot, the problem is how

to store, retrieve and manage a large amount of AlML tags in a knowledge base in an

effective and efficient way. In additional, anotl1er problem would be to detennine how to

maintain and update the knowledge base and improve tl1e perfonnance of Mjlah

chatterbot in replying quick response to user.

4.2.2 Evaluation and Synthesis

b1 this stage, analyses of the problems need to be done by dividing the problems

into smaller parts so that the problem will be easier to be understood and solved.

The following problems are the few examples of system requirements that must

be considered:

• What kind of knowledge base used to store the images and the sentiments?

• llow are the AIML tags and all infonnation about Milah saved in a knowledge

base or brain?

• I low to \\Tite to write a e.ood and relevant AlML taus? - ~

Bachelor of Computer Science so

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

• What are the most appropriate tools and technology to be used in building Milah

chatterbot?

4.2.3 Modeling

We create models to gain a better understanding of the actual entity to be built.

The model focuses on what the system must do; usually a graphical notation (such as

DFD) is used to depict infonnation, processing, system behavior and other characteristic.

4.2.4 Specifics tion

The requirement specification is a complete listing that defines what the system

should do, it will be used in the system design and system testing.

4.3 Requirement Analysis

Requirement analysis covers the area o(functional and non-functional

requirements of the Milah chatterbot project. The functional requirement can be

categorized to the general user section and tJ1e administrator or botmaster section, where

both sections will try to give out a clear picture on how the user interface is going to be.

Bachelor of Computer Science 51

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

Whereas, the non-functional requirement will discuss the system's constraints along with

the standards the system must meet.

4.3. l Functional Requirements

Functional requirement is a functions or characteristics expected by user for the

system. It is a combination of all the main modules of Milah chatterbot, which are made

to communicate internally or externally. The system user arc divided into two categories

which are the user who would like to chat or talk to the chatterbot and the system

administrator or better known as botmaster. The functional requirements for the system

are divided into a few modules as follow:

4.3. l. l User

• User will talk with the chatterbot

• User will teach chatterbot

• Chatterbot will try to answer all users inquiries

4.3. 1.2 Botmaster

Botmastcr is the master of the chat1erbot, in this project the botmaster is me. A

botmaster runs program and creates or modifies a chat robot with the program's graphical

u~cr mtcrface (GUI) The botmaster 1s responsible for reading dialogues, analyzing

13achclor of Computer Science 52

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

the responses and creating new replies for the patterns detected by the program .

4.3.2 Non - Functional Requirements

Non-functional requirements are the constraints under which a system must operate

and the standards that must be met by the delivered system. This is a non-functional

requirement or constraints describe a restriction on the system that limits the choice for

constmcting a solution to the problem. These constraints usually narrow my selection of

lanbruage, plat fom1, or implementation techniques or tools.

• Reliability

This chatterbot should be reliable which means that it does not produce

dangerous or costly failures when it is need in a reasonable manner.

• Efficiency

Efficiency in a computer terminology means a procedure that can be called or

accessed in an unlimited numbers of times to produce similar outcomes or

output at a creditable speed.

• Maintainabil ity

A product is maintainability if t11e programs are easily to modify and test

wlu.;n updating to meet new requirement, correcting errors or more to a

cl ifTcrcnt computer system.

Bachelor of Computer Science 53

Univ
ers

ity
 of

 M
ala

ya

• Simplicity

System Analysis
Agent Architectures (Building Chatterbot)

Simplicity refers to keep forms and screens properly uncluttered in a manner

that focuses the user attention.

• Unde rs ta ndability

Understandability in tenns of the coding method used, allows other

programmers to understand the logic of the program flows. Thus, changes can

be made easily upon the necessary pro!,>ram segments without modifying other

essential logic of the program. Simple and clear sentences or instruction are

displayed so that users can use the system without difficulty.

• User-friendly

The user interface for this chattcrbot should not be too crowded so that it

would not confuse the user.

• Interesting Interface

The interface for this chatterbot must be very interesting, cheerful and

interactive so that the user will like using it and won' t get bored

-::-..
Bachelor of Computer Science 54

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chattcrbot)

4.4 Problem Analysis

4.4. t Information Searching Method

Information searchi ng refers to the method of collecting as many information as

Possible about the system. It is one of the techniques required to improve one's

llltderstanding about the system and to satisfy the need of future researched system. It

also required to accommodate the work base for the system design. lnfonnation searching

lllethod includes:

• Books and rcf crences

Books and references arc used to collect the infonnation needed about

developing a chatterbot. The infonnation arc collected from sources like

infonnation system, development tools, programming and database

references, which can be found in Main Library University of Malaya and also

National Library. Some of them are from my own collections.

• I ntc rnct surfing

Inter net is ltke a large. t warehouse of infonnation in the world. I use the

intemct to search infon11ation about other Web site that serve tJie same

functions, the.: tool!-. that I want to use, project methodolog: and other related

1nfbnmH1on.

":::--.

Oachclor of Co111p11tcr Science 55

Univ
ers

ity
 of

 M
ala

ya

• Document's room

Sys1e111 Analyst.\·
Agent Architectures (Building Chatterbot)

The document 's room, which is situated in the old building of FSKTM, is a

room that placed thesis repons of senior students. I used the senior's report as

a reference to do my fina l project. There 's lot of useful infonnat ion that I 'vc

got from the reference such as project plan and main topics.

4.5 De\'clopment Tools Analysis

This section will identify the suitable programming languages and development

tools, that arc used to develop Milah chatterbot. An analysis has been done in making the

decision and after much consideration, I have chosen this set of tools and technologies for

the realization of this project. The ideal solutions for this project are easy to develop and

and deploy, and also easy integration with the latest emerging technologies.

4.s.1 ALICE Program D

Program B Java edition was based on pre-Java 2 technology. Although the

Program ran on many different platfonns, it did not take advantage of newer Java features

such as Swing and Collections. Jon Bner recoded Program B with Java 2 technology, and

added many new features. This giant leap in the interface and the core, plus the fact that

Jon named h"' bot "DAN Y", .111sti ficd gran ting the ne:-.t code lener "O" to his latest

Aliccbot Ja,a cd111on l3cg111n1ng 111 November 2000, Program 0 is the onl) the Java

Cditin11 of the Allccbot engine actively supported.

13 achclor of Computer Science 56

Univ
ers

ity
 of

 M
ala

ya

System Analysts
Agent Architecrures (Building Chatterbot)

I have chosen to develop my chatterbot, Mi lah using Alice Program D because

this is the currently supported, actively developed Java implementation of the Alice bot

engine. This version also supports Flash 5 which will enable me to create Flash-based

Htterface.

This is the version that I wanted to use since it uses latest technology, and th is is

also Ute best program to use compared to other bot development program available.

Furthem1ore, source and info m1ation about AJibe bot development program is easier to

be found on the internet and it' s reliable compared to any other bots development

Program. Milah Chatterbot will based on Alice bot technology.

4.s.2 .JAVA Technology

The Java™ platfonn is based on the power of networks and the idea that the same

Software should run on many different kinds of computers, consumer gadgets, and other

devices. Since its initial commercial release in 1995, Java technology has grown in

Popularity and usage because of its true portability. The Java platfo rm allows you to run

the same Java application on lots of different kinds of computers.

Any Java application can easily be delivered over the Internet, or any network ,

\Vithout operating system or hardware platfo m1 compatibility issues. For example, you

could nm a Ja a tcchnolob'Y ba. cd application on a PC, a Macintosh computer, a network

computer, or C\ en new 1cchnolog1cs like Internet screen phones Funhcm1ore, the Ja\·a

-::---
Bachctor of Computer Sc1c11ce 57

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

platfon11 was designed to nm programs securely on networks, which means that it

integrates safely with the existing systems on your network.

The idea is simple: Java tcchnolOb')'-based software can work just about

everywhere. Java technology components don't care what kind of computer, phone, TV,

or operating system they run on. They just work, on any kind of compatible device that

supports the Java platfonn.

Java technology allows programmers and users to do new things with Web pages

that were not possible before. With Java technology, the Internet and private networks

become your computing environment. For example, users can securely access their

Personal infonnation and applications when they're far away from the office by using any

computer that's connected to the Internet; soon they'll be able to access tailored

applications from a mobile phone based on the Java platf om1, or even use smart cards as

a Pass key to everything rrom the cash machine to ski lifts.

The Java platfonn is being built into next-generation telephones, TV set-top

boxes, smart cards that fit in your wallet, and many other constm1er and business devices.

Java technology-based soflware includes: programs written in the Java programming

language can 11111 directly on your computer (without requiring a browser), or on servers,

on large mainframe computers, or other devices.

h11 c:o<amplc. Ja, a technology-based software running on ~ef\ ers in large

Cf>n1pa111cs 1110111101 s transacuons and tics together data from existing computer systems .

Bachelor of Computer Sc1cncc 58

Univ
ers

ity
 of

 M
ala

ya

System A11a/y.\·1s
Agent Architectures (Building Chatterbot)

Other companies arc using Java technology-based software on their internal Web sites to

streamline communication and the flow of infon11ation between departments, suppliers

and customers.

Programs written in the Java programming language run on so many different

kinds of systems thanks to a component of the platfonn called the Java virtual machine or

"JVM1
M"* -- a kind of translator that tu ms general Java platform instructions into

taiJored commands that make the devices do their work.

Developing on the Java plat fonn means that projects arc completed faster and

With less debugging.

Program D is a Java application program, so it is needed to have Java

Development Kit in the computer in order to nm Alice Program D or even to talk to the

chatterbot that uses AJice technology. User and the botmaster can download the Java

Development Kit - jdk 1.2.2 - at java.sun.com.

4.s,3 XML

XML, stands for Extended Markup Lang11age is a markup lanb'llage for

documents contain ing structured infonnation. It is a set of rules for designing text fonnats

that let u~cr stn1c1urc::. their data XML is not a programming language, and anybody

don't h;n c to be a programmer to use it or team it. XML makes it easy for a computer to

generate data , rend data, and ensure that the data structure is unambiguous. XML avoids

~

llachclor of Com put er Science 59

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

cornmon pit fa lls in language design. It is extensible, platform-independent, and it

supports in1emationalization and localization. XML is fully Unicode-compliant.

XML was created so that richly structured documents could be used over the web.

The only viable altemalives, I ITML and SGML, arc not practical for this purpose. I ITML

comes bound with a set of semantics and does not provide arbitrary structure. SGML

Provides arb11rary structure, but is too difficult to implement just for a ·web browser.

While XML is being designed to deliver structured content over the web, some of tJ1e

very features it lacks to make tJ1is practical, make SGML a more satisfactory solution for

the creation and long-time storage of complex documents.

4.S.4 AIML

AIML (Artificial Intelligence Markup Language) is an XML specification

for programming chat robots like Alice using program D. The emphasis

lll the language design is minimalism. The simplicity of AIML makes it easy for non-

Programmers, especially those who already know HTML, to get started writing chat

robots.

One ambitious goal for Al ML is that, if a number of people create their own

robots, each with a unique area of expertise, program 0 can literally merge-sort them

together into a Supcrbol, automatically omitting duplicate categories. We offer the both

the source code and the ALICE content , m order to encourage otJiers will "open source"

II .
le1r chat robot\ ac; well, to co111nbutc to the Superbot.

