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ARTIFACT IDENTIFICATION FOR BLOOD PRESSURE AND 

PHOTOPLETHYSMOGRAPHY SIGNALS IN AN UNSUPERVISED 

ENVIRONMENT 

ABSTRACT 

Physiological signals play a significant role in clinical diagnosis, it always acts as a 

major input of a decision support system. However, the physiological signal is easily 

corrupted by different factors especially motion artifacts. Several research works have 

been tried to recover the underlying physiological signal by suppressing the artifact. 

However, not much attention has been paid to situation where the artifact is too extreme 

and the artifact suppression is not possible. In this situation, physiological signal quality 

must be evaluated before any further assessment. In this study, an automated artifact 

detection algorithm was developed for Blood Pressure and PPG signals. For Blood 

Pressure signal, an automatic algorithm based on relative changes in the cuff pressure 

and neighbouring oscillometric pulses was proposed to remove outlier points caused by 

movement artifacts. Next, multiple linear regression (MLR) and support vector 

regression (SVR) models were used to examine the relationship between the Systolic 

Blood Pressure (SBP) and the Diastolic Blood Pressure (DBP) ratio with ten features 

extracted from the oscillometric waveform envelope (OWE). Upon using the artifact 

detection method followed by BP estimation, the SBP and DBP were improved in BHS 

grades from D to A. With regards to the AAMI standard, the mean ± SD of difference 

between the estimated and the gold standard SBP improved from 4.5±28.6 mmHg to -

0.3±5.8mmHg and -0.6±5.4 mmHg using the MLR and SVR, respectively. Meanwhile, 

the mean ± SD of difference for DBP improved from 0.0±14.2 mmHg to -0.2±6.4 

mmHg and 0.4±6.3 mmHg using the MLR and SVR, respectively. For PPG signal, two 

master templates have been generated from PhysioNet MIMIC II database. The master 

template is then updated with each of the incoming clean pulse. Correlation coefficient 
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were used to classify the PPG pulse into either good or bad quality categories. The 

robustness of this artifact detection algorithm was then evaluated on both short and 

continuous data collected from young and older subjects which included arrhythmia 

patients. For short data, the average accuracy improved from 95.2% to 98.0%. For long 

continuous data on healthy subject, an average accuracy of 91.5%, sensitivity of 94.1% 

and specificity of 89.7% were achieved. Meanwhile, for long continuous data on elder 

subject which included arrhythmia patients, an average accuracy of 91.3%, sensitivity 

of 80.5% and specificity 93.0% were achieved. 

Keywords: Blood Pressure, Photoplethysmography, Artifact, 

Unsupervised environment 
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PENILAIAN ARTIFAK TEKANAN DARAH DAN GELOMBANG 

FOTOPLETISMOGRAFI JARI (PPG) DALAM KAWASAN TANPA 

PENGAWASAN 

ABSTRAK 

Isyarat fisiologi memainkan peranan penting dalam diagnosis klinikal, di mana ia 

sentiasa menjadi input utama dalam sistem sokongan keputusan. Walau bagaimanapun, 

isyarat fisiologi mudah dipengaruhi oleh banyak faktor terutamanya oleh gerakan tubuh 

badan kita. Beberapa kajian penyelidikan cuba memulihkan isyarat fisiologi dengan 

mengurangkan artifak tersebut. Bagaimanapun, tidak banyak perhatian diberikan 

kepada situasi di mana artifak terlalu banyak/melampau dan menyebabkan 

pengurangan artifak menjadi tidak mungkin. Dalam keadaan ini, kualiti isyarat fisiologi 

mesti dinilai sebelum digunakan. Dalam kajian ini, algoritma pengesanan artifak 

automatik telah dibangunkan untuk isyarat Tekanan Darah dan PPG. Untuk isyarat 

Tekanan Darah, algoritma automatik berdasarkan perubahan pada tekanan ‘cuff’ 

dengan nadi bersebelahan telah dicadangkan untuk menghapuskan artifak yang 

disebabkan oleh pergerakan. Selepas itu, regresi linear berganda (MLR) dan regresi 

vektor sokongan (SVR) telah digunakan untuk menilai perhubungan antara Tekanan 

Darah Sistolik (SBP) dengan nisbah Tekanan Darah Diastolik (DBP) melalui sepuluh 

ciri yang diekstrak dari sampul gelombang oscillometric (OWE). Kaedah anggaran 

tekanan darah telah digunakan selepas penggunaan kaedah pengesanan artifak, SBP 

dan DBP telah ditingkatkan dari gred D ke A (dalam piawai BHS) dengan 

menggunakan kaedah MLR dan SVR. Menurut piawai AAMI, perbezaan purata ± 

sisihan piawai SBP diperbaiki dari 4.5 ± 28.6 mmHg kepada -0.3 ± 5.8 mmHg dan -0.6 

± 5.4 mmHg bagi MLR dan SVR. Sementara itu, purata ± sisihan piawai DBP 

ditingkatkan dari 0.0 ± 14.2 mmHg kepada -0.2 ± 6.4 mmHg dan 0.4 ± 6.3 mmHg untuk 

MLR dan SVR. Untuk isyarat PPG, dua pencontoh utama telah dihasilkan daripada 
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pangkalan data PhysioNet MIMIC II. Pencontoh utama kemudian akan dikemas kini 

berdasarkan kemunculan setiap nadi yang baik. Pekali korelasi kemudiannya akan 

digunakan untuk mengklasifikasikan nadi PPG ke dalam kategori kualiti baik atau 

buruk. Kekuatan algoritma pengesanan artifak ini kemudiannya akan dinilai pada 

kedua-dua data pendek dan berterusan yang dikumpulkan dari subjek-subjek muda dan 

tua termasuk pesakit aritmia. Untuk data yang pendek, ketepatan telah ditingkatkan 

dari 95.2% (Lee et al., 2003) kepada 98.0%. Untuk data berterusan yang melibatkan 

subjek sihat, ketepatan 91.5%, kepekaan 94.1% dan spesifikas 89.7% telah dicapai. 

Sementara itu, untuk data berterusan yang melibatkan pesakit tua termasuk pesakit 

aritmia, ketepatan 91.3%, sensitiviti 80.5% dan spesifikasi 93.0% telah dicapai. 

Kata kunci: Tekanan darah, Fotopletismografi Jari (PPG), artifak, kawasan tanpa 

pengawasan 
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CHAPTER 1:  INTRODUCTION 

1.1 Research motivation 

One out of three adults suffer from multiple chronic conditions globally (Hajat & Stein, 

2018). The top four chronic diseases that affect almost two-thirds of deaths every year are 

heart disease, cancer, stroke and diabetes. This has become a new challenge in the medical 

field as there will be an inadequate number of nurses to cater for the growing aging 

population. Besides that, the exploding number of patients also increases hospitalisation 

costs (Hajat & Stein, 2018). Traditional health care models that only react to patients 

when chronic diseases develop might no longer be adequate to handle the issue. 

Therefore, preventive health care measures that include frequent health screening is 

implemented as this will somehow improve patients’ health care quality and reduce health 

care costs (Noel, Vogel, Erdos, Cornwall, & Levin, 2004). Telehealth care is one of the 

new approaches that provide long term health status monitoring and it is taken to solve 

this aging population problem and reduce hospitalization rate (Anzanpour et al., 2017; 

Nia, Mozaffari-Kermani, Sur-Kolay, Raghunathan, & Jha, 2015; Yin, Akmandor, 

Mosenia, & Jha, 2018). 

Telehealth is defined as the usage of electronic information and telecommunication 

technologies to support and deliver clinical health care services over distance (Bowles & 

Baugh, 2007; Institute of Medicine Committee on Evaluating Clinical Applications of, 

1996). Telehealth care usually involves the collection of physiological signals in an 

unsupervised environment such as the patient’s home or care center. Then, these data will 

be transmitted to the central database which is accessible for health care professionals. A 

decision support system will then play its role to manage and analyse the data. Health care 

professionals will be allowed to monitor the well-being of the patient with the help of the 

decision made from the system and provide necessary health care management. 
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Telehealth has been implemented in a few countries for the past 20 years. In the US, the 

telehealth system has been well established with more than half of the hospitals 

equipped with a telemedicine programme. The number of patients using telehealth 

services has increased from 22 million in 2013 to 30 million in 2017 and it is predicted to 

increase to 81 million in 2050. Several studies have shown positive outcomes with the 

usage of telehealth in the US such as improving communication between doctor and 

patient, providing more accuracy in decision making and reducing patient length of stay 

in the intensive care unit (ICU) (Demaerschalk, Raman, Ernstrom, & Meyer, 2012; Hilty, 

Nesbitt, Marks, & Callahan, 2002; Palen, Price, Shetterly, & Wallace, 2012; Young et al., 

2011). 

Physiological signals are the major inputs of the decision support system. With the use 

of the internet and the decision support system, a massive number of data can be managed 

and interpreted in a fast and easy manner. However, the ability of the decision support 

systems to make the right call is highly dependent on the quality of the recorded data. 

This is because further derivation from the physiological signals can provide more 

information about one’s health condition. Thus, the signal quality assessment of the 

physiological signal is crucial for further evaluations (Redmond, Xie, Chang, Basilakis, 

& Lovell, 2012). The consequence of a lack of reliable signal quality causes a high false 

alarm rate. In a supervised environment such as the ICU, the false alarm rate was reported 

as high as 90% (Aboukhalil, Nielsen, Saeed, Mark, & Clifford, 2008). Other studies also 

reported that only 8% (Tsien & Fackler, 1997) or lower (Redmond et al., 2012) of the 

alarms were classified as true alarms with clinical significance. With the high occurrence 

of false alarms, the workload of clinicians has indirectly increased (Imhoff & Kuhls, 

2006) and thus leads to slow response time to the alarms (Donchin & Seagull, 2002). In 

some cases, clinicians might even miss the true alarm (Clifford et al., 2016; Donchin & 

Seagull, 2002; Meng’anyi, Omondi, & Muiva, 2017). On the other hand, a high false 
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alarm rate may increase patient anxiety (John Allen & Murray, 1996; Chambrin, 2001; 

Cropp, Woods, Raney, & Bredle, 1994; Hug, Clifford, & Reisner, 2011) and increase the 

re-hospitalisation rate (Hagerman et al., 2005; Novaes, Aronovich, Ferraz, & Knobel, 

1997). 

Some manufacturers have recognised the importance of artifact detection and have 

implemented that in their devices such as Nellcor (Boulder, CO, USA) and Masimo 

(Irvine, CA, USA). However, those artifact detection algorithms are proprietary. Yet, 

there are some public databases (e.g. PhysioNet) that allow researchers to design their 

own algorithms and make comparisons. However, most of the algorithms were only 

applied in data collected from the ICU where the patient’s movement is limited. The 

performance of their algorithms on unsupervised environments which usually contain 

motion artifacts is not known. Limited artifact detection studies have focused on data 

containing motion artifacts. Sukor et al. (2011) and Chong et al. (2014) have conducted 

their studies on evaluating the performance of their algorithm on motion corrupted data. 

However, both studies only involved short segments of photoplethysmogram (PPG) 

signals (i.e., 1 minute duration). Continuous PPG signals at longer duration (i.e. more 

than 30 minutes) are known to contain much more variations. Thus, this PhD study aimed 

to develop automatic artifact detection algorithms for blood pressure (BP) and 

Photoplethysmography (PPG) signals, and evaluated their robustness on both short and 

continuous data collected from young and older subjects which included arrhythmia 

patients. 

1.2 Research Scope 

The scope of the thesis includes the development of artifact detection algorithms for 

BP and PPG. In the BP study, 4 recordings (2 recordings from each arm) were collected 

from 25 healthy subjects aged 28 ± 5 years. One of the two measurements were purposely 
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contaminated with movements during cuff deflation. Artifact were then removed based 

on features extracted from the oscillometric curve. Three algorithms – Maximum 

Amplitude Algorithm (MAA), Multiple Linear Regression (MLR) and Support Vector 

Regression (SVR) were then used to estimate BP. In the PPG study, two PPG master 

templates were generated. Next, the developed artifact detection algorithm was tested on 

both short (6 s) and long continuous data with different cohorts with movements: 19 

young healthy subjects (aged between 18 and 45 years), 15 healthy older subjects (aged 

above 65 years old) and 4 older patients with arrhythmia. 

1.3 Objectives 

i. To develop an automatic algorithm to detect and remove artifacts during 

continuous oscillometric BP measurement. 

ii. To estimate the BP reading accurately through oscillometric waveform in the 

presence of artifacts. 

iii. To develop an online algorithm to detect artifacts in PPG signals. 

iv. To investigate the effectiveness of the developed PPG noise detection 

algorithm in ambulatory long-continuous data (i.e. longer than 30mins) which 

contain several types of motion artifacts and short segment data (6s) in 

unsupervised environment. 

v. To test the PPG artifact detection algorithm in different patient cohorts (young 

and older subjects including arrhythmia patient). 

 

1.4 Thesis Contribution 

The contributions of this thesis include: 

i. Introduction of a novel technique for automatically identifying noise sections 

in BP recording.  
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ii. Introduction of multiple linear regression (MLR) and support vector regression 

(SVR) to estimate the Systolic Blood Pressure (SBP) and Diastolic Blood 

Pressure (DBP) accurately in the presence of noise.  

iii. Development of an adaptive template algorithm to detect artifact in PPG signal. 

This algorithm is simple as only two variables (the threshold value and the 

learning rate) need to be optimized. This algorithm does not require any prior 

knowledge of the PPG signal, such as amplitude, pulse width and slope, thus 

making our algorithm suitable for a diverse range of datasets acquired from 

different devices. 

iv. Besides that, two PPG master templates were generated from the Physionet 

database(Goldberger et al., 2000) (a publicly available database).This 

eliminates the need to generate subject-specific templates to account for 

inherent differences in the PPG waveform morphology across subjects, which 

resulted in long processing time.  

v. Online detection algorithm. The response time of the PPG algorithm (i.e. 2 s) 

was much shorter as compared to other studies, thus making our algorithm 

robust and suitable for online detection purpose (within 2 s). 

vi. The developed PPG algorithm had demonstrated accuracy of more than 90% 

in normal young, older and older subjects with arrhythmia.  

 

1.5 Thesis organisation 

This thesis consists of six chapters. Chapter 1 contains the backgrounds of research 

work, scope, research motivation and objectives of the study. This thesis introduced an 

artifact identification algorithm for BP and photoplethysmography signals in an 

unsupervised environment. 
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Chapter 2 detailed the background of the physiological signal quality in an 

unsupervised environment, including home telecare, decision support system, types of 

physiological signals and the importance of physiological signal quality assessment. This 

chapter focused on the development of signal quality assessment for BP and PPG, 

different types of recording techniques, existing artifact detection techniques, signal 

quality assessment and challenges in BP and PPG signals recording or post-processing. 

Chapter 3 focuses on the development of an automated artifact detection algorithm in 

BP signals. A gold standard as well as the development of the graphical user interface 

(GUI) to evaluate the algorithm’s performance. Next, the performance of ten extracted 

features from the oscillometric waveform envelope (OMWE) was evaluated. Besides that, 

the sequential forward floating selection (SFFS) method was used to minimise and 

identify the best combination of features that result in the best performance. Two different 

methods, using MLR and SVR were developed to estimate SBP and DBP. 

Chapter 4 focuses on the development of an artifact detection algorithm in PPG signals. 

Two PPG master templates were generated from the PhysioNet database (Goldberger et 

al., 2000) (a publicly available dataset). Then, the algorithm was applied on two datasets, 

which are: (i) Sotera Visi Mobile dataset, which contained poses and movements in daily 

activities; and (ii) PhysioNet MIMIC II dataset, which was recorded from the ICU 

environment. The performance of the algorithm in classifying PPG signals based on Gold 

Standard (GS) annotation, discussion and conclusion are presented. 

Although the developed PPG algorithm were proven to be accurate in heathy subject, 

its effectiveness on other subject cohorts remain unknown. Therefore, chapter 5 discusses 

the testing of the proposed PPG artifact detection algorithm on older and arrhythmia 

patients. The performance of the algorithm on older subjects is compared with young 

healthy subjects. Discussion and conclusion are also presented. 
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Lastly, Chapter 6 presents the conclusion of the present work, limitations of the 

existing algorithm and recommendations for future work. 
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CHAPTER 2:  LITERATURE REVIEW 

In the following sections, three main physiological signals commonly recorded in a 

home telehealth care system, i.e. ECG, BP and PPG signal, are described. 

2.1 Electrocardiograph (ECG) signal 

ECG is a measurement of electrical activity of the heart through the skin surface. 

Cardiac muscle cells in the walls of the heart send the signal to the heart and cause 

contraction. The sinoatrial node (SA node, anatomical pacemaker) starts the sequence by 

causing the atrial muscles to contract. From there, the signal travels to the atrioventricular 

node (AV node), through the Bundle of His, down the bundle branches, and through the 

Purkinje fibers, causing the ventricles to contract. This signal creates an electrical current 

that is called ECG. 

2.1.1 Techniques of measurements 

ECG can be recorded quickly by placing some electrodes on the chest area. The 

resulting measurements are referred to as leads. Different lead systems have been 

developed and improved over the past century; these included the most common 3-lead 

and 12-lead ECG. 

2.1.1.1 3-lead ECG (Einthoven’s Triangle) 

In 1903, Einthoven recorded the first ECG by using 3-lead ECG through the 

combination of three electrodes (Right arm (RA), Left arm (LA), and Left leg (LL)) as 

shown in Figure 2.1 and it only offers three views (lead of the heart) which is named as 

Lead I (right and left arm), Lead II (right arm and left leg) and Lead III (left arm and left 

leg). 
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Figure 2.1: Electrode position of 3-lead ECG (Pounds, 2018). 

Figure 2.2 is an example of a normal ECG consisting of a P wave, a QRS complex, a T 

wave, and a U wave that each has a fairly unique pattern as described in the following: 

 The P wave represents atrial depolarisation. 

 The QRS complex represents ventricular depolarisation. 

 The T wave represents ventricular repolarisation. 

 The U wave represents papillary muscle repolarisation. 

 

Figure 2.2: A normal ECG tracing, seen on Lead II, constituting a P wave, a QRS 

complex and a T wave. 
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2.1.1.2 12-lead ECG 

The further development of 3-lead systems has resulted in the classic 12 leads of today. 

In a conventional 12-lead ECG, ten electrodes as shown in Figure 2.3 and Table 2.1 were 

placed on the patient’s limbs and chest. By using 12-lead ECG, 12 different views (three 

limb leads, six chest leads and three ‘augmented’ leads) of the electrical activities of the 

heart are measured. 

Figure 2.3: The ten electrode positions for 12-lead ECG recording, consisting of the 

four limb electrodes and six electrodes spread across the rib cage near the heart 

(V1, V2, V3, V4, V5 and V6) (Ihara, 2006). 

Table 2.1: Electrode placement position  (Burke, 2018) 

Electrode Placement 

V1 Between ribs 4 and 5 to the right of the sternum 

V2 Between ribs 4 and 5 to the left of sternum 

V3 Between leads V2 and V4 

V4 Between ribs 5 and 6 in the mid-clavicular line 

V5 In the left anterior axillary line, horizontally even with V4 

V6 In the midaxillary line, horizontally even with V4 and V5 
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Table 2.2 continued: Electrode placement position  (Burke, 2018) 

Electrode Placement 

RL On the right leg 

RA On the right arm 

LL On the left leg 

LA On the left arm 

 

2.1.2 Applications of ECG signal 

Heart rate (HR) is one of the most basic features that can be extracted from ECG. HR 

can be determined by finding the R-R distance (the time difference between two 

consecutive R peaks in one complete ECG signal) as shown in Figure 2.4. 

𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 (𝐻𝑅) =
60

𝑅 − 𝑅 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 .
𝑏𝑒𝑎𝑡𝑠

𝑚𝑖𝑛
 (2.1)  

The normal range of HR is 60 to 120 beats per minute (BPM). The calculated HR is 

useful to determine heart abnormalities such as bradycardia and tachycardia. 

 

Figure 2.4: ECG signal. 

HR only focused on the average beats per minute while heart rate variability (HRV) 

measures the specific change in time (or variability) between successive heart beats. HRV 
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can be simply acquired by applying Equation 2.2: 

HRV =
mean (R − R distance)

number of beats per minute (bpm)
 (2.2)  

Generally, a low HRV (or less variability in the heart beats) indicates that the body is 

under stress from exercise, psychological events, or other internal or external stressors. 

Higher HRV (or greater variability between heart beats) usually means that the body has 

a strong ability to tolerate stress or is strongly recovering from prior accumulated stress. 

During resting conditions, high HRV will be preferred rather than low HRV. When in an 

active state, lower HRV is generally favourable compared to high HRV (Shaffer & 

Ginsberg, 2017). 

Besides that, a large amount of information which indicate heart performance can be 

acquired from the ECG signal and it have always been used to detect arrhythmias 

(irregularities in heart rhythm) (B. Zhu, Ding, & Hao, 2013), coronary artery disease 

(blockage or narrowed arteries in the heart) (Moyer, 2012)，heart attack history (Jin, 

2018), structural problems of heart chambers (Joshi, Tomar, & Tomar, 2014), and 

recovering conditions of heart disease treatment, such as effects of cardiac drugs 

(Ghamsari, Dadpour, & Najari, 2016; Grad & Zdrenghea, 2014) and the functions of 

implanted pacemakers (Greenhut, Jenkins, & DiCarlo, 1991). 

Respiration rate (RR) is one of the important indications of health conditions and it is 

calculated by the number of breaths per minute when a person is at rest. This RR can also 

be observed from ECG where HR increases during inhalation and decreases during 

exhalation. Figure 2.5 shows the relationship between ECG and the respiration series. 
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Figure 2.5: Relation between ECG and respiration series (Burke, 2018). 

 

2.1.3 Challenges in ECG signal processing 

2.1.3.1 Challenges due to external factors 

ECG artifacts are extremely common and may happen due to electrical interference by 

external sources, electrical noise from elsewhere in the body, poor contact of ECG 

electrodes, and machine malfunction. 

Alternating current (AC) refers to the electric power that is delivered to our housing 

area. In the US, the AC current is 50Hz while the AC current in Malaysia is 60Hz. 

Interference by AC power happens when the ECG machine is poorly grounded. This will 

result in a thick-looking ECG line as shown in Figure 2.6. 
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Figure 2.6: 60Hz AC interference ("Section 12 : ECG Artifacts.,"). 

Pacing spikes are seen in people who have implanted pacemakers. This will lead to a 

sharp, thin spike, followed by ventricles depolarising (wide QRS complex) as seen in 

Figure 2.7. 

Figure 2.7: Artificial pacemaker spikes ("Section 12 : ECG Artifacts."). 

Electrode/lead misplacement may also lead to artifacts. If the lead is misplaced, an 

upside-down ECG as shown in Figure 2.8 will occur. 

Figure 2.8: Reversed leads ("Section 12 : ECG Artifacts."). 

Other than the heart, muscles in our body also produce electricity. When your 

skeletal muscles undergo tremors, the ECG artifacts as shown in Figure 2.9 will be 

displayed. 
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Figure 2.9: Muscle tremors ("Section 12 : ECG Artifacts."). 

For the wandering baseline, the ECG is going up and down as shown in Figure 2.10. 

This is normally caused by the movement of cables during ECG recording. Patient 

movement, dirty lead wires/electrodes, loose electrodes, and a variety of other things can 

cause this as well. 

Figure 2.10: Wandering baseline artifact ("Section 12 : ECG Artifacts."). 

