S

Abstract

ABSTRACT

Microsoft’s SQL. Server is a client / server-based relational database management
system (RDBMS) that uses T-SQL as its dialect of the SQL language. A client / server
database is an application that 1s divided into a part that runs on a server and a part that
runs on workstations (clients). The server side provides security, fault-tolerance,

performance, concurrency, and reliable backups. The client side provides the user

interface.

SOQL Server developers have the responsibility for designing and implementing
the databases. Designing a good database starts with understanding the client’s
requirements for the database. SQL Server administrators have the responsibility for the
day-to-day tasks of maintaining and managing the databases. SQL Server administration
involves backing up databases and restoring them when necessary, setting up and
managing users, managing database security, managing the replication environment,

tuning the database system, and troubleshooting any problems that arise.

In this proposal, the Verification on Physical Design of Microsoft SQL Server
7.0 Performance will be presented. The proposal mostly will touched on the part of
tuning and indexes of SQL Server to perform an optimizer performance and shows how
it works on retrieving columns and rows of the real datas. For this purpose, a system will

be developed to communicate with SQL Server.

Acknowledgement

ACKNOWLEDGEMENT

The development of this research regarding about optimization on physical design of
Microsoft SQL Server 7.0 has been done through the advice, assistance and

contributions of many individuals.

First of all, I would like to express my utmost gratitude to my project supervisor,
Mr. Mathew The Ying Wah who has provided me with unlimited support, guidance and
advice throughout the whole development stage of this research. 1 would like to convey
special thanks to my friends for helping me to solve some of problems | faced
throughout the duration of the project especially Jimmy Tan, Kamaruzzaman, Mrs.

Sumathy, Rekha, Kiruben, and Mr. Bikram.

Lastly, sincere thanks to all lecturers and tutors in Faculty of Computer Science

and Information Technology, espectally Mr. Ang and Mr.Simon for sharing their time

and knowledge with me.

1

Table Of Contents

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 : PROJECT INTRODUCTION
1.1 Project Overview

1.2 Objectives

1.3 Project Scope

1.4 Project Development Methodology

1.5 Project Schedule

1.6 Summary Of The Chapters

CHAPTER 2 : MICROSOFT SQL. SERVER
2.1 Literature Review
2.1.1 What Is the Literature Review?

2.1.2

2.2 Introduction To Microsoft SQL Server

22.1

Why Write a Review of the Literature?

History of Microsoft SQL Server on Windows NT

saw

xXi

10

Table Of Contents

222 SQL Server 7.0 Enhancements and Philosophies 16

2.3 A Brief Review Of SQL Server Architecture 18
2.3.1 Database Internals 19
2.3.1.1 What Is A Database 20

2.3.2 Network Architecture 29
2.3.2.1 Net-Library 29
2.3.2.2 Open Data Services 30

CHAPTER 3 : OPTIMIZATION OF SQL SERVER

3.1 Optimization Of SQL Server 32
3.2 Hardware Planning For Performance 36
3.2.1 Hardware Planning 37
3.2.1.1 System Processor : CPU 37

3.2.1.2 Memory : RAM 38
3.2.1.3 Disk Subsystem 43
3.2.1.4 Network 47

3.22 Optimize a Hardware Design That Complements the SQL Server 47

Solution

3.3 Tuning The SQL Server Solution 48
3.3.1 Hardware Resource Tuning 49
3.3. 1.1 Processor Tuning 49

3.3. 1.2 Disk Subsystem Tuning 50

3.3.1.3 Networking Tuning
3.3.2 SQL Server Tuning
3.3.2.1 Memory
3.3.2.2 TempDB In RAM
3.3.5.3 Other SQL Server Tuning Parameters
3.3.3 Database Tuning
3.34 Query and Index Tuning
3.3.4.1 Analyzing The Query
3.3.4.2 Helping SOL Server Choose Indexes
3.3.5 Principles For Performance Tuning SQL Server

3.4 Server Processes

CHAPTER 4 : INDEXES
4.1 What Is An Index?
4.2 Structure Of SQL Server Indexes

421 Clustered Index

422 Nonclustered Index

4.2.2.1 Multiple Nonclustered Indexes

4.2.3 Data Modification and Index Performance Considerations
4.3 Suggested Index Strategies

431 What to Index

4.3.2 What Not to Index

‘.f

Table Of Contents

55
56
i
57
58
61
62

65

67
67

69

76

76

433 Clustered or Nonclustered Index
43.4 Computing Selectivity

43,5 Composite Indexes

4.3.6 Index Covering

4.4 Creating Useful Indexes

441 Tailor Indexes to Critical Transactions

442 Index Column Used in Joins
443 Create or Drop Indexes as Needed

4.5 Between The Line

CHAPTER 5: SYSTEM ANALYSIS AND DESIGN

5.1 Introduction

5.2 Fact Finding Techniques
5.2.1 Research
5.2.2 Internet Surfing

5.2.3 Observation

wn
(5]
~
o

quirements Specification
5.3.1 Functional Requirements
5.3.2 Non-Functional Requirements
54 Developing Tools Analysis

541 Visual Basic 6.0 (VB 6)

542 Consideration of Database

Vi

Table Of Contents

77
78
80
80
81
83
86
88

89

90
90
91

91

Table Of Contents

5.4.2.1 Types Of Database

97
5.5 System Requirements 99
5.5.1 Development Environment 99
3.5.1.1 Hardware Requirements 99
3.5.1.2 Software Requirements 100
5.5.2 Runtime Environment 100
5.5.2.1 Hardware Requirements 100
5.5.2.2 Software Requirements 101
5.6 Project Specs 101
5.6.1 Methods and New Objects 102
3.6.1.1 Normalize Logical Database Design 103
5.6.1.2 Use Efficient Index Design 104
5.6.1.3 Use Efficient Query Design 106
3.6.1.4 Use Efficient Applications Design 108
3.6.1.5 VB Source Code 110
5.7 Conclusion 113
CHAPTER 6 : SYSTEM IMPLEMENTATION AND TESTING
6.1 Introduction 107
6.2 System Development 107
6.2.1 Database Development 107

Vil

6.2.2 Application Development
6.2.3 Database Access
6.2.3.1 Connecting To Data Stores
6.2.3.2 Database Access With ADO

6.2.3.3 The ADO Recordset Object

6.3 System Testing

6.3.1 Testing Principles
6.3.2 Testing Strategies
6.3.2.1 Unit Testing
6.3.2.2 Integration Testing
6.3.2.3 Lrror Handling And Debugging

6.3.3 Summary

CHAPTER 7 : STIMULATION RESULTS

T

7.2

753

74

75

7.6

1.7

78

Stimulation

Use Efficient Index Design

Use Efficient Query Design

Organization Of Database Spaces
Normalize Logical Database Design
Abstract Data Access

Technique To Analyze Slow Performance

Hipothesis

Vil

Table Of Contents

108
11
11
111

113

114
114
115
116
118

119

141

148

CHAPTER 8 : SYSTEM EVALUATION
8.1 Introduction

8.2 Problems Encountered And Its Solution
8.3 Evaluation By Endusers

8.4 System Strengths

8.5 System Limitation

8.6 Future Enhancements

8.7 Knowledge And Experience Gained

8.8 Summary

CHAPTER 9 : CONCLUSION
9.1 Introduction
9.2 What Is The Enterprise

9.3 Database And Developer Tools In Future

APPENDIX

REFERENCE

X

Table Of Contents

150
150

152

158

160

xii

Xix

List Of Figures

LIST OF FIGURES

Figure 1.1 Waterfall Model 5
Figure 1.2 Project Schedule of Optimization of SQL Server 9
Figure 2.1 Devices 21
Figure 2.2 Disk Fragment 23
Figure 2.3 Allocation Unit 24
Figure 2.4 Extent 25
Figure 2.5 Pages 26
Figure 2.6 Table 27
Figure 4.1 The B-tree Structure 68
Figure 4.2 SQL Server Data Page 68
Figure 4.3 Nonclustered and Clustered Index 78
Figure 44 An Index Node Page 82
Figure 45 A Leaf-Level Index Page 83
Figure 6.1 Sample Code of Verification the Performance of SQL Server 110
Figure 6.2 OLE-DB and ADO Architecture 112
Figure 6.3 Unit Test 115
Figure 7.1 Functionality of Stored Procedure 136
Figure 7.2 frmQueries Code 140
Figure 73 Analysis Graphs on Retrieving Differrent Size of Columns 148
Figure 74 Analysis Graphs on Retrieving Differrent Turples of Rows 149

List Of Tables

LIST OF TABLES

Table 3.1 Memory Configurations 39
Table 3.2 Overhead Memory Requirements 40
Table 3.3 SQL Server Memory Requirements 42
Table 3.4 Usage of Composite Key Columns 61
Table 5.1 Functional Requirements 93
Table 5.2 Types of Database 97
Table 6.1 Part of Used Controls and Its Prefix 108
Table 7.1 Controls that been Used in The Form 138

XI

Chapter 1: Project Introduction

PROJECT INTRODUCTION

1.1

PROJECT OVERVIEW

Most systems admimstrators don’t perform monitoring and optimization
functions because they believe they don’t have the time. Most of their time is
spent on firefighting, that is, troubleshooting problems that have cropped up.
It’s safe to say that if they had taken the time to monitor and optimize the
systems, those problems might never have arisen in the first place. That makes
monitoring and optimization proactive troubleshooting. not reactive, as is the

norm,

Monitoring allows to find potential problems before the users find them;
without it, have no way of knowing how well the system is performing
Performance Monitor can be used to monitor both Windows NT and SQL
Server. Some of the more important counters to watch are Physical Disk :
Average Disk Queue (which should be less than 2) and SQL Server : Buffer

Manager : Buffer Cache Hit Ratio (which should be as high as possible).

Query Analyzer allows seeing how a query will affect the system before
place it in production. The profiler is used to monitor queries after they have
been placed in general use; it is also useful for monitoring security and user

activity. Once have used Profiler to log information about query use to a trace
1

Chapter 1: Project Introduction

file, can run the Index Tuning Wizard to optimize the indexes.

Once have created all logs and traces, need to archive them. The various log
files can be used later for budget justification and trend tracking. One of the
primary reasons to do so is to back up requests for additional equipment. One
of the most valuable functions of using the archived data for trend tracking is
proactive troubleshooting, that is, anticipating — and avoiding - problems

before they arise.

SQL Server has the ability to dynamically adjust most of its settings to
compensate for problems. It can adjust memory use, threads spawned, and host
of other settings. In some cases, unfortunately, those dynamic adjustments may

not be enough and may need to make some manual changes.

Performance tuning in the client / server world is something of a magical art.
A combination of so many factors can make an application perform well, and

knowing where to focus the time is what ‘s most important.

The most critical part of optimizing performance is good documentation.
Document statistically how the system works or performs before even starting
any performance tuning. As the performance tuning cycle begins, should
monitor and document the effects of all changes so that it's easy to determine

which changes were positive and which were negative. Never assume that all
B

1.2

Chapter 1: Project Introduction

changes made for one application automatically apply to another application. If
want the best results from optimizing SQL Server, need to know and use the
proper techniques. If don’t, the end result will not be what are hoping for - or

what are needed.

OBJECTIVES

The Verfication on Physical Design of Microsoft SOL Server 7.0 Performance
is a research on physical design to optimize the performance of SQL server by
using indexes and tuning. It evaluates the costs of the available methods for

retricving the data and uses the most efficient method. The objectives of the

system are o ¢

(a) To find the storage location of the rows needed by uses an index and
extracts only the needed rows.

(b) Selecting a physical database design that is appropriate for the system

workload.

(¢) To improve performance so frequently accessed procedures do not need to

be recompiled.

(d) To provide all the intimate details required wringing out every last
transaction per second (tps) possible.

(¢) To estimate the amount of disk space required by sizing an SQL Server.

1.3

Chapter 1: Project Introduction

(f) To provides complete and up-to-date statistics to help manage and monitor

the performance of SQL Server,

PROJECT SCOPE

The Verification on Physical Design of Microsoft SOL Server 7.0 Performance
is more to a research on algorithm that is used to evaluate the methods for
retrieving the data in the most efficient methods. SQL Server has a reasonably
constant exccution time and has no way of influencing their execution time.
Broadly speaking, there are five techniques, which can use to decrease

execution time, which is known as optimization. These techniques are

1) Retrieve every rows of data from a table. Compare time taken 1o retrieve
a single row from a table.

Note: compare using different size

2) Retrieve every columns of data from a table. Compare time taken to
retrieve a single column from a table.

Note: compare using different size

3) Compare using STORE PROCEDURE to SQL. statements if both of them
giving the same results.

Note: compare using different size

4

1.4

Chapter 1: Project Introduction

4) Compare indexing and without indexing. What's the time variance to

retrieve the same data requested.
5) Comparing the time used on different data types. Analyze the effect of
not using the proper data type. Like some fields can use byte instead of

integer

PROJECT DEVELOPMENT METHODOLOGY

Planning | ——
A Analysis | ——y
7 Design TV
x Implcnu:nlalinn-—t
4 Support
] 4 \ 4 A\

Figure 1.1 Waterfall Model

The project development methodology of Verification on Physical Design of
Microsoft SOL Server 7.0 Performance is Waterfall approach. The Waterfall
model builds correction pathways into the model that enable a return to a
previous phase. It is the most widely used methodology to implement the

system development life cycle (Meyer, Baber and Pfaffenberger, 1999). As

1.5

Chapter 1: Project Introduction

shown in the Figure 1.1, the methodology consists of five phases including

planning, analysis, design, implementation and support.

In the planning phase, the current problem will be identified, the need of the
project will be recognized and the project objectives will be set. The analysis
phase involves the processes of analyzing the existing methods for retrieving
data and determining the new most efficient method for extracts the only
needed rows. After the system analysis will be the system design. The design
phase concerns on the system architecture, database design, as well as the
outcome of the reports and screens. The system program design is followed by
the system implementation where the system program will be developed and
tested for execution, In the final phase, the new system program will be ensured

that it has met their goal that is to communicate with SQL Server.

PROJECT SCHEDULE

Project Scheduling plays an important role in planning and developing the entire
thesis. It specifies all the activities involve in project development and the

duration of time for each activity to successfully implement the project.

6

(a)

(b)

(€)

(d)

Chapter 1: Project Introduction

Problem Definition -

e Recognize the need for the project and the current problem
encountered by the most systems admimstrators to perform

monitoring and optimization functions.
» Research on the historical development of SQL Server.

e Develop a project-planning schedule.

User Requirement Study -

e Analysis of physical design’s capabilities and thinking as well as

their search behavior.

e Research on optimization of Microsoft SQL. Server requirements.

Lxisting Systems Analysis and Documentation

¢ A study of current existing methods to execute data archiving

includes all the good functions in the new methods.

Svstem Requirement Determination

e Determine the functional and non-functional requirement as well
as the project scope.

¢ State the innovations that need to occur for the system to be

adapted to verify the performance of SQL Server.

(e)

()

Chapter 1: Project Introduction

Svstem Analysis

e Obtain information through research and observation on the target
books.

e Research through the Internet.

» Analysis on the developing tools used by the various systems.

System Design :
e Include the prototyping and module design using real database.

e Figure out an overall picture of the new method working process
by using algorithms and data dictionaries,

e Specify the system’s outcome.

Svstem Implementation
* Development of algorithm,
» Design the program using the Visual Basic.

» Translate the entire algorithm into specific program language

instructions.

» Testing and debug the program to eliminate all errors.

e Testing

» Application testing by individual

(h)

Chapter 1: Project Introduction

» Acceptance testing that involves users to evaluate the system

to see whether the system meet their needs and functions

correctly.

Documentation :

¢ Recording all information pertinent to the project.

ID | Task Name Period | Start | End | Mac | Apr | May | Jun | Jul | Aug | Sept
1 Problem Definition 6 days 19301 | 253 | [l
2 User Requirement Study | 14 days 24301 | 1/
3 Existing Information 0days | 24301 | 23/4 |
Analysis/Documentation
4 System Requirement | 10days | 26/301 | 54
Determination
5 System Analysis 18 days 5/4/00 23/4 O
6 System Design 27days | 24/4/01 | 2U/5
7 System Implementation | 120days | 22/501 | 19/9
8 Documentation 184days | 19301 | 1999 W

Figure 1.2 Project Schedule of Verification the Performance of SQL Server

Chapter 1: Project Introduction

1.6 SUMMARY OF THE CHAPTERS

Generally there are seven chapters in this project report. Each chapter contains

the information of different phrases of the Verificatin on Physical Design of

Microsoft SOL Server 7.0 Performance development.

(a)

(b)

(¢)

Chapter 1 : Project Introduction

This chapter contains the overall project overview, current problem
definition, the description of the project includes the objectives, the
project scope and project’s features as well as the project schedule
that specifies the activities that must be completed for the project to

succeed.

Chapter 2 : Microsoft SOL Server [Literature Review)

All the previous studies analysis and research on the project topic will
be represented in current chapter. It will focus on the SQL Server as
well as their search behaviour in order to design the optimize
performance that appropriate to them. It will also contain all the

history development of the SQL. Server and all the encountered issues.

Chapter 3 : Optimization Of SOL. Server
All the needs of optimizing and how to tuning SQL Server will take

place in this chapter. It will talks about how to measure the success of
10

()

(h

Chapter 1: Project Introduction

tuning and the power to perform better. Then find out what is the

backend program that causes poor performances.

Chapter 4 : Indexes

All types of indexes are discussed in this chapter. One of the most
important decisions regarding the physical implementation of the
database is how the indexes will be built. It will focus on selecting
indexing method to know how the table will be queried in most

situations.

Chapter 5 : System Analysis And Design

This chapter includes all the information obtained from the research.
The summary and analysis from the observations will be presented.
Besides that, all the functional requirements and non-functional
requirements of the project will be concerned. The analysis of the
system developing tools includes all the hardware and software will
be stated in this chapter. A study of the existing algorithm will be
done and the description, analysis and documentation of the research

will be present in this chapter as well.

Chapter 6: System Implementation
This chapter states all the physical design processes that involve a lot

of algorithm and new methods. It concerns on the system architecture,
11

(8)

(h)

(1)

Chapter 1: Project Introduction

as well as the outcome of the reports. This chapter contains system
coding methodologies and testing strategies used. Besides that, the
maintenance procedures undertaken will also be included in the

chapter.

Chapter 7 : Stimulation Results
This chapter discusses the stimulation outputs of the system.
Techniques and the results of new methods together with graph

analysis will be present in this chapter 7,

Chapter 8 : System Evaluation and Conclusion

Chapter 8 discusses the strengths and limitation of the system. All the
the problem encountered and the suggestions or comments will also
be presented in this chapter. The overall conclusion and the
recommendations for future system enhancement will be stated as

well.

Chapiers 9 : Conclusion
Summary of the performance of Microsoft SQL Server 7.0 and the

important of SQL Server in the progressive environment will take

place in this chapter 9.

Chapter 2 : Microsoft SQL. Server
| Literature Review)

MICROSOFT SQL SERVER

2.1

2.1.2

LITERATURE REVIEW

What Is The Literature

Although might think of novels and poetry when hear the word /irerarure, for a
piece of research the meaning is more specific. In terms of a literature review,
the literature means the works consulted in order to understand and investigate

the research problem.

Why Write A Review Of The Literature

The literature review is a critical look at the existing research that is significant
to the work that is carrying out. Some people think that it is a summary : this is
not true. Although need to summarize relevant research, it is also vital that
evaluate this work, show the relationships between different work, and show
how it relates to rhe work. In other words, cannot simply give a concise
description of] for example, an article : need to select what parts of the research
to discuss (e.g. the methodology), show how it relates to the other work (e.g

What other methodologies have been used? How are they similar? How are they

2.2

Chapter 2 : Microsoft SQL Server
| Literature Review|

different?) and show how it relates to rhe work (what is its relationship to the

methodology?).

INTRODUCTION TO MICROSOFT SQL SERVER

Microsolt SQL Server 7 is an RDBMS (relational database management system).
Relational databases are sometimes referred to as self-defining collections of
tables. That’s because, from end-user’s point of view, data appears to be stored
in two-dimensional tables similar to spreadsheets. In addition to data tables,
RDBMSs all have special tables called catalogs or dictionaries that contain
information about particular databases hence the self-defining part of

definition.

SQL Server, like most high-end enterprise RDBMSs, is designed to
handle multiple users — thousands concurrently, and lots of data — gigabytes (1
billion bytes) or even terabytes (1 trillion bytes) of data. RDBMSs like SQL
server are sometimes called OLTP (online transaction processing systems)
because they're built to keep tiuck of complex transactions. The RDBMS
software is responsible for keeping things in synch and for being able to perform

auto recovery in case of system failure.

14

Chapter 2 : Microsoft SQL Server
[Literature Review)

Today, RDBMSs are also used to build data warehouses and data marts
for so-called DSS (decision support systems) and Bl (business intelligence)
applications. These are usually read-only (as opposed to read-write) databases
that contain data that’s been consolidated from multiple sources, both for fast
access and to minimize the impact of ad hoc (unplanned and unscheduled

interactive) queries on production OLTP systems.

In the past, organizations and their IT (information technology) staffs
have been a lot better about getting data /o databases than with giving users or
customers access to subsets of data they need in order to do their jobs or make
decisions. In today’'s dynamic marketplace, that’s changing. IT departments are
expected to deliver data over intranets and to better integrate their organizations’

diverse data stores with what can be very complex supply chains.

In other words, users take it for granted that RDBMSs will safeguard
their data. But they no longer satisfied to have data disappear into what appears
to them to be a series of black holes. They expect I'T to make it easier for them to

get data back our of their databases as well.

