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UAV-BASED RGB/NIR AERIAL IMAGING FOR THE DETECTION OF
Ganoderma DISEASE IN OIL PALM PLANTATION

ABSTRACT

Ganoderma disease in oil palm caused by Ganoderma spp. fungi have caused

significant losses of Malaysia's economic income. Advances in remote sensed imagery

and image processing using unmanned aerial vehicle (UAV) for Ganoderma disease

detection could be developed to reduce operating cost and time as well as cover wider

oil palm areas. This study examines the performance of red-green-blue (RGB) and near-

infrared (NIR) digital orthophoto image acquired using modified digital cameras

mounted on the UAV for aerial detection of Ganoderma disease in oil palm. The

orthophoto images were filtered using eight adaptive filters with window sizes of 7×7,

9×9 and 11×11. The filtered orthophoto images then were processed using three

supervised image classifiers: Maximum Likelihood (ML), Mahalanobis Distance (MD)

and Neural Net (NN). The classifiers were used to classify the Ganoderma disease

severities into Experiment 1: T0 (healthy), T1 (mild), T2 (moderate) and T3 (severe);

and Experiment 2: healthy and unhealthy. The classification outputs were assessed

using a confusion matrix. Best result was obtained from Bit Error filter with 9×9

window size using the NN algorithm with an overall accuracy of 62.41% and a Kappa

coefficient of 0.3890. This study demonstrated classification from UAV-based imagery

can be improved using filters for Ganoderma disease detection mapping in oil palm

plantation.

Keywords: Ganoderma disease, digital aerial orthophoto, supervised classification
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IMEJ RGB/NIR BERASAKAN UAV UNTUK PENGESANAN PENYAKIT
Ganoderma DALAM PERLADANGAN KELAPA SAWIT

ABSTRAK

Penyakit Ganoderma kelapa sawit yang disebabkan oleh kulat Ganoderma spp.

telah mengakibatkan kerugian besar terhadap ekonomi Malaysia. Kemajuan dalam

pengimejan dan pemprosesan imej yang dikesan menggunakan kenderaan udara tanpa

pemandu (UAV) untuk pengesanan penyakit Ganoderma dapat dibangunkan untuk

mengurangkan kos dan masa operasi serta meliputi kawasan kelapa sawit yang luas.

Kajian ini mengkaji prestasi imej digital ortofoto merah-hijau-biru (RGB) dan

inframerah dekat (NIR) yang diperoleh menggunakan kamera digital yang telah

diubahsuai pada UAV untuk mengesan penyakit Ganoderma dari udara pada kelapa

sawit. Imej ortofoto telah dituras menggunakan lapan penyesuaian turas dengan saiz

tetingkap 7×7, 9×9 dan 11×11. Imej ortofoto yang telah dituras kemudian diproses

menggunakan tiga klasifikasi imej yang diselia: Maximum Likelihood (ML),

Mahalanobis Distance (MD) dan Neural Net (NN). Pengelasan digunakan untuk

mengelaskan tahap keterukan penyakit Ganoderma pada Eksperimen 1: T0 (sihat), T1

(ringan), T2 (sederhana) dan T3 (teruk); dan Eksperimen 2: sihat dan tidak sihat.

Pengelasan klasifikasi dinilai menggunakan matriks kekeliruan. Hasil terbaik diperoleh

daripada pengelas Bit Error dengan saiz tetingkap 9×9 menggunakan algoritma NN

dengan ketepatan keseluruhan 62.41% dan pekali Kappa 0.3890. Kajian ini

menunjukkan bahawa klasifikasi daripada imej berasaskan UAV dapat ditingkatkan

menggunakan penapis untuk pemetaan penyakit Ganoderma dalam ladang kelapa sawit.

Kata kunci: Penyakit Ganoderma, digital ortofoto udara, klasifikasi diselia
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CHAPTER 1: INTRODUCTION

1.1 Overview

The oil palm tree (Elaeis guineensis Jacq.) is an important tree, which has been one

of the world's major sources of edible oil. The oil palm occupies 16 million hectares

(Mha) globally and oil palm industry contributes to the gross domestic product (GDP)

for agricultural sector growth. Malaysia and Indonesia cultivate oil palm in larger scale

due to its high yield and low production cost of palm oil (Kian et al., 2013).

The most common manifestation of the disease that attacks oil palm is the

Ganoderma disease. This disease decays the root system progressively and the lower

stem induces disease symptoms (Rees et al., 2009). A white rot fungus Ganoderma

causes this disease. In Malaysia, Ganoderma boninense is the major pathogen

since Ganoderma is a regional disease. This soil-borne fungus attack from the palm

roots and slowly spread to the stem and bole system of the palm trunk (Idris, 2004).

Ganoderma disease that attacks oil palm caused an effect on the palm oil production

in Malaysia. The disease can threaten the industry by shortening the lifespan of oil palm

trees and affecting the yield and quality of the fruit. Ganoderma disease early detection

is necessary for disease management as currently there is a barely effective treatment to

control this disease (Liaghat et al., 2014).

Image capturing using satellite and airborne is growing in number as it is commonly

used for precision agriculture or site-specific crop management that includes crops

monitoring and fertilizer management with the aid of remote sensors. Each system

delivers unique capabilities that are suitable for specific uses to increase crop yields

(Zarco-Tejada et al., 2016).
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The unmanned aerial vehicle (UAV) platform with a better combination of spatial

and temporal resolution has turned out to be industrially accessible for diverse

applications. The advantages of UAV are their lower cost and represent a minor threat

or damage in case of malfunction compared to piloted airborne and satellite platforms

(Saberioon et al., 2014). The uses of the UAV can overcome the difficulties related to

spatial and temporal resolution since the images taken from UAV platform are likely to

collect detailed geospatial information in real-time (Fornace et al., 2014).

Plant diseases can affect the quality and quantity of the crop production. The naked

eye method used to identify the disease requires the expert to detect the changes in

leaf colour that involves continuous monitoring; time-consuming and not practical in

large fields (Ghaiwat & Arora, 2014).

Detection and control of Ganoderma boninense strategies have widespread due to the

advanced technologies. Thus, the purpose of this study is to demonstrate the UAV

capability of collecting image data efficiently to determine the separability between

classes of healthy and diseased palms in the oil palm plantation.

1.2 Problem Statement

Ganoderma disease is the most common disease that attacks and caused major losses

in the South East Asia oil palm industry. The causal pathogen is caused by Ganoderma

spp. that attack the palm stem rot. It has been identified that Ganoderma boninense is

the major pathogen on oil palm in Malaysia (Idris, 2004).

In 2011, 3.71% or 60,000 hectares of oil palm plantation in Peninsular Malaysia

were lost due to Ganoderma disease incidence with estimated losses of RM 1.8 billion.

The total area expected to be affected by Ganoderma will rise to about 443,430 hectares

or 65.6 million palm trees with approximately RM 11.25 billion losses by the year 2020
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(Roslan & Idris, 2012). Moreover, this fatal disease can cause losses up to 80% after

repeated planting cycles (Flood et al., 2000).

Monitoring for Ganoderma disease in oil palm plantation is time and labour

consuming. Large areas of oil palm plantations require an airborne monitoring

system to locate Ganoderma disease hot spots for fast and effective control measures. It

is crucial to develop an early detection tool in order to achieve a successful disease

management and save cost based on airborne technology. From the newly emerging

method of remote sensing using a UAV system, early detection and assessment of the

disease symptoms are vital to control and manage the oil palm crop. This is due to there

is more than 50% of the oil palm plantation in Peninsular Malaysia that being attacked

with Ganoderma disease that requires near real-time detection. The in-depth study is

required to identify a suitable method that utilized fixed-wing UAV multispectral image

for aerial detection of Ganoderma disease in oil palm.

1.3 Research Aim

The aim of this study is to assess the performance of image-based red-green-blue

(RGB) and near-infrared (NIR) from fixed-wing UAV captured over selected oil palm

plantation with varying levels of Ganoderma disease severity indexes, and to determine

the best classification technique for the detection of the disease.
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1.4 Research Objectives

In this study, the performance of fixed-wing Swinglet UAV using Canon IXUS

220HS image products was assessed in response to the Ganoderma disease varying

levels in oil palm plantation. Three objectives were established to achieve the study aim:

1. to examine the performance of classification techniques for the detection of

Ganoderma disease in oil palm;

2. to compare between RGB and NIR image performance using three different

supervised classifiers;

3. to assess the effects of different adaptive filters on the classification performance

for the detection of Ganoderma disease in oil palm.

1.5 Research Questions

To achieve the objectives, the following research questions are defined:

1. Which supervised classification technique (Maximum Likelihood (ML),

Mahalanobis Distance (MD) or Neural Net (NN)) gives the best result in the

detection of Ganoderma disease in oil palm?

2. Which image (RGB or NIR) is outperforming in detecting the Ganoderma disease

using three different supervised classifiers?

3. Which adaptive filters show the best result on the classification performance for

the detection of Ganoderma disease in oil palm?Univ
ers

ity
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1.6 Significance of Study

This study is significant mainly to the oil palm industry and potentially important

for the agricultural industries in Malaysia. It is important for the oil palm

management to assess for the spread of Ganoderma disease in the oil palm plantation

areas. The application of UAV images in precision agriculture is vital to control the

spread of Ganoderma disease in mature palms while sustaining the agriculture

production.

In this study, the RGB and NIR images were classified separately using ML, MD

and NN classifiers. The classification results are represented in thematic images in two

sets of experiments, which in Experiment 1, the T0 is represented by the green colour,

T1 by the purple colour, T2 by the yellow colour and T3 by the red colour. Meanwhile,

for Experiment 2, the healthy class represented in green colour and the unhealthy class

represented in red colour.

The success of the detection of Ganoderma disease infection helps reduce the loss

of oil palm crops through the mapping of Ganoderma disease from UAV images and

perhaps eradication of the disease. This is important as the Malaysian oil palm

plantation sector is recognise as having a high demand for nutrients. From this study,

the accuracy assessment of supervised classification techniques will be discovered

from the UAV platform towards the detection of Ganoderma disease through the oil

palm crown. The novelty of this study is to provide an understanding of the analysis

of UAV-based image product in Ganoderma disease that affecting the oil palm area

by comparing different supervised classifiers by their performances will make a

significant contribution to future precision agriculture research. A competent

classifier is needed to extract and produce quality information from remote sensing

images.
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1.7 Structure of Thesis

The material in this thesis is organized in six chapters, divided into three broad topic

areas: (1) Ganoderma disease in oil palm plantation, (2) UAV as a remote sensing

platform and (3) the application of supervised classification techniques. Brief

explanations in each chapter are listed in this section.

Chapter 1 contains an introduction to the study and the problem statement. Research

identification will be divided into research objectives, research questions and the

significance of the study.

Chapter 2 presents broad literature reviews that are useful in this study. A brief

overview of the oil palm and the background symptoms of Ganoderma disease also

presented. Remote sensing principles and recent studies on UAV products in

agricultural used will also be discussed further in this chapter.

Chapter 3 consists of a detailed description of the methods used in this study. In

general, this study is arranged into three segments: data acquisition, data processing,

and data analysis. A thorough flowchart, process for each segment and approaches used

to complete the objectives are specifically described in this chapter.

Chapter 4 comprises detailed results of each step in this study. From the data

obtained from fieldwork, data processing and up to analysis of the results upon

achieving the output of the UAV-based image product.

Chapter 5 consists of general and technical discussion regarding the results based on

the findings of this study.

Finally, Chapter 6 encompasses the conclusions of the research chapters and the

summary of the results. Recommendations also contained in this chapter.
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CHAPTER 2: LITERATURE REVIEW

2.1 The Oil Palm

Oil palm, Elaeis guineensis Jacq., is an unbranched monoecious plant that belongs to

the genus Elaeis that was originated from Africa, particularly in West Africa (Verheye,

2010). Oil palm is primarily produced in Malaysia and Indonesia is one of the important

sources of vegetable oil in the world that provide nearly 90% of the oil entering the

international trade (Corley & Tinker, 2015; Rivera-Méndez et al., 2017). Oil palm

vegetative oil is grown for its industrial production has the highest productivity

compared to other oleaginous crops (Verheye, 2010; Barcelos et al., 2015). China,

European Union, Pakistan, India, Japan and Bangladesh are the primary markets for

palm oil international trade (Vollmann & Rajcan, 2009).

Oil palm was first introduced in Malaysia in 1875 as an ornamental plant and

become commercial planting in 1917. The Malaysian government has encouraged the

expansion of oil palm in the 1960s due to its rapid expansion and introduced the

clearing of land for oil palm plantations. Currently, Malaysia is the second largest

grower of palm oil with a yearly production of 19.96 million tonnes in 2015, meanwhile

Indonesia with palm oil production of 33.6 million tonnes (MPOB, 2016a).