2.1.3.1 Challenges due to disease conditions 

Cardiovascular diseases take 17.9 million of lives every year, and occupies 31% of 

global deaths ("On World Heart day WHO calls for accelerated action to prevent the 

world's leading global killer," 2019). Arrhythmia is the most common cardiovascular 

disease that will lead to HR miscalculation in signal processing. Arrhythmia refers to any 

condition where there is abnormal electrical activity in the heart. Atrial fibrillation (AF) is 

the most common type of arrhythmia. AF is caused by rapid and chaotic electrical 

discharges within the atria as shown in Figure 2.11. These electrical pulses do not start 

from the SA node, so the ECG will not show any P waves. As the atrial activity is chaotic, 
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AF shows irregular HR and may lead to error in HR calculation. 

Figure 2.11: AF with P wave missing ("Basic ECG Interpretation Learning 

Package", 2009). 

 

Ventricular arrhythmias are caused by abnormal heart rhythms that start in the 

ventricles, usually due to early or extra beat generated from ventricles. The depolarisation 

of cardiac cells starts in the ventricle instead of the SA node. Types of ventricular 

arrhythmias include premature ventricular contractions (PVCs), ventricular fibrillation 

and ventricular tachycardia. Figure 2.12 is an example of ventricular arrhythmia, where 

when the ECG is disturbed, the ECG algorithm may have difficulty in finding the correct 

R peaks, leading to mistakes of HR measurement. 

Figure 2.12: Ventricular arrhythmias ("Basic ECG Interpretation Learning 

Package", 2009). 

Ventricular fibrillation shows a completed ECG abnormal rhythm as shown in Figure 

2.13. This is because the heart’s ventricular cells are excitable and depolarising randomly, 

causing the ventricle to not contract properly. The accuracy of HR measurements is highly 

dependent on the ability of the ECG algorithm to identify the R-peaks from ECG signals. 

However, when an abnormal rhythm occurs, the ECG algorithm will not be able to 

execute correctly and thus this leads to error. 
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Figure 2.13: Ventricular fibrillation ("Basic ECG Interpretation Learning 

Package", 2009). 

Ventricular tachycardia is a fast HR which originates in the ventricles. It is characterised 

by the absence of P waves and a wide QRS complex – with duration of greater than 0.12 

seconds as shown in Figure 2.14. The measured HR is usually greater than 100 beats per 

minute. The mechanism of ventricular tachycardia usually causes an area of increased 

automaticity or a re-entrant or pathway looping in a ventricle. It can sometimes generate 

an output great enough to produce a pulse; at other times no pulse can be felt. 

 
Figure 2.14: Ventricular tachycardia with visible P waves ("Basic ECG 

Interpretation Learning Package", 2009). 

 

Other than that, asystole might also generate HR measurement error by not showing any 

cardiac output (ECG will show a flat line). This is caused by the absence of any electrical 

heart activity. Some of the diseases mentioned above might be correctly identified if the 

abnormality is occurring throughout the ECG signal. However, the abnormality in ECG 

might not appear continuously, usually one or two beats in a 10s ECG signal. Therefore, 

error in HR computation might occur (abnormal increase or decrease in HR). 

 

 

Univ
ers

ity
 of

 M
ala

ya



18  

Figure 2.15: Absolute heart block ("Section 12 : ECG Artifacts."). 

When absolute heart block happens, QRS complexes are wide and bottle-shaped and 

show no relationship with the P wave as shown in Figure 2.15. 

2.2 Blood Pressure (BP) 

BP is the force exerted by your blood against your arteries. As your heart pumps, it 

forces blood out through arteries that carry the blood throughout your body. The arteries 

keep tapering off in size until they become tiny vessels, called capillaries. At the capillary 

level, oxygen and nutrients are released from your blood and delivered to the organs. 

BP, commonly expressed in terms of systolic (maximum) and diastolic (minimum) 

pressures, offers important insights into cardiovascular health. High BP (hypertension), 

which may lead to stroke and heart failure, has been rated as one of the most important 

causes of premature death by the World Health Organisation ("World Heart Federation", 

2007). On the other hand, excessively low BP (hypotension) may indicate underlying 

diseases such as heart failure and adrenal insufficiency (Gupta & Lipsitz, 2007). Thus, 

BP measurement is routinely performed (Perloff et al., 1993). Table 2.2 shows the 

different categories of BP. 
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Table 2.3: BP Categories (Whelton et al., 2018). SBP: Systolic Blood Pressure; 

DBP: Diastolic Blood Pressure. 

Category SBP Relation DBP 

Hypotension <90 And <60 

Normal 90-119 And 60-79 

Pre-hypertension 120-129 And <80 

Hypertension (Stage 1) 130-139 Or 80-89 

Hypertension (Stage 2) 140 or higher Or 90 or higher 

Hypertension Crisis 

(consult your doctor 

immediately) 

Higher than 180 And/Or Higher than 120 

2.2.1 Techniques of measurementsGenerally, there are two types of BP measurement 

techniques which are invasive (also known as direct measurement) and non-invasive 

(indirect measurement) (Leslie Alexander Geddes, 1970). 

2.2.1.1 Invasive Blood Pressure (IBP) measurement 

Figure 2.16: IBP measurement. 
 

The IBP measuring system was developed in 1733 by putting an arterial catheter into 

an artery (this is known as arterial line) (Ward & Langton, 2007). A saline-filled 

compressible tuning was used to connect the arterial line to an automatic flushing system 

which is attached to the pressure transducer. The arterial pulse of the pressure waveform 
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will be transmitted through the column of fluid to the pressure transducer where it is 

converted into an electrical signal. The electrical signal will then be processed, amplified 

and displayed by the microprocessor on the screen. Figure 2.16 shows the IBP 

measurement. This is always done in the ICU, operation room and coronary care units 

(Raftery, 1978). 

However, IBP measurement is not suitable to be used on all patients due to the pain as 

well as the infection risk that could occur when inserting the catheter into the blood vessel 

(Heravi, Khalilzadeh, & Joharinia, 2014). Even though there is a certain level of risk of 

invasive measurement, there are several advantages over non-invasive blood pressure 

(NIBP) (Jones & Pratt, 2009).  IBP allows continuous pulse-to-pulse BP measurement 

and can be used for further analyses by providing further information about 

cardiovascular status. This allows close monitoring of the patient’s health and increases 

the accuracy as compared to NIBP. 

2.2.1.2 Non-invasive Blood Pressure measurement (NIBP) 

As an alternative, several non-invasive BP estimation methods that are safer, quicker 

and require less expertise experience have been developed. The most common NIBP 

measurement methods are the auscultatory (manual) and oscillometric (automated) BP 

methods. 

(a) Auscultatory BP recording technique 

The auscultatory method (also known as the Riva Rocci Korotkoff) is the listening of 

Korotkoff sounds in the brachial arterial (Fig. 2.17). This is the gold standard for clinical 

BP measurement that is only performed by trained healthcare providers. The auscultatory 

method involves first wrapping a cuff around the subject’s upper arm. The cuff is 

connected to a release valve and also a manometer which expresses the pressure in terms 

of mmHg. A stethoscope will be placed over the antecubital artery below the cuff. Next, 
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the cuff will then be inflated until the radial arterial pulse disappears. As long as the cuff 

pressure is more than the brachial arterial pressure, no sound is heard from the 

stethoscope. The clinician will then slowly release the pressure in the BP cuff. As the cuff 

pressure decreases, a pounding sound will be heard, and this is known as the Korotkoff 

sound (K-Sounds). 

 
Figure 2.17: Auscultation and palpation principles (Vlachopoulos, O'Rourke, & 

Nichols, 2011). 
 

These K-Sounds have been classified into five phases (Pickering et al., 2005): 

 

 Phase I: the appearance of clear tapping sounds corresponding to the 

appearance of a palpable pulse. 

 Phase II: the sound becomes softer and longer. 

 

 Phase III: the sound becomes crisper and louder. 

 

 Phase IV: the sound becomes muffled and softer. 

 

 Phase V: the sound disappears completely. 

 

The first K-Sound is defined as SBP. As the pressure continues to fall until the 

sound disappears, the last K-Sound is defined as DBP. The auscultatory method 

required the use of a mercury manometer. Mercury is considered as an environment 

hazard and therefore many countries have started to eliminate this and replace it with 
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automated BP monitors that do not use mercury. Therefore, in this study, we focus 

on NIBP that implemented oscillometry techniques. 

(b) Oscillometric (automated) BP recording technique 

Another type of NIBP measurement is the oscillometric method. Oscillometry is 

performed in a similar way to the auscultatory method, where a cuff will be placed on 

the subject’s upper arm. However, instead of listening to Korotkoff sounds, 

oscillometric works by sensing the magnitude of the pressure pulse (known as 

oscillometric pulses) during the cuff deflation. 

Figure 2.18: Oscillometry system physical setup (Forouzanfar et al., 2015). 

Figure 2.18 illustrates the physical setup of the oscillometry system. During the cuff 

deflation, the recorded pulse pressure forms signals known as the cuff deflation curve. 

Next, an algorithm was applied to extract this pulse pressure and formed an oscillometric 

waveform (OMW). Oscillometric waveform Envelope (OMWE) can be used for BP 

estimation. This is discussed in detail in Section 2.2.2 

2.2.2 Systolic/Diastolic BP estimation from oscillometric signal 

Different types of algorithms have been applied on the oscillometric signal to estimate 

BP. Most of the BP estimations were based on the OMWE. We generally classified these 

algorithms to three categories which are maximum amplitude algorithm (MAA), 

derivative oscillometry, and machine learning approach. 

As the cuff deflates, the time points at which the cuff pressure coincides with the SBP 
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and DBP were marked. The oscillometric waves superimposed on the cuff pressure were 

processed to produce the oscillometric waveform envelope (OMWE). Mean arterial 

pressure (MAP) is defined when the OMWE amplitude increases to its maximum value. 

The reference systolic BP ratio (SBPR) and diastolic BP ratio (DBPR) were extracted 

from the OMWE and were defined as follows:  

𝑆𝐵𝑃𝑅 =
𝑆𝐵𝑃𝐴

𝑀𝐴
 (2.3)  

𝐷𝐵𝑃𝑅 =
𝐷𝐵𝑃𝐴

𝑀𝐴
 (2.4)  

where MA represents the maximum amplitude of the OWE corresponding to the 

location of the MAP, while SBPA and DBPA indicate the amplitudes of the OWE 

corresponding to the location of the SBP and the DBP respectively. The SBP and DBP 

are estimated based on the location of MAP. Therefore, MAA is very sensitive to noise 

and artifacts that may affect the location of MAP (Forouzanfar et al., 2015). Figure 2.19 

illustrates an example of the cuff pressure signal, OMW and its corresponding OMWE. 

Foster et al. (Forster & Turney, 1986) indicated that MAP can be estimated correctly 

by referring to the maximum of the oscillation amplitude. However, due to the sensitivity 

of the method to variations in BP waveform, pulse pressure, and arterial compliance, 

systolic and diastolic pressure may be inaccurate. Besides that, several research have 

shown that the empirical coefficient (ratio) differs according to different heath care 

conditions, age group and etc. (Drzewiecki, Hood, & Apple, 1994; J. Liu, Hahn, & 

Mukkamala, 2013; Raamat, Jagomägi, Talts, & Kivastik, 2013; Talts, Raamat, Jagomägi, 

& Kivastik, 2011). Lee et al. (S. Lee, Rajan, Dajani, Groza, & Bolic, 2011) have tried to 

use the Bayesian approach to determine the systolic and diastolic ratios. This method 

assumes that the posteriori distribution of the systolic and diastolic ratios looks like a 

Gaussian. The likelihood value was chosen to maximise the posteriori probability. Other 

than that, Gaussian mixture regression techniques have also been used to estimate the 
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SBPR and DBPR. In this approach, several clusters were built with each representing 

similar SBP and DBP values. This cluster was identified by using the Gaussian mixture 

model and followed by using the Gaussian mixture regression technique to acquire the 

maximum SBPR and DBPR for each cluster. In (S. Lee, Bolic, Groza, Dajani, & Rajan, 

2011), Lee et al. proposed the use of two-step pseudo-maximum amplitude (TSPMA) to 

obtain improved confidence intervals (CI) of SBP and DBP using a double bootstrap 

approach. This method shows a smaller CI as compared to pseudo-maximum amplitude-

envelope and maximum amplitude algorithms with Student’s t distribution method. 

 
Figure 2.19: An example of the deflating cuff pressure (CP) waveform, pulsatile 

oscillometric waveform (OMW), and oscillometric waveform envelope (OMWE). 

MA: Amplitude of the OMWE corresponding to the location of the mean arterial 

pressure (MAP); SBPA: Amplitude of the OMWE corresponding to the location of 

the systolic BP (SBP); DBPA: Amplitude of the OMWE corresponding to the 

location of the diastolic BP (DBP). 

 

 The second BP estimation category is derivative oscillometry. Similar to MAA, 

derivative oscillometry also estimates the BP based on the OMWE. This method estimates 

the BP based on the slope of the oscillometric envelope instead of the empirical 

coefficient (ratio) to the maximum amplitude. Drzewiecki et al. (Drzewiecki & Bronzino, 

2000; Drzewiecki et al., 1994) found that the slope of the OMWE reached maximum 
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during the SBP while the slope of the OMWE reached its minimum during the DBP. For 

this method, no empirical coefficient is needed. However, as the slope is derived from the 

OMWE, the accuracy is highly sensitive to the artifact or noise of the envelope. Besides 

that, lots of machine learning approaches have been developed to estimate the BP from 

the OMWE. Neural network (NN) has been used as a non-linear tool to find the 

relationship between OMWE and BP. For NN, OMWE were used as an input while the 

BP reading was used as target. Baker et al. (P. D. Baker, Orr, Westenskow, & Egbert, 

1994) used a two layer feed forward NN to estimate the BP from the superficial temporal 

artery while Narus et al. (Narus, Egbert, Lee, Lu, & Westenskow, 1995) used a three layer 

feed forward NN from the supraorbital artery. Other than that, Colak et al. (S Colak & 

Can Isik, 2004) used a two layer NN on the upper arm of the subjects and found that the 

result of NN is better than MAA in terms of standard deviation error (SDE). Using a 

different approach based on a Fourier series representation of the oscillometric waveform, 

Barbe et al. (Barbe, Van Moer, & Schoors, 2011) introduced a Hammerstein-Windkessel 

model which captures the low frequency oscillations of the cardiovascular system. The 

systolic and diastolic pressures were derived from the MAP using an intuitive estimator 

α, which was calculated based on the envelope of the modeled oscillometric waveform. In 

a more recent study, they (Barbé, Kurylyak, & Lamonaca, 2014) further extended their 

work to include a statistical learning technique based on ordinal logistic regression for the 

calibration of oscillometric BP monitors. By applying a linear regression to map the shape 

of the oscillometric signal to the BP to avoid complex non-linear models, the method 

could only estimate the correct BP range but not the specific value of the BP. Unlike 

MAA, NN machine learning algorithms do not depend on the empirical coefficient. 

Besides that, it is not sensitive to noise like derivative oscillometry. However, this method 

required a large training dataset, is sensitive to initial network parameters, high 

computational cost, and there is a lack of a general approach to determine the optimal 
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network size. 

2.2.3 Challenges in oscillometric BP measurement/estimation 

2.2.3.1 Challenges due to external factors 

The most common error of BP recording is using incorrectly cuff-sized cuffs. An overly 

small-sized cuff will give a high reading while an overly large-sized cuff will provide a 

reading that is falsely low. According to the American Heart Association (Pickering et 

al., 2005), the cuff bladder should encircle 80% or more of the patient’s arm 

circumference. Since this is time consuming, most users skip this procedure.The second 

most common error in BP measurement is incorrect cuff position. During BP 

measurement, the cuff should be placed on the arm at the middle of the heart level. If the 

cuff is placed above the heart level, it will result in low BP and vice versa. Research 

shows that 2 mmHg of error can occur for each inch of the extremity above and below 

heart level (Frese, Fick, & Sadowsky, 2011). 

During BP measurement, the subject should be seated with his or her back supported, 

legs uncrossed, arm horizontal to the ground and not talking. Allowing the arm to hang 

by the side instead of being horizontal can raise the SBP by 23 mmHg and DBP of by 10 

mmHg respectively. This margin of error could make a healthy person to appear 

hypertensive. Meanwhile, crossing the legs can increase SBP by 2 to 8 mmHg (Pinar, 

Ataalkin, & Watson, 2010). 

Another error is operator error. According to the British Medical Journal (Beevers, Lip, 

& O'Brien, 2001), many operators have a preference to end numbers in 0/5 for BP 

readings and this always leads to 2 to 3 mmHg error in BP measurement. Besides that, 

rapid inflation or deflation of cuff pressure can always lead to error in BP measurement. 

Another source of recording error is caused by motion artifacts. As most BP estimation 

methods requires the usage of a cuff at the upper arm, any movement will cause the drastic 
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fluctuations of the measured pressure and this can cause serious distortion to the signal 

and lead to error in BP estimation. 

There are other issues that may affect the BP reading, such as medication, caffeine and 

the white coat effect. Medication such as Indomethacin and Piroxicam may cause water 

retention, creating kidney problems and increasing your BP. Moreover, caffeine can cause 

a short, but dramatic increase in your BP, even if you do not have high BP. However, the 

reason of the BP changes is unclear (Hartley et al., 2000). The term “white coat” refers to 

the white coats that are worn traditionally by doctors. Some patients who usually have 

normal BP show hypertension when they visit the doctor, which also known as the “white 

coat effect” (Gerin et al., 2006). To avoid all these, multiple readings at different times 

and locations should be recording before any medical diagnosis. 

2.2.3.2 Challenges due to disease conditions 

Accurate BP measurements are needed in clinical practice, however, the estimation of 

BP is difficult in certain patient populations such as patients with obesity (Umana, 

Ahmed, Fraley, & Alpert, 2006), arterial stiffness (van Popele et al., 2000), and AF 

(Pagonas et al., 2013; Verberk & De Leeuw, 2012). For these patients, the recorded BP 

signals may be so weak or in irregular shape and degrade the signal quality, leading to 

unreliable or wrong BP estimation. 

Measuring BP in patients with obesity presents several challenges (Fonseca-Reyes, de 

Alba-García, Parra-Carrillo, & Paczka-Zapata, 2003; McFarlane, 2012; Umana et al., 

2006). A standard cuff size will not be able to fit obese patients due to their large upper 

arm circumference. Clinicians are having difficulty in finding the right cuff for obese 

patients. A drop in the accuracy of BP estimation was observed when inappropriate cuff 

was applied. J. McFarlane et al. (McFarlane, 2012) demonstrated the effect of cuff size 

and cuff position on obese participants (BMI between 36 and 40) in a study. The study 

Univ
ers

ity
 of

 M
ala

ya



28  

compared the discrepancies of BP measurements obtained from an extra-long cuff on the 

patient’s arm, an appropriately sized cuff on the patient’s arm and an appropriately sized 

cuff on the patient’s forearm. Results showed that measurements from the extra-long cuff 

on the arm position tends to overestimating the BP. Fonseca-Reyes et al. also noted that 

the BP estimation error will increase if the BMI is greater than 40 (Fonseca-Reyes et al., 

2003). Other than that, obese patients are normally having cone-shaped arms. The 

diameter at the top of the arm is greater than the diameter of the arm in the region of the 

brachial artery. This cause a poor fit of the cuff over the brachial artery and led to 

inaccurate BP measurement. 

Arterial stiffening is always seen in aging populations. During the aging process, the 

wall of the arteries, especially the aorta, become less elastic and larger in size. This 

process will increase the pulse wave velocity (PWV) and pulse pressure (PP) (Z. Sun, 

2015).The increase of PWV and PP will lead to progressive increase in systolic BP with 

no changes or even a decrease in diastolic BP which is known as isolated systolic 

hypertension. Isolated systolic hypertension is defined as SBP > 140 mmHg and DBP < 

90 mmHg (Mancia et al., 2014). 

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and it normally 

comes together with hypertension (Manolis et al., 2012). In the presence of AF, variations 

in ventricular filling time, stroke volume, and contractility may lead to increased beat-to- 

beat BP variability, which may affect BP estimation using both the auscultatory and 

oscillometric methods. There were three studies conducted with 24 hours ambulatory BP 

monitors (ABPM) that were performed in AF patients (Fonseca-Reyes et al., 2003; 

McFarlane, 2012; Pagonas et al., 2013). The accuracy of BP recorded was reported 

around 80% - 93%. Besides that, there were a few studies conducted with home BP 

monitors. These studies demonstrate satisfactory results with accuracy of more than 92% 

(Marazzi et al., 2012; Verberk, Omboni, Kollias, & Stergiou, 2016). However, current 
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guidelines for BP measurement in AF patients recommend that measurements should be 

taken repeatedly with the auscultatory method (Manolis et al., 2012). Therefore, the 

automated BP measurement method may be acceptable for self-home and ambulatory 

monitoring but will not achieve the requirements in a clinical setting. Hence, BP 

estimation on AF patients remains a challenge until more evidence becomes available. 

2.2.4 Artifact detection techniques for BP signal 

The performance of BP estimation is highly dependent on the quality of the 

oscillometric pulse. Since the oscillometric signal is always recorded together with different 

types of noise such as body movements, environment noise or error created by the 

operator during BP measurement, an artifact detection or removal stage is required to 

ensure the signal quality before applying the BP estimation algorithm. 

2.2.4.1 Conventional Techniques 

The most basic technique used for noise removal is the application of low-pass or band- 

pass filter to the OMWE (Forouzanfar et al., 2015). For example, Branko et al. (Celler, 

Argha, Le, & Ambikairajah, 2018) used a high-pass filter of 0.7Hz followed by 7Hz low- 

pass filter to remove the noise from the internal stepper motor. Hidehiko Komine et al. 

2012 (Komine, Asai, Yokoi, & Yoshizawa, 2012) used a band-pass filter of 0.5 to 10Hz 

to retain information of the arterial stiffness while (Abolarin et al., 2016) used band-pass 

filter from 0.5 to 20Hz as it has been found that the BP signal over 20Hz does not contain 

any useful information. We can see that different types of filter were used as it depends 

on the artifact and also the feature that we want to preserve. 

Another method that is usually used for artifact removal is curve fitting on OMWE. 

Curve fitting models such as polynomial (Yang, Chen, Zhu, Chen, & Zheng, 2017) 

(Dingchang Zheng, Amoore, Mieke, & Murray, 2011; D Zheng & Murray, 2008) , 

Gaussian (Forouzanfar, Dajani, Groza, Bolic, & Rajan, 2011) and log-sigmoid 
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(Forouzanfar et al., 2014) curve have been used. The performance of the BP estimation 

is highly dependent on predefined models of the fitting techniques. If the chosen model 

is not accurate, the shape of the OMWE could be affected and this reduces the performance 

of BP estimation. 

2.2.4.2 BP Artifact removal and detection of motion artifact 

Although conventional techniques such as filtering and curve fitting are effective, 

however, they do not have good performance in the suppression of motion artifacts with 

low frequency (Forouzanfar et al., 2015). This is because the low frequency artifact may 

overlap with the fundamental components of the oscillometric pulse. Therefore, different 

types of algorithms were developed to remove the motion artifact, as described in the 

following. 

