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ABSTRACT 

       Effective debugging is necessary for producing high quality and reliable software. 

Fault localization plays a vital role in the debugging process, and it is also the most tedious 

and expensive activity in program debugging. As such, effective fault localization 

techniques that can identify the exact location of faults are most needed. Despite various 

fault localization techniques proposed, their application in multiple-fault programs is 

limited. The presence of multiple faults in a program reduces the efficacy of existing fault 

localization techniques to locate faults effectively due to fault interference phenomenon. 

Moreover, most of these techniques are unable to localize multiple faults simultaneously 

in a single diagnosis rank list. This has led researchers to adopt approaches such as one-

bug-at-a-time debugging approach (OBA) and parallel debugging approach. However, 

using OBA debugging approach increases software time-to-delivery and potentially leads 

to more faults during regression testing, while utilizing k-mean clustering algorithm with 

Euclidean distance metric to group failed tests based on their execution profile similarity 

in parallel debugging approach is claimed to be problematic and inappropriate. This work 

aims to conduct an investigative study of the claimed problematic parallel debugging 

approach in comparison with OBA debugging approach and MSeer parallel debugging 

approach in terms of localization effectiveness. Furthermore, two novel fault localization 

techniques based on complex network theory, namely multiple fault localization based on 

complex network theory (FLCN-M) and single fault localization based on complex 

network theory (FLCN-S), are proposed to improve localization effectiveness, and to aid 

developers’ to localize multiple faults simultaneously in a single diagnosis rank list. The 

proposed techniques rank faulty statements based on their behavioral abnormalities and 

distance between program statements in both passed and failed tests execution. In the case 

where a developer has checked 70% of the program statements and cannot fully localize 

all the multiple faults in a single diagnosis rank list, rather than resorting to using OBA 
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debugging approach, a newly proposed community-based fault isolation approach that 

makes use of a divisive network community clustering algorithm is applied to aid in 

isolating faults into different fault-focused communities (clusters), each targeting a single 

fault. In the proposed fault isolation approach, a community weighting and selection 

mechanism is introduced to aid in prioritizing highly important communities for 

developers to debug the faults simultaneously in parallel. The experiments performed on 

several varied multiple-fault programs show that even though the claimed problematic 

parallel debugging approach is more effective in comparison with the OBA debugging 

approach, it is not as effective when compared with MSeer parallel debugging approach. 

The experimental results also show that FLCN-M is much more effective in locating 

multiple faults in comparison with two similarity coefficient-based techniques (i.e. Ochiai 

coefficient and Tarantula coefficient) and an existing fault localization technique based 

on software network centrality measures. FLCN-S shows significant improvement in 

terms of localization effectiveness on single-fault programs in comparison with Ochiai-

based and Jaccard-based techniques. The proposed community-based fault isolation 

approach shows significant improvement where it performs significantly better in terms 

of localization effectiveness in comparison with the claimed problematic parallel 

debugging approach and MSeer parallel debugging approach. Overall, the proposed 

techniques and approach show improvement in fault localization effectiveness in both 

single-fault and multiple-fault programs over the baseline techniques and approaches. 

 

Keywords: Complex Network; Software Fault Localization; Program Debugging; 

Parallel Debugging; Multiple Faults. 
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ABSTRAK 

       Penyahpepijatan berkesan adalah perlu bagi menghasilkan perisian yang boleh 

dipercayai dan berkualiti. Fault localization memainkan peranan yang penting dalam 

proses nyahpepijat, dan ia juga merupakan aktiviti paling membosankan dan mahal dalam 

penyahpepijatan aturcara. Oleh yang demikian, teknik fault localization yang berkesan 

yang berupaya mengenalpasti lokasi sebenar sesar tersebut adalah amat diperlukan. 

Walaupun banyak teknik fault localization yang dicadangkan, aplikasi mereka dalam 

aturcara sesar berganda adalah terhad. Kehadiran sesar berganda dalam aturcara dapat 

mengurangkan keberkesanan teknik fault localization sedia ada untuk mengesan dengan 

berkesan disebabkan oleh fenomena gangguan sesar. Selain itu, kebanyakan teknik ini 

tidak dapat menyetempatkan sesar berganda secara serentak dalam senarai kedudukan 

diagnosis tunggal. Ini telah mendorong penyelidik untuk menggunakan pendekatan 

seperti penyahpepijatan one-bug-at-a-time (OBA) dan penyahpepijatan selari. Walau 

bagaimanapun, menggunakan pendekatan penyahpepijatan OBA, ia telah meningkatkan 

perisian time-to-delivery dan berpotensi membawa kepada lebih banyak sesar semasa 

pengujian regresi, semasa menggunakan algoritma kelompok k-mean dengan metrik jarak 

Euclidean untuk mengumpulkan ujian gagal berdasarkan perlaksanaan kesamaan profil 

dalam pendekatan penyahpepijatan selari, didakwa sebagai bermasalah dan tidak sesuai. 

Kajian ini adalah bertujuan untuk menjalankan siasatan terhadap pendekatan 

penyahpepijatan selari yang didakwa bermasalah dan dibandingkan dengan pendekatan 

penyahpepijatan OBA dan penyahpepijatan selari MSeer dari segi keberkesanan 

pensetempatan. Selain itu, dua novel teknik fault localization berdasarkan teori rangkaian 

kompleks, iaitu fault localization berganda berdasarkan teori rangkaian kompleks 

(FLCN-M) dan fault localization tunggal berdasarkan teori rangkaian kompleks (FLCN-

S), dicadangkan untuk memperbaiki keberkesanan pensetempatan, dan untuk membantu 

pembangun mensetempatkan sesar berganda secara serentak dalam senarai kedudukan 
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diagnosis tunggal. Teknik-teknik yang dicadangkan menyusun pernyataan cacat-cela 

berdasarkan keabnormalan kelakuan mereka dan jarak di antara pernyataan aturcara 

dalam kedua-dua perlaksanaan ujian lulus dan gagal. Di dalam kes di mana pembangun 

menyemak 70% aturcara dan tidak sepenuhnya mensetempatkan semua sesar berganda 

dalam senarai kedudukan diagnosis tunggal, dan bukannya terus menggunakan 

pendekatan penyahpepijatan OBA, pendekatan baru iaitu pengasingan sesar berdasarkan 

komuniti yang menggunakan algoritma kelompok komuniti rangkaian yang bersifat 

pecahan, diaplikasikan untuk membantu dalam mengasingkan sesar ke dalam komuniti 

sesar-fokus (kelompok) berlainan, masing-masing mensasarkan sesar tunggal. Di dalam 

pendekatan pengasingan sesar yang dicadangkan, pemberat komuniti dan mekanisma 

pemilihan diperkenalkan untuk membantu dalam mengutamakan komuniti yang paling 

penting bagi pembangun untuk menyahpijat sesar pada masa yang sama secara selari. 

Eksperimen yang dijalankan ke atas beberapa aturcara sesar berganda menunjukkan 

bahawa walaupun pendekatan penyahpepijatan selari yang didakwa bermasalah adalah 

lebih berkesan berbanding pendekatan penyahpepijatan OBA, ianya tidak berkesan 

apabila dibandingkan dengan pendekatan penyahpepijatan selari MSeer. Keputusan 

kajian juga menunjukkan bahawa FLCN-M adalah lebih berkesan dalam mengesan sesar 

berganda berbanding dengan teknik two similarity coefficient-based (Ochiai coefficient 

dan Tarantula coefficient) dan teknik fault localization yang sedia ada berdasarkan 

pengukuran pemusatan rangkaian perisian. FLCN-S menunjukkan peningkatan yang 

ketara dari segi keberkesanan pensetempatan pada aturcara sesar tunggal berbanding  

dengan teknik-teknik berasaskan Ochiai dan berasaskan Jaccard. Pendekatan 

pengasingan sesar berdasarkan komuniti menunjukkan peningkatan yang ketara di mana 

ia melaksanakan dengan lebih baik dari segi keberkesanan pensetempatan berbanding 

dengan pendekatan penyahpepijatan selari yang didakwa bermasalah dan pendekatan 

penyahpepijatan selari MSeer. Secara keseluruhannya, teknik dan pendekatan yang 
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dicadangkan telah menunjukkan peningkatan keberkesanan di dalam kedua-dua aturcara 

sesar tunggal dan sesar berganda terhadap teknik dan pendekatan garis asas. 

 

Keywords: Teori Rangkaian Kompleks; Perisian Pensetempatan Sesar; Penyahpepijatan 

Aturcara; Penyahpepijatan Selari; Berganda Sesar. 
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CHAPTER 1: INTRODUCTION  

1.1 Background  

       Software has become part of our daily lives. It is integrated into practically everything 

we do and devices we are dependent on (Wong et al, 2016). The dependency and 

influence of software come with increasing challenges in maintaining software quality 

and complexity reduction. Complexity is one of the major contributions of software 

faults, which increase software failures (Vessey, 1985). A 2002 report by the National 

Institute of Standards and Technology (NIST) shows the impact of software errors on the 

U.S. economy which was estimated to cost about $59.5 billion annually (NIST, 2002). 

Therefore, effective ways of finding and fixing faults are of eminent advantage from an 

economic perspective. Debugging is the process of locating and correcting program 

faults. Generally, debugging activities are twofold, fault localization and fault repair. The 

former is regarded as one of the most tedious and costly activities in the debugging 

process (J. A. Jones, Harrold, & Stasko, 2002). Fault localization is undoubtedly vital in 

maintaining software quality, as the faster a fault location is identified, the faster it can be 

neutralized (Abreu, Zoeteweij, & Van Gemund, 2007). Early fault identification improves 

software availability and reduces software cost. 

       In the last decades, various fault localization techniques had been proposed with 

competing ways of effective fault identification (DiGiuseppe & Jones, 2015; J. A. Jones 

& Harrold, 2005; J. A. Jones et al., 2002; Lamraoui & Nakajima, 2016; B. Liu, Nejati, 

Briand, & Bruckmann, 2016; Sun, Peng, Li, Li, & Wen, 2016; W. E. Wong, Debroy, Gao, 

& Li, 2014; W. Zheng, Hu, & Wang, 2016). In general, a fault localization technique 

assigns suspicious scores to program statements that signify a statement’s degree of 

association with failure. A ranking list of all program statements in descending order of 

their suspicious scores is generated to aid software developers in checking fewer program 
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statements and thus facilitating the localization process. A good fault localization 

technique should rank faulty program statements at the top or closer to the top in the 

ranking list. The faster a faulty statement can be found, the more effective is the fault 

localization technique (W. E. Wong et al., 2014). One of the most promising fault 

localization techniques is spectrum-based fault localization technique (SBFL). This 

technique identifies suspicious program statements using program execution information 

(i.e. program spectra and test results). With this information, behavioral abnormalities are 

analyzed to help identify program locations that are more prone to error (Abreu et al., 

2007). Most of the existing techniques are proven to be helpful in facilitating software 

development and maintenance process especially on single-fault programs (Abreu & 

Zoeteweij, 2006). However, although empirical studies revealed that failure in programs 

can be caused by multiple faults (DiGiuseppe & Jones, 2011b; James A Jones, Bowring, 

& Harrold, 2007), most existing techniques localize faults based on the assumption that 

a program has a single fault (W. Zheng et al., 2016). 

       Consequently, this presumption adversely impacts the effectiveness of fault 

localization due to the possibility of having more than one fault in a faulty program 

(DiGiuseppe & Jones, 2015). Principally, this is due to fault interference, a phenomenon 

which plays a major role in the reduction of the effectiveness of fault localization 

techniques in the context of multiple faults. Fault interference phenomenon occurs when 

a test case that failed in the presence of single fault, passes when many faults are active; 

while a test case that passed in the presence of multiple faults, fails when a single fault is 

active. Multiple fault localization refers to the process of localizing multiple faults in a 

software program. A significant number of techniques have been proposed to localize 

multiple faults efficiently and effectively (James A Jones et al., 2007; Lamraoui & 

Nakajima, 2016; Sun et al., 2016; W. E. Wong et al., 2014). Efforts have been made to 

further isolate independent faults into different clusters for simultaneous localization 
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(DiGiuseppe & Jones, 2012a; James A Jones et al., 2007; Liblit, Naik, Zheng, Aiken, & 

Jordan, 2005). However their effectiveness is still not optimal, and the techniques are not 

able to localize multiple faults simultaneously in a single diagnosis rank list. Hence, an 

effective fault localization technique is needed to localize multiple faults effectively in a 

single diagnosis rank list or in a single debugging iteration (i.e. neutralizing all faults in 

a single debugging iteration).   

       Furthermore, most of the existing fault localization techniques used on multiple-fault 

programs localize faults using one-bug-at-a-time debugging approach (OBA) 

(DiGiuseppe & Jones, 2011b; J. A. Jones & Harrold, 2005; W. E. Wong et al., 2014). 

OBA debugging approach is the process whereby a developer is expected to find a fault, 

fix it, and then re-test the program to find the remaining faults. This process is performed 

iteratively until all the faults are found and fixed. This results in the approach creating 

more faults during regression testing and also increasing software time-to-delivery (Xue 

& Namin, 2013). Many empirical studies have shown the downside of using the OBA 

debugging approach in programs with multiple faults (DiGiuseppe & Jones, 2011a, 

2011b, 2015) because the labor cost to localize and fix faults, and the time required to 

produce a failure-free program can be very high. Due to this issue, parallel debugging 

approach has been utilized by various studies (DiGiuseppe & Jones, 2012b; Huang, Wu, 

Feng, Chen, & Zhao, 2013; James A Jones et al., 2007). Parallel debugging approach aids 

in the isolation of distinct faults into separate fault-focused clusters for multiple 

developers to debug the faults simultaneously in parallel, ideally to reduce debugging cost 

and time. Parallel debugging workflow was first proposed by Jones et al. (James A Jones 

et al., 2007), with the idea of reducing debugging cost in the context of multiple faults. In 

parallel debugging, failed tests execution are partitioned into clusters that target a single 

fault each. These clusters are coined fault-focused clusters. Therefore, to create a 

specialized test suite that might target a single fault, each fault-focused cluster will be 
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combined with all available passed test cases. Finally, the specialized test suites will be 

assigned to multiple developers to debug the faults in parallel. The result of their study 

showed that parallel debugging approach can help in reducing debugging cost and 

decrease the time to deliver a failure-free program. 

       Hence, the most important component of parallel debugging approach is clustering, 

particularly on how to obtain a good clustering on failed test cases that target single faults 

especially when knowing in real-life cases, developers do not know the exact number of 

faults in a faulty program. Many clustering algorithms were used in recent years such as 

k-means clustering algorithm, hierarchical clustering algorithm, and k-medoids clustering 

algorithm (R. Gao & Wong, 2017; Högerle, Steimann, & Frenkel, 2014; James A Jones 

et al., 2007; Steimann & Frenkel, 2012; Yabin Wang, Gao, Chen, Wong, & Luo, 2014). 

       In most of these studies, failed tests are grouped based on their execution profile 

similarity. In a study by Huang et al., the researchers utilized k-means and hierarchical 

clustering algorithms to cluster failed tests execution based on the similarity of their 

execution profile and found that k-means is effective for isolating faults in fault 

localization (Huang et al., 2013). Yet, studies such as (R. Gao & Wong, 2017; C. Liu, 

Zhang, & Han, 2008) suggest that such grouping is problematic because a fault can be 

triggered in different ways. Secondly, the number of clusters is estimated based on the 

number of failed test cases, this was however also questioned by Gao et al. because there 

is no clear correlation between the number of failed test cases and the number of faults is 

a faulty program (R. Gao & Wong, 2017). Thirdly, the distance metrics that measure the 

due-to relationship between failed tests execution which gravely determines which cluster 

a given failed tests will fall under, is also very important and critical. Distance metrics 

such as Euclidean distance, Jaccard distance, Hamming distance have been used in fault 

localization research domain (Huang et al., 2013; James A Jones et al., 2007). These 
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metrics were claimed to be inappropriate to use for software fault localization in 

measuring the due-to relationship between failed test cases (R. Gao & Wong, 2017). 

Hence, the combination of these two component (clustering algorithm and distance 

metric) have an impact on both the clustering results and the fault localization 

effectiveness. Despite these issues, there are no studies that investigate the claimed 

problematic parallel debugging approach that uses the clustering algorithms that groups 

failed test cases based on their execution profile similarity, estimate the number of 

clusters based on the number of failed test cases, and utilize distance metric such as 

Euclidean distance metric in localizing multiple faults. 

       This work aims to conduct an investigative study of the claimed problematic parallel 

debugging approach using the existing parallel workflow as utilized by previous studies 

(James A Jones et al., 2007; W. E. Wong, Debroy, Golden, Xu, & Thuraisingham, 2012). 

Firstly, an investigative study on the effectiveness of the claimed problematic parallel 

debugging approach that makes use of a k-means clustering algorithm (that groups tests 

execution based on their execution profile similarity) with Euclidean distance on three 

well-known similarity coefficient-based fault localization techniques is conducted. 

Secondly, a cross-comparison between the claimed problematic parallel debugging 

approach and OBA debugging approach is conducted in terms of localization 

effectiveness. Additionally, a comparative study is conducted between the claimed 

problematic parallel debugging approach and MSeer parallel debugging approach 

proposed by Gao et al. (R. Gao & Wong, 2017).  

       Furthermore, two novel fault localization techniques based on complex network 

theory, namely multiple fault localization based on complex network theory (FLCN-M) 

and single fault localization based on complex network theory (FLCN-S), are proposed 

to improve localization effectiveness in programs with single and multiple faults and to 
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aid developer to localize multiple faults simultaneously in a single diagnosis rank list 

(single debugging iteration). The proposed techniques rank statements based on their 

behavioral abnormalities and distance between statements in both passed and failed tests 

execution. Two graph-based centrality measures, namely degree centrality and closeness 

centrality, are used for fault diagnosis, and a new ranking formula is proposed to calculate 

the suspiciousness of program statements. Furthermore, in a situation where a developer 

has checked 70% of the program statements and cannot localize all the multiple faults in 

a single debugging iteration, instead of the developer utilizing the OBA debugging 

approach, a newly proposed community-based fault isolation approach that makes use of 

a divisive network community clustering algorithm will be applied to aid in the effective 

isolation and localization of multiple faults. A community weighting and selection 

mechanism is introduced in the proposed fault isolation approach to aid in prioritizing 

highly important communities to developers to debug the faults simultaneously in 

parallel. Based on the experiments performed on various single-fault and multiple-fault 

programs, the proposed techniques’ and approach shows significant improvement in 

comparison with the baseline techniques and approaches in terms of localization 

effectiveness. 

       In this thesis, complex network theory is used for fault localization for the following 

reasons. Firstly, complex network theory has largely shown to be an applicable theory in 

the field of science and it has been effectively used to solve several problems in research 

areas such as physics (Albert & Barabási, 2002), biology (Dorogovtsev & Mendes, 2003), 

social network (L. Freeman, 2004), and software engineering (Chong & Lee, 2015). 

Secondly, complex network has the ability to help researchers understand complex 

systems. For instance, it can be used to identify important statements and their correlation 

with faults in software programs (Zhu, Yin, & Cai, 2011). Lastly, in the context of fault 
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localization, complex network theory has the ability to aid in the identification and 

localization of faulty program statements and statements that are related to failure.  

 

1.2 Motivation  

       This research was triggered by the negative impact of fault localization techniques 

effectiveness in the context of multiple faults. Various studies have shown that the 

existence of multiple faults in a software program reduces the efficacy of the existing 

fault localization techniques to locate faults effectively (DiGiuseppe & Jones, 2011b; Xue 

& Namin, 2013). A program with two faults is illustrated as an example to show the effect 

of multiple faults on the effectiveness of SBFL techniques. The example shown in Figure 

1.1 has two faults “fault 1” and “fault 2” and 4 test cases (t1, t2, t3, t4) in which t1 and t2 

are passed tests while t3 and t4 are failed tests. If a statement execution is labeled as 1, that 

means the statement is executed by the test case in that test run. If a statement is labeled 

as 0, that means the statement is not executed by the test case in that test run. For the test 

result of each test case, 0 means the test case has passed while 1 means the test case has 

failed. 

 

Figure 1.1: Effect of multiple faults on fault localization techniques 
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       The two test cases t3 and t4 both failed due to a different fault because both test cases 

execute different faults. Test case t3 only executes “fault 1”, while test case t4 only 

executes “fault 2”. This situation will make fault localization difficult, especially when a 

developer wants to localize all the faults simultaneously in a single debugging iteration. 

The last 3 columns in Figure 1.1 list down the suspicious scores of the program statements 

based on the selected test suite used for fault localization. Program statements with higher 

suspicious score have a higher likelihood of being faulty. In this example, Ochiai 

similarity coefficient-based fault localization technique proposed by Abreu et al. (Abreu 

et al., 2007) is used for the computation of the suspicious score. Ochiai coefficient, SS, is 

calculated as depicted in Equation 1.1. 

𝑆𝑠  =  
𝑁𝑐𝑓

√(𝑁𝑐𝑓 + 𝑁𝑛𝑓) × (𝑁𝑐𝑓 + 𝑁𝑐𝑠)
                 (1.1) 

       Ncf denotes the number of failed test cases that cover a statement, and Nnf denotes 

the number of failed test cases that do not cover a statement, while Ncs denotes the 

number of passed test cases that cover a statement. When all test cases are considered for 

suspicious score computation as shown in the sixth column, the suspicious score of 

statement 2, statement 3, and statement 4 are the same (0.50%) while the non-faulty 

statements (statement 1 and statement 5) have a very high suspicious score.  

       As a result, this makes the Ochiai metric ineffective in localizing the two faults “fault 

1” and “fault 2” if all tests are considered. Nonetheless, if t3 is removed from the test suite 

as shown in the seventh column, a developer can effectively localize “fault 2” which was 

given a high suspicious score (0.70%). On the other hand, if t4 is removed from the test 

suite (eighth column), “fault 1” can be effectively localized by the technique because 

“fault 1” has the highest suspicious score with (0.70%). Therefore, this scenario illustrates 

that with two faults in a faulty program, utilizing all the available test cases might reduce 
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the effectiveness of a fault localization algorithm and a developer cannot localize all the 

faults in a single debugging iteration. Hence, the example shows that by isolating test 

cases, a debugger can target and localize each fault separately.  

       However, isolating faults into many separate groups can increase debugging cost as 

well, and the effectiveness solely depends on the accuracy of clustering (Jeffrey, Gupta, 

& Gupta, 2009). Fault localization gets even more difficult if more faults are present in a 

program (J. A. Jones & Harrold, 2005). This example illustrates in detail the 

ineffectiveness of SBFL techniques in a program with multiple faults when utilizing all 

test cases. Hence, localizing all the faults in a single diagnosis rank list is not possible in 

this scenario. Similarly, utilizing the OBA debugging approach and parallel debugging 

approach does not solve the problem completely, whereby using the former, there is a 

possibility of creating more faults during regression testing and also increasing the 

software time-to-delivery due to the fact that many debugging iterations are needed to 

neutralize all faults. Using the latter, the most important component is clustering (i.e. how 

to perform good clustering on failed test cases that target single faults) and distance metric 

(that helps in measuring the due-to relationship between failed test cases) which gravely 

determines which cluster a given failed test will fall under. Most of the existing clustering 

algorithms and distance metrics used in existing fault localization studies are deemed to 

be problematic and inappropriate (R. Gao & Wong, 2017; C. Liu et al., 2008).  

       Hence, a fault localization technique that can effectively localize multiple faults 

simultaneously in a single diagnosis rank list is of great importance. Additionally, where 

many faults exist in a program that cannot be all localized in a single debugging iteration, 

a new approach that can efficiently isolate faulty program statements into distinct fault-

focused clusters will further aid in a more effective localization.   
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1.3 Problem Statement 

       Advancement in software development with the increasing complexity of software 

programs has led to the increase in software failure in recent years (W. E. Wong et al., 

2016). This also results in more faults during software development that adversely causes 

failure of software programs, which takes a toll on software quality due to the lack of 

software conformance to its requirements (Zakari, Lawan, & Bekaroo, 2016). Moreover, 

50% - 80% of development and maintenance cost is spent in the debugging process which 

is also considered as one of the tedious, time-consuming, and costly activities in software 

testing (Collofello & Woodfield, 1989). This activity involves failure detection, fault 

localization, and fault repair. Fault localization has received much research attention in 

the past decades, notably because the process tends to be difficult when it is used 

manually (Agrawal, DeMillo, & Spafford; Hennessy, 1982; Rosenblum, 1995). The 

manual fault localization techniques make the process slow and costly, especially when 

debugging large-scale software programs that have thousands or millions of lines of code 

(Yu, Jones, & Harrold, 2008). This has driven the interest of many researchers to 

automate the process which paves the introduction of various automated fault localization 

techniques (Baudry, Fleurey, & Le Traon, 2006; Richard A. DeMillo, Pan, & Spafford, 

1997; J. A. Jones & Harrold, 2005; Renieres & Reiss, 2003; A. X. Zheng, Jordan, Liblit, 

& Aiken, 2003).  

       However, earlier studies localize faults based on the assumption that a program has 

a single fault, which in reality is not the case (J. A. Jones & Harrold, 2005; W. Zheng et 

al., 2016). Empirical studies revealed that when a program fails, the failure is not only 

caused by a single fault but can rather be caused by multiple faults (James A Jones et al., 

2007; A. X. Zheng, Jordan, Liblit, Naik, & Aiken, 2006). This presumption of the existing 

techniques during fault localization has affected their effectiveness on a great margin. 
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Moreover, due to the complex relationship between fault and failure specifically in the 

existence of multiple faults, existing techniques find it hard to localize multiple faults 

simultaneously, whereby test cases that failed in the existence of single fault could pass 

in the existence of multiple faults, and a test case that passed in the presence of multiple 

faults could fail when a single fault is active.  

       Furthermore, most of the existing fault localization techniques used on multiple-fault 

programs localize faults using the OBA debugging approach (DiGiuseppe & Jones, 

2011b; J. A. Jones & Harrold, 2005; W. E. Wong et al., 2014), which creates more faults 

during regression testing (DiGiuseppe & Jones, 2015). This has led to software 

developers perceiving that those faults are not being localized and fixed. Due to this 

reason, the OBA debugging approach increases the time-to-delivery of the software 

program and directly reduces the effectiveness of the existing fault localization techniques 

(DiGiuseppe & Jones, 2015). As a result, fault localization techniques for multiple-fault 

programs are needed to localize faults simultaneously in a single diagnosis rank list (i.e. 

neutralizing all faults in a single debugging iteration).  

       Also, parallel debugging approach that performs clustering on failed test cases based 

on their execution profile similarity is claimed to be problematic (R. Gao & Wong, 2017). 

In a study by Huang et al., the researchers utilized k-means and Hierarchical clustering 

algorithm to cluster failed tests execution based on the similarity of their execution profile 

and found that k-means is effective for isolating faults in fault localization (Huang et al., 

2013). Such a method of clustering is also used by other multiple fault localization studies 

(Högerle et al., 2014; Huang et al., 2013; Steimann & Frenkel, 2012). Yet, studies such 

as (R. Gao & Wong, 2017; C. Liu et al., 2008) suggest that such grouping is problematic 

because a fault can be triggered in different ways.  Excluding some failed test cases only 

because their tests execution coverage differs from other tests will reduce the 
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effectiveness of fault localization. These studies also argued that such tests representation 

will result in poor fault localization results due to the poor clustering method utilized. 

Moreover, distance metrics such as Euclidean distance, Jaccard distance, and Hamming 

distance were claimed to be inappropriate to use for software fault localization in 

measuring the due-to relationship between failed test cases to determine which cluster a 

failed test will fall under (R. Gao & Wong, 2017).  

       Despite these issues, there are no studies that investigate the claimed problematic 

parallel debugging approach that uses clustering algorithms such as k-means (that groups 

failed test cases based on their execution profile similarity) with a distance metric such 

as Euclidian distance in localizing multiple faults. In addition, the prevailing problem of 

clustering accuracy for fault isolation in parallel debugging approach when localizing 

multiple faults simultaneously, has called for the need of a new clustering method for 

fault isolation.  

  

1.4 Research Objectives 

       The aim of this research is to propose two new fault localization techniques based on 

complex network theory that will aid in the simultaneous localization of single and 

multiple faults in a single diagnosis rank list as well as a new community-based fault 

isolation approach that will aid in isolating and localizing multiple faults simultaneously 

in parallel. The main research objectives for this study are: 

i. To investigate the existing parallel debugging approach used in localizing 

multiple faults in terms of localization effectiveness in comparison with other 

debugging approaches.  
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ii. To propose two novel fault localization techniques for single-fault and multiple-

fault programs based on complex network theory.  

iii. To propose a new community-based fault isolation approach to aid in the effective 

isolation and localization of multiple faults simultaneously in parallel.  

iv. To evaluate the proposed fault localization techniques and the proposed approach 

by comparing them with the baseline techniques and approaches in terms of 

localization effectiveness.  

 

1.5 Research Questions 

To achieve the research objectives of this research, research questions are formulated 

to help the researcher in adhering to the research objectives. The following are the list of 

Research Questions (RQs) for this study: 

i. RQ1: What are the existing studies utilizing parallel debugging approach used in 

localizing multiple faults? 

RQ1.1: Do the existing studies utilizing parallel debugging approach 

group failed test cases based on their execution profile similarity? 

RQ1.2: Do the existing studies utilizing parallel debugging approach 

provide a good method for estimating the number of clusters? 

RQ1.3: What are the distance metrics used in the existing studies that 

utilize parallel debugging approach? 

ii. RQ2: How can complex network theory be used to improve localization 

effectiveness on both single-fault and multiple-fault programs?  
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iii. RQ3: How to localize multiple faults simultaneously in a single diagnosis rank 

list? 

iv. RQ4: How to effectively isolate and localize multiple faults simultaneously in 

parallel based on complex network theory? 

v. RQ5: What is the performance of the proposed fault localization techniques and 

the proposed approach in comparison with the baseline techniques and approaches 

in terms of localization effectiveness? 

 

1.6 Thesis Organization 

       This section gives a brief overview of the whole thesis. The thesis is organized into 

six chapters in aiming to provide a comprehensive study of this research.  

Chapter 1 - Introduction  

       This chapter starts by providing the background and motivation of this research 

followed by the problems this research intends to address. The chapter also outlines the 

research aim, research objectives, and research questions of the study.  

