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BATTERY MANAGEMENT OPTIMIZATION AND LIFECYCLE IMPACT 

ANALYSIS FOR MICROGRID OPERATION WITH V2G 

IMPLEMENTATION 

ABSTRACT 

The electric power system has been transformed and evolved towards decentralized 

systems, which interact with each other and within the whole electrical system. In this 

way, microgrids are essential components to increase the reliability and efficiency of the 

power system. The critical issue in isolated microgrid is the energy demand balance in 

the presence of intermittent renewable energy sources. Energy storage systems are the 

adequate solution to balance the demand/supply issue and support the ancillary services 

such as voltage regulation and reserve requirement. However, due to high installation cost 

of storage system, their sizing is essential for optimized operation of microgrid. The first 

part of this work proposes energy management system to reduce the operating cost of 

isolated microgrid. The economic scheduling using firefly algorithm is implemented for 

the optimization of distributed energy sources and ascertain optimal size of energy storage 

while meeting the load demand. The efficacy of the optimization algorithm is compared 

with other metaheuristic techniques for economic and reliability indices such as cost of 

electricity and loss of power supply probability. In the second part, electric vehicles (EV) 

are incorporated as flexible load in the power system. The EVs charge coordination with 

vehicle to grid (V2G) technology is performed with respect to economic and technical 

perspective. The economic objectives encompass cost minimization and profit 

maximization whereas technical objectives constitute power loss minimization and peak 

load reduction. The EV users are certainly concerned for cost of battery replacement due 

to degradation with active participation in V2G energy exchanges. Therefore, battery 

degradation model is formulated for real time analysis by considering the depth of 

discharge at each time interval. The operating cost and V2G profit are analyzed with 
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different penetrations of renewable power generation, EV battery capacity and travelling 

time. The results indicate that proposed energy management approach effectively reduced 

the operating cost, ensuring the reliability of the microgrid. Since battery sizes influence 

the operating cost, optimal battery size is calculated to have minimum cost of electricity 

and prolong the battery lifetime. The proposed method results in 50% cost reduction when 

compared with the conventional method.  The proposed energy management approach is 

solved using firefly algorithm, artificial bee colony, harmony search algorithm and 

particle swarm optimization. It was found that firefly algorithm is robust and 

computationally effective. In addition, EV charge coordination improves the system 

performance, minimize the power losses and restricts grid overloading. The integration 

of renewable energy sources (RES) reduces the system cost and maximizes the profit for 

the EV users. The system losses and cost of electricity is minimum when the RES 

penetration is increased while different EV capacities yields minimum profit.  

Keywords: Battery energy storage, electric vehicle, degradation cost, economic 

scheduling, charge coordination. 
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ANALISA IMPAK PENGOPTIMUMAN PENGURUSAN DAN KITARAN 

HIDUP BATERI UNTUK OPERASI MIKROGRID DENGAN PELAKSANAAN 

V2G YANG OPTIMA 

ABSTRAK 

Sistem kuasa elektrik telah berubah dan berkembang ke arah sistem yang nyahpusat 

yang boleh berinteraksi antara satu sama lain dan juga di antara keseluruhan sistem 

elektrik itu sendiri. Oleh itu, mikrogrid adalah komponen penting untuk meningkatkan 

kebolehpercayaan dan kecekapan sistem kuasa. Isu kritikal dalam mikrogrid terpencil 

adalah keseimbangan permintaan tenaga di hadapan sumber tenaga diperbaharui yang 

tidak stabil. Sistem simpanan tenaga adalah penyelesaian yang sesuai untuk mengimbangi 

isu permintaan/bekalan tenaga dan menyokong perkhidmatan sampingan seperti 

peraturan voltan dan keperluan simpanan. Walau bagaimanapun, disebabkan kos 

pemasangan sistem simpanan tenaga yang tinggi, saiz kapasiti mereka adalah penting 

untuk menjalankan operasi mikrogrid yang optima. Bahagian pertama penyelidikan ini 

mencadangkan pengurusan tenaga untuk mengurangkan kos operasi mikrogrid terpencil. 

Penjadualan ekonomi menggunakan algoritma “firefly” dilaksanakan untuk 

pengoptimuman sumber tenaga dan saiz optima penyimpanan tenaga untuk 

mengurangkan fungsi kos sambil memenuhi permintaan beban tenaga. Keberkesanan 

algoritma pengoptimuman dibandingkan dengan teknik metaheuristik lain untuk 

pengukuran ekonomi dan kebolehpercayaan seperti kos elektrik dan kebarangkalian 

bekalan kuasa. Di bahagian kedua, kenderaan elektrik (EV) disambungkan sebagai beban 

fleksibel dalam sistem kuasa mikrogrid. Penyelarasan caj EV dengan teknologi kenderaan 

ke grid (V2G) yang dilakukan untuk tujuan ekonomi dan teknikal. Objektif ekonomi 

adalah merangkumi pengurangan kos dan keuntungan maksima, manakala untuk tujuan 

teknikal merupakan pengurangan kehilangan kuasa dan pengurangan beban puncak. 

Pengguna kenderaan elektrik amat prihatin terhadap kos penggantian bateri akibat 
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kemerosotan bateri apabila terdapat penyertaan aktif dalam pertukaran tenaga V2G. Oleh 

itu, model degradasi bateri dirumuskan untuk analisa masa sebenar dengan 

mempertimbangkan kedalaman discas pada setiap selang masa. Kos operasi dan 

keuntungan V2G dianalisa dengan penetrasi yang berbeza ke sistem penjanaan kuasa 

yang boleh diperbaharui, kapasiti bateri EV dan perubahan waktu perjalanan. Hasil 

penyelidikan menunjukkan bahawa kaedah pengurusan tenaga yang dicadangkan boleh 

mengurangkan kos operasi mikrogrid disamping memastikan kebolehpercayaan 

mikrogrid. Oleh kerana saiz bateri mempengaruhi kos operasi, penentuan saiz bateri yang 

optima dihitung supaya kos elektrik adalah rendah dan jangka hayat bateri dipanjangkan. 

Didapati kaedah yang dicadangkan menurunkan kos sebanyak 50% jika dibandingkan 

dengan kaedah konvensional. Kaedah pengurusan tenaga diselesaikan dengan 

menggunakan kaedah-kaedah algoritma “firefly,” koloni lebah tiruan, algoritma carian 

harmoni, dan pengoptimuman gerombolan zarah. Hasil didapati algoritma ‘firefly’ adalah 

lebih kuat dan pengiraan yang berkesan. Di samping itu, kordinasi cas EV 

menambahbaikan prestasi sistem, mengurangkan kehilangan kuasa dan menyekat grid 

yang menyaratkan. Persepaduan sumber tenaga boleh diperbaharui (RES) dapat 

mengurangkan kos sistem dan memaksimakan keuntungan kepada pengguna EV. 

Kehilangan kuasa sistem dan kos elektrik adalah minima jika penembusan RES 

ditingkatkan disamping kapasiti EV menghasilkan keuntungan minima.  

Kata kunci: Penyimpanan tenaga bateri, kenderaan elektrik, kos degradasi, 

penjadualan ekonomi, koordinasi cas. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

In the last few decades, the world is seeing an unprecedented rise in its population with 

the resultant subsequent excessive power demand, both of which are the main operative 

factors behind global warming and carbon emissions. Unfortunately, the usage of fossil 

fuels still plays the major role in supplying energy for the power generation and 

transportation system. However, continual and inevitable depletion of fossil fuel 

resources in the recent years has put a serious pressure on governments and energy 

entrepreneurs to be responsible enough to move towards replenishment of energy through 

renewable energy sources (RES) (Jamshidi & Askarzadeh, 2018). The global renewable 

generation capacity amounted to 2,179 GW in 2017 with new installations for wind and 

solar accounting up to 85%. Figure 1.1 shows the renewable energy generation capacity 

from 2011-2017 with hydropower having the largest share of 1152 GW, wind and solar 

with capacities of 514 GW and 397 GW respectively in 2017 (IRENA, 2018). The 

increase in renewable energy generation is reducing the greenhouse emission by replacing 

fossil fuel consumption. However, the intermittent nature of RES is thwarting the stability 

of the power system in the economic sense. Hence, efficient controlled methods have 

become the order of the day to overcome the issues of voltage disturbances, frequency 

regulations and network security during the high penetration of the RES to meet the 

growing energy demand of the huge population (Kuang, Li, & Wu, 2011).  Univ
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Figure 1.1: Total renewable power generation capacity, 2011-2017 (IRENA, 
2018) 

Microgrids have emerged as a platform to integrate distributive energy resources 

(DER), such as diesel engine generators (DE), wind turbine (WT), microturbine (MT), 

fuel cell (FC), solar photovoltaic (PV) panels and energy storage system (ESS) within a 

network to feed into the utility grid in a more orderly and manageable network. Over the 

past few years, ESS has become an essential component of the microgrid. ESS can reduce 

the power fluctuations caused by RES.  In addition, ESS can store the energy during the 

periods of high-power generation and release it when the load exceeds the power 

generation capacity. ESS with high energy density and longer discharge time are utilized 

for the applications related to economic energy dispatch and peak shaving. On the other 

hand, a high power density ESS with a fast response capability is better suited for the 

voltage control and frequency regulation applications (Eyer & Corey, 2010; Fu et al., 

2013). 

The investment cost of ESS is the main hindrance for the installation of large energy 

storage to solve the supply/demand problem. However, an attractive solution is the use of 

Univ
ers

ity
 of

 M
ala

ya



3 

electric vehicles battery which can provide ancillary services of energy arbitrage, load 

balancing and voltage regulation (Uddin, Jackson, et al., 2017). Electric vehicle (EV) is 

gaining popularity in recent times and this is evident through the soaring sales of EV. The 

advantages of EV over the conventional vehicles are the ability to run on the power 

generated locally, vehicle to grid (V2G) power transfer and reduction in CO2 emission. 

To establish a clean and reliable energy system, large-scale adoption of EVs has been 

considered an effective solution to decarbonize the environment (Dong et al., 2018).  

The ongoing research for new developments with the policy support for the investment 

in charging infrastructures is resulting in lower battery costs and higher EV production. 

International Energy Agency has predicted a massive increase in EV sales after 2020 

reaching up to 220 million per year by 2035 (Falahati, Taher, & Shahidehpour, 2016). 

Figure 1.2 shows that expected sales of EVs can reach up to 400 million in 2040 with 

35% sale of EVs in the market. Local and national authorities around the world are 

promoting the use of electric vehicles over the internal combustion engine (ICE) vehicles 

by providing incentives to consumers in tax exemption, cheap electricity tariff for 

overnight charging, free public parking and access to bus lanes (Bjerkan, Nørbech, & 

Nordtømme, 2016).  

 

Figure 1.2: Global electric vehicles sale till 2040 (Randall, 2016) 
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EVs are the adequate candidate for demand side management (DSM), providing 

flexibility for time-dependent charging. Peak shaving and load shifting can be performed 

with smart charging techniques. Moreover, EVs are capable to feed the power back to the 

grid during high peak demands, reducing the electricity cost and earning profit for the 

consumers. EVs that are equipped with bidirectional converters are capable to connect 

the EVs to the grid, facilitating the charging of batteries at low demand period and 

discharging at high demand. This concept is referred as V2G. The V2G methods can be 

approached from economic and technical aspects. Economic strategies focus on EV 

owners profit maximization considering the impact of battery degradation, user 

availability and time of use (TOU) tariff.  Whereas technical strategies support the system 

in performing voltage and frequency regulation, power balance, demand response and 

loss reduction. 

The assessment of economic viability by V2G service should also consider the battery 

degradation cost for the financial profitability of the user as battery degrades with the 

V2G cycling and the age of the battery. Moreover, certain factors accelerate battery 

degradation such as deep discharges, high temperature and high current rate, which are 

referred to as aging stress factors. Hence, customer’s revenue for energy arbitrage 

decreases with the addition of battery degradation cost. The studies in (Antúnez, Franco, 

Rider, & Romero, 2016; Czechowski, 2015; Uddin, Gough, Radcliffe, Marco, & 

Jennings, 2017) concludes that costs associated with battery lifetime outweigh the V2G 

profit.  

1.2 Problem Statement 

The optimal scheduling of microgrid to reduce the overall operating cost has 

been a serious concern for the researchers for many years. This includes the sizing 

of distributed generators in the microgrid. Energy storage in microgrid balances 
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the power between generation and load, ensuring the frequency and voltage 

regulation. Battery energy storage systems (BESS) are best suited for power system 

applications due to their technical benefits and ability to provide both the power and the 

energy density. The operation and the scheduling of the BESS have been addressed by 

many researchers but the design and estimation of its optimal size to achieve a cost-

effective system with minimum power losses is still in progress. In order to ensure the 

reliability, security and economic benefits of the microgrid, ascertaining an optimal size 

of BESS is indeed essential. The lifetime of the battery is an essential factor for the sizing 

of BESS. The lifetime of the battery is affected by two main factors, namely, 1) the 

lifecycle stating the number of charge and discharge cycles a BESS can sustain, and 2) 

the depth of discharge representing the amount of capacity used by a BESS. Over the 

years, the energy scheduling and optimal sizing of battery storage have been proposed by 

many researchers, by considering only the fixed value of battery lifetime. Many 

researchers have developed a battery degradation model and cost of battery degradation, 

while research on the integration of the developed model in the economic dispatch has 

not been conducted.  

With the substantial growth in EV market, the utilities are concerned for the demand 

response programs to generate secure network with maximum economic benefits. 

Nevertheless, the electrical distribution system will face overloading effect without 

proper coordination of EV charging. Moreover, the high penetration of EV may result in 

increase of technical losses, higher peak demands and reduction in the voltage profile 

(Arias, Franco, Lavorato, & Romero, 2017). These negative impacts can be mitigated by 

metaheuristic techniques to solve charge coordination of EV. However, the cost of EV 

battery replacement due to degradation is of paramount concern for EV users that 

constitute the most important ingredient to achieve active participation in V2G energy 
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exchanges. Besides, there is also concerns within the EV manufacturers pertaining to the 

state of warranty for batteries that participate in V2G system.  

As such, the research in this project aims to study the economic power dispatch in V2G 

environment by incorporating the latest findings in battery degradation. The conventional 

synchronous generator economic dispatch problem with energy storage for isolated 

microgrid will first be taken as the basis for this study. Next, the presence of RES, 

centralized charge coordination and distributed V2G batteries power dispatches will be 

considered in the economic dispatch problem. Customarily, large majority of the 

decision-making in battery energy management system (BEMS) is simply based on the 

availability and deficit of renewable energy respectively to meet the demand (Azaza & 

Wallin, 2017; Borhanazad, Mekhilef, Ganapathy, Modiri-Delshad, & Mirtaheri, 2014; 

Ismail, Moghavvemi, & Mahlia, 2013). However, this project will propose methods to 

develop further optimized solution for BEMS by considering the battery degradation cost. 

1.3 Research Objectives 

The objective of this dissertation is to incorporate real-time battery degradation model 

in the economic dispatch problem to reduce the operating cost of the system and prolong 

the battery lifetime. In order to achieve this, the following objectives are defined: 

1. To design the real-time battery degradation cost model for economic dispatch 

problem. 

2. To develop the optimal battery sizing model for the economic scheduling of 

isolated microgrid.  

3. To solve the real-time economic dispatch optimization problem in isolated 

microgrid.  

4. To adapt the developed real time battery degradation cost model for electric 

vehicle charge coordination with V2G application.  
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1.4 Scope of Study 

Isolated microgrids are dependent on RES and portable units such as diesel generator 

and energy storage to maintain the balance between demand and supply. The integration 

of ESS to suppress the power fluctuations and minimize the technical losses has improved 

the reliability and power quality of microgrid. BESS amongst various storage 

technologies is mostly adopted for microgrid applications due to their ability to improve 

the operational strategies and reduce the operating cost. BESS optimal size with 

appropriate technology and effective scheduling of charging and discharging cycles 

maximizes the benefits of the microgrid. Generally, the BESS with larger size reduces 

the thermal generations and improves the microgrid performance but the high installation 

cost is the main barrier to deployment of large BESS. Therefore, optimal size with proper 

operational strategies and cost-benefit analysis is required to minimize the microgrid 

operating cost. Economic scheduling together with an optimal battery size is also 

significant for rural electrification schemes in small towns where the electrical grid is not 

available. 

When EVs are treated as energy storage, EV charging increases the electrical load of 

the distribution network. The operation of the electrical distribution system is extremely 

affected with the high penetration of EVs and if the charging is uncontrolled, the 

additional EV load during peak period can challenge the reliability of the power system. 

On the contrary, the smart charging schemes for EV reduces the peak load and minimizes 

the technical losses and generation cost. Moreover, V2G technology provides ancillary 

services for power system such as spinning reserve and DSM.  

Smart charging/discharging increases the customer’s awareness towards energy usage 

and prolonging the battery lifetime. Effective battery scheduling avoids deep discharges 

and maximizes the profit for EV customer. When the battery state of charge (SOC) ranges 
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between 40% to 60%, the battery lifetime is extended with V2G cycling (Uddin, Jackson, 

et al., 2017). Therefore, an effective mechanism with bidirectional power transfer inflates 

the revenues earned through V2G and prolongs the lifetime of the battery. 

1.5 Thesis Outline 

The thesis consists out of the following five parts: research objectives, background, 

methodology and theoretical framework, findings and results, and conclusion and future 

work. The thesis is organized as follows:  

Chapter 2 includes a comprehensive review of different application and benefits of 

energy storage systems. The factors associated with the sizing of energy storage in 

microgrids are also discussed. In addition to this, various strategies implemented for 

economic dispatch are reviewed. This chapter also discusses the significance of charge 

coordination of electric vehicles in the power system. The chapter ends with an overview 

of optimization algorithms implemented in this thesis. 

Chapter 3 describes the methodology for the proposed energy management strategy 

with optimal battery sizing in the isolated microgrid. The battery energy storage model 

together with other distributed energy source models is discussed. The framework for the 

economic scheduling of grid-connected network with electric vehicles is also presented. 