2.2 Oil Palm Cultivation

Oil palm requires deep or peat soil and needs high temperature and continuous

moisture throughout the year since it is a tropical tree crop (Verheye, 2010). Malaysia

only had 400 ha plantation in 1921. The area increased to 0.6 million hectares in 1975

to 5.4 million hectares in 2014 (MPOB, 2015). Table 2.1 shows the oil palm cultivation

area, that being occupied in Peninsular Malaysia as at December 2015.
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Table 2.1: Total area of oil palm cultivation in Peninsular Malaysia

Source: MPOB, 2016b

Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Promotion Council

(MPOPC) being the main institutions that aimed to increase quality and productivity

and expanding export markets of the oil palm industry. MPOB's role is to make sure the

development in the palm oil industry by involving palm oil quality control and its

products through research and development (R&D). Meanwhile, MPOPC performs on

the palm oil market promotion, especially in the export markets (Shome & Sharma,

2015).

2.3 Oil Palm Morphology and Botany

The oil palm tree is a member of the family Palmae, subfamily Cocoideae, and

genus Elaeis. The genus contains three main species: E. guineensis (commercial red oil

palm) from Africa, E. oleifera (American oil palm) and E. odora (grown in the Amazon)

both from South America (Verheye, 2010). Of the three species, the E. guineensis is the

worldwide grown crop and cultivated on a wide scale compare to E. oleifera that have

lower oil content (Idris, 1999).

State Area (ha)
Johor 738,583
Pahang 725,739
Perak 398,318

Negeri Sembilan 177,741
Terengganu 172,587
Kelantan 151,973
Selangor 137,336
Kedah 87,244
Melaka 54,603
Penang 14,447
Perlis 295
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Oil palm pollination is primarily by insects. The pollinating weevil Elaeidobius

kamerunicus, imported from Cameroon, Africa was first introduced in Malaysia by the

middle of 1981 to improve pollination and to increase fruit set (Lajis et al., 1985;

Rizuan et al., 2013). Before this time, oil palms in the region require artificial

pollination or wind pollinated. Weevil feeds on the palm male inflorescence tissues and

male flowers to complete the entire life cycle. The weevil’s pollination efficiency

depends on its ability to transfer pollens while visiting both male and female oil palm

flowers during anthesis (Lajis et al., 1985).

The oil palm growing in South East Asia requires low rainfall and high altitude for

growth development. Oil palm is a rain-fed plantation crop that requires an average of

1780-2280 mm annual rainfall that is evenly distributed throughout the year with

optimal temperatures between 24 and 30 °C (Mukherjee & Sovacool, 2014). The annual

rainfall plays a major role in its growth and yield, apart from soil fertility and

management inputs (Haniff et al., 2014). The oil palm tree's height can reach 15-18 m

and up to 30 m in a dense forest (Barcelos, 2015). The four main parts of the palm tree

include root, stem, leaves or fronds and fruit (Roslan et al., 2004).

2.3.1 The Root System

Oil palm is a perennial monocot and has an extensive root system that is a greater

part of nutrients uptake. The root structure starts with primary roots that go down

profoundly from the trunk base. The primary roots will continue to produce secondary,

tertiary and quaternary roots around the tree (Verheye, 2010). The root system supports

the palm tree to stand upright on the ground for minerals and water uptake from the soil

(Hartley, 1988). Figure 2.1 shows the different appearance types of roots.
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Figure 2.1: The different types of roots of an adult oil palm root system
Source: Corley & Tinker, 2008

2.3.2 The Stem

The oil palm has no branches, but it has a trunk or stripe that is the stem of the palm

(FAO, 2002). The oil palm stem consists of the cortex that is formed by the extension

of the leaf bases. The stem function is being a support, vascular and storage organ. The

vascular bundles within the stem supply water and nutrients to the fronds and

photosynthetic absorb to the roots (Corley & Tinker, 2015).

2.3.3 The Leaf

The meristem or apical bud produces 40-60 leaves which comprise the petiole, rachis,

and leaflets; each remains encircle for 2 years and opens into a middle ‘spear’. At 2-4

years of age, the number of leaves produced annually increases to between 30 and 40.

The developing leaf base completely encloses the stem apex. A mature palm leaf is

pinnate and have overgrown linear leaflets on each side of the leaf stalk. There are 250 -

300 leaflets per fully developed leaf and the sizes are up to 1.3 m long and 6 cm broad

(Corley & Tinker, 2015).
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2.3.4 The Fruit

The oil palm fruit yield is of greatest economic significance. The preferred species

grown in South East Asia, E. guineensis has three fruit forms, dura, tenera, and pisifera.

The extractable oil from E. guineensis produces more productive oil compared to

coconut, peanut, soya bean and sunflower (Idris, 1999).

The character of these three fruits can be distinguished based on its shell thickness: (i)

Dura, thick-shelled, (ii) Pisifera, shellers, and (iii) Tenera, a thin-shelled. The tenera is

a hybrid between dura × pisifera parents, planted commercially due to its thick

mesocarp and thin shell, and produces 30% more oil than the dura (MPOB, 2015).

Figure 2.2 shows the cross-longitudinal section of the three oil palm fruit varieties.

Figure 2.2: Cross-longitudinal section of oil palm fruit varieties (a) Dura, (b)
Tenera and (c) Pisifera, showing the relative proportions of shell, kernel and pulp

Source: FAO, 2002

(a) (b) (c)
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2.4 Palm Oil and Palm Kernel Oil Products

The oil palm is the highest yielding and highly profitable oil crop to many third

world humid tropic countries. Oil palm is a unique crop that it produces two types of oil

from its fruits, the hard-shelled nut surrounded by pulp (mesocarp) that contains the

palm oil and the nut from the kernel is extracted leaving a proteinaceous residue (Corley

& Tinker, 2015).

The expansion of oil palm cultivation has been much depending on the success of

extracting oil and kernels from the harvested fruit punch. The palm oil has found many

uses, especially 80% of it is mainly used in food such as cooking oil, shortening, and

margarine. Meanwhile, the palm kernel oil has a different fatty acid structure of palm oil.

It is applicable in non-edible products such as detergents and cosmetics (Aik, 2015).

2.5 Pests and Diseases of Oil Palm

The real threat to declining in yields and productivity of oil palm is the presence of

pests and diseases. The oil palm was free from pests and diseases attack until World

War II, but as the crop area has expanded, the outbreaks of disease have been serious in

several parts of the world (Corley & Tinker, 2003).

2.5.1 Oil Palm Pests

Pests and organisms can damage crops by their feeding and burrowing activities that

can lead to disrupting the plant physiology leading to direct cellular tissue damage and

the crop's ability to optimise production (SALCRA, 2012). Four groups of pests that

affecting oil palm trees: vertebrates consisting of mammals and birds; arthropods

(insects and mites); mollusks, slugs, and snails; and nematodes (Verheye, 2010). In

Malaysia, two major pests that attack oil palm are mammals and insects. Rat is the
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major mammalian pest, meanwhile, bagworms, nettle caterpillars, termites and

rhinoceros beetles are the major insect pests (Arif et al., 2011).

2.5.2 Oil Palm Diseases

Idris (2004) listed six major diseases that attack palm trees, namely Vascular Wilt,

Leaf Spot, Red Ring, Sudden Wilt, Bud and Spear Rot and Basal Stem Rot (BSR).

These diseases are region-specific and attacked to certain oil palm growing areas of the

world. Among the various fungal diseases affecting oil palm, BSR or Ganoderma

disease caused by soil borne fungus Ganoderma spp. is the most destructive disease that

causes major losses in oil palm industry with high incidence in Malaysia and Indonesia,

and lower incidences recorded in Thailand, Africa and Papua New Guinea (Idris et al.

2004; Susanto et al., 2005; Kinge & Mih, 2011).

2.6 Ganoderma Disease of Oil Palm

Fifteen Ganoderma fungus species have been recorded from different parts of the

world (Turner, 1981). In Malaysia, three types of Ganoderma fungi that attack oil palm

crops are G. boninense, G. miniatocinctum and G. zonatum. Meanwhile, G. tornatum

does not cause disease but only live on a dead palm tree (Idris, 2004). However, G.

boninense is the major culprit for Ganoderma disease attack of oil palm in Malaysia

(Turner, 1981; Singh, 1991; Flood et al., 2000; Idris et al., 2009; Wong et al., 2012).

Ganoderma boninense is a polyporoid fungus that belongs from the family of

Ganodermatacaea, order of Polyporales and Classed under Basidiomycetes (Idris, 2009).

Ganoderma is a white rot fungus that attacks the trunk xylem tissue and leaving white

cellulose through the production of enzymes that degrade the lignin components and

would lead to the decay of the stem or roots from where the basidiocarps appear

(Paterson, 2007; Hushiarian et al., 2013; Liaghat et al., 2014). Ganoderma is the only
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pathogenic disease causing significant losses that can kill more than 80% of the oil palm

stands by the time they are halfway through their normal economic life (Turner, 1981).

Ganoderma fungus attack starting from the root and base of the tree involving young

trees and many occur on mature palm trees. Any age of palms is susceptible to

Ganoderma attack, even younger palms between 12-24 months can be attacked by the

disease. The infection becomes frequent after 4 to 5 years in replanting areas (Idris,

2004). Besides, the Ganoderma fungus has been found in seedlings where symptoms

appear before time and critical (Sanderson, 2005; Susanto et al., 2005). This occurs

when the palms are felled in the process of replantation where Ganoderma fungus that

attacks are derived from palm or coconut trees felled (Turner, 1981). The disease used

to attack older palms planted on ex-coconut, but now the disease is prone to attack

younger replants due to continuous replanting (some into the third cycle) (Aik, 2015).

This shows that the fungal variability is related to the capability of the species to

adapt and survive in a different substrate for a long time (Chong et al., 2017). Figure 2.3

shows the Ganoderma characterisation by their woody basidiocarps. Meanwhile, Figure

2.4 shows the basal stem rot of oil palm.

Figure 2.3: Basidiocarps at the basal stem of oil palm
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Figure 2.4: The rotten oil palm stem base affected by Ganoderma disease

2.7 Ganoderma Symptoms and Disease Development

Three main ways that the fungus spreads are through roots by the inoculum left by

the alternative host plants, the inoculum from infected trees spreading by mycelial root

contact and through airborne basidiospores. Fungi that rot and eventually kill oil palm

trees may be costing and caused a decline in oil palms productivity (Hushiarian et al.,

2013). In general, the initiation of Ganoderma disease in oil palm by G. boninense is

established from infected debris that enters and gets in contact with the roots and

wounded part and progresses mainly through the cortex of the palm (Chong et al., 2017).

The Ganoderma fungus builds up along the palm infected root and after some time

reaches the bole of the palm trunk (Basri et al., 2003). Currently, Ganoderma is

detected visually by finding fungal fruiting bodies (mushrooms) on the contaminated

trunks (Liaghat et al., 2014).

Ganoderma disease does not show any visible symptoms when the severity level of

infection is around 8% in plant roots (Naher et al., 2012). It is difficult to detect a foliar

symptom of the Ganoderma disease as it appears in the advanced stages of the infection

(Liaghat et al., 2014). However, the initial symptom of Ganoderma disease occurs in

the canopy appearance or frond wilting and malnutrition (deficiency in nitrogen) due to
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restricted water and nutrient supplies to the aerial parts (Turner, 1981; Turner &

Gillbanks, 2003).

In younger palms, the symptoms of Ganoderma disease consist of a one-sided

yellowing of the lower frond and followed by necrosis (Singh, 1991). Similar symptoms

also observed in mature palms, where the lower leaves collapse and hanging vertically

downward from the attachment of the trunk. Furthermore, the symptoms continue with

the drooping of younger leaves that turn into pale olive green or yellowish colour. This

would lead the base of the stem becomes blackens, the gum may be emitted and the

characteristic fructifications of basidiocarps appear. In severe cases, the whole crown

may then fall off, or the trunk may collapse (Corley & Tinker, 2003).

Mature palms can survive up to 3 years while young palms die within 1 or 2 years

after being diagnosed with the disease (Corley & Tinker, 2003). Two types for the

confirmation of Ganoderma disease diagnostic symptoms include the observation of the

disease at the palm base and the appearance of one or more fruiting bodies (Gait, 2012).

2.8 Control and Treatment of Ganoderma Disease

Vegetative growth and production not only determine the oil palm yields but also by

the approach to control and eradicate pests and diseases (Verheye, 2010). Cultural and

chemical control methods have proved to be ineffective towards the disease. Meanwhile,

diagnosis and prevention of Ganoderma disease have proved difficult. However, it is

convenient to deal with the stage of the disease severity at which the palm is affected

(Corley & Tinker, 2003). These include a surgical method to control Ganoderma on

sick palms by removing the infected stem and root tissue at the base of the plant.

However, this method is less effective since Ganoderma can grow back a few months

after the treatment. Another method to control the infected Ganoderma is through soil

mounding. This method includes filling in around palm with a land area of 1 meter high
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and 0.75 meters wide on palms that are 10 years and older. This method does not fully

kill the Ganoderma, but it has been reported to extend the age of the infected palms

(Idris, 2004).

Visual interpretation in detecting Ganoderma disease is time-consuming since the

disease can only be detected at the middle or late stages of the disease. With decades of

research on Ganoderma disease, there have been several bio-controls and fungicides

developed and produced by Malaysia Palm Oil Board (MPOB) for control and

management of the disease (Idris et al., 2012; Idris et al., 2014a; Idris et al., 2014b).