RDBMSs (Microsoft SQL Server) have moved into the limelight because

they can help IT deliver cost-effective solutions in a timely manner.

2.2.1

2.2.2

Chapter 2 : Microsoft SQL Server
|Literature Review)

History Of Microsoft SQL Server On Windows NT

Microsoft initially worked with Sybase Corporation on a version of a SQL server
system for OS/2. When Microsoft abandoned OS/2 in favor of 1ts new network
operating system, Windows NT, it decided to enhance the SQL server engine
from Sybase and help modify the code for Windows NT. The resulting product

was Microsoft SQL Server 4 for Windows NT, stabilizing at 4.21.

Over time, Microsoft took over more and more responsibility for the
development of SQL Server; by version 6, Microsoft was in complete control of
the software. Sybase engineers continued developing their database engine to run
on Windows NT (Sybase version 10), while Microsoft developers continued
enhancing SQL Server 6 (which quickly turned into version 6.5). Sybase
continues to develop its product for Windows NT; Microsoft’s current version of

SQL Server (SQL Server 7) was officially launched in November of 1998.

SQL Server 7.0 Enhancements And Philosophies

One major enhancement to SQL Server 7.0 is that the database engine has
become largely self-configuring, self-tuning, and self-managing. LazyWrtier and
Read-Ahead Manager are self-tuning. Max Async 1/O is likely the only

sp_configure option that will need to be initially configured when dealing with

16

Chapter 2 : Microsoft SQL Server
[Literature Review|

servers with larger amounts of storage. This reduction in tuning requirements
saves valuable administrative time that can be applied to other tasks. While it is
still possible to manually configure and adjust many of the sp_configure options
that were available in previous versions of SQL Server, it 1s recommended that
database administrators allow SQL Server to automatically configure and tune all
sp configure options that SQL Server provides defaults for. This allows SQL
Server to automatically adjust the configuration of the database server as factors
affecting the database server change. (Examples of such factors include RAM

and CPU utilization for SQL Server and other applications running off the

database server.)

In versions of SQL Server prior to the 7.0 version, recovery interval was
also used to tune the checkpoint process. SQL Server 7.0 automatically tunes the
recovery interval option. The SQL Server 7.0 default of 0 for recovery interval
indicates that SQL Server will take responsibility for automatically monitoring
and tuning recovery interval. This default setting will maintain recovery times
less than one minute for all databases as long as there are no exceptionally long-

running transactions present on the system.

SQL Server Log Manager has changed significantly in SQL Server 7.0
from previous versions of SQL Server. SQL Server 7.0 Log Manager manages

its own log cache. This separating of the log file management from the data

17

2.3

Chapter 2 : Microsoft SQL Server
[Literature Review)

cache management brings enhanced performance for both components. SQL
Server Log Manager is also capable of performing disk /O in larger byte sizes
than before. The larger 1/0 size combined with the sequential nature of SQL.
Server logging help to make disk /O performance very good for the Log
Manager. SQL Server 7.0 automatically tunes the performance of SQL Server
Log Manager. There is no longer the need to manually tune the sp_configure

option logwrite sleep.

A BRIEF REVIEW OF SQL SERVER ARCHITECTURE

In order to discuss verification on indexes and tuning of the SQL Server, it is
necessary to briefly discuss and illustrate some key architectural structures and
concepts which are strategic to performance considerations. Moreover,
understanding of these structures and concepts is vital to the development of

optimal SQL Server solutions.

Verification on Physical Design of Microsoft SOL Server 7.0 is a

knowledge-intensive art. The skillful practitioner must have: understanding of :

e The RDB system to be used
¢ The operating system to be used

* The end users and applications which will access the RDB system

18

2.3.1

Chapter 2 : Microsoft SQL Server
[Literature Review)

e Solid relational database design concepts
o Solid query design concepts

e Suitable hardware platforms and associated components

Optimization is viewed as the planning for efficient operation with
respect to user and application performance requirements and logical database
design. Optimization takes place as early as the planning and design phases of
the SQL Server solution process and accordingly will address SQL Server

optimization from a design and development point of view.

Database Internals

In order to build an optimal SQL Server solution, one must be able to take
advantage of the characteristics of the system. An understanding of the
fundamental building blocks of the database is the best place to start. These
building blocks consist of the basic internal structures, which by their nature
affect how the SQL Server performs. Hence, this section will present information
concerning the low level structures associated with a database in general as well
as the tables and indexes which by and large are the focus of the optimization

and tuning process at this level.

19

Chapter 2 : Microsoft SQL Server
|Literature Review]

2.3.1.1 What Is a Database

At the highest level, a SQL Server database is, in essence, a storage area for
database objects. These objects represent tables, indexes, views, system - and
user-defined datatypes, stored procedures, etc. However, these objects describe
what resides in the database, not the elements that constitute the database. A SQL
Server database is comprised of fractional space of one or more logical devices,
which in turn are broken down into disk fragments, and then possibly segments.
This represents the external view of the database as described by the data
definition language and system tables such as sysdevices, sysdatabases,
sysusages, and syssegments. There is also an internal view of the database. This
internal view consists of low-level data constructs such as devices, disk
fragments, allocation units, extents, and pages. It is this internal view, which is of
greatest interest, with respect to understanding how to build optimal SQL Server
solutions. Hence, a brief summary of each of the internal structures follows. In
addition, a discussion relating these internal structures to the higher-level data
objects, will serve as the basis for strategies for the optimal design and tuning of

database objects and queries.

Chapter 2 : Microsoft SQL Server
[Literature Review)

Devices

Database devices store databases and transaction logs. These devices are stored
on disk files and as such, are physical storage allocated to the server. A database
device must be at least 2 MB or 1024 2K blocks in size. When created, the
device is dived into allocation units, each of which is 256 2K pages or 0.5 MB.

Thus, a database device will consist of at Ieast 4 allocation units.

Once a database device has been created, a new row is added to the
sysdevices table in the Master database. This table contains data relevant to the
size, page addressing, logical name, and physical location of the device file.
Having created a database device of a specific size, it cannot be changed. Thus,

care should be given to the determination of device size.

Disk Device

D:SGLDATAWYDATA1 DAT Logical Name: MYDATA1
Device Size: 10 MB = 20 Allocation Units

Figure 2.1 Devices

Chapter 2 : Microsoft SQL Server
[Literature Review)

Disk Fragments

A disk fragment represents the space used by a database over one or more
database devices. Each disk fragment of storage for a database must be at least 1
allocation unit in size. However, by default, a new database will require a disk
fragment of at least 4 allocation units in size or 2 MB. Moreover, database
expansion must be requested in 1 MB increments or 2 allocation units. If the
requested size cannot be satisfied, then SQL Server allocates as much storage as
possible in 0.5 MB increments or 1 allocation unit. Hence, disk fragment sizes

may reflect 0.5 MB increment.

A disk fragment represents the space used by a database over one or more
database devices. Fach disk fragment of storage for a database must be at least |
allocation unit in size. However, by default, a new database will require a disk
fragment of at least 4 allocation units in size or 2 MB. Moreover, database
expansion must be requested in 1 MB increments or 2 allocation units. If the
requested size cannot be satisfied, then SQL Server allocates as much storage as
possible in 0.5 MB increments or | allocation unit. Hence, disk fragment sizes

may reflect 0.5 MB increment.

Drk Devie
Logical Hame: MYDATAN

Dovie Sza: 10 MB =

Chapter 2 : Microsoft SQL Server
[Literature Review)

Dk Devise
Logical tlamie: MYDATA2
Devie Sza: 5 MB = 10 Allacation Unite

3

20 Aliocation Units

.

F.

i T

Allocation Units

Dk Fragments

e

SMB=10AU 2MB=4AU

Figure 2.2 Disk Fragment

An allocation unit represents 256 contiguous pages or 0.5 MB of internal SQL

Server data storage. Within each allocation umit, the first page is the allocation

page. It contains an array that shows how the other 255 pages are used. In

addition, each allocation unit consists of 32 extent structures.

o
L

Chapter 2 : Microsoft SQL Server
|Literature Review)

Disk Fragmerts 5 MB =10 AU

M Bl IS - L2

N

Allocation Unit

Allocation Page —p

[Tt g e

e e R]
P rA s R

e WUV 8 o B Tl

256 Pages
32 Extents

1 - Extent

Figure 2.3 Allocation Unit

Extents

Extents are the smallest unit of data storage reserved for tables and indexes. Each
extent consists of eight contiguous pages. 32 extents populate a single allocation

unit. Extents are linked together to form a doubly linked circular chain for each

table or index object.

Chapter 2 : Microsoft SQL Server
|Laterature Review)

Extert Allocation Unit Allocation Unit
8 Pages 32 Extents 32 Extents
3 Y
2 =+
- |
—— o
¢ -

Figure 2.4 Extent

Pages

SQL Server pages are 2K in size. The page is the unit of 1/0 for accessing and

updating data. There are five distinet types of pages :

e Allocation Pages - Contain information about extents.

e Data Pages - Contain data rows or log records.

e Index Pages - Contain index rows.

e Text/Image Pages - Contain 'EXT/IMAGE data.

 Distribution Pages - Contains index key value entries for the purpose of

optimizing queries.

Chapter 2 : Microsoft SQL Server
|Literature Review)

Page management is accomplished via extent structures. Thus, from a
database table or index object perspective, an allocation of an extent or 8 pages

occurs if a new page is required.

Extent
Page - 2K 8 Pages

Data or Index Rows

Figure 2.5 Pages

Tuables

SQL Server tables are comprised of data pages. Data pages are 2K in size and are
chained together to form a doubly linked hist. Each data page contains a 32-byte
header, which contains information about the page and links to other pages in the
chain. The data rows are stored immediately after the header information and
contain row storage information and the actual data. Thus, cach data page is
capable of storing up to 2016 bytes of data including overhead storage. In

addition, a table with no clustered index, will have a row in the sysindexes table

26

Chapter 2 : Microsoft SQL Server
[Literature Review)

which points to the first logical page and the last or root page of the table's data

page chain.

sysindexes

[nameid] [tiest| rot| |
Data Page - 2K
32byte Header | “*-. \

S 3 -
prev [next jg——p{prev [next lg——piprev [nexd ok
data data data
2016 bytes Data Rows

Figure 2.6 Tables

All data is stored in a contiguous manner, thereby simplifying data page
scans. Information concerning the columns for each row is kept in the

syscolumns table for each table data object.

Indexes

SQL Server indexes are composed of index pages. These pages possess the same
physical characteristics as data pages. Index pages consist of a 32-byte header

and index rows taking up to 2016 bytes. The index rows contain pointers to index

Chapter 2 : Microsoft SQL Server
[Literature Review|

node pages, data pages, or data rows depending upon the type of index
represented. Each page chain in an index is referred to as a level. Index pages at
the same level are doubly linked, with the lowest level being the zero (0) level.
The highest level is called the root and consists of only one page. These
characteristics are true of all SQL Server index types. There are two types of

SQL Server indexes, clustered and nonclustered.

Clustered index pages are comprised of index rows containing pointers to
other index node pages or data pages at the leaf level. Thus, data pages are
physically ordered by the key value associated with a clustered index. In
addition, each clustered index will have a row entry in the sysindexes table with
an indid of 1. This entry points to the first data page in the tables chain via its

logical page number, and the root page of the clustered index via its logical page

number.

Nonclustered index pages are comprised of index rows containing
pointers o other index node pages or individual data rows at the leaf level.
Hence, data pages are not physically ordered by the key value associated with a
nonclustered index. In addition, each nonclustered index will have a row entry in
the sysmdexes table with an indid greater than 1. This entry points to the first
index page in the leaf level of the index chain via its logical page number, and

the root page of the nonclustered index via its logical page number.

28

Chapter 2 : Microsoft SQL Server
|Literature Review)

2.3.2 Network Architecture

The SQI. Server communicates with clients via a network interface layer called
the Net-Library. This interface layer, along with the Open Data Services layer,

account for the bulk of the SQL Server network architecture.

2.3.2.1 Net-Library

A Net-Library is a network interface specific to a particular network interprocess
communication (IPC) mechanism. SQL Server uses a common internal interface
between Open Data Services, which manages its use of the network, and each
Net Library. By doing this, all network-specific considerations and calls are
isolated to just that Net Library. There may be multiple Net Libraries loaded,
one for each network IPC mechanism in use (for example, one for named pipes,
another for TCP/IP sockets, another for SPX, and another for Banyan® VINES®
SPP). Unlike SQL Server on other operating systems, Microsoft SQL Server uses
this Net_Library abstraction layer at the server as well as the client, making it
possible o simultaneously support clients on different networks. Windows NT

allows multiple protocol stacks to be in use simultaneously on one system.

It 1s important to distinguish between the IPC mechanism and the

underlying network protocol. IPC mechanisms used by SQL Server include

29

Chapter 2 : Microsoft SQL Server
[Literature Review)

named pipes, SPX, and Windows® Sockets. Network protocols include
NetBEUI, NWLink (SPX/IPX), TCP/IP, and VINES IP. Named pipes, a
common IPC used in SQL Server environments, can be used over multiple
network protocols (named pipes can be used efficiently over NetBEUI, NWLink
SPX/IPX, and TCP/IP, all simultaneously). SQL Server in other environments
has traditionally supported only a single IPC mechanism (usually TCP/IP
sockets) that was hard-coded directly into the network handler. All clients

needed to speak to that IPC mechanism, and nothing else, and usually only with

a single network protocol.

2.3.2.2 Open Data Services

ODS functions as the network connection handler for SQL Server for Windows
NT. In the past, Open Data Services and the SYBASE® Open Server were often
referred to as "conceptually” the front end of SQL Server. However, they were
different implementations that attempted to perform the same function. But it is
literally true that SQL Server for Windows NT is an ODS application. SQL
Server uses the same ODS librory (OPENDSNT.DLL) as any other ODS
application. ODS manages the network, listening for new connections, cleaning
up failed connections, acknowledging "attentions” (cancellations of commands),
and returning result sets, messages, and status back to the client. SQL Server

chents and the server speak a private protocol known as Tabular Data Stream

30

Chapter 2 : Microsoft SQL Server
[Literature Review)

(TDS). TDS 1s a self-describing data stream. In other words, the TDS data stream
contains "tokens" that describe column names, datatypes, events (such as
cancellation), and return status in the client-server "conversation.” Neither clients
nor servers write directly to TDS. Instead, open interfaces of DB-Library and
ODBC at the client are provided that emit TDS. Both use a client implementation

of the Net Library. At the server side, ODS is basically the mirror image of

DB _Library/ODBC,

31

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

VERIFICATION THE PERFORMANCE OF SQL SERVER

3.1 VERIFICATION THE PERFORMANCE OF SQL SERVER

There are several ways to measure performance and consequently, there are
several parameters to optimize SQL Server. The performance of a database

application may be evaluated by one or more of the following criteria :

e Average response time of a transaction

e Maximum response time of a transaction

e Percentage of transactions whose response time does not exceed a certain
time hmit

e Throughput - the number of transactions per unit of time

e Concurrency - the number of users served simultaneously within a

specified response time

The industry-standard TPC benchmarks (issued by the Transaction
Performance Council) measure the performance of a systern by the number of
transactions per sccond and the average price per transaction. Different TPC
benchmarks are designed for different types of applications. TPC-C represents a
transaction mix typical for an online transaction processing (OLTP) system,

while TPC-D is representative of a data warehouse activity. Without diminishing

32

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

the importance of TPC benchmarks, also recommend to perform own testing for
the applications on hardware in the environment. TPC results are achieved on
specific hardware and network configurations - not to mention that every
application and database schema 1s different and may require specific

optimization techniques.

A user's perception of application performance may be the most important
factor of its evaluation. Very often, it has little to do with the point of view and
may be based on prior experience with legacy systems, comparison with other
similar applications and factors unrelated to the database part of the application.
For example, an inefficient network may kill the efforts to optimize SQL Server
code, a poorly designed GUI may require that a user makes dozens of clicks to
receive desired results, and an untrained user may submit an ad hoc query that
brings the whole server to a halt. Performance optimization and tuning are
related areas of database design. But should keep in mind all of the many

components that may influence overall application performance :

¢ Server hardware

e Server operating system

» Network hardware and topology
» Network operating system

e Application architecture

33

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review|

¢ Middleware tier

¢ Client computer hardware
¢ Frontend applications

e Database design

e Backend (Transact-SQL) programs

From the user's perspective, all these factors contribute to an application's
response time. The first task is to find and isolate bottlenecks. If the poor

performance is caused by SQL Server, then have some work to do.

It 1s important to realize that in many cases there is no clear-cut tuning
solution. Verification is usually a series of trade-offs. For example, it may
sacrifice overall throughput to improve concurrency, or it may optimize average
response time at the expense of throughput. In some cases, it might achieve
stellar performance of a decision-support query but pay the price by slowing
down online transactions. Most importantly, it often have to choose between
better performance and lower price. More expensive systems naturally have more
power to perform better. As with any uiher optimization task, tuning SQL Server
programs requires that to develop criteria to measure the success of the tuning
efforts. It depends on the particular application goals and requirements. Talk to
the users to determine what is most important to them. Choose which parameters

should not exceed certain limits and which ones are critical to overall

34

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

performance. It may even need to assign weights to different criteria reflecting

their relative importance.

Sometimes a user's perception of poor response time may be alleviated with
an approach that has nothing to do with programming. It could take up to five
minutes to bring back results of certain queries because of the large amount of
data that had to be processed. There was no more room for SQL code
optimization and the client didn't want to pay for faster server hardware. But the
angry users turned into happy campers when modified the GUI application to
randomly display prestored graphic images while waiting for a query to come
back. It allowed users to bring their own favorite pictures and scanned them into
a stack of images. The concept was the same as in some modern screensavers,
although very novel at the time this application was developed. Users were
happy watching pictures of landscapes, animals, and Clint Eastwood (the
department manager brought this one himself). Of course, it might argue that
times have changed and today they would demand 3-D graphics, animation,

sound, and real-time stock quotes.

Any optimization cffort requires an investment of time. The day will nat
stretch beyond 24 hours, no matter how little sleep allow itself. Before spend the

precious time on SQL Server code optimization, must find out whether it is the

backend program that causes poor performance.

35

3.2

Chapter 3 : Verification The Performance Of SQL, Server
|Literature Review]

If narrow down the problems to SQL Server, investipate which stored
procedure or table is causing the trouble. In many cases, it will find that only one
place in the code requires extra work. Should not spend time optimizing pieces
that are not causing complaints. Isolating and prioritizing bottlenecks is probably

more important than rewriting inefficient queries.

An often-overlooked approach to optimization involves evaluating the
workload on the database system and trying to balance it more evenly throughout
the day, week and month. Monitor system usage for several weeks to determine
the busiest hours of the day and the busiest days of the week and month. Shift all
maintenance jobs and long-running reports to off-peak hours and days. It usually
requires no code changes but yields incredible performance gains. Empowered
with the research results, managers may even consider shifting the working hours
of the staff. Spreading work evenly helps to alleviate users' competition for

limited server resources during peak hours.

HARDWARE PLANNING FOR PERFORMANCE

Understanding the internal storage structures associated with SQL. Server
databases, possessing knowledge of the user and application performance
requirements, and having designed an optimal logical database design, it is now

appropriate to consider the optimal hardware platform based upon this

36

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

information. It is the goal of this section to provide information which will help

to determine the best possible hardware configuration for the database

environment.

3.2.1 Hardware Planning

Hardware planning as it relates to SQL Server is primarily concerned with
system processors, memory, disk subsystem and the network. These four areas
comprise the bulk of all relevant hardware platforms on which Windows NT and
SQL Server operate. Hence, this will address planning considerations which are

generic to all platforms and useful for scaling and implementing optimal SQL

Server solutions.

3.2.1.1 System Processor : CPU

In trying to determine the initial CPU architecture which is right for the
particular needs, attempting to estimate the level of CPU bound work which will
be occurring on the hardware platform. As far as SQL Server is concermed, CPU
bound work can occur when a large cache is available and is being optimally
used, or when a small cache is available with a great deal of disk /O activity

aside from that generated by transaction log writes. The type of questions which

must be answered at this point are as follows :

37

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

o Will the system be dedicated to SQL Server?

« How many users or processes will access the SQL Server?

« What will the level of transaction throughput be?

« Is the SQL Server a departmental system or an enterprise system?

o Will there be a large number of concurrent users accessing the SQL
Server?

« Will there be a great deal of aggregation occurring on the SQL Server?

The answer to these questions may have already come from the requirements
specifications. If not, it should be able to make some reasonable estimates. The
bottom line is purchase the most powerful CPU architecture which can justify.
This justification should be based upon the estimates, user requirements, and the
logical database design. However, based upon experience it is suggested that the

minimum CPU configuration consist of at least a single 80486/50 processor.

3.2.1.2 Memory : RAM

Determining the optimal memory coufiguration for a SQL Server solution is
crucial to achieving stellar performance. SQL Server uses memory for its
procedure cache, data and index page caching, static server overhead, and

configurable overhead. SQL Server can use up to 2 GB of virtual memory, this

38

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

being the maximum configurable value. In addition, it should not be forgotten

that Windows NT and all of its associated services also require memory.