Chapter 4 validates the proposed methodology and evaluates the performance of the 

proposed method with tradeoff methods in terms of performance measurement indices; 

the cost of electricity and loss of power supply probability. The operating cost and 

technical losses of the distribution network are analyzed for different cases of electric 

vehicle charge coordination with V2G technology. The EV user’s profit in V2G 

considering the impact of battery lifetime degradation is also computed.  
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Chapter 5 presents the overall conclusion of the research work and the possibility of 

the research impact on future technology. Finally, this chapter mentions the current 

limitation of the proposed work and provides the direction for further improvement in the 

future. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Currently, the dominant source of energy for the power generation and transportation 

is fossil fuel. Most of the countries are depending upon imported fossil fuels, causing 

these countries to financial instability when the price of fossil fuel changes in the 

international market. According to the Energy Information Agency (EIA) report, a 

substantial increase in oil prices will be observed in the next two decades (EIA, 2016). 

As such, government and energy companies are taking steps to move towards the RES. 

Greenhouse gas emission will be reduced by replacing fossil fuels with RES. However, 

RES will present challenges when integrated with the existing power grid due to the 

former intermittent nature. As such, the battery is considered an important component to 

suppress the intermittent power delivery from RES. In contrast to the conventional grid, 

a modified electrical system is required to overcome the challenges of sustainable, 

economic and reliable electricity when installing RES at a higher level. 

Smart grid provides the solution to revolutionize the electricity grid and improve the 

power delivery in an efficient manner. Smart grid transforms the current grid into one that 

functions more responsively, economically and cooperatively. The National Institute of 

the Standards and Technology (NIST) describes smart grid as a system with the capability 

to integrate communication and computing technologies as well as services into power 

system infrastructure (Bryson & Gallagher, 2012; Tuballa & Abundo, 2016). Figure 2.1 

shows the transfer of electricity from the power plant generators to the customer end in a 

smart grid power system. The flow of electricity and communication between the 

generation, transmission and distribution utilities and the customer is also shown in the 

diagram. The generation part consists of fossil fuels generators, RESs and battery storage 

system. The data center unit manages the generation part remotely through its intelligent 
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nodes installed at different locations. Phasor management units (PMU) are also installed 

inside the control center by which operator can measure grid stability in case of any fault. 

The customer section contains the intelligent building, electrical vehicles, household and 

batteries to store excess energy for later use as per customer requirement (Hassaine, Olías, 

Quintero, & Barrado, 2014). In a smart grid network, RESs are safely plugged into the 

grid and additional power is provided by the household distributed generation and battery 

storage. The smart grid will enable consumers to manage energy consumption and cost. 

This will benefit the utility companies through increasing security, reducing peak loads 

and lowering the operational costs (Al-Nasseri & Redfern, 2007; Driesen & Katiraei, 

2008). 

 

Figure 2.1: Flow of electricity in a smart grid system with a control unit and 
PMU (Hossain et al., 2016)  

However, smart grid also brings upon many challenges when the integration of fuel 

cells, photovoltaic, wind energy and battery storage are considered (Amin, 2011; Hossain 
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et al., 2016). The energy storage system (ESS) has a leading role in increasing the 

penetration of renewable energy sources due to its continuous support to the power grid 

in fulfillment of load demand in terms of regulating power system frequency and 

upgrading the transmission line capability. ESS minimizes the fluctuations of renewable 

energy and stores additional power when the generation is high so that the energy can be 

used during peak load hours (Vazquez, Lukic, Galvan, Franquelo, & Carrasco, 2010). 

ESS also improves the efficiency of the power system by mitigating grid congestion 

(Hasan, Hassan, Majid, & Rahman, 2013). In general, ESS can be classified into 

mechanical energy storage (pumped hydro storage, flywheel, compressed air energy 

storage), electrical energy storage (super-capacitors, superconducting magnetic energy 

storage), electrochemical energy storage (battery), chemical energy storage and thermal 

energy storage technologies (Gallo, Simões-Moreira, Costa, Santos, & dos Santos, 2016). 

Figure 2.2 shows the classifications of energy storage systems.  

Energy Storage System 

Mechanical Electrochemical
(Battery)

Chemical Electromagnetic Thermal

Pumped Hydro (PHS) 

Flywheel 

Compressed Air (CAES) 

Sodium Sulphur

Sodium Nickel Chloride

Vanadium Redox

Zinc Bromine

Lithium Ion

Lead Acid

Nickel Cadmium

SupercapacitorFuel Cell

Superconducting 
Magnetic Energy
 Storage (SMES)

Latent Heat

Sensible Heat

Thermo-chemical

Hybrid

Battery and Supercapacitor

Battery and Flywheel

Battery and Fuelcell

Fuelcell and Supercapacitor

Hydrogen Storage

CAES and Supercapacitor

CAES and Battery

Fuelcell, Battery and 
Supercapacitor

Synthetic Natural Gas

Biofuel

 

Figure 2.2: Classification of the energy storage system (Gallo et al., 2016)  

2.2 Energy Storage System 

Electrical energy storage and technologies that have the capability to reduce peaks and 

smooth the power are crucial elements of the future power system network. ESS can be 

the solution to fix the aging power grid, bridging the gap between the utilities and 
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customer’s demand. They have become a critical tool for increasing consumers comfort, 

reducing electricity bills and earning revenue.  

Storage device allows the consumer to not only store energy for a longer duration of 

time but also to save the consumer’s money by charging the storage devices during off-

peak hours when the price is low and using them during peak hours (H. K. Nguyen, Song, 

& Han, 2015). This increasing importance of energy storage devices has forced 

researchers to put great effort into achieving high efficient and cost-effective storage 

device. However, there are many other factors associated with the energy storage devices 

such as energy storage capacity (MWh), power capacity (MW), device cost and 

maintenance cost. The charging and discharging process of storage devices requires 

adequate control strategies to perform the reliable operation of the grid even during the 

peak demand (Lindley, 2010; Thatte & Xie, 2012).  

Microgrids are a small part of the power system that allows the smart grid to function 

properly. Microgrid plays a vital role in the integration of smart grid to the existing 

network, consisting of distributed energy resources and loads that are grid-connected or 

operated in islanded mode. They generally produce energy with renewable sources, 

making power system reliable, economical, clean and protected. ESS in microgrid is used 

to retain the power balance between the demand and generation, thus ensuring the 

regulation of frequency and grid voltage. Selection of different energy storage units, each 

having distinguished characteristics in power and energy, depends on the nature of power 

required and delivered, but the most commonly used in microgrid are super-capacitors 

(SC) and batteries. Super-capacitors have high power density and low energy density. 

SCs are used in applications to support the fast-transient power demands. In contrast, 

batteries have high energy density and low power density that can be active for longer 

durations and are used to support slow transient power demands. Hybrid energy storage 
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system having both high energy and power density are deployed to support the slow and 

fast transients together (Dubal, Ayyad, Ruiz, & Gomez-Romero, 2015; Kollimalla et al., 

2017).  

Some benefits of energy storage system in microgrid and smart grid are presented as 

follows: 

2.2.1 Peak Shaving 

Peak shaving is a technique to reduce the consumption of electricity when the demand 

for electricity is at peak, usually during daytime in summer and night time in winters. 

Utility companies now have different pricing tariffs based on the demand at a different 

time, with high price during peak hours. This variable tariff has helped the utility 

companies to achieve economic dispatch during peak hours. The other viable option is to 

install storage devices and solar panels that may help in reducing power demand as these 

are effective during peak hours when the demand is high. Organizations with high 

electrical consumptions find peak shaving an attractive option due to its pricing.  

A self-consumption energy generation technique for peak shaving is studied in 

(Luthander, Widén, Munkhammar, & Lingfors, 2016) where the community based 

centralized storage unit is analyzed to share power within the community. The self-

consumption ratio rises for the case without storage unit compared to the case with the 

central storage unit. The storage unit is hardly used in winters due to low PV power 

production. However, the storage unit increases yearly revenue and reduces losses by 

changing from the individual household to a centralized unit. The extra revenue can be 

used for the community expenses and maintenance work. 
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2.2.2 Home Energy Management 

Battery storage is deployed in houses as a source to provide power supply during 

power interruptions. Batteries are often used with uninterruptable power supply (UPS) to 

protect the equipment during the times of high spikes or low voltages. Moreover, energy 

tariff implemented in many countries can help residential customers to store energy when 

the electricity price is low and then utilizing the stored energy during the high tariff 

period. A home energy management model is examined in (Shirazi & Jadid, 2017) to 

minimize the electricity price of the household by shifting the timings of the electrical 

and thermal appliances of the housing based on the electricity pricing value. The author 

discusses the home with self-energy generation and storage units, which interact with the 

main grid for the exchange of power. Within the home, energy consumption pattern 

examines the probability of activity and social random factors like weather and 

environment for the electrical and thermal household appliances. In addition, the energy 

scheduling problem is modeled as Mixed Integer Linear Programming (MILP) to get the 

optimal power dispatch. The optimal size for the storage device is obtained to enhance 

the supply and demand by saving the extra energy.  

2.2.3 Load Levelling  

Load leveling involves the process of storing energy when the system load is light and 

delivering the energy back during the high spikes of the load. Flexible Alternating Current 

Transmission Systems (FACTS) devices and battery energy storage system are examined 

by (Rafi, Hossain, & Lu, 2016) to mitigate the voltage rise and load leveling problem. 

The smart voltage source inverter (VSI) having the capability for the reactive power 

compensation using variable power factor is used for high penetration of PV in low-

voltage (LV) network. The control method minimizes the communication between static 

synchronous compensator (STATCOM) and PV units. During the high PV penetration 
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up to 30%, the overvoltage issues are mitigated using the proposed control method even 

at the farthest point from the distribution transformer. Thus, the control method is cost 

effective because the controller can be installed only at the critical points rather than 

installing at all the testing points with a conventional controller. 

2.2.4 Power Fluctuations  

The energy storage system has been very effective in reducing fluctuations by 

providing ancillary services during the intermittent nature of RES. However, with the 

rapid increase in load demand and penetration of renewable sources, the distribution 

system faces many challenges of power fluctuations, voltage stability and immense power 

losses (Hung, Mithulananthan, & Bansal, 2014; Omran, Kazerani, & Salama, 2011; 

Sugihara, Yokoyama, Saeki, Tsuji, & Funaki, 2013). 

The authors in (Reihani, Motalleb, Ghorbani, & Saoud, 2016) proposes methods for 

smoothing the power fluctuations by using two load forecasting methods. Complex-

Valued Neural Network (CVNN) to predict the 24-hour load data and series-parallel 

forecasting method to predict the load data of 20 minutes ahead. The primary objective is 

to achieve smoothing and peak shaving for which CVNN performs optimization 

technique to follow the state of charge trajectory of BESS. Distribution grid load curve 

experiences some unsuitable charging and discharging of BESS, which increases the 

complexities due to inaccurate forecasting. Thus, the series-parallel method performs 

smoothing of the load curve by dumping the load stochastic fluctuations due to high PV 

penetration. 

2.2.5 Transmission and Distribution (T&D) upgrade deferral 

Energy storages are deployed in the transmission system to defer the equipment 

upgrades of T&D due to an increase in power demand or to extend the life of T&D 
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equipment. ESS provides economical alternatives to develop new infrastructure 

(substations and feeder) which poses challenges concerning local communities, future 

demand growth, capital investment and massive time requirement. The T&D system may 

require energy storage for a small portion of the year during the summer days when the 

demand exceeds the equipment’s capacity. Thus, ESS is beneficial in increasing the 

equipment life provided that equipment operates under the rated capacity and 

temperature. This helps in reducing the ground faults incidents in the underground cables 

("Energy Storage Association - Electrochemical Capacitors," ; Eyer & Corey, 2010).  

2.2.6 Frequency regulation 

Electric power system faces problems likes frequency deviations and voltage 

variations due to uncertainty in wind and PV output power depending on the location of 

installation, weather conditions and season of the year (Datta & Senjyu, 2013). The power 

fluctuations of these renewable sources in islanded mode may result in disconnection of 

a large area. The grid codes in European countries have been modified to provide dynamic 

grid support such as frequency control and fault ride through (FRT) during voltage sags. 

The ancillary service markets are providing system services like frequency regulation in 

many countries. The fast response time of BESS compared to other storage devices makes 

it a more effective way of supporting system frequency. Moreover. the charging and 

discharging operation of battery delivers the regulated power to grid in less than 20 

milliseconds (Xu, Oudalov, Poland, Ulbig, & Andersson, 2014). The power block of the 

battery storage system includes converters, filter circuits and control system. The frequent 

change in active and reactive power supply improves the frequency control capability and 

delivers fast active power by implementing effective control strategy (Mercier, 

Cherkaoui, & Oudalov, 2009).  
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2.2.7 Low Voltage Ride Through 

Photovoltaic systems connected to the network are developing at a very fast pace and 

will soon be a large part of the power generation in some regions (Y. Yang & Blaabjerg, 

2013). With more grid-connected PV systems in the medium voltage network, the higher 

penetration level in the grid will cause stability and reliability issues, particularly under 

voltage problem (Mirhassani, Ong, Chong, & Leong, 2015). Thus, grid codes are being 

released by the transmission system operators for PV sources that are connected to the 

low or medium voltage networks with Low Voltage Ride Through (LVRT) capability. 

Furthermore, grid codes require the injection of reactive current during such faults. The 

switching losses increase with the injection of reactive power; to compensate this, the 

system must draw active power. Moreover, the DC voltage falls in the system during the 

severe faults. The energy storage can support the voltage level to stabilize the system 

during such faults (Koutroulis & Blaabjerg, 2013; Obi & Bass, 2016; Shenoy, Kim, 

Johnson, & Krein, 2013; Y. Yang, Blaabjerg, & Wang, 2014). 

2.2.8 Loss Minimization 

The radial structure of the electrical distribution system and having large current to 

voltage ratio results in a high quantity of power losses in a distribution system. These 

power losses can be minimized by reconfiguration of the system like the optimal 

allocation of distributed generators, shunt capacitors and placement of RES (Brown, 

2008; Rahmani-Andebili, 2017). The utility companies are intended to place the 

distributed generators e.g. PV system near to distribution load to reduce the power flow, 

minimize losses and provide stability to the system in terms of avoiding voltage 

disturbances. Power loss in each branch is the measure of the squared value of current 

flowing into the branch; energy storage shifts some of this current to low demand period, 

decreasing the resistive losses. The energy storage placement in the distribution system 

Univ
ers

ity
 of

 M
ala

ya



19 

can also result in power loss minimization. The energy loss within the storage system due 

to power conditioning unit and internal resistance loss during the charge/discharge can be 

minimized by managing the efficiency of energy storage (Hien, Mithulananthan, & 

Bansal, 2013; Hung, Mithulananthan, & Bansal, 2013; Ochoa & Harrison, 2011; Tran & 

Khambadkone, 2013). 

Ali Moeini in (Moeini, Kamwa, & de Montigny, 2016) discusses the power factor-

based method to minimize the losses during charging and discharging. A multi-objective 

genetic algorithm technique is proposed to find the optimal tuning of power factor to save 

energy throughout the year. The power loss of the system can be decreased even during 

charging mode by allocating the energy storage appropriately.  

2.2.9 Reliability Improvement 

The variability in wind and solar power may deteriorate the reliability of the power 

system. Energy storage can provide the required reactive power to improve reliability by 

providing the voltage support. A charge/discharge schedule of BESS is designed in (Teng, 

Luan, Lee, & Huang, 2013) to reduce the line losses of the photovoltaic connected 

distribution system. The fast response time of BESS allows the charging/discharging to 

be scheduled on an hourly basis depending on the intermittent nature of PV and load 

variations. A mathematical model of the battery storage is implemented to determine the 

scheduling process using the genetic algorithm technique. The authors further emphasize 

that the battery scheduling can improve the reliability and provide voltage support to the 

system.  

2.2.10 Reserve Application 

Energy storage can provide reserve facility to respond to the forecast error of 

renewable resources. These reserves can be utilized to solve the contingency issue due to 
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a rapid increase in the generation or sudden fall of load demand. The response time of the 

storage system for this kind of support is very fast and may last for some hours (Díaz-

González, Sumper, Gomis-Bellmunt, & Villafáfila-Robles, 2012). The storage system 

balances the supply and demand of the electricity when the actual demand rises above the 

forecasted demand.  Flow batteries due to their short response time and high capacity are 

heavily used for this application (Sasaki, Kadoya, & Enomoto, 2004).  

2.2.11 Demand Response 

The demand response programs have been deployed in large extent as the possible 

solution to overcome the unpredictability of RES. The demand response is defined as the 

change in the energy consumption by the consumer from the normal load as an incentive 

provided by the utility companies or change in price of electricity during on-peak hours 

to maintain the stability and reliability of the system (Brahman, Honarmand, & Jadid, 

2015; Vlot, Knigge, & Slootweg, 2013). Energy storage due to its prominent features is 

the ideal candidate to manage the residential demand response where the demand and 

supply are controlled by households (Z. Wang, Gu, Li, Bale, & Sun, 2013). The benefits 

from the demand response programs are not limited to the consumers in term of saving 

bills, but they can be extended to utility companies where reliability is increased by 

modifying load shape and improving market performance (Siano, 2014).  

 A demand management response is studied in (Shakeri et al., 2017) where the primary 

objective is to provide the energy with relatively low price and without sacrificing human 

comforts. A control algorithm for the electricity demand response of a smart house is 

proposed. The algorithm uses local battery storage as an additional supplementary source 

to manage the electrical operation on basis of hourly electricity price. The algorithm 

charges the battery during off-peak hours and discharges during high demand hours. 

Furthermore, it manages the temperature of the room to optimize the electricity 
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consumption if the total power consumption of the house exceeds the defined level. A 

daily reduction in electricity price is observed by deploying the storage device and 

managing the power consumption efficiently. 

2.2.12 Electric/hybrid vehicles 

Battery energy storage is extensively used in transportation applications to provide 

power such as electric and hybrid electric vehicles. BESS with high energy density and 

fast charging/discharging capability is well suited for EVs. Super-capacitors are also 

utilized in transportation during high power peaks for short durations when the BESS 

fails to deliver. The efficiency of the EV is increased by incorporating a hybrid energy 

storage system (e.g. combination of SC-battery), which stores the energy during braking. 

The phenomenon of regenerative braking energy is dominant in city buses. SC delivers 

this energy for acceleration purpose while the battery can be used for air-conditioning, 

heater or electronic appliances (Kouchachvili, Yaïci, & Entchev, 2018; Miller, 2016). 

Therefore, hybrid storage with high power and energy density and long calendar life can 

improve the performance of EV and increase their penetration in the market. However, 

the range of the EV is a major issue due to high time consumption in charging the energy 

storage. Thus, adequate charging infrastructure should be developed (Andwari, Pesiridis, 

Rajoo, Martinez-Botas, & Esfahanian, 2017).  