The technologies include Ganoderma Selective Medium (GSM) (Ariffin et al., 1993),

Polyclonal Antibodies Enzyme-Linked Immunosorbent Assay (PAbs-ELISA) (Idris &

Rafidah, 2008; Madihah et al., 2014), Multiplex PCR-DNA Kit (Idris et al., 2010a) and

GanoSken Tomography (Idris et al., 2010b). However, these technologies are disfavour

since it requires a lot of labour intensive, time-consuming and costly (Izzuddin et al.,

2015).

Hence, remote sensing technology has the potential to assist in monitoring huge oil

palm plantation and have the possibility to detect Ganoderma disease in oil palm. The

recent development of remote sensing technology is the unmanned aerial vehicle (UAV)

that gives more flexibility and higher quality of data and can be set to obtain images that

independent from cloud cover (Klemas, 2015). Figure 2.5 shows the simplified of

several technologies used for Ganoderma disease detection developed by MPOB.Univ
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Figure 2.5: Technologies developed by MPOB for Ganoderma disease detection

2.9 Remote Sensing Principles

Remote sensing is the science of collecting and interpreting information of an object

by acquiring data with a device, not in contact with the object (Lillesand et al., 2014). In

general, remote sensing using electromagnetic (EM) radiation with the sun being an

ultimate source. Every physical object absorbs and reflects EM radiation. Each object

has a different surface features that generate a different absorption or reflection from the

sun’s radiation (Smith, 2012).

2.10 The Electromagnetic Spectrum

Electromagnetic (EM) radiation appears as a continuation of wavelengths and

frequencies, and the entire range of EM radiation is called the electromagnetic spectrum.

The wide range of wavelengths going from the shortest wavelength (gamma rays) to

long wave microwaves (Curran, 1985; Joseph, 2005). The most common EM spectrum

in remote sensing sensors on Earth observation is visible, infrared and microwave

(Chuvieco & Huete, 2010; Duzgun, 2011).

Technologies for Ganoderma
disease detection

Ganoderma
Selective
Medium
(GSM)

(Ariffin et
al., 1993)

Polyclonal
Antibodies
Enzyme-
Linked

Immunosor-
bent Assay

(Pabs-ELISA)

(Idris &
Rafidah, 2008,
Madihah et
al., 2014)

Multiplex
PCR-DNA

Kit

(Idris et al.,
2010a)

GanoSken
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(Idris et al.,
2010b)
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The wavelengths that normally used in remote sensing are visible and near infrared

radiation in the waveband 0.4-3µm, visible spectrum in the waveband 0.4-0.7µm,

infrared radiation in the waveband 3-14µm and microwave radiation in the waveband 5-

500mm (Curran, 1985; Joseph, 2005). Figure 2.6 shows the variations of different EM

spectrum.

Figure 2.6: Electromagnetic spectrum, with shortwave energy depicted to the left
and long wave to the right

Source: Purkis & Klemas, 2011

2.11 Remote Sensing Sensors

Through a different range of the electromagnetic spectrum, sensors can be classified

depends on the measuring range (visible=VIS, near infrared=NIR, short wave

infrared=SWIR, thermal infrared=TIR), the measuring scale (near-range or remote), and

into imaging and non-imaging sensors (Mahlein et al., 2012). An ideal sensor would be

spatially detailed data that are highly sensitive to all wavelengths throughout the

spectrum across wide areas on the ground (Lillesand et al., 2014). The sensor can

operate from any type of platform or vehicle that range from step ladders to aircraft

(fixed-wing or helicopters) and to satellites.
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Two types of remote sensing sensors are active and passive. An active sensor

requires an external source of radiation to emit energy to the object and scan the

backscattered radiation (Kapilevich et al., 2014; Maryam et al., 2016). An example of

the remotely sensed sensor is radio detection and ranging (RADAR) which transfer a

microwave signal to the target, detects and determines the backscattered portion of the

signal. Besides that, light detection and ranging (LiDAR) is another example that gives

off a laser pulse and precisely measures its return time to calculate the target height.

Active sensors can be used to image the target or surface at any time, any season, day or

night (Wang & Weng, 2013).

Passive sensor measure levels of energy that are naturally emitted, reflected or

transmitted by the target object from the sun which is the source of radioactive energy.

Data can only be captured during daylight hours since passive sensor uses naturally

occurring energy. The sun’s energy is reflected for visible wavelengths and re-emitted

for thermal infrared wavelengths. (Gopi et al., 2014). Examples of passive sensors are

multispectral and hyperspectral sensors such as photographic cameras and thermal IR

sensors (Jensen 2006; Wang & Weng, 2013).

2.12 Multispectral Remote Sensing

Multispectral sensors mounted on the satellite or aerial platforms were used to

capture remotely sensed data. Recent years have seen the conversion from film-based

sensors to digital sensors, which result in very high resolution remotely sensed data. The

multispectral image can be expressed in three dimensions: (1) spatial, (2) spectral and (3)

temporal (Navulur, 2006).
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2.12.1 Spatial, Spectral and Temporal Characteristics

Spatial resolution, spectral coverage and temporal frequencies are the main attributes

and the fundamental basis of remote sensing systems for gathering information remotely

(Landgrebe, 2005). Spatial resolution describes the sharpness of spatial detail, or the

smallest size of the object that can be resolved by the sensor represented by pixels

(Purkis & Klemas, 2011).

Spectral coverage refers to the spectral band number, a measurement of the specific

wavelength spectrum of different colours and parts that a sensor can record (Navulur,

2006; Purkis & Klemas, 2011). The images from sensor differ according to the spectral

bandwidth of energy captured by the image ranging from panchromatic to hyperspectral

(Entwisle & Stern, 2005). The most common sensors used in agriculture is the

multispectral sensors that have less than ten bands, superspectral sensors have more

than ten bands and hyperspectral sensors that have bands in the hundreds.

Temporal frequency refers to the cycle or constellations of coverage, or how often

the same area is visited by the sensor and describes a series of images that captured by

the same sensor over time (Chuvieco et al., 2010; Purkis & Klemas, 2011). It is vital to

use images that have high spectral and temporal resolution; from satellite and aerial

systems to generate remote sensing product (Mesas-Carrascosa et al., 2014).

2.13 Multispectral Image Analysis

The spectral responses of various characteristics in different spectral bands are

known as multispectral image analysis techniques. Dissimilar spectral responses in

various bands are different according to its features (Navulur, 2006). Figure 2.7 shows

the graph of the reflectance of water, soil and vegetation in different wavelengths. The
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greater the reflectance in the visible range, the brighter the type of objects looks at an

image.

Figure 2.7: Reflectance of water, soil and vegetation in different wavelengths
Source: Navulur, 2006

2.14 Remote Sensing Platforms

Platforms are the base on which remote sensing instruments or sensors are placed to

view and image targets on Earth's surface (Kumar, 2005). There are three main methods

of collecting remotely sensed images, from satellite and aircraft platforms, and recently

the unmanned aerial vehicle (UAV) platform. Each platform has pros and cons that

involve operational, technological and economic factors (Matese et al., 2015).

Satellite platforms can survey large areas at the same time. However, the image taken

may suffer from cloud cover and have a coarse resolution. Meanwhile, aircraft

platforms are more flexible but are too costly and difficult (Matese et al., 2015). In

recent years, the UAV has become an increasingly important platform for remote

sensing data acquisition (Lillesand et al., 2014).
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Low altitude remote sensing (LARS) system is one of among other remote sensing

platforms and used as one of the favourable platforms for precision farming and

monitoring crops for agricultural applications (Saberioon et al., 2014). UAV being the

LARS system provides a small-scale platform for research applications, but somehow

its limited payload and short flight endurance are its weaknesses (Matese, 2015). Table

2.3 shows the comparison between UAV with airborne and satellite platforms.

Table 2.2: Comparison of UAV with manned airborne and satellite platforms

Platform Spatial
Resolution

Field of View Usability Payload Mass Cost for Data
Acquisition

UAV 0.5-10 cm 50-500 m Very good/
easy

Can be limited Low

Helicopter 5-50 cm 0.2-2 km Pilot
mandatory

Almost
unlimited

Medium

Airborne 0.1-2 m 0.5-5 km Pilot
mandatory

Unlimited High

Satellite 1-25 m 10-50 km - - Very high

Source: Candiago et al., 2015

2.15 Unmanned Aerial Vehicle (UAV)

Unmanned aerial vehicle (UAV) or drones are remotely piloted light aircraft that can

carry sensors or cameras in support of remote sensing applications (Campbell & Wynne,

2011). The UAV is one of the methods used to collect data from the remote area since it

has flexibility along with high spatial and temporal resolution (Pan et al., 2011). The

UAV is remotely controlled by wireless signals from the ground or operated by its own

program.

Currently, there are three types of UAV platforms that are widely used: fixed-wing,

multi-rotor, and single-rotor UAVs. Single-rotor (similar structure to a helicopter)

UAVs have efficient power consumption. Compared to single-rotor UAVs, multi-rotor

UAVs has the capability to take off and land vertically. Meanwhile, a fixed-wing UAVs

consist of a rigid wing frame that has a fixed airfoil that makes flight capable by the

Univ
ers

ity
 of

 M
ala

ya



24

UAV's forward airspeed that causes generating lift. The airspeed is a forward thrust that

is generated by the means of a propeller being turned by an electric motor (QuestUAV,

2015, Jayathunga et al., 2018).

Several advantages of UAV over piloted aircraft and satellites are they are safer and

less costly than piloted aircraft; flexible and easy to deploy (Rango et al., 2009). The

main components of a UAV consist of sensor payloads for data acquisition, autopilot to

control the entire craft, the global positioning system (GPS) for navigation and ground

station for mission planning (Klemas, 2015; Feng et al., 2015). The UAV is capable to

collect multispectral image at cm-level resolution when coupled with imaging, ranging

and positioning sensors (Candiago et al., 2015).

Due to tropical regions, especially in Malaysia that experience significant cloud

cover, the quality of data collected from satellite and airborne platforms is sometimes

unpredictable. Therefore, UAV platform represents a low-cost remote sensing that

provides cost-effective data product that is free from cloud cover and as an alternative to

airborne and satellite platforms (Jayathunga et al., 2018).

2.16 Plant Signal Interaction

Near-range remote sensing provides high possible techniques in detecting infected

plants with diseases and monitoring crops strands. The EM radiation and interaction

with plant or soil material plays an important part for remote sensing application.

Remote sensing measures the reflected radiation, rather than transmitted or absorbed

radiation (Mulla, 2013). The living leaf chlorophyll or plant pigments absorb blue and

red light for photosynthesis (Figure 2.8). They absorb much less of green light and more

is reflected from the visible spectrum, so the human observer can see the dominant

reflection of green light as a healthy vegetation. Meanwhile, the near infrared spectrum

leaf reflectance is controlled by the structure of the spongy mesophyll tissue. The
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radiation that passes through the upper epidermis is strongly distributed by mesophyll

tissue within the leaf (Campbell & Wynne, 2011).

Figure 2.8: The interaction of leaf structure with visible and infrared radiation.
Red and blue absorbed largely for photosynthesis

Source: Campbell & Wynne, 2011

2.17 Vegetation Properties

The difference between stress and healthy crops can be detected from the reflection

of various wavelengths. In stressing crops, chlorophyll starts to break down and this will

affect the cellular structure of the leaves. The chlorophyll loss will affect the crop

reflectance in the visible and NIR region. The changes in the NIR region that are

invisible to human eyes can be identified using remote sensing before the chlorotic

symptoms appear (Muhammad et al., 2015).

Leaf reflectance can be described as the proportion of the illuminated light reflected

by the leaf. The common features of the reflected spectrum present in healthy plants

consist of low reflectance at visible wavelengths (RGB = 400-700 nm) due to the strong

absorption of the photo-active pigments, and high reflectance in the near-infrared (NIR

= 700-1200 nm) in which there is the strongest interaction with the tissue of the leaf

(Tona, 2017).
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2.18 Remote Sensing for Precision Agriculture

Precision agriculture is the trend of agricultural development of the world. The

traditional precision agriculture focuses on three systems (Remote Sensing, Geographic

Information System, and Global Position System) for decision-supported technologies

in crop production management (Yue et al., 2012). An added advantage of remote

sensing is that it can look at a wide area and make a comparison between healthy and

stressed crop data at the same time (Venkateswarlu et al., 2011). At present, precision

agriculture focuses on the development of sensors using remote sensing that can

remotely detect in real-time of the crop and soil properties (Schellberg et al., 2008).

Hyperspectral imaging sensors or imaging spectroscopy is more complicated

compared to multispectral data. This is due to the hyperspectral system collect hundreds

of continuous narrow bands of the electromagnetic spectrum and lead to complex

processing after the collection of data is required (Qi et al., 2016; Heaphy et al., 2017).

