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CLASSIFICATION OF LABOUR PAIN USING 

ELECTROENCEPHALOGRAM SIGNAL BASED ON WAVELET METHOD 

ABSTRACT 

Electroencephalogram (EEG) is the recording of electrical activity of the cerebral 

cortex through electrodes placed on the scalp. EEG is used to acquire neurophysiological 

signals for application in clinical diagnosis and brain computer interface (BCI). However, 

in practical settings the EEG signals are often contaminated by signal artifacts known as 

the biological and environmental artifacts. These artifacts degrade EEG signals, thereby 

obstructing clinical diagnosis or BCI applications by distorting the observed power 

spectrum. Procedures for automated removal of EEG artifacts are frequently sought after 

in pre-processing and filtering of the EEG signals. 

In recent years, a combination of independent component analysis (ICA) and discrete 

wavelet transform (DWT) has been introduced as standard technique for EEG artifact 

removal. However, in performing the wavelet-ICA procedure, visual inspection or 

arbitrary thresholding may be required to identify the artifactual components in the EEG 

signal. This study proposed an integrated system for EEG signals pre-processing by using 

machine learning algorithms in the identification of artifactual components during the 

process of Wavelet-ICA. Supervised and unsupervised machine learning algorithms 

particularly the Support Vector Machine (SVM) and Density Based Spatial Clustering of 

Application with Noise (DBSCAN) are used in this study. These methods present a robust 

system that enables fully automated identification and removal of artifacts from EEG 

signals, without the need of visual inspection or arbitrary thresholding. The training and 

parameters selection of the machine learning algorithms are conducted using EEG data 

collected from ten subjects in the laboratory. Using test data contaminated by eye blink 

artifacts and public dataset from EEGLAB, it was shown that these methods performed 
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better in identifying artifactual components than did existing thresholding methods. 

Furthermore, wavelet-ICA in conjunction with machine learning algorithm successfully 

removed target artifacts, while largely retaining the EEG source signals of interest. This 

method is also extendable to accommodate multiple types of artifacts present in 

multichannel EEG. 

As a practical application of this study, the developed system is used in an application 

to monitor pain response due to uterine contractions during labour. This part of the study 

aimed to assess the utility of EEG as an objective marker of pain during the first stage of 

labour. We obtained EEG and cardiotocography (CTG) data in ten parturient women 

during their first stage of labour. The study subjects reported the extent of their pain 

experienced due to uterine contractions, which were recorded by the CTG tracing. 

Simultaneous 16-channels EEG traces were obtained for spectral analysis and a 

subsequent classification using SVM aiming to predict the pain experienced in relation to 

uterine contractions. It was found that pain due to uterine contraction correlated positively 

with relative delta and beta band activities and negatively with relative theta and alpha 

band activities of the EEG signals. SVM using the spectral activities, statistical and non-

linear features classified the state of pain with an accuracy of 83% using a classification 

model generalizable across subjects. Furthermore, dimension reduction using principal 

component analysis (PCA) successfully reduced the number of features used in the 

classification while achieving a maximum classification accuracy of 84%. The results 

shown that continuous EEG affords the means to assess objectively maternal pain 

experienced. 

All in all, this study aims to design, develop, optimize and test the method of pain 

assessment using the EEG signal during the active contraction phase of the first stage of 
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labour. Future studies are envisioned to investigate EEG markers of pain in other clinical 

states, aiming to generalize the use of EEG as an objective method of pain assessment. 

 

Keywords: Electroencephalogram, Machine Learning, Pain Assessment, Wavelet-ICA, 

Support Vector Machine (SVM) 
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KLASIFIKASI KESAKITAN PERSALINAN MENGGUNAKAN ISYARAT 

ELECTROENCEPHALOGRAM BERDASARKAN KAEDAH WAVELET 

ABSTRAK 

Electroencephalogram (EEG) merupakan rakaman aktiviti elektrik di korteks 

serebrum melalui elektrod yang diletakkan pada kulit kepala. EEG digunakan untuk 

mengumpul isyarat neurofisiologi bagi aplikasi di peringkat diagnosis klinikal dan antara 

muka komputer otak (BCI). Namun, penggunaan isyarat EEG secara praktikal sering 

menghadapi cabaran di mana isyarat EEG mudah dikontaminasi oleh isyarat artifak 

terutamanya artifak biologi dan persekitaran. Artifak-artifak ini memudaratkan isyarat 

EEG dan mengganggu diagnosis klinikal atau aplikasi BCI melalui hingar kepada 

spektrum kuasa EEG. Justera, prosedur pemprosesan isyarat EEG amat penting untuk 

mengalihkan isyarat artifak secara automatik sebelum digunakan untuk sebarang aplikasi. 

Dalam kebelakangan ini, gabungan antara analisis komponen bebas (ICA) dan 

transformasi gelombang kecil diskrit (DWT) telah diperkenalkan sebagai teknik yang 

berkesan untuk pengalihan isyarat artifak. Walau bagaimanapun, komponen artifak dalam 

isyarat EEG perlu dikenal pasti terlebih dahulu dengan menggunakan kaedah pemerhatian 

atau ambang sebarangan dalam prosedur Wavelet-ICA. Kajian ini mencadangkan satu 

sistem bersepadu bagi pra-pemprosesan isyarat EEG dengan menggunakan algorithma 

pembelajaran mesin untuk mengenal pasti komponen artifak dalam proses Wavelet-ICA. 

Algorithma pembelajaran mesin berselia yang digunakan dalam kajian ini adalah Mesin 

Vektor Sokongan (SVM), manakala algorithma pembelajaran mesin tidak berselia yang 

digunakan adalah Pengelompakan Ruang bagi Aplikasi dengan Hingar Berdasarkan 

Ketumpatan (DBSCAN). Sistem yang dibangunkan ini boleh digunakan untuk 

mengenalpasti dan mengalih isyarat artifak dari isyarat EEG secara automatik, tanpa perlu 

kaedah pemerhatian atau ambang sebarangan. Pembelajaran dan pemilihan parameter 
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bagi algorithma tersebut dijalankan dengan menggunakan data EEG yang dikumpul dari 

sepuluh subjek di makmal. Dengan menggunakan data kajian yang dikontaminasi oleh 

artifak kelip mata dan data awam dari EEGLAB, sistem ini berjaya mengenal pasti 

komponen artifak dengan lebih berkesan berbanding dengan kaedah ambangan 

sebarangan yang sedia ada. Tambahan pula, kaedah Wavelet-ICA dengan algorithma 

pembelajaran mesin juga berjaya mengalihkan artifak sasaran tanpa menjejaskan isyarat 

dari sumber EEG. Kaedah ini juga boleh dibangunkan untuk menampung pelbagai jenis 

artifak lain yang boleh didapati di rakaman EEG berbilang saluran. 

Sebagai aplikasi yang praktikal, sistem yang dibangunkan ini telah digunakan dalam 

aplikasi pemantauan klinikal untuk memantau kesakitan akibat kontraksi semasa 

persalinan. Kajian ini bertujuan untuk menilai kegunaan isyarat EEG sebagai penanda 

kesakitan secara objektif semasa peringkat pertama persalinan. Data isyarat EEG dan 

cardiotocogram (CTG) telah diperoleh dari sepuluh wanita semasa peringkat pertama 

persalinan. Subjek kajian melaporkan tahap kesakitan yang mereka alami akibat daripada 

kontraksi yang dicatatkan oleh CTG. Isyarat EEG sebanyak 16 saluran telah diperoleh 

untuk analisis spektrum dan klasifikasi menggunakan SVM bertujuan untuk menilai 

kesakitan yang dialami. Kesakitan akibat daripada kontraksi berkorelasi secara positif 

dengan aktiviti relatif delta dan beta tetapi secara negatif dengan aktiviti relatif theta dan 

alfa dalam isyarat EEG. SVM menggunakan aktiviti spektrum, ciri-ciri statistik dan 

bukan linear berjaya mengklasifikasi tanda kesakitan dengan ketepatan setinggi 83% 

berdasarkan model klasifikasi secara umum. Selain itu, pengurangan dimensi 

menggunakan analisis komponen prinsip (PCA) telah berjaya mengurangkan bilangan 

ciri-ciri yang digunakan dalam klasifikasi SVM disamping mencapai ketepatan 

klasifikasi maksimum sebanyak 84%. Keputusan kajian menunjukkan bahawa 
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pemantauan EEG secara berterusan boleh digunakan sebagai cara untuk menilai kesakitan 

yang dialami akibat daripada kontraksi semasa peringkat pertama persalinan. 

Secara keseluruhannya, kajian ini bertujuan untuk merekabentuk, membangunkan, 

mengoptimumkan dan menguji kaedah penilaian kesakitan dengan menggunakan isyarat 

EEG semasa peringkat pertama persalinan. Lebih kajian perlu dijalankan pada masa 

depan untuk mengkaji kegunaan isyarat EEG sebagai penanda kesakitan dalam keadaan 

klinikal yang lain, dengan tujuan untuk mempertingkatkan penggunaan EEG sebagai 

kaedah penilaian kesakitan secara objektif. 

 

Kata kunci: Electroencephalogram, Pembelajaran Mesin, Penilaian Kesakitan, Wavelet-

ICA, Mesin Vektor Sokongan (SVM) 
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NRS : Numerical Rating Scale 

OA : Ocular Artifact 

PAF : Peak Alpha Frequency 

PC : Principal Component 

PCA : Principal Component Analysis 

PDF : Probability Density Function 

PET : Positron Emission Tomography 

PFC : Prefrontal Cortex 

REG : Regression Analysis 

RBF : Radial Basis Function 

RM : Regression Model 

s : Source Component 

SI : Primary Somatosensory Cortex 

SII : Secondary Somatosensory Cortex 

SNR : Signal to Noise Ratio 
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SuBAR : Surrogate-Based Artifact Removal 

Th : Thalamus 

TN : True Negative 

TP : True Positive 

SVM : Support Vector Machine 

V : Volt, Difference in Electric Potential 

VAS : Visual Analogue Scale 

VEP : Visual Evoked Potential 

w : Weight Vector 

W : Un-mixing Matrix 

𝑊(𝑗, 𝑘) : Wavelet Coefficient 

WMA : Wavelet Multiresolution Analysis 

WT : Wavelet Transform 

𝛼 : Alpha Brain Rhythm 

𝛽 : Beta Brain Rhythm 

𝛾 : Gamma Brain Rhythm 

𝛿 : Delta Brain Rhythm 

𝜀 : Epsilon; Radius of Circle 

𝜃 : Theta Brain Rhythm 

𝜆 : Eigenvalue 

𝜇V : Microvolts 

𝜎 : Standard Deviation 

Ω : Ohm, Unit of Resistance / Impedance 

|. | : Absolute Value 
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CHAPTER 1: INTRODUCTION 

The study of human brain has always been a fascinating subject since the beginning of 

human civilization. It is believed that the electrical signals generated by the human brain 

represent not only the brain function but also the status of the whole body (Sanei & 

Chambers, 2007). In the early 20th century, physiologist Hans Berger in search for the 

physical being of mind has discovered a way of recording the electrical activities of 

human brain by placing electrodes on the scalp. This approach is later known as the 

electroencephalography (EEG). The first recording of EEG on human brain is thus 

credited to Hans Berger in the late 1920s (La Vaque, 1999). In his reports following the 

discovery, Berger demonstrated the alpha and beta rhythms of human EEG and also the 

effect of several brain disorders on the EEG signals (Haas, 2003). Since then, many 

researches have been conducted to study the effect on EEG due to other diseases such as 

Alzheimer’s disease (Yagneswaran et al., 2002), epilepsy (Kannathal et al., 2005), 

Attention Deficit Disorder (ADD) and Attention Deficit Hyperactive Disorder (ADHD) 

(Arns et al., 2013; Loo & Smalley, 2008). 

Together with the development of modern computer and advances in computer 

science, particularly in the field of machine learning and artificial intelligence (AI), EEG 

has seen unprecedented use cases in the field of Brain Computer Interface (BCI) (Hong 

& Khan, 2017; Wolpaw et al., 2000). For example, the EEG can be used as control input 

of robotics arm for patients who suffered from Amyotrophic Lateral Sclerosis (ALS) (Gu 

et al., 2009) or for use in rehabilitation of stroke patients (Ang et al., 2015). Processing 

of EEG data using machine learning algorithm such as Artificial Neural Network (ANN) 

can also be used to detect the sign of epileptic seizure (Srinivasan et al., 2007). The need 

for technical methods to process the EEG signals is becoming more important as the use 
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cases and the databases of EEG continue to expand. The following chapters explore the 

background, basic tools and the objectives of this study. 

 

1.1 Electroencephalogram 

EEG is the recording of electrical activities of the cerebral cortex through electrodes, 

which are usually placed on the scalp. EEG has great advantages of being non-invasive, 

has excellent time resolution and allow repeat testing on a subject (André-Obadia et al., 

2015). EEG recording is also relatively inexpensive and enable close patient monitoring 

as there are no known medical contraindications or adverse effects limiting its uses. The 

EEG technique is widely used for the clinical diagnosis of epilepsy and sleep disorders, 

and is finding increasing applications for research in the field of BCI (Hong et al., 2018). 