Chapter 2 – Literature Review 

       This chapter highlights some of the basic terminologies that are vital in the study of 

faults to failure relationship between program entities in software programs. Some of the 

most prominent software fault localization techniques in the research domain are also 

presented. The chapter further discusses multiple fault localization, fault interference, and 

the two main approaches used in debugging multiple faults. Studies utilizing these 

approaches to localize multiple faults are highlighted in detail. The chapter also gives a 

basic background literature on complex network theory and some related work on its 
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application in various research domains including software engineering. The justification 

of using complex network theory for fault localization is also given. Lastly, the gaps in 

research and the need for this research is presented.  

Chapter 3 – Research Methodology 

       This chapter discusses the general methodology applied in carrying this research 

activity. Each of the stages of research is discussed elaborately starting with literature 

review followed by problem analysis, methodology, and finally evaluation and validation 

of the proposed techniques and approach. Furthermore, the methodology of the 

investigative study of the claimed problematic parallel debugging approach is 

highlighted. The two novel fault localization techniques based on complex network 

theory, namely multiple fault localization based on complex network theory (FLCN-M) 

and single fault localization based on complex network theory (FLCN-S), are presented 

in detail. Lastly, the new community-based fault isolation approach is also presented. 

Chapter 4 – Experimental Setup 

       This chapter discusses the different experimental setups carried out for the 

implementation and validation of the investigative study of the claimed problematic 

parallel debugging approach, the two proposed techniques, and the proposed approach. 

The data collection process is also highlighted. The subject programs, evaluation metrics, 

and the baseline techniques and approaches for cross-comparison used in each experiment 

are also detailed. 

Chapter 5 – Results and Discussion 

Univ
ers

ity
 of

 M
ala

ya



  

16 

       This chapter presents the experimental results and discussion of the different 

experiments carried out in the research. The cross-comparisons between all the baseline 

techniques and approaches are also provided. 

Chapter 6 - Conclusion 

       This chapter summarizes the research findings and highlights the identified research 

limitations of the study. The thesis contributions are also highlighted. Finally, 

recommendations for future work are also provided. 

 

1.7 Chapter Summary 

       This chapter presented the background and motivation of this research work, and the 

problems this research intends to address have been defined. The chapter also outlined 

the research aim, research objectives, and research questions of the study. In conclusion, 

this chapter presents the scope of this study. The next chapter gives an overview of the 

literature on software fault localization research domain.  

 

 

 Univ
ers

ity
 of

 M
ala

ya



  

17 

CHAPTER 2: LITERATURE REVIEW  

In this chapter, the literature on software fault localization is presented. The chapter 

starts by highlighting the basic terminologies that are vital in the study of faults to failure 

relationship between program entities in software programs. Furthermore, some of the 

most prominent software fault localization techniques in the research domain are 

presented. The chapter also discusses multiple fault localization, fault interference, and 

the two main debugging approaches used in debugging multiple faults. Furthermore, the 

chapter briefly highlights literature on complex network theory with related works. 

Lastly, the gaps in research and the need for this research is presented.  

  

2.1.   Preliminaries 

In this section, some basic terminologies as defined in (Avizienis et al., 2004) are 

provided to facilitate understanding.  

i. A failure occurs when a software system gives an unexpected output rather than the 

anticipated correct output.  

ii. An error is a condition caused by a human action in a software system that can lead 

to failure.  

iii. A fault which is also known as a bug is an underlying cause of an error.  

iv. Diagnosis is the process of locating faults that are the root cause of the detected 

errors. Therefore, error detection is a precondition for diagnosis. For a program to 

be diagnosed, it has to contain a set of statements which are executed using test 

cases that are either passed or failed. This activity is recorded in terms of program 

spectra (Harrold et al., 1998).  
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v. Program spectra data is collected at run-time which consists of the collective tests 

execution for different components of a software program.  

       These terminologies are vital in the study of fault to failure relationship between 

program entities. 

  

2.2.   Software Fault Localization Techniques  

Software fault localization is an active area of research for the past two decades. Various 

state-of-the-art techniques have been proposed to localize faults effectively. In this section, 

some of the most prominent software fault localization techniques in the research area are 

presented.  

 

2.2.1 Spectrum-based Fault Localization Technique (SBFL) 

 One of the most promising debugging techniques is spectrum-based fault localization 

technique (SBFL) which works at the statements level. SBFL computes statements 

suspicious score using the information gathered from software testing process, such as 

program spectra and test results of passed and failed test cases (J. A. Jones et al., 2002; 

Perez, Abreu, & van Deursen, 2017). Program spectra is a pool of data which gives a 

clear view of the dynamic behavior of a software program (Thomas et al., 1997). In 

general, program spectra records the run-time profiles of various program entities (i.e. 

statements, branches, paths, and blocks) for test cases of a given test suite (Cousin, 1986). 

Furthermore, test results (passed/failed) of test cases are an essential information for fault 

localization. When combined with a program spectra, the resulting outcome will give 

developers a hint on the program entities that are more likely to be related to failure or 

contained faults (Xie et al., 2013). Practically, when an execution failed, the failure paths 
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are identified to be more likely to contain faults while passed executions are regarded to 

be less prone to contain faults. Figure 2.1 illustrates the important information required 

by SBFL. The collected data (as discussed above) are virtually represented. Figure 2.1 

illustrates a coverage matrix and a test result vector. For the matrix and test result vector 

with the entry of (i, j), the matrix is 1 if test case i covers statement j, and 0 otherwise. 

Moreover, an entry in the test result vector is 1 if the result of test case i is failed, and 0 

if the result is passed. Each row of the coverage matrix reveals the statements that are 

covered by the corresponding test cases, and each column shows the coverage vector of 

the corresponding program statement.  

 

 

Figure 2.1: Coverage data and execution result 

 In the early days, researchers used failed tests execution alone in locating faults for 

SBFL (Agrawal, De Millo, & Spafford, 1991; Korel, 1988; Bogdan Korel & Janusz Laski, 

1988). However, this practice was later shown to be ineffective in locating program faults 

(Agrawal et al., 1995). Studies that use both passed and failed test cases have shown to 

achieve better results (Abreu & Zoeteweij, 2006; J. A. Jones & Harrold, 2005; Neelofar 

Neelofar, Naish, Lee, & Ramamohanarao, 2017; E. Wong, Wei, Qi, & Zhao, 2008). 

Renieres and Reiss proposed a technique named nearest neighbor, which produces a 

suspiciousness report of program statements by measuring the distance between a failed 

test and a passed test that is more similar to the failed one (Renieres & Reiss, 2003). In 
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SBFL, one measures the similarity between the test result vector and the coverage matrix 

of each statement. This similarity is quantified and measured by a similarity coefficient-

based fault localization technique. One of the most popular similarity coefficient-based 

fault localization techniques is Tarantula (J. A. Jones & Harrold, 2005), which exploits 

the program spectra of statements execution to identify faults location in a software 

program. Tarantula assigns a suspicious score to each program statement based on the 

likelihood of it containing faults, then a developer will be tasked to check the statements 

in descending order of their suspicious scores to identify the location of faults. Tarantula 

has shown to be one of the most effective software fault localization techniques. Tarantula 

coefficient, ST, is calculated as depicted in Equation 2.1. 

𝑆𝑇  =

𝑁𝑐𝑓
𝑁𝑐𝑓 + 𝑁𝑢𝑓

𝑁𝑐𝑓
𝑁𝑐𝑓 + 𝑁𝑢𝑓

+
𝑁𝑢𝑓

𝑁𝑢𝑓 + 𝑁𝑢𝑠

                                        (2.1) 

 where Ncf denotes the number of failed test cases that cover a statement, Nuf denotes 

the number of failed test cases that do not cover a statement and Nus denotes the number 

of successful test cases that do not cover a statement. An earlier study shows that 

Tarantula guides a developer to the location of faults by examining a lesser amount of 

code in comparison to other fault localization techniques such as set union, nearest 

neighbor, and cause transition (Cleve & Zeller, 2005; J. A. Jones & Harrold, 2005).  

 However, other coefficients have been found in recent years that surpass Tarantula 

in terms of effectiveness at fault localization (E. Wong et al., 2008; W. E. Wong & Qi, 

2009). For example, the Ochiai similarity coefficient-based fault localization technique 

is regarded to be more effective than Tarantula (Abreu & Zoeteweij, 2006). Ochiai 

coefficient, SS, is calculated as depicted in Equation 2.2. 
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𝑆𝑠 =  
𝑁𝑐𝑓

√(𝑁𝑐𝑓 + 𝑁𝑛𝑓) × (𝑁𝑐𝑓 + 𝑁𝑐𝑠)
                    (2.2) 

Ncf denotes the number of failed test cases that cover a statement, and Nnf denotes 

the number of failed test cases that do not cover a statement, while Ncs denotes the 

number of passed test cases that cover a statement. Notations that are widely used in 

suspiciousness calculation are highlighted in Table 2.1. 

Table 2.1: Notations widely used in suspiciousness calculation 

Notation Description 
N Number of test cases 
Nf Number of failed test cases 
Ns Number of passed test cases 
Ncf Number of failed test cases that cover a statement 
Ncs Number of passed test cases that cover a statement 
Nc Number of test cases that cover a statement 
Nuf Number of failed test cases that cannot cover a statement 
Nnf Number of failed test cases that do not cover a statement 
Nus Number of passed test cases that cannot cover a statement 
Nu Number of test cases that cannot cover a statement 

 

       Naish et al. proposed two SBFL techniques which are O and OP (Naish, Lee, & 

Ramamohanarao, 2011). The former is built for programs with a single fault, while the 

latter is for programs with multiple faults. The result of the study showed that O and OP 

are more effective in localizing faults than Tarantula. In order to improve the diagnosis 

accuracy of SBFL techniques, Shu et al. proposed a fault localization method based on 

statement frequency (Shu et al., 2016). The statement frequency information of each 

statement in the software program is used to localize faults. The study showed that the 

proposed approach outperforms Tarantula in terms of stability and effectiveness 

respectively. Recently, Wong et al. proposed a new fault localization method named 

DStar (Wong et al., 2014). The technique is a modified form of Kulczynski similarity 
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coefficient (Choi, Cha, & Tappert, 2010), which has been shown to be very effective and 

surpasses various fault localization techniques in terms of effectiveness in locating faults. 

       Researchers in (Abreu et al., 2007; Le, Thung, & Lo, 2013) conducted a comparison 

study of SBFL techniques. They concluded that SBFL techniques’ performance varies 

based on the debugging scenarios they were applied to, whereby a coefficient can be more 

effective in a given scenario and less effective in other scenarios (Yoo et al., 2014). 

Therefore, there is no coefficient that can outperform all others under every scenario.  

       De Souza et al. proposed a technique to contextualize code inspection to provide 

guidance during fault localization and improve localization effectiveness of SBFL 

techniques in localizing fault in the first generated suspiciousness list (De Souza et al., 

2018). The result shows that the technique is useful in guiding developers to fault 

locations and improves localization effectiveness. Another study by Kim et al. proposed 

a variable centric technique to enhance the performance of existing SBFL techniques 

(Kim, Kim, & Lee, 2018). The technique extracts suspicious variables and uses them to 

generate a suspicious ranked list. The result shows that their proposed technique 

outperforms existing similarity coefficient techniques.    

       Landsberg et al. improve the effectiveness of SBFL technique by introducing a new 

method that generates a viable and efficient test suite for effective fault localization 

(Landsberg, Sun, & Kroening, 2018). Recently, various studies have been conducted to 

improve localization effectiveness on SBFL fault localization techniques (N Neelofar, 

Naish, & Ramamohanarao, 2018; Yong Wang, Huang, Fang, & Li, 2018; X.-Y. Zhang, 

Zheng, & Cai, 2018). The studies have recorded improvements in terms of fault 

localization effectiveness. 
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2.2.2 Statistical-based Fault Localization Technique 

       Statistical-based fault localization techniques also exploit program run-time 

information (test case executions and their results) for locating faults. These techniques 

are predicate-based, unlike SBFL techniques that only utilize tests execution information 

and their results at the statement level. Predicates in programs are evaluated based on run-

time information to assign a suspicious score for each predicate. The predicates will be 

ranked based on their suspicious scores for a debugger to find the faults. Therefore, 

Statistical-based fault localization techniques use predicate runtime execution data to 

understand program entities’ correlation to failure. In a previous study by Liu et al., a 

statistical-based debugging algorithm named SOBER was proposed to rank suspicious 

predicates in a single run and also isolate faults in a program with multiple faults (Liu et 

al., 2006). SOBER classifies the effects of different faults and identifies predicates that 

are related to individual faults. These predicates explain the conditions and frequencies 

of fault occurrences and make it easier to prioritize debugging effort.  

       In addition, Wong et al. proposed a crosstab-based method for fault localization (E. 

Wong et al., 2008). A crosstab is constructed for each statement with two vertical 

categories (covered/not covered) and two horizontal categories (passed execution/failed 

execution). The researchers used a hypothesis test to provide a position of 

dependency/independency between the execution results and the coverage of each 

statement. The exact suspiciousness of each statement depends on the degree of 

association between its coverage and the execution results. Furthermore, Liblit et al. 

proposed a statistical debugging algorithm to isolate faults in a software program with 

instrumented predicates (Liblit et al., 2005). For each predicate, the algorithm computes 

the probability of that predicate being true that implies failure. Therefore, predicates that 

have a failure are identified. This creates a relationship between predicates and faults in 
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a program and the predicates are ranked based on their suspicious score. Predicates with 

high suspiciousness score are checked first and if a fault is found and fixed, the fault data 

is then removed. The process will be repeated to find the remaining faults until all 

predicates are examined.  

       You et al. proposed a statistical debugging approach by exploiting the statistical 

behavior of two closely connected predicates in a given program execution (You, Qin, & 

Zheng, 2012). For each test case, the approach constructs a weighted execution graph 

with predicates as vertices against change between the predicates as edges. For each edge 

in the graph, a suspicious score is computed to identify its fault relevant likelihood. 

Additionally, a novel probabilistic model for fault localization based on an important 

sampling of program statements was proposed in (Namin, 2015). By utilizing probability 

updates and sampling, the approach can help identify those statements that have a high 

likelihood of being faulty. The approach was found to be more sensitive to failed test 

cases than passed test cases. 

 

2.2.3 Model-based Diagnosis Technique 

       Model-based diagnosis techniques (MBD) have good fault diagnosis accuracy and 

are successfully used for fault localization in the past decades (Abreu & van Gemund, 

2009; Mayer, Abreu, Stumptner, & van Gemund, 2008; Wotawa, Nica, & Moraru, 2012). 

These techniques observe the conflict in behavior between the system model and its 

current state to locate faults in a software program. In other words, models are directly 

generated from a program that may contain faults. Therefore, the variance observed 

between the program executions and the expected results are utilized to identify the 

program components that may be the root cause for the observed misbehavior. The main 
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weakness of MBD techniques are their high computational complexity which limits the 

techniques’ application to only programs with few hundred lines of code.  

       Mateis et al. proposed the use of a value-based model for Java programs that can 

handle imperative program execution. Logic-based languages such as first order logic are 

utilized to model a program behavior and a program structure are defined with 

dependency-based models (Mateis, Stumptner, & Wotawa, 2000). The study is extended 

by Mayer et al. to enable the dependency-based model to handle unstructured control 

flows such as exceptions, recursive method calls, and jump statements in Java programs 

(Mayer & Stumptner, 2002; Mayer, Stumptner, & Wotawa, 2003). Baah et al. proposed 

a model named probabilistic program dependence graph (PPDG) to model the internal 

behavior of a program. The model conducts a probabilistic analysis of a program 

behavior, specifically the behaviors that may be related to faults (Baah, Podgurski, & 

Harrold, 2010). The study by Wotawa et al. based on source code analysis, a dependency-

based model was constructed from a given program to represent program structure and 

behavior (Wotawa, Stumptner, & Mayer, 2002). If a test case fails during program 

execution, the conflict between the failed test cases and program model will be used to 

find faulty candidates during fault localization. An assumption will be made on program 

statements whether they are faulty or not. This assumption will be revised until a full 

explanation of program failure is obtained. The main limitation of the study is the focus 

on loop-free programs. However, efforts were made to mitigate this limitation (Mayer & 

Stumptner, 2004). 

       Könighofer et al. proposed an automatic model-based debugging method with both 

fault localization and fault repair (Könighofer & Bloem, 2011). An incorrect program and 

its specification as a form of assertions will be an input into the proposed method. This 

information will be used to localize faults. Then a template-based approach will be used 
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for fault repair to confirm that repairs are readable. The result shows that in terms of 

handling incorrect assumption, the method can handle it in both single and multiple-fault 

programs. Abreu et al. used a model-based approach to localize multiple-fault candidates 

(Abreu, Zoeteweij, & van Gemund, 2008). In the process, De Kleer’s intermittent fault 

model was used to explain software component behavior. Furthermore, the model 

together with passed/failed execution result of test cases was used to find observed 

failures in a program. The approach has performed relatively well on Tcas program of the 

Siemens test suite. Furthermore, Abreu et al. also proposed a reasoning approach named 

Zoltar-S for single fault localization and Zoltar-M for multiple fault localization (Abreu, 

Zoeteweij, & van Gemund, 2009a, 2011). Zoltar-M uses Bayesian probability theory to 

rank multiple fault candidates. The findings of the study showed that the approaches can 

outperform both statistical-based debugging and SBFL techniques. 

       In another study by Dean et al., an algorithm based on a linear programming model 

was utilized to help localize both single fault and multiple faults (Dean et al., 2009). Based 

on an empirical study on Siemens test suite and Space programs, the researchers 

concluded that the algorithm is better than some SBFL techniques like Ample coefficient, 

Tarantula coefficient, and Jaccard coefficient.  

 

2.2.4 Program Slice-based Technique 

        Program slice-based technique extracts a subset of program statements that can affect 

the value of variables at the point where a fault is manifested. Irrelevant program parts are 

removed so that the resulting slice will be obtained. Slicing techniques can be static (M. 

Weiser, 1984) or dynamic (Agrawal & Horgan, 1990; B. Korel & J. Laski, 1988). Static 

slicing was first proposed in 1979 by (M. D. Weiser, 1979). The advantage of static slicing 
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is that it reduces the amount of code a developer needs to search to find faulty statements. 

The idea is, if a test case failed due to an incorrect variable value, the fault should be found 

in the static slice related to that variable value. This helps the developer to narrow down the 

fault searching space. However, having a reasonable slice size is crucial. Slice size has a 

great effect on the effectiveness of program slicing technique.  

       Lyle and Weiser proposed a new approach that constructs a program dice (the set 

difference of two groups of static slices) to aid in reducing the search space for potential 

locations of fault (Lyle, 1987). Static slicing techniques have been experimentally shown 

to be beneficial in locating program faults (Kusumoto et al., 2002), and it has been applied 

for fault localization in binary executable programs (Kiss, Jász, & Gyimóthy, 2005), and 

programs that are type-checked (Tip & Dinesh, 2001). The study by Binkley et al. showed 

that a typical slice size of a static slicing for a program can be one-third of the program 

under test (Binkley, Gold, & Harman, 2007). Realistically, it may not be useful to give a 

developer such a huge chunk of code to search for faulty statements. In order to address 

this issue, researchers proposed dynamic slicing (Agrawal & Horgan, 1990; B. Korel & J. 

Laski, 1988). Dynamic slicing relies on the information of the test suite which is the test 

coverage gathered through dynamic analysis to determine the parts of a program that affect 

the value of a particular program variable. In other words, dynamic slicing can identify the 

program statements that do affect a specific value of interest at a specific location, instead 

of possibly affecting such a value as with static slicing. Dynamic slicing technique is 

different from static slicing technique because of the utilization of tests execution data (i.e. 

input sequence, test cases). Many studies such as (Agrawal, DeMillo, & Spafford, 1993; 

Richard A DeMillo, Pan, & Spafford, 1996; Korel, 1988) have utilized the dynamic slicing 

concept in program debugging. 
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       Critical slicing is proposed by DeMillo et al., it is fundamentally dynamic slicing but 

uses with mutation-based testing technique to further narrow down the slice size (Richard 

A DeMillo et al., 1996). To further narrow down the slice, Gupta et al. proposed a forward 

dynamic slicing (Gupta et al., 2005). Zhang et al. proposed a multiple points dynamic 

slicing technique which is the intersection of three types of dynamic slicing techniques 

(i.e. forward dynamic slice, backward dynamic slice, and bidirectional dynamic slice) (X. 

Zhang, Gupta, & Gupta, 2007). Wotawa combined dynamic slicing with model-based 

diagnosis to identify the root causes of failure. Based on the dynamic slices for faulty 

variables obtained, the researcher constructs hitting-sets that contain one statement from 

each dynamic slice. The suspiciousness of program statement will be calculated based on 

the number of hitting-sets that cover a statement (Wotawa, 2010). One of the limitations 

of dynamic slicing techniques is their inability to capture execution omission errors 

(Zhang et al., 2007).  

       A relevant slicing was proposed by Gyimóthy et al. to locate statements that are 

directly responsible for execution omission errors (Gyimóthy, Beszédes, & Forgács, 

1999). Weeratunge et al. proposed the use of dual slicing which is the combination of 

dynamic slicing and trace differencing to identify the root causes of omission errors in 

concurrent programs (Weeratunge et al., 2010). Execution slicing is an alternative 

approach to static and dynamic slicing. Execution slicing uses test case executions to 

locate program faults which is identified to be easier to construct (Agrawal et al., 1995). 

Ju et al. proposed an approach to localize faults using a hybrid of full slice and execution 

slice (Ju et al., 2014). The approach first computes full slices of failed test cases and the 

execution slices of passed test cases. The information is then used to construct a hybrid 

spectrum by intersecting both full slices and execution slices to effectively localize 

program faults. Recently, a slice-based approach is proposed by Mao et al. to capture the 

influences of program entities (Mao et al., 2014). Their approach captures the influence 
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of a program entity on a set of test runs and statistical analysis was utilized to measure 

program entities suspiciousness of being faulty. The result shows a significant 

improvement in terms of effectiveness.  

  

2.2.5 Machine Learning-based Fault Localization Technique 

       Machine learning-based techniques are regarded amongst the most effective fault 

localization techniques (Wong at al., 2016). They are robust, adaptive and can produce 

models based on data with minimal human interaction. Machine learning-based 

techniques have been used in different fields of computer science such as image and 

natural language processing, and cryptography (Browne & Ghidary, 2003; Kung, Kim, & 

Mukhopadhyay, 2015). These techniques use three-stage layers of operation which are 

input, hidden, and output layers to train data and provide a result of suspicious statements 

in software programs (W. E. Wong & Qi, 2009). In a previous study, Briand et al. 

proposed a C4.5 decision tree algorithm to aid in effective and efficient localization of 

faults (Briand, Labiche, & Liu, 2007). It is one of the early machine learning algorithms 

used in fault localization to partition failed test cases into different partitions in the 

presence of many faults. Furthermore, Wong et al. proposed two machine learning-based 

techniques for fault localization, fault localization based on BP (back-propagation) neural 

network (W. E. Wong & Qi, 2009) and fault localization based on RBF (radial basis 

function) neural network (Wong et al., 2012). These techniques have shown to be more 

effective than even most of the state-of-the-art SBFL techniques. However, these 

techniques have problems of paralysis and local minima. 

       In another study by Zheng and Wang, a fault localization based on Deep Neural 

Network (DNN) was proposed to tackle the problems of paralysis and local minima (W. 
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Zheng et al., 2016). DNN was found to be very effective in comparison to other machine 

learning-based techniques. The result of the study showed that when less than 10% of 

program statements are examined, DNN can identify 73.77 % of faults in all faulty 

versions, which is above most of the current state-of-the-art techniques.  

 

2.3.   Multiple Fault Localization   

This section provides an overview of multiple fault localization. Jones et al. reported 

that the effectiveness of a fault localization technique declines on all faults as the number 

of faults increases. However, researchers also note that these results may be misleading 

and require further study (J. A. Jones et al., 2002). A later study by Jones et al. proposed 

the partitioning of failed tests caused by different faults to remove the noise caused by 

one fault inhibiting the localization of another fault (James A Jones et al., 2007).  

       Denmat et al. have made similar claims on the Tarantula coefficient (in extension to 

other similar SBFL techniques). The authors make a hypothesis requiring the 

independence of multiple faults where every failure is said to be caused by a single fault. 

However, when these hypotheses do not hold, the technique does not provide good fault 

localization results (Denmat, Ducassé, & Ridoux, 2005). In the study by Zheng et al., a 

specialized technique to localize faults in software programs containing multiple faults 

was proposed. Because in the existence of multiple faults, SBFL techniques cannot 

distinguish between fault infection and fault propagation that does not lead to failure 

(Zheng et al., 2006). In relation to SBFL techniques, Srivastav et al. indicated that the 

existence of multiple faults in a program prevents developers from effectively localizing 

a fault  (Srivastav et al., 2010). In another study by Debroy and Wong, the researchers 

showed that wrong matching of failed test to fault may result in a poor fault localization 
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result (Debroy & Wong, 2009).  Thus, programs with multiple faults as explained by 

existing studies suggest that it is difficult to match a failed test to its causative fault which 

in turn results in poor fault localization (DiGiuseppe & Jones, 2011b, 2015). 

       Drawing such conclusion is not unreasonable, as many empirical studies have been 

done to investigate the effects of having more than one fault in a program on localization 

effectiveness (DiGiuseppe & Jones, 2011b; Xue & Namin, 2013). Certainly, studies have 

shown that for a fault, the presence of other faults may impair the ability of SBFL 

techniques to properly localize them (James A Jones et al., 2007; J. A. Jones et al., 2002; 

Steimann & Bertschler, 2009). These studies conclude that SBFL performed poorly if, in 

a multi-fault program, it was unable to localize all faults effectively. This presumed that 

poor localization has led to the idea of localizing faults simultaneously which results in 

much literature in multiple fault localization. However, the main issue is interference 

between faults which causes the reduction of localization effectiveness in existing fault 

localization techniques. 

 

2.3.1. Fault Localization Interference 

       Five investigative studies conducted to access the impact of fault interference on 

localization inferencing on programs with multiple faults and identify which type of 

interference is the most prevalent were discovered. Debroy and Wong investigated the 

occurrence of fault interference and further examined which form of interference occurs 

more often than another across all conditions (Debroy & Wong, 2009). The authors 

identified two forms of interference which are constructive and destructive interference. 

Constructive interference occurs when a test that passed in the presence of single fault 

failed in the presence of multiple faults. On the other hand, destructive interference occurs 
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when a test that failed in the presence of single fault passed in the presence of multiple 

faults. The result of the study shows that interference between faults do occur 

exponentially where the more faults exist in a program, the higher the frequency of faults 

interfering. The authors concluded that destructive interference is more common.  

       DiGiuseppe et al. conducted three studies on the effect of interaction of faults within 

a program (DiGiuseppe & Jones, 2011a, 2011b, 2015).  Their studies indicated that the 

impact on localization effectiveness is real in the presence of multiple faults. 

Additionally, the authors concluded that even in the presence of many faults, at least one 

fault can be localized with good effectiveness. In another study by Xue and Namin, the 

researchers work on verifying the existence of fault interference phenomenon in object-

oriented software programs (Xue & Namin, 2013). The result shows that fault 

interference occurs, however, its impact on performance is negligible where the 

effectiveness of localizing the first fault is not compromised.   

       Furthermore, two main approaches used in the localization of multiple faults are 

identified, namely OBA debugging approach and parallel debugging approach. In the 

next sections (Section 2.3.2 and Section 2.3.3), the studies that utilized these approaches 

are presented. 

   

2.3.2. One-Bug-at-a-Time Debugging Approach (OBA) 

        OBA debugging approach is the process whereby a developer needs to localize a 

fault, fix it, and then re-test the program to find other faults in the software program under 

test. This process is performed iteratively until all the faults are found and fixed. Various 

fault localization techniques such as SBFL technique, statistical-based technique, and 

machine learning techniques have utilized OBA approach in localizing multiple faults 
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(Debroy & Wong, 2009; J. A. Jones & Harrold, 2005; J. A. Jones et al., 2002; W. E. 

Wong et al., 2014; W. E. Wong, Debroy, & Xu, 2012). Also, when utilizing this approach, 

additional effort is needed for the developer to find and fix the faults. In the process, more 

faults can also be created while also resulting in longer time-to-delivery of software 

programs (DiGiuseppe & Jones, 2015; Jeffrey et al., 2009). This section highlights studies 

that utilized the OBA debugging approach for localizing multiple faults. 

        Experimental results of most of the existing state-of-the-art fault localization 

techniques on multiple-fault programs show a decrease in their effectiveness due to OBA 

debugging approach utilization (DiGiuseppe & Jones, 2011b, 2015). For instance, an 

empirical study based on Tarantula (J. A. Jones et al., 2002) showed that its effectiveness 

drops because interference between faults hinders its performance and the time it takes to 

produce a failure-free program have increased because more debugging iterations are 

needed. It was also concluded in the same study that despite the loss of effectiveness, 

Tarantula was able to localize at least one fault effectively. In the attempt to address the 

problem of decreasing in effectiveness in the context of multiple faults. Abreu et al. 

presented an approach named BARINEL, which combines the best of SBFL techniques 

and MBD techniques (Abreu, Zoeteweij, & Van Gemund, 2009b). In this approach 

(BARINEL), a program was modeled with execution traces while Bayesian reasoning is 

used to deduce multiple fault candidates. The approach showed some promise but was 

found to be more effective in the context of a single fault. 

       In a previous work by Gong et al., the authors proposed a mechanism to improve the 

localization efficiency of single-fault localizers by providing a stopping criterion in the 

first debugging iteration to allow developers to locate more than one fault (Gong et al., 

2012). However, the approach was not tested and validated. Furthermore, a multiple fault 

localization method was proposed based on Simulink model (Liu et al., 2016). The 
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approach used supervised learning technique named decision tree to cluster failed 

executions that were likely to have been caused by a single fault. In this process, a rank 

list based on a statistical debugging technique is generated and developers can use this 

list to find a fault, fix it, and re-test the Simulink model to localize the remaining faults. 

Although this approach uses failure clustering method as the basis of classifying failures, 

it is still based on the OBA debugging approach as indicated in the study.  

       In another study, Lee et al. proposed a weighting technique to improve the 

effectiveness of SBFL techniques (Lee, Kim, & Lee, 2016). A weighting value is assigned 

to test cases that are caused by both single fault and multiple faults. This weighting is 

primarily done by utilizing information extracted from failed test cases that are caused by 

multiple faults. The study concluded that weighting failed test cases caused by multiple 

faults improve the effectiveness of fault localization techniques. Furthermore, Wong et 

al. proposed a modified form of Kulczynski similarity coefficient named DStar (W. E. 

Wong et al., 2014). Using this coefficient, the higher the computed DStar value, the more 

effective the technique. The coefficient was tested on multiple-fault programs using the 

OBA debugging approach and the findings revealed that the technique can localize at 

least a single fault with high effectiveness.  