Table 2.1 summarizes the benefits of energy storage with the specific characteristics 

and suitable technology preferred (Barton & Infield, 2004; de Boer & Raadschelders, 

2007; Díaz-González et al., 2012; X. Luo, Wang, Dooner, & Clarke, 2015). 
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Table 2.1: Overview of benefits with their characteristics 

Benefits Characteristics 

Power Requirement, Response 
time, Storage/discharge time  

Energy storage technology 

Peak Shaving 100 kW-100MW, seconds to 
minutes, 1-10 hour 

Lead-acid, Li-Ion, VRFB, fuel 
cell, ZnBr, NaS, NiCd 

Energy 
Management 

< 1 MW, milliseconds to seconds, 
seconds, ~2-10 hour 

PHS, NaS, ZnBr, VRFB, Li-
Ion, flywheel 

Load 
Levelling 

More than 100MW, minutes, up to 
10 hours 

Lead-acid, SMES, Li-Ion, 
PHS, CAES, VRFB, ZnBr, 
fuel cell  

Power 
fluctuations 

Few hundred kW, milliseconds, few 
seconds 

Flywheel, SMES, super-
capacitor, VRFB  

T&D upgrade 
deferral 

10-100 MW, seconds, 1-10 hour PHS, CAES, VRFB, fuel cell 

Frequency 
Regulation 

1-5 MW, milliseconds to seconds, 
few minutes to 1 hour 

NaS, Lead-acid, NaNiCl2, 
NiCd, ZnBr, super-capacitor  

Low voltage 
ride through 

< 10 MW, ~ milliseconds, few 
seconds to a minute 

Lead-acid, NaNiCl2, Li-Ion, 
NaS, super-capacitor 

Loss 
Minimization 

~100 MW, milliseconds, few 
seconds 

SMES, NaS, ZnBr, VRFB, Li-
Ion, flywheel 

Reliability 
Improvement 

~ 1 MW, milliseconds, few minutes 
to ~5 hour 

Super-capacitor, SMES, lead-
acid, VRFB, NaS 

Reserve 
Application 

1-100MW, few seconds, minutes to 
few hours 

CAES, flywheel, VRFB, 
ZnBr, fuel cell, NiCd, PHS 

Demand 
Response 

< 1 MW, seconds, ~ 1-10 hours Li-Ion, VRFB, ZnBr, 
flywheel, NaNiCl2 

Electric/hybrid 
vehicles 

~ 50 kW, milliseconds, minutes to 
hours 

Li-Ion, Lead-acid, super-
capacitor, fuel cells 

 

2.3 Hybrid energy storage 

HESS is the combination of two ESSs in which one storage has high power density, 

high efficiency during transient, longer lifetime and fast response time, while the other 

storage provides high energy density having comparatively lower discharge rate 

(Bocklisch, 2016). The most commonly used HESS is battery having high energy density, 

reliability and modularity mixed with super-capacitor, which overcomes the battery 

deficiencies of low power density, low cycle life and increases the overall efficiency of 
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the system. The hybrid energy systems can be connected in seven types of structures 

which are subdivided into two main categories of direct and indirect connection 

structures. DC-DC converters and DC-AC inverters are used to connect the batteries, 

super-capacitors and motors to the DC bus. In direct connection structures, the batteries 

and super-capacitor are directly connected to DC bus without any involvement of 

converters (DC-DC, DC-AC), whereas battery and super-capacitor are connected to 

converters and then to DC bus in indirect connection structures. Figure 2.3 shows direct 

and indirect connection structures. The main benefits of hybrid energy storage are cost 

reduction, increase in system efficiency, greater storage capacity and longer lifetime 

(Ostadi, Kazerani, & Chen, 2013; H. Wang, Wang, & Hu, 2017; H. M. Wang, 2014).  

DC Bus

(d)

DC

DC

DC Bus

(a)

DC Bus

(b)

DC

DC
DC Bus

(b)

DC

DC

DC

DC

Super Capacitor Battery  

Figure 2.3: Schematic structures of hybrid ESS (a) direct connection, (b) (c) (d) 
indirect connections (H. Wang et al., 2017) 

HESS applications have been reported in a number of literature, where a battery with 

super-capacitor hybrid storage and battery with fuel cell hybrid storage is applied in 

electric vehicles (Camara, Gualous, Gustin, & Berthon, 2008). Electric vehicles use 

HESS to meet the demands of high energy and high-power densities, and also due to the 
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small size and weight of HESS. Hybrid storage is able to perform peak shaving and stress 

reduction on other storage devices and public grid. HESS is also used in renewable energy 

systems with battery/hydrogen combination and in solar parks (Alloui, Becherif, & 

Marouani, 2013; Shen, Jiang, Su, & Karimi, 2015; Song et al., 2015).  

2.4 Sizing of Energy Storage System 

To achieve maximum economic benefit from the storage system, optimal sizing is an 

important factor of the battery that should be known. The calculation for the optimal size 

of the battery is a complex task because the efficiency of the battery, its lifecycle and 

electricity tariff are all dependent on battery sizing. This task becomes more complicated 

when ESS is integrated with the RES that contains uncertainties, which has a direct impact 

on load demand and energy prices. Probabilistic and stochastic approaches have been 

reported in the literature for the sizing of BESS. The former is used when ESS is 

integrated with RES due to its fluctuating nature, while the latter is used when storage 

devices are connected with the load (Bayram, Abdallah, Tajer, & Qaraqe, 2017; 

Carpinelli, Mottola, & Proto, 2016; Hajipour, Bozorg, & Fotuhi-Firuzabad, 2015; Harsha 

& Dahleh, 2015).  

2.4.1 Probabilistic methods 

A probabilistic approach for the optimal sizing of ESS has been discussed in 

(Greenwood, Wade, Taylor, Papadopoulos, & Heyward, 2017) which takes into account 

demand variability, reliability and energy-power limits.  The authors consider the energy 

storage system and real-time thermal rating (RTTR) to address the optimal sizing problem 

for the application of peak shaving in distribution networks. A reliability metric known 

as Expected Energy Not Supplied (EENS) has been used to quantify the appropriate size 

of ESS. Extension of RTTR in the sizing method provides greater benefits on the 
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distribution network security of supply compared to ESS individually. However, the 

inclusion of RTTR increases the size of ESS and high energy to power is attained.  

Hans Bludszuweit (Bludszuweit & Domínguez-Navarro, 2011) studied the cost-

benefit analysis for ESS sizing to reduce the forecast uncertainty. The method estimates 

the uncertainty as a function of ESS size by studying the forecast error statistical patterns 

and state of charge (SOC) to quantify unused wind energy. Energy storage power and 

capacity can be reduced by having a small quantity of unused energy, whereas the 

inclusion of forecast error increases the size of energy storage. The study concludes that 

large energy storage capacity is required to reduce the forecast uncertainty.  

In (Zarezadeh, Fakharzadegan, Ghorbani, & Fathabadi, 2015), a probabilistic 

approach for the optimal energy dispatch by considering the uncertainties of solar 

irradiance and consumer load has been discussed. Feed in Tariff (FiT) and time of use 

electricity tariff are taken into account for the consumers to decide the optimal PV array 

and battery size for the residual installations. The authors implement fuzzy method to 

conduct the long-term assessments of battery sizing. The result report that sizing of PV 

array and energy storage is independent with identical electricity buying and selling price. 

However, when the tariffs are different, simultaneous optimization for the battery and PV 

sizing maximizes the benefits of the system.  

A reliability index known as loss of load expectation (LOLE) has been discussed in 

(Bahramirad, Reder, & Khodaei, 2012) that helps to curtail the microgrid operating cost 

by optimizing the battery size. The economic benefits of the microgrid are justified by 

providing power from ESS to local loads at a low price during peak periods and 

controlling excessive power generations.  The mixed integer programming assesses the 

reliability criteria with high accuracy. The larger size of the battery (more than the 

optimal) results in the high operating cost of microgrid.  
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Another similar approach has been addressed in (Carpinelli et al., 2016) to optimize 

the total cost with energy prices, discount rate and load demand as input variables. The 

probability density functions of these random input variables are solved by Monte Carlo 

simulation for effective size of BESS. Furthermore, the authors also highlight the 

importance of TOU tariffs in battery sizing and allowing the customers to sell energy to 

the grid with beneficial rates. The analysis demonstrated the important link between the 

BESS size and energy price and the results showed that profit of installing BESS 

decreases with the increase in electricity tariff.  

2.4.2 Stochastic Methods 

A unit commitment approach for the sizing of energy storage in grid-connected and 

islanded mode is analyzed in (Chen, Gooi, & Wang, 2012). In grid-connected mode, the 

objective is to obtain a cost-effective solution for the microgrid with power being 

exported to the grid during low load periods. The proposed method takes the forecast 

error and uncertainties into consideration. The optimal BESS size reduces the total cost 

for the islanded microgrid and increases the total benefit in the grid-connected scenario. 

It is indicated that the lifetime of the battery can be increased with the limitation of 

charging and discharging rate. 

Nguyen (T. A. Nguyen, Crow, & Elmore, 2015) discussed the vanadium redox flow 

battery (VRFB) in microgrid system to be effective in both modes with charging and 

discharging rates added as a constraint. Furthermore, the nonlinear charge/discharge 

efficiencies are considered as a function of voltage, stack efficiency and temperature. The 

independent ratings of power and energy make VRFB more flexible for the microgrid 

conditions. The dynamic programming-based unit commitment method is implemented 

to find the optimum size. 
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A heuristic method incorporating particle swarm optimization (PSO) is used to find 

the optimal size of BESS (Sukumar, Mokhlis, Mekhilef, Naidu, & Karimi, 2017). The 

mix-mode energy management strategy operates the microgrid at the lowest operating 

cost by integrating three different operating strategies. Linear programming and mixed 

integer linear programming methods are used to minimize the cost of microgrid under 

these strategies. The operating cost of microgrid in a day is reduced with an initial charge 

of battery to be taken as 100% at the start of the day. In addition to this, the immense 

availability of PV in summer affects the cost compared to winter. 

In (Aghamohammadi & Abdolahinia, 2014), the energy storage size is determined for 

the frequency regulation services in an islanded microgrid. The overloading characteristic 

of BESS is implemented for a short time duration to control frequency, resulting in a 

quick response of battery to overcome the power mismatch. However, the authors did not 

consider the impact of lifetime degradation and economic drawbacks by overloading the 

BESS. 

The genetic algorithm (GA) based method to determine the optimal battery size has 

been presented in (Fossati, Galarza, Martín-Villate, & Fontán, 2015). The proposed 

method uses the fuzzy expert system to regulate the power flow of energy storage. The 

GA method builds the knowledge base of the fuzzy rules and membership functions. A 

lifetime aging model predicts the lifetime and growth of the battery. The microgrid cost 

is also affected by the lifetime and sizing of the battery. However, deep discharges 

reduces the lifetime of battery storage.     

2.5 Factors Affecting Sizing of Energy Storage 

There are multiple factors which decide the size of energy storage. These factors are 

described in the sub-sections below. 
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2.5.1  Battery degradation 

The design consideration for the optimal sizing of BESS must undertake some key 

battery parameters and battery degradation is one of them. Apart from its rated life, there 

are other factors which deteriorate the battery capacity. 

2.5.1.1 Depth of discharge:  

The depth of discharge (DOD) represents the amount of capacity used by the battery 

relative to its total battery capacity. DOD is a major factor in the lifespan of the battery 

as it allows for deep charge/discharge cycles. Unlike sodium sulphur batteries which can 

bear 100% DOD, the lifetime of other battery chemistries will be severely impacted by 

DOD value. The optimal DOD should be selected to increase the efficiency and longevity 

of the battery. The relationship between the lifecycle and DOD is normally presented in 

a curve which varies across different battery types. A typical curve is shown in Figure 2.4 

for the lithium-ion battery at 20𝑜C temperature.  

 

Figure 2.4: Lifecycle curve of Li-Ion battery for different depth of discharges 
(C. Zhou, Qian, Allan, & Zhou, 2011) 
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2.5.1.2 Battery lifetime:  

The lifetime of the battery is one of the most important factor in the cost operation of 

BESS. The number of lifecycles a battery can sustain in its entire life depends on the 

charging and discharging schedule of the battery. The lifetime degradation of the battery 

is affected by two main factors: the lifecycle aging reflecting the number of cycles the 

battery has accomplished, and the decrease in battery capacity (Ju & Wang, 2016; Smith, 

Earleywine, Wood, & Pesaran, 2012). The lifetime equation varies with the type of 

battery used. However, it can be extended with a proper selection of depth of discharge 

and cycle depth. 

2.5.1.3 Temperature:  

The degradation of the battery life is dependent on the ambient temperature by a 

phenomenon called capacity fading. It analyses the reduction in total battery capacity 

operating at a certain temperature after it experiences a particular number of charging and 

discharging cycles. This phenomenon has been observed at both high and low 

temperatures to evaluate their impact on the performance of the battery. The internal 

resistance of the battery increases at low temperature, whereas battery chemical reaction 

increases at high temperatures, which degrades the electrodes (Bandhauer, Garimella, & 

Fuller, 2011; Khawaja et al., 2017). The capacity fading percentage changes with the 

battery characteristics provided by the manufactures.  

2.5.1.4 Charge and discharge current:  

Another factor constituting the battery degradation is the charge and discharge currents. 

The high current during charging and discharging operation negatively affects the battery 

lifespan. The battery capacity also reduces when supplying large currents due to the 
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increase in the internal resistance. Thus, charge and discharge power should be limited to 

specific values to avoid the damage of BESS.  

2.5.2 Reliability  

The reliability of microgrid is essential in determining the optimal size of energy 

storage. The reliability criteria should satisfy the reliability indices available in terms of 

generation adequacy and economic factors. Energy storage provides feasible solutions for 

satisfying the microgrid reliability levels efficiently. Load curtailment and load leveling 

are viable options to achieve the reliability indices in the microgrid. 

2.5.3 Battery placement 

Research into the optimal placement of BESS in a microgrid is still at its infancy. To 

minimize the losses and improve system stability, energy storage must be allocated 

appropriately. The optimum location may lead to a reduction in the energy purchased 

from the main grid, which decreases the cost of microgrid. The optimal storage location, 

which can support high penetration of RES is selected by performing tests for different 

scenarios.  

2.6 Recycling of Batteries 

Recycling of batteries is a process to reduce the disposal of batteries as a waste product. 

There are heavy toxic chemicals and materials within the battery and disposal of such 

elements as trash may increase environmental concerns and water pollution. Battery 

manufactures should be aware of the health hazards of battery waste and have their own 

recycling centers. Europe has been the leading market for recycling services, 

implementing major projects of energy conversion and growing awareness among the 

people to increase the demand for battery recycling process. North America is the second 
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largest market followed by Asia Pacific region as a result of stringent governmental and 

environmental regulations ("Transparency Market Research-Published on 14-07-2016,").  

Lead acid has the highest recycling market among all the battery storage due to the 

high demand for recovered materials. The high maturity level of lead-acid has retained 

its dominance in the market for centuries and will continue to lead the battery recycling 

market till 2021 ("Global Battery Recycling Market 2017-2021,"). On the contrary, other 

battery storages like Li-Ion, Ni-Cd and Ni-MH are less economical to recycle as energy 

storages, whereas flow batteries and Na-S, Na-NiCl2 are not recyclable (May, Davidson, 

& Monahov, 2018; Sullivan & Gaines, 2010).  

The recycling process of lead-acid is done by crashing the batteries and recovering the 

chemical contents. Lead, after refining, is again used for battery production, and other 

materials are recovered as scrap.  Battery manufacturers are finding ways to give a second 

life to lithium batteries in other applications to overcome the dependency on lithium. 

However, the lithium recovered from the battery is in small proportion and inexpensive 

compared to cobalt and nickel (Heelan et al., 2016). Lithium batteries used in electric 

vehicles, when degraded with time, lose performance by reduction of 20% from its initial 

capacity. The average life of batteries for electric vehicles is 8 to 10 years but these 

batteries can be reused as storage for load balancing and other applications. Nickel metal 

hydride batteries used in hybrid vehicles are recycled to get nickel and iron. These 

elements go through electric arc furnace process to get ferro-nickel used in the stainless-

steel industry (Gaines, 2014).  

The high utilization and presence of domestic and international companies have 

increased the diversity in battery manufacturing. Low cost, less efficient and poor life 

batteries are also available in the market which has a bad impact on the socio-economic-

health of society. Stringent laws and enforcement are urgently needed. More efforts are 
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required from the recycling industry to expand the reusing of waste by offering motivating 

forces to the consumers.  

2.7 Economic Dispatch  

In electrical power systems, economic dispatch problem is considered to be one of the 

crucial decision-making processes for the reliable operation of the power system. The 

economic operation of a microgrid is essential for effective utilization of renewable 

energy and other distributed energy sources integrated within microgrid. Economic 

dispatch optimizes the power generation from distributed generators such that there is no 

mismatch between demand and generation. The objective of the economic dispatch 

problem is to optimize the overall cost of the system within the defined set of constraints.  

Many classical techniques have been used in the literature (Bayón, Grau, Ruiz, & 

Suárez, 2012; Chauhan, Jain, & Verma, 2017; Zhigang Li, Wu, Zhang, Sun, & Guo, 2013; 

Palanichamy & Babu, 2008; Zhan, Wu, Guo, & Zhou, 2014) for the optimization of 

economic dispatch problem like linear programming, fast lambda iteration, interior point 

and other heuristic techniques. The complexity of the problem increases when dynamic 

dispatch is used to find the most optimal cost for the given period of time. The objective 

is to provide the power within the minimum cost at each hour of the time depending on 

the load demand. The static economic dispatch optimizes the generation of plants for a 

specific time period minimizing the overall cost, whereas dynamic dispatch plans the 

generation for the complete time period taking ramp constraints rate into account, which 

results in reliable operation (Benhamida, Ziane, Souag, Salhi, & Dehiba, 2013; P. Luo, 

Sun, Zhu, Wu, & Chen, 2016). 

Dynamic economic dispatch (DED) reduces the overall operating cost and increases 

the total profit by coordinating and cooperating among other devices in the system. 
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Hence, DED is more suitable for microgrid operation comprising of storage devices and 

generators. Economic dispatch is a nonlinear optimization problem with different 

optimization strategies used to formulate the dynamic scheduling problem.  