Lin et al. (Lin, Liu, Wang, & Wen, 2003) developed an algorithm-based fuzzy logic 

to reduce the interference caused by movement artifacts and cardiovascular disease by 

determining the truthfulness of the oscillometric pulse. The results proved that this 

method has improved the accuracy of the BP measurement as compared to the traditional 

curve fitting method. However, this study does not meet the Association for the 

Advancement of Medical Instrumentation’s (AAMI) standards which required at least 85 

subjects (Stergiou, Alpert, Mieke, Wang, & O'Brien, 2018). 

Wang et al. (S.-H. Liu & Lin, 2001) designed a model-based fuzzy logic control 

system to measure BP by detecting arterial volume pulsation. A Kalman filter is used to 

reduce the physiologic and measurement disturbance of the vessel volume oscillation 

amplitude. The results showed that for the MAP with changing rate of ±10, ±20 or ±30 

mmHg, the synthetic fuzzy logic controller would adjust the chamber pressure with a 

mean square error of 1.9, 2.2 or 2.8 mmHg, respectively. Thomas J. Dorsett (Dorsett, 1991) 

has developed an algorithm that used the Kalman filter to predict the amplitude of the next 
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oscillometric pulse and cuff pressure. This algorithm is effective at rejecting motion 

artifacts and it shows its robustness in ambulatory and helicopter transportation. 

Colak et al. (S. Colak & C. Isik, 2004) developed a pulse qualifier using fuzzy theory. 

Pulse features such as shape, height and width were analysed to ensure the quality of each 

pulse before applying the BP estimation algorithm. Jan Havlíket al. (Havlík, Martinovská, 

Dvořák, & Lhotská, 2014) detected oscillometric artifacts by comparing the HR, HRV 

and oscillometric pulsations with ECG. 

2.2.4.3 Artifact removal using additional sensors 

There are also several research works that attempt to reject artifacts by using additional 

sensors such as ECG (Ahmad et al., 2012), pulse oximeter (Peel III, 1999) and 

accelerometer (Hasnain, Awan, & Farooq, 2009; Koo et al., 2007) accelerometer. In 

(Ahmad et al., 2012), an ECG was recorded simultaneously with the oscillometric pulses. 

The ECG signals were then used as a reference signal to assist the identification of the 

true oscillometric pulse. Harry et al. invented an arrhythmia pulse correcting circuit that 

corrects the amplitudes of oscillometric pulses produced by arrhythmias with the help of 

ECG and the pulse oximeter. Kunseo et al. (Koo et al., 2007) and Hasnain et al. (Hasnain 

et al., 2009) have developed a new NIBP system to reject motion artifacts by mounting a 

3-axis accelerometer on a cuff. Next, an algorithm was developed to construct motion 

artifacts that were superimposed over the oscillmetric signal based on the recorded 

acceleration. This constructed motion artifacts were used to remove the motion artifact. 

Since an extra sensor is needed for the artifact removal, this may increase the 

computational time and cost. Besides that, it will also increase the complexity of the 

algorithm. 

2.3 Photoplethysmography (PPG) signal 

PPG is a signal as shown in Figure 2.20, obtained by using a simple non-invasive 
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optical technique. It has become popular since it provides valuable information about the 

cardiovascular system by simply making measurements on the skin surface. Many 

physiological parameters have been studied and derived from PPG signals, such as 

blood–oxygen saturation, HR, RR and BP. Patients at the risk of respiratory failure (Uçar, 

Bozkurt, Bilgin, & Polat, 2017), hypoxemia (Hartmut Gehring, ME, & Schmucker, 2002) 

or cardiac problems (Ave, Fauzan, Adhitya, & Zakaria, 2015) can easily be detected by 

clinicians through observing the changes in PPG signals. On top of that, cardiopulmonary 

diseases and sleep disorders can also be screened (J. L. Moraes et al., 2018). 

 
Figure 2.20: A clean PPG signal. 

 

2.3.1 Techniques of measurements 

PPG uses a probe which contains a light source (a red and infrared light-emitting diode 

(LED)) and a photodetector to detect the cardiovascular pulse wave that propagates 

through the body. There are two methods to measure PPG: transmission and reflectance. 

For transmission PPG, the light source and photodetector are opposite to one another with 

the measuring site in between as shown in Figure 2.21. The light can then pass through 

the biological tissue and be detected by the photodetector at the opposite side. 
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Figure 2.21: Light-emitting diode (LED) and photodetector (PD) placement for 

transmission- and reflectance-mode PPG (Tamura, Maeda, Sekine, & Yoshida, 

2014). 

 

Transmission PPG is mostly used in finger and earlobe PPG (Da He, Winokur, Heldt, 

& Sodini, 2010; Guo et al., 2008; Hashem, Shams, Kader, & Sayed, 2010; Verma & 

Bhasin, 2014). For reflection PPG, the light source and photodetector are next to each 

other as shown in Figure 2.21. The light bounced by the biological tissue will be reflected 

to the photodetector located next to the light source. This method is mostly applied on 

one side of the skin, for example: inner ear and forehead. 

The PPG signal is comprised of Direct Current (DC) non-pulsatile waveform and 

Alternating Current (AC) pulsatile waveform. The light that is emitted to the biological 

tissues was absorbed by different substances, including skin pigments, bones, venous and 

arterial blood. These act as the DC components in the PPG signal and it is assumed to be 

constant all the time. However, when the blood moves from the heart to the fingers and 

toes, the changes of blood volume will generate a pulsatile signal which is also known as 

the AC component. This AC component is superimposed with the DC component and 

generate the PPG signal as shown in the figure below. 
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Figure 2.22: Light attenuation and the PPG signal (Tamura et al., 2014). 

2.3.2 Applications of PPG signal 

PPG has been widely used as it is a low-cost, simple, non-invasive and portable 

technology. It has always been used in primary care as it can provide valuable information 

about the cardiovascular system. Clinically important information that can be extracted 

from PPG are blood oxygen saturation, HR, RR and BP. 

Oxygen saturation (SpO2) measures the percentage of oxygenated hemoglobin in the 

blood stream. It can be a useful indicator of the circulatory and respiratory system. Normal 

blood oxygen level in the human body is between 95 to 100% (Harvey, Salehizadeh, 

Mendelson, & Chon, 2018; Organization, 2011; Rasoul Yousefi, Nourani, Ostadabbas, & 

Panahi, 2013), and the oxygen level below 90% indicates hypoxemia. If the blood oxygen 

level falls below 80%, this can lead to brain and heart damage. Moreover, continued low 

oxygen may lead to respiratory or cardiac arrest. Oxygen saturation is defined as the ratio 

of oxygenated hemoglobin relative to total haemoglobin (oxygenated + deoxygenated) in 

the blood, as expressed below:  
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𝑆𝑝𝑂2 =
𝐻𝑏𝑂2

𝐻𝑏𝑂2 +𝐻𝑏
 (2.5)  

The pulse oximeter that is based on the red (light wavelength of 600 to 750nm) and 

infrared light (light wavelength of 850 to 1000nm) absorption characteristic can be used 

to estimate SpO2. Oxygenated haemoglobin (HbO2) absorbs more infrared light and 

allows more red light to pass through while deoxygenated haemoglobin (Hb) absorbs 

more red light and allows more infrared light to pass through. 

Figure 2.23: Absorption of oxygenated haemoglobin (HbO2) and deoxygenated 

haemoglobin (Hb) at different light wavelengths (Kaur, Kumar, & Sharma, 2011). 

HR can be simply derived from PPG signals by simply calculating the pulse width (PW) 

which is the time interval between two peaks or troughs. Since PPG is cheap and non- 

invasive, it has been widely used to derive HR apart from ECG (Georgiou et al., 2018). 

 

Figure 2.24: PPG signal with pulse width. 
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𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 = 60/𝑃𝑊 (2.6)  

Many researchers have attempted to acquire RR information from a PPG signal using 

different signal processing methods such as Principal component analysis (PCA) 

(Madhav, Ram, Krishna, Reddy, & Reddy, 2010; Prathyusha, Rao, & Asha, 2012), 

Empirical mode decomposition (EMD) (Prathyusha et al., 2012), wavelet transform 

(Addison & Watson, 2004), the Teager-Kaiser energy operator (Nguyen, Le Page, 

Goujon, Poffo, & Thual, 2011), variable frequency complex demodulation (Chon, Dash, 

& Ju, 2009; Nam, Lee, & Chon, 2014), the Hilbert transform (Li, Zhao, & Dou, 2015), or the 

synchro-squeezing transform (Dehkordi et al., 2015). The PPG signal consists of a 

repeated, double peak waveform riding on a constant DC baseline component as shown 

in Figure 2.25(a). However, in practice, both the PPG pulse and DC are changing over 

time. This variation is caused by different factors such as changes in cardiac output, 

changes in BP, changes in HR and respiratory activity. Respiratory activity usually affects 

the PPG signal in three ways: (i) Baseline Modulation-PPG pulse riding on top of the 

changing dashed DC baseline; (ii) Pulse Amplitude Modulation - PPG pulse amplitude 

changing over the respiratory cycle; and (iii) Pulse Frequency Modulation which is also 

known as Respiratory Sinus Arrhythmia (RSA) - PPG pulse period changing over the 

respiratory cycle, which shown in Figure 2.25. 

BP is one of the health indicators that can be derived from the PPG signal. 

Traditionally, pulse transit time (PTT) (R. a. Allen, Schneider, Davidson, Winchester, 

& Taylor, 1981; L. Geddes, Voelz, Babbs, Bourland, & Tacker, 1981; Naschitz et al., 

2004; Obrist, Light, McCubbin, Hutcheson, & Hoffer, 1979; Payne, Symeonides, Webb, 

& Maxwell, 2006) which is highly related to BP changes has always been used to 

predict BP (Gao, Olivier, & Mukkamala, 2016; Gao, Zhang, Olivier, & Mukkamala, 

2013; L. A. Geddes, Voelz, James, & Reiner, 1981; Ochiai et al., 1999; Pruett, 
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Bourland, & Geddes, 1988). PTT is defined as the time delay between the invasive 

proximal arterial waveform and distal pressure waveform in central arteries. To 

decrease inconvenience, researchers have used the ECG to represent the proximal 

arterial waveform while the PPG signal at the finger is to represent the distal 

waveform (Gao et al., 2016). In this case, PTT will be known as pulse arrival time 

(PAT) (W. Chen, Kobayashi, Ichikawa, Takeuchi, & Togawa, 2000; L. Geddes et al., 

1981). The figure below shows the PAT measured between R peak of ECG and a 

point of PPG signal. 

 

Figure 2.25: Effect of PPG signal by respiratory rate (Addison, 2017). Non-

modulated PPG signal. (b) Baseline Modulation. (c) Pulse Amplitude Modulation. 

(d) Pulse Frequency Modulation. 

By using the PAT, different studies were carried out by researchers to find the 

relationship between BP and PAT such as Fourier transforms (FFT) (Xing & Sun, 2016) 

and NN (John Allen & Murray, 1999). Reasonably good results were shown in the studies. 
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Figure 2.26: PAT measured between R peak of ECG and a particular point of PPG 

signal, such as foot (PATf), peak (PATp) or maximum slope point (PATs) 

(Cattivelli & Garudadri, 2009). 

2.3.3 Challenges in PPG signal recording/processing 

2.3.3.1 Challenges due to external factors 

The signal quality of PPG is affected by the location of the LED and photodetector. 

The location of the measurement site of the probe must be placed to optimise the 

sensor performance. In recent years, different measurement sites for PPG sensors 

have been explored. These include ring finger (Rhee, Yang, & Asada, 2001), wrist 

(Y. Lee, Shin, Jo, & Lee, 2011), brachia (Maeda, Sekine, & Tamura, 2011a, 2011b; 

Maguire & Ward, 2002), earlobe (Poh, Swenson, & Picard, 2010; K. Shin, Kim, Bae, 

Park, & Kim, 2009; Vogel, Hülsbusch, Hennig, Blazek, & Leonhardt, 2009), external 

ear cartilage (Budidha & Kyriacou, 2014; Celka, Verjus, Vetter, Renevey, & 

Neuman, 2004; Poh, Kim, Goessling, Swenson, & Picard, 2010), and the superior 

auricular region (Patterson, McIlwraith, & Yang, 2009; C.-Z. Wang & Zheng, 2008; 

L. Wang, Lo, & Yang, 2007). Commercial PPG sensors on the finger, earlobe and 

forehead are available in the market (Mendelson & Pujary, 2003) while PPG signals 

are collected from the esophageal region clinical practice (P. Kyriacou et al., 1999; P. A. 

Kyriacou, 2013; P. A. Kyriacou, Powell, Langford, & Jones, 2002). Ethel et al. have shown 
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that out of the 52 anatomic sites, fingers, palm, face and ear have higher perfusion 

values as compared to other measurement sites (Tur, Tur, Maibach, & Guy, 1983). 

The PPG signal is affected by the contact force between the sensor and the 

measurement site. The PPG signals vary with the PPG probe contact pressure. A low 

contact force will result in low AC signal amplitude due to insufficient contact. 

However, high contact force will also lead to low AC signal amplitude due to the 

occlusion of the artery. The ideal PPG signal can be acquired when the pressure 

difference between the inside and the outside of the vessel are the same (Tamura et 

al., 2014). 

Ambient light intensity can be a main interference component in PPG data 

acquisition. Whenever ambient light source such as the sun or fluorescent lamp is 

present, this will lead to unbalanced or uncertain variation of light intensity. This is 

both reflected in the alternating current (AC) and direct current (DC) components. 

DC offset depends on the static ambient light intensity and skin colour. A strong 

constant (DC) ambient light can saturate the photodetector and end up with an 

undetectable PPG signal. Research has also shown that by increasing light intensity, 

there is an increase in DC amplitude while the AC component shows an initial increase 

followed by decrease. 

Motion artifacts may occur from voluntary or involuntary subject movement (Foo 

& Wilson, 2006; Matthew James Hayes & Smith, 2001). When movement occurs, the 

contact force between the sensor and the measurement site may have considerable 

effect, causing changes of light intensity and disturbing the PPG signal. Besides that, 

movement will cause the changes of blood volume in venous and arterial blood, as 

well as other normally non- pulsatile components (such as tissue fluid in edematous 

patients) (Petterson, Begnoche, & Graybeal, 2007). This leads to differences as 
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compared to normal resting conditions. Thus, the PPG signal components may no 

longer have good quality to represent the pulsatile arterial blood flow. 

2.3.3.2 Challenges due to disease conditions 

PPG is a non-invasive optical technique to detect changes of blood volume in the 

tissue. The shape of the PPG signal is dependent on several factors such as one’s 

tissue properties and health condition (Chan et al., 2012; Yuan et al., 2017). Lots of 

valuable information about the cardiovascular system can be acquired from the PPG 

signal. However, the challenge in analysing the PPG signal has increased with the 

occurrence of different types of diseases. In this section, two types of diseases which 

relate to peripheral blood vessels or cardiovascular system is discussed, including, 

ageing and arrhythmia. For such patients, the PPG signals are different and the normal 

equation to estimate SpO2 and HR from the PPG signals may not be applicable. Patient 

specific calibration may be needed to ensure accuracy. 

Ageing has the most noticeable and consistent effect on the PPG signal. As an 

individual gets older, arteriosclerosis thickens and hardens the walls of arteries and 

this leads to an early return of the reflection wave of the diastolic peak. As we can 

see in Figure 2.27, systolic (first peak) and diastolic (second peak) is very obvious in 

younger subjects (Millasseau, Kelly, Ritter, & Chowienczyk, 2002). In older subjects, 

by constract, the systolic peak is steeper with almost no diastolic peak. This may be 

caused by the existence of cardiovascular complications such as wall stiffness and 

also reduction in systemic vascular compliance. As a consequence, some shape 

deriving features relevant to SpO2 estimation are seriously affected. 

Univ
ers

ity
 of

 M
ala

ya



41  

 

Figure 2.27: Typical PPG signals show the parameters changes with age 

(Millasseau et al., 2002). 

One of the most common cardiovascular diseases is cardiac arrhythmia. In the 

presence of arrhythmia, the heart rhythm could be faster than normal, slower than 

normal or having an irregular pattern. The variations in ventricular filling time, stroke 

volume, and contractility may lead to variations in pulse to pulse. As shown in Figure 

2.28, both types of arrhythmia have a significant impact on the morphology of the 

PPG signal. The occurrence of the second peak is a challenge for the algorithm to 

differentiate it from the normal PPG signal. The algorithm may misclassify this pulse 

as dicrotic notches or motion artifacts. As a result, some time deriving features for 

pulse arrival time and heart beat estimation are seriously affected. 

Figure 2.28: Synchronised ECG and PPG signals. (a) Single premature ventricular 

ectopic beat at t = 4s; and (b) single premature supraventricular ectopic beat at t = 

3.8s (Pflugradt, Geissdoerfer, Goernig, & Orglmeister, 2017). 
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2.3.4 Artifact detection techniques for PPG signal 

There is growing interest to use the PPG signal for further analysis such as extraction 

of HR (Askarian, Jung, & Chong, 2019; Chowdhury, Hyder, Hafiz, & Haque, 2018; Reiss, 

Indlekofer, Schmidt, & Van Laerhoven, 2019) and oxygen saturation level (Abay & 

Kyriacou, 2018; Longmore et al., 2019). However, it is well known that the PPG signal is 

easily corrupted by noise. Various artifact reduction algorithms were previoisly proposed 

to reduce the artifacts such as moving average (H.-W. Lee, Lee, Jung, & Lee, 2007), 

independent component analysis (ICA) (Kim & Yoo, 2006) ,wavelet transform (C. Lee 

& Zhang, 2003), adaptive filters (Madhav et al., 2010; Rasoul Yousefi et al., 2013) and 

Fourier series analysis (Reddy, George, & Kumar, 2008). However, these algorithms were 

applied on both clean signals and artifact signals. It might cause unnecessary distortion to 

the clean signal. Therefore, an artifact detection algorithm which can separate clean signal 

from the artifact is desirable. 

Many authors tried to differentiate the artifacts based on waveform morphology. Li et 

al. (Q. Li & G. D. Clifford, 2012) developed four signal quality metrics, including direct 

matching, linear resampling, dynamic time warping, and clipping detection, and fused 

these signal quality informations for artifact classification using the machine learning 

method. Sukor et al.(Jumadi Abdul Sukor, 2012) extracted five different features from 

the PPG signal, which comprises of the amplitude, trough depth difference, pulse width, 

Euclidean distance with the average of previous pulses, as well as amplitude ratios. A 

decision tree was then used to classify the pulse. Fischer et al. (C Fischer, Glos, Penzel, 

& Fietze, 2017) proposed an artifact detection method based on a contour analysis in the 

time domain such as amplitude, duration, and rise time. Chong et al. (Chong et al., 2014) 

tried to compute four time-domain parameters such as standard deviation of peak-to-peak 

intervals, standard deviation of peak-to-peak amplitudes, standard deviation of systolic 

and diastolic interval ratios, and mean standard deviation of pulse shape. Support vector 
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machine (SVM) was be applied to build a decision boundary for classification of pulses 

into clean and artifact signals. Karlen et al. (Karlen, Kobayashi, Ansermino, & Dumont, 

2012) and Orphanidou et al. (Orphanidou et al., 2014) assessed the quality of PPG signals 

by comparing each pulse to a reference template, generated from a number of preceding 

good pulses. Cherifet al. (Cherif, Pastor, Nguyen, & L'Her, 2016) detected PPG artifacts 

by comparing the pulse to the template using correlation coefficient values. Then, a 

detection method based on Random Distortion Testing (RDT) was used to perform 

adaptive thresholding for each record.  

Emad et al. (Kasaeyan Naeini, Azimi, Rahmani, Liljeberg, & Dutt, 2019) employed 

the Convolutional Neural Network (CNN) deep learning algorithm to learn a customized 

hypothesis function from the PPG signals. The PPG pulse was first fed into the CNN 

without undergoing any feature extraction. Next, the signal was labelled as “reliable” or 

“unreliable”. During the learning process, the quality of the PPG signal was evaluated by 

referring to a set of Electrocardiogram (ECG) signals, and comparing the heart rates 

extracted from the PPG signal with that obtained from the ECG signal. 

Besides that, some of the studies also work on statistical measures such as skewness, 

kurtosis, Shannon entropy (SE), and Renyi’sentropy (Selvaraj, Mendelson, Shelley, 

Silverman, & Chon, 2011). Selvaraj 2011 (Selvaraj et al., 2011) computed the kurtosis 

and SE measurement from the PPG segments while Shao 2017 (Hanyu & Xiaohui, 2017) 

classified the artifacts by computing kurtosis, skewness and standard deviation. Since 

PPG amplitude varies among subjects, it is difficult to get high accuracy by using only 

PPG morphology. Therefore, statistical algorithms were used to differentiate the pulse by 

assuming that clean and corrupted PPG signals come from two different frequency 

groups. 

Another approach is to use frequency domain analysis to detect PPG artifacts. Hjorth 
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proposed Hjorth parameters to quantify the degree of oscillation in a signal, where H1 and 

H2 represent central frequency and half of the bandwidth of a signal, respectively (Hjorth, 

1970, 1973). Gilt et al. (Gil, Vergara, & Laguna, 2008) further applied this theory on PPG 

signals with a hypothesis that H1 and H2 derived from noise-contained signals would be 

largely different from H1 and H2 derived from noise-free PPG signals.  

Some studies also perform artifact detection by using both time and frequency analyse. 

Couceiro proposed an artifact detection algorithm by analysing the variations in the time 

and period domain characteristics of the PPG signal. The extracted features are ranked 

using a feature selection algorithm (NMIFS) and the best features are used in Support 

Vector Machine classification model to distinguish between clean and corrupted sections 

of the PPG signals. Krishnan et al. (Krishnan, Natarajan, & Warren, 2008) used a sensor 

fusion approach combining high order statistical features from the time and frequency 

domains to discriminate corrupted PPG sections. Dao et al. (Dao et al., 2016) proposed an 

algorithm for motion artifact detection using time-frequency features. Their approach 

requires 8s of data, calculates the spectrum of five 4s wide sliding analysis windows (with 

a 3s overlap between adjacent windows). Variation across these five spectral estimates 

indicate the presence of signal artifacts. Bashar et al. used variable frequency complex 

demodulation (VFCDM) technique to differentiate segments containing artifact from 

clean PPG segments based on spectral characteristics. Three features, i.e. the root mean 

square of successive differences, Shannon entropy and sample entropy, were extracted 

and fed into the linear support vector machine (SVR) classifier to distinguish the clean 

segments from the corrupted sections of the PPG signal (Bashar, Han, Soni, McManus, 

& Chon, 2018). 

On the other hand, several studies have used additional reference signals to detect PPG 

motion artifact. These studies indicated that motion artifact can be captured using sensors 

such as gyroscope (Casson, Vazquez Galvez, & Jarchi, 2016; Jarchi & Casson, 2016), 
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multi-channel PPG (Chowdhury et al., 2018; Fallet & Vesin, 2017; Lei, Lo, & Guang-

Zhong, 2007; R. Yousefi, Nourani, Ostadabbas, & Panahi, 2014; Zhang et al., 2019), ECG 

(Rundo, Conoci, Ortis, & Battiato, 2018) and accelerometer (Pereira et al., 2020; 

Vandecasteele et al., 2018). Using a combination of the time-frequency spectrum of the 

PPG-signal and tri-axial acceleration as inputs to the CNN, Attila Reiss et al. (Reiss et 

al., 2019) demonstrated a reduction in the mean absolute error by 31% on the new 

dataset PPG-DaLiA, and 21% on the WESAD dataset. 