One of the uses of remote sensing technology pioneer demonstrations in agriculture

was reported in a plantation crop. The ability to detect stresses detail in oil palm

plantations has increased as remote sensing technologies have evolved. Several kinds of

research of remote sensing for Ganoderma disease detection have been developed by

MPOB. A few techniques of hyperspectral remote sensing have been examined for

Ganoderma disease detection using handheld spectroradiometer (Shafri & Izzuddin,

2008; Nisfariza et al., 2010; Shafri et al., 2011; Izzuddin et al., 2015) and using

hyperspectral imaging attached to an airborne platform (Nisfariza, 2012; Shafri et al.,

2012; Izzuddin et al., 2013).
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2.20 Application of Remotely Sensed Sensors in Ganoderma Disease
Identification

2.20.1 Hyperspectral Remote Sensing in Ganoderma Disease Detection

Several remotely sensed methods have been used for Ganoderma disease

identification and it is severity categories that comprise of hyperspectral remote sensing,

multispectral remote sensing, terrestrial laser scanning, tomography, Intelligent

Electronic Nose, micro-focus X-ray Fluorescence and spatial maps (Maryam et al.,

2016). Only hyperspectral and multispectral remotely sensed techniques applied in

Ganoderma disease detection will be reviewed. Table 2.4 shows the summary of

remotely sensed sensors and methods applied for Ganoderma disease detection in oil

palm.

Geophysical and Environmental Research Corporation (GER1500) handheld

spectroradiometer was used in Ganoderma disease detection and classification.

Nisfariza (2010) studied the relationship of Ganoderma disease attack towards oil palm

leaves reflectance spectra using the continuum removal index. The study classified

between young palm age of 5 years old and matures palm age of 17 years old using

three different groups that are T1 (healthy palm), T2 (Ganoderma infected palm without

foliar symptom, but with white mycelium at stem base) and T3 (Ganoderma infected

palm with foliar symptoms and white mycelium at the stem base). Three continuum

removed zones located in blue (400-550 nm), red (550-750 nm) and near-infrared (915-

970 nm) regions were selected. The results could separate severity levels of T1 and T2,

and T1 and T3. However, it could not separate between T2 and T3.

The efficiency of Airborne Imaging Spectrometer for Applications (AISA) was

tested for assessing and mapping Ganoderma disease infecting oil palm. Shafri et al.

(2012) applied the best AISA hyperspectral indices in mapping stressed oil palm trees

using vegetation indices and red edge techniques. Two AISA wavelength bands were

Univ
ers

ity
 of

 M
ala

ya



28

selected at locations of 616 nm (red) and 734 nm (NIR) were based on laboratory

statistical analysis using field spectroradiometer reflectance data. Three new formulated

hyperspectral indices, namely D2, normalized difference vegetation index an (NDVIa)

and transformed vegetation index a (TVIa) were applied on these two bands. The image

index was then applied using the Spectral Angle Mapper (SAM) and minimum distance

classifiers to classify the palms into two classes of infected and non-infected. The

classification results were evaluated using the confusion matrix and compared to SAM.

The overall accuracy proved that D2 and NDVIa acquired the highest accuracy of 86%,

followed by TVIa with 84% overall accuracy.

Izzuddin et al. (2017) presented the outcome of using APOGEE spectroradiometer to

develop spectral indices of oil palm seedlings from three levels of Ganoderma disease

severity where T1 is healthy palm, T2 is mild infected palm and T3 is severely infected

palm. The analysis involved spectral indices and total leaf chlorophyll (TLC) using a

regression technique. The results showed that among the six spectral indices used, Ratio

3 is the best spectral index for the early detection of Ganoderma infection in oil palm

seedlings.

2.20.2 Multispectral Remote Sensing in Ganoderma Disease Detection

Unlike hyperspectral sensors, multispectral systems capture the reflected or emitted

of a few broad wavelength bands inbound from the Earth’s surface across the

electromagnetic spectrum (Qi et al., 2016).

Santoso et al. (2011) proved the identification of Ganoderma disease in oil palm

using ground truth data by showing higher reflectance in RGB and lower reflectance in

NIR electromagnetic regions using QuickBird high-resolution satellite image. Six

different vegetation indices were used to discriminate intact palms from infected ones,

namely Atmospherically Resistant Vegetation Index (ARVI), Green Normalized
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Difference Vegetation Index (GNDVI), Green Blue Normalized Difference Vegetation

Index (GBNDVI), Normalized Vegetation Index (NDVI), Soil Adjusted Vegetation

Index (SAVI) and Simple Ratio (SR). GNDVI and GBNDVI were identified to provide

good results in assessing infection rates of 10 years old palms. Meanwhile, ARVI and

SR indices showed the most accurate in 16 years old palms. Besides, the satellite

multispectral image analysis showed two patterns of disease propagation that are

dendritic (in the younger palm with medium to low infection) and sporadic (in older

palms) patterns. The mapping accuracy is 84% of image partitioning that effectively

presented areas that were infected by the disease.

The identification between healthy and Ganoderma infected oil palm can be

classified using colour indices using multispectral and thermal cameras. Khairunniza-

Bejo et al. (2015) used thirteen colour indices consist of normalized difference

vegetation index (NDVI), red (R), green (G), blue (B), near-infrared (NIR), green-blue

(GB), green/blue (G/B), green-red (GR), green/red (G/R), hue (H), saturation (S),

intensity (I) and thermal index (T) to analyse the healthiest level of oil palm using 216

fronds sample. Three fronds with frond number 1, 9 and 17 were taken from each palm.

From the analysis, it can be concluded that G is the best colour index to distinguish

between healthy and Ganoderma infected palm, where healthy palm has a greater index

as compared to the infected palm. Besides, G band also shows greater average value

compared to R and B bands due to chlorophyll pigment takes in the most energy.

2.21 UAV-Based Platform in Oil Palm Monitoring

The development of low-cost digital camera is more on visible and near-infrared

colours. Images can be easily taken from the camera and transfer to the computer for

processing and analysis. The rapid increase of UAV technology benefits the crop

management; particularly for studying crop as well as the detection and mapping of
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plant stress (Calderón et al., 2012; Garcia-Ruiz et al., 2013), plant monitoring (Bulanon

et al., 2014; Chaves et al., 2015) and crop maturity (Saberioon et al., 2014).

Despite the potential of UAVs in precision agriculture applications, very few studies

have included detailed analyses of UAV photogrammetric products over oil palm areas.

UAV application in oil palm has been widely applied for oil palm tree counting

(Mansur et al., 2014; Takeuchi & Khiabani, 2017) and for oil palm monitoring (Astina

et al., 2015; Fahmi et al., 2018) using UAV multispectral images.

Mansur et al. (2014) deployed the use of UAV imagery with visible and near-

infrared bands for automated oil palm tree counting. Convolution and morphological

analysis from spatial analysis was used to detect and delineates the oil palm crown. To

create the oil palm centroids, image thresholding was used. The result was assessed by

comparing with ground truth and it was proved that the result accuracy is 96.5%

accurate.

Meanwhile, Astina et al. (2015) presented the outcome of the spectral response curve

of oil palm tree growth using UAV platform with three spectrums of RGB and single

spectrum of NIR. A spectral response curve graph was able to determine the growth of

the oil palm trees using Normalized Difference Vegetation Index (NDVI) and Modified

Soil-Adjusted Vegetation Index 2 (MSAVI2) using the UAV orthophoto images. The

spectral reflectance graph was generated to identify or detect the level of the condition

of the trees based on the value of the index range. The study has been proved to

generate a good spectral response curve for oil palm after comparing with ground-based

spectroradiometer observation.
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Hyperspectral development integrated with UAV resulting in smaller and lighter

sensor gives the ability for measuring hundreds of bands that are more useful towards

agricultural crops especially in oil palm plantation (Adão et al., 2017). However, there

is a lack in using UAV hyperspectral image in oil palm plantation.

Previous multispectral research of remote sensing in oil palm mainly address

utilisation of satellite and imageries on general mapping of oil palm plantation. Based

on the literature review, there are no previous study that addressed the utilisation of

UAV for Ganoderma disease. A number of studies used UAV for mapping and tree

counting for plantation management purposes. This study would close the research gap

on the potential of UAV for Ganoderma disease detection, although the number of

bands are limited as compared to the multispectral imageries on satellite. The

improvements were significant to the pixel size and spatial resolution which is useful

for features extraction in future studies.
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Table 2.3: Summary of remotely sensed sensors and methods used in oil palm studies

Remotely
Sensed

Technique
Sensor Platform Applied Sensor

Sensor Characteristics
Applied Methods ReferencesSpectral

Range
Spectral
Resolution

Hyperspectral

Ground-based
GER 1500 handheld
spectroradiometer

350-1050 nm 3.2 nm Continuum Removal Index Nisfariza (2010)

APOGEE
spectroradiometer

350-1000 nm 0.5 nm Total Leaf Chlorophyll Izzuddin et al. (2017)

Airborne AISA sensor 430-900 nm 6.43 nm
Minimum Distance

Classifier and Spectral Angle
Mapper

Shafri et al. (2012)

Multispectral

Spaceborne Quickbird
450-520 nm
520-600 nm
630-690 nm
760-900 nm

1 Blue
1 Green
1 Red
1 NIR

Vegetation Index Santoso et al. (2011)

Ground-based Condor5 VNN-285

590-670 nm
500-590 nm
400-500 nm
670-830 nm
830-1000 nm

1 Blue
1 Green
1 Red
2 NIR

Color Indices
Khairunniza-Bejo et al.

(2015)

UAV-based

Tetracam ADC sensor 520-920 nm
1 Green
1 Red
1 NIR

Automated Oil Plam Tree
Counting Mansur et al. (2014)

Canon powershot
XS260 camera

450-900 nm
1 Blue
1 Green
1 Red
1 NIR

Normalized Difference
Vegetation Index and
Modified Soil-Adjusted
Vegetation Index 2

Astina et al. (2015)
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CHAPTER 3: METHODOLOGY

3.1 Study Area

The study location is at an oil palm plantation in Seberang Perak, in the district of

Seberang Perak, Perak, Malaysia (Figure 3.1). The study area is located between 4° 6’

42” N latitude and 100° 53’ 12” E longitude with annual precipitation of 2256 nm per

year and temperature between 24°C - 34°C. The area consists of 8 years old dura ×

pisifera (D×P) oil palms planted in 25 hectares (ha) planting plot. The planting plot is

the first generation of oil palm plantation that previously cleared from the forest area.

The topography of the area is flat, undulated with good drainage and adequate sources

of water supply due to the availability of agricultural canals developed by the authorities

for other agriculture nearby the study area.

The plot was selected based on several Malaysian Palm Oil Board (MPOB) censuses

with the availability of ground truth census of Ganoderma incidences reported carried

on in the year 2013 and 2014. The selected oil palm plantation is well maintained, and

the area is only reported with incidences of Ganoderma disease with no other pests,

diseases, water stress and nutrient stress. Figure 3.2 shows the overall flow chart of the

study methodology and steps performed in this study that will be discussed thoroughly.
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Figure 3.1: The study site location in yellow polygon

3.2 Ground Data Collection

The ground data collection was conducted to record the number and location of

healthy and infected oil palm standings in the study area. A field survey was carried out

on 9-12 June 2014 in the plot to assess the accuracy of the red-green-blue (RGB) and

near-infrared (NIR) images and image processing procedures. The ground data

collection was conducted to assist the orthophoto image classification. Data collected on

the ground consisted of the Ganoderma disease census of each individual palm in the

study area and coordinate sampling of several distinguishing marks in the areas for

geometric correction of airborne images. There are 3,041 palm trees on the plot and the

health status of each healthy and infected palms was observed manually and evaluated.
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Ground Data Collection

Classification of palms into
four classes

Disease Severity Index
(DSI)

UAV Data Acquisition
(RGB and NIR)

Image Pre-Processing of UAV
RGB/NIR image

Image registration

Mosaicking and
orthorectification

Palm canopies extracted using
Region of Interest (ROI)

Image Processing Adaptive Filters

Discrimination between oil palm
and non-oil palm

(Experiment 1 and Experiment 2)

Classification

Neural Net (NN)

Mahalanobis Distance (MD)

Maximum Likelihood (ML)

Best classifier to map Ganoderma
disease severity

Classification Outputs and
Accuracy Assessment

Figure 3.2: The overall flow chart of the methodologyUniv
ers

ity
 of

 M
ala

ya



36

3.3 Classification of Treatments

The census and visual assessment were conducted by the technical staff of

Ganoderma and Diseases Research for Oil Palm (GANODROP) Unit, Biological

Research Division, Malaysian Palm Oil Board (MPOB) under the supervision of Dr.

Idris Abu Seman (Head, GANODROP Unit). There are two different experiments

conducted in this study.

For Experiment 1, the oil palm was categorised into four categories of Disease

Severity Index (DSI) of Ganoderma disease for classification of treatments which are

healthy (T0), mild symptom (T1), moderate symptom (T2) and severe symptom (T3).