The authors in (Zhigang Li et al., 2013) solves the DED problem using Lagrangian 

relaxation method with the help of the central coordinator to communicate with all the 

generators. The quasi Newton method has been applied for updating multiplier to solve 

the dual problem of DED. The proposed method has been examined on the different 

distribution network, producing high computational efficiency.  

Dynamic programming is implemented to solve the economic dispatch problem in 

(Shuai et al., 2018). The uncertainties of renewable power generation, electricity price 

and load are solved by Monte Carlo method. The dynamic programming can solve the 

discontinuous cost functions, but the computational time increases with the number of 

generating units.  The proposed algorithm results in an optimal solution compared with 

other techniques, showing robustness in solving the intra-day optimization even with 

inaccurate forecast information.   

The economic load dispatch problem of a hydropower plant with 26 turbines is solved 

by an improved genetic algorithm in (Shang et al., 2017). The performance of the 

algorithm is evaluated in terms of stability, computational time, and accuracy. The results 

show the effectiveness of the proposed method over the genetic algorithm in avoiding the 

running of turbines in vibration zones to ensure the safety of turbines. However, the 

stability of the algorithm is reduced when the number of generating units increases.  

Wu in (Wu, Ding, Wu, Jing, & Zhou, 2016) has used mixed integer programming 

(MIP) approach to solve the non-convex economic dispatch problem by considering the 

value-point effect, power losses, operating zone and spinning reserve constraints. The 
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two-phase optimization algorithm linearizes the non-smooth cost function and uses the 

encoding technique to convert the non-convex problem into a MIP problem in the first 

phase. The obtained solution generates the optimal value in the second stage when the 

power range of each unit is compressed. The proposed method is found effective for 

solving non-convex economic dispatch problems compared to metaheuristic approaches. 

2.8 Electric Vehicle 

In recent years, the transportation industry has begun to increase the production of 

electric vehicles due to increasing public awareness and political support. The reduction 

of greenhouse gas emissions and sustainable transportation system are the environmental 

benefits associated with the large-scale development of electric vehicles. Significant 

advancements in the battery storage technology, particularly in lithium ion and nickel-

metal hydride (NiMh) enabled the adoption of hybrid and battery electric vehicles all over 

the world. This continuous development had stimulated the transportation manufacturers 

to introduce plug-in hybrid electric vehicle (PHEV) that can be recharged by the power 

grid.  

The global oil consumption by transport industry is more than 50% and CO2 emission 

by transportation is approximately 23% until 2013 (R. Zhang, Fujimori, Dai, & Hanaoka, 

2018). EV can play major role in reducing oil consumption and gas emission, while 

providing clean energy. If renewable energy is used to charge the EV, CO2 emissions are 

further reduced. Beside emission reduction, the advantages of EV include high energy 

efficiency, energy production by regenerative braking, low energy per km cost and less 

noise. EV batteries can store energy during the times of low energy price and release back 

to power grid during high electricity tariff, making revenue for EV owner. On the other 

hand, EVs are expensive compared to internal combustion engine vehicles due to high 

Univ
ers

ity
 of

 M
ala

ya



35 

cost of battery storage. But with the decreasing cost of storage components, it is predicted 

that 2.7 million EVs will be on road by 2019 (Mao et al., 2017).   

2.8.1 EV charging levels 

The charging power levels reflect the amount of power, the time consumed, cost and 

effect on the grid. The availability of charging stations near the parking area reduces on-

board charging requirement and cost. The charging cords, power outlets, vehicle 

connectors differ from vehicle to vehicle and region to region depending on voltage and 

frequency standards. The electric power research institute reports that mostly EV users 

charge their vehicles overnight. Generally, the EV charging can be categorized into three 

levels: 

2.8.1.1 Level 1 charging 

Level 1 provides the charging through the 120 V single phase household outlet. This 

is the slowest charging method and takes more than eight hours to charge for 40 miles of 

range. Level 1 charging is done overnight as the electricity rate is cheapest at night. This 

charging level is suitable for vehicles with small battery capacity or vehicles with a 

traveling range of maximum 40 miles per day. The charging connector for level 1 is 

shown in Figure 2.5.  

 

Figure 2.5: Level 1 charger 
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2.8.1.2 Level 2 charging 

The charging equipment under level 2 charging requires 240 V, AC (single/three 

phase) either installed at home or public charging station. Level 2 chargers are most 

commonly available chargers at offices and parking lots, which can draw current at up to 

80A (19.2 kW). EV owners prefer level 2 charging owing to its fast charging with about 

70 miles of range per hour. The charging equipment for level 2 has standard EV 

connection plug that can fit into all electric vehicles except Tesla as they require an 

adapter. Figure 2.6 shows the level 2 charging device. 

 

Figure 2.6: Level 2 charger 

2.8.1.3 Level 3 charging  

Level 3 equipment has the fastest charging capacity with 480V, DC that can add 50 to 

90 miles in half hour. Tesla supercharges are even faster with charging capacity of 170 

miles in 30 minutes. The charging equipment is installed mostly at highways, rest areas 

and charging stations used for longer trips. Different plug types are available for DC fast 
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charging with most common protocol CHAdeMO, which is recognized internationally. 

Figure 2.7 shows the charging station powered by DC fast chargers for EV.  

 

Figure 2.7: Charging station with DC fast chargers 

2.8.2 EV charging strategies 

2.8.2.1 Uncoordinated charging 

In uncoordinated charging scheme, EV batteries are connected to charging station 

immediately and they continue to charge until the battery is fully charged. This charging 

scheme is most likely seen at home when EVs return home in the evening and the batteries 

are charged until midnight. The network load increases during the peak hours by 

simultaneous charging of multiple EVs which affects the power quality of the distribution 

system having voltage deviations and extra power losses. The EV charging load may lead 

to overloading of distribution transformers, reducing reliability and increasing the cost of 

the power grid.  

2.8.2.2 Coordinated charging 

The coordinated charging scheme reduces the peak load by charging the EV batteries 

at night time when the electricity demand is low. Utility companies offer a time of use 

tariff to charge the battery at off-peak periods. A coordinated charging system improves 
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the reliability of the system and reduces the voltage deviations and transformer 

overloading. An aggregator sends the control signal to the connected EVs to continue or 

stop charging based on the capacity available in the distribution transformer.  

The smart charging coordination to reduce the peak load and extra power losses has 

been proposed in  (Suganya, Raja, & Venkatesh, 2017). The proposed method locates the 

optimal, midst and unfit sites for charging stations based on technical losses and voltage 

deviations. The distribution system can be divided into residential and commercial buses 

when simultaneous scheduling of EVs is established. The modified particle swarm 

optimization has been used to schedule the EV charging in both areas. The proposed 

method locates the charging station in an optimal site as a priority. However, EV user 

convenience and overloading of distribution transformer in the optimal site is also 

considered to find the charging station in other sites. Results showed that two area 

framework improves the performance of the system and provides flexibility in EV 

charging.  

A charge coordinated problem of EV batteries has been solved in (Arias et al., 2017) 

to reduce the operational cost of the system. The proposed method has been implemented 

with three metaheuristic techniques: tabu search, greedy randomized adaptive and hybrid 

optimization algorithm. The impact of charging EVs under specific time period according 

to EV owner’s preference is evaluated with three techniques, producing an optimal 

solution by using a hybrid optimization algorithm. Different EV penetrations are 

examined in the presence of distributed generators (DG) on a 449-node distribution 

network. The results show that charging of EV improves the voltage profile and 

minimizes the system losses when DG is integrated into the network.  

An optimal scheduling algorithm with a decentralized controller is proposed in (Xing, 

Fu, Lin, & Mou, 2016) to schedule the charging and discharging of EV. The proposed 
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method aims to flatten the demand curve as per consumer battery requirement. The 

optimal scheduling problem is formulated as a mixed discrete programming problem, 

which is solved by water-filling algorithm. The decentralized controller communicates 

with the aggregator after EV conducts local computation. The study recommends to retain 

the battery state of charge between 20% to 85% to extend the battery lifetime. The 

proposed algorithm reduces the computational burden in charging EVs to specific state-

of-charge (SOC) compared to other mixed integer non-linear programming problems.  

Nguyen in  (H. N. T. Nguyen, Zhang, & Mahmud, 2015) performs the charging and 

discharging coordination of EV for G2V and V2G operation taking customers preference 

to charge up to defined SOC. The proposed method is to able to schedule the future 

charging request as per the customer’s desire for the day ahead. The customer 

participation program improves the performance of the control algorithm in load shifting 

during peak periods. However, the authors have not taken the power losses into 

consideration during charging and discharging event.  

A smart charging strategy to integrate EVs in the carpark is presented in (Mehta, 

Srinivasan, Khambadkone, Yang, & Trivedi, 2018) to reduce the cost and minimize the 

peak average ratio (PAR). The proposed method has been tested on 37 bus distribution 

system with maximum EV penetration by considering the technical constraints of the 

system. The study focuses on EV charging at workplace, hence charging to maximum 

SOC is avoided and EV battery is charged as per user’s next trip details, which are based 

on present SOC, traveling distance and departure time. The analysis found that fast 

charging results in higher cost and PAR and reduces the EV penetration into the 

distribution system. Furthermore, a predefined boundary is allocated for 

charging/discharging of EV to reduce the battery degradation cost.  
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The cost-benefit analysis for the optimal charging and discharging coordination of EV 

is proposed in (Z. Luo, Hu, Song, Xu, & Lu, 2013). The study addresses the issues of 

characterizing the charging pattern and computing the maximum charging load and 

available discharge capacity of EV battery. The two-stage optimization model minimizes 

the peak load with maximum EV load in the first stage and then reduces the fluctuation 

at the peak load in the second stage. The proposed method calculates the annual benefit 

from the savings earned through peak shaving whereby neglecting the battery degradation 

cost and taking fixed charging power of EVs.  The case study has been performed for data 

collected from a region in China with different penetration levels expected for 2020 and 

2030.  

The economic dispatch of microgrid was optimized by developing a multi-agent 

system with different penetrations of EV (Lin et al., 2018). Three charging patterns; 

uncontrolled charging, rapid charging and smart charging together with V2G were 

analyzed in the presence of a gas turbine, chillers and photovoltaic system. The smart 

charging strategy shifts the EV charging load to valley period during peak time to improve 

the stability of the system. The V2G technology reduces the electricity supply from gas 

turbine when high penetration was considered. Hence, the microgrid operating cost was 

remarkably minimized with V2G availability compared with the uncontrolled charging. 

However, the proposed method had defined a potential limit for V2G in a specific time 

to avoid deep discharge depreciating battery lifetime. 

Zhang in (H. Zhang, Hu, Xu, & Song, 2017) has developed a quantitative evaluation 

method for discharging PEV fleets by considering power and energy constraints of the 

PEVs. The proposed method develops aggregate queueing model to evaluate the available 

V2G capacity during real-time operations without identifying the charging and 

discharging durations. The difficulty in forecasting of charging demand due to the 
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stochastic behavior of EV traveling is reduced to compute the available capacity for V2G.  

In addition, laxity-SOC based heuristic smart charging strategy is designed to perform a 

reliable operation for PEV charging and discharging. The uncertainty of reserve 

utilization is also considered during scheduling strategy by ensuring the profit 

maximization. The numerical analyses result in gaining the benefits from the reserves 

accumulated during energy scheduling of EV.  

A stochastic optimization model for energy management in a microgrid using 

uncertain battery capacity of the EV parking lot is proposed in (Mortaz & Valenzuela, 

2017) to minimize the total operating cost. The economic benefits of integrating the 

parking lot in the microgrid are analyzed by providing a free parking facility for EV 

owners and compensation for battery wear cost. Market price fluctuation, parking time, 

the uncertainty of battery capacity and EV arrival/departure are considered for the cost 

saving analysis. The proposed model is tested on 14 bus distribution system, and Benders 

decomposition algorithm is implemented to optimize the operating cost. The results show 

the increase in savings with high price fluctuation ratio and increase parking time for EV 

users.  

A stochastic optimization method having a centralized control unit is proposed in 

(Tabatabaee, Mortazavi, & Niknam, 2017) for coordinated charging of PEV. The load 

flow based on unscented transform is formulated to model the uncertainties of renewable 

power and EV charging/discharging load. The operational cost accounts for the cost of 

charging EV, battery degradation cost for the discharging event and the cost of energy 

not supplied. The optimal solution is computed using a modified bat algorithm and the 

performance of the model is examined on the local distribution system. The simulation 

results showed a reduction in operational cost by V2G implementation, whereas the 

uncertainty effect increases the network cost.  
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Lu in (Lu, Zhou, Yang, & Liu, 2018) proposed a multi-objective optimal dispatch of 

microgrid incorporating wind turbine, photovoltaic, diesel generators and microturbine. 

The Monte Carlo simulation is used to solve the uncertainties of EV arrival and departure. 

The proposed method performs peak shaving by charging the EVs during low price period 

to reduce the operating cost. The results reveal that coordinated charging with higher 

penetration of distributed generators minimizes the cost and load variance. However, 

weighting factor behaves as a trade-off between system cost and load fluctuation. The 

study finds V2G is not economical for EV owners due to battery degradation cost, but it 

improves the stability of the system by minimizing load variance.  

The charge coordination problem of EV together with V2G technology in an 

unbalanced distribution system is solved in (Antúnez et al., 2016). The authors have taken 

random arrival and departure times and EVs state of charge upon arrival with different 

battery sizes to reduce the energy cost and optimize the operation of the distribution 

system. The proposed method schedules the optimal EV charging by considering the 

uncertainty of load while satisfying the voltage limits and minimizing the power losses. 

The results illustrate that V2G utilization in the distribution system is not economically 

beneficial as the lifetime of EV battery depreciates and cost of replacing the battery 

outstrips the benefits associated with V2G. 

A novel bidirectional operation of EV in grid-connected and islanded mode is 

proposed in (Rodrigues, de Souza, & Ribeiro, 2018) for the three-phase unbalanced 

distribution system. The proposed method implements grid-to-vehicle (G2V) strategy 

based on the power availability of buses ensuring the grid operative conditions are 

satisfactory. If any failure leads the network to islanded mode, the reliability and security 

of the network are increased by V2G implementation. Furthermore, EV operation enables 

the mutual implication of G2V and V2G strategies with variable load and generation in a 
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smart microgrid environment. The complexity of the proposed model is increased with 

the combination of both modes in an unbalanced real distribution network. 

2.9 Optimization Algorithm  

Optimization algorithms are significant to determine the optimal solutions for the 

economic power dispatch. Optimization techniques can be classified as heuristic and 

meta-heuristic techniques. The former are problem-dependent techniques and fails to find 

the global optimum solution whereas the latter provides the better solution near to global 

solution. Different metaheuristic optimization techniques have emerged over the past few 

years but convergence analysis for majority algorithms still remains unsolved. Stochastic 

approaches are preferred over deterministic approach due to their ability to solve the 

randomness in the algorithm. In this thesis, optimization techniques such as firefly (FA), 

particle swarm optimization (PSO), artificial bee colony (ABC) and harmony search 

algorithm (HSA) are evaluated to obtain the optimal solution with minimum 

computational cost.  

2.9.1 Firefly Algorithm 

The firefly algorithm (FA) analyzes the social behavior of flies and is similar to other 

meta-heuristic techniques. The algorithm was originally developed by Yang (X.-S. Yang, 

2010) based on three main ideas:  

1) The fireflies attract their mating partners.  

2) The bright firefly gets attracted to brighter fireflies.  

3) If the firefly cannot find brighter fireflies, then it will move randomly in the search 

space. 
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Firefly is a population-based optimization algorithm and is distinguished from the 

other optimization techniques by adjusting the parameters, which have low dependency 

on the algorithm and appropriately identifying the search space. The above mentioned 

three ideas of firefly algorithm are explained in the mathematical form below: 

2.9.1.1 Separation between fireflies  

The distance between two mating fireflies in the search space is calculated as vector 

operation performed in Cartesian framework between the ith and jth firefly given by the 

expression:  

2
, ,

1
( )

s

ij i j i D j D

D

r Y Y Y Y
=

= − = −     (2.1) 

where r is the distance between two fireflies, s is the dimension of the control vector,  

, ,/i D j DY Y  are the Dth dimensions of /i jY Y  fireflies respectively.  

2.9.1.2 Attraction between firefly  

The attraction of the fireflies decreases when the two mating fireflies move in the 

opposite direction and the separation between them increases. The attraction of the flies 

can be represented by the following expression: 

0( ) exp( );    1mr r m  =  −      (2.2) 

where ( )r and 0  represents the attractiveness when the fireflies are at the distance 

r and 0.   is the coefficient of light absorbed by firefly and m is the number of fireflies 

taken as 2. 
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2.9.1.3 Movement of the fireflies  

The fireflies move towards brighter fireflies. The movement between the two fireflies, 

jth firefly (low intensity) towards the ith firefly (high intensity) is given by the 

mathematical expression: 

0( ) exp( ) ( )m

j j i j jY t Y r Y Y v = +  −  − +    (2.3) 

( 0.5)jv rand= −      (2.4) 

The first term of the Eq (2.3) shows the present position of jth firefly. The second term 

represents the intensity of brightness by which the jth firefly is attracted towards ith 

firefly. However, the last term 
jv   represents the movement of a jth firefly in the entire 

search space when it cannot find fireflies with more intensity. The randomization 

parameter   is a constant value in the range of 0-0.5. The pseudo code of the firefly 

algorithm is shown in Figure 2.8. 

 

Figure 2.8: Pseudo code of firefly algorithm 
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2.9.2 Particle Swarm Optimization  

PSO is an optimization technique that evaluates optimal parameters from complex 

search space based on the paradigm of swarm intelligence. The algorithm developed by 

Kennedy and Eberhart was initially modeled as the social behavior of animals like a flock 

of birds or school of fish. In PSO, the group of random particles is initiated to obtain the 

optimal parameters by updating generations. Each particle tracks its position within the 

search space at each iteration and the new position is obtained. The movement of particles 

is identified by two values best  and bestG . best is the particles best position in all iterations 

whereas bestG  is the global best value of any particle in the search space (Kerdphol, Fuji, 

Mitani, Watanabe, & Qudaih, 2016). The particles update their velocity and new position 

based on the following equations; 

( ) ( )1 1 1 best 2 2 bestc r c r Gk k k kw + =  +    − +   −χ χ   (2.5) 

1 1k k k+ += +χ χ      (2.6) 

where 1k +  and 1k+χ represents the updated velocity and position of the particle, w  is 

the inertia weight, 1r  and 2r are the random numbers ranging from 0 to 1 and 1c , 2c are 

the acceleration constants. The advantage of PSO is fast computation and simplicity. 