In taking EEG recording of an adult in a laboratory or patient’s bedside, it is 

recommended that the recording take place in a quiet, dimly lit room with a moderate 

temperature to allow the subject to be completely relaxed. Electrodes are placed in 

accordance to the international 10-20 system as illustrated in Figure 1.1 (Oostenveld & 

Praamstra, 2001). The recording is recommended to be performed at a sampling rate of 

256 or 128 Hz, with reference to linked ear lobe (A1 or A2) and forehead (FPz) acting as 

ground (André-Obadia et al., 2015). The scalp impedance is recommended to be below 5 

kΩ for the duration of the recording (Teplan, 2002). Band pass filter of 0.5 – 100 Hz is 

applied to remove high frequency noise and linear trend movement at extremely low 

frequency during the recording. The EEG signals are conventionally described in 

frequency bands of delta (0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz) and beta (12 

to 32 Hz) shown in Figure 1.2, each of which is attributable to different aspects of brain 

activity (Sanei & Chambers, 2007). 
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Figure 1.1: The electrodes position and corresponding labels of the 10-20 system 

(Oostenveld & Praamstra, 2001). 

 

 

Figure 1.2: The dominant brain rhythms of the EEG signal consisting of delta 

(0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz) and beta (12 to 32 Hz) frequency 

bands (Sanei & Chambers, 2007). 
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1.2 EEG Artifacts 

In practical settings, the EEG signals are often contaminated by both biological and 

environmental artifacts (Hamaneh et al., 2014; Jung et al., 2000). Examples of biological 

and environmental artifacts that contaminate the EEG signals are shown in Figure 1.3 

(Marella, 2015). Biological artifacts are signals arising from non-cerebral sources in the 

human body, such as cardiac, ocular or muscles activity. On the other hand, 

environmental artifacts originate from outside of the human body, due to electrode 

movement or interference from external devices such as power line or electric motor. 

Together, biological and environmental artifacts degrade EEG signals, thereby 

obstructing clinical diagnosis or BCI applications by distorting the observed power 

spectrum. A pre-processing or filtering step is often required to suppress the effect of 

artifacts on the EEG signal. 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



5 

 

 

(a) Cardiac Artifacts 

 

(b) Muscle Artifacts 

 

(c) Ocular Artifacts 

Figure 1.3: Examples of EEG signals contaminated by biological and 

environmental artifacts. Artifacts shown included (a) Cardiac, (b) Muscles, 

(c) Ocular, (d) Electrodes and (e) Artifacts due to External Devices. 
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(d) Electrode Artifacts 

 

(e) Artifacts due to External Devices 

Figure 1.3, continued. 
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1.3 Cardiotocogram 

Cardiotocogram (CTG) is the recording of fetal heartbeat and the abdominal muscles 

contraction during labour. CTG monitoring is generally used to assess the fetal wellbeing 

(Alfirevic et al., 2006). The fetal heart rate and the activity of the abdominal muscles are 

detected by placing two transducers on the subject’s abdomen. CTG can also be used to 

assess the frequency and intensity of uterine contractions during the first stage of labour, 

which presumably caused pain to the subject. An example of CTG that measured fetal 

heart rate and uterine contraction is showed in Figure 1.4. 

 

 

Figure 1.4: Example of CTG recording measuring the fetal heart rate and the 

intensity of uterine contractions. 

 

Univ
ers

ity
 of

 M
ala

ya



8 

 

1.4 Perception of Pain 

Pain is a protective somatic sensation which acts as a warning of potential injury. 

When a stimulus is applied at adequate intensity, first pain and second pain are elicited 

by A𝛿 -fibers and C-fibers respectively (Bromm & Lorenz, 1998). The nociceptors 

terminate in the superficial layers of the dorsal horn as the first order neurons. The dorsal 

horn neurons send their axons directly to the thalamus in second order neurons. Then, in 

the thalamus, third order neurons send axons to the primary somatosensory cortex (SI) 

which interact with the secondary somatosensory cortex (SII) and other subcortical 

structures resulting in the feeling of pain (Egsgaard, L. L., 2009). 

The subjective perception of pain is a multi-dimensional experience that can be divided 

into sensory, cognitive and affective components (Peng et al., 2015). The sensory 

component involves sensations with qualities such as stinging, burning or arching in 

identifiable location and duration. On the other hand, the cognitive component is 

associated with the attention modulation of an individual toward the pain perception. 

Lastly, the affective component involves the emotional unpleasantness due to pain 

experienced by an individual. All of the three components of pain combined results in the 

changes of human brain activity observable by brain imaging techniques available today 

(Bromm & Lorenz, 1998; Peng et al., 2015). 

Physicians sometimes encounter difficulties in making important clinical decisions 

due to difficulties in the assessment of the extent of pain experienced by their patients. 

Indeed, the perception of pain is by nature highly subjective, and there are no reliable 

markers of the individual’s internal state. Current methods used by physicians to quantify 

pain intensity generally rely on the patient’s subjective rating according to a Numerical 

Rating Scale (NRS) or a Visual Analogue Scale (VAS) (Bijur et al., 2003). An example 

of an NRS and Wong-Baker FACES Pain Rating Scale used to describe the intensity of 
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pain is shown in Figure 1.5 (Wong & Baker, 1988). Here, the patient is asked to assign a 

value for their experience on a rating scale from 0 to 10, where 0 indicates no pain, and 

10 represents the worst imaginable pain. However, these tests are often scored 

retrospectively, and are inherently subjective, being based on each individual patient’s 

report, and the health staff interpretation of that report (Kumar, S. et al., 2015). 

 

 

(a) 

 

(b) 

Figure 1.5: Example of tools used to describe the intensity of pain using (a) 

Numeric Pain Rating Scale and (b) Wong-Baker FACES Pain Rating Scale (Wong 

& Baker, 1988). 
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1.5 Objectives 

This study aims to propose an integrated system for EEG signals processing in an 

application to monitor the pain response during a clinical state. The proposed system is 

applied to monitor and predict the pain response due to uterine contractions during the 

first stage of labour. 

This study aims to achieve the following objectives: 

• To enable EEG signals as a tool for clinical monitoring and BCI application by 

utilizing signal processing and machine learning algorithms. 

• To investigate the neurophysiological changes of human brain in response to pain 

due to uterine contraction during the first stage of labour. 

• To design and develop an objective method of pain assessment using the EEG 

signals. 

• To optimize and test the developed system of pain assessment using the EEG 

signals. 
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CHAPTER 2: LITERATURE REVIEW 

In the last decades, various researches have been conducted to explore the use of EEG 

in clinical monitoring and BCI application. However, EEG signals are vulnerable to 

signal artifacts and often produce inconsistent results due to the occurrence of signal 

artifacts. Artifacts removal process is therefore essential in order to obtain reliable result 

from filtered clean EEG signals before utilizing the EEG signals in the application of 

clinical monitoring or BCI. This chapter will discuss several methods used to remove 

EEG signal artifacts and the neurophysiological interpretation of pain and its correlation 

to EEG. 

 

2.1 Artifacts Removal and Pre-Processing of EEG signals 

Conventional methods to remove EEG artifacts employ linear filters or regression, in 

relation to the time of occurrence or the frequency range of the target artifacts (Gotman 

et al., 1973; Woestenburg et al., 1983). However, filtering in either the time or frequency 

domain incurs substantial loss of observed cerebral activity because of the inherent 

spectral overlap between neurological activity and signal artifacts (De Beer et al., 1995). 

Wavelet based multiresolution analysis using a discrete wavelet transform (DWT) is 

shown to be more effective in removing target artifacts, while better preserving the 

structure of the true EEG signal in both time and frequency domains (Mamun et al., 2013; 

Zhang et al., 2004). On the other hand, independent component analysis (ICA) is proven 

useful to isolate target artifacts into a separated independent component (IC) using blind 

source separation (BSS) (Hamaneh et al., 2014; Jung et al., 2000). In recent years, artifact 

removal using a combination of wavelet and ICA methods have shown promising results 
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in practical applications and is further explored in this study (Mahajan & Morshed, 2015; 

Mammone et al., 2012). 

Other methods incorporating ICA in the artifacts removal process of EEG signals have 

also been presented. In a recent study, the authors presented a method to remove ocular 

artifacts (EOG) in EEG signals using ICA and deep learning network (DLN) (Yang et al., 

2018). Meanwhile, another method to remove EOG artifacts using ICA and Multivariate 

Empirical Mode Decomposition (MEMD) is also presented (Wang et al., 2016). In 

another study, a linear classifier based on optimized feature subset determined by Linear 

Programming Machine (LPM) is used to identify artifactual ICs for artifacts removal in 

EEG signals (Winkler et al., 2011). However, similar to an earlier study using the BSS-

SVM method, these methods did not consider the use of wavelet transform and introduced 

unnecessary removal of cerebral activities observed in the EEG signals (Shoker et al., 

2005). 

Several methods of artifacts removal for single-channel EEG are also presented in the 

literature. One study presented a method that effectively utilized wavelet transform to 

remove ocular artifacts for single-channel EEG data (Khatun et al., 2016). Meanwhile in 

another study, a novel method using surrogate-based artifact removal (SuBAR) by means 

of time-frequency analysis of surrogate data to identify ocular and muscular artifacts 

embedded in single-channel EEG are presented (Chavez et al., 2018). A group of authors 

also presented a novel method to remove EOG artifacts from single-channel EEG using 

combined singular spectrum analysis and adaptive noise canceler (Maddirala & Shaik, 

2016). In another study, the authors explored several features to be used in the 

classification using linear discriminant analysis (LDA) to detect ocular artifacts in single-

channel EEG (Li et al., 2017). However, these methods are based on single-channel EEG 

and therefore not applicable in the present study that require the use of multichannel EEG. 
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Other approach of artifacts removal are also presented such as the Firefly + Levenberg 

Marquardt (FLM) optimization based learning algorithm for neural network (NN) 

enhanced active filtering (Quazi & Kahalekar, 2017). In this study, the weights for the 

training of NN were optimally selected by using the FLM algorithm. Other solution to 

remove artifacts from EEG signals have also been proposed by using blind source 

separation and regression analysis (BSS-REG), a method that relies on the availability of 

a calibration dataset to initialize the spatial filter (Guarnieri et al., 2018). Of late, method 

that completely sidestep the conventional wavelet transform and ICA methods have also 

been proposed, such as sparsity based technique and dictionary learning algorithm (Sreeja 

et al., 2018). A recent review of the methods for artifacts detection and removal of the 

EEG signals are summarized (Islam et al., 2016). It can be concluded that there are 

increasingly varying methods that are introduced to remove artifactual components in the 

EEG signals, and more are expected to be generated for the time to come. The following 

chapters explore the fundamental methods that are combined in several manners to form 

the complete solution for artifacts removal in the EEG signals applied in this study. 

 

2.1.1 Discrete Wavelet Transform 

Wavelet Multiresolution Analysis (WMA) incorporates the steps of DWT and inverse 

DWT. The initial DWT consists of sequential applications of low- and high-pass filters 

to decompose a discrete signal into multiple wavelet components, as shown in Figure 

2.1(a). Here, x[n] represents a channel of discrete EEG signal passed through a low pass 

filter, g[n] and a high pass filter, h[n] simultaneously. This process is repeated until each 

channel of the EEG signal is decomposed into n levels of wavelet details, i.e. 

𝐷1(𝑡), 𝐷2(𝑡), ⋯ , 𝐷𝑛(𝑡) and a mother wavelet 𝐴𝑛(𝑡). The mother wavelet and wavelet 

details are obtained using the formula as follow 
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An = ∑ x[k]g[2n − k]

∞

k=−∞

 
(2.1) 

Dn = ∑ x[k]h[2n − k]

∞

k=−∞

 
(2.2) 

 

Inverse DWT is applied in a similar but reversed sequence by recombining the wavelet 

details and the mother wavelet into a single channel, x’[n] as shown in Figure 2.1(b). In 

practical use of WMA, only the wavelet details and mother wavelet corresponding to the 

frequency range of interest are retained. 
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(a) Discrete Wavelet Transform 

 

(b) Inverse Discrete Wavelet Transform 

Figure 2.1: Block diagram of (a) DWT and (b) inverse DWT of a signal, x[n] 

and its reconstructed equivalent, x’[n]. The annotation ↓2 denotes reduction of the 

signal by a factor of 2, i.e. two-fold down-sampling and ↑2 denotes two-fold up-

sampling. 

 

2.1.2 Independent Component Analysis 

ICA model describes multivariate signals in terms of a mixing of source components 

(Hyvarinen & Oja, 2000), by making the general assumption that multivariate signals, x 

are separable into their statistically independent and non-Gaussian source components, s. 

This approach has been widely applied in EEG signal processing to separate EEG artifacts 

(Castellanos & Makarov, 2006; Jung et al., 2000), with the requirement that several 

assumptions are met: 
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• The multivariate signals consist of cerebral and artifactual sources that are linearly 

mixed and statistically independent. 