Figure 3.3 shows the infected oil palms that were categorized into four classes of DSI in

Experiment 1. Meanwhile, Table 3.1 shows the DSI and the description of the visual

symptoms for Experiment 1. The DSI was determined based on the Ganoderma disease

severity categories that have been standardised by the Malaysian Palm Oil Board

(MPOB). The palms were selected and categorised based on the visual assessment of

the palm foliar characteristics and the appearance of Ganoderma boninense basidiocarp

at the stem base of the palm. The total number of T0 is 2513, T1 is 227, T2 is 146 and

T3 is 155.
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T0
Healthy palm

T1
Mild infected palm

T2
Moderate infected palm

T3
Severe infected palm

Canopy looks healthy, no
presence of Ganoderma
fruiting body

Canopy looks healthy,
presence of Ganoderma
fruiting bodies or stem rotting

Canopy yellowing and wilting
(<50%), presence of
Ganoderma fruiting bodies and
stem rotting (<30%)

Canopy yellowing and wilting
(>50%), presence of
Ganoderma fruiting bodies and
stem rotting (>30%)

Figure 3.3: Four classes of DSI that infected the oil palms
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Table 3.1: Ganoderma Disease Severity Index (DSI) and visual symptoms for
Experiment 1

Meanwhile, Table 3.2 showed the description of another Ganoderma DSI in

Experiment 2 which was normally used by commercial plantation managers in the

visual detection of Ganoderma disease. There are two categories in Experiment 2 where

the healthy category is a T0 from Experiment 1 DSI; meanwhile, the unhealthy category

is a combination of T1, T2, and T3 from Experiment 1 DSI. There is a very minute

difference between healthy and unhealthy categories and that is why it is regrouping in

one category.

Table 3.2: Ganoderma Disease Severity Index (DSI) and visual symptoms for
Experiment 2

DSI Category Visual Symptoms
T0 Healthy palm No fruiting body, foliar symptom and stem

rotting.
T1 Mild infected palm Presence of white mycelium or fruiting body

(eg: small white button form). No foliar
symptoms and slightly or no stem rotting
(<10%) at the base.

T2 Moderate infected
palm

Presence of white mycelium or fruiting body
(eg: small white button or bracket shape form).
Palm shows foliar symptoms (<50%) and
slightly stem rotting (<30%) at the base

T3 Severe infected palm Presence of white mycelium or fruiting body
(eg: small white button or bracket shape form).
Palm shows severely foliar symptoms (>50%)
and stem rotting (>30%) at the base.

Category Visual Symptoms
Healthy Canopy and leaves look healthy, no presence of Ganoderma white

mycelium, small white button, fruiting bodies or rotting at the
palm base.

Unhealthy Presence of leaves yellowing, fronds wilting, two or three
unopened spears and presence of Ganoderma white mycelium,
small white button, fruiting bodies or rotting at the palm base.
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3.4 Flight Mission

3.4.1 Platform

This study used a Swinglet CAM (Figure 3.4), which is a fixed-wing unmanned

aerial vehicle (UAV), manufactured by Sensefly, a Parrot Company, Switzerland. The

specification of the UAV Swinglet is shown in Table 3.3. The images were acquired on

11 June 2014, capturing the overhead perspective of the selected oil palm plantation.

The UAVs carries the camera, GPS and an inertial measuring unit (IMU) that trails the

position of the UAV and enable autonomous flight system.

Figure 3.4: Swinglet with modified compact camera

Table 3.3: Specification of UAV Swinglet

Weight 0.5 kg
Wingspan 80 cm
Material EPP foam, carbon structure and composite parts
Propulsion Electric pusher propeller, 100 W brushless DC motors
Battery 11.1 V, 1350 mAh
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3.4.2 Sensor

The sensor used in this study was a lightweight Canon IXUS 220HS compact camera

(Figure 3.5) with high resolution and wide-angle capability. The camera has been

modified with NIR capability. One camera acquires the digital image in RGB and the

second camera acquires the image in NIR bands. The image acquisition settings were

set to have 60% overlap between each image snapshot and 30% overlap between each

flight path in order to generate Digital Terrain Model (DTM) that must be used to

produce an orthophoto mosaic of the RGB and NIR images. This camera could be easily

mounted on the Swinglet. The camera features an effective resolution of 12.1 mega

pixels and it can take photos with 4000 × 3000 pixels as maximum resolution. Table 3.4

shows the technical specifications of the sensor.

Figure 3.5: Canon IXUS 220HS camera mounted on Swinglet UAV

Table 3.4: Canon IXUS 220HS technical specifications

Minimum focal length 4.3 mm
Image sensor dimensions 6.16 × 4.62 mm

Sensor resolution 4011 × 3016
Format JPEG
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The spatial resolution for both RGB and NIR images are 4 cm and 10 cm ground

sampling distance (GSD) respectively, with a flight altitude of 150 m above ground.

Meanwhile, the RGB image bands are in between 400-750 nm with red as band 1, green

as band 2 and blue as band 3, and for NIR image bands are in between 760-960 nm with

red as band 1, green as band 2 and NIR as band 3.

Sunlight is one of the main factors for good image data acquisition; the flight

configuration was carried out in a clear sky condition. The images were acquired by

performing two separate flights since it is not possible to put all sensors simultaneously

on board due to the limited payload of the Swinglet. The first flight was capturing data

at 13.00 and the second one around 13.30.

The flight duration has been never more than 20 minutes since the battery limitations

only up to 30 minutes, along with a normal cruise speed during image acquisition about

36 km/h. The system also included automatic 3-dimensional flight planning. The

software for data processing is Postflight Terra LT.

The Swinglet flew autonomously in the testing area via automatic pilot function as

the control unit received coordinate input on the flight path. The operator remotely

controlled the take-off and the landing. The control unit provides a monitor that consist

of the flight status including battery level, signal quality, wind speed and other

information.

3.4.3 GPS Equipment

A Garmin Global Position System (GPS) was used before employment to put the

coordinate of the selected area (Figure 3.6). The coordinate will lead Swinglet to its

flight path. Swinglet were able to fly autonomously with the aid of GPS receiver and its

waypoint. The GPS coordinates will help to locate and to align the images taken using

photogrammetry software.
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Figure 3.6: The Garmin GPS equipment

3.5 Flight Planning

A careful flight planning needs to be conducted to obtain an excellent quality of the

image data. The Swinglet flew after the preparation phase of the flight configurations. A

mapping waypoint of aerial image acquisition is the key success in getting usable results.

An optimized mapping waypoint will enhance the mission routing and reduce post

processing computation load (Abu Sari et al., 2018). In this study, the eMotion software

was used to display the ground station that provides information about location, altitude,

warnings and other relevant data about the UAV. Figure 3.7 shows the flight lines in

eMotion software that are useful to determine the needed number of images to be

captured based on the plan in flight planning software according to the time interval.
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Figure 3.7: Flight lines for Swinglet UAV

3.6 Image Pre-Processing

There are 98 snapshots of raw digital images for each RGB and NIR that was

acquired by the UAV over the study plot. The images were tagged with ground

coordinates from GPS and also the flight information from the Inertial Measurement

Unit (IMU) system during flight. These data are important for the pre-processing of the

RGB and NIR raw images to generate an orthophoto image mosaic of the study area.

There were a few essential steps in image pre-processing. The first step was to

download data from the camera. The second step was to calibrate raw multispectral

images. Lastly, the aerial images were mosaicked and geo-registered into a single

orthophoto. The pre-processing was conducted using the Postflight Terra LT software.

The raw images are georeferenced to the Universal Transverse Mercator (UTM), World

Geodetic Survey 1984 (WGS-84) coordinate system based on a set of ground control

points (GCP) at the field located with a Differential Global Positioning System (DGPS).

The GCP are the markers based on the available GPS points and georeference of the

image. The plantation is arranged in rows and columns. The numbering of the samples

were recorded using the rows and columns and can be rectified from the image. A DTM
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data was generated after the georectification and stitching mosaics of the georectified

images and then used as input to orthorectified the mosaics of images into a complete

full scene orthophoto of RGB and NIR image. The resulted orthophoto images of RGB

and NIR were subset to 25 hectares (0.25 km²) (the yellow box) is shown in Figure 3.8

(a) and (b) respectively.

(a) (b)

Figure 3.8: UAV-based multispectral image of oil palm plantation. The yellow box
indicates the study area. (a) Digital orthophoto mosaic image of RGB; (b) Digital

orthophoto mosaic image of NIR

3.7 Identification of Regions of Interest

Regions of interest (ROIs) are portions of images that are selected graphically as a

threshold (ENVI, 2015). The ENVI's procedures allow comparison within the training

phase, in order to carry out an unbiased "ground truth" ROIs or images containing areas

of labelled data; which were not used accuracy assessment of supervised classification

methods (Canty, 2014).
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Two main steps to run pixel-based classification are; pre-knowledge (prior

knowledge) about the research site and the classification algorithm. The first step was

carried out during the field trips for UAV flights and GPS data collection. Seven classes

of ground truth materials were used as training data for the supervised classification.

Identification of ROI was extracted containing either oil palm or non-oil palm

background from the collected images to evaluate the oil palm classifier. ROI includes

training samples (classification image) and test samples (ground truth ROI) for selected

classes. The classification accuracy may be affected by some of the errors, including

human error, equipment, training samples and sampling procedure. Human errors are

the most likely to occur when determining palms Ganoderma DSI. This is due to

misclassified of the visible symptoms such as fronds wilting, fruiting body and stem

rotting. Hence, the field survey should be as close to the time of image acquisition to

reduce visual classification errors.

A number of palm crowns were identified and digitised on the multispectral images

as the training samples to represent respective classes. Figure 3.9 represents examples of

canopy top view for each DSI of the oil palm crown. Based on the figure, it is clearly

shown that the severely infected palm (T3) gives the smallest canopy cover compared to

the others. The healthy palm (T0) shows the large size canopy followed by the mildly

infected palm (T1) and moderate infected palm (T2) that gave a slightly similar size of

canopy cover. The size of the canopy decreases in increasing level of DSI (T0 - T3).Univ
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Disease Severity
Index (DSI)

RGB Image NIR Image

T0

T1

T2

T3

Figure 3.9: Examples of oil palm crown for each oil palm DSIUniv
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In this study, two sets of experiments were used; Experiment 1 and Experiment 2.

Experiment 1 consists of T0, T1, T2, T3, vegetation, soil and water bodies. For training

samples, 30 samples were used in each class and 10 samples for test samples. The

samples were generated in pixels (Table 3.4). T0 has an average area of 49,000 pixels,

followed by T1 with 40,000 pixels, T2 with 34,000 pixels and T3 with 25,000 pixels.

Table 3.5: Numbers of training samples (ROI) and test samples, which were
generated in pixels for Experiment 1

Class Training Test
T0 49,260 14,808
T1 40,828 12,849
T2 34,359 11,752
T3 25,318 8,348

Vegetation 12,578 5,310
Soil 6,760 4,837

Waterbodies 5,043 3,707

Meanwhile, for Experiment 2 ROI were classified into healthy, unhealthy, vegetation,

soil and water bodies. The healthy class is a combination of T0 and T1 classes, and

unhealthy class is the combination of T2 and T3 classes (Table 3.5). The numbers of

training samples are the same for both RGB and NIR images. The healthy class has an

average area of 90,000 pixels and unhealthy class with 50,000 pixels.

Table 3.6: Numbers of training samples (ROI) and test samples, which were
generated in pixels for Experiment 2

Class Training Test
Healthy 90,021 12,849
Unhealthy 59,629 11,752
Vegetation 12,578 5,310

Soil 6,760 4,837
Water bodies 5,043 3,707
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Figure 3.10 shows an example of the ROI Tool in ENVI Classic for the number of

training and test samples that were generated in pixels for Experiment 2. Meanwhile,

Figure 3.11 shows an example of the distribution of the selected oil palm crown based

on the DSI of Ganoderma disease in oil palm. Oil palm within the red areas show signs

of Ganoderma disease infected palm, whereas the green region is healthy palms.

Figure 3.10: ROI tool that shows the list for training and test samples

Figure 3.11: Manual classification of different polygon areas for each class based
on the oil palm location
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3.8 GIS as Input for Remote Sensing Interpretation

Geographic Information System (GIS) is a computer system for capturing, storing,

analysing and displaying geospatial data which describe the locations and characteristics

of spatial features (Chang, 2012). A GIS is also a computerised tool for solving

geographic problems or an idea that expressed a spatial decision support system

(Longley, 2005).

Prior to classification, further processing was done to classify oil palm trees in the

image into healthy and unhealthy. The digitisation of Ganoderma disease ground data

census was done in GIS to overlay and tally digitised census data with orthophoto

image. Figure 3.12 shows the overlaying in total of 120 points in shapefile - *.shp (the

file that stores the feature geometry) form which were measured with T0 for healthy

palms (30 points), T1 for mild infected palm (30 points), T2 for moderate infected palm

(30 points) and T3 for severe infected palm (30 points) in Experiment 1.