       Wang et al. proposed a novel fault localization approach based on disparities of 

dynamic invariants, named FDDI (X. Wang & Liu, 2016). FDDI selects a highly-

suspected function and then applies invariant detection tools to this function separately. 

Variables that are not in a set of passed/failed test cases indicated by using these tools are 

picked by FDDI for further analysis. However, in the context of multiple faults, the 

authors considered failed test cases that execute all faulty statements. Therefore, using 

the OBA debugging approach, the researchers neutralized single fault each at each 

debugging iteration to produce a failure-free program. In addition, Xu et al. proposed a 
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fault localization framework that reduces the noise between faults in the presence of 

multiple faults (Xu et al., 2013). The framework uses a chain of key basic blocks of a 

program and a noise reduction method to improve similarity coefficient metrics. 

        Likewise, Zhao et al. proposed a general framework to mitigate the effect of 

execution similarity and improve the effectiveness of SBFL techniques (Zhao et al., 

2013). Using the existing SBFL formulae, the approach can reduce the impact of both 

execution similarity and improve fault localization effectiveness. In the context of 

multiple faults, the OBA debugging approach was utilized. To reduce the noise in fault-

failure correlation when localizing faults caused by either coincidental correctness (Masri 

& Assi, 2014) or fault interference (Xue & Namin, 2013), another study by Xu et al. 

proposed a framework to address this issue. The study shows that the noise reduction 

framework improves the effectiveness of SBFL techniques when applied to multiple-fault 

programs (Xu et al., 2013).  

        In addition, a crosstab-based statistical approach was proposed by Wong et al. to 

localize faults using the OBA debugging approach (W. E. Wong, Debroy, & Xu, 2012). 

The experimental results showed that the OBA debugging approach is not as effective. 

Furthermore, a weighting technique was proposed by Neelofar et al. using both dynamic 

program analysis and static program analysis to categorize program statements and rank 

them based on their likelihood of containing faults. The technique was tested on both 

single-fault programs and multiple-fault programs. Their proposed technique improves 

the performance of various fault localization metrics up to 20% on single-fault datasets 

and up to 42% on multiple-fault datasets (Neelofar Neelofar et al., 2017). A diversity 

maximization speedup (DMS) strategy was proposed by Xia et al. to aid developers in 

the test case selection during fault localization to also reduce associated costs (Xia et al., 

2016). This strategy also helps in targeting critical test cases that are needed to speed up 
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the localization process. The result of the study shows that DMS can aid the existing fault 

localization techniques in reducing debugging cost of locating multiple faults.  

        A hybrid method  was proposed named Stat-slice to locate faults in programs with a 

large number of faults using the OBA debugging approach (Parsa, Vahidi-Asl, & Zareie, 

2016). The result shows that the method has considerably reduced fault localization effort. 

Also, bounded debugging via multiple predicate switching (BMPS) technique based on 

the OBA debugging approach was proposed (A. Liu, Li, & Luo, 2015), and 

experimentation revealed that multiple faults were localized. Xiaobo et al. conducted an 

empirical study to explore failure behavior of multiple faults in a program through 

empirical investigation on real-life systems (Chinese Railway System) (Xiaobo, Bin, & 

Jianxing, 2017). The study showed that unpredictable failure caused by multiple faults is 

mainly accounted by the interaction of dominant faults during program execution. 

        Sun et al. proposed a novel approach named the concept lattice of program spectrum 

for effective multiple fault localization (CLPS-MFL) (Sun, Li, & Wen, 2013). The 

approach uses formal concept analysis to convert a program spectra into a concept lattice 

and uses three strategies to find failure root causes. However, the approach needs further 

improvement in the context of multiple faults. Generally, in an effort by researchers to 

localize multiple faults simultaneously in a single debugging iteration, MBD techniques 

have been used recently (Lamraoui & Nakajima, 2016). However, MBD techniques have 

limitations due to their computational complexity. Therefore, their use on large programs 

is limited and the results cannot be fully generalized. 
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2.3.3. Parallel Debugging Approach 

       Parallelization or parallel debugging approach is basically dividing the debugging 

task into small units so as to allow multiple developers to work on different units (James 

A Jones et al., 2007). This approach is utilized when a program has multiple faults, mainly 

to facilitate the debugging process and reduce software time-to-delivery. Failed test cases 

are clustered and each cluster is combined with all the available passed test cases to create 

a single fault-focused cluster, with the assumption that each fault-focused cluster targets 

a single fault. The fault-focused clusters composed of both failed and passed test cases 

will be given to separate developers to debug in parallel. This debugging approach is 

different from the OBA debugging approach because a developer does not have to 

neutralize the faults in many debugging iterations. 

        Jones et al. introduced the idea of debugging in parallel by clustering the failed test 

cases and combining each cluster with all available passed test cases to form a fault-

focused cluster (James A Jones et al., 2007). These fault-focused clusters are then given 

to developers to debug the faults in parallel. However, the same study presumed that each 

fault-focused cluster represents a single fault. A recent work in (Högerle et al., 2014) 

concluded that the assumption does not seem realistic. One of the issues with 

parallelization is that, a single developer can finish a debugging task while other 

developers are still debugging. Consequently, this can create more faults to the program 

as fixes given to the first developer who finishes debugging early, will probably affect 

the debugging effort of other developers.  

       In some studies, failed test cases are clustered based on their execution profile 

similarity. The clustering stops when the two clusters to be merged further seem to target 

different faults (James A Jones et al., 2007; Yu et al., 2008). This clustering technique for 

isolating faults is claimed to be inappropriate and problematic (R. Gao & Wong, 2017). 
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In another study by Srivastav et al., a technique was proposed to calculate the complexity 

of program slices before distributing the work to the respective debuggers (Srivastav et 

al., 2010). After clustering, the technique calculates the slice weight to determine the 

effort needed to debug each slice. However, the approach needs to be empirically proven 

to justify its usability. 

       Jeffrey et al. proposed a fault localization method based on value replacement to 

efficiently localize multiple faults. The technique reduces the total time required to locate 

multiple faults on the order of minutes. Initially, finding and fixing the faults based on 

OBA debugging approach was considered, before the authors eventually concluded that 

it would be costly and that such approach also increases time-to-delivery of the software 

program  (Jeffrey et al., 2009). As a result, an iterative process was considered, where the 

technique can iteratively compute a ranking list of program statements with the aim of 

each ranking list to guide the developer towards faults as quickly as possible. The method 

understands potential faulty statements based on the occurrence of interesting value 

mapping pair (IVMP) (Jeffrey et al., 2009). It was identified that IVMP normally occurs 

at faulty statements. It can also occur in statements that are directly related to faulty 

statements through a dependency edge. The approach performs localization on individual 

execution iterations to find and fix faults, which have similarities with the approach by 

Jones et al. (James A Jones et al., 2007). Moreover, it is not guaranteed that each iteration 

belongs to a single fault. One of the problems with this approach is the high computational 

requirements. Even though some faults can be identified in a matter of minutes, others 

can take hours. 

       In another study by Wei and Han, a parameter-based combination approach (PBC) 

was proposed to aid in the efficient localization of multiple faults (Wei & Han, 2013). In 

the study, a bisection method was utilized for clustering failed test cases to create fault-
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focused clusters while crosstab-based fault localization technique was used for fault 

localization. The researchers conclude that PBC performs better than Tarantula (OBA 

debugging approach). In addition, two other studies proposed the use of parallel 

debugging approach to improve localization effectiveness on multiple-fault programs 

(Briand et al., 2007; W. E. Wong, Debroy, Golden, et al., 2012). The result showed 

significant improvement in contrast to adopting the OBA debugging approach.  

       In a recent study by (Lamraoui & Nakajima, 2016), a formula-based approach was 

proposed consisting of a full flow-sensitive trace formula to localize faults in programs 

containing multiple faults. The approach combines satisfiability-based (SAT) formula 

verification techniques and model-based diagnosis theory. It was able to localize the root 

causes of multiple faults in a program. However, this approach was examined in a 

relatively small program of the Siemens test suite (Tcas), and therefore, the results cannot 

be fully generalized. Also, the approach’s exclusive utilization of failed test cases alone 

for localization might be an issue for a large program with several faults where many 

statements containing faults can be executed by passed test cases which are more common 

in multiple-fault scenarios. Sun et al. proposed an iterative process for selecting test cases 

for effective fault localization (Sun et al., 2016). This approach works based on the 

concept lattice of program spectrum method, and in order to localize multiple faults, 

program statements are classified into three parts namely, dangerous, sensitive, and safe 

statements. By doing so, developers start by checking statements that are categorized as 

dangerous first due to their high probability of containing faults, followed by the rest of 

the classified statements. 

       To simplify debugging efforts in statistical debugging technique, Liblit et al. 

proposed an algorithm to isolate faults in programs with multiple faults (Liblit et al., 

2005). The algorithm is tasked to identify predicates that are correlated with specific 
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singular faults and isolate them in order to prioritize debugging effort to localize faults 

simultaneously. A more recent approach proposed is called Hierarchy-Debug (Parsa, 

Vahidi-Asl, & Asadi-Aghbolaghi, 2014), which aims to localize latent bugs. In this 

approach, a hierarchical clustering algorithm is applied to cluster predicates to support 

scalability in localizing multiple bugs. The results showed that the approach can aid 

developers in grouping predicates caused by multiple bugs. A recent study by Gao and 

Wong proposed a novel approach for localizing multiple faults in parallel (R. Gao & 

Wong, 2017). The authors proposed an improved k-medoids clustering algorithm to aid 

in the effective identification of the relationship between failed test cases and their 

corresponding faults. The study concludes that their proposed approach performs better 

in terms of efficiency and effectiveness in comparison to other debugging approaches. 

 

2.4.   Complex Network Theory   

       Complex network is capable of simulating complex data behavior to understand and 

identify important components (Dorogovtsev & Mendes, 2003). For the past few decades, 

researchers in diverse fields of studies have given a lot of attention to complex network 

theory due to its robustness and adaptiveness in solving complex problems (Albert & 

Barabási, 2002; Bornholdt & Schuster, 2006; Strogatz, 2001). Particularly, physicists 

have shown a lot of interests in complex network to provide a detailed explanation of 

various system topologies such as social networks, communication systems, World Wide 

Web (WWW), community structures, epidemic spreading and more. Complex network 

has a lot of advantages over many models used in the study of complex data. It has the 

ability to learn highly complex data and structures of a system. The working principle of 

complex network is flexible and robust because the complex relationships of system 

components can be understood at a macro level. Most importantly, complex network has 
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a strong mathematical background. These advantages have led complex network in 

becoming an important tool for understanding system complexity. It has been 

successfully applied in the scientific research areas such as neurology (Strogatz, 2001), 

biology (Dorogovtsev & Mendes, 2003), physics (Albert & Barabási, 2002), social 

network (L. C. Freeman, 1978), and software engineering (Ma, He, & Du, 2005; Myers, 

2003). 

       Albert and Barabási conducted a study to understand networks and the complexity of 

World Wide Web (WWW) from a physicist point of view (Albert & Barabási, 2002). The 

authors try to understand the basic principles of network structural organization and 

evolution. The study by (Strogatz, 2001) evaluate some of the most basic issues in 

networks in the area of neurobiology from the perspective of nonlinear dynamics. The 

outcome of the study shows that there are issues about the nonlinear dynamics of systems 

coupled according to small-world, scale-free or generalized random connective network. 

Furthermore, in order to capture the structural characteristics of an object-oriented 

software system, a study by Chong and Lee proposed an approach to represent software 

systems using weighted complex network (Chong & Lee, 2015). Based on the 

complexities of classes and their dependencies (methods), nodes and edges are modeled. 

Graph theory metrics were used on the modeled network. The result showed that their 

approach can help in identifying software components that violate software design 

principles. Ma et al. proposed a qualitative measure based on software structure entropy 

that measures the amount of uncertainty of the structural information. The researchers 

further measured the influence of interactions between the components of software 

systems and their topologies/structures (Ma et al., 2005). The study by Myers (Myers, 

2003) examined software collaboration graphs of several open-source systems, and the 

findings show that software graphs indicate small-world and scale-free network 

characteristics which are identical to those identified in other systems (sociological, 
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biological, neurological and so on). Zhu et al. proposed a fault localization method based 

on software network centrality measures (SNCM) to improve localization effectiveness 

on single fault subject programs. The result shows that their method is useful in 

identifying the location of faults (Zhu et al., 2011).  

       Complex network or sometimes called graph theory has two basic types of graphs 

which are, directed graph and undirected graph. A graph is a group of nodes connected 

together via edges that may or may not be weighted. There are two types of node-to-node 

relationships, symmetric and asymmetric. Nodes relationships are symmetric if the graph 

is modeled as an undirected graph, while the nodes relationships are asymmetric if the 

graph is modeled as a directed graph (Bullmore & Sporns, 2009). Basically, a graph 

provides an abstract representation of the modeled data, for instance, social network, 

complex data or software system components and their interactions, which is often 

regarded as a real-world network because it simulates real-world behavior of a system.  

 

  

 

 Figure 2.2: Directed graph and undirected graph  

       Graph (a) in Figure 2.2 is referred to as undirected graph because the nodes’ 

interactive relationships are not shown in detail. On the other hand, graph (b) is referred 

to as directed graph; it shows a detailed interaction between nodes. Node 1 and node 2 in 

graph (b) share information in a bi-directional manner with two edges between the nodes. 
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The same is applied to node 2 and node 4 in graph (b). Real-world networks show 

essential topological structures, patterns, and behaviors of a system. Existing studies have 

found that real-world networks possess some unique characteristics and behavior such as 

the scale-free and small-world properties, which are not found in random networks 

(Myers, 2003; Šubelj & Bajec, 2012). A directed graph is more suitable when applied in 

object-oriented software systems because it can capture the semantic relationships 

between software components. In this thesis, the detailed relationships between 

components as the case in object-oriented systems (Ma et al., 2005) are not of interest. 

The graph is modeled as an undirected graph. To build a software-based complex 

network, a developer needs to have a valid input regarding the structural behavior of the 

software such as software components and their relationships. In this thesis, the input 

values will be program spectra and the execution results (passed/failed) of a program. The 

program statements will be modeled as nodes and the tests execution between them will 

be modeled as edges. Hence, the term program statement and node are used 

interchangeably in this work. 

       In this thesis, complex network is used for fault localization for the following reasons. 

Firstly, complex network theory is proven to be largely applicable theory and it has been 

effectively used to solve several problems in research areas such as physics (Albert & 

Barabási, 2002), biology (Dorogovtsev & Mendes, 2003), social network (L. Freeman, 

2004), and software engineering (Chong & Lee, 2015). Secondly, complex network has 

the ability to help researchers understand complex systems. For instance, it can be used 

to identify important nodes and their correlation with faults in software programs (Zhu et 

al., 2011). Lastly, in the context of fault localization, complex network theory has the 

ability to aid in the identification and localization of faulty program statements and 

statements that are related to failure.  
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2.5.   Research Gap   

       Based on the research literature presented in this chapter, the key observation is that 

in programs with multiple faults, the localization effectiveness of the existing fault 

localization techniques reduces. The more faults a program contains, the more difficult it 

is to localize all the faults simultaneously (DiGiuseppe & Jones, 2015). Next, looking at 

all the studies utilizing OBA and parallel debugging approaches, none of them localize 

faults in a single diagnosis rank list. In other words, no study localize faults in a single 

debugging iteration. An earlier study by Gong et al. has made a suggestion on localizing 

more than one fault in the first debugging iteration, in extension, debugging all the faults 

simultaneously (Gong et al., 2012). However, their proposal has not been implemented 

or validated. A recent study by Zheng et al. has also put an effort to localize faults 

simultaneously by proposing a Fast Software Multi-Fault Localization Framework based 

on Genetic Algorithms (Y. Zheng et al., 2018). In view of the research gap, to improve 

localization effectiveness and reduce the overall software time-to-delivery, this thesis 

aims to develop a fault localization technique that will localize multiple faults in a single 

debugging iteration.  

       Furthermore, clustering is the most important component of parallel debugging 

approach, particularly on how to obtain a good clustering on failed test cases that target 

single faults. Many clustering algorithms have been used in the literature such as k-means 

clustering algorithm, hierarchical clustering algorithm, and k-medoids clustering 

algorithm (R. Gao & Wong, 2017; Högerle et al., 2014; James A Jones et al., 2007; 

Steimann & Frenkel, 2012; Yabin Wang et al., 2014). Clustering algorithms that group 

failed test cases based on their execution profile similarity with distance metrics such as 

Euclidean distance, Jaccard distance, Hamming distance and so forth, are claimed to be 

problematic and inappropriate when utilized in a parallel debugging approach in the 
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context of multiple faults (R. Gao & Wong, 2017). Yet, other studies that grouped failed 

tests based on their execution profile similarity with the above-mentioned distance 

metrics in parallel debugging approach recorded good localization results (Huang et al., 

2013). However, there are no studies that investigate the claimed problematic parallel 

debugging approach that groups failed test cases based on their execution profile 

similarity with a distance metric such as Euclidian distance in localizing multiple faults 

in terms of localization effectiveness. As far as the knowledge gained from the literature 

reviewed in this domain, apart from the study by Zhu et al. that makes use of complex 

network theory to localize faults on single-fault programs, complex network theory has 

not been used for fault localization (Zhu et al., 2011).  

       In this thesis, an investigative study of the claimed problematic parallel debugging 

approach that makes use of k-means clustering algorithm to group failed tests execution 

based on their execution profile similarity with Euclidean distance metric is conducted. 

The claimed problematic parallel debugging approach is also compared with OBA 

debugging approach and MSeer parallel debugging approach (R. Gao & Wong, 2017) in 

terms of localization effectiveness. Furthermore, in the quest of improving software 

quality and effectively localizing multiple faults simultaneously, this thesis proposes two 

new fault localization techniques based on complex network theory that will aid in 

localizing both single and multiple faults effectively in a single diagnosis rank list. 

Furthermore, a new approach for isolating faults into different clusters is proposed to aid 

in the simultaneous localization of multiple faults in parallel.  The new approach does not 

perform clustering on tests execution, rather it performs clustering on program statements 

in a complex network that is modeled based on the tests execution profile. Therefore, the 

due-to relationship between program statements is measured based on statements’ edge-

betweenness distance to create fault-focused communities (clusters) instead of between 

failed test cases as done by the previous works. 
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2.6.   Chapter Summary   

       This chapter has presented the literature on software fault localization. The chapter 

started by highlighting some of the basic terminologies that are vital in the study of faults 

to failure relationship between program entities in software programs. The chapter has 

presented some of the most prominent software fault localization techniques in the 

research domain. The chapter further discussed multiple fault localization, fault 

interference, and the two main debugging approaches used in debugging multiple faults. 

Studies utilizing these approaches to localize multiple faults are highlighted in detail. The 

chapter also gives a basic background literature on complex network theory and some 

related works on its application in various research domains including software 

engineering. The justification of using complex network theory for fault localization was 

also given. Finally, the chapter concluded by highlighting the gaps in research and the 

need for this research. In conclusion, this chapter views the strength and weaknesses of 

the previous works based on the fault localization techniques and the debugging 

approaches utilized and their performance in the context of multiple faults. In the next 

chapter, the research methodology will be described and discussed in detail. 
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CHAPTER 3: RESEARCH METHODOLOGY  

       In this chapter, the general methodology of the study is discussed. The methodology 

of the investigative study of the claimed problematic parallel debugging approach that 

makes use of k-means clustering algorithm with Euclidean distance metric in localizing 

multiple faults is highlighted. The two novel fault localization techniques based on 

complex network theory, namely multiple fault localization based on complex network 

theory (FLCN-M) and single fault localization based on complex network theory (FLCN-

S), are presented in detail. Lastly, the new community-based fault isolation approach is 

also presented in detail.  

 

3.1.   Research Process  

       Firstly, the whole research process is divided into four stages as shown in Figure 3.1. 

The first stage is literature review which focuses on the existing software fault localization 

techniques to identify their contributions and limitations. In this stage, a study of the 

existing state-of-the-art fault localization techniques is done to identify the issues and 

challenges the existing techniques faced when localizing multiple faults (Zakari et al., 

2018). Next, the studies were categorised based on the fault localization techniques and 

debugging approaches they utilized to localize multiple faults. Two multiple-fault 

debugging approaches utilized by researchers to localize multiple faults, namely OBA 

debugging approach and parallel debugging approach, were identified and studies 

utilizing these approaches were discussed. Furthermore, the basic background literature 

on complex network theory and some related works on its application in various research 

domains including software engineering were given. 
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Figure 3.1: Process flow of the research activities 

       Secondly, the next stage is the problem analysis. The problem statement was 

formulated based on the analyzed literature. It was observed that most of the existing 

studies show that the existence of multiple faults in a program reduces the effectiveness 

of the existing fault localization techniques (DiGiuseppe & Jones, 2015; Xue & Namin, 
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2013). Thus, the techniques cannot localize faults simultaneously in a single diagnosis 

rank list. Moreover, parallel debugging approach is also claimed to be problematic 

particularly when failed tests are clustered based on the similarity of their execution 

profile with distance metrics such as Euclidean distance, Jaccard distance, and Hamming 

distance (R. Gao & Wong, 2017; C. Liu et al., 2008). To substantiate this claim, an 

investigative study of the claimed problematic parallel debugging approach that makes 

use of k-means clustering algorithm (that groups failed test cases based on their execution 

profile similarity) with Euclidean distance metric is conducted. The details of the 

investigative study is presented in Section 3.2. Furthermore, a set of research questions 

and research objectives are formulated to solve the identified research problem as 

highlighted in Chapter one, Section 1.4 and Section 1.5. 

       Thirdly, the next stage is the research approach. This stage focuses on proposing 

solutions to solve the research problem and fulfill the research objectives. First of all, in 

order to localize multiple faults simultaneously in a single diagnosis rank list with good 

effectiveness, a novel fault localization technique based on complex network theory 

named multiple fault localization based on complex network theory (FLCN-M) is 

proposed. This technique is specifically built to improve localization effectiveness in 

multiple-fault programs and to aid developers in localizing multiple faults simultaneously 

in a single diagnosis rank list. The details of the proposed technique is presented in 

Section 3.3. In addition, a novel technique named single fault localization based on 

complex network theory (FLCN-S) is proposed to localizing faults on single-fault 

programs. The details of the proposed technique is also presented in Section 3.4. 

Furthermore, for FLCN-M fault localization technique, in the case where a developer has 

checked 70% of the program statements and cannot fully localize all the multiple faults 

in a single diagnosis rank list, instead of resorting to using the OBA debugging approach, 

a newly proposed community-based fault isolation approach that makes use of a divisive 
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network community clustering algorithm is applied to aid in the isolation and localization 

of multiple faults simultaneously in parallel. The details of the proposed approach is 

presented in Section 3.5. 

       In the last stage, the proposed techniques and approach were evaluated on several 

single-fault and multiple-fault subject programs in comparison with various baseline fault 

localization techniques and approaches in terms of localization effectiveness. For the 

evaluation of the proposed FLCN-M fault localization technique, a newly generic 

evaluation metric named incremental developer expense (IDE) is proposed to aid in 

accessing developer expense in localizing multiple faults simultaneously in a single 

diagnosis rank list. 

 

3.2.   Investigative Study of the Claimed Problematic Parallel Debugging Approach  

       This section presents the methodology of the investigative study on the claimed 

problematic parallel debugging approach with the clustering algorithm, distance metric, and 

fault localization techniques utilized. The work on the claimed problematic parallel 

debugging approach is primarily to investigate its usefulness in terms of localization 

effectiveness on multiple-fault programs in comparison with two other debugging 

approaches. 

 

3.2.1. Parallel Debugging 

       The basic idea for parallelizing debugging activity was introduced by Jones et al 

(James A Jones et al., 2007). The goal is to isolate different faults in separate special test 

suites for multiple developers to debug in parallel, ideally to reduce debugging cost. The 
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motivation of utilizing parallel debugging approach comes from the parallelization of 

computation on multi-processor computers (Despain & Patterson, 1978). This type of 

approach divides a task into multiple subtasks that are processed on multiple processors 

simultaneously. Hence, because of the better utilization of the processors, the tasks 

complete faster when utilizing parallel approach rather than a sequential approach. 

 

Figure 3.2: Sequential processing of tasks 

 

Figure 3.3: Parallel processing of tasks 

       Figure 3.2 and Figure 3.3 illustrate the sequential and parallel computation of tasks. 

The horizontal axis represents the cost of the tasks and the vertical axis shows the processors 

(developers in this work context) that are attached to each task. In the fault localization 

context, the former (Figure 3.2) represents the OBA debugging approach while the latter 

(Figure 3.3) represents the parallel debugging approach. It is obvious that the latter utilizes 

less time in completing the debugging task. Moreover, debugging task completion can be 
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measured as the time and effort it takes to locate the faults responsible for the failure, and 

debugging task parallelization can also be measured as the number of developers that can 

debug the program. 

 

 Figure 3.4: Program with all test cases 

        Given a program P with a test suite T in Figure 3.4. Test suite T is composed of 10 test 

cases (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) with 13 program statements where statement 5 and 

statement 10 are both faulty. A statement execution labeled with “●” signifies that the 

statement is executed by the test case in that test run, and empty otherwise. Test cases (t7, 

t8, t9, t10) are failed test cases while (t1, t2, t3, t4, t5, t6) are passed test cases. With two faults 

in P, locating both faults simultaneously will take more time using the OBA debugging 

approach as it requires retesting the program iteratively to find more faults which will result 

in the increase of software time-to-delivery.  

        Hence, to localize all the faults in a minimum amount of time with minimal 

developer expense, a parallel debugging approach will be utilized. Fault-focused clusters 
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will be created by automatically clustering the failed test cases into subsets that has 

similar tests execution profile. Each of these fault-focused clusters will be combined with 

all available passed test cases to create a special test suite. These special test suites will 

be given to individual developers to debug the faults in parallel. With these special test 

suites, a fault localization technique will be used to automatically find the faults. In this 

study, k-means clustering algorithm will group failed tests execution based on their 

execution profile similarity with Euclidean distance metric to measure the distance 

between two failed tests.  

       Considering Figure 3.4, based on the algorithm (k-means), failed tests execution (t9, 

t10) and (t7, t8) will be partitioned into different clusters that target different faults. Each 

of these clusters will be combined with all the passed tests execution to create a special 

test suite that is presumed to target a single fault. Clustering failed tests based on their 

execution profile similarity was also used in previous fault localization studies (Högerle 

et al., 2014; Huang et al., 2013; C. Liu et al., 2008). However, as suggested by Liu et al. 

(C. Liu et al., 2008) and Gao et al. (R. Gao & Wong, 2017), this representation is 

considered to be problematic because of the unpredictability of fault manifestation (faults 

can be triggered in many ways). These studies also argued that this representation resulted 

in poor fault localization results due to a poor clustering method utilized. Therefore, this 

approach will be considered for the investigative study. The next section highlights the k-

means clustering algorithm used in the investigative study. 

3.2.2. K-means Clustering  

     Clustering is the partitioning of a collection of objects into clusters (k) that have similar 

behavior (Witten & Frank, 1999). Objects partitioned in the same cluster are similar and 

are not similar to other objects in separate clusters.  
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     In general, clustering techniques can be classified into two categories, which are soft 

clustering techniques and hard clustering techniques. In the former, an object can be a 

member of two or more clusters, and in the latter, an object can only be a member of one 

cluster. In this study, k-means clustering algorithm is used for clustering failed tests 

execution (Hartigan & Wong, 1979; Yabin Wang et al., 2014). k-means clustering 

algorithm is one of the most popular hard clustering techniques, and it was utilized by 

few studies in the domain of software fault localization (Huang et al., 2013; Yabin Wang 

et al., 2014). Before k-means is applied, the number of clusters, k, has to be estimated 

based on the total number of failed test cases Nt. Furthermore, based on the estimated 

number of clusters, the cluster centers will be randomly selected for each cluster where 

each failed test is assigned to the nearest cluster center based on the Euclidean distance 

between failed test cases. Lastly, the cluster centers will be recalculated based on the 

existing clustering results. Thus, in each clustering iteration, new cluster centers are 

produced, and the process continues until test cases in each cluster no longer move. In k-

means clustering, clusters are produced so as to minimize Equation 3.1 as stated in (Yabin 

Wang et al., 2014). 

𝑠 =   ∑  ∑ ||𝑡𝑗 − 𝑣𝑖||²

𝑄

𝑡𝑗 ∈𝑠

 

𝑘

𝑖=1

                                                         (3.1) 

        where tj represents a test case, vi represents a cluster center, s is the ith cluster, k 

represents the number of clusters, Q represents the number of test cases in the ith cluster, 

and ‖𝑡𝑗 − 𝑣𝑖‖
2 is the square distance between tj and vi. Therefore the clustering of failed 

test cases into k clusters include the following steps: 

        Step 1: Before k-means is applied, the number of clusters, k, will be estimated as 

√𝑁𝑡/2  based on the work in (Bibby, Kent, & Mardia, 1979) and (Yabin Wang et al., 
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2014) where Nt represents the total number of failed test cases. Although a recent study 

by Gao et al. (R. Gao & Wong, 2017) argues that the above cluster estimation is 

problematic because there is no clear correlation between the number of failed test cases 

and the number of faults in a given program. However, the study in (Yabin Wang et al., 

2014) shows this approach can be useful in estimating the number of clusters that target 

single faults. Hence, this study will aid in investigating this issue on whether using this 

clustering algorithm with this cluster estimation will result in effective fault localization 

results. 

        Step 2: knowing the number of clusters from step 1, the number of cluster centers v 

will be randomly assigned corresponding to the number of clusters where v can be 

represented as v = {v1, v2, v3,…, vn}. Suppose there are two clusters (k = 2), v1 and v2 will 

represent the cluster centers which is assigned to the mean point in a group of failed tests. 

        Step 3: To calculate the Euclidean distance between a test case t to all cluster centers, 

Equation 3.2 will be computed.  

𝑑(𝑡, 𝑣) =   √∑(𝑡𝑗 − 𝑣)
2

𝑄

𝑗=1

                                      (3.2) 

        In this work, the execution profile of a test case t is represented as a numeric vector 

t = {st1, st2, st3,…, stn} where each t is executed by n number of statements which can be 

represented as m = {m1, m2, m3,…, mn}. Therefore, as shown in Equation 3.3, if a 

statement execution is represented as mi = 0, it indicates that the statement is not executed 

by t, while if it is represented as mi = 1, it indicates that the statement is executed by t. 