Windows NT provides each Win32® application with a virtual address
space of 4 GB. This address space is mapped by the Windows NT Virtual
Memory Manager (VMM) to physical memory, and can be 4 GB in size
dependent upon the hardware platform. The SQIL. Server application only knows
about virtual addresses, and thus can not access physical memory directly. This
is controlled by the VMM. In addition, Windows NT allows for the creation of
virtual address space which exceeds the available physical memory. Therefore, it
is possible to adversely affect performance of SQL Server by allocating more
virtual memory than there is available physical memory. Hence, the following
table contains rule-of-thumb recommendations for different SQL Server memory

configurations based upon available physical memory.

i Machmc Memory(MB) SQL Server Memory (MB) |
N TR AN Tahas ¥ iseh > iy
= —— ——
W=k - ——— T |
e was [e Ot e
SR U L ATEST
8 [OO e e e
& L R & OIET T
R N e 464 L7 .

Table 3.1 Memory Configurations

39

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

These memory configurations are made for dedicated SQL. Server
systems, and should be appropriately adjusted if other activities such as file and
print sharing, or application services will be running on the same platform as
SQL Server. However, in most cases it is recommended that a minimum physical
memory configuration of 32 MB be installed. Such a configuration will reserve
at least 16 MB for Windows NT. Again, these memory configuration
recommendations are only guidelines for initial configuration estimates, and will
most likely require appropriate tuning. Nevertheless, it is possible to make a
more accurate and optimal estimate for SQL Server memory requirements based

upon the previous knowledge gained from user and application performance

requirements.

In order to make a more accurate estimate for an optimal memory
configuration, the following table for SQL Server for Windows NT configurable

and static overhead memory requirements have to refer,

!_ _Resource i_(ﬁoﬂﬁgﬂl‘able lDefault _\’_alg_el Bytes per resource Space (MB)

| User Connections |) (- }____ T s ‘_3_090 !M 0.43 J
[Open Dalabfu_s__ [Yes __'r = 10 ____'_1. 650 B 001 |
| - d()l;l'.‘ﬂ ()bIC(IQ ? = ch, _: 500 “.; — -'5-2- e 0-._64”_- 1
! Locks' | jesly o:¥es willo 15,000 el 28 | BRI
| Devices | No [25 | 300 | 007 |
! Static server overhead [_No | NA [po00000 | 20 |
| TOTAL O\erhead_ } IR l > 6—|8 ‘

Table 3.2 Overhead Memory Requirements

40

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

Can use this information to calculate a more exact memory configuration
estimate with respect to actual memory usage. This is done by taking the

calculated TOTAL Overhead above and applying it to the following formula :

SQL Server Physical Memory - TOTAL Overhead = SQL Server Memory Cache

The SQL Server memory cache is the amount of memory which is dedicated to

the procedure cache and the data cache.

The procedure cache is the amount of the SQL Server memory cache
which is dedicated to the caching of stored procedures, triggers, views, rules, and
defaults. Consequently, if the system will take advantage of these data objects
and the stored procedures are to be used by many users, then this value should be
proportional to such requirements. Furthermore, these objects are stored in the
procedure cache based upon the frequency of their use. Thus, it want the most
utilized data objects to be accessed in cache verses retricval from disk. The

system default is 20 percent of the available memory cache.

The data or buffer cache is the amount of the SQL Server memory cache
which is dedicated to the caching of data and index pages. These pages are stored
to the data cache based upon the frequency of their use. Therefore, the data cache

must to be large enough to accommodate the most utilized data and index pages

41

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

without having to read them from disk. The system default is 80 percent of the

available memory cache.

Accordingly, the following example for a dedicated SQL Server

illustrates a more accurate estimate of SQL Server memory requirements.

Resource 1 Estimated Value]_ Bytes per resource I ~ Space (MB)
User Connections ; 50 —) 18,000 e\ 0.9
~ Openl Databéscs l____l_Q _D_e_f:zlu_lL____[650 3 E " » KOOI F
Open Objccls . i 500 - Default T— - '_ 72# . I o004
Locks | FUAT000 7 el 28 i Tk 7 7%
Dcwccs) 13 o _;56 [“_70_0__W 1 0.07 |
Sl.m{. server overhcad ! N/A S] y !2600;00_6 _*1_ _ 2(_)_ et
TOTAL Overhead | X N R T

Table 3.3 SQL Server Memory Requirements

« Physical system memory =48 MB

o Windows NT physical memory = 16 MB

« SQL Server physical memory = 32 MB

e 32 MB-3.44 MB = 28.56 MB Total Memory Cache
o Procedure cache: 28.56 * 0.2 =5.712 MB

« Data cache: 28.56 * 0.8 = 22 84 MB

Hence, as a result of such overhead requirements, it will have
approximately 28 MB to work with on the SQL Server. As overhead

requirements such as user connections and locks grow, this value will be reduced

42

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

and may subsequently lead to performance problems which will then require

tuning.

3.2.1.3 Disk Subsystem

Achieving optimal disk I/O 1s the most important aspect of designing an optimal
SQL Server solution. The disk subsystem configuration as addressed here
consists of at least one disk controller device and one or more hard disk units, as
well as consideration for disk configuration and associated file systems. The goal
is to select a combination of these components and technologies which
complements the performance characteristics of the SQL Server. Hence, disk
subsystem 1O as it relates to reads, writes, and caching defines the performance
characteristics which are most important to SQL Server. The disk subsystem

components and features should look for are as follows :

» Intelligent fast SCSI-2 disk controller or disk array controller

» Controller memory cache

~ Bus Master card - Processor on-board results in fewer
interrupts to the system CPU(s).

» Asynchronous read and write support

» 32-bit EISA or MCA

43

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

» Hardware level RAID supported

e Fast SCSI-2 drives

» Read ahead caching (at least a track)

The determination of how many drives, of what size. of what
configuration, and of what level of fault tolerance, is made by looking back to
the user and application performance requirements, understanding the logical
database design and the associated data, and understanding the interplay between
system memory and disk /O with respect to Windows NT and SQL Server.
There are several key concepts and guidelines which aid in selection of an

appropriate disk subsystem components.

('oncept 1 : Most database 1/O's (reads and writes) are random with respect 1o
data and indexes. This is true for on-line transaction processing and decision

support systems.

Concept 2 : Writes to the SQL Server transaction log are sequential and occur as

large bursts of page level /O during the checkpoint process or update, insert, or

delete operations.

44

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

Concept 3 : Optimal access to randomly accessed data and indexes is achieved
by distributing the database over several physical disk units, in a single stripped
volume (RAID 0 or RAID 5). This results in multiple heads being able to access

the data and indexes.

Concept 4 : Optimal access to sequentially accessed data is achieved by isolating
it from the randomly accessed data and index volume(s), on separate physical
disk units which may be RAID configured (usually RAID 1, mirrored for logs).
Sequential access is faster via a single head which is able to move in one

direction.

Concept 5 : Duplexing of intelligent disk controllers (SCSI or Array) will usually
yield greater performance. This 1s especially true of systems which must sustain
high transaction throughputs, systems with small data (buffer) caches, and
systems with large data volumes. In addition, if the number of physical disk units

exceed a controllers capacity, another controller will be necessary.

Concept 6 @ A good method for det:rmining the number of the disk units
required for an optimal disk subsystem is to multiply the number of 1/O's per
application transaction by the total number of application transactions per
second, as generated by the users or the applications. This will yield the total

number of user or application generated 1/O's per second. Take this value and

45

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

divide it by the average sustainable 1/O's per second of the physical disk units
may use (an average range is between 30 and 50 1/O's per second, which includes
system overhead and latency). The result is a recommended number of disk units

for this particular SQL Server solution.

C'oncept 7 + A method for determining the size of the disk units required for an
optimal disk subsystem is to divide the total space required for the database by
number of drives determined previously. This will yield a value which must then
be adjusted according to the RAID level employed and or the number of

controllers employed.

C‘oncept 8 ¢ The minimum optimal disk subsystem configuration for any SQL
Server solution will consist of the SCSI type of controller and at least two SCSI
drives. This disk configuration is necessary in order to isolate the SQL Server
transaction log(s), placing them on one physical disk and the database devices or

file(s) on the other physical disk.

These concepts should be used s guidelines and not as absolutes. Each
SQL Server environment is unique, thereby requiring experimentation and tuning

appropriate to the conditions and requirements.

46

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.2.1.4 Network

As with intelligent disk controllers, the goal is to select an intelligent network
interface card (NIC) which will not rob CPU or memory resources from the SQL
Server system. This network card should meet the following minimum

recommendations ;

o 32-bit EISA or MCA
« Bus Master card - Processor on-board results in fewer interrupts to the
system CPU(s).

e On-board memory cache

3.2.2 Optimize A Hardware Design That Complements The SQL Server Solution

When building an optimal SQL Server solution the choice of hardware should be

based upon :

« User and application performance requirements
« Knowledge of the Windows NT operating system
« Knowledge of the SQL Server internals and operations

« The logical database design

47

3.3

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

All to often, SQL Server solutions are made to fit generically configured
hardware platforms, thus resulting in poorly performing systems. Consideration
needs to be given to proper hardware configuration before the physical
implementation of the database. This strategy will result in less tuning and
augmentation of the hardware components, thus resulting in better performance

[rom the beginning and saving time and potentially money.

TUNING THE SQL SERVER SOLUTION

Tuning the SQL Server solution should be much less difficult at this point since
have applied optimization guidelines throughout the solution development
process. However, reality dictates that no implementation is performance perfect.
A prior understanding of the Windows NT Performance Monitor is required in

order to apply some of the tuning strategies presented.

All monitoring requires the use of the Windows NT Performance Monitor
unless otherwise specified. In addition, all guidelines apply to dedicated SQL
Server systems. However, these techniq: es can be applied to non-dedicated SQL

Server systems with only slight modification.

48

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.1 Hardware Resource Tuning

The tuning of hardware resources typically involves the discovery of
"bottlenecks". A bottleneck is the single resource that consumes the most time
during a tasks execution. In the case of SQL Server, such resource bottlenecks
adversely affect the performance of normal relational database operations.
Hence, the following information pertains to the detection of SQL Server
resource bottlenecks, and the subsequent adjustment of the resource in order to

relieve the demand and increase performance.

3.3.1.1 Processor Tuning

Processor tuning involves the detection of CPU bound operations. Assuming that
SQL Server has sufficient memory to run, increasing CPU power is the most
effective hardware-related way to improve performance. It can add CPU power

in two ways : using a faster CPU or adding additional CPU(s).

e [laster CPU: When perforniance is important, should consider using
as fast a CPU as possible. In general, a faster CPU will probably
realize a bigger performance gain over adding an additional CPU.
This is because, while adding CPUs provides additional power, the

operating system and SQL Server (or any application) incur an

49

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

overhead in managing the work performed by multiple CPUs. Of
course, once are running the fastest CPU available in chosen

architecture, it can add additional CPUs to increase performance.

o Additional CPUf(s) : Windows NT supports symmetric multi-
processing (SMP). Since SQL Server is implemented using native
Windows NT threads, it can automatically take advantage of multiple
CPUs. SQL Server takes good advantage of SMP platforms, and can
boost performance significantly by moving the application to an SMP

platform, or adding additional CPUs to an existing SMP platform.

3.3.1.2 Disk Subsystem Tuning

Disk subsystem tuning involves the detection of disk I/O constrained operations.
Such bottleneck constraints may be caused by the disk controller, the physical
disk drives, or lack of some other resource, which results in excessive disk 1/0
generating activity. Furthermore, poor disk subsystem performance may also be
caused by poor index or database design. The goal is to operate the SQL Server
with as few physical 1/O's and associated interrupts as possible. In order to
monitor low-level disk activity with respect to the PhysicalDisk Performance
Monitor counters, it is necessary to enable the diskperf option. This can be

accomplished by issuing the following command from the system prompt:

50

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

diskperf -y. Running with this option enabled may result in a slight (0.1%-1.5%)
degradation in performance. Hence, disable it when not required for use (diskperf

-n).

When performance tuning the SQL Server disk subsystem, first should
attempt to isolate the disk I/O bottleneck with the SQLServer counters, using the
PhysicalDisk and LogicalDisk counters for more detailed monitoring and

refinement of an action plan.

3.3.1.3 Networking Tuning

Network tuning with respect to SQL Server performance is affected by the

following :
o Throughput of the LAN or WAN.

« Throughput of the server's network interface card.

« Availability of resources on the server to service client requests.

However, when considering remote procedure calls between SQL Servers or

data replication, LAN and or WAN throughput will be an important concern.

51

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.2 SQL Server Tuning

Tuning the SQL Server involves appropriately adjusting the SQL Server
configuration, options and setup values based on observed operational
characteristics. Typically these observations are made during peak work cycles in
order to optimize for the heaviest workloads. However, application of these
recommendations may result in different outcomes depending upon your

particular SQL Server environment.

3.3.2.1 Memory

SQL Server memory is divided between SQL. Server overhead, the procedure
cache and the data cache. The primary goal is to cover SQL Server overhead
while effectively distributing the remaining memory between the procedure and
data cache via the procedure cache configuration parameter. The distribution of
the remaining memory between these caches is an exercise in making sure the
most utilized objects are cached in their respective caches. Hence, the most
utilized stored procedures should be in the procedure cache, while the majority of

frequently used indexes and tables should be in the data cache.

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

The best way to determine how SQL Server is using memory is to
execute DBCC MIEMUSAGE. This command will indicate the amount of
memory allocated to SQL Server at startup, the 12 largest objects in the
procedure cache, and the 20 largest objects in the data cache. Hence, the
following recommendations are based upon the utilization of this data and will

aid in determining the optimal size for these caches,

Tuning the Procedure Cache

When tuning the procedure cache, the goal is to determine the optimal size for
the purpose of holding the most active stored procedures as well as the other
procedure cache data objects. In essence, it want to prevent reading stored
procedures from the disk as this is very costly. Moreover, if the procedure cache
is large enough, it will prevent the displacement of procedures in the cache by
procedures not yet in the cache. (Must remember that the SQL Server will store a
duplicate copy of each stored procedure execution plan, which is accessed by
more than one user.) By default SQL Server distributes 20% of available
memory to the procedure cache after SQL Server overhead has been allocated.
The task is to determine if this 20% is sufficient, not enough, or to much based

on the size of procedure cache objects.

53

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

It can determine if the procedure cache 1s large enough by executing the
most frequently used stored procedures, and then running the DBCC
MEMUSAGE command, the 12 largest stored procedures in the procedure cache
will be displayed. If have more than 12 stored procedures, it can continue to
execute the other procedures, checking each time with the DBCC MEMUSAGE
command to see if one of the previously executed procedures has remained
cached. It can also execute each stored procedure obtaining its execution plan
size via the DBCC MEMUSAGE command. Once have executed all high
frequency procedures and obtained their sizes, add these size values to derive the

total cache size necessary for all procedures.

Tuning the Data Cache

The data cache is comprised of the memory left after SQL Server overhead and
the procedure cache memory requirements have been satisfied. The goal is to
have enough cache space to hold the majority of all indexes used, and a

respectable percentage of the most frequently accessed tables, thus reducing

physical /O's.

It also use the DBCC MEMUSAGE command to view the 20 largest

objects in the data cache. Again, can use this data in order to determine a

54

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

respectable size for the data cache, based on the sizes indicated for these 20
database objects. It can also determine the size of the most frequently accessed
tables and indexes. Having calculated these sizes, may elect to allocate enough
memory to SQL Server in order to contain the entirety of these database objects

in the data cache.

3.3.2.2 TempDB in RAM

If the queries being executed against the SQL Server are using temporary
workspace for sort operations, GROUP BY, temporary tables, multitable join
operations, ete. it will be beneficial to move tempdb to RAM. However, in order
to make this move, must have enough memory available over that which is
alrcady required by and allocated to Windows NT Server and SQL Server.
Consequently, if the rempdb is currently 25 MB in size, then the total memory
required on for the system is: 16 MB for Windows NTS + total SQL Server

memory + 25 MB for tempdb.

55

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.2.3 Other SQL Server Tuning Parameters

Dedicated Multiprocessor Performance

If the hardware platform possesses multiple processors and the system will be
dedicated to SQL Server, consider enabling the Dedicated Multiprocessor

Performance option. This will increase SQL Server's performance substantially.

Boost SQL Server Priority

If have not enabled the Boost SQL Server Priority option, doing so will allow
SQL Server threads to run in the real-time priority class (16 - 31) Running at
this priority level, SQL Server threads will be executed before all other process
threads running in the lower vanable priority class (1 - 15). Hence, on single
processor machines under heavy load and not dedicated to SQL Server, other
processes may be starved. However, if the system is dedicated to SQL Server and
disk I/O activity tends to be heavy, enabling this option may result in substantial

performance gains.

56

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.3 Database Tuning

3.3.4

The database tuning processes is based on performance observations gathered
during normal SQL Server operations, typically at the time of peak work cycles.
The type of performance problem symptoms which indicate possible database
tuning is necessary, usually consists of excessive disk I/0 and or excessive cache
flushes. Both of these symptoms have been addressed earlier with respect to
memory and disk /O tuning. However, assuming that these SQI. Server
resources have been sufficiently tuned, it 1s now time to examine the database

design and the mapping of the physical database to physical disk devices.

Query and Index Tuning

Under most circumstances, if an efficient database design has been implemented
on a suitable hardware platform, the SQL Server query optimizer will efficiently
optimize most queries without concern for the structure of such queries, thereby
resulting in exceptional performance. However, if a particular query is
performing poorly and performance monitoring of critical system resources

indicates no bottleneck problems, query and or index tuning may be necessary.

57

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.4.1 Analyzing the Query

Analyzing a query is a process of elimination. Before begin to dissect the
structure of the SQL query, it 1s prudent to eliminate other contributing factors
which may influence SQL query performance. Having eliminated these other

factors, it is then appropriate to analyze the structure of the query.

Views

SQL queries that access views may seem relatively simple in structure.
Nonetheless, the actual view may be very complex in structure. Consequently,
the view may in fact need to be analyzed for poor performance before any
queries which access it can be analyzed. Therefore, analyze the underlying SQL

statement which comprises the view.

Triggers

Slow query performance may also be attributed to the fact that a trigger may be
defined for a table associated with the query. Accordingly, 1t may be that the
trigger is performing slowly and not the query. However, trigger overhead is
usually very low. The time involved in running a trigger is spent mostly in

referencing other tables, which may be in the data cache or on the disk. In fact,

58

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

the deleted and inserted tables are always in memory since they are logical
tables. Hence, it 1s the location of other tables which may be causing physical

page reads from disk, that is the cause of slow performance.

Stored Procedures

The optimization of the search clause by the Query Optimizer is based on the set
of values that are given when the stored procedure is first executed. The stored
procedure then remains in cache and the query is not re-optimized each time it is
executed. An assumption 15 therefore made that the first set of values used with
the stored procedure are representative. If this is not the case, it 1s necessary to
force a recompile of the stored procedure. This can be done by executing WITH
RECOMPILE, restarting SQL Server, or by executing the sp_recompile stored

procedure.

Since stored procedures are not re-entrant, if two processes execute a
stored procedure concurrently, two copies of the stored procedure are compiled,
optimized, and stored in cache. Multiple copies of the same stored procedure
may have different query plans if parameter values passed to the stored
procedure are very different. The copies stored in cache remain there until they
are aged out of cache or until they are forced to recompile, either explicitly by

executing sp_recompile or restarting SQL Server, or implicitly by dropping an

59

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

index or table that is referenced by the stored procedure. (Stored procedures are
automatically recompiled when objects or indexes on any of the tables used by
the query plan are dropped. They are not recompiled when add indexes or run

UPDATE STATISTICS.)

Concurrency

A query may be performing slowly due to concurrency conflicts with other
queries. In order to determine if concurrency problems do exist, observe if the
query runs efficiently during some periods of the normal work cycle and slowly
during others. If this behavior is exhibited, then should check the locking levels

of other active SQL Server processes.

This can accomplish by running the sp_who stored procedure in order to
determine if the query being analyzed is being blocked by another process. It can
then execute the sp_lock stored procedure to obtain more detail on the state of
process locks with respect to the identified queries. There are also SQLServer-
Locks performance monitor counters which are useful for determining the types
of locks held system wide. The most useful for determining if server concurrency
problems exist are Total Blocking Locks, Total Demand Locks, and any locks
which are "Exclusive". If any of these values are high with respect to the number

of executing query processes, then a concurrency problem probably exists.

60

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

3.3.4.2 Helping SQL Server Choose Indexes

The mere existence of indexes 1s not enough for SQL Server to use them. Must
have to specify conditions in the WHERE clause that take advantage of these
indexes. If have only partial conditions for a composite key, specify WHERE

clause conditions for the leftmost columns of the key.

For example, suppose have a table with an index on columns a, b, ¢ and
d. Depending on the WHERE clause conditions, SQL Server may use all or

fewer columns of the index, or not use the index at all, as shown in Table 3.4,

| WHERE Clause Conditions __Key Columns That May Be Used
WHERE a = @a AND b= @b AND ¢ = (@c abcd
ANDd=@d R ek T e Jt JAR 3 b S
WHERE a = @a AND b = @b AND ¢ = @c L o
WHEREa=@aANDb=@bANDd=@d __ | &b
WHEREa=@aANDc=@cANDd=@d | a 5
WHERE b= @b ANDc=@c ANDd=@d [ndex cannot be used (unless all columns
eeded for the query may be found in the
index, in which case SQL Server may do
__sanindex scan instead of a table scan)

—

Table 3.4 Usage of Composite Key Columns

61

335

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

Principles For Performance Tuning SQL Server

Let SOL Server take care of most of the tuning work.

SQL Server 7.0 has been dramatically enhanced in order to create a largely auto-
configuring and self-tuning database server. Take advantage of SQL Server's
auto-tuning settings. This helps SQL Server run at peak performance even as

user load and queries change over time.