Legend
T0
T1
T2
T3

Figure 3.12: Overlaying of 120 points of ground truth in GIS for NIR image
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3.9 Image Processing

Image classification of remote sensing is the technique of assigning pixels of an

image to classes. Generally, it is like assembling identical pixels in a group found in

remotely sensed data into classes that match the informational categories by comparing

pixels to one another based on user interest (Perumal & Bhaskaran, 2010). The image

processing involved several steps which are: 1) applying adaptive filters with different

kernel window sizes; 2) supervised classification and 3) accuracy assessment. In this

study, several adaptive filters were used to suppress and reduce noise by smoothing

while preserving the image sharpness.

3.9.1 Filtering

New pixel values were calculated by using standard deviation based on image pixels

within a local box using adaptive filters. In simpler words, the original pixel value is

replaced with a new value calculated based on the surrounding valid pixels. The image

sharpness detail is still preserved while oppressing noise. Eight different adaptive filters

were used in this study and a brief explanation is in Chapter 4. To evaluate the

performance of the selected supervised classifications, three types of filter window sizes

of 7×7, 9×9 and 11×11 were tested on both RGB and NIR images. Speckle degrades the

radiometric quality of an image (Mahdavi et al., 2017). It is important to select suitable

window size as it should be used to enhance very detail information of an image without

having to try several different sizes for an area of interest (Chavez & Bauer, 1982).

These window sizes were selected based on previous study and the accuracy was

tested. Previous study stated that the larger the window size, the sharpness and detail of

the image is reduced (Argenti, et al., 2013; Purnama et al., 2018).
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3.10 Supervised Classification

Classification is one of the most important phases of remote sensing image

interpretation. Remote sensing supervised classification involves the use of a training

dataset consisting of a labelled pixel representative of each category of interest in an

image that the classifier needs to be able to recognise and label unseen pixels (Canty,

2014). The labels will represent the classes on the map that requires by the user called

thematic map (a map of themes) (Richards, 2017).

To map the Ganoderma disease on the multispectral UAV image, three algorithms

with different theories were tested namely Maximum Likelihood (ML), Mahalanobis

Distance (MD) and Neural Net (NN). Both ML and MD are the usual and conventional

classification methods that used simple mathematical principles with different

quantifications of distance among samples. Meanwhile, NN is a more comprehensive

mathematical mechanism that is widely used in image classification domain. It is an

advanced classification algorithm which improves the accuracy of the conventional

classification method (Tan et al., 2011; Yuan et al., 2014).

3.10.1 Maximum Likelihood (ML)

Maximum Likelihood (ML) classification is a statistical approach for pattern

recognition (Huang et al., 2015). ML assumes that the statistics for each class in each

band are normally distributed. The probability is being calculated using a given pixel

belongs to a specific class (ENVI, 2015). This classification is the most widely used

algorithms when accurate training data are provided in estimating means and variances

of the classes and consider the variability of brightness values in each class (Perumal &

Bhaskaran, 2010). The ML classification can be calculated by the following

discriminant functions for each pixel in the image (Richards, 2012). The ML formula is

given by equation (1):
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        


1
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iiii

mxmxnnxg  (1)

where i is the ith class; x is the n-dimensional data (where n is the number of bands),

ρ(ωi) is the probability that a class occurs in the image and is assumed the same for all

classes, |∑i| is the determinant of the covariance matrix of the data in a class, ∑i-1 is the

inverse matrix andmi is the mean vector of a class.

3.10.2 Mahalanobis Distance (MD)

Mahalanobis distance (MD) classification is a faster method over the ML procedure

as all of the class covariance are equal (ENVI, 2015). All of the pixels are classified to

the closest reference pixels. The MD algorithm assumes that the histograms of the

bands have normal distributions (Perumal & Bhaskaran, 2010). It is used to identify and

indicate the similarity of an unknown sample set to a known one (Richards, 2012). The

MD formula can be written as equation (2):

     ii
i

ii mxmxxD   1 (2)

where D is the Mahalanobis distance, i is the ith class, x is the n-dimensional data

(where n is the number of bands), 
1

i is the inverse of the covariance matrix of a class

and mi is the mean vector of a class.Univ
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3.10.3 Neural Net (NN)

Lately, much attention has been shifted to the development of more advanced

classification algorithm including Neural Net (NN) approach instead of the conventional

classification method. NN is a technique that uses the standard back-propagation for

supervised learning which consists of one input layer, at least one concealed layer and

one output layer (ENVI, 2015). A recursive method was used to back propagate the

error through the network and weight adjustment is made (Perumal & Bhaskaran, 2010).

In this study, a supervised NN was trained with a back-propagation learning as the best

learning method for modelling non-linear relationships.

The NN training is mainly divided into two process which is forward propagation

and error back propagation. Firstly, the input feature vector will be calculated in the

forward direction, and the output layer is the predicted category obtained. Next, the

predicted category is compared with the actual corresponding category to obtain the

classification error. Then, the parameters of the NN are trained by the error back-

propagation algorithm (Liang et al., 2018).

For the error back-propagation process, the residual � (denotes the contribution to the

error) of each layer is calculated first. The formula of the output layer follows the

equation (3):

  iiiii yaaa  1 (3)

For the other hidden layers, the formula of � can be written as equation (4):

 





1

1

11
lS

j

l
i

l
ji

l
i

l
i

l
i Waa  (4)

where l is the lth layer of network, Sl+1 is number of the neurons of the (l+1)th layer,

l
ia is the output value of the ith unit of the lth layer.
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Figure 3.13 shows an example of parameters of selected classes for ML algorithm.

Meanwhile, Figure 3.14 (a) shows the RGB image before applying supervised algorithm,

and Figure 3.4 (b) shows the thematic map produced by the ML algorithm.

Figure 3.13: The selected classes for ML parameters

(a) (b)

Figure 3.14: (a) RGB colour image of the oil palm captured by the UAV; (b)
Classification thematic map produced by the ML algorithm.
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3.11 Accuracy Assessment

Accuracy assessment measures the map quality that was created from remotely

sensed data and is achieved by comparing the classifications made by an algorithm to

the known classifications at selected reference locations (Lewis & Brown, 2001;

Congalton & Green, 2008). When carrying out analysis, accuracy assessment will help

to analyse which classification algorithm is more accurate and more reliable when using

reference data collected on the ground, aerial photographs or satellite overpass (Zhang,

2014). Accuracy assessment used confusion matrix derived from validation samples or

ROI to test for ML, MD and NN classifiers. Classification accuracy was expressed in

terms of the percentage of testing cases correctly allocated by the classifications (Foody

& Mathur, 2004).

3.12 Confusion Matrix

Confusion matrix was used to show the accuracy of a classification result by

comparing a classification result with ground truth information and accuracy measures

based on the correctly classified proportion area that is calculated from the number of

pixels that are correctly classified (Lewis & Brown, 2001). In this study, a confusion

matrix was calculated using ground truth ROIs. An overall accuracy, producer and user

accuracies, and Kappa coefficient are reported in this study.

3.12.1 Overall Accuracy and Kappa Coefficient

The overall accuracy is calculated by summing up the number of pixels classified

correctly and divides by the total number of pixels. The ground truth image defines the

true class of the pixels. Accuracy assessment measures the agreement between a

standard and a classified map that represents the correctness of the classified map.

Overall classification accuracy is given by the following equation (3):

Univ
ers

ity
 of

 M
ala

ya



56

100
N
n (3)

where p is the classification accuracy, n is the number of points correctly classified on

image and N is the number of points checked in the field.

Meanwhile, the Kappa coefficient is a measure of overall statistical agreement, which

takes non-diagonal elements into account. It analyses a single error matrix and

compares the differences between various error matrices. The equation (4) for Kappa (k)

is:

   
 epr
epraprk





1

(4)

where pr(a) is the relative observed agreement among raters and pr(e) is the

hypothetical probability of chance agreement, using the observed data to calculate the

probabilities of each observer.

The measure of the classification accuracy is through Kappa coefficient statistic.

Table 3.6 shows the interpretation of Kappa if the raters are in complete agreement, then

k = 1, and if there is no agreement among the raters, k = 0.

Table 3.7: The interpretation of Kappa coefficient (Viera & Garrett, 2005)

Kappa Agreement
<0 Less than chance agreement

0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 0.99 Almost perfect agreement
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3.12.2 Producer Accuracy and User Accuracy

Producer accuracy and user accuracy can be calculated from the error matrix. An

error matrix is an effective way to represent map accuracy which it is a square array of a

number set out in rows and columns that express the number of sample units that is

assigned to a category in another classification. The reference data (“ground truth”) will

represent from the columns, while the classification generated from the remotely sensed

data (the map) will be represented from the rows. Moreover, the error matrix can

compute other accuracy measures such as overall accuracy, producer’s accuracy and,

user’s accuracy.

Overall accuracy is the sum of the correctly classified sample units divided by the

total number of sample units in the entire error matrix. Story and Congalton (1986)

introduced the producer’s and user’s accuracies to represent the individual category

accuracies instead of just the overall classification accuracy.

The overall accuracy between remotely sensed classification and the reference data

can be computed as the equation (5):

n

k

i iin 1
(5)

where,







k

j
iji nn

1

be the samples number classified into category i in the remotely sensed classification,

and







k

i
ijj nn

1

be the samples number of classified into category j in the reference data set.
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Producer’s accuracy can be computed by equation (6):

n
n

j

jjj


 (6)

and the user’s accuracy can be computed by equation (7):

n
n
i

ii
i



 (7)

Figure 3.15 shows an example of the match classes’ parameters between training and

test samples. Meanwhile, Figure 3.16 shows the class confusion matrix produced with

its overall accuracy and Kappa coefficient.

Figure 3.15: Classes parameters sets for training and test samplesUniv
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Figure 3.16: The overall accuracy and Kappa coefficient obtained using
confusion matrix
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CHAPTER 4: RESULTS

4.1 Adaptive Filters

In this study, adaptive filters were used to suppress and reduce noise by smoothing

while retaining the image sharpness and important feature. Noise is a natural

phenomenon that usually degrades images during the image acquisition and

transmission process (Sarode & Deshmukh, 2011). The adaptive filters are considered

the most appropriate noise suppression techniques for image processing data. A new

pixel value is being calculated from the surrounding valid pixels of the original value

(ENVI, 2015). Several adaptation methods are proposed to achieve a better result by the

varying window size. A number of adaptive filters were developed to suppress speckle

noise in a uniform while preserving the edge information, such as, the Lee filter (Lee,

1980), the Enhanced Lee filter (Lopes et al., 1990), the Frost filter (Frost et al., 1982),

the Enhanced Frost filter (Lopes, et al., 1990), the Gamma filter (Kuan et al., 1987), the

Kuan filter (Kuan et al., 1985), Local Sigma (Eliason & McEwen, 1990) and Bit Errors

(Eliason & McEwen, 1990).

In addition, every adaptive filter used several moving window sizes (7×7, 9×9 and

11×11) to study the effect of the window size on the smoothing characteristics and edge

preservation.

The filtered images was compared with the original images that are being tested

with the classification without any window size. The results of the original image

without any filter is shown in Figure 4.1 and 4.2 for RGB and NIR images respectively.
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61 Figure 4.1: RGB and NIR original images without using filter in Experiment 1

Experiment 1
RGB NIR

Filter ML MD NN ML MD NN
Image

Legend
T0
T1
T2
T3
Waterbody
Vegetation
Soil

Overall
Accuracy
(%)

32.6736 32.2349 34.4485 40.3491 30.7140 30.5735

Kappa
Coefficient

0.1829 0.1771 0.1566 0.2702 0.1690 0.01961Univ
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62 Figure 4.2: RGB and NIR original images without using filter in Experiment 2

Experiment 2
RGB NIR

Filter ML MD NN ML MD NN
Image

Legend
Healthy
Unhealthy
Water
body
Vegeta
tion
Soil

Overall
Accuracy
(%)

51.8528 49.6040 54.7613 58.3407 53.3826 50.4828

Kappa
Coefficient

0.2802 0.2510 0.2250 0.3583 0.3104 0.2969Univ
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4.1.1 Lee Filter

The Lee filter was used to smoother noise or speckled data that have an amount of

energy transmitted related to the image scene. The Lee filter will suppress noise of the

image and still preserves the image sharpness. Besides, the Lee filter will filter data

based on statistics calculated within individual filter windows as it is a standard

deviation based (sigma) filter (Lee, 1981). The mathematical model for Lee filter is

given in equation (8):

   lmCpWlmjilmg  *, (8)

where lmg is the pixel value after filtering, lm is the mean intensity of filter window and

Cp is the center pixel

4.1.2 Enhanced Lee Filter

The Enhanced Lee was developed by Lopes et al. (1990) is a modification of the Lee

filter and uses local statistics (coefficient of variation) within individual moving

windows. Each pixel is put into one of three classes, including homogeneous,

heterogeneous and point target. It reduces the speckle noise effectively by preserving

image sharpness and detail. The algorithm follows a formula given by equation (9):

LM * K + PC * (1-K) (9)

where Pc is the centre pixel value of window, LM is the local mean of filter window and

SD is the standard deviation in filter window
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4.1.3 Frost Filter

The Frost filter differs from the Lee filter as it calculates the new value of the target

pixel using a weighted sum of the values within the moving window (Frost et al., 1982).