𝑚𝑖 = {
1,                        𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑
0,               𝑛𝑜𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 

                                   (3.3) 
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        A cluster center v is also a numeric vector holding the same dimension as t. Therefore, 

v can be represented as a numeric vector v  = {sv1, sv2, sv3,…, svn}. For clarification, refering 

to Table 3.1 where t can be represented as t = { st1, st2, st3,…, stn}, the numeric vector values 

for test case t1 and t2 is represented as t1 ={1, 1, 1, 0, 0, 0, 1} and t2 ={1, 0, 0, 1, 1, 0, 1}. 

        Next, the Euclidean distance between numeric vector values of t and numeric vector 

values of v will be computed to know the distance between t and v as d(t, v). Having two 

cluster centers v1 and v2, to calculate the Euclidean distance for the first cluster center v1 

against all test cases, Equation 3.4 will be computed. 

𝑑(𝑡, 𝑣1) =   √(𝑠𝑡1 − 𝑠𝑣1)2 + (𝑠𝑡2 − 𝑠𝑣2)2 + (𝑠𝑡3 − 𝑠𝑣3)2+, … , (𝑠𝑡𝑛 − 𝑠𝑣𝑛)²       (3.4) 

        Hence, to calculate the Euclidean distance for the second cluster center v2 to all test 

cases, Equation 3.5 will be computed. 

𝑑(𝑡, 𝑣2) =   √(𝑠𝑡1 − 𝑠𝑣1)2 + (𝑠𝑡2 − 𝑠𝑣2)2 + (𝑠𝑡3 − 𝑠𝑣3)2+, … , (𝑠𝑡𝑛 − 𝑠𝑣𝑛)²     (3.5) 

        Lastly, to assign t to the nearest cluster center whose distance from the cluster center 

is minimum to all cluster centers, Equation 3.6 will be computed, where s represents the 

ith cluster. Therefore, the same will be done to all the test cases. 

𝑠 = {𝑡: ||𝑡 − 𝑣1||
2

≤ ||𝑡 − 𝑣2||
2

≤, … , ||𝑡 − 𝑣𝑛||
2

}                                            (3.6) 

        Having the total distance calculated by Equation 3.4 and Equation 3.5. Therefore, 

for each t, it is assigned to only one s that is nearest to it. 

        Step 4: To calculate and update the mean point of each cluster center v based on the 

existing clustering results, Equation 3.7 will be computed where |𝑠| indicates the number 

of failed test cases in s. Therefore, the clustering result for each of the test cases in s is 
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indicated as d(tj) where they will be added up and divided by the total number of failed 

test cases in s to update the mean point of each of the cluster centers for the next clustering 

iteration.  

              𝑣 =   
∑ 𝑑(𝑡𝑗)

|𝑠|
𝑗=1

|𝑠|
                                                          (3.7) 

        Step 5: Repeat step 3 and step 4 until the cluster centers no longer move. 

Table 3.1: An example of failed tests execution with 7 statements and 8 failed test 

cases 

 t1 t2 t3 t4 t5 t6 t7 t8 

m1 1 1 1 1 1 1 1 1 

m2 1 0 0 1 1 0 1 1 

m3 1 0 0 1 1 0 0 0 

m4 0 1 1 0 0 1 0 0 

m5 0 1 1 0 0 1 0 0 

m6 0 0 0 0 0 0 0 0 

m7 1 1 1 1 1 0 1 1 

 

        To illustrate how failed test cases are clustered based on their execution profile 

similarity, refer to the example shown in Table 3.1. The table consists of eight failed test 

cases and seven statements. From step 1 and step 2, it is concluded that there are two 

clusters (i.e. k = 2) with test case t2 assinged as cluster center v1 (cluster center for the first 

cluster in iteration 1) and test case t5 assinged as cluster center v2 (cluster center for the 

second cluster in iteration 1) where the cluster centers are randomly assigned. 
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        After estimating the number of clusters and assigning the cluster centers, step 1 and 

step 2 are completed. Moving to step 3, the Euclidean distance between a test case and 

the cluster centers will be calculated using Equation 3.4 and Equation 3.5. Therefore, the 

Euclidean distance between a test case and the corresponding cluster centers v1 and v2 for 

the first clustering iteration (iteration 1) is shown in Table 3.2. 

Table 3.2: First k-means clustering iteration (Iteration 1) 

d(t, v) t1 t2 t3 t4 t5 t6 t7 t8 

v1 2 0 0 2 2 1 1.73 1.73 

v2 0 2 2 0 0 2.23 1 1 

∈ s k2 k1 k1 k2 k2 k1 k2 k2 

 

        Based on Equation 3.6, if the minimum distance value is from v2, then a test case tj 

will belong to the second cluster k2, and if the minimum distance value is from v1, then a 

test case tj will belong to the first cluster k1. Therefore, k2 has t1, t4, t5, t7, and t8 failed test 

cases in this iteration, while k1 has t2, t3, and t6 failed test cases. 

        In other words, because the distance between t1 and v1 is higher than that between t1 

and v2 (2 > 0), the same applied to t4, t5, t7, and t8, hence, t1, t4, t5, t7, and t8 will be grouped 

in the second cluster (k2). Correspondingly, the distance between t2 and v2 is higher than 

that between t2 and v1, the same applied to t3 and t6, hence, t2, t3, and t6 will be grouped in 

the first cluster (k1). In step 4, the mean point of each cluster center is recalculated and 

updated for cluster one and cluster two (k1 and k2). To update the mean point of the cluster 

centers v1 and v2, Equation 3.7 is computed based on the clustering results obtained in the 

first clustering iteration (Table 3.2). For v2, the cluster center contains five test cases 

which are t1, t4, t5, t7, and t8 which formulate k2 for the first clustering iteration with each 
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test case having a distance value of 0, 0, 0, 1, and 1, respectively. Therefore, using 

Equation 3.7, the mean point of the new cluster center for the next clustering iteration for 

v2 will be calculated as 𝑣2 =
0+0+0+1+1

5
 = 0.4. For v1, the cluster center contains three 

test cases which are t2, t3, and t6 which formulate k1 for the first clustering iteration with 

each test case having a distance value of 0, 0, and 1, respectively. Therefore, the mean 

point of the new cluster center for the next clustering iteration for v1 will be calculated 

as 𝑣1 =
0+0+1

3
 = 0.33. Henceforth, with the result of the new cluster centers as (v1 = 0.33 

and v2 = 0.4), the clustering will be halted at the first iteration as the new mean point of 

v1 and v2 is not greater than one, so the new cluster centers cannot be set in the memory 

space of the program in Table 3.1. Therefore, the entire clustering process is complete. 

 

3.2.3. Similarity Coefficients Metrics 

        Generally, the suspiciousness of a statement in P is directly proportional to the number 

of failed test cases that covered it. Therefore, less suspicious statements are statements that 

are mainly covered by passed test cases rather than failed test cases. However, for both 

passed and failed tests execution, the statements that are covered should make more 

contributions to fault localization than program statements that are not covered. Therefore, 

the statements that are covered by test cases are more influential and should carry more 

weight than the statements that are not covered by any test cases in suspiciousness 

computation. Many similarity coefficient-based fault localization techniques for 

suspiciousness computation have been proposed and rigorously evaluated by various 

empirical studies in the last decades (Abreu et al., 2007; J. A. Jones & Harrold, 2005).  

        In this study, three well-known similarity coefficient-based metrics, namely Ochiai 

coefficient, Naish2 coefficient, and Jaccard coefficient are chosen as shown in Table 3.3. 
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These three coefficients are chosen because they have shown to be very effective in locating 

software faults in recent years (Abreu et al., 2007, 2011; W. E. Wong et al., 2014). 

However, similarity coefficient-based metrics are not equivalent in performance for fault 

localization. As identified in an earlier study, their performance varies based on the 

scenarios they are used on. There is no one coefficient that will claim to be more effective 

in all scenarios (Yoo et al., 2014). However, these coefficients particularly Ochiai 

coefficient, have shown in the previous studies to be the most effective similarity coefficient 

metric (Abreu et al., 2007). 

Table 3.3: Similarity coefficient metrics 

 

 

 

 

 

 

 

 

 

 

 

Based on Table 3.3, Ncf denotes the number of failed tests that cover a statement, Ncs 

denotes the number of passed tests that cover a statement, Nus denotes the number of passed 

tests that do not cover a statement, and lastly, Nnf denotes the number of failed tests that do 

not cover a statement. The next section presents the proposed multiple-fault localization 

technique based on complex network theory (FLCN-M). 

Coefficient  Formula 

    Ochiai 𝑁𝑐𝑓

√(𝑁𝑐𝑓 + 𝑁𝑛𝑓) × (𝑁𝑐𝑓 + 𝑁𝑐𝑠)
 

 

Naish2 

  

 

𝑁𝑐𝑓 −
𝑁𝑐𝑠

𝑁𝑐𝑠 + 𝑁𝑢𝑠 + 1
 

 

Jaccard 

 

𝑁𝑐𝑓

𝑁𝑐𝑓 + 𝑁𝑢𝑓 + 𝑁𝑐𝑠
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3.3.   Multiple Fault Localization based on Complex Network Theory (FLCN-M)  

        In the study of complex network, various network centrality measures are introduced 

to determine the importance of a node in a network. For instance, measuring how 

important an individual is in a social network, identifying key and strategic nodes in the 

internet or urban networks (Dorogovtsev & Mendes, 2003), identifying important nodes 

and their correlation with faults in software programs (Zhu et al., 2011). Some of these 

centrality measures include degree centrality, closeness centrality, betweenness 

centrality, eigenvector and so forth.  

        For FLCN-M fault localization technique, two centrality measures are adopted for 

fault diagnosis, namely degree centrality and closeness centrality. Degree centrality 

measures the number of connections a node has to other nodes in a network, and closeness 

centrality of a node measures how close a node is to other nodes in a network. A new 

ranking formula is proposed to compute the suspicious values of program statements 

(Zakari, Lee, & Chong, 2018). The proposed technique ranks program statements based 

on their behavioral abnormalities and distance between statements in both passed and 

failed tests execution. This is based on the knowledge that a faulty statement might play 

a distinct role in the network. Furthermore, the technique will aid the developer in 

localizing multiple faults simultaneously in a single diagnosis rank list.  

        In this thesis, statements and nodes are used interchangeably while execution 

between program statements is represented as edges. 

        Definition 1. Degree centrality. Degree is a commonly used centrality measure in 

complex network and it can be utilized to statistically measure node importance in a given 

network (C. Gao et al., 2013). Freeman and Linton stated that the degree of a given node 

is measured by the number of adjacencies the node has in a network (L. C. Freeman, 
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1978). In other words, is the total connection a given node has to its neighboring nodes 

in a network. Degree centrality, Dc(i), for node i can be formalized as stated in Equation 

3.8 (L. C. Freeman, 1978). 

𝐷𝑐(𝑖) =  ∑ 𝑥𝑖𝑗

𝑛

𝑗

                         (3.8) 

        where i is the focal node, j represents any other neighbor node, n represents the total 

number of nodes in the network, and x is the adjacency matrix, in which xij is indicated 

as 1 if there is a connection between node i and node j, and 0 otherwise as stated in 

Equation 3.9. The connection between nodes is also known as the edge between nodes. 

 𝑥𝑖𝑗 = {
1,                𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛,   

0,                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
             (3.9) 

        Given a sample network in Figure 3.5, with four nodes and four edges. In this 

network, based on the adjacency matrix, node 1 will have one edge to node 2 and node 2 

will have three edges to node 1, node 3, and node 4. Node 3 will have two edges to node 

2 and node 4, while node 4 will also have two edges to node 3 and node 2. Therefore, the 

adjacency matrix measure the level of connection each node has in the network at the 

local level.  In this example, node 2 is regarded as the most influential in the network.  

 

Figure 3.5: An example of a network consisting of 4 nodes and 4 edges 
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        In this context, a network N will be modeled based on software tests execution 

profile in correspondence to the statements’ executed (Section 3.3.1). Therefore, for a 

statement mi in a sparse undirected/unweighted network, if there is a connection between 

the statement mi to statement mj in a test case execution, meaning that there is an edge 

between the two statements. Hence, if statement mi has an edge from another statement 

mf that is executed by a separate test case, then, statement mi will have two edges because 

it is connected to two executable statements (mj and mf) executed by different test cases. 

The study in (Opsahl & Panzarasa, 2009) deduces that a node with a higher degree 

centrality is likely to be stronger connected in a given network, hence, being more likely 

to be the cause of failure or related to failure. This centrality measure is aimed to identify 

behavioral abnormalities in statements executions and identify the most central 

statements in the program network. Therefore, in this thesis, Equation 3.8 can be 

represented as Equation 3.10 (L. C. Freeman, 1978). 

𝐷𝑐(𝑚𝑖) =  ∑ 𝑥(𝑚𝑖, 𝑚𝑗)

𝑛

𝑗=1

                         (3.10) 

        where mi is the focal statement, mj represents any other neighbor statement, n 

represents the total number of statements, and 𝑥(𝑚𝑖, 𝑚𝑗) is the adjacency matrix. The 

calculation of statements’ degree centrality (Dc) in a program network N is computed by 

Equation 3.10. 

        Therefore, this centrality measure will aid in identifying program statements that are 

the most central and the most important in N. However, as identified by Chen et al., higher 

degree centrality does not always point to how influential a node is (Chen et al., 2012). 

Therefore, to help in diagnosing statements that are more suspicious in N, closeness 

centrality measure is also adopted.  
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        Definition 2. Closeness centrality. Closeness centrality measures the inverse of the 

average shortest path between a node and all other nodes in N, which means that all paths 

should lead to a node (Cheng & Suthers, 2011; Šubelj & Bajec, 2012). This centrality 

measure tries to measure how long it will take to spread information, diseases, or failures 

from the node of interest to all other nodes sequentially. For fault that propagates through 

multiple program statements or faulty statements that are close to each other in the 

program, this centrality measure will aid in identifying them. Therefore, statements that 

are closer to the statements with abnormal behaviors (relatively high degree centrality) in 

N will be identified because the higher the closeness centrality value of a statement, the 

closer it is to all other statements. As shown in Figure 3.6, program statements m3 and m5 

might have distinct degree centrality, but due to their close proximity, they will have a 

relatively close closeness centrality value with respect to the tests execution. 

   

Figure 3.6: Closeness centrality example for program mid ( ) 
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       Therefore, the closeness centrality of a statement mi to all other statements is 

computed using Equation 3.11(Cheng & Suthers, 2011). 

𝐶𝑐(𝑚𝑖) =  
𝑛 − 1

∑  𝑑(𝑚𝑖, 𝑚𝑗)𝑛
𝑗≠𝑖

            (3.11) 

       where d(𝑚𝑖,𝑚𝑗) is the shortest path distance between statement mi and mj, and n is 

the total number of statements in N.  

       Definition 3. Suspicious score. To further calculate the suspiciousness S of statement 

mi in N, a new ranking formula is proposed as shown in Equation 3.12. The technique 

FLCN-M computes the suspicious value of mi using the degree centrality value Dc of mi 

and its closeness centrality Cc value in N. For a given program statement mi, the difference 

between the two values will be computed using Equation 3.12. Computing the difference 

of these values will give a developer quantifiable value of how suspicious a statement is. 

The first item at the left side of Equation 3.12, i.e. Dc, indicates how central a program 

statement is in N. In other words, it will aid in knowing how connected a program 

statement is to other program statements in both passed and failed tests execution in N. 

As for the second item on the right, i.e. Cc, it helps in identifying the program statements 

that are closer to other statements sharing common behavior in N. In other words, it aids 

in knowing how close a program statement is to other statements in N. Therefore, 

knowing the difference between the two values for program statements will aid in 

identifying faulty program statements based on this behavioral abnormalities in both 

passed and failed tests execution. Furthermore, the difference of these values will also 

help in ranking multiple faulty statements that are closer to each other or caused by the 

same failure or faults revealing variables (Zakari, Lee, & Chong, 2018).         

𝑆(𝑚𝑖) =  𝐷𝑐𝑖 − 𝐶𝑐𝑖                  (3.12) 
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       For n number of program statements modeled as N, the suspicious score value will 

be assigned for each statement in N. The program statements will be generated in 

descending order of their suspicious scores. Henceforth, a developer will start checking 

the program statement with the highest suspicious score until the faulty program 

statements are identified. Appendix B shows some of the results generated by FLCN-M. 

  

3.3.1. Network Modeling 

       To model a network N, a sample program given in Table 3.4 is used. In the program, 

if a statement execution is labeled as 1, it signifies that the statement is executed by the 

test case in that test run, and 0 otherwise. For the test result of each test case, 0 means the 

test case has passed while 1 means the test case has failed. The program has 12 statements 

(n =12) with 11 executable statements and six test cases. Table 3.5 illustrates the network 

construction sequence, a single network N is modeled to capture the entire program 

statements execution behavior.  

Table 3.4: A multiple-fault program with tests execution 

  mid ( )   { input x, y, z, m; t1 t2 t3 t4 t5    t6 

m1   if (y < z) 1 1 1 1 1 1 

m2       if (x < y) 1 1 1 1 1 1 

m3             m = z;   //fault 1   m = y 1 1 0 0 1 1 

m4       else if (x < z) 0 1 0 0 0 0 

m5             m = z;   //fault 2    m = x 1 0 0 0 1 1 

m6   else 1 0 0 0 0 1 

m7   if (x > z)  0 0 1 1 0 0 

m8             m = y;   //fault 3    m = x 1 0 1 1 0 1 

m9       else if (x > y) 0 0 1 0 0 0 

m10             m = y 0 0 0 1 0 0 
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m11   print (“middle number is:”, m);  0 0 0 0 0 0 

m12  }  0 0 0 1 1 0 

 Pass/Fail Status 0 0 0 0 1 1 
  

       Cytoscape software platform (http://www.cytoscape.org/) is used for network 

construction and generation. The network is modeled as an undirected and unweighted 

network. To build a software-based complex network, a developer needs to have a valid 

input regarding the structural behavior of the software such as software components and 

their relationships. In this thesis, the input values will be the program spectra and the 

execution results (passed/failed) of a program. 

Table 3.5: Network construction sequence 
 

Test cases Execution trace Test result 
t1 {1-2}{2-3}{3-5}{5-6}{6-8} Passed 
t2 {3-4} Passed 
t3 {2-7}{7-8}{8-9}  Passed 
t4 {8-10}{10-12} Passed 
t5 {5-12} Failed 
t6  Failed 

  

        Execution profile of {t1, t2, t3, t4, t5, and t6} is used to model the network N irrespective 

of their execution results (passed/failed). From t1, there is an edge from m1 to m2, m2 to m3, 

m3 to m5, m5 to m6, and m6 to m8, respectively. From the second test case t2, an edge is added 

from m3 to m4. For t3, an edge is added from m2 to m7, m7 to m8, and m8 to m9. For t4, there 

is an edge from m8 to m10, and m10 to m12, while for t5, there is an edge from m5 to m12. 

Therefore, in a case where there are two test cases with similar execution profile, one test 

case will be chosen and the other test case will be discarded because the test cases have the 

same execution path. That is why test case t6 was not included in the network construction 

sequence in Table 3.5 because it has the same execution profile as test case t1. Statement 

Table 3.4, continued  
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m11 will not be modeled because the statement was not executed by any test case. Therefore, 

all the test case executions corresponding to the statements will be modeled as N.  

 

3.3.2. General Framework 

This section presents the detailed steps of the proposed technique, FLCN-M, in locating 

multiple faults. Figure 3.7 shows the overall fault localization process. 

 

 

Figure 3.7: FLCN-M fault localization process 

 Step 1: In this step, the faulty program P will be executed by all the available test 

cases in T and the execution data will be collected. The execution profile of 

statements with respect to each test case will be collected. The set of passed and 

failed test cases will be identified. 

 Step 2: A network N will be modeled using the execution profile of both passed 

and failed test cases as input based on the process detailed in Section 3.3.1. 

 Step 3: For n number of program statements modeled as N, the Dc and Cc of each 

statement will be computed based on Equation 3.10 and Equation 3.11. 
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Furthermore, Equation 3.12 will be computed to calculate the suspicious score 

value S of each statement in N. 

 Step 4: Based on the suspicious score values of program statements, rank the 

statements m1, m2, m3,…, mn based on S1, S2, S3,…, Sn in descending order of their 

suspicious score values. A developer will be tasked to examine the statements one 

by one from the top until all faults are located. Even if the developer locates the first 

fault, the localization process will continue until all the faults are located in the 

single diagnosis ranking list.         

 

  

3.3.3. A Running Example 

       Consider the sample program in Table 3.4, which takes three integers as input to 

demonstrate how FLCN-M can be used to locate multiple faults. The program has 12 

statements (n =12) with 11 executable statements and 3 faults in statements m3, m5, and m8. 

The faulty statement m3 is executed by two passed test cases, t1 and t2, and two failed test 

case, t5 and t6. Faulty statement m5 is executed by one passed test case t1 and two failed 

tests, t5 and t6, and m8 is executed by three passed tests, t1, t3, and t4, and one failed test case 

t6. The proposed technique will rank the faulty statements at the top of the ranking list 

because it takes into consideration behavioral abnormalities and distance between 

statements irrespective of whether they are executed by passed or failed tests execution. 

       At step 2, to model the network N, the process detailed in Section 3.3.1 will be used. 

Thus, the network as shown in Figure 3.8 is generated. Step 1 and step 2 are completed.     
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Figure 3.8: Network for the multiple-fault program mid ( ) 

        Moving to step 3, the degree centrality Dc of a statement mi and the closeness centrality 

Cc of a statement mi to all other statements in the network N are calculated. The suspicious 

score S of the program statements will be calculated according to Equation 3.12. Next, in 

step 4, rank the statements m1, m2, m3,…, m12 based on S1, S2, S3,…, S12 in descending order 

of their suspicious score values. The developer will examine the statements one by one 

from the top until the multiple faults are located. The fault examination process will not be 

halted even if the developer locates the first fault, the localization process will continue 

until all the faults are located in the single diagnosis ranking list. The localization result is 

shown in Table 3.6. 

 

Table 3.6: Localization result of program mid ( ) with multiple faults 

  mi Dci Cci Si Rank 

m1 1 0.333 0.667 7 

m2 3 0.476 2.524 2 

m3 3 0.476 2.524 2 

m4 1 0.333 0.667 7 

m5 3 0.5 2.5 3 

Univ
ers

ity
 of

 M
ala

ya



  

71 

m6 2 0.454 1.546 5 

m7 2 0.476 1.524 6 

m8 4 0.5 3.5 1 

m9 1 0.345 0.655 8 

m10 2 0.417 1.583 4 

m12 2 0.417 1.583 4 

 

       In this example, FLCN-M ranks the statements based on their suspicious score. After 

ranking, the following ranking is obtained m8, m3, m2, m5, m10, m12, m6, m7, m4, m1, and m9. 

This shows that m8 is more likely to contain faults even though the statement is executed by 

three passed test cases and only one failed test case. Therefore, the first fault can be located 

by examining the first statement in the ranking list. The second and third faults can be found 

when m3 and m5 are examined. However, looking at Table 3.6, all the faulty statements have 

relatively higher Dc and Cc values. In total, based on this example, FLCN-M technique can 

locate all the three faults by examining less than 4 statements in a single diagnosis rank list. 

 

3.4.   Single Fault Localization based on Complex Network Theory (FLCN-S)   

       To improve effectiveness in a single fault context, a new fault localization technique 

that leverages failed tests execution alone in the context of a single fault, named FLCN-

S, is proposed. This technique adopts all the centrality measures, ranking formula, and 

process used in the former technique (FLCN-M) detailed in Section 3.3. However, the 

network modeling process is different where instead of using both passed and failed tests 

execution, failed tests execution alone are utilized for the network modeling process. 

Equation 3.10 and Equation 3.11 will be used for fault diagnosis, while Equation 3.12 

will be used to compute the suspicious scores of all the program statements. Because for 

a program with a single fault, the faulty statement is more likely to be executed by failed 

Table 3.6, continued  
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test cases due to less fault-to-failure complexity as shown in previous studies (Abreu et 

al., 2007; DiGiuseppe & Jones, 2015; J. A. Jones & Harrold, 2005).  

       To demonstrate the technique (FLCN-S), the single-fault version of the program in 

Table 3.4 is taken with only the failed tests execution profile as shown in Table 3.7. 

Consider that the program has a single fault in m5 with two failed test cases t5 and t6. 

Using FLCN-S, the network N will be modeled by utilizing the failed tests execution only.          

Table 3.7: Program mid ( ) with a single fault 

mid ( ) t5 t6 

m1 1 1 

m2 1 1 

m3 1 1 

m4 0 0 

m5 1 1 

m6 0 1 

m7 0 0 

m8 0 1 

m9 0 0 

m10 0 0 

m11 0 0 

m12 1 0 

Fail Tests 1 1 

  

       Therefore the network in Figure 3.9 is generated using the above-failed tests 

execution. For the first test case t5, there is an edge from m1 to m2, m2 to m3, m3 to m5, and 

m5 to m12. For the second failed test t6, there is an extra edge from m5 to m6 and m6 to m8 

respectively. The faulty statement m5 is executed by all the failed test cases.  
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Figure 3.9: Network for a single-fault program mid ( ) 

       The Dc and Cc of all the statements will be calculated. Next, the suspicious score S 

of each statement will be calculated to generate the suspicious statements ranking list. 

Lastly, the localization result is shown in Table 3.8. The developer will be tasked to check 

the program statements in descending order of their suspicious scores until the faulty 

statement is located.   

Table 3.8: Localization result of program mid ( ) with single fault 

mi m1 m2 m3 m5 m6 m8 m12 

Dci 1 2 2 3 2 1 1 

Cci 0.316 0.428 0.545 0.6 0.461 0.333 0.4 

Si 0.684 1.572 1.455 2.4 1.539 0.667 0.6 

Rank 5 2 4 1 3 6 7 

 

 Looking at the result in Table 3.8, the faulty statement m5 is ranked at the top of the 

ranking list with the highest suspicious score, which means that the statement is most 
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likely to contain the fault. Therefore, the fault localization process will be halted. 

Appendix A shows some of the results generated by FLCN-S.  

 

3.5.   Community-based Fault Isolation Approach for Simultaneous Fault 

Localization   

       In this section, the network community clustering algorithm used for fault isolation 

is outlined. Furthermore, the proposed community weighting and selection process which 

will help in selecting and prioritizing fault-focused communities for effective 

simultaneous localization of faults in parallel is also highlighted. Finally, the general 

framework for the proposed approach is also highlighted with a running example to 

illustrate the approach. 

 

3.5.1. Community Clustering Algorithm 

       To cluster failures in the fault localization domain, various clustering algorithms 

were utilized in recent years (R. Gao & Wong, 2017; Högerle et al., 2014; James A Jones 

et al., 2007; Yabin Wang et al., 2014). These studies mainly use program tests execution 

profile to isolate faults into distinct clusters with tests execution profile similarity often 

used to justify failure groupings. Hence, distance metrics such as Euclidean distance, 

Jaccard distance, and Hamming distance are often used to compute the test-to-test 

distance to determine the cluster into which a given test will fall (Huang et al., 2013; 

James A Jones et al., 2007; W. E. Wong, Debroy, Golden, et al., 2012). However, recent 

studies have shown that the use of this representation is problematic and is not an effective 

way to isolate failed tests based on their causative faults (R. Gao & Wong, 2017; C. Liu 
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et al., 2008). In contrast, for the proposed approach, the network N is the representation 

of all the program tests execution profile of both passed and failed tests execution. 

Therefore, this approach does not perform clustering on tests execution rather it performs 

clustering on program statements in the network N that is modeled based on the tests 

execution. Therefore, the due-to relationship between program statements is measured to 

create fault-focused communities instead of between failed test cases as done in the 

existing works. Instead of using the traditional distance metrics which are somewhat less 

effective for measuring the due-to relationship between tests, edge-betweenness based 

distance is used by the divisive network community clustering algorithm to measure the 

distance between program statements executions. Network community clustering 

algorithms fall into two classes which are agglomerative and divisive (Scott, 2000). 

Algorithms are classified based on whether they concentrate on addition or removal of 

edges to a network or out of a network. 

       In this study, the latter (divisive) clustering method is utilized to isolate faults into 

different communities. Based on this method, a developer is tasked to find the least 

connected statements (statements with the highest edge-betweenness score) in a faulty 

program network and then remove the edges between them. If this process is done 

repeatedly, the program network will naturally be divided into smaller and smaller groups 

composed of densely connected statements. These smaller groups can be considered as 

the network communities when the process is halted. This is based on the knowledge that 

the more densely connected nodes are in a network, the more prone they are to be related 

to the same variable or information (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; 

Šubelj & Bajec, 2011). In extension to this study, it is postulated that the more densely 

connected program statements are in the program network N, the more prone they are to 

be related to the same failure or fault. The approach to community identification in this 
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study basically follows these lines. The algorithm proposed by Girvan and Newman for 

community detection is used (Girvan & Newman, 2002; Newman & Girvan, 2004). 

       Communities are generated by continuously removing edges (connection between 

program statements) from the modeled program network based on their betweenness 

centrality score value. Node betweenness centrality is defined as a measure of nodes 

centrality and influence in a network (L. C. Freeman, 1977). The betweenness centrality 

measures node influence based on information flow from a node to other nodes in a 

network, particularly where the information flow in the network follows the shortest 

available paths. Hence, to identify the statements in a program network N that are mostly 

between other statements, the betweenness centrality is generalized to network edges as 

edge-betweenness. Edge-betweenness of an edge is defined as the number of the shortest 

paths between statements that run along it. For statements that have more than one 

shortest path, all the paths will be given equal weight so that the total weight of all paths 

is unified. In a scenario where a program network has communities or clusters that are 

loosely connected by intergroup edges, the shortest paths between these communities 

must move along these few edges. Therefore, edges connecting communities will 

normally have high edge-betweenness score values. The community structure of the 

program network can be revealed in distinct groups by removing these edges. 

       The algorithm used in this study for community detection in its general form is stated 

as follows: 

1) Calculate the betweenness scores of all edges in the network. 

2) Identify and remove the edge that has the highest betweenness score.  

3) Recalculate betweenness scores for all the remaining edges affected by the 

removal. 

4) Repeat from step 2 until no edges remain. 
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       To calculate the betweenness of a program network, Newman fast algorithm is used 

(Newman, 2001). This algorithm calculates the betweenness for all the edges e in a 

network of n nodes in best-case time O(en) as claimed in (Newman & Girvan, 2004). The 

betweenness of edges that are affected by the removal of the edge in step 2 will be 

recalculated. Therefore, this algorithm calculates the betweenness score of each edge 

starting from statement in N until the betweenness score is computed from each and every 

statement in N. Henceforth, the betweenness scores of the edges from each and every 

statement will be added up and divided by 2 to get the final edge-betweenness scores of 

all the edges in N. To get a better result, the recalculation step of the algorithm is the most 

vital step. Therefore, the recalculation step is very crucial in detecting good communities 

in the program network N. 