RAM is a limited resource.

A major part of any database server environment is the management of random
access memory (RAM) buffer cache. Access to data in RAM cache is much
faster than access to the same information from disk. But RAM is a limited
resource. If database 1/0 (input/output operations to the physical disk subsystem)
can be reduced to the minimal required set of data and index pages, these pages
will stay in RAM longer. Too much unneeded data and index information
flowing into buffer cache will quickly push out valuable pages. The driving focus

of performance tuning is to reduce 1/0 so that buffer cache 1s best utilized.

Chapter 3 : Verification The Performance Of SQL Server
| Literature Review]

('reate and maintain good indexes.

A key factor in maintaining minimum [/O for all database queries 1s to ensure

that good indexes are created and maintained.

Monitor disk I'O subsystem performance.

The physical disk subsystem must provide a database server with sufficient /O
processing power in order for the database server to run without disk queuing,
Disk queuing results in bad performance. This document describes how to detect

disk 1/0 problems and how to resolve them.

Application and Query Tuning.

This becomes especially important when a database server will be servicing
requests from hundreds or thousands of connections through a given application.
Because applications typically determine the SQL queries that will be executed
on a database server, it is very important for application developers to understand
SQL Server architectural basics and how to take full advantage of SQL Server

indexes to minimize /0.

63

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review|

Take advantage of the powerful combination of SQL Server Profiler and Index

Tuning Wizard.

SQL Server Profiler can be used to monitor and log a SQL Server's workload.
This logged workload can then be submitted to SQL Server Index Tuning
Wizard so that index changes can be made to help performance if necessary.
Regular use of SQL Profiler and Index Tuning Wizard helps SQL Server

perform well as the overall query workload changes over time.

lake advantage of SQL Server Performance Monitor to detect bottlenecks.

SOQL Server 7.0 provides a revised set of Performance Monitor objects and
counters, which are designed to provide helpful information for monitoring and
analyzing the operations of SQL Server. This document describes key

Performance Monitor counters to watch.

Take advantage of SOL Server Query Analyzer and Graphical ShowPlan.

SQL Server 7.0 introduces Graphical ShowPlan, an casy method to analyze
problematic SQL queries. Statistics /O is another important aspect of Query

Analyzer that this document will describe.

64

34

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review]

SERVER PROCESSES

Processes make up the heart of all transactions, so it makes sense to optimize the
processes. The spin counter option and time slice option optimizes processes o
that no process can bog down system resources by continuously staying in the

system.

The spin counter option specifies a limit on the attempts a process can
make when trying to obtain access to a resource. On uniprocessor systems, a
process can only try once. With multiprocessor systems, however, the default

value is 10,000, which can be altered.

The time slice option 1s used to set the time limit for a process to be
active. If the process exceeds the time limit, the SQL Server kernel assumes the
process is stuck and automatically terminates it. The time slice value should
carefully consider. If it is too low, it will slow down the system. This drop in
system performances happens because the processes scheduling themselves in
and out of the CPU bog down the system. If set time slice too high, some
problems can occur. For example, 1t can cause long response times when one
process doesn't schedule itself out of the CPU until after a long time. This makes

the other processes wait in order to be able to run.

65

Chapter 3 : Verification The Performance Of SQL Server
[Literature Review|

To make these changes, use the sp configure system procedure. Since
these are advanced options, it can only change the settings when show advanced

oplions 1s set to one.

66

Chapter 4 : Indexes
[Literature Review]

[INDEXES

41 WHAT IS AN INDEX

"What in the world is on indexes and index selection doing in database
administration?" It shown that it is important to understand indexes and how
SQL Server uses indexes to help developers when they are stuck and come to the

DBA looking for some words of wisdom and advice.

An index is a separate physical database structure created on a table that

facilitates faster data retrieval when search on an indexed column. SQL Server

also uses indexes to enforce uniqueness on a row or column in a table or to

spread out the data on various data pages to help prevent page contention.

42 STRUCTURE OF SQL SERVER INDEXES

SQL Server maintains indexes with a B-Tree structure. B-1rees are multilevel

self=maintaining structures,

67

Chapter 4 : Indexes
[Literature Review]

fom e

““Intermediate

T

H‘IH

Figure 4.1 The B-tree Structure

A B-Tree structure consists of a top level, called the roor; a bottom level,
called the /eaf (always level 0); and zero to many intermediate levels (the B-Tree
in Figure 4.1 has one intermediate level). In SQL Server terms, each square

shown in Figure 4.1 represents an index page (or data page).

o : 3 Byvs

mi
e

Figure 4.2 SQL Server Data Page

68

4.2.1

Chapter 4 : Indexes
[Literature Review]

The greater the number of levels in the index, the more index pages must read to
retrieve the records are searching for (that is, performance degrades as the
number of levels increases). SQL Server maintains two different types of

indexes: a clustered index and a nonclustered index.

Clustered Index

A clustered index is a B-Tree structure where level 0, the leaf, contains the actual
data pages of the table and the data is physically stored in the logical order of the
index. A clustered index determines the storage order of data in a table. A
clustered index 15 analogous to a telephone directory, which arranges data by last
name. Because the clustered index dictates the physical storage order of the data
in the table, a table can contain only one clustered index. However, the index can
comprise multiple columns (a composite index), like the way a telephone

directory is organized by last name and first name.

A clustered index is particularly efficient on columns often searched for
ranges of values. Once the row with the first value is found using the clustered
index, rows with subsequent indexed values are guaranteed to be physically
adjacent. For example, if an application frequently executes a query to retrieve
records between a range of dates, a clustered index can quickly locate the row

containing the beginning date, and then retrieve all adjacent rows in the table

69

Chapter 4 : Indexes
[Literature Review]

until the last date is reached. This can help increase the performance of this type
of query. Also, if there is a column(s) which 1s used frequently to sort the data
retrieved from a table, it can be advantageous to cluster (physically sort) the table

on that column(s) to save the cost of a sort each time the column(s) is queried.

Clustered indexes are also efficient for finding a specific row when the
indexed value is unique. For example, the fastest way to find a particular
employee using the unique employee 1D column emp_id would be to create a

clustered index or PRIMARY KEY constraint on the emp _id column.

It is important to define the clustered index key with as few columns as
possible. If a large clustered index key is defined, any nonclustered indexes that
are defined on the same table will be significantly larger because the

nonclustered index entries contain the clustering key.

To understand how the data will be accessed must consider to the using

of clustered index for :

e Columns that contain a limited number of distinct values, such as a state

column that contains only 50 distinct state codes.

70

Chapter 4 : Indexes
[Literature Review]

Queries that return a range of values using operators such as BETWEEN,

> >= < and <=,

Columns that are accessed sequentially.

Queries that return large result sets.

Columns that are frequently accessed by queries involving join or

GROUP BY clauses; typically these are foreign key columns.

OLTP-type applications where very fast single row lookup 1s required,

typically by means of the primary key.

Clustered indexes are not a good choice for :

Columns that undergo frequent changes because this results in the entire
row moving (because SQL Server must keep the row’s data values in
physical order). This is an important consideration in high-volume

transaction processing systems where data tends to be volatile.

Covered queries. The more columns within the search key, the greater the
chance for the data in the indexed column to change, resulting in

additional 1O,

71

Chapter 4 : Indexes
[Literature Review]

4.2.2 Nonclustered Index

With a nonclustered index, the leaf level pages contain pointers to the data pages
and rows, not the actual data (as does the clustered index). A nonclustered index
does not reorder the physical data pages of the table. A nonclustered index is
analogous to an index in a textbook. The data is stored in one place, the index in
another, with pointers to the storage location of the data. The items in the index
are stored 1n the order of the index key values, but the information in the table is
stored in a different order (which can be dictated by a clustered index). If no
clustered index is created on the table, the rows are not guaranteed to be in any

particular order.

Similar to the way use an index in a book, Microsoft® SQL. Server™
searches for a data value by searching the nonclustered index to find the location
of the data value in the table and then retrieves the data directly from that
location. This makes nonclustered indexes the optimal choice for exact match
queries because the index will contain entries describing the exact location in the
table of the data values being searched for in the queries. If the underlying table
is sorted using a clustered index, the location is the clustering key value;
otherwise, the location i1s the row ID (RID) comprised of the file number, page
number, and slot number of the row. For example, to search for an employee 1D

(emp_id) in a table that has a nonclustered index on the emp_id column, SQL

72

Chapter 4 : Indexes
[Literature Review]

Server looks through the index to find an entry that lists the exact page and row
in the table where the matching emp_id can be found, and then goes directly to

that page and row.

4.2.2.1 Multiple Nonclustered Indexes

Some books contain multiple indexes. For example, a gardening book can
contain one index for the common names of plants and another index for the
scientific names because these are the two most common ways in which the
readers find information. The same 1s true for nonclustered indexes. It can define
a nonclustered index for each of the columns commonly used to find the data in

the table.

To understand how the data will be accessed must consider the using of

nonclustered indexes for :

e Columns that contain a high number of distinct values, such as a
combination of last name and first name (if a clustered index is used for

other columns).

o Quenes that do not return large result sets.

73

Chapter 4 : Indexes
[Literature Review]

o Columns frequently involved in search conditions of a query (WHERE

clause) that return exact matches.

« Decision Support System applications for which joins and grouping are

frequently required.

o Covered queries.

4.2.3 Data Modification And Index Performance Considerations

It 1s widely known that an index can help speed data retnevals; from time to
time, may hear someone say that indexes slow down other operations, such as
inserts, updates, and deletes--which is true. It has been mentioned that B-Tree
data structures are, for the most part, self-maintaining data structures, meaning
that as rows are added, deleted, or updated, the indexes also are updated to reflect

the changes. All this updating requires extra I/O to update the index pages.

What happens when a new row is added to a table without a clustered
index? The data is added at the end of the last data page. What happens when a
new row 15 added to a clustered index? The data is inserted into the correct
physical and logical order in the table and other rows may be moved up or down,

depending on where the data 1s placed, causing additional disk /O to maintain

74

4.3

Chapter 4 : Indexes
[Literature Review]

the index.As the index pages and data pages grow, they may be required to sphit,

requiring shghtly more disk 1/O.

In general, should not worry about the time required to maintain indexes
during inserts, deletes, and updates. Must be aware that extra time is required to
update the indexes during data modification and that performance can become an
issue if over-index a table. On tables that are frequently modified, try to restrict
the tables to a clustered index and no more than three or four nonclustered
indexes. Tables involved in heavy transaction processing should be restricted to
from zero to two indexes. If find the need to index beyond these numbers, run

some benchmark tests to check for performance degradation.

SUGGESTED INDEX STRATEGIES

Index selection is based on the design of the tables and the queries that are

executed against the tables. Before you create indexes, make sure that the

indexed columns are part of a query or are being placed on the table for other

reasons, such as preventing duplicate data.

75

Chapter 4 : Indexes
[Literature Review]

4.3.1 What To Index

The following list shows criteria that can use to help determine which columns

will make good indexes :

o Columns used in table joins

e Columns used in range queries

e Columns used in order by queries
e Columns used in group by queries

o Columns used in aggregate functions

4.3.2 What Not To Index

The following list shows cases in which columns or indexes should not be used

or should be used sparingly :

« Tables with a small number of rows

o Columns with poor selectivity (that is, with a wide range of values)

« Columns that are very large in width (try to limit indexes to columns less
than 25 bytes in size)

« Tables with heavy transaction loads (lots of inserts and deletes) but very

few decision support operations

76

Chapter 4 : Indexes
[Literature Review|

o Columns not used in queries

4.3.3 Clustered Or Nonclustered Index

As knows, can have only one clustered index per table. Following are some

situations in which a clustered index works well :

o Columns used in range queries
o Columns used in order by or group by queries
o Columns used in table joins

e Quenes returning large result sets

Nonclustered indexes work well in the following situations

« Columns used in aggregate functions

« Foreign keys

» Queries returning small result sets

« When using the DBCC perEiNDEX statement to dynamically rebuild
indexes (don't have to drop and re-create the index or constraint)

« Information frequently accessed by a specific column in table joins or

order by O group by queries

77

Chapter 4 : Indexes
[Literature Review]

o Primary keys that are sequential surrogate keys (identity columns,

sequence numbers)

Ul B rso) |l Kos AL, Adt,

f A

R bt

Figure 43 Clustered and Nonclustered Index

4.3.4 Computing Selectivity

It can determine whether a column is a good candidate for an index by doing
some simple math and computing the selectivity of the column. First, must
determine the total number of rows in the table being indexed. It can obtain this
information from the Table Size frame of the Manage Indexes dialog box or by

using the following SQL command :

78

Chapter 4 : Indexes
[Literature Review]

Select COUNT(*) FROM table name

Then must determine the number of unique values for the column you

want to index. To determine this number, execute the following SQL command :

Select COUNT(DISTINCT columnl_name) FROM table name

To determine the number of expected rows returned by using the indexed

column, calculate the following formula :

expected number of rows = (1/number of unique values) * Total number of rows

in the table

If the expected number of rows is low compared to the total number of
rows in the table, the column is a good candidate for an index. This can further

validate by computing a percentage, as follows :

Percentage of rows returned = (expected number of rows/total number of rows in

the table) * 100

79

4.3.5

4.3.6

Chapter 4 : Indexes
[Literature Review]

Composite Indexes

Composite indexes are indexes created with two or more columns (the maximum
number of columns for an index is 16 columns). SQL Server keeps distribution
page information on all the columns that make up the composite index, but the
histogram of data distribution used by the query optimizer is kept only on the
first key, so the order of the keys does matter. Use the key with the most unique
values as the first key (best selectability). Try not to get carried away by creating
composite indexes with a large number of columns, (Try to keep them under four
columns.) Too many columns affect performance and make the index key large,
increasing the size of the index and requiring to scan more data pages to read the

index keys.

Index Covering

Index covering is a term used to explain a situation in which all the columns
returned by a query and all the columns in the wiERrE clause are the key columns
in a single nonclustered index. SQL Server does not have to read the data pages
to satisfy the query; instead, 1t returns the values on the leaf page of the index. In

some cases, a covered nonclustered index can outperform a clustered index.

80

4.4

Chapter 4 : Indexes
[Literature Review]

The downside to index covering is the added overhead to maintain the
indexes. Also, 1t 1s very difficult to create indexes to cover the many different
queries executed by users. Avoid creating indexes to cover queries. It 1s better off’
creating single-column or narrow composite indexes for the query optimizer to

use.

CREATING USEFUL INDEXES

Creating useful indexes i1s one of the most important tasks can do to achieve
good performance. Indexes can dramatically speed up data retnieval and
selection, but they are a drag on data modification because along with changes to
the data, the index entries must also be maintained and those changes must be
logged. The key to creating useful indexes is understanding the uses of the data,
the types and frequencies of queries performed, and how queries can use indexes
to help SQL Server find data quickly. A CRUD chart or similar analysis
technique can be invaluable in this effort. It might want to quickly review the
difference between clustered and nonclustered indexes because the difference 1s

crucial in deciding what Kind of index to create.

Clustered and nonclustered indexes are similar at the upper (node)
levelsboth are organized as B-trees. Index rows above the leaf level contain

index key values and pointers to pages the next level down. Each row keeps track

81

Chapter 4 : Indexes
[Literature Review]

of the first key value on the page it points to. Figure 4.4 shows an abstract view
of an index node for an index on a customer's last name. The entry Johnson
indicates page 1:200 (file 1, page 200), which is at the next level of the index.
Since Johnson and Jones are consecutive entries, all the entries on page 1:200

have values between Johnson (inclusive) and Jones (exclusive).

Key Page Number
Jackson |1:147
Jensen |1:210
Johnson |[1:200
Jones 1:186
Juniper |1:202

Figure 4.4 An Index Node Page.

The leaf, or bottom, level of the index is where clustered and
nonclustered indexes differ. For both kinds of indexes, the leaf level contains
every key value in the table on which the index is built, and those keys are in
sorted order. In a clustered index, the leaf level is the data level, so of course
every key value is present. This means that the data in a table is sorted in order of
the clustered index. In a nonclustered index, the leaf level is separate from the
data. In addition to the key values, the index rows contain a bookmark indicating
where to find the actual data. If the table has a clustered index, the bookmark 1s
the clustered index key that corresponds to the nonclustered key in the row. (If

the clustered key 1s composite, all parts of the key are included.)

82

Chapter 4 : Indexes
[Literature Review]

In SQL Server clustered indexes are guaranteed to be unique; if don't
declare them as unique, SQL Server adds a uniqueifier to every duplicate key to
turn the index into a unique composite index. If index on last name is a
nonclustered index and the clustered index on the table is the zip code, a leaf-
level index page might look something like Figure 4.5. The number in
parentheses after the zip code is the uniqueifier and appears only when there are

duplicate zip codes.

Key Locator

Johnson |98004(1)
Johnson |06801(3)
Johnston |70118
Johnstone |33801(2)
Johnstone [95014(2)
Johnstone |[60013
Jonas 80863(2)
Jonas 37027
Jonasson |22033(4)

Figure 4.5 A Leaf-Level Index Page.

4.4.1 Tailor Indexes To Critical Transactions

Indexes speed data retrieval at the cost of additional work for data modification.

To determine a reasonable number of indexes, must consider the frequency of

updates vs. retrievals and the relative importance of the competing types of work.

83

Chapter 4 : Indexes
[Literature Review]

If system is almost purely a decision-support system (DSS) with little update
activity, it makes sense to have as many indexes as will be useful to the queries
being issued. A DSS might reasonably have a dozen or more indexes on a single
table. If have a predominantly online transaction processing (OLTP) application,
need relatively few indexes on a table -probably just a couple carefully chosen

Ones.

To achieve index coverage in queries must look for opportunities, but
don't get carried away. An index "covers” the query if it has all the data values
needed as part of the index key. For example, if have a query such as SELECT
emp name, emp sex FROM employee WHERE emp name LIKE 'Sm%' and have
a nonclustered index on emp name, it might make sense to append the emp sex
column to the index key as well. Then the index will still be useful for the
selection, but it will already have the value for emp sex. The optimizer won't
need to read the data page for the row to get the emp sex value; the optimizer is
smart enough to simply get the value from the B-tree key. The emp sex column
is probably a char(l), so the column doesn't add greatly to the key length, and

this is good.

Every nonclustered index is a covering index if all are interested in is the
key column of the index. For example, if have a nonclustered index on first

name, it covers all these queries :

Chapter 4 : Indexes
[Literature Review]

o Select all the first names that begin with K.
+ Find the first name that occurs most often.

« Determine whether the table contains the name Melissa.

In addition, if the table also has a clustered index, every nonclustered
index includes the clustering key. So it can also cover any queries that need the
clustered key value in addition to the nonclustered key. For example, if
nonclustered index is on the first name and the table has a clustered index on the
last name, the following queries can all be satisfied by accessing only leaf pages

of the B-tree :

o Select Tibor's last name.
« Determine whether any duplicate first and last name combinations exist.

o Find the most common first name for people with the last name Wong.

It can go too far and add all types of fields to the index. The net effect is
that the index becomes a virtual copy of the table, just organized differently. Far
fewer index entries fit on a page, IO increases, cache efficiency is reduced, and
much more disk space is required. The covered queries technique can improve

performance in some cases, but should use 1t with discretion.

85

442

Chapter 4 : Indexes
[Literature Review]

Indexes are also important for data modifications, not just for queries.
They can speed data retrieval for selecting rows, and they can speed data
retrieval needed to find the rows that must be modified. In fact, if no useful index
for such operations exists, the only alternative 1s for SQL Server to scan the table
to look for qualifying rows. Update or delete operations on only one row are
common; should do these operations using the primary key (or other UNIQUE
constraint index) values to be assured that there is a useful index to that row and

no others.

A need to update indexed columns can affect the update strategy chosen.
For example, to update a column that is part of the key of the clustered index on
a table, must process the update as a delete followed by an insert rather than as
an update-in-place. When decide which columns to index, especially which
columns to make part of the clustered index, consider the effects the index will

have on the update method used.

Index Columns Used In Joins

Index columns are frequently used to join tables. When create a PRIMARY KEY
or UNIQUE constraint, an index is automatically created. But no index is
automatically created for the referencing columns in a FOREIGN KEY

constraint. Such columns are frequently used to join tables, so they are almost

86

Chapter 4 : Indexes
[Literature Review]

always among the most likely ones on which to create an index. If primary key
and foreign key columns are not naturally compact, consider creating a surrogate
key using an identity column (or a similar technique). As with row length for
tables, if can keep the index keys compact, it can fit many more keys on a given
page, which results in less physical I/O and better cache efficiency. And if can
join tables based on integer values such as an identity, it avoid having to do
relatively expensive character-by-character comparisons. Ideally, columns used

to join tables are integer columns - fast and compact.

Join density 1s the average number of rows in one table that match a row
in the table it is being joined to. It can also think of density as the average
number of duplicates for an index key. A column with a unique index has the
lowest possible density (there can be no duplicates) and is therefore extremely
selective for the join. If a column being joined has a large number of duplicates,

it has a high density and is not very selective for joins.

Joins are frequently processed as nested loops. For example, if while
joining the orders table with order items the system starts with the orders table
(the outer table) and then for each qualifying order row, the inner table is
searched for corresponding rows. For the most common type of join, an equijoin
that looks for equal values in columns of two tables, the optimizer automatically

decides which is the inner table and which is the outer table of a join. The table

87

443

Chapter 4 : Indexes
[Literature Review]

order that you specify for the join doesn't matter in the equijoin case. However,
the order for outer joins must match the semantics of the query, so the resulting

order is dependent on the order specified.