However, with the multivariable components, the convergence accuracy decreases. Thus, 

hybrid optimization techniques including PSO and other metaheuristic algorithms can 

yield an optimal result with less computation time.  

2.9.3  Artificial Bee Colony  

ABC is another intelligent swarm-based optimization technique which stimulates the 

foraging behavior of honey bee colony. The mechanism of the algorithm is based on three 
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fundamental components: food source, employed bees and unemployed bees, which are 

further classified as scout bees and onlooker bees (Sundareswaran, Sankar, Nayak, 

Simon, & Palani, 2015). At the starting phase, scout bees are the employed bees, which 

are trying to find the location of food source in search space given by 

( )min max min
, , , ,rj k j k j k j k= +  −χ χ χ χ     (2.7) 

where max
,j kχ  and min

,j kχ  are the maximum and minimum values of the food source 

position in search space. The number of food sources is assumed to be half of bees colony, 

containing an equal number of employed bees and onlooker bees.   

Employed bees are the ones, which are presently exploiting food source position. In 

order to find a better location for a food source, the following equation is used 

, , , , ,( ),   j k j k j k j k l k j l = + − χ χ χ      (2.8) 

where ,j kχ  and ,l kχ  are the food source locations in the search space and ,j k  is the 

random number ranging from -1 to 1.  The reference position is denoted as jth position 

and l is the dimension of search space {1,2,....NE}l . When the employed bee finds a 

better position ,j k  than the reference position ,j kχ , the candidate position is replaced 

with a better one.  

Onlooker bees also try to find the food source location similar to employed bees but 

they look for the positions with more nectar available (fitness value) in the search space. 

The probability of food source position selected by onlooker bees is dependent on the 

amount of nectar and is calculated as fitness function, defined by 
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1

j

j NE

l

l

fit

fit



=

=


      (2.9) 

The probabilistic fitness function locates the better food source position for onlooker 

bees and this step improves the performance of the algorithm in obtaining an optimal 

result. 

However, if both the bees are not able to improve the food source position, then the 

food source reaches its maximum limit and is removed from the search space. The scout 

bees again find the new food source in replacement and its location is determined by Eq 

(2.7). Thus, the algorithm does not trap into local optima through this abandoning and 

searching mechanism. The advantage of the ABC algorithm is the robustness, flexibility 

and capability to explore local solutions with easiness. They can be applied to complex 

functions but when sequential processing is performed, the computational time increases.  

2.9.4 Harmony Search Algorithm  

Harmony Search is a different meta-heuristic technique which is inspired by artistic 

improvisation process of musicians searching for harmony state. The optimization 

solution vector in the algorithm is related to harmony in music, while a global search 

scheme can be compared with musician’s improvisation. The algorithm stimulates the 

behavioral phenomenon of musicians where they search for perfect harmony state by 

repeating experiments, as the optimization process finds the better optimal value for the 

defined objective function (Khorram & Jaberipour, 2011). The optimization algorithm 

consists of three operational steps: randomly search, memory consideration and pitch 

adjustment.   

Step 1: The Harmony Memory (HM) matrix is initialized containing elements of 

decision variables which are randomly generated from the search space as 
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( )
j

h

j j j = +  −χ      (2.10) 

where 
j

hχ  is the element of harmony memory, j and j  represent the lower and upper 

boundary limits of the dimension and   is the real number ranging between 0 and 1. 

Step 2: The harmony memory is improvised with each of the uniformly random value 

chosen from the search space is not larger than harmony memory consideration rate 

(HMCR). HMCR is the rate of choosing the value from harmony memory, varying 

between 0 and 1 

j j

h n=χ χ       (2.11) 

where 
j

nχ  is the selected harmony from memory.   

Step 3: The elements improvised from memory consideration step are now further 

improvised with pitch adjustment rate (PRA). If the element is pitch adjusted, then they 

are modified with the following equation to generate a better harmony matrix 

'if PRA

otherwise
j

j

j

h

h

h

   +  = 


χ
χ

χ
    (2.12) 

where   is an arbitrary distance bandwidth, '  and   are the real numbers 

uniformly distributed between 0 and 1. 

2.10 Summary 

When designing a battery storage system in a microgrid system, several requirements 

have to be determined from the technical, economic and environmental point of views.  

In a microgrid application, combining renewable energy with battery energy storage 
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systems improves the reliability and stability of the energy supply for extended periods. 

However, the high cost of battery storage is the main deterrent when designing a 

microgrid system.  

To ensure the proper sizing of battery storage is economical for the microgrid, battery 

degradation factors such as depth of discharge, battery lifetime, temperature and 

charge/discharge current must be considered in the economic scheduling. Moreover, at 

the end of the battery life cycle, the disposal of batteries has become problematic in recent 

years. The heavy toxic chemical and materials have a negative impact on the environment. 

To reduce this impact, recycling and second use of batteries have been implemented by 

battery manufacturers. However, further policies and enforcement should be introduced 

to support safe battery disposal and recycling. 

The charge coordination of electric vehicles is essential for peak shaving and load 

balancing in a power system network. The economic scheduling of EV battery with V2G 

technology increases the benefits for EV users. Different optimization techniques have 

been discussed to improve the system performance and obtain the optimal solution. 
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CHAPTER 3: METHODOLOGY OF THE PROPOSED ENERGY 

MANAGEMENT SYSTEM 

3.1 Introduction 

In this chapter, the proposed methodology is divided into two phases in order to 

determine economic power dispatch by distributed generators and obtain the optimal size 

of energy storage. In the first phase, economic scheduling of BESS and the synchronous 

generator is obtained for the isolated microgrid. Subsequently, in the second phase, EVs 

are treated as energy storage and charging/discharging schedule of EVs are analyzed. The 

impact of battery degradation, which constitutes the major factor in the lifetime of energy 

storage is taken into consideration.  

3.2 Economic scheduling of isolated microgrid 

3.2.1 Overview 

Distributed energy resources such as diesel generators, wind energy and solar energy 

can be combined within a microgrid to provide energy to the consumers in a sustainable 

manner. The integration of intermittent sources has brought instability problems for 

microgrid to balance demand and generation. In order to ensure a more secure and 

economical energy supply, the battery storage system is integrated within the microgrid.  

Microgrids can be operated in the islanded mode as well as grid-connected mode, 

depending on the load conditions and electricity market price (Alsaidan, Khodaei, & Gao, 

2017; Robert, Sisodia, & Gopalan, 2018), providing the potential to solve the existing 

power system problems of stability, reliability and demand response. Because of the 

limited reach of the utility grid, microgrids in islanded mode are more intended for the 

power balance as compared to the grid-connected mode. Therefore, reliable power 

sources like synchronous generator and energy storage are crucial elements to regulate 
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voltage and frequency, and improve the stability of the system (Carta & Velázquez, 

2011). In this study, the operating cost of an isolated microgrid is reduced by economic 

scheduling considering the optimal size of the battery. It has been reported in the literature 

that deep discharge shortens the lifetime of battery operation (Uddin, Dubarry, & Glick, 

2018). Hence, real-time battery operation cost is modeled considering the depth of 

discharge at each time interval. Moreover, the proposed economic scheduling with battery 

sizing is optimized using the firefly algorithm (FA). The efficacy of FA is compared with 

other metaheuristic techniques in terms of performance measurement indices, which are 

the cost of electricity and loss of power supply probability. 

3.2.2 Hybrid Microgrid Model 

A hybrid microgrid system contains three subsystems: the power demand, the power 

generation, and the power distribution subsystem. These subsystems have a major impact 

on the cost of the microgrid system. They are dependent on climatic conditions and 

consumer services. The hybrid microgrid system is designed to improve the performance, 

reliability and achieve cost-effective system. Thereby, knowledge of all factors affecting 

the performance of the system and precise modeling of each component is essential for 

the design of a hybrid model.  

In an isolated microgrid, wind and solar are the most common source of RES. Hence, 

this study includes wind, solar, diesel generator and energy storage as the DERs of the 

power generation subsystem with the load profile of the residential area as the demand 

subsystem and the microgrid itself is configured as the power distribution subsystem. The 

combination of different RESs improves the system efficiency and reduces the 

requirements of energy storage as compared to a single RES. The general schematic of 

the microgrid system containing the three subsystems is shown in Figure 3.1. 
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Figure 3.1: General schematic of hybrid microgrid 

3.2.2.1 Wind Turbine Model 

The power model of a wind turbine measures the power as a function of the hourly 

wind speed. The relation between the output power and the speed is given by the set of 

equations as (Mehmood et al., 2017): 

, ,

,
max ,

,
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h c i h c o

h c iw w
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  


−
 =    −

   

    (3.1) 

where max
w  (kW) is the maximum power output of wind turbine (WT), hv  (m/s) is the 

speed of wind at hour h, rtv (m/s) is its rated value whereas the cut-in speed and cut-out 

wind speed are shown by ,c iv  and ,c ov respectively. The cost of power dissipated by the 

wind turbine in a particular day is the product of power dispatched and the initial cost 

WTC ($/kW) of wind turbine. The capital recovery factor (CRF) calculates the present 
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value for the 24-hour analysis, taking interest rate ( ri ) and projected lifetime ( ly )into 

consideration.  

1
( ) * *

T

WT w WT

t

C t C CRF
=

 =   
 
      (3.2) 

(1 )1 
365 (1 ) 1

ly

r r

ly

r

i i
CRF

i

+
= 

+ −
      (3.3) 

 

3.2.2.2 Solar PV model 

The power measured by solar photovoltaic array is dependent on the solar 

irradiation and the ambient temperature at each hour. The PV power is given by 

(Borhanazad et al., 2014) 

( ) * * 1 (0.0256* )pv pv

t rt ref

ref




  =  + +  −
 

   (3.4) 

where pv

t  (kW) is output power of the solar panel, pv

rt  (kW) is maximum power at 

standard conditions,   is solar irradiation (W/m2), ref  is the solar radiation at standard 

temperature ( ref = 1 kW/m2),   is 3.7x10-3 (1/oC), ref is standard temperature taken as 

25oC, and   (oC) is the ambient temperature of the solar panel. The cost of power 

dispatched by solar photovoltaic is dependent on the initial cost PVC   ($/kW) and power 

output defined as 

1
( ) * *

T

PV pv PV

t

C t C CRF
=

 =   
 
      (3.5) 
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3.2.2.3 Diesel generator 

The diesel generator and energy storage are the secondary power generation 

sources for the microgrid when renewable energy cannot fulfill the required electricity 

demand. The conventional generator serves as a backup energy source and improves the 

system reliability by smoothing the power generation from the renewable energy source. 

The high cost of energy storage has captivated the attention of utility providers to utilize 

diesel generators in the microgrid. There are a total of three generators considered in this 

study. The cost of the generator in terms of power dispatch is expressed by (Modiri-

Delshad, Kaboli, Taslimi-Renani, & Rahim, 2016) 

( ) 2
, , ,F ( ) ( ) ( )i de i i de i i dede i it a t b t cC  =  +  +=     (3.6) 

where ( ),F ( )i de i t  is the cost ($) of the ith generator at time t, , ( )de i t is the power (kW) 

generated by the ith generator and , ,i i ia b c  are the cost coefficients of the ith generators.  

3.2.2.4 Battery Energy storage model  

The BESS in a microgrid is used to avoid any power mismatch between the 

demand and generation. The selection of different battery energy storage units, each 

having its own distinguishing characteristics in power and energy, depends on the nature 

of the power required and the power delivered. The lithium-ion battery is used in this 

study as they are mainly used for storing wind and solar energy due to its high energy 

density among other battery technologies, long life cycle and high efficiency 

(Khorramdel, Aghaei, Khorramdel, & Siano, 2016; Torreglosa, Garcia, Fernandez, & 

Jurado, 2014). The proposed energy storage cost analysis is shown in Figure 3.2 for 

different values of power discharge and depth of discharge.  
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Figure 3.2: Cost of energy storage for different DOD and power discharge 

The figure depicts that the cost of the energy storage increases when the DOD is 

high. Similarly, the cost is increased when the battery discharges more power. The 

increase in the discharge power results in decreasing the capacity of the energy storage 

and causes the DOD to be high. However, the continuous discharge from the energy 

storage at maximum DOD increases the cost of the energy storage to the maximum value. 

The cost of charging/discharging battery at any time interval as a function of battery 

power and DOD is formulated in Eq (3.10). The proposed model calculates the real time 

battery cost at each hour for the economic feasibility of battery scheduling. However, 

previous works by (Han, Han, & Aki, 2014; B. Zhou et al., 2016) have calculated the 

battery cost only at rated DOD. The proposed cost function of the battery storage during 

charge/discharge event is modeled by taking the cost model from  (B. Zhou et al., 2016) 

,

,

 
* *

batt cap

BATT

batt t c ref

C
C

l DOD
=


     (3.7) 

The lifecycle of the lithium-ion battery is represented by an exponential function that 

depends on the DOD of the battery taken from (C. Zhou et al., 2011).  
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1.4611( ( )) 850*( ( ))c batt battl DOD t DOD t −=     (3.8) 

refDOD  is the constant value provided by the battery manufacturers as the rated DOD 

for the battery. However, in this study the real time value of DOD is considered for the 

lifecycle analysis. With the coefficients of battery charging and discharging efficiencies, 

the battery model can be written as 

,

,

 
( )

* ( ( ))* *
batt cap

BATT ch dch

batt t c batt batt batt

C
C t

l DOD t  
=


    (3.9) 

The proposed battery model for each charging and discharging event can be obtained 

by multiplying the power required by battery to charge and discharge in an event. The 

battery charging ch

batt and discharging dch

batt  efficiency is considered same in this study and 

is equal to the efficiency of the battery. 

,
2

,

* ( )*   
( )

* ( ( ))*
batt cap batt

BATT

batt t c batt batt

C t t
C t

l DOD t 

 
=


     (3.10) 

where ( )BATTC t  is the cost of energy storage, ,batt capC  is the capital cost of energy 

storage in $/kW, ( )batt t  is the amount of power charged/discharged by battery at time t, 

,batt t represents the battery energy storage total capacity, ( ( ))c battl DOD t  is the number of 

cycles of energy storage due to change in depth of discharge at time t and batt  is 

efficiency of the energy storage.  

The battery DOD relation with the state of charge (SOC) is represented in Eq (3.11). 

The SOC represents the status of battery capacity at any time expressed by Eq (3.12) as 

( ) 1 ( )batt battDOD t SOC t= −      (3.11) 
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, ,

, ,

( )* * ( )*
( 1) ( )

*

ch

batt ch batt batt dch

batt batt dch

batt t batt t batt

t t t t
SOC t SOC t





   
+ = + −

 
  (3.12) 

where , ( )batt ch t  is the amount of power delivered to charge the energy storage in a 

given time, , ( )batt dch t  is the amount of power discharged by energy storage, t  is the 

time interval taken as 1 hour.  

3.2.3 Problem Formulation 

The energy management strategy in this study is implemented to obtain an optimal 

battery size and daily economic scheduling of microgrid. The capital cost of battery 

constitutes a major factor in calculating the battery size. The optimal BESS size is 

obtained when the sum of daily scheduling cost of the microgrid and BESS total cost per 

day (TCPD) is minimum. Hence, the objective function of the microgrid is the total 

operating cost given by the expression 

D BESSOC SC TCPD= +      (3.13) 

where 

( )
1 1

, ( )( )
T N

D BATi de i T

t i

SC Min C tF t
= =

 
 


+


=      (3.14) 

, ,* *
365BESS batt cap batt t

MC
TCPD CRF C E

 = + 
 

   (3.15) 

The scheduling cost for the day is the sum of the cost of three diesel generators 

dispatching power to fulfill the load demand and the cost of charging/discharging the 

battery storage. In this study, N is taken as three while the time period T is formulated as 
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24 hours. The TCPD of battery storage is the function of battery capital cost and yearly 

maintenance cost accounted for the lifetime of battery. The optimal battery size will 

minimize the total cost of the microgrid. The energy management operation of the 

microgrid has been optimized by meeting the following constraints: 

3.2.3.1 ESS Constraints 

The battery charging and discharging energy is expressed in Eq (3.16) 

(Khorramdel et al., 2016). The battery discharges when batt  is positive whereas negative 

batt  indicates charging status of BESS. The associated constraint (3.17) limits the battery 

power to minimum and maximum value.  The charging and discharging of the battery 

depends on the status of the battery power itself. The binary variable ,batt st  states the 

operating status of the battery. The battery discharges only when ,batt st  is 1 and charges 

when ,batt st  is 0, avoiding the simultaneous charge and discharge event at any interval. 

The maximum amount of power charged and discharged by the battery storage during the 

time t is shown by max
,batt ch  and max

,batt dch  respectively. The battery capacity at each interval 

is within the minimum min
batt  and maximum max

batt  level.   

( )

( )

,

,

( )*
( ) ( ) 0

 ( 1)
( ) ( )* * ( ) 0

batt dch

batt battdch

batt

batt

ch

batt batt ch batt batt

t t
t t

t

t t t t





 
 −  


 + = 

 −   



   (3.16)  

( )min max

batt batt battt           (3.17) 

max
, , ,0 ( ) *batt dch batt dch batt stt         (3.18) 

max
, , ,*(1 ) ( ) 0batt ch batt st batt ch t− −        (3.19) 
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min max( )batt batt battt         (3.20) 

3.2.3.2 Diesel Generator Constraint 

The power generated from the diesel generators must be within the upper and 

lower limits of each generator.  

min max
, , ,( )de i de i de it          (3.21) 

3.2.3.3 Power Balance Constraint 

The primary constraint in the power system is the balance of demand and supply. 

The microgrid must balance the power flow at each time step expressed by Eq (3.22) 

( ) ( ) ( ) ( ) ( ) 0pv w batt de Lt t t t t + + + − =     (3.22) 

where ( )L t is the load of microgrid at time t. 

3.2.4 Energy Management Strategy 

The energy management strategy of the microgrid has a direct impact on the 

operational behavior of the system regardless of the grid-connected or isolated mode of 

operation. However, in the isolated mode the power generated from the distributed 

resources must satisfy the load demand for secure and reliable operation; otherwise, the 

system will face load shedding, which increases the cost in term of power losses. The 

unavailability of RESs at certain times of the day will force the diesel generator and 

battery storage to operate and dispatch optimal power. Moreover, excess power 

generation by renewable resources necessitates the charging of the battery. The extra 

energy after charging is dissipated into dump load to avoid overcharging of batteries.  