 

3.5.2. Shortest-path Betweenness 

       In this study, to calculate the shortest path between program statements in a program 

modeled network N, it can be done using breadth-first search in time O(e) with O(n2) 

statements pairs (Leiserson, Rivest, Stein, & Cormen, 2001; Newman, 2001). Breadth-

first search can find the shortest paths from a statement mi to all other statements in time 

O(e). Figure 3.10 shows an example of a shortest path “tree” for a simple network. Figure 

3.10a shows a simple network that illustrates how breadth-first search finds the shortest 

paths between statements in time O(e) where e represents the edge between statements. 

The number of shortest paths from statement ma to itself is weight wa = 1 as an initial 

condition. For any other statements that are directly next to ma, in this case, mb and me, 

they will be given equal weight as ma. In the case of mf, the number of shortest paths from 

ma to mf is the number of shortest path from ma to mb plus the number of shortest path 

from ma to me. Therefore, mf will carry the weight of 2 as wf = 2. In other words, because 
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ma has multiple paths to mf and each path holds a weight of 1. Therefore, the weight of mf 

will be the weight of ma to mb plus the weight of ma to me which equals to a total weight 

of wf = 2 for mf.     

 

 Figure 3.10: Calculation of shortest-path betweenness 

       However, the number of shortest paths from ma to mb is the same as the number of 

shortest paths from ma to mg, because one has to go through the predecessor mb in a single 

direction. Next, to know the number of shortest paths from ma to md (the lowest statement) 

one have to sum up the number of shortest paths from ma to mg and the number of shortest 

paths from ma and mf. So, md will carry the weight of 3 (wd = 3). Now the shortest path of 

the statements can be used to calculate the betweenness for each edge in the network. 

Figure 3.10b shows the betweenness score of each edge in the network. First, one has to 

start with the edges that are farthest from the initial statement (ma) which are the lowest 

edges. Then, work upwards assigning a score to each edge that is 1 plus the sum of the 

scores on the edge or edges immediately below it. For example, starting from the edge of 

the farthest statement (md) in Figure 3.10b, the betweenness scores of the edges from md 

to mg and from md to mf will be calculated by dividing the weight of mg and md and the 

same applied to mf and md. When one has go through all edges in the network, the 
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resulting scores of the edges are the betweenness scores for the paths from ma (the 

betweenness scores of the edges are to be calculated from all the remaining statements as 

well). This process will be repeated for all statements, and the betweenness scores of all 

edge will be added up and divided by 2. With this, the final edge-betweenness scores for 

the shortest paths between all statements will be obtained. 

       The breadth-first search and the process of calculating the betweenness of all edges 

in the network both takes worst-case time O(e). With n statements in total, therefore the 

whole calculation is done in best-case time O(en) as claimed (Newman & Girvan, 2004). 

In an earlier definition of node betweenness (L. C. Freeman, 1977), if a node has multiple 

shortest paths (i.e. mf in Figure 3.10), all paths leading to the node will be given equal 

weights summing to 1. For instance, if there are two shortest paths, each path will be 

given the weight of  
1

2
. 

       Looking at Figure 3.10a, to conduct a breadth-first search starting from ma, the 

following steps will be performed: 

1) The initial Statement ma will be assigned a distance da = 0 and a weight wa = 1. 

2) For any statement mi that is next to ma, a distance di = da + 1 = 1, and a weight wi 

= wa = 1 will be given to it. 

3) Next, for each statement mj next to the statement mi, the following three things are 

conducted:  

 If mj is not assigned any distance, a distance dj = di + 1 will be assigned 

and a weight wj = wi will be assigned.  

 Moreover, if a distance has already been assigned to mj as dj = di + 1, then, 

the weight of the statement will be rise by wi which is wj ← wj + wi.    
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 If mj has already been assigned a distance and dj < di + 1, nothing will be 

done.                 

4) Lastly, repeat from step 3 until no statement left that has been assigned a distance 

but its neighboring statement distance is not assigned.                      

       Furthermore, the weight of a statement mi indicates the number of different paths 

from the root statement ma to mi. Therefore, these weights are exactly what is needed to 

calculate the edge-betweenness where for two statements mi and mj that are connected, 

with mj farther than mi from the root statement ma, then the shortest paths from mj through 

mi to the root statement ma will be given by wi/wj. To further calculate the edge-

betweenness from all the shortest paths starting from ma as shown in Figure 3.10b, the 

following steps will be carried out: 

1) Calculate the shortest paths starting from statement ma, to every other statement 

using the breath-first search in time O(e).  

2) Find the lowest statement mj (i.e. statement at the bottom of the program network 

N) 

3) For each given statement mi next to statement mj, assign a score to the edge from 

mi to mj of wi/wj.                                        

4) Next, start from the edges that are far away from the root statement ma (i.e. 

statements edges that are at the bottom of the diagram in Figure 3.10) moving 

upward. For the edge of mi to mj, with mj being far away from ma than mi, a score 

that adds 1 to the sum of the neighboring edges immediately below it will be 

assigned (i.e. edges below it that share common statements). At last, the scores 

will be added up by the weight wi/wj. 

5) Lastly, repeat step 3 and step 4 until ma is reached.                 
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       Using these steps, one is able to calculate the edge-betweenness of all edges in the 

program network in best-case time O(en). This calculation will be repeated for each edge 

removed from the program network N. Given that there is e amount of edges where e = 

{e1, e2, e3,…, en}. The whole community structure algorithm based on the shortest path 

betweenness will run in worst-case time O(e2n) or O(n)3. It is observed that unlike 

networks with stronger community structures in other research domains (Dorogovtsev & 

Mendes, 2003; Newman & Girvan, 2004), a network modeled based on tests execution 

profile (program spectra) has less community density (mostly sparse). Therefore, the time 

O(en) it takes to generate fault-focused communities is relatively long but has less effect 

on the quality of communities created for fault localization. 

 

3.5.3. Community Weighting and Selection  

       In practice, when a program fails, a developer does not normally know the number 

of faults that caused the failure. In extension, when identifying network communities 

(clusters), the developer probably does not know how many communities the algorithm 

is going to generate depending solely on network to network modularity (Newman & 

Girvan, 2004). Therefore, there is no reason for the identified communities to be roughly 

the same size. For the above practical scenario where the developer does not know the 

exact number of faults and the exact number of communities or their sizes, localizing 

those faults might be a bit tricky. Therefore, a community weighting and selection 

mechanism is introduced to aid in prioritizing highly important communities to the 

available developers to debug the faults simultaneously in parallel. In this work, these 

communities are named as fault-focused communities which target a single fault each. 
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       For a given community C in a network N, a weight will be assigned to each 

community based on the total number of statements n a given community contains. 

Equation 3.13 will calculate the weight of a single community in network N.  

𝐶 =  ∑ 𝑚𝑗

𝑛

𝑗=1

                         (3.13) 

       where C represents a community, n represents the total number of statements in that 

community, and m represents a statement. Therefore, the number of communities can be 

represented as C = {c1, c2, c3,…, cn} in a given program network N. 

       Furthermore, the weights of all the communities in N will be computed. Suppose 

there is a network N with three identified communities as shown in Figure 3.11 where the 

first community has 7 statements, the second community has 6 statements, and the third 

community has 4 statements. Therefore, if a given community has a higher weight with a 

greater number of statements in comparison with other communities in N, that community 

will be ranked at the top of the community ranking list followed by subsequent 

communities. All communities will be generated in descending order based on the 

weights they carry and will be given to developers to debug the faults simultaneously in 

parallel starting with the community with the highest weight. The main reason why 

starting with the community with the highest weight is because it is postulated that for 

communities with a high number of statements, they are more susceptible to contain the 

faulty program statements. 
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Figure 3.11: Network with groups of communities  

 

3.5.4. The Community-based Fault Isolation Approach 

       In this section, the detailed steps of the proposed community-based fault isolation 

approach are presented. Figure 3.12 demonstrates the overall process of the approach, 

with more details of the process given as follows: 

       Step 1: Program tests execution profile: The first phase of the approach focuses on 

program execution and collecting the tests execution profile. The faulty program P under 

test will be executed with the corresponding available test cases to generate the tests 

execution profile (program spectra). Test cases executions are classified into passed and 

failed categories depending on whether the output deviates from the expected output or 

not. Therefore, if a test case produces an expected output, the test case has passed. 

Otherwise, the test case has failed.  

       Step 2: Network modeling: In this phase, the network N is modeled. The execution 

profile (program spectra) of both passed and failed test cases obtained from the initial 
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phase will be used as an input to generate the network N that captures the entire program 

execution behavior. 

       Step 3: Community (cluster) detection: The divisive network community clustering 

algorithm in Section 3.5.1 will be computed at this stage. Statements that are densely 

connected with each other will be isolated into distinct fault-focused communities by 

taking into account the statements edge-betweenness distance as discussed in Section 

3.5.2. Therefore, the number of existing communities in a given network will be known 

by the developers. 

       Step 4: Community (cluster) weighting and selection: After knowing the number of 

communities in N, a developer needs to know where to start the debugging task which 

can be tricky especially if there are many available communities. Furthermore, not all the 

communities might contain faulty program statements. Therefore, the number of 

communities can possibly be larger than the number of faults or vice versa. In this stage, 

the community weighting and selection mechanism in Section 3.5.3 will be used to 

identify and rank the most fault-prone communities with high possibility of containing 

faulty statements. The fault-focused communities will be generated in descending order 

based on the weights they hold for developers to work with and localize the faults 

simultaneously in parallel.  

       Step 5: Fault localization:  The fault localization technique based on complex 

network theory will be used for fault localization. Ultimately, faults will be found and 

neutralized by each developer. The program will be retested again to see if the debugging 

is successful. 
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  Figure 3.12: General framework of the proposed approach 

 

3.5.5. A Running Example 

       Consider a running program sample in Table 3.9 for discussing how the approach 

will work for fault localization. The program has eight statements and is executed with 

five test cases. Statements m2 and m5 are both faulty with two failed test cases (t2 and t3) 

and three passed test cases (t1, t4 and t5), respectively. 

Table 3.9: A program with tests execution 

  mid ( )   { input x, y, z, m; t1 t2 t3 t4 t5 

m1  if (y < z & x< y){ 1 1 1 1 1 

m2        m = z;   //fault 1   m = y 1 1 1 1 1 

m3 else 1 1 1 1 1 

m4 if (x > z) 1 0 1 1 1 

m5        m = y;   //fault 2    m = x 0 0 1 1 1 

m6 } 1 0 0 0 1 

m7 print (“middle number is:”, m); 0 0 0 0 0 

m8 } 0 1 1 1 0 
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       In the next step, the network N will be modeled so as to capture the entire program 

execution behavior on both passed and failed tests execution. For the first test case t1, 

there is an edge from m1 to m2, m2 to m3, m3 to m4, and m4 to m6. For the second test case 

t2, additional edge from m3 to m8 is added. For the third test case t3, an edge is added from 

m4 to m5 and from m5 to m8. Test case t4 will be ignored because it has the same execution 

profile with t3. Therefore, all the resulting edges will be redundant. For t5, an edge from 

m5 to m6 is added. Therefore, step 1 and step 2 are completed. 

       Moving to step 3, the divisive network community detection algorithm in Section 

3.5.1 will be computed to identify fault-focused communities that target single fault each 

by taking into account the statements’ edge-betweenness distances as discussed in Section 

3.5.2. Moreover, Figure 3.13 shows the calculation of shortest path betweenness of all 

edges from all the program statements in the program network N of the program in Table 

3.9. The figure also shows the process and results of calculating the breadth-first search 

and the process of calculating the betweenness scores of all edges from all the seven 

executable statements that the network contains. As stated earlier in Section 3.5.1 and 

3.5.2, all these calculations will be repeated from each and every statement in N. For 

clarification, looking at Figure 3.13, the program network is divided into seven sub-

networks, each network shows the betweenness score calculation for each edge from each 

statement in N. Therefore, the betweenness scores of all edges from all the statements in 

the respective networks will be added up and divided by 2 to get the final edge-

betweenness score of an edge in N. From Figure 3.13, the betweenness scores of the edge 

from statement m3 to m4 in all calculations of each statement in N can be added up as 2.16 

+ 2.16 + 2.16 + 3.33 + 1.5 + 1.5 + 0.83 = 13.64. Therefore, the total score will be divided 

by 2 to get the final edge-betweenness score as (6.82) of that edge. The same is applied 

to all the remaining edges. 
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Figure 3.13: Calculation of shortest-path betweenness 

       Table 3.10 highlights the final edge-betweenness score for all edges in Figure 3.13 

by adding up the betweenness scores of individual edges from all statements in N and 

dividing the total score by 2. It was identified that edge of m2 to m3 has the highest edge-

betweenness score as 4.99 + 4.99 + 2 + 2 + 2 + 2 + 2 = 19.98. Hence, the final edge-

betweenness score of the edge will be (19.98/2 = 9.99). Therefore, the edge will be 

removed to create two fault-focused communities, C1 and C2, where each community 

contains n number of statements. The fault-focused communities and their statements are, 

C1 = {m1 and m2} and C2 = {m3, m4, m5, m6, and m8}. 

Table 3.10: Final edge-betweenness score for each edge in the network 

Edges m1 - m2  m2 - m3 m3 - m4 m4 - m5 m3 - m8 m4 - m6 m8 - m5 m5 - m6 

Edge-

betweenness 

score 

5.99 9.99 6.82 3.32 6.32 2.99 5.16 5.08 

 

       Next, based on the community weighting and selected process in step 4, the second 

community C2 will be ranked at the top of the community ranking list because it has the 
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highest number of statements. Therefore, each of these communities will contain a single 

fault where community one (C1) has faulty statement m2 and community two (C2) has 

faulty statement m5. Lastly, the fault localization technique based on complex network 

theory in (Zakari, Lee, & Chong, 2018) will be used for localizing the faults in each fault-

focused community. 

 

3.6.   Chapter Summary   

       This chapter has discussed the general methodology of this research. The 

methodology of the investigative study on the claimed problematic parallel debugging 

approach was presented in detail. The chapter also described the proposed multiple fault 

localization technique based on complex network theory (FLCN-M). Furthermore, the 

single fault localization technique based on complex network theory (FLCN-S) was also 

presented. Lastly, the chapter concluded by presenting the new community-based fault 

isolation approach. The next chapter presents the experimental setups carried out for the 

implementation and validation of the investigative study of the claimed problematic 

parallel debugging approach, the two proposed techniques, and the proposed approach.  
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CHAPTER 4: EXPERIMENTATION  

       In this chapter, the different experimental setups carried out for the implementation 

and validation of the investigation study of the claimed problematic parallel debugging 

approach, the two novel fault localization techniques based on complex network theory, 

namely multiple fault localization based on complex network theory (FLCN-M) and 

single fault localization based on complex network theory (FLCN-S), and the new 

community-based fault isolation approach are discussed in detail. The data collection 

process is also highlighted. The subject programs, the evaluation metrics, the techniques 

and approaches used for cross-comparisons in each experiment are also presented. 

 

4.1.   Data Collection  

For all the subject programs used in this thesis, each faulty version was executed with 

all its available test cases. All the programs were executed on a PC with 2.13 GHz Intel 

Core 2 Duo CPU and an 8GB physical memory. To compile the programs and obtain the 

code coverage information for each test case, GCC compiler is used for the former while 

Gcov is used for the latter. Success and failure of a given test case was determined by the 

outputs of program faulty version and its correct version. If the output of the faulty version 

is different from the output of the corresponding correct version, the test case will be 

recorded as a failed test. However, if the outputs do not differ, the test case will be recorded 

as a passed test.  

Following the documentation and the experimental process in previous studies (Abreu 

et al., 2009b; Liblit et al., 2005; X. Wang & Liu, 2016; Z. Zhang, Chan, & Tse, 2012; Z. 

Zhang, Jiang, Chan, Tse, & Wang, 2010), versions whose faults cannot be revealed by any 

test cases were excluded, because any faulty version that did not reveal any failure of at 
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least a single test case will not be useful to the experiments, mainly because the fault 

localization metrics used for cross-comparison and the proposed techniques and approach 

require both passed and failed tests execution for fault diagnosis. The data collected (tests 

execution/tests result) are known as program spectra. The data collection process is 

performed on all the experiments in this thesis. 

 

4.2.   Experiments  

       In this section, the different experiments carried out in this research are presented. Four 

experiments were conducted in this thesis, each composed of the subject programs, the 

evaluation metrics, and the techniques or approaches used for cross-comparison. For the 

experiments, data collections are done based on the process detailed in Section 4.1. 

However, for experiment 2, experiment 3, and experiment 4, the data collected is modeled 

based on the process highlighted in Chapter 3, Section 3.3.1. 

 

4.2.1. Experiment 1: Investigative study of the Claimed Problematic Parallel 

Debugging Approach 

       This experiment primarily aims to investigate the claimed problematic parallel 

debugging approach in terms of localization effectiveness in comparison with two other 

debugging approaches. Firstly, an investigative study is conducted on the usefulness of the 

claimed problematic parallel debugging approach that makes use of k-means clustering 

algorithm (that groups tests execution based on their execution profile similarity) with 

Euclidian distance metric on three well-known similarity coefficient-based fault 

localization techniques (Ochiai, Naish2, and Jaccard). Secondly, a cross-comparison is 

conducted between the claimed problematic parallel debugging approach and OBA 
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debugging approach in terms of localization effectiveness. Additionally, a comparative 

study is conducted between the claimed problematic parallel debugging approach and 

MSeer parallel debugging approach proposed by Gao et al. (R. Gao & Wong, 2017). The 

methodology of this experiment was discussed in detail in Chapter 3, Section 3.2. 

 

4.2.1.1.  Subject Programs 

  The experiment is conducted on six subject programs ranging from medium-sized to 

large-sized programs, namely tcas, replace, gzip, sed, flex, and grep. These programs are 

relative in size ranging from 173 to 13,892 lines of code, to help in the rigorous evaluation 

of the experiment. These programs were also used in many previous studies for fault 

localization (Abreu et al., 2011; Pearson et al., 2017; E. Wong et al., 2008; W. E. Wong, 

Debroy, Golden, et al., 2012; W. E. Wong & Qi, 2009). The programs were all downloaded 

(including all the faulty versions and their test suites) from the software infrastructure 

repository (SIR) site (http://sir.unl.edu/portal/index.php) (Do, Elbaum, & Rothermel, 

2005). This helps in evaluating the claimed problematic parallel debugging approach. 

 

 Table 4.1: Experimental subject programs 

Program Description Lines of code 

(LOC) 

Faulty versions Test cases 

tcas Altitude 

separation 

173 41 1608 

replace Pattern 

replacement 

564 32 5542 

gzip Data compression 6573 5 211 
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sed Textual 

manipulator 

12062 7 360 

flex Lexical analyser 13,892 22 525 

grep Pattern searcher 12,653 7 470 

 

       All the programs are written in C programming language. Table 4.1 shows the details 

of all the programs: program name, program description, faulty versions, number of lines 

of code, and number of test cases.  

       The tcas program is an aircraft collision avoidance system that takes twelve numbers 

as an input which represents distinct flight parameters of two aircrafts and generates 

resolution advisory as output. Therefore, the output can be unresolved, upward, and 

downward.  

       The replace program takes three inputs which are pattern, substitute, and input text. 

The program finds every match of a pattern in the input text and replaces it with substitute. 

A pattern is a restricted form of regular expression while a substitute is a string that allows 

three meta-characters to be used. For example, if the string that matches pattern is ab and 

substitute is a&c, therefore all the occurrences of ab in the input file are replaced with aabc. 

       The gzip program is utilized for file compression and decompression. The program is 

commonly used to reduce the size of name files. The input of gzip program includes 13 

options and a list of files. For instance, “-S” option is used to define the suffix of the result 

file, where the default is “.gz”. 

       The sed program reads and performs basic transformations on an input stream. It is 

basically used to parse textual input and apply a user-specified transformation to the input. 

The program takes as input a sed script and one or more text files. For the script file, it 

includes some sed commands such as append, replace, delete, and insert. Additionally, 

options are available to control the behavior of the sed program. For instance, “-r” option 

Table 4.1, continued  
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is used to have lengthy regular expressions in the script rather than basic regular 

expressions.  

       The flex program is a lexical analyzer or scanner generator. The program reads a given 

input file (or files) and generates a C source file, called scanner. The input files contains 

pairs of regular expression and C code, called rules. Furthermore, there are numerous 

options to control the behavior of flex program. For instance, “-d” is to allow debugging 

mode in the scanner. 

       The grep program has two input parameters which are patterns and files. The program 

prints lines in each file that contains a match of any of the patterns. Therefore, to control 

the behavior of the program, different options can be utilized. For instance, “-w” causes the 

program to print only lines containing whole-word matches.       

       In addition to the existing faulty versions of the above programs, more faulty versions 

were created using mutation-based fault injection technique (DiGiuseppe & Jones, 2015; 

R. Gao & Wong, 2017). Existing studies have shown that mutation-based faults can be 

useful to represent real faults and provide reliable results in program debugging 

experiments (Andrews, Briand, & Labiche, 2005; Andrews, Briand, Labiche, & Namin, 

2006). More faults are generated through arithmetic replacement, increment and decrement 

of data variables, assignment operator by another operator from the same class, 

rational/logical error or decision negation in an if or while statement. By seeding faults from 

single-fault versions into the multiple-fault versions, faulty versions with multiple faults 

were generated with 2, 3, 4, and 5 faults for each program. This method of multiple faults 

generation has been utilized by various studies (Abreu et al., 2011; Högerle et al., 2014; 

Huang et al., 2013; W. E. Wong, Debroy, Golden, et al., 2012). Overall, 540 multiple-fault 

versions were generated with 2, 3, 4, and 5 faulty versions for this experiment. 
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4.2.1.2.  Evaluation Metrics 

       To measure the effectiveness of a given fault localization technique especially in the 

context of multiple faults, suitable metrics are essential for evaluation. In this experiment, 

three metrics were utilized, namely the average number of statements examined, the total 

developer expense (TDE), and Wilcoxon signed-rank test.  

 

(a) Average number of statements examined 

Using this metric, the average number of statements that a developer need to examine 

to find faults in a subject program with multiple faults will be computed (W. E. Wong., 

2014). Suppose there is a program P with n multiple-fault versions where X(i) and Y(i) are 

the number of statements that need to be examined to locate all the faults in the ith multiple-

faulty version by two debugging approaches X and Y, respectively. Approach X is more 

effective than approach Y if approach X requires a developer to examine less amount of 

statements than approach Y to find all faults in the faulty versions as shown in Equation 4.1. 

 

               
∑ 𝑋(𝑖)𝑛

𝑖=1

𝑛
  <  

∑ 𝑌(𝑖)𝑛
𝑖=1

𝑛
       (4.1) 

 

(b) Total developer expense (TDE) 

A metric named “Score” originally proposed by Renieris et al. has been used by 

various studies to evaluate their proposed fault localization techniques (Renieres & Reiss, 

2003). This metric is used to measure a developer effort in locating a single fault in a 

program. The metric, Score, is defined as the percentage of code that need not be examined 
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to find a fault (Equation 4.2), whereby “rank of fault” represents the location or rank where 

the statement containing the fault is identified. 

  

𝑆𝑐𝑜𝑟𝑒 = (1 −
rank of fault  

Number of executable statements
 )   ×   100%                               (4.2) 

 

       However, for evaluation in this experiment, instead of using the percentage of program 

code that need not be examined to find faults, a variation of this metric, named EXAM 

Score or sometimes called Expense Score is used. EXAM Score is defined as the percentage 

of code that a developer has to examine until the first fault is located. This metric is 

computed by Equation 4.3. 

  

EXAM Score =
rank of fault  

number of executable statements
   ×   100%                                  (4.3) 

 

      For this experiment, the original EXAM Score as presented in Equation 4.3 is extended 

to a metric named total developer expense (TDE) to evaluate the localization of multiple 

faults using an OBA debugging approach and a parallel debugging approach (James A 

Jones et al., 2007).  

       For OBA debugging approach, if there are p debugging iterations, the TDE score will 

be defined as stated in Equation 4.4.  

 

𝑇𝐷𝐸 =  ∑ EXAM Score (𝑖)

𝑝

𝑖=1

                                          (4.4) 

 

       where EXAM Score (i) is the percentage of program statements that a developer need 

to examine to locate the first fault at ith debugging iteration. For example, suppose there is 
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a program with two faults and 200 program statements. If a developer has to examine 20 

and 8 program statements in the first and second debugging iterations, the EXAM Score 

for the first iteration will be 20/200*100 = 10 and 8/200*100 = 4 for the second iteration, 

respectively. Hence, the TDE score for locating all the two faults in this program is 10 + 4 

= 14 using the OBA debugging approach. However, for parallel debugging approach, the 

TDE score will be computed for each fault-focused cluster given to a developer. The effort 

a developer spent in finding a fault for each fault-focused cluster can be measured. Using 

the metric TDE in Equation 4.5, more than one developer can be used to examine the faults 

unlike using the OBA debugging approach. Let p be the number of debugging iterations 

and q be the number of fault-focused clusters generated in each debugging iteration. 

Therefore, TDE score can be represented as stated in Equation 4.5. 

 

𝑇𝐷𝐸 = ∑  ∑ EXAM Score(𝑖, 𝑗)

𝑞

𝑗=1

 

𝑝

𝑖=1

                                         (4.5) 

 

       Where EXAM Score (i, j) is the percentage of program statements that is needed to be 

examined to locate the faults for jth fault-focused cluster in ith debugging iteration. For 

illustration purpose, suppose there is a program version with five faults and 200 program 

statements. Suppose that the proposed approach needs three debugging iterations to locate 

all the faults. For the first debugging iteration, two fault-focused clusters are generated for 

developers to check for the faults. For the first cluster, 5 statements need to be examined to 

locate the fault (which will be 5/200*100 = 2.5), while 12 statements have to be examined 

in the second cluster to find another fault (which will be 12/200*100 = 6). In the second 

debugging iteration, two more fault-focused clusters are generated. For the first cluster, the 

developer needs to examine 6 statements to locate the faults (which will be 6/200*100 = 

3), while 7 statements have to be examined in the second cluster (which will be 7/200*100 
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= 3.5). Furthermore, for the third debugging iteration, there is only one fault-focused cluster 

generated which requires an examination of 10 statements to locate the remaining fault 

(which will be 10/200*100 = 5). In totality, the TDE score to locate all the five faults will 

be 2.5 + 6 + 3 + 3.5 + 5 = 20. For a fault localization technique utilizing the OBA debugging 

approach or parallel debugging approach on multiple-fault subject programs, its 

effectiveness can be computed using TDE. If technique X has a lesser TDE score than 

technique Y, then technique X is considered more effective than technique Y. 

 

(c) Wilcoxon Signed-Rank Test 

       Wilcoxon signed-rank test which is also known as Mann-Whitney U test is an 

alternative option to other existing hypothesis tests such as z-test and paired student’s t-test 

particularly when a normal distribution of a given population cannot be assumed (Ott & 

Longnecker, 2015; W. E. Wong et al., 2014). Wilcoxon signed-rank test is also utilized to 

give a comparison with a solid statistical basis between different techniques in terms of 

effectiveness. After computing the number of statements that a developer needs to examine 

on all approaches, an evaluation will be conducted on the one-tailed alternative hypothesis 

that the baseline approaches used for cross-comparison require the examination of an equal 

or greater number of statements than the proposed approach. 

       Hence, the null hypothesis, in this case, specifies that the baseline approaches require 

to examine fewer statements than the proposed approach. The null hypothesis is stated as 

follows: 

       H0: The number of statements examined by the baseline approaches to locate all faults 

in a multiple-fault program ≤ the number of statements examined by the proposed approach. 

       Therefore, if H0 is rejected, the alternative hypothesis is accepted. The alternative 

hypothesis implies that the proposed approach will require the examination of fewer 
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statements than the baseline approaches which indicates that the proposed approach is more 

effective.  

 

4.2.1.3.  Approaches for Cross-comparison 

       For the experiment on the effectiveness of the claimed problematic parallel debugging 

approach in localizing multiple faults, three well-known similarity coefficient-based fault 

localization techniques are used. The three similarity coefficient-based fault localization 

techniques are Ochiai coefficient, Naish2 coefficient, and Jaccard coefficient. Furthermore, 

for cross-comparison with the claimed problematic parallel debugging approach, two other 

debugging approaches were considered, namely OBA debugging approach and MSeer 

parallel debugging approach. 

       The OBA debugging approach uses Ochiai similarity coefficient-based fault 

localization technique for fault localization. The second approach used for cross-

comparison is MSeer parallel debugging approach (R. Gao & Wong, 2017). MSeer uses an 

improved k-medoids clustering algorithm to perform tests clustering and a revised Kendall 

tau distance metric to measure the distance between two failed tests with Crosstab fault 

localization technique for fault localization (W. E. Wong, Debroy, & Xu, 2012). 

 

4.2.2. Experiment 2: Multiple Fault Localization based on Complex Network 

Theory (FLCN-M) 

       In this experiment, a technique named multiple fault localization based on complex 

network theory (FLCN-M) is proposed to localize multiple faults effectively and to aid 

developers to localize multiple faults simultaneously in a single diagnosis rank list. This 
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work has been published in (Zakari, Lee, & Chong, 2018). The methodology of this 

experiment was discussed in detail in Chapter 3, Section 3.3. 

 

4.2.2.1.  Subject Programs 

       Table 4.2 shows the details of the programs used in this experiment. The seven 

programs in Table 4.2 were first used in the single-fault experiment where each of these 

programs contains only a single fault. The programs were all downloaded from SIR site 

(http://sir.unl.edu/portal/index.php).  

       The two programs, print_tokens and print_tokens2, are basically used to tokenize 

input file and define the type of each token. Therefore, a token can be one of the following 

types: identifier, special, keyword, number, comment, character constant or string 

constant. For replace program, the program find every match of pattern in the input text 

and replace it with substitute (detailed in Section 4.2.1.1).        

       The two programs schedule and schedule2, takes the same input and produce the 

same output. However, the two programs use distinct scheduling algorithms. The input 

of these programs includes, first, three non-negative integers representing the number of 

processes in three different priority queues which are low, medium, and high. Second, a 

list of commands that has to be executed on queues. These commands are, new_job, 

upgrade_prio, block, unblock, quantum_expire, finish, and flush. The output of the 

programs is a list of numbers indicating the order in which the processes exit (from the 

scheduling system). 