Create Or Drop Indexes As Needed

If create indexes but find that they aren't used, should drop them. Unused indexes
slow data modification without helping retrieval. It can determine whether
indexes are used by watching the plans produced via the SHOWPLAN options;
this 1s easy if analyzing a large system with many tables and indexes. There
might be thousands of queries that can be run and no way to run and analyze the
SHOWPLAN output for all of them. An alternative is to use the Index Tuning
Wizard to generate a report of current usage patterns. The wizard is designed to
determine which new indexes to build, but can use it simply as a reporting tool to

find out what is happening in current system.

Some batch-oriented processes that are query intensive can benefit from
certain indexes. Such processes as complex reports or end-of-quarter financial
closings often run infrequently. If this is the case, creating and dropping indexes
1s simple. Consider a strategy of creating certain indexes in advance of the batch

processes and then dropping them when those batch processes are done. In this

88

Chapter 4 : Indexes
[Literature Review]

way, the batch processes benefit from the indexes but do not add overhead to

OLTP usage.

Between The Lines

Following are some important points to remember about SQL Server indexes :

e SQL Server maintains indexes with a B-Tree structure.

e In a clustered index, the leaf contains the actual data pages of the table
and the data is physically stored in the logical order of the index.

« The SQL Server query optimizer selects at most one index to resolve a
query.

« Composite indexes are indexes created with two or more columns.

o Indexes selection must be done carefully.

89

PHAPTER]

SYSTEM ANALYSIS AND DESIGN

DR E) R E) ED) E) EI ED EIEO ED D FD FOFD B ED B ED ED B FO EO B

Chapter > : dystem Analysis And Design

SYSTEM ANALYSIS AND DESIGN

o
—

INTRODUCTION

Systems analysis and design seeks to systematically analyze data input or
data Mow, processing or transforming data, data storage, and information output
within the context of a particular business. Systems analysis and design is used to

analyze, design, and implement improvements in the functioning of businesses.

Installation of a system without proper planning will lcad to greal
dissatisfaction and frequently causes the system to fall into disuse. Systems
analysis and design lends structure to the analysis and design of information
systems, a costly endeavor that might otherwise have been done in a haphazard
way. It can be thought of as a series of processes systematically undertaken to

improve a business through the use of computerized information systems.

N
%

FACT FINDING TECHNIQUES

System analysis starts with data collection. Useful information and

recommendations are obtained through carrying some efforts of fact finding that

also known as requirement determinations. There are several systematic and

90

3.2.2

Chapter 5 : System Analysis And Design

structured fact finding techmiques in system analysis, including rescarch, Internet

surfing and observation.

Rescarch

All the research work is approached from the point of view of this
system, which involves reviewing periodicals such as journals, books,
conference papers and magazines that contain relevant information. All the
periodicals were getting from the University of Malaya’s main hbrary, National

Library of Malaysia and State Library of Selangor.

Internet surfing

Surfing the Internet is indeed a good method of fact finding technique.
Existing methods at the web help in giving ideas on the features of the system,
data that should keep track in the system database and the implementation of the
system, The information about available developing tools also can casily get
from vendors’ web sites. This helps in evaluating and selecting the most suitable
tools for Verification on Physical Design of Microsoft SQL Server 7.0

Performance

91

Chapter 5 : System Analysis And Design

5.2.3 Observation

5o
w

Observing the information’s needs secking behavior is one of the
important information gathering techniques. Through observing the activities of
SOQL Server, it is able to seek and gain insight about what problems are actually
faced by the database administrators as well as to gain information about

information’s seeking behavior that is unavailable through any other methods.

REQUIREMENTS SPECIFICATION

The requirements specification follows up on general user’s requirements to
identify the system’s functional requirements as well as the non-functional

requirements.

Functional Requirements

Functional requirements are statements ol services that the system should
provide, how the system should react to particular inputs and how system should
behave in particular situation. The functional requirement also explicitly state
what the system should not do. The table below shows the functional

requirements of the Verification Performance of Microsoft SOL Server.

P ——

Chapter 5 : System Analysis And Design

Input Functions
"-—-________

Output Functions

Processing Functions

Storage Functions

Control Functions

L The System must
aceept the
following mputs ;

* ltem daga
* Partition data
* Query Database

1. The system must
generale the

lollowing outputs :

= Reports
» Scarch results

o [une exceute

1. The system must
perform the following

Processes

s Sort hists
e Scarch data

* Normalize logical

1. The system must
maintain the

following data :

« ltem data
» Partition data

o Circulation data

1. The system must
enforce the following

controls

s Log-in

» Databasc Backup

5.3.2 Non-Functional Requirements

» Needed data dalabase s Dewey Decimal
2. All the inputs » Analvze slow Classification Data
e cither keyinby | 2. The input can view performance
using keyboard at the screen, print 2. All the data can be

out, export as another create, amend and
3.The item data format and save into delete,
fan be imported the diskette
from seryey

Table 5.1 Functional Requirements

Non-functional requirements are essential definitions of system properties and

constraints and the standard must be constraints under which a system must

operate.

There are a few issues need to be considered when developing the

system, including :

Chapter 5 : System Analysis And Design

Robusiness :

Robustness refers to the quality that causes a system to be able to handle
unexpected error and echo back with proper responses. The System will
include effective error handling and validation procedures in order to
make it robust. Error messages will be displayed if any unexpected error

occurs.

Response time :
The response time should be within a reasonable internal time where all
the desirable information should be available to users at any point in time.

User should not be kept waiting for a long time for the results.

Reliability :
The system should be reliable and shall not cause unnecessary downtime

of the assessed environment.

Multi-user environment -

The system should support not only a user but is able to cope with a large

amount of people who access the system concurrently.

94

S.4

S.4.1

Chapter 5 : System Analysis And Design

DEVELOPING TOOLS ANALYSIS

There are a few criteria that considered during the analysis of the developing tools,

including :

|, Enable the development of windows applications that work with real database

2. Enable to create professional-looking installation packages for the application

Visual Basic 6.0 (VB 6)

Visual Basic 6.0 (VB 6) is the most productive tool for creating high-
performance windows application. The integrated Visual Database Tools and a
RAD environment promote productivity by allowing fast application
development. VB 6 is able to create applications and both client and server-side
components that are optimized for throughout by the world-class Visual C++ 6.0

optimized native-code compiler (Office Software International, 2000).

VB 6 introduces the powerful new standard database access method, ADO
(ActiveX Data Objects) to access the library database. All OLE DB drivers such
as SQI. Server™ 6.5+, Oracle 7.3.3+, Microsoft Access, ODBC, and SNA
Server have been into VB. The ADO allowing high-speed access to any ODBC-

or OLE DB-compliant database (Thayer, 1999).

95

Chapter S : System Analysis And Design

Visual Basic 6.0 provides a complete set of tools for integrating databases
with any application, kwon as Visual Database Tools. The Visual Database Tools
of the Visual Basic simplify operations like database design and the extraction of
information from a database. They are not programming tools but tools to help in
preparing the application for coding. The Data View Window and the Query
Designer are two of the Visual Data Tools. The Data View Window provides a
way of maintaining any database connections and the Query Designer is an
interactive database query interface that enables almost any type of SQL

statement designing (Petroutsos, 2000).

A new productive Data Environment Designer in the Visual Basic 6 15 a
design time tool used to set up data access for the application. It is a very
sophisticated interface that allows table-style query design, easy generation of

complex SQL code and a live results preview (Internet.com Corporation, 2000).

The Data Report Designer, which is also known as Data Report Utility is a
straightforward tool in VB that streamlines the generation of reports. It allows
user to preview, print and export report out of the application (Thayer, 1999).
Visual Basic 6 supports mobile computing that enables the development of
client/server applications that work with databases. The Visual Basic project is
able to bundle into a distnibutable package, either a compressed CAB file or an

executable setup program by using the Packaging and Development Wizard. In

96

Chapter 5 : System Analysis And Design

addition to creating a standard installation process, it will also include the file
and programs to allow users to uninstall the application if they want to (Thayer,
1999).

5.4.2 Consideration Of Database

5.4.2.1 Types of Database

Type Advantages Disadvantages
o Less complex ¢ Create fat files that unable
File Management Program * Less expensive to link with other files

e Lase to use

Relational database Relational database
Database Management System | o Integrate data from multiple « Obtain expensive software
files e Obtam a large hardware
» Ensure data integnty configuration

¢ Reduce data redundancy

= Seccurity
Object Oriented database Object Oriented database
e Can incorporate sound, e Very complex

video, text and graphics e Costly

e Well suited for multimedia

applications

Table 5.2 Types Of Database

97

Chapter 5 : System Analysis And Design

The file management programs and the database management systems
(DBMS) are two widely used database types. All the advantages and

disadvantages of both database types are listed in the Table 5.2.

The file management programs enable user to create customized databases
and to store and retrieve data from these databases. The file management
programs are less complex and thus are less expensive and easier to use than
database management systems (Meyer, Baber and Pfaffenberger, 1999).
However, the file management systems create flat files where the information in
a flat file cannot be linked to data in other files. This will violates the rules of
avoiding data redundancy and data integrity. Thus it will not be chosen as the

system database.

The relational database management systems (RDBMS) can link data from
several files. The relational database and object-oriented databases are two of the
widely used type of DBMS. The object-oriented database was not considered, as
it is well suited for multiple applications that are not the case in the Verification

the Performance of Microsoft SQL Server.

The reasons of using relational database as the system database are gs

following:

98

Chapter 5 : System Analysis And Design

1. It can work with many separate files and relate all the data
(Meyer, Baber and Pfaffenberger, 1999). These ensure the
integrity of data and reduce the data redundancy.

2. Both the logical relationships and query language enable users
to retrieve in seconds or minutes (MclLeod, 1998).

3. It provides multiple levels of security precautions such as

passwords, user directories and encryption (Mcleod, 1998).

5.5 SYSTEM REQUIREMENTS

There are two categories of system requirements for Verification the

Performance of Microsoft SQOI. Server, that is the development environment and

the runtime environment,

o

.S.1 Development Environment

5.5.1.1 Hardware Requirements

The hardware requirements for developing the system are listed as following :

¢ IBM PC or compatible, with Pentium 144MHz processor or higher

e Minimum 24MB RAM (32MB RAM recommended)

99

Chapter 5§ : System Analysis And Design

e 700 MB of hard disk space or higher
e VGA or higher-resolution monitor
e Printer and label printer as output devices

» Keyboard and mouse as input devices

5.5.1.2 Software Requirements

The system requirements for developing the system are listed as following :

¢ Microsoft Visual Basic 6.0

e Windows NT operating system

e Crystal Report 4.0

5.5.2 Runtime Environment

3.5.2.1 Hardware Requirements

The hardware requirements for running Virtual Library are listed as

following :

¢ IBM PC or compatible, with Pentium 500MHz processor or higher

e Minmimum 24MB RAM (32MB RAM recommended)

100

Chapter 5 : System Analysis And Design

e 400 MB of hard disk space or higher
e VGA or higher-resolution monitor
e Printer and label printer as output devices

e Keyboard and mouse as input devices

5.5.2.2 Software Requirements

The software requirements for running Optimizing Microsoft SOL Server

are listed as following :

e Windows NT operating system

PROJECT SPECS

As mentioned earlier, the project specs mostly to evaluate available methods for
retrieving data and uses the most efficient new methods to achieve the data. To
optimize the SQL Server, a host language will be used in a program. For this
purpose, Visual Basic is been chosen to work with SQL Server. The host
language 1s not an existing programming language, but a pseudo programming
language. This approach has been chosen in order to not get buried in all sorts of

details that have nothing to do with the combination of a host languages and the

101

S5.6.1

Chapter 5 : System Analysis And Design

SQL language. This way is called as embedded SQL. There are three main

advantages resulting from this way :

e Testing of embedded SQL statements can be done interpretively.

¢ Embedded SQL statements are compiled resulting in a performance
improvement with respect to interpretive SQL Server.

e [End users principally employ interpretive SQL whereas embedded SQL
is intended for experienced programmers. The uniformity of both forms

of SQL simplifies communications between these two groups.

Methods And New Objects

To most effectively optimize Microsoft SQL Server performance, must identify
the areas that will yield the largest performance increases over the widest variety
of situations, and focus analysis on these areas. Otherwise, it may expend

significant time and effort on that may not yield sizable improvements.

Experience shows that the greatest benefit in SQL Server performance can
be gained from the general areas of logical database design, index design, query
design, and application design. Conversely, the biggest performance problems
are often caused by deficiencies in these same areas. If concerned with

performance, then should concentrate on these areas first, because very large

102

Chapter 5§ : System Analysis And Design

performance improvements can often be achieved with a relatively small time

investment.

While other system-level performance issues, such as memory, cache
buffers, hardware, and so forth, experience shows that the performance gain from
these areas is often incremental. SQL Server manages available hardware
resources automatically, for the most part, reducing the need of extensive

system-level hand tuning.

Most performance problems cannot be successfully resolved with only a
server-side focus. The server is essentially a "puppet” of the client, which
controls what queries are sent, and thereby what locks are obtained and released.
Although some tuning is possible on the server side, successful resolution of
performance problems will usually depend on acknowledging the dominant role

the client plays in the problem and analyzing clhient application behavior.

5.6.1.1 VB Source Code

As will discover, VBSQL 1s pretty easy to use. First, and most importantly, the

SQL text self 1s loaded with the cmd.CommandText = Trim$

103

Chapter 5 : System Analysis And Design

(txtDataWindow. Text) statement. This and the resulting execute method are all

that must have to allow for runtime SQL entry and execution.

As mentioned earlier, it’s possible to allow the users to execute pre-
prepared statement and stored procedures as well. It also can be used to issue
“straight-up” SQL such as SELECT* from tblRequest. The power of this little
utility should make for some very interesting applications development. Example

of VB source code :

Private Sub txtDataWindow KeyPress (KeyAsci As Integer)
If KeyAscii = vbKeyreturn Then
Beep
Call ProcessDataWindow
End If

End Sub

Before a program can actually run, it must be processed by a number of
utility program. The two most important tasks of the precompiler are syntax
checking and generating host language statements. All SQL statements are
checked for their syntactic accurancy. For example, the precompiler will

disallow SELECT statements with no FROM clause, or SELECT statements

104

Chapter 5 : System Analysis And Design

whose number of column expressions in the SELECT clause is not equal to the

number of variables named in the INTO clause.

A second task of the precompiler is to generate statements from SQL
statements. The program listing in the previous section is one of these generated
programs. At the same time the precompiler builds a database request module
(DBRM). It is sometimes referred to as an access module. A DBRM contains all

the information about the SQL statements from the program concerned.

The compiler generates an object module from the precompiled program.
The link editor then takes the object module and builds a load module. A load
module is a program which is now suitable to be loaded into the computer
memory for execution. Compilers and link editors do not form any part of a

database management system, but are among a number of stand-alone utility

programs.

When the program has been processed by link editor and BIND program,
it is ready for execution. If] during the execution of a program, a portion of code
generated by the processing strategy is fetched from the SQL catalog and used to

access the data.

105

Chapter 5 : System Analysis And Design

5.7 CONCLUSION

SQL Server is capable of very high performance on large databases. To achieve
this performance potential, must use efficient database, index, query, and
application design. These areas are the best candidates for obtaining significant
performance improvement. Try to make each query as efficient as possible, so
that when the application scales up to more users, the collective multi-user load
is supportable. Study of the client application behavior, the queries submitted by
the application, and expertimentation with indexes using the guidelines in this
document are strongly encouraged. A methodical approach in analyzing
performance problems will often yield significant improvement for relatively

lhittle time mvestment.

106

PiAPTER §
TR NPLEIETATN

Chapter 6 : System Implementation

SYSTEM IMPLEMENTATION AND TESTING

6.1

6.2

6.2.1

INTRODUCTION

System implementation is the acquisition and integration of the physical and
conceptual resources that produce a working system (Meyer, Baber and
Pfaffenberger, 1999). It is the physical realization of the database and application
designs (Connolly and Begg, 1998). There are two main tasks in the system

implementation phase that is system development and system testing.

SYSTEM DEVELOPMENT

Database Development

The first step in the system development is to develop the system database based
on the logical data model for Verification on Physical Design of Microsoft SQL

Server 7.0 Performance during the system design phase.

The database development is started by creating an empty database called
Payroll. A table is then created by specify all the fields for the table and the field
propertics. A primary key is allocated for the table in the database. After the

table being created, relationships between the fields is established to enforce

107

>y 3iciin

wavantinl dntaneitse Tha ealnenntinl dataneitsr i an smnartnnt annafentnt An o
lvlﬁlﬁlitllﬂl llll&b! ‘.J (IR LS Iblwlvlll.“l l‘l.&bl IIJ Bul Radn Olll“\.’l AMAREA PR RLRA AR s
wealests memnlng L Jap— v b ves wmoalabnd £alda.

. bhasn
IRV LI I hiau d Wlldldl\tlt\a? \!\.rl \'i\f\oll (RS TS W) ll\ll“t’

£ Awnnbliantinn Nawn
-I LA L) . arw

L]
- “ " t..] .llll‘-l.l

wwmlinndinm davinlammanmt tmvinloan anda vamaentian thnt beamnlntan w1l dha
4)}J’JII\-‘“&IU‘I \JU'UIUPII!\!II\ MY VLY WD L= Lo &\fil\;l“tlull L LA I Ly (S} (AR LS
alcnaiilecan v Viinaanl Tnrs e aman i et laness nvem i P v . Cavinaal
I-Nbua iy [ERIL) ¥ louan Lradiv Plusl“lll lulls“u&h (EERIN] ub"lul!-’. v veian
o S 1 v Lhceow L - | - - miemsssm
}ll\lsiﬂl'l lllb l)llll\cll"\uh fave oot \.ll J\ou III Wl.ll.lllb tll\.' }l’l\lblalll t\! wiluw
A e Ta] Aneanitnd A manimtnsnmnbelite: med "hnr‘nk I LLE) All tha FAEO OV VAT S oA oy
e e e R e L B T L Iv“ul.l'll'..' R L T TR L

eMissusammin o

' l\f‘!\lt‘ lllb

&
!.

=% Mhaalics e ssmmnse a8 sanle allcck el emmuesimm = aasrnisbinss dn smanles dlis allsns
w) I lhll\ Ll s W1 waval \ll.l_’\.-bl. ¥viui ll.ﬂllll.llB LAY LILINIEE A Jans Ll l.lUJh-\-l.

s b sdantifi nnd thuen anhonnas seaornss sandalilitege Th,
.