As we have seen, there are many different methods and approaches to perform artifact 

detection for PPG signals. Every method has its own advantages and drawbacks, but all 

of them have some limits and issues in common. First, the proposed algorithm identifies 

the artifact segment by segment and not pulse by pulse. This means that if those segments 

of data consist of both good and bad pulses, part of these segments might be misclassified. 

Besides that, only a few studies have considered data with artifacts. Most of the 

algorithms are only applied on ICU data where the patient is highly immobile with a small 

amount of artifacts. Next, some of the algorithms were patient-specific; it might not work 

on different types of data source. Besides that, most of the algorithms only used a short 

segment of data (less than 5mins) and this is not suitable to be applied on continuous data.  

2.4 Chapter summary 

Telehealth involves remote monitoring of physiological data. These data are 

transferred to health care professionals for monitoring. As the physiological data are 

normally collected from the patient in an unsupervised environment, the data frequently 

contains a lot of artifacts as compared to those physiological data acquired by clinicians in 

controlled environment. As physiological signals play an important role in clinical 

diagnosis, it is crucial to evaluate signal quality before making any important clinical 

decision. 
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Up to date, some manufacturers have acknowledged the presence and deteriorating 

effects of motion artifacts and implemented proprietary algorithms in their devices, 

whereby, their methods were not made known to the public. Different types of artifact 

detection methods have been proposed but most only focused on ICU data where patients 

were highly immobile. Limited studies have focused on artifact detection and removal in 

unsupervised environment. Therefore, the robustness of these algorithms in the presence 

of motion artifacts remains to be investigated. 

In addition, different disease conditions also affect the quality of physiological signals. 

The ability of these algorithm in differentiating the artifact from different disease 

conditions remains to be studied. 
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CHAPTER 3:  SIGNAL QUALITY ASSESSMENT FOR UNSUPERVISED 

BLOOD PRESSURE MEASUREMENT 

3.1 Introduction 

This chapter introduced an automatic algorithm to detect and remove artifact in 

continuous oscillometric BP measurements. Three BP measurement algorithms (MAA, 

MLR and SVR) were used to estimate SBP and DBP values in the oscillometric waveform 

corrupted with artifacts. Effect of noise detection (outlier removal) on the performance of 

the BP estimation algorithm were then presented. 

3.2 Literature review 

BP, commonly expressed in terms of systolic (maximum) and diastolic (minimum) 

pressures, offers important insights into cardiovascular health. High BP (hypertension), 

which may lead to stroke and heart failure, has been rated as one of the most important 

causes of premature death by the World Health Organization ("World Heart Federation," 

2017). On the other hand, excessively low BP (hypotension) may indicate underlying 

diseases such as heart failure and adrenal insufficiency (Gupta & Lipsitz, 2007; Landgraf, 

Wishner, & Kloner, 2010). Thus, noninvasive measurement of BP using either 

auscultatory or oscillometric methods are routinely performed (Perloff et al., 1993). 

For the oscillometric method, the Systolic Blood Pressure (SBP) and Diastolic Blood 

Pressure (DBP) values are usually estimated from the oscillometric waveform envelope 

(OMWE) using the maximum amplitude algorithm (MAA) either with the slope-based or 

height-based method (Jazbinsek, Luznik, Mieke, & Trontelj, 2010). The estimation of 

SBP and DBP using this experimentally-derived, quasi-empirical characteristic ratio is 

prone to error as it is subject to significant continuous variability over time(S. Lee, S. 

Rajan, et al., 2011; J. Liu et al., 2013; Soueidan, Chen, Dajani, Bolic, & Groza, 2012). 

Furthermore, the characteristic ratio has been reported to be sensitive to changes in 

physiological conditions, in particular the degree of arterial stiffness (Babbs, 2012; J. Liu 
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et al., 2013; van Popele et al., 2000). For instance, the fixed-ratio method overestimates 

SBP but underestimates DBP in individuals with stiffening of the brachial artery (J. Liu 

et al., 2013). Despite these findings, very limited studies have assessed alternative 

methods to improve the accuracy of SBP and DBP measurements. Feature-based 

Gaussian mixture regression approach (S. Lee, Chang, et al., 2013), as well as neural 

networks (Forouzanfar et al., 2011), Bayesian models (S. Lee, Jeon, & Lee, 2013), and a 

statistical learning techniques based on logistic regression (Barbé et al., 2014) were among 

the alternative methods. Five features, such as mean arterial pressure (MAP), maximum 

amplitude, length of the maximum amplitude’s position, length of OMWE maximum 

amplitude, length of the maximum amplitude’s position, length of OMWE and asymmetry 

ratio of the OMWE were used to estimate SBP and DBP using the Gaussian mixture 

regression model (S. Lee, Chang, et al., 2013). 

In this chapter, we evaluated the performance of ten features from the OWE, which 

included previously used features in addition to newly proposed features, in describing 

the systolic (SBPR) and diastolic blood pressure ratio (DBPR). Furthermore, we 

attempted to minimize the usage of multiple features by applying the sequential forward 

floating selection (SFFS) method and to identify the combination of features that result 

in the best performance. Two different models, using multiple linear regression (MLR) 

and support vector regression (SVR) methods were used to estimate SBP and DBP. 

Carefully designed experiments were performed to obtain noise-free signals and signals 

containing noise induced by movement so as to evaluate the robustness of the algorithm 

to motion artifact in an unsupervised environment. A pre- processing step was carried out 

to detect and eliminate data points corrupted by movement artifact. 
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3.3 Methods 

Figure 3.1 shows the sequence of events in BP estimation. 

Figure 3.1: Block diagram of sequence of events in BP estimation. 

 

3.3.1 Raw Signal Acquisition 

The experimental data were obtained from 25 healthy subjects aged 28 ± 5 years (16 

females). Four sets of measurements (two from each arm), which contain simultaneous 

ECG, cuff pressure and Korotkoff sound were acquired from each volunteer, resulting in 

a total of 100 measurements. Our data were acquired using an automated BP measurement 

system with a cuff pressure recorder, a stethoscope with a built-in microphone to capture 

the auscultatory waveform, together with an ECG recorder. All the signals were acquired 

simultaneously using a data acquisition system with a sampling rate of 1 kHz. To acquire 

the oscillometric pulse, the cuff pressure was first increased to approximately 180 mmHg, 

followed by deflation of the cuff pressure using a release valve, which reduced the 

pressure to approximately 40 mmHg in a linear fashion and with a rate of 2–3 mmHg/s. 

To investigate the robustness of the BP estimation algorithm, one of the two 

measurements on each arm was intentionally contaminated with movement artifact 

during cuff deflation. The movements were selected from the following options: (1) 

gently lift the ipsilateral arm, then return to a resting position; (2) spontaneously move the 

ipsilateral arm right and left; (3) bend the ipsilateral arm and then return to a resting 

position; (4) tap the stethoscope bell three times with the contralateral hand; (5) squeeze 

and release the ipsilateral fingers; (6) lift and replace a book with the ipsilateral hand; (7) 

spontaneously shake the ipsilateral arm for a few seconds; and (8) suddenly remove the 

cuff. The recorded Korotkoff sound was used by two clinical experts as the basis for 

estimating the reference SBP and DBP as a reference system (RS). Out of the 100 signals, 
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only 81 SBP and 84 DBP were available for this study due to a lack of reference reading 

in the remaining samples, in which the clinical experts were unable to identify the SBP 

and DBP accurately due to the presence of a large amount of noise in the Korotkoff sound. 

Figure 3.2 shows the distribution of SBP, DBP and pulse pressure (PP) in the collected 

data. A more detailed description of the experimental protocol as well as equipment 

configuration are provided in (J Abdul Sukor, Redmond, Chan, & Lovell, 2012). 

 
Figure 3.2: Distribution of (a) Systolic Blood Pressure (SBP). (b) Diastolic Blood 

Pressure (DBP). (c) Pulse Pressure (PP). 

 

3.3.2 Pre-Processing 

The cuff pressure signal was detrended using a first-order band-pass Butterworth filter 

of 0.5–5 Hz, chosen based on the assumption of a maximum heart rate of 300 beats per 

minute (Jumadi Abdul Sukor, 2012) transform the signal morphology into a pulsatile 

oscillometric waveform. A forward-backward filter was used to achieve a zero-phase 

response. Since the ECG signals were not affected by the movement of the subjects, the 

intervals between two consecutive R-peaks in the ECG waveforms were used to 

determine each cardiac cycle. Figure 3.3 illustrates an example of the cuff pressure signal, 

pulsatile oscillometric waveform and its corresponding OMWE. The reference SBPR and 

DBPR were extracted from the OMWE and were defined as follows:  

𝑆𝐵𝑃𝑅 =
𝑆𝐵𝑃𝐴

𝑀𝐴
 (3.1)  
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𝐷𝐵𝑃𝑅 =
𝐷𝐵𝑃𝐴

𝑀𝐴
 (3.2)  

where MA represents the maximum amplitude of the OMWE corresponding to the 

location of the MAP, while SBPA and DBPA indicate the amplitudes of the OMWE 

corresponding to the location of the SBP and the DBP during cuff deflation. Mean arterial 

pressure (MAP) is defined when the OMWE amplitude increases to its maximum value. 

 

Figure 3.3: An example of the deflating cuff pressure (CP) waveform, pulsatile 

oscillometric waveform (OMW), and oscillometric waveform envelope (OMWE). 

MA: Amplitude of the OMWE corresponding to the location of the mean arterial 

pressure (MAP); SBPA: Amplitude of the OMWE corresponding to the location of 

the systolic blood pressure (SBP); DBPA: Amplitude of the OMWE corresponding 

to the location of the diastolic blood pressure (DBP). 
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Figure 3.4: Cubic spline curve fitted to the oscillometric waveform envelope 

(OMWE) before and after removal of outlier pulses. 

 

3.3.3 Detection and Removal of Outlier Points 

A cubic spline curve was used to fit the OMWE (S. Lee, Jeon, et al., 2013). In order 

to increase the accuracy of the SBP and DBP estimation, data points contaminated with 

motion artifact were treated as outliers and removed during the OMWE curve fitting 

process. First, an automatic algorithm was used to detect these outlier points based on the 

sudden increase of cuff pressure during deflation and the oscillometric pulses relative to 

their respective neighbouring pulses. The peak, peak-to-peak, peak-to-bottom and bottom 

points of every oscillometric pulses were investigated. To be considered as clean data 

pulses, the absolute variations of the heights should not be more than 0.4 arbitrary unit 

and the height of each of these points should lie within ±50% of their respective neighbour 

pulses based on modification of (Antonova, 2013). Furthermore, a suddenly increasing 

pressure during cuff deflation were also considered as artifact. Figure 3.4 illustrates how 

outliers were removed on the fitted curve for the OMWE. 
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3.3.4 Feature Extraction 

In this study, a total of 10 features were extracted from the OMWE, as illustrated 

in Figure 3.5 and defined in Table 3.1, of which six have been used in a previous 

study (S. Lee, Chang, et al., 2013), whereas the remaining features were newly 

proposed in this study. These features can be classified into five different classes: (I) 

Amplitude; (II) Duration; (III) Area; (IV) Ratio; and (V) MAP estimated using the 

MAA approach. 

Table 3.1: Features extracted from the OMWE. The * symbol in the "References" 

column refers to features proposed in this study. 

Feature Description/ Equation References 

Amp1 Maximum amplitude of OMWE (S. Lee, Chang, 

et al., 2013) 

Dur1 Duration for maximum amplitude (MA) to occur (S. Lee, Chang, 

et al., 2013) 

Dur2 Duration of OMWE (S. Lee, Chang, 

et al., 2013) 

Area1 Area under OMWE (S. Lee, Chang, 

et al., 2013) 

Area2 Area under OMWE before the MA’s position * 

Area3 Area under OMWE after the MA’s position * 

Ratio1 Duration for maximum amplitude to occur/Duration 

of OMWE 

(S. Lee, Chang, 

et al., 2013) 

Ratio2 Area under OMWE before the MA’s position /Area 

under OMWE 

* 

Ratio3 Area under OMWE after the MA’s position /Area 

under the OMWE 

* 

MAP MAP estimated using the MAA algorithm (S. Lee, Chang, 

et al., 2013) 

Features from the amplitude class have been previously proposed by Lee et al. (S. Lee, 

Chang, et al., 2013). Amp1 was motivated by the theoretical analysis findings by Baker 

which demonstrates the dependence of MAA estimates on the arterial mechanical 

properties, BP pulse shape and BP pressure (P. Baker, Westenskow, & Kück, 1997). The 

second class of features was derived based on duration. Dur1 and Dur2 were motivated by 

their other study (S. Lee, M. Bolic, et al., 2011), which demonstrated an improvement in 

the SBP and DBP estimates using the new relationships between the mean cuff pressure 

and the pseudo-envelopes that relate the duration of the MA’s position and OMWE. The 
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third class of features was derived based on area measurements. The area under OMWE 

(Area1) was proposed by Lee et al. (S. Lee, Chang, et al., 2013) based on Baker et al.’s (P. 

Baker et al., 1997) findings. However, SBP was only affected by OMWE before the MAP 

while DBP was affected by OMWE after the MAP. This led us to propose two other 

relevant features, i.e., the area before (Area2) and after (Area3) the MA’s position. The 

third class of features were derived based on the morphology of the OMWE, which 

demonstrated the dependence of the SBP and DBP estimates on the shape of the OMWE 

(P. Baker et  al . ,  1997). The ratio between the duration of the MA’s position to 

duration of OMWE (Ratio1) was proposed by Lee et al. (S. Lee, Chang, et al., 2013), while 

two other features were newly proposed in the present study based on the modification of 

Ratio1. Instead of relying on the position of the MA, Ratio2 and Ratio3 also took into 

consideration the height of the OMWE curve by relating the area under the OMWE before 

and after the MA’s position to the area under the OMWE. The last feature, i.e., MAP, has 

also been previously proposed by Lee et al. (S. Lee, Chang, et al., 2013) based on Moraes’ 

findings (J. C. T. d. B. Moraes, Cerulli, & Ng, 2000) which indicated a close correlation 

between SBPR and DBPR with the MAP values. 

Figure 3.5: Description of features extracted from the OWE. 
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3.3.5 Blood Pressure Estimation Models 

Three different BP estimation models were evaluated in the present study, 

including the conventional Maximum Amplitude Algorithm (MAA) method based 

on fixed characteristic ratios, and two newly proposed models using multiple linear 

regression (MLR) and support vector regression (SVR). 

3.3.5.1 Maximum Amplitude Algorithm (MAA) 

The conventional MAA method based on a fixed characteristic ratio were used to 

determine SBP and DBP. The fixed SBPR and DBPR were obtained as averages of 

the SBPR and DBPR derived from our Reference Scoring (RS). 

3.3.5.2 Multiple Linear Regression (MLR) Model 

MLR was used to model the relationship between the SBPR and DBPR with the 

features extracted from the OMWE. The model is defined as follows: 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝜀 (3.3) 

 

where y denotes either SBPR or DBPR, xn denotes the nth input feature, bn denotes 

the nth multiple regression coefficient, while ε is a sequence of unknown errors. 

Depending on the number of measurements, denoted by p, a matrix form containing 

information from each measurement is defined as follows (S. Lee, Lim, & Chang, 

2014): 

𝑌 = 𝑋𝛽 + 𝐸 (3.4)  

Y =

(

 
 
 
y1 
y2 .
.
.
yp)

 
 
 

    X =

(

 
 
 
 
x11    Xx1p 

x21    Xx2p 
  .               .   
  .               .   
  .               .   
xn1  .   xnp )

 
 
 
 

   β =

(

 
 
 
 
b1 
b2 .
.
.
bp)

 
 
 
 

    E =

(

 
 
 
ε1 
ε2 .
.
.
εp)

 
 
 

 (3.5)  
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The multiple regression coefficients, β, can then be obtained based on the minimum 

sum of squared errors by solving Eq. 3.7: 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛 + 𝜀 (3.6)  

β = (XTX)−1XTY (3.7)  

3.3.5.3 Linear ν-Support Vector Regression (ν-SVR) model 

Consider a set of training points, {(x1, y1),…, (xl, yl)}, where xi∈ Rn is a feature vector 

while yi∈ Rn is the target output. The ν- SVR model searches for the best approximation 

of the actual output yi (i.e., SBPR and DBPR in the present study) based on the input 

features, xi, with an acceptable error tolerance of ɛ. Let xi be mapped into a feature space 

by a nonlinear function (𝑥𝑖); the decision function becomes: 

𝑦 = 𝑓(𝑤, 𝑏) = 〈𝑤. 𝑥〉 +  𝑏 (3.8)  

where w and b are parameters vectors of the SVR model. The parameter w vector 

determines the flatness of the approximation function, with lower w values giving 

smoother and less complicated approximation function (Basak, Pal, & Patranabis, 2007; 

Yu, Chen, & Chang, 2006). The mapping function 𝜑(𝑥𝑖) transforms the data into a higher 

dimensional feature space to make it possible to perform the linear separation. Parameter 

ν ∈ (0,1] is used to control the number of support vectors and training errors. The 

regression problem was formulated as the following convex optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑤, 𝑏, 𝜉𝑖 , 𝜉𝑖 
∗, 𝜀 

  
1

2
|𝑤𝑇𝑤| + 𝐶(ν𝜀 +

1

𝑛
∑ (𝜉𝑖 + 𝜉𝑖

∗ ))
𝑖=𝑛

𝑖=1
 (3.9)  
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𝑖 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   {

(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 
𝑦𝑖−(𝑤

𝑇𝜑(𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖
∗ 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛

} (3.10)  

𝜉𝑖 and 𝜉∗ specify the upper and lower training errors subjected to the error tolerance, ε, 

while C is a positive constant which determines the trade-off between the flatness and the 

amount up to which deviations larger than ε are tolerated (Smola & Schölkopf, 2004; Yu 

et al., 2006). In this study, the LIBSVM, a Matlab library for SVM (Chang & Lin, 2011) 

is used to generate the proposed features based regression model for the SVR algorithm. 

The linear function is employed as a SVR mapping function with parameter C = 14.49 and 

v = -1.89 for both SBP and DBP models. These two parameters were selected with 

dynamic range from −20 to 20 and −20 to 0 for C and v respectively. The parameter b 

was 0.9865 and 0.6554 for SBP and DBP models respectively. 

3.3.6 Evaluation of Results 

In the present study, two standard protocols commonly used for the evaluation of the 

accuracy of BP estimation, i.e., the British Hypertension Society (BHS) and the American 

Association for the Advancement of Medical Instrumentation (AAMI), were applied. 

BHS evaluates the performance of the BP estimation based on the cumulative percentage 

of readings which fall within absolute differences of 5, 10 and 15 mmHg from the mercury 

standard. The mercury standard refers to the SBP and DBP values obtained by a trained 

person using the auscultatory method (i.e., using a stethoscope to listen to the Korotkoff 

sounds and a mercury sphygmomanometer to measure the pressure level in the cuff). To 

fulfil the BHS protocol, the tested device must achieve at least grade B, i.e., 50% of 

readings falling within 5 mmHg, 75% within 10 mmHg, and 90% within 15 mmHg of the 

readings obtained from the gold standard (GS) method, as illustrated in Table 3.2. 

On the other hand, to satisfy the AAMI standard, the mean difference between the 

measurements obtained from the tested device and from the GS method should lie within 
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±5 mmHg (O’Brien et al., 1993)). The upper limit on the standard deviation (SD) depends 

on the level of the mean difference, as listed in Table 3.3 (O’Brien et al., 1993). 

Table 3.2: Grading criteria according to the British Hypertension Society (BHS) 

protocol. Grades are derived based on the cumulative percentages of readings 

which fall within absolute differences of 5, 10 and 15 mmHg from the mercury 

standard. To achieve a particular grade, all three percentages must be equal to or 

greater than the tabulated values (Association for the Advancement of Medical 

Instrumentation: Arlington, 2003). 

Grade ≤mmHg ≤10 mmHg ≤15 mmHg 

Cumulative percentage of reading (%) 

A 60 85 95 

B 50 75 90 

C 40 65 85 

D  Worse than C 

 

Table 3.3: Upper limit on the standard deviation of paired differences for given 

values of the mean of the paired differences (adapted from (O’Brien et al., 1993)). 

Mean difference (mmHg) Standard Deviation (mmHg) 

0 6.95 or less 

±0.5 6.93 or less 

±1.0 6.87 or less 

±1.5 6.78 or less 

±2.0 6.65 or less 

±2.5 6.47 or less 

±3.0 6.25 or less 

±3.5 5.97 or less 

±4.0 5.64 or less 

±4.5 5.24 or less 

±5.0 4.81 or less 

 

3.3.7 Analyses 

Two analyses were performed. In the first, we attempted to determine the effect of noise 

detection (outlier removal) on SBP and DBP estimation errors. In the second, we sought 

to establish the SBP and DBP estimation performance using conventional MAA, MLR 

and SVR models. The performance of the individual features were evaluated, followed 

by identification of the best combination of features for the two different types of BP 

estimation models. We performed a comprehensive study on the performance of all 

possible combinations of two features on the BP estimation methods, resulting in a total 

of 55 combinations. To search for the best combination of more than two indices, we 
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applied SFFS starting from the best combination of two features provided by the 

exhaustive search. Our results revealed that adding a third feature did not provide an 

improvement in the results. A four-fold cross validation was applied during the 

implementation of all the BP estimation methods. 

3.4 Results 

3.4.1 Parameter tuning of C and v value for SVR 

 
Figure 3.6: Response surface plot of the error with respect to c and v with step size 

of 1 using the training data. Color bar on the right indicates the error scale. A C 

and v yielded the lower error of 0.078. 

 

As shown in Figure 3.6, all possible combinations of C and v were varied with a step 

size of 1 (C from -20 to 20 and v from -20 to 0). Region of C within 10 - 15, and region 

of v within -3 - 0 yielded the lowest error. Parameter search range was then focused on 

these regions, with a refined step size of 0.25 to further narrow down the range with the 

lowest error. The above procedure was repeated with refined step sizes of 0.05 and 0.01. 

Using this search method, the best parameters for C and v were 14.49 and -1.89, 

respectively, which yielded a minimum error of 0.076.  
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3.4.2 Systolic and Diastolic Blood Pressure Estimation Performance Using 

Conventional MAA, MLR and SVR Models 

Conventional MAA method estimated the SBP and DBP using fixed characteristic 

ratio from maximum amplitude located on OMWE. Therefore, comparison among 

features extracted from the OMWE envelope was omitted for MAA. Tables 3.4 and 3.5 

showed the performance of each of the ten features extracted from the OMWE in SBP 

and DBP estimation using the MLR and SVR models respectively. With regards to SBP, 

most features achieved a Grade B performance with both models according to the BHS 

standard, except for Area3 which obtained a Grade C performance using the MLR model. 

Individually, MAP as well as Ratio2 and Ratio3 derived based on the morphology of the 

OMWE outperformed other features using both MLR and SVR models, as they provided 

lower mean and SD of differences between RS and estimated SBP values. In terms of 

DBP, most features achieved a Grade A performance according to the BHS protocol, 

except for Dur2 (Grade B using both MLR and SVR models), Dur1 and Ratio3 (both 

achieving Grade B with the SVR model). Based on the AAMI standard, comparable 

performances were observed among all ten features using both MLR and SVM models, 

with most features passing the AAMI standard marginally. Using the SFFS approach, we 

identified Ratio2 and Area3 to be the best combination of two features. 

Table 3.4: Comparison among features extracted from the OWE envelope in BP 

estimation performance using the MLR model. 