       Furthermore, tcas program is an aircraft collision avoidance system (detailed in 

Section 4.2.1.1). Lastly, tot_info program takes a file that contains one or more tables as 
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input. The program uses the notions of chi-square and degree of freedom to calculate 

whether the distribution of numbers in the tables is logarithm gamma distribution. Hence, 

the output is the total degree of freedom of rows and columns and chi-square. 

 Table 4.2: Summary of Siemens test suite programs 

Program Faulty version Lines of code (LOC) Test cases 

print_tokens 7 565 4130 

print_tokens2 10 510 4115 

replace 32 412 2650 

schedule 9 307 2710 

schedule2 10 563 5542 

tcas 41 173 1608 

tot_info 23 406 1052 

 

       In order to evaluate the proposed technique (FLCN-M) with multiple faults, the 

multiple-fault versions of Siemens test suite are adopted as used in (Abreu et al., 2011). 

Five out of the seven Siemens test suite programs in Table 4.2 were used, namely tcas, 

print_tokens, print_tokens2, replace, and schedule. Several faults from their former 

versions were combined and manually seeded into the associated programs to create 

faulty program versions with 2, 3, 4, and 5 faults each. These faulty versions are named 

as SIEMENS-M. This will help in the rigorous evaluation of the proposed fault 

localization technique (FLCN-M) on programs with multiple faults. To further help in 

result generalization, UNIX real-life utility programs were utilized, which are gzip and 

sed as presented in Table 4.3. These programs contain both real and seeded faults, and 

they are relatively larger-sized programs compared with Siemens test suite programs. 
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These programs were also downloaded from SIR, and they were all written in C 

programming language. 

 Table 4.3: UNIX real-life utility programs 

Program Faulty versions Test cases Lines of code (LOC) Description 

gzip 5 211 6573 Data compression 

sed 7 360 12062 Textual manipulator 

  

   

4.2.2.2.  Evaluation Metrics 

       Two metrics are used in this experiment, which are EXAM Score and Incremental 

Developer Expense (IDE).  

 

(a) EXAM Score 

       EXAM Score is defined as the percentage of code that a developer has to examine to 

find a fault. It can also be defined as the percentage of code that needs to be examined 

until the first statement where the fault resides is reached. The metric is depicted in 

Equation 4.3.  

       This metric will be specifically used in programs that contain only a single fault 

(Siemens test suite) in this experiment. Generally, for any fault localization technique, its 

effectiveness can be accessed and compared with EXAM Score, whereby if technique A 

has a lesser EXAM Score than technique B, then technique A will be considered to be 

more effective because less code is needed to be examined to locate the faults.  
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(b) Incremental Developer Expense (IDE) 

              For multiple-fault programs, a different metric is proposed called the 

Incremental Developer Expense (IDE) to aid in accessing a technique’s effectiveness on 

localizing multiple faults in a single diagnosis rank list. For fault i, IDE is formulated as 

shown in Equation 4.6. 

𝐼𝐷𝐸 = EXAM Score (1) + ∑(EXAM Score (𝑖)

𝑛

𝑖=2

− EXAM Score (𝑖 − 1))               (4.6)    

       where n represents the number of faults in a faulty program and EXAM Score (i) is the 

total effort a developer needed to locate a fault. The main objective of this metric is to 

allow the developer to continue searching for faults in a single diagnosis rank list until all 

the program faults are located. The fault localization process will not be interrupted even 

if the first fault is found. The process will halt when the maximum number of faults is 

located. To elaborate more on the working of the evaluation metric, the following 

example is given. For example, suppose there is a program with three faults and 12 

program statements where statement 3, statement 5, and statement 8 contain the faults. If 

a single faulty diagnosis is obtained as D = {8, 3, 2, 5, 10, 12, 6, 7, 4, 1, 11, and 9} based 

on IDE, for the first fault located in statement 8, this diagnosis is said to have an expense 

of 1/12*100 = 8.3 (EXAM Score (1)). 

       For the second fault located in statement 3, the expense will be calculated as 

2/12*100 – 8.3 = 8.4 (EXAM Score (2) − EXAM Score (1)). For the third fault in 

statement 5, the expense will be calculated as 4/12*100 – 16.7 = 16.6 (EXAM Score (3) − 

EXAM Score (2) − EXAM Score (1)). Therefore, the IDE to locate all the three faults in 

a single diagnosis rank list for the above example will be sum up as 8.3 + 8.4 + 16.6 = 
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33.3 as presented in Equation 4.6. This metric calculates IDE based on how many 

program statements a developer has to check to find the next fault. Normally, a developer 

does not know how many faults exist in a program when the program fails. As a stopping 

criterion, a developer is required to stop the fault localization process if he/she searches 

about 70% of the program executable code. If the debugging effort has reached the 

assigned stipulated percentage (70%), then the process will be stopped. The program will 

be re-tested, and if any test case fails, the debugging process will start all over again until 

the program is fault-free. 

 

4.2.2.3.  Techniques for Cross-comparison 

       To evaluate the proposed multiple fault localization technique (FLCN-M), the 

technique is first evaluated on single-fault subject programs. Therefore, the following 

fault localization techniques which are generally known as some of the best techniques 

on single fault context, namely Tarantula (J. A. Jones & Harrold, 2005), Sober (Liblit et 

al., 2005), Delta Debugging (DD) (Zeller, 2002), Nearest Neighbour (NN) (Renieres & 

Reiss, 2003), SNCM (Zhu et al., 2011),  Intersection and Union (Renieres & Reiss, 2003), 

are plotted for the comparative analysis for single-fault programs’ evaluation.  

       Furthermore, three fault localization techniques were used for cross-comparison on 

multiple-fault subject programs. Out of which two are similarity coefficient-based fault 

localization techniques, namely Ochiai coefficient and Tarantula coefficient, and an 

existing fault localization technique based on software network centrality measures 

(SNCM). The similarity coefficient-based fault localization techniques (Ochiai coefficient 

and Tarantula coefficient) were used in localizing multiple faults in few studies (Abreu et 

al., 2011; James A Jones et al., 2007; W. E. Wong, Debroy, Golden, et al., 2012). SNCM 

was never utilized on multiple-fault programs. However, it is used for cross-comparison 
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because as far as the knowledge gained from the literature, it is the only fault localization 

technique that makes use of centrality measures for fault diagnosis. Therefore, it is 

important to compare the proposed technique with SNCM in this experiment. 

 

4.2.3. Experiment 3: Single Fault Localization based on Complex Network Theory 

(FLCN-S) 

       In this experiment, a technique named single fault localization based on complex 

network theory (FLCN-S) is proposed. FLCN-S technique is proposed to improve 

localization effectiveness on single-fault context. The methodology of this experiment 

was discussed in detail in Chapter 3, Section 3.4. 

 

4.2.3.1.  Subject Programs 

       For this experiment, the seven Siemens test suite subject programs as shown in Table 

4.2 (Hutchins, Foster, Goradia, & Ostrand, 1994) and two UNIX real-life utility programs 

as shown in Table 4.3 (Do et al., 2005) were utilized to evaluate the proposed fault 

localization technique (FLCN-S). All of these subject programs are written in C 

programming language. Siemens test suite is composed of seven subject programs, 

namely schedule, schedule2, print_tokens, print_tokens2, replace, tot_info, and tcas. 

Each of the subject programs has more than 1000 test cases. 
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4.2.3.2.  Evaluation Metrics 

       In this experiment, three metrics were utilized, namely the cumulative number of 

statements examined, the total developer expense (TDE), and Wilcoxon signed-rank test. 

 

(a) EXAM Score 

       To access the overall effectiveness of a fault localization technique, a suitable metric 

must be used for evaluation. In this experiment, the metric named EXAM Score is utilized 

which is depicted in Equation 4.3. 

       Many studies have used EXAM Score to access the effectiveness of a single fault 

localization technique (DiGiuseppe & Jones, 2015; E. Wong et al., 2008; W. E. Wong et 

al., 2014; W. E. Wong, Debroy, Golden, et al., 2012; W. E. Wong & Qi, 2009). 

 

(b) Cumulative number of statements examined 

In addition to using EXAM Score, the cumulative (total) number of statements that 

need to be examined with respect to faulty versions of a subject program to locate faults is 

also considered (W. E. Wong., 2014). Therefore, for n faulty versions of a given subject 

program P where X(i) and Y(i) are the number of statements that need to be examined to 

locate all the faults in the ith faulty version by techniques X and Y, respectively. Technique 

X is more effective than technique Y if technique X requires a developer to examine a lesser 

number of statements than technique Y to find all faults in the faulty versions as shown in 

Equation 4.10. 
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∑ 𝑋(𝑖)

𝑛

𝑖=1

<  ∑ 𝑌(𝑖)

𝑛

𝑖=1

                         (4.10) 

 

(c) Wilcoxon Signed-Rank Test 

       To evaluate the proposed technique with sound statistics, Wilcoxon signed-rank test 

is used. Since the aim is to show that the proposed technique is more effective than the 

baseline fault localization techniques, the one-tailed alternative hypothesis that the 

baseline techniques are required to examine the same or a greater number of statements 

is evaluated. The null hypothesis is stated as follows: 

       H0: The number of statements examined by the baseline techniques ≤ the number of 

statements examined by the proposed technique. 

       Therefore, if H0 is rejected, the alternative hypothesis is accepted. 

 

4.2.3.3.  Techniques for Cross-comparison 

       To evaluate the proposed single fault localization technique (FLCN-S) on single-fault 

subject programs, two similarity coefficient-based fault localization techniques which are 

Ochiai coefficient and Jaccard coefficient were utilised for cross-comparison.  
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4.2.4. Experiment 4: Community-based Fault Isolation Approach 

       In this experiment, a new community-based fault isolation approach is proposed to 

aid in the effective isolation and localization of multiple faults simultaneously in parallel. 

The methodology of this experiment was discussed in detail in Chapter 3, Section 3.5. 

 

4.2.4.1.  Subject Programs 

       For this experiment, six subject programs were used ranging from medium-sized to 

large-sized programs, namely tcas, replace, gzip, sed, flex, and grep as utilized in 

Experiment 1, Table 4.1. For multiple-fault versions generation, mutation-based fault 

injection technique was utilized as explained in Section 4.2.1.1 (DiGiuseppe & Jones, 

2015).  

 

4.2.4.2.  Evaluation Metrics 

     In this experiment, three evaluation metrics were utilized which are stated as follows:   

 Average number of statements examined.  

 Total developer expense (TDE).  

 Wilcoxon signed-rank test. 

These evaluation metrics are also used for the investigative study in Section 4.2.1 and 

detailed in Section 4.2.1.2.  
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4.2.4.3.  Approaches for Cross-comparison 

       The community-based fault isolation approach is compared with two baseline 

approaches. The first approach uses the same parallel debugging process as used by Jones 

et al. (James A Jones et al., 2007) with Ochiai coefficient metric. Furthermore, the 

approach is the same as the claimed problematic parallel debugging approach investigated 

in Experiment 1, Section 4.2.1. Henceforth, the approach is referred to as P-Ochiai. P-

Ochiai applies a k-means clustering algorithm to cluster failed tests execution with 

Euclidian distance metric to measure the distance between failed tests as used in (Huang 

et al., 2013).  

       On the other hand, the second approach used for cross-comparison is MSeer parallel 

debugging approach (R. Gao & Wong, 2017). MSeer uses an improved k-medoids 

clustering algorithm to perform tests clustering with a revised Kendall tau distance metric 

to measure the distance between two failed tests. Both approaches measure the due-to 

relationship between failed test cases to create fault-focused clusters. In contrast, the 

newly proposed community-based fault isolation approach measures the due-to 

relationship between program statements based on edge-betweenness distance to create 

fault-focused communities. For P-Ochiai, suspiciousness rankings are generated using 

Ochiai coefficient, while MSeer uses Crosstab fault localization technique (W. E. Wong, 

Debroy, & Xu, 2012).  

 

4.3.   Chapter Summary   

       This chapter has discussed four experiments that were carried out in this thesis. 

Firstly, the data collection process was presented. Secondly, the subject programs, the 

evaluation metrics, and the techniques and approaches used for cross-comparisons for 
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each experiment were presented in detail. Finally, the chapter concludes the discussion 

of the experimental setups. The next chapter presents the results and discussion of each 

experiment in this research with the cross-comparisons between all the baseline 

techniques and approaches. 
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CHAPTER 5: RESULTS AND DISCUSSION  

       In this chapter, the different experimental results that were carried out for the 

investigative study of the claimed problematic parallel debugging approach, the two novel 

fault localization techniques based on complex network theory, namely multiple fault 

localization based on complex network theory (FLCN-M) and single fault localization 

based on complex network theory (FLCN-S), as well as the new community-based fault 

isolation approach, are presented and discussed in detail. The cross-comparisons with the 

existing baseline techniques and approaches in the field of research are also presented. 

 

5.1.   Experiment 1   

       This section discusses the experimental results of the investigative study of the 

claimed problematic parallel debugging approach presented in Chapter 4, Section 4.2.1. 

All the experiments in this section were evaluated based on three metrics, namely the 

average number of statements examined, TDE score, and Wilcoxon signed-rank test. For 

all the experiments, the result of a given approach is categorized as best or worst case 

based on its performance on how many statements a developer needs to check to find the 

faulty statement. For clarity, consider that there are two faulty statements in a given 

program’s statements rank list. In the best case, the faulty statement is examined first, or 

at most the statement resided at the top-most of the ranking list; while in the worst case, 

the developer has to examine the faulty statement last whereby he/she has to examine 

many correct statements before the faulty statement is located. In other words, the faulty 

statement resides at the lowest end of the rank list.  
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5.1.1. The Effectiveness of the Claimed Problematic Parallel Debugging Approach 

       In this section, the results for the investigative study on the effectiveness of the 

claimed problematic parallel debugging approach on three well-known similarity 

coefficient-based fault localization techniques (Ochiai coefficient, Naish2 coefficient, 

and Jaccard coefficient) is presented. The claimed problematic parallel debugging 

approach adopt the three coefficients as P-Ochiai, P-Naish2, and P-Jaccard in its fault 

localization process in the experiment. 

 

(d) Average number of statements examined 

       Table 5.1 highlights the average number of statements that are needed to be examined 

by each approach to find all the faults. Each subject program contains x number of faults 

(x = 2, 3, 4, and 5). For this experiment, only the best cases for each subject program’s 

versions are plotted because presenting the worst case is not necessary. However, it is 

worth knowing that these values correspond to the average number of statements that 

each approach requires to examine to locate all faults in the respective programs’ faulty 

versions. Table 5.1 presents the average number of statements examined by P-Ochiai, P-

Naish2, and P-Jaccard with respect to 25 versions of each program containing x amount 

of faults (x = 2, 3, 4, and 5). 

       For instance, it was observed that, for replace program with respect to 3-fault faulty 

versions, the average number of statements to be examined to locate all the faults by P-

Ochiai, P-Naish2, and P-Jaccard are 24.05, 51.29, and 60.13, respectively. It was 

observed that on 4 and 5 faulty versions, P-Jaccard is more effective than P-Naish2. For 

example, in the 4-fault versions of tcas, replace, gzip, sed, flex, and grep programs, using 

P-Jaccard, the average number of statements examined to find all the faults are 34.89 
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(tcas), 82.98 (replace), 180.11 (gzip), 530.22 (sed), 189.33 (flex), and 614.11 (grep). In 

contrast, using P-Naish2, the average statements examined are 35.16 (tcas), 85.09 

(replace), 183.18 (gzip), 525.11 (sed), 202.10 (flex), and 645.00 (grep), respectively. In 

these faulty versions (4-fault versions), it shows that P-Jaccard is on average 2% more 

effective than P-Naish2. The most significant point worth noting is that P-Ochiai is 

consistently more effective than the rest of the approaches (P-Naish2 and P-Jaccard). 

However, it is not surprising because Ochiai coefficient in earlier studies was found to be 

the most effective coefficient in fault localization inferencing (Abreu et al., 2007). 

Table 5.1: Average number of statements examined (best case) 

 tcas replace gzip sed flex grep 

 

2-fault 

P-Ochiai 10.09 19.14 40.03 81.48 35.23 370.01 

P-Naish2 25.40 29.16 45.53 75.03 37.28 379.14 

P-Jaccard 24.90 30.00 60.01 82.17 41.83 383.84 

 

3-fault 

P-Ochiai 22.07 24.05 80.63 393.89 110.03 512.15 

P-Naish2 29.49 51.29 87.16 414.01 120.83 525.49 

P-Jaccard 28.02 60.13 95.19 412.03 119.16 545.69 

 

4-fault 

P-Ochiai 33.33 60.04 161.04 500.10 190.00 601.60 

P-Naish2 35.16 85.09 183.18 525.11 202.10 645.00 

P-Jaccard 34.89 82.98 180.11 530.22 189.33 614.11 

 

5-fault 

P-Ochiai 49.04 98.91 260.03 679.74 230.06 621.34 

P-Naish2 53.08 120.01 285.01 699.11 260.11 640.33 

P-Jaccard 51.89 112.03 275.33 711.08 245.03 641.44 

 

(e) Total developer expense (TDE) 

       Furthermore, the evaluation of the claimed problematic parallel debugging 

approaches (P-Ochiai, P-Naish2, and P-Jaccard) based on TDE score is presented. The 2-

fault versions of six programs (tcas, replace, gzip, sed, flex, and grep) are plotted in Figure 

5.1 with respect to all faulty versions. In this figure, the y-axis represents the percentage 
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(%) of faulty versions located by a developer while the x-axis represents the percentage 

of code (total developer expense) examined. Based on part (a) of Figure 5.1 (tcas 2-fault 

versions), it was observed that by examining less than 25% of the program code, 

developers on P-Ochiai can locate 75% of the faulty versions, while on P-Jaccard and P-

Naish2, the developers can only locate 50% and 40% by examining the same amount of 

program code respectively. In part (b) replace (2-fault versions), by examining less than 

10% of the code, the developers can locate 30% of the faults in the faulty versions using 

the P-Ochiai approach, and can locate 25% and 15% of the faults using the P-Jaccard and 

P-Naish2, respectively. The curve in part (d) sed (2-fault versions), shows that P-Naish2 

records the top performance in locating all the faulty versions by checking less than 10% 

of the program’s faulty versions. 
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                    (c)   total expense of gzip 2-fault versions             (d)   total expense of sed 2-fault versions 

 

  

         (e)   total expense of flex 2-fault versions           (f)   total expense of grep 2-fault versions 

Figure 5.1: TDE score-based comparison of the claimed problematic parallel 

debugging approach with respect to the three coefficients (best case) 

 

       However, looking at part (c) and part (e), P-Ochiai has surpassed the other two 

legends (P-Jaccard and P-Naish2) in terms of effectiveness. In part (f), grep (2-fault 

versions), by examining less than 20% of the code, the developers can locate 85% of the 

faults in the faulty versions using the P-Ochiai approach, and can locate 70% and 55% of 

the faults using P-Naish2 and P-Jaccard, respectively. Table 5.2 presents the effectiveness 

comparison with which it can be claimed that P-Ochiai is more effective than the other 

Univ
ers

ity
 of

 M
ala

ya



  

115 

two approaches (P-Naish2 and P-Jaccard) using the Wilcoxon signed-rank test. The data 

is presented for P-Ochiai against the corresponding approaches because from Table 5.1, 

P-Ochiai has consistently shown to be more effective in comparison to P-Naish2 and P-

Jaccard. The entries in the table are the confidence with which the alternative hypothesis 

(which implies that P-Ochiai requires the examination of fewer statements than the 

compared approaches) can be accepted with respect to a given program in its best case 

scenario. 

       For example, one can say with 97.70% confidence that P-Ochiai is more effective 

than P-Naish2 on grep program (4-fault versions). However, for replace program on all 

faulty versions (2-fault, 3-fault, 4-fault, and 5-fault), the confidence to accept the 

alternative hypothesis is all higher than 90%. In few scenarios, the confidence to accept 

the alternative hypothesis is lower than 60%, such as P-Ochiai being more effective than 

P-Naish2 and P-Jaccard with 45.36% and 35.90% confidence for the 4-fault versions of 

tcas, and with 51.22% being more effective than P-Naish2 for the 2-fault versions of flex.  

Table 5.2: The confidence with which it can be claimed that P-Ochiai is more 

effective than P-Naish2 and P-Jaccard (best cases) 

 tcas replace gzip sed flex grep 

2-fault P-Naish2 93.47% 90.02% 81.82% 00.00% 51.22% 89.05% 

P-Jaccard 93.25% 90.80% 95.00% 00.00% 84.85% 92.77% 

3-fault P-Naish2 86.53% 96.33% 84.69% 95.03% 98.54% 92.51% 

P-Jaccard 83.20% 97.23% 93.14% 94.49% 89.05% 97.02% 

4-fault P-Naish2 45.36% 96.01% 95.49% 96.01% 91.74% 97.70% 

P-Jaccard 35.90% 95.65% 94.76% 96.68% 00.00% 92.01% 

5-fault P-Naish2 75.25% 95.27% 96.00% 94.84% 96.68% 94.74% 

P-Jaccard 64.92% 92.38% 93.47% 96.81% 93.32% 95.03% 
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       Out of all the programs, only 3 scenarios the H0 (null hypothesis) is accepted. For 

clarification, the cells with a black background in Table 5.2 are the cells where the null 

hypothesis is accepted and P-Ochiai is outperformed. The null hypothesis is accepted if 

the number of statements examined by the compared approach is less than that of P-

Ochiai, thereby making the compared approach more effective. Therefore, if the null 

hypothesis is accepted, the confidence level is given as 00.00% in Table 5.2. For example, 

for sed (2-fault versions) of P-Naish2 and P-Jaccard, the confidence to accept the 

alternative hypothesis is 00.00%, a similar observation is also made for flex (4-fault 

versions) of P-Jaccard. 

       Conclusively, the results from the Wilcoxon signed-rank test also shows that P-

Ochiai is statistically by-large more effective than P-Naish2 and P-Jaccard with the 

exception in few scenarios. The result is also consistent with the conclusion based on the 

two other evaluation metrics, namely the average number of statements examined and 

TDE score in Table 5.1 and Figure 5.1. Based on the result obtained in this section, one 

can say that the claimed problematic parallel debugging approach is relatively useful and 

effective in locating multiple faults based on these scenarios. However, to further 

substantiate this claim, further comparisons with OBA and MSeer debugging approaches 

is needed. In this regard, P-Ochiai will be used for further comparisons. 

 

5.1.2. Cross-Comparison with OBA Debugging Approach  

       In this section, P-Ochiai (the best of the claimed problematic parallel debugging 

approaches) is compared with OBA debugging approach. In this experiment, OBA used 

the Ochiai coefficient in its fault localization process.  
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(f) Average number of statements examined 

       Table 5.3 and Table 5.4 present the average number of statements examined by both 

P-Ochiai and OBA with respect to 25 versions of each program containing x number of 

faults (x = 2, 3, 4, and 5) for both the best and worst cases. It was observed that, for gzip 

program (3-fault versions), P-Ochiai can locate all the faults by examining at least 80.63 

statements in the best case and 254.19 in the worst case. However, for OBA, the average 

number of statements examined in the best case is 91.16 while it is 293.28 in the worst 

case. For tcas 2-fault versions, OBA is more effective where the average number of 

statements examined is 8.69 for the best case. It was observed that in most cases, the 

effectiveness of P-Ochiai and OBA is marginal whereby the differences are minor for 

both the best cases and worst cases. Generally, in terms of the average number of 

statements examined to localize all faults, P-Ochiai is more effective. 

Table 5.3: Average number of statements examined (best case)  

 tcas replace gzip sed flex grep 

2-fault P-Ochiai 10.09 19.14 40.03 81.48 35.23 370.01 

OBA 8.69 20.18 46.38 85.00 38.02 383.88 

3-fault P-Ochiai 22.07 24.05 80.63 393.89 110.03 512.15 

OBA 25.89 30.15 91.16 380.53 115.50 529.93 

4-fault P-Ochiai 33.33 60.04 161.04 500.10 190.00 601.60 

OBA 40.15 58.33 172.03 485.01 220.11 614.18 

5-fault P-Ochiai 49.04 98.91 260.03 679.74 230.06 621.34 

OBA 47.26 108.11 275.18 640.89 241.67 659.29 

 

Table 5.4: Average number of statements examined (worst case) 

 tcas replace gzip sed flex grep 

2-fault P-Ochiai 17.49 46.41 194.33 292.09 161.08 1310.01 

OBA 18.01 39.01 167.11 309.01 214.78 1345.11 

3-fault P-Ochiai 28.49 55.19 254.19 601.75 243.63 1901.77 
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OBA 27.01 73.16 293.28 593.01 301.36 1983.03 

4-fault P-Ochiai 42.89 100.89 499.01 889.05 294.00 2300.03 

OBA 43.44 114.00 515.11 855.14 340.10 2214.28 

5-fault P-Ochiai 56.02 155.97 570.35 1501.08 322.15 2609.10 

OBA 57.49 170.13 608.37 1424.00 410.80 2711.35 

 

(g) Total developer expense (TDE) 

       Now, the result of the comparative evaluation between P-Ochiai and OBA with 

respect to TDE score is presented. In Figure 5.2, the best and worst cases of tcas, replace, 

and gzip 2-fault versions are presented on all the faulty versions. In part (a) and part (b) 

of Figure 5.2, by examining less than 10% of the program code, P-Ochiai can locate 40% 

of the faulty versions in the best case and 15% in the worst case. In contrast, by examining 

the same amount of code, OBA can locate 40% and 5% of the faulty versions in the best 

and worst cases respectively. Moreover, in part (a), OBA was able to locate all the faulty 

versions by examining less than 45% of the program code, while P-Ochiai can locate all 

by examining less than 50% of the program code. For the best case of tcas 2-fault 

versions, OBA performed relatively better. Furthermore, part (c) and part (d) highlight 

the TDE score of replace program, by examining less than 10% of the program code, P-

Ochiai can locate 30% and 15% of the faulty versions in the best case and worst case, 

while by examining the same amount of code, OBA can locate 25% in the best case and 

5% in the worst case. 

       P-Ochiai is consistently more effective than OBA in part (e) and part (f) of Figure 

5.2. The curves show that, in the best case, P-Ochiai can locate all the program faulty 

versions (2-fault versions) by examining less than 10% of the program code. 

Correspondingly, OBA can locate all the program faulty versions by examining less than 

12.5% of the gzip faulty versions. However, in the worst case, by examining less than 

Table 5.4, continued  
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20% of the program code, all the faulty versions can be located using P-Ochiai, and by 

examining the same amount of code, only 80% of the faulty versions can be located using 

the OBA debugging approach. In this experiment, the drastic increase in expense with 

respect to the best case and worst case of each program was observed. In the case of gzip 

in part (e) and part (f), the expense doubled in the worst case for both P-Ochiai and OBA. 

 

       (a)  best case of tcas 2-fault versions                (b) worst case of tcas 2-fault versions 
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          (e)  best case of gzip 2-fault versions                (f) worst case of gzip 2-fault versions 

Figure 5.2: TDE score-based comparison between P-Ochiai and OBA debugging 

approaches on tcas, replace, and gzip (2-fault versions). 

 

       To further give the reader the complete flavor of the result in all programs, Figure 

5.3 gives the best and worst case results for sed and flex programs’ faulty versions with 

2-fault. For example, in part (a) and part (b) of Figure 5.3, OBA is the second most 

effective in both the best and worst case scenarios. By examining less than 10% of the 

program code, the developer using the P-Ochiai can locate 75% and 35% of the faulty 

versions in both the best and worst cases, respectively. In contrast, OBA can locate 70% 

and 30% of all the faulty versions in the best and worst cases, respectively. Looking 

closely at the results, even though the margin between both debugging approaches’ 

effectiveness is minor in the sed 2-fault faulty versions, yet the P-Ochiai is relatively 

persistently more effective. On the other hand, the curves in part (c) and part (d) of flex 

program’s faulty versions show that P-Ochiai achieves lower TDE score but still more 

effective in comparison with OBA. 
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              (a)  best case of sed 2-fault versions         (b) worst case of sed 2-fault versions 

 

              (c)  best case of flex 2-fault versions           (d) worst case of flex 2-fault versions 

Figure 5.3: TDE score-based comparison between P-Ochiai and OBA debugging 

approaches on sed and flex (2-fault versions). 

 

       Table 5.5 and Table 5.6 give the effectiveness comparisons for the best and worst 

cases using the Wilcoxon signed-rank test. The entries in the tables represent the 

confidence to accept the alternative hypothesis. For instance, for the grep (5-fault 

versions) worst case scenario, the confidence to accept the alternative hypothesis is higher 

than 99% (which is the highest in both best and worst cases). In some cases, the 

confidence to accept the alternative hypothesis is very low. For example, for the best case 

of replace (2-fault versions), the confidence to accept the alternative hypothesis for P-
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Ochiai being more effective than OBA is 3.85%, and with 31.98% being more effective 

than OBA in the 5-fault versions of tcas. It was also observed that in a reasonable amount 

of cases (in both best and worst cases), the null hypothesis is accepted which is 

represented as having 00.00% confidence in Table 5.5 and Table 5.6. The cells with black 

background in the tables are the cells where the null hypothesis is accepted and P-Ochiai 

is outperformed. In these cases, the OBA approach examines a lesser number of 

statements to find the faults than P-Ochiai, which means it is more effective. 

Table 5.5: The confidence with which it can be claimed that P-Ochiai is more 

effective than OBA approach (best cases) 

 tcas replace gzip sed flex grep 

2-fault OBA 00.00% 3.85% 84.26% 71.60% 64.16% 92.80% 

3-fault OBA 73.69% 83.61% 90.51% 00.00% 81.72% 94.38% 

4-fault OBA 85.36% 00.00% 90.91% 00.00% 96.68% 92.06% 

5-fault OBA 00.00% 89.14% 93.40% 00.00% 91.39% 97.37% 

  

Table 5.6: The confidence with which it can be claimed that P-Ochiai is more 

effective than OBA approach (worst cases) 

 tcas replace gzip sed flex grep 

2-fault OBA 00.00% 00.00% 00.00% 94.09% 98.14% 97.16% 

3-fault OBA 00.00% 94.44% 97.45% 00.00% 98.30% 98.77% 

4-fault OBA 00.00% 92.38% 93.79% 00.00% 97.84% 00.00% 

5-fault OBA 31.98% 92.94% 97.37% 00.00% 98.88% 99.03% 

 

       The evaluation does not take into account the time it takes to produces a failure-free 

program. However, it is a well-known fact that OBA debugging approach often takes a 

longer time to produce a failure-free program due to the nature of the debugging approach. 