- 1l novia viend
w;l) LA I“VIIOIIJ L N N N e e N N L I_‘lubl“lll BARAnERRL A ..! LR . L w

o -
LS L N AR EL S]

Anmtenln ned thate mealist nvn nhn s Talls £ 1

MASILEAED G VL PRV B SOUWI N 1 GO U,
T.Li.. £ 1 Maced =B VTl N ndsenle cwad Tae Meaula.
E L e 1 3 B U L0 UL WD aRRa B B oRLAeA

Control Prehix Function

Ado Data Control ado Supports connecting to a database

a
!
|
|
|
cmd { Disolay ootions from which the user can do and
[
1
|
|
!
|

1

]

Frama fra Acte ac a cantainar far athar contrale]I
Label bl Lasplay start and end time |
Command |
go for it |

PictureBox pic Also acts as a container for other controls |
]

Tt Wi ok Contenl Pae vonre tnvmd 1
e Contral for usor input |
|

DataCind dod A table that is nonnlated antomatically with data

| from a database

__...._.._...__...__.__._._._...._.....
e e e e e e el i s b e 4

-

-
~
-
-

— £ i Deinbai Tosnl niss manbada cos
lu})t\gl LY d*ﬂt\'lli ll.lllll\.'lll.\.-l Lanivn

'
i
p

. . - .
Manrasais oo aesanles R P T bbb bt i L L T T L N Te Lo T ey ey v ol v

ki M il L1 1 1 "
wy \All\)\)“lllb lll\v“lllllbl\‘l AR LR LSRR LRLE LR L Y I'l\‘\v\v““'\l LRI R eI llt‘l“lll\-.\vl

T e e — = e) Ty I - T e, L

s
YOG VD VIO 6 PIVEIWEIL W U D0 MUVUEIV LTS YV VML VAL OO Y

Al araandies and danlavatinen ara
R

e nes mlaaad ot tha lhaoninen
SALD ML LA WL B LR

A AN Aaalarn

~ D e L 2

Lnt mennadiien santh ~n hlaals

v enbnr] Sares tlim nuwrnnisdnlyle cbndmen mmbn
i I PIULUAMILE L VY IR W DRI)

.
DUV LV L v!\\u\.rllt“ A DALY R

]
-

b P

~da
: Plusaunl lbuuuunuJ

man el mad e ~

anlaa o d d - b -
L utluua LTI UL LA LA

-
L

- - - & -~
AP AR LI

AN l-—\nu-f\rcl all and analana araismsants
ey BRA Y PRARIAL L e MM MRS W
- et iswonenn wones rdonbas
n’ ‘u I'l"f"’.\! Pl\’bl“‘ll LAY AN TN}

-
et

Tiimven nf dntnbhans

] ‘&lll\f L AR
fonema OM Qac. L L B S e — wlan Lhavia Lhane fallacsiand codima
IRAIEE] U\(‘-—- WML VAL, Y Ui IJ Uslmllllllllb ‘Jlll'\tll.’l‘u\ I YL LA IviIwyYLeu Yilwan

Ml st scf o Deintma
\..llul)I,Ll VoL yore

2 Vonaoal
LI

—an e e o o
‘llPlb'll‘ulllull\'l‘

1 Conmeanldn MNada oF VT
. L

l)“."l'.‘ AR WU

wfi e inmnn off QW Covnine

s
R AU ARG U NSRS I TR

)

| Private Sub ProcessDataWindow ()
| Dim emd As adodb Conmmand
LM IS AS 4000D. Kecoraset

N LR A L) B e
LN VU ICiU AN auuun ric

o AR T TV mvein T imsss Al ¥io . ()
I T R RN N R N T T R S T ‘ \~/

Mirma 1 oae T Aaner

e BEat e 4 e »

Nim atrMeo As ering
RetrieveCurrentParms
setHGOn

h
(e}
2

3

3

ent

T

'set database connection
Set cmd = New adodb.Command
CMA. ACHVAICCONNECHION =~ DIVEr { QL SCIVEer), & SCIver & sderver |, &

T s

“wes . ¥ " on ™ . ¥ Nai B w1 v v [R W™ .
Lalauvadsc™ X alralauasc (v | v UIUT O DUBKTHILS e w oYy WG 3 aAdd WU i

e B S o e g b g o d Bl A U, Pl oot
emd CoammandTimannt = cTimanut
cmid Prnpnﬂipq “Maximim Rows™) = sMavimnmRows
Set rs — cmd Execute
txtDataResults Text ==~
If Not rs EOF Then
For Lach objlield In rs Fields
SUrMSgE = StrMsg & Lrm (objleld Name) & chr (V)
INeXL

- om o o w8 d h LR a0 o
bll&\"l.\g hlll'l35 (LN JFLW § B)

|}
I
I
|
I
I
I
I
|
I
I
|
I
I
|
|
I
I
I
I
I
|
St DiataPastlte Tt = ot ine S valrng i

IF vt Shawell awe Tavt <> % Than
IMaxRowsToShow = CT ne (txtShowRows Text) I
End If I
Do While Not rs EOF I
i=1+1 [
If 1> 1MaxRawsToShow Then Exit Do |
SrMsg = STMSg & Lo (9) |
ror Eacil 0bjrieid in 1s.Ficids |
ﬁill‘t:aa . .Sil "':"5 L“L U‘UJ‘IHI.L:\.:.“,“-‘IUL' L‘;. (‘:II l:f:} |

Nt

re MnoveNavt I
strMeg = etrMsg & vh(rl L I
Loop I
End If I
IbIRowsReturned Caption - rs RecordCount |
txtDataResults Text = strMsg]
rsl.lniscl o . e l
i ACHYAeC vnecion Close I
I
I
|

SR alaTs
AL AN AN)

Lads Coils

"“l' .;|Ih

—

S

TV wcsdmas £ [e l...-..
\-ll“})lbl L I L!fﬂl LR B l)

£ MNaodtahoann A aanoe

A Bl L T B LT
Thin mands immssmman dlaa mem et all dnbalons mammnn ssmmad cea 1/.
RIS a\.\,uun UidLUISCS wiv \.«uuu\.l.u Ul UGIGUaie aueead uacu B or s qn.n.u unu st

e 4] " : A B i e o . = n 1y ¥ A 1. L .
4 ryNcwn Lreair IVHILE WU oL, ICr Vs AT B S A IS uu i
el antatinm mhaon Tt alan smnlivdas CMNT clatamen

vt ah in eraanead Fae data
lll.'l\wlllbllmtl\)Cl r".m\!‘ A% AUV, UMWY D LIS LS DAt LwaLE .llllwll LIS I\v\lu!l\lu R

-

smsenss londa cnen
LI

. . | 21 0O e tn Chtawane
R N . e

o nbrnen Mo fRent ol
“ -)l\)l\g! (TRLV N RS |yt

$rs svwryerben mrswemrsabarvee bes dlars

AL MWt WA LR AL BN

Tow mumdoe dis
TR ety

Adasnlemen T senadibha MMM TMaina Ohniicnnns as MOV L da ccwaand da dlhn Jadn naciena
GOLAUGIC. 1 WO UG AZEZ000 LG OUTOUD U L20ri Y0 10 U Ieet 10 LG Giid oo,

th 2w weslor ammitaalela as FAINTINY Tha M ess mmn masmbenlimed swd aloa TVaia
iy t.lll.l)‘ ul!lllt\.ul“\- (LRI) L t}uu.l. -i\".ll\-b.‘! lll\-)‘ i Culludalislu aiid uilv wsawn

avsenn mauct ha a Cuetame TMata Canenn MNMDO Tinta Ca

A W BREOE U M A T UMW A VM M WSS R TR A

s tha
RARER RAaw

rann ara arantad Fes
B LW Wl Wil B

£

MMDT Mindn Cavvwnn P wwm b Faviemd e i A deas
MMM LU VMW L e A LRIV A R tll\-’ 4 Asannn

£Y72TY Nabanhowon Annase L1 AT

Masmiatess EFAIRATLAEETL A BRAAURT FF AREE L RAS LS

A nbisiaV Thada Mliaas 7AT
R R A L e L L B TR Y o

&)

F o 1. -l il e o mamiiebiee m Voes msem man sedeimle cwsa?a
lllt\.l lub\o e l“llbuﬂb\.—h AULIE A ¥ 1dual La l\- i l\-l aul ll!llllt‘. IallBl-lﬂE.\..\\ VYLl LA o

JJ

Ao n obanmdaed N S

BN W DAL A ST R

tarlana 1 NI T

el AW AW rRae s

A EA AT Tl r" “ !)P - \ |I>)\ m C\‘d\.’\ RPN

[TI e S e N . u L R e L T

midnblla e smmnisensmase Menatsrmie daba mamann snivmn

uuuulu vy ‘Jlubluttlllluld. \-I\v“llllb LALALLL LWV lﬂlb\in’

aor enonmrelas evem el e
NIy M D

- -
- -
- -

o~ smem w1

P Yy S 3
wllapiel v d_y.\u.ul lulpl\.ul\.utuuun

A D) vinnlde Fantoar and mnen Aaffiniant csintams. AT aen thin anmsannannnts thint
L L N T L N e e e L e e L I N A S T S L \f\lll.'l\tll\'lli.' LERLTNY

raesr sess by ssabmmnnd ssnbl datn nbnenn Traenk wovives bmovoevel oy

e sivladt | 5
. b s - -
AFRY O LAD ALY BRI VYRR MRRALE DA D ' llld lillbllt Jron t#ullulllb L s Uu.:»u s

e o sve el am
L] | ¥ .\J‘ S,

T Aatalhannn meanemmmainn un hoavos OMD {Mnan Matalaoa Manaanbisntal
AL ML *—'I\‘bl“'."."" a YVW MY N ARSI \\J’JUI] LA \-JU“‘.VM‘.'I“-";
memed DTV 7) nmantd Niate Mhinata MMDO . A nen 15 rarits roee e T, Y S e
L L i l\\-lllul\i AAUMLUL AAU LD WSLS LN D “'l 4 ‘P’Jll\{“ll”'l 1 lu&l‘uilllllllllb

I ncscmecmma £ AN Aallaa.. Alads e mama micals an WNEAQ A nanna ~wd
Languaze (o 1y UL SULLL A IVIL JIVULOD aliu

-~ ~l da
AL ALY uuuuaa ‘U l\.:uuuul.n

O Oamsas AT Y. moem A adicca\S P o Al a YR T A - =1l L
SIS LI VL. INLAAY dl Avtiven UUJL.I..In lI.ILII. .\un il ""l" LV TR [El\‘lllb arr

tha Fan e ol Y I‘)(‘

r oses e ances b o Pvess i
REAN AN AR RN AFR ASA s ' '

= Ty o tha vadaeloian
P o e T A T T .

e
4 LIk LOBs I RN MWL Y R

Aot A

thn amismnn al thn
B A, YT L

e repe - o
i\:\ad \t\-‘ ‘!U\vli \.’Ul 'JI\)blHlN ! llll\-l LT RL S LR v)

nmen Aninda MM T TN b MMNMNTY aad ATV N IBERTAY

ANl \v\-lul-ll\-l LAbabls LALY AL \)IJII\. [TRNLIVEFE Y WL “’ INLAN P,
Nerwsswenn K Y MNIT ND Aad ATWY A cabhltnntonn
Bapue L Ve NS MR AFES L REENA S RAFNS o RA S ARARL N EAAE L

P — ———— — — —————— ———— —————— —

ﬁppiitni;uu I
1 1 L 1 1 L} L] 1

| | SCRIPT | | JAVA ||
stk P8 ot o il

T
LT I |
LA |

<

ra,

¥
—_——
X

T
I
I Nl ENR |
A

I
/""’\/"’3\\
{*\//}K,’AI_M

| RobBM | Cinuti | 4% Dusviuly i

Cormannn

e . e — —— — ———

TSR

e e e e e e e e e e e e — —— — ——— ————

et £ Cavndmem
_Ilﬁ}ll\-l . tJJJl\-I‘

£712The ANMMND Danawdend MNikiane

Afsdmpatron 6 1% | BEFLF ARLLLAE WL E WLF IJJ\.\ .

ATVWY Lan caviac smniss aleinabe amd naa af ta dlha Na. 4. ~lai s wdasale
e L e e e L e B L L e e ICCUT AT UUJ\.rbl WWiicn

cemmd b phewme wesscwde Locae = dalele ce il s caelan. O
LA WL DA TR LU @ alsie Wi i IR Ouiy

meanndies Tha Danaedont ahinata tnnathae tnth snathades auvalh a0 waaaiaa,

CALCULIIE a quoiy OF

m~omon laa
A

vl nend

Pryvssa e, D e e e L L S

van s -uf‘.-. ot wwmnnlrann st mnes densimenm lL-.u..-L .l'l tha einnmedn nmannasntod 400 04
[T

ul\ Cper o, Illul\\n.! I VLD LU YO v LW LWL LD MDDV IR AL B

.

s simli - oo =l b
i D, l\ auuu\-a.‘)lt.ll o

Ty v pe §- el avass e madsm
-JJJ‘\-;'I ‘Lﬂ‘l.ls 1> a \'\-Illt\wull\lll l.lli\l. Yl

BERRFVON A RO e
L S S R T

LL =)

ARERS ALY R IRE MR R R AR R A wy

veliionie nanmemdionm b e aerbsrnen Thean
nunnub MM w L-vaa IV Lk Ao

wmrssmalene Al el am tlan All ne danbisns nlasmmdisimm o
llull'l’vl ‘Jl LuUuivd Illut .-(“ll J\-’I '\v "\-rll “wa l\-t"lllb ukfl\-f\-‘l Ywd .

a\ i n nrnnace af avasut FREO OO

ey R P
error

LY A mand $nnt acana 3n mma dhat ko

vy bUUu Lt VUdw 12 Vil L iay

. . .
A rnanacobiil tact 1o ana that iinanvare an ne vat nendiosnvarad arvrae
L L O O L L LR L

-

L4

- .
sav mertamn and dasanctentan that curtam Rinatinne annanr 14 ha
AL N R TR SE N A EEE .ll‘lfh“l LR T

e

~
waTyeL

| Fppra— 4 L3 | PR, e

b ba
\-ll“l}l\vl v sJ}.‘N\.III lllll}l\-lll\-lllﬂllUl

Macdimer Dalawanianlne
EAaTAsARE B o8 amLEprERy

MTh e tn

11w 10

e S -mal a 1. L oo
teoung. .lu\'\.lnl l.\...'IISIIb ltl e lave o HMIU\‘\\.U

ten tantsnan tha MNadimeinaline e
L (SN) L RL S \.'J'll‘ll.uu'lllil Lery:

ol Adiimanondi CAT Cuhwine
J L

L) AvASLr A e S Y

lll;-rlu\-lll.lb

- AN bende aleassld lon busaoncledn ba dlia wa csetacsne SeebPe e med
u} Ml oL ﬂll"ulu e Lldavudiliv I i o "{ull e s“ LELSLELN B
L wld lirn smlnnmined Tnwmis bhnlmes dnntemes ke Tw wviv wlmovonsnnsr moves
U’ i Uy |llullll\;\.l lul.b LEASY A B~ ‘v.’l'.'b ubb«'l. L] ‘b P'“'l".‘lb LStk

Tawirn?? Tha fHent tant mlosmemad

masboned svaema 1eoi £
HEEY L 000 0L WO praiieg

s ew .
AN NI WAV \-II\JIIAIIJ (AWLSIV IRV IT AR

-~ . Aw dnnbiss m ansne e <D~ TR
v TLW H TR R a0) u.auna Plusl\'aa, ANV] Dlllllﬂ lll i “(IDS"'JI

PR VN DS ey G (S [P e L S ey e e BN AR popy-5=
LD ill'.\.Sl. el LIUaLED W W

et ey
e i b

- om E'hecsadbneda
Ills wTR0 GILBILB

AP NPT rlentamnian avmilabhla ta acracre anmmalatanacs and
LA LA LR ANL S N ui\l“‘“bl“»‘ AV REL AR N o LRl] V\J.ll'.‘.v'vllvﬂu LAl]
-
Y TR TS e, wmmeridas davinlamnd nevemn weshon o ol | e

——ee v Y
(S VNS YIS N Ul Oy I, HIVYY LY UV YUV vapel Rlllvlll o2y Jlbl!l L¥.2E I.t !Jlbtll!l"l

-
-
- -

M- Vonnsul = Py o tg
eI LA

\.uai'nm o .J}.‘n\.iﬁ g

Danwleswmarrmne sn dastnd
i v!JloJ LR LN LN s LA]

el A limeondi
H) avaEser unispe

m..........r
e

L e

svnvesslsvinm anemrsrn 8 band

AIAY ALY W “ J\dll\l\’ \)l (LS 1%

thrvermaverdales samseer AsfFrwrent $mnbissie e an

llluluublll_’ qu'.b AWl I\'n’llllb Jlllll\d’bl\.ﬂd

. cemmlecadion vo svencd dandsan . . o
Jllul&bl\-.“ n l\-l“\-llllb ul llt lb-\llllb| n I\-bl“llull I&.‘{I

l 'llllb u\-uus&,sub

Tliwid drnibrman
AR L LY ‘\n’ll.l&

-na 2l

Ca Al et b o ~11a B A~ slan
youub tUCUSCS Yol l»uuun CLIvIL Uil UG SIaicon uiit ot o}.'n\..lu u\,olsu nan

e T
v

am o bl o I,

1" -1
[A80] lllll!\!llﬂlll U\Hltl(!l l!ﬂlll.‘! aiv l.\...'il.\-\.l I.\l

N -\uutlnm- Al tha mandula e sinima tha anssmanant Laoal
e LSRR ANALAR I A L L AN A L \‘-’ “Jlllb L \r\'l‘li'\.'ll\il“ I ¥ h

ssnnnns e Arenes sl
RARANRS PRl AR UIRLY WY RLAR

dovingsom dine oo

- o wwsvs o f Dessnnonnes YO
U\v;!lbll AC AL I'Jtl

e
LEIT YIS u HWIUW L Lottty sV),

Tirwsinin £ 2 Tlanis Mans
AR L e ARRRE R Ae

Jaba sk ade —a's
LNl Ualad S usiu e
Moo darmes amee Ikl e =
uuullu“lJ ALV

I N\t
I —— —— | e tave
S e T ot

Tadawmamda -
- LA sl paues

T omarses Lu man A2 mdle o
IR AV III‘I.UIIIIE I..FHI.IIJ

3
'}

MNMannealliv 3lhn ssenth Shanbn tmsrnleran Foprn dand anman an slhavias son Foiviven &7
vy VL WL LeOD HYUEYeD LIV Lol walows G0 Sl Yy il il LRI VL
wond dls m omyemme - wl amnle danth anma cn nbnbnd lhalace: Micanmas ne TATAS I
R l)ul t!\’s‘b \ll AU LD Ll 1D DA LG YY \I LA TR TSN Y -'.-U'Ul} .
n) v binnbond b pvevmisen thnt tnlaeeants -‘-.w-.w\ o
[y

Bad Awdlitd AW WY LR llllUllll“‘lUll lJlUlJ

svindne $rand
[FTFLVLE Iy AWK

sambon monsd mond

(L% “Il\l L U

v ———

el -
U P Ubl&llll I-ll

L

Mhcamban lo o Ceicdnme Tawesal ncaa ccadn -

s
Llapieg W d\rc\l.\.llt LI anun

WYy T annl AdAatn cteuntira &6 Avnmadnne ten asmessen that Aot ctaes
L B T L L e T T R T T T e

L Tty WA Aevwrmns

. L
o lllt\/bll‘\' AL R LT

1 fisnmnnd w rlakal dndn
1 1

—b ~ mesmmesdemen smonod
AV} ;l.ll 13 vALVULIVIIEL diliud v 5'“”“' Al

1 . ik

| L I B s | - adidon
MUIU L dadviel taiineug uur lllb uitiL v .'\ll.l.lﬁ

AV Dnvrendmens anewd

sbsrvemn e brnntand dbn awmessen thnt tha semaduala
(o B SRV T e T SR LY

R L e e L e I L e S LT T Sl e O Y N LS T LW NN L

- =l Lo assom daess mm alallnl ~

A da Viwals
":P\. Tawes plup\.l IJ ul UUUIIuaL v o \..nuuuanuu L 1

. - e
(ISR RAN UI LIl v

-~
Ar

syl dlin ewnive
[RIRY) o s })I\Ib. 1)

wwn b esssabraeis seeia

b
I vl W

4

S
’
3

T | wn bl nd

w1l mdnbamamedn sia » wandiila hacie lhaae
CALIOVU l\l CHIOUIC UL ki ' e

IS NLST R L S BOTHNAVARIUILL Y .

manmmeshad ab bamak atea=
LALLVULLAL Gl Iwaddl vl

AV AN nrrne handliae antha nen tantnd ba e e mlalites 4o At
W E A Ciivh uuuuuu& PRrtiig v teoivu Lu villou u.a LY WU UL

- =

me Al Ladnal cnvnaas e ke
Lviiuvia uu uus a_;.su.ul CACCULIU

QiU ToCU YL Gl e

Vi ko vasesh-dia Banbawnre 4o = weinliveshndare . e m~memnbassmbdionn blaa camn reencae
llll\- lull\l’ll (LRI} lb LIS ¥ 1 ._’ Sl I\-\vlllll\-l“\v l\ll Ao u\iisl.b L3 L% f}l\lslul!t

- — cxdisln ad ahha cews e Simew 1. e e
SULULC UGS WG @ s Dalliiv L Lt"luublillb I.\..s‘l..'i ttl WIILUVLL LD addurciatou

Teo mhai

i b talia st tantad anmamnanants and laald
e sy ~

[l
L e L e N s LV) \fUlllP\.'llblth L N

£

serbenboned Tave diviiiiven (Mennnsanes YN
L AR T ST e KT v

11

Mo - £
\.fllnllu..l VoLoayawan n

Tha

4 i

it amentine tantinn svne anmdoatad
e L L A]

mward binerbrnil Rww svwenisi) & van b o
I TUOtus A58 I LGOI oI s W

s rvwervbessrabonel

WALFEEILE L L

ol d
[y nu..

-

T ivwss -

L vl v

R Ll

ulllbl\vl!l

.

e e

mvimelalad

v and o et b o
LY LI i |ll‘\45’“‘|\ll‘.’

Y R N e L e ommed wia dlew
I.\-."ll.llls alna Sinun. Lradeu vl e

rnhadula n anmbhinad amaranah that woan 1aen

i) R A

| K Y e,

LRsLLLIn

ttllll

aenvvenland

A

-

PIUEIIIII'

aem

l;P

wnlandmd
A ivuiiva

- Posasdd¥ o oedl imnn v THaiezaal I
L N T L L R L B A L AT

1y d . . mwssbmonn 5eedmrmsm i wom & s s -
I Crpu e .'"y-"l\vl‘l ‘llt\-s!ﬂ‘l\l‘. l\vﬂ'lllﬁ.