Feature  Grade Cumulative percentage 

of reading (%) 

Mean ± 

SD 

(mmHg) 

Mean ± SD of 

differences 
(mmHg) 

≤5 ≤10 ≤15 
Amp1 SBP B 53 84 93 105±17 -1.2±14.2 
 DBP A 70 92 95 63±9 0.5±6.1 
Dur1 SBP B 58 86 95 105±13 -0.7±10.6 
 DBP A 69 89 95 63±10 0.6±6.6 
Dur2 SBP B 54 79 91 105±16 -1.1±14.3 
 DBP B 63 87 94 63±9 0.4±6.8 
Area1 SBP B 50 84 93 105±17 -1.3±14 
 DBP A 70 89 95 63±9 0.2±6.2 
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Table 3.5 continued: Comparison among features extracted from the OWE 

envelope in BP estimation performance using the MLR model. 
Area2 SBP B 61 86 94 105±15 -0.4±10.2 
 DBP A 71 92 95 63±9 0.4±6.2 
Area3 SBP C 50 79 86 104±18 -1.9±16.9 
 DBP A 73 89 95 63±9 0.1±6.3 
Ratio1 SBP B 55 80 93 106±10 0.1±8.0 
 DBP A 73 89 95 63±9 0.3±6.5 
Ratio2 SBP B 55 85 96 106±10 0.5±7.0 
 DBP A 68 89 96 63±9 0.1±6.6 
Ratio3 SBP B 55 85 96 106±10 0.5±7.0 
 DBP A 68 89 96 63±9 0.1±6.6 

MAP SBP B 55 89 98 106±10 0.3±6.6 
 DBP A 71 89 95 63±9 0.1±6.6 

SBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood 

pressure (range: 42 – 88 mmHg). 

 

Table 3.6: Comparison among features extracted from the OWE envelope in BP 

estimation performance using the SVR model. 

Feature  Grade Cumulative percentage 

of reading (%) 

Mean ± SD 

(mmHg) 

Mean ± SD of 

differences 
(mmHg) 

≤5 ≤10 ≤15 
Amp1 SBP B 60 86 94 105±18 -1.2±15.4 
 DBP A 70 93 95 63±9 0.4±6.4 
Dur1 SBP B 60 88 94 104±13 -1.7±9.7 
 DBP B 65 89 94 64±9 0.8±6.4 
Dur2 SBP B 55 83 91 104±15 -1.8±13 
 DBP B 69 89 94 63±9 0.7±6.6 
Area1 SBP B 58 87 93 104±16 -1.5±15 
 DBP A 70 90 95 63±9 0.2±6.2 
Area2 SBP B 64 89 94 106±14 -0.1±9 
 DBP A 69 89 96 63±9 -0.2±6.4 
Area3 SBP B 53 81 91 104±16 -1.5±14 
 DBP A 70 91 95 63±9 0.6±6.5 
Ratio1 SBP B 58 84 94 106±10 0.3±7.6 
 DBP A 68 89 95 64±9 1.0±6.6 
Ratio2 SBP B 59 89 98 107±10 1.0±6.3 
 DBP A 70 90 95 63±9 0.6±6.6 
Ratio3 SBP B 58 88 98 107±11 1.1±6.4 
 DBP B 58 85 95 64±9 1.4±7.2 

MAP SBP B 58 85 95 106±10 0.2±6.8 
 DBP A 70 89 95 63±9 0.5±6.7 

SBSBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood 

pressure (range: 42 – 88 mmHg). 
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Table 3.7: Comparison among conventional MAA method, MLR and SVR models 

in blood pressure (SBP and DBP) estimation performance using the best 

combination of features (Ratio2 and Area3) 

 Grade Cumulative percentage of 

reading (%) 

Mean ± SD 

(mmHg) 

 

Mean ± SD 

of 

differences 

(mmHg) 
 Absolute 

difference with 

RS 

≤5 ≤10 ≤15 

Conventional MAA method (using fixed characteristic ratio) 

SBP B 55 84 90 107 ± 13 -1.6 ± 8.6 

DBP A 70 89 95 62 ±   9 0.3 ± 6.7 

MLR model (using the best combination of features) 

SBP A 63 91 98 106 ± 11 -0.3 ± 5.8 

DBP A 71 89 95 63 ±   9 -0.2 ± 6.4 

SVR model (using the best combination of features) 

SBP A 66 94 98 107 ± 12 -0.6 ± 5.4 

DBP A 68 90 95 62 ±   9 0.4 ± 6.3 

Method comparison (Differences between MLR and SVR) 

SBP A 98 100 100  -0.3 ± 1.6 

DBP A 100 100 100  0.6 ± 1.0 

SBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood 

pressure (range: 42 – 88 mmHg). 

As compared to the conventional MAA method using a fixed characteristic ratio 

(Table 3.6), the variable characteristic ratio method using both MLR and SVR models 

applied on the best combination of features significantly reduced the mean and SD of 

differences between the estimated SBP and that obtained from RS. Meanwhile, only 

a slight reduction in SD was observed for DBP as compared to the conventional 

MAA. Based on the BHS standard, both MLR and SVR models, as well as the 

conventional MAA method could achieve a Grade A performance for SBP 

estimation. Generally, comparable performance was obtained for both MLR and SVR 

models, with up to 98% (95%) of data lying within ±15 mmHg from RS for SBP 

(DBP) estimation. The difference in the performance between the MLR and the SVR 

models was not statistically different (p-value > 0.05). In addition, both model 

satisfied the performance criteria set by the AAMI standard, with SVR model 

achieving a slightly lower SD of difference with RS but at a slightly higher mean 

difference value. 
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As illustrated in Figures 3.8 and 3.9, their estimated values for SBP (DBP) data used 

in the present study were very similar. Figure 3.10 shows the difference of SBP and DBP 

estimated between MLR and SVR, all the values lied within the range of ±5 mmHg (with 

the exceptions of only 2 values for SBP). At higher SBP values, SVR model appeared to 

provide larger values as compared to that estimated using the MLR model while an 

opposite trend was observed in the middle range of SBP. 

Figure 3.7: Bland–Altman plot of possible SBP between RS and (a) MLR model; 

(b) SVR model using the best combination of features. 

 

 

Figure 3.8: Bland–Altman plot of possible DBP between RS and (a) MLR model; 

(b) SVR model using the best combination of features 
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Figure 3.9: Bland–Altman plot of possible (a) SBP and (b) DBP between MLR and 

SVR models using the best combination of features. 

3.4.3 Effect of Noise Detection (Outlier Removal) on Systolic and Diastolic Blood 

Pressure Estimation Errors 

Figures 3.11 and 3.12 are the Bland-Altman plots demonstrating the performance of 

estimated SBP and DBP using the conventional MAA algorithm, with and without using 

the outlier removal algorithm before the OMWE curve fitting process. On the other hand, 

cumulative percentage of BP readings which fall within absolute differences of 5, 10 and 

15 mmHg from RS (required for evaluation using the BHS standard) as well as mean ± 

SD difference between RS and conventional MAA algorithm (required for evaluation 

using the AAMI standard) were presented in Table 3.4. Based on the Bland– Altman plots 

for SBP (illustrated in Figure 3.6), the errors between the estimated pressure and the RS 

were large without outlier removal (up to 125 mmHg at low SBP), and substantially 

reduced upon elimination of the outlier points, with most data points lying within ±20 

mmHg errors from the RS. Similar observations were found for the DBP (Figure 3.7).  
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Figure 3.10: Bland–Altman plot of possible SBP between RS and conventional 

MAA algorithm (a) before and (b) after outlier removal. 

 

Figure 3.11: Bland–Altman plot of possible DBP between RS and conventional 

MAA algorithm (a) before and (b) after outlier removal. 

As shown in Table 3.7, the outlier removal method proposed in this study significantly 

improved the accuracy of the estimated pressures, with an improvement in BHS grades 

from D to B and A for SBP and DBP respectively. With regards to the AAMI standard, 

although a significant improvement was found in both mean and SD difference for SBP 

after outlier removal, the conventional MAA method failed to satisfy the AAMI standard 

(with a mean ± SD of −1.6 ± 8.6 mmHg, refer to Table 3.4). In terms of DBP, the mean ± 

SD difference improved from 0 ± 14.2 mmHg to 0.3 ± 6.7 mmHg upon outlier removal, 
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which satisfied the passing criteria for the AAMI standard. 

Table 3.8: Cumulative percentage of readings which fall within absolute 

differences of 5, 10 and 15 mmHg from RS using the conventional MAA algorithm 

with the respective BHS grades, as well as mean+SD and mean+SD difference 

between RS and conventional MAA algorithm for BP estimation before and after 

outlier removal.  

 Grade Cumulative percentage of 

reading (%) 

Mean ± 

SD 

(mmHg) 

Mean ± SD 

of 

differences 

(mmHg) 
 Absolute difference:  

RS – MAA 

≤5 ≤10 ≤15 

Before outlier removal 

SBP D 30 61 74 101 ± 29   4.5 ± 28.6 

DBP D 43 61 79   63 ± 12   0.0 ± 14.2 

After outlier removal 

SBP B 55 84 90 107 ± 13 -1.6 ± 8.6 

DBP A 70 89 95   62 ±   9   0.3 ± 6.7 

SBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood pressure 

(range: 42 – 88 mmHg). 

 

Figures 3.13 and 3.14 are the Bland-Altman plots demonstrating the performance of 

estimated SBP and DBP using the MLR algorithm, with and without using the outlier 

removal algorithm before the OMWE curve fitting process using the best combination of 

features (Ratio2 and Area3) acquired in section 3.4.2. 

On the other hand, cumulative percentage of BP readings which fall within absolute 

differences of 5, 10 and 15 mmHg from RS (required for evaluation using the BHS 

standard) as well as mean ± SD difference between RS and conventional MAA algorithm 

(required for evaluation using the AAMI standard) were presented in Table 3.4. Based on 

the Bland– Altman plots for SBP (illustrated in Figure 3.6), the errors between the 

estimated pressure and the RS were large without outlier removal (up to 47 mmHg at 

DBP), and substantially reduced upon elimination of the outlier points, with most data 

points lying within ±20 mmHg errors from the RS. Similar observations were found for 

the DBP (Figure 3.7).  
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Figure 3.12: Bland–Altman plot of possible SBP between RS and MLR algorithm 

(a) before and (b) after outlier removal. 

 

 
Figure 3.13: Bland–Altman plot of possible DBP between RS and MLR algorithm 

(a) before and (b) after outlier removal. 

As shown in Table 3.8, the outlier removal method proposed in this study significantly 

improved the accuracy of the estimated pressures, with an improvement in BHS grades 

from D to A and A for SBP and DBP respectively. With regards to the AAMI standard, 

although a significant improvement was found in both mean and SD difference for SBP 

after outlier removal. In terms of SBP, the mean ± SD difference improved from 14.2 ± 

8.3 mmHg to -0.3 ± 5.8 mmHg upon outlier removal. For DBP, the mean ± SD difference 

improved from 8.6 ± 8.4 mmHg to -0.2 ± 6.4 mmHg upon outlier removal. Both SBP and 

DBP satisfied the passing criteria for the AAMI standard. 
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Table 3.9: Cumulative percentage of readings which fall within absolute 

differences of 5, 10 and 15 mmHg from RS using the MLR algorithm with the 

respective BHS grades, as well as mean+SD and mean+SD difference between RS 

and MLR algorithm for BP estimation before and after outlier removal.  

 Grade Cumulative percentage of 

reading (%) 

Mean ± 

SD 

(mmHg) 

Mean ± SD 

of 

differences 

(mmHg) 
 Absolute difference 

with RS  

≤5 ≤10 ≤15 

Before outlier removal 

SBP D 9 30 49 112 ±17 14.2 ± 8.3 

DBP D 38 58 67 68 ± 13 8.6 ± 8.4 

After outlier removal 

SBP A 63 91 98 106 ± 11 -0.3 ± 5.8 

DBP A 71 89 95 63 ±   9 -0.2 ± 6.4 

SBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood pressure 

(range: 42 – 88 mmHg). 

Figures 3.15 and 3.16 are the Bland-Altman plots demonstrating the performance of 

estimated SBP and DBP using the SVR algorithm, with and without using the outlier 

removal algorithm before the OMWE curve fitting process using the best combination of 

features (Ratio2 and Area3) acquired in section 3.4.2. 

On the other hand, cumulative percentage of BP readings which fall within absolute 

differences of 5, 10 and 15 mmHg from RS (required for evaluation using the BHS 

standard) as well as mean ± SD difference between RS and conventional MAA algorithm 

(required for evaluation using the AAMI standard) were presented in Table 3.9. Based on 

the Bland– Altman plots for SBP (illustrated in Figure 3156), the errors between the 

estimated pressure and the RS were large without outlier removal (up to 37 mmHg at 

DBP), and substantially reduced upon elimination of the outlier points, with most data 

points lying within ±20 mmHg errors from the RS. Similar observations were found for 

the DBP (Figure 3.16).  
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Figure 3.14: Bland–Altman plot of possible SBP between RS and SVR algorithm 

(a) before and (b) after outlier removal. 

 

 
Figure 3.15: Bland–Altman plot of possible DBP between RS and SVR algorithm 

(a) before and (b) after outlier removal. 

As shown in Table 3.9, the outlier removal method proposed in this study significantly 

improved the accuracy of the estimated pressures, with an improvement in BHS grades 

from D to A and A for SBP and DBP respectively. With regards to the AAMI standard, 

although a significant improvement was found in both mean and SD difference for SBP 

after outlier removal. In terms of SBP, the mean ± SD difference improved from 15.8 ± 

8.7 mmHg to -0.6 ± 5.4 mmHg upon outlier removal. For DBP, the mean ± SD difference 

improved from 8.4 ± 8.1 mmHg to 0.4 ± 6.3 mmHg upon outlier removal. Both SBP and 

DBP satisfied the passing criteria for the AAMI standard. 
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Table 3.10: Cumulative percentage of readings which fall within absolute 

differences of 5, 10 and 15 mmHg from RS using the conventional MAA algorithm 

with the respective BHS grades, as well as mean+SD and mean+SD difference 

between RS and conventional MAA algorithm for BP estimation before and after 

outlier removal.  

 Grade Cumulative percentage of 

reading (%) 

Mean ± 

SD 

(mmHg) 

Mean ± SD 

of 

differences 

(mmHg) 
 Absolute difference: 

RS – MAA 

≤5 ≤10 ≤15 

Before outlier removal 

SBP D 7 25 40 115 ± 18 15.8 ± 8.7 

DBP D 38 58 69 67 ± 12 8.4 ± 8.1 

After outlier removal 

SBP A 66 94 98 107 ± 12 -0.6 ± 5.4 

DBP A 68 90 95 62 ±   9 0.4 ± 6.3 

SBP, systolic blood pressure (range: 70 – 133 mmHg); DBP, diastolic blood pressure 

(range: 42 – 88 mmHg). 

3.5 Discussion 

Accurate oscillometric BP estimation in an unsupervised environment is challenging 

in the presence of interference, notably movement artifact which interrupts the air flow 

in the deflating cuff. While several studies have attempted to detect noise in the BP signals 

using additional sensing devices such as acceleration and capacitive sensors (Choi, Park, 

& Lee, 2007) , as well as morphological comparison with good-quality reference pulses 

(Charbonnier, Siche, & Vancura, 2000) , none of these studies have investigated the effect 

of the detected noise on the extraction of accurate BP values from the contaminated 

signals. In the present study, we integrated an artifact removal block (Figure 3.1) in our 

SBP and DBP estimation algorithm which was based solely on the oscillometric signal 

without using additional sensors or reference signals. Our results demonstrated that the 

mean and standard deviation of the BP estimation errors between the MAA algorithm and 

the RS substantially decreased upon artifact removal (Figures 3.6 and 3.7, Table 3.4), 

which strongly advocates the importance of the artifact removal component proposed in 

the present study. Furthermore, the MAA algorithm has been well recognized to be 

susceptible to additive noise as it is derived based on the amplitude of the pulse (Mafi, 

Rajan, Bolic, Groza, & Dajani, 2011). The cubic spline interpolation method (Table 3.4- 
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before outlier removal), commonly used to smooth the envelope of the OMW for 

eliminating the erroneous peak values generated by artifact, was shown in this study to be 

ineffective in reducing the interference caused by movement artifact (S. Chen et al., 2010). 

We further demonstrated from our analysis results (Tables 3.5 and 3.6) that the usage 

of variable characteristic ratio derived based on several features extracted from the 

OMWE improved the BP estimation accuracy over the conventional MAA method using 

fixed characteristic ratios (SBP: mean ± SD = −1.6 ± 8.6 mmHg; DBP: mean ± SD = 0.3 

± 6.7 mmHg). Due to the large uncertainties in the characteristic ratios reported in the 

literature (Barbé, Van Moer, & Lauwers, 2010; S. Lee, Jeon, et al., 2013; J. Liu et al., 

2013), we used averages of the SBPR and DBPR ratios derived from our reference SBP 

and DBP measurements based on the clinical expert readings. When evaluated 

individually (Tables 3.5 and 3.6), the MAP feature proposed by Lee et al. (S. Lee, Chang, 

et al., 2013) as well as the two newly proposed features in the present study, i.e., Ratio2 

and Ratio3, outperformed other features in providing accurate SBP estimates (MAP: mean 

± SD = 0.3 ± 6.6 mmHg for MLR and 0.2 ± 6.8 mmHg for SVR; Ratio2: mean ± SD = 

0.5 ± 7.0 mmHg for MLR and 1.0 ± 6.3 mmHg for SVR; Ratio3: mean ± SD = 0.5±7.0 

mmHg for MLR and 1.1 ± 6.4 mmHg for SVR). The Ratio2 and Ratio3 features were 

derived based on the morphology of the OMWE, which has been reported to reflect the 

stiffness characteristics of the vessel (Babbs, 2012). Consistent with previously published 

findings, the degree of arterial stiffness and thus pulse pressure as well as the shape of the 

OWE has the largest influence on the SBP and DBP errors determined based on the 

conventional MAA method (J. Liu et al., 2013), leading to errors as high as 15%–20% 

(Ursino & Cristalli, 1996) or 58 mmHg (J. Liu et al., 2013). To the contrary, the Ratio1 

feature proposed by Lee et al. (S. Lee, Chang, et al., 2013), which also described the shape of 

the OMWE, was found to be inferior in our study as compared to Ratio2 and Ratio3. The 

main difference between these features were that while Ratio1 was derived based on 

Univ
ers

ity
 of

 M
ala

ya



72 

length of the oscillometric waveform, Ratio2 and Ratio3 described asymmetry in the 

waveform based on area of the OMWE, thus took into consideration both amplitude and 

length of the waveform. Compared to length, measurements based on area of the OWE, 

e.g., Ratio2 and Ratio3 are more robust to noise interference as well as errors associated

with difficulties in determining the starting and ending points of the cuff pressure 

oscillations. The Dur2, Amp1 and Area1 features proposed by Lee et al. (S. Lee, Chang, et 

al., 2013) demonstrated poor performance in SBP estimates individually when applied on 

data set used in the present study. 

Using the SFFS approach, we were able to achieve a significant reduction in the mean 

and standard deviation of differences between the estimated SBP values and the RS 

(MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR: mean ± SD = −0.6 ± 5.4 mmHg) with only 

two features, i.e., Ratio2 and Area3 (Table 3.7), as compared to the conventional MAA 

method (mean ± SD = −1.6 ± 8.6 mmHg). To the contrary, negligible improvement was 

achieved for DBP estimation. Our results were comparable with that reported by Lee et 

al. (S. Lee, Chang, et al., 2013), which utilized three features, i.e., Area1, Ratio1 and MAP 

selected based on t-test evaluation on their clean dataset. While t-test evaluates the 

significance of features independently (filter-based method), the SFFS method takes into 

account interaction among features (wrapper-based method). The advantages of wrapper- 

based methods include taking into account feature dependencies (Z. Zhu, Ong, & Dash, 

2007), and they typically perform better in prediction accuracy when compared with 

filter-based methods (Z. Zhu et al., 2007). 

Despite its simplicity, our results showed that the MLR model was able to achieve 

comparable performance with that obtained from the SVR model (Table 3.7, Figures 

3.8– 3.10), which requires optimization of the model parameters through repeated 

training. The MLR model was able to estimate the best fitting surface of a suitable 

function that 
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relates the independent and dependent variables (Matthews, 2005). On the other hand, 

Gaussian mixture regression (S. Lee, Chang, et al., 2013) as well as Bayesian model (S. 

Lee, Jeon, et al., 2013), applied on a combination of five features, have also been recently 

proposed by Lee et al. (Forouzanfar et al., 2011) and evaluated on experimental data 

acquired from 85 healthy subjects. As compared to these methods, our MLR and SVR 

models do not need careful formulation of prior distributions of the data. In addition, the 

same research group has also presented a feature-based neural network approach for the 

estimation of BP (Forouzanfar et al., 2011), which used features extracted from the 

OMWE (consisting of the amplitudes, spreads, and centres of the modelled Gaussian 

functions) as inputs to the neural network. Although the proposed approach was shown to 

achieve lower values of mean and standard deviation of error in the estimations (SBP: 

mean ± SD = 6.76 ± 8.89 mmHg; DBP: mean ± SD = 5.98 ± 7.90 mmHg) as compared 

to the conventional MAA method, their results did not meet the AAMI standard. This 

was probably because their oscillometric measurements were taken at different time 

points with that acquired by the nurse, which served as RS. As suggested by Soueidan et 

al. (Soueidan et al., 2012), natural BP variability often exceeds the maximum allowable error 

set by the AAMI standard (i.e., ±5 mmHg), thus it is advisable to acquire simultaneous 

recordings of both oscillometric signal and RS for accurate comparison, as that performed 

in the present study. 

Using a different approach based on a Fourier series representation of the oscillometric 

waveform, Barbe et al. (Barbe et al., 2011) introduced a Hammerstein-Windkessel model 

which captures the low frequency oscillations of the cardiovascular system. The systolic 

and diastolic pressures were derived from the mean arterial pressure using an intuitive 

estimator α, which was calculated based on the envelope of the modeled oscillometric 

waveform. The α parameter, which reflects the symmetry of the oscillometric waveform, 

is similar to one of the best performing feature in the present study, i.e., Ratio3. In a more 
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recent study, they (Barbé et al., 2014) further extended their work to include a statistical 

learning technique based on ordinal logistic regression for the calibration of oscillometric 

BP monitors. By applying a linear regression to map the shape of the oscillometric signal 

to the BP to avoid complex nonlinear models, the method could only estimate the correct 

BP range but not the specific value of the BP. 

3.6 Conclusion 

In this chapter, we proposed a novel approach in estimating SBP and DBP using 

variable characteristic ratios derived from features extracted from the OMWE, on data 

corrupted with movement artifact. An automatic algorithm based on changes in the 

oscillometric pulses relative to their respective neighbour pulses was proposed to remove 

outlier points before the curve fitting process. Substantial reduction in the mean and 

standard deviation of the BP estimation errors between the MAA algorithm and the RS 

were obtained upon artifact removal. Comparing all ten features extracted from the 

OMWE, the MAP feature as well as the two newly proposed features, i.e., Ratio2 and 

Ratio3, showed superior performance in providing accurate SBP estimates. Using SFFS, 

we were able to achieve a significant reduction in the mean and standard deviation of 

differences between the estimated SBP values and the RS (MLR: mean ± SD = −0.3 ± 5.8 

mmHg; SVR and −0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3, as 

compared to the conventional MAA method (mean ± SD = −1.6 ± 8.6 mmHg). To the 

contrary, negligible improvement was achieved for DBP estimation. Comparing both 

MLR and SVR models, our results showed that the MLR model was able to achieve 

comparable performance with that obtained from the SVR model despite its simplicity. 