• Number of observed signals is greater than or equal to the number of source 

components. 

• At most one source component is Gaussian. 

• The propagation delay of artifactual sources through the scalp is negligible. 

The source components are synonymous with independent components (ICs). The 

relationship between a recorded signal and its source components is described by the 

equation 

𝐱 = 𝐀𝐬 (2.3) 

 

In equation (2.3), A is the unknown mixing matrix, which is to be estimated by using the 

ICA algorithms (Chunqi et al., 2000; Hyvarinen, 1999; Hyvarinen & Oja, 2000; Lee et 

al., 1999). Then, the inverse of matrix A can be computed as the estimated un-mixing 

matrix, W. Finally, the source components, s are revealed by using the equation 

𝐬 = 𝐖𝐱. (2.4) 

 

The source components can be reconstructed into multivariate signals by inverse ICA, 

which is accomplished by multiplying the inverse of the estimated mixing matrix, 𝐖−1 

with the source components, s. 
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2.1.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a multivariate method that transform multiple 

variables to a new set of linearly uncorrelated variables known as the principal 

components (PCs) (Abdi & Williams, 2010). PCA reduces the dimension of data by 

projecting the data onto a lower dimension, with the goal of finding the best summary of 

the data using a limited number of PCs (Lever et al., 2017). The first principal component 

accounts for the maximum variance of the variables, and each subsequent principal 

component accounts for as much of the remaining variability as possible, with the 

additional requirement of being uncorrelated with all previous PCs. The PCs are also the 

eigenvectors of the covariance matrix of the original dataset. Whereas the covariance 

matrix of two variables X and Y is obtained by using the formula as shown in equation 

(2.5). 

cov(X, Y) =
1

n − 1
∑(Xi − x̅)

n

i=1

(Yi − y̅) 
(2.5) 

 

The objectives of PCA as a method of dimensionality reduction or data compression is to 

extract important information from possibly correlated variables and to represent it as 

orthogonal variables. 

 

2.1.3.1 Eigenvalues and Eigenvectors 

Let 𝐴 be an 𝑛 × 𝑛 matrix. The number 𝜆 is defined as the eigenvalue of matrix 𝐴 if 

there exists a non-zero vector 𝒙 that satisfy the equation 

𝐴𝐱 = 𝜆 𝐱. (2.6) 
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Vector 𝒙 is known as the eigenvector of matrix 𝐴 corresponding to 𝜆. Equation (2.6) can 

also be rewritten as 

(𝐴 − 𝜆𝐼)𝐱 =  0, (2.7) 

 

whereas 𝐼 is the 𝑛 × 𝑛 identity matrix. For a non-zero vector 𝐱 to satisfy Equation (2.7), 

the determinant of 𝐴 − 𝜆𝐼  must equal to 0. The roots of det( 𝐴 − 𝜆𝐼 ) are also the 

eigenvalues of matrix 𝐴. The set of all vectors 𝐱 satisfying Equation (2.6) is also known 

as the eigenspace of matrix 𝐴 corresponding to 𝜆. 

 

2.1.4 Support Vector Machine 

Support Vector Machine (SVM) is a classifier using the method of supervised machine 

learning (Chang, C. C. & Lin, 2011). The goal of SVM is to construct an optimal 

hyperplane that separate two or more datasets for classification as illustrated in Figure 2.2 

(Shoker et al., 2005). The optimal hyperplane is constructed so as to obtain the maximal 

margin from the nearest samples of different datasets, known as the support vectors. The 

separating hyperplane is expressed by the equation 

𝐰 ∙ 𝐱 − b = 0 (2.8) 

 

where vector w represents the weight vector and b the intercept term. The width of the 

margin is given as 
2

‖𝑤‖
 and the optimal hyperplane is obtained by maximizing the width 

of the margin. 
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When perfect separation is not possible, a regularization parameter known as the soft 

margin constant, c is introduced in the SVM. The soft margin constant controls the trade-

off between a low error on training data and a large margin separating the training data. 

When c is small, the classification mistakes are given less importance and maximizing 

the margin becomes a higher priority. Conversely when c is large, more focus is given on 

avoiding misclassification at the expense of keeping the separating margin small. 

In cases where the datasets are not linearly separable in the original finite dimensional 

space such as x and y in two dimensional space, the data can be re-mapped into a 

sufficiently higher dimensional space as shown in Figure 2.3 (Huang et al., 2006). This 

mapping is conducted by using a defined kernel function, 𝑘(𝑥, 𝑦), which presumably 

ensures an easier separation of the datasets (Phadke & Rege, 2016). The hyperplane 

defined in the higher dimensional space can be seen as a non-linear separating hyperplane 

in the original finite dimensional space. Therefore, this approach is also known as the 

non-linear SVM. 
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Figure 2.2: Maximal margin hyperplane of SVM separating the sample data 

from two classes (Sanei & Chambers, 2007). 

 

Figure 2.3: Kernel machine transforms linearly non-separable data of two 

classes into linearly separable data (Sanei & Chambers, 2007). 

 

2.1.5 Density Based Spatial Clustering of Application with Noise 

Density Based Spatial Clustering of Application with Noise (DBSCAN) is an 

unsupervised machine learning algorithm for clustering (Ester et al., 1996). DBSCAN 
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take advantage of the differences in density distributions of data to separate the data into 

different clusters. The objects are clustered based on density, i.e. the data points with 

similar density distribution are classified as a cluster (Agrawal et al., 1998). In other 

words, data points in high density regions are classified as a cluster and data points in low 

density region are classified as noise. The input parameters of DBSCAN are radius of 

circle, 𝜀 and the minimum number of data points, minPts that fall within the radius to be 

classified as a cluster. A cluster consists of core and border points that satisfy the 

following properties: 

• The core points within the cluster are mutually connected in their density. 

• A border point falls within the density of any core point of the cluster is 

assigned as a member of the cluster. 

An example of DBSCAN clustering of data points with radius of circle, 𝜀 and minPts = 4 

is presented in Figure 2.4 (Lutins, 2017). In Figure 2.4, the red colour points represent the 

core points that met the minPts criteria, yellow colour points represent the border points 

that does not meet the minPts criteria but still assigned as part of the cluster, while the 

blue colour point outside of radius 𝜀 from any core point is considered as noise. The 

advantage of unsupervised machine learning algorithm is that it does not require training 

or training data as compared to supervised machine learning algorithm. 
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Figure 2.4: An example of DBSCAN clustering with radius of circle, 𝜺 and 

minPts = 4. (Lutins, 2017). 

 

2.2 Neurophysiology of Pain 

Various efforts have been made toward developing an objective measure quantifying 

pain experience using brain imaging techniques such as functional magnetic resonance 

imaging (fMRI) (Wager  et al., 2013), positron emission tomography (PET) (Kupers et 

al., 2011), and electroencephalography (EEG) to study the nociceptive processing of pain 

in human brain (Dowman, R. et al., 2008a; Huber et al., 2006; Jones, 2005). Although 

majority of brain-imaging studies confirmed that somatosensory cortices (SI and SII) are 

involved in the processing of painful stimuli, brain activation on other sites of the brain 

are also observed during pain (Chen et al., 2006; Haefeli et al., 2014; Kakigi et al., 2004). 

The brain network that involved in the perception of pain consists of primary 

somatosensory cortex (SI), secondary somatosensory cortex (SII), insula, anterior 

cingulate (ACC), prefrontal cortices (PFC) and thalamus (Th) (Apkarian et al., 2005). 
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Three components of pain are involved during the activation of pain network, namely 

sensory, affective and also the cognitive components of pain.  The sensory component 

describes the sensory-discriminative pain experience with qualities, such as stinging, 

burning or arching. The sensory component of pain also describes identifiable locations 

and durations of the pain involved. Affective motivational experience of pain involves 

the emotional unpleasantness that is experienced when pain is present. The affective 

component of pain motivates the individual to engage in a behaviour that avoid further 

damage. Cognitive modulation of subjective pain perception involves cortical activities 

such as attention, hypnosis, expectation of pain and placebo effect when pain is 

experienced. The cognitive component of pain often invoked Event Related 

Desynchronization (ERD) of alpha activities in cortical network within pain related areas. 

Activation of brain network responding to the sensory, affective and cognitive 

components of pain and their relation with alpha rhythm are further discussed in (Peng et 

al., 2015). 

It was observed that frequency specific neuronal activity in the brain network is 

associated with the pain state (Prichep, Leslie S. et al., 2011). This suggests that pain 

induced activation in the brain network is qualitatively and quantitatively distinguishable 

with neurophysiological approach. Comprehensive reviews on human brain mechanisms 

on pain perception are presented in (Apkarian et al., 2005) and (Bromm & Lorenz, 1998). 

 

2.2.1 Labour Pain 

Labour pain is characterized by regular, painful uterine contractions which increase in 

frequency and intensity during the first stage of labour (Labor & Maguire, 2008). With 

each uterine contraction, pressure is transmitted to the cervix causing stretching and 
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distension and causes pain through the activation of excitatory nociceptive afferents. The 

pain is transmitted by small unmyelinated C-fibres into the main sympathetic chain. Pain 

is felt in the lower abdomen, sacrum and back during this stage. 

Labour pain provides an excellent model of acute pain. It is associated with obvious 

sensory events, namely uterine contractions and cervical dilation, which can be measured 

in terms of frequency, intensity, spatial extent and duration (Melzack, 1993). These 

characteristics make labour pain a suitable case of pain for the study of pain assessment 

(Abushaikha & Oweis, 2005). 

 

2.3 Correlation of Pain and EEG 

Given the technical difficulties and expense of fMRI and PET, EEG-based methods 

for pain detection would be most readily adaptable to bed-side applications. 

Consequently, considerable efforts have been expended in testing the potential of EEG 

for pain assessment in the clinic (Gram et al., 2015; Hadjileontiadis, 2015; Kumar, S. et 

al., 2015). It was highlighted that electrophysiological method of measurement such as 

EEG is capable to examine human brain activity during pain (Apkarian et al., 2005). 

Measurement of event related potentials (ERP) within the EEG recording can reveal the 

activation of specific brain regions following rapid phasic painful stimuli (Gram et al., 

2013; Iannetti et al., 2008; Le Pera, D. et al., 2002). However, in this paradigm the brief 

stimuli may not faithfully simulate natural or clinical pain, even when considering acute 

pain (Gram et al., 2015; Hadjileontiadis, 2015; Nir et al., 2012). Furthermore, the 

recording of ERP can hardly be used as a clinical tool for monitoring of a patient’s pain 

experience, as the short-interval ERP might bear no relation to the tonic pain being 
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assessed (Peng et al., 2014). Therefore, continuous EEG analysis is used instead to 

characterize tonic pain during more natural and prolonged stimuli (Nir et al., 2012). 

Frequency domain analysis has been applied to study the changes in frequency bands 

activities of EEG signals associated with the experience of pain. This can be achieved by 

using either Fast Fourier Transform (FFT), a Regression Model (RM) or Wavelet 

Transform (WT) (Ocak, 2009; Subasi & Ercelebi, 2005). Changes in the relative power 

of individual frequency bands, in particular a decrease of alpha and increase of beta 

activity, have frequently been detected upon inflicting a noxious stimulus to healthy 

volunteers (Chang, P. F. et al., 2002b; Giehl et al., 2013; Shao et al., 2012). Table 2.1 

present a summary of literature review in the changes of EEG activities observed in 

association with the presence of various pain conditions. 

Changes of EEG in alpha frequency and amplitude measured at bilateral temporal 

scalp electrodes (T7 and T8) has been suggested to reflect the subjective perception of 

tonic pain (Nir et al., 2012; Nir et al., 2010). However, the observed changes in alpha 

activity are unlikely to be pain specific, but may be due to the perceptual cues such as 

attention being utilized in response to pain (Bromm & Lorenz, 1998). Furthermore, alpha 

activity also reflects attentional demands such as alertness and expectancy (Klimesch et 

al., 1998). It is generally held that alpha activity is not itself definitive to reflect EEG 

responses to pain, as alpha activity is also modulated by the cognitive and affective 

components of pain (Peng et al., 2015). Therefore, the suppression of alpha oscillatory 

activities often reported in the literature is unlikely to be pain-specific, but may in large 

part reflect attention modulation involved in orientation and organization of adaptive 

motor behaviour in response to experimentally applied painful stimuli (Bromm & Lorenz, 

1998; Peng et al., 2015; Peng et al., 2014). 
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On the other hand, increases in beta power and in the higher frequency component of 

the gamma band, i.e. 30 - 100 Hz upon application of painful stimuli have also been 

widely reported (Chang, P. F. et al., 2002b; Giehl et al., 2013; Huber et al., 2006; Peng et 

al., 2014). These changes may reflect the composite of primary responses to pain stimuli, 

as well as artifacts arising from increased muscles activity, as attested by Electromyogram 

(EMG) recording during painful stimuli (Chang, P. F. et al., 2002b; Peng et al., 2014). 

The gamma band is particularly susceptible to high frequency noises including the power 

line and EMG due to clenching of teeth or other facial muscles movement corresponding 

to pain and is therefore not being considered in this study. 