In OBA, each fault is neutralised per debugging iteration, hence, for a 3-fault program, 

all the faults will be neutralized in three given iterations (one fault per iteration). In 
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contrast, for parallel debugging approach, it is expected to localize all the faults 

simultaneously by generating fault-focused clusters which take minimal time and few 

iterations. In practice, it is difficult to achieve the complete simultaneous identification 

of software faults in a single debugging iteration whereby in some cases, extra iterations 

are required to neutralize all the faults in a given faulty program. But overall, with respect 

to the debugging approach used (P-Ochiai), the time and expense it takes to produce a 

failure-free program is generally low in comparison with OBA debugging approach. 

       Another critical observation is that by utilising the claimed problematic parallel 

debugging approach (P-Ochiai), fault-focused clusters are often generated redundantly 

that target the same fault which reduces the approach’s localization effectiveness greatly. 

This is a further affirmation of the work of Gao et al. (R. Gao & Wong, 2017) where the 

researchers observed the similar sort of problem when utilizing hierarchical clustering 

algorithm and Jaccard distance metric for measuring the failed test-to-test distance. In 

conclusion, one can conclude that based on the experimental tests subjects in this 

experiment, P-Ochiai is relatively more effective than OBA debugging approach 

irrespective of the clustering algorithm and distance metric used. 

  

5.1.3. Cross-Comparison with MSeer Debugging Approach   

       This section provides the results for the cross-comparison between P-Ochiai and 

MSeer parallel debugging approach.  
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(h) Average number of statements examined 

       The results shown in Table 5.7 and Table 5.8 is with respect to 25 versions of each 

program containing 2, 3, 4, and 5 faults. Table 5.7 and Table 5.8 present the average 

number of statements that need to be examined by P-Ochiai and MSeer on three subject 

programs’ faulty versions (gzip, flex, and grep). With respect to gzip program (3-fault 

versions), it was observed that the average number of statements that P-Ochiai examined 

to locate the faulty versions is 80.63 in the best case and 254.19 in the worst case. For 

MSeer, 41.77 program statements are examined on average in the best case and 174.57 in 

the worst case. 

       Looking at Table 5.7 and Table 5.8, MSeer is by far the best approach. The worst 

case of MSeer for flex 3-fault versions is relatively as effective as the best case of P-

Ochiai, whereby the average number of statements examined by MSeer is 111.40 in the 

worst case, while for P-Ochiai is 110.03 in the best case. Nonetheless, the difference 

between the two approaches is only 1.37 statements. Henceforth, in most cases, the 

average number of statements examined by P-Ochiai is 50% to 60% more than the 

average number of statements examined by MSeer. The conclusion drawn from Table 5.7 

and Table 5.8 with respect to the average number of statements examined by both 

approaches (MSeer and P-Ochiai) is that MSeer is better and more effective than P-

Ochiai. 

Table 5.7: Average number of statements examined (best case) 

 gzip flex grep 

2-fault P-Ochiai 40.03 35.23 370.01 

MSeer 12.80 11.37 345.77 

3-fault P-Ochiai 80.63 110.03 512.15 

MSeer 41.77 23.30 492.93 

4-fault P-Ochiai 161.04 190.00 601.60 
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MSeer 70.27 67.70 560.03 

5-fault P-Ochiai 260.03 230.06 621.34 

MSeer 80.00 104.67 598.80 

  

Table 5.8: Average number of statements examined (worst case) 

 gzip flex grep 

2-fault P-Ochiai 194.33 162.08 1310.01 

MSeer 77.33 75.87 650.67 

3-fault P-Ochiai 254.19 243.63 1901.77 

MSeer 174.57 111.40 948.47 

4-fault P-Ochiai 499.01 294.00 2300.02 

MSeer 247.03 141.50 1489.07 

5-fault P-Ochiai 570.35 322.15 2609.10 

MSeer 318.27 195.80 1644.77 

 

(i) Total developer expense (TDE) 

       However, without arriving at any firm conclusion, the evaluation of MSeer and P-

Ochiai with respect to the TDE score on 3-fault versions of gzip and grep subject 

programs is presented. In Figure 5.4 part (a) and part (b), by examining less than 10% of 

the program code, MSeer can locate 92% of the faulty versions in the best case and 42% 

in the worst case. In contrast, the TDE score for P-Ochiai when the same amount of 

program code is examined is 80% in the best case and 35% in the worst case. Additionally, 

for the best and worst case of MSeer in part (c) and part (d), by examining 10% of the 

code, the TDE score is 15% and 8% respectively, whereas for P-Ochiai is 10% (best case) 

and 5% (worst case) respectively. MSeer is consistently more effective than P-Ochiai in 

terms of localization effectiveness. Therefore, one can say that MSeer is far better and 

more effective than P-Ochiai. 

Table 5.7, continued  
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       (a)  best case of gzip 3-fault versions                      (b) worst case of gzip 3-fault versions 

 

 

           (c)  best case of grep 3-fault versions               (d) worst case of grep 3-fault versions 

Figure 5.4: TDE score-based comparison between P-Ochiai and MSeer on gzip and 

grep (3-fault versions). 

 

       Looking at the results in Table 5.7, Table 5.8, and Figure 5.4, one can see that MSeer 

is consistently more effective than P-Ochiai in terms of localization effectiveness. 

However, to statistically substantiate and prove MSeer superiority against P-Ochiai (the 

claimed problematic parallel debugging approach), Table 5.9 gives the effectiveness 

comparison for the best and worst cases using the Wilcoxon signed-rank test.  
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Table 5.9: The confidence with which it can be claimed that MSeer is more 

effective than P-Ochiai (best & worst cases) 

 gzip flex grep 

 best worst best worst best worst 

2-fault P-Ochiai 96.33% 99.15% 95.81% 98.85% 95.88% 99.85% 

3-fault P-Ochiai 97.43% 98.75% 98.85% 99.25% 94.80% 99.90% 

4-fault P-Ochiai 98.90% 99.61% 99.19% 99.35% 97.60% 99.88% 

5-fault P-Ochiai 99.45% 99.61% 99.21% 99.21% 95.57% 99.90% 

 

       From Table 5.9, one can say with 99.19% and 99.35% confidence that MSeer is more 

effective than P-Ochiai in best and worst cases for the 4-fault versions of flex. For gzip 

and flex programs, the confidence to accept the alternative hypothesis is higher than 95%. 

Likewise, for grep program, the confidence to accept the alternative hypothesis is at least 

94% and higher in most cases. Overall, the result shows that MSeer is more effective than 

Ochiai which is consistent with the evaluation using the average number of statements 

examined and TDE score.    

  

5.1.4. Result Summary   

       In this section, a brief overview of the findings of the experiments is presented.  

 Firstly, based on the experiments in Section 5.1.1, it was observed that the claimed 

problematic parallel debugging approach is reasonably effective in locating 

multiple faults. However, out of the claimed problematic approach that use 

distinct similarity coefficient-based fault localization techniques (P-Ochiai, P-

Naish2, and P-Jaccard), P-Ochiai is convincingly the most effective in locating 

multiple faults effectively. For instance, the average number of statements 
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examined by P-Ochiai, P-Naish2, and P-Jaccard for tcas 3-fault versions in the 

best case are 22.07, 29.49, and 28.02, respectively. This shows that P-Ochiai is 

more effective because fewer statements were examined to locate the faulty 

versions (25 faulty versions). Additionally, even though P-Ochiai is the most 

effective, the margin between the three approaches in terms of effectiveness is not 

as much. In conclusion, one can say that the claimed problematic parallel 

debugging approach is an effective multiple-fault debugging approach that can 

aid in reducing the total effort and time a developer requires to identify the 

locations of faults. 

 Secondly, in Section 5.1.2, it was observed that P-Ochiai is more effective than 

OBA debugging approach. For example, on sed 2-fault versions, by examining 

less than 10% of the program code, P-Ochiai can locate 75% and 35% of the faulty 

versions in both the best and worst cases, respectively. In contrast, OBA can locate 

70% and 30% of all the faulty versions in the best and worst cases, respectively. 

Furthermore, it was observed that by utilizing the claimed problematic parallel 

debugging approach (P-Ochiai), fault-focused clusters are often generated 

redundantly that target the same fault which reduces the approach’s effectiveness 

greatly. Generally, one can confidently conclude that based on the experimental 

results, P-Ochiai is relatively more effective than OBA debugging approach 

irrespective of the clustering algorithm and distance metric used. 

 Lastly, MSeer outperforms P-Ochiai in all the subject programs compared with in 

both the best and worst case scenarios as shown in Section 5.1.3. Looking at 

Figure 5.4, gzip program’s faulty versions, by examining less than 10% of the 

program code, MSeer locates 92% of the faulty versions in the best case and 42% 

in the worst case. In contrast, the TDE score for P-Ochiai when the same amount 

of program code is examined is 80% in the best case and 35% in the worst case. 
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Therefore, regardless of whether the best or worst case is considered, MSeer is 

consistently the most effective in all the faulty versions. Although P-Ochiai is 

more effective than OBA, yet in comparison with MSeer, it is not that effective. 

Furthermore, it was observed that estimating the number of clusters based on the 

number of failed test cases as highlighted in Chapter 3, Section 3.2.2 is indeed not 

appropriate as later recognized by Gao et al. (R. Gao & Wong, 2017) because 

there is no clear correlation between the number of failed test cases and the 

number of faults in a given program. Therefore, many redundant clusters can be 

generated that do not target faults which will increase the time and effort for a 

developer to look for faults. In conclusion, clustering failed test based on their 

execution profile similarity and the utilization of distance metrics such as 

Euclidean distance to measure the due-to relationship between failed tests is 

indeed problematic and contributes to the reduction of effectiveness of a parallel 

debugging approach. 

 

5.2.   Experiment 2   

       This section discusses the experimental results of the proposed technique named 

multiple fault localization based on complex network theory (FLCN-M) presented in 

Chapter 4, Section 4.2.2. The experiment in this section is evaluated based on two 

evaluation metrics, namely EXAM Score and IDE score. 
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5.2.1. Effectiveness of FLCN-M on Single-Fault Programs         

       Figure 5.5 depicts the percentage of located faults in terms of EXAM Score. Apart 

from evaluating the proposed FLCN-M technique on multiple-fault subjects, the 

following fault localization techniques which are generally known as some of the best 

techniques on single-fault programs, namely Tarantula (J. A. Jones & Harrold, 2005), 

Sober (Liblit et al., 2005), Delta Debugging (DD) (Zeller, 2002), Nearest Neighbour (NN) 

(Renieres & Reiss, 2003), SNCM (Zhu et al., 2011), Intersection, and Union (Renieres & 

Reiss, 2003), are also plotted for the comparative analysis for the evaluation on single-

fault programs. For SNCM, it was run in the same environment of the proposed technique. 

The values of the other techniques are directly cited from their respective papers. 

 

Figure 5.5: Effectiveness comparison between FLCN-M and other fault 

localization techniques on single-fault programs (Siemens test suite)  

       Based on the results shown in Figure 5.5, it was observed that FLCN-M performs 

relatively better with a very slight margin, followed by Tarantula and Sober. FLCN-M is 

capable of finding 90% of the faulty versions by examining less than 70% of the 

programs’ code and also finding about 99% of the faulty versions by examining less than 
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80% of the programs’ code. SNCM technique which uses centrality measures to locate 

faults is clearly outperformed by the proposed technique.  

       However, the performance of the proposed FLCN-M technique is less ideal in the 

initial stage, where by checking less than 10% of the programs’ code, a developer can 

only locate 40% of faults in all faulty versions. Tarantula and Sober, on the other hand, 

are capable of locating 46% and 47% of faults with the same effort, respectively. It was 

observed that this is mainly due to the sensitivity of the proposed FLCN-M technique 

with statements executed by passed test cases. Therefore, the effectiveness will probably 

improve if the program network is modeled with failed test cases only instead of 

considering both tests executions. 

 

5.2.2. Effectiveness of FLCN-M on SIEMENS-M          

       Figure 5.6 depicts the results for 2-fault versions of SIEMENS-M. The results show 

that FLCN-M can locate 10% of the faults by examining less than 10% of the program 

code. The IDE score of the 2-fault versions is 70%, meaning by checking less than 70% 

of all the faulty versions containing 2 faults, all the faulty versions can be found by the 

developer. However, Ochiai can at best locate all the faulty versions with 2 faults by 

checking less than 80% of the code. With 3 faults, as shown in Figure 5.7, the developer 

can find 50% of the faults by examining less than 10% of the faulty versions using the 

FLCN-M technique, while by utilizing Ochiai, the developer can locate 30% of the faults 

by examining the same amount of faulty versions.  
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Figure 5.6: IDE score-based comparison on 2-fault versions 

 

  Figure 5.7: IDE score-based comparison on 3-fault versions 

       Furthermore, using the proposed technique (FLCN-M), Figure 5.8 (4-fault) shows 

that 50% of faults can be found by examining less than 20% of the faulty versions. The 

IDE score reduces even further in Figure 5.9 with 5 faults where by examining less than 

45% of program code, 100% of the faults can be found in all the faulty versions. In 

contrast, SNCM achieves higher expense in all the multiple-fault experiments, while 

Ochiai performs relatively better in comparison with SNCM technique. 
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Figure 5.8: IDE score-based comparison on 4-fault versions  

 

Figure 5.9: IDE score-based comparison on 5-fault versions  

       The results show a trend where the more faults exist in a program, the more effective 

the proposed technique is in locating faults. Moreover, even if passed tests execution 

execute faulty statements in a high proportion (DiGiuseppe & Jones, 2011b; Xue & 

Namin, 2013), the proposed technique is still capable of localizing those faulty program 

statements simultaneously with relatively good effectiveness compared to the baseline 

techniques. As a result, developer expense can be reduced even if the number of faults 

increases using the proposed technique (FLCN-M) because it takes into account both 

passed and failed tests executions of a given faulty program.  
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5.2.3. Effectiveness of FLCN-M on UNIX Real-life Utility Programs  

       The Unix real-life utility programs (gzip and sed) are composed of both real and 

seeded faults in each faulty version. To evaluate the effectiveness of the proposed 

technique, it is compared with Tarantula, Ochiai, and SNCM fault localization 

techniques. As discussed earlier, all faults are to be localized simultaneously in a single 

diagnosis rank list. In Figure 5.10, FLCN-M locates 45% of the faulty versions by 

examining less than 10% of program code and by examining less than 40% of the program 

code, a developer can locate 95% of all faults in the faulty versions in a single diagnosis 

rank list. However, Tarantula and Ochiai can locate 30% and 35% of the faulty versions 

by examing less than 10% of the program code, respectively. 

 

Figure 5.10: IDE score-based comparison between FLCN-M, Tarantula, Ochiai, 

and SNCM on gzip program 
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Figure 5.11: IDE score-based comparison between FLCN-M, Tarantula, Ochiai, 

and SNCM on sed Program 

       As shown in Figure 5.11, FLCN-M outperforms Tarantula, Ochiai, and SNCM where 

it is capable of identifying all the locations of faulty statements by examining less than 

50% of the faulty versions. Using a simultaneous approach to debugging (locating all the 

faults in a single diagnosis rank list) caused the other techniques to lose their 

effectiveness. In general, the proposed FLCN-M technique surpasses Tarantula, Ochiai, 

and SNCM in locating faults simultaneously in a single diagnosis rank list. 

 

5.2.4. Impact of Centrality Measures on the Proposed FLCN-M Technique 

       With regards to the assertion that program statements with higher degree centrality 

are related to a fault. Figure 5.12 shows the percentage of faulty statements found with 

respect to their degree centrality (Dc) value in each faulty version of the SIEMENS-M 

programs with Dc of 3 and Dc of 2.  Figure 5.12 illustrates that in SIEMENS-M programs 

with 2-fault, 20% of the faults were located in program statements with Dc of 3 while 
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80% of faults are found in statements with Dc of 2. Statements with Dc lower than 2 have 

no faults across all faulty versions of the experiments. 

 

 

 

 

 

Figure 5.12: SIEMENS-M (Degree centrality of program statement and its 

correlation with failure) 

       In 3-fault versions, 33.33% of faults are found in statements with Dc of 3, while 

66.67% are found in statements with Dc of 2. In 4-fault versions, 37.5% of faults are 

located in program statements with Dc of 3 and 62.5% in statements with Dc of 2; while 

in 5-fault versions, 40% of faults are found in statements with Dc of 3 and 60% in 

statements with Dc of 2. However, it was observed that the higher the number of faults in 

a given multiple-fault program, the number of faulty statements with high Dc value 

increases. This implies that faulty statements will be ranked at the top of the diagnosis 

rank list, and in return, help in simultaneous localization of multiple faults. 
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Figure 5.13: Gzip (Degree centrality of program statement and its correlation 

with failure) 

 

Figure 5.14: Sed (Degree centrality of program statement and its correlation 

with failure) 

       Figure 5.13 and Figure 5.14 show Dc correlation with failure across all faulty 

versions of both gzip and sed programs, respectively. For gzip (Figure 5.13), program 

statements with Dc values of 4, 3, and 2 contain 10%, 5%, and 85% of the faults in all 

faulty versions respectively, while for sed program (Figure 5.14), 80% of the faults are 

found in program statements with Dc of 2, while 20% of the faults can be found in 

program statements with Dc of 3. The trend shows that on average, 60% - 70% of all the 

faults are located in program statements with Dc of 2.  
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5.3.   Experiment 3   

       This section presents the experimental results of the proposed technique named single 

fault localization based on complex network theory (FLCN-S) presented in Chapter 4, 

Section 4.2.3. The results of the comparison with the baseline similarity coefficient-based 

fault localization techniques, namely Ochiai coefficient and Jaccard coefficient are also 

highlighted and discussed. The experiment in this section is evaluated based on three 

evaluation metrics, namely cumulative number of statements examined, EXAM Score, 

and Wilcoxon signed-rank test. For all the subject programs used in this experiment, each 

faulty version has exactly one fault. For the experiment in this section, it is presumed that 

the best case effectiveness entails that the faulty statement is identified at the top of the 

list of statements having the same suspiciousness score values, while for the worst case 

effectiveness, the faulty statement resides at the bottom of the list having the same 

suspiciousness score values. In the evaluation of FLCN-S technique, the result is mostly 

presented between these two levels of effectiveness for all the evaluation metrics (except 

for the result presented in Figure 5.16).  

 

5.3.1. Effectiveness of FLCN-S on Siemens Test Suite Programs   

       Table 5.10 presents the cumulative (total) number of statements examined by FLCN-

S and the baseline techniques in both the best and worst cases. For each program, in the 

best case scenarios, FLCN-S requires the examination of fewer statements than the 

compared techniques. The same applies to the worst case scenarios. For instance, it was 

observed that for print_tokens program, FLCN-S can locate all the faulty versions by 

examining no more than 251 statements in the best case scenario, and 699 in the worst 

case scenario, respectively. Furthermore, with respect to the print_tokens program, the 
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second best technique is Ochiai, which requires the examination of no more than 324 

statements in the best case and 712 statements in the worst case scenario. 

       It is worth knowing that these values represent the total number of statements that 

each technique requires to examine to locate the faults in each subject program. Looking 

at Table 5.10, it was observed that irrespective of which scenario is considered (best case 

or worst case), FLCN-S is consistently the most effective technique. Another important 

point worth noting is that, Ochiai is more effective than Jaccard in all cases (best and 

worst cases). Henceforth, it is worth re-emphasizing that FLCN-S is the most effective 

technique with respect to both the best and worst case scenarios. 

Table 5.10: Cumulative number of statements examined to locate faults for each 

program in Siemens test suite (best & worst cases)  

 FLCN-S Ochiai Jaccard 

Best case Worst case Best case Worst case Best case Worst case 

tcas 195 388 205 408 259 500 

print_tokens 251 699 324 712 404 799 

print_tokens2 408 600 423 653 451 708 

schedule 311 655 363 702 388 750 

schedule2 499 583 550 627 561 641 

replace 340 455 370 500 401 513 

tot_info 200 350 270 420 304 608 

  

       However, without arriving at any firm conclusion, the evaluation of FLCN-S with 

respect to EXAM Score is presented. The single-fault versions of tcas, print_tokens, and 

print_tokens2 in the best and worst cases are highlighted in Figure 5.15. The figure shows 

the effectiveness of FLCN-S in comparison with two other techniques, namely Ochiai 

and Jaccard. The y-axis indicates the percentage of faults located in all the program’s 
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faulty versions, while the x-axis indicates the effort spent to locate the corresponding 

faults. 

      For instance, based on part (a) and (b) of Figure 5.15, it was observed that on the tcas 

program, by examining less than 10% of the program code, FLCN-S can locate 85% of 

the faults in the best case, and 45% in the worst case. Correspondingly, by examining the 

same amount of code (less than 10%), Ochiai (the second best) can only locate 85% (best 

case) and 40% (worst case). 

 

(a) best case of tcas                        (b) worst case of tcas  

 

                   (c)    best case of print_tokens                             (d)    worst case of print_tokens         
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                       (e)   best case of print_tokens2                           (f) worst case of print_tokens2 

        Figure 5.15: EXAM score-based comparison between FLCN-S and the 

baseline techniques on tcas, print_tokens, and print_tokens2.  

       In part (c) and (d), the effectiveness score of print_tokens is presented. It was 

observed that, by examining less than 10% of the program code, FLCN-S can locate 65% 

of the faulty versions in the best case and 35% in the worst case. Ochiai (the second best) 

can locate 60% of the faults in the best case, and 15% in the worst case. Moreover, the 

percentage for Jaccard (the third best) is 35% (best case), and 10% (worst case).  

       Furthermore, in part (e) and (f) of Figure 5.15, with respect to EXAM Score, FLCN-

S performs relatively better. The curves show that by examining less than 20% of the 

program code, FLCN-S can locate 55% of the faulty versions in the best case and 35% in 

the worst case. Ochiai (the second best) can only locate 50% in the best case and 25% in 

the worst case when examining the same amount of code. For Jaccard (the third best), by 

examining the same amount of code (less than 20%), it is 35% (best case), and 20% (worst 

case). 
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Figure 5.16: Overall effectiveness comparison on Siemens test suite 

       Figure 5.16 gives the overall effectiveness score of FLCN-S with the baseline fault 

localization techniques on all Siemens test suite programs. Based on the result, FLCN-S 

can locate 65% of the faults in all faulty versions of the Siemens test suite by examining 

less than 10% of the programs’ code. It was observed that FLCN-S has yielded a drastic 

improvement from the benchmark technique (FLCN-M) (Zakari, Lee, & Chong, 2018) 

with a 25% increase in located faulty versions by checking less than 10% of the programs’ 

code. Furthermore, FLCN-S has also outperformed Zoltar-S approach as concluded by 

Abreu et al. (Abreu et al., 2011), where the latter can only locate 60% of the faults by 

checking less than 10% of the programs’ code. 

Table 5.11: The confidence with which it can be claimed that FLCN-S is more 

effective than Ochiai and Jaccard on Siemens test suite programs (best & worst 

cases)  

 Ochiai Jaccard 

Best case Worst case Best case Worst case 

tcas 90.00% 95.00% 98.44% 99.11% 

print_tokens 98.64% 92.31% 99.35% 99.00% 
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print_tokens2 93.33% 98.08% 97.68% 99.08% 

schedule 97.88% 97.88% 98.71% 98.95% 

schedule2 98.04% 97.73% 98.39% 98.28% 

replace 96.67% 97.78% 98.37% 98.28% 

tot_info 98.58% 98.58% 99.04% 99.62% 

  

       Based on the third evaluation metric, Table 5.11 gives the effectiveness comparisons 

of FLCN-S with Ochiai and Jaccard using the Wilcoxon signed-rank test. The entries in 

the table give the confidence of which the alternative hypothesis (which implies that 

FLCN-S requires the examination of fewer statements than the compared baseline 

techniques to locate faults) can be accepted. For example, one can say with 97.88% 

confidence that FLCN-S is more effective than Ochiai on schedule program in both best 

and worst cases. Nevertheless, for schedule2, replace, and tot_info programs, the 

confidence to accept the alternative hypothesis is higher than 96% in all scenarios (best 

& worst cases). 

       Few scenarios have the confidence level that is lesser than 95%. For instance, FLCN-

S being more effective than Ochiai with 90.00% confidence for the best case of tcas, 

93.33% confidence being better than Ochiai for the best case of print_tokens2, and with 

92.31% confidence being better than Ochiai for the worst case of print_tokens. In 

summary, the results from the Wilcoxon signed-rank test clearly shows that FLCN-S is 

more effective than the compared baseline techniques on Siemens test suite subject 

programs. The result is also in line with the former conclusion that FLCN-S performs 

better than the compared techniques in terms of the cumulative number of statements 

examined and the EXAM Score. 

 

Table 5.11, continued  
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5.3.2. Effectiveness of FLCN-S on UNIX Real-life Utility Programs   

       Table 5.12 gives the total number of statements examined by FLCN-S and Ochiai 

across two programs (gzip and sed) to locate all faults in the programs’ faulty versions. 

Each faulty version under consideration has exactly one fault for this experiment. From 

Table 5.12, it was observed that in all scenarios (best and worst cases), FLCN-S is always 

the most effective in comparison with Ochiai. For example, the total number of statements 

examined by FLCN-S on sed program is 3201 in the best case, and 4100 in the worst case. 

On the other hand, Ochiai is 3885 in the best case, and 4652 in the worst case.        

Table 5.12: Cumulative number of statements examined by FLCN-S and Ochiai 

(best & worst cases)  

 Best Case  Worst Case  

FLCN-S  Ochiai  FLCN-S  Ochiai  

gzip 1944 2692 2770 3992 

sed 3201 3885 4100 4652 

 

       Next, the evaluation of FLCN-S with respect to EXAM Score is given. In Figure 

5.17, the best and worst cases of gzip and sed programs are presented. The figure shows 

the effectiveness on FLCN-S in comparison with Ochiai. The black curve represents 

FLCN-S while the red curve represents Ochiai. Looking at part (a) and (b) of Figure 5.17, 

one can find that on gzip program, by examining less than 30% of the program code, 

FLCN-S can locate 99% of the faulty versions in the best case and 55% in the worst case. 

In contrast, by examining the same amount of program code, Ochiai can only locate 85% 

of faults in the best case and 50% in the worst case. 
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(a) best case of gzip                        (b) worst case of gzip  

  

                   (c)    best case of sed                                  (d)    worst case of sed         

        Figure 5.17: EXAM score-based comparison between FLCN-S and Ochiai 

on gzip, and sed.  

       In part (c) and (d), the effectiveness score of sed program is presented. The curves 

show that by examining less than 20% of the program code, FLCN-S can locate 65% of 

faults in the best case and 40% in the worst case, respectively. Correspondingly, by 

examining the same amount of program code, Ochiai can locate 55% (best case) and 15% 

(worst case). The conclusion drawn from Figure 5.17 with respect to EXAM Score of 

both techniques (FLCN-S and Ochiai) is that FLCN-S performs better than Ochiai. This 
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result is consistent with the observations from Table 5.12 that FLCN-S is the most 

effective technique. Looking at the third evaluation metric, Table 5.13 highlights data 

comparing FLCN-S with Ochiai using Wilcoxon signed-rank test. The table highlights 

the confidence to which the alternative hypothesis can be accepted. For instance, one can 

say with 99.86% (best case) and 99.82% (worst case) confidence that FLCN-S is more 

effective than Ochiai on the sed program. 

Table 5.13: The confidence with which it can be claimed that FLCN-S is more 

effective than Ochiai (best & worst cases)  

 Ochiai (Best) Ochiai (Worst) 

gzip 99.87% 99.92% 

sed 99.86% 99.82% 

 

       Generally, for gzip and sed programs, the confidence to accept the alternative 

hypothesis is higher than 99%. In total, the results from this test (Wilcoxon signed-rank 

test) show that FLCN-S is more effective than Ochiai which is consistent with the former 

results using EXAM Score and the cumulative (total) number of statements examined. 

 

5.3.3. Impact of Centrality Measures on the Proposed FLCN-S Technique  

       In the earlier experiment in Section 5.2.4, the study on the impact of degree centrality 

and how statement degree relates to faults was conducted. It was concluded that statement 

degree is vital in identifying faulty program statements, especially in the multiple-fault 

context. In this section, it was observed that on Siemens test suite programs (single fault), 

23% of all faulty statements have Dc of 3, while 77% have Dc of 2. Moreover, it was 

observed that in both single-fault and multiple-fault contexts, closeness centrality plays a 
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vital role in the ranking and identification of faulty program statements. Moreover, on 

both Siemens test suite and UNIX real-life utility programs, both degree centrality and 

closeness centrality play a critical and vital role in the identification of faulty program 

statements. 

 

Figure 5.18: Degree centrality correlation with failure for UNIX real-Life utility 

programs.  

       In Figure 5.18, there was a smaller number of faults that were located on program 

statements with Dc of 4. Hence, almost 80% of all the faults are located on statements 

with Dc of 2 for both programs (gzip and sed). In Figure 5.19, it was observed that most 

of the faults are located on the program statement with Dc of 2. However, a significant 

small number of faults were located on programs with Dc of 3 and 4. Degree centrality is 

a single factor when localizing faults using the proposed technique (FLCN-S) with 

closeness centrality playing a critical role in the fault localization process. This analysis 

is aimed at confirming the claims of previous studies in various research domains where 

researchers indicated the important role degree centrality plays in the identification of the 

most influential and faulty nodes in a network (Borgatti, 2005; Cai & Yin, 2009; Girvan 

& Newman, 2002; Li, Han, & Hu, 2008; Zhu et al., 2011). Hence, it was observed that 

both degree centrality and closeness centrality play a vital role in the identification of 

faulty program statements. 
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Figure 5.19: Degree centrality correlation with failure for Siemens suite programs.  
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5.3.4. Overall Observations  

       Generally, the effectiveness of a given technique is not always constant and can 

change depending on the subject program used. It was observed that by utilizing failed 

test inputs alone, the effectiveness of the proposed fault localization technique (FLCN-S) 

has increased on single-fault programs. In the initial work (FLCN-M), both test cases 

(passed/failed) were utilized to localize single faults, the accuracy was not convincing, 

where 40% EXAM Score was achieved by checking less than 10% of the program faulty 

versions on Siemens test suite programs (single-fault programs). Therefore, it was 

concluded that by utilizing failed test input alone, the accuracy of the proposed technique 

(FLCN-S) increases in the context of single fault due to the minimal fault-to-failure 

complexity that affects localization on multiple-fault programs. The technique can 

effectively localize 65% of all faulty versions on Siemens test suite subjects by checking 

less than 10% of the program code and is largely more effective on Unix real-life utility 

program in comparison with the baseline techniques in both best and worst case scenarios. 

Finally, it was also observed that both degree centrality and closeness centrality play a 

vital role in the identification of faulty program statements. 