Bachclo1 of Computer Sc1c11cc 60

Univ
ers

ity
 of

 M
ala

ya

System Analyst.\'
Agent Architectures (Building Chatterbot)

Artificial Intelligence Markup Language, abbreviated AIML, describes a class of

data objects called Al ML objects and part iaJly describes the behavior of computer

Programs that process them. AIML is a derivative of XML, the Extensible Markup

Language. l3y construction, AIML objects are confom1ing XML docwnents, although

AIML objects may also be contained within XML documents. As XML is itself an

application profile or restricted form of SGML, the Standard Generalized Markup

Language AIML objects are also confonning SGML documents.

A IML objects arc made up of units called topics and categories, which contain

either parsed or unparsed data. Parsed data is made up of characters, some of which fom1

character data, and some of which fonn AIML elements. AIML elements encapsulate the

stimulus-response knowledge contained in the doctuncnt. Character data within these

elements is sometimes parsed by an AlML interpreter, and sometimes left unparsed for

later processing by a Responder.

A software module called an AfML interpreter is used to read AlML objects and

Provide application-level functionality based on their structure. An AlML interpreter may

use the services of an XML processor, or it may take the place of one, but it must not

violate any of the constraints defined for XML processors. 1t is assumed that an AlML

interpreter is part of a larger application generically tenncd a bot, which carries the larger

functional ct of interaction based on AIML This docs not constrain the specific behavior

of a bot A "oftwarc module called a responder handles the human-to-bot or bot-to-bot

11He1 face \\Ofk between an AIML interpreter and its object.

-...
lh ·t 1 • c le or of Computer Science 61

Univ
ers

ity
 of

 M
ala

ya

.\ystem Analysis
Agent Architectures (Building Chatterbot)

The origins and goals for AIML. AIML was developed by Or. Richard S. Wallace

and the Aliccbot free software community during 1995-2000. It was originally adapted

from a non-XML grammar also called AIML, and fanned the basis for the first Alicebot,

A.L.l.C.E., the Artificial Linguistic Internet Computer Entity. Since its inception, it has

been adopted as a standard by the A.L.l.C.E. Al Foundation, which now holds its

copyright, and whose Alicebot and AIML Architecture Committee is responsible for its

maintenance and further elaboration.

The design goals for AIML are:

1. AIML shall be easy for people to learn.

2. A IML shall encode the minimal concept set necessary to enable a stimulus-

response knowledge system modeled on that of the original A.L.l.C.E.

3. AlML shall be compatible with XML.

4. It shall be easy to write programs that process AlML documents .

S. AlML objects should be hwnan-legible and reasonably clear.

6. The design of AIML shall be fonnal and concise.

7. AlML shall not incorporate dependencies upon any other language..:.

AIML objects. Each AIML object has botJ1 a logical and a physical structure.

Physically, the object is composed of units called topics and categories An object begins

111 a "root" or obJCCt entity I og1call), 1he object 1s composed of elements and character

references, all of winch arc.: indicated 111 the object by cxpl1c11 markup

Onchclor of Computer Science 62

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

An Al ML object may also be "overlaid" by comments and processing instructions as

described by the XML specification, as well as by XML content from other namespaces.

Comments and processing instrnctions are not treated by an Al ML interpreter. Foreign

namespace content may be passed by an AlML interpreter to a responder, but is not

Processed by the AIML interpreter itself.

In the following, we reiterate the AlML defini tions of various aspects of object

Structure, although in tJ1e great majority of cases tJ1ese simply repeat tJ1e XML definitions

of the same. In several cases, there arc fu11her constraints on AIML interpreters tltat do

not apply to all XML processors.

I chose AIML for my Milah chatterbot development because I have chosen Alice

Program D to develop as t11e bot's brain. Further descriptions and how AJML works will

be discuss more in ilie system design chapter.

4.s.s Macromedia Flash 5

Macromedia Flash 5.0 is the fastest way to create rich Internet content and

applications with a better return on investment . Its powerful video, multimedia and

application development fca rurcs allow ilie creation of rich user interfaces, online

advert ising, c-1.camrng courses and entcrpnse apphcanon from-ends.

lh I • c tclo1 of Computer Science 63

Univ
ers

ity
 of

 M
ala

ya

System Analys1.\·
Agent Architectures (Building Chatterbot)

Furthennorc, Flash 5.0 also expands the already impressive possibilities of what

anybody can do with streaming Web media. Coders will appreciate the new rudirnenti'lry

HTML rendering, built-in XML parser, and advanced scripting engine. Animators and

graphic designers w111 be pleased by the inclusion of new tools, beefier import options,

and inteb'Tation with other Macromedia products.

All in all, Flash 5.0 is an exciting product. The new features make it a must-have

for any developer who wants to create rich but lightweight Web media.

My interest in Multimedia has introduce me to this very useful tools. My project,

building a chatterbot is a chat robot which demands a very creative, nice-looking

interactive interface in order to attract user to chat with my bot. Therefore, I've decided

on lhis tool plus with my considerable amount of knowledge in both of the tools, I'm

sure lhey will help me to design a great user interface. After all, it is easier to design

Using familiar tools.

4.S.6 Adobe Photoshop 6

Adobe Photoshop is an image-editing standard soflware. It provides a

comprehensive toolsct, unmatched precision, and powerful creative options to help user

create profcss1onal-qual1ty images for Web. pnnt. and emerging medJa Other than that. it

1' also developed to meet any creative or production demand and to handle the widest

var tcty of image-editing tasks in the most efficient way.

-
Oachclor of Computer Science 64

Univ
ers

ity
 of

 M
ala

ya

System Analysis
Agent Architectures (Building Chatterbot)

With its comprehensive set of retouching, painting, drawing, and Web tools,

Photoshop helps user complete any image-editing task efficiently that they can

experiment freely without sacrificing efficiency. Photoshop also gives user the tools they

need to keep the work on track and bring it in on deadline.

Adobe Photoshop delivers high-powered image editing, photo retouching, and

compositing tools to help user get professional-quality results. It offers a lot of tools with

their specific task to help user alter their images the way they want it such as edge

smoothing, sharpening controls, healing brush, color correction etc.

The powerful Photoshop paint engine lets user simulate traditional painting

techniques, including charcoal, pastel, and wet or dry brush effects. They can choose

from the many preset brush styles or use tl1e Bnishes palette to create their own unique

effects. With its drawing tool, user can draw resolut ion-independent vector shapes

instantly with the line, rectangle, ellipse, polygon, and custom shape tools.

Adobe Photoshop Web tools, lets user produce exceptional imagery for the Web

and wireless devices along with the helps from ImageReady, which ships with

Photoshop. There are slicing tool, optimization tools, rollovers palet1e, animation palette

and other Web tools in Photoshop to help user create tl1eir style of user interface.

This is another useful tool that I have chosen to help me do colorful and

llltcrcst111g inter face M pro.1cct, building a chatterbot is a chat robot which demands a

Very creati ve. r11cc-look111g intcrnctivc interface in order to attract user to chat with my

bot

~
Bachelor of Com put er Scrcn<.:c 65

Univ
ers

ity
 of

 M
ala

ya

4.6 Summary

System Analysis
Agent Architectures (Building Chatterbot)

This chapter on System Analysis describes the functional and non-functional

requirements of Milah chattcrbot project. Summary of the software and technolOb'Y used

to build the system and the reasons for using those products were explained.

fhchclor of Computer Science 66

Univ
ers

ity
 of

 M
ala

ya

System Dc:s1g11
Agent Architectures (Building Chatterbot)

CHAPTER 5: SYSTEM DESIGN

5.1 Introduction

Design is the creative process of transfonning the problem into a solution. And

this definition can be related to system design, which is a process through which

requirements are translated into a representation of software. Modularity is a

characteristic of a good design. The components have clearly defined inputs and outputs.

And each component has a clearly stated purpose. Thus, to design a system is to

detennine a set of components and intcrcomponent interfaces that satisfy a specified set

of requirement.

The design of Milah chatterbot has considered the fo llowing issues :

• Architecture design

• Brain design

• Interface design

n11chclo1 of Computer Sc1c11cc 67

Univ
ers

ity
 of

 M
ala

ya

5.2 Architecture Design

End User

Interface

Brain

Knowledge Base

Botmastcr

,)'ystem Design
Agent Architectures (Building Chatterbot)

Chattcrbot

XML

AIML

Figure 5. 1 : Overall System Architecture Diagram

Bachelor of (om put er Science 68

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

fuplanntion:

I. lJscr is the person who uses the system to communicate with the chatterbot. I le

or she will ask questions that will be answered by the chatterbot. Thus these

questions will be stored in the knowledge base and shall improve the

knowledge. In order to have the Q & A session with the bot, users has to

interact with the interface.

2. Interface will allow user to communicate with the bot. The interface which is in

30 look will be develop using Macromedia Flash and Adobe Photoshop is also

connected to the bot' s brain. This is because, after being enquired by users, bot

will elicitate the answers from the knowledge base that is stored in the barin and

pass it through the interface to be viewed by users.

3. Besides being connected to to the interface, the brain is also connected to

languages which is XML and AlML and the botmaster. A knowledge base is

stored inside the brain. This knowledge base will store all words, grammars, all

those stories or experience that the bot gain from chatting with user and lots

more. It will expand from time to time, this will make the bot more experienced

and more mtclhgcnt as more and more user chat '' 11h 11

Bachelor of Computer Science 69

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

4. XML is a markup language similar to 1 ITML .Similar, in that it contains tags

and attributes as HTML docs, and in a quick glance at XML and 1 ITML placed

side by side will reveal quite similar structures. XML produce a simple, yet

powcrf ul markup language. /\n XML document contains both data and

infonnation about the data. XML documents are made up of storage units called

entities, which contain either parsed or unparsed data. Parsed data is made up of

characters, some of which fonn character data, and some of which fonn

markup. Markup encodes a description of the document's storage layout and

logical stmcture. XML provides a mechanism to impose constraint on the

storage layout and logical structure.

5. AIML is a derivative of XML. Its goal is to enable patlem-based, stimulus-

response knowledge content to be served, received and processed on the web

and offline in the manner that is presently possible w1th HTML and XML.

AIML has been designed for ease of implementation, ease of use for new

developers and for interoperability with XML and XML derivatives such as

XHTML. It consists of AIML object, /\ IML object structure, pattern, templates,

J\IML pattern matching and /\!ML predicate handling.

6 Botma tcr 1s the person ' ho stores knowledge in 10 the knowledge base and

"1111-1.!\.!P updatmg it time to tune and is also responsible to watch the log

70

Univ
ers

ity
 of

 M
ala

ya

System /)es1g11
Agent Architectures (Building Chatterbot)

S.3 Brain I Knowledge Base Design

S.3.1 M ILAH Work Flow Process

Generally, the workflow process of Milah is based on three entjties that arc user,

responder, classifier and graphmaster. To get a better view, please refer to chart 5.2

below.