---.O- -

Tnee dnserm sed | - . ol
WU uubnnulub Yriu

[} U') (VLIVRLET N]

a meslamdodas

Aol - A dan am H -
GIiver and S1Uos arc sudatituica

-
LA

al. - -1
(VLW Cutl lll L

| N
1vru

hiciai

1.
e

= waad
IIIUVJ i5 uvwilvwaiu

mlhanrats
L | Ii\\'al Ll

intanentad Tam dass
. \llJ A vy

e Lt bt b T L T
\-Ulll'.)\.ﬂnullt (T8 lllt\-ﬂblul\i\‘.

e P S el

vy

s

- —
(IR AVl

oLk Haov i
& P

son s rua repa s |
TR

wn s mb o eam
..‘!)‘ RISV FE]

. ¢ Puse wd
L L]

LIt

“i’\)i\.llll& \.u\n.n.n\‘u

« O

Vo wa

(8]

el o -

—vme o andmdi .
Peliiviiiativn

e tho mantams ie
LR e L .i_’ WAl

innmrarmanntnl

o
e e L S T

il semonnb dhae

el we——
lJ\lltlt\o l-lll\.al UUII\»D! lll\.« ChiE .! vual\n

mrmmian maa VN
WA, S

o brn iy rues

senbinivern b e
I.l‘\-’b. (CISATIR] -,‘I “\Ubl\ft’

- -

La ndd mean svem ~ rvasmde o am - -
'Ju'-‘u‘ll'“}-f llll-\-&l G, l\osl waa

e =

cliaraciciistics

tavialan ~f
BN ¥ A har AR

tantn Far cmene
Seratibar AR ul.nl..n-l

Ansum

-
Ninr v (L

sl rnmidiemnta

- -
AL AR L

| R

IvyYwia

#onribrn
(WIS L OS]

e

e
e YYD

TN

ey Y mven s an
titlla L v it

N A3 secs oo mde
IVEIC e

ovemben] smmimdisla an w band

AUTTEREL IV UL WY W L

Ity .

o anahlas tha datantian Al daes
AFAE WAL I W LW LW LIV W e

sedonres snen

I \-MHJI [l

Dattanns s lhamine annnteintinem nend tan AL L] abvevni
IR A A R T |¢\fbl.l..‘ A TR R L A] AL RA l\'..‘lllib AAR SR LA R A
Vinons bonwianl rmmen b nwn anssbhinad fmtn alintae tn masfn

sy
AR L LR B \v\llllt}\..ll\dll‘d

e

Wi

1

~d

.
MW WAL VA

Tatbrnema daceieas
LIS U YYD

——
BRIV WwibILwl 'J\allullll u

£1%72

AFsns o mwont

L o e

1 -l
] S l) . nJV.‘thlll lllt}ll\'lllblllﬂtllul

annn Aanian hananiinn arnannnins ramiarad {ne ansmaonnant aoblaeds
L T e L LR N L L LTS L !ll \iv\-._!..iiilb lv\lu’l\ru (A V\‘l‘ll!\!ll\v“l APRALANIE A

Liassnnd s nle o omvinalablo need ¢ thn wmand Fae ctudho cn alimaiemntad
e

W LN llluJ BRI B AWPE ORLALAY B SRR,

1w ¥l tJ ui!""’d YLl

- o | -~
LULUOL dlid

P, Bxsaion o dhin aliillece i~

- csinm g ol ' o o s s i il e A ol o s . A e
n llallullllb ll‘ VIS L ﬂl’llll} wr ull\'llll’l WL IR VYLL IWEL

innlenmuiant Foatal DEvraThi e
waan .

e than latiien thaes Arvense el
BASAALS Sed NSRS .

" vy thaa
e LT T R [T P "

Mg Mk

Tao 4L e LT L BT PSS S ey e oo
1] L

memenessarsemenenry T hied el 10NN
AP TRt \.u\p\.ulln-ln DySean v Lfguuuuu e

UUI l..“.«qu\,a LA I el S LA L Y

men wd N Mg do OV Cainine TH.N et L
FEAZ) AVEIN I AN AN S L DT V) L Lt;ur !uuu\\., STy Ilullullllb [evTeter)

P¥liasind vios)
Loy oILue s

-

e e b b snlana hcee womnms swe 1ileale: de wwmivw bhoonosines td sumll enlie alsa
“ll')’ ﬂi}.'ll\-u at i’lll\v\- Wilviw wilivnid auw lll\bl) O ULG i L aude 1L YWIHEHE nidne Lo

dnrsivivasnre a0t seanane Al (S
1)

l‘l\luubbll lb I i IJI LW

wid Anewonts sewmenws ove bussewe sen ths
.

IR lulllb Mll\,l Uuliuvtlllb &.IU.J wr Uubn} s

mnsiman anda Al Anmesmsibam donnenme (K favine Nalhie amd NEAffankhrcmas 1OINNY
AU VY WU UL W 8}1 el IJ!U ~Leaiin \1'1\;!\11, LA GBI 1 AL AL 5\.4!., Lrr2),
Mh e mmm =~ as smd msnn
1Hviv atv a dyatnii
I‘A‘\"\l.[tii;l’\ll ;“AII‘(“:.’\". Tﬂ(‘l\‘n\ D"-Il\""’\f\;“. “‘u\l\ ‘ﬂ'r\ llfl ‘lfﬂ'ﬂl\ ﬂ“f‘ AN ATAl

L Y R = LR R Y o L L e e N SLLLL tu L N T T

o csamdiace: nend Trnsmaindas
Bad PR AAARALS WY AN RV AL

Adinlicimmemes 4him sqintana thn T nr
ubuubbllla .llh JJIU"., lllh [BV

hanle thhin sinlien afsineintalng
COLUA LG YOG UL Yai e,

-
- -

£22

et gus

[] Ppe . e Cuindnsee Voeaonld
raprea U' . .JJ.‘N\-III n l})lblll\-lllutl\.lll

e e i e
AfRARERARARA N "

l."..-d-....-......q. mian msmbads men 4o - alaa
LY OULALLY I mcihation i Yuiite o v

. -

ol - ann
uuc lnubluul "

e
1

g

ssse =il Ao enbswe=la
l G LI Tl ey

e [e L
un \.Uusus, FAD 1 adlll Yy

i ten temr At avamnlas ta aan hav tha aatual Rinatinne ~F

. .
Cae tha lWaninmaen 1 e
A BT % ARS B Y AR WM D A DWW B Y LW AW LA L LA R W

IV U U smililiiavi o

thin nnsmman lammsinan Thasa aes navnen] s Fae sin 4a notnhlink - I 4l
T DUV .) Hvie Mie ovyoia YUY D AUE WD GV VOO R CORDCTHONn O Uhic

e dastalhana T deiad ¢haa MATDN
.::J.:m..nu GALAUAsT. 1 Uivu Ui WS

@)

b iarate
L

dao A . Sl SeSt.e it LA ST e = & W - Jipm—— Y] il S o e e e N . s i e e e |
ALS RIS AJREIARD WYRRIGED RIIULEE L WYAZER WYALRE AW B0, LRI DO RIIIE 11D DAL Ui ad ‘ i
Al iminlamsantatine whaea
B L T R e

i e s mabmesd salimnn soo Amsinlame aan lamanssma
Iy wabe b l'Nl I priadw 1 WY IU'.}I Oy Uevi U
¥ o I T T n dandisem selonsn awelelnd sem dw dalsad Sloe sewewe e
ULy, 11w I\-.‘IHIB lﬂlﬂﬁ‘- LAl B W UGiWwl LW Ly ue l..u lw ll.l lll)‘

v lovess Wlithant tants thara in s eanonn v owred winntt wnavls e
L ol L T AR R AW bl 1] LT L P T e T wreAs AL T I T L T S T
svntruns e rd Danidan thnt tantime nla Athae ne wnd tha

o
RERLA I, LAVOIMLD MLy SWOlILE WO LAV W IV L

- am namalada o b - T - b banbisace meales da dam e n
Piugiani 19 wauviv i1 l}lu\.lu..\.. L CAIC WO KDWY LAl l\-ﬂtllls uul_y u\.ulun.suuu.a (YT

=i = dh nd bl cn cn o i
l)l UV lllﬂl LHIvi v il LIV Ll s

v B e
lll bb\.ll‘\u\. v OIS ang it vat

5

Chapter 7 : Stimulation Results

STIMULATION RESULTS

7.1

72

STIMULATION

To evaluate the performance of the proposed Verification on Physical Design of
Microsoft SQL Server 7.0 Performance, simulations are carried out using the
Visual Basic 6.0. Several components and functions are developed and
incorporated into the system. These experiment shows that the greatest benefit in
SQL Server performance can be gained from the general areas of logical
database design, index design, query design, and application design. For the
purpose of comparison time consuming, three main modules are included in the

system that 1s between columns, between rows and between rows and columns,

USE EFFICIENT INDEX DESIGN

Unlike many non-relational systems, relational indexes are not considered part of
the logical database design. Indexes can be dropped, added, and changed without
affecting the database schema or application design in any way other than
performance. Efficient index design is paramount in achieving good SQL Server
performance. For these reasons, should not hesitate to experiment with different

indexes.

Chapter 7 : Stimulation Results

The optimizer reliably chooses the most effective index in the majority of
cases. The overall index design strategy should be to provide a good selection of
indexes to the optimizer, and trust it to make the right decision. This reduces

analysis time and gives good performance over a wide variety of situations.

The following are index design recommendations :

« Examine the WHERE clause of SQL queries, because this is

the primary focus of the optimizer.

Each column listed in the WHERE clause 1s a possible candidate
for an index. If have too many queries to examine, pick a
representative set, or just the slow ones. If' development tool
transparently generates SQL code, this is more difficult. Many of
these tools allow the logging of the generated SQL syntax to a file
or screen for debugging purposes. Can find out from the tool's

vendor if such a feature is available.

o Use narrow indexes.

Narrow idexes are often more effective than multicolumn,
compound indexes. Narrow indexes have more rows per page, and

fewer index levels, boosting performance.

121

Chapter 7 : Stimulation Results

The optimizer can rapidly and effectively analyze hundreds, or
even thousands, of index and join possibilities. Having a greater
number of narrow indexes provides the optimizer with more
possibilities to choose from, which usually helps performance.
Having fewer wide, multicolumn indexes provides the optimizer
with fewer possibilities to choose from, which may hurt

performance.

It is often best not to adopt a strategy of emphasizing a fully
covered query. It 1s true that if all columns in SELECT clause are
covered by a non-clustered index, the optimizer can recognize this
and provide very good performance. However, this often results in
excessively wide indexes and relies too much on the possibility
that the optimizer will use this strategy. Usually, should use more
numerous narrow indexes which often provide better performance

over a wider range of queries.

Should not have more indexes than are necessary to achieve
adequate read performance because of the overhead involved in
updating those indexes. However, even most update-oriented

operations require far more reading than writing. Therefore, do

Chapter 7 : Stimulation Results

not hesitate to try a new index if think it will help; can always

drop it later.

Use clustered indexes.

Appropriate use of clustered indexes can tremendously increase
performance. Even UPDATE and DELETE operations are often
accelerated by clustered indexes, because these operations require
much reading. A single clustered index per table is allowed, so
use this index wisely. Queries that return numerous rows or
queries involving a range of values, are good candidates for

acceleration by a clustered index.

Examples:

SELECT * FROM PRSSEWINGTICKETINGDETAIL2
WHERE COLORCODE = 'PINK'

-0r-

SELECT * FROM PRSSEWINGTICKETINGDETAIL2
WHERE MARKERNO > §

AND MARKERNO < 10

Chapter 7 : Stimulation Results

By contrast, the COLORCODE or MARKERNO columns
mentioned above are not good candidates for a non-clustered
index 1f this type of query is common. Try to use non-clustered

indexes on columns where few rows are returned.

Examine column uniqueness.
This helps to decide what column is a candidate for a clustered

index. non-clustered index, or no index.

The following is an example query to examine column

uniqueness:

SELECT COUNT (DISTINCT COLORCODE)
FROM PRSSEWINGTICKETINGDETAIL2

This returns the number of unique values in the column. Compare
this to the total number of rows in the table. On a 679760-row
table, 339880 unique values would make the column a good
candidate for a non-clustered index. On the same table, 1360
unique values would better suit a clustered index. Three unique
values should not be indexed at all. Must place the indexes on the

individual columns listed in the WHERE clauses of the queries.

Chapter 7 : Stimulation Results

Examine data distribution in indexed columns.

Often a long-running query occurs because a column with few
unique values is indexed, or a JOIN on such a column is
performed. This is a fundamental problem with the data and query
itself, and cannot usually be resolved without identifying this
situation. For example, a physical telephone directory sorted
alphabetically on last name will not expedite looking up a person
if all people in the city are named just "Smith" or "Jones." In
addition to the above query, which gives a single figure for
column uniqueness, can use a GROUP BY query to see the data
distribution of the indexed key values. This provides a higher
resolution picture of the data, and a better perspective for how the

optimizer views the data.

The following is an example query to examine data distribution of
indexed key values, assuming a two-column key on

COLORCODE, MARKERNO :

SELECT COLORCODE, MARKERNO, COUNT(*)
FROM PRSSEWINGTICKETINGDETAIL2
GROUP BY COLORCODE, MARKERNO

125

Chapter 7 : Simulation Results

This will return one row for each key value, with a count of the
istances of each value. To reduce the number of rows returned, it
may be helpful to exclude some with a HAVING clause. For

example, the clause

HAVING COUNT(*) > |

will exclude all rows which have a umque key.

The number of rows returned in a query is also an important
factor in index selection. The optimizer considers a non-clustered
index to cost at least one page 1/O per returned row. At this rate, it
quickly becomes more efficient to scan the entire table. This is
another reason to restrict the size of the result set or to locate the

large result with a clustered index.

Do not always equate index usage with good performance, and the
reverse. If using an index always produced the best performance,
the optimizer's job would be very simple - always use any
available index. Actually, incorrect choice of indexed retrieval
can result in very bad performance. Therefore the optimizer's task
is 1o select indexed retrieval where it will help performance, and

avoid indexed retrieval where it will hurt performance.

126

3

Chapter 7 : Stimulation Results

USE EFFICIENT QUERY DESIGN

Some types of queries are inherently resource intensive. This is related to
fundamental database and index issues common 10 most relational database
management systems (RDBMSs), not specifically to SQL Server. They are not
inefficient, because the optimizer will implement the queries in the most efficient
fashion possible. However, they are resource intensive, and the set-oriented
nature of SQL may make them appear inefficient. No degree of optimizer
intelligence can eliminate the inherent resource cost of these constructs. They are
intrinsically costly when compared to a more simple query, Although SQL
Server will use the most optimal access plan, this is limited by what is

fundamentally possible.

For example:

o Large result sets

« IN,NOT IN, and OR queries

« Highly non-umque WHERE clauses

« ! (not equal) comparison operators

« Certain column functions, such as SUM

« [Lxpressions or data conversions in WHERE clause
e Local vanables in WHERE clause

o Complex views with GROUP BY

Chapter 7 : Stimulation Results

Various factors may necessitate the use of some of these query constructs.
The impact of these will be lessened if the optimizer can restrict the result set
before applying the resource intensive portion of the query. The following are

some examples.

Resource-intensive :

» SELECT SUM(COLORCODE) FROM
PRSSEWINGTICKETINGDETAIL2

Less resource-intensive

« SELECT SUM(COLORCODE) FROM
PRSSEWINGTICKETING WHERE COLORCODE = 'PINK'

Resource-intensive :

« SELECT * FROM PRSSEWINGTICKETINGDETAIL2
WHERE LNAME=@VAR

Less resource-intensive :

e SELECT * FROM PRSSEWINGTICKETINGDETAIL2
WHERE LNAME=@VAR AND COLORCODE = 'PINK'

In the first example, the SUM operation cannot be accelerated with an index.
Each row must be read and summed. Assuming that there is an index on the
ColorCode column, the optimizer will likely use this to imitially restrict the result

st before applying the SUM. This can be much faster.

128

Chapter 7 : Stimulation Results

In the second example, the local variable is not resolved until run time.
However, the optimizer cannot defer the choice of access plan until run time; it
must choose at compile time. Yet at compile time, when the access plan is built,
the value of @VAR is not known and consequently cannot be used as input to

index selection.

The illustrated technique for improvement involves restricting the result set
with an AND clause. As an alternate techmque, use a stored procedure, and pass

the value for @VAR as a parameter to the stored procedure.

In some cases 1t 1s best to use a group of simple queries using temp tables

to store intermediate results than to use a single very complex query.

Large result sets are costly on most RDBMSs. Should try not to return a
large result set to the client for final data selection by browsing. It is much more
efficient to restrict the size of the result set, allowing the database system to
perform the function for which it was intended. This also reduces network 1O,
and makes the application more amenable to deployment across slow remote
communication links. It also improves concurrency-related performance as the

application scales upward to more users.

7.4

Chapter 7 : Stimulation Results

ORGANIZATION OF DATABASE SPACES

The role that application design plays in SQL Server performance cannot be
overstated. Rather than picture the server in the dominant role, 1t is more accurate
to picture the client as a controlling entity, and the server as a puppet of the
client. SQL Server is totally under the command of the client regarding the type
of queries, when they are submitted, and how results are processed. This in turn
has a major effect on the type and duration of locks, amount of 1/O and CPU load

on the server, and hence whether performance is good or bad.

For this reason, it 1s important to make the correct decisions during the
application design phase. However even if face a performance problem using a
turnkey application where changes to the client application seem impossible, this
does not change the fundamental factors which affect performance - namely that
the client plays a dominant role and many performance problems cannot be

resolved without making chient changes.

With a well-designed application, SQL. Server is capable of supporting

thousands of concurrent users. With a poorly-designed application, even the most

powerful server platform can bog down with just a few users.

130

Chapter 7 : Stimulation Results

Using the following suggestions for client application design will provide

good SQL Server performance:

o Use small result sets. Retrieving needlessly large result sets (for example,
thousands of rows) for browsing on the client adds CPU and network 1/O
load, makes the application less capable of remote use, and can limit
multiuser scalability. It is better to design the application to prompt the
user for sufficient input so that queries are submitted which generate

modest result sets.

Application design techniques which facilitate this include limiting the
use of wildcards when building queries, mandating certain input fields,

and prohibiting improvised queries.

o Use dbcancel() correctly in DB-Library applications. All applications
should allow cancellation of a query in progress. No application should
force the user to reboot the client computer to cancel a query. Not
following this principle can lead to performance problems that cannot be
resolved. When dbcancel() 1s used, proper care should be exercised
regarding transaction level. The same issues apply to ODBC applications,

if the ODBC sqlcancel() call is used.

131

Chapter 7 : Stimulation Results

Always process all results to completion. Do not design an application or
use a turnkey application that stops processing result rows without
canceling the query. Doing so will usually lead to blocking and slow

performance.

Always 1mplement a query timeout. Do not allow queries to run
indefinitely. Make the appropriate DB-Library or ODBC calls to set a
query timeout. In DB-Library, this 1s done with the dbsettime() call, and

in ODBC with SQLSetStmtOption().

Do not use an application development tool that does not allow explicit
control over the SQL statements sent to the server. Do not use a tool that
transparently generates SQL statements based on higher level objects,
unless it provides crucial features such as query cancellation, query
timeout, and complete transactional control. It is often not possible to
maintain good performance or to resolve a performance problem if the
application all by itself generates "transparent SQL," because this does
not allow explicit control over transactional and locking 1ssues which are

critical to the performance picture,

1.5

Chapter 7 : Stimulation Results

o Do not intermix decision support and online transaction processing

(OLTP) queres.

« Do not design an application or use a turnkey application that forces the
user to reboot the client computer to cancel a query. This can cause a
variety of performance problems that are difficult to resolve because of

possible orphaned connections.

NORMALIZE LOGICAL DATABASE DESIGN

Reasonable normalization of the logical database design yields best performance.
A greater number of narrow tables is characteristic of a normalized database. A
lesser number of wide tables 1s characteristic of a denormalized database. A
highly normalized database is routinely associated with complex relational joins,
which can hurt performance. However, the SQL Server optimizer is very
efficient at selecting rapid, efficient joins, as long as effective indexes are

available.

The benefits of normalization include:

» Accelerates sorting and index creation, because tables are narrower.

« Allows more clustered indexes, because there are more tables.

133

Chapter 7 : Stimulation Results

« Indexes tend to be narrower and more compact.
« Fewer indexes per table, helping UPDATE performance.
o Fewer NULLs and less redundant data, increasing database compactness.

o Reduces concurrency impact of DBCC diagnostics, because the necessary

table locks will affect less data.

With SQL Server, reasonable normalization often helps rather than hurts
performance. As normalization increases, so do the number and complexity of
joins required to retrieve data. As a rough rule of thumb, Microsoft suggests
carrying on the normalization process unless this causes many queries to have

four-way or greater joins.

If the logical database design is already fixed and total redesign is not
feasible, it may be possible to selectively normalize a large table if analysis
shows a bottleneck on this table. If access to the database is conducted through
stored procedures, this schema change could take place without impacting
applications. If not, it may be possible to hide the change by creating a view that

looks like a single table,

7.6

Chapter 7 : Stimulation Results

ABSTRACT DATA ACCESS

The use of stored procedures distinguishes SQL Server from file-based
databases. Stored procedures are containers for code stored on the server that
allow to mix control-of-flow logic, such as If... Then statements, with SQL to
retrieve, insert, update, and delete data from the database. This provides a
powerful mechanism to help abstract the data access code from the underlying
database structure. In addition, the SQL code in stored procedures is precompiled
and can be stored in memory once the stored procedure is executed, improving

performance.

I use stored procedures exclusively for all the data access in projects that
use SQL Server. This allows the most flexibility for changing the structure of the
table and provides a performance boost. Stored procedures can also be used in a
multiuser situation to implement security because permissions to the underlying

table.

| create a stored procedure for inserting datas. 1 use stored procedure over
here because if we insert from VB, then we will not get the proper insertition

time, and moreover we need time taken by the SQL Server not VB.

Chapter 7 : Stimulation Results

CREATE PROCEDURE populate @insertcount int as

/* Delete any current rows */
delete from testtable

/* Loop until we have inserted the number of rows indicated by the
@insertcount parameter */

WHILE (SELECT count(*) from testtable) < @insertcount
begin

/* Insert data. Note the dtInsert column is not identified because the table is
set to give the field a default value returned from the getdate() function */

insert into testtable(fieldl, field2, field3, field4, fields, field6, field7, field8,
field9, field10, field11, field12)

valucs(llv‘ 92!‘ n3|. !4|. |5l, I6l‘ I7I' l8!‘ 091. Iln', rI I‘, llzl)

END

GO

Figure 7.1 Functionality of Stored Procedure

In this stored procedure, first delete any current rows in the table.
Then the code loops until the number of rows in the table equals the value of
the passed-in parameter, @insertcount. I determine the number of rows in the
table using the count(*) SQL syntax. (I know there are probably more efficient
ways to do this, but we want the query to run at some length so we can monitor
it). 1 use database of 679760 rows and 11 columns. I create an ODBC data

source called Payroll to my new SQL database.