Beta frequency are known to be closely related to motor activity and highly susceptible 

to muscles artifacts (Veselis, 2015). Therefore, the observed beta activity during pain may 

also be associated with motor activity in the facial muscles or spreading of muscles 

activity which often accompany the pain experience (Bromm & Lorenz, 1998). 

Furthermore, increase in beta activity may also be related to the desynchronization of 

alpha being replaced by faster rhythms since that the border of these frequencies is not 

clearly defined (Veselis, 2015). For these reasons, apparent oscillation of beta and higher 

frequency band activities must be interpreted carefully in the context of pain perception 

(Dowman, R. et al., 2008a). 

In (Gram et al., 2015), the authors have asserted that the relative theta activity responds 

dynamically to pain experience irrespective of the mode of stimulation. However, the 

results in that study were assessed from globally averaged EEG activities, and thus could 

not be attributed to any particular brain region by source localization. As such, findings 

of increased delta or slow cortical activities correlating to pain experience may be 

vulnerable to artifacts from oculomotor activities such as wincing or various eye blinking 
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activities that are often evoked by the experience of pain (Dowman, R. et al., 2008a; 

Hagemann & Naumann, 2001). 

In general, the reported responses in EEG frequency bands activities in response to 

painful stimuli are inconclusive, and fail to address specifically the phenomenology of 

pain experience (Pinheiro et al., 2016). As pain is multidimensional, with sensory, 

affective and cognitive modulation components in play, it is difficult to ascertain which 

aspects of the pain experience actually provoked the observed EEG changes (Chang, P. 

F. et al., 2002b). In addition, non-specific temporal changes may also mask the 

specifically pain-related EEG features (Dowman, R. et al., 2008a).  

Several studies have also been proposed to distinguish the state of the EEG recorded 

during experimental pain condition (Misra et al., 2017; Vijayakumar et al., 2017). In 

particular, these studies focused on experimental pain condition using tonic thermal 

stimuli and attempted to classify the state of pain by using SVM or Random Forest 

Models. These studies have achieved a rather astounding accuracy in classifying the state 

of pain of up to 89.5%. However, these studies are conducted in a controlled environment 

with stimulated pain experience and does not include natural tonic pain. 

A pain index from 0 to 10 have also been attempted using fuzzy logic to predict the 

level of pain of the patient in post-operative condition (Kumar, S. et al., 2015). In this 

study, the patients’ EEG were recorded in pre-operative and post-operative states and 

were requested to rate their level of pain during the post-operative condition. Fuzzy logic 

was used to predict the level of pain of the patients. The study has achieved remarkable 

milestone in quantifying the level of pain experienced by the patient, limited to the 

condition of pain experienced in a post-operative environment. The result of this study 
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indicates that the EEG may directly or indirectly reflect the patient’s pain level and this 

level can be measured or predicted using an appropriate algorithm. 
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Table 2.1: Literature review on studies that reported EEG changes due to various pain conditions. (↑:  Increased; ↓: Decreased; δ: delta 

activity; θ: theta activity; α: alpha activity; β: beta activity; γ: gamma activity). 

Authors Pain Condition EEG changes in response to pain Remarks 

(Prichep, L. S. et al., 

2018) 

Chronic Pain ↑: θ (overall), low-α (overall) Logistic Regression Analysis predicts severity 

of pain. 

(Hansen et al., 2017) Cold Pressor Test ↓: α-2 (cingulate, pre- and postcentral gyri) 

↑: δ (overall), θ (overall), β (overall) 

Cingulate changes were correlated with pain 

intensity. 

(Misra et al., 2017) Tonic Thermal 

Stimulus 

↓: low-β (contralateral sensorimotor cortex) 

↑: γ, θ (overall, medial prefrontal cortex) 

Classification using SVM achieved cross-

validation accuracy of 89.58% 

(Vijayakumar et al., 

2017) 

Tonic Thermal 

Stimulus 

Only reported training and classification 

using δ, θ, α, β and γ bands activities 

Classification using Random Forest Models 

achieved accuracy of 89.45%. 

(Gram et al., 2015) Cold Pressor Test ↓: θ (overall), α-1 (overall), α-2 (overall) 

↑: δ (overall), β-3 (overall), γ (overall) 

 

θ activities are correlated to pain ratings. 

(Kumar, S. et al., 2015) Post-Operative ↓: Hjorth Activity (P3, P4) 

↑: Spectral Entropy (P3, P4) 

Estimated Pain Index of 0-10 is achieved. 

(Hadjileontiadis, 2015) Tonic Cold Pain Wavelet Higher Order Spectral (WHOS) (δ, 

θ, α, β and γ) 

Novel method of WHOS based on quadratic 

phase coupling (QPC). Univ
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Table 2.1, continued. 

Authors Pain Condition EEG changes in response to pain Remarks 

(Graversen et al., 2015) Analgesic 

Remifentanil 

↓: θ (overall, F1), α (overall, C6) 

↑: δ (overall, F1) 

Condition changes from pain to absent of 

pain. 

(Brokjær et al., 2015) Morphine Intake ↓: θ (Cz) Condition changes from pain to absent of 

pain. Results are not significant until 120 

minutes after dosing. 

(Peng et al., 2014) Thermal Contact 

Heat 

↓: α (contralateral-central) 

↑: γ (overall) 

 

α activities reflect cognitive process. 

γ activities partly reflect tonic pain 

processing. 

(Giehl et al., 2013) Thermal Contact 

Heat 

↓: α-1 (lower central), α-2 (lower central) 

↑: δ (higher right parietal and right occipital) 

Results are not influenced by attention 

manipulation. 

(De Vries et al., 2013) Chronic 

Pancreatitis 

↓: Peak alpha frequency (PAF) (parietal, 

occipital) 

Decrease of PAF correlated with duration of 

pain. 

(Jensen, M. P. et al., 

2013b) 

Spinal Cord 

Injury 

↓: α (overall) 

↑: θ (P3, O1, O2) 

α activity is correlated to higher pain intensity 

caused by other factors. 

(Jensen, M. et al., 2013a) Spinal Cord 

Injury 

↓: θ (overall) 

↑: α (overall) 

Condition changes from pain to absent of 

pain. Univ
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Table 2.1, continued. 

Authors Pain Condition EEG changes in response to pain Remarks 

(Panavaranan & 

Wongsawat, 2013) 

Thermal Contact 

Heat 

↓: α (P3) 

↑: β (P3) 

Differentiate pain and no pain condition at 

96.97%. However, the achieved results are 

questionable. 

(Saithong et al., 2012) Thermal Contact 

Heat 

↓: α (P3, P4) 

↑: β (P3, P4) 

α activities recover after stimulation of pain. 

(Nir et al., 2012) Thermal Contact 

Heat 

↓: α-1 (T7, T8) α-1 power (T7, T8) negatively correlated to 

pain intensity. 

(Shao et al., 2012) Cold Pressor Test ↓: θ (frontal), α (parietal occipital) 

↑: β (temporal), γ (temporal) 

Left frontal θ, anterior cingulate (ACC) α and 

posterior cingulate (PCC) β activities are 

negatively correlated to subjective pain rating. 

(Nir et al., 2010) Thermal Contact 

Heat 

↑: Peak Alpha Frequency (PAF) (T7, T8) PAFs at T7, T8 are correlated to pain 

intensity. 

(Sitges et al., 2010) Chronic Pain ↓: δ (P3, P4, Cz, Fz), θ-1 (T7, T8), α-2 (P3, 

P4), β-1 (Pz), β-2 (Pz) 

↑: Entropy at P4 compared to P3 

Decreased α activities due to sustained 

attention cause by persistent pain. 
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Table 2.1, continued. 

Authors Pain Condition EEG changes in response to pain Remarks 

(Egsgaard, L. et al., 

2009) 

Cuff Pressure 

Pain 

↓: α-1 (centre) for high alpha group 

↑: α-2 (parietal-occipital) for low alpha 

group 

High and low alpha group individual may 

present different brain processing to pain. 

(Dowman, Robert et al., 

2008b) 

Cold Pressor Test ↓: α (contralateral temporal) 

↑: α (posterior), γ (overall) 

Temporal α activities are consistent with pain 

related activities in SI, SII. Posterior α 

activities due to attention being drawn toward 

pain. Observed changes in γ activities may be 

due to EMG. 

(Rissacher et al., 2007) Cold Pressor Test ↓: θ (frontal), α (temporal-parietal) 

↑: β-2 (overall) 

Changes in θ activities caused by anxiety, 

changes in α activities due to attention or 

visual activity, changes in β activities due to 

arousal. 

(Huber et al., 2006) Thermal Contact 

Heat 

↓: θ (left frontal-temporal), α (frontal 

temporal) 

↑: δ-2 (overall), β (left temporal)  

Results are not specific to pain. Applying 

temperature below pain threshold produced 

similar results. 
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Table 2.1, continued. 

Authors Pain Condition EEG changes in response to pain Remarks 

(Chang, P. F. et al., 

2004) 

Capsaicin 

Injection 

↓: α (posterior), θ (overall during muscle 

pain) 

↑: δ (frontal), β (overall during muscle pain) 

Difference between skin pain and muscle pain 

is addressed. 

(Chang, P. F. et al., 

2003) 

Hypertonic Saline 

Injection 

↓: α-1 (posterior), α-2 (posterior) 

↑: β-2 (overall) 

α activities gradually resumed after 

hypertonic saline injection. 

(Chang, P. F. et al., 

2002b) 

Cold Pressor Test ↓: α (POz) 

↑: δ (F8), θ (F8), β (temporal) 

Changes in α and β activities are immediate, δ 

activities changes gradually. 

(Chang, P. F. et al., 

2002a) 

Hypertonic Saline 

Injection 

↓: α-1 (right temporal-posterior), α-2 (Pz, 

POz) 

Results not observed in aversive auditory 

arousal that induced similar arousal and 

unpleasantness. 

(Le Pera, Domenica et 

al., 2000) 

Hypertonic Saline 

Injection 

↑: δ (P3, P4), α-1 (P3, P4), β-2 (P3, P4) Increase of δ and α-1 activities are not 

observed compared to non-painful stimuli. 
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CHAPTER 3: METHODOLOGY 

The block diagram of the developed integrated system consists of four major steps, i.e. 

EEG recording, signal pre-processing, features selection and classification as shown in 

Figure 3.1. First of all, EEG recording is conducted in both laboratory and also clinical 

environment for application in clinical monitoring. Subsequently, signal pre-processing 

is applied to remove artifacts in the noisy raw EEG signals as part of the development of 

the complete system. Last but not least, the study extends to the process of features 

selection and classification of pain response in a clinical study during the first stage of 

labour. 

 

Figure 3.1: Block diagram of the complete system for clinical monitoring and 

BCI application using EEG signals. 

 

3.1 EEG Recording 

EEG acquisition equipment g.USBamp (g.tec, Austria) was used to acquire EEG 

signals from the subjects. The electrodes were placed as specified by the 10-20 system. 

There were 16 electrodes used in the study, corresponding to channels FP1, FP2, F3, Fz, 

F4, T7, C3, Cz, C4, T8, P3, Pz, P4, O1, Oz and O2. The ground electrode was set at FPz, 

and the reference point fixed on the left earlobe (A1). The recording scalp impedance was 

kept below 5 kΩ, with a sampling rate of 256 Hz. A notch filter of 50 Hz (Butterworth, 

order 4), corresponding to the local power mains and a band pass filter of 0.5 to 100 Hz 

(Butterworth, order 8) were applied during the recordings. 

EEG 
Recording

Signal Pre-
Processing

Features 
Selection

Classification
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3.1.1 EEG Recording in the Laboratory 

Eleven healthy volunteers, consists of 7 males and 4 females with mean age (±SD) 

27.4 (6.2) years old, have given informed consent to participate in this study. The 

recording procedure is as describe in Section 3.1. The recording sessions are conducted 

in Applied Control and Robotics Laboratory (ACRLAB) in the Faculty of Engineering, 

University of Malaya. The subjects are instructed to maintain a natural upright sitting 

position with eyes open for up to 30 minutes. EEG signals with eye blink artifacts are 

recorded following involuntary eye blink activities. An example of a session of EEG 

recording conducted in the laboratory is shown in Figure 3.2. 

 

 

Figure 3.2: Example of an EEG recording session conducted in the laboratory. 
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3.1.2 EEG Recording in Clinical Condition 

In a study involving subjects in clinical condition, ten parturient women of mean age 

(±SD) 29.6 (4.9) years admitted in the labour ward of the University Malaya Medical 

Centre (UMMC) participated in this study. The subjects were in their active phase of first 

stage of labour, defined by cervical dilation of 2 - 10 cm. The subjects reported painful 

experience due to intense and frequent uterine contractions. All participating subjects 

were right-handed, were not receiving any medication known to affect the EEG, and had 

no history of neurological or psychiatric disease. Informed consent was obtained from all 

individual subjects included in the study. Each subject gave written consent to the 

experimental procedures, in a study conforming to the Declaration of Helsinki, and 

approved by the local research ethics committee from UMMC (Ethical Clearance: 20156-

1404). Cardiotocography (CTG) was recorded simultaneously throughout the EEG 

recordings, which lasted for up to 30 minutes for each individual subject. Figure 3.3 

shows an example of a recording session conducted in the clinical condition. 
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Figure 3.3: Example of an EEG recording session conducted in the clinical 

condition. 