Graphmaster

n

~

Classifier

j~

1r

Responder

' '

u

User

Figure 5. 2 : Work Flow Process Diagram

B h - -ac clor of C 0111 putcr Science 71

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

!x1>lanation :

I. The Responder acts as the interface amidst user and system. It transfers user input to

Classifier and delivers the bot's respond to user.

2. Inside Clnssificr, nonnalis<1tio11 process is executed. The minimum set of

nomrnlis<1tion is called pattem-fitting normalisation. Additional nonnalisation

perfonned at user option is called sentence-splitting nonnalisation and substitution

normalisation (or just "substitutions"). If an AIML interpreter perfonns substitution

nom1alisation on the input , then these must be perfonncd fi rst. If an AIML interpreter

pcrfom1s sentence-splitting nonnalisation on the input, then these must be performed

on the output of the substitution nom1alisation process. The pattern-fitting

nonnalisation process receives the output of the sentence-splitting nonnalisation

process (if any), or the output of the substitution normalisation process (if any, and if

no sentence-splitting nonnalisarion is perfonned), or the direct input (if no sentence-

splitting or substitution nonnalisation is perfonned).

Substitution nonnalisation is heuristics applied to an input that attempt to

retain in fonnation in the input that would otherwise be lost during the

sentence-splitt ing or partem-fitting nom1alisation. For example:

• Abbreviations such as "Mr." may be "spelled out" as "Mister" to avoid sentence-

'-Ph1t111g at the pcnod in the abbre,·iated form

llnchclo1 of Computer Science 72

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

• Web addresses such as "http://aliccbot.org" may be "sounded out" as "http

J\LICEbot dot org" to assist the AIML author in writing patterns that match Web

addresses

• Filename extensions may be separated from their fil e names to avoid sentence-

splitting('' .zip" to " zip")

Sentence-splitt ing nonnalisation is heuristics applied to an input that attempt

to break it into "sentences". The notion of "sentence", however, is ill defined

for many languages, so the heuristics for division into sentences are left up to

the developer.

Commonly, sentence-splitting heuristics use simple rules like "break sentences at

periods", which in tum rely upon substitutions pcrfonned in the substitution

nonnalization phase, such as those which substitute full words for their abbreviations.

Pattern-fitting nonnalization are nonnalization that remove from the input

characters that are not nonnal character. Pattern-fitting nonnalization on an input must

remove all characters that are not nonnal characters. For each non-normal character in

the input,

• if it is a lowercase letter, replace it with its uppercase equivalent

• if it is not a lowercase letter, replace it with a space

las ifier then will trnnsfcr the norn1ali7.ed strings to Graphmnstcr and

Processes th~ output from th~ graphmastcr while handling various AIMI msrrucuons.

1 his cnttt\ al"o "ill dclt vc1 the bot 's responses to user.

n---achclor of C ornputcr <;c1cncc 73

Univ
ers

ity
 of

 M
ala

ya

S)istem Design
Agent Architectures (13uilding Chatterbot)

3. In the other hand, Graphmaster organizes storage of brain contain which is stored as a

graph. Graphmastcr also handles the pattern matching process. Based on chart

5.3,matching behaviour can be described in tem1s of the class Grnphmaster, which is

a common implementation of the AIML pattern expression matching behaviour:

I . Given:

a. an input starting with word X, and

b. a Nodernapper of the graph:

2. Does the Nodemapper contain the key ? lf so, search the sub graph rooted at the

child node linked by _. Try all remaining suffixes of the input fo llowing X to see

if one matches. If no match was found, try:

3. Docs the Nodcmappcr contain the key X? If so, search the sub graph rooted at tJ1e

child node linked by X, using the tail of tJ1e input (the suffix of the input wiili X

removed). If no match was found, try:

4. Does the Nodemapper contain ilie key •? If so, search the sub graph rooted at the

child node linked by *. Try all remaining suffixes of the input following X to see

if one matches. If no match was found, go back up the graph to the parent of this

node, and put X back on the head of the input.

5 If the input is null (no more words) and the Nodemapper contains the <template>

key, then a match was found. l lalt the search and return the matching node.

If the root Nodcmappcr con tams a kc~ and it points to a leaf node, then the

algonth111 1 ~ guaranteed 10 fi nd a match

The patterns m;cd not be ordered alphabetically or according to any other complete

llachclor of Computer Science 74

Univ
ers

ity
 of

 M
ala

ya

System Des1g11
Agent Architectures (Building Chatterbot)

system, only partially ordered so that comes before any word and • after any word. The

matching is word-by-word, not category-by-category. The algorithm combines the input

pattem, the <that> pattern, and the <topic> pattern into a single "path" or sentence such

as: "PAT fERN <that> Tl IAT <topic> TOPIC" and treats the tokens <that> and <topic>

like ordinary words. The PATTERN , Tl IAT and TOPIC patterns may contain multiple

wildcards. The matching algorithm is a highly restricted version of depth-first search,

also known as backtracking.

lry oll r<rN"""
--· 1UO &..v •d11t1'-' ,,., -x-

Tl)lllrcr:ll""l!
...tr.ad~

'~"'·:\-

No

Figure 5.3 : Pattern Matching Algorithm Diagram

Yo

I h<l\ c summarized all that ha' c been explained above into point fom1, on the next

Pag~ for ~n.,1cr undc1 standing

Bachctor of Computer Science 75

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

I. The Responder

Interface between user and core routines

Handles means of in- and out put

Transfers user input to the Classifier and delivers the bot' s response to the user

2. The Classifier

Nonnalizes and fitters the input

• Applies substitutions

Splits the user input into sentences

• Transfers the nonnalizcd strings to the Graphmaster

• Processes the output from the Graphmaster and handles various AIML

instructions

• Delivers the bet' s response to the responder

3. T he Graphmaster

• Organizes storage of brain content

Content is stored as a b'T'aph (hence the name)

l landles the pattern matching process

Pattern matching in' oh cs an advanced search-tree algorithm

Returns r:l\\ response template to the classifier

l1achctor of Computer Scrcncc 76

Univ
ers

ity
 of

 M
ala

ya

System Des1g11
Agent Architectures (Building Chattcrbot)

5.3.2 Theory and Learning Model in MILAH

Since developing Milah arc based on Alice bot technolo1:,ry, the theory and the

rnodcl of learning in Milah is also based on Alice. The learning model called "supervised

training'', because a teacher, the botmaster, always plays a crucial role. The alternative,

"unsupervised training", is complicated in an open environment like the Web. The

Problem is that clients arc untrustworthy teachers, and forever try to "fool" the robot with

unt111c assert ions.

I used to say that there was no theory behind Alice: no neural network, no

knowledge representation, no search, no fuzzy logic, no genetic algorithms, and no major

Parsing. Then I discovered there was a theory circulating in applied AJ called "Case­

Based Reasoning" or CBR that maps well onto the Alice algorithm. Another tem1,

borrowed from pattern recognition, is "nearest-neighbor classification."

The CBR "cases" are the categories in AJML. The algoritlun finds best-matching

Pattern for each input. The category ties the response template directly to the stimulus

Pattern . ALICE is conceptually not much more complicated that Weizenbaum's ELIZA

chat robot; the main differences nre the much larger case base and the tools for creating

new content by dialog anal sis

Milah 1s also pan of the Ahce trad1t1on of "m1mmahst". "reactive" or "stimulus-

resp .. c-. d d · onsc robotics Mobile robots \\ Ork best, 1astest an emonstrate the most animated ,

-l~achc lor of Computer Sc1c11cc 77

Univ
ers

ity
 of

 M
ala

ya

System /)es1g11
Agent Architectures (Building Chatterbot)

realistic behavior when their sensory inputs directly control the motor reactions. I lighcr­

level symbolic processing, search, and pla1ming, tends to slow down the process too

much for realistic applications, even with the fastest control computers.

Can probability (statistics, weights, netiral networks, or fuzzy logic) improve

bots? Statistics arc in fact heavily used in the Alice server, but not in the way you might

think. Alice uses 'Zipf Analysis' to plot the rank-frequency of the activated categories and

to reveal inputs from the log file that don't already have specific replies, so the botmaster

can focus on answering questions people actually ask (the "Quick Targets" function).

Other bot languages, notably the one used for JULIA, make heavy use of "fuzzy"

or "weighted" rules. We sec their problem as this: the botmastcr already has enough to

Worry about without having to make up "magic numbers" for every rule. Once you get up

IO,OOQ categories (like Milah) you don't want to think about more parameters than

necessary. Bot languages with fuzzy matching rules tend to have scaling problems.

FinaJJy, the bot replies are not as detenninistic as you might think, even without weights.

Some answers rely on <random> to select one of several possible replies. Other replies

generated by un foreseen user input also create "spontaneous" outputs that the botmastcr

doesn't anticipate.

~

Aachclor of Computer S~ 78

Univ
ers

ity
 of

 M
ala

ya

5.3.3 AIML

System Design
Agent Architectures (Building Chatterbot)

AIML stands for Artificial Intelligence Markup Language.It is much like HTML,

in that it uses tags to define charac1eristics like how the bot recognizes and responds to

Patterns. Because of it 's simplicity, and similarity to html , it offers an opportunity for

novice users to get to the "guts" of Alice so it can be modified, with typical text editors

(without compile). AIML and 1 ITML are both subsets of XML..AIML pennits for a

simple standard to proliferate in A. I. research.

Example AIML tags in context :

<miluh>

<category>

<pattern> WHAT Kl ND OF HISTORY • </pa ttern>

<template> I like to talk about tJ1e history of robots and computers. </templa te>

</category>

</milah>

• <ca tegory> stores a case, or piece of knowledge

• · pattern what must he recognized to process output

• · template the 1ex1 10 be sent to client

• <rn ilah · defimnon of an Mil AH bot

llt1cf1 .. 1 ,. (' " 01 o omputcr <;c1cncc 79

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

The role of recursion. "Recursion" means applying the same solution over and over

again, to smaller and smaller problems, until you reduce the problem to its simplest fom1.

AIML has simple tags that pcnnit for recursion. Recursion can apply many times to a

single input.

Example of recursion . Given tJ1e nonnalized input:

ALICE CAN YOU PLEASE TELL ME WHAT LINUX IS RIGI IT NOW

An AIML category with the pat1em "* RlGI IT NOW" matches first, reducing the

input to:

ALICE CAN YOU PLEASE TELL ME WllAT LINUX IS

Another pat1cm ("<name/> *") reduces it to:

CAN YOU PLEASE TELL ME WHAT LINUX IS

And ilien:

PLEASE TELL ME WHAT LI NUX rs

reduces to:

TELL ME WllAT LINUX IS

and final!) 10

Wt IA I IS LINUX

Bach ·I . c or of (ompulcr Sc1c111.:c 80

Univ
ers

ity
 of

 M
ala

ya

S.4 Interface Design

System Design
Agent Architectures (Building Chattcrbot)

User interface plays a very important role in dctcm1ining the quality of a

chattcrbot. User interface is the component of the system that communicates with the

users. Therefore, the input data collected from the users and output data generates for the

users depend on a well designed user interface. The interface design should meet the

objectiveness, accuracy, case of use, consistency, simplicity and attractiveness. All of

these objecti ves are attainable though the use of basic design principle, knowledge of

What is needed as input for the system, and an tmderstanding of how the user should

respond to difTercnt elements in the fonns and screens. There are three main categories of

guidelines Uiat are taken into consideration and they are the general interaction,

infonn h. d. . a on 1splay and data 111put.

s.4.1 General Interaction

Guidelines for general interaction often cross the boundary into infonnation

display, data entry and overall system control. Below arc the guidelines for general

interaction.