Thus, an efficient energy management strategy is proposed to dispatch the power at the 
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lowest cost and reliably serve the load considering the technical constraints of the 

microgrid. The power strategy for economic scheduling in this study has been 

summarized in the following scenarios: 

Scenario 1: Renewable energy sources are capable to provide sufficient energy to meet 

the load demand, and the battery is charged by the excess energy. 

Scenario 2: This scenario is identical to scenario 1 with the exception that the battery 

is fully charged, and the extra energy generated by renewable sources is dissipated as a 

dump load.  

Scenario 3: Renewable energy sources cannot satisfy the required load of the system. 

The algorithm will decide to run the diesel generators or discharge the battery depending 

on the required load and the cost accumulated in two distributed sources.  

Scenario 4: The renewable sources energy generation is insufficient to satisfy the 

required load and depth of discharge of battery storage is high, with the result that the 

generator will dispatch the remaining power and to charge the battery to reduce the depth 

of discharge status.  

3.2.5 Performance Evaluation Parameters 

The reliability and economic evaluation of designed microgrid are significant factors 

to ensure optimum power dispatch. There are many key indicators to evaluate the 

economic benefits of microgrid such as net present cost, cost of electricity and break-even 

analysis method. The reliability of microgrid is technical criteria to avoid any power 

mismatch between generation and demand, resulting in load shedding of the microgrid.    
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3.2.5.1 Cost of electricity 

The cost of electricity (COE) is calculated as an indicator of the economic 

profitability of hybrid microgrid. The electricity cost is the ratio of the sum of the costs 

associated with solar photovoltaic ( PVC ), wind turbine ( WTC ) diesel generators ( deC ) and 

the energy storage ( BATTC ) to the total load of the day. The electricity cost is measured 

between all the power generation sources and load for the 24-hour analysis. 

( )
1

1

COE

T

PV WT de BATT

t

T

L

t

C C C C
=

=

+ + +
=






    (3.23) 

3.2.5.2 Reliability Analysis 

The reliability of the microgrid is measured by the statistical parameter loss of 

power supply probability (LPSP). The reliability parameter signifies the probability over 

the time horizon when the generation fails to satisfy the demand. This failure can be either 

due to the improper designing of the distributed energy resources, immediate drop in 

renewable energy or increase in power demand. LPSP can be calculated by either using 

time series data or by determining the energy accumulative effect over the total load. The 

latter technique has been used in this study, as shown by the expression  

( ),
1

1

T

L pv w batt dch de

t

T

L

t

LPSP =

=

 − − − −
=






      (3.24) 

3.2.6 Framework of BESS sizing method  

The proposed optimization algorithm dispatches the optimal power from the three 

diesel generators and the energy storage, depending on the cost equations of the respective 
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DERs and the load demand at the specific hour. In addition, the proposed method also 

directs the diesel generators to charge the energy storage when the cost of the BESS per 

unit of energy is higher than the generator cost. The battery SOC is computed at the end 

of each hour after the algorithm takes the decision to charge or discharge the battery. The 

battery optimal size is calculated for the defined strategies so that the cost is minimal for 

the scheduling of the power resources, which will reduce the overall cost of the microgrid. 

The battery optimal size is selected from a range such that the lower value ,l t  

corresponds to the battery size in which there is no mismatch between the generation and 

load whereas the upper value ,u t   sustains the maximum charge at each interval. The 

battery size range in this study is taken from 100 kWh to 250 kWh. The flowchart of the 

proposed energy management strategy together with the battery sizing method is shown 

in Figure 3.3. 
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Figure 3.3: Framework for optimal battery sizing 
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3.3 Economic Scheduling of grid-connected network 

3.3.1 Overview 

With the growing concerns on the energy depletion and the reduction of CO2 emission, 

electric vehicles have gained popularity in the transport sector due to the clean and 

reliable energy source. The EV benefits are not only associated with the automobile 

industry, but they can be treated as battery energy storage to reduce the power fluctuations 

from RES, provide energy arbitrage and earn extra revenue (Bessa & Matos, 2012; Hu, 

Zou, & Yang, 2016). However, the charging of EVs has imposed significant load in the 

electrical distribution system. Moreover, the high penetration of EV may result in the 

increase of technical losses, higher peak demands and reduction in the voltage profile 

(Arias et al., 2017). The stability of power network is disturbed with uncoordinated 

charging. This study aims to investigate the optimal EV coordination with V2G 

technology for the cost-benefit analysis. As such, the research into the V2G and battery 

energy management system had seen rapid progress in the last decade. The most 

important objective of these researches is to optimize cost savings, which can be achieved 

through peak shaving for the utility companies and the resultant saving is turned into cash 

incentives for the EV users. However, EV users are concerned about the battery 

replacement cost due to degradation with active participation in V2G exchange. 

Therefore, battery degradation cost is formulated for real-time analysis taking the depth 

of discharge at each time interval. The firefly algorithm is used to optimize the system 

cost. The performance of the proposed system is tested on a modified 33 bus distribution 

system in the presence of RESs. The impact of system cost and energy losses are analyzed 

for different RES penetration, RES location and EV capacities. 
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3.3.2 Modeling of grid-connected network  

Figure 3.4 shows the grid-connected network to evaluate the performance of the 

proposed charge coordination method for EVs. The power network in this study includes 

modified IEEE 33 bus distribution system with residential houses and commercial 

buildings. The electric vehicles are incorporated in the distribution system, which are 

assumed to be travelling from home to workplace in the morning and return home in the 

evening. There are total of 320 EVs connected in the distribution system with 10 EVs at 

each bus except the bus1. The distribution system is integrated with wind turbine and 

solar photovoltaic as renewable power sources and EV battery as energy storage. The 

controller manages the entire communication of the network through its intelligent nodes. 

The detailed modeling of each component has been explained in section 3.2.2.  

Solar Plants

Transmission & Distribution

Commercial Buildings

Residential Houses

Energy Storage

Controller

Wind Plants

Intelligent node

 

Figure 3.4: Schematic of grid-connected network 
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3.3.3 Problem formulation 

The incorporation of electric vehicles in the power grid improves the stability of the 

system as they can behave as energy consumer and energy providers during the low and 

high demand periods respectively. The electrical system faces issues like grid overloading 

and voltage deviation under uncoordinated EV charging. On the other hand, smart 

charging mechanism reduces the power difference between the peak and valley periods 

minimizing the system losses. The objective function considered for EV charge 

coordination is as follows: 

( ),. C C C C C
t

res com ev los b d
h h h h h

h

Objective Min


+ + + +=     (3.25) 

where 

, *C
b

res
h res

res
r h

rt 





=        (3.26) 

, *C
b

com
h com

com
r h

rt 





=       (3.27) 

, *C
b

ev
h ev

ev
r h

rt 





=        (3.28) 

2
, * *C

l

los
h sr h sr

sr 





=       (3.29) 

,,
2

C * *   
* ( )*

C
ev

b cap hb d

h ev b

cap c h b

h

l dod 

 
=


     (3.30) 

In the above formulation, Eq (3.26) and Eq (3.27) are the costs of the residential and 

commercial loads respectively, Eq (3.28) is the cost of EV charging/discharging and Eq 

(3.29) shows the cost of power losses in the distribution network. It is to be noted that the 
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cost of EV will be negative when discharging and positive if charging. sr  is the bus 

current and sr  is the bus resistance associated for the power loss in the network, while 

 is the cost parameter for losses. The variables res , com  and ev are the residential, 

commercial and EV electricity tariffs rate respectively. The battery degradation cost ,Cb d

h
 

is shown in Eq (3.30), where ,Cb cap is the capital cost of energy storage, ev

h  is the amount 

of power discharged by battery at hour h, h  is the time interval taken as 1 hour in this 

study, ev

cap  represents the electric vehicle battery capacity, b

hdod  is the battery depth of 

discharge status at hour h, ( )b

c hl dod  is the number of cycles of battery storage and b  is 

efficiency of the energy storage.  

3.3.3.1 Active and reactive power constraints 

2
, , , , , , , , *

l b l b b b b

g ren res com ev

sr h r h r h rt h r h r h r h rt h rt

sr r rt rt rt rt rt            

 +  + =  +  +  +  +          (3.31) 

where ,sr h  is the active power of branch sr , ,
ren

r h  is the renewable power (WT and 

PV) connected at bus r, ,
g

r h  is the generated power at bus r, ,
res

r h  and ,
com

r h   are the 

active residential and commercial loads connect at bus r. 

2
, , , , , ,Q Q Q Q Q *

l b l b b b

g res com

sr h r h rt h r h r h rt h rt

sr r rt rt rt rt          

+ = + + +          (3.32) 

where ,Qsr h  is the reactive power of branch sr , ,Qg

r h  is the generated power at bus r, 

,Qres

r h  and ,Qcom

r h  are the reactive residential and commercial loads connect at bus r. 

, max max*sr h V          (3.33) 

, max maxQ *sr h V         (3.34) 

Univ
ers

ity
 of

 M
ala

ya



69 

2 2 2 2
, , , ,Q *sr h sr h r h sr hV +        (3.35) 

where 2
,r hV  is the voltage of bus r, maxV  is the maximum voltage at bus, max  is the 

maximum branch current. 

3.3.3.2 Voltage limit constraints 

The voltage of the bus r at every hour should be within the maximum and minimum 

voltage level.  

2 2 2
maxmin ,r hV V V        (3.36) 

3.3.3.3 EV power and its state of charge 

, , ,
ev ev ev ev

ch h dch h i h h   + + =      (3.37) 

, ,min , , ,max* *ev ev ev ev ev

ch h ch ch h ch h ch          (3.38) 

, ,min , , ,max* *ev ev ev ev ev

dch h dch dch h dch h dch          (3.39) 

( ) ( )1 , , , , ,* * 1 *ev ev ev ev ev ev ev ev

h h ch h ch h dch h dch h h trv h  − =  +  −  − −     (3.40) 

min m
ev ev ev

h ax        (3.41) 

where ,
ev

ch h , ,
ev

dch h  and ,
ev

i h  are the binary statuses for the charging, discharging and 

idle state of EV respectively. ev

h  represents the EV status when it is connected to the 

distribution system. ,
ev

ch h  and ,
ev

dch h  are the EV charging and discharging power, ev

h  

represents the present EV battery capacity at a specific time and ,
ev

trv h  is the energy 

associated with EV traveling. The maximum charging and discharging power are 
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specified by constraints (3.38) and (3.39), constraint (3.40) specifies the battery capacity 

at each hour for EV charging/discharging and traveling states, whereas the maximum and 

minimum SOC limit is defined by (3.41).  

3.3.4 Performance Evaluation Parameters 

3.3.4.1 Cost of electricity (COE) 

The cost of electricity is calculated as same discussed in section 3.2.5.1. The COE for 

the grid-connected network is given by the expression 

( )

( )

,

24

, ,
1

C C C C C
COE t

b

res com ev los b d

h h h h h

h

res com

r h r h

h rt 



= 

+ + + +
=

 +




   (3.42) 

3.3.4.2 Profit for EV user 

The EV users are concerned for the profit from V2G application. In this study, the cost 

for battery degradation is deducted from the EV users profit. Therefore, EV users prefer 

to discharge during high tariff periods only to get maximum profit. The profit equation is 

calculated as ratio of the amount of power exchanged through V2G ( V2G,h ) to the total 

power discharged by EV.  

( ) ,
V2G,

24

,
1

 * C
Profit = 

b d

h ev h

ev

dch h

h



=

 −


    (3.43) 

3.3.5 Framework of EV charge coordination with V2G application 

It is seen that EV owners start charging their vehicles after returning to home during 

night time to the maximum state of charge (ratio of energy available in the battery to the 

maximum battery capacity). They are most likely to sell this power to the grid when the 

electricity tariff is high during day time. Commercial workplaces and parking lots are the 
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best places to implement V2G and earn maximum profit as the vehicle is parked there for 

several hours. Thus, the utility grid must dispatch less power because these workplaces 

can act as generation sources to fulfill the load requirement. The framework methodology 

is explained in steps and the flowchart of the proposed method is shown in Figure 3.5. 

Step 1: Interpret commercial and industrial load, wind and photovoltaic power 

production and EV state of charge status. 

Step 2: Initialize charging power of EV and identify the number of EVs in charging 

mode as per each bus. 

Step 3: Forward backward sweep load flow is executed for the distribution system with 

the network load and EV charging load. The power losses and bus voltages of the 

distribution system are computed.  

Step 4: The algorithm fitness function is evaluated using Eq (3.31) and minimum 

operating cost is obtained for the objective function in Eq (3.25). The intensity and 

position of fireflies represents the optimal number of EVs charging within the defined set 

of constraints. 

Step 5: If all the network constraints are satisfied, then the optimization updates the 

best solution and if any violation occurs then the EV charging load is reduced.  

Step 6: The above cycle is repeated until the maximum iterations are executed and the 

time horizon is completed.  
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Figure 3.5: Framework for EV charging in distribution network 
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3.4 Summary 

In this chapter, a new approach has been presented to schedule the energy resources in 

the microgrid considering optimal battery size. The microgrid is incorporated with diesel 

generator, renewable energy and the optimal size of energy storage to maximize the 

economic benefit and minimize the operational cost. The detailed modelling of microgrid 

components was studied for optimal power generation. The energy management strategy 

has been designed ensuring the reliability of the microgrid. Moreover, EV charge 

coordination to avoid grid overloading during peak hours has been presented. The optimal 

charging/discharging schedule will maximize the EV users profit by selling energy to the 

grid and minimize the power losses.  
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CHAPTER 4: VALIDATION OF PROPOSED ENERGY MANAGEMENT 

SYSTEM 

4.1 Introduction 

In this chapter, the proposed energy management strategy with optimal battery sizing 

for the isolated microgrid is validated. The power losses and voltage profile of the 

distribution network are evaluated with the charge/discharge coordination strategy for 

electric vehicles. The impact of battery degradation cost to avoid deep discharges and to 

prolong battery lifetime is also validated for each of test system. Moreover, a comparative 

analysis is conducted to evaluate the effectiveness of the proposed algorithm.  

4.2 Validation of economic scheduling and BESS sizing method for isolated 

microgrid 

4.2.1 Test system for isolated microgrid 

A typical low voltage microgrid with diesel generator and a battery storage as shown 

in Figure 4.1 is analyzed in this study to validate the performance of the proposed energy 

management strategies. The microgrid consists of 68 kW solar photovoltaic and 37 kW 

wind turbine system. The maximum capacity of diesel generators with their cost 

coefficients has been reported in Table 4.1 (Zhongwen Li, Zang, Zeng, Yu, & Li, 2016). 

The battery storage parameters such as capital cost, charging/discharging power limits 

and lifetime constitute major influence on the economic scheduling of energy storage. 

The energy storage parameters considered in this study are shown in Table 4.2. The 

parameters for the wind turbine and solar photovoltaic are represented in Tables 4.3 and 

4.4 respectively (Chen et al., 2012). 
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Figure 4.1: Low voltage microgrid 

 

Table 4.1: Parameters of diesel generators 

DG 𝒂𝒊 
($/kW2) 

𝒃𝒊 
($/kW) 

𝒄𝒊 
($) 

𝑷𝒎𝒊𝒏 
(kW) 

𝑷𝒎𝒂𝒙 
(kW) 

Diesel 1 0.0001 0.0438 0.3 0 40 
Diesel 2 0.0001 0.0479 0.5 0 20 
Diesel 3 0.0001 0.0490 0.4 0 10 
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Table 4.2: Parameters of Energy Storage 

Component Parameter Value 
Initial SOC (%) 75 

max
battSOC   (%) 90 
min
battSOC  (%) 15 

Initial capital cost ($/kWh) 625 
Maintenance cost 
($/kWh)/year 

25 

Round-trip Efficiency (%) 90 
Lifetime (years) 8 

min
batt  (kW) 10 

max
batt   (kW) 25 

Interest rate (%) 6 
 

Table 4.3: Parameters of Wind Turbine 

Component Parameter Value 
Rated Power (kW) 37 
Cut-in speed (m/s) 3 

Cut-out Speed (m/s) 30 
Rated speed (m/s) 12 

Initial Capital cost ($/kW) 2000 
Lifetime (year) 10 
Interest rate (%) 6 

 

Table 4.4: Parameters of Solar PV 

Component Parameter Value 
Rated Power (kW) 68 

Initial Capital cost ($/kW) 3000 
Lifetime (year) 10 
Interest rate (%) 6 

 

The generation subsystem is designed to meet the peak load. However, intermittency 

of RESs and consumers’ behaviors may affect the electricity cost and system reliability. 

A typical load profile of small residential area with the peak load of 163 kW has been 
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taken in this study. The microgrid load profile and renewable energy generation for each 

hour is shown in Figure 4.2. The load demand at most of the instances is higher than the 

combined wind and solar power generation. Thus, the generator and battery storage will 

be operated at these instances. However, there are certain instances when the renewable 

power generation is slightly higher than the load demand marked by * in the Figure 4.2. 

Hence, the surplus power will charge the energy storage and the generators remains in 

the idle state during these time intervals. The diesel generator will charge the battery 

storage when the cost of battery storage becomes higher than the diesel generator cost. 

The battery storage used in the microgrid operation is assumed to be initially charged at 

75% SOC. 

 
* excess energy to charge the battery 

Figure 4.2: Renewable energy and load data for a day 

4.2.2 Results for economic scheduling and battery sizing 

The simulation results for the proposed energy management approach are analyzed for 

three cases discussed below. The proposed battery management strategy is compared with 

the conventional battery management strategy for cost benefit analysis and the 

effectiveness of different optimization algorithms is also discussed.  
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4.2.2.1 Case A: Microgrid operation without BESS 

The microgrid is operated without the energy storage. Thus, there will be no cost for 

the TCPD, and the objective function is restricted to the daily economic scheduling of the 

microgrid. The RESs and diesel generators must satisfy the load demand at all instances. 