In the next chapter, automatic artifact detection algorithms for another common 

phsyiological signal which the PPG signal is studied. 
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CHAPTER 4:  ADAPTIVE TEMPLATE MATCHING OF 

PHOTOPLETHYSMOGRAM PULSES TO DETECT MOTION ARTIFACT 

4.1 Introduction 

This chapter introduced an adaptive template algorithm to detect artifact in the PPG 

signal. Two PPG master templates were generated from the Physionet database 

(Goldberger et al., 2000) (a publicly available database). The developed algorithm was 

tested on both short (6s) and continuous PPG (i.e. longer than 30 mins) data collected 

from the healthy subjects. 

4.2 Literature Review 

The photoplethysmograph (PPG) is commonly used to monitor heart rate and peripheral 

capillary oxygen saturation (SpO2). It has the advantage of being non-invasive, low cost, 

and portable, which makes it useful in all healthcare settings, for both risk stratification 

and continuous monitoring. However, the quality of the PPG signal is easily degraded by 

poor blood circulation, fluctuations in ambient light, as well as motion artifact (Matthew 

J Hayes & Smith, 1998; Matthew James Hayes & Smith, 2001; Jumadi Abdul Sukor, 

2012), which can lead to clinical feature extraction or diagnostic errors. Due to the high 

susceptibility of PPG signals to artifact, several researchers have questioned the reliability 

of pulse oximetry in uncontrolled environments, such as normal clinical practice 

(Costarino, Davis, & Keon, 1987), during exercise (Benoit et al., 1997), and in a home 

care setting (R Couceiro, Carvalho, Paiva, Henriques, & Muehlsteff, 2014). 

Artifact detection is crucial to eliminate poor quality intervals of the PPG waveform 

that would be impossible to recover via an artifact suppression technique. To date, a 

number of artifact detection methods have been proposed. These include the 

morphological methods (Chong et al., 2014; R Couceiro et al., 2014; Selvaraj, Jaryal, 

Santhosh, Deepak, & Anand, 2008; J Abdul Sukor, Redmond, & Lovell, 2011; X. Sun, 

Yang, & Zhang, 2012) and statistical descriptor. One limitation of these studies was that 
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subject- specific templates need to be constructed to account for inherent differences in 

the PPG waveform morphology across subjects owing to various cardiovascular factors 

(Hickey, Phillips, & Kyriacou, 2016). Recently, Dao et al. (2017) proposed an algorithm 

for motion artifact detection using time-frequency features which did not require an a 

priori pulse segmentation step. Their approach requires 8 s of data, calculating the 

spectrum of five 4s wide sliding analysis windows, with a 3 s overlap between adjacent 

windows; variation across these five spectral estimates indicate the presence of signal 

artifact. 

Moreover, most algorithms were only applied to data obtained from the intensive care 

unit (ICU) or controlled clinical environment, where motion artifacts are likely to be 

minimized. As the use of medical devices in remote monitoring increases at pace, data 

are more likely to contain motion artifacts as compared to conventional bedside 

monitoring. To date, limited artifact detection studies have been performed on datasets 

containing motion artifacts. Among those few studies which have evaluated their 

algorithms against motion-corrupted data are Sukor et al. (2011) and Chong et al. (2014). 

In both studies, only short segments of PPG signals (i.e., 1 minute duration) were used, 

thus the performance of their respective algorithms on long-duration continuous PPG 

signals (i.e., longer than 30 minutes), which have been observed to vary with posture or 

hand elevation (Addison, 2017; Hickey et al., 2016), as well as changes in the vascular 

resistance, is still unknown. 

In this chapter, we propose a novel algorithm for artifact detection using an adaptive 

pulse shape template, and investigate its performance on signals corrupted with various 

types of motion artifact. Two master templates are initially generated using data obtained 

from the PhysioNet MIMIC II database (Goldberger et al., 2000). Instead of using a fixed 

template, the master template is periodically updated to enable online artifact detection in 

long-duration continuous PPG signals. Linear correlation is used to classify the PPG 
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pulses into either good or bad quality categories. The performance of our algorithm is 

evaluated using data obtained from two different sources: (i) ambulatory long-duration 

continuous data (i.e., longer than 30 minutes) collected from the wearable Sotera Visi 

Mobile system (Sotera Wireless Inc.) which contained signals recorded as the subjects 

performed several types of motion; and (ii) short duration (6 s segments) of ICU data 

provided by the PhysioNet MIMIC II database. On top of that, the importance of artifact 

detection in providing reliable SpO2 estimation was investigated by estimating SpO2

values from our collected PPG signals. 

4.3 Methodology 

4.3.1 Signal acquisition 

Nineteen subjects (twelve male) aged between 18 and 45 years were recruited for the 

study and gave informed consent. This study was approved by the Human Research Ethics 

Advisory (HREA) panel, University of New South Wales (UNSW); reference number 

HC15398. 

A portable physiological signal acquisition device called the Sotera Visi Mobile system 

(Hravnak M, 2017) (Sotera Wireless Inc., San Diego, California, USA) was used to 

collect the electrocardiogram (ECG), oscillometric BP (not used in this study), 3D 

acceleration, and PPG signals from each subject (Figure 4.1). During the data collection 

process, the ECG electrodes together with a chest accelerometer were attached on the 

subject’s chest. A BP cuff and an arm accelerometer were placed on the subject’s left arm. 

A PPG sensor was placed at the radial artery of the left thumb, and a wrist accelerometer 

was attached on the left wrist. All recorded data were then wirelessly transmitted and 

saved in a server to be downloaded later for post-processing. 
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Figure 4.1: Experimental set-up for data collection using the Sotera’s ViSi Mobile 

System. 

Table 4.1: List of stationary poses. 

Stationary 
pose 

Description Duration 

Sit_S0 Sit stationary on a sofa with both arms by sides. 5mins 

Sit_S1 Sit stationary with both arms crossed across the chest. 30s 

Stand_S0 Stand still with both arms by the sides of the body. 30s 

Lie_S0 Lie down with both arms by the sides of the body. 30s 

Lie_S1 Lie on the left side of the body with self-selected arm 
positions. 

30s 

Lie_S2 Lie down with face facing downward with self-selected 
arm positions. 

30s 

Lie_S3 Lie on the right side of the body with self-selected arm 
positions. 

30s 

Hand_S0 Place the left arm (the side of the arm with device 
attached) on the table while sitting. 

30s 

Prior to the start of the experiment, each subject was allowed five minutes’ rest (in the 

sitting position) to ensure steady state heart rate and BP readings. Each subject was then 

required to perform a predefined set of movements and poses usually encountered in daily 

life, as described in Tables 4.1 and 4.2. The stationary poses were normally performed in 

between two movements. Each movement was performed naturally instead of adhering 
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to a predefined movement speed. During the experiment, video recordings were taken to 

record the movements of the trunk, arms and lower body. 

Table 4.2: List of movements. 

Movement 
type 

Description Duration 

(Median with 

interquartile 
range), s 

Arm_M0 Lift the left arm (the arm with device 

attached) overhead and back down, three 

times, consecutively. 

7.3 (6.8-10.0) 

Arm_M1 Lift both arms overhead and back down, 
five times, consecutively. 

15.3 (11.5-15.3) 

Arm_M2 Abduct both arms away from midline of the 
body 90 degrees, and back, five times, 
consecutively. 

12.0 (10.0-13.5) 

Arm_M3 Shuffle playing cards with both hands. 30 

Arm_M4 Bend the left thumb five times slowly, 
consecutively. 

7.3 (6.1-9.1) 

Arm_M5 Bend the left elbow five times, 
consecutively. 

9.4 (9.0-11.9) 

Arm_M6 Bend the left wrist from side to side five 
times, consecutively. 

8.5 (6.9-10.0) 

Arm_M7 Eat food from a plastic packet. 30 

Arm_M8 Flip through pages of a book slowly. 30 

Body_M0 Sit-to-stand with both arms by sides, five 
times, consecutively. 

17.8 (14.5-22.7) 

Body_M1 Standing, twist the body from side to side, 
five times, consecutively. 

15.0 (13.4-17.3) 

Body_M2 Walk slowly (for around 100 m). 28.0 (14.2-42.8) 

Body_M3 Sit-to-lie-to sit, five times, with pauses in 
between. 

27.6 (21.0-32.9) 

Body_M4 Walk up the stairs from the ground floor to 
the first floor. 

13.9 (11.5-21.5) 

Body_M5 Pick up a pen from the floor using the left 
hand. 

8.0 (5.8-9.3) 

Body_M6 Walk down stairs from the first floor to the 
ground floor. 

15.9 (10.0-20.8) 

4.3.2 Development of a gold standard (GS) annotation 

In this study, we adopted the method applied in Sukor et al. (2012) and Sukor et al. 

(2011) for pulse oximetry and BP signals to develop a gold standard (GS) annotation, 

against which algorithm performance is compared. First, two clinical experts (termed 
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Figure 4.2: Illustration of: (a) a PPG signal interval containing no artifact and all 

good pulses; (b) containing artifact and bad PPG pulses. 

Rater 1 and Rater 2) were presented with the simultaneously-recorded ECG and PPG 

signals using a custom-designed MATLAB graphical user interface (GUI) software tool. 

By observing the shape of the PPG pulses and referring to the R-wave from the 

simultaneously-recorded ECG signal, the clinical experts could classify each PPG pulse 

into either good or bad quality categories. A good pulse was defined as a pulse that 

matches a typical morphology, as shown in Figure 4.2(a), and that had similar 

morphology, amplitude, and width to other adjacent pulses. A bad pulse was defined as a 

pulse which has significantly different morphology, amplitude, and width to other 

adjacent pulses, as shown in Figure 4.2(b). Then, a third clinical expert was asked to re-

annotate all recordings to reconcile any disagreement in the annotations of Raters 1 & 2. 

This reconciled annotation result was used as the GS. 
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4.3.3 Algorithm development 

Figure 4.3 illustrates the artifact detection algorithm proposed in the present study. 

Figure 4.3: Flow chart illustrating the proposed artifact detection algorithm using 

adaptive template matching. 

4.3.3.1 Preprocessing and pulse segmentation 

Figure 4.4 illustrates the pulse segmentation method used in the present study. Firstly, 

bottom points of the PPG signal were identified using a minimum filter with a pulse width 

of 0.5 s. In order to ensure the identification of valid bottom turning points, the reference 
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pulse width (𝑟𝑒𝑓𝑃𝑊) was first determined based on the duration between the first two 

bottom points. 

𝑟𝑒𝑓𝑃𝑊 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑝𝑜𝑖𝑛𝑡2 − 𝐵𝑜𝑡𝑡𝑜𝑚 𝑝𝑜𝑖𝑛𝑡1 (4.1) 

Figure 4.4: Flow chart of pulse segmentation algorithm. 

An adaptive threshold technique was used to identify the time interval where the next 

bottom point should be located. This is done by using a pair of threshold limits named the 

upper threshold limit (𝑇ℎ𝑢) and the lower threshold limit (𝑇ℎ𝑙). 

𝑇ℎ𝑢 = 𝐵𝑜𝑡𝑡𝑜𝑚(𝑖−1) + 𝑟𝑒𝑓𝑃𝑊(1 + 𝐴) (4.2) 
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𝑇ℎ𝑙 = 𝐵𝑜𝑡𝑡𝑜𝑚(𝑖−1) + 𝑟𝑒𝑓𝑃𝑊(1 − 𝐴) 

(4.3) 

𝐵𝑜𝑡𝑡𝑜𝑚(𝑖−1) represents the time where the current bottom point occurs, while the initial 

value for 𝐴 was set at 0.1. 

The next bottom point is expected to be located in the time interval between 𝑇ℎ𝑢 and 

𝑇ℎ𝑙. If no bottom point is detected, the value of 𝐴 is increased by 0.1 and the same 

procedure is repeated until a bottom point is identified, or 𝐴 has reached a value of 1.0. If 

no beat was found when A has reached a value of 1.0, then the value of A will be set to 

1.0. The algorithm searches forward within an interval of width 𝟐𝑨 seconds centered at 

𝒓𝒆𝒇𝑷𝑾 seconds after the most recently detected bottom point. If no bottom turning point 

is found, 𝑨 is increased to widen the search window. 

Next, each PPG pulse was filtered with a band-pass Butterworth filter (0.5-5 Hz pass 

band, assuming a maximum heart rate of 300 beats per min) using forward-backward 

filtering to achieve a zero-phase response. In order to assess the accuracy of our pulse 

segmentation results, each of the segmented PPG pulse was compared against the 

simultaneously-recorded ECG signals as the GS to check if the identified pulse was 

actually a PPG pulse. Based on our analysis, the pulse segmentation accuracy was 98.2%; 

detection errors occurred in intervals containing artifact where the signal was completely 

obscured by noise. 

4.3.3.2 Master template generation 

In this study, the principal component analysis (PCA) technique was used to generate 

a number of master templates. The master templates were created using all good pulses 

extracted from the PhysioNet MIMIC II database, which also contains the signal quality 

annotations. This amounted to a total of 6,802good pulses from the 825 6-s clean PPG 

segments contained in the database, with each clean segment containing 6-14 pulses. 

Univ
ers

ity
 of

 M
ala

ya



84 

Before PCA is applied, each PPG pulse is first segmented from the signal and uniformly 

re-sampled in time to contain 256 samples, hence normalizing all pulse durations. The 

master templates are then created using two cascading applications of PCA. PCA is 

implemented using the pca function in MATLAB R2015b. 

PCA is first applied independently to each of the 825 clean PPG segments, each of 

which contains between 6 and 14 pulses. For each clean PPG segment, the input data is a 

matrix with dimensions of 256 samples (of each normalized pulse) × 6-14 pulses (per 

clean PPG segment). Standard data preparation practice is followed, subtracting the mean 

of each column and then dividing the column by its standard deviation to so the column 

has unit variance. Note also, the 256 rows are taken as observations and the 6-14 columns 

are taken as variables; the application of PCA in this way results in a principal 

components (PCs) which are effectively weighted sums of each beat contained in the PPG 

segment. The resulting principal components (PCs) which contain 95% of the variance 

for this clean PPG segment serve as an intermediate master template(s) for this clean PPG 

segment, and will be used later in a second application of PCA, this time across all 825 

segments. This first per-segment application of PCA resulted in between 1 and 3 PCs for 

each of the 825 segments, giving the total of 1,485 PCs from all the 825 segments. 

PCA was then applied for a second time, to these 1,485 intermediate templates. This 

time the input data dimensions were 256 samples (of each normalized pulse) ×1,485 

pulses (from the first application of PCA, above). The result of this second application of 

PCA was two final principal components which contained 99% of the variance 

(PC1=85%, PC2=14%), as shown in Figure 4.5. 
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Figure 4.5: Master templates generated by using the PCA method based on clean 

pulses extracted from the PhysioNet MIMIC II database: (a) time-normalized 

master template (first principle component, PC1) with one peak; and (b) time- 

normalized master template (second principle component, PC2) with two peaks. 

4.3.3.3 Template matching 

After pulse segmentation, linear resampling was applied on each PPG pulse (Q. Li & 

G. D. Clifford, 2012) to match the pulse width of the master template. The number of

samples used for linear resampling was 256, which corresponds to a heart cycle duration 

of 1 s. Pulses with pulse widths less than that of the master template were linearly 

stretched, whereas those with a longer pulse width were compressed to match the length 

of the master template. Normalization of pulse amplitude was done on both master 

templates and each PPG pulse to fall in the interval between 0 and 1. Next, Pearson’s 

correlation coefficient was calculated between the normalized linearly re-sampled PPG 

pulses and each of the two normalized master templates. The resultant maximum 

correlation coefficient value was taken as the signal quality index (SQI) for the PPG pulse 

under investigation. 

𝑆𝑄𝐼 = 𝑐𝑜𝑟𝑟(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑢𝑙𝑠𝑒, 𝑀𝑎𝑠𝑡𝑒𝑟 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) (4.4) 

Pulses with an SQI value exceeding the correlation threshold value (Th) are considered 

as good. This was then followed by a template updating procedure. An exponential 
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smoothing method was used, as described in Eq. 4.5. This allows us to generate master 

templates that evolve with time should the pulse characteristics change. 

𝑇𝑛𝑜𝑟𝑚,𝑛𝑒𝑤 = α𝑇𝑛𝑜𝑟𝑚,𝑐 + (1 − α)𝑃𝑛𝑜𝑟𝑚 (4.5) 

𝑇𝑛𝑜𝑟𝑚,𝑛𝑒𝑤 refers to the newly-updated normalized master template, 𝑇𝑛𝑜𝑟𝑚,𝑐 refers to the 

current normalized master template,α refers to the learning rate, while 𝑃𝑛𝑜𝑟𝑚 refers to the 

current normalized good pulse. 

4.3.3.4 Comparison of adjacent pulses 

As clinical experts frequently label PPG signals by referring to nearby pulses instead 

of examining each pulse individually, we have taken an extra step to compare each pulse 

to previous and following pulses. If both pulses were classified as bad, the current pulse 

will be automatically labelled as bad. 

4.3.3.5 Determination of optimal parameter values 

Ten subjects were randomly selected as the training set (named “outer training set”) 

while the remaining nine subjects were withheld to be used as the testing set once the best 

parameter values were selected (named “outer test set”).The “outer training set” was 

further differentiated into the “inner holdout set” and the “inner training set”, which were 

used to determine the optimum parameter values based on the standard ten-fold cross 

validation approach. The best learning rate (𝛼) and correlation threshold (Th) values were 

selected as those which yielded the highest classification accuracy when evaluated on the 

“outer training set”. To do this, each of these parameters was first varied between 0 and 

1 with a step size of 0.05 to obtain the classification accuracy. This is further refined by 

varying the highest performing α and Th combination (α1 and Th1) within the range of 

α1±0.05 and Th1±0.05, with a smaller step size of 0.01. Once the parameter selection step 

was complete, the “outer test set” was used for testing. 
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4.3.4 Evaluation of our algorithm using the PhysioNet MIMIC II database 

We also applied our algorithm to a PPG dataset developed by the PhysioNet MIMIC 

II database (Goldberger et al., 2000) for benchmarking purposes. This clinical expert-

labelled dataset contains simultaneously-recorded ECG, PPG and BP signals from 104 

subjects in an ICU, each segment with a 6s duration, containing a total of 1437 segments 

with signal quality annotations. Two clinical experts independently segmented and 

labelled the pulses into good (1), bad (0), or uncertain (other) quality categories based on 

the waveform around the time when arrhythmia alarm occurs, and disagreement was 

reconciled by a third clinical expert. Out of the 1437 segments of data with signal quality 

annotations, only 1055 segments, which were labelled as good (1) or bad (0), were used 

in this study. The distribution of the annotation results based on both datasets (i.e., 

PhysioNet database and those collected from the Sotera Visi Mobile system) is shown in 

Table 4.3. 

Table 4.3: Summary of PPG pulse quality distributions for the PhysioNet MIMIC 

II database and the Sotera Visi Mobile dataset. 

Number of PPG beat quality 

annotations 

PPG beat quality categories 

Good Bad Total 

PhysioNet MIMIC II database 6,802 1,663 8,465 

SoteraVisi Mobile dataset 40,706 27,194 67,900 

Total 47,508 28,857 76,365 

4.3.5 SpO2 estimation 

Ten segments of one-minute PPG signals were extracted from each subject, with five 

segments labelled as good while the remaining labelled as bad. The labelling was 

performed based on our previous classification results, where good segments were those 

containing all good pulses, whereas the majority of pulses in the bad segments were 

classified as bad. Out of the nineteen subjects, we were unable to obtain SpO2 estimates 

from two subjects due to missing information about the amplifier gain setting during the 
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data acquisition process. 

Figure 4.6: Illustration of (a) good PPG signal and (b) bad PPG signal containing 

artifacts. Blue color line represents the infrared PPG signal (PPG-IR), red color 

line represents the red PPG signal (PPG-RED), while the black cross mark 

represents R values computed for the previous three-second PPG segment based 

on Equation 4.7. 

In order to estimate SpO2 values, the infrared and red PPG signals were separated into 

the AC and DC components. The pulsatile components of the infrared and red PPG 

signals were denoted as ACIR and ACRED, while the baseline components were denoted 

as DCIR and DCRED, respectively. Then, the “ratio-of-ratio” was defined as: 

/

/

RED RED

IR IR

AC DC
R

AC DC


(4.6) 
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For every three second of the PPG signal, the SpO2 value was estimated according 

to the empirical linear approximation as in Equation 4.7.  

2(%) 112.91 28.09*SpO R  (4.7) 

4.4 Results 

In this section, we first report the results of the optimized learning rate (α) and 

correlation threshold values (Th) to achieve the highest classification accuracy. In 

addition, we show the effect of varying the learning rate (α) and correlation threshold 

values (Th) separately. We then present the performance of our artifact detection 

algorithm using the optimized parameter values on our dataset, which contains various 

types of motion-corrupted PPG signal. Lastly, for benchmarking purposes, we report the 

performance of our algorithm on the publicly-available PhysioNet MIMIC II database. 

4.4.1 Optimization of the learning rate (α) and correlation threshold values (Th) 

Data collected using the Sotera Visi Mobile system were split into separate training (ten 

subjects selected randomly) and testing (the nine remaining subjects) groups. As shown 

in Figure 4.7, by varying the learning rate (α) and correlation threshold values (Th) from 

0 to 1 with a step size of 0.05 on the training data, we found that region with a learning 

rate (α) of 0.95 and a correlation threshold value (Th) of 0.9 yielded the highest accuracy. 

We further calculated the classification accuracy with a finer step size of 0.01 for both 

learning rate (α) (within the range 0.90 to 1.00) and correlation threshold value (Th) 

(within the range 0.85 to 0.95).The optimized learning rate (α) and correlation threshold 

(Th) value were 0.93 and 0.91. By having a learning rate (α) of 0.93, each new template 

would contain 93% of the information from the current template and the remaining 

information from the current good pulse. With these optimized parameters, our algorithm 

was able to achieve an overall accuracy of 92.5 ± 3.1% (median = 92.3%, interquartile 

range = 5.1%) with a sensitivity and specificity of 90.7 ± 5.6% (median = 89.2%, 

interquartile range = 7.7%) and 94.0 ± 2.3% (median = 93.7%, interquartile range = 
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4.1%), respectively, when evaluated on all subjects in the training dataset. Meanwhile, an 

overall accuracy of 91.5 ± 2.9% (median = 91.0%, interquartile range = 5.5%), with a 

sensitivity and specificity of 94.1 ± 2.7% (median = 94.1%, interquartile range = 4.4%) 

and 89.7 ± 5.1% (median = 89.2%, interquartile range = 7.4%) were achieved when 

evaluated on all subjects in the testing dataset. 

Figure 4.7: Response surface plot of the classification accuracy with respect to 

correlation threshold (Th) value and learning rate (α) (search step size = 0.05) 

using the training data. Color bar on the right indicates the accuracy scale. A 

learning rate of α = 0.95 with a correlation threshold value (Th) of 0.90 yielded the 

highest accuracy (92.0%). 