Guidelme -1 Description _ ~

Co11s1stc111 formats for command tnput , data display, menu selecuon. and
aror 1m:ssagc and plac111g of the control objects that are displayed to

Cons1stc111

1 uscr An 111co11s1stcn1 user mtertace will only confuse the users.

Bach cl<' 1· (' S 11 o omputcr . crcncc 81

Univ
ers

ity
 of

 M
ala

ya

Handling
mistakes

Request for
verification on
certain task

Reduce
memorization

Help facilities

.. \)1stem Design
Agent Architectures (Building Chatterbot)

The system should be able to handle certain mistakes especially the
input from users. The system should vcrif y and do validation on them to
protect itself from error that might cause it to fail. ---
This importnnt if a task is perfonned on certain functions that may be
critical. For example, when tJ1e administrator delete/update any
information, a confim1 ask ing for verificntion is appropriate.

-- -- -- ---
Interface should not need users to remember much of the infonnation.
For example, having proper and useful messages can remind the user of
their current status.
1 lclp in any application is one of the most important modules that assist
or serve as a guideline to users using the system.

--------------~

Table 5.1 : Gufdelines For General Interaction

s.4.2 Information Display

lnfommtion display is on important issue. The misplacing of infonnation may confuse

the users and lead to misconception on the results. The following guidelines focus on

information display:

• Display information that is relevant to current context.

• Use a presentation format that is easy to understand.

• Use consistent labels, standard abbreviations and predictable color.

• Prov1de meaningful error message .

• Comments that an.! not needed in certain context should be deactivated (or made

is1hle) 10 avoid confusion

Bachc~r of Co111pute1 Sc1enc1; 82

Univ
ers

ity
 of

 M
ala

ya

5·4·3 Data Input

.\'ystem Design
Agent Architectures (Building Chatterbot)

The user spends much of the time doing data input especially in system like a

chatterbot. The following guidelines focus on data input:

• Minimize the number of input actions required of the user. The main objective of

this is to reduce keyboard typing by users and try as much as possible to use the

rnouse to select predefined sets of input (or results).

• Maintain consistency between infonnation display and data input.

• Allow the user to control the interactive flow.

S,4.4 U ser Interface Design of Chatterbot

The following show the issues that taken into consideration during the user

Interface design of Milah chatterbot:

• A consistent fonnat for menu display and data display. User can select same menu

from any page.

• An easy to use windows display so that user can chat or type what they want to

the chattcrbot convc111cntly

• When a user input an mvalid data, an error message will quickly be pop up.

• The 1111\tructions of ho" to use or how to talk to the chatterbot must be clear

enough so that 11st.:1 will not be having any problem dunng the chatting process.

ll
achclor of Co111putc1 Sc1c11cc 83

Univ
ers

ity
 of

 M
ala

ya

System Design
Agent Architectures (Building Chatterbot)

The following are the interface designs for my Milah chatterbot :

s.s s ummary

l~--·" ,· '~

Figure 5.4 : Interface design for chattfng windows

TI1is chapter explains all the proposed processes and system design that are

needed to develop Milah chatterbot project. Along with knowledge base and interface

design, this chapter intended to elucidate more on the understanding about the system that

are oo
c- •ng to be 11nplcmc11t.

na--h c clor of C omputcr Science 84

Univ
ers

ity
 of

 M
ala

ya

System lmplementatio11
Agent Architectures (Building Chatterbot)

CHAPTER 6: SYSTEM IMPLEMENTATION

6·1 Introduction

The process of assuring that the infomiation system is operational and then allowing

users to take over its operation is called system implementation. System implementation

~ further defined as the construction of a new system and the delivery of that system into

Production in a day-today operation. It involves coding step that translates a detailed

design representation of software into a program language realization. System

lfllplementation implements the various components of the system based on the collected

requirements, where the design is translated into a machine-readable fo rm.

During implementation, all functionality planned in design phased is checked. It

should be able to process the correct data and produce accurate information to end-users.

l\ny Problem or malfunction occurred is revised carefully and fixed accordingly.

6.2 s Ystem Implementation Phases

System implementation can be di,~dcd into four main phase that is:-

i)
Data Collecting and Knowledge Base Preparation

ii)
Testing :ind Developing Program

ltt) l11stallat1on and Ne" System rcst111 g

I\) Delivering the New System for Operation

I\
achclor of Computer Science 85

Univ
ers

ity
 of

 M
ala

ya

System /111pleme11tat1on
Agent Architectures (Building Chattcrbot)

6·2.t Data Collecting and Knowledge Base Pre11aration

Preparing a knowledge base for Milah chattcrbot is not like any other chatlerbots

or Program that uses nomial database such as MySQL, MSAccess, etc. In Milah

chatterbot, the knowledge base are arranged and kept in a fo lder

.. ./ aiml I standard I * .aiml

and then they are put in the bot file . Milah chatterbot is use for leisure chatting and not

for high volume application, so using a normal database will only make the chatterbot

lllore complex and unstable.

Bahasa Mclayu is so much different from English and since Milah is the first

Malay Speaking Chatterbot that has ever been developed, there is not enough sources and

information available on books or the internet for me to refer and study. Most chatterbots

that are available online arc English, French, Spanish and Italian chatterbots. So,to

develop Milah chatterbot~ me and my partner have to study and refer the other language

chatterbots, especially English chatterbots and fmd the similarities between other

language and Bahasa Melayu. Collecting data and building the knowledge base for

Milah chatterbot is not like writing any other computer programs, it is more towards art .

Mostly it is about writing literature, grammar and psychology (because we have to know

ho\V human think r111d respond when they interact with chanerbots).

6.2.2 .,.
csting and Dcvclopin~ Progra m

llrn; pha~c 15 also knovm as the dc,·elopmcnt phase. Program de\eloprng and

tcs1 . . 1
11g usual I) takc::i a 'Cl)' long time and 11 1s a vcl) unng phase m de' elopmg a system

nachclor of Compu1cr Science 86

Univ
ers

ity
 of

 M
ala

ya

System lmp/ementat1011
Agent Architectures (Building Chatterbot)

Program developer or botmaster has to work from the specification that has been

developed and filt ered through the prephase and prcactivity in the Waterfall Model. If the

specification of the system is not clear, not completed, not accurate or mined, the

development phase will be more complicated and takes a longer time.

The main input to this phase is the subset from the technical design statement that

contains the speci fication of the program. The product of this phase is a program that has

been completely tested to be used for production.

6·2.J Installation and New System Testing

The next phase in system implementation is to install and test the new system

with knowledge base piled up in it. The main input to this phase is a subset of the

tech · n1cal design statement that gives the specification on how the program has been

developed and tested.

6
·2·4 Delivering the New System for Operation

The final phase in implementation is to deliver the new system for operation. 13y

Provid· · 1 1 I . . I mg a vanous system manua s ic ps users 111 usmg tie new system.

llachclor of Computer Science 87

Univ
ers

ity
 of

 M
ala

ya

.\)1st em I mp/e111e11tat ion
Agent Architectures (Building Chatterbot)

G.3 Developing Mila h T he Malay Speaking C hattcrbot

The phase that needs a very long period to be completed is the development phase of

Milah The Malay Speaking Chatterbot itself. It involves intc11Jrctation, configuration,

lllOdifying and implementation of the bot development kit, Alice Program D into program

Codes. The Knowledge Base is coded using AIML (Artificial Intelligence Markup

Language) that is derivative from XML, and the combination of techn ical and physical

design into program codes had been done using two main languages, XML and I ITML

6·3· l Coding Phase

Coding phase is the phase where all the result from the analysis phase and the

design phase is being transfonned into a real application system. This phase also requires

quite a long period of time to be completed because Milah The Malay Speaking

Chatterbot is being develop using new high level programming language. The HTML,

'<ML and AIML coding used the Macromedia Dreamweaver MX as the programming

languages editor.

Besides considering the output from the phase before, other limitations factors for

developing the system must also be considered. Several ljmitations factors that has to be

con · S1dercd arc:

1. Limited time and energy for this phase

11 Development cost factor

llact I le or of Computer Sc1t.:ncc 88

Univ
ers

ity
 of

 M
ala

ya

System Implementation
Agent Architectures (Building Chatterbot)

111. Unpredictable output due to that Alice Program D is still undergoing for

its stability and functionality improvements.

tv. AlML is a new and has not yet being a fully recognize programming

language, and it is still on development phase by the Alice A. I

Foundation.

6·3.2 Coding Style

Coding style is an important component of the source code and it detennincs the

tntclligibility of a program. An easy to read source code makes the system easier to be

maintained and enhanced in future. Listed below arc some of the coding styles used

during the coding phase of this project:

• Selection of meaningful identifier names (variables, forms, tags).

• Description and an appropriate comment written in the source code to make it

easier for the readers to understand the source code.

• Indentation of codes will increase the readability of the program and for a neater

look.

• Meaningful and understandable function and method declarations.

• Keep all complex statement as simple as possible to avoid confusion.

6,4 1~-
vevclopmcnt Tools Implementation

Milah I he Mala' . peakmg Chattcrbot is develop usmg Alice Program D as the

%t dc,clopmc111 ktt and Macromcd1a Drcamweaver MX as the coding editor.

llach I --c or of Computer Science 89

Univ
ers

ity
 of

 M
ala

ya

System lmpleme111a11011
Agent Architectures (Building Chatterbot)

6·4. J Development Tools and the Setup Steps

6·4.1.t Alice Program D from www.aliccbot.org

Alice Program O is available for free from the www.alicebot.org. However,

before downloading Program 0 , developer must register for free and confim1ation e-mail

With a password then arc sent to developer to allow access to the download page. Alice

Program D consist all of these components as shown in the table below:

--- Component Dcscri1>tion

---Conf -
conf is a fo lder consist of XML documents on how to configure

the program to become a chatterbot that suit your preferences. It

depends on what kind of bot you want to develop.
r;-__
database database is a folder consist a default database provided by

Alice Program .The default configuration is entirely based on

text files in order to make setup quick, painless, and no more

resource-intensive than necessary. It suits for heavy-volume

situations.

r;---
csourccs resources is a fo lder consist of OTO and logs

":'"--
tc1 llplatcs Templates is a folder consist example of HTML template

....

tar 'Ct . g s -- . I Targets 1s a folder for vtewrng the log from targetmg tool.

11act I ic 01 of Computer Science 90

Univ
ers

ity
 of

 M
ala

ya

System lmpleme11tatio11
Agent Architectures (Building Chatterbot)

"t"---------~-------------------------- ~ argeting Targeting is for developer or botmaster to view the targeting

tool. Targeting.properties is the property file of the targeting

tool for the botmaster to edit. (This targeting tool is still under

experimental and may not behave as expected.)