 

3.1.2.1 Labelling of EEG Signals as “Resting” or “Pain” State 

In an effort to quantify objectively the pain experience independent of any subjective 

input from the subjects expressed through the NRS or the Wong-Baker faces, it is 

assumed that the pain experience is present during bouts of uterine contraction throughout 

the first stage of labour, as revealed by a surge in the CTG signal. The CTG is calibrated 

with resting state as the baseline level and any surge exceeding this baseline indicates the 

onset of a cycle of uterine contraction. Each epoch of the EEG signals is labelled as either 

“resting” or “pain” state according to the phase of uterine contraction observed in the 

simultaneously recorded CTG tracing. In other words, the epochs of EEG signals outside 

the bouts of uterine contraction episodes are labelled as “resting” state, and the epochs of 

recorded EEG signals with present uterine contraction are labelled as “pain” state. A 

representative CTG tracing corresponding to approximately 15 minutes of recording 
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containing several cycles of uterine contraction defining the “resting” and “pain” states 

is depicted in Figure 3.4. 

 

Figure 3.4: An example of CTG recording indicating cycles of uterine 

contraction during the first stage of labour. Simultaneously recorded EEG signals 

are labelled into “resting” when CTG signals are at baseline level, or “pain” states, 

defined by phasic uterine contraction as indicated by the CTG trace. 

 

3.2 Signal Pre-Processing 

Two methods of EEG signal pre-processing are presented in this study by using 

supervised and unsupervised machine learning algorithms to identify the artifactual ICs 

during the Wavelet-ICA process. Figure 3.5 shows an in-depth block diagram for EEG 

signal pre-processing utilizing Wavelet-ICA with supervised machine learning algorithm 

using SVM to identify and remove the artifacts in EEG signals. Meanwhile, the method 

of EEG signal pre-processing utilizing Wavelet-ICA with unsupervised machine learning 

algorithm using DBSCAN is presented in Figure 3.6. Firstly, the EEG signals are passed 

through Wavelet Multiresolution Analysis (WMA) to remove noise and artifacts outside 

of the frequency bands of interest of EEG signals. Following after, ICA algorithm is 

applied to decompose the EEG signals into individual ICs and the ICs containing 
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artifactual components are identified using the SVM or DBSCAN algorithm. Lastly, the 

identified ICs with artifactual components are passed through the wavelet artifacts 

removal model and the resulted wavelet components and ICs are recombined to form the 

filtered clean EEG signals. The advantage of using SVM is that it allows real time 

application in ongoing EEG recordings, but has the disadvantage of requiring training the 

model in advance with training data. On the other hand, the DBSCAN algorithm does not 

allow real time application as the data have to be collected beforehand to determine the 

clustering during the unsupervised process. However, the DBSCAN algorithm required 

no training in advance. Further details on the EEG signal pre-processing methods are 

explained in the following chapters. 

 

 

Figure 3.5: Block diagram of the proposed artifacts removal system using 

Wavelet-ICA and pre-trained SVM for artifactual ICs identification. 
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Figure 3.6: Block diagram of the proposed artifacts removal system using 

Wavelet-ICA and DBSCAN for identification of artifactual ICs. 

 

3.2.1 Wavelet Multiresolution Analysis 

WMA was first applied to the EEG recording in order to exclude all but the frequency 

bands of interest from 0.5 to 32 Hz containing the frequency bands of EEG activities. 

Each channel of the recorded signal is decomposed by DWT to 8 levels using a mother 

wavelet of Daubechies wavelet (db8) (Mamun et al., 2013). WMA deletes details at levels 

D1 and D2, corresponding to the frequency range of 32 to 128 Hz and also the mother 

wavelet A8, corresponding to the frequency range of 0 to 0.5 Hz. As such, WMA retain 

relevant details of D8 to D3, corresponding to the frequency range of interest for EEG 

signals, i.e. 0.5 to 32 Hz. The wavelet details from D8 to D3 represent the traditional 

frequency bands of EEG signals defined as delta (0.5 to 4 Hz), theta (4 to 8 Hz), alpha (8 

to 12 Hz) and beta (12 to 32 Hz) bands respectively (Teplan, 2002). WMA filtered most 

of the artifacts out of the frequency range of interest, notable high frequency noise 

(>32 Hz), and linear trend movement at extremely low frequency (0 to 0.5 Hz). 

 

3.2.2 ICA Decomposition 

After preliminary filtering of the EEG signal by WMA, the processed signal is 

decomposed into ICs by using the Matrix-Pencil algorithm (Chunqi et al., 2000). The 
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number of ICs is constrained to be less than or equal to the number of channels of the 

EEG signal, which is 16 in this study. The matrix-pencil algorithm is selected over 

alternates such as fastICA or the Infomax algorithm due to its superior performance in 

application for non-stationary signals (Chunqi et al., 2000; Hyvarinen & Oja, 2000). 

Additionally, the matrix-pencil algorithm based on second-order statistics also presents 

less computational load than algorithms based on higher-order statistics. 

 

3.2.3 SVM Training and Classification 

The decomposed ICs are evaluated by a pre-trained linear SVM to determine whether 

the ICs contain any artifactual component. The SVM is trained using features of selected 

sample ICs that contain the target artifactual components, which are in the present case 

eye blink artifacts. Indeed, the eye blink artifact is one of the most common artifacts in 

EEG signals. This study also proposes the use of kurtosis, variance, Shannon’s entropy 

and range of amplitude as the most salient descriptive features to distinguish eye blink 

artifacts from EEG signals. These features are selected from an extensive number of 

possible factors based on their discriminative properties to identify the eye blink artifact. 

In particular, it is found that the eye blink artifact has a significantly higher amplitude in 

the proposed features compared to an uncontaminated EEG signal. These features are 

used as the training data and also as test data for evaluation in SVM. Notice that the 

selection of these features is not only useful for isolation of the eye blink artifact, but can 

also serve for other artifactual components such as those arising from electromyogram 

(EMG) signals. The selection and combination of features and training data of SVM 

should allow the system to identify any target artifactual components present in an EEG 

recording. Once an IC is identified as containing artifactual component, it is sent for 

further processing by the wavelet artifact removal model.  
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A separated validation algorithm is applied to validate the ICs that are classified as 

constituting an artifactual component. This measure is introduced in order to support the 

validity of the result of SVM classification for future datasets. In the algorithm, the 

absolute value of each proposed features is calculated from the identified artifactual ICs, 

and compared with the other uncontaminated ICs. If the artifactual ICs’ value exceed by 

a factor of at least three times the common mean value (Nolan et al., 2010), then it can 

properly be considered as containing a significant artifactual component, and its features 

can be incorporated in the training of SVM for future classification. This procedure of 

updating the training data ensures that the system is adaptive to future datasets. 

 

3.2.4 Identifying Artifactual ICs using DBSCAN 

The DBSCAN is an unsupervised machine learning algorithm used to identify the 

artifactual ICs during the process of Wavelet-ICA in this study. The features extracted 

from the ICs are similar to the supervised approach presented in Section 3.2.3, i.e. the 

kurtosis, variance, Shannon’s Entropy and range of amplitude to determine the eye blink 

artifacts (Agrawal et al., 1998). The parameters of DBSCAN, namely the radius of circle, 

𝜀 and minimum number of points, minPts are calibrated by running simple experiment on 

the sample training data. Practically, the parameters can be freely selected in this 

unsupervised approach. However, in this study, the training data are utilized as sample 

data to optimize the selection of the parameters. Once the parameters of 𝜀 and the minPts 

with reasonable performance in the training data are selected, the minPts is adjusted to fit 

with the total number of data points in application. For example, if the minPts is 

determined to be 50 in a sample training data with 2000 data points, the value of minPts 

would be adjusted to 25 if the application consist of only 1000 data points. 
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3.2.5 Wavelet Artifacts Removal 

Wavelet artifact removal is applied to the ICs identified by SVM or DBSCAN as 

constituting artifactual components. This step is introduced to filter out the target 

artifactual components without completely removing the entire ICs that may yet contain 

cerebral activities of interest. The ICs are again decomposed by DWT and the wavelet 

coefficients of each wavelet component are calculated. The wavelet component with a 

coefficient exceeding the universal value for wavelet denoise is deemed to be purely 

artifactual, and is thus removed (Castellanos & Makarov, 2006; Khatun et al., 2016; 

Mahajan & Morshed, 2015). The universal value, K for wavelet denoise is calculated as 

𝐾 = √2 log N 𝜎, (3.1) 

 

where N is the length of the data to be processed and 

𝜎 =
median(|𝑊(𝑗, 𝑘)|) 

0.6745
 

(3.2) 

 

represents the magnitude of neuronal wide band signal. In equation (3.2), |𝑊(𝑗, 𝑘)| 

represents the absolute value of the wavelet coefficient, with constant 0.6745 accounting 

for the Gaussian noise. The selection and calculation for the universal value is discussed 

in details in (Donoho & Johnstone, 1994; Mamun et al., 2013). 

 

3.2.6 Wavelet and ICA Reconstruction 

After the removal of artifacts, the remaining wavelet components are reconstructed 

into ICs by inverse DWT. Finally, inverse ICA is applied to reconstruct the filtered ICs 

into clean EEG signals with artifacts removed. 
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3.3 Features Selection 

In an application to classify the existence of pain in clinical condition, features of 

interest in both time and frequency domains were extracted from each epoch of the EEG 

signals for use in training a further SVM to classify the state of pain. The extracted 

features in this study included spectral activities, statistical features and non-linear 

features (Sai et al., 2019). In general, the spectral activities consist of the relative and 

absolute frequency band activities traditionally designated as delta, theta, alpha and beta 

bands. Other statistical and non-linear features shown in Table 3.1 are also extracted for 

consequent classification. As a result of statistical analysis in this study, all the features 

are ranked in descending order of class separability criteria using independent evaluation 

criteria for binary classification (Dash & Liu, 1997). The ranking describes the capability 

of a particular feature in separating the two labelled groups, namely, “resting” and “pain” 

states. The ranking of features is conducted by using the rankfeatures function available 

in MATLAB. 
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Table 3.1: List of extracted features from EEG epochs. 

Spectral Activities Relative Power of Delta (%), Theta (%), Alpha (%) and Beta (%) 

bands 

Absolute Power of Delta, Theta, Alpha and Beta bands 

Peak Frequency and Amplitude of Peak Frequency 

Statistical Features Mode, Median and Mean 

First Quartile and Third Quartile Values 

Variance, Standard Deviation, Skewness, Kurtosis and Range 

Root Mean Square Value (Vrms) 

Maximum and Minimum Values 

Non-linear 

Features 

Hjorth Mobility and Hjorth Complexity 

Shannon’s Entropy and Energy Entropy 

Hurst Exponent 

Fractal Dimension 

Number of Peaks and Number of Valleys 
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3.4 Classification of EEG Signals in Clinical Condition 

Classification algorithms using supervised machine learning are applied to classify an 

epoch of the EEG data to either “resting” or “pain” state. Unsupervised machine learning 

algorithms such as the DBSCAN failed to perform meaningfully for this task due to its 

complexity. The Support Vector Machine (SVM) algorithm with Radial Basis Function 

(RBF) kernel are employed in this study. The complete procedural sequence of the study 

from EEG and CTG recordings to training of the SVM and obtaining a classification 

accuracy using test data are summarized in Figure 3.7. The recorded EEG data is first 

filtered using the pre-processing and filtering steps as described in Section 3.2, in this 

case using Wavelet-ICA with SVM and aid of visual inspection for the best performance. 

Then, the EEG data are labelled as either “resting” or “pain” state in accordance to the 

CTG tracing as described in Section 3.1.2.1. The EEG data are randomly assigned to 

training data (80%) and test data (20%). The classification model was constructed using 

only the training data. The model is optimized by iteratively training and testing the model 

with different parameters of gamma, g and the soft margin constant, c using five-fold 

cross-validation with the training data, in order to obtain the highest possible cross-

validation accuracy. Once the values of the parameters g and c that yielded the highest 

accuracy were identified, a classification model was trained using these parameters and 

ran against the test data to determine the performance of the SVM. 

The performance of the system is evaluated for its sensitivity as given by 

Sensitivity =
TP

TP + FN
× 100%, 

(3.3) 

 

and for the specificity of the system, as determined by 
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Specificity =
TN

TN + FP
× 100%. 

(3.4) 

 

Whereas the overall accuracy of the SVM is thus given by 

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%. 