4.4.2 Effect of varying the correlation threshold (Th) value 

Figure 4.8: Classification results with varying correlation threshold (Th) values at 

a fixed learning rate (α) of 0.93. 
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Figure 4.8 illustrates the effect of changing the correlation threshold (Th) value with 

step size of 0.05 on the classification accuracy, sensitivity, and specificity at a fixed 

learning rate (α) of 0.93 using the testing dataset. At low correlation threshold (Th) values, 

almost all pulses were classified as good (accuracy: 58.6%; sensitivity: 100.0%; 

specificity: 0.2%).With an increase in the correlation threshold (Th) value above 0.6, both 

the accuracy and specificity levels showed a steep increase, at the expense of a slight drop 

in the sensitivity (accuracy: 63.7%; sensitivity: 99.6%; specificity: 11.2%, with a 

correlation threshold (Th) value of 0.6). The highest accuracy was achieved when the 

correlation threshold (Th) value reached 0.91 with an accuracy of 91.5%, sensitivity of 

94.1% and specificity of 89.7% respectively. 

4.4.3 Effect of varying the learning rate (α) 

Figure 4.9: Classification results with varying learning rate (α) at a fixed 

correlation threshold (Th) value of 0.91. 

Figure 4.9 illustrates the effect of changing the learning rate (α), with step size of 0.05, 

on the classification accuracy, sensitivity, and specificity at a fixed threshold value (Th) 

of 0.91 using the testing dataset. With no template update (i.e., with a learning rate (α) of 

0), although most artifact was identified correctly (specificity: 92.6%), 32.8% of the good 

pulses were wrongly classified as artifact (sensitivity: 67.2%), thus leading to poor 
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accuracy (77.5%). The ability of the algorithm to correctly identify good pulses 

substantially improved with an increase in the learning rate (α) from 0.05 to 0.45. 

Fluctuation in the classification results happened when the learning rate (α) was increased 

further from 0.45 to 0.8. The highest accuracy was achieved when the learning rate (α) 

reached 0.93, with accuracy of 91.5%, sensitivity of 94.1% and specificity of 89.7%, 

respectively. 

4.4.4 Algorithm performance on different movements 

Tables 4.5 and 4.6 show the mean classification results for stationary poses and 

movements on the testing subjects, respectively. Our algorithm achieved a mean accuracy 

of 91.3% when tested on data containing stationary poses, and 94.7% when evaluated on 

movement data. The average sensitivity for the stationary poses (94.3%) was larger when 

compared to that of the movements (83.1%). An opposite trend was observed in the 

average specificity, where a significantly smaller value was obtained for the stationary 

poses (82.0%) when compared to that of movements (94.7%). 

Table 4.4: PPG pulse quality classification results for stationary poses (mean±SD). 

Stationary Accuracy (%) Sensitivity (%) Specificity 

(%) 
Sit_S0 87.0 ± 8.1 88.5 ± 7.9 81.1± 15.1 

Sit_S1 89.5 ± 15.2 95.9 ±2.2 86.2± 18.7 

Stand_S0 86.4 ± 20.3 88.3 ± 14.3 85.9±17.9 

Lie_S0 95.8 ± 4.9 96.4 ±2.5 85.4±18.6 

Lie_S1 89.0 ± 3.5 93.3±2.6 85.4±20.4 

Lie_S2 95.1 ± 7.4 97.4± 6.4 84.2±24.6 

Lie_S3 94.3 ± 8.1 98.4± 3.8 66.7±22.4 

Hand_S0 93.8 ± 6.2 96.1± 7.5 75.9± 21.7 

91.3 ± 4.2 94.3±3.9 82.0±6.9 
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Table 4.5: PPG pulse quality classification results for movements (mean ± SD). 
Movement Accuracy (%) Sensitivity Specificity (%) 

Arm_M0 98.3 ± 2.7 75.6 ± 0.0 99.3 ± 2.7 

Arm_M1 97.0 ± 4.5 78.9 ± 0.0 98.0 ± 4.5 

Arm_M2 99.2 ± 2.6 80.5 ± 13.4 100 ± 0.0 

Arm_M3 96.2 ± 3.5 86.7 ± 8.9 96.4 ± 3.8 

Arm_M4 88.3 ± 0.0 89.4 ± 0.0 86.0 ± 18.8 

Arm_M5 97.0 ± 7.0 78.9 ± 0.0 97.5 ± 7.0 

Arm_M6 91.1 ± 9.1 83.3 ± 0.0 92.3 ± 12.5 

Arm_M7 87.3 ± 6.5 89.8 ± 9.7 86.7 ± 7.6 

Arm_M8 93.5 ± 5.3 95.8 ± 5.9 91.1 ± 5.3 

Body_M0 94.4 ± 5.8 72.7 ± 14.2 95.6 ± 3.7 

Body_M1 97.9 ± 3.7 79.4 ± 13.8 98.7 ± 3.5 

Body_M2 88.1 ± 12.9 80.8 ± 10.9 88.4 ± 12.9 

Body_M3 99.3 ± 1.2 77.6 ± 6.5 99.5 ± 8.9 

Body_M4 95.9 ± 3.1 98.9 ± 1.2 93.7 ± 3.1 

Body_M5 97.2 ± 6.1 78.1 ± 4.1 97.9 ± 5.5 

Body_M6 92.9 ± 12.1 83.9 ± 0.0 93.1 ± 12.2 

94.7 ± 4.1 83.1 ± 5.3 94.7 ± 4.6 

4.4.5 Classification results on the PhysioNet MIMIC II dataset 

Table 4.6: Comparison of classification performance between our algorithm and Li 

et al. (Q. Li & G. D. Clifford, 2012) on the PhysioNet MIMIC II database. 

Algorithm Accuracy (%) Sensitivity (%) Specificity (%) 

Our algorithm 98.0 99.0 96.1 

Li et al. method 

(Q. Li & G. Clifford, 

2012) 

95.2 99.0 80.6 

In this study, the same optimized correlation threshold (Th) value and learning rate (α) 

as described in Section 2.3.A were used. Compared to Li et al. (2012), our algorithm 

produced a higher average accuracy (98.0% vs. 95.2%) even though we used a fixed 

correlation threshold (Th) value and learning rate (α) derived from our training cohort. 

Although our average sensitivity results were the same (both 99.0%), our algorithm 

yielded a much higher specificity compared to Li et al. (2012) (96.1% vs. 80.6%). 

4.4.6 SpO2 estimation 

Table 4.8 shows the estimated SpO2values (both mean and standard deviation) for both 

good and bad segments from all the seventeen subjects. Overall, the estimated SpO2
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values for the good PPG segments were above 94%, except for subjects 17 and 19. This 

was caused by the presence of several unavoidable bad pulses in the good PPG segments. 

These subjects may have accidentally moved their fingers or hands when they were 

supposed to be performing stationary poses. On the contrary, the estimated SpO2 values 

for the bad segments were below 91%, with an average of 84.81%, much lower than the 

reported healthy SpO2 range (i.e. 95% - 100%). Besides, as compared to the good PPG 

segments, the standard deviations of the estimated SpO2 for the bad segments were also 

much greater. 

Table 4.7: Mean and standard deviation of the estimated SpO2 values for both 

clean and bad PPG segments contaminated by artifact. 

Subject 

Good PPG segments Bad PPG segments 

Mean (%) SD Mean (%) SD 

1 96.5 1.8 87.0 7.3 

2 96.7 3.0 85.3 7.3 

3 97.4 0.9 74.9 35.0 

4 96.7 2.7 86.5 9.0 

5 96.6 2.9 82.7 35.2 

6 95.3 1.2 84.3 26.5 

7 94.3 3.1 87.4 8.5 

9 97.9 1.3 89.8 9.8 

11 95.6 2.1 89.5 16.8 

12 97.9 1.4 83.7 33.3 

13 96.8 2.3 89.8 6.7 

14 99.0 1.4 90.3 14.9 

15 94.4 1.7 90.5 12.8 

16 97.3 1.3 73.3 42.2 

17 90.6 4.0 76.1 38.4 

18 95.8 2.5 83.7 22.9 

19 90.4 1.2 87.1 4.8 

Average 95.8 2.3 84.8 5.4 

4.5 Discussion 

Accurate derivation of physiological parameters, such as SpO2, from the PPG signal 

recorded in an unsupervised environment is challenging in the presence of movement 

artifact which affects the signal quality. Several studies have attempted to detect artifact 

in the PPG signal using additional sensing devices, such as accelerometer (B. Lee et al., 
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2010), extra reference signals, such as ECG (Foo & Wilson, 2006), as well as various 

signal processing methods, including Gaussian filtering (Karlen et al., 2012) and 

morphological waveform analysis (R Couceiro et al., 2014; J Abdul Sukor et al., 2011). 

However, none of these studies have investigated the effectiveness of their artifact 

detection techniques on continuous PPG data recorded for a duration of more than 30 

minutes. Previous studies have reported continuous variation in PPG morphological 

waveforms within individual subjects due to respiratory activity (Addison, 2017) and 

changes hand position (Hickey et al., 2016). 

In this chapter, we have introduced a novel and simple algorithm which is suitable for 

online artifact detection of continuous PPG signal recording without requiring additional 

sensors. Since the algorithm requires information about the next pulse in order to make a 

decision on the pulse under analysis, the online implementation of the algorithm will have 

a time delay of one pulse plus processing time (within 2s) when making a decision about 

the current pulse. Our results show that the algorithm was able to achieve high accuracy 

on both short (6 s) (i.e., PhysioNet MIMIC II dataset, with an accuracy of 98.0%, 

sensitivity of 99.0% and specificity of 96.1%) and continuous (around 40 mins) 

unsupervised datasets (our own dataset, with an accuracy of 91.5%, sensitivity of 94.1% 

and specificity of 89.7%). When tested on our dataset, the algorithm yielded significantly 

lower specificities for stationary poses when compared to those activities involving 

movement (Tables 4.5 and 4.6). Although subjects were requested not to move during the 

stationary pose experiments, artifact may occur due to unintentional movement. This may 

lead to some minor artifact contaminating the signal, creating waveform shapes 

resembling good signals, thus making artifact detection more challenging. In contrast, 

artifact caused by intentional movement was more easily identified as the larger 

movements resulted in more obvious artifact. 

To date, various artifact detection algorithms have been proposed for the PPG signal. 
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Li et al. (2012) developed four signal quality metrics, including direct matching, linear 

resampling, dynamic time warping, and clipping detection, and fused this signal quality 

information for artifact classification using a machine learning method. Sukor et al. 

(2012) extracted five different features from the PPG pulses, which comprised of the 

amplitude, trough depth difference, pulse width, Euclidean distance to the average of 

previous pulses, as well as amplitude ratios. A decision tree was then used to classify the 

pulse. The characteristics of the PPG signal, which vary over time (Elgendi, 2016), 

requires the threshold values for the features to be determined for individual datasets to 

maintain high performance. This may not be suitable for long-term continuous PPG 

analysis. In order to address this, we have generated two master templates, based on the 

bulk data obtained from the PhysioNet MIMIC II database, and updated the master 

template thereafter according to each incoming good pulse, thus making our algorithm 

robust and suitable for online artifact detection purposes. In this study, we demonstrated 

a large improvement in the classification results when template updating was applied 

(accuracy: 91.5%; sensitivity: 94.1%; specificity: 89.7%), compared to no template 

adaptation (accuracy: 77.5%; sensitivity: 67.2%; specificity: 92.6%). Furthermore, our 

algorithm only requires the selection of two variables, which include the correlation 

threshold (Th) value and the learning rate (α). By using the optimized parameter values 

trained with our own dataset, our algorithm was able to achieve a high accuracy when 

evaluated on the PhysioNet MIMIC II database without retraining. 

Karlen et al. (2012) calculated the SQI of their PPG pulses by comparing each of the 

pulse to a reference template generated based on ten previous good pulses. Although a 

high sensitivity for beat segmentation (96.21%) was reported in Karlen’s study (Karlen et 

al., 2012), the datasets used by their study (i.e., the Capnobase (CB) and the Complex 

System Laboratory (CSL) databases) contained only 0.7% and 5.8% of artifact data, 

respectively. These datasets were obtained from the operating room and the ICU, where 
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the subjects were anesthetized. To the contrary, our data contains 40.05% artifact data. 

Moreover, similar to Li’s study (Q. Li & G. D. Clifford, 2012), Karlen’s study (Karlen et 

al., 2012) involves a longer processing time compared to our study, as a new template 

needs to be generated for each subject. 

SpO2 reflects the amount of oxygen in the blood, and is defined as the percentage ratio 

of the oxygenated haemoglobin to the total amount of haemoglobin in the blood. A good 

blood oxygenation is necessary in order to ensure adequate supply of energy to our muscle 

for proper functioning. Under healthy body condition and a well-controlled environment, 

SpO2 of an subject should only vary between 95% and 100% (Harvey et al., 2018; 

Organization, 2011; R. Yousefi et al., 2014). Multiple factors may contribute to abnormal 

SpO2 values: abnormal haemoglobin amount in the blood, medical dyes or manicure that 

could influence the level of light transmission, large body motion causing motion artifacts 

in the acquired data (Harvey et al., 2018; Yan, Poon, & Zhang, 2005; Rasoul Yousefi et 

al., 2013) as well as blockage of blood flow due to excessive pressure on the arms or 

fingers (Organization, 2011). In this study, the good PPG segments (based on our artifact 

detection results) were able to achieve normal SpO2 ranges, with an average of 95.84% 

across all subjects, while the bad PPG segments showed much lower SpO2 values, with 

an average of 85%. This demonstrates the importance of a prior artifact detection stage to 

assure quality of the acquired signals and thus the reliability of the extracted 

physiological variables (SpO2 in this case), as false alarms indicating hypoxia could be 

triggered when bad signals are acquired and used to extract these important parameters. 

4.6 Conclusion 

As physiological signals play an important role in clinical diagnosis, it is crucial to 

evaluate signal quality before making any important clinical decision. In this chapter, we 

have developed an effective online artifact detection system suitable for continuous PPG 

Univ
ers

ity
 of

 M
ala

ya



98 

monitoring based on dynamic templates, where a new template is generated for each 

incoming good PPG pulse. We have evaluated the performance of our algorithm on both 

short-segment datasets and continuous PPG signals containing various motion artifacts. 

As compared to using a fixed template, our adaptive template method demonstrated a 

large improvement in pulse classification accuracy, up from 77.5% to 91.5%. By applying 

this method, no prior knowledge of amplitude, slope, or pulse width of the PPG signal is 

required, thus making it suitable for a diverse range of datasets acquired from different 

devices. 
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CHAPTER 5:  VALIDATION OF ADAPTIVE TEMPLATE MATCHING 

ALGORITHM TO DETECT MOTION ARTIFACT FROM 

PHOTOPLETHYSMOGRAM SIGNALS IN OLDER SUBJECTS 

5.1 Introduction 

Chapter 4 evaluated the performance of the newly proposed PPG artifact detection 

algorithm on healthy subjects. In this chapter, the performance of the algorithm was 

examined on different study cohorts (i.e. older subjects with and without arrhythmia). \ 

5.2 Literature Review 

With an aging population that continues to grow, there is a rising demand for assistive 

living technologies that could monitor and ensure the wellbeing of older subjects (Poon, 

Liu, Gao, Lin, & Zhang, 2011). It is beneficial for older patients with chronic diseases to 

be monitored at home, in terms of vital signs such as HR, BP and SpO2 level, while 

performing daily activities. Photoplethysmography serves as a useful tool to effectively 

monitor these vital signs continuously as it is easy to set up (i.e. requires only a single 

fingertip sensor), convenient to apply and relatively inexpensive (Hong, Park, & Ahn, 

2015; K. Shin et al., 2009)). 

Each PPG pulse consists of an incident wave or a systolic phase (which begins from the 

valley and ends at the peak point forming an upward slope), and a reflected wave or a 

diastolic phase (which begins from the peak point and ends at the subsequent valley 

forming a downward slope). The morphology of the PPG signal can be distinguished into 

five different types according to its changes during the diastolic phase (i.e. the downward 

slope) (Christoph Fischer, Dömer, Wibmer, & Penzel, 2016; C Fischer et al., 2017). 

Generally, PPG signal can be influenced by either intrinsic or extrinsic factors. Intrinsic 

factors such as age, vessel stiffness, skin condition (properties of skin, skin temperature 

and skin depth) and respiratory rate could affect the morphology of the PPG signal 

(Baron, Häbler, Heckmann, & Porschke, 1996; Hong et al., 2015; K. Shin et al., 2009). 
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Previous studies have demonstrated that the rate of decline of the downward slope (i.e. 

during the diastolic phase) in the PPG pulse increases with aging and vessel stiffening (J 

Allen & Murray, 2002; John Allen & Murray, 2003). Apart from that, it has also been 

postulated that physical and physiological characteristics of respiration affect PPG 

morphology (through BP and HR): the slower the respiratory rate, the higher the tidal 

volume (indicated by the amplitude between the valley and the peak point) and the smaller 

the minute volume (Baron et al., 1996). Disappearance of notch in the diastolic phase of 

the PPG signal has also been observed in older subjects, and this may be caused by a 

reduction in systemic vascular compliance due to aging and the existence of 

cardiovascular complications. On the other hand, extrinsic factors include environmental 

conditions, sensor fitting method and location, as well as motion artefact (Ricardo 

Couceiro, Carvalho, Paiva, Henriques, & Muehlsteff, 2012; Hong et al., 2015; H. S. Shin, 

Lee, & Lee, 2009). In unsupervised environments such as home care setting, motion 

artefact happens frequently, leading to enormous baseline drift (H. S. Shin et al., 2009) 

and changes in the morphology of the PPG signal, which subsequently reduce the 

reliability of PPG-derived parameters (e.g., HR, SpO2 level and PWV). 

To date, most algorithms on motion artefact detection have been developed and 

validated using data collected from young, healthy subjects. Limited studies have been 

performed among older subjects, especially those with cardiovascular complications. As 

aforementioned, PPG morphology differs significantly with aging and in the presence of 

chronic diseases, therefore algorithms developed based on young subjects may not be 

applicable on older subjects. Recently, Couceiro et al. (R Couceiro et al., 2014) conducted 

time and period domain analysis on PPG signals obtained from healthy and 

cardiovascular disease diseased subjects to detect motion artifact patterns. 

In this chapter, the robustness of the artefact detection algorithm developed in Chapter 
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4 was evaluated on PPG data collected from nineteen older subjects (above 65 years old), 

with more than half of them having hypertension and cholesterol. In order to control the 

effect of extrinsic factors, experiments were performed at the same location under a well-

controlled environment. Each subject performed a series of movements (i.e. a subset of 

movements described in Chapter 4 according to the individuals’ capabilities) according 

to the same experimental protocol so that comparison can be done without bias. The 

performance of the artefact detection algorithm on the older subjects was compared 

against those obtained from the young subjects. 

5.3 Methodology 

5.3.1 Subject recruitment and data acquisition 

Nineteen subjects aged 65 years and older were recruited for the study. These subjects 

were either those who have participated in a previous research study conducted in 

University Malaya Medical Centre (UMMC) or recruited through phone calls and word 

of mouth. Prior to data acquisition, participant information statement was given to each 

subject and information concerning the research study was verbally explained by the 

researcher. Written consent was then obtained from each subject. This study was 

approved by the medical ethics committee of UMMC (MECID No.: 20151-918). The 

baseline characteristic and medical history of each subject were recorded as reference for 

further data processing and analysis. 

Data acquisition was conducted at UMMC in a quiet room with well-controlled 

temperature. A portable and noninvasive physiological signal acquisition device, the 

Sotera Visi Mobile system (Harvnak) (Sotera Wireless Inc., San Diego, California, USA) 

was used to collect continuous ECG, PPG and 3D accelerometry signals from the older 

subjects. The experimental setup of the Sotera Visi Mobile system followed that described 

in Section 4.2.1 for young subjects. 
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Table 5.1: List of stationary poses and movements 

Types of stationary poses 

Pose Description Duration 
(total) 

Sit_S0 Sit stationary on a chair with both arms by sides 5 min 

Sit_S1 Sit stationary with both arms crossed across the 
chest 

30 s 

Stand_S0 Stand still with both arms by the sides of the 
body 

30 s 

Lie_S0 Supine lying with both arms by the sides of the 
body 

30 s 

Lie_S1 Lie on the left side of the body with self-selected 
arm position 

30 s 

Lie_S2 Lie on the right side of the body with self- 
selected arm position 

30 s 

Hand_S0 Place the left arm (the side of the arm with device 
attached) on the table at sitting position 

30 s 

Types of movements 

Movement Description Duration 
(median) 

Arm_M1 Consecutively lift both arms overhead and back 
down, five times 

15.3 

Arm_M2 Consecutively abduct both arms away from 
midline of the body at 90o and back down, five 

times 

10.3 

Arm_M4 Consecutive bend the left thumb, five times 8.1 

Arm_M5 Consecutively bend the left elbow, five times 10.3 

Arm_M6 Consecutively swing the arm left and right, five 
times 

13.5 

Arm_M7 Eat food from a plastic packet ≥ 60 s 

Arm_M8 Flip through pages of a book 60 s 

Body_M0 Consecutively sit-to-stand with both arms by 
sides, five times 

12.1 

Body_M1 Consecutively twist the body from side to side at 
standing position, five times 

12.7 

Body_M2 Sit-to-lie-to-sit with pauses in between, five times 43.3 

Body_M3 Walk at normal speed (for around 50 m) 37.5 

Body_M4 Walk up the stairs with ten steps 15 

Body_M5 Walk down the stairs with ten steps 9.2 

Body_M6 Pick up a pen from the floor with left hand 6.1 

Prior to the start of the experiment, each subject rested in a sitting position for at least 

five minutes to stabilize their heart rate and B P  readings. Subjects were instructed 

to perform a predefined set of poses and movements, as listed in Table 5.1. Certain poses 

and movements performed by the young subjects (as described in Section 4.1) were 

excluded as they were too challenging for older subjects and not usually encountered in 

daily life. During stationary poses, subjects were reminded not to move any parts of their 
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body as well as fingers in order to minimize the occurrence of motion artifacts. On the 

other hand, each movement was performed naturally instead of adhering to a predefined 

movement speed. Subjects were required to raise their left arm three times between 

successive movements poses. 

5.3.2 Signals evaluation by clinical experts 

Two clinical experts were individually presented with a custom-designed MATLAB 

graphical user interface (GUI) software tool, displaying the physiological signals (ECG, 

PPG and accelerometry signals) collected from the older subjects. By observing the PPG 

morphology with the assistance of concurrent ECG and accelerometry signals, the clinical 

experts classified each PPG pulse into either clean or artifact. Any disagreements on the 

annotation were brought into discussion to produce the final annotation result, which were 

subsequently used as the gold standard for validation. In the evaluation of the algorithm, 

only the PPG signal was used. 

5.3.3 Algorithm Implementation 

The algorithm developed in Chapter 4 were implemented on PPG signal collected from 

the older subjects. Two models with different threshold values (Th) and learning rates (α) 

were applied. Model 1 adopted the optimized threshold value (Th) (0.91) and learning 

rate (α) (0.93) for the young subjects, while new threshold value (Th) and learning rate 

(α) were selected for Model 2 by applying the same training and testing method described 

in Chapter 4 on data collected from the older subjects. 

5.4 Results 

Nineteen older subjects (6 male, 13 female) with a mean age of 73 years and a standard 
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deviation of 5 years were recruited between the periods of August 2018 - September 2018. 

More than half of these subjects had hypertension (11 subjects) and high cholesterol (14 

subjects). Five subjects showed ECG segments with irregular rhythm throughout the 

experiment procedure, but only one of them had been diagnosed and treated for 

arrhythmia. 