------:-----------~~----------------------~ console This is a java console for developer or botrnaster to view the

chatterbot.
r----. run --------- -- - -

This is the main execution file. Botniaster can test, view and

al o talk to the chatterbot by executing nm.bat. After executing

the file, it will automatically load the web interface for user to

interact with the chatterbot.
I'--_ serve_r ______ __

Program D is designed to work as scrvlct and it uses Jetty,an

open source HTIP server and scrvlct container. If botmaster

want to run a web server, it can be edited from the server

properties file or else, if a standalone chatterbot, like Milah is

preferred, there's nothing much to be edited.
::--.-__
lester--------f.-----------------------~

This is the testing utility and can be tum on or ofT.

rr--'cens_e _______ +-G-N_U __ P_u_bl-ic--L-ic-en_s_e ________________ -1

Tahle 6.1 : Alice Program D components

Ah\ e Program I) 1s the easiest and robust bot development kit compared to other Alice

l)r
0&1 a111 and other bot de\ elopment kn that uses other programming lanhruage besides

l\itv11.

Ila t c lclor of Computer Science 91

Univ
ers

ity
 of

 M
ala

ya

System lmplemelllation
Agent Architectures (Building Chatterbot)

After downloading the Alice ProgramD.zip from www.aliccbot.org, botmaster

rnust unzip the file to any convenient location. Before running the program, botmaster

rnust setup and configure the program depending on what kind of chatterbot they want to