 

5.4.   Experiment 4   

       This section presents the experimental results of the new community-based fault 

isolation approach that aids in the effective isolation and localization of multiple faults 

simultaneously in parallel as presented in Chapter 4, Section 4.2.4. The experiment in this 

section is evaluated based on three metrics, namely the average number of statements 

examined, TDE score, and Wilcoxon signed-rank test. For all the experiments, it is 

presumed that for the best case effectiveness, the faulty statement is at the very top of the 
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suspicious statements ranking list; and for the worst case effectiveness, the faulty 

statement is at the very end of the ranking list. 

 

5.4.1. Cross-Comparison with P-Ochiai   

       This section provides the results for the cross-comparison between the proposed 

approach and P-Ochiai (the claimed problematic parallel debugging approach). 

 

(j) Average number of statements examined 

       Table 5.14 and Table 5.15 present the average number of statements examined by 

both the proposed approach and P-Ochiai with respect to the best and worst cases. The 

average number of statements examined by the approaches are based on 25 versions of a 

given program each containing x number of faults (x = 2, 3, 4, and 5). It was observed 

that the average number of statements examined by the proposed approach on 2-fault 

faulty versions of flex is 9.08 in the best case, and 62.18 in the worst case. On the other 

hand, for P-Ochiai, the best case is 35.23, and the worst case is 161.08. For the 3-fault 

faulty versions of tcas, the average number of statements examined by the proposed 

approach is 11.04 in the best case and 22.33 in the worst case. With respect to P-Ochiai, 

the average number of statements examined in the same faulty versions (tcas, 3-fault 

versions) to locate the faults is 22.07 in the best case, and 28.49 in the worst case. From 

both tables (Table 5.14 and Table 5.15), it was observed that, regardless of whether the 

best case or worst case is considered, the proposed approach is always the most effective 

in comparison with P-Ochiai. The proposed approach has shown to be generally more 

effective than P-Ochiai, however, it is not surprising due to P-Ochiai’s obvious limitations 
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where the approach clusters failed tests execution based on their execution profile 

similarity. With the tests representation and the distance metric that the approach utilized 

(P-Ochiai), less effective localization inferencing is expected. But it is worth re-

emphasising that the proposed approach is by far the most effective in comparison with 

P-Ochiai. 

Table 5.14: Average number of statements examined (best case) 
 tcas replace gzip sed flex grep 

2-fault Proposed 
Approach 

5.97 12.03 10.87 50.21 9.08 333.99 

P-Ochiai 10.09 19.14 40.03 81.48 35.23 370.01 

3-fault Proposed 
Approach 

11.04 20.18 25.66 101.18 30.18 450.39 

P-Ochiai 22.07 24.05 80.63 393.89 110.03 512.15 

4-fault Proposed 
Approach 

18.11 39.06 60.00 280.38 60.07 525.33 

P-Ochiai 33.33 60.04 161.04 500.10 190.00 601.60 

5-fault Proposed 
Approach 

28.14 85.11 77.18 549.35 95.83 549.35 

P-Ochiai 49.04 98.91 260.03 679.74 230.06 621.34 

 

Table 5.15: Average number of statements examined (worst case) 
  tcas replace gzip sed flex grep 

2-fault Proposed 
Approach 

13.03 27.89 80.89 200.13 62.18 621.76 

P-Ochiai 17.49 46.41 194.33 292.09 161.08 1310.01 

3-fault Proposed 
Approach 

22.33 38.03 150.14 450.03 101.04 888.89 

P-Ochiai 28.49 55.19 254.19 601.75 243.63 1901.77 

4-fault Proposed 
Approach 

40.99 75.99 231.05 701.14 150.23 1340.70 

P-Ochiai 42.89 100.89 499.01 889.05 294.00 2300.03 

5-fault Proposed 
Approach 

46.11 120.83 310.11 1125.55 186.99 1599.14 

P-Ochiai 56.02 155.97 570.35 1501.08 322.15 2609.10 

Univ
ers

ity
 of

 M
ala

ya



  

152 

(k) Total developer expense (TDE) 

       Now the evaluation of the proposed approach with respect to TDE score is presented 

for all faulty versions. In Figure 5.20, the 2-fault versions of gzip, sed, and flex in best 

and worst cases are presented. The y-axis represents the percentage (%) of faulty versions 

located by a developer while the x-axis represents the percentage of code examined (total 

developer expense). Looking at part (a) and (b) of Figure 5.20, it was found that on the 

gzip program, by examining less than 7.5% of the program code, the proposed approach 

can locate all the faulty versions in the best case, and 70% in the worst case. In contrast, 

by examining the same amount of code, P-Ochiai can only locate 88% of faults in the best 

case, and 40% in the worst case. In part (c) and (d), the effectiveness score of sed 2-fault 

faulty versions are presented. The curves show that by examining less than 10% of the 

program code, the developer can locate all the faulty versions in the best case with the 

proposed approach, while P-Ochiai can locate 75% of the faulty versions. In the worst 

case, by examining the same amount of code (less than 10%), 85% of the faulty versions 

can be located using the proposed approach, and 35% with P-Ochiai. 

 

      (a)  best case of gzip 2-fault versions          (b) worst case of gzip 2-fault versions 
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      (c)  best case of sed 2-fault versions                (d) worst case of sed 2-fault versions 

 

       (e)  best case of flex 2-fault versions              (f) worst case of flex 2-fault versions 

Figure 5.20: TDE score-based comparison between the proposed approach and P-

Ochiai on gzip, sed, and flex (2-fault versions).  

       Consistently, looking at part (e) and (f) of Figure 5.20 (flex program), the proposed 

approach is still the most effective. However, it is worth highlighting that in some cases, 

the TDE score difference between the two approaches is not much. For example, with 

respect to flex program part (e) in the best case, the TDE score difference is 2.5% where 

by using the proposed approach all the faulty versions can be located by examining less 

than 10% of the code, and using P-Ochiai, all the faulty versions can be located by 

examining 12.5% of the program code. Looking at Figure 5.20, the story is the same as 
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in Table 5.14 and Table 5.15 where the proposed approach consistently surpasses P-

Ochiai in locating faults effectively.  

       Having looked at the results in terms of the average number of statements examined 

and TDE score, Table 5.16 and Table 5.17 give the effectiveness comparisons of the best 

and worst cases using the Wilcoxon signed-rank test. The tables give the confidence of 

which the alternative hypothesis can be accepted (that the proposed approach requires the 

examination of fewer statements than the compared baseline approach). For example, it 

can be said with 99.46% (best case) and 99.62% (worst case) confidence that the proposed 

approach is more effective than P-Ochiai on 5-fault versions of gzip. For gzip, sed, flex, 

and grep programs, the confidence to accept the alternative hypothesis is higher than 96% 

in both best and worst cases across all faulty versions (2-fault, 3-fault, 4-fault, and 5-

fault). 

Table 5.16: The confidence with which it can be claimed that the proposed 

approach is more effective than P-Ochiai (best cases) 

 tcas replace gzip sed flex grep 

2-fault P-Ochiai 75.73% 85.94% 96.58% 96.81% 96.18% 97.23% 

3-fault P-Ochiai 90.94% 74.17% 98.19% 99.66% 98.75% 98.39% 

4-fault P-Ochiai 93.43% 95.24% 99.02% 99.55% 99.24% 98.69% 

5-fault P-Ochiai 95.22% 92.76% 99.46% 99.26% 99.26% 98.62% 

 

Table 5.17: The confidence with which it can be claimed that the proposed 

approach is more effective than P-Ochiai (worst cases)  

 tcas replace gzip sed flex grep 

2-fault P-Ochiai 77.58% 94.61% 99.12% 98.92% 98.99% 99.86% 

3-fault P-Ochiai 83.77% 94.18% 99.04% 99.35% 99.30% 99.91% 

4-fault P-Ochiai 47.37% 95.99% 99.63% 99.47% 99.31% 99.90% 

5-fault P-Ochiai 89.91% 97.16% 99.62% 99.74% 99.27% 99.91% 
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       However, for tcas and replace programs across all the faulty versions on the best and 

worst cases scenarios, the alternative hypothesis is accepted with a confidence level of 

higher than 90% in most cases with a few exceptions having confidence level as low as 

47.37% (in the worst case of tcas program 4-fault versions). The scenarios with low 

confidence level are where the difference between the proposed approach and P-Ochiai 

in terms of statements examined to locate all the faulty versions by each approach is very 

small. In totality, the result shows that the proposed approach performs better than P-

Ochiai in both best and worst cases. 

 

5.4.2. Cross-Comparison with MSeer and P-Ochiai   

       This section provides the results for the cross-comparison between the proposed 

approach, P-Ochiai, and MSeer parallel debugging approach. 

 

(l) Average number of statements examined 

       With respect to 25 versions of three programs (gzip, flex, and grep) containing x 

number of faults (x = 3), Table 5.18 gives the average number of statements examined by 

the proposed approach, MSeer, and P-Ochiai in both best and worst cases to produce a 

failure-free program. For instance, the average number of statements examined by the 

proposed approach on grep is 450.39 in the best case, and 888.89 in the worst case. On 

the other hand, MSeer is 492.93 in the best case, 948.47 in the worst case. For P-Ochiai, 

the best case is 512.15, and the worst case is 1901.77. Hence, with respect to the result 

on the 3-fault faulty versions of these programs, a significant observation was made. It 

Univ
ers

ity
 of

 M
ala

ya



  

156 

was observed that in all but the best case of flex, the proposed approach is more effective 

than MSeer in all programs faulty versions. 

Table 5.18: Average number of statements examined using the proposed 

approach, MSeer, and P-Ochiai (3-fault versions) 

    Proposed Approach       MSeer P-Ochiai 

Best case Worst case Best case Worst case Best case Worst case 

gzip 25.66 150.14 41.77 174.57 80.63 254.19 

flex 30.18 101.40 23.30 111.40 110.03 243.63 

grep 450.39 888.89 492.93 948.47 512.15 1901.77 

 

       In all, the proposed approach is more effective because it examines fewer statements 

than MSeer and P-Ochiai in most cases. The difference between the proposed approach 

and MSeer is highly significant in some cases, for example, in the best case of gzip. In all 

cases, P-Ochiai is less effective, and the difference in comparison with other approaches 

is very significant. For instance, it was observed that the average number of statements to 

be examined in the best case of flex is 30.18 for the proposed approach and 110.03 for P-

Ochiai in the best case. This clearly indicates that the proposed approach is much more 

effective than P-Ochiai. Another significant point worth noting is that in some cases, the 

effectiveness difference between the proposed approach and MSeer is insignificant. For 

example, in the worst case of flex where the proposed approach on average examined 

101.40 statements in the worst case, and MSeer examined 111.40 in the worst case. 

Another significant observation is that in some cases, MSeer performs better than the 

proposed approach. For example, in the best case of flex where the proposed approach on 

average examined 30.18 statements in the best case, and MSeer examined 23.30 in the 

best case. Therefore, by examining lesser number of statements of flex than the proposed 

approach in the best case scenario, MSeer is the most effective in the scenario.   
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(m) Total developer expense (TDE) 

       Next, the result of the cross-comparison between the proposed approach, MSeer, and 

P-Ochiai with respect to TDE score of all faulty versions is presented. Figure 5.21 

presents the 3-fault versions of gzip and grep in the best and worst cases. For instance, in 

part (a) and part (b), by examining less than 10% of the program code, the proposed 

approach can locate 100% of the faulty versions in the best case and 60% in the worst 

case. MSeer (the second best approach) can only locate 92% in the best case and 42% in 

the worst case when examining the same amount of program code. For P-Ochiai (the third 

best), by examining the same amount of program code (less than 10%), it is 80% (best 

case) and 35% (worst case) to locate the faulty versions. Therefore, the proposed approach 

performs better than MSeer and P-Ochiai. In part (c) and (d) (grep 3-fault versions), the 

curves show that by examining less than 20% of the code, 85%  of the faulty versions are 

located by the proposed approach in the best case and 35% in the worst case. For MSeer 

and P-Ochiai, these percentages are 90% and 70% in the best case, and 20% and 10% in 

the worst case, respectively. The results in Figure 5.20 and Figure 5.21 suggest that the 

proposed approach is convincingly the most effective in comparison to the best and worst 

cases of the comparative baseline approaches (MSeer and P-Ochiai). 

 

          (a)  best case of gzip 3-fault versions             (b) worst case of gzip 3-fault versions 
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        (c)  best case of grep 3-fault versions          (d) worst case of grep 3-fault versions 

Figure 5.21: TDE score-based comparison between the proposed approach with P-

Ochiai and MSeer on gzip and grep (3-fault versions).  

       Based on the results in Table 5.18 and Figure 5.21, the proposed approach emerges 

to be the most effective in comparison to MSeer and P-Ochiai. Hence, with respect to the 

third evaluation metric, Table 5.19 gives the effectiveness comparison of the proposed 

approach in terms of the Wilcoxon signed-rank test on the 3-fault versions of gzip, flex, 

and grep programs. If the null hypothesis is accepted, the confidence level will be given 

as 00.00%. The cell with a black background in Table 5.19 is the cell where the null 

hypothesis is accepted. 

Table 5.19: The confidence with which it can be claimed that the proposed 

approach is more effective than MSeer and P-Ochiai (best & worst cases) (3-fault 

versions) 

       MSeer P-Ochiai 

Best case Worst case Best case Worst case 

gzip 93.80% 95.91% 98.19% 99.04% 

flex 00.00% 90.00% 98.75% 99.30% 

grep 97.65% 98.33% 98.39% 99.91% 
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       For instance, for the best and worst cases of P-Ochiai on all programs, the confidence 

level to accept the alternative hypothesis is higher than 98%. Furthermore, for MSeer, the 

confidence to accept the alternative hypothesis is greater than 90% in most cases. 

However, for the best case of flex on MSeer, the null hypothesis is accepted, meaning that 

MSeer examined a fewer number of statements than the proposed approach which makes 

it more effective in this scenario. Therefore, because MSeer examined fewer statements 

than the proposed approach in the best case of flex, the null hypothesis is accepted and 

the confidence level is given as 00.00% in Table 5.19.  

 

5.4.3. Distance Metrics  

       Distance metrics play a critical and important role to achieve a good tests clustering 

result, which measures the distance between failed tests or program statements (in the 

proposed approach context). In this section, the three distance metrics used by the 

proposed approach and the remaining two approaches (MSeer and P-Ochiai) were 

investigated. For the proposed approach, the edge-betweenness distance is used, MSeer 

used the revised Kendall tau distance, and P-Ochiai used the Euclidian distance metric. 

The effectiveness of these approaches using these distance metrics were compared. In 

Table 5.20, the average number of statements examined on 25 versions with 5-fault for 

gzip, grep, and flex are highlighted. Using the proposed approach, the average number of 

statements examined for flex is 95.83 (best case) and 186.99 (worst case). For MSeer and 

P-Ochiai, they are 104.67 and 230.06 (best cases), and 195.80 and 322.15 (worst cases), 

respectively. However, it was observed that in some cases, MSeer examined fewer 

statements. For example, in the best case of grep is 612.11 for the proposed approach and 

598.80 for MSeer. Even though the difference is slightly small in some case between the 
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proposed approach and MSeer, the result clearly shows that the edge-betweenness 

distance used by the proposed approach is more effective. 

Table 5.20: Average number of statements examined using the proposed 

approach, MSeer, and P-Ochiai (5-fault versions) 

   Proposed Approach            MSeer P-Ochiai 

Best case Worst case Best case Worst case Best case Worst case 

Gzip 77.18 310.11 80.00 318.27 260.03 570.35 

grep 612.11 1599.14 598.80 1644.77 621.34 2609.10 

flex 95.83 186.99 104.67 195.80 230.06 322.15 

 

 

5.4.4. Result Summary  

       For the results in this section, the following observations were made: 

 Overall, based on the average number of statements examined by both the 

proposed approach and P-Ochiai in Table 5.14 and Table 15, the proposed 

approach is the most effective where in most cases, fewer statements were 

examined to locate all the faulty versions than P-Ochiai. For instance, it was 

observed that the average number of statements examined by the proposed 

approach on 2-fault faulty versions of flex is 9.08 (best case), and 62.18 (worst 

case). On the other hand, for P-Ochiai, it is 35.23 (best case), and 161.08 (worst 

case). Additionally, the proposed approach is still the most effective in terms of 

TDE score. However, it is worth highlighting that in some cases, the TDE score 

difference between the two approaches is not much. For example, with respect to 

flex program part (e) in the best case (Figure 5.20), using the proposed approach, 

all the faulty versions can be located by examining less than 10% of the code, and 

using P-Ochiai, all the faulty versions can be located by examining less than 

12.5% of the program code. 

 Furthermore, with respect to the 3-fault faulty versions of flex, it was observed 

that, in all but the best case of flex, the proposed approach is more effective, 
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however, MSeer on average can locate all the faulty versions by examining only 

23.30 statements (best case), and 30.18 (best case) using the proposed approach. 

Another significant point worth noting is that in some cases, the effectiveness 

difference between the proposed approach and MSeer is insignificant. For 

example, in the worst case of flex where the proposed approach on average 

examined 101.40 statements (worst case), and MSeer examined 111.40 (worst 

case). 

 In all program faulty versions of gzip and grep (Figure 5.21), the proposed 

approach is convincingly the most effective in the best and worst cases in 

comparison with MSeer and P-Ochiai approaches. For instance, in part (a) and 

part (b) of gzip, by examining less than 10% of the program code, the proposed 

approach can locate all the faulty versions in the best case and 60% (worst case). 

MSeer (the second best approach) can only locate 92% (best case) and 42% (worst 

case). For P-Ochiai (the third best), by examining the same amount of program 

code (less than 10%), it is 80% (best case) and 35% (worst case) to locate the 

faulty versions. Therefore, the proposed approach performs better than MSeer and 

P-Ochiai. 

 

5.5.   Chapter Summary   

       This chapter has presented and discussed the results of the four different experiments 

in this research. The investigative study on the claimed problematic parallel debugging 

approach, the multiple fault localization based on complex network theory (FLCN-M), 

the single fault localization based on complex network theory (FLCN-S), and the 

community-based fault isolation approach were evaluated on several single-fault and 

multiple-fault subject programs to access their effectiveness in terms of localization 

effectiveness. Cross-comparisons between the proposed fault localization techniques and 
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approach with the existing baseline techniques and approaches were conducted. In 

conclusion, the results in this chapter clearly shown that the proposed fault localization 

techniques and approach surpassed the existing baseline techniques and approaches in 

terms of locating faults in both single-fault and multiple-fault programs. The next chapter 

concludes the research by summarizing the research findings, highlighting the limitations 

of the research, presenting the research contributions, and giving recommendations for 

future work.  
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CHAPTER 6: CONCLUSION  

       This chapter concludes the current research by presenting: (i) the summary of the key 

findings in relation to the research objectives, (ii) the core research contributions, (iii) the 

main limitations of the study, and (iv) the future research directions of the study.  

 

6.1.   Summary of Findings in Relation to the Research Objectives   

       This research aims at proposing two novel fault localization techniques based on 

complex network theory, namely multiple fault localization based on complex network 

theory (FLCN-M) and single fault localization based on complex network theory (FLCN-

S), to improve localization effectiveness in programs with single and multiple faults and 

aid developers to localize multiple faults simultaneously in a single diagnosis rank list. 

Furthermore, the research also aims at proposing a new community-based fault isolation 

approach to aid in the effective isolation and localization of multiple faults simultaneously 

in parallel. The two proposed fault localization techniques and the proposed approach 

were evaluated on several single-fault and multiple-fault subject programs in comparison 

with the existing baseline techniques and approaches to access their effectiveness in terms 

of localization effectiveness. 

       To develop the proposed fault localization techniques and approach, four research 

objectives as presented in Chapter 1, Section 1.4 have been formulated and fulfilled. As 

a result, it helps in developing the research methodology of this work. The research 

objectives for this work are as follows:  
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(1) To investigate the existing parallel debugging approach used in localizing 

multiple faults in terms of localization effectiveness in comparison with other 

debugging approaches.  

(2) To propose two novel fault localization techniques for single-fault and multiple-

fault programs based on complex network theory.  

(3) To propose a new community-based fault isolation approach to aid in the effective 

isolation and localization of multiple faults simultaneously in parallel.  

(4) To evaluate the proposed fault localization techniques and the proposed approach 

by comparing them with the baseline techniques and approaches in terms of 

localization effectiveness.  

       The ultimate goal of this research is to fulfill the above research objectives. 

Therefore, the following points establish that each of the research objectives was fulfilled 

by this research. 

 To investigate the existing parallel debugging approach used in localizing 

multiple faults in terms of localization effectiveness in comparison with other 

debugging approaches. 

       This research objective is achieved by reviewing the literature on software fault 

localization as discussed in Chapter two. The existing studies that utilized different 

debugging approaches (i.e. OBA debugging approach and parallel debugging approach) 

to localize multiple faults were reviewed. The objective also investigates the claims of 

the existing works that a parallel debugging approach that performs clustering on failed 

tests based on their execution profile similarity, estimates the number of clusters based 

on the number of failed tests, and utilizes a distance metric like Euclidean distance to 

measure the due-to relationship between failed test cases, is problematic and 

inappropriate to use for the isolation and localization of multiple faults. The methodology 
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of this research work can be found in Chapter 3, Section 3.2. The findings show that even 

though the claimed problematic parallel debugging approach is effective and better in 

comparison with the OBA debugging approach, yet it is not as effective when compared 

with the state-of-the-art MSeer parallel debugging approach. Furthermore, it was 

observed that estimating the number of clusters based on the number of failed test cases 

as highlighted in Chapter 3, Section 3.2.2 is indeed not appropriate because there is no 

clear correlation between the number of failed test cases and the number of faults in a 

given program. Therefore, many redundant clusters can be generated that do not target 

faults but will increase the time and effort for a developer to look for faults. Therefore, 

the result affirms the previous studies claiming that performing clustering on failed tests 

based on their execution profile similarity, estimating the number of clusters based on the 

number of failed tests, and the utilization of metrics like Euclidean distance to measure 

the due-to relationship between failed test cases is problematic and inappropriate, which 

indeed reduces the effectiveness of a parallel debugging approach in localizing multiple 

faults. 

 To propose two novel fault localization techniques for single-fault and multiple-

fault programs based on complex network theory. 

       This objective was achieved by providing two novel fault localization techniques, 

namely multiple fault localization based on complex network theory (FLCN-M) and 

single fault localization based on complex network theory (FLCN-S). These techniques 

were proposed to improve localization effectiveness in programs with both single and 

multiple faults, and to aid developers to localize multiple faults simultaneously in a single 

diagnosis rank list. The proposed techniques rank statements based on their behavioral 

abnormalities and distance between statements in both passed and failed tests execution. 

Two graph-based centrality measures, namely degree centrality and closeness centrality 
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were adopted and used for fault diagnosis, and a new ranking formula was proposed to 

calculate the suspiciousness of program statements. The difference between the two 

techniques is that the former (FLCN-M) uses both passed and failed tests execution for 

fault localization, while the latter (FLCN-S) uses only failed tests execution for fault 

localization. The methodology of this research work can be found in Chapter 3, Section 

3.3 and Section 3.4. The results have shown that the proposed techniques are significantly 

better in terms of fault localization effectiveness in both single-fault and multiple-fault 

programs when compared with the existing baseline fault localization techniques. 

 To propose a new community-based fault isolation approach to aid in the 

effective isolation and localization of multiple faults simultaneously in parallel. 

        This objective was achieved by providing a new community-based fault isolation 

approach that makes use of a divisive network community clustering algorithm to aid in 

the isolation and localization of multiple faults simultaneously in parallel. This approach 

is applied in a scenario where a developer has checked 70% of the program statements 

using the proposed FLCN-M technique but cannot fully localize all the multiple faults in 

a single diagnosis rank list. In this case, instead of utilizing the OBA debugging approach, 

the community-based fault isolation approach will be utilised for a more efficient and 

effective localization of faults. The methodology of this research work can be found in 

Chapter 3, Section 3.5. The result has demonstrated that the proposed approach performs 

significantly better in terms of localization effectiveness in comparison with the claimed 

problematic parallel debugging approach and MSeer parallel debugging approach in 

locating multiple faults simultaneously in parallel. 

 To evaluate the proposed fault localization techniques and the proposed approach 

by comparing them with the baseline techniques and approaches in terms of 

localization effectiveness. 
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       The investigative study of the claimed problematic parallel debugging approach, the 

two novel fault localization techniques based on complex network theory, namely 

multiple fault localization based on complex network theory (FLCN-M) and single fault 

localization based on complex network theory (FLCN-S), and the new community-based 

fault isolation approach were all evaluated on various single-fault and multiple-fault 

subject programs with six evaluation metrics as presented and detailed in Chapter 4. The 

aim is to access the localization effectiveness of the claimed problematic parallel 

debugging approach, the two proposed fault localization techniques, and the proposed 

approach using six evaluation metrics in comparison to other baseline techniques and 

approaches. However, to evaluate FLCN-M on localizing multiple faults in a single 

diagnosis rank list, a new generic evaluation metric named incremental developer expense 

(IDE) was proposed as presented in Chapter 4, Section 4.2.2.2. Due to the lack of this 

kind of evaluation metric in the literature, this metric was proposed to help developers to 

evaluate the effectiveness of localizing multiple faults simultaneously in a single 

diagnosis rank list. The metric is formulated to be generic and can be utilized by any fault 

localization techniques that localize faults in a single diagnosis rank list. The experimental 

results of this research on several single-fault and multiple-fault subject programs have 

shown that the claimed problematic parallel debugging approach is indeed problematic 

and contributes to the reduction in effectiveness of a parallel debugging approach in 

localizing multiple faults. Furthermore, based on the results in Chapter 5, the two 

proposed techniques and the proposed approach have shown to be more effective in 

identifying the locations of faults in comparison with the baseline techniques and 

approaches in the field of study.  
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6.2.   Research Contributions   

       There are several contributions that have been gained from this research. The 

following are the key contributions of this research. 

1. An investigative study of the claimed problematic parallel debugging approach 

that makes use of k-means clustering algorithm with Euclidean distance metric in 

terms of localizing multiple faults effectively in comparison with two other 

baseline debugging approaches, namely OBA debugging approach and MSeer 

parallel debugging approach.  

2. A novel multiple fault localization technique that aids developers to effectively 

localize multiple faults simultaneously in a single diagnosis rank list.  

3. A novel single fault localization technique that aids developers in localizing a 

single fault effectively. 

4. A new community-based fault isolation approach that makes use of a divisive 

network community clustering algorithm to aid in the isolation and localization of 

multiple faults simultaneously in parallel. 

5. A community weighting and selection process which aids in the selection and 

prioritization of fault-focused communities for effective simultaneous localization 

of faults in parallel. 

6. A new generic evaluation metric named incremental developer expense (IDE) for 

the evaluation of FLCN-M fault localization technique on localizing multiple 

faults simultaneously in a single diagnosis rank list. 

7. A comprehensive evaluation of the claimed problematic parallel debugging 

approach, the two proposed techniques, and the proposed approach on several 

single-fault and multiple-fault subject programs. Several baseline fault 

localization techniques and approaches have been used for cross-comparisons. 
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6.3.   Limitations of the Study   

       In this thesis, one of the main limitations of the experiments is the exclusive 

utilization of subject programs that are of C programming language. Therefore, results 

generalization is quite limited due to this. Hence, more diverse programs in terms of 

language should be considered. Secondly, most of the programs utilized are somewhat 

considered to be either small or medium-sized with maximum lines of code of 13,892. 

Even though the UNIX real-life utility programs used in the experiments (gzip, sed, flex, 

and grep) are considerably larger-sized programs, they are still not very large due to the 

current diversity of existing software (in size and complexity). Recently, the software 

fault localization research domain is changing whereby experiments on much larger 

datasets are more generally preferred for better generalization.  

       Moreover, in most of the experiments in this research, artificial faults were used to 

create multiple-fault versions containing many faults where mutation-based injection 

technique is used for multiple-fault versions generation. Even though mutation-based 

faults can be used to simulate realistic faults and provide reliable and trustworthy results 

for testing and debugging experiments, more experiments on real programs with real-

world faults are still necessary. This is because it is well known that existing fault 

localization techniques’ performance varies when real faults reside in a program. Lastly, 

despite the improvement recorded in terms of localization effectiveness in the proposed 

community-based fault isolation approach, fault isolation accuracy is not optimal and 

needs improvement. Therefore, an improvement to the algorithm will be of great 

advantage to the software developer to lead to a better software quality.   
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6.4.   Future Research Directions   

       Despite much attention researchers have given to software fault localization research 

domain, several research challenges exist that need more attention by current researchers. 

To improve results generality in software fault localization research and in the context of 

this thesis work, more experiments are needed on larger datasets with real faults. 

Recently, Siemens test suite dataset is not considered sufficient anymore despite being 

one of the most utilized datasets in software fault localization research domain. Therefore, 

adopting a more realistic and larger dataset is vital to help in generalizing the result of 

any study in software fault localization.  

       On the same note, further work on more diverse (in terms of language) subject 

programs of a different programming language such as Java and multilingual programs 

can be considered for further research. Furthermore, centrality measures used by the 

proposed techniques such as degree centrality and closeness centrality have proven to be 

effective, other centrality measures such as betweenness centrality, eigenvector centrality 

and so on, maybe explored in the proposed techniques to further improve fault 

localization effectiveness. Lastly, more work will be done to improve the divisive 

network community clustering algorithm used for the community-based fault isolation 

approach by adding a community estimation step to limit the number of communities 

produced so as to improve accuracy and further help in reducing the time to produce a 

failure-free program. 
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6.5.   Final Words   

       Due to the complex relationship between fault and failure specifically in the existence 

of multiple faults, existing fault localization techniques find it hard to localize multiple 

faults simultaneously, whereby test cases that failed in the existence of single fault could 

pass in the existence of multiple faults, and a test case that passed in the presence of 

multiple faults could fail when a single fault is active. The simultaneous localization of 

multiple faults with good effectiveness has remained a prominent research problem in the 

field of software fault localization. To optimally solve the problem, firstly, a literature 

review and an investigative study were conducted that aid in achieving the first research 

objective. The conducted literature review and the investigative study helped in the 

development of the research methodology of this work. Next, two novel fault localization 

techniques, namely multiple fault localization based on complex network theory (FLCN-

M) and single fault localization based on complex network theory (FLCN-S), were 

proposed to facilitate in achieving the second research objective. To fulfil the third 

research objective, a new community-based fault isolation approach was proposed. 

Finally, based on the experiments in this work, the localization effectiveness of the two 

proposed fault localization techniques and the proposed approach was empirically 

evaluated to help in fulfilling the last research objective of the study.  
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