It is a convolutional filter used to remove the multiple noises from images. The

weighting coefficients increase as variance within the window increase for the central

pixels and decrease with distance from the pixel of interest (Qiu et al., 2004). The Frost

filter formula is given by equation (10):

 


nn

teKDN  (10)

where K is the normalized constant, |t| = 00 YYXX  and n is the moving kernel

size

4.1.4 Enhanced Frost Filter

The Enhanced Frost filter is a modification from the Frost filter and similarly uses

local statistics (coefficient of variation) within individual moving windows in a similar

way. The Enhanced Frost filter pixel has the same function as the Enhanced Lee filter

for the homogeneous and points target cases (Lopes et al., 1990). The algorithm for

Enhanced Frost filter can be defined as equation (11):

 
 yxkfunc yxC

eyxW
,,

11
1,


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

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

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
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
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
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

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
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is a hyperbolic function of
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




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,
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4.1.5 Gamma Filter

The Gamma filter presumes that the pixel original intensity value lies between its

intensity value and its actual value of the pixels moving window. The data is gamma

distributed instead of a Gaussian distribution. A pixel value is calculated based on local

statistics (Shi & Fung 1994). The Gamma filter is similar to Enhanced Frost filter, but if

the local coefficient of variation falls between two thresholds, then the pixel value is

based on the Gamma estimation of the contrast ratios (Jaybhay & Shastri, 2015).

4.1.6 Kuan Filter

The Kuan filter form is alike as the Lee filter that reduce speckle while preserving

image edges, but it is quite advanced than Lee filter in a factor as it has no

approximation involved. The filter transforms to an additive noise model from a

multiplicative noise model into the additive linear form (Shi & Fung, 1994). Weighted

function W is for Kuan filter is given by the equation in (12):

 Cu
Ci
Cu

W








 


1

1
(12)

where Cu is the estimated noise variation coefficient, Cu is the ENL1 , ENL is the

equivalent noise looks, Ci is the variation coefficient of image is the Ci is the S/lm and S

is the standard deviation in the filter windowUniv
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4.1.7 Local Sigma Filter

The Local Sigma filter was used to reduce noise and preserve fine details

significantly. The Local Sigma substitutes the pixel being filtered with the mean

calculated using the valid pixels within the filter box (Eliason & McEwen, 1990).

4.1.8 Bit Error Filter

The Bit Error filter was used to remove bit-error noise, resulting from noises in the

data created by isolating pixels that irrelevant to the image segment. The noise normally

gives the image a speckled appearance. To set a valid pixel threshold, mean and

standard deviation statistics within the filter box are used (Eliason & McEwen, 1990).

The equation for the Bit Error filter is given through formula (13):

� �3� � q�at�3�� � t� �3� �th � �3� � q�at�3�� � thq (13)

where P(i,j) is a bit error, C is a constant and the constant TOL is a minimum threshold

value that must be exceeded. Both C and TOL are selected as inputs to the program

Figures 4.3 to 4.6 show the results tested on eight adaptive filters using selected three

window sizes. The best result of each filter size is highlighted.
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Figure 4.3: Results of RGB image with selected window sizes, filters and classifier in Experiment 1

Filter Size 7×7 9×9 11×11
Filter Frost Gamma Gamma Enhanced

Frost
Enhanced
Lee

Enhanced
Frost

Enhanced
Frost

Frost Frost

Classifier ML MD NN ML MD NN ML MD NN
Image

Legend
T0
T1
T2
T3
Water
body
Vegeta
tion
Soil

Overall
Accuracy
(% )

33.6732 34.1471 34.4100 34.4502 34.4720 37.5647 34.1974 34.7466 35.9103

Kappa
Coefficient

0.1954 0.1981 0.2027 0.2013 0.2016 0.2090 0.2027 0.2048 0.1978Univ
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68 Figure 4.4: Results of NIR image with selected window sizes, filters and classifier in Experiment 1

Filter Size 7×7 9×9 11×11
Filter Enhanced

Frost
Lee Lee Enhanced

Lee
Lee Local Sigma Gamma Lee Local Sigma

Classifier ML MD NN ML MD NN ML MD NN
Image

Legend
T0
T1
T2
T3
Water
body
Vegeta
tion
Soil

Overall
Accuracy
(% )

41.2962 34.8036 41.1941 41.3731 34.7651 40.8561 44.9700 34.7668 40.6821

Kappa
Coefficient

0.2824 0.2140 0.2532 0.2836 0.2135 0.2515 0.3369 0.2133 0.2491Univ
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Figure 4.5: Results of RGB image with selected window sizes, filters and classifier in Experiment 2

Filter Size 7×7 9×9 11×11
Filter Enhanced

Frost
Frost Gamma Frost Enhanced

Lee
Enhanced
Frost

Enhanced
Frost

Enhanced
Frost

Enhanced
Lee

Classifier ML MD NN ML MD NN ML MD NN
Image

Legend
Healthy
Unheal
thy
Water
body
Vegeta
tion
Soil

Overall
Accuracy
(% )

54.5202 33.6732 57.7318 55.4244 52.5561 57.9444 56.4123 52.9981 58.7499

Kappa
Coefficient

0.3158 0.1954 0.2954 0.3298 0.2867 0.2994 0.3449 0.2917 0.3169Univ
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70 Figure 4.6: Results of NIR image with selected window sizes, filters and classifier in Experiment 2

Filter Size 7×7 9×9 11×11
Filter Enhanced

Frost
Frost Bit Error Enhanced

Frost
Enhanced
Lee

Bit Error Enhanced
Lee

Frost Frost

Classifier ML MD NN ML MD NN ML MD NN
Image

Legend
Health
y
Unheal
thy
Water
body
Vegeta
tion
Soil

Overall
Accuracy
(% )

59.2109 54.5021 62.2496 59.2109 54.5054 62.4136 59.3715 54.3130 62.2446

Kappa
Coefficient

0.3727 0.3227 0.3856 0.3750 0.3206 0.3890 0.3757 0.3169 0.3879Univ
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4.2 Summary

The overall classification accuracy directly reflects on the chances of the image

pixels that are being correctly classified in the classification map. On the contrary, the

Kappa coefficient not only considers the correct classification but also the result of

omission and commission errors. The performance of the best overall accuracy and

Kappa coefficient obtained from the image without filtering along with the eight

adaptive filters (Lee, Enhanced Lee, Frost, Enhance Frost, Gamma, Kuan, Local Sigma

and Bit Error) with three different window sizes (7×7, 9×9 and 11×11) is simplified and

highlighted in Table 4.1.
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Table 4.1: The overall accuracy and Kappa coefficient obtained from
Experiment 1 and Experiment 2

Experi
ment Image

Filter Size
Classifier Filter

Overall
Accuracy
(%)

Kappa
Coefficient

Ex
pe
ri
m
en
t1

RGB

No filter NN N/A 34.45 0.1566

7×7
ML Frost 33.67 0.1954
MD Gamma 34.15 0.1981
NN Gamma 34.41 0.2027

9×9
ML Enhanced Frost 34.45 0.2013
MD Enhanced Lee 34.47 0.2016
NN Enhanced Frost 37.56 0.2090

11×11
ML Enhanced Frost 34.20 0.2027
MD Frost 34.75 0.2048
NN Frost 35.91 0.1978

NIR

No filter ML N/A 40.35 0.2702

7×7
ML Enhanced Frost 41.30 0.2824
MD Lee 34.80 0.2140
NN Lee 41.19 0.2532

9×9
ML Gamma 41.37 0.2836
MD Lee 34.77 0.2135
NN Local Sigma 40.86 0.2515

11×11
ML Gamma 44.97 0.3369
MD Lee 34.77 0.2133
NN Local Sigma 40.68 0.2491

Ex
pe
ri
m
en
t2

RGB

No filter NN N/A 54.76 0.2250

7×7
ML Enhanced Frost 54.52 0.3158
MD Enhanced Frost 52.09 0.2813
NN Gamma 57.73 0.2954

9×9
ML Frost 55.42 0.3298
MD Enhanced Lee 52.56 0.2867
NN Enhanced Frost 57.94 0.2994

11×11
ML Enhanced Frost 56.41 0.3449
MD Enhanced Frost 53.00 0.2917
NN Enhanced Lee 58.75 0.3169

NIR

No filter ML N/A 58.34 0.3583

7×7
ML Enhanced Frost 59.21 0.3727
MD Frost 54.50 0.3227
NN Bit Error 62.25 0.3856

9×9
ML Enhanced Frost 59.21 0.3750
MD Enhanced Lee 54.51 0.3206
NN Bit Error 62.41 0.3890

11×11
ML Enhanced Lee 59.37 0.3757
MD Frost 54.31 0.3169
NN Frost 62.24 0.3879
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CHAPTER 5: DISCUSSION

5.1 Introduction

In this section, the results of supervised classifications using UAV-based images of

the red-green-blue (RGB) and the near-infrared (NIR) towards Ganoderma disease

severity index (DSI) were discussed. The discussion includes (1) multispectral bands

versus hyperspectral bands, (2) training samples classification, (3) window size of the

adaptive filter, (4) supervised classification, and (5) classification results.

The results of each classifier were presented in Chapter 4. The results tabulated in

Table 4.1 shows that the Bit Error filter had the highest accuracy in giving better

classification accuracy, followed by Enhanced Lee, Gamma, Enhanced Frost, Frost, Lee

and Local Sigma. Meanwhile, Kuan filter was considered unsatisfactory for the analysis.

In Experiment 1, for most of the classification, Gamma is the best filter. Meanwhile, Bit

Error gives higher accuracy compared to other filters in Experiment 2, followed by

Frost and Enhanced Lee when the image was classified using the NN classifier.

The range of accuracy of the analysis for RGB orthophoto image in Experiment 1 is

considered low, from 33.67% to 37.56% only. Meanwhile, analysis of NIR orthophoto

image in Experiment 1 provides better classification accuracy compared to RGB

orthophoto ranging from 34.77% to 44.97%, but still categorised as low overall

accuracy for mapping Ganoderma disease detection in oil palm.

Moreover, this study proposes the improvement of the performance of the

classification techniques by applying adaptive filters. The advantage of using window

size is that such filters adequate performance at reducing noise and preserving edges.

Results show that the performance obtained with adaptive filters are better than the

classification results of the images that is not applied with filter.
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In Experiment 2, the RGB orthophoto image classification showed that there are

similar ranges of the accuracy from the three filter sizes 7×7, 9×9 and 11×11. A well-

performing filter presents high overall accuracy and Kappa coefficient. The 7×7 filter

size of Gamma is the most appropriate filter and provided accuracy from 52.09% to

57.73%. Meanwhile, analysis using 9×9 filter size for RGB orthophoto image showed

that the most suitable filters are Enhanced Frost, Frost and Enhanced Lee which gives

an accuracy ranging from 52.56% to 57.94%. For 11×11 filter size, Enhanced Lee gives

the best result and the accuracy ranging from 53.00% to 58.75%.

Further analysis of the NIR orthophoto image in Experiment 2 showed different

results. The results showed better accuracy compared to the RGB orthophoto image

classification. The accuracy was moderate, ranging from 54.31% to 62.41%. The best

accuracy of 62.41% was obtained from NIR orthophoto image filtered using Bit Error

with 9×9 filter size. Both of the multispectral images can be used to determine the range

of the vegetation properties that involve the colour changes which associated with a

diseased plant that can be easily detected in the NIR wavelength before it can be

observed in the visible spectrum (Heaphy et al., 2017).

However, the accuracy does not achieve a good classification accuracy standard of

more than 80% as suggested by many researchers. The results also agreed with Minarik

& Langhammer (2016) that studied the detection and tracking of forest disturbance

dynamics using multispectral UAV photogrammetry. Their results suggested that RGB

and NIR images from UAV also had a moderate result to discriminate and identify

forest disturbance dynamics. Other than that, a study conducted by Lehmann et al.

(2015) on coloured infrared images over the forest area to monitor pest infestation

levels also showed a moderate accuracy of classification with 0.66 and 0.67 of Kappa

coefficient. They suggested that the low to moderate accuracy may due to a high

diversity of forest branch texture and an inadequate number of spectral bands.
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Zhang et al. (2005) also suggested the same conclusion where multispectral or

multiband images cannot distinguish between all disease severities of late blight disease

in tomato fields. Their results suggested that the multispectral images can only

successfully detect the third level of late blight disease in tomato. Other than that,

Garcia-Ruiz et al. (2013) used six spectral bands camera mounted on UAV to detect

Huanglongbing in orange trees. Their results also suggested moderate results (28-45%

and 61-74%) for certain study areas.

5.2 Multispectral Bands versus Hyperspectral Bands

Based on the results in Chapter 4, the low and moderate accuracies for both

experiments was mainly due to the low number of spectral bands. There is a common

doubt as to whether wide band multispectral data can detect Ganoderma disease that

might be always obvious in narrow hyperspectral band. In this study, it was proved that

the Ganoderma disease can be detected with moderate accuracy from the DSI

classification of Ganoderma disease severity index using RGB and NIR orthophoto

images. The main cause that influences the accuracy is the small number of spectral

bands that have a wide bandwidth that reduces the detectability and ambiguities

between the DSIs. The higher numbers of spectral bands are able to improve image

classifiers to perform better classification because the continuous spectral in the bands

retains a lot of spectral information of the target.