develop. Since our chatterbot, Milah The Malay Speaking Chatterbot, is a Malay

speaking standalone chatterbot, there's a lot of things that have to be configured.

~~~m~~~·~~rx:r-~-~~~~'"!T:~'.~~71<~~-:t':~~~~d..Jj 

~ • ...J( IDoar.wt • .nl ~U<>~r<X'V'"'/'07...0 

;, " -... 
• ~ ~(fTt 
. 'i '\-(\~._.. Jolll-
• ':i "ic""1'-t.,. ..1111 

. ..... ,...,~. K.c-"1 ...J111'°'6(M 

t ~.... _,.-.. 

,"'"lct ::;J-
• "' ' ....... _ ::tlM> 

...i"'... '.il-7 ""°.-();;,Qrd ::Il•• 9" "11 
..., ,.~- m ...... 

"i.ww 
-t l•OOU'll 
'1 W<IOle 
'1-
:I~ ........ 

1c ..... 

~ 
,_ 

O<r• IUJf"" 
, .. , .. lo< 1Jl'5111JOJ 111HM , .. ~;. V IWZ'll» I H 'I 1'11 
,. ,(.~ Z/l~:OOl ll tQ f'f4 ,.,,_ :u I "J(lWJ ll 1" 1'11 ... ,~ tll'WOOJ t: 1't "" 

1 111 ~005 ... .,, , .. •IYJll«I: , lll l'M 

1•• .... ~-, .. 11/ l l/:oll • ,. ... 
1 •ll >f> OOUJ!tM It •IXll.'ll'I.' ~ ;o,Jt• 
H a ,...,~ ..,,"' ' .. 1:111(:oJ1 ) 01 '" 

H I 
_ ... ,,,, .. 

ll fl>r.001 11 u ... 
U •:I ~!CH. 4fxv:tlJ1, 1 ~~ PM ,.., roomuin rto '!l/•fl«Jl 5 ,.,.... 

21ll Q 9( te ·~$ 11 1'4 
llll 91flo •trnm l )1 "" 
Z•ll ,.., .. 11/11/:ollt ..... 
l •ll ,.. , .. ll/l lr.0014 4' ... 
, ... ft.<t~ 1/10/'lfl/J2 1 '8 ... 

Figure 6.1: Program D that have been installed 

.. 
8· 

l hc tnain components in the Program D that have to be configured to develop Milah The 

~alay SpcaJ..mg Chattcrbot arc 

1
• conf fo lder 

ll 
achclor of Computer Science 92 

Univ
ers

ity
 of

 M
ala

ya



System lmpleme11ta1to11 
Agent Architectures (Building Chatterbot) 

11. templates folder 

iii. server properties 

i) conf 

• .'-1'tart11p.x111/ : 

This is the most important part of all to configure to ensure that Mil ah bot 

production is successful. Notice that the root element is called 

<programd-startup>, and that it contains exact ly one child clement 

called <bots> .. lnside <bots>, we place one or more <bot> elements. 

These <bot> clements arc not the same as the AIML tag of the same 

name. Each <bot> element has two important attributes: id and enabled . 

The first one assigns an identifier, which should be tmique, for the bot. 

The identifier will be used internally by the engine and will be written to 

some log resources. The enabled attribute should have either of the values 

"true" or "false". If the value is "true", then Program 0 will try to load 

that bot when the server starts up. Switching enabled to "false" is an easy 

way to quickly tum ofT a bot configuration that you don't want to use 

(although a restart is required). 

\v11h111 the <bot> clement we define bot properties, default predicates, 

'\tthstitutions, sentence-splitters and learn directives. 

'1ac1 1clor of Computer C:,c11.:11cc 93 

Univ
ers

ity
 of

 M
ala

ya



n 

• Pred1cates.xml : 

System Jmplementat1011 
Agent Architectures (Building Chatterbot) 

Default predicates can be thought of as our bot's "assumptions" about new 

users. 

<predicate namc="dia" default="somebody" set-return="namc"/> 

This rnccins that when <set namc="dia "> ... </set> is included in a 

template, the name of the predicate, "dia", will be displayed, rather than 

whatever value is associated with the name by the <set>. 

• Se11te11u.:-sp/1fter.,.xml: 

Since scntcncc-spli11crs arc applied to the input <{/fer substitution 

nonnalizations, they can be more general mies. 

<sentence-splitters> 

<splitter value="." I> 

<splitter value="!"/> 

<splitter value="?" I> 

<splitter va lue=";" I> 

</sentence-splitters 

• .\II hsllf 111 IOllS .Xlll f: 

Substitutions ha' e several d1tf erent purposes, depending on their type. 

Input substitutions contribute to the process of input nonnaliz.ation 

Person substitutions provide macros for transfonnations by the <person> 

achclo f' (' t · . I () omputcr ,JCICllCC 

Univ
ers

ity
 of

 M
ala

ya



ii) 

Sysrem J111p/c111e111a11011 
Agent Architectures (Building Chatterbot) 

tag; likewise pcrson2 and gender apply to the <person2> and <gender> 

tags, respectively. Each individual substitution specification, regardless of 

whether it is inside <Ul <inrmt>, <gender>, <person> or <person2>, takes 

the same form as this example from conf/substitutions.xml: 

<substitute find=" ape" replace=" a1>a "/> 

This means that, when this substitution is applied, each instance of the 

separate word "ape" will be replaced with "apa". 

Templates 

The file templates/html/ chat. html is used for constructing a web 

page with the bot's response. It is a plain HTML file, with a few important 

tags. There are examples of HTML template given, but l decided to use my 

own better template just to make Milah chat interface interesting for users. 

iii) Server Properties 

1111 -. b al-.0 a main file to be configured It contains all the bot properties such 

as Mam Program D configuration, AIML Watcher. Interpreter, HTTP Server, 

Shd l/Consolc, etc The configuration options arc grouped for easy 

nachclcl f' ( ' s I () 0111putcr . c1cncc 

Univ
ers

ity
 of

 M
ala

ya



System !111p/eme111a11on 
Agent Architectures (Building Chatterbot) 

maintenance. lt can be edited by using WordPad or Macromedia 

Dreamweaver MX. 

111erc are long list of parameters that have to be configured from the 

server.properties file. following arc descriptions of some of the important 

parameters that I have configured for developing Milah : 

Shell/Console Configuration 

In its usual configuration, Program D displays infonnation about what it is 

doing while it starts, runs, and shuts down. We call this the "console". Also, 

you can interact with Milah via a s imple shell , if desired . Sometimes it is 

simpler to use this shell than to open a web browser. Both the console and 

shell can be configured to suit our needs. 

[ programd.console=truc 

-This tells the program to print infonnation to the console. If this is set to 

false, almost nothing (except the copyleft notice) will be displayed when the 

program is nm. 

llach ·I 
c 01 or Co111 putc1 SctCllCC 96 

Univ
ers

ity
 of

 M
ala

ya



llach 

System Implementation 
Agent Architectures (Building Chatterbot) 

progra md .console.ma tch-t race=t rue 

-Setting this property to true can help botmaster to understand what is 

happening when matching occurs. 

programd.console.bot-namc-predica tc=namc 

programd.console.cl icnt-name-prcdicatc=name 

-If bot1nastcr wru1t to store the bots' and/or users' names in 

properties/predicates with names other than "name", then here's where it can 

be change . This property exists for the purpose of tuning the chat log 

functionality. 

[ programd.console. wam-non-aiml=true 

-Setting it true will warn botmaster when non-AIML elements is used outside 

of a template. 

progrnmd.console.timestamp-forma t=H:mm:ss 

-Rot master can choose how the timestamp looks in the console output. 

Whether a botmastcr want it 24-hour or 12-hour style j ust sec 

hjffi ,//jnv:i sun com 12. el l A/docs api/ javattextJS1mpleDateFonna1.hnnl for the 

fo n11att111g codes to use 

clo1 of Computer Science 97 

Univ
ers

ity
 of

 M
ala

ya



Sysrem lmp/eme111a11011 
Agent Architectures (Building Chatterbot) 

[ progra md.shell=true 

-In some situation botmaster may wish to disable the interactive shell. Set this 

parameter to false to do so. 

After configuring, botmastcr can start the bot by double-clicking run.bat fi le. The 

rull.bat file is provided for Windows users so tJ1at common problems with ilie DOS 

en · 
viroiunent can be handled before launching tJ1e server.bat file (which is started by 

rull.bat). If tJ1ere is error or problem witJ1 tJ1e configuration, the console window will 

PrOducc error output or it will close before having time to read the error message. The 

botinaster can only interact witJ1 the bot after loading tJ1e AJML files into the bot (iliis 

Willbe d1· . d' . 1 . ) scuss m co mg unp ementat1on . 

When the bot starts, tJ1e window console and tJ1e web browser will open . The 

Window console and the web interface can be seen on the next page. 

llacti • 
clor ol Computer Sc1c11cc 98 

Univ
ers

ity
 of

 M
ala

ya



System lmpleme11tatio11 
Agent Architectures (Building Chatterbot) 

Figure 6.2 : Window console when the bot start 

When botmaster load the AIML files, then and only then the bot, Milah can talk. 

n 0
1lnaster can understand what· s going inside the bot· s engine when the bot start 

interacting by understanding the match trace. To shut down the bot, simply type /exit at 

the · 
Window console. 

To view the chat log or to see any error that occurs during conversation or during 

~P, botmastcr can \iew the chat logs by opening the folder logs .To \iew Milab chat 

log With pan1cular user or 10 identify the users personality or behaviour, botmaster can 

0Pcn I 
t le folder ff m The log will be kept here and next time,when the same user interact 

~--clor of Computer Science 99 

Univ
ers

ity
 of

 M
ala

ya



System lmp/ementatio11 
Agent Architectures (Building Chatterbot) 

With Milah, she will remember them and their personality. All the personality arc set and 

Coded using AIML. 13otmaster also use the logs file to add Milah · s knowledge. 

~ _l rt!tl)~ 

,_)l• "Ql!lb 

• __) t­
· __)~ 

Sole 

.. -· 

l \'l)C • 

no-
nofol:W , .. ,_ 
Ao retie< .... .,.... 
'" rcllo< 
Hel'ellor 

2/9/(!XtJ ,. 37 "" 
2Jlll2003 11:25 N1 

2/9/2003 ' 37 Pt1 
2J 16(2003 . .. 5 "" 

2/9fro03 9 37 PH 
2/1~3 4:4S Pt1 

2l'l(1D03 9: » Pl1 

... -1 A fe\1~ 

IQ 1•Al~l,ll"-· •a l•xt~ 

1"-'.llut~ 

t.l~j 
,. .. 

D CJ c. .... ~ ........ B · 0...-
111 t,fZOOJ .. ...., '" 
1/1 l/7'0ll 4 ~PM 
2/ll/?OOH ,_,l'M 
2/l 'fllllll • W l'M 

l/16/llXll• '°"" 

Figure 6.3 : Windows showing the logs folder 

":-.... 

Llach ·1 
c or of Compuler Science 100 

Univ
ers

ity
 of

 M
ala

ya



System /111pleme11tation 
Agent Architectures (Building Chattcrbot) 

I••• 
1 , ./ l~ch ' older• r:J . 

Foldo,, ._, C·~, &<"1 :l«tlnQ<\~Wccl\MILAM\llm\l ftW'l.W\ 
~ )( ........ 
• °"sl.too • 1.-
l ~ "'r~, ')...W- I OHS':i8636S19• ~1CIZ 
·~~~·· @'"1~ ~ . 

!JR~ ·~et r'tt ~ .,~-"-'•i.t t'lt> 

'--> "t.1q ~ n ~ g a~ " e "' q, 

~~ 1.,,:>e 

I " ' PRLOICA n:s r .. 
I I 0 Pll.EOICAT( S Ro 

~ ....l losav<11 ...,. 
c' ....l MllAH f Sun fe b 16 18 : 23 : 1 7 GMT• 08 : 00 200) 

1 <....) - n11!lll'• Um1 
<...) "°"' t h.lt . 4•0K \ : ) 
u <l«obe"' lhu t. . 3•S11hinqq<1 kJ.1.d ooc 1umpo l<1q.1. UmJ. . 

- ...Jtr.. lhA t. . 2- J llmpll llllJI Uml. 
u~ input . 4-ok 

u lb · t hu t. . l •Jumpa l .iqJ. ur.u. . 
: ...:i ioo. input . '.l•bye 

....:> ... .,.co, i nput . 2• bye 
'-l t• o.i, i nput . l•byo 

,, ' '-l ·~.. locat.io n•J.poh 
..) Pt~arrootlgir\oj llCJf' -~3 

hobby-monont on w.1yon9 

iue 

i:J ~ Go ........ B· 
oot .. MoOfl<>d 

2/ 16/2001 6:23 PM 
V 16/'200l 1 .SS "'4 

....... 
·J ..:.> , ...... ~. •·i' A 1:9 .,.. ... 

Figure 6.4 : Window showing the ffin folder 

6
.4·1.2 JavaTM Runtime Environment ( JRE) 

The JavaTM Runtime Environment contains the Java virtual machine, nmtime 

class 1· 
tbrarics, and Java application launcher. It is not a development environment and 

daes not contain development tools such as compilers or debuggers. The JavaTM 

~llnti 
Ille l:nv1ron111cnt ( JRE ) 1 3.1 or later is needed before installing Alice Program D. 

ll' achcl(> 1· • • r o C 0111pu1 c1 Science IOI 

Univ
ers

ity
 of

 M
ala

ya



System lmpleme111a11011 
Agent Architectures (Building Chatterbot) 

The software can be obtained from Sun Microsystems, Inc., web site at 

~ww. javasofl .com/produclsljdk/ 1 J / jre/index/html. 

6.5 C 1· oc mg Implementa tion 

6
'5·1 AIML Implementa tion 

The most important units of Al ML are: 

• <aiml> 

The tag that begins and ends an AIML document 

• <category> 

The tag that marks a "w1it of knowledge" in Milah knowledge base 

• <pattern> 

Used to contain a simple pattern that matches what a user may say or type to an 

Mil ah. 

<template> 

Contains the response to a user input. 

l'hcrc are also 20 or so additional more lags oflen found in Al ML files and it's possible to 

crca1 
c our own so-called "cuslom predicates". 

Given onh 1hc • pa11cm ~ and template> tags, there arc three general types of 

catcgoncs 

llachc1 -
or of Compu1cr Science I 02 

Univ
ers

ity
 of

 M
ala

ya



System lmpleme11tatw11 
Agent Architectures (Building Chatterbot) 

• atomic 

• default 

• recursive 

Strictly speaking, the three types overl ap, because "atomic" and "default" refer to the 

~Patteni> and "recur ive" refers to a property of the <template>. 

All Milah knowledge base or all the AIML files are kept in ... /standard/a iml/ 

" . 
. airn1 . Botmaster may enumerate each file they want the bot to load, or use simple glob-

likc expressions with "*".The path is relative to the location of th is file. Milah only speak 

'Bahasa Melayu and since it 's new, it only talks about herself, her favorites, greeting, 

basic introduction and will ask users about themselves and their favorites. All Milah 

Properties about herself and her favorites are kept in startup.xml. All the AfML files are 

&roup depending on the AfML" category "so that it will be easy to view, find, edit and 

ltlaintain. Examples of AIML fi les that are group and kept in Milah are greetings.aim! , 

Yesno airnt . 1 . . . . I · , connect.aun , mact1v1ty.a1111 , etc. 

Here, 1 will not list down all the A!ML coding from all the files because of the 

Ouincrous categories. For simpler and l>ctll.:r understanding, I \·Viii explain some examples 

accord · 
ing to category. 

11ac1 
lei or of ( '01t1putcr Science 103 

Univ
ers

ity
 of

 M
ala

ya



i) 

ii) 

Atomic category 

System Implementat1011 