5.4.1 PPG waveform morphology 

Fig. 5.1(a) and (b) shows two examples of PPG signal obtained from a young subject 

and an older subject, respectively. It can be observed that unlike the young subject, there 

is no evidence of a notch or changes in the angle descent in the downward slope of the 

PPG pulses acquired from the older subject. This alternative PPG morphology was one 

of the five types of PPG morphology recently described by Fischer et al. in their published 

finding (C Fischer et al., 2017). 

Figure 5.1: Normalized PPG waveform from (a) a young subject; and (b) an older 

subject. 

Fig. 5.2(a) and (b) shows an example of a normal ECG waveform and a clean PPG 

waveform from an older subject. It can be observed from the ECG waveform that the 
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patient had regular heart rhythms and consistent PPG morphology across pulses. 

Figure 5.2: Example of (a) a normal ECG waveform and (b) a normal, clean PPG 

waveform from an older subject. 

Fig. 5.3 (a) and (b) shows an example of an irregular ECG waveform and a PPG 

waveform with bad pulses (according to clinical expert annotation results) from an 

older subject. It can be observed from the ECG waveform that the patient had irregular 

heart rhythms (between 882 s and 886 s). This led to inconsistent PPG morphology 

during this time period, which was subsequently labelled by the clinical expert as bad 

pulses. Univ
ers
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Figure 5.3: Example of (a) an irregular ECG waveform and (b) a PPG waveform 

with bad pulses (red segment, according to clinical expert annotation results) from 

an older subject. 

Fig. 5.4 (a) and (b) shows an example of an irregular ECG waveform and a clean 

PPG waveform (according to clinical expert annotation results) with inconsistent 

morphology (between 220 s and 224.5 s) from an older subject. It can be observed 

from the ECG waveform that the patient had irregular heart rhythms (between 220 s 

and 224.5 s), which led to inconsistent PPG morphology during this time period. 

Despite inconsistent morphology, the PPG pulses were labelled as clean by the 

clinical experts as they not only resembled characteristic PPG morphology, each of 

the PPG pulse corresponded to one ECG pulse, thus can be regarded as true pulses. Univ
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Figure 5.4: Example of (a) an irregular ECG waveform and (b) a clean PPG 

waveform (according to clinical expert annotation results) with inconsistent 

morphology (red segment) from an older subject. 

5.4.2 Optimization of the learning rate (α) and correlation threshold values (Th) 

Figure 5.5: Contour plot of the classification accuracy with respect to correlation 

threshold (Th) value and learning rate (α) (search step size = 0.05). Color bar on 

the right indicates the accuracy scale. A learning rate of α = 1.0 with a correlation 

threshold value (Th) of 0.85 yielded the highest accuracy (90.1%) with a sensitivity 

of 83.4% and a specificity of 91.1%. 
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As shown in Figure 5.5, by varying the learning rate (α) and correlation threshold 

values (Th) from 0 to 1 with a step size of 0.05 on the training data, we found that 

region with a learning rate (α) of 1.0 and a correlation threshold value (Th) of 0.85 

yielded the highest accuracy. The classification accuracy was further calculated with 

a finer size of 0.01 for both learning rate (α) (within the range 0.90 to 1.00) and 

correlation threshold value (Th) (within the range 0.85 to 0.95). The optimized 

learning rate (α) and correlation threshold (Th) value were 0.99 and 0.89. By using 

these optimization values, our algorithm was able to achieve an overall accuracy of 

90.2±4.6% (median = 90.7%, interquartile range = 3.7%) with a sensitivity of 

80.7±13.5% (median = 83.8%, interquartile range = 12.5%) and a specificity 

93.3±9.3% (median = 95.4%, interquartile range = 3.5%). 

5.4.3 Effect of varying the correlation threshold value (Th) 

Figure 5.6: Classification results with varying correlation threshold (Th) values at 

a fixed learning rate (α) of 0.99. 

Figure 5.6 demonstrates the effect of changing the correlation threshold (Th) with a 

step size of 0.05, on the classification accuracy, sensitivity, and specificity, at a 

learning rate (α) of 0.99.At low correlation threshold (Th) values, almost all pulses 
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were classified as good (accuracy: 63.8%; sensitivity: 99.9%; specificity: 0.4%, with 

a correlation threshold (Th) value of 0).With an increase in the correlation threshold 

(Th) value above 0.6, both the accuracy and specificity levels showed a steep increase, 

at the expense of a slight drop in the sensitivity (accuracy: 69.9; sensitivity: 97.7; 

specificity: 19.0with a correlation threshold (Th) value of 0.6). The highest accuracy 

was achieved when the correlation threshold (Th) value reached 0.90 with an accuracy 

of 89.9, sensitivity of 79.4 and specificity of 94.3 respectively. 

5.4.4 Effect of varying the learning rate (α) 

Figure 5.7: Classification results with varying learning rate (α) values at a fixed 

correlation threshold (Th) of 0.89. 

Figure 5.7 demonstrates the effect of changing the learning rate (α) with a step size 

of 0.05, on the classification accuracy, sensitivity, and specificity, at a correlation 

threshold (Th) of 0.89. At low learning rate, almost all the artifact pulses were 

classified correctly (accuracy: 77.6%; sensitivity: 57.04%; specificity: 91.8%, with a 

learning rate (α) of 0). 

The accuracy of the algorithm improved by increasing the learning rate (α). The 

highest accuracy was achieved when the learning rate (α) reached 0.95, with accuracy 
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of 89.0%, sensitivity of 83.3% and specificity of 87.8%, respectively. 

5.4.5 Comparison between different sets of parameters optimized using young and 

older subjects’ data 

Table 5.2 shows a comparison between two models: (i) model 1 with a threshold 

value (Th) of 0.91 and a learning rate (α) of 0.93, adopted from Chapter 4 on young 

subjects; and (ii) model 2 with the new optimized threshold value (Th) and learning 

rate (α) for older subjects. Both models achieved similar results with regards to 

accuracy, sensitivity, specificity, positive predictive value and negative predictive 

value, with model 2 performing approximately 1% better than model 1 in all 

performance categories. In addition to the performance measures presented in Chapter 

4, Table 5.2 also included the positive predictive value (PPV) and negative predictive 

value (NPV). PPV refers to the percentage of clean PPG signals identified correctly 

as good pulses from the total number of good pulses detected, while NPV refers to the 

percentage of corrupted PPG signals identified correctly as bad pulses from the total 

number of bad pulses detected. Both models showed high PPV, with 91.8% for model 

1 and 93.2% for model 2. As compared to patients with regular ECG rhythm, it can be 

demonstrated that the presence of irregular ECG rhythm substantially reduced the 

accuracy, sensitivity and NPV (by around 3%), while specificity and PPV remained 

relatively unchanged or showed a minor increase. 
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Table 5.2: Comparison between two models: (i) model 1 with a threshold value 

(Th) of 0.91 and a learning rate (α) of 0.93, adopted from Chapter 4 on young 

subjects; and (ii) model 2 with the new optimized threshold value (Th) and 

learning rate (α) for older subjects on accuracy, sensitivity, specificity, positive 

predictive value and negative predictive value. 

Performance 

measures 

Model 1 Model 2 

Regular 

ECG 

rhythm 

(N=14) 

Irregular 

ECG 

rhythm 

(N=5) 

Total 

(N=19) 

Regular 

ECGrhyth 

m (N=14) 

Irregular 

ECG 

rhythm 

(N=5) 

Total 

(N=19) 

Accuracy (%) 90.6±4.0 85.3±4.1 89.2±4.6 91.3±3.6 87.0±5.9 90.2±4.6 

Sensitivity 

(%) 

79.5±16.4 80.1±9.0 79.6±14.5 80.5±15.0 81.4±9.6 80.7±13.5 

Specificity 

(%) 

92.2±10.7 91.6±4.1 92.0±9.3 93.0±10.8 94.1±2.6 93.3±9.3 

Positive 

Predictive 

Value (%) 

91.8±11.4 93.9±1.9 92.4±9.8 93.2±10.2 95.9±0.6 93.9±8.8 

Negative 

Predictive 
Value (%) 

79.5±14.3 75.8±11.0 78.5±13.3 80.2±13.9 77.2±12.5 79.4±13.3 

5.4.6 Comparison of the algorithm performance between young and older subjects 

Table 5.3: PPG pulse quality classification results for stationary poses (mean ±SD) 

on the young and older subjects. 

Stationary 

Poses 

Young subjects (N =19) Older subjects (N =19) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Sit_S0 87.0 ± 8.1 88.5 ± 7.9 81.1± 15.1 90.6±7.0 87.5±9.5 91.8±16.7 

Sit_S1 89.5 ± 15.2 95.9 ±2.2 86.2± 18.7 91.4±6.9 84.9±14.2 96.2±7.7 

Stand_S0 86.4 ± 20.3 88.3 ± 14.3 85.9±17.9 87.6±9.3 80.2±15.4 93.4±12.3 

Lie_S0 95.8 ± 4.9 96.4 ±2.5 85.4±18.6 91.1±7.8 79.2±14.9 96.0±6.3 

Lie_S1 89.0 ± 3.5 93.3±2.6 85.4±20.4 86.2±9.1 77.0±17.6 90.6±19.5 

Lie_S3 94.3 ± 8.1 98.4± 3.8 66.7±22.4 91.1±8.6 82.8±11.6 97.4±4.6 

Hand_S0 93.8 ± 6.2 96.1± 7.5 75.9± 21.7 90.8±6.6 79.0±15.6 95.2±5.0 

Average 90.8±3.8 93.8±4.0 80.9±7.3 89.8±2.1 81.5±3.7 94.4±2.5 

Tables 5.3 and 5.4 show the mean classification results for stationary poses and 

movements on the young and older subjects. Compared to the young subjects, a 

reduction in the overall accuracy was observed in the older subjects for both 

stationary poses and movements. Meanwhile, the sensitivity also dropped drastically 

in the older subjects for all types of stationary poses and movements. On the contrary, 

the older subjects demonstrated a major increase in the specificity results for 

stationary poses, but with relatively unchanged performance for movements. 
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Table 5.4: PPG pulse quality classification results for movements (mean ±SD) on 

the young and older subjects. 
Movements Young subjects (N = 19) Older subjects (N = 19) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
Arm_M1 97.0 ± 4.5 78.9 ± 0.0 98.0 ± 4.5 88.4±10.1 71.3±17.4 93.5±5.0 

Arm_M2 99.2 ± 2.6 80.5 ± 13.4 100 ± 0.0 87.4±10.0 83.4±12.2 92.8±16.4 

Arm_M4 88.3 ± 0.0 89.4 ± 0.0 86.0 ± 18.8 93.0±7.5 91.1±10.7 94.9±12.7 

Arm_M5 97.0 ± 7.0 78.9 ± 0.0 97.5 ± 7.0 93.6±5.5 86.2±10.8 95.5±7.7 

Arm_M6 91.1 ± 9.1 83.3 ± 0.0 92.3 ± 12.5 94.7±7.3 91.4±11.8 99.5±2.0 

Arm_M7 87.3 ± 6.5 89.8 ± 9.7 86.7 ± 7.6 94.3±6.3 80.7±27.0 97.8±5.5 

Arm_M8 93.5 ± 5.3 95.8 ± 5.9 91.1 ± 5.3 92.1±7.2 80.7±19.5 93.8±8.3 

Body_M0 94.4 ± 5.8 72.7 ± 14.2 95.6 ± 3.7 89.2±9.3 82.3±18.8 89.7±14.0 

Body_M1 97.9 ± 3.7 79.4 ± 13.8 98.7 ± 3.5 90.3±4.4 78.8±10.4 94.1±4.4 

Body_M2 88.1 ± 12.9 80.8 ± 10.9 88.4 ± 12.9 93.8±4.8 79.0±18.6 95.4±4.9 

Body_M3 99.3 ± 1.2 77.6 ± 6.5 99.5 ± 8.9 90.6±7.8 76.5±22.3 93.2±6.2 

Body_M4 95.9 ± 3.1 98.9 ± 1.2 93.7 ± 3.1 85.4±15.5 71.4±26.7 90.5±18.4 

Body_M5 97.2 ± 6.1 78.1 ± 4.1 97.9 ± 5.5 87.0±14.0 75.4±23.5 91.2±12.1 

Body_M6 92.9 ± 12.1 83.9 ± 0.0 93.1 ± 12.2 83.4±17.9 68.9±28.0 97.4±6.0 

Average 94.2±4.1 83.4±7.7 94.3±4.9 90.2±3.6 79.8±6.9 94.2±3.1 

Table 5.5 shows the statistical analysis results of the algorithm performance in 

terms of average accuracy. For stationary poses, the difference in the average 

accuracy between the two groups was not statistically different (p-value > 0.05), i.e. 

92.1% for young subjects and 89.8% for older subjects. However, for movements, the 

algorithm performed better when applied on data collected from the young subjects 

(average accuracy of 94.6%) as compared to the older subjects (average accuracy of 

90.2 %), with a p-value <0.001. 

Table 5.5: Statistical analysis results comparing the algorithm performance 

between young and older subjects in terms of average accuracy (mean + SD). 

Young adults (N=19) Older adults (N=19) p-value

Stationary poses (%) 90.8 + 3.8 89.8 + 2.1 0.107 

Movements (%) 94.2 + 4.1 90.2 + 3.6 <0.001 

5.4.7 Comparison of the algorithm performance between older subjects with and 

without irregular heart rhythms 

The performance of the algorithm on five older subjects with irregular heart 

rhythms was compared with the rest of the older subjects (N=14) with normal sinus 

rhythm. As shown in Table 5.6, the algorithm performed slightly better in older 

subjects with normal sinus rhythm, for both stationary poses and movements. In 
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terms of stationary poses, a 4.4% reduction in both accuracy and specificity were 

obtained when tested on older subjects with irregular heart rhythm. Meanwhile, as 

compared to those with normal sinus rhythm, a minor increase in sensitivity (of 1.1%) 

was achieved in older subjects with irregular heart rhythm. Similar observations were 

found for movements with regards to the average accuracy (a 3% drop in older 

subjects with irregular heart rhythm), but opposite results were demonstrated in 

sensitivity/specificity. Instead of showing an increase in sensitivity and a reduction 

in specificity, older subjects with irregular heart rhythm had a reduction in sensitivity 

(2.4%) and relatively unchanged specificity when compared to those with normal 

sinus rhythm. 

Table 5.6: Comparison of the algorithm performance between older subjects with 

and without irregular heart rhythms. 

 Older subjects with normal sinus 
rhythm (N=14) 

Older subjects with irregular heart 
rhythm (N=5) 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificit
y (%) 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Stationary 
poses 

91.0±3.0 81.2±5.6 95.6±2.7 86.6±1.8 82.3±6.3 91.2±5.9 

Movements 91.0±3.8 80.5±7.9 94.3±3.3 88.0±4.2 78.1±8.3 94.2±4.4 

5.4 Discussion 

The present study evaluates the robustness of the previously developed artefact 

detection algorithm on PPG signals collected from young subjects, older subjects with 

normal sinus rhythm as well as those with irregular heart rhythms. The morphology 

of the PPG signal varies from an individual to another due to various phenomena and 

can be classified into five different categories according to its changes during the 

diastolic phase: (i) two distinct notches are inscribed on the downward slope; (ii) one 

distinct notch is inscribed; (iii) no notch develops but the line of descent becomes 

horizontal. (iv) no notch is present but well-defined change in the angle of descent is 

observed; (v) no evidence of a notch is seen (Christoph Fischer et al., 2016). Based 

on PPG signals obtained in this study, it was observed that types 1-3 were commonly 

found in the young subjects, while types 4-5 were observed in the older subjects 
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(Figures 5.1& 5.2). Older subjects normally experience a reduction in the systemic 

vascular compliance due to ageing, which leads to the disappearance of the dicrotic 

notch. In addition, some of them had cardiovascular diseases that alter the 

morphology of the PPG signal. The variations in the PPG morphology across different 

cohorts present a challenge for designing a robust algorithm that could detect clean 

PPG signals in all cohorts. 

The present algorithm was able to achieve high accuracies on both young and older 

subject’s data (i.e., above 90%). By using the optimized parameter values trained with 

young subject’s data (i.e., Model 1) on PPG signals collected from older subjects, 

comparable performance with only a minor reduction in accuracy was obtained 

(Table 5.2). This demonstrated the robustness of our algorithm against variations in 

subjects and further highlighted its simplicity, which only requires the selection of two 

variables. While young subjects demonstrated significantly lower specificities for 

stationary poses as compared to movements and vice versa for sensitivities, the types 

of activities (stationary poses or movements) have negligible effects on the 

performance measures in older subjects (Tables 5.3 – 5.5). Overall, the algorithm 

performed worse when applied on data collected from the older subjects as compared 

to the young subjects especially for movements. This could be due to the presence of 

a large variation in PPG morphology across older subjects, for example due to 

irregular heart rhythms. The presence of abnormal cardiovascular events such as 

arrhythmia could alter the periodic characteristics of the PPG signal, which may lead 

to misclassifications of clean PPG signals (R Couceiro et al., 2014). As a result, the 

algorithm performed slightly better in older subjects with normal sinus rhythm as 

compared to those with irregular heart rhythms, for both stationary poses and 

movements (Table 5.6). 

To date, only a single study has (R Couceiro et al., 2014) developed and validated 
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their motion artifact detection algorithms on PPG signals obtained from both healthy 

subjects and patients with cardiovascular disease. Time and period domain analysis 

were conducted on PPG signals collected from seven older patients (mean age of 62 

years). Eight most relevant features (i.e. four features from the time domain and four 

features from the period domain) were chosen as input to the support vector machine 

(SVM) model for further classification. As compared to Couceiro et al., the present 

study achieved a higher accuracy (90.2% vs. 88.5%) and specificity (93.3% vs. 

91.5%), but at the expense of a lower sensitivity (80.7% vs 84.3 %). As PPG 

morphology changes with time, the present algorithm, which updated the master 

templates with each incoming good pulse, is more robust to variations across subjects 

and within an individual. 

5.5 Conclusion 

In this chapter, the motion artifact detection algorithm developed in the Chapter 4 

was evaluated on older subjects with normal sinus rhythm and irregular heart rhythm. 

Despite changes in PPG signal morphology due to the presence of irregular heart 

rhythms, the present algorithm was able to achieve an accuracy of over 87% on these 

subjects as compare to healthy young subject. 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

The main idea of this thesis is to develop an automatic artifact detection algorithm to 

classify BP and PPG signals, especially in the occurrence of motion artifacts. The 

developed algorithms have been evaluated on several sources of data, including a publicly 

available ICU database (PhysioNet), healthy patients, older patients and arrhythmia 

patients. This chapter summarises the overall conclusion and major contributions of the 

research. Besides that, recommendations and future work are also presented. 

6.1 Summary and Conclusion 

This thesis has introduced a novel technique to identify artifacts and estimate BP based 

on motion corrupted oscillometric BP measurements. An automatic algorithm based on 

changes in the oscillometric pulses relative to their respective neighbour pulses was 

proposed to remove outlier points before the curve fitting process. Ten features extracted 

from the OWE corresponding to systolic (SBPR) and diastolic blood pressure ratio 

(DBPR) were evaluated. Our results showed that both SVR and MLR models achieved a 

comparable performance. However, MLR model is preferable due to its simplicity. 

Other than that, an adaptive algorithm has been developed to detect artifacts in PPG 

signals. There are several strengths of the designed adaptive algorithm. Firstly, this 

algorithm does not required any prior knowledge of the PPG signal such as amplitude, 

pulse width and slope, thus our algorithm is suitable for a diverse range of datasets 

acquired from different devices. Besides that, two standard PPG master templates were 

generated; thus eliminating the need to generate subject-specific templates to account for 

inherent differences in the PPG waveform morphology across subjects, which resulted in 

long processing time. Moreover, our algorithms required a shorter response time (i.e. 2s); 

thus make it suitable for online detection purpose (within 2s). This algorithm has been 

tested on ambulatory long-continuous data (i.e. longer than 30mins) which contained 

several types of motion and short segment data (6s) in the ICU environment. Our 
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algorithm achieved accuracy of more than 95% for both databases. 

Older and chronic disease patients have shown significant difference in PPG 

morphology compared to normal healthy subjects. Therefore, the developed algorithm 

based on young subjects in Chapter 4 was validated on these groups of patients. In general, 

the performance of the developed algorithm achieved accuracy of around 90%. The 

results of the older patients found no significant difference when compared with healthy 

young subjects. This has proven the robustness of our algorithm. 

To conclude, the signal quality of physiological signals play an important role in clinical 

diagnosis. When telehealth recording was performed by the patient without supervision, 

the noise level can be greatly increased due to movement and poor recording technique. 

By using the developed signal quality algorithms as described in this thesis, the corrupted 

signal can be eliminated and excluded from further analysis. This can improve the 

reliability of the telehealth and improve the health care provision for different cohorts of 

patients. 

6.2 Recommendation for future studies 

The present study proposed a BP estimation algorithm but only considering healthy 

subjects. Although promising results were shown, the effectiveness of the algorithm on 

different cohorts of patients remains unknown. Moreover, some studies show that BP 

estimation was unreliable in certain populations such as patients with obesity (Umana et 

al., 2006), arterial stiffness (van Popele et al., 2000), and atrial fibrillation (Pagonas et al., 

2013; Verberk & De Leeuw, 2012). In addition, this study only acquired data from 20 

healthy subjects. The AAMI standard requires 255 measurements to be recorded in at 

least 85 subjects, with at most three measurements per subject for a validation study. 

Hence, validation of the developed algorithms on these patients would be crucial. 

As explained in Chapter 4.2.3, the developed PPG artifact detection algorithms 
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required a pulse segmentation pre-processing step where having pulse segmentation as 

a pre-task for motion artifact detection is a drawback of the current algorithm. If we 

segment the pulse wrongly, it will also lead to wrong classification results and affect the 

performance. To the best of our knowledge, to date, except for Dao et al. (Dao et al., 

2016), beat detection has been an a priori step in most artifact detection work on PPG 

signals (Chong et al., 2014; R Couceiro et al., 2014; Q. Li & G. D. Clifford, 2012; 

Orphanidou et al., 2014; Selvaraj et al., 2008; J Abdul Sukor et al., 2011; X. Sun et al., 

2012). This algorithm can be further enhanced by eliminating this step. In addition, the 

parameter tuning process involved searching through all possible combinations of 

learning rate and correlation threshold to find the best parameters which yield the most 

optimal performance in terms of accuracy. Future study should employ a more principled 

method, such as the DOE (design-of-experiment) method, which is more computationally 

effective. 

Although promising results were shown, the PPG algorithm was only tested on a small 

number of older subjects with arrhythmia (N=5). Furthermore, the effectiveness of the 

algorithm on different patient cohorts, such as atrial fibrillation, ventricular arrhythmia, 

ventricular fibrillation and ventricular tachycardia remain unknown. 

In addition, this thesis studied PPG signals collected from a single sensor that is 

attached to the left thumb. However, a single sensor may have distinct disadvantages 

when applying to unsupervised monitoring. Any loss of contact or dysfunctionality of the 

sensor will lead to loss of signal monitoring. Therefore, it is suggested that the study can 

collect the PPG signals with multiple sensors at multiple body locations, such as the 

forehead and earlobe. This allows the comparison of the collected PPG signals and then 

provides a better accuracy of the application of PPG signals in SpO2 estimation etc. Other 

than that, since the human body is a complex integration of numerous physiological 
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systems, it allows collection of multiple physiological signals simultaneously. Moreover, 

these physiological signals can be inter-correlated with one another; for example, ECG 

and PPG signals. Thus, future study could collect multiple different physiological signals, 

and then by the fusion of these signals, the study will be able to provide better health 

condition estimation. 
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