(3.5) 

 

In these formulae, TP represents the number of True Positive, TN the True Negative, 

FP the False Positive and FN the False Negative events. 
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Figure 3.7: The flowchart of the study beginning with EEG and CTG recordings 

and proceeding to classification of “resting” and “pain” state using the SVM 

algorithm with an RBF kernel. Five-fold cross-validation is used to identify the 

optimum parameters of gamma, g and soft margin constant, c. 
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CHAPTER 4: RESULTS 

The proposed EEG pre-processing system is demonstrated on an EEG data recorded 

in the laboratory and tested on a publicly available EEG dataset from EEGLAB (Delorme 

& Makeig, 2004). The system’s robustness and reproducibility are validated against the 

public data from EEGLAB to serve as a benchmark for future research. The proposed 

system achieved satisfactory results in removing artifactual components while retaining 

cerebral activities of interest. Finally, the complete system is tested in a clinical study of 

pain caused by uterine contractions during the first stage of labour. Changes in the 

frequency bands activities from “resting” to “pain” state are analysed and the features are 

ranked in descending order of separability criteria. Classification of the EEG signals are 

conducted using SVM with RBF kernel function and finally the optimization process is 

conducted using PCA. 

 

4.1 Pre-Processing and Artifact Removal using EEG Signals Recorded in the 

Laboratory 

This section presents the results of artifacts removal process using the methods of EEG 

signal pre-processing described in Section 3.2. The procedure for EEG signals recording 

is as described in Section 3.1.1. An example of a recorded five seconds segment of a 

16-channels raw EEG signals are shown in Figure 4.1. 
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Figure 4.1: An example of a five seconds segment of the recorded 16-channels 

raw EEG signals. 

 

4.1.1 Effect of Wavelet Multiresolution Analysis 

The recorded signals are first passed through WMA to retain only the frequency bands 

of interest using 8 levels decomposition and mother wavelet of db8. The signals 

remaining after passage through WMA are shown in Figure 4.2. It is observed that most 

of the artifacts lying outside of the frequency bands of interest are efficiently removed 

with minimal distortion to the time and frequency resolution of the EEG signals (Sai et 

al., 2018). This pre-processing also eases ICA decomposition at later stages in the signal 

processing. 
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Figure 4.2: The EEG signals after a pre-processing step using WMA. This step 

is conducted to retain only the frequency bands of interest (0.5 to 32 Hz). 

 

4.1.2 Separating the Artifactual Components through ICA 

However, some of the artifactual components overlapping the frequency resolution of 

EEG signal were not removed by WMA. In particular, it is noted that the eye blink 

artifacts remained in the second and fifth segments of the five seconds epoch shown in 

Figure 4.2. ICA is applied to the 16-channels signal in Figure 4.2 and decomposed the 

signals into its estimated statistically independent and non-Gaussian ICs. The resulting 

16 ICs decomposed by ICA using the Matrix-Pencil algorithm are shown in Figure 4.3. 
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Figure 4.3: Decomposed 16 ICs from EEG signal using ICA. 

 

By visual inspection, it can be observed that the first IC contains the eye blink artifacts. 

The values of the kurtosis, variance, Shannon’s entropy and range of each IC are shown 

in Figure 4.4. It can be seen that IC1 has outlier value in each of the features proposed to 

separate eye blink artifacts from cerebral activities. 
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(a) Value of kurtosis of separated ICs. 

 

(b) Amplitude of variance of separated ICs. 

 

(c) Amplitude of modulated Shannon’s Entropy of separated ICs. 

 

(d) Value of range of separated ICs. 

Figure 4.4: Selected features that differentiate IC1, which contain eye blink 

artifacts, from the other ICs. The four descriptive features presented are (a) 

kurtosis, (b) variance, (c) absolute value of Shannon’s entropy and (d) range of 

amplitude. 
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4.1.3 Classification of Artifactual ICs using SVM 

Linear SVM trained with similar features from training data containing the target 

artifactual component classified that IC1 indeed contain an artifactual component. The 

SVM is trained using a total training data of 5,000 ICs containing eye blink artifacts and 

also randomly selected 5000 non-artifactual ICs, extracted from 10 participating subjects 

and labelled by visual inspection (Gabsteiger et al., 2014). Parameters of SVM are 

selected as linear kernel with soft margin constant, c = 10, determined by using 5-fold 

cross-validation with the training data. The SVM classified IC1 as artifactual IC. Then, 

IC1 is further validated by the criteria of having key features with absolute value at least 

three times the common mean. The identified features of the first IC are included in the 

training dataset for future classification of eye blink artifact. 

 

4.1.4 Unsupervised Artifactual ICs Identification using DBSCAN 

Unsupervised machine learning algorithm using DBSCAN is also presented as an 

alternative method to identify the artifactual ICs in this study. The training data are used 

as a sample to calibrate the parameters of radius of circle, 𝜀 and minimum number of 

points, minPts by testing for a possible combination of the parameters. In this study, the 

optimized parameters are obtained as 𝜀 = 2.6 and minPts = 135 for sample training data 

of 5000 data points. Following after, the DBSCAN algorithm is used for unsupervised 

clustering of artifactual and non-artifactual ICs in the test data. In this example, the 

DBSCAN algorithm also classified IC1 as artifactual IC. 

 

4.1.5 Filtering and Recombination 

To filter the artifactual components in IC1, wavelet artifact removal is applied to 

isolate the wavelet components with coefficient that exceeded the universal value, as 
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defined in Section 3.2.5. This method effectively removed the eye blink artifact identified 

in IC1, while minimizing the risk of inadvertently removing the cerebral activities of 

interest that present in IC1. Wavelet and ICA reconstruction are performed after the 

removal of the artifactual components. The final reconstructed clean EEG signal of the 

five seconds segment example is shown in Figure 4.5. 

 

Figure 4.5: Filtered 16-channels clean EEG signals using the proposed methods. 

 

4.2 Performance Evaluation using Public Dataset from EEGLAB 

To validate further the robustness and reproducibility of the proposed system, the 

system is tested using a publicly available dataset from EEGLAB. This dataset is a 

recording of 32 channels, thus serving to investigate the extendibility of the system to an 

EEG recording of higher spatial resolution. The scalp locations corresponding to each of 

the 32 channels can be found at (Delorme & Makeig, 2004). As with data in Section 4.1, 

the EEG signal was resampled at 256 Hz and divided into five seconds epochs for further 

processing. Wavelet-ICA with SVM have the best performance in identification of 

artifactual and non-artifactual ICs, and also the highest correlation coefficient after 

filtering. An epoch of the original signal and the corresponding filtered result using 

Wavelet-ICA with SVM is shown in Figure 4.6(a) and (b) respectively. It is observed 
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that, as with the 16-channels recording, the artifactual components attributed to eye blink 

and lateral eye movement are effectively removed, while cerebral activities of interest 

within the relevant frequency bands of the EEG signal are retained. 

 

(a) An example of a five seconds segment of dataset from EEGLAB 

 

(b) Filtered EEG signals from the similar five seconds segment 

Figure 4.6: An example of (a) a segment of 32-channels EEG signals from 

dataset of EEGLAB and (b) the corresponding filtered signals using Wavelet-ICA 

with SVM. 

 

4.2.1 Accuracy in Identification of Artifactual and Non-Artifactual ICs 

The labelled artifactual and non-artifactual ICs of the dataset from EEGLAB by visual 

inspection is shown in Figure 4.7. It can be seen that the artifactual ICs have unusually 

high value of kurtosis, variance, Shannon’s Entropy and range of amplitude as previously 
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described in the example in Section 4.1.2. During the classification process, Wavelet-ICA 

with linear SVM using the parameter of c = 10 recorded an average accuracy of 99.1% 

using the dataset from EEGLAB. The performance of Wavelet-ICA with SVM is shown 

in the confusion matrix in Table 4.1 and the result of classification is shown in the scatter 

plot in Figure 4.8. On the other hand, Wavelet-ICA with DBSCAN using the parameters 

of 𝜀 = 2.6 and minPts = 19 recorded an average accuracy of 97.9% as shown in Table 4.2. 

The result of clustering using DBSCAN is shown in Figure 4.9. A comparison of the 

performance of SVM and DBSCAN with the standard thresholding method is shown in 

Table 4.3. It is observed that Wavelet-ICA with SVM have the best performance in 

identification of artifactual ICs as compared to Wavelet-ICA with DBSCAN or the 

conventional thresholding method. 
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(a) 

 

(b) 

Figure 4.7: Labelled artifactual and non-artifactual ICs of the dataset from 

EEGLAB by visual inspection. Figure (a) and (b) are presented to illustrate all 

four features, i.e. kurtosis, variance, Shannon’s entropy and range used in the 

classification or clustering process. Univ
ers
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Table 4.1: Confusion matrix for classification of ICs using SVM with dataset 

from EEGLAB. 

 Predicted: Non-Artifactual Predicted: Artifactual 

Actual: Non-Artifactual (TN) 665 (FP) 5 

Actual: Artifactual (FN) 1 (TP) 33 

 

 

(a) 

 

(b) 

Figure 4.8: Scatter plot present the classification of artifactual and non-

artifactual ICs with pre-trained linear SVM with c = 10. * denotes the instances of 

misclassification as compared to labels by visual inspection. 
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Table 4.2: Confusion matrix for classification of ICs using DBSCAN with 

dataset from EEGLAB. 

 Predicted: Non-Artifactual Predicted: Artifactual 

Actual: Non-Artifactual (TN) 657 (FP) 13 

Actual: Artifactual (FN) 2 (TP) 32 

 

 

(a) 

 

(b) 

Figure 4.9: Unsupervised clustering of artifactual and non-artifactual ICs with 

DBSCAN with 𝜺 = 2.6 and minPts = 19. * denotes the instances of misclassification 

as compared to labels by visual inspection. 
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Table 4.3: Sensitivity, Specificity and Accuracy of different methods in the 

identification of artifactual ICs using dataset from EEGLAB as compared to the 

standard thresholding method. 

 Artifacts 

Identification with 

pre-trained SVM (%) 

Unsupervised 

Clustering with 

DBSCAN (%) 

Artifacts 

Identification with 

Threshold (Mahajan 

& Morshed, 2015) 

(%) 

Sensitivity 97.1 94.1 90.0 

Specificity 99.3 98.1 98.0 

Accuracy 99.1 97.9 95.2 

 

4.2.2 Performance Evaluation with Correlation Coefficient 

Using the same dataset from EEGLAB, the correlation coefficient of the filtered clean 

EEG signals with the signals before artifacts removal is also computed. This is conducted 

to confirm that the artifacts removal process did not alter or introduce much distortion to 

the original EEG signal. The average value of the correlation coefficient achieved by the 

proposed method of Wavelet-ICA with SVM or DBSCAN is presented in Table 4.4, 

where the results for Wavelet-ICA with threshold and also zeroing-ICA (where the entire 

artifactual IC is deleted instead of using Wavelet Artifacts Removal) with an otherwise 

similar SVM are also compared. 

Wavelet-ICA with SVM performed consistently better and yielded an overall average 

correlation coefficient of 0.955. On the other hand, the method with DBSCAN yielded an 

overall average correlation coefficient of 0.947. The alternate methods of Wavelet-ICA 

with threshold and zeroing-ICA with SVM both have an overall average correlation 

coefficient value of 0.946. The method of Wavelet-ICA with SVM performed better than 

Wavelet-ICA with DBSCAN or threshold due to the more accurate identification of 

artifactual components. False detection rate was lower, resulting in lesser unnecessary 

removal of wavelet components. Meanwhile, the method of Wavelet-ICA with SVM also 

performed better than zeroing-ICA with SVM, as a result of using wavelet artifact 
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removal instead of removing the entire IC with artifactual components, consequently 

resulting that the cerebral activities of interest are better retained. The only drawback with 

SVM is that it requires training with training data in advance, while the methods using 

DBSCAN or thresholding does not required training. The drawback of DBSCAN method 

is that it could not be applied in real time processing as the unsupervised machine learning 

algorithm required all the data points to be present in order to begin the clustering process. 

In conclusion, Wavelet-ICA with SVM have the best performance in pre-processing and 

filtering of EEG signals and will thus be applied as the preferred filtering method in 

further discussion. 
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Table 4.4: Comparison of correlation coefficients for Wavelet-ICA with SVM 

(mean: 0.955 ± 0.03), with DBSCAN (mean: 0.947 ± 0.03), with threshold (mean: 

0.946 ± 0.03) and zeroing-ICA with SVM (mean: 0.946 ± 0.04) using dataset from 

EEGLAB. 