Previous research conducted by Nisfariza (2012) were able to detect the Ganoderma

disease up to non-visible symptoms using hyperspectral remote sensing. The

Ganoderma can be detected by a number of the wavelengths specific to the disease

using hyperspectral data. The study was able to distinguish a number of wavelengths

specific to the disease detection for early detection of Ganoderma disease in oil palm

using statistical tests of the significance between pairs of disease classes; T1 (uninfected
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palm), T2 (infected palm with Ganoderma spp. without foliar symptoms) and T3

(infected palm with Ganoderma spp. with foliar symptoms). The result demonstrates

great potential to detect Ganoderma disease over large infected oil palm area using the

hyperspectral sensor.

5.3 Training Samples Classification

Experiment 2 was classified into two classes of DSI, thus it shows higher results

compared to Experiment 1 that were classified into four classes of DSI. Generally, the

overall accuracy increased as the number of classes decreased. The results in

Experiment 2 shows poor spectral separability between subclasses and produced higher

Kappa values. The combined classes of T1, T2 and T3 into one class improved the

classification results.

In this study, the landscape of the study area is complex since the distributions of the

Ganoderma DSI are heterogeneous. Thus, selecting sufficient training samples become

difficult. Since the data used in this study are of high spatial resolution images for

classification, mixed pixels are less occurring. Hence, the selection of training samples

must take into consideration the availability of ground reference data, the study area

landscapes and the spatial resolution of the image being used.
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5.4 Window Size of the Adaptive Filter

Among the eight adaptive filters, the best filter in this study is the Bit Error filter

that has a good performance in reducing noise and proves its good abilities in speckle

suppression and detail preservation. This is because the Bit Error filter remove random

bit errors which is the pixel values with no relation to the image scene and it smooth

noisy data that are pixels related to the image scene (Eliason & McEwen, 1990).

To maintain the quality of the image while reducing the multiplicative noise, the

used of the adaptive filters include an adaptive window filter that is adjusted in each

position of the image. Filter window sizes of 9×9 and 11×11 show a good result

compared to 7×7. Even though the 11×11 window size also shows a higher value, 9×9

is selected because it has a less smoothing effect. From the analysis, the range of

window sizes which are selected for filtering shows that the minimum window size is

more significant than the maximum window size. Besides, results do not increase when

window size increase. Even though the performance of the adaptive filter is not the best,

it has a higher performance above 60% that is obtained with a 9×9 window size.

A window size of 13×13 was also tested on NIR image using the best filter result

from Experiment 2, which is the Bit Error and applied using the NN algorithm. The

overall accuracy obtained and Kappa coefficient is 50.71% and 0.2879 respectively.

Meanwhile, the RGB image being tested with Enhanced Lee filter which is the best

filter obtained in Experiment 2 for RGB image with 13×13 window size. The overall

accuracy result is 57.42% with 0.2816 of Kappa coefficient. It is evident that the

window size gives effect to the filter’s performance. This is due to the added window

size is too large, it would affect to reducing sharpness and detail of an image (Mahdavi

et al., 2017). Hence, it is important to select the minimal window size, and the most

suitable choice in this study is 9×9.
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5.5 Supervised Classification

Based on the overall accuracy and Kappa coefficient of the three classification

methods performance, NN classification method can be concluded to be the most

accurate regardless of RGB and NIR images. This indicates that NN classifier is capable

to classify Ganoderma DSI of oil palm using UAV image mosaic, followed with ML

classifier. Meanwhile, the MD classifier is found to be the least accurate.

The NN classifier performed better than the ML classifier based on the visual

interpretation of a classified map, as well as the percentage of the classification

accuracy. This shows that the experience of the NN classifier tends to become more

accurate than the statistical ML technique. Previously, Joshi et al. (2006) reported that

the NN classifier can increase the classification accuracy compared to ML technique by

15% in their forest canopy density study. In this study, the classification accuracy could

be increased up to 5-13% when using the NN classifier. The increasing of the

classification accuracy is due to the ability of NN in handling the mixed pixel problem

in the image. Moreover, the image used in this study were obtained from high spatial

resolution and much information could be extracted from the image (Mustapha et al.,

2010).

In terms of processing time, the NN was slower than ML and MD in the training

phase. However, once the training phase is completed, the classification of the images

become faster. These three classifiers considered fast in the training and classification

phases. NN does not require much training set for the classification process as the

classifier is not a statistical approach, unlike ML and MD that needs many training data

for the classification process. Thus, statistical distribution from large training sets can

be generated for classifying the images.
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A different form of classifiers such as parametric classifiers (ML and MD) and non-

parametric classifier (NN) have their own advantages and limitations. An ML classifier

may provide an accurate classification result when sufficient training samples are

available in a dataset. Apart from that, when an image data is anomalously distributed,

NN classifier demonstrates a better classification result (Lu & Weng, 2007).

5.6 Classification Results

The results illustrate that the NIR image mosaic produced better supervised

classification results compared to RGB image mosaic. The additional NIR band

improves the image classification performance because chlorophyll pigment absorbs

more energy in the red region. NIR reflectance is high because palm canopies strongly

scatter the NIR energy, whereas RGB reflectance is typically low because of the

absorption properties of pigments (Ollinger, 2011).

Healthy palms appear green since the green light band is reflected effectively

compared to red, blue and yellow bands, which absorbed by protective pigments.

Diseased palms usually exhibit discrete lesions on leaves corresponding to necrotic

regions, which increases reflectance in the visible range (West et al., 2003).

The uses of UAV promote remote sensing technology in monitoring and detection of

palms infected with Ganoderma boninense that existed in oil palm plantation plot. The

foliar symptoms of Ganoderma are prominent and visible at certain levels of infection

and can be discerned through the human eyes. The basic visual concept is applied to

RGB image since it corresponds to a human eye optical concept. Meanwhile, the use of

NIR filter in the UAV is additional whereby it implies the high reflectance of vegetation

in the NIR region that is invisible to the human eye to demonstrate the health of the

palms.
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5.7 Conclusion

Even though the UAV Swinglet provides a fine spatial resolution, the limitation of

UAV multispectral is the difficulty in distinguishing between certain vegetation classes.

Diagnostic analysis towards Ganoderma disease has been a challenging issue with

multispectral remote sensing sensor as it can only detect plant symptoms such as the

effect of the disease on leaf and canopy rather than the cause of the symptoms.
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CHAPTER 6: CONCLUSION

6.1 Introduction

In this study, the supervised classification techniques have been used to map the

distribution of Ganoderma disease in oil palm plantation using high resolution digital

images acquired from the Swinglet platform. This study also sought to see whether

small, inexpensive Unmanned Aerial Vehicle (UAV) with high quality data can be used

to mosaic and perform in the supervised classification of small areas.

The performance of various classifiers was compared and based on the high overall

accuracy and moderate Kappa coefficient, Neural Net (NN) classifier outperformed

Maximum Likelihood (ML) and Minimum Distance (MD) classifiers to produce

classified oil palm healthy and disease infected thematic map. Thus, NN classification

method was superior in performance due to the ability of NN in handling the mixed

pixel problem in the image (Tan et al., 2011). The poor performance of the MD

classifier may be due to the classes of DSI being segregated are very similar (healthy,

mild infection, moderate infection and severe infection). Besides, the ML and MD

classifiers are non-parametric and are less sensitive to the distributions of the input data.

Both of the experiments showed that the NIR image gives better performance

compared to RGB image. Separating fronds wilting in an RGB image is a difficult task

even for a human observer. Hence, the additional NIR wavelength can associated with a

diseased plant long before the changes are observed in the visible spectrum.

Besides that, the higher the window size used in the classification was determined as

a better result, instead of a smaller window size. However, the window size of 9×9

much preferred compared to 7×7 and 11×11 filter sizes. This is due to a small window

size exaggerates the difference between the moving windows, increasing the noise
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content on the texture image. Meanwhile, too large window size cannot extract texture

information effectively due to smoothing the texture variation. Besides, more

processing time implies a large window size (Lu & Batistella, 2005).

The results show that some of the adaptive filters are able to preserve the mean of an

oil palm area to a satisfactory level. However, when looking at the speckle suppression,

the filtering algorithm of the Bit Error using window size of 9×9 outperformed the other

adaptive filters. Meanwhile, Local Sigma and Kuan filters appear not to be able to

significantly reduce speckle noise. The Bit Error filter performed best for extracting the

Ganoderma disease using NN classifier. The filter that is most suitable depends on the

requirements of the application.

Experiment 2 showed the best result towards evaluating Ganoderma disease in RGB

and NIR images in contrast to Experiment 1, as the lower number of categories provide

better classification accuracy compared to many disease categories due to less number

of spectral bands. It is necessary to make a reclassification process, which mixing more

than one cluster in one class to obtain a predefined number of classes that are resulting

in more sensitive detection (Poblete-Echeverría et al., 2017). The results show the

potential of the lower number of categories for mapping the Ganoderma disease, but

also reveal the limitations of this classification system, especially in relation to the level

of accuracy for mapping between healthy and disease palms from other land cover types

with similar spectral signatures.Univ
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6.2 Recommendations

This study fills the gap in the literature by developing a systematic method of UAV

techniques for mapping the Ganoderma disease in oil palm plantation. This study also

explores the potential of the high accuracy UAV remote sensing techniques.

Overall, the UAV presented in this study shows the capability for mapping the

Ganoderma disease in oil palm plantation as UAV offers excellent potential at low cost

in terms of spatial data. Nevertheless, there is also a limitation in this study that it has

been demonstrated that multispectral images gathered by UAV can be used, but only

with a moderate outcome. This is due to the limitation in terms of the classification

methods used, and other supervised classification algorithms might be more accurate

but have not been tested in this study.

Few recommendations can be used to improve the accuracy of the results. Firstly, by

reconsider of using other non-linear and non-parametric supervised advanced machine

learning classifiers such as support vector machine (SVM) and random forest (RF)

algorithms. SVM algorithm is a pattern recognition method and mainly used for

classification and regression of non-linear and high-dimensional samples. Meanwhile,

the RF algorithm is a classification tree algorithm and can handle high-dimensional data

which affects the sample classification and limit interactions between features (Yuan et

al., 2017). Moreover, object-based image analysis (OBIA) can also be reconsidered

since it is thought to be more effective than the pixel-based method when handling high

resolution image. From these methods, the precision, accuracy, and stability between

models can be compared to give the best result.
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Secondly, the statistical significance of differences between the overall accuracy of

the non-parametric techniques can be assessed using the McNemar’s test, which

considers the testing sample set is common to all classifiers (Mallinis et al., 2014).

Lastly, it is recommended to acquire additional bands for multispectral image since

the data used in this study have the limitation of a number of bands. By increasing the

number of bands to an estimation model, the results will in turn see an increment.

6.3 Future Work

This study has shown a prospect of Ganoderma disease research using UAV with

RGB and NIR images as UAV are getting increasingly popular in agriculture as they

represent a cost-effective and support decision-making. However, the multispectral

sensor only provides information on a very limited number of bands which might not

sufficient in an area.

This study opens a new possibility for new research on UAV carrying the

hyperspectral sensor that can generate hundreds of bands in a spatial resolution image to

obtain important information that can enhance the accuracy of a model. However, the

usage of hyperspectral UAV is still scarce compared to other sensors involving UAV as

the high prices of high-resolution spectroscopy that can compromise cost-effectiveness

(Adão et al., 2018). Multispectral remote sensing can only detect when the effects of the

disease are prominent, contrary to the hyperspectral image that offers great potential at

determining the changes in symptoms at an early stage (Qi et al., 2016).

Besides, future work can also venture in radio detection and ranging (RADAR)

imaging using a UAV platform for Ganoderma disease detection research in oil palm.

Selected bands from previous studies from Nisfariza (2012) can be used for Ganoderma

disease detection.
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6.4 Conclusion

UAV makes an ideal platform to gather data required for agricultural practices. The

vast expanse of remote sensing technology for early detection tools are more sensitive

and precise with standardising methods. By using UAV, we may know at what level the

Ganoderma disease has spread that is prior to human eye since farmers and experts

usually observe, detect and identify the infected plants with the naked eye that is time

consuming and inaccurate.

In conclusion, the UAV-based image has bridged the gap between ground-based

observations and remotely sensed image from conventional aircraft and satellite

platforms in the use for Ganoderma disease detection in oil palm plantation where

fieldwork is tedious. With the advancement of UAV technology, this technology will

bring benefit to settlers for the early control management for Ganoderma disease since

UAV can perform the ground census aerial that provides fast and accurate results. It is

important to have a classification technique based on aerial imaging that can detect and

locate oil palm Ganoderma disease in near real-time. The usage of UAV have the

capability to be developed into a powerful tool for the Malaysian government to

monitor the Ganoderma disease of oil palm plantation nationwide for fast actions.
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