Agent Architectures (Building Chatterbot) 

"Atomic" categories are those with atomic patterns, i.e. the pattern contains no 

wild card "*" or "_" symbol. Atomic categories are the easiest, simplest categories 

lo add in AIML. 

<category> 

<pattcrn>SIAPA NAMA AWAK </pattern> 

<templa te> Nama saya < bot na me="na me"/>. Sinpa nama awak? 

<:Item pla tc> 

<:/category> 

The above category (from ... aiml/standard/basicintroduction.aiml)does the 

following: 

- Matches the client input of "Siapa nama awak" 

- Get the bot name , "Milah" as stated in the bot properties . 

- Sends the client d1e response: "Nama saya Milah.Siapa nama awak?" 

Default category 

'fhe name "default category" derives from the fact that its pattern has a wildcard 

"•"or " " The ultimate default category is the one with <pattern>*</pattern>, 

\\ h1ch matchcc; an) 111pu1 These default responses arc often called "pickup lines" 

because the) generally consist of leading questions designed to focus the client on 

Ii' achc1 -
Or of C omputcr )c1cncc 104 

Univ
ers

ity
 of

 M
ala

ya



System lmplementat1011 
Agent Architectures (Building Chatterbot) 

known topics. The more common default categories have patterns combining a 

few words and a wi ld card. For example this category 

(from ... aiml/standard/basicintroduction.aiml) : 

<category> 

<pa ttern>"' NAMA PENCIPTA AWAK</pattern> 

<template> 

Nama pencipta saya ia lah <bot name=" master"/>, yang juga botmaster saya. 

</template> 

</category> 

responds to a variety of inputs from "Apa narna pencipta awak" to "Siapa nama 

pencipta awak" Putting aside the philosophical question of whether the robot 

really "understands" these inputs, this category elucidates a coherent response 

from the cl ient, who at least has the impression of the robot understanding the 

client's intention. 

iii) Recursive category 

"R ccu rs ivc" categories arl.! those that "map" inputs to other inputs, either to simplify 

the language or to identify synonymous patterns. Many synonymous inputs have the 

5
an1c response 'Tlus 1s accomplished " ith the recursi\ e <srai> tag. Take for example 

the input "BYE" This 111put has dozens of synonyms: '"BAJ ", "BYE BYE, "TATA", 

11' ache I 
<>r of Computc1 Science 105 

Univ
ers

ity
 of

 M
ala

ya



System Implementation 
Agent Architectures (Building Chatterbot) 

"JUMPA LAG!", and so on. To map these inputs to the same output for BYE (from 

... aiml/standard/grectings.aiml ) we use categories like: 

<category> 

<pattern>BYE</pattcrn> 

<template> 

<random> 

<li>Jumpa lagi <get namc="namc"/>.<lli> 

<I' •>Bye <get name="namc"/>.</li> 

<li>Schingga kita berjum11a lagi <get name="name"/>.</li> 

<li>Terima lrnsih keraoa sudi berbual dengan saya, <get name="namc"/>.</li> 

<!random> 

</tern plate> 

"/category> 

The recursive category: 

"category> 

"'Pattcrn>.J l\IPA LAC I </pattern> 

<s rai>B,.E</sra i> 

<Item pla te> 

~catcgor)·> 

Ila ch 
clor of Computer ~c1cncc 106 

Univ
ers

ity
 of

 M
ala

ya



System lmplementat1011 
Agent Architectures (Building Chatterbot) 

6.5.2 Checking For Errors in Coding 

If errors occurred in the AIML document, when the bot start, the window console 

Will load the entire error messages and infonn which file each of the error is located. The 

bot Will still run nonnally but it will nbort the entire category with errors. Botmaster can 

check and view the errors from the file .. ./logs/error and then correct the error to AIML 

docuinents. 

~ ._ - -------- ·--- t!h.J..it 
Cl ~ ~ ·- ..... 

IOI • Ill " D q, ·11.,,, -- -
•/1. - .. :s/ ,H t OL.l091200J 0 2 1(, lb :4 ~ : '1 1 Th•Ht! .l :J ll<J " ! Yu :i " elorrv•11L J.11 Al ML. 
\11r~~/crrot . 1ogf 2003- 02- 11> l<.. :4 !>: 2 1 1 (I.Jn" 6, " C.' : \l>ocumcnt:i amt s ottln90\wni\Wskto p 
·llaq ~cont'\ .• /:• lml /Ill nndArtl/\ Tfl" 140 .A iml " > 
· ll :S/orror.lOQ(20 0 J-0 2- lv 11.> : H : l !> f There l:i no "J --- To:i" olt'rnont in AfML. 
\111~/erroL..loqf200J 02 lb 1(, :4 7 :1 !> 1 (Llll\I 6 , " C : \ OOCUm\llll!I <lntl !:llllln1 1:s\utnl.\ 0.. :1 kt.O~ 
•ll..,,, i\conC\ •• /oim.l/stond:nd/\ Ycu No . aim.l"l 
·11-,.e/onor.log(200.l- 02 ll• I G: !;O :IO J Thcr(' ie no"! --- Yo:s" lcmont Jn AIML. 
\1it~"rror . lOCJ( '001-0:>- I(. 1r. :•.o:IO J (l,lnf' \. , " { :\OOr 11mnnt!I An<1 !lct1tttn9,.\1111\1\0o!lkto n 
·lln.. COnt \ •• /ai.ml./:Hunduttl/\Yu:i No .u.!Jlll" ) 
•/l.~!l/erro• . 10912003 02 l<. 10 : 21:10 1 Tnutu 1:1 no "I V11:1" u.lu1oont. in AI ML . 
\111~"tcrror.l09f2003-02-16 18 : 21 :1 0 1 (Llno G, " C: :\OOc un1cnt:s ond sottin9:1\umi\1>o i:ikto p 

I\ con f \ .. / aiml / :rt a net& rel/\ YI) :'! No . 11 iml " ) 

o ,., ... 

~ 
llach 

figure 6.5: Window showing en-or logs in the AIML doctunents. 

clor of Computer Science 107 

Univ
ers

ity
 of

 M
ala

ya



System I mplementat 1011 

Agent Architectures (Building Chatterbot) 

6.6 Summary 

Below are the steps used to write, run and correct Milah The Malay Speaking 

Chatterbot l\IML coding :-

I. Write the AIML coding in Macromcdia Dreamweaver MX and save it as .aiml 

file in a specific directory ( ... aim I/standard/* .aim I) 

2. Launch Milah by double-clicking run.bat. 

3. The window console will open and show all the details about errors and status of 

the l\IML documents. All the errors in AIML category wi ll be aborted. 

4. The bot can interact with remaining AIML categories witl1out errors. 

5· Botmaster can choose whether to continue nmning tl1e bot and fix the error later 

or shut down the bot immediately and fix the errors. 

From what has been explained in this chapter, it can be swmnarized that the coding 

Phase Was a very complicated phase and the longest duration in the process of developing 

%1 ah The Malay Speaking Chatterbot. 

11 achclc 1· , 
H <> ( ompuH:r Science 108 

Univ
ers

ity
 of

 M
ala

ya



System Testing 
Agent Architectures (Building Chatterbot) 

CliAPTER 7: SYSTEM TESTING 

7
•1 Introduction 

In ensuring the quality of software or a system, system testing need to be pcrf onned 

and it is one of the critical elements. This process involves careful examination of all the 

design ·ri . b c spec1 1cat1ons and coding process that has ccn pcnormed along the system 

devet 0Pmcnt process. 

Testing is also perfo rmed to ensure that all the modules developed arc free from any 

errors that can cause umcliability to the system from pcrfom1ing as required and to 

Produce result as desired. Usually testing is pcrfonned using sample data and logics tJ1at 

are used in coding. 

A good test is a test that is able to identify all the errors that arc not detected during the 

analysis phase, design phase and coding phase. The main objectives in system testing are: 

I. 
Identify errors 

Detailed checking is being perfonned to every function and behavior of tlie 

system to ident ify errors in the system. 

ii. 
Removing errors 

Errors arc removed fro111 the system by compiling the codes after detecting the 

cause of errors or by debugging the system. 

Re-grcssion test 

To ident ifies new fau lts that may have been int roduced as current ones arc being 

co1rectcd. 

llach ·1 . -: --------------- ---
c or of ( omputcr Science I 09 

Univ
ers

ity
 of

 M
ala

ya



System Testing 
Agent Architectures (Building Chatterbot) 

7·2 System Testing 

System testing is ideally perfonned by developers using an environment similar to the 

Proctuction environment. This testing ensures that the system meets externally observable 

re · 
quirements including: 

• Functional requirements, for example, "The system shall allow users to view their 

requested result or output." 

• Derived requirements such as performance, robustness, and scalability. 

• Usabil ity requirements. 

I Bennett , C., 200 1 ] 

The n1ain intention of the testing process is to evaluate how much fault can be 

reduc d . . . 
c tn the program or in the module itself. The correction process on demonstration 

ts against the meaning of testing. Testing is perfonned on the program to demonstrate 
e . 

XJ.sting fault. Since the main objective of testing is discovery of faults, all the faults that 

lllight lead to failures during actual system usage will be eliminate to ensure successful 

testin 
g result. Fault identification is a process to detennine fault or the cause of it , while 

fault co . . 1· . r. 1 rrectton 1s a process to make changes toe 11n111ate 1au t. 

To test the application, firstly, all AIML fi les must go through unit testing which 

ts lhc s· I 1 · I · h ·d · 1tnp est test of all, followed by modu e testmg, w uc covers a w1 er scope of 

l<!sting ti . . 
Ian u111t 1cs1111g It takes a module and tests it out thoroughly. The result or output 

\\111 l>\! I . . . . 
co111parcd with the ex pected result T ien, an integration testing 1s performed to 

ens Ur 
c the usab11t1v of the apphcat1on. Furthennorc, all links leading to all the modules 

~ 
llach I 

c Or nf C omputcr Sc1c11cc 110 

Univ
ers

ity
 of

 M
ala

ya



..\)I.stem Testing 
Agent Architectures (Buildi ng Chatterbot) 

are tested out. An important poiJ1t to remember when naming the link is; the name of the 

links sh ould be clear and not be misleading. 

In the testing process of Milah The Malay Speaking Chatterbot system, there are 

six · 
main tests that have been conducted to ensure the system works as a whole. The 

te · 
sting stages arc :-

I. Unit Test 

ii. 
Integration Test 

... 
Ill. Function Test 

IV. 
Regression Test 

v. 
Stability Test 

Vi. Usability Test 

Testing sequence is as shown in Figure 7 .1. Test perfonncd on Milah chatterbot 

SYstelll is a bottom-up testing technique that is starting the test from the smallest unit until 

the system is entirely tested including the installation of the system. 

F•tllal Tat Stablty Tat 

Figure 7. I : Testing Steps 

~ 
Or of Compurcr Science 

Dmltf Tast 

System can 
111111111 

11 1 

Univ
ers

ity
 of

 M
ala

ya



7.2.1 U . T nat esting 

~'ystem Testing 
Agent Architectures (Building Chatterbot) 

Unit testing is done by reading lines of code that has been written during the 

development of a module to identi fy any syntax errors, data and algorithmic errors. The 

Programmer will repair these faults. After unit testing, the individual module will be 

corn · 
Ptled again 10 identify and fix any more errors incase there are still any errors 

llndetected. This individual module will then be launch to ensure its effectiveness, 

accuracy and to sec whetJ1er it functions as desired. 

Unit testing is usually carried out by using the emulators. This testing includes 

test 
on every single program module components separately. Every file in the same 

lllOduJe will interact intcmally or interact with other files in different module. 

7.2 11 u 
· · nit Testing Example 

Table below shows some of test cases for unit testing on the Milah TI1e Malay 

SPeaki 
ng Chatterbot : 

~ Test Procedure Exgected Outcome Test Result Anal)!zing 

Load AIML files one by The AIML fi les are Each AIML files are 

one 10 check for errors loaded without errors successfully loaded. 

Load AIM L files and The window console All the AJML files are 

execute bot shows the AJML status loaded without error. 

and all AIML fi les are 

loaded 

l\ache1 
()1 of Computer Science l l 2 

Univ
ers

ity
 of

 M
ala

ya



r--__ 

3 Each AIML category 

are tested by runnmg 

the bot. 

r--:t- -Run the bot 

rs-- Log in by clicking the 

r---__ log in button 
6 Talk to bot by typing 

input Ill the box and 

........___ click 'cakap' button . 

System Testing 
Agent Architectures (Building Chatterbot) 

-The bot recognize the The bot successfully 

entire category and reply the correct output. 

produce the correct 

reply. 

The window console The window console and 

and web interface will web interface 

be loaded succcssfi_1lly loaded 

Log in page will load Log in page are loaded. 

The bot will reply The bot replied to user 

successfu lly. 

Table 7 .1 : Unit Testing Example 

?.2.2 
Integration Testing 

This testing is done by taking the application from the top, fo llowing every links, 
lls. 

lilg every available option and entering every possible data is necessary. 

?.2,3 
Functional Testing 

Functional tests are captured in test cases and arc derived from a requirements 
d0t 

Urncnt. Function testing evaluates the system to detem1ine whether the function 

~n•- -
ved by the requirements pec1ficauons can really be presented by the system that 

~b 
ccn rntcg.ratcd 

~c lor of Computer Science I 13 

Univ
ers

ity
 of

 M
ala

ya



7.2.4 R egrcssion Testing 

System Tesling 
Agent Architectures (Building Chatterbot) 

The regression tests are made by re-executing some subset of the program's test 

cases, following changes to the application. Regression tests arc used to verify that 

eve"11l · 
·1

1 ltng still works as it should. 

7.2.s s 
tability Testing 

TI1e stability test is done in the Milah chatterbot system by trying to test the 

application by using weird user input. 

7.2.6 u 
sability Testing 

The testing is done by perfonning "cold tests" on people, who arc given a brief 

description of the application and told to use it for a while. 

Each of the stages is likely to highlight areas where work is needed. If it turns out 

that th 
e application does not fulfiJI the initial requirements, then changes need to be 

lllade. 

7.3 s 
Ystcm Testing Technique 

lcchn1qucs used for testing depends on the testing level that has been set. At unjt 

testing lc\cl , wlutc box 1cch111que has been used to dctennine errors as sho\\11 in 