136

Chapter 7 : Stimulation Results

When executing a query directly against a dedicated SQL test
database, there's almost no pause. But if were executing a complex SQL query,
working against a heavily used database, or perhaps working against a legacy
system, | experience significant delays in the return of nearly any query. Using
the RDC's QueryCompleted event, 1 have the ability to provide the user with
feedback when the query is finished, to allow the user to continue working, or

to carry out any other option that suits my environment.

As 1 can see, this feature 1s fairly straightforward. However, many
chent/server applications don't utilize the Remote Data control, especially if
they're trying to completely abstract away the database interface from the user
interface in a multitier apphication. But don't fear--1 accomplish the same task

using RDO without using the RDC.

Steps : - Start a new project named prjQueries.
- Add a form called frmQueries to the project.
- In the project, I'll need to reference Remote Data Objects by using
the Project | References menu item,

- Following table specifies the controls you add to frmQueries.

137

Chapter 7 : Stimulation Results

e e o abe ke s afe s o e o afe e o o ofe o e o o e o ke ofe ol e s s e o o o o o ool o ol e o

Control Type Control Name

e s o e ol s o e ol ol oo ol ool o o ol sl ol sl o ool ol ol o e ool ol ol e ok ol ok ko

Frame frmPopulate
Timer timer|

Text box txtNumRows
Label 1blStatus
Label IblTime

Command button cmdPopulate
ke ol sk e ok ol s o ok ok ke ok ol ok o e o e sk s ok ol ofe sl o ok o e o o ok ol e ok o ke o oo

Table 7.1 Controls That Been Used in the Form

When the code runs, I'll enter in the text box a value that indicates the number
of rows I want to insert into the test table. Then, click the Populate button to
begin the insertion. As the query executes, with each tick of the timer the
program shows the status of the query, as well as the current execution time in

seconds.

Option Explicit
' Globally declare our rdo environment and connection objects
Dim en As rdoEnvironment

Dim ¢n As rdoConnection

" Globally save the StartTime when the query 1s executed
Dim StartTime As Date

Private Sub cmdPopulate Click()
Dim SQL As String

* Get our rdo environment to work with.
Set en = rdoEnvironments(0)

" Open a connection using the sqltest system DSN

138

Chapter 7 : Stimulation Results

Set ¢n = en.OpenConnection(dsName:="PayRoll",
Prompt:=rdDriverCompleteRequired)

If txtNumRows. Text <= "" Then

" Build our stored procedure execute statement. The number of rows
‘to insert into the database is retrieved from the text box
SQL = "execute populate " & CLng(txtNumRows. Text)

" Get the start time
StartTime = Now

' Also set the timer interval to 100 ms
Timer!.Interval = 100

' Set query checking interval to 100 ms
cn.AsyncCheckInterval = 100

" Execute the SQL Statement, Use the rdAsyncEnable parameter to
‘indicate we want to continue processing in the program even if the
‘query is not completed

cn.Execute SQL, rdAsyncEnable

" Enable the timer to monitor the status of the query
Timer] . Enabled = True

Else
' No value was entered, notify the user.
MsgBox "You did not enter the number of rows to populate the
database with."

End If

End Sub

Private Sub Timerl Timer()

" Check to see if the query 1s still executing
If en. StillExecuting ~ True Then

" Show the status
IbIStatus, Caption = "Status: Still Executing”

139

Chapter 7 : Stimulation Results

' Show the current query time
IblITime.Caption = "Query Time: " & DateDiff("s", StartTime, Now)

Else
" Indicate the query 1s done
IblStatus.Caption = "Status: Done!"
' Show the query time
IbITime.Caption = "Query Time: " & DateDiff("s", StartTime, Now)
' Disable the timer
Timerl.Enabled = False
End If
End Sub

Figure 7.2 frmQueries Code

The key to understanding how this code works lies in the Populate
stored procedure. In the cmdPopulate Click subroutine, I create the RDO
connection. Then I create the SQL statement to execute the Populate stored
procedure and pass in the number of rows to be inserted (indicated by the user in

the text box). Next, I set the timer interval to 100 milliseconds.

Now I'm at the heart of the functionality. Remote Data Objects
provides a feature called asynchronous queries, which lets the VB program
continue on its merry way while the SQL query continues to execute. The
program will then periodically go out and check the status of the query. The

periodicity is set by the AsyncChecklInterval property of the connection object.

140

1.7

Chapter 7 : Stimulation Results

In this case, | set it to 100 milliseconds. The value normally defaults to 1,000

milliseconds (one second).

Now I'm ready to execute the query, using the usual execute method
of the connection object. But in this case, I'm going to provide one additional
parameter--rdAsyncEnable--to indicate that this query should be run
asynchronously. This parameter tells the program to continue processing even

though the query might not be finished.

In order to monitor the query as it runs, | check the status of the
connection object’s StillExecuting property. 1 do so in the Timerl Timer
subroutine. Each time the timer fires, the code checks to see whether the query is
still running. If it is, | simply update how long it's been running by subtracting
the current time from the time when the StartTime variable was set. When the
value of StillExecuting is false and the query is finished, the timer stops and |
indicate that the query is finished. With a few hundred thoudsand row insert, I'll

see a several-second delay.

TECHNIQUES TO ANALYZE SLOW PERFORMANCE

It may be tempting to address a performance problem solely by system-level

server performance tuning. For example, how much memory, the type of file

141

Chapter 7 : Stimulation Results

Use the 4032 trace flag according to the instructions in the SQL Server
4.2x "Troubleshooting Guide," and the SQL Server 6.0 "Transact-SQL
Reference.”" This will allow capture of the SQL statements sent to the

server in the SQL error log.

Monitor the queries through a network analyzer such as Microsoft

Network Monitor, which is part of Systems Management Server.

For ODBC applications, use the ODBC Administrator program to select

tracing of ODBC calls.

Use a third-party client-side utility which intercepts the SQL at the DB-
Library or ODBC layers. An example of this is SQL Inspector from Blue

Lagoon Software.

Use the SQLEye analysis tool provided as an example in the Microsoft

TechNet CD. NOTE: SQLEye is not supported by Microsoft Technical

Support.

143

Chapter 7 : Stimulation Results

After the slow query is isolated, do the following:

Run the suspected slow query in isolation, using a query tool such as
ISQL, and venfy that it is slow. It 1s often best to run the query on the
server computer itself using ISQL and local pipes, and redirect the output
to a file. This helps eliminate complicating factors, such as network and

screen 1/0, and application result buffering.

Use SET STATISTICS 10 ON to examine the I/O consumed by the
query. Notice the count of logical page 1/0s. The optimizer's goal is to
minimize 1/O count. Make a record of the logical 1/O count. This forms a
baseline against which to measure improvement. It is often more effective
to focus exclusively on the STATISTICS 10 output and experiment with
different query and index types than to use SET SHOWPLAN ON.
Interpreting and effectively applying the output of SHOWPLAN can
require some study, and can consume time that can be more effectively
spent on empirical tests. If the performance problem is not fixed by these
simple recommendations, then can use SHOWPLAN to more thoroughly

investigate optimizer behavior.

144

Chapter 7 : Stimulation Results

If the query involves a view or stored procedure, extract the query from
the view or stored procedure and run it separately. This allows the access
plan to change as experiment with different indexes. It also helps localize
the problem to the query itself, versus how the optimizer handles views or
stored procedures. If the problem is not in the query itself but only when
the query is run as part of a view or stored procedure, running the query

by itself will help determine this.

Be aware of possible triggers on the involved tables that can transparently
generate 1/O as the trigger runs. Must remove any triggers involved in a
slow query. This helps determing if the problem is in the query itself or

the trigger or view, and therefore, helps direct the focus.

Examine the indexes of the tables used by the slow query, Use the
previously listed techniques to determine if these are good indexes, and
change them if necessary. As a first effort, try indexing each column in
WHERE clause. Often performance problems are caused by simply not
having a column in the WHERE clause indexed, or by not having a useful

index on such a column.

145

Chapter 7 : Stimulation Results

» Using the queries previously mentioned, examine the data uniqueness and
distribution for each column mentioned in the WHERE clause, and
especially for each indexed column. In many cases simple inspection of
the query, table, indexes, and data will immediately show the problem
cause. For example, performance problems are often caused by having an
index on a key with only three or four unique values, or performing a
JOIN on such a column, or returning an excessive number of rows to the

client.

« Based on this, make any needed changes to the application, query, or
indexes. Run the query again after making the change and observe any

change in /0O count.

« After noting improvement, run the main application to see if overall

performance is better.

Check the program for /O or CPU-bound behavior. It is often useful to
determine if a query is VO or CPU bound. This helps focus the improvement
cfforts on the true bottleneck. For example, if a query is CPU bound, adding
more memory to SQL Server will probably not improve performance, because
more memory only improves the cache hit ratio, which in this case, is already

high

146

Chapter 7 : Stimulation Results

How to Examine 1/0 vs. CPU-bound Query Behavior :

Use Windows NT Performance Monitor to watch /O versus CPU
activity. Watch all instances of the "% Disk Time" counter of the
LogicalDisk object. Also watch the "% Total Processor Time" counter of
the System object. To see valid disk performance information, must have
previously turned on the Windows NT DISKPERF setting by issuing

"diskperf -Y" from a command prompt, and then rebooting the system.
While running the query, if the CPU graph is consistently high (for
example, greater than 70 percent), and the "% Disk Time" value is
consistently low, this indicates a CPU-bound state.

While running the query, if the CPU graph is consistently low (for
example, less than 50 percent), and the "% Disk Time" is consistently

high, this indicates an I/O bound state.

Compare the CPU graph with the STATISTICS 10 information.

147

Chapter 7 : Stimulation Results

7.8 HIPOTHESIS

When retrieve different size of columns or attributes the time consuming is
increasing. The increment in timing is not so far part and it is based on the

different between the database in a table.

CONSUMATION OF TIME FOR RETRIEVING
COLUMNS

§ 18: TN SRS eTY e g
shze of attributes

MULTIPLE TURPLES OF ROWS

S 1S 28 37 47 S1 SS 68 M3 U M |7 0%
slze of attributes 100%
Figure 7.3 Graph On Retrieving Different Size Of Columns

148

Chapter 7 : Stimulation Results

When retrieving different turples of rows the time consuming is
increasing in the earlier stage but at the 100% turple of rows it decrease compare
to previous turples. This is because more time needed to sort the different rows

which is not in order compare to retrieve the whole rows in order.

CONSUMATION OF TIME FOR RETRIEVING ROWS

70-“

60
50

time In seconds 40
(®

20

10

0
10% 30% S50% T70% 90%

turples of rows

RETRIEVING MULTIPLE COLUMNS WITH

DIFFERENT TURPLES OF ROW
70
= 60
5 50
E-w
= 30
! 20 4
=10
0 +— T T T T T T T T T I 65
ol oo oo elo dle Gle Jle Gle oo el
STttt S [
74
les
turples of rows o

Figure 7.4 Analysis Graphs On Different Turples of Rows

149

PhnpTeR §
WIOTEN EVALUATION

Chapter 8 : System Evaluation

SYSTEM EVALUATION

8.1 INTRODUCTION

This chapter includes problem encountered and its solution, strengths of the system

and the overall conclusion.

8.2 PROBLEMS ENCOUNTERED AND ITS SOLUTION

There are several problems encountered throughout the development of experiment

tools system for Optimizing SQL Server including:

a) Unsupported features between programming tools
There are several features in SQL Server 7 that are not supported by the
Visual Basic 6. The problem occurs because some of the components in
Visual Basic 6 do not support the database format used by the SQL Server.
For example the it can access database format of Microsoft Access. Finally, it
is decided to use ADO and RDO as the system database because they can

casily be converted to Visual Basic 6 with no difficulty.

150

b)

d)

Chapter 8 : System Evaluation

Programming problems
Lack of Visual Basic 6.0 programming skills cause a lot of problems
during the system coding state. However, all the problems had been

solved finally by reading a lot of references and explore the Internet.

Connecting to Data Sources

There are several ways to connect to a data source. [used the the
connection string method but | failed because the same errors occurs.
After failed using that method, 1 tried by using the ODBC Data Sources
or DSNs which can be created using the ODBC Data Source
Administrator. | succeeded to connect to the data source by using the

second method.

Lack of latest references

This is the main problem faced when finding references for the literature
review and finding programming reference books. This problem had
solved by wvisiting to University of Malaya main library, UNITEN’s

library and National Library.

151

Chapter 8 : System Evaluation

¢) Lack Of PCs in the Lab
The PCs available for the students were not enough in the lab. It makes

me to develop my system at home and try them in the lab when situation

allows.

f) Lack of SQL Server knowledge
Limited knowledge in SQL Server management cause the difficulty of
developing an appropriate classification, designing the database and the
system transactions. Guidance from supervisor and cooperation from
tutors providing a clearer and better understanding of Verification on
Physical Design of Microsoft SOL Server 7.0 Performance process and

procedures.

8.3 EVALUATION BY ENDUSERS

The system is mainly as a system of an experiment set to analyze the optimum time
to retrieve database from SQL Server by rows and columns. The system had been
tried by myself to get the stimulation results for my research. I'm very satisfied with

this system of an experiment set.

8.4

Chapter 8 : System Evaluation

SYSTEM STRENGTHS

Vrification on Physical Design of Microsoft SOL Server 7.0 Performance is a

rescarch with system of an experiment set ith a good features. Its strengths are

discussed below .

)

2)

3)

Attractive and Simple Graphic User Interface

The interface of the system is simple and user friendly. The pages has
colours to differentiate the contents. This makes the pages easily to be
viewed and not clumsy. This factor 1s important for the who might be a

beginner . The simple looking pages can make them feel comfortable.

Good Navigation
Can navigate easily in the whole pages by using the links. The links can
be found at the main page and at the left side of the pages. This feature is

important to make the users move easily and use the system effectively.

Good Division of Sections

Verification 1s a time execution on retrieving the data from SQL Server
which has many functions for the purpose of keeping time consuming
information. They are divided into three main section according to their
functions such as columns; rows: and columns and rows. The forms are

arranged mcely so that won't feel difficult to execute with the forms.

153

Chapter 8 : System Evaluation

6) Standalone System
The system 1s a standalone system and 1t makes easy to work on with it. It

is very close to research system and only can work with huge datas.

SYSTEM LIMITATIONS

This sytem of experiment set is not a perfect system. It has a few limitations

which make the system weak.

1) Time Consuming
The system is developed using Visual Basic 6 and it is not a good
application to view time consuming because the timing is not so
consistent and accurate. Example : if the time taken is 5.003 seconds and

it will consider as 5 seconds only.

2) Help Menu
The Help menu 1s not been provided for the references of the use. It
doesn’t need Help menu because lack problems to be solved. They might
have problems that has not been thinked of during developing process yet

not so crtical.

154

Chapter 8 : System Evaluation

3) Performance Dependent On SQL Server
The Student’s Organizer will work fine when the system is standalone.
However, problems happens when the server is slow or bad upon requests
from database because the performance of the system based on SQL

Server.

8.6 FUTURE ENHANCEMENTS

In order to maintain the system and the database attractively and usability, few
features can be updated or added. The system ought to be updated with more

features in future.

1) Integrate with more tables of databases
It will be better if the system could retrieve datas from various tables. By

this, it can be more appropriate tools for research purpose.

2) Graphical Inputs
It will be better if the output of results been collected and shown in the
graphical methods. This allows to get informations gathered in graphical

output after each testing.

155

8.7

Chapter 8 : System Evaluation

KNOWLEDGE AND EXPERIENCE GAINED

Verification of SQL Server’s performance is very popular and there are so many
research been done regarding venfication. However, the concept behind it is
quite challenging and 1 discovered them during the development process of

Verification on Physical Design of Microsofi SQL Server 7.0 Performance.

At the beginning of the development process, | just knew that I'm going
to develop a system application. However, | had a minor understanding on the
optimization concept. After reading up them, | came to know that optimization
application can be created to function dynamically by using T-SQL. This makes
me to learn the T-SQL and the scripting language that related to SQL. However,

I don’t use all this codes.

Visual Basic 6 is a development tool which can be used to retrieve datas
from SQL Server. So, I started to use it and develop my system. Later, I had
problem to connect to my database. | got to know that there are few ways to get
connected to our data source. All this were done using ODBC and DNS which |

run to view my standalone system.

156

8.8

Chapter 8 : System Evaluation

As conclusion, a lot of valuable knowledge has been gained throughout
the development of the system of an experiment set like Visual Basic language,

SQL programming, database designing and accessing,

SUMMARY

System evaluation phase has made me to think of all the problems that I
encountered during the system development. It is quite challenging to do project
all alone where we have to think of the system thoroughly. Even though we
succeeded in creating the system, 1t still has weaknesses and it can be overcome

in future by allowing future enhancements.

157

PiapreRd
CONCLUSION

[-02-00-02.01.0).00.0) .01 00.0)0.01.0).0).0).01.91.0).0).0).9).91.01.0).01.0}.03.0 .09

Chapter 9 : Conclusion

THE FUTURE OF SQL SERVER

l)ll

INTRODUCTION

The computer industry is undergoing a revolution. Between 100 and 150 million
people world-wide use a PC each and every day. The growth in client server
products and tools has fueled the dramatic reassessment of corporate computing
requirements and evaluation of the need for mainframe-centric computing. Even
s0, 80% of the world’s data is still resident on flat file data storage systems and
the number of companies that have actually gone through the process of re-
engineering their business from top to bottom and actively leverage client server

technology is remarkably small.

The Microsoft company strategy is based on the decision to focus on key

arcas -

e Deskstop computing
e Consumer “Microsoft at Home™ brand
e Information Superhighway

e [nterprise computing

158

9.2

Chapter 9 : Conclusion

WHAT IS THE ENTERPRISE?

Microsoft are determined to build the type of software that will run on any size
of networked based personal computer. Alongside this comes a need to build
additional software to compliment the existing portfolio, including transaction

monitors, development tools and respositories.

But what exactly is the enterprise? The classical view is the typical
mainframe based system, of which there are approximately 300,000 systems
world-wide and 300,000 or so smaller mini type systems such as AS/400 and
larger VAX based systems. The traditional playground for DB2, Oracle and

Sybase and a weaker area for Microsoft.

The alternative view to the traditional enterprise arena is radical.
Windows NT has been called a true “1/2 hour OS”. This radical philosophy
extends down to the hardware. The days of large single box solutions comes to
an end, being replaced by a cluster of smaller servers, which grow over time to

produce infinitely scaleable solutions.

But large boxes will be present for many, many years. Microsoft are
focusing on producing software that can integrate into that environment in a
scamless fashion. And to this over all end, Microsoft have hired 20 or so of the

world’s top database experts to create a truly formidable expert team.

159

2.3

Chapter 9 : Conclusion

DATABASE AND DEVELOPER TOOLS FUTURES

The first move in reaching the future architectural goal was to re-evaluate the
product development teams. The development teams have been stream lined to

focus on building a component based development environment.

The database engines are undergoing a review and work has started on
creating a single unified database engine, which will be scaleable from a single

processor PC to a multiprocessor server running Windows NT.

All of these components need somewhere to be stored, and this will take
the form of a software repository which is currently under design with teams
from Microsoft and Texas Instruments, who are generally acknowledged to be

the leaders in respitory based technology.

The engineering effort to create such a complex architecture should not
be underestimated, but once delivered should offer an exciting array of

development possibilities.

160

Keterence

|REFERENCE

e Hiomer, Aiex. diex ffomer’s Projessionai ASE Tecaniques. Birmingnam, U, K.

WTOX Press, Z0U0

e ividriensen, Lance. MUSE : SUL Server 7 Admumusiration Study (uide. San

Francisco : dybex, Network rress, 1999

e rreeze, wayne . 1he SUL Programmer s Keference @ Windows Y3’ NI & UNIA.

Kesearch Inangle Part, NU @ ventana, 1998

e Watterson, Karen L. 10 Projects You Can Do With Microsoft Sql Server /, 2000

® Purba, danjiv. Building Microsoft SUL Server / Applications With (. OM. New

York : john Wiiey, 1999

® Microsoft SUL Server 7 Database impiemenanon iraining Au. kedmond, iNA

IVIICTOSOIT PTesS, 1999

o MICrosoft SUL Server /.0 DISA Survival Guide. Indianapolis, IN @ SAMS, 1999

X1X

Kererence

Bjekuch, dSharon. Microsoft SUL derver /.U Unleashed. Indhanapohis, NA

oo

SAIVIS, 1999,

Laion, Fanck. Microsoft SULL Server Biackbook. Aibany, NY . Corioils Group

BOOKS, 1997

IPracticai Microsojt SUL Server 7.0. indianapoiis, IN : Que, 1999

Wynkoop, Stepnen. dSpecial Ldion Using MICrosoft SUL - Server 7.0,

Indianapolis, Ind. : Que, 1999

Englana, Ken, 199> 1he UL derver Handbook : A Gude 10 Microsoft

Database Computing, 1308lon : Irgital rress, 1990

Shepker, Mathew. Wriing Slored Procedures Pror Microsoft SUL derver.

indianapoils, iiN : SAVIS, Z000

cortman, vayie. UL Server 70 he compiele rejerence. erkeiey, Caiir.

Osborne / McGraw-1hll, 1999

XX

Reference

SQL Server : data warchousing. Berkeley, Calif. : Osborne / McGraw-Hill, 1999

Sawtell, Rick. SOL Server 7 : 24. San Francisco : Sybex, 1999

Nath, Aloke. 7he guide to SOL server, 2™ ed. Reading, Mass. : Addison-Wesley

Pub.Co., 1995

Vieira, Robert. Professional SOL server 7.0 programming, Birmingham : Wrox

Press, 1999

XX1