Electrode 

Channel 

Wavelet-ICA 

with SVM 

Wavelet-ICA 

with DBSCAN 

Wavelet-ICA 

with threshold 

(Mahajan & 

Morshed, 

2015) 

Zeroing-ICA 

with SVM 

(Shoker et al., 

2005) 

1 0.865 0.861 0.859 0.827 

2 0.826 0.826 0.820 0.780 

3 0.943 0.941 0.939 0.930 

4 0.952 0.949 0.949 0.941 

5 0.948 0.947 0.946 0.937 

6 0.902 0.898 0.888 0.878 

7 0.945 0.943 0.940 0.932 

8 0.958 0.955 0.954 0.949 

9 0.958 0.954 0.954 0.948 

10 0.953 0.950 0.950 0.941 

11 0.966 0.964 0.961 0.958 

12 0.963 0.959 0.957 0.955 

13 0.970 0.966 0.966 0.964 

14 0.964 0.958 0.957 0.956 

15 0.944 0.943 0.941 0.931 

16 0.970 0.965 0.963 0.964 

17 0.966 0.957 0.956 0.961 

18 0.973 0.963 0.963 0.969 

19 0.969 0.963 0.963 0.963 

20 0.975 0.968 0.966 0.970 

21 0.971 0.958 0.957 0.967 

22 0.965 0.947 0.946 0.961 

23 0.973 0.962 0.961 0.969 

24 0.971 0.965 0.963 0.965 

25 0.978 0.966 0.964 0.975 

26 0.971 0.955 0.954 0.968 

27 0.964 0.944 0.944 0.961 

28 0.972 0.960 0.959 0.969 

29 0.976 0.968 0.965 0.973 

30 0.971 0.954 0.952 0.967 

31 0.968 0.951 0.949 0.965 

32 0.970 0.956 0.954 0.966 

Average ± 

Standard 

Deviation 

0.955 ± 0.03 0.947 ± 0.03 0.946 ± 0.03 0.946 ± 0.04 
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4.3 EEG Responses to Pain due to Uterine Contraction during Labour 

On the experimental results with clinical pain condition, ten subjects each with 30 

minutes of EEG recordings resulted in a total of 18000 one second epochs of recorded 

EEG signals were included for the analysis. After discarding data that had been corrupted 

due to technical complications such as faulty electrodes, 15030 epochs of data remained. 

After denoising and artifacts removal via the pre-processing and filtering steps as 

described in Section 3.2, unrecoverable data are discarded with aid of visual inspection 

and there remained 9907 epochs of EEG signals, consisting of 2661 epochs corresponding 

to “pain” and 7246 epochs corresponding to “resting” state. The state contributions 

differed amongst the 10 subjects, due to their differing contraction rates at the time of 

recording. The data were analysed using EEGLAB (Delorme & Makeig, 2004), and the 

classification of state of pain using SVM was conducted in the MATLAB environment 

(Chang, C. C. & Lin, 2011). 

 

4.3.1 Reported NRS due to Uterine Contraction 

During the 30 minutes of EEG and CTG recording, the subjects experienced from five 

to eleven cycles of uterine contraction. The subjects then reported the extent of pain 

experience using the NRS after each cycle of uterine contraction. Figure 4.10 shows the 

average reported NRS for each subject. It is evident that the mean intensity and relative 

standard deviation of pain rating caused by the uterine contractions differed between 

subjects. Some subjects rated a wider range of pain scores while some remained 

consistent throughout the whole recording session. Nonetheless, all NRS ratings of four 

or above given after a cycle of uterine contraction in contrast to 0 during “resting” state 

confirmed that the subject experienced significant pain during the cycles of uterine 

contraction. 
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Figure 4.10: Mean and standard deviation of NRS reported by each subject 

after the cycles of uterine contraction during the 30 minutes recording period. 

 

4.3.2 Analysis of Relative Power of Frequency Bands between “Resting” and 

“Pain” States 

This section discusses the changes in relative power of frequency bands contributed 

by all ten subjects, contrasting the results for “resting” and “pain” states. The differences 

in global averaged EEG amplitudes are shown in Figure 4.11(a) whereas the differences 

observed in each individual EEG channel are depicted in Figure 4.11(b). The relative 

power was used in this study as it is more robust to inter-individual differences, and more 

reliable for detecting changes in frequency band activities than are contrasts of absolute 

power (Gram et al., 2015). The magnitudes of frequency bands power are normalized and 

averaged for each individual subject, and then averaged across the entire group, thus 

ensuring that each individual contributed with equal weighting to the depiction of the 

overall distributions (Kumar, A. & Anand, 2006). Paired sample t-test is conducted using 
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MATLAB function and Bonferroni correction is applied for multiple comparisons. The 

topographic distributions of frequency bands power in Figure 4.12 highlight the localized 

EEG changes in association with painful uterine contractions. 

The differences of EEG spectral activities between “resting” and “pain” states as 

defined in this study are compared. Using the “resting” state as baseline and consider the 

transition from “resting” to “pain” state, globally increased delta and beta power, together 

with deceased theta and alpha power are observed. The increase in delta power are 

observed particularly at the frontal (possibly due to residual eye blink and wincing 

artifacts) and the parietal brain regions. Decreased relative theta power is observed at the 

bilateral central and parietal region, possibly related to the somatosensory association 

areas. In addition, the results shown globally decreased alpha power, notably prominent 

in the fronto-central and occipital regions covering the prefrontal and also the occipital 

cortexes, which may reflect the affective and cognitive modulations of pain. Finally, an 

unspecific globally increased beta power was observed over the entire brain regions upon 

the transition from “resting” to “pain” state, implicating the activation of the brain 

network involved in the processing of pain. 
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(a) Global averaged EEG amplitudes. 

 

(b) Averaged EEG amplitudes for each channel. 

Figure 4.11: Distribution of relative spectral activities of EEG signals 

corresponding to “resting” and “pain” state defined in this study. Part (a) shows 

the averaged normalized global distributions and (b) shows the averaged 

normalized distributions corresponding to each channel. * and ** indicate 

statistical significance at p < 0.05 and p < 0.01 respectively (Bonferroni corrected 

for multiple comparisons). 
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Figure 4.12: Normalized topographic distribution of relative spectral activities 

corresponding to “resting” and “pain” state defined in this study. 
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4.3.3 Ranking of Features Separating the “Resting” and “Pain” States 

Table 4.5 shows the top 30 features ranked in descending order of class separability 

criteria. It is observed that the statistical properties with high correlation to the amplitude 

and volatility of the EEG signals such as variance, standard deviation and kurtosis in 

occipital, frontal and parietal regions showed significant changes and present as good 

indicator to separate the “resting” and “pain” states. Meanwhile, the frequency bands 

activities are also present as effective indicators to separate the two labelled groups in this 

study.  On the other hand, features with low correlation to the amplitude and volatility of 

the EEG signals such as the mean, median and skewness are not present and may not be 

the most effective features to separate the labelled groups. 
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Table 4.5: Ranking of features in descending order of class separability criteria. 

* and ** indicate statistical significance at p < 0.05 and p < 0.01 respectively, while 

n.s. indicates not significant (Bonferroni corrected for multiple comparisons). 

Ranking Feature Channel Significance 

1 Variance Oz ** 

2 Beta % Pz * 

3 Theta % P3 ** 

4 Standard Deviation O1 ** 

5 Hjorth’s Complexity FP2 ** 

6 Number of Peak Cz ** 

7 Kurtosis Fz * 

8 Number of Peak F3 * 

9 Shannon Entropy F3 ** 

10 Energy Entropy F3 ** 

11 Peak Frequency O2 * 

12 Alpha Power FP2 * 

13 Theta % FP2 * 

14 Beta % O2 n.s. 

15 Range F3 ** 

16 Delta Power F3 ** 

17 Theta Power F3 ** 

18 Amplitude of Peak Frequency FP2 ** 

19 Alpha % T8 * 

20 Kurtosis FP1 ** 

21 Variance P3 * 

22 Energy Entropy P4 ** 

23 Alpha Power Cz n.s. 
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Table 4.5, continued. 

Ranking Feature Channel Significance 

24 Beta Power Pz * 

25 Kurtosis O2 * 

26 Amplitude of Peak Frequency Pz * 

27 Beta Power O1 * 

28 Delta % Cz * 

29 Vrms F3 ** 

30 Alpha % FP1 * 

 

4.3.4 Classification of State of Pain using SVM 

As a practical application, this study aims to construct a generalized model for 

classification of state of pain across subjects by using a supervised machine learning 

algorithm. The classification model is constructed to predict the “resting” or “pain” 

internal state experienced by the subjects using the EEG signals as an objective marker. 

The generalized model was trained and tested using the normalized data across subjects 

to achieve a single composite model that is able to distinguish between “resting” and 

“pain” states for all subjects. The generalized model was trained and tested using SVM 

with an RBF kernel function. 

The SVM was trained and tested using the 31 features listed in Table 3.1 for each of 

the 16-channels electrodes, resulting in a total of 496 features. The model was first trained 

and tested using the training data within a range of parameters extending for gamma, g 

(0.01 to 1 with increments of 0.01 per step) and for the soft margin constant, c (1 to 100 

with increments of 1 per step). Then, the test data were used for evaluation of the trained 

classification model. The results of classification are shown in the confusion matrix of 
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Table 4.6. The classification model achieved sensitivity of 85.4% and specificity of 

80.7% with an overall accuracy of 83.0%, when the optimized parameters g = 0.28 and c 

= 4 are applied, as determined by five-fold cross-validation. A three-dimensional plot to 

describe the variation of classification accuracy to the choice of parameters is depicted in 

Figure 4.13. Results of this generalized model lend support to the development of 

generalizable pain assessment during labour by using the EEG signals. 
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Table 4.6: Confusion matrix of classification result achieved by the generalized 

model. 

 Predicted Class: 

Pain 

Predicted Class: 

Resting 

Classification 

Accuracy (%) 

Actual Class: Pain 439 75 Sensitivity: 85.4 

Actual Class: Resting 106 444 Specificity: 80.7 

Overall Accuracy   Overall: 83.0 

 

 

Figure 4.13: Classification accuracy of SVM achieved by using different 

parameters of gamma, g and soft margin constant, c. The maximum classification 

achieved is highlighted in the figure together with the optimized parameters (X, Y, 

Z). 
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4.3.5 Dimension Reduction using PCA 

In this section, we attempt to reduce the number of features using principal component 

analysis (PCA) to reduce the risk of overfitting when high number of features are present 

in relation to the amount of data. After applying dimension reduction using PCA, the 

resulting principal components are ranked in descending order of class separability 

criteria based on their component variance. Figure 4.14 shows the classification accuracy 

as a function of the number of features with and without PCA under similar classification 

criteria. A classification accuracy above 80% can be obtained using only the top 30 

features when PCA is applied. Maximum classification accuracy is achieved at 84% using 

68 features in total. PCA provided features with better separability criteria compared to 

the set of raw features, which are less able to describe the relevant changes in the EEG 

characteristics in relation to the transition from “resting” to “pain” state. The drawback 

of using PCA is that the resulted PCs are presented as a combination of multiple features 

and could not be easily retrieved. Table 4.7 and Figure 4.15 describe the confusion matrix 

and the classification accuracy, which is maximal (g = 0.4, c = 5, Acc = 84.0%) when 

using 68 features. The classification model after feature reduction is less likely to overfit 

as it eliminated a large number of redundant features not contributing positively to the 

classification model. Better classification results can also be seen in comparing Figure 

4.15 with Figure 4.13 when different parameters are applied, indicating that the risk of 

overfitting is indeed reduced. The classification result supports the possibility of using 

EEG signals for objective identification of pain experience due to uterine contraction 

during the first stage of labour. 
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Figure 4.14: Classification accuracy against number of features ranked in 

descending order of class separability criteria, with and without PCA. 

 

Table 4.7: Confusion matrix of classification result achieved by the generalized 

model with number of features reduced to 68 using PCA. 

 Predicted Class: 

Pain 

Predicted Class: 

Resting 

Classification 

Accuracy (%) 

Actual Class: Pain 448 66 Sensitivity: 87.2 

Actual Class: Resting 104 446 Specificity: 81.1 

Overall Accuracy   Overall: 84.0 
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Figure 4.15: Classification accuracy of SVM achieved by using different 

parameters of gamma, g and soft margin constant, c with number of features 

reduced to 68 using PCA. The maximum classification achieved is highlighted in 

the figure together with the optimized parameters (X, Y, Z). 
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CHAPTER 5: DISCUSSION 

Section 5.1 presents the discussion for the methods of EEG signal pre-processing and 

artifacts removal presented in this study. Different methods of artifacts removal are 

compared and their advantages or disadvantages discussed in relation to the pre-

processing method with the best performance, in this case the Wavelet-ICA with SVM. 

Further modification on the method of Wavelet-ICA with SVM to include all kinds of 

artifactual components are also presented. Following after, the application of EEG signals 

for clinical monitoring in the classification of state of pain due to uterine contractions 

during the first stage of labour are discussed in Section 5.2. The neurophysiological 

responses observed in EEG signals due to pain and implications of this study are further 

discussed. 

 

5.1 EEG Pre-Processing and Artifacts Removal with Wavelet-ICA and SVM 

The advantage of the proposed system for multichannel EEG artifacts removal is that 

the pre-trained SVM are fitted to estimate an optimum hyperplane separating the 

artifactual ICs from those indicative of cerebral activity. Notice that it is also possible to 

automatically identify artifactual IC by arbitrarily setting a thresholding value anywhere 

between the amplitude of the artifactual ICs and other ICs. However, this variant approach 

is often rigid and unsuitable to be applied for sporadic and non-stationary signal such as 

the case of EEG. The arbitrarily defined threshold may fail to detect the artifactual 

component or inadvertently introduced false detection near the boundary of the 

thresholding value. On the other hand, method of unsupervised machine learning using 

DBSCAN requires all data points to be ready in order to begin the clustering. This 

approach may present a hindrance to the possibility of real time processing of the EEG 

signals. In contrast, the SVM-based approach to separate artifactual ICs is shown to be 
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more reliable than DBSCAN or the existing methods using thresholding, as in (Mahajan 

& Morshed, 2015; Mammone et al., 2012; Nolan et al., 2010). Linear SVM is used in this 

study based on its ability to identify artifactual components that possess features with 

outlier values extending far across the hyperplane. Additionally, linear SVM also required 

less computational load than reiterative thresholding methods (Nolan et al., 2010). The 

only disadvantage of Wavelet-ICA with SVM is that it requires training and the 

availability of training data in advance. Parameters of the SVM can be further optimized, 

but this at the risk of overfitting. 