However, there are some instances where the renewable and diesel generators cannot 

fulfil the required load; thus, there will be power mismatch between the generation and 

demand. This power mismatch will imbalance the system and will result in a power loss 

due to load shedding. The load shedding accounts for the penalty to be imposed increasing 

the scheduling cost of the microgrid. However, when the RES power is higher than the 

loads, the surplus power from the RESs will be dissipated as a dump load. Assuming the 

penalty factor for load shedding is 10 ($/kWh), the total operating cost of microgrid is 

calculated as $590. The microgrid distributed generators and load profile are shown in 

Figure 4.3. In this study, the accumulative sum of all the three diesel generators power 

dispatch has been considered for analysis. 

 

Figure 4.3: Microgrid operation without the battery storage 
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4.2.2.2 Case B: Battery size of 100 kWh is added to microgrid 

The renewable sources and diesel generator cannot meet the load demand at all 

instances; hence, the battery storage must be installed in the microgrid system. In this 

case, a battery size of 100 kWh is added to the system. The battery size is selected such 

that there is no mismatch between the generation and the load at any time of the day. The 

battery is discharged when the cost of battery is lower than generator cost and recharged 

when the battery operational cost increases due to high DOD value. This approach 

supports the microgrid during the fluctuations of RES and avoids load shedding. The 

microgrid scheduling cost for a day in this case is calculated as $281.37 whereas the 

battery TCPD is $ 70.90. The average per day cost of electricity in this case is computed 

as 18.44 (cents/kWh). Figure 4.4 shows the battery DOD curve for each time interval. It 

can be seen from the figure that during certain instances, the DOD becomes higher than 

70%, which greatly impacts the cost of energy storage during discharge. Also, the battery 

charge at the end of the day is low, which may impact the operation for the next day. The 

power dispatch of all the DERs in the microgrid with battery size of 100 kWh is 

represented in Figure 4.5. The negative power shows that battery is charging during that 

instant. Therefore, during charging process the cumulative generation from distributed 

resources exceeds the load profile. 
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Figure 4.4: The depth of discharge status of battery for case B 

 

Figure 4.5: Operation of microgrid with all power generations and load for 
battery size of 100kWh 

4.2.2.3 Case C: Optimal battery size is added to the microgrid 

The optimal battery size for the microgrid operation is determined to produce a cost-

effective system. The proposed algorithm computes the optimal battery size to minimize 

the OC of microgrid. The proposed method calculates the battery size to be 145.5 kWh. 
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The daily operating cost for the optimal size is found to be $325.68. To validate the result 

of the proposed method, the microgrid OC has been computed for the battery size within 

the range of 100kWh - 250kWh, considering all the constraints of the distributed energy 

resources and the battery. Figure 4.6 shows the scheduling cost, TCPD and the overall 

OC for the different battery sizes. The optimum battery capacity for this system is 

recorded to be 145kWh, similar to that by the proposed method. The results show that the 

scheduling cost is high for smaller battery sizes, and as the size is increased the cost 

gradually reduces. This trend is followed until the battery size reaches up to 145kWh after 

which the scheduling cost increases again. The TCPD of battery is a linear curve which 

increases with the size of the battery. The OC for the microgrid shows a very small change 

in the cost until the battery size reaches 145kWh and continuously increases thereafter. 

 

Figure 4.6: Microgrid operating cost for different battery sizes 

The battery DOD for the entire time period is shown in Figure 4.7. It can be seen from 

the figure that during the initial hours, the battery is discharging and DOD value is 

increasing. At 06:00 the battery DOD has raised to 38%, at which level the battery cost 

rises, while the generator discharges more power and simultaneously charges the battery. 
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After 09:00, the generator alone cannot fulfil the load demand; hence, the battery has to 

discharge in these instances to avoid load shedding. The DOD value at these instances 

increases and the battery discharges irrespective of the high cost. As soon as the high load 

period ends, the generator charges the battery again to ensure sufficient charge during the 

critical hours. The critical hours are considered as those hours when the renewable energy 

and diesel generator together cannot meet the load demand. Despite the high cost of the 

battery storage, it discharges power to fulfil the load demand. Thus, the battery is never 

depleted completely and avoids deep discharges, which prolongs the battery lifetime.  

 

Figure 4.7: The depth of discharge status of battery for case C 

The battery charging and discharging power analysis is shown in Figure 4.8. The 

battery discharging power is represented by a positive value whereas the negative value 

shows the charging process. The figure shows that most of the time the battery is 

discharging. The discharged power varies during these instances. The maximum 

discharge power in one-time sequence is set to 25kW. This is to avoid complete discharge 

of the battery storage in one interval so that the battery can be utilized during critical 
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hours. The optimal power dispatch for the distributed sources and load profile are shown 

in Figure 4.9.  

 

Figure 4.8: The battery charging and discharging power analysis 

 

Figure 4.9: Operation of microgrid with all generations and load 
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 The optimal power dispatches for the above cases are tabulated in Table 4.5. The 

renewable power generation in all cases is identical, and the economic dispatch is 

performed for the power difference between the load and the renewable energy. The 

negative values in the BESS shows the charging schedule while the positive values 

represent the discharging schedule. Generator 1 dispatches more power due to it being 

the cheapest among the three generators, whereas generator 3 dispatches minimal power.  

Table 4.5: Scheduling results of different cases at every hour 

Time 

(hr) 

Economic dispatch 
without BESS 

Economic dispatch 
with 100kWh Battery size 

Economic dispatch 
with optimal battery size 

G1 G2 G3 BESS G1 G2 G3 BESS G1 G2 G3 BESS 

1 0 0 0 0 0 0 0 -0.9 0 0 0 -0.9 
2 0 0 0 0 0 0 0 -6.3 0 0 0 -6.3 
3 4.6 0 0 0 0 0 0 4.6 13.6 0 0 -9 
4 12 0 0 0 0 0 0 12 0 0 0 12 
5 24.7 4 0 0 24 3.7 0 1 6.7 0 0 22 
6 28.7 8.1 2.7 0 28.3 7.8 2.4 0 31.6 11.2 5.7 -9 
7 33.4 12.8 7.5 0 33.4 12.8 7.5 0 38.6 8.5 1.6 0 
8 34.5 14 8.5 0 34.1 13.7 8.2 0 38.3 17.7 10 0 
9 40 20 20.6 0 39.1 18.5 10 13 40 19.6 10 11 
10 40 20 19.9 0 40 19.9 10 10 40 19.9 10 10 
11 40 20 19.6 0 39.6 19 10 11 40 19.6 10 10 
12 35 14.6 9.1 0 39.1 18.6 10 -9 39.9 11.7 7.1 0 
13 26.1 5.6 0.2 0 29.1 8.6 3.2 -9 10.9 0 0 21 
14 19.5 0 0 0 15.4 2.3 1.8 0 6.2 10.3 3 0 
15 0 0 0 0 0 0 0 -6.12 0 0 0 -6.12 
16 0 0 0 0 0 0 0 -6.48 0 0 0 -6.48 
17 9.2 0 0 0 9.2 0 0 0 18.2 0 0 -9 
18 26.5 6 0.5 0 26.9 6.1 0 0 29.5 9 3.5 -9 
19 39.6 19 13.6 0 39.9 19.3 10 3 39.9 19.3 10 3 
20 40 20 17.2 0 39.9 19.3 10 8 39.9 19.3 10 8 
21 39.9 19.3 13.7 0 38.7 18.2 10 6 40 19.9 10 3 
22 32.1 11.7 6.1 0 35.1 14.7 9.1 -9 35.1 14.7 9.1 -9 
23 28.5 8 2.5 0 0 20 4 15 31.5 11 5.5 -9 
24 23.8 3.2 0 0 20.5 7 1.5 -9 16.3 7.4 3.3 7 
 

The daily operating costs for the above defined cases are compared in Table 4.6. The 

operating cost is minimum with the optimal BESS size whereas TCPD is maximum in 

Univ
ers

ity
 of

 M
ala

ya



85 

this case. The operating cost is high when battery storage is not included in the microgrid 

due to penalty of load shedding.  

Table 4.6: Comparison of battery cost and microgrid operating cost for 
different cases 

Cases Daily Operating 
cost ($) TCPD ($) 

Without BES 590 - 

100kWh battery size 352.27 70.90 

Optimal battery size 325.68 102.80 
 

The battery DOD curves for the different battery sizes are shown in Figure 4.10. The 

figure shows that DOD values for the optimal battery size of 145 kWh is lowest at most 

of the instances as compared to other battery sizes. The lifecycle and lifespan of the 

different battery sizes are tabulated in Table 4.7 by taking the average of the DOD. The 

optimal battery capacity results in longer lifetime in comparison to other battery 

capacities and the conventional method (Borhanazad et al., 2014). The lifetime of the 

battery storage is computed with the assumption that battery completes one cycle in a day 

as discussed in (Khawaja et al., 2017). Thus, the optimal size and the economic 

scheduling prolongs the battery lifetime and reduces the microgrid cost.  
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Figure 4.10: DOD curves of different battery sizes 

 

Table 4.7: Lifetime analysis for different battery capacities 

Battery capacities 
(kWh) 

Average DOD 
value (%) 

Lifecycles 
(cycle) 

Lifetime 
(year) 

115 51.15 2264 6.2 
130 51.30 2254 6.2 
145 40.08 3233 8.9 
160 45.24 2709 7.4 
175 43.47 2871 7.9 
190 45.58 2679 7.3 
205 44.71 2756 7.5 
215 46.92 2568 7.0 
235 47.67 2509 6.9 

145 (Borhanazad et al., 
2014)  

54.55 2061 5.6 

 

4.2.2.4 Comparison of proposed technique with the conventional technique 

The effectiveness of the proposed method is verified by comparing it with other 

conventional methods (Borhanazad et al., 2014; Ismail et al., 2013) in which the battery 
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storage discharges when the renewable resources fail to provide sufficient energy to meet 

the load. When the battery reaches minimum energy level, the diesel generator is turned 

on to charge the battery storage. This method reduces the lifetime of battery storage by 

continuously discharging to the minimum level. The authors in (Borhanazad et al., 2014) 

have used PSO to get the optimal power dispatch. The comparison is done by 

implementing the conventional method using the above-mentioned parameters, and the 

results are shown in Table 4.8. It is apparent from the table that the proposed method 

reduces the operating cost by 50% as compared to the conventional method. The battery 

depth of discharge status for the conventional method is shown in Figure 4.11, which 

depicts that the DOD is higher at most of the instances due to complete power discharge 

from the energy storage. Thus, the operating cost of the microgrid by using the 

conventional method is high as compared to the proposed method. The overall power 

generations and load for all the time intervals are plotted in Figure 4.12.  

 

Figure 4.11: Battery depth of discharge status for the conventional method 
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Figure 4.12: Microgrid operation with all the generations and load for the 
conventional method 

 

Table 4.8: Comparison of proposed method with the conventional method 

Method Scheduling 
Cost ($) 

Daily Operating 
Cost ($) 

Average COE 
(cents/kWh) 

Conventional method 557.09 659.90 31.65 
Proposed Method 222.87 325.68 15.63 

 

4.2.2.5 Comparison of proposed optimization algorithm with other algorithms 

The robustness of the firefly algorithm (FA) is analyzed by implementing artificial bee 

colony (ABC), harmony search algorithm (HSA) and particle swarm optimization (PSO) 

for the proposed method and the results are reported in Table 4.9. The table shows that 

FA has the minimum operating cost with 0% LPSP. However, PSO and HSA are not 

capable to meet the load demand at all the instances resulting in the load shedding and 

has a higher LPSP ratio. The battery discharging cost is the ratio of the accumulated 

battery cost at all the instances in which the BESS is discharged to the sum of the power 
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discharged by the BESS. The battery discharging cost of FA is minimum compared to 

other algorithms due to the fact that BESS does not discharge more power at high DOD 

values, thus reducing the scheduling cost of the microgrid. The battery DOD has been 

compared for all the algorithms and the results are shown in Figure 4.13. The results 

illustrate that FA has been capable of limiting the battery DOD to a low value to minimize 

the battery operational cost. The scheduling cost for the hourly analysis with the battery 

size of 145 kWh had been compared with the above-mentioned algorithms as in Figure 

4.14. The figure clearly depicts that the cost at each hour by FA is comparatively lower 

than other algorithms, which reduces the overall operating cost of the microgrid.   

 

Figure 4.13: Depth of Discharge status for different optimization techniques Univ
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Figure 4.14: Hourly scheduling cost for different optimization techniques 

 

Table 4.9: Comparison of different algorithms for the proposed method 

Method 
Daily 

Operating 
Cost ($) 

Average 
cost of 

electricity 
(cents/kWh) 

Average 
Battery 

Discharging 
Cost 

(cents/kWh) 

Loss of 
Power 
Supply 

Probability 
(%) 

Computational 
time (sec) 

Artificial 
Bee Colony 

393.10 18.86 39.24 0 265 

Harmony 
Search 

Algorithm 
383.34 18.40 37.00 37.5 225 

Particle 
Swarm 

Optimization 
404.46 19.41 38.02 25 250 

Firefly 
Algorithm 325.68 15.63 22.13 0 195 
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4.3 Validation of EV charge coordination with V2G application  

4.3.1 Test system for grid-connected network 

In this study, the proposed charging/discharging schedule of EV is tested on modified 

IEEE 33 bus medium voltage distribution network as shown in Figure 4.15 (Muhammad 

et al., 2018). The test system is connected to the 12.66 kV substation at bus 1. The buses 

from 2-15 are assumed as residential load buses whereas buses from 16-33 are taken as 

commercial load buses. Moreover, each bus in the distribution network can accommodate 

10 EVs except the bus 1. The total load of the system is 3.78 MW (active load) and 2.35 

MVAR (reactive load). The residential and commercial load of the system is shown in 

Figure 4.16. The line and load data of each bus of the distribution network is given in 

Appendix A. The residential and commercial hourly load of each bus is varied by 

adjusting the magnitude of the load data of the respective bus. For instance, residential 

active and reactive power at bus 2 for the complete day is represented by Figure 4.17. 

Three units of PV and WT are integrated in the distribution system. The number of EVs 

charged/discharged at each time period in the distribution system is 320. In addition, all 

the EVs are assumed to have the maximum capacity of 85kWh in order to model the 

system effectively. The maximum transformer capacity of distribution system is taken as 

4.12 MW whereas the minimum bus voltage limit is set as 0.94 p.u. The average distance 

EV user travels is 34 km per day which constitutes 6 kWh of battery capacity as suggested 

by (Gough, Dickerson, Rowley, & Walsh, 2017; Gustafsson & Nordstrom, 2017). 

Therefore, it is assumed that EV battery discharges 3 kWh during travel from home to 

workplace and 3 kWh to return home. The parameters for EV battery are shown in Table 

4.10. 
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Figure 4.15: Modified IEEE 33 bus distribution system 
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Figure 4.16 shows the commercial and residential load of one day. It can be observed 

that commercial load rises significantly from 07:00 in the morning. The peak load exists 

from 12:00 noon to 16:00 in the afternoon. On the other hand, peak load in residential 

sector is from 19:00 to 22:00. In addition, the residential load rises in the morning during 

08:00-09:00. Therefore, the proposed method allows minimum EVs to charge during 

these peak hours such that distribution system may not face any overloading issue 

utilizing the maximum capacity of the power system. 

 

Figure 4.16: Residential and commercial load profile 
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Figure 4.17: Residential active and reactive power of bus 2 

 

Table 4.10: Parameters of EV 

Component Parameter Value 
Battery Capacity (kWh) 85 

SOC minimum/maximum limit (%) 20/100 

,max
ev
ch (kW) 20 

,max
ev
dch (kW) 8 

Efficiency (%) 0.9 
 

The solar irradiation and wind speed profiles are shown in Figure 4.18. It can be seen 

from the figure that the output power of PV is high at noon when solar irradiation is at 

peak whereas the output power is zero during night time. The solar irradiation in this 

study is recorded at University of Malaya, Wisma R&D for a summer day. The output 

power for WT varies with the speed of wind at each time interval and fluctuations are 

observed within the certain range (Chen et al., 2012). The hourly electricity price for the 

residential and commercial sector are shown in Figure 4.19. The commercial tariff is 

divided into three periods: peak, mid-peak and off-peak taken from Tenaga Nasional 
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Berhad (TNB) Malaysia whereas the residential tariff consists of peak and off-peak 

periods (Thoubboron, 2018). The electricity price is high during peak periods which 

provides an opportunity for the EV users to sell energy during these hours.   

 

Figure 4.18: Solar irradiation and wind speed  

 

Figure 4.19: Residential and commercial electricity tariff 
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The impact of coordinated charging/discharging of EV in the distribution system is 

analyzed by considering three scenarios. The power dispatch and the total operating cost 

is compared for each scenario. The scheduling scenarios are described as 

Scenario1  

In this scenario the load model is established under uncoordinated 

charging/discharging schedule of EVs. The electricity cost and system stability are 

analyzed when all the EVs start charging immediately after returning to home. This 

scenario serves as a reference case when investigating the effectiveness of algorithm.  

Scenario 2 

The coordinated charging/discharging schedule of EVs is modeled in this scenario. 

The load model ensures that bus voltage does not fall below the minimum voltage level. 

The electricity cost consumption in this scheduling scenario is analyzed and compared 

with the scenario 1. 

Scenario 3 

The impact of renewable energy (photovoltaic and wind turbine) is considered in this 

scheduling scenario. The electricity cost of the system with coordinated 

charging/discharging including the renewable energy is analyzed and the system stability 

is compared with other scenarios. The optimal location for the PV and WT system is 

located at buses 31, 32 and 33 based on previous work in (Rao, Ravindra, Satish, & 

Narasimham, 2013). 
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4.3.2 Results for EV charge coordination with V2G application 

The power profiles of EV charging and discharging under different scheduling 

scenarios is shown in Figure 4.20. The time period in this study starts from 19:00 after 

EV returns home in the evening till 18:00 on the next day. The EV travelling period in 

this study is considered from 8:00 – 9:00 in the morning and 18:00 – 19:00 in the evening 

when EV travels from home to workplace and workplace to home respectively. During 

uncoordinated charging, the charging power is high at the start of the time period. The 

charging power drops to zero after the EV is completely charged. Similarly, during the 

day time when the electricity tariff is high, all the EVs start discharging, which is 

represented by negative values in the figure. The battery degradation cost under this 

scenario increases due to continuous discharge even at high DOD. On the other hand, the 

charging power under scenario 2 and 3 is quite low when coordinated charging is 

performed. Unlike scenario 1, all the EVs are not connected to the charging station at 

19:00 maintaining the voltage profile within limits whilst serving high residential load at 

this time. Moreover, the charging power is almost uniformly distributed over the night 

time, ensuring the distribution system is not overloaded. Similarly, when EVs start 

discharging during day time, the discharging power is low in scenario 3 compared to 

scenario 2. This is because the renewable energy generation is high during day time which 

reduces the overall load of the distribution system.  EV owners considers incentives while 

discharging and if there is no profit in discharging, they are unwilling to discharge as the 

battery degradation cost increases with increase in discharge cycles.   
Univ

ers
ity

 of
 M

ala
ya



98 

 

Figure 4.20: EV charging power for different scenarios 

The minimum bus voltage of the weakest bus in the distribution system is shown in 

Figure 4.21 for all the scheduling scenarios. It is depicted from figure that the voltage 

level is violated when uncoordinated charging is performed. The bus voltage drops below 

0.94 p.u. when EV starts charging from 19:00 to 22:00. The bus voltage remains within 

the voltage limit during coordinated charging in scenario 2 and 3.  