fin t>l11c 7 2 

li'-~Chc1 
0 1 of Co111p11tcr Science 114 

Univ
ers

ity
 of

 M
ala

ya



Code Segment 
in module 

Testing 
Process 

No 

System Testing 
Agent Architectures (Building Chanerbot) 

Yes Correction and 
- ---.i Regression Test 

Yes 

No 

Code segment 
in a module 

that is em::ir tree 

Figure 7 .2: Unit Testing Scheme 

?,4 s 
Utnrnary 

Although application testing is executed after the implementation, continuous testing 

IS done throughout the development and implementation of the application. Milah The 

~ala 
Y Speaking Chatterbot application should be tested thoroughly to ensure its 

reliability ., m . d . b'l' l . . j th lk d • 1 s c 1c1ency an its usa 1 11y. I 1s very nnportant t rnt e user can ta an 
tnte 

!'act leisurely and smoothly with the bot. Usually a good application is able to ful fi ll 

the Us 
er requirement and l..cep nmnmg wnhout much error 

~ achc1 -
01 of C 0111 p111cr Sc1cncc 11 5 

Univ
ers

ity
 of

 M
ala

ya



System Ma111tena11ce & Evaluation 
Agent Architectures (Building Chatterbot) 

CliAPTER 8: SYSTEM MAINTENANCE & EVALUATION 

~M MAINTENANCE 

S.J Introduction 

System development is complete when the system is operational, that is, when the 

systern is being used by the users in an actual production environment. Any work done to 

change th ft · · · · · ·d d b · e system a er 1t 1s in operation ts cons1 ere to e mamtenance. 

I Pneeger, S. L., 200 1 J 

In this section, the discussion is focused on the system maintenance requirements 

aJ!d how the system can be maintained when the functional requirements tends to change. 
lli· 18 

is to give guidance and understanding to users that will maintain the system so that it 

\\iii 1 
not affect the system operations entirely during maintenance. Besides tJ1at, system 

reeovery tnethod is also included for this system. 

8.i M 
aintenance Requirements 

Generally, a system has to go through maintenance in a routine basis to make sure 
the 

system is operating at optimum level. Maintenance has to be made to Milah The 

~ala S 
Y Peaking Chatterbot system because of several reasons such as: 

I , 
Additional Knowledge 

S111cc Milah Chatterbot purpose is to talk and learn, so with every interaction 

with users, Milah will leam something from the user whether it 's about the 

~ achc1 
()I or Computer Science 11 6 

Univ
ers

ity
 of

 M
ala

ya



ii. 

.))1ste111 Mamtenance & Evaluatum 
Agent Architectures (Building Chatterbot) 

user themselves or about any other things that user said. All the user 

informations and chat logs that are kept in folder logs,target and ff m will 

increase with every user interacting with Milah and it will be hard to handle if 

the size is too big . 

Outdated Data Contents 

Overtime, there will be many other things that need to be updated in Milah 

such as its properties, and old and outdated infonnation that stored in Milah's 

brain must be removed. 

8.2.1 s 
Ystem Maintenance Methodology 

This system can be maintained through various methods such as: 

i. Update the Knowledge Base 

To update and keep track of the knowledge base, botmaster must always roll the 

chat log. Rolling t11e chat log means the chat log will be minimized by the current 

one is renamed and kept in a specific location and the new one is created . The 

new one will contain a link to the previous one, so over time it can have a chain of 

log files. By doing this, the bot is easier to maintain. AJI this chat log are useful 

for detecting and corrccttng errors or collecting any additional information that 

the botma. tcr wanted to add to bot' s knowledge 

~elor f'C' S () 0111putc1 . Ctence 11 7 

Univ
ers

ity
 of

 M
ala

ya



iL Disaster Recovery Plan 

System Maintenance & Evaluation 
Agent Architectures (Building Chatterbot) 

Disaster recovery plan is made to provide support to system's operation incase a 

disaster occurs. The main contents of the system including the knowledge base 

have to be duplicated in a different storage device such as backup storage 

media, backup tape, diskette and other media storage device. If a disaster 

occurs, the system can still be retrieved and it does not have to be redeveloped. 

The contents of the Milah The Malay Speaking Chatterbot' s knowledge base 

along with other documentations must be duplicated in the backup device from 

time to time so that the backup data stored stay updated. 

~EVALUATION 
8,3 

Introduction 

The best way to develop a system is to involved system evaluation phase in the 
8Yste 

rn development life cycle. This is the phase where a developer can analyze how 

suecessfut the system that has been developed has reached its objective. Usually the 

develo 
Per wilt receive responses from users to evaluate a system. 

8.~ p 
roblcms Encountered nnd olutions 

' D1fficuhy in choosing a suitable development tools 

·nicr c arc many bot development tools that are available for developing a 

chattcrbot. It is diflicult 10 choose the most suitable development tools from a 

~ achc1 
Or of Computer Science 11 8 

Univ
ers

ity
 of

 M
ala

ya



.\)!stem Mamtenance & Eva/11011011 
Agent Architectures (Building Chatterbot) 

wide variety of choices. Choosing a suitable technology and tools was a critical 

process as all tools possesses their own strengths and weakness. Besides, the 

availabi lity of a technology, hardware and supporting sofiware to support , its 

learning curve, compatibility with the existence operating system and 

technologies are also the major consideration. 

In order to solve the problem, seeking advices and views from project 

supervisor, course-mates and even seniors engaging m similar project were 

earned out. Furthennore, a great deal of reading and research from many 

resources like books and lntemct regarding the problems helped to solve the 

problem and choose the suitable tools were done before any decision was made. 

• Lack of ability 

Since there was no prior knowledge of HTML, XML and AlML and the 

AlML is still new, tJ1ere was an uncertainty on how to organize the codes. These 

Programming languages and concepts were never fami liar to me before and to 

implement such an application requires a fa ir grasp of the languages. These 

Programming approaches seem to be different from other programming 

languages. Although it really cause a lot of time to learn tl1is coding tool, but 

choosing to use AIML is easier compared to other programming language such as 

C 1 1 , Prolog, etc Most of the problems faced were manageable through browsing 

the l111crnc1 for related matenals and refcmng to the help function provided m the 

~·I c or of Computer Science 11 9 

Univ
ers

ity
 of

 M
ala

ya



System Maintenance & Evaluation 
Agent Architectures (Building Chatterbot) 

software. Discussion with my partner was a great help. A more efficient method 

was through trail and error during the coding phase. 

' Insufficient Reference Material 

At the beginning of the project, the developer had insufficient reference 

material to develop the system. This is because, Milah is the first Malay speaking 

chatterbot ever been developed and the source for Malay language and how to 

implement a chatterbot are very limited and hard too find . Reference material at 

the market is sold at a very high price and the reference material in the library is 

limited and most of it is outdated. 

The problems arc overcome by getting help from our supervisors and he 

also lends us a few books related to chatterbot. We also join the discussions forum 

in the internet regarding the topics. 

' Setting up tools 

Lack of knowledge in setting up the bot configuration and the tools used 

in this system. 

Confront the problem by surfing in the Internet, reading reference books 

and ask our supervisor. 

~ ache1 
<>r of Computer Science 120 

Univ
ers

ity
 of

 M
ala

ya



.\)1ste111 Ma111te11ance & Eva/uatio11 
Agent Architectures (Building Chatterbot) 

8·5 System Strengths 

• Simple, user-friendly and easy to use 

The interface design of this system mostly was created using Adobe 

Photoshop and Flash. It is designed to be as user-friendly and simple as this 

system is relatively used to chat. An action is just a click away and tJ1e user just 

needs minimal knowledge of mouse and keyboard to use this system. 

• It speak Malay 

Milah Chatterbot speaks only Malay language and this is the only bot to be found 

that chat in Malay. Most chatter bots available on market or onlinc arc English 

Speaking chattcrbot. 

• Easy to maintain 

Milah chatterbot are easy to maintain since Alice Program D provide very simple 

and easy to use functions. AlML coding are also easy to learn and write. 

8
'
6 

System Limitations/Constraints 

• L' imitations of answers/ reply, since Milah needs a lot of interaction with users to 

gain and to add up knowledge to its knowledge base. Milah will improve over 

time 

' Not man) people m il use or talk to chatterbot especially for leisure. unless for 

con1n1crc1al or educauonal purpose. 

~. 
Clor or Computer Science 121 

Univ
ers

ity
 of

 M
ala

ya



System Maintenance & £valuation 
Agent Architectures (Building Chatterbot) 

8
•7 Future Enhancement 

System development is a dynamic process and changes must he expected. Due to 
r . 
llllited resources, especially time, had caused me to miss or overlooks certain aspect of 

the s Ystem. However, afler the development system has been completed and valuable 

advice s and suggestions from my project supervisor and moderator, 1 have identified 

certain imponant aspects that can be improved for future enhancement. The additional 

featur 
es that can be implemented in future are as followed: 

• It can work as Malay dictionary by adding a function or by linking to an 

online dictionnry. 

• Milah will give more logic and reasonable replies to user even to topic that it 

doesn' t know. 

s.s l<n 
owtedge and Experience Gained 

This project does push me up to another level that is full with new tenns and 

technologies .Through the application, theories learned in classroom can be applied to my 

Practical 
work. For examples : 

• The importance of all those theories and lessons on Case-based Reasoning, 

Natura l Language Processing and other Artificial Intelligence topic. 

' How to keep track of the ongoing development 

' lhc importance of all phase in the System Development Life Cycle (SDLC). 

' I lo\, useful nnd 1ntcrest1ng some development tools can be when developing a 

chattcrbot, such as Macromedia Flash and Oreamweaver, Adobe Photoshop. As 

~ achcJ 
or of Computer ~c 1c 11cc 122 

Univ
ers

ity
 of

 M
ala

ya



System Mamtenance & /;'valuation 
Agent /\rchitectures (Building Chatterbot) 

an Al student, I have never expose to these soflware before and it is a good 

exposure for me to try all the new utilities. 

Other than that, 1 have learned something that is not been taught in classroom, for 

instance, the skills of sharing and communication and learning new programming 

languages. I believed tJ1e concept of gaining and contributing knowledge is something 

beneficial and this exposure will be very useful in the future. 

8.9 Su mmary 

Evaluation of system is indeed to ensure its objecti ves and intended functions have 

been achieved. This chapter covers all the aspects of the evaluating application software. 

'Ilic successful development of the system at the present is the fi rst step towards the 

fiilltre expansion of the system. The problem encow11cred and experience gained during 

the d 
evelopment phases should be helpful in future efforts. 

Besides, this chapter also summarizes the system strengths, system constraints 

atld future enhancements that can be added. TI1e future enhancements will equip the 

SYsteni to d b·1· · f d · · d ·1 · d · · · war s more capa 1 1ttes o 0 111g its . ai y operations an act1v1t1cs. 

llach. -
clor of Computer Science 123 

Univ
ers

ity
 of

 M
ala

ya



llEFERENCES 

References 
Agent Architectures (Building Chattcrbot) 

Allec,James ( 1995). Second h'dlfion,Natural Language Understanding.The 

Benjamin/Cummings Publishing Company, Inc. 

Dr.Abdullah Embong (2000). Sistem l'angka/an Data: Konsep Asas, Rekahentuk Dan 

Peiaksanaan. Tradisi llmu Sdn. Bhd. 

Pfaffenberger Bryan and Karow Bill (2000) .HTML Bihle.2'1ll /:,'dition.IDG Books 

\Vorldw1de,Inc. 

Kendall Kenneth E. and Kendall Julie E. ( 1992). System A11alys1s Ami /)es1gn. 211
d 

td'ti 1 on. Prentice llall Jnc. 

Mohamad Noom1an Masrck, Safawi Abdul Rahman, KamarulAriffin Abdul Jalil (200 I). 
t1nat · 

tsis & Rekabentuk S1stem Maklumat. McGraw-Hill (Malaysia) Sdn. Bhd. 

Sha · 
n LaWrence Pfleegcr (2000). Sc?ftware Engineering: Theory And Practice. Prentice 

liaU lnc. 

LISt OF WEB SITES 

http:// . 
W\v\v.m1crosofl com 

http:// 
W\v\v.adobe.com 

http·11 
h W\v\v.macromedict .com 
ttp \\• 

"'' .nctscapc.com 
http 

\\\\'W 1dnc1 COlll 

http:// ' 
W\ .. w.xmt com 

http://w . 
\V\v Java sun.com 

~ achct -
Or of Computer Science 126 

Univ
ers

ity
 of

 M
ala

ya



http·// . · www.altcebot.org 

http://www.agentland.com 

References 
Agent Architectures (Building Chatterbot) 

http://directory. google. comff op/Computers/ Artificial_ 1 ntell igence/Natura I_ Language/Ch 

atterbots/ 

http://dircctory. google. conl!f op/Computers/ Artificial_ 1nte11 igence/N at ura I_ Language{[ u 

ring_ Test/ 

http://www-ai .ijs.si/eliza/ 

http·// · www.manifestation.com/neurotoys/eliza.php3 

~ . -.-
clor of C cnnputcr Science 127 

Univ
ers

ity
 of

 M
ala

ya