The steps of training the SVM in the Wavelet-ICA approach is summarized as follow. 

First, the features that best describe the target artifactual components that may present in 

the desired application are selected. Then, the ICs containing the target artifactual 

components are assigned as training data to the SVM. After a series of testing the trained 

SVM model with the test data, the features of validated artifactual ICs are sent to update 

the training dataset for future classification. The proposed system has the potential to be 

extended to accommodate and exclude diverse kinds of artifacts present in future EEG 

recording. This generalizability can be achieved by selecting statistical features that best 

represent the target artifactual component, and retraining the SVM using an updated 

collection of training data. 

The selection of features and training data of SVM is thus crucial for the accuracy and 

effectiveness of the overall system. The training data are first selected by identifying the 

artifactual components using both visual inspection and assessment of its most salient 

descriptive features. For the purpose of this study, only the low frequency eye blink 

artifacts is by far considered, as this is the most common and troublesome artifactual 

component encountered in EEG signals. The most salient features of eye blink artifacts 

included the variance, kurtosis, Shannon’s entropy and range of amplitude. These features 
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were identified and selected based on their magnitudes being significantly higher in 

conjunction with an eye blink than in its absence. In general, the features selected for 

training and testing of SVM must be adequate to describe the artifactual component, 

which condition is met by the present findings. 

This study also presented a possible combination of integrating SVM into Wavelet-

ICA for removal of multiple artifacts present in the EEG signal, not just for eye blinks. 

In other words, integration of SVM suggests a potential possibility to accommodate all 

kinds of artifacts that exist in the EEG signals such as the ECG and EMG artifacts. This 

adaptability can be achieved by selecting the appropriate features and training data used 

in the training of the SVM. Nonetheless, the list of potential artifactual components and 

their corresponding descriptive features is beyond the scope of current study, which aim 

only to enable the use of EEG in clinical monitoring and BCI application. It is anticipated 

that future research should serve to identify the most descriptive features of other 

artifactual components such as cardiac and muscles artifacts, and remove without 

substantial loss of specific cerebral signals. 

 

5.2 EEG Reponses to Pain due to Uterine Contraction 

This is the first research study that targets the complex problem of objective 

identification of pain experience during the first stage of labour by using the EEG 

approach. It was shown that the pain experience caused by uterine contraction during the 

first stage of labour was associated with notable changes in the relative spectral activities 

of EEG signals. In general, globally increased relative delta and beta activities and 

decreased relative theta and alpha activities are observed following pain caused by uterine 

contractions. The results are consistent with generally reported observations in 
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experimental pain study (Chang, P. F. et al., 2004; Gram et al., 2015; Huber et al., 2006; 

Peng et al., 2014; Sai et al., 2019; Shao et al., 2012). 

It is suggested that the decrease of relative alpha band activity observed in this study 

is unlikely to be pain-specific, as opposed to speculations in some other EEG pain studies 

(Gram et al., 2015; Nir et al., 2012; Peng et al., 2014). In general, the alpha band is 

primarily effected by changes in attention and alertness (Klimesch et al., 1998; Peng et 

al., 2015), and is known to be negatively correlated with the focus of attention during task 

performance (Ray & Cole, 1985). As such, the suppression of alpha band activity 

commonly reported in the literature is likely a marker for attentional shift in response to 

pain, rather than pain per se (Giehl et al., 2013; Gram et al., 2015; Peng et al., 2014). It is 

argued that the observed alpha ERD in these earlier studies was more likely a reflection 

of specific attentional and memory processes that were task-related (Peng et al., 2015). 

Experimental evocation of pain by application of either dermal heating or the cold pressor 

test arouses the subject’s attention, thus inducing suppression of alpha oscillatory activity 

in the sensorimotor cortex, regardless of the particulars of attentional modulation applied 

in the particular study (Peng et al., 2014). However, the present study did not manipulate 

directly the subject’s attention. As the pain due to uterine contraction is tonic and natural, 

alpha band activities are less likely to be modulated. As the result, the observed 

suppression of alpha oscillations over frontal regions likely reflects the activation of ACC 

as a consequence of underlying attentional or affective-emotional processing due to the 

pain experience (Peng et al., 2015). On the other hand, the decrease of alpha activities at 

the occipital region observed in this study is likely a reflection of cognitive engagement 

occurring when the pain experience due to uterine contraction is present. 

The pain-evoked increase of delta activity observed in frontal cortical regions is likely 

attributable to artifacts from residual eye blinks or other ocular activities that often 
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accompany the pain experience (Dowman, R. et al., 2008a). However, in the present study 

increased delta activity was also observed on the right parietal region of the scalp, which 

is not so readily attributed to ocular activities. In general, low frequency activation is 

principally related to motivational regulation, which can be linked to negative effect and 

the activation of an avoidance-withdrawal system (Chang, P. F. et al., 2002b). Therefore, 

the present finding of reduced delta activity may reflect in part the functional 

synchronization of brain activity in the parietal lobe upon pain experience, in relation to 

atavistic defensive or withdrawal mechanisms (Hadjileontiadis, 2015). 

On the other hand, the results shown during uterine contractions decreased theta 

activity in bilateral central and parietal regions comprising the somatosensory cortices, as 

also reported previously in an experimental pain study (Dowman, R. et al., 2008a). The 

decrease of low frequency oscillatory activities in this region could be related to activation 

of primary and secondary somatosensory cortices (SI and SII), in relation to the sensory 

modulation of painful experience. However, due to inherent limitations of the scalp EEG 

technique, which include low spatial resolution cortical mapping, the study could not 

unambiguously attribute the pain-related decrease in theta oscillatory activities to a 

particular source in the somatosensory association areas. 

The observed widespread (frontal, central and posterior) increase in beta activity is a 

strong indicator of hyperarousal in response to painful experience. A shift from lower 

frequency to higher frequency activity indicated the activation and synchronization 

between cortical areas of the well-described brain network responding to pain, comprising 

SI, SII, ACC, insula, prefrontal cortex and thalamus (Apkarian et al., 2005; Bromm & 

Lorenz, 1998; Peng et al., 2014; Shao et al., 2012). SI and SII activities induced by pain 

have been associated with the sensory-discriminative component of pain, while ACC 

activation reflects the affective-emotional component due to pain (Bromm & Lorenz, 
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1998; Peng et al., 2015). The finding of broadly distributed enhancement of beta activities 

suggests that pain experience modulates the cortical excitability not only of the pain and 

sensorimotor system, but involves a more widespread cortical system. This finding also 

supports the network model of pain perception, implicating involvement of multiple brain 

regions rather than processing within a “singular centre” (Apkarian et al., 2005; Chang, 

P. F. et al., 2002b; Pinheiro et al., 2016). This network is confirmed in a cross-modal 

imaging study using PET (Kupers et al., 2011). However, the observed widespread 

increase in beta activity in the present study may also be contaminated by EMG sources 

due to cranial muscles contraction or clenching of teeth that certainly accompany the pain 

of uterine contractions. Anticipating this possibility, a comprehensive filtering method is 

applied to isolate and remove high frequency noise and artifactual components including 

the EMG signals. Therefore, the EMG signals have had little disruption to the observed 

increase of beta band activity, which may properly be attributed to the presence of pain 

experience evoked by uterine contractions. 

Other than the conventional spectral activities, certain statistical and non-linear EEG 

features corresponding to pain experience that have not hitherto been well-studied are 

also considered. Generally, the analyses showed that the EEG signals had increased 

amplitude and volatility during painful uterine contraction events. Thus, a number of 

significant changes are observed in the statistical properties related to the EEG amplitude. 

In particular, statistical features such as variance, range of amplitude, Vrms and non-

linear features such as Hjorth activities and Energy Entropy all of which positively 

correlated with the amplitude of the EEG signals showed statistically significant changes 

at certain electrode locations during the pain experience. Nonetheless, this study could 

not identify any single statistical or non-linear features that can be used to accurately 

describe the occurrence of pain experience. On the other hand, statistical features 
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unaffected by the amplitude or volatility such as mean, median and skewness showed no 

such significant changes with pain. 

Although no single analysed feature is sufficient to describe the overall occurrence of 

pain, the combined features may serve for a classification model with supervised machine 

learning algorithm (Sankar et al., 2013). Therefore, in addition to the analysis of changes 

in EEG activities, this study also attempted to classify the “resting” or “pain” state of the 

subjects using the SVM. The SVM classifier is chosen in this study for its outstanding 

ability in classifying two classes and the ease of training the SVM classifier using limited 

training data. The classification algorithms using SVM with an RBF kernel function 

achieved satisfactory results, classifying the presence of pain experience associated with 

uterine contraction at 83% accuracy, as benchmarked by an accuracy of 75% achieved in 

an earlier study with an experimental pain condition (Vatankhah et al., 2013). Moreover, 

by reducing the number of features using PCA and considering only the 68 top ranked 

features with highest class separability criteria, a maximum classification accuracy of 

84% is achieved. Applying PCA reduced the risk of overfitting without sacrificing the 

overall performance of the SVM. However, the PCs are made up by mixture of orthogonal 

transformation of the original features and therefore it is difficult to ascertain the 

individual contribution of the original features to the classification results. 

It is also interesting to note that by considering each subject individually yields a better 

overall classification result as compared to a generalized model. This finding most likely 

reflects the inter-individual differences between participants, which might include scalp 

thickness and the scalp impedances of the electrodes during the recording. Also, it is 

reasonable to suppose that individual differences exist in the pain-specific brain network, 

manifesting in distinct activation patterns during pain processing. As this study involved 

only participants during labour, there are necessarily certain limitations in the 
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generalizability of present findings to other pain conditions, and across gender. 

Nonetheless, the generalized classification model at least serves as a benchmark to assess 

the presence of pain experience during uterine contraction by using the EEG signals. The 

classification of state of pain are able to complement physician’s decision to administrate 

epidural anaesthesia during labour, additional to the interpretation of the subjective 

perception of pain experience by the patient.  
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CHAPTER 6: CONCLUSION AND RECOMMENDATION 

This chapter presents the conclusion of the study and recommendation for relevant 

future works to further enhance the versatility of the application. 

6.1 Conclusion 

This study explored a new hybrid procedure for automatic identification and removal 

of EEG artifacts by applying machine learning algorithms using pre-trained linear SVM 

and DBSCAN to identify the artifactual components in Wavelet-ICA. The method of 

Wavelet-ICA with SVM substantially improves identification of artifactual components 

and is found more reliable as compared to DBSCAN or standard thresholding method. 

Moreover, it promises to be generalizable for diverse kinds of artifacts, upon selecting 

proper features and training data. The system is able to function automatically and isolate 

a distinctly cleaned EEG signal directly from a raw EEG recording, thus potentially 

lending itself for applications such as clinical diagnosis or BCI. It was found that the 

system delivers satisfactory artifact removal without much degrading to the time and 

frequency resolution of the EEG signals. 

As an application for clinical monitoring, this study explored the changes in EEG 

activities during the present of pain experience associated with uterine contraction during 

the first stage of labour, as monitored by CTG tracing. In particular, globally increased 

delta and beta activities together with decreased theta and alpha activities are observed 

subject to the presence of pain with acute uterine contractions. However, it is generally 

held that changes in alpha activities may not directly reflect the pain experience, but rather 

the affective modulation altered by the pain. In an effort to classify the presence of pain 

using supervised machine learning algorithm, a classification accuracy of 83% is 

achieved by using SVM classifier with an RBF kernel function. Furthermore, the 
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classification model using a reduced pool of features via PCA achieved a higher accuracy 

of 84%, using only 68 PCs made out of a total of 496 features. Our findings lend support 

to the utility of EEG signals as a clinical tool to achieve an objective method of pain 

assessment during the first stage of labour, which could inform a decision to administer 

epidural anaesthesia. This approach may prove generalizable to a number of conditions 

in which the patients are unable to convey their internal state. 

 

6.2 Recommendation for Future Works 

Further work should serve to identify features best describe other artifactual 

components to tackle the problem of noise and artifacts in EEG signals. Additionally, 

more work should also serve to develop a monitoring system to objectively classify the 

presence of pain, not only during labour, but generalized for a range of acute or chronic 

pain conditions. Ultimately, it may be possible to develop an objective method that is able 

to qualitatively and quantitatively assess the level of pain experience by tracking the 

changes in human brain in foreseeable future. 
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