 

Figure 4.21: Voltage magnitude of the weakest bus  
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The power generation profiles between the distribution system and the power grid is 

shown in Figure 4.22 for coordinated and uncoordinated scheduling. The peak load in 

uncoordinated scenario is twice as compared to coordinated scenarios because of high EV 

charging power in the evening when EVs return homes. Substantial power difference 

between charging and discharging creates stability issues in the distribution system. In 

the coordinated scenarios, the charging power does not increase above the maximum 

transformer capacity. Hence, the power difference is low, resulting improvement of the 

system stability. The power exchange in scenario 3 is less compared to scenario 2 due to 

the addition of RES, which decreases the operating cost of the system.  

 

Figure 4.22: Power generation profile for different scenarios 

It has been established that suitable incentives are requisite of encouraging EV owners 

to plug in their vehicles, in this regard the profit to EV owner under coordinated 

scheduling for scenario 2 and 3 is shown in Figure 4.23. The profit during uncoordinated 

charging scenario is not considered for comparison due to minimal profit as shown in 

Table 4.11. The profit of each EV owner varies depending on the charging and 

discharging power. The maximum profit of a single EV owner at each bus of the 
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distribution system is represented in Figure 4.23. It can be observed that EV owners have 

high profit in scenario 3 when renewable energy is integrated in the system. However, 

Figure 4.20 shows that EV discharges more power in scenario 2 as compared to scenario 

3. The battery degradation cost increases with high power discharge, reducing the profit 

for EV user. Hence, with integration of renewable energy, EV discharges less power 

during the times when the tariff is low making it an optimal scenario where the EV owners 

earn maximum profit and experience relatively less battery degradation. 

 

Figure 4.23: EV owner profit at each bus of network 

The cost analysis for the V2G implementation under different scheduling scenarios is 

presented in Table 4.11. The total cost of the system when coordinated 

charging/discharging is performed with renewable energy integration is lowest compared 

to other scenarios. The cumulative profit of all EV users is also reported in the table. The 

profit is relatively low with uncoordinated scenario and increases when coordinated 

charging/discharging is applied. However, EV users have maximum profit with the 

integration of renewable energy to the system. This is because in scenario 3, load of the 

system of the system is minimized through energy generated from RES, due to which EV 
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users do not discharge during the low tariff times. The average electricity cost for each of 

the scenario is also reported in Table 4.11. The COE is minimum in scenario 3 when 

coordinated charging discharging is analyzed with RES.  

The maximum lifecycle of EV battery in all the above defined scenarios is also 

computed in Table 4.11. Battery lifecycle is highest in scenario 3 and lowest in 

uncoordinated scenario. With the assumption that battery performs one complete cycle 

each day, the lifetime (years) of the battery is dependent on the number of cycles the 

battery can sustain until it reaches its end of life. As reported in the table, the battery can 

last longer in scenario 3 due to minimal V2G exchange compared to scenario 2, saving 

the battery replacement cost for the system. To analyze the significance of V2G 

technology, the system cost for coordinated charging and coordinated charging with RES 

is also shown in the table. The cost of the system increases excessively when EVs are not 

allowed to discharge and EV owners cannot earn any revenue. However, due to no V2G 

the profit to EV user is zero and impact of battery degradation is not computed for this 

case.  
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Table 4.11: System cost and profit for different scenarios 

Scenarios Cost ($) 

Average 
Cost of 

Electricity 
(cents/kWh) 

Cumulative 
EV Profit 
($/kWh) 

Lifecycle 
(cycle) 

Lifetime 
(year) 

Uncoordinated 
Charging 
Discharging 

20741.43 43.08 23.85 2213 6 

Coordinated 
Charging 

25491.54 52.94 - - - 

Coordinated 
Charging 
Discharging 

19488.61 40.47 62.88 2788 7.6 

Coordinated 
Charging with 
RES 

22136.43 45.97 - - - 

Coordinated 
Charging 
Discharging with 
RES 

18231.52 37.86 68.35 3276 9 

 

The electric vehicle charging schedule and system cost is examined for different cases 

of renewable energy integration in the distribution network.  

4.3.2.1 Impact of Renewable energy penetration 

To test the resilience of the distribution network, renewable energy (WT and PV) is 

increased by 30% for high RES penetration and is decreased by 30% for low RES 

penetration. The renewable energy penetration affects the charging / discharging schedule 

of EVs and the total cost of system. Table 4.12 reports the system cost and the cumulative 

profit by EV owners. The maximum lifecycle of single EV battery and its lifetime is also 

shown in Table 4.12. It can be seen from the table that cost of the system reduces with 

high penetration of renewable energy, earning more profit for EV owners. On the other 

hand, when the renewable energy penetration is low, cost of the system increases, 
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reducing the profit of EV owner. The lifetime of battery storage also increases 

proportionally with the penetration of RE output. However, the system cost and EV profit 

for all cases of RE penetration is better than scenario 2 as shown in Table 4.11. The 

reduction in cost compared to scenario 2 is due to the fact that RE reduces the load of the 

distribution network during the day time and EV owner discharges only during the times 

when the profit is maximum.  

Figures 4.24 to 4.29 shows the EV charging/discharging scheduling together with the 

total load, network losses and power supplied by grid. As defined in Eq (3.31), the sum 

of power generated at bus (grid power) and renewable power must balance the EV 

charging capacity, residential and commercial load and network losses. The load is the 

sum of residential and commercial load at each hour. The losses are minimum during 

certain hours when EV charging load is low. The negative power of EV shows V2G 

implementation to minimize the load of the system. Hence, the load exceeding the grid 

power during the day time is balanced by V2G.  

The impact of RES penetration on EV charging/discharging when the penetration is 

30% increased and decreased are shown in Figures 4.24 and 4.25 respectively. The 

charging power is high when the RES penetration is increased accommodating a greater 

number of EVs to charge and ensuring the maximum transformer capacity. This is 

because the RES provides excess power to minimize the load of distribution network. 

Moreover, during the day time when the PV power is at peak and the electricity price is 

low at 13:00-14:00, EV owners are reluctant to supply power to grid due to minimal 

profit. In fact, few of EV owners prefer to charge their battery so that they can sell power 

to grid during the high tariff period. However, with low RES penetration, EV users 

discharge less power during these hours to minimize battery degradation cost. The EV 
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users are more concerned for the profit from V2G and that is why, despite of high load 

during 09:00-11:00, they are unwilling to discharge power due to low electricity tariff.  

 

Figure 4.24: Optimal operation with EV charging/discharging schedule for 
higher RES penetration case 

 

Figure 4.25: Optimal operation with EV charging/discharging schedule for 
lower RES penetration case 
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4.3.2.2 Impact of RES location in the distribution system 

To investigate the impact of locations of RES, wind turbine and photovoltaic plants 

are located at different nodes of the distribution network as identified by (R. Li, Wang, & 

Xia, 2018). The load flow analysis is executed to calculate the system cost and total losses 

as shown in Table 4.12. It can be depicted from table that EV owners earn less profit 

compared to the base case reported in Table 4.11 when the DGs are connected at the end 

buses 31-33.  The load generation balance graph with the EV charging/discharge schedule 

for renewable energy integrated at different locations of distribution network is shown in 

Figure 4.26.  

 

Figure 4.26: Optimal operation with EV charging/discharging schedule for 
different RES locations  

4.3.2.3 Impact of different EV capacities 

The cost of the system varies with different EV battery capacities. To analyze the 

impact of battery capacity, different models of EV are taken in to account. The analysis 

in this subsection considers 30% of Nissan Leaf 40 kWh, 30% of Chevy Bolt 60 kWh and 

40% of Tesla Model X 100 kWh. The overall cost and losses are reduced as compared to 
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the case in which all the EVs have 85 kWh battery because Nissan Leaf and Chevy Bolt 

require less power and time to fully charge. In addition, the profit to the EV owner is 

remarkably low because EV users with small battery capacity are not willing to sell 

energy to the grid as the financial gain of selling energy is low. 

The EV charging schedule in Figure 4.27 for this case shows a decreasing trend due to 

different EV capacities. The 40 kWh Nissan Leaf and 60 kWh Chevy Bolt EV battery are 

charged within few hours to maximum SOC, reducing the charging load on the 

distribution network. Moreover, during the high tariff period, V2G exchange is low due 

to smaller battery capacities and consequently grid has to provide more power to balance 

the load. However, the degradation cost for these EV batteries increases with maximum 

discharge power compared to 100 kWh Tesla. 

 

Figure 4.27: Optimal operation with EV charging/discharging schedule for 
different battery capacities 

4.3.2.4 Impact of travelling distance  

EV loses its energy when travelling and its battery degrades with high travelling 

distance. The driving distance in this subsection is assumed to be twice of the average 
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distance EV travels (68 km/day). As expected, the system cost increases with the distance, 

and EV owners earn less profit because travelling distance increases battery degradation 

cost. In addition, EV needs to charge back again to sell energy to the grid. Figure 4.28 

shows the charging/discharging power when EV travelling distance is extended.  

 

Figure 4.28: Optimal operation with EV charging/discharging schedule for 
extended travelling case 

4.3.2.5 Impact of different travelling time 

This study is conducted under the assumption that EVs travels from home to workplace 

at 08:00 and returns home at 7 pm (19:00). However, the travel-to-work time in Malaysia 

varies from 06:00 to 08:00 in the morning and return time varies from 17:00 to 18:00 in 

the evening. Therefore, in this subsection the impact of different travelling time is 

analyzed. It is assumed that 30% of EVs travel at 06:00, 30% travels at 07:00 and the rest 

40% travels at 08:00 from home to workplace. On the way back from work, 60% of EVs 

travel at 17:00 and 40% travels at 18:00. The system cost increases with different travel 

times because there are only 40% of EVs available to discharge during peak hours. Thus, 

the total profit for EV owners also reduces. In the morning, when EVs reach early to 
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workplace, most of EV owners are unwilling to sell energy due to low electricity tariff. 

The load generation balance graph with EV schedule for this case is shown in Figure 4.29. 

It is interesting to note that in this case the EVs are connected to distribution system 

throughout the day. The variations in travelling time allows few EV users to discharge 

their battery during 8:00 am after arriving workplace and charge at 18:00 when arrived 

home.  

 

Figure 4.29: Optimal operation with EV charging/discharging schedule for 
different travel time 

The network losses for total time horizon in each of the above defined cases are shown 

in Figure 4.30. The network losses are minimum in case 4 when EVs with different battery 

capacities are modelled. This is because the overall charging power in this case is low, 

minimizing the generation power exchanged between the grid and distribution system. 

The losses are also reduced in case 1 when the RES penetration is increased. However, 

the losses escalate when the RES penetration is decreased. Hence, the integration of RES 

reduces the system cost and total losses and maximizes the profit for EV owners.  
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Table 4.12: Cost analysis for different cases of scenario 3 

S.No Cases Cost ($) 
Average 

COE 
(cents/kWh) 

Cumulative 
EV Profit 
($/kWh) 

Lifecycle 
(cycle) 

Lifetime 
(year) 

1 

Coordinated 
Charging 
discharging 
with high RES 
penetration  

16696.59 37.28 70.63 3614 10 

2 

Coordinated 
charging 
discharging 
with low RES 
penetration  

18069.13 41.17 67.99 3093 8.4 

3 

Coordinated 
charging 
discharging 
with different 
renewable 
location 

17515.85 39.10 65.52 3257 8.9 

4 

Coordinated 
charging 
discharging 
with different 
EV capacities 

17417.74 39.82 31.85 2742 7.5 

5 

Coordinated 
charging 
discharging 
with long 
traveling 
distance  

17559.26 40.54 46.01 3055 8.3 

6 

Coordinated 
charging 
discharging 
with different 
travel time  

17660.16 39.35 58.06 3133 8.6 
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Figure 4.30: Network losses for different cases 

4.4 Summary 

In this chapter, the simulation results validate the proposed energy management 

strategy for optimal microgrid operation. The addition of energy storage in the microgrid 

increases capital cost, but also reduces the operating cost of the system. The proposed 

BESS sizing method is validated against the traditional tradeoff method and optimal 

BESS size is calculated. Moreover, the optimal size of the battery prolongs the lifetime 

of the storage system and it is significantly affected by the DOD. In addition, when battery 

electric vehicles are integrated into the distribution network, the coordinated charging of 

EVs improve the system performance and minimizes the operating cost. The impact of 

RES penetration, EV capacity, travelling time and distance has been investigated for 

battery lifetime analysis. Furthermore, firefly algorithm has been considered to attain the 

optimal dispatch and effectiveness of different optimization algorithms has been 

compared.    
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The challenging issue of today’s modern power system is the reliable and optimal 

generation of distributed sources. The complexity of the network increases when energy 

demand is subjected to non-linear load profile. Hence, energy management strategies are 

introduced to improve the stability and performance of the microgrid. The economic 

operation of distributed sources is essential for microgrid cost optimization.  

The work in this research has been divided into two parts. In the first part, the optimal 

battery sizing and economic scheduling problem of isolated microgrid has been solved. 

The microgrid was incorporated with solar photovoltaic and wind turbine as renewable 

power generation, diesel generator and energy storage as backup sources to balance the 

electrical load of residential area. The objective of this research was to optimize the power 

dispatch from the generation sources by considering the power fluctuations of renewable 

sources, battery state of charge constraints, battery lifetime and capital cost. Thus, 

effective energy management strategies were developed to dispatch the power at the least 

cost, ensuring the reliability of the microgrid. The proposed method also evaluated the 

optimal size of energy storage for the economic operation of microgrid. The obtained 

result was validated with the traditional trade-off method and it was found that proposed 

battery sizing problem was accurate in evaluating the optimal BESS size. The results 

revealed that energy storage operation cost is high when the battery discharges more 

power. In addition, the high depth of discharge status of battery escalates the cost. Hence, 

efficient battery management approach was proposed for the economic scheduling. The 

battery storage was charged when the operating cost of energy storage exceeded the diesel 

generator cost. The aim was to limit the depth of discharge status to minimum level such 

that battery can provide backup energy during critical hours when the renewable energy 

power certainly drops.  

Univ
ers

ity
 of

 M
ala

ya



112 

The economic dispatch and battery sizing problem was solved using firefly 

optimization algorithm. The results were compared with other optimization techniques 

like PSO, ABC and HSA. It was found that firefly was robust and computationally 

effective to determine the optimal dispatch of distributed sources.  The performance 

measurement indices such as cost of electricity and loss of power supply probability were 

computed to compare the effectiveness of different optimization techniques. The 

efficiency of the proposed method was validated by comparing with other existing work. 

It was found that the microgrid operating cost was 50% reduced with the proposed 

method. In addition, the battery management strategy was able to prolong the battery 

lifetime with optimal BESS size. Thus, the obtained results validated that depth of 

discharge has significant impact on the economic scheduling of BESS.  

In the second part, the impact of electric vehicles charge coordination with V2G 

technology was analyzed on the distribution network. The on-board batteries of EV were 

treated as energy storage to minimize the operating cost of the electrical power network. 

The proposed economic scheduling was validated on modified 33 bus distribution system 

with ten EVs connected at each bus and three wind turbine and photovoltaic systems. 

Three scenarios that involve economic scheduling: uncoordinated charging, coordinated 

charging and coordinated charging with RES were simulated with the residential and 

commercial load of the system.  The real time battery degradation cost was modelled by 

considering the DOD at each time interval to maximize the profit for EV user through 

V2G. The obtained results illustrate that uncoordinated EV charging increased the peak 

load violating the constraints of the distribution network. In addition, coordinated 

charging improved the system performance, restricted grid overloading and minimized 

the power losses. The system cost showed remarkable savings with maximum profit for 

EV users when RES’s were integrated into distribution network. The controlled charging 

mechanisms were proven to be effective in minimizing the power difference between 
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peak and valley periods. Moreover, the battery degradation cost was minimal extending 

the battery lifetime.  

The operating cost was analyzed for different cases of RES integration in the network. 

The total system cost was reduced with maximum profit for EV users when the RES 

penetration was increased. On the contrary, the power losses were minimum for different 

EV battery capacity case. The EV owners profit was low for this case due to minimal 

power sharing between EV and the grid.  

5.2 Future work 

As an extension to the work proposed in this study, some potential issues have not 

been addressed. These can be considered for the future research: 

• The proposed energy management approach assumed renewable power 

generation and load profile to be forecasted for day ahead. The forecasting 

modules can be added into the study by considering the uncertainties of renewable 

power and load with real time simulations.  

• The efficiency and emission cost of microgrid was not considered in this thesis, 

the optimization of microgrid with respect to efficiency and emission cost can be 

considered as a future aspect of this research. 

• With regard to communication technologies for EV coordination, the centralized 

aggregation of EVs for providing a service in the amount of several MW requires 

thousands of vehicles and a stable low-latency communication with all of them. 

The use of real-time simulators such as OPAL-RT and RTDS where 

communication links can be emulated together with EVs could help addressing 

the quality of service for coordinating large fleets of EVs. 

• For the provision of local grid support using EV load, the combination of active 

power solutions using the load of EV charging stations with other options such as 
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reactive power from PV inverters have not been addressed. Furthermore, voltage 

support using EV load coordination, in cooperation with tap-changer transformer 

strategies can be addressed.  

• The battery degradation factors such as capacity throughput, calendar ageing, 

temperature and charge current can be considered for the battery modeling with 

different usage cycles. Furthermore, effect of these battery degradation factors on 

different EV technologies can be addressed for profit maximization analysis as 

future research